1,3-Bis-(trimethylsilyl)cyclopentadienyldicarbonylrutheniumhydrid als Edukt in der Organometall- und Phosphorchemie

Vom Fachbereich Chemie der Universität Kaiserslautern zur Erlangung des akademischen Grades "Doktor der Naturwissenschaften" genehmigte Dissertation

(D 386)

vorgelegt von Dipl.-Chem. Christian Müller

aus Ebertsheim/Pfalz

Betreuer der Arbeit: Prof. Dr. O. J. Scherer Tag der wissenschaftlichen Aussprache: 25.09.2002

Kaiserslautern 2002

1,3-Bis-(trimethylsilyl)cyclopentadienyldicarbonylrutheniumhydrid als Edukt in der Organometall- und Phosphorchemie

Vom Fachbereich Chemie der Universität Kaiserslautern zur Erlangung des akademischen Grades "Doktor der Naturwissenschaften" genehmigte Dissertation

(D 386)

vorgelegt von

Dipl.-Chem. Christian Müller

aus Ebertsheim/Pfalz

Betreuer der Arbeit: Prof. Dr. O. J. Scherer Tag der wissenschaftlichen Aussprache: 25.09.2002

Kaiserslautern 2002

Vom Fachbereich Chemie der Universität Kaiserslautern am 25.09.2002 als Dissertation angenommen.

Dekan: Prof. Dr. Dr. D. Schrenk

Prüfungskommission:

Vorsitzender:	Prof. Dr. HG. Kuball
1. Berichterstatter:	Prof. Dr. O. J. Scherer
2. Berichterstatter:	Prof. Dr. H. Sitzmann

Die vorliegende Arbeit wurde im Fachbereich Chemie der Universität Kaiserslautern in der Arbeitsgruppe von Herrn Prof. Dr. O. J. Scherer in der Zeit von Oktober 2000 bis März 2002 angefertigt.

Herrn Prof. Dr. O. J. Scherer danke ich herzlich für den mir gewährten Freiraum zur Gestaltung der Thematik, das stetige Interesse über die Fortschritte unserer Chemie und seine Unterstützung. Für meine Eltern & meine Oma, Hermi & Josef und für Dietmar

Verzeichnis der Abkürzungen:

Ср	=	η^5 -Cyclopentadienyl
Cp ⁻	=	η^{5} -(Trimethylsilyl)cyclopentadienyl
$Cp^{=}$	=	η^{5} -1,3-Bis-(trimethylsilyl)cyclopentadienyl
Cp*	=	η^5 -Pentamethylcyclopentadienyl
Cp*'	=	η^5 -Ethyltetramethylcyclopentadienyl
Cp'	=	η ⁵ - <i>tert</i> -Butylcyclopentadienyl
Cp‴	=	η ⁵ -1,3-Di- <i>tert</i> -butylcyclopentadienyl
Ср‴	=	η ⁵ -1,2,4-Tri- <i>tert</i> -butylcyclopentadienyl
⁴ Cp	=	η^{5} -1,2,3,4-Tetraisopropylcyclopentadienyl
⁵ Cp	=	η^{5} -1,2,3,4,5-Pentaisopropylcyclopentadienyl
Cp ^R	=	zu spezifizierender η^5 -Cyclopentadienylligand
SiMe ₃	=	Trimethylsilyl
^t Bu	=	tert-Butyl
Me	=	Methyl
Ph	=	Phenyl
thf	=	Tetrahydrofuran als Ligand
Μ	=	Metall
L	=	Ligand
Triphos	=	1,1,1-Tris(diphenylphosphanylmethyl)ethan
THF	=	Tetrahydrofuran
PE	=	Petrolether
LM	=	Lösungsmittel
NMR	=	Kernmagnetische Resonanz (Nuclear Magnetic Resonance)
RT	=	Raumtemperatur
ML _n	=	Übergangsmetallkomplexfragment
EI	=	Elektronenstoßionisation
VE	=	Valenzelektronen
GEP	=	Gerüstelektronenpaar
WS	=	Wahrscheinlichkeit
amu	=	atomare Masseneinheit

Verbindungsverzeichnis

1	$[Cp^{=}Ru(CO)_{2}H]$	
4	$[{Cp^{=}Ru(CO)_{2}}_{2}]$	
6a	$[Cp^{=}Ru(CO)_{2}PH_{2}]$	
6b	$[Cp^{-}Ru(CO)_2PH_2]$	
10a	$[{Cp^{=}(OC)_2Ru}(\mu-PH_2){Cr(CO)_5}]$	
10b	$[{Cp^{-}(OC)_2Ru}(\mu-PH_2){Cr(CO)_5}]$	
11a	$[{Cp^{=}(OC)_2Ru}(\mu-PH_2){Mo(CO)_5}]$	
11b	$[{Cp^{-}(OC)_2Ru}(\mu-PH_2){Mo(CO)_5}]$	
12a	$[{Cp^{=}(OC)_2Ru}(\mu-PH_2){W(CO)_5}]$	
12b	$[{Cp^{-}(OC)_2Ru}(\mu-PH_2){W(CO)_5}]$	
15	$[{Cp^{=}(OC)_2Ru}(\mu-PH_2){Re(CO)_2Cp^*}]$	
16	$[{Cp*(OC)_2Re}_2PH]$	
17	$[{Cp^{*}(OC)_{2}Re}_{2}(\mu-CO)]$	RSA
18	$[Cp^{=}Ru(\eta^{5}-P_{5})]$	RSA
19	$[{Cp^{=}Ru}_{2}(\mu-\eta^{2:2}-P_{2})_{2}]$	RSA
24	$[{Cp^{-}Ru}_{3}P_{5}]$	RSA
25	$[{Cp^{=}Ru}_{2}{Cp^{*}Fe}P_{5}]$	RSA
26	$[{Cp*Fe}_2{Cp=Ru}P_5]$	RSA
28	$[{Cp^{=}(OC)Ru}_{2}(\mu-H)_{2}]$	
29	$[{Cp^{=}Ru(CO)}_{2}{Cp^{=}Ru(CO)H}]$	
30	$[{Cp^{=}Ru}_{4}(\mu_{3}-CO)_{4}]$	
33	$[{Cp^{=}Ru(\mu-CO)}_{2}{Cp^{=}Ru(CO)H}]$	RSA
34	$[{(\mu-CO)}{Cp^{=}Ru}_{2}{Cp^{=}RuH}{(\mu_{3}-CO)_{2}}]$	RSA
35	Unbekannt	
40	$[{Cp^{=}Ru}(\mu-\eta^{4:1:1}-P_{4}){Ru(CO)Cp^{=}}]$	RSA
44	$[Cp^{=}Ru(CO)(PPh_{3})H]$	
45a	$[Cp^{=}Ru(CO)_{2}PH_{2}S]$	
45b	$[Cp^{-}Ru(CO)_2PH_2S]$	
46	$[Cp^{=}Ru(CO)_{2}PH_{2}Se]$	

