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Abstract

Spline functions that approximate (geostrophic) wind field or ocean circulation data are

developed in a weighted Sobolev space setting on the (unit) sphere. Two problems are

discussed in more detail: the modelling of the (geostrophic) wind field from (i) discrete

scalar air pressure data and (ii) discrete vectorial velocity data. Domain decomposition

methods based on the Schwarz alternating algorithm for positive definite symmetric matrices

are described for solving large linear systems occuring in vectorial spline interpolation or

smoothing of geostrophic flow.
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multiplicative Schwarz alternating algorithm.
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1 Introduction

The atmosphere tends to be close to a state of geostrophic equilibrium at all times. If the velocity

v of an element of the atmosphere is specified relative to a reference frame rotating with the

(spherical) earth Ω, then the motion is said to be geostrophic when the component of the Coriolis

force −2ω ∧ v in the tangential plane of Ω, i.e., −2 (ω ∧ v)tan = −2(ωtan ∧ vnor + ωnor ∧ vtan), is

balanced by the pressure (surface) gradient across the stream. More explicitly,

−2 ρ(ξ) (ωtan(ξ) ∧ vnor(ξ) + ωnor(ξ) ∧ vtan(ξ)) = ∇∗
ξP (ξ) , ξ ∈ Ω ,

where ρ is the air density and the operator ∇∗ represents the tangential (horizontal) surface

gradient applied to the scalar pressure field P . If v is assumed to be tangential, i.e., vnor = 0,

then the resulting geostrophic balance is given by the well–known equation (see, for example,

[22], [23], [24])

−2 ρ(ξ) (ωnor(ξ) ∧ vtan(ξ)) = ∇∗
ξP (ξ) , ξ ∈ Ω .

The normal field ωnor is given by ωnor(ξ) = (ω · ξ) ξ, ξ ∈ Ω, with ω = |ω| ε3, i.e., the rotation

vector ω is supposed to point into the direction of the North Pole ε3. The geostrophic slope, B,

across the stream is given by B(ξ) := 2ωnor(ξ) · ξ, ξ ∈ Ω, i.e.,

B(ξ) = 2 |ω| (ξ · ε3) , ξ ∈ Ω .

The resulting equation

−B(ξ) ρ (ξ)ξ ∧ vtan(ξ) = ∇∗
ξP (ξ) , ξ ∈ Ω ,

defines the geostrophic flow. Using the surface curl gradient L∗
ξ := ξ ∧ ∇∗

ξ for points ξ ∈ Ω we

are immediately led to the equation

B(ξ) ρ(ξ) vtan(ξ) = ξ ∧∇∗
ξP (ξ) = L∗

ξP (ξ) , ξ ∈ Ω , (1)

which explicitly gives the description of the geostrophic velocity vtan.

Clearly, the geostrophic velocity determined by (1) is perpendicular to the tangential (i.e., hor-

izontal) pressure gradient ∇∗P on Ω. This is a remarkable feature of the geostrophic flow.

The fluid flows along and not across the lines of constant pressure (isobars). It is, indeed, this

property that enables the isobars e.g. on a weather map to be representative of the pattern of

atmospheric flow.

For geostrophic flow it is worth mentioning that the pressure field can be recovered from the

geostrophic velocity vtan by use of the integral formula (i.e., Green’s third identity) as developed

by [7], [8], [10]

P (ξ) =
1

4π

∫

Ω
P (η) dω(η)−

∫

Ω
L∗
ηG(∆∗; ξ, η)L∗

ηP (η) dω(η) , (2)

where G(∆∗; ·, ·) denotes the Green function with respect to the Beltrami operator ∆∗ given by

G(∆∗; ξ, η) =
1

4π
ln (1− ξ · η) + 1

4π
− 1

4π
ln(2) ,
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(ξ, η) ∈ Ω × Ω, −1 ≤ ξ · η < 1. In other words, assuming that the mean value Pmean, which is

given by Pmean =
1
4π

∫
Ω P (η) dω(η), is known we obtain

P (ξ)− Pmean = −
∫

Ω
L∗
ηG(∆∗; ξ, η)B(η) ρ(η) vtan(η) dω(η) . (3)

If, in addition, the air density is replaced by the mean value ρmean we find

P (ξ)− Pmean =
ρmean|ω|

2π

∫

Ω

ξ ∧ η

1− ξ · η (η · ε3) vtan(η) dω(η) ,

which provides an integral relation for deriving pressure information from the geostrophic ve-

locity vtan.

In this paper we are concerned with the following (discrete) problems of geostrophic flow in the

atmosphere:

• Pressure Data Problem (PDP): Let there be known the scalar pressure field P for a

finite subset {ξN1 , . . . , ξNN } of points on the (unit) sphere Ω. Find a smooth approximation

of P (and via (1) of vtan) from the discrete data

{(
ξNi , P (ξNi ) + εi

)∣∣ i = 1, . . . , N
}
,

where ε1, . . . , εN are (scalar) measurement errors.

• Wind Data Problem (WDP): Let there be known the vectorial wind field vtan for a

finite subset {ξN1 , . . . , ξNN } of points on the unit sphere. Find a smooth approximation of

vtan (and via (3) of P − Pmean) from the discrete data

{(
ξNi , B(ξNi ) ρ(ξNi ) vtan(ξ

N
i ) + εi

)∣∣ i = 1, . . . , N
}
,

where ε1, . . . , εN are (vectorial) measurement errors.

It should be remarked that in the same way the atmospheric flows are derived from the surface

pressure field, P , upper ocean flow can be determined from the knowledge of the sea surface

dynamic topography Ξ, i.e., the difference between the sea surface height and the geoid (cf. [23],

[24]). In other words, the pressure gradients are revealed as the deviations of the sea surface

from an equipotential surface like the geoid such that

B(ξ) ρ(ξ) vtan(ξ) = L∗
ξΞ(ξ) , ξ ∈ Ω .

Obviously, the observed ocean currents follow the contours of the dynamic topography, and

this fact provides a check on the validity of both the mean surface maps and the geostrophic

assumption (see [18], [23], [26] and many others). Correspondingly, PDP can also be understood

as sea surface dynamic topography data problem, while WDP may be interpreted as ocean

circulation data problem.

The significance of our considerations lies in the development of a general framework in which it is

possible that the approximation may be chosen to embody desirable characteristics in accordance

with the source of the data. This feature is achieved through the idea of approximation by
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splines that minimize a weighted Sobolev norm (energy norm), with a large class of weights

being at the disposal of the user. The Sobolev space, along the variational properties of spline

interpolation or spline smoothing yield some important benefits: The spherical splines we need

here are constituted as linear combinations of (scalar or vectorial) radial basis functions (see [10],

[4]) which can be recognized as reproducing kernels functions associated to the Sobolev spaces.

According to this construction, huge amounts of data can be handled by a domain decomposition

method within the solution process of the resulting linear equations, the coefficient matrix of

them being of Gram type. Because of their space localizing properties, the constituting kernel

functions are of great importance, in particular, when local approximants are required (such as

spline approximants of wind fields on local areas or ocean currents on parts of the see surface).

In oceanography the pressure field P on Ω is conventionally represented as a Fourier expansion

in terms of spherical harmonics. This approach consequently leads to a series expansion of the

velocity field in terms of (divergence-free) vector spherical harmonics (see, for example, [18], [22],

[23]). However, these vector types of functions are far from being suitable for purposes of local

approximation. In the case of ocean circulation, boundary effects like the Gibbs phenomenon

cannot be avoided by non-space-localizing spherical harmonics when the dynamic topography is

set to zero over the continents. By use of space-localizing spline functions as proposed here no

assumption on the continents must be made, and the approximation along the coast lines can

be handled in a much better way.

The layout of the paper is as follows: First background material is given. Vector spherical har-

monics are introduced in a standard way. Then the characterization of spline approximation in

a weighted Sobolev space setting is described for the problems PDP and WDP, respectively. It

is shown how certain choices of weight sequences yield well-suited approximants in terms of ele-

mentary available and easily implementable kernel expressions. In order to solve linear systems

involved in (spherical) spline approximation problems a domain decomposition method based

on the Schwarz alternating algorithm is explained in detail. Some remarks on the numerical

implementation for the spline modelling of geostrophic wind fields conclude the paper.

2 Preliminaries

We begin our consideration by introducing some basic notation that will be used throughout

the paper.

2.1 Notation

Let N, R denote the positive integers and the real numbers, respectively. Furthermore, we set

N0 := N ∪ {0}, and R+ := {t ∈ R | t > 0}. We denote the Euclidean inner product on Rn by

(x, y) = x · y :=
∑n

j=1 xj yj , and the Euclidean norm is designated by |x| :=
√

(x, x), where

x = (x1, . . . , xn)
T , y = (y1, . . . , yn)

T . For all x ∈ R3, x = (x1, x2, x3)
T , different from the origin,

we have

x = r ξ , r = |x| =
√
x21 + x22 + x23 , (4)
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where ξ = (ξ1, ξ2, ξ3)
T is the uniquely determined directional unit vector of x ∈ R3. The unit

sphere in R3 will be denoted by Ω. If the vectors ε1, ε2, ε3 form the canonical orthonormal basis

in R3, we may represent the points ξ ∈ Ω in spherical coordinates by

ξ = t ε3 +
√

1− t2
(
cos(ϕ) ε1 + sin(ϕ) ε2

)
, (5)

where −1 ≤ t ≤ 1, 0 ≤ ϕ < 2π, t = cos(ϑ). Apart from the poles (i.e., t ∈ {−1, 1}), the vectors

εϕ = εϕ(ϕ, t) :=
∂ξ(ϕ, t)

∂ϕ

∣∣∣∣
∂ξ(ϕ, t)

∂ϕ

∣∣∣∣
−1

=



− sin(ϕ)

cos(ϕ)

0


 ,

εt = εt(ϕ, t) :=
∂ξ(ϕ, t)

∂t

∣∣∣∣
∂ξ(ϕ, t)

∂t

∣∣∣∣
−1

=



−t cos(ϕ)
−t sin(ϕ)√

1− t2




form a basis of the tangential space to Ω in the point ξ = ξ(ϕ, t).

As usual, the vector product of two vectors x, y ∈ R3 is defined by

x ∧ y := (x2 y3 − x3 y2, x3 y1 − x1 y3, x1 y2 − x2 y1)
T .

In terms of the coordinates (4) the gradient ∇ in R3 reads as follows

∇x = ξ
∂

∂r
+

1

r
∇∗
ξ ,

where ∇∗ is the (aforementioned) surface gradient of the unit sphere Ω ⊂ R3. Moreover, the

Laplace operator ∆ := ∇ · ∇ in R3 allows the representation

∆x =

(
∂

∂r

)2
+

2

r

∂

∂r
+

1

r2
∆∗
ξ ,

where ∆∗ = ∇∗ · ∇∗ is the Beltrami operator of the unit sphere Ω (for explicit representations

in terms of the coordinates (5) see, e.g., [10]).

Throughout this paper scalar-valued (vector-valued) functions are denoted by capital (small)

letters. A function F : Ω → R (f : Ω → R3) possessing k continuous derivatives on the unit

sphere Ω is said to be of class C(k)(Ω) (c(k)(Ω)). C(0)(Ω) = C(Ω) (c(0)(Ω) = c(Ω)) is the class of

real continuous scalar-valued (vector-valued) functions on Ω.

For F ∈ C(1)(Ω) we introduce the surface curl gradient L∗ via

L∗
ξF (ξ) := ξ ∧∇∗

ξF (ξ) , ξ ∈ Ω .

Furthermore, ∇∗
ξ · f(ξ), ξ ∈ Ω, and L∗

ξ · f(ξ), ξ ∈ Ω, respectively, denote the surface divergence

and the surface curl of the vector field f at ξ ∈ Ω. (It should be noted that the operators

∇∗, L∗,∆∗ will be always used in coordinate-free representation throughout this work, thereby

avoiding any singularities at the poles).

The operators o(i) : C(1)(Ω)→ c(Ω), i = 1, 2, 3, defined by

o
(1)
ξ F (ξ) := ξF (ξ) , ξ ∈ Ω ,

o
(2)
ξ F (ξ) := ∇∗

ξF (ξ) , ξ ∈ Ω ,

o
(3)
ξ F (ξ) := L∗

ξF (ξ) , ξ ∈ Ω ,
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are of particular importance for our considerations. Therefore, we list some of their properties

in more detail. For all ξ ∈ Ω we have

o
(i)
ξ F (ξ) · o(j)ξ F (ξ) = 0

whenever j 6= i, i, j ∈ {1, 2, 3}. Moreover, if G ∈ C (1)[−1,+1] and (ξ, η) ∈ Ω× Ω, it is not hard

to see that

o
(2)
ξ G(ξ · η) = G′(ξ · η) (η − (ξ · η)ξ) ,
o
(3)
ξ G(ξ · η) = G′(ξ · η) (ξ ∧ η) . (6)

Furthermore, Green’s identities show us that (cf. (2))

F (ξ) =
1

4π

∫

Ω
F (η) dω(η)−

∫

Ω

(
o(i)η G(∆∗; ξ, η)

)
·
(
o(i)η F (η)

)
dω(η)

holds for all ξ ∈ Ω, i ∈ {2, 3}, and F ∈ C(1)(Ω), where G(∆∗; ·, ·) is the Green function with

respect to the Beltrami operator ∆∗ (cf. [7], [8]). The integral formulas (cf. [10]) for F ∈ C(1)(Ω),
f ∈ c(1)(Ω)

∫

Ω
f(ξ) · ∇∗

ξF (ξ) dω(η) = −
∫

Ω
F (ξ)∇∗

ξ · f(ξ) dω(η) ,
∫

Ω
f(ξ) · L∗

ξF (ξ) dω(η) = −
∫

Ω
F (ξ)L∗

ξ · f(ξ) dω(η)

lead us to operators O(i) : c(1)(Ω) → C(0)(Ω), i = 1, 2, 3, which are adjoint to o(i). To be more

concrete, for f ∈ c(1)(Ω) and F ∈ C(1)(Ω), we have

∫

Ω
o
(i)
ξ F (ξ) · f(ξ) dω(η) =

∫

Ω
F (ξ)O

(i)
ξ f(ξ) dω(η) , i = 1, 2, 3 ,

where

O
(1)
ξ f(ξ) := ξ · pnorf(ξ) , ξ ∈ Ω ,

O
(2)
ξ f(ξ) := −∇∗

ξ · ptanf(ξ) , ξ ∈ Ω ,

O
(3)
ξ f(ξ) := −L∗

ξ · ptanf(ξ) , ξ ∈ Ω ,

and pnorf(ξ) := (f(ξ) · ξ) ξ, ptanf(ξ) := f(ξ)− pnorf(ξ), ξ ∈ Ω. It can be easily seen that

O
(i)
ξ o

(j)
ξ F (ξ) = 0 , i 6= j, i, j ∈ {1, 2, 3} ,

and

O(i)o(i)F (ξ) =

{
F (ξ) if i = 1

−∆∗
ξF (ξ) if i = 2, 3 ,

provided that F is of class C(2)(Ω). For more details the reader is referred to [2], [10].

