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Abstract.

This survey paper deals with multiresolution
analysis from geodetically relevant data and its
numerical realization for functions harmonic out-
side a (Bjerhammar) sphere inside the Earth.
Harmonic wavelets are introduced within a suit-
able framework of a Sobolev-like Hilbert space.
Scaling functions and wavelets are defined by
means of convolutions. A pyramid scheme pro-
vides efficient implementation und economical
computation. Essential tools are the multiplica-
tive Schwarz alternating algorithm (providing
domain decomposition procedures) and fast mul-
tipole techniques (accelerating iterative solvers of
linear systems).

Keywords. Multiresolution analysis, har-
monic wavelets, reconstruction formula, pyra-
mid schemes, domain decomposition methods,
fast multipole techniques.

Gravity field modelling, although it is always
governed by the same classical Newton’s law,
changes its nature when it is seen from different
spatial scales. To be more specific, if one looks at
gravity field determination on the basis of an in-
creasing spatial magnification and accuracy, we
have to go from something that is suitably char-
acterized by a simple mass point, on astronomi-
cal scale, to what is described by a global trun-
cated multipole (i.e., outer harmonic) model, at
scales corresponding to satellite altimetry, down
to wavelengths of about 100 km. By further
zooming in we can reach a spatial resolution of
about 1 km showing a very complicated pattern,
strongly related to the shape of the Earth and
to irregular masses inside the Earth’s crust. Si-
multaneously the error in the knowledge of the
gravity field model goes from 5 Gal, the flatten-
ing effect, down to 10 mGal in a today’s global
model, down to about 10! mGal at the future 1
km spatial resolution. There is also a change of
the gravity field in the time scale depending on
the time interval under consideration, but this

aspect will not be discussed here. Thus, grav-
ity field modelling as scientific object to be in-
vestigated in this approach is by definition the
stationary gravity field with a spatial resolution
from a worldwide to about 1 km scale and from
about 1000 Gal of the full field down to, at least
10~! mGal in future.

What we would like to present in this note
are multiscale structures by which the gravita-
tional part of the gravity field can be approxi-
mated progressively better and better, reflecting
an increasing flow of observations of terrestrial,
airborne and/or satellite type (e.g., terrestrial
gravimetry, airborne gravimetry, satellite-to-
satellite tracking (SST), satellite gravity gradio-
metry (SGG), etc). More precisely, we shall try
to outline the canonical bridge of gravitational
field determination from the well-established
global outer harmonic approximation corre-
sponding to a spherical Earth to modern wavelet
methods based on the actual geometry of the
Earth’s surface and geodetically relevant observ-
ables (thereby always neglecting the small effect
of the atmosphere in the outer space).

At this stage some remarks should be made:
First, every geodetic measurement is a functional
which may be assumed to be suitably linearizable
in case of non-linearity when the anomalous po-
tential is considered. In other words, the relation
between the object function, i.e., the anomalous
potential and the data, may be supposed to be
linear (for more details see, for example, W.A.
Heiskanen, H. Moritz (1966)). Second, more and
more measurements refer to satellites and can-
not be modelled as functionals of the gravita-
tional potential on the boundary, i.e. the Earth’s
surface. The satellite observations, which cer-
tainly increase in importance in the future, are
much more difficult to handle, since they are ex-
ponentially smoothed while moving to the outer
space. As a consequence, essential knowledge
of the gravitational potential should be based
on the combination of ground observations with
satellite information.



Table 1: Gravitational field observables and their location

| observables | location | measurement method

terrestrial observables
|VV (2)| Z € continent gravimetry
VV(z) . geometric-astronomic
VV(z)] x € continent levelling
V(z) Z € ocean satellite altimetry

Doppl PS, LASE
z,y x,y € surface of the Earth oppler, GPS, LASER,

RADAR, VLBI techniques

spaceborne techniques

VV(x)

x € outer space of the

satellite—to—satellite tracking

Earth
x € outer space of the . . .
(Ve V)V(x) satellite gravity gradiometry
Earth
seismic information
p(x) x € Earth’s crust seismic tomography, etc

A very rough overview of what we consider nowa-
days as relevant geodetic observables can be
taken from a classification due to H. Nutz (2002)
(see Table 1).

The main interest in modelling data associated to
the anomalous potential is a mathematical model
that is characterized by two aspects, on the one
hand side by realistic geodetic assumptions and
on the other hand side by an acceptable numer-
ical complexity. It is very helpful from the point
of approximation theory to require the class H of
object functions to constitute a Hilbert space of
potentials F' being harmonic down to an internal
sphere A (with radius « around the origin). In
doing so, we are led to a sphere-oriented Runge-
Walsh approach (see W. Freeden, F. Schneider
(1998)) which tells us that mean squares approxi-
mation on the internal (”Bjerhammar”) sphere
implies uniform approximation on and outside
the Earth’s surface X, a feature that is of ex-
ceptional significance. The price that must be
paid when approximately replacing the actual
gravitational potential V of the Earth by an ob-
ject function F' € H is the smoothness of the
gravitational potential V on the Earth’s surface
which is clearly acceptable seen from the view-
point of numerical analysis. In addition, we are
confronted with the fact that the Hilbert space
H of potentials in Ay is infinite-dimensional,
briefly formulated (for more details see W. Free-
den (1999)) H is the space of potentials in Agy, of
the form 300  Soamt! A F N, k) Hon1 1 (a;-)

satisfying 5257 S2"! (FA(n, k))? < oo, where
{Ap}nen, is a sequence of non-vanishing real
numbers and {F"(n, k)} neL given by

k=1,...,

F™n, k) = / F(a)Hon1 (05 7) duo(a)
A

(dw: the surface element on A) is the table of
Fourier coefficients F(n, k) of F on A with re-
spect to the outer harmonics H_,,_1 1 (e; ) of de-
gree n and order k. (Note that Aey is the outer
space of the sphere A with radius o around the
origin 0; Aext = Aext U A). In other words, the
information about the object function V € H is
incomplete, since only a finite number of data
is available. Moreover, the data are of hetero-
geneous type relating to different positions in
Aext'

1 OQuter Harmonic Multiresolution

It is fortunate that the Hilbert space H con-
tains as subspaces all (2j 4 1)-dimensional spaces
Harm; of outer harmonics H_;_1 ;(a;-) of order
7 and degree I. More explicitly, we are able to
make profit of the following (in physical geodesy
well-known) multiresolution analysis in terms of



outer harmonics:

e VyCVi C 'CH,
s
. Uv =H,
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=0 I=Jo
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where the scale spaces V; and the detail spaces
W; are given by

J
= @ Harm,
1=0

= Harmy,... ;

and
W; =V ©V; = Harmja,

respectively. Advantages may be characterized
as follows: Any member F of V; (that means
any band-limited element of H) is representable
as a finite Fourier (orthogonal) ezpansion

J 2n+1

FeVi<=> > F'n,)H_n_1.(c;")

n=0 [=1

in terms of the £?(A)-orthonormal outer har-
monics of order < j. It is well-known that
each outer harmonic localizes ideally in the fre-
quency space; the ”polynomial structure” of the
outer harmonics produces a good global ”low fre-
quency” approximation; each Fourier coefficient
(i.e., potential coefficient) of the orthogonal ex-
pansion may be expressed exactly as finite linear
combination of data functionals applied to outer
harmonics. In conclusion, multiresolution analy-
sis in terms of outer harmonics has proven to be
very useful in physical geodesy for the purpose of
global modelling. Nowadays, all updated global
models include orthogonal coefficients up to the
order 360 (for example, EGM96). The Fourier
coeflicients are derivable in different ways on cer-
tain spectral domains (by global combination of
terrestrial and spaceborne data).

