
The INRECA-II Methodology for Building and
Maintaining CBR Applications

Ralph Bergmann1, Sean Breen2, Mehmet Göker3,

Michel Manago4, Jürgen Schumacher1, Armin Stahl1,

Emmanuelle Tartarin4, Stefan Wess5, & Wolfgang Wilke1

1 University of Kaiserslautern
Centre for Learning Systems and Applications

(LSA)
PO-Box 3049

D-67653 Kaiserslautern, Germany
{bergmann|jschuma|stahl|wilke}@informatik.u

ni-kl.de

2 Interactive Multimedia
Systems (IMS)

Clara House, Glenageary,
Co. Dublin, Ireland
sbreen@imsgrp.com

3 Daimler Benz AG - Forschung und Technik
Evolutionäre Systeme (F3S/E)

Postfach 2360,
D-89013 Ulm

mehmet_goker@ep.mbag.sifi .daimlerbenz.com

4 AcknoSoft
58 a, rue du Dessous des Berges

75013 Paris, France
manago@ibpc.fr

5 TECINNO GmbH
 Sauerwiesen 2

D-67661 Kaiserslautern, Germany
wess@tecmath.de

Abstract
This paper presents a brief overview of the INRECA-II methodology for building
and maintaining CBR applications. It is based on the experience factory and the
software process modeling approach from software engineering. CBR development
and maintenance experience is documented using software process models and
stored in a three-layered experience packet.

1. Introduction
Today, there are already a few companies which are specialized in developing
CBR applications. Their problem is that they mostly develop their applications in
an ad-hoc-manner: They do not have guidelines or methods which could help their
developers in performing a new project and no ways to preserve experience made
in performed projects for future use. This can cause serious problems when

members of the staff leave, taking their experience with them, and new staff has to
be trained. The result is an ineff icient or ineffective system development, which
cannot be sustained by contemporary organizations. From these problems, the
need for a methodology to support the development and maintenance of CBR
applications arson a few years ago and several approaches in that direction have
been proposes (see Bergmann et al., 1997, for an overview). A methodology
describes the development of a software system using a systematic and disciplined
approach. It gives guidelines about the activities that need to be performed in
order to successfully develop a certain kind of product, e.g. any kind of software
system, as in our case, a CBR application. A methodology shall use a well -defined
terminology, which makes it also possible to collect experiences made in past
projects in a structured and reusable way to improve future projects. One of the
main driving forces behind the development and the use of a methodology relates
to the need for quality in both the products and processes of the development of
computer-based systems. The use of an appropriate methodology will provide
significant quantifiable benefits in terms of productivity (e.g. reduce the risk of
wasted efforts), quality (e.g. inclusion of quality deliverables) and communication
(a reference for both formal and informal communication between members of the
development team and between the developer and the client) and will provide a
solid base for management decision making (e.g. planning, resource allocation and
monitoring.

This paper describes the INRECA-II1 methodology approach which is based on
two relatively new areas in software engineering (SE): experience factory (Basili ,
Caldiera, & Rombach, 1994) and software process modeling (Rombach &
Verlage, 1995). We developed a methodology based on recent SE techniques
which is enriched by up to date experience on building and maintaining CBR
applications. This CBR experience was identified by analyzing several successful
industrial applications developed by the industrial Partners of the INRECA-II1

consortium.

2. The INRECA-II Methodology Approach
Our approach to a CBR development methodology is itself very “CBR-like“. In a
nutshell , it captures previous experience from CBR development and stores it in a
so-called experience packet (a term from the experience factory approach). The
entities being stored in the experience packet are software process models, or

1 Funding for this work has been provided by the Commission of the European Union (INRECA-II :
Information and Knowledge Reengineering for Reasoning from Cases; Esprit contract no. 22196)
to which the authors are greatly indebted. The partners of INRECA-II are AcknoSoft (prime
contractor, France), Daimler Benz (Germany), TECINNO (Germany), Irish Multimedia Systems
(Ireland), and the University of Kaiserslautern (Germany).

fragments of it such as processes, products, or methods. The experience packet is
organized on three levels of abstraction: a common generic level at the top, a
cookbook-level in the middle, and a specific project level at the bottom.