1	EINLEITUNG	1
	1.1 MONOMERE UND DIMERE METALLORGANISCHE KOMPLEXE DER 8. GRUPPE MIT	
	Hydridoliganden	1
	1.2 DREIKERNIGE TRIANGULARE CLUSTER	2
	1.3 VIERKERNIGE TETRAEDRISCHE CLUSTER	4
	1.4 P_n -Komplexe der Übergangsmetalle der 8. Gruppe	5
	1.5 MONOMERE ÜBERGANGSMETALLKOMPLEXFRAGMENTE ALS EDUKT FÜR	
	P _n -Komplexe	7
2	PROBLEMSTELLUNG	8
3	EIGENE ERGEBNISSE	9
	3.1 Darstellung von $[Cp^{=}Ru(CO)_{2}H]$ (1)	9
	3.1.1 $[Cp^{=}Ru(CO)_{2}H]$ (1)	9
	3.1.1.1 Eigenschaften von [Cp ⁼ Ru(CO) ₂ H] (1)	9
	3.1.1.2 Spektroskopische Eigenschaften von [Cp ⁼ Ru(CO) ₂ H] (1)	10
	3.1.1.3 Strukturvorschlag für [Cp ⁼ Ru(CO) ₂ H] (1)	11
	3.1.2 $[\{Cp^{=}Ru(CO)_{2}\}_{2}]$ (4)	12
	3.1.2.1 Eigenschaften von $[{Cp^{=}Ru(CO)_2}_2]$ (4)	12
	3.1.2.2 Spektroskopische Eigenschaften von $[{Cp^{=}Ru(CO)_2}_2](4)$	12
	3.1.2.3 Strukturvorschlag für $[{Cp}=Ru(CO)_2]_2$ (4)	13
	3.2 REAKTION VON $[Cp^{-}Ru(CO)_{2}H]$ (1) MIT WEIBEM PHOSPHOR	14
	$3.2.1 [Cp^{-}Ru(CO)_{2}PH_{2}] (6a).$	14
	3.2.1.1 Eigenschaften von $[Cp^{=}Ru(CO)_2PH_2]$ (6a)	14
	3.2.1.2 Spektroskopische Eigenschaften von $[Cp^-Ru(CO)_2PH_2]$ (6a)	15
	3.2.1.3 Strukturvorschlag für [Cp Ru(CO) ₂ PH ₂] (6a)	16
	3.3 KOMPLEXIERUNGSREAKTIONEN VON [$Cp^{*}RU(CO)_2PH_2$] ($Cp^{*}=Cp^{-}, Cp$) (6A,B)	17
	3.3.1 Umsetzungen mit $[M(CO)_5(thf)]$ ($M = Cr, Mo, W$) (7, 8, 9)	17
	$3.3.1.1 [{Cp^{-}(OC)_2Ru}(\mu-PH_2){Mo(CO)_5}] (11a) \dots$	18
	3.3.1.1.1 Eigenschaften von $[{Cp^{-}(OC)_2Ru}(\mu-PH_2){Mo(CO)_5}]$ (11a)	18
	3.3.1.1.2 Spektroskopische Eigenschaften von $[{Cp (OC)_2 Ku}(\mu-PH_2){Mo(CO)_5}]$	10
	3.3.1.1.3 Strukturvorschlag für die Verbindungen $[{Cp^{R}(OC)_{2}Ru}(\mu-PH_{2}){M(CO)_{5}}]$]
	$(Cp^{R} = Cp^{-}, Cp^{-})$ (M = Cr, Mo, W) (10a,b, 11a,b, 12a,b)	21
	3.3.2 Umsetzung von $[Cp^{=}Ru(CO)_2PH_2]$ (6a) mit $[Cp^{*}Re(CO)_2(thf)]$ (14)	22
	3.3.2.1 [{ $Cp^{=}(OC)_2Ru$ }(μ -PH ₂){ $Re(CO)_2Cp^{*}$ }] (15)	23
	3.3.2.1.1 Eigenschaften von $[{Cp^{=}(OC)_2Ru}(\mu-PH_2){Re(CO)_2Cp^*}]$ (15)	23