2  Wavelet Multiresolution Analysis

The fundamental difficulty of multiresolution
in terms of outer harmonics, however, is that
we have to deal with trial potentials which do
not show any phenomenon of space localization.

Consequently, any local change of the potential
affects the whole table of Fourier coefficients. In
consequence, local modelling is hardly treatable.
The essential reason is that the consecutive scale
spaces V; and V;y1 in outer harmonic multires-
olution are not related by a dilation and shift-
ing (translation) procedure. In other words, the
spaces V; do not consist of dilated and shifted
copies of one fixed function, i.e., there is no
"mother outer harmonic” from which all other
outer harmonics may be generated by dilation
and translation. For these reasons we are con-
vinced that local modelling cannot be performed
adequately within the framework of outer har-
monics. A new component of approximation has
to come into play, viz. harmonic wavelets (see W.
Freeden (1999)).

The power of wavelets is based on a multireso-
lution analysis which enables both frequency as
well as space localization. In fact, wavelets may
be used as mathematical means for breaking up
the complicated structure of the Earth’s anoma-
lous field into many simple pieces at different
scales and positions. Basically this is done by fil-
tering, i.e. forming convolutions ¥;xF', j € Ny, of
a harmonic function F' such as the anomalous po-
tential against ”dilated” and ”shifted” versions
¥; of one fixed function, viz. the mother wavelet
¥. In consequence, the anomalous potential is
represented by a two-parameter family reflecting
the different localization and different levels of
resolution. The definition of wavelets has to be
given in close connection with a so-called scaling
function {®;};en,, approaching formally in the
limit case the ”Dirac function(al)” ®., given by

oo (2,

y)

00 n+1
YD) BT S
n=0 k=1
T,y € Aext, of the Sobolev space H under con-
sideration. Observing the addition theorem of
spherical harmonics (see, for example, W. Free-

den et al. (1998)) we get

Poo(2,y)
2n+11 ( a? >"+1P (x y)
= Ama® A7\ 2|y “\lz| Iyl

where P, is the Legendre polynomial of degree
n.




The scaling (kernel) function is given as series ex-
pansion in terms of outer harmonics as follows:

®;(z,y)

_ °°90(

n

2n+1

Z H_,_1(os2)H_p—1(,p)

%,y € Aext, where the family {{¢;(n)}nen, }jen,
is (usually) assumed to satisfy the following
properties:

(i) for all j € Ny,
pi(0) =1
(ii) for all ,j' € Ng with j < j' and alln € N
pi(n) < @j(n)
(iii) for alln € N

lim (¢;(n) =1

j—o0
(iv) for all j € Ny,

p;j(n)2n+1
A2 4ma?

n=1

The aforementioned convolutions in H are un-
derstood in the following way:

o 2n+1
FxG=>Y > A F"n,k)G"(n,k)

n=0 k=1

for F,G € H. In particular, for all z € Aext and
all Fe#H,

(®; * F) (2)

oo 2n+1

=2 ) Al

n=0 k=1

n)F™(n, k)H_p—1 1 (a; ).

Wavelet function {¥;};en, and scaling func-
tion {®;}jen, are related via their symbols

{pj(n) }neng, {¥j(n)}nen, via the scaling equa-
tion

¥;(n)

Starting from the mother kernels & and ¥y, re-
spectively, the j-th level kernels ®; and ¥; are
obtained by dilation. The scale index j serves

= @jn(n) —pj(n), neN .

as a "measure for decreasing frequency localiza-
tion” or equivalently as a ” measure for increasing
space localization”.

To be more specific, observing the addition the-
orem of spherical harmonics the kernels ®; and
¥ ;, respectively, can be written as follows:

®;(z,y)
o0 2 n+1
_ cpj(n)2n+1(a ) P(il)
— Ay Ame? \ |||y "\le| lyl)’
W, (z, y) = q’j+1(w y) — @i(z,y)
Z 2n+1<o¢2 >n+1P (ii)
Az Ama? \|z|ly| “\le| Jyl)’

(z,y) € Aext X Aext-

The so—called dilation operator D; is defined in
the following way. D; : ®¢(-,-) = D;®¢(-,-) =
®;(-,), j € Ny. If yis a point of Aex, then
the shift operator S, is defined by S, ®¢(-,-) =

®o(-,y), vy € Aext- Combining both operators
we ﬁnd q)](,y) = Syq)](,) = SyD](I)()(,) and
(-, y) = Sy¥;(-,-) = SyD;¥o(:, ).

The multiresolution analysis in terms of har-
monic wavelets for a potential F' € H (such as
the anomalous potential) is illustrated by the
scheme below:

o ®;xFeV;,j=0,1,...,
o d;xF — F,

j—o0
e VyC- CVJCV]'+1CV]'+2C"'CH,
o Vi =V +W;,

J
Vj+1 = VJO + Z Wl; Jo > 07
I=Jo

=l
. U v, =,

° \IJJ*FGW]',

J
&y, «F .
o« By x +IZJIIJ,*FJ:;F
=Jo

The last result is known in the wavelet termino-
logy as reconstruction formula. Explicitly writ-
ten out it reads:

=0.
H

J
<I>J0*F+Zl1'l*F—F
I=Jy

lim
J—00




In terms of filtering, the sequences {®;}en, and
{¥;}jen,, respectively, may be interpreted as
low-pass filter and band-pass filter. The convo-
lutions ¥ x I may be understood as a version of
F blurred to the scale j. It describes the ”detail
structure” of F' at scale j. The detail space W;
contains the detail information needed to go from
an approximation at resolution j to an approxi-
mation at resolution j + 1. For more theoretical
details confer W. Freeden (1999); for graphical
illustrations see e.g. Figure 2 of this paper.

3 Some Wavelet Examples

Next some examples of scaling functions and as-
sociated wavelets will be presented.

Example 1. Let {v;};en, be a strict monoton-
ically decreasing sequence of positive real num-
bers with lim;_, ., v; = 0. The generating symbol
{{pj(n)}nen, }jen, of the Shannon scaling func-
tion {¢;}jen, is given by

_[1, ne0qy

QOJ(n) - { 0 , nE [’Y;l,OO)

The Shannon scaling functions constitutes a
bandlimited wavelet function.

The following example is of non-bandlimited na-
ture.