2.1 Experience Factory
The experience factory idea is motivated by the observation that any successful
business requires a combination of technical and managerial solutions which
includes a well -defined set of product needs to satisfy the customer, assist the
developer in accomplishing those needs and create competencies for future
business; a well -defined set of processes to accomplish what needs to be
accomplished, to control development, and to improve overall business; a closed-
loop process that supports learning and feedback. The key technologies for
supporting theses requirements include: modeling, measurement, the reuse of
processes, products and other forms of knowledge relevant to the (software)
business. An experience factory is a logical and/or physical organization that
supports project developments by analyzing and synthesizing all kinds of
experience, acting as a repository for such experience, and supplying that
experience to various projects on demand (see Figure 1). An experience factory
packages experience by building informal, formal or schematized models and
measures of various software processes, products and other forms of knowledge
via people, documents and automated support. The main product of an experience

Generalise

Tailor

Formalise

Package

Characterize,
Set Goals,

Choose Process

Execute
Process

Project
Support

Analyse

Experience
Packet

execution
plans

Lessons
Learned

Experience
in Models

Project Organisation Experience Factory

Fig. 1. The Experience Factory Approach (Basili , Caldiera, & Rombach, 1994)

factory is an experience packet. The content and the structure of an experience
packet vary based upon the kind of experience clustered in the packet.

Althoff and Wilke (1997) discuss the relationship between CBR and the
experience factory approach in some detail .

2.2 Software Process Models
Software process modeling is an approach that is highly important in the context
of the experience factory approach. Software process models describe the
engineering of a product, e.g., the software that has to be produced. Unlike early
approaches in SE, the software development is not considered to follow a single
fixed process model with a closed set of predefined steps. A tailored process
model particularly suited for the current project must be developed in advance.
Software process models include technical SE processes (li ke requirements
engineering, design of the system to be built , coding, etc.), managerial SE
processes (li ke management of product related documentation, project
management, quality assurance, etc.), and organizational processes (covering
those parts of the business process in which the software system will be embedded
and that need to be changed in order to make best use of the new software
system). From time to time, such a model must be refined or changed during the
execution of the project if the real world software development process and the
model do not match any longer.

Several representation formalisms for process models have been already
developed. Although the particular names that are used vary from one
representation to another, they all have a notation of processes, methods, products,
goals and resources. A process is a single step that has to be carried out in a
software development project. Each process has a defined goal and it consumes,
produces or modifies certain products. Usually, the goal of a processes is to create
or modify the products. Products include the executable software system as well
as the documentation like design documents or user manuals. For enacting a
process, there can be several alternative methods that describe how to actually
enact the process. When the process is enacted, an appropriate method must be
chosen. We distinguish between simple and complex methods. A simple method
can be a textual description like a guideline of what has to be done to reach the
goal of the process. A complex method decomposes a process into a set of sub-
processes that exchange certain by-products in the course of achieving the goal of
the main process. For a detailed description of the software process modeling
approach used in the INRECA-II methodology see (Bergmann et al. 1997b).

In the INRECA-II methodology, software process models are used to represent the
CBR development experience that is stored in the experience packet. Software
processes being represented can be either very abstract, i.e., they can just represent

some very coarse development steps such as: domain model definition, similarity
measure definition, case acquisition. But they can also be very detailed and
specific for a particular project, such as: analyze data from Analog Device Inc.
operational ampli fier (OpAmp) product database, select relevant OpAmp
specification parameters, etc. The software process modeling approach allows to
construct such a hierarchically organized set of process models. Abstract
processes can be described by complex methods which are themselves a set of
more detailed processes. We make use of this property to structure the experience
packet.

2.3 The Structure of the Experience Packet
The experience packet is organized on three levels of abstraction: a common
generic level at the top, a cookbook-level in the middle, and a specific project level
at the bottom (see Figure 2).

Common Generic Descriptions. At this level, processes, products, and methods
are collected that are common for a large spectrum of different CBR applications.
These descriptions are the basic building blocks of the methodology. The
documented processes usually appear during the development of most CBR
applications. The documented methods are very general and widely applicable and
give general guidance of how the respective processes can be enacted. At this
common level, processes are not necessarily connected to a complete product flow
that describes the development of a complete CBR application. They can be
isolated entities that can be combined in the context of a particular application or
application class.

Cookbook-Level: Experience Modules. At this level, processes, products, and
methods are tailored for a particular class of applications (e.g., help desk,
technical maintenance, product catalog). For each application class, the cookbook-

Software

 Process

 Models

Cookbook-Level: Experience Modules
combination of different blocks for a particular

application class, independent from a specific CBR project

Specific Project Level

specific for a particular CBR project

Common Generic Level
building development blocks, independent from

application class or specific CBR project

Experience Packet

Fig. 2. Structure of the Experience Packet

level contains an experience module. Such an experience module is a kind of
recipe describing how an application of that kind should be developed and/or
maintained. Thereby, the items (processes, methods, and products) contained in
such a module provide specific guidance for the development of a CBR
application of this application class. Usually, these items are more concrete
versions of items described at the common level. Unlike processes at the common
level, all processes which are relevant for an application class are connected and
build a product flow from which a specific project plan can be developed.