3.3.2.1.2	Spektroskopische Eigenschaften von $[{Cp^{=}(OC)_2Ru}(\mu-PH_2){Re(CO)_2Cp^{=}(OC)_2Ru}]$	p*}]
	(15)	23
3.3.2.1.3	Strukturvorschlag für [{Cp ⁼ (OC) ₂ Ru}(μ -PH ₂){Re(CO) ₂ Cp [*] }] (15)	24
3.3.2.2 [{Cp	$p^{*}(OC)_{2}Re \}_{2}(\mu - CO)]$ (17)	24
3.3.2.2.1	Eigenschaften von [{ $Cp^{*}(OC)_{2}Re$ } ₂ (µ-CO)] (17)	24
3.3.2.2.2	Spektroskopische Eigenschaften von [$\{Cp^*(OC)_2Re\}_2(\mu$ -CO)] (17)	25
3.3.2.2.3	Röntgenstrukturanalyse von [{ $Cp^{*}(OC)_{2}Re$ } ₂ (µ-CO)] (17)	25
3.4 [{ $Cp^{=}RU(C)$	O) ₂ } ₂] (4) ALS EDUKT ZUR DARSTELLUNG VON P _n -Komplexen	27
3.4.1 Therm	ische Umsetzung von [{ $Cp^{=}Ru(CO)_{2}$ }] (4) mit weißem Phosphor P_{4} .	27
3.4.1.1 [Cp ⁼	$[Ru(h^5-P_5)]$ (18)	27
3.4.1.1.1	Eigenschaften von $[Cp^{-}Ru(h^{5}-P_{5})]$ (18)	27
3.4.1.1.2	Spektroskopische Eigenschaften von $[Cp^{=}Ru(h^{5}-P_{5})]$ (18)	28
3.4.1.1.3	Röntgenstrukturanalyse von $[Cp^{=}Ru(h^{5}-P_{5})]$ (18)	29
3.4.1.2 [{Cr	p^{-} Ru $_{2}(\mu - h^{2:2} - P_{2})_{2}$] (19)	31
3.4.1.2.1	Eigenschaften von [{ $Cp^{=}Ru$ } ₂ (μ - $h^{2:2}$ -P ₂) ₂] (19)	31
3.4.1.2.2	Spektroskopische Eigenschaften von [{ $Cp^{=}Ru$ } ₂ (μ - $h^{2:2}$ - P_2) ₂] (19)	31
3.4.1.2.3	Röntgenstrukturanalyse von [{ $Cp^{=}Ru$ } ₂ (μ - $h^{2:2}$ - P_{2}) ₂] (19)	32
342 Therm	is the Umsetzung von $[\{Cn^{=}Ru(CO)_{2}\}_{2}]$ (4) mit $[Cn^{*}Fe(\mathbf{h}^{5}-P_{5})]$ (23)	35
3421 [{Cr	$\frac{1}{2} = \frac{1}{2} = \frac{1}$	36
34211	Figenschaften von [{ $Cn^{=}Ru$ }, P_{-}] (24)	36
34212	Snektroskonische Eigenschaften von $[{Cn^{=}Ru}_{2}, P_{-}]$ (24)	36
3.4.2.1.2	Röntgenstrukturanalyse von [{ $Cn^{=}Ru$ }, P_{-}] (24)	38
3422 [{Cr	$r = R_{1} r r r r r r r r r r r r r r r r r r r$	40
34221	Eigenschaften von [{ $Cn^{=}Ru$ } ₂ { $Cn^{*}Fe$ }P ₂] (25)	40
3.4.2.2.2	Spektroskopische Eigenschaften von $[{Cp}^{-}Ru]_{2} {Cp}^{*}Fe}P_{5}]$ (25)	40
3.4.2.2.3	Röntgenstrukturanalyse von [{ $Cp^{=}Ru$ }{ $Cp^{*}Fe$ }P ₅] (25)	41
3.4.2.3 [{Cr	$p^*Fe_{2}(Cp^{-}Ru P_{5})$ (26)	45
3.4.2.3.1	Eigenschaften von [{Cp*Fe} ₂ {Cp=Ru}P ₅] (26)	45
3.4.2.3.2	Spektroskopische Eigenschaften von $[{Cp*Fe}_2{Cp=Ru}P_5]$ (26)	45
3.4.2.3.3	Röntgenstrukturanalyse von [$\{Cp^*Fe\}_2\{Cp^=Ru\}P_5$] (26)	47
3.5 PHOTOLYSE	REAKTIONEN VON [$Cp^{=}Ru(CO)_{2}H$] (1)	51
3.5.1 Photol	yse in THF	51
3.5.1.1 [{Cr	$p^{=}(OC)Ru_{2}(\mu-H)_{2}$ (28)	52
3.5.1.1.1	Eigenschaften von [{ $Cp^{=}(OC)Ru$ } ₂ (μ -H) ₂] (28)	52
3.5.1.1.2	Spektroskopische Eigenschaften von $[{Cp^{=}(OC)Ru}_2(\mu-H)_2]$ (28)	52
3.5.1.1.3	Strukturvorschlag für [{ $Cp^{=}(OC)Ru$ } ₂ (μ -H) ₂] (28)	53
3.5.1.2 [{Cr	$p^{=}Ru(CO)$ ₂ { $Cp^{=}Ru(CO)H$ }] (29)	54