Example 2. Let {v;};en, be a strict monoton-
ically decreasing sequence of positive real num-
bers with lim;_,., v; = 0. The generating sym-
bol {{¢;(n)}nen, }jen, Of the Tikhonov scaling
function {®;};en, is given by

2
n

o2+’

g

pj(n) =

where the sequence {0y, }nen, has to satisfy o,, #
0,n €Ny, and 377 (2n + 1)o2 < oo.

In particular, the sequence {v;};en, may be cho-
sen in dyadic way: v; =277, j € Ny, for some
constant a > 0.

Finally, another type of a non—-bandlimited scal-
ing function should be listed that turns out to be
of particular importance in numerical computa-
tions.

Example 3. Let {v;};en, be a strict monoton-
ically decreasing sequence of positive real num-
bers with lim; o, 7; = 0. Let @ : [0,00) —
[0,00), t = Q(t), be a function with the follow-
ing properties:

(a) QEC’(‘”)[O 00),

(B) Q(0) =

() Q) >0,t>0

0) Q) <), 0<t<t.

Then the generating symbol {{¢;(n)}nen, }jen,
of the ezponential scaling function {®;};en, is
given by

pj(n) = k"2 19 b e (0,1].

Of particular significance are kernels ®; that are
available as elementary functions.

Abel-Poisson kernel:
R > 0.

®j(z,y) =
1 ja2lyl? — hade 2nR
4 (|z]2|y)? + h20te 27 R _ 2ha2e*7iR(m’y))3/2'

(n+1/2)'2,Q(t) =

Singularity kernel: A,, =
Rt, R > 0.

®j(z,y) =
1 1
27 (|z|2|y|? + h2ate 27 R — 2ha2e ViR (g - y))1/2"

A fundamental aspect that should be mentioned
is that a combined concept of outer harmonic
and wavelet expansion may be formulated, the
outer harmonic expansion being responsible for
the global modelling and the wavelet expansion
being appropriate for local modelling involving
a zooming-in procedure. (For more details the
reader is referred to W. Freeden (1999)).

4 A Tree Algorithm

For computational purposes it is useful to dis-
cretize the convolutions by approximate formu-
las based on bounded linear functionals Lf]",
i =1,...,N;, on H characterizing the observ-
ables of the anomalous potential. What we are
going to realize is a tree algorithm (pyramid
scheme) with the following ingredients: Starting
from a sufficiently large J such that

ZLNJ@J

T € Aexy, we are interested in showing that the

) , N; N; .
coefficient vectors a™i = (a;?,...,ay’ )T € RVi,
J

F(z) ~ (®5+ F)(z



j = Jo,---,J — 1 (being, of course, dependent
on the potential F' € H under consideration) can
be calculated such that the following statements
hold true:

(i) The vectors a™i, j = Jy,...,J — 1, are ob-
tainable by recursion from the values a™¥7.

(ii) For j = Jo,...,J,
N;
(@ F) (z) =Y L} ®;(z,)a; ",
=1

2z € Aext- Analogously, we find for j =
Joy .oy — 1,

N;

N; N;

(T F) (0) = 3 L0, )al,
i=1

X € Aext-

Our considerations leading to a tree algorithm
are divided into two parts, viz. the initial step
concerning the scale level J and the pyra-
mid step establishing the recursion relation for
J - ]., ceey J():

The Initial Step: For a suitably large integer
J, ®; * F is sufficiently close to F' on the whole
space Aext. Formally understood, the kernel @ ;
replaces the ”Dirac kernel” ®.,. In other words,

LY (®;%F)~LNF, i=1,...,N,.

Tt remains to determine the coefficients al*”,
i = 1,...,N;. Different strategies can be ap-
plied. Dependent on the topology of the Hilbert
space H and the type of the linear functionals
the coefficients a¥” can be calculated by numer-
ical integration (as, for example, in the case of
a spherical Earth) or by solving certain linear
equations (for example, relating to points on the
actual surface of the Earth or a satellite orbit).

Applying a general interpolation procedure we
may base our initial step on the ansatz

Ny
o)’ =Y wif L;'F, i=1,...,Ny,
k=1
where the coefficients szk’ satisfy the linear
equations

Ny
S wN LN LN () = Gipsick=1,..., N
=1

1)

(It is worth mentioning that using numerical in-
tegration formulas, for example, in case of eval-
uation functionals L7 : F — F(z7), 27 € A,
we are canonically led to coefficients of the form

Ny _ Ny Ny ; —
a;’ =w; " F(z;’), i=1,...,Ny,

where wN” are the weights and ¥’ the knots of
the approximate integration formula. This ap-
proach also leads to a tree algorithm; however,
it will not be discussed here (see W. Freeden
(1999)).

The Pyramid Step. The essential idea for
the development of a pyramid scheme is the
existence of a reproducing kernel function Ky,,
Jj =Jo,...,J, of the detail spaces V; such that

b; ~ Ky, x®;
and
Ky, ~ Ky, , * Ky,
for j = Jy,...,J. Observing our concept of dis-

cretizing convolutions by approximate formula
based on interpolation we are led to

(®;*F)(x) = (<I>j * Ky, * F) (x) (2)

N;
= z :Lz J(I)J'('T7 ')ai J: S Aext7
i=1
where
2

N;
a;’ = E :wi,l;LkJ(KVj *F), i=1,...,N;
k=1

and the coefficients wa,; satisfy the linear equa-
tions

N

N; +N; + N; .
E ’lUl’kJ:LileJq)j(',')Z(Sik;l,k:].,...,Nj.
=1

3)



Now it follows by use of our approximate (inter-
polation based) formulae that

N

N; o _ Nj r N;

a;” = E :wi,kLk (KV; *F)
k=1

1R

ZwN’LNJ (Kv; xKy,,, x F)

In other words, the coefficients a;’~* can be cal-

culated recursively starting from the values aév 7

for the initial level J, a?{] -2

cursively from aﬁVJ ~', etc. Moreover, it is easy
to see that the coefficients are independent of

the chosen kernel. Consequently we have

can be deduced re-

Nit1 (T; % F)( LYiW(z,)al?, @€ Aoy
~ Zw”;Lk Z LY Ky, (-, )a, ot Z T o
N N-7+1 . . Nj . .
_ z Z w] kaf\’ﬁl 1N LfV”lva(-, ) with the coefficients a; ’, i = 1,..., N;, given by
k=1 I=1
= aévf“ afvj ~ aévj“
O N NN, N o Ny N Nj+1
+ 3wy LY LY Ky (). - Z S wiiay M LP LY Ky ().
k=11=N;+1 k=11=N;+1
Table 2: Decomposition Scheme
F - dv -5 a1 - .. =5 ¥
D ' !
@J*F @J—I*F (I)JO*F
\I’J*F lI’.]_1>I<F1 \I’JO*F
Table 3: Reconstruction Scheme
aNJO aNJ0+1 aNJ0+2
d
\I’JO*F \I’JO_H*F l:[»'.]0_{_2>I<.l‘71
he he N\
®;,xF = + = Q54axF - + = ®540xF - 4+ —

From numerical point of view we have to deal with two essential problems: (i) Large linear systems

have to be solved to determine the coefficients wa,i, j=

Jo,..,J. (ii) Large summations Ei\;’l

must be performed during the solution process within the system of linear equations.