By l2(Ω) we denote the space of (Lebesgue) square-integrable vector fields on Ω, i.e.,

l2(Ω) :=

{
f : Ω→ R3

∣∣∣
∫

Ω
f(ξ) · f(ξ) dω(ξ) <∞

}
.
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l2(Ω) is a Hilbert space equipped with the inner product

(f, g)l2(Ω) =

(∫

Ω
f(ξ) · g(ξ) dω(ξ)

)1/2
.

For a given vector field f : Ω→ R3

pnorf : ξ 7→ pnorf(ξ) := (ξ · f(ξ)) ξ , ξ ∈ Ω ,

is called the normal part of f , while

ptanf : ξ 7→ ptanf(ξ) := f(ξ)− pnorf(ξ) , ξ ∈ Ω ,

is called the tangential part of f . A vector field f : Ω → R3 is called tangential (normal), if

f(ξ) = ptanf(ξ) (f(ξ) = pnorf(ξ)) for all ξ ∈ Ω.

Analogously, we denote by L2(Ω) the Hilbert space of (Lebesgue) square-integrable scalar func-

tions with the inner product

(F,G)L2(Ω) :=

∫

Ω
F (ξ)G(ξ) dω(ξ) .

The study of vector fields on the sphere can be greatly simplified by the so-called Helmholtz

decomposition theorem for continuously differentiable vector fields f : Ω→ R3 (see [10])

f(ξ) = pnorf(ξ) + ptanf(ξ) , ξ ∈ Ω .

To be more precise, any continuously differentiable vector field on the unit sphere Ω ⊂ R3 (i.e.,

f ∈ c(1)(Ω)) may be represented by a decomposition in terms of scalar functions F (i) ∈ C1+0i(Ω),

i = 1, 2, 3, where 01 := 0, 02 := 1, 03 := 1, such that

pnorf(ξ) = o
(1)
ξ F (1)(ξ) , ξ ∈ Ω ,

ptanf(ξ) = o
(2)
ξ F (2)(ξ) + o

(3)
ξ F (3)(ξ) , ξ ∈ Ω ,

where

F (1)(ξ) = ξ · f(ξ) , ξ ∈ Ω ,

F (2)(ξ) = −
∫

Ω
G(∆∗; ξ, η)O(2)η ptanf(ξ) dω(η) , ξ ∈ Ω ,

F (3)(ξ) = −
∫

Ω
G(∆∗; ξ, η)O(3)η ptanf(ξ) dω(η) , ξ ∈ Ω .

These representations of spherical vector fields lay the groundwork for the main subject of this

work. The explicit representations of the tangential as well as the normal field, in fact, are

essential for the constructive approximation of spherical vector fields.

2.2 Vector Spherical Harmonics

After these preparations we are able to introduce vector spherical harmonics.
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Definition 2.1 Any vector field o(i)Yn, i ∈ {1, 2, 3}, where Yn is a spherical harmonic of order
n ≥ 0i, is called a vector spherical harmonic of order n and type i.

Assume that {Yn,j}n∈N0; j=1,...,2n+1 is a complete orthonormal system of spherical harmonics in

(L2(Ω), (·, ·)L2(Ω)). Then, for i ∈ {1, 2, 3}, we define the system {y(i)n,j}n∈N0i ; j=1,...,2n+1, by

y
(i)
n,j :=

(
µ(i)n

)−1/2
o(i)Yn,j , (7)

where N0i
= N0 for i = 1 and N0i

= N for i = 2, 3 and

µ(i)n :=

{
1 if i = 1

n(n+ 1) if i = 2, 3 .

It is not difficult to show that
∫

Ω
y
(i)
n,j(ξ) · y

(k)
m,l(ξ) dω(ξ) = (µ(i)n )−1/2(µ(k)m )−1/2

∫

Ω
Yn,j(ξ)O

(i)
ξ o

(k)
ξ Ym,l(ξ)dω(ξ)

= δi,k (µ
(i)
n )−1/2(µ(k)m )−1/2

∫

Ω
Yn,j(ξ)

(
µ(i)m Ym,l(ξ)

)
dω(ξ)

= δik δnm δjl .

Hence, the set {
y
(i)
n,j

∣∣∣ n ∈ N0i
; j = 1, . . . , 2n+ 1; i ∈ {1, 2, 3}

}

is an orthonormal system in the space (l2(Ω), (·, ·)l2(Ω)).
The next result states that this system is closed and complete in l2(Ω).

Theorem 2.2 Let {Yn,j}n∈N0; j=1,...,2n+1 be a complete orthonormal system of spherical har-

monics in L2(Ω). Then the set {y(i)n,j |n ∈ N0i
; j = 1, . . . , 2n + 1; i ∈ {1, 2, 3}}, defined by (7),

shows the following properties:

(i) span
{
y
(i)
n,j

∣∣∣ n ∈ N0i
; j = 1, . . . , 2n+ 1; i ∈ {1, 2, 3}

} ‖ · ‖c(Ω)

= c(Ω) .

(ii)
{
y
(i)
n,j

∣∣∣ n ∈ N0i
; j = 1, . . . , 2n+ 1; i ∈ {1, 2, 3}

}
is a complete orthonormal system in the

Hilbert space (l2(Ω); (·, ·)l2(Ω)).

Proof. The proof of this theorem can be found in [10].

In particular, Theorem 2.2 implies that any f ∈ l2(Ω) has a Fourier series expansion of the form

f =

3∑

i=1

∞∑

n=0i

2n+1∑

j=1

(f (i))∧(n, j) y
(i)
n,j , (8)

where the Fourier coefficients (f (i))∧(n, j), n ∈ N0i
; j = 1, . . . , 2n + 1; i ∈ {1, 2, 3}, are defined

by

(f (i))∧(n, j) :=

∫

Ω
f(ξ) · y(i)n,j(ξ) dω(ξ).
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Of course, the convergence of the series expansion (8) of the vector field f ∈ l2(Ω) is understood

in l2(Ω)-sense.

The space l2(Ω) can be decomposed as follows:

l2(Ω) = l2(1)(Ω)⊕ l2(2)(Ω)⊕ l2(3)(Ω) ,

where for i = 1, 2, 3

l2(i)(Ω) := span
{
y
(i)
n,j

∣∣∣ n ∈ N0i
; j = 1, . . . , 2n+ 1

} ‖·‖
l2(Ω)

.

Moreover, we have

c(Ω) = c(1)(Ω)⊕ c(2)(Ω)⊕ c(3)(Ω) ,

where for i ∈ {1, 2, 3}

c(i)(Ω) := span
{
y
(i)
n,j

∣∣∣ n ∈ N0i
; j = 1, . . . , 2n+ 1

} ‖·‖c(Ω)

.

Furthermore, we define for k ∈ N ∪ {∞}

c
(k)
(i) (Ω) := c(i)(Ω) ∩ c(k)(Ω), i ∈ {1, 2, 3} .

Finally, we mention the following result for vector spherical harmonics:

Lemma 2.3 Let {Yn,j}n∈N0; j=1,...,2n+1 be a complete orthonormal system of spherical harmonics

in L2(Ω). Set y(i)n,j := (µ
(i)
n )−1/2o(i)Yn,j , n ∈ N0i

; j = 1, . . . , 2n + 1; i ∈ {1, 2, 3}. Then, for
i ∈ {1, 2, 3},

2n+1∑

j=1

∣∣∣y(i)n,j(ξ)
∣∣∣
2
=

(2n+ 1)

4π
, ξ ∈ Ω, n ∈ N0i

.

Proof. The proof follows from the addition theorem of vector spherical harmonics that can be

found in [2], [10].

From now on, we make the convention (without further mentioning) that y
(i)
n,j is always defined

by (7) by use of a complete orthonormal system {Yn,j}n∈N0; j=1,...,2n+1 of spherical harmonics in

L2(Ω).

3 Sobolev-Like Hilbert Spaces or Scalar- or Vector-Valued Func-

tions on the Sphere

Next Sobolev-like Hilbert spaces, which are subspaces of L2(Ω) or l2(i)(Ω), i ∈ {1, 2, 3}, respec-
tively, are introduced. Their properties are summed up. After that, it is explained under which

conditions certain linear operators on these spaces, which are important in geostrophic wind

field determination, are bounded. Finally, the representation of bounded linear functionals on

these spaces is discussed. Some types of bounded linear functionals (which are relevant for this

publication) are investigated in more detail.
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3.1 Sobolev-like Subspaces of L2(Ω)

The definition of the (scalar) Sobolev-like subspaces of L2(Ω) is in analogy to the approach

presented in [8], where more details can be found. The Sobolev-like subspaces of L2(Ω) are

useful for the understanding of the respective subspaces of l2(i)(Ω).

Definition 3.1 Let {An}n∈N0 ⊂ R+ satisfy An ≥ C for all n ∈ N0 with some constant C > 0.

We introduce the set

E({An}; Ω) :=



F ∈ C(∞)(Ω)

∣∣∣∣∣∣

∞∑

n=0

2n+1∑

j=1

A2n (F
∧(n, j))2 <∞



 ,

where {F∧(n, j)}n∈N0; j=1,...,2n+1 is the set of Fourier coefficients of F with respect to the complete
orthonormal system {Yn,j}n∈N0; j=1,...,2n+1 of spherical harmonics in L2(Ω), i.e.,

F∧(n, j) =

∫

Ω
F (ξ)Yn,j(ξ) dω(ξ) .

On E({An}; Ω) we impose the inner product

(F,G)H({An};Ω) :=
∞∑

n=0

2n+1∑

j=1

A2n F
∧(n, j)G∧(n, j) ,

which induces the norm

‖F‖H({An};Ω)
:=




∞∑

n=0

2n+1∑

j=1

A2n
(
F∧(n, j)

)2


1/2

.

The Sobolev-like Hilbert space (Sobolev space) H({An}; Ω) is defined to be the completion

H({An}; Ω) := E({An}; Ω)
‖ · ‖H({An};Ω)

.

A complete orthonormal system in H({An}; Ω) is given by
{
A−1
n Yn,j

}
n∈N0; j=1,...,2n+1. Due to

the estimate

‖F‖2L2(Ω) =
1

C2




∞∑

n=0

2n+1∑

j=1

C2
(
F∧(n, j)

)2



≤ 1

C2




∞∑

n=0

2n+1∑

j=1

A2n
(
F∧(n, j)

)2



=
1

C2
‖F‖2H({An};Ω)

for F ∈ E({An}; Ω), we are able to deduce that every Cauchy sequence in E({An}; Ω) with

respect to ‖ · ‖H({An};Ω) is also a Cauchy sequence with respect to ‖ · ‖L2(Ω). Thus, H({An}; Ω)
is a subspace of L2(Ω). Every F ∈ H({An}; Ω) can be represented by the series expansion

F =
∞∑

n=0

2n+1∑

j=1

F∧(n, j)Yn,j , (9)
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where F∧(n, j) is, as before, the Fourier coefficient F ∧(n, j) =
∫
Ω F (ξ)Yn,j(ξ) dω(ξ). The se-

ries expansion (9) of F ∈ H({An}; Ω) converges both in the L2(Ω)-sense and with respect to

‖ · ‖H({An};Ω). It is clear that H({An}; Ω) is a dense subset of L2(Ω), because H({An}; Ω)
obviously contains all spherical harmonics Yn,j , n ∈ N0; j = 1, . . . , 2n+ 1.

Theorem 3.2 Let {An}n∈N0 ⊂ R+ satisfy An ≥ C for all n ∈ N0 with a constant C > 0, and let

H({An}; Ω) be defined as indicated by Definition 3.1. Then the following statements are valid:

(i) If
∑∞

n=0
(n+ 1

2
)

A2n
<∞, then H({An}; Ω) ⊂ C(Ω).

(ii) If
∑∞

n=0
(n+ 1

2
)3

A2n
<∞, then H({An}; Ω) ⊂ C(1)(Ω). The series expansion (9) of a function

F ∈ H({An}; Ω) may be differentiated term by term.

Proof. This theorem is also known as (the spherical counterpart of the) Sobolev Lemma.

A proof of (i) can be found in, for example, [9]. Statement (ii) follows from the well-known

theorem of analysis about the differentiation of sequences of functions, where the main trick

is to parameterize the truncated Fourier series expansion locally in spherical coordinates and

to express the directional derivatives with respect to the polar coordinates with the help of

L∗ and ∇∗. Lemma 2.3 then yields all estimates that are needed to ensure the term by term

differentiation of (9).