Specific Project Level. The specific project level describes experience in the
context of a single particular project that had already been carried out in the past.
It contains project specific information such as the particular processes that were
carried out, the effort that was spent for these processes, the products (e.g. domain
model) that have been produced and methods that have been selected to actually
perform the processes and the people that had been involved in executing the
particular processes.

2.4 Documentation of the Experience Packet
Processes, products, methods, agents, and tools being stored in the experience
packet are documented using a set of different types of sheets. A sheet is a
particular from that is designed to document one of the items. It contains several
predefined fields to be fill ed as well as links to other sheets (see example in the
Appendix). We have developed four types of sheets (for products, processes,
simple methods and complex methods) for documenting generic processes that
occur on the top and the middle layer of the experience packet and 6 types of
sheets (four sheets for products, processes, simple methods and complex methods,
and two additional sheets for tool and agent descriptions) for documenting specific
processes for the specific project level of the experience packet. Figure 3 shows
the 4 generic description sheets. One kind of sheet is used to describe generic
processes. Generic process sheets contain references to the respective input,

Gener ic
Process

Gener ic
S imple
Method

Gener ic
Comp lex
Method

Gener ic
Product

appl icable methods

by-product

input,
output,

modif ied
product

sub-process

Fig. 3.

Overview of generic description

sheets

output, and modified products of the process. Each product is documented by a
separate generic product description sheet. Each process description sheet also
contains links to one or several generic methods. A generic method can either be a
generic simple method (which is elementary and does not contain any references
to other description sheets) or it can be a generic complex method. Such a generic
complex method connects several sub-processes (each of which is again
documented as a separate generic process description) which may exchange some
by-products (documented as separate generic product descriptions).

As part of the INRECA-II project, a particular methodology tool was implemented
which supports the management of the experience packet and the different
modules it consists of. It supports the filli ng of the different sheets, checks
consistency and creates the required links. It exports the experience packet as
HTML network in which each sheet becomes a separate HTML page that includes
links to the related pages. Therefore it is possible to investigate the experience
packet via Intratnet/Internet using a standard Web browser.

2.5 Using and Maintaining the Experience Packet
When a new CBR project is being planned, the relevant experience from the
experience packet must be selected and reused. The experience modules of the
cookbook-level are particularly useful for building a new application that directly
falls into one of the covered application classes. We consider the experience
modules to be the most valuable knowledge of the methodology. Therefore, we
suggest to start the “retrieval“2 by investigating the cookbook-level and only using
the common generic level as fall -back. Furthermore, it is important to maintain the
experience packet, i.e., to make sure that new experience is entered if required.
For using and maintaining the experience packet we propose the following
procedure:

1. Identify whether the new application to be realized falls into an application
class that is covered by an experience module of the cookbook. If this is the
case then goto step 2a; else goto step 3.

2a. Analyze the generic processes, products and methods that are proposed for
this application class.

2b. Select the most similar particular application from the specific project level
related to this module and analyze the specific description sheets in the
context of the current application.

2c. Develop a new project plan and workflow for the new application based on
the information selected in steps 2a and 2b. Goto step 4.

2 Up to now, this retrieval is not supported by a tool, but through an index schema. However,
support for retrieval (e.g. a CBR approach) is considered important for the future.

3. Develop a new project plan and workflow for the new application by
selecting and combining some of the generic processes, products and
methods from the common generic level; make these descriptions more
concrete and modify them if necessary.

4. Execute the project by enacting the project plan. Record the experience
during the enactment of this project.

5. Decide whether the new project contains new valuable information that
should be stored in the experience packet. If this is the case, goto step 6, else
stop.

6. Document the project using the specific description sheets and enter them
into the specific project level of the experience packet (supported by the
methodology tool).

7. If possible, create a new experience module by generalizing the particular
application (together with other similar applications) to an application class
and generalize the specific descriptions into generic descriptions. Add the
new to the current cookbook (supported by the methodology tool).

8. If new generic processes, methods, or products could be identified that are
of a more general interest, i.e., relevant for more than the application class
identified in step 7, then add them to the common generic level (supported
by the methodology tool).

3. Current Status
Up to now, the INRECA-II project has achieved an initial experience packet
(Bergmann et al. 1997c, Bergmann et al. 1997d) and a first revision of. Currently,
the common generic level, consists of about 150 different sheets documenting
technical, organizational and managerial aspects. These descriptions are very
general and have been identified based on our general experience of how to build
a CBR system and on specific experience on certain projects. Right now, this level
is more of a tutorial style which is most useful for people without any or with only
less experience in building CBR applications.

The cookbook level currently consists of about 150 different sheets from three
modules:

Product Catalog Search Module. The basic action is a parametric search by a
potential client, or a sales person in the presence of a client, in a product-base or
catalogue (see example in the Appendix).