5 The Schwarz Alternating Algorithm: A
Domain Decomposition Method

The pyramid scheme leads to a system of lin-
ear equations of the form (1) with a posi-
tive definite symmetric matrix A = A4;; =
(LéVjL;Vj(Pj(','))i,l:l,...,Nj, as far as the linear
functionals under consideration are linearly in-
dependent. In other words, we have to solve a

linear system
Az =1» 4)

where A € RV*N AT = A, (Ay,y) > 0 for
all y € RV\{0}, and z,b € RY. Such a lin-
ear equation system can be solved with iterative
solvers or direct solvers, but if N is large (for
example, N > 10000), the runtime of an itera-
tive solver without a suitable pre-conditioner or
of a direct solver increases tremendously. There-
fore, we need a more sophisticated method to



solve (4) for problems with a large number of
given data. One such method is a multiplicative
variant of the Schwarz alternating algorithm, a
domain decomposition method, which allows to
split the matrix A in (4) into several smaller sub-
matrices relating the linear functionals (see Table
1) to subdomains of the entire domain and thus
providing a division in certain domains, which
may (and will in numerical implementations) in
general overlap. This multiplicative variant of
the Schwarz alternating algorithm is an iterative
method which solves in each iteration step suc-
cessively a linear system with the matrices ob-
tained from the splitting. This fact reduces both
runtime and memory requirement drastically. (A
further speed-up can be achieved if an additive
variant of the Schwarz alternating algorithm is
used which runs on parallel computers (see, for
example, M. Griebel, P. Oswald (1995) and the
references therein)).

The Schwarz alternating algorithm dates back to
H.A. Schwarz’ work, published in 1890, and has
been investigated by many authors since then. A
revived interest in variants of the Schwarz alter-
nating method arose since 1985 due to the avail-
ability of fast modern and parallel computers.
Roughly formulated, there are mainly two types
of the Schwarz alternating algorithm: multiplica-
tive variants (like the one used in this paper)
and additive variants, which can be implemented
on parallel computers and which are usually
faster. For more information about the Schwarz
alternating algorithm, the reader is referred to
W. Frommer, H. Schwandt (1997), M. Griebel,
P. Oswald (1995), and W. Freeden, K. Hesse
(2002) and the references therein. In the last
few years, a great interest has also been taken in
the relation between the Schwarz alternating al-
gorithm, multisplittings, multigrid methods, pre-
conditioned conjugate gradient methods, as well
as other iterative schemes.

The solution of (4) with a multiplicative vari-
ant of the Schwarz alternating algorithm, which
will from now on be called briefly the multiplica-
tive Schwarz alternating algorithm, is based on
two facts: (i) every positive definite symmetric
matrix is a Gram matrix, (ii) the convergence
proof of the multiplicative Schwarz alternating
algorithm is based on its formulation in terms of
orthogonal projectors.

The matrix A = (A4;;)i,j=1,.~ in (4) is posi-
tive definite and symmetric. Within the context

of Cholesky factorization, there exists a uniquely
determined invertible lower triangular matrix L
with positive diagonal entries, such that

A=LLT. (5)

Denote the row vectors of L by v1,...,vn. Then

(5) implies that

Aij:Ui-UjZ('Ui,Uj), i,jZI,...,N.

Thus, A is the Gram matrix of the basis
{v1,...,un} of RY  and the solution z =
(x1,...,zNn)T of the linear equation system (4)
is the solution of the following orthogonal pro-
jection problem: Find z = (z1,...,2n5)T € RV
such that f € RY with (f,v;) =b;,i=1,...,N,
has the representation

N
F=3wv )
i=1

Indeed, the solution of this problem demands the
solution of the linear system

N
in(vi;vj):(f,'l}j):bj, j:]‘J“‘JNJ
i=1

(7)

which is just the linear system (4). The or-
thogonal projection operator corresponding to
(6) is, of course, the identity operator: We
seek a representation of f = Idgw~f with re-
spect to the basis {vy,...,vn}. Now we split
the basis {v1,...,vy} into several smaller possi-
bly overlapping subsets =" = {vf,..., v} } C
{v1,...,on},7 =1,..., M, such that

M
U Eivr ={vy,...,oN}.
r=1

This union will, in general, not be a disjoint, and
we speak of overlapping subsets, if there are at
least two subsets ZV", Nk with EN- N EN* # ()
and k # 7.
Denote the orthogonal projector from RY onto
span(ZN+) by

P, :RY — span{v],...,v5 },9— Prg, (8)
ie, P, = P.o P, and (Pw,w) = (v,Pw)
for all v,w € RY. In order to compute P,g,
we assume again that (g,v;), ¢ = 1,...,N, is
known. We want to calculate the coefficient vec-
tor y = (y1,---,yn,) of the representation

N,
P.g= Zyz Uzr .
i=1



Taking the inner product with o7,... v suc-
cessively leads to the linear equation system

! T T T
Zy’l (U;ﬂ};) = (PT‘gavj) = (ga-PTUj) = (g7vj)7

(9)
j = 1,...,N,. Clearly the matrix A, =
((vI,v7))i,j=1,...,N, is a submatrix of the matrix
A of the linear equation system (4).

Algorithm 5.1 (Multiplicative Schwarz Alter-
nating Algorithm)
set fo=f€RY and sf =0
forn=0,1,2,...do
forr=1,...,M do
calculate S£M+T = S£M+(r—1) +
Pr(an—i—(r—l))
update fnprir = an+(r—1) -
P.(fam+(r-1))
until

|((f(n+1)M; V1)yeees (f(n+1)M7UN))T|
|((favl)a ey (fa 7}N))T|

Recently, W. Freeden, K. Hesse (2002) have
shown that the sequence of iterates {s7 ,, }nen,
converges to f as n — oco.

<eg

Algorithm 5.1 will now be transformed into a
matrix formulation via (7) and (9). For this
purpose, we need the following restriction op-
erators R, : RY — RV, w — R, (w) =
(Rr(w))1,---, (Rr(w))n, )T, and embedding op-
erators I, : R — RN, 2z — I.(2) =
((I-(2)15-- -, (I (2))N)T, corresponding to the
subspaces RV~ of the subproblems (9). They are
defined by

(B (w));

=wj for the index ¢ € {1,..., N, } with v] = v;,
(Ir(2));

_ [ # ifthereis j € {1,...,N,} with v] =v;
1 0 else.

Algorithm 5.2
(matriz formulation of Algorithm 5.1)

Define the matrices A, = ((U:,U;))i7j:1’,..’]\[r,
r=1,...M
set fO = ((f,Ul),...,(f,’UN))T, Qg =

0,...,00T € RN, where f € RN
forn=0,1,2... do
forr=1,....,M do
solve Ard = Ry(frmy(r—1)), d =

(dl, ey dNT)T € RN
update anpryr = Qpp4(r—1) +

I,(d)

update anJrT = an+(r—1) -

until ~
M
|fn+~1 | S c
| ol
compute
M
S{n—i-l)M = Z(a(n+1)M)iUi-
i=1

We stress that all the computations (except
the computation of s{n +1) ) in Algorithm 5.2
can be performed without actually computing
Vi,...,o8n € RN |, ie., we do not need the
Cholesky factorization of A: The matrices A,
are available as submatrices of A, and the up-

date involves a matrix vector multiplication with

N

matrix of A.
Summarizing our result we obtain the following
corollary.