Finally, we note that H({An}; Ω) is a reproducing kernel Hilbert space if and only if

∞∑

n=0

(n+ 1
2)

A2n
<∞. (10)

For a proof see, for example, [8] or [10].

3.2 Sobolev-like Subspaces of l2(i)(Ω)

Next we define subspaces of l2(i)(Ω) in analogy to Definition 3.1.

Definition 3.3 Let {An}n∈N0 ⊂ R+ be a sequence of positive numbers satisfying An ≥ C for

all n ∈ N0 with some constant C > 0. For i ∈ {1, 2, 3} we let

ε(i)({An}; Ω) :=



f ∈ c

(∞)
(i) (Ω)

∣∣∣∣∣∣

∞∑

n=0i

2n+1∑

j=1

A2n

(
(f (i))∧(n, j)

)2
<∞



 .

On ε(i)({An}; Ω) we impose the inner product

(f, g)h(i)({An};Ω)
=

∞∑

n=0i

2n+1∑

j=1

A2n (f
(i))∧(n, j) (g(i))∧(n, j) ,

which induces the norm

‖f‖h(i)({An};Ω)
:=




∞∑

n=0i

2n+1∑

j=1

A2n

(
(f (i))∧(n, j)

)2


1/2

.
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The Sobolev-like Hilbert space (Sobolev space) h(i)({An}; Ω) is defined to be the completion

h(i)({An}; Ω) = ε(i)({An}; Ω)
‖ · ‖

h(i)({An};Ω) .

As in the case of H({An}; Ω), it can be shown that {A−1
n y

(i)
n,j | n ∈ N0i

; j = 1, . . . , 2n + 1} is

a complete orthonormal system in h(i)({An}; Ω). Moreover, h(i)({An}; Ω) ⊂ l2(i)(Ω) (because

An ≥ C > 0 for all n ∈ N0). Each f ∈ h(i)({An}; Ω) can be represented by the series expansion

f =
∞∑

n=0i

2n+1∑

j=1

(f (i))∧(n, j) y
(i)
n,j , (11)

where the Fourier coefficients (f (i))∧(n, j) are given by (f (i))∧(n, j) =
∫
Ω f(ξ) · y

(i)
n,j(ξ) dω(ξ).

The series expansion (11) of f ∈ h(i)({An}; Ω) converges both with respect to ‖ · ‖l2(Ω) and

‖ · ‖h(i)({An};Ω)
. The space h(i)({An}; Ω) is a dense subspace of l2(i)(Ω).

Theorem 3.4 Let {An}n∈N0 ⊂ R+ and i ∈ {1, 2, 3}. Then following statements are valid:

(i) If
∑∞

n=0
(n+ 1

2
)

A2n
<∞, then h(i)({An}; Ω) ⊂ c(i)(Ω).

(ii) If
∑∞

n=0
(n+ 1

2
)3

A2n
<∞, then h(i)({An}; Ω) ⊂ c

(1)
(i) (Ω). The series expansion (11) of a vector

field f ∈ h(i)({An}; Ω) may be differentiated term by term.

(It should be noted that the conditions on {An}n∈N0 in (i) and (ii) imply that An ≥ C for all

n ∈ N0 with some constant C > 0.)

Proof. Statement (i) follows (as in the scalar case) by proving that the truncated Fourier series

converges uniformly. This follows by aid of the Cauchy-Schwarz inequality

∣∣∣∣∣∣

M∑

n=N

2n+1∑

j=1

(f (i))∧(n, j) y
(i)
n,j(ξ)

∣∣∣∣∣∣
≤ ‖f‖h(i)({An};Ω)




M∑

n=N

2n+1∑

j=1

|y(i)n,j(ξ)|2
A2n



1/2

, M ≥ N ,

in connection with Lemma 2.3. Statement (ii) follows from Theorem 3.2. This is obvious for

i = 1 and will be briefly sketched for i = 3. The case i = 2 can be verified in a similar way. A

function f ∈ h(3)({An}; Ω) can be written as

f =
∞∑

n=03

fn ,

where

fn :=
2n+1∑

j=1

(f (3))∧(n, j) y
(3)
n,j ,

and

‖f‖2
h(3)({An};Ω)

=
∞∑

n=03

A2n ‖fn‖2l2(Ω) .
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It can be shown that, for k ∈ {1, 2, 3}, fn · εk ∈ Harmn(Ω) (see [10]), fn · εk ∈ H({An}; Ω), and,
due to Theorem 3.2, H({An}; Ω) ⊂ C(1)(Ω). In fact,

‖f · εk‖2H({An};Ω)
=

∥∥∥∥∥

∞∑

n=03

fn · εk
∥∥∥∥∥

2

H({An};Ω)

=
∞∑

n=03

A2n ‖fn · εk‖2L2(Ω)

≤
∞∑

n=03

A2n ‖fn‖2l2(Ω)

= ‖f‖2h(3)({An};Ω)
< ∞ .

This is the desired result.

Remark 3.5 It is clear that Sobolev-like Hilbert spaces

h({A(1)n }; {A(2)n }; {A(3)n }; Ω) := h(1)({A(1)n }; Ω)⊕ h(2)({A(2)n }; Ω)⊕ h(3)({A(3)n }; Ω) (12)

of l2(Ω) can be defined in a canonical way, where {A(1)n }n∈N0, {A
(2)
n }n∈N0, {A

(3)
n }n∈N0 ⊂ R+

satisfy A
(i)
n ≥ Ci for all n ∈ N0, i = {1, 2, 3} with constants C1, C2, C3 > 0. The inner product

on the space introduced in (12) is then given by

(f, g)
h({A

(1)
n };{A

(2)
n };{A

(3)
n };Ω)

=
3∑

i=1

∞∑

n=0i

2n+1∑

j=1

(A(i)n )2 (f (i))∧(n, j) (g(i))∧(n, j) ,

and f ∈ h({A(1)n }; {A(2)n }; {A(3)n }; Ω) has the series expansion

f =
3∑

i=1




∞∑

n=0i

2n+1∑

j=1

(f (i))∧(n, j) y
(i)
n,j




︸ ︷︷ ︸
=: f (i)

, (13)

where (f (i))∧(n, j) =
∫
Ω f(ξ) y

(i)
n,j(ξ) dω(ξ). The series expansion (13) converges in l2(Ω)-sense,

as well as in h({A(1)n }; {A(2)n }, {A(3)n }; Ω)-sense. For i ∈ {1, 2, 3} we have f (i) ∈ h(i)({A(i)n }; Ω).
The most common case is, of course, {A(i)n }n∈N0 = {An}n∈N0 for all i = 1, 2, 3.

3.3 Properties of the Operators O(i) and o(i)

Theorem 3.6 Let {An}n∈N0 ⊂ R+ satisfy An ≥ C for all n ∈ N0 with a constant C > 0. Then

the following statements hold true:

(i) The operator o(1): H({An}; Ω) → h(1)({An}; Ω) is a well-defined bijective bounded lin-
ear operator. The operator O(1): h(1)({An}; Ω) → H({An}; Ω) is a well-defined bijective
bounded linear operator. Furthermore,

O(1)o(1)F = F , F ∈ H({An}; Ω) , (14)

o(1)O(1)f = f , f ∈ h(1)({An}; Ω) . (15)
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(ii) For i ∈ {2, 3} suppose that {An}n∈N0 satisfies additionally the inequality

∞∑

n=0

(n+ 1
2)
3

A2n
<∞ . (16)

Then o(i) : H({An}; Ω) → h(i)({An/(n + 1
2)}; Ω) is a well-defined surjective bounded lin-

ear operator. The operator O(i) : h(i)({An}; Ω) → H({An/(n + 1
2)}; Ω) is a well-defined

injective bounded linear operator.

Proof. Statement (i): Assume that F ∈ H({An}; Ω). Then it can be shown that

‖o(1)F‖2
h(1)({An};Ω)

=

∥∥∥∥∥∥

∞∑

n=0

2n+1∑

j=1

F∧(n, j) y
(1)
n,j

∥∥∥∥∥∥

2

h(1)({An};Ω)

=

∞∑

n=0

2n+1∑

j=1

A2n
(
F∧(n, j)

)2

= ‖F‖2H({An};Ω)
.

Analogously, for f ∈ h(1)({An}; Ω),

∥∥∥O(1)f
∥∥∥
2

H({An};Ω)
=

∥∥∥∥∥∥

∞∑

n=0

2n+1∑

j=1

(f (i))∧(n, j)Yn,j

∥∥∥∥∥∥

2

H({An};Ω)

=
∞∑

n=0

2n+1∑

j=1

A2n

(
(f (i))∧(n, j)

)2

= ‖f‖2
h(1)({An};Ω)

.

Consequently, o(1) and O(1) are well-defined, injective and bounded linear operators. Due to the

properties

O(1)o(1)Yn,j = Yn,j ,

o(1)O(1)y
(1)
n,j = y

(1)
n,j

for all n ∈ N0 and all j = 1, . . . , 2n + 1, the identities (14) and (15) are verified, and O(1) and

o(1) also are surjective.

Statement (ii): Suppose that F ∈ H({An}; Ω). Then, due to Theorem 3.2, F is a member of

class C(1)(Ω) and the Fourier series expansion of F may be differentiated term by term. Hence,

‖o(1)F‖2
h(i)({An/(n+

1
2
)};Ω)

=

∥∥∥∥∥∥

∞∑

n=0i

2n+1∑

j=1

F∧(n, j) (µ(i)n )1/2 y
(i)
n,j

∥∥∥∥∥∥

2

h(i)({An/(n+
1
2
)};Ω)

=
∞∑

n=0i

A2n
(n+ 1

2)
2
n(n+ 1)

(
F∧(n, j)

)2

≤ 2 ‖F‖2H({An};Ω)
.
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Therefore, o(i) is a well-defined bounded linear operator. The operator o(i) also is surjective,

because for f ∈ h(i)({An/(n+ 1
2)}; Ω)

F :=
∞∑

n=0i

2n+1∑

j=1

(f (i))∧(n, j) (µ(i)n )−1/2 Yn,j

is a function in H({An}; Ω) with O(i)F = f .

Let now f be of class h(i)({An}; Ω). According to Theorem 3.4, we have f ∈ c(1)(Ω), and the

Fourier series expansion of f can be differentiated term by term. Consequently, it follows that

‖O(i)f‖2
H({An/(n+

1
2
)};Ω)

=

∥∥∥∥∥∥

∞∑

n=0i

2n+1∑

j=1

(f (i))∧(n, j) (µ(i)n )1/2 Yn,j

∥∥∥∥∥∥

2

H({An/(n+
1
2
)};Ω)

=
∞∑

n=0i

2n+1∑

j=1

A2n
(n+ 1

2)
2
n(n+ 1)

(
(f (i))∧(n, j)

)2

≤ 2 ‖f‖2h(i)({An};Ω)
.

Hence, O(i) is a well-defined bounded linear operator. The injectivity follows from the fact that

O(i)y
(i)
n,j = (µ(i)n )1/2 Yn,j 6= 0 .

for all n ∈ N0i
; j = 1, . . . , 2n+ 1.

3.4 Bounded Linear Functionals on H({An}; Ω)

At first, we discuss the representation of bounded linear functionals on the scalar Hilbert spaces

H({An}; Ω).

Theorem 3.7 Let {An}n∈N0 ⊂ R+ satisfy An ≥ C for all n ∈ N0 with some constant C > 0.

Let L : H({An}; Ω)→ R be a bounded linear functional. Then there exists a uniquely determined
representer L ∈ H({An}; Ω) of L, such that

LF = (F,L)H({An};Ω) (17)

for all F ∈ H({An}; Ω). This representer is given by

L :=
∞∑

n=0

2n+1∑

j=1

1

A2n
(LYn,j)Yn,j . (18)

Proof. According to the Riesz representation theorem, there exists an L ∈ H({An}; Ω) satisfy-
ing (17). The computation of the Fourier coefficients with respect to the complete orthonormal

system {A−1
n Yn,j}n∈N0; j=1,...,2n+1 shows us that

(
L,A−1

n Yn,j
)
H({An};Ω)

= A−1
n LYn,j ,

and, consequently, the series expansion (18) is valid.

Our results lead us to the following theorem.
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Theorem 3.8 Let {An}n∈N0 ⊂ R+ satisfy condition (10). Then the Hilbert space H({An}; Ω)
is a reproducing kernel Hilbert space, i.e., there exists a kernel K : Ω×Ω→ R, (ξ, η) 7→ K(ξ, η),

satisfying the following properties:

(i) K(ξ, ·) ∈ H({An}; Ω) for all fixed ξ ∈ Ω.

(ii) For all F ∈ H({An}; Ω) the property (F,K(ξ, ·))H({An};Ω) = F (ξ) holds for all ξ ∈ Ω.

This reproducing kernel K is uniquely determined and admits the series expansion

K(ξ, η) =
∞∑

n=0

2n+1∑

j=1

1

A2n
Yn,j(ξ)Yn,j(η) , (ξ, η) ∈ Ω× Ω .

Proof. This result is well known and can, for example, be found in [9], [10].

An immediate consequence of Theorem 3.7 and Theorem 3.8 is the following result.