3.5.1.2.1	Eigenschaften von [{ $Cp^{=}Ru(CO)$ } ₂ { $Cp^{=}Ru(CO)H$ }] (29)	54
3.5.1.2.2	Spektroskopische Eigenschaften von [{ $Cp^{=}Ru(CO)$ } ₂ { $Cp^{=}Ru(CO)H$ }] (29)	54
3.5.1.2.3	Strukturvorschlag für [{ $Cp^{=}Ru(CO)$ } ₂ { $Cp^{=}Ru(CO)H$ }] (29)	55
3.5.1.3 [{Cr	$D^{=}Ru_{4}(\mu_{3}-CO)_{4}$] (30)	56
3.5.1.3.1	Eigenschaften von [{ $Cp^{=}Ru$ } ₄ (μ_3 -CO) ₄] (30)	56
3.5.1.3.2	Spektroskopische Eigenschaften von [{ $Cp^{=}Ru$ } ₄ (μ_3 -CO) ₄] (30)	57
3.5.1.3.3	Strukturvorschlag für [{ $Cp^{=}Ru$ } ₄ (μ_3 - CO) ₄] (30)	58
3.5.2 Photol	yse in Hexan	. 59
3.5.2.1 [{C _I	$p^{=}Ru(\mu-CO)$ ₂ { $Cp^{=}Ru(CO)H$ }] (33)	60
3.5.2.1.1	Eigenschaften von [{ $Cp^{=}Ru(\mu-CO)$ }_2{ $Cp^{=}Ru(CO)H$ }] (33)	60
3.5.2.1.2	Spektroskopische Eigenschaften von [{ $Cp^{=}Ru(\mu-CO)$ }_{2}{ $Cp^{=}Ru(CO)H$ }] (33)	.60
3.5.2.1.3	Röntgenstrukturanalyse von $[{Cp^{=}Ru(\mu-CO)}_{2}{Cp^{=}Ru(CO)H}]$ (33)	61
3.5.2.2 [{(µ	-CO){Cp ⁼ Ru} ₂ {Cp ⁼ RuH}}(μ_3 -CO) ₂] (34)	64
3.5.2.2.1	Eigenschaften von [{(μ -CO){Cp ⁼ Ru} ₂ {Cp ⁼ RuH}}(μ_3 -CO) ₂] (34)	64
3.5.2.2.2	Spektroskopische Eigenschaften von	•••••
	$[\{(\mu-CO)\{Cp^{=}Ru\}_{2}\{Cp^{=}RuH\}\}(\mu_{3}-CO)_{2}] (34) \dots$	65
3.5.2.2.3	$\label{eq:construction} R\"{o}ntgenstrukturanalyse \ von \ [\{(\mu-CO)\{Cp^{=}Ru\}_2\{Cp^{=}RuH\}\}(\mu_3-CO)_2] \ \textbf{(34)} \dots$	66
3.5.2.3 Unb	ekannte Verbindung 35	70
3.5.2.3.1	Eigenschaften von 35	70
3.5.2.3.2	Spektroskopische Eigenschaften von 35	70
3.5.2.3.3	Strukturvorschlag für 35	71
3.6 REAKTION V	$VON [{Cp^{=}RU(\mu-CO)}_{2} {Cp^{=}RU(CO)H}] (33) \text{ MIT } P_{4} \dots$. 71
3.6.1 [{Cp ⁼]	$Ru_{4:1:1}P_{4}Ru(CO)Cp^{=}] (40) \dots$. 72
3.6.1.1 Eige	nschaften von [{ $Cp^{=}Ru$ }(μ - $\eta^{4:1:1}$ - P_4){ $Ru(CO)Cp^{=}$ }] (40)	72
3.6.1.2 Spel	xtroskopische Eigenschaften von $[{Cp^{=}Ru}(\mu-\eta^{4:1:1}-P_4){Ru(CO)Cp^{=}}]$ (40)	72
3.6.1.3 Rön	tgenstrukturanalyse von [{ $Cp^{=}Ru$ }(μ - $\eta^{4:1:1}$ - P_4){ $Ru(CO)Cp^{=}$ }] (40)	74
3.7 ORIENTIERE	NDE VERSUCHE	. 77
3.7.1 Weiter	e Umsetzungen von [Cp ⁼ Ru(CO) ₂ H] (1)	. 77
3.7.1.1 Real	stion mit PPh ₂ (43)	77
3.7.1.1.1	Eigenschaften, spektroskopische Daten und Strukturvorschlag von	
	$[Cp=Ru(CO)(PPh_3)H]$ (44)	78
3.7.1.1.2	Folgereaktionen von $[Cp=Ru(CO)(PPh_3)H]$ (44)	79
3.7.1.2 Real	stion von $[Cp=Ru(CO)_2H]$ (1) mit P ₄	79
3.7.2 Oxida	tion von $[Cp^{R}Ru(CO)_{2}PH_{2}]$ (6a,b) mit S ₈ und Se _x	. 79
3.7.3 Reakti	onen von $[\{Cp^{=}Ru\}_{4}(u_{3}-CO)_{4}]$ (30)	. 80
3.7.4 Weiter	The Umsetzungen von $[\{Cp^{=}Ru(u-CO)\}_{2}\{Cp^{=}Ru(CO)H\}]$ (33)	. 80
3741 Com	botolysa mit weißem Phosphor	. 00 QA
5.7.4.1 Cop		00