Corollary 5.3 Let the notation and the as-
sumptions be the same as in Algorithm 5.2. Then
the sequence {annr nen, C RY converges to the
solution x € RN of the linear equation system
Az = b, where A = ((v;,v5))ij=1,...~ and

b= ((fa/ul)a"'a(favN))T'

Finally, we want to give some comments concern-
ing the implementation of Algorithm 5.2 for the
solution of the aforementioned linear equation
systems. In case of Example 2 or 3 the matrix
entries are available as elementary function. This
enables us to evaluate a matrix entry with small
computational effort (in comparison to the gen-
eration of kernels by aid of series expansions in
terms of outer harmonics). In an implementation
of Algorithm 5.2 we will generate only the small
matrices A, in advance, compute, for example,
their Cholesky factorization in a preprocessing
step, and keep the matrices of the Cholesky fac-
torizations of the A, in the memory. The other
matrix entries of A, which will be needed for the
update (computation of the new residual), are
generated while the update is performed. The
update is the time-consuming task, whereas the
smaller equation systems can now be solved ex-
tremely fast.



If fast multipole methods (fast summation tech-
nics) are available for the type of kernel, which
determines the matrix entries, the update can
even be accelerated. In what follows this numer-
ical method will be explained in more detail.

6 A Fast Multipole Technique

Although the fast multipole technique may also
be applied to other types of kernels we restrict
our considerations here to the singularity kernel
(see Example 3) which is the reproducing ker-
nel of the Sobolev space H associated to the se-
quence {Ay}nen, given by

A, (n+2)1/2h n2p=0,1,...;0<h<1.

This particular choice yields the following kernel
representation for the singularity kernel

Kyy(z, y)

n+1 2 y
= P, — =,
27"12 Z <|w||y|> " (le Iy|>

Z,y € Aext- Applying the Kelvin transform of
potential theory (see, for example, O.D. Kellogg
(1929)) with respect to the variable y and the

sphere A we obtain by setting y* = h%y

1yl < Z Ay |" Y
2ra® h |5'3|"Jrl |37| ly]
1 M 1
2ra? h |z —y*|

K’H(may) =

This shows us, for example, in case of evaluation
functionals L;F = F(x;), ; € Aext,

1 |z 1

LiLiKu(-) = 2ra?® h |z —=x

. (10)
3l
and for functionals of oblique derivatives given
by LiF = ((z- VF)())|,_,.

L; LJKH(a ) (11)

elt=2)

1 1
V*( )+ =)
F Ve =) =) e

Since the entries of the matrix consist of the
fundamental solution of the Laplace equation
and directional derivatives of it, the solution of

the linear system by a fast multipole accelerated
solver becomes possible.

In order to reduce the computational effort and
the storage requirements for solving the linear
system (4) the Geomathematics Group Kaisers-
lautern adapted the fast multipole technique to
accelerate the matrix multiplication in an itera-
tive (GMRES) solver. Theory and algorithmic
aspects of the FMM are very sophisticated and
their description would go beyond the scope of
this article. In this approach we merely outline
the ideas and the basic aspects of the fast multi-
pole method (FMM).

The subject of interest is the fast evalua-
tion of a matrix multiplication of the form
SN wLiLiKy (), § = .,N, N large.
The idea of the FMM is based on the localiza-
tion property of the kernel defining the entries
L;L;K4(-,-), i.e. on the fact that most of the
energy is contained within a small vicinity of z7.
The sum is split up into a near-field part (of
course, defined with respect to the linear func-
tional associated to z}), which is evaluated ex-
plicitly, and a far-field part, for which we seek a
”fast” approximation with ”sufficient accuracy”.
The algorithm is started by embedding the com-
putational domain into an (initial) cube, followed
by an adaptive and hierarchical subdivision of
each cube into eight child cubes. Adaptivity
means that a cube is only subdivided if it con-
tains a minimum number of nodal points and is
essential for the efficiency.

The approximation of the far-field is performed
on the basis of the well-known multipole expan-
sion of 1/|z — y| in terms of inner and outer har-
monics. The kernel is expanded for both vari-
ables with respect to the centers z¢ and yg of the
cubes (instead of the origin) and the expansion
is truncated at a certain (low) degree p. Con-
ditions for the convergence of the expansion can
easily be derived. For example, an expansion
for (y - Vy) K3(z,y) can be found indirectly by
applying (y - V) to the expansion of Ky (z,y).
Since the error of the expansion is controllable
only in a small vicinity of (zo,yo), we have to
perform several expansions with respect to dif-
ferent centers (xo,yo) to obtain a global approxi-
mation. A lot of work can be done in an a-priori
step independent of the number and the location
of the target points, resulting in a small set of
so-called far-field coefficients containing the in-
formation from distant measurements. The hier-



archical subdivision in connection with the trans-
lation and conversion theorems of spherical har-
monics allow to calculate the far-field coefficients
in level [ recursively from those of the parent
cube in level [ + 1 so that an explicit calculation
is only needed for the finest level. Altogether
we obtain an algorithm which performs a ma-

7 Some Numerical Results

In the foregoing we have seen that har-
monic wavelets are numerically efficient ”build-
ing blocks“ that enable fast modelling of geopo-
tential data such as oblique derivative data of the
anomalous potential. Now we discuss in more de-
tail the concept of multiresolution data analysis.
This method ”looks at“ the Earth’s anomalous
potential through a microscope, whose resolu-

trix multiplication in O(NN) operations and with
order N storage requirements. Details and ex-
tensive numerical experiments concerning the ef-
ficiency of the method for satellite problems in
physical geodesy can be found in the Diploma
thesis D. Michel (2001) and the PhD thesis O.
Glockner (2002).

tion gets finer and finer. Thus it associates to
the anomalous potential a sequence of smoothed
versions, labelled by the scale parameter j. This
aspect is illustrated by the figures below (see
Figure 2, (a)-(f)) from oblique derivative data
on the actual Earth derived from the EGM96-
model.

More explicitly, in our approach, we use the so—called TerrainBase data model of the National Geodetic
Data Center in Boulder, Colorado, to have a representation of the actual surface of the Earth.

8000 6000 4000

2000 0 2000 4000 6000

m

Figure 1: The Earth given by TerrainBase data.

The EGM96 model (F.G. Lemoine et al. (1996))
led us to create gradients of the anomalous po-
tential on the actual Earth’s surface, i.e. the
TerrainBase (data) model. Hence, in an a pri-
ori step, oblique derivatives became available on
a grid for the TerrainBase model of the actual
Earth. Based on this material the interpolation
oriented multiscale procedure described above
could be used to model the anomalous potential
on the Earth’s surface and in the outer space of
the Earth from prescribed oblique derivatives on

the Earth’s surface.