Lemma 3.9 Let the assumptions and the notation be the same as in Theorem 3.8. Suppose

that L is a bounded linear functional on H({An}; Ω). Then, the representer of L is given by

L(η) = LξK(ξ, η) , η ∈ Ω ,

where K is the reproducing kernel, and the index ξ means that L is applied to K as a function

in H({An}; Ω) of the first variable. In particular, the evaluation functional

L : H({An}; Ω)→ R , F 7→ F (ξ) ,

in the point ξ ∈ Ω is bounded and has the representer

L(η) = K(ξ, η) =
∞∑

n=0

2n+1∑

j=1

1

A2n
Yn,j(ξ)Yn,j(η) =

∞∑

n=0

(2n+ 1)

4π A2n
Pn(ξ · η) , η ∈ Ω .

3.5 Bounded Linear Functionals on h(i)({An}; Ω)

Now we come to the vectorial case. At first, the representation of bounded linear functionals

on h(i)({An}; Ω) is discussed in general. After these considerations, some relevant examples of

bounded linear functionals are given.

Theorem 3.10 For i ∈ {1, 2, 3} let {An}n∈N0 ⊂ R+ satisfy An ≥ C for all n ∈ N0 with some
constant C > 0. Assume that L : h(i)({An}; Ω)→ R is a bounded linear functional. Then there
exists a uniquely determined representer l ∈ h(i)({An}; Ω) of L, i.e.,

Lf = (f, l)h(i)({An};Ω)

for all f ∈ h(i)({An}; Ω). This representer l is given by

l :=
∞∑

n=0i

2n+1∑

j=1

1

A2n
(Ly(i)n,j) y

(i)
n,j . (19)
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Proof. The existence of a uniquely determined l ∈ h(i)({An}; Ω) follows from the Riesz repre-

sentation theorem. In order to verify (19), we compute the Fourier coefficients of l with respect

to the complete orthonormal system {A−1
n y

(i)
n,j}n∈N0i ; j=1,...,2n+1. Obviously,

(
l, A−1

n y
(i)
n,j

)

h(i)({An};Ω)
= A−1

n Ly(i)n,j .

This concludes the proof.

Lemma 3.11 Assume that i ∈ {2, 3}, and suppose that {An}n∈N0 ⊂ R+ satisfies (16). Then
L : h(i)({An}; Ω)→ R, f 7→ Lf := O

(i)
ξ f(ξ), for some fixed ξ ∈ Ω, is a bounded linear functional

with the representer

l :=
∞∑

n=0i

2n+1∑

j=1

1

A2n
(n(n+ 1))1/2 Yn,j(ξ) y

(i)
n,j . (20)

Proof. That L is well-defined is clear because h(i)({An}; Ω) is a subspace of c(1)(i) (Ω), according to
Theorem 3.4. In order to show the boundedness of L, note that (n(n+1))1/2 Yn,j(ξ) = O

(i)
ξ y

(i)
n,j(ξ).

As the series expansion of f ∈ h(i)({An}; Ω) may be differentiated term by term,

O
(i)
ξ f(ξ) =

∞∑

n=0i

2n+1∑

j=1

(f (i))∧(n, j)O
(i)
ξ y

(i)
n,j(ξ) ,

and it is obvious that Lf = (f, l)h(i)({An};Ω)
with l given by (20) if l ∈ h(i)({An}; Ω). This implies

|Lf | =
∣∣∣(f, l)h(i)({An};Ω)

∣∣∣ ≤ ‖l‖h(i)({An};Ω)
‖f‖h(i)({An};Ω)

,

and L is bounded. In order to prove l ∈ h(i)({An}; Ω), we estimate its norm as follows:

‖l‖2h(i)({An};Ω)
=

∞∑

n=0i

2n+1∑

j=1

A2n
n(n+ 1)

A4n
(Yn,j(ξ))

2

=
∞∑

n=0i

n(n+ 1)

A2n

(2n+ 1)

4π
< ∞ .

This shows the wanted result.

Finally, we are concerned with the following result.

Lemma 3.12 For i ∈ {1, 2, 3} assume that {An}n∈N0 ⊂ R+ satisfies condition (10). Let a ∈ R3,
a 6= 0, and let ξ ∈ Ω be a fixed point on Ω. Then L : h(i)({An}; Ω) → R, f 7→ Lf := a · f(ξ),
is a bounded linear functional possessing the uniquely determined representer l ∈ h(i)({An}; Ω),
given by

l :=
∞∑

n=0i

2n+1∑

j=1

1

A2n

(
a · y(i)n,j(ξ)

)
y
(i)
n,j . (21)
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Proof. First we check that l, given by (21), is in h(i)({An}; Ω): According to Lemma 2.3

‖l‖2h(i)({An};Ω)
=

∞∑

n=0i

2n+1∑

j=1

|a · y(i)n,j(ξ)|2
A2n

≤
∞∑

n=0i

2n+1∑

j=1

|a|2|y(i)n,j(ξ)|2
A2n

≤ |a|2 ·
(

∞∑

n=0i

(2n+ 1)

4πA2n

)
< ∞ .

Now we have

Lf =
∞∑

n=0i

2n+1∑

j=1

(f (i))∧(n, j)
(
a · y(i)n,j(ξ)

)
= (f, l)h(i)({An};Ω)

This proves Lemma 3.12.

Finally, we remark that the representers l, given by (20) or (21), of the bounded linear functionals

L discussed in Lemma 3.11 and Lemma 3.12, respectively, are for certain choices of {An}n∈N0
available as elementary functions. Such choices of {An}n∈N0 will be discussed later on.

4 Splines

Before splines are introduced, we give a brief motivation explaining why spline interpolation or

spline smoothing in weighted Sobolev spaces H({An}; Ω) or h(i)({An}; Ω) are appropriate for the
modelling of the geostrophic wind field. After the definition of scalar and vectorial splines, three

spline interpolation problems (and the corresponding spline smoothing problems) are presented

and their properties are discussed. Finally, some special types of Sobolev spaces H({An}; Ω) and
h(3)({An}; Ω) are introduced in which the spline functions are available as elementary functions.

4.1 An Extension of Helly’s Theorem

It is sensible to assume that the air pressure P and the geostrophic wind vtan are continuous,

such that P is a function of class C(1)(Ω) and that L∗P = B ρvtan is a function in c(Ω). As

mentioned in our introduction, we want either to reconstruct ξ 7→ P (ξ), ξ ∈ Ω, from the given

data {(
ξNi , P (ξNi ) + εi)

)∣∣ i = 1, . . . , N
}

(22)

or to approximate ξ 7→ L∗
ξP (ξ) = B(ξ) ρ(ξ) vtan(ξ), ξ ∈ Ω, with the help of the given data

{(
ξNi , B(ξNi ) ρ(ξNi ) (vtan(ξ

N
i ) + εi)

)∣∣ i = 1, . . . , N
}
, (23)

where ε1, . . . , εN are scalar and vectorial measurement errors, respectively. As the spaces

H({An}; Ω) and h(3)({An}; Ω) have a very convenient mathematical structure, we would like

to approximate P and L∗P = B ρvtan in one of these spaces with the help of the data (22) and

(23), respectively.

The next theorem explains why this approach is suitable.
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Theorem 4.1 LetM be a dense and convex subset in a normed linear (not necessarily complete)

space X with norm ‖ · ‖X , and let L1, . . . ,LN be N bounded linear functionals on X . Suppose
that F is of class X . Given ε > 0, there exists an element G ∈M with the following properties:

(i) ‖F −G‖X ≤ ε ,

(ii) LiF = LiG for i = 1, . . . , N .

The proof is an extension of Helly’s theorem that can be founded in [28].

In order to apply Theorem 4.1 to our particular problems, we have to check that all assumptions

of Theorem 4.1 are satisfied:

If the sequence {An}n∈N0 ⊂ R+ satisfies (10), H({An}; Ω) is a subspace of the complete normed

vector space (C(Ω); ‖ · ‖C(Ω)), due to Theorem 3.2. Obviously, H({An}; Ω) is convex in C(Ω). It
is well-known that {Yn,j |n ∈ N0; j = 1, . . . , 2n+ 1} ‖ · ‖C(Ω) = C(Ω). As H({An}; Ω) contains all

spherical harmonics Yn,j it is also dense in C(Ω). Hence, it remains to verify that evaluation

functionals, which represent the air pressure data (22), are bounded in (C(Ω); ‖ · ‖C(Ω)): Obvi-

ously,
∣∣F (ξNi )

∣∣ ≤ ‖F‖C(Ω) for all F ∈ C(Ω). Consequently, Theorem 4.1 implies that for every

function F ∈ C(Ω), there exists a function G ∈ H({An}; Ω) such that

(i) sup
ξ∈Ω

|G(ξ)− F (ξ)| ≤ ε ,

(ii) G(ξNi ) = F (ξNi ) for i = 1, . . . , N .

(c(3)(Ω); ‖ · ‖c(Ω)) is a complete normed space. Moreover, due to Theorem 3.4, h(3)({An}; Ω)
is a subspace of c(3)(Ω) provided that (10) holds true. As a subspace of c(3)(Ω), the space

h(3)({An}; Ω) is obviously convex. Furthermore, h(3)({An}; Ω) is dense in c(3)(Ω), because it

contains all vector spherical harmonics of type 3. It remains to prove that the linear function-

als representing our (exact) data are bounded. Vectorial data (ξNi , f(ξNi )) (where in our case

f(ξNi ) := B(ξNi ) ρ(ξNi ) vtan(ξ
N
i )), i = 1, . . . , N , lead to scalar data of the following type

Lai : c(3)(Ω)→ R , g 7→ a · g(ξNi ) , (24)

where a ∈ R3, |a| = 1, is a fixed vector in R3. The choices of interest for a are either the

canonical unit vectors ε1, ε2, ε3 of R3 or a basis of the tangential space in ξNi ∈ Ω. In order to

apply Theorem 4.1, it remains to show that Lai , given by (24), is bounded: |Lai g| = |a · g(ξNi )| ≤
|a| |g(ξNi )| ≤ |a| ‖g‖c(Ω) for all g ∈ c(Ω). Suppose now that (10) is valid, and let ε > 0 be given.

Then Theorem 4.1 tells us that there exists a function g ∈ h(3)({An}; Ω) such that

(i) sup
ξ∈Ω

|g(ξ)−B(ξ) ρ(ξ) vtan(ξ)| ≤ ε,

(ii) a · g(ξNi ) = a ·
(
B(ξNi ) ρ(ξNi ) vtan(ξ

N
i )
)
for i = 1, . . . , N and for a finite number of vectors

a ∈ R3 with |a| = 1 .

This motivates why it makes sense to compute in h(3)({An}; Ω) an approximating spline from

the (measured) data (23) and to expect that this spline is a good approximation of the field
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ξ 7→ B(ξ) ρ(ξ) vtan(ξ), ξ ∈ Ω, in c(3)(Ω). Analogously, it is reasonable to compute an approxi-

mating spline in H({An}; Ω) as an approximation of the air pressure P from the measured data

(22). However, it should be kept in mind that Theorem 4.1 merely is an existence theorem. It

gives no ideas, how to find a G ∈ H({An}; Ω) or a g ∈ h(3)({An}; Ω) satisfying the conditions

(i) and (ii).

4.2 Geostrophic Wind Field Modelling by Spherical Splines

We begin with the wind field modelling from discrete pressure data (PDP) as given in (22).

4.2.1 Scalar Splines

Scalar spline theory, as introduced here, has been known since the early eighties (see [8]) and has

been applied numerically with success to a large number of problems (see, for example, [10]).

Definition 4.2 Let {An}n∈N0 ⊂ R+ satisfy An ≥ C for all n ∈ N0 with some constant C > 0.

Let L1, . . . ,LN be N (linearly independent) bounded linear functionals Lk : H({An}; Ω) → R,
F 7→ LkF , with representers L1, . . . , LN . Then every function of the form

S =
N∑

k=1

αk Lk

(in H({An}; Ω)) with coefficients α1, . . . , αN ∈ R is called an H({An}; Ω)-spline relative to
L1, . . . ,LN . The space of all H({An}; Ω)-splines relative to L1, . . . ,LN is denoted by

SplineH({An};Ω)(L1, . . . ,LN ) = span {Lk | k = 1, . . . , N} .

Next, we formulate the spline interpolation problem providing the desired approximation of the

air pressure data.

Problem 4.3 Suppose that {An}n∈N0 ⊂ R+ satisfies condition (16). Let {ηM1 , . . . , ηMM } ⊂ Ω be

a set of M points such that

Lk : H({An}; Ω)→ R , F 7→ LkF := F (ηMk ) ,

k = 1, . . . ,M , are M (linearly independent) bounded linear functionals. Denote by Lk the

representer of Lk, k ∈ {1, . . . ,M}. The spline interpolation problem for the determination of
the air pressure reads as follows:

Find a spline S =
∑M

k=1 αk Lk ∈ SplineH({An};Ω)(L1, . . . ,LM ) such that

S(ξNj ) =
M∑

k=1

αk Lk(ξ
N
j )

!
= P (ξNj ) , j = 1, . . . , N . (25)

The geostrophic wind vtan can then be reconstructed via the formula

B(ξ) ρ(ξ) vtan(ξ) ≈ L∗
ξS(ξ) , ξ ∈ Ω .

(Note, that L∗S is well-defined because H({An}; Ω) is a subspace of C(1)(Ω), due to Theorem 3.2.)
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Clearly, Problem 4.3 is always solvable, provided that dim SplineH({An};Ω)(L1, . . . ,LM ) ≥ N .

We distinguish from now on in Problem 4.3 two cases: (i) the set {ηM1 , . . . , ηMM } coincides with

the set of measurement points {ξN1 , . . . , ξNN }, and (ii) {ηM1 , . . . , ηMM } does not coincide with

{ξN1 , . . . , ξNN }. Furthermore, we denote the linear system in (25) by Ax = b.

Case (ii): If rank(A) = M and if we are given exact (non-noisy) data, then we solve the normal

equations

ATAx = AT b .