	3.7.4.2 F	Reaktion mit [Cp*Fe(η^5 -P ₅)] (23)	81
4	EXPERIN	MENTELLER TEIL	. 82
	4.1 ANALYS	SENMETHODEN	. 82
	4.2 AUSGAN	NGSVERBINDUNGEN	. 83
	4.3 VERSUC	HSBESCHREIBUNGEN	. 84
	4.3.1 Sy	$nthese \ von \ [Cp^{=}Ru(CO)_{2}H] \ (1)$. 84
	4.3.2 Da	$urstellung \ von \ [{Cp^{=}Ru(CO)_2}_2] \ (4)$. 85
	4.3.3 Da	$urstellung \ von \ [Cp^{=}Ru(CO)_2PH_2] \ (6a)$. 86
	4.3.4 Ko	mplexierungsreaktionen von $[Cp^{R}Ru(CO)_{2}PH_{2}]$ $(Cp^{R} = Cp^{=}, Cp^{-})$ (6a,b)	. 86
	4.3.4.1	Umsetzungen mit $[M(CO)_5(thf)]$ (M = Cr, Mo, W) (7, 8, 9)	86
	4.3.4.2	Umsetzung von 6a mit [Cp*Re(CO) ₂ (thf)] (14)	89
	4.3.5 Th	ermische Umsetzung von [{Cp ⁼ Ru(CO) ₂ } ₂] (4) mit weißem Phosphor	. 89
	4.3.6 Th	ermische Umsetzung von [{ $Cp^{=}Ru(CO)_{2}$ }] (4) mit [$Cp^{*}Fe(\mathbf{h}^{5}-P_{5})$] (23)	. 90
	4.3.7 Ph	otolyse von $[Cp^{=}Ru(CO)_{2}H]$ (1) in THF	. 91
	4.3.7.1	Photolyse in THF (60 min)	91
	4.3.7.2	Photolyse in THF (5,5 h)	92
	4.3.8 Ph	otolyse von $[Cp^{=}Ru(CO)_{2}H]$ (1) in Hexan	. 93
	4.3.9 Re	aktion von [{ $Cp^{=}Ru(\mu - CO)$ } ₂ { $Cp^{=}Ru(CO)H$ }] (33) mit P ₄	. 94
	4.3.10 Or	ientierende Versuche	. 95
	4.3.10.1	Reaktion von $[Cp^{=}Ru(CO)_{2}H]$ (1) mit PPh ₃ (43)	95
	4.3.10.2	Folgereaktionen von [Cp ⁼ Ru(CO)(PPh ₃)H] (44)	96
	4.3.10	0.2.1 Reaktion mit P ₄	96
	4.3.10	0.2.2 Photolyse in THF	96
	4.3.10.3	Reaktion von [Cp ⁼ Ru(CO) ₂ H] (1) mit P ₄	96
	4.3.10	0.3.1 Cothermolyse	96
	4.3.10	0.3.2 Cophotolyse	97
	4.3.10.4	Oxidation von $[Cp^{R}Ru(CO)_{2}PH_{2}]$ (6a,b) mit S ₈ und Se _x	97
	4.3.10.5	Reaktionen von [{ $Cp^{=}Ru$ } ₄ (μ_3 -CO) ₄] (30)	98
	4.3.10	$0.5.1 \text{ Cothermolyse von } 30 \text{ mit } PPh_3 (43) \dots$	98
	4.3.1	0.5.2 Cophotolyse von 30 mit P_4	. 98
	4.3.1	0.5.3 Cothermolyse von 30 mit P_4	. 98
	4.3.1	0.5.4 Cothermolyse von 30 mit $[Cp*Fe(\eta^5-P_5)]$ (23)	. 98
	4.3.10.6	Weitere Umsetzungen von [{ $Cp^{=}Ru(\mu-CO)$ } ₂ { $Cp^{=}Ru(CO)H$ }] (33)	. 99
	4.3.1	0.6.1 Cophotolyse mit weißem Phosphor	. 99
	4.3.1	0.6.2 Cothermolyse mit [Cp*Fe(η^5 -P ₅)] (23)	. 99

5	ZUSAMMENFASSUNG	100
6	LITERATURVERZEICHNIS	105
7	ANHANG	109
	DANK	165
	LEBENSLAUF	166

1 Einleitung

1.1 Monomere und dimere metallorganische Komplexe der 8. Gruppe mit Hydridoliganden

Bereits in den sechziger Jahren konnte durch Reaktion von $[CpRu(CO)_2I]$ mit NaBH₄ das Cyclopentadienyldicarbonylrutheniumhydrid $[CpRu(CO)_2H]$ (**A**) anhand spektroskopischer Befunde postuliert werden^[1]. 1975 gelang *Knox* die Charakterisierung von **A**, das als Zwischenstufe zur Bildung des Dimers $[{CpRu(CO)(\mu-CO)}_2]$ bei der Herstellung aus Ru₃(CO)₁₂ und CpH auftritt ^[2]. Jedoch konnte diese Verbindung aufgrund ihrer sehr hohen Empfindlichkeit bisher nicht isoliert werden.

Das Osmiumderivat [Cp*Os(CO)₂H] (**B**) hingegen ist stabil und wurde von *Graham* als Edukt für die Synthese neuer metallorganischer Hydridokomplexe eingesetzt ^[3]. Dabei wurden sowohl ein Einkern- (**C**) als auch Zweikernkomplexe mit M-M-Mehrfachbindungen erhalten (**D**,**E**).

Beispiele für Zweikernkomplexe mit Dreifachbindung gemäß der 18VE-Regel^[4] sind sowohl für Ruthenium in [{Cp*Ru}₂(μ -H)₄] (**F1**)^[5] als auch für Eisen in [{Cp*Fe}₂(μ -H)₄] (**F2**)^[6] bekannt. Ab initio Berechnungen am Beispiel des [{CpRu}₂(μ -H)₄] stehen jedoch im Widerspruch dazu. Sie zeigen, daß hier trotz sehr kurzer Metall-Metall-Abstände keine Bindung bestehen sollte^[7].

Rest et al. konnten 1985 aus $[CpRu(CO)_2Et]$ durch Bestrahlung in Pentan bei -30 °C den Komplex $[{CpRu(CO)}_2(\mu-H)_2]$ (G) mit Ru-Ru-Doppelbindung postulieren ^[8]. Die dazu analoge Eisenverbindung wurde bisher nicht gefunden.