Actually, the interpolation procedure was exe-
cuted on a (regular) grid of about 160 000 points,
where the oblique derivatives were derived from
the EGM96-model. It turned out that the mul-
tiplicative Schwarz alternating algorithm had to
perform 45 iterations to get the results of the
multiresolution data analysis (illustrated in Fig-
ure 4). For more computational details includ-
ing an error analysis the reader is referred to the
Diploma thesis due to M. Gutting (2002).
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(a) j=3 (scaling function) (b) j=3 (wavelet)

(e) j=7 (scaling function) (f) j=7 (wavelet)

Figure 2: Dyadic multiresolution data analysis on the actual Earth’s surface for the anomalous potential
corresponding to oblique derivatives (derived from the EGM96—model).



Finally, we show the original potential and the approximate potential resulting from the multiresolution
procedure.

Figure 3: Original EGM96—potential on
the actual Earth

Figure 4: Approximate EGM96—poten-
tial from oblique derivatives on the actual
Earth
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Multiscale Solution of Oblique
Boundary-Value Problems by Layer Potentials

Willi Freeden, Carsten Mayer

Geomathematics Group, Department of Mathematics
University of Kaiserslautern, P.O. Box 3049, 67653 Kaiserslautern, Germany

Abstract. With the aid of classical results of
potential theory, the limit- and jump-relations,
a multiscale framework on geodetically relevant
regular surfaces is established corresponding to
oblique derivative data. By the oblique distance
to the regular surface a scale factor in the ker-
nel functions of the limit- and jump-operators is
introduced, which connects these intergral ker-
nels with the theory of scaling functions and
wavelets.

As applications of the wavelet approach some
numerical examples are presented on an ellip-
soid of revolution. At the end we discuss a fast
multiscale representation of the solution of the
(exterior) oblique derivative (boundary—value)
problem corresponding to geoscientifically rele-
vant surfaces. A local as well as global recon-
struction of the gravitational potential model
EGM96 on the reference ellipsoid will illustrate
the power of this appoach.

Keywords. Scaling functions and wavelets on
regular surfaces, potential operators, jump re-
lations, multiscale analysis, (exterior) oblique
derivative problem of potential theory

1 Introduction

Wavelets are known as mathematical means for
breaking up a complicated function (signal) into
many simple pieces at different scales and po-
sitions. Thus wavelets have become a power-
ful and flexible tool for scientific computation
and data handling. Basically, wavelet analysis
is done by convolving the function under con-
sideration against ’dilated’ and ’shifted’ versions
of one fixed function, viz. the 'mother wavelet’.
Traditionally, applications of wavelets have been
signal analysis, image processing, noise cancel-
lation, etc, but there is also a growing interest
in the numerical treatment of partial differential
equations. However, wavelet methods are merely
known for unfolding their computational econ-
omy and efficiency when applied to problems on

Euclidian spaces, the sphere or the torus. The
aim of this article is to present a new wavelet
approach to geodetically relevant surfaces. Our
purpose is to develop a multiscale theory on regu-
lar surfaces by using results of classical potential
theory.

The outline of this paper is as follows: First we
introduce the notations and preliminaries that
are needed for our wavelet approach. We specify
regular surfaces on which our theory is estab-
lished. Then we introduce potential operators
with respect to an arbitrary non-tangential vec-
tor field which are the main ingredients of this
work. We develop the oblique limit and jump
relations of these potential operators formulated
in the framework of the Hilbert space of square—
integrable functions. The setup of a multiresolu-
tion analysis (i.e. scaling functions, scale spaces,
wavelets, detail spaces) is defined by interpret-
ing the kernel functions of the limit and jump
integral operators as scaling functions on regu-
lar surfaces. The oblique distance to the par-
allel surfaces of the regular surface under con-
sideration thereby represents the scale level in
the scaling function. At the end we deal with
the already mentioned discretization of Fredholm
integral equations in order to give a multiscale
representation of the solution of the (exterior)
oblique derivative problem (EODP) in three di-
mensions corresponding to geoscientifically rel-
evant regular surfaces. Furthermore, we dicuss
some numerical examples. In particular we are
interested in the zoom—in property and the de-
tection of a high frequency perturbation which
are typical features within a wavelet framework.

2 Basic Concept

At first we introduce some settings which are
standard in potential theory (see, for example,
Kellogg (1929)).

We begin our considerations by introducing the
notation of a regular surface:

Definition 2.1 A surface ¥ C R® is called reg-



ular, if it satisfies the following properties:

(i) T divides the three-dimensional Euclidean
space R® into the bounded region Ying (in-
ner space) and the unbounded region Yoy
(outer space) defined by Texy = R3\Zine,
Eint = Eint U E;

(i) Yint contains the origin,

(iii) X is a closed and compact surface free of
double points,

(i) X is locally of class C*® . (v denotes the
unit normal field on ¥ pointing into the
outer space Yext)-

Geoscientifically relevant regular surfaces are, for
example, sphere, ellipsoid, spheroid, geoid, (reg-
ular) Earth’s surface.

Given a regular surface, then there exist positive
constants «, 8 such that

a < o™ = inf 2] <suplz| =P < B. (1)
z€X zEXD

By A we designate a ¢{'*) —unit vector field on
¥ satisfying inf,ex (A(z) - v(x)) > 0. The set

E(’\)(T) ={ze R3|a: =y+7Ay),y € X}

generates an oblique (parallel) surface which is
exterior to ¥ for 7 > 0 and interior for 7 < 0. It
is well known from differential geometry (see e.g.
Freeden, Kersten (1980)) that if |7| is sufficiently
small, then the surface £ (7) is regular.

As usual, by C(%#) (%), 0 < u < 1, we denote the
space of all y-Holder continuous functions on the
regular surface ¥ and by L?(X) we denote the
space of (Lebesgue) square-integrable functions
on the regular surface ¥. L2(X) is a Hilbert space
with respect to the inner product (-,-)p2(x) and a
Banach space with respect to the norm |- [|p2(x)-
L?(%) is the completion of C(%#) (X) with respect
to the norm || - [|L2(x):

CO.n) (E)”'”L2(E) — L2 (E) .
3 Limit Formulae und Jump Relation
Next we want to formulate the classical limit

and jump relations of potential theory in compre-
hensive manner. They will be the fundamental

framework for the development of scaling func-
tions and wavelets on regular surfaces.

For 7 # o with |7|,|o| sufficiently small, the func-
tions

1

for (z,y) € ¥ x X are continuous. Thus the po-
tential operators P (7,0) formally defined by

PO (1,0)F(a)
1
‘LF@m+ﬂ@—@+w@n

dw(y)

form mappings from L2(X) into C(%#) (%) and are
Hélder continuous with respect to || - [|co.m (x)-

By formal operations we obtain for F' € C(0:#) (%)
1
PN (7,0)F(z =/F ——— dw
FOFE) = [ FO) =y 0

(PXN(7,0) : operator of the single-layer potential
on ¥ for values on (T))7
0
P2 OF(@) = 5o PO (1) F@)l=o

B A(W) - (2 + TA(®) 1)
- [rw o+ 7A@) — g

dw(y)

(P|(2>\) (1,0) : operator of the double-layer poten-
tial on 3 for values on XN(7)).