In all other cases, we solve the equations

ATAx+ λ Idx = AT b , (26)

where λ > 0 is a suitable constant, the so-called smoothing parameter, and where Id is the

identity matrix. The linear system (26) can be interpreted as a Tikhonov regularization.

Case (i): This is mathematically the more interesting case, because Lk(ξ
N
j ) = (Lj , Lk)H({An};Ω).

The matrix A of the linear equation system (25) is then given by

A =
(
(Lj , Lk)H({An};Ω)

)

j,k=1,...,N
.

If rank (A) = N , i.e., L1, . . . ,LN are linearly independent, and if we are given exact data, then

we solve

Ax = b . (27)

In case of noisy data or linear dependence of L1, . . . ,LN , we solve

Ax+ λ Idx = b, (28)

where λ > 0 is a smoothing parameter which weights between fitting the data and smoothness

of the solution. (The smaller λ, the closer we come to the interpolation scenario.) Both cases

(27) and (28) are described by the following theorem in the context of scalar spline theory.

Theorem 4.4 Let {An}n∈N0 ⊂ R+ satisfy An ≥ C for all n ∈ N0 with some constant C > 0.

Suppose Lk : H({An}; Ω) → R, F 7→ LkF , k = 1, . . . , N , are N bounded linear functionals,

and denote the representer of Lk by Lk. Let λ ≥ 0 be a non-negative real number, and let

b1, . . . , bN ∈ R be given values. If λ > 0, there exists one and only one spline S =
∑N

k=1 αk Lk
in SplineH({An};Ω)(L1, . . . ,LN ) with coefficient vector α = (α1, . . . , αN )T which minimizes the

functional

µλ(α) :=
N∑

k=1

(LkS − bk)
2 + λ ‖S‖2H({An};Ω)

.

In case L1, . . . ,LN are linearly independent, there exists also a uniquely determined spline S

which minimizes µλ if λ = 0. In both cases, the coefficient vector α = (α1, . . . , αN )T of S is the

uniquely determined solution of the linear system
(

N∑

k=1

αk (Lk, Lj)H({An};Ω)

)
+ λαj = bj , j = 1, . . . , N .

Proof. The proof can be found in, for example, [10].

A crucial point is, of course, the choice of the smoothing parameter. This will be discussed later,

after we will have given an analogous result for the case of vectorial splines.
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4.2.2 Vectorial Splines

Definition 4.5 For i ∈ {1, 2, 3} let {An}n∈N0 ⊂ R+ satisfy An ≥ C for all n ∈ N0 with
some constant C > 0. Let L1, . . . ,LN be N (linearly independent) bounded linear functionals

Lk : h(i)({An}; Ω)→ R, f 7→ Lkf , with representers l1, . . . , lN . Then every function

S =
N∑

k=1

αk lk

(in h(i)({An}; Ω)) with coefficients α1, . . . , αN ∈ R is called an h(i)({An}; Ω)-spline relative to
L1, . . . ,LN . The space of all h(i)({An}; Ω)-splines relative to L1, . . . ,LN is denoted by

Splineh(i)({An};Ω)
(L1, . . . ,LN ) = span{lk | k = 1, . . . , N} .

Obviously, Definition 4.5 is analogous to the introduction of spherical splines in Definition 4.2. If

L1, . . . ,Ln are linearly independent then it follows that dim Splineh(i)({An};Ω)
(L1, . . . ,LN ) = N .

It is clear that splines can analogously be defined for a space h({A(1)n }; {A(2)n }; {A(3)n }; Ω), but
this will not be discussed further in this publication.

From now on, we will restrict our attention to the case i = 3, and we will formulate spline

(interpolation) problems that are appropriate for wind field modelling from vectorial data as

given in (23). We remind the reader of Lemma 3.11 and Lemma 3.12, in which the boundedness

and representation of certain types of linear functionals have been investigated.

Problem 4.6 Suppose {An}n∈N0 ⊂ R+ satisfies condition (16) and let {ηM1 , . . . , ηMM } ⊂ Ω be a

set of M points such that

Lk : h(3)({An}; Ω)→ R , f 7→ Lkf := O
(3)

ηM
k

f(ηMk ) , k = 1, . . . ,M ,

are M (linearly independent) bounded linear functionals. Denote by lk ∈ h(3)({An}; Ω) the
representer of Lk, k ∈ {1, . . . ,M}. This leads to the following two interpolation problems:

(a) Find a spline S =
M∑
k=1

αk lk ∈ Splineh(3)({An};Ω)
(L1, . . . ,LM ) such that

εi · S(ξNj ) =
M∑

k=1

αk
(
εi · lk(ξNj )

) !
= B(ξNj ) ρ(ξNj )

(
εi · vtan(ξNj )

)
(29)

for j = 1, . . . , N and i = 1, 2, 3.

(b) Find a spline S =
M∑
k=1

αk lk ∈ Splineh(3)({An};Ω)
(L1, . . . ,LM ) such that

aij · S(ξNj ) =
M∑

k=1

αk
(
aij · lk(ξNj )

) !
= B(ξNj ) ρ(ξNj )

(
aij · vtan(ξNj )

)
(30)

for j = 1, . . . , N , and for i = 1, 2, where {a1j , a2j} is an orthonormal basis of the tangential
space to Ω in the point ξNj . If we use polar coordinates, we can (apart from the poles)

choose a1j := εϕ, a2j := εt.
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It should be pointed out that it seems not possible to predict in Problem 4.6 (a) or Prob-

lem 4.6 (b), whether the matrix of the interpolation problem has maximal rank, i.e., in case (a)

rank

((
εi · lk(ξNj )

)
j=1,...,N ; i=1,2,3;

k=1,...,M

)
= min{3N,M}

and in case (b)

rank

((
aij · lk(ξNj )

)
j=1,...,N ; i=1,2;

k=1,...,M

)
= min{2N,M} .

In order to compute the spline S =
∑M

k=1 αk lk from the given data, we have to solve a linear

system

Ax = b , (31)

where in case (a) A is an (3N × M)-matrix and b ∈ R3N and where in case (b) A is an

(2N ×M)-matrix and be b ∈ R2N .

In order to be able to solve (31) efficiently, we want to ‘transform’ (31) into a linear system with

a positive definite symmetric matrix. Therefore, we distinguish two cases:

Case (i): If the given data is exact (not noisy) and if in case (a) M ≤ 2N , in case (b) M ≤ 3M

and if in both cases rank(A) = M , then we solve the normal equations

ATAx = AT b , (32)

where ATA is now a positive definite symmetric matrix of rank(ATA) = M .

Case (ii): If the data is noisy or if any of the other conditions mentioned in (1) is violated we

solve the equations

ATAx+ λ Idx = AT b , (33)

where λ > 0 is a suitable constant, the so-called smoothing parameter. The matrix in (33)

is ATA + λ Id, which is clearly a positive definite symmetric matrix. If all assumptions of

(i) are satisfied but the matrix ATA in (32) is extremely bad conditioned, we also go over to

case (ii) and solve (33) with a very small smoothing parameter λ. (The matrix ATA + λ Id

is better conditioned than ATA.) It is well-known from the theory of Tikhonov regularization

that the uniquely determined solution of (33) is the uniquely determined element x ∈ RM which

minimizes the linear functional

µλ(x) := |Ax− b|2 + λ |x|2 . (34)

The larger the smoothing parameter λ, the more weight is put on the smoothness of the solution

and the fewer weight on a small discrepancy between the data b and its reconstruction Ax.

The smoothing parameter has to be chosen in dependence of the measurement noise (and the

‘numerical’ noise).

One method for the determination of the parameter λ turns out to be the L-curve method: To

be more precise, compute solutions x of (33) for various smoothing parameters and plot the two

terms in the functional (34) in double-logarithmic scale in dependence of λ. The curve

λ 7→
(
log |Ax− b|2 , log |x|2

)

can be expected to be L-shaped, and theoretical considerations suggest that a good parameter λ

corresponds to the corner point of the ‘L’. (For more information about Tikhonov regularization

and the L-curve method the reader is referred to [6] and the references mentioned therein.)
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Problem 4.7 Suppose {An}n∈N0 ⊂ R+ satisfies the condition (10).

(a) Let L1, . . . ,L3N be the bounded linear functionals

L3(m−1)+i : h
(3)({An}; Ω)→ R , f 7→ εi · f(ξNm) ,

m = 1, . . . , N ; i = 1, 2, 3, where ξN1 , . . . , ξ
N
N are the measurement points. Denote the

representer of the functional Lk by lk, k = 1, . . . , 3N . Find a spline S =
∑3N

k=1 αk lk of

class Splineh(3)({An};Ω)
(L1, . . . ,L3N ) such that

εj · S(ξNm) + λα3(m−1)+j =

(
3N∑

k=1

αk
(
εj · lk(ξNm)

)
)

+ λα3(m−1)+j

!
= B(ξNm) ρ(ξNm)

(
εj ·

(
vtan(ξ

N
m) + εm

))
(35)

for m = 1, . . . , N ; j = 1, 2, 3, where λ ≥ 0.

(b) Let {a1m, a2m} be an orthonormal basis of the tangential space of Ω in the measurement
point ξNm ∈ Ω, m ∈ {1, . . . , N}. Let L2(m−1)+i, m ∈ {1, . . . , N}, i ∈ {1, 2}, be the bounded
linear functional

L2(m−1)+i : h
(3)({An}; Ω)→ R , f 7→ aim · f(ξNm) ,

and denote its representer by l2(m−1)+i. Find a spline S =
∑2N

k=1 αk lk in the space

Splineh(3)({An};Ω)
(L1, . . . ,L2N ) which satisfies

ajm · S(ξNm) + λα2(m−1)+j =

(
2N∑

k=1

αk
(
ajm · lk(ξNm)

)
)

+ λα2(m−1)+j

= B(ξNm) ρ(ξNm)
(
ajm ·

(
vtan(ξ

N
m) + εm

))
(36)

for m = 1, . . . , N ; j = 1, 2, where λ ≥ 0.

In order to analyse Problem 4.7 (a) and (b), we rewrite (35) and (36) in the following way: (35)

is equivalent to

(
S, l3(m−1)+j

)
h(3)({An};Ω)

+ λα3(m−1)+j =

(
3N∑

k=1

αk
(
lk, l3(m−1)+j

)
h(3)({An};Ω)

)
+ λα3(m−1)+j

!
= B(ξNm) ρ(ξNm)

(
εj ·

(
vtan(ξ

N
m) + εm

))
(37)

for m = 1, . . . , N ; j = 1, 2, 3, and (36) is equivalent to

(
S, l2(m−1)+j

)
h(3)({An};Ω)

+ λα2(m−1)+j =

(
2N∑

k=1

αk(lk, l2(m−1)+j)h(3)({An};Ω)

)
+ λα2(m−1)+j

!
= B(ξNm) ρ(ξNm)

(
ajm ·

(
vtan(ξ

N
m) + εm

))
(38)

for m = 1, . . . , N ; j = 1, 2. The matrix of (37) or (38) is given by
(
(lk, lm)h(3)({An};Ω)

)

k,m=1,...,M
+ λ Id , (39)
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where M = 3N in case of (37) and M = 2N in case of (38). The matrix (39) is symmetric. It

is, in addition, positive definite if λ > 0 or if l1, . . . lM are linearly independent. The parameter

λ > 0 is a smoothing parameter, and for λ = 0 we get the classical interpolation case. As in

the case of scalar spherical splines, the following theorem about spline interpolation and spline

smoothing is valid:

Theorem 4.8 Let {An}n∈N0 ⊂ R+ satisfy An ≥ C for all n ∈ N0 with some constant C > 0,

and let i ∈ {1, 2, 3}. Let Lk : h(i)({An}; Ω)→ R, f 7→ Lkf , k ∈ {1, . . . ,M}, beM bounded linear

functionals, and denote the representer of Lk by lk ∈ h(i)({An}; Ω). Let λ ≥ 0 be a non-negative

real number and suppose b1, . . . , bM ∈ R are given values. (Usually the bk are somehow related
to the Lk, for example, bk = Lkg + εk for some g ∈ h(i)({An}; Ω).) If λ > 0, there exists one

and only one spline S =
∑M

k=1 αk lk ∈ Splineh(i)({An};Ω)
(L1, . . . ,LM ) with the coefficient vector

α = (α1, . . . , αM )T ∈ RM which minimizes the functional

µλ(α) :=
M∑

k=1

(LkS − bk)
2 + λ ‖S‖2h(i)({An};Ω)

. (40)

If L1, . . . ,LM are linearly independent, there exists also a uniquely determined spline S which

minimizes µλ, if λ = 0. In both cases, the coefficient vector α = (α1, . . . , αM )T is the solution

of the linear system
(

M∑

k=1

αk (lk, lj)h(i)({An};Ω)

)
+ λαj = bj , j = 1, . . .M . (41)

Proof. The proof is completely analogous to the case of scalar spherical splines, which can, for

example, be found in [10].

Theorem 4.8 describes the situation in Problem 4.7 and shows what happens. For λ = 0 we get

the interpolation problem, and if λ > 0 we perform spline smoothing. The larger λ becomes,

the more weight is put on the ‘smoothness’ of the solution and the fewer weight is put on

approximating the given data.