Complex Help Desk Module. The task is to introduce a CBR system for trouble
shooting and diagnosis for some complex technical equipment, typically via a hot-
line telephone service. This module was build based on the HOMER application
currently under development for the Daimler-Benz Hotline.

Technical Maintenance Module. The task is to support the maintenance of
technical equipment and is based on several related applications developed at
AcknoSoft.

At the specific project level, the experience from four projects is captured and
stored in about 350 sheets.

4. Future work
Future work in this area will focus on entering more experience into experience
packet. It is important to include more experience modules for other kinds of
applications and to extend the existing modules to cover the maintenance aspect in
more detail . Additionally, we want to motivate the CBR community (researchers
and application developers) to use our approach and to provide at least some of
their experience into a public experience base. Another important aspect to be
addressed in the future is the development of tools for eff iciently accessing the
experience packet, e.g. by applying CBR and information retrieval techniques.
This will become particularly crucial when the experience packet grows further.

References
Althoff , K.-D. & Wilke, W. (1997). Potential uses of case-based reasoning in the experience-based
construction of software systems. In: R. Bergmann & W. Wilke (eds.), Proceedings of the 5th

German Workshop in Case-Based Reasoning (GWCBR’97), LSA-97-01E, Centre for Learning
Systems and Applications (LSA), University of Kaiserslautern.

Bergmann, R., Wilke, W., Althoff , K.-D., Breen, S., Johnston, R. (1997). Ingredients for
Developing a Case-Based Reasoning Methodology. In: R. Bergmann & W. Wilke (eds.),
Proceedings of the 5th German Workshop in Case-Based Reasoning (GWCBR’97), LSA-97-01E,
University of Kaiserslautern, pp. 49-58.

Bergmann, R., Wilke, W., & Schumacher, J. (1997b). Using software process modeling for
building a case-based reasoning methodology: Basic approach and case study. In: D. Leake & E.
Plaza (eds.) Case-Based Reasoning Research and Development (ICCBR’97). Lecture Notes in AI.
Springer, pp. 509-518.

Bergmann, R., Breen, S., Göker, M., Johnston, R., Schumacher, J., Stahl, A., Traphöner, R.,
Wilke, W. (1997c). Initial methodology for building and maintaining a CBR appliation. INRECA-
Deliverable D2+3, Version 1.

Bergmann, R. Breen, S., Göker, M., Johnston, R., Schumacher, J., Traphöner, R., Wilke, W.
(1997d). Cookbook for building and maintaining a CBR application. INRECA-Deliverable D4,
Version 1.

Basili , Caldiera, & Rombach (1994). The Experience Factory. In J. Marciniak (Ed.) Encyclopedia
of Software Engineering - Vol 1. New York: Wiley.

Rombach & Verlage (1995). Directions in Software Process Research. Advances in Computers,
Vol. 41, Academic Press.

Appendix: Example Sheet3

Generic Complex Methods Description Sheet

Project: Product Catalogue Search Version: 2.0 Date: 8/5/1997 Context:
Author: Sean Breen, IMS

Method Name: Prototype Development of Product Catalog Search
Product Flow Diagram:

Produce agreed
Case Base

Structured
Case-base

Produce Working
Demonstration with

Tools

Refine Based on
Feedback

Working
Similarity

Search
Facility

Evaluate and
Provide Feedback

User
Feedback

Product
Information

User
Requirements

Business
Requirements

Requirements
Definition

Requirements
Specification

Develop User
Interface Prototype

User
Interface
Prototype

Evaluate and
Provide Feedback

User
Feedback

Refine Based on
Feedback

Customised
Similarity
Measures

Define Similarity
Measures

Integrate User
Interface and CBR

Integrated
Working

Prototype

G E N E R I C C O M P L E X M E T H O D
Product Catalogue Search Facility

PROCESS CHART APR 1997

Sub-processes
Name Generic Process
Produce a Case-base for the Application Produce Agreed Case base
Demonstrate the similarity Search using the CBR tools Working Demonstration with tools
Define the user and business requirements Define Requirements
Define and specify the similarity functions Define Similarity Measures
Produce a working prototype of the User Interface Develop User Interface Prototype
Evaluate a software product and provide feedback Evaluate and Feedback
Refine the software product based on feedback from the users. Refine Prototype based on Feedback
Integrate the User Interface with the tools based prototype Integrate UI and CBR

By-Products
Name Generic Product
Structured Case Base Casebase
Customized Similarity Functions Specification Document
Working Similarity Search facilit y using tools Similarity Search Facilit y
Requirements specification for the system Requirements Document
User Interface Prototype UI Prototype
User Feedback User Feedback

3 This example sheet was produced by Interactive Multimedia Systems (IMS), Dublin.