The notation P(Z.A) indicates differentiation with
respect to the i-th variable. Analogously we get

PY(r,0)F(@) = 2 PNr,0)F(x)

11 or =0
- Az) - (z+7A(2) —9)
_ /EF(y) o 3] —3T dw(y)
and
PACOFE) = 5 PR @),

for the operators of the normal derivatives.

The potential operators now enable us to give
concise formulations of the classical limit formu-
lae and jump relations in potential theory which
are given in Table 1. Proofs of these relations
are given in Freeden (1980), Kersten (1980).



lim || PYN(£7,0)F — PY(0,0)F|| =0,

=0
>0

lim
T—0
>0

lim
T—=0
>0

PO (&7,0)F — PV (0,0)F + 27(A(x) - v

P (&7,0)F — POV (0,0)F F 27(\(x) - v

a:))FH —0,

a:))FH -0,

lim ||P(>‘) 7,0)F — PX(—7,0)F|| =0,

hm HP( /(1,00 F = B (=1, 0)F + dr(A(z) - v

-r>0

lim
T—0
>0

|2

PO (r,0)F — P (—1,0)F — 4n(A(z) - v

x))FH -0,

a:))FH -0,

Table 1: Classical limit and jump relations of potential theory for F € C(®#)(X), respectively F €
L2(X). The norm ||-|| indicates the Holder-norm, the C(®)(Z)—norm or the L?(¥)—norm. For proofs

of these relations see Freeden, Kersten (1980).

4 Multiscale Modelling in L?(X)

Since we are interested in a reconstruction of a
function F € L2(X) we will only take those cases
in Table 1 into account, where the construction
of an approximating identity for F' is possible.
These are the second and the third limit rela-
tion and the second and the third jump relation,
which were simply deduced from the limit rela-
tions. The disadvantage of the two limit relations
mentioned above is, that there appear strongly
singular integral kernels in the potential oper-
ators (Pl(1 )(0 0), respectively P|(2 )(0 0) under-
stood in the sense of Cauchy), while the integral
kernels of the jump relations are fully regular.
This is the reason why we will only take into
acoount the first two jump relations, the jump
relation of the normal derivative of the single
layer potential (labeled by 5) and the jump rela-
tion of the double layer potential (labeled by 6).
It should be noted, that the following theory can
be formulated in almost the same manner for the
two limit relations.

Writing out the jump relations explicitly we ob-
tain the following theorem.

Theorem 4.1 For F € L2(X) and i = 5,6

=0

F(y) dw(y) = F

holds in the sense of the ||-[|; 2 (s —norm, where

the kernel functions ®> and ®% are known ez-
plicitly (see Table 2).

4.1 Scaling and Wavelet Functions

For 7 > 0 the family {®%},50 of kernels ®% :
¥ x ¥ — R is called an obliqgue X—scaling func-
tion of type i. Moreover, ® : ¥ x ¥ — R (i.e.:
7 = 1) is called the oblique mother kernel of the
oblique YX—scaling function of type i.
Correspondingly, for 7 > 0 and ¢ = 5,6, the fa-
mily {¥i}, 5o of kernels U2 : ¥ x ¥ — R given
by the scaling equation

Wi(ay) = —a(r) i@y, ()

for z,y € ¥ is called an oblique Y—wavelet func-
tion of type i.

In the remainder of this paper we particularly
choose a(7) = 77! (of course, other weight func-
tions than a(r) = 77! can be chosen in (2)).
Moreover, ¥¢ : ¥ x ¥ — R (ie: 7 = 1) is
called the oblique mother kernel of the oblique
Y—wavelet function of type i.

Definition 4.2 Let {®:},5¢ be a Y-scaling
function of type i. Then the associated oblique
Y —wavelet transform of type i is defined by

(W)@ 1.2
(Wﬂmemz/meﬂwww.
>

(Z) = L2((0,00) x X)

Explicit formulations of the oblique ¥—wavelet
function of type 5 and type 6 are given in Table 2.

It is not difficult to see that the wavelets W&,
i = 5,6, behave like O(7—!), hence, the conver-



gence of the integrals in the following reconstruc-
tion theorem is guaranteed.

Theorem 4.3 Let {®.},5¢ be an obliqgue T-
scaling function of type i. Suppose that F is of
class L2(X). Then the reconstruction formula
o d
| it = F
0 T
holds for i = 5,6 in the sense of || - ||L2(x)-

Proof. Let R > 0 be arbitrary. By observing
Fubini’s theorem and the identity

diy(z,y) = /: Ti(a, y)dT (z,y

we obtain

JEX XTI,

[ e T
R

_ / - / Vi (- y)F(y) dw(y)df
// Wi (- )d—wa(y)

= [ #at)F ) duty)

The limit B — 0 in connection with Theorem 4.1

ields the desired result. O
ote that the properties of the oblique X-

wavelets of type i (analogously to variants of
spherical wavelets developed in Freeden et al.
(1998)) do not presume the zero-mean property
of B¢, The wavelets constructed in this way,
therefore, do not satisfy a substantial condition
of the Euclidean concept.

4.2 Scale Discretized Reconstruction Formula

In what follows, scale discrete oblique Y—scaling
functions and wavelets of type 7 will be in-
troduced. We start with the choice of a se-
quence which divides the continuous scale inter-
val (0,00) into discrete subintervals. More ex-
plicitly, (7;);ez denotes a sequence of real num-
bers satisfying

]lggo 75, =0 and J_lzmoo ;=00 . (3)
For example, one may choose 7; = 277, j € Z
(note that in this case, 2741 =75, j € Z).
Given an oblique Y-scaling function {®%}, ¢
of type i, then we define the (scale) discretized
oblique Y—scaling function of type i by {@ij Yiez.
In doing so, we immediately get the following re-
sult.

Theorem 4.4 For F € L%(X)

lim [ @ (y)F(y) do(y) = F
Jj—oo Jx
holds for i = 5,6 in the || - || 2(x)—sense.

Our procedure canonically leads us to the follow-
ing type of scale discretized wavelets.

Definition 4.5 Let {®! }jcz be a discretized
oblique ¥ —scaling function of type i. Then the
(scale) discretized oblique Y—wavelet function of
type i is defined by
X T dr .
¥,)= [ )T e

i+
In connection with (2) it follows that

. Ti .
Tl = —/ iqﬂ T _gi  _ai. @
2 r J

Tji+1
i+1 dT

Formula (4) is called (scale) discretized —scaling
equation of type 1.

Assume now that F is a function of class L%(Z).
Observing the discretized Y—scaling equation of
type i we get for J € Z and N € N

/E 8. (L y)F(y) doly)
_ /E (- y)F(y) de(y)

J+N—-1

+Z/qﬂ

The (scale) discretized oblique Y—wavelet trans-
form of type i is defined by

y) dw(y) .

(WT): 1.2
(WT)!(F)(ry;2) = / ¥ (2, y)F(y) doly) -

E)~»{H:ZxX - R}

As a final result we are able to formulate the
following theorem.