Furthermore, it should be noted that, in case of data bk = Lkg = (g, lk)h(i)({An};Ω)
, k = 1, . . . ,M ,

for some fixed g ∈ h(i)({An}; Ω), we get for λ = 0 an orthogonal projection problem: The

identity (41) reads

M∑

k=1

αk (lk, lj)h(i)({An};Ω)
= (g, lj)h(i)({An};Ω)

, j = 1, . . . ,M ,

and the spline interpolation operator is just the orthogonal projector onto the space

Splineh(i)({An};Ω)
(L1, . . . ,LM ). The choice of the smoothing parameter λ depends, of course,

on the given data. In case of noisy data or if the matrix ((lk, lj)h(i)({An};Ω)
)k,j=1,...,M is ex-

tremely ill-conditioned or singular (e.g., in the case of linear dependence of L1, . . . ,LM ) we

choose λ > 0. It can be verified that the functional µλ, given by (40) has, in fact, the structure

of a Tikhonov functional (see [16]), and a smoothing parameter λ can be chosen as the parameter

corresponding to the corner point of the L-curve

λ 7→
(
log

(
M∑

k=1

(LkS − bk)
2

)
, log

(
‖S‖2h(i)({An};Ω)

))
.
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4.3 Examples

Now we discuss the representation of the bounded linear functionals, which occur in Problems

4.3, 4.6, and 4.7, by elementary functions in certain classes of spaces. In these cases, the matrix

entries of the matrix of the spline approximation problems become also available as elementary

functions. This allows an easy evaluation of such a spline and an easy computation of the matrix

entries. Furthermore, we will see that the representers of our bounded linear functionals are in

these cases strongly space-localizing functions. This feature enables local modelling from only

locally given data.

In Problem 4.3, we assume that {An}n∈N0 ⊂ R+ satisfies (16) and we compute a spline relative

to evaluation functionals. An evaluation functional

L : H({An}; Ω)→ R , F 7→ LF := F (ξ) ,

with ξ ∈ Ω is fixed has, according to Lemma 3.9, the representer

L(η) = K(ξ, η) =
∞∑

n=0

1

A2n
Yn,j(ξ)Yn,j(η) =

∞∑

n=0

(2n+ 1)

4π A2n
Pn(ξ · η) . (42)

The matrix entries of the linear system (25) are of the type

K(ξ, η) =
∞∑

n=0

2n+1∑

j=1

1

A2n
Yn,j(ξ)Yn,j(η) =

∞∑

n=0

(2n+ 1)

4π A2n
Pn(ξ · η) , (43)

where ξ ∈ {ηM1 , . . . , ηMM }, η ∈ {ξN1 , . . . , ξNN }, and K is the reproducing kernel of H({An}; Ω).
Thus, it suffices to find a space H({An}; Ω) whose reproducing kernel (43) is available as an

elementary function.

Example 4.9 Let {An}n∈N0 be given by An := (n + 1
2)
1/2 h−n/2, where h ∈ (0, 1). Then the

kernel K, given by (43), is a kernel of singularity-type and has the representation (cf. [9], [10])

K(ξ, η) =
1

2π

∞∑

n=0

hn Pn(ξ · η) =
1

2π

1

(1 + h2 − 2h ξ · η)1/2 . (44)

Example 4.10 Let {An}n∈N0 be given by An := h−n/2 with h ∈ (0, 1). Then the kernel K,

given by (43), is a kernel of Abel-Poisson-type and has the representation (cf. [10], [9])

K(ξ, η) =
∞∑

n=0

(2n+ 1)

4π
hn Pn(ξ · η) =

1

4π

1− h2

(1 + h2 − 2h ξ · η)3/2 . (45)
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Figure 1: The scalar spline L (representer of the evaluation functional) in Example 4.9 for

ξ = (0, 0, 1)T and h = 0.95. The spline L is rotationally symmetric, i.e., L(ϕ1, ϑ) = L(ϕ2, ϑ)

for all ϕ1, ϕ2 ∈ [0, 2π) and all ϑ ∈ [0, π], and the left picture shows L for a fixed ϕ as function

of ϑ. The right picture shows the spline L modelled on the unit sphere.

The choices of {An}n∈N0 as in Example 4.9 and 4.10 also allow an elementary representation of

L∗S, because

L∗S = L∗

(
N∑

k=1

αk Lk

)
=

N∑

k=1

αk L
∗Lk

and

L∗
ηLk(η) = L∗

ηK(ηMk , η) , η ∈ Ω .

As K depends only on the inner product of its two arguments, i.e., K can be regarded as a

function in K̃ ∈ C([−1, 1]), via K̃(ξ · η) := K(ξ, η) for ξ, η ∈ Ω. According to (6),

L∗
ηK(ξ, η) = L∗

ηK̃(ξ · η) = K̃ ′(ξ · η) (η ∧ ξ) , ξ, η ∈ Ω .

Clearly, a representation of K by an elementary function implies that L∗
ηK(ξ, η) is available as

an elementary function.

In Problem 4.6 we assume that {An}n∈N0 ⊂ R+ satisfies (16). We compute a spline relative to

bounded linear functionals of the type

L : h(3)({An}; Ω)→ R , f 7→ Lf := O
(3)
ξ f(ξ), (46)

where ξ ∈ Ω is fixed. According to Lemma 3.11, L has the representer

l(η) =
∞∑

n=1

2n+1∑

j=1

1

A2n
(n(n+ 1))1/2 Yn,j(ξ) y

(3)
n,j(η) , η ∈ Ω . (47)
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In order to get a different representation of l, note that

K(ξ, ·) =
∞∑

n=0

2n+1∑

j=1

1

A2n
Yn,j(ξ)Yn,j ∈ H({An}; Ω)

with respect to the second variable. In particular, K(ξ, ·) may be differentiated term by term:

o(3)η K(ξ, η) =
∞∑

n=1

2n+1∑

j=1

1

A2n
Yn,j(ξ) o

(3)
η Yn,j(η)

=
∞∑

n=1

2n+1∑

j=1

1

A2n
(n(n+ 1))1/2 Yn,j(ξ) y

(3)
n,j(η) , η ∈ Ω .

Hence, l given by (47) can be written l(η) = L∗
ηK(ξ, η), η ∈ Ω, with

K(ξ, η) =
1

4π

∞∑

n=0

(2n+ 1)

A2n
Pn(ξ · η) , ξ, η ∈ Ω . (48)

The kernel K depends, in fact, only on the inner product ξ · η and can, therefore, be regarded

as a function K̃ ∈ C(1)([−1, 1]), where K̃(ξ · η) := K(ξ, η) for ξ, η ∈ Ω. According to (6),

L∗
ηK(ξ, η) = L∗

ηK̃(ξ · η) = K̃ ′(ξ · η) (η ∧ ξ) , ξ, η ∈ Ω .

Consequently, with K given as in (48)

l(η) = L∗
ηK(ξ, η) = L∗

ηK̃(ξ · η) = K̃ ′(ξ · η) (η ∧ ξ) , η ∈ Ω . (49)

Hence, we get a representation of l by an elementary function, if K(ξ, η) = K̃(ξ · η) is available
as an elementary function.

A spline in Problem 4.6 is a linear combination of functions of type (49), and the entries of the

matrix in Problem 4.6 (a) or (b) are of the type a · l(η), where a ∈ R3, |a| = 1. Thus, availability

of l as an elementary function leads to availability of the matrix entries as elementary functions.

Next, we give two examples of a choice of {An}n∈N0 satisfying (16), which leads to an elementary

representation of the kernel K in (48). We compute the representer l of L, given by (46), for

these cases.

Example 4.11 Let {An}n∈N0 be given by An := (n + 1
2)
1/2 h−n/2 with h ∈ (0, 1). Then the

kernel K in (48) is a kernel of singularity-type and has the representation (44). The representer

l, given by (49), reads

l(η) =
1

2π

h

(1 + h2 − 2h ξ · η)3/2 (η ∧ ξ) , η ∈ Ω .

Example 4.12 Let {An}n∈N0 be given by An := h−n/2 with h ∈ (0, 1). Then the kernel K in

(48) is a kernel of Abel-Poisson-type and has the representation (45). The representer l, given

by (49), reads

l(η) =
1

4π

3h (1− h2)

(1 + h2 − 2h ξ · η)5/2 (η ∧ ξ) , η ∈ Ω .
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Figure 2: Norm of the vector spline l in Example 4.11 for ξ = (0, 0, 1)T , h = 0.9. The norm

of l is rotationally symmetric, i.e., l(ϕ1, ϑ) = l(ϕ2, ϑ) for all ϕ1, ϕ2 ∈ [0, 2π) and all ϑ ∈ [0, π],

and the left picture shows the norm of l for a fixed ϕ as function of ϑ. The right picture shows

the norm of l on the unit sphere, where all function values are multiplied by 1/3 for reasons of

a better illustration.
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Figure 3: First Euclidean component of the vector spline l in Example 4.11 for ξ = (0, 0, 1)T ,

h = 0.9. The left picture shows the first Euclidean component of l in the parameterization

η = (cos(ϕ) sin(ϑ), sin(ϕ) sin(ϑ), cos(ϑ))T in the (ϕ, ϑ)-plane for 0 ≤ ϕ ≤ 2π, 0 ≤ ϑ ≤ 0.4. The

right picture shows the first Euclidean component of l on the unit sphere, where all function

values are multiplied by 1/3 for reasons of a better illustration.
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Figure 4: Second Euclidean component of the vector spline l in Example 4.11 for ξ = (0, 0, 1)T ,

h = 0.9. The left picture shows the second Euclidean component of l in the parameterization

η = (cos(ϕ) sin(ϑ), sin(ϕ) sin(ϑ), cos(ϑ))T in the (ϕ, ϑ)-plane for 0 ≤ ϕ ≤ 2π, 0 ≤ ϑ ≤ 0.4. The

right picture shows the second Euclidean component of l on the unit sphere, where all function

values are multiplied by 1/3 for reasons of a better illustration.

The third Euclidean component of the vector spline l in Example 4.11 with ξ = (0, 0, 1)T vanishes

because the third Euclidean component of the vector product η ∧ (0, 0, 1)T is zero for all η ∈ Ω.

Now, we come to Problem 4.7. In Problem 4.7 it is assumed that {An}n∈N0 ⊂ R+ satisfies (10).

We have to consider a spline relative to bounded linear functionals of the type

L : h(3)({An}; Ω)→ R, f 7→ Lf := a · f(ξ) , (50)

where ξ ∈ Ω and a ∈ R3, |a| = 1, are fixed. Due to Lemma 3.12, L has the representer l given

by

l(η) =
∞∑

n=1

2n+1∑

j=1

1

A2n

(
a · y(3)n,j(ξ)

)
y
(3)
n,j(η) , η ∈ Ω . (51)

Because of condition (10) and Theorem 3.2, the kernel

K(ξ, η) =
∞∑

n=0

2n+1∑

j=1

1

A2n n(n+ 1)
Yn,j(ξ)Yn,j(η) , ξ, η ∈ Ω , (52)

satisfies K(ξ, ·) ∈ H({An(n + 1
2)}; Ω) ⊂ C(1)(Ω). In particular, K(ξ, ·) may be differentiated

term by term

o(3)η K(ξ, η) =
∞∑

n=0

2n+1∑

j=1

1

A2n (n(n+ 1))1/2
Yn,j(ξ) y

(3)
n,j(η) , η ∈ Ω .
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o
(3)
η K(·, η) is a function in h(3)({An(n + 1

2)}; Ω), which may be differentiated (componentwise)

term by term. Consequently, for i = 1, 2, 3

o
(3)
ξ

((
o(3)η K(ξ, η)

)
· εi
)
=

∞∑

n=1

2n+1∑

j=1

1

A2n
y
(3)
n,j(ξ)

(
εi · y(3)n,j(η)

)
,

and
3∑

i=1

(
a ·
(
o
(3)
ξ

((
o(3)η K(ξ, η)

)
· εi
)))

εi =
∞∑

n=1

2n+1∑

j=1

1

A2n

(
a · y(3)n,j(ξ)

)
y
(3)
n,j(η) .

Thus l, given by (51), has the representation

l(η) =
3∑

i=1

(
a ·
(
o
(3)
ξ

((
o(3)η K(ξ, η)

)
· εi
)))

εi , η ∈ Ω , (53)

and (53) is available as an elementary function, whenever K, given by (52), is an elementary

function. The matrix entries in Problem 4.7 are inner products (l1, l2)h(3)({An};Ω)
of two repre-

senters l1, l2 of bounded linear functionals L1 and L2, respectively, which are of type (50), i.e.,

Lif := ai · f(ξi). It can be easily verified that

(l1, l2)h(3)({An};Ω)
=

3∑

i=1

(a2 · εi)
(
a1 ·

(
o
(3)
ξ1

((
o
(3)
ξ2

K(ξ1, ξ2)
)
· εi
)))

= a2 · l1(ξ2) . (54)

The kernel K, given by (52), depends only on the inner product ξ · η, i.e.,

K(ξ, η) =
1

4π

∞∑

n=0

(2n+ 1)

A2n n(n+ 1)
Pn(ξ · η) , ξ, η ∈ Ω ,

and can be interpreted as a function K̃ ∈ C(2)([−1, 1]), via K̃(ξ · η) := K(ξ, η) for ξ, η ∈ Ω.

Thus, we get

o(3)η K(ξ, η) = L∗
ηK̃(ξ · η) = K̃ ′(ξ · η) (η ∧ ξ) , ξ, η ∈ Ω ,

and l, given by (51), reads

l(η) =
3∑

i=1

(
a ·
(
L∗
ξ

((
K̃ ′(ξ · η) (η ∧ ξ)

)
· εi
)))

εi

=
3∑

i=1

(
a ·
(
K̃ ′′(ξ · η)

(
(η ∧ ξ) · εi

)
(ξ ∧ η) + K̃ ′(ξ · η)L∗

ξ

(
(η ∧ ξ) · εi

)))
εi .

In order to simplify this term, we use that

(η ∧ ξ) · εi = (εi ∧ η) · ξ

and

L∗
ξ

(
(η ∧ ξ) · εi

)
= L∗

ξ

(
ξ · (εi ∧ η)

)
= ξ ∧ (εi ∧ η) .