1.2 Dreikernige triangulare Cluster

Die triangulare Anordnung von Metallatomen ist ein häufiger Strukturtyp in der Chemie der Dreikerncluster. Unter Berücksichtigung der Regeln zur Gerüstelektronenzahl^[4] ist der Metalldreiring die Kernstruktureinheit in der Gruppe der Polyeder (Tetraeder, trigonale Bipyramide) und kann in diesem Sinne als *arachno*-Struktur angesehen werden. Für triangulare M₃-Cluster gelten je nach Anzahl der Bindungen die unten gezeigten Valenzelektronenzahlen^[47]:

Den Dreiring findet man bei homonuclearen Verbindungen oftmals bei reinen Metallcarbonylen wie $M_3(CO)_{12}$ (M = Ru, Os) und bei Metallcarbonylen, bei welchen einzelne Carbonylgruppen durch andere Liganden, oft Wasserstoff, ersetzt sind. Häufig trifft man bei stabilen Dreiringen einen oder zwei μ_3 -Liganden an (meist CO). Diese Verbindungen können als Tetraeder bzw. trigonale Bipyramide angesehen werden ^[9]. Sie weisen je einen Ring mit drei Metall-Metall-Einfachbindungen auf (**H**, **I1/2**) und besitzen gemäß der 18 VE-Regel ^[4] die Gesamtelektronenzahl 48.

Stabile Dreiringe mit kleinerer Valenzelektronenzahl sind inzwischen auch in großer Zahl bekannt. 46 VE-Cluster können sowohl homo- als auch heteronuclear aufgebaut sein (**J1/2**), es überwiegen jedoch die heterometallischen Cluster. Formal können sie oftmals als Additionsprodukt isoelektronischer Gruppen, z. B. $[Rh(CO)_2]^-$ bzw. $[Pt(CO)(PPh_3)]$, an eine M-M-Doppelbindung, beispielsweise $[{Cp^RRh(CO)}_2]$ (Cp^R = Cp, Cp*), betrachtet werden [9,10,11]

Die Carbonylgruppen in **J1** und **J2** sind keine echten dreifach verbrückenden Einheiten, sie können eher als semi-triply-bridging ^[10,11] angesehen werden. Beide Cluster weisen trotz der Zahl von 46 VE keine Doppelbindung auf.

Cluster mit 46 VE und einer M-M-Doppelbindung im Ring sind eher selten. *Dahl et al.* konnten 1988 mit $[Cp*_{3}Mo_{3}(CO)_{4}(\mu-H)(\mu_{3}-O)]$ (**K**) einen homometallischen Cluster der 6. Gruppe mit lokalisierter Mo-Mo-Doppelbindung darstellen und röntgenstrukturanalytisch belegen ^[12]. Weitere Beispiele homometallischer Cluster der Gruppen 7 und 9 findet man in $[H_{4}Re_{3}(CO)_{9}(L)]^{-}[LH]^{+}$ (L = α -Picolin) ^[13] und $[\{Cp*Co\}_{3}(\mu_{3}-CO)_{2}]^{[14]}$, wobei *Dahl* für den Cobaltdreiring ein multiple-bond Modell für die drei gleich langen Co-Co-Bindungen diskutiert. *Walther et al.* gelang mit $[\{CpRh(CO)\}\{CpMo(CO)\}_{2}(\mu-CO)_{2}]$ (**L**) die röntgenographische Charakterisierung eines weiteren Vertreters dieser Klasse ^[15].

Mit Elementen der Gruppe 8 konnten bisher keine derartigen homometallischen Cluster dargestellt werden. $Os_3(CO)_{12}$ ist ein sehr gut untersuchtes Edukt zur Synthese neuer Triosmiumcluster, durch Reaktion mit organischen und anorganischen Reagenzien wurden hunderte neuer Triosmiumcluster dargestellt, deren Gesamtelektronenzahlen 46, 48, 49, 50 und auch 52 beträgt. Jedoch ist die einzige bekannte 46 VE-Verbindung $[Os_3H_2(CO)_{10}]$ (**M**) kein typischer Vertreter dieser Klasse, weil **M** keine Os-Os-Doppelbindung aufweist. Die Bindung wird hier durch eine 4z-4e-Bindung über die beiden Wasserstoffbrücken beschrieben [16,17,18,19]

1.3 Vierkernige tetraedrische Cluster

Für M₄-Cluster ist das Metallatetrahedrangerüst die am weitesten verbreitete Form. Mehrere Metallcarbonyle wie $[Co_4(CO)_{12}]$, $[Rh_4(CO)_{12}]$ und $[Ir_4(CO)_{12}]$ weisen ein tetraedrisches Gerüst auf.

King konnte 1966 durch Thermolyse von $[{CpFe(CO)_2}_2]$ in Xylol $[{CpFe}_4(\mu_3-CO)_4]$ (**N1**) herstellen ^[20], *Stone et al.* postulierten 1968 den analogen Rutheniumkomplex $[{CpRu}_4(\mu_3-CO)_4]$ (**N2**) ^[21]. Beide besitzen vier μ_3 -CO-Liganden, welche die vier Dreiecksflächen des M₄-Tetraeders überkappen.

1.4 P_n-Komplexe der Übergangsmetalle der 8. Gruppe

Die erstmalige Synthese des Cyclopentaphosphaferrocenderivates $[Cp*Fe(\eta^5-P_5)]$ (**O**) gelang *Brück* aus unserem Arbeitskreis im Jahre 1987 durch Cothermolyse von $[\{Cp*Fe(CO)_2\}_2]$ mit weißem Phosphor. Dies war der erste Sandwichkomplex mit einer dem Cyclopentadienid-Ion, C_5H_5 , isoelektronischen cyclo-P₅-Einheit ^[22,23]. Bei der Umsetzung des Pentaphosphaferrocens **O** mit thf-substituierten Übergangsmetallcarbonylverbindungen wird an den Phosphoratomen eine lone-pair-Komplexierung beobachtet. Dabei koordinieren bis zu vier Metallkomplexfragmente an die Phosphoratome und ergeben so mehrkernige Komplexe, bei welchen die planare cyclo-P₅-Einheit erhalten bleibt. **O** kann auch zur Synthese von Tripeldeckersandwichkomplexen benutzt werden ^[24,25].