Theorem 4.6 Let {¥% }jez be a (scale) dis-
cretized oblique Y—wavelet function of type i.
Then, for all F € L2(X), the reconstruction for-

mula
+oo

> WT)i(F)(r;) = F
j=—o0
holds for i = 5,6 in || - [|L2(s)—sense.



4.3 Scale and Detail Spaces

Comparing the above result with the continuous
analogue (Theorem 4.3) we notice that the sub-
division of the continuous scale interval (0, cc)
into discrete pieces means substitution of the
integral over 7 by an associated discrete sum.

As in the spherical theory of wavelets (see
Freeden et al. (1996a), Freeden, Windheuser
(1996b)), the operators R. , P;. defined by

RL(F) = [ 9,00)F0) doty)
Pi(F) = / i (,y)F(y) du(y),

for F' € L?(X) may be understood as band pass
and low pass filter, respectively. The scale spaces
V7 and the detail spaces W, of type i are defined
as usual by

Vi =Pl (1) = {PL(F)
() = {Ei

respectively. From the identity

|F€L2(E)},

Wi = Ri (12 F)|F e1?(5)},

(I):'J-H = (I)z + ‘IJ?FJ’
ie.
P}, (F) = P}, (F)+ R}, (F)

for all J € Z it easily follows that

VT’JJrl =Vi+W. . (5)
However, it should be remarked that the sum (5)
generally is neither direct nor orthogonal.
Equation (5) may be interpreted in the following
way: The set V. contains a P} —filtered ver-
sion of a function belonging to the class L2(X).
The lower the scale, the stronger the intensity of
filtering. By adding ’R!. —details’ contained in
the space WTij the space VTij ., is created, which
consists of a filtered versions at resolution j + 1.
Obviously, for i = 5,6,

||'||L2(z:) ||'||L2(z:)

G Vi = G wi =1%(%) .

j:—oo j:—OO

4.4 Solving BVPs by Wavelets

In what follows we want to show, how our multi-
scale approach on geoscientifically relevant regu-
lar surfaces can be used to approximate the so-
lution of the exterior oblique derivative problem
(EODP). The problem can be formulated briefly
as follows:

(EODP) Given a function F of class C(O:#)(X).
Find a function U € C(:#)(Z,,;) with

AU = 0, x € Eewta
ou+ .
W(x) = lim A(z) - (VU)(z + TA(z))
>0
= F(z), z€¥%,. 6)

and U being regular at infinty (that is, |U(z)| =
O(lz|™), |VU ()] = O(|z|?) for |z| = co uni-
formly with respect to all directions).

If the field A coincides with the normal field v on
¥, equation (6) becomes the boundary condition
of the classical exterior Neumann problem.

For given F € CO#(X), the solution U €
Pot" ) (Ter) = {U € CUM(Sey)|AU =
0 in ¥ept, U regular at infinity} of the (EODP)
can be written as a layer potential,

1
0= [ Q)= ). ()

where the single layer Q € C(*#)(X) satisfies the
Fredholm integral equation

—2mQ(x) (A(z) - V(SL"))

/Q G T ) = F@)
Q

for all x € . An approximation of scale J

ZaN“F (x,leJ), T€EX

(with 7 € {5,6}, afv’ € R, leJ € X appropriate
point system on ¥,l =1,...,Ny and J,Ny € N
sufficiently large) is deducable from (8) by solv-
ing a sytem of linear equations obtained by an
appropriate approximation method such as col-
location, Galerkin procedure, least squares ap-
proximation, etc .

For solving the linear systems fast multipole
methods (FMM) are applicable (see e.g. Glock-
ner (2001) and the reference therein).



Remark 4.7 It should be noted that the singular
kernel function %(w)‘zlfyl in the boundary inte-
gral equation (8) is substituted (regularized) in
numerical applications by a regular approxima-
tion of the form

1 0 ( 1 + 1 )
20M(z) \|z+ 1A (z) —y| |z —71\(=z) —y]

with L € N chosen large enough. For an ex-
plicit description of this type of regularisation
of the singular integral operator in (8) for Neu-
mann boundary conditions the reader is referred
to Freeden, Mayer (2001).

As a final result we can formulate the following

Theorem 4.8 For given F € C(O1)(X), let U be
the potential of class Pot™*) (Segy) with % =
F on X. Then the function Uy € Pot(®*) (3.;)
given by

Ny ) N 1
Ui = Yo [ @, (1) o doto)
=1
©

represents a J—scale approximation of U in
the ”'”CO(R) —sense for every K C Xgp with

dist(K,¥) > 0.

Remark 4.9 It should be noted, that in numeri-
cal applications a similar reqularization as in Re-
mark 4.7 is applied to the kernel —— in (9).

lz—y|

Then a fully discrete representation of (9) can be
achieved by discretizing the integral with a suit-
able integration rule (for more details see Mayer
(2001)).
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Appendix: Tables and Figures

e - ot (52 )

e

ey = 4 (|m—TA —y|3+|a?—'r/\(1$)—y|3>
ek )

A A2) - Aw)
ey = g (|x+m —y|3+|a:—ﬂ(x)—y|3>
((xm() ¥) M) (& + M=) — ) - AW))
477()\( ) v(z)) [s + TA(z) — y|°

)
((z = 7A(2) —y) - M2)) (& — T (=) —y) - A y)))
|z = 7A(z) — y/°

+

Table 2: Explicit terms of the oblique ¥—scaling functions and wavelet functions defined in Theorem 4.1
and equation (2). In the approach presented here if restricted to the sphere, elementary representations
in explicit form and spectral representations in terms of spherical harmonics are available for the
Y —scaling functions and the ¥ —wavelets.
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Figure 1: ¥—scaling function ®¢ and ¥ —wavelet-function ¥ (sectional illustration) for 7 = 274
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Figure 2: Oblique Y—scaling function ®¢ and Y—wavelet-function 8 (sectional illustration) for
7 = 278, Comparing to Figure 1 the property of space localization without the appearance of any
oszillations which is a main disadvantage of some wavelet functions can clearly be seen.

global reconstruction at scale 5

local reconstruction at scale 7 local reconstruction at scale 9

Figure 3: Illustration of the zoom—in property. In order to reconstruct a function on a local area, only
data in a certain neighborhood of this area are used. Since global high—scale reconstruction of fine
structure is very time—consuming, only the area of interest is reconstructed which can be done with a
considerably fewer effort.
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(a) local reconstruction with X—scaling func- (b) local reconstruction with X—wavelet
tion ®8_ at scale j =5 function W&, at scale j =5
J 2

(c) local reconstruction with X—wavelet (d) local reconstruction with X—wavelet
function \Ilgj at scale j =6 function \Ilgj at scale j =7
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(e) local reconstruction with X—scaling func- (f) local reconstruction with X—scaling func-
tion W8 at scale j =8 tion ®6 at scale j =5
J J

Figure 4: Detection of high frequency perturbation within a local area of the EGM96-geopotential
model. The buried mass point at 80° West, 30° South is clearly detected, especially in the wavelet
reconstruction at scale 8.