Hence,

l(η) =
3∑

i=3

(a · (ξ ∧ η)) K̃ ′′(ξ · η)
(
(η ∧ ξ) · εi

)
εi

+
3∑

i=1

K̃ ′(ξ · η)
(
a ·
(
ξ ∧ (εi ∧ η)

))
εi .
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Because of

a · (ξ ∧ (εi ∧ η)) = (εi ∧ η) · (a ∧ ξ) = εi · (η ∧ (a ∧ ξ))

we get

l(η) = (a · (ξ ∧ η)) K̃ ′′(ξ · η) (η ∧ ξ) + K̃ ′(ξ · η) (η ∧ (a ∧ ξ)) .

A matrix entry (54) reads then

a2 · l1(ξ2) = (a2 · (ξ2 ∧ ξ1)) (a1 · (ξ1 ∧ ξ2)) K̃
′′(ξ1 · ξ2)

+ K̃ ′(ξ1 · ξ2) (a2 · (ξ2 ∧ (a1 ∧ ξ1))) .

Example 4.13 Let {An}n∈N0 ⊂ R+ be given by An := h−n/2 (n + 1
2)
1/2 (n(n + 1))−1/2, where

h ∈ (0, 1). Then the kernel K, given in (52), is a kernel of singularity-type with the representa-

tion (44), and the representer l of the bounded linear functional L, given by (50), reads

l(η) = (a · (ξ ∧ η))
1

2π

3h2

(1 + h2 − 2h ξ · η)5/2 (η ∧ ξ)

+
1

2π

h

(1 + h2 − 2h ξ · η)3/2 (η ∧ (a ∧ ξ)) , η ∈ Ω .
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Figure 5: Norm of the vector spline l in Example 4.13 for ξ = (0, 0, 1)T , a = (1, 0, 0)T ,

and h = 0.9. The left picture shows the norm of the vector spline l in the parameterization

η = (cos(ϕ) sin(ϑ), sin(ϕ) sin(ϑ), cos(ϑ))T in the (ϕ, ϑ)-plane for 0 ≤ ϕ ≤ 2π, 0 ≤ ϑ ≤ 0.4. The

right picture shows the norm of l on the unit sphere, where all function values are multiplied by

1/70 for means of a better illustration.
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Figure 6: First Euclidean component of the vector spline l in Example 4.13 for ξ = (0, 0, 1)T ,

a = (1, 0, 0)T , and h = 0.9. The left picture shows the first Euclidean component of l in the

parameterization η = (cos(ϕ) sin(ϑ), sin(ϕ) sin(ϑ), cos(ϑ))T in the (ϕ, ϑ)-plane for 0 ≤ ϕ ≤ 2π,

0 ≤ ϑ ≤ 0.4. The right picture shows the first Euclidean component of l on the unit sphere,

where all function values are multiplied by 1/70 for means of a better illustration.
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Figure 7: Second Euclidean component of the vector spline l in Example 4.13 for ξ = (0, 0, 1)T ,

a = (1, 0, 0)T , and h = 0.9. The left picture shows the second Euclidean component of l in the

parameterization η = (cos(ϕ) sin(ϑ), sin(ϕ) sin(ϑ), cos(ϑ))T in the (ϕ, ϑ)-plane for 0 ≤ ϕ ≤ 2π,

0 ≤ ϑ ≤ 0.4. The right picture shows the second Euclidean component of l on the unit sphere,

where all function values are multiplied by 1/15 for means of a better illustration.
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Figure 8: Third Euclidean component of the vector spline l in Example 4.13 for ξ = (0, 0, 1)T ,

a = (1, 0, 0)T , and h = 0.9. The left picture shows the third Euclidean component of l in the

parameterization η = (cos(ϕ) sin(ϑ), sin(ϕ) sin(ϑ), cos(ϑ))T in the (ϕ, ϑ)-plane for 0 ≤ ϕ ≤ 2π,

0 ≤ ϑ ≤ 0.4. The right picture shows the third Euclidean component of l on the unit sphere,

where all function values are multiplied by 1/3 for means of a better illustration.
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Figure 9: Norm of the vector spline l in Example 4.13 for ξ = (0, 0, 1)T , a = (0, 1, 0)T ,

and h = 0.9. The left picture shows the norm of the vector spline l in the parameterization

η = (cos(ϕ) sin(ϑ), sin(ϕ) sin(ϑ), cos(ϑ))T in the (ϕ, ϑ)-plane for 0 ≤ ϕ ≤ 2π, 0 ≤ ϑ ≤ 0.4. The

right picture shows the norm of l on the unit sphere, where all function values are multiplied by

1/70 for means of a better illustration.
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Figure 10: First Euclidean component of the vector spline l in Example 4.13 for ξ = (0, 0, 1)T ,

a = (0, 1, 0)T , and h = 0.9. The left picture shows the first Euclidean component of l in the

parameterization η = (cos(ϕ) sin(ϑ), sin(ϕ) sin(ϑ), cos(ϑ))T in the (ϕ, ϑ)-plane for 0 ≤ ϕ ≤ 2π,

0 ≤ ϑ ≤ 0.4. The right picture shows the first Euclidean component of l on the unit sphere,

where all function values are multiplied by 1/20 for means of a better illustration.
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Figure 11: Second Euclidean component of the vector spline l in Example 4.13 for ξ = (0, 0, 1)T ,

a = (0, 1, 0)T , and h = 0.9. The left picture shows the second Euclidean component of l in the

parameterization η = (cos(ϕ) sin(ϑ), sin(ϕ) sin(ϑ), cos(ϑ))T in the (ϕ, ϑ)-plane for 0 ≤ ϕ ≤ 2π,

0 ≤ ϑ ≤ 0.4. The right picture shows the second Euclidean component of l on the unit sphere,

where all function values are multiplied by 1/70 for means of a better illustration.
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Figure 12: Third Euclidean component of the vector spline l in Example 4.13 for ξ = (0, 0, 1)T ,

a = (0, 1, 0)T , and h = 0.9. The left picture shows the third Euclidean component of l in the

parameterization η = (cos(ϕ) sin(ϑ), sin(ϕ) sin(ϑ), cos(ϑ))T in the (ϕ, ϑ)-plane for 0 ≤ ϕ ≤ 2π,

0 ≤ ϑ ≤ 0.4. The right picture shows the third Euclidean component of l on the unit sphere,

where all function values are multiplied by 1/3 for means of a better illustration.

Considering Figures 5 to 12, it should be noted that (1, 0, 0)T and (0, 1, 0)T are an orthonormal

basis of the tangential space to the sphere in the point ξ = (0, 0, 1)T . For ξ = (0, 0, 1)T and

a = (0, 0, 1)T , we get in Example 4.13 a vector spline l which vanishes everywhere on the

sphere Ω, i.e., l = 0.

Example 4.14 Let {An}n∈N0 ⊂ R+ be given by An := h−n/2(n(n + 1))−1/2, where h ∈ (0, 1).

Then the kernel K, given in (52), is a kernel of Abel-Poisson-type and has the representa-

tion (45). The representer l of the bounded linear functional L, given by (50), reads

l(η) = (a · (ξ ∧ η))
1

4π

15h2(1− h2)

(1 + h2 − 2h ξ · η)7/2 (η ∧ ξ)

+
1

4π

3h (1− h2)

(1 + h2 − 2h ξ · η)5/2 (η ∧ (a ∧ ξ)) , ξ ∈ Ω .

The illustrations of the representers occuring in Examples 4.9, 4.11, and 4.13 show that in all

the cases the representers l are strongly space-localizing functions, which can numerically be

regarded as vanishing outside a certain neighbourhood of ξ (ξ is the fixed evaluation point).

This enables local modelling from only locally given data in wind field modelling. Furthermore,

the parameter h ∈ (0, 1) in Examples 4.9, 4.10, 4.11, 4.12, 4.13, and 4.14 controls the space-

localization of the representer l (the closer h is to 1, the stronger is the space localization). This

allows us to tune the space-localization in correspondence with the density of the given data.
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5 The Schwarz Alternating Algorithm: A Domain Decomposi-

tion Method

In what follows we are interested in discussing how the interpolation or smoothing problems

under consideration can be solved numerically. All the spline approximation problems in the

last section lead to a linear system with a positive definite symmetric matrix:

Ax = b , where A ∈ RN×N , AT = A, (Ay, y) > 0 for all y ∈ RN\{0}, and x, b ∈ RN . (55)

Such a linear equation system can be solved with iterative solvers or direct solvers, but if N

is large (for example, N ≥ 10000), the runtime of an iterative solver without a suitable pre-

conditioner or of a direct solver increases tremendously. Therefore, we need a more sophisticated

method to solve (55) for problems with a large number of given data. One such method is a

multiplicative variant of the Schwarz alternating algorithm, a domain decomposition method,

which allows it to split the matrix A in (55) into several smaller submatrices, which may (and

will in numerical implementations) in general overlap. This multiplicative variant of the Schwarz

alternating algorithm is an iterative method which solves in each iteration step linear systems

with the matrices obtained from the splitting successively. This reduces both runtime and

memory requirement drastically. A further speed-up can be achieved if an additive variant of

the Schwarz alternating algorithm is used which runs on parallel computers.

The Schwarz alternating algorithm dates back to H.A. Schwarz’ work [25], published in 1890,

and has been investigated by many authors since then. A revived interest in variants of the

Schwarz alternating method arose since 1985, due to the availability of fast modern and parallel

computers. Roughly speaking, there are mainly two types of the Schwarz alternating algorithm:

multiplicative variants (like the one used in this paper) and additive variants, which can be

implemented on parallel computers and which are usually faster. For more information about

the Schwarz alternating algorithm, the reader is refereed to, for example, [19], [20], [21], [27],

and [5]. In the last few years, a great interest has also been taken in the relation between the

Schwarz alternating algorithm, multisplittings, multigrid methods, preconditioned conjugate

gradient methods, as well as other iterative schemes (see, for example, [27], [11], [12]). The use

of a multiplicative variant of the Schwarz alternating algorithm for the solution of spline inter-

polation or smoothing problems in Sobolev spaces H({An}; Ω), h(i)({An}; Ω), or H({An}; Ωext)
(see [1], [13], [16] for theoretical and numerical investigations of the multiplicative variant of

the Schwarz alternating algorithm for spline approximation in the spaces H({An}; Ωext)), was
initially inspired by the use of the Schwarz alternating algorithm in radial basis function inter-

polation (see [3]). It should, however, be noted that the paper [3] discusses only the case of

radial basis function interpolation (and not of smoothing) and that splines in h(i)({An}; Ω) are
even componentwise no (scalar) radial basis functions.

Most of the results in this section are given with a proof, because the authors could not find a

proof of the multiplicative variant of the Schwarz alternating algorithm for the general case of

a linear equation system with a positive definite symmetric matrix, in the way it will be needed

here.
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5.1 The Multiplicative Schwarz Alternating Algorithm for Positive Definite

Symmetric Matrices

The solution of (55) with a multiplicative variant of the Schwarz alternating algorithm, which

will from now on be called briefly the multiplicative Schwarz alternating algorithm, is based on

two facts: (i) every positive definite symmetric matrix is a Gram matrix, (ii) the convergence

proof of the multiplicative Schwarz alternating algorithm is based on its formulation in terms of

orthogonal projectors.

The matrix A = (Ai,j)i,j=1,...N in (55) is positive definite and symmetric. Due to the theorem

about the Cholesky factorization (see, for example, [14]), there exists an uniquely determined

invertible lower triangular matrix L with positive diagonal entries, such that

A = LLT . (56)

Denote the row vectors of L by v1, . . . , vN . Then (56) implies that

Aij = vi · vj = (vi, vj) , i, j = 1, . . . , N .

Thus, A is the Gram matrix of the basis {v1, . . . , vN} of RN , and the solution x = (x1, . . . , xN )T

of the linear system (55) is the solution of the following orthogonal projection problem: Find

x = (x1, . . . , xN )T ∈ RN such that f ∈ RN with (f, vi) = bi, i = 1, . . . , N , has the representation

f =
N∑

i=1

xi vi . (57)

Indeed, the solution of this problem demands the solution of the linear system

N∑

i=1

xi (vi, vj) = (f, vj) = bj , j = 1, . . . , N , (58)

which is just the linear system (55). The orthogonal projection operator corresponding to (57)

is, of course, the identity operator: We seek a representation of f = IdRN f with respect to the

basis {v1, . . . , vN}. Now we split the basis {v1, . . . , vN} into several smaller possibly overlapping

subsets ΞNr
r := {vr1, . . . , vrNr

} ⊂ {v1, . . . , vN}, r = 1, . . . ,M , such that

M⋃

r=1

ΞNr
r = {v1, . . . , vN} .

This union will, in general, not be disjoint, and we speak of overlapping subsets if there are at

least two subsets ΞNr
r , ΞNk

k with ΞNr
r ∩ ΞNk

k 6= ∅ and k 6= r.

Denote the orthogonal projector from RN onto span(ΞNr
r ) by

Pr : RN → span{vr1, . . . , vrNr
} , g 7→ Prg , (59)

i.e., Pr = Pr ◦ Pr and (Prv, w) = (v, Prw) for all v, w ∈ RN . In order to compute Prg, we

assume again that (g, vi), i = 1, . . . , N , is known. We want to calculate the coefficient vector

y = (y1, . . . , yNr) of the representation

Prg =

Nr∑

i=1

yi v
r
i .
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Taking the inner product with vr1, . . . , v
r
Nr

successively leads to the linear system

Nr∑

i=1

yi (v
r
i , v

r
j )

!
= (Prg, v

r
j ) = (g, Prv

r
j ) = (g, vrj ) , j = 1, . . . , Nr . (60)

Clearly the matrix Ar := ((vri , v
r
j ))i,j=1,...,Nr is a submatrix of the matrix A of the linear sys-

tem (55).