Neben diesen Umsetzungen unter Erhalt des P₅-Rings werden bei Temperaturen ab 130 °C Reaktionen beobachtet, bei welchen die Phosphoratome des P₅-Ringes zur Bildung neuer P_n -Gerüste beitragen ^[26-37].

Brück konnte ferner aus dem monomeren Komplex $[Cp*Ru(CO)_2Br]$ das zu **O** analoge Pentaphospharuthenocen $[Cp*Ru(\eta^5-P_5)]$ (**P**) synthetisieren ^[24]. 1994 gelang *Rink* die Herstellung von **P** durch Cothermolyse des Zweikernkomplexes $[\{Cp*Ru(CO)_2\}_2]$ mit weißem Phosphor in Dekalin. Sie konnte ferner mit dem schwersten Gruppenhomologen Osmium den zu **O** und **P** analogen Komplex $[Cp*Os(\eta-P_5)]$ (**Q**) darstellen und charakterisieren. Die röntgenstrukturanalytischen Untersuchungen gelangen jeweils mit dem Derivat des Cp*'-Liganden ^[24,25,29].

Koch gelang 1999 ausgehend von $[{Cp''Ru(CO)_2}_2]$ durch Reaktion mit **O** bei 190 °C neben der Synthese von $[Cp''Ru(\eta^5-P_5)]$ (**P1**) und $[{Cp''Ru}_2P_4]$ (**R**) die Darstellung der vier dreiecksdodekaedrischen Heterotri- und -tetrametall-Eisen-Ruthenium-Cluster $[{Cp''Ru}_3P_5]$ (**S1**), $[{Cp''Ru}_2{Cp*Fe}P_5]$ (**S2**), $[{Cp*Fe}_2{Cp''Ru}P_5]$ (**S3**) und [{Cp"Ru}₃{Cp*Fe}P₄] (**T**) mit P_n-Liganden (n = 5,4). Die Kristallstrukturanalysen von **S1**, **S2** und **S3** belegen, daß das verzerrte M_3P_5 -Dreiecksdodekaeder einen völlig neuen P₅-Koordinationstyp des Eduktes **O** enthält ^[38,39].

Für den Rutheniumkomplex [{Cp''Ru}₂P₄] (**R**) konnten bisher keine Beweise für die Struktur des P₄-Bausteins gelegt werden. Für die eisenanalogen Komplexe sind zwei Strukturtypen bekannt. 1991 postulierte *Dahl* trotz dreifacher Rotationsfehlordnung im Kristall und somit nicht eindeutig anzugebender P-P-Abstände die Stabilisierung zweier P₂-Einheiten in der Koordinationssphäre des Eisens in [{Cp*Fe}₂(μ - $\eta^{2:2}$ -P₂)₂] (**U**) ^[40], 1995 konnte die P₄-Kette in [{Cp''Fe}₂(μ - $\eta^{4:4}$ -P₄)] (**V**) von *Schwarz* dargestellt und charakterisiert werden ^[41].

1.5 Monomere Übergangsmetallkomplexfragmente als Edukt für P_n -Komplexe

1998 setzte *Hilt* sterisch aufwendige Liganden ein, um Eisenzweikernkomplexe zu synthetisieren, welche in Lösung sofort bzw. nach kurzzeitigem Erhitzen in die monomeren 17 VE-Komplexfragmente [{Cp^R(OC)₂Fe}'] (Cp^R = ⁵Cp, ⁴Cp, Cp''') zerfallen. Diese metallorganischen Radikale reagieren mit weißem Phosphor unter Bildung der P₄-Butterflymoleküle [{Cp^R(OC)₂Fe}₂(μ - $\eta^{1:1}$ -P₄)] ^[35,36,37,42].

Auch Übergangsmetallhydride können als Edukt für die Darstellung von P_n -Komplexen herangezogen werden. Bisher gibt es aber nur wenige Beispiele für eine solche Reaktion. *Green* konnte 1974 ausgehend vom Biscyclopentadienylmolybdändihydrid [Cp₂MoH₂] und weißem Phosphor das Diphosphenderivat [Cp₂MoP₂H₂] (**W**) darstellen ^[43].

Peruzzini realisierte 1998 durch Umsetzung von [(triphos)MH₃] (M = Rh, Ir) mit weißem Phosphor bei Raumtemperatur zu [(triphos)M($\eta^{1:1}$ -P₄)] (**X**) ein weiteres Beispiel für diesen Reaktionstyp. Führt man die Reaktion bei 40 °C weiter, so erhält man durch eine Umlagerungsreaktion [(triphos)M($\eta^{2:1}$ -P₄H)] (**Y**). Fortführung der Thermolyse führt in Wasserstoffatmosphäre zum Triphosphorkomplex [(triphos)M(η^{3} -P₃)] (**Z**) und Phosphin [37,44].

2 Problemstellung

Wie bereits in der Einleitung gezeigt, bedarf es einer hohen Aktivierungsenergie, um P_n -Komplexe ausgehend von den Zweikernkomplexen [{ $Cp^RM(CO)_2$ }_2] (M = Fe, Ru, Os; $Cp^R = Cp', Cp''$) durch Reaktion mit weißem Phosphor darzustellen.

Die Ergebnisse, die im Rahmen der Diplomarbeit^[45] erreicht werden konnten, zeigen, daß ein Einstieg in die Ruthenium-Phosphor-Chemie bei RT ausgehend vom in Rohlösung vorliegenden [Cp⁻Ru(CO)₂H] möglich ist.

Ziel dieser Arbeit war es, zum einen die Ergebnisse der Diplomarbeit zur Darstellung von Phosphanidokomplexen auf den Bis-(trimethylsilyl)cyclopentadienyl-Liganden anzuwenden, zum anderen die Isolierung und Charakterisierung des bis dato nicht faßbaren Organorutheniumhydrids [$Cp^{R}Ru(CO)_{2}H$] zu erreichen.

Die Isolierung von $[Cp^{R}Ru(CO)_{2}H]$ sollte einen Einstieg in die Organometallchemie zur Synthese neuer Organometallcluster erlauben.

Weitere Aufgabe war es, die Übertragbarkeit der Ergebnisse von *Koch* ^[38,39] auf den Bis-(trimethylsilyl)cyclopentadienyl-Liganden zu prüfen.

3 Eigene Ergebnisse

3.1 Darstellung von $[Cp^{-}Ru(CO)_{2}H](1)$

1,3-Bis-(trimethylsilyl)cyclopentadienyldicarbonylrutheniumhydrid **1** ist durch Cothermolyse von $Ru_3(CO)_{12}$ (**2**) mit (Me₃Si)₂C₅H₄ (**3**) zugänglich. Die Thermolyse wird im Druckschlenkrohr in Heptan bei 125 °C durchgeführt, wobei alle 30 Minuten das bei der Reaktion gebildete CO am Ölpumpenvakuum entfernt wird. Die Reaktion wird sowohl anhand der abnehmenden Eduktbanden von **2**, der entstehenden Produktbanden von **1** als auch an der Farbänderung von dunkelrot nach gelborange verfolgt. Man beendet die Reaktion, wenn das Auftreten einer CO-Bande im verbrückenden Bereich auf die Entstehung des Dimers [{Cp⁼Ru(CO)₂}] (**4**) hindeutet. Unter ähnlichen Bedingungen kann so auch das Mono-(trimethylsilyl)cyclopentadienylderivat [Cp⁻Ru(CO)₂H] (**5**) dargestellt werden ^[45].

$$\begin{array}{c}
 Ru_{3}(CO)_{12} & \underline{Cp^{=}H, Heptan, \mathbb{D}} \\
 2 & 125 \,^{\circ}C, 4-5 \,h \\
 & [\{Cp^{=}Ru(CO)_{2}\}_{2}] \\
 & 4
\end{array}$$
(1)

Gleichung 1: Darstellung von 1 und 4

Durch säulenchromatographische Aufarbeitung an Kieselgel mit reinem Petrolether eluiert man als erstes eine gelbe Fraktion von $[Cp^{=}Ru(CO)_{2}H]$ (1) in 51,7% Ausbeute. Mit Petrolether/Diethylether 50:1 erhält man $[{Cp^{=}Ru(CO)_{2}}_{2}]$ (4) als orange Fraktion in 14% Ausbeute.

3.1.1 $[Cp^{=}Ru(CO)_{2}H](1)$

3.1.1.1 Eigenschaften von $[Cp^{=}Ru(CO)_{2}H](1)$

Nach Entfernen des Lösungsmittel am Ölpumpenvakuum verbleibt ein gelbbraunes Öl von $[Cp^{-}Ru(CO)_{2}H]$ (1). 1 ist bei Raumtemperatur flüssig und äußerst luftempfindlich. Es ist bereits sehr gut in unpolaren Lösungsmitteln wie Pentan und Hexan löslich. 1 kann als 0,1m Lösung unter sorgfältigem Luftausschluß gehandhabt und bei -80 °C unbegrenzt gelagert werden. Einkristalle konnten bisher auch bei tiefen Temperaturen (-80 °C) nicht erhalten werden, bei höherer Temperatur bildet sich unter Abspaltung von H₂ das Dimer.

3.1.1.2 Spektroskopische Eigenschaften von [Cp⁼Ru(CO)₂H] (1)

Das **IR-Spektrum** zeigt drei Banden bei $\tilde{v} = 2026$, 2011 und 1968 cm⁻¹. Die zwei sehr starken Banden bei 2026 und 1968 cm⁻¹ können den beiden Carbonylgruppen, die schwache Bande bei $\tilde{v} = 2011$ cm⁻¹ der Ru-H-Streckschwingung zugeordnet werden. Sie liegt damit im literaturbekannten Bereich ^[46].

Das ¹**H-NMR-Spektrum** von 1 zeigt vier Singuletts bei $\delta = -10,56$ ppm, 0,17 ppm, 5,02 ppm und 5,27 ppm im Integrationsverhältnis von 1:18:2:1. Das Signal bei -10,56 ppm liegt im bekannten Bereich für Übergangsmetall-Wasserstoff-Verbindungen und kann eindeutig dem terminalen Hydrido-Wasserstoffatom am Ruthenium zugeordnet werden ^[47]. Der Peak bei 0,17 ppm liegt im typischen Verschiebungsbereich von Silylgruppen, er entspricht dem Signal der 18 äquivalenten H-Atome der beiden SiMe₃-Gruppen. Die drei Ringprotonen erscheinen im Verhältnis 2:1 bei $\delta = 5,02$ ppm und 5,27 ppm. Dies geht einher mit der Spiegelsymmetrie des Cp⁼-Liganden.

Abbildung 1: ¹H-NMR-Spektrum von [Cp⁼Ru(CO)₂H] (1)

Kern	d [ppm]	Signalaufspaltung	Zuordnung	
$^{1}\mathrm{H}$	-10,56	s, 1H	Ru-H	
	0,17	s, 18H	SiMe ₃	
	5,02	s, 2H	C_5H_3	
	5,27	s, 1H	C_5H_3	

Tabelle 1:¹H-NMR-spektroskopische Daten von 1 in C₆D₆ (RT, 200,13 MHz)

Im