We will now formulate the multiplicative Schwarz alternating algorithm for the solution of the

trivial orthogonal projection problem IdRN f = f in terms of the orthogonal projectors Pr. For

this algorithm we prove the convergence and give information about the convergence rate. After

that, we will transform this algorithm into a matrix formulation which solves (58) by solving

alternatingly the problems of the type (60).

Algorithm 5.1 (Multiplicative Schwarz Alternating Algorithm)

set f0 := f ∈ RN and sf0 := 0

for n = 0, 1, 2, . . . do

for r = 1, . . . ,M do

calculate sfnM+r := sfnM+(r−1) + Pr(fnM+(r−1))

update fnM+r := fnM+(r−1) − Pr(fnM+(r−1))

until

∣∣((f(n+1)M , v1), . . . , (f(n+1)M , vN ))T
∣∣

|((f, v1), . . . , (f, vN ))T | ≤ ε

Next, we show that the sequence of iterates {sfnM}n∈N0 converges to f for n→∞. The following

lemma is very helpful for the understanding of Algorithm 5.1.

Lemma 5.2 Let the notation and the assumptions be the same as in Algorithm 5.1, and de-

note the orthogonal projection onto the space (span{vr1, . . . , vrNr
})⊥, where r ∈ {1, . . . ,M}, by

Qr : RN → span{vr1, . . . , vrNr
})⊥, i.e., Qr := Id− Pr. Then the following identities are valid for

all n ∈ N0, r ∈ {1, . . . ,M}:

(i) sfnM+r =
r∑

j=1
Pj(fnM+(j−1)) +

n−1∑
l=0

M∑
j=1

Pj(flM+(j−1)) ,

(ii) fnM+r = f − sfnM+r ,

(iii) sfnM+r = sfnM+(r−1) + Pr(f − sfnM+(r−1)) ,

(iv) fnM+r = (Qr · · ·Q1) (QM · · ·Q1)nf ,

(v) sfnM+r = f − (Qr · · ·Q1) (QM · · ·Q1)nf .

Proof. Identities (i), (ii), and (iv) follow straightforward by induction, whereas (iii) and (iv)

are simple consequences of (i), (ii), and (iv). The proof can, for example, be found in [16].

Looking at the identities (i) to (iii), we see that Algorithm 5.1 has the standard structure of an

iterative algorithm: We start with f0 := f , sf0 := 0 and compute sf1 := P1(f), where P1 is an

approximation of IdRN . Then we calculate the residual f1 := f −P1(f). After that we compute

P2(f1) = P2(f −sf1), where this time P2 is used as an approximation of IdRN . Then we calculate
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the new iterate sf2 := sf1 +P2(f1) and the new residual f2 := f − sf2 = f1−P2(f1). This process

is repeated using successively P3, . . . , PM as approximations of IdRN . Then the first iterative

step is completed, and we start again with P1 and proceed in the same fashion as before:

sfnM+r = sfnM+(r−1) + Pr(f − sfnM+(r−1)) .

In order to get the new iterate sfnM+r, we solve the problem approximately for the residual

fnM+(r−1) = f − sfnM+(r−1) and add this solution to the old iterate sfnM+(r−1). But in con-

trast to standard iterative algorithms the approximate solution is alternatingly computed with

P1, . . . , PM .

Identities (iv) and (v) in Lemma 5.2 are important for the convergence proof of Algorithm 5.1.

Identity (v) shows that the approximation error of sfnM is given by

|fnM | = |f − sfnM | = |(QM · · ·Q1)n f | . (61)

The convergence of the residual {fnM}n∈N0 to zero for n→∞ follows either from the following

theorem about the product of orthogonal projection operators or can be proved elementary.

Theorem 5.3 Let H be a Hilbert space with inner product (·, ·)H, let U1, . . . ,UM be closed

subspaces of H, and let Qi : H → Ui, i ∈ {1, . . . ,M}, be the orthogonal projector onto Ui.
Denote by P : H → ⋂M

i=1 Ui the orthogonal projector onto
⋂M
i=1 Ui, and define Q : H → H by

Q = QM · · ·Q1. Then {Qn}n∈N0 converges pointwise to P , i.e.,

lim
n→∞

‖QnF − PF‖H = 0 for all F ∈ H .

Proof. This theorem is a special case of the results in [15].

Corollary 5.4 Let the notation and the assumptions be the same as in Algorithm 5.1 and

Lemma 5.2. Then the sequence {sfnM}n∈N0 of iterates of a vector f ∈ RN converges to f .

Proof. According to Lemma 5.2

lim
n→∞

|f − sfnM | = lim
n→∞

|(QM . . . Q1)
n f | = |Pf | ,

where P is the orthogonal projector P : RN → RN onto
⋂M
r=1 im(Qr). But

M⋂

r=1

im(Qr) =
M⋂

r=1

(
span

{
vr1, . . . , v

r
Nr

})⊥
(62)

=

(
M∑

r=1

span
{
vr1, . . . , v

r
Nr

}
)⊥

(63)

=
(
RN
)⊥

= {0} .

Hence P = 0 and limn→∞ |f−sfnM | = 0. The equality of (62) and (63) follows from the following

statement: Let H be a Hilbert space with inner product (·, ·)H and let V1, . . . ,Vn be M closed

subspaces of H. Then

(
M∑

i=1

Vi
)⊥

=
M⋂

i=1

V⊥
i , where

M∑

i=1

Vi := span

{
M⋃

i=1

Vi
}
. (64)
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The inclusion ‘⊂’ is obvious, and ‘⊃’ follows because F ∈ ⋂M
i=1 V⊥

i is also orthogonal to every

element in span{⋃M
i=1 Vi}.

As mentioned before, there is also a second proof of the convergence of Algorithm 5.1, which

uses only elementary results from functional analysis and yields convergence in the operator

norm and an estimate of the convergence rate.

Theorem 5.5 Let the notation and the assumptions be the same as in Algorithm 5.1 and

Lemma 5.2. Then the sequence {sfnM}n∈N0 of iterates of a vector f ∈ RN converges to f ,

and the error estimate

|sfnM − f | ≤ Cn |f |

with some constant C < 1, independent of f , is valid.

Proof. According to Lemma 5.2, for all n ∈ N

|f − sfnM | = |(QM . . . Q1)
n f | ≤ ‖(QM . . . Q1)‖n |f | .

For simplicity of notation, we denote Q := QM . . . Q1. The proof is complete if we can show that

‖Q‖ < 1. As all Qr, r ∈ {1, . . . ,M}, are orthogonal projectors ‖Qr‖ ≤ 1, and, consequently,

‖Q‖ = ‖QM . . . Q1‖ ≤
M∏

r=1

‖Qr‖ ≤ 1 .

We show now, that the assumption ‖Q‖ = 1 leads to a contradiction. If

1 = ‖Q‖ = sup
g∈Rn, |g|=1

|Qg|

there exists a sequence {gn}n∈N ⊂ RN with |gn| = 1 for all n ∈ N and

lim
n→∞

|Qgn| = 1 .

The space RN is finite dimensional and has, therefore, a compact unit sphere. Hence {gn}n∈N
has a convergent subsequence {gnm}m∈N, whose limit g ∈ RN is a vector with |g| = 1 and

|Qg| = lim
m→∞

|Qgnm | = 1 .

Thus

|Qg| = |g| . (65)

Now, we show that (65) implies that Qrg = g for all r ∈ {1, . . . ,M}: Firstly, observe that the

orthogonal projector Qr satisfies for all w ∈ RN

|w|2 = |Qrw + (IdRN −Qr)w|2

= |Qrw|2 + |(IdRN −Qr)w|2 ,
(66)

because (Qrw, (IdRN −Qr)w) = 0. Equation (66) shows that

|w| = |Qrw| is equivalent to |(IdRN −Qr)w| = 0 .
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This means that

Qrw = w is equivalent to |Qrw| = |w| ,
Qrw 6= w is equivalent to |Qrw| < |w| .

(67)

Consider now g ∈ RN , which satisfies (65). Let j ∈ {1, . . . ,M} be the smallest index for which

Qrg 6= g. According to (67), |Qjg| < |g|, and thus,

|g| = |Qg| = |QM . . . Qjg|
≤ ‖QM . . . Qj+1‖ |Qjg|
< |g| ,

which is contradiction. Hence, there can be no such j and

Qrg = g for all r ∈ {1, . . . ,M} . (68)

But (68) implies that g ∈ im(Qr) for all r ∈ {1, . . . ,M}:

g ∈
M⋂

r=1

im (Qr) =
M⋂

r=1

(
span{vr1, . . . , vrNr

}
)⊥

.

According to (64), this is equivalent to

g ∈
(

M∑

r=1

span{vr1, . . . , vrN−r}
)⊥

=
(
span{v1, . . . , vN}

)⊥
= (RN )⊥ = {0} .

Thus, g = 0 which is a contradiction to |g| = 1. Consequently, the assumption ‖Q‖ = 1, is

wrong.

Now, we come back to Algorithm 5.1 and transform it into a matrix formulation via (58)

and (60). For this purpose, we need the following restriction operators Rr : RN → RNr ,

w 7→ Rr(w) = ((Rr(w))1, . . . , (Rr(w))Nr)
T , and the embedding operators Ir : RNr → RN ,

z 7→ Ir(z) = ((Ir(z))1, . . . , (Ir(z))N )T , corresponding to the subspaces RNr of the subproblems

(60). They are defined by

(Rr(w))i := wj for the index j ∈ {1, . . . , N} with vri = vj ,

(Ir(z))i :=

{
zj if there exists j ∈ {1, . . . , Nr} with vrj = vi
0 else .

Algorithm 5.6 (matrix formulation of Algorithm 5.1)

define the matrices Ar := ((vri , v
r
j ))i,j=1,...,Nr , r = 1, . . .M

set f̃0 := ((f, v1), . . . , (f, vN ))T , a0 := (0, . . . , 0)T ∈ RN , where f ∈ RN

for n = 0, 1, 2 . . . do

for r = 1, . . . ,M do

solve Ar d = Rr(f̃nM+(r−1)), d = (d1, . . . , dNr)
T ∈ RNr

update anM+r := anM+(r−1) + Ir(d)

update f̃nM+r = f̃nM+(r−1) −
((

Nr∑
i=1

di (v
r
i , vk)

)

k=1,...,N

)T
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until
|f̃(n+1)M |
|f̃0|

≤ ε

compute sf(n+1)M :=
M∑

i=1

(a(n+1)M )i vi .

It remains to show that Algorithm 5.6 solves our initial problem Ax = b, where f ∈ RN in

Algorithm 5.6 satisfies (f, vj) = bj , j = 1, . . . , N , and where A = ((vi, vj))i,j=1,...,N .

Beforehand, we stress that all the computations (except the computation of sf(n+1)M ) in Algo-

rithm 5.6 can be performed without actually computing v1, . . . , vN ∈ RN , i.e., we do not need

the Cholesky factorization of A: The matrices Ar are available as submatrices of A, and the

update involves a matrix vector multiplication with the matrix ((vk, v
r
i )) k=1,...,N ;

i=1,...,Nr

, which is also

a submatrix of A.

Corollary 5.7 Let the notation and the assumptions be the same as in Algorithm 5.6. Then

the sequence {anM}n∈N0 ⊂ RN in Algorithm 5.6 converges to the solution x ∈ RN of the linear

system Ax = b, where A = ((vi, vj))i,j=1,...,N and b = ((f, v1), . . . , (f, vN ))T .

Proof. According to Theorem 5.5 and equation (58) and (60), we know that {sfnM}n∈N0

sfnM :=
N∑

i=1

(anM )i vi ,

converges to f =
∑N

i=1 xi vi, where x is the solution of Ax = b. As {v1, . . . , vN} is a basis of

RN this implies that

lim
n→∞

(anM )i = xi for i = 1, . . . , N .

This proves the convergence.

5.2 Concluding Remarks on the Numerical Implementation for Spline Ap-

proximation

Finally, we want to give some comments concerning the implementation of Algorithm 5.6 for

the solution of the linear equation systems given by Problems 4.3, 4.6, and 4.7. We choose the

space H({An}; Ω) or h(3)({An}; Ω) among those discussed in Subsection 4.3, so that the matrix

entries and the representers are available as elementary functions. This enables us to evaluate a

spline and to compute a matrix entry with small computational effort. In an implementation of

Algorithm 5.6, we will generate only the small matrices Ar in advance, compute, for example,

their Cholesky factorization in a preprocessing step, and keep the matrices of the Cholesky

factorizations of the Ar in the memory. The other matrix entries of A, which will be needed

for the update (computation of the new residual), are generated while the update is performed.

The update is the time-consuming task, whereas the smaller equation systems can now be solved

extremely fast. If fast multipole methods (fast summation technics) are available for the type of

kernel, which determines the matrix entries, the update can be accelerated. The matrix entries

in Problems 4.3, 4.6, and 4.7 depend on a grid of points on Ω. Consequently, a splitting of the
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matrix can correspond to a subdivision of the sphere into (overlapping) subsets. This explains,

why we speak of a domain decomposition method.

Numerical tests of the multiplicative Schwarz alternating algorithm for vectorial spline interpo-

lation or smoothing will be presented in a forthcoming paper based on wind field data of the

‘Forstliche Versuchsanstalt (FVA) des Landes Rheinland-Pfalz, Trippstadt’. The multiplicative

Schwarz alternating algorithm was tested in [1], [13], and [16] for scalar spline interpolation and

smoothing in Sobolev spaces H({An}; ΩextR }) (in the context of geopotential determination) and

showed a very good numerical performance.
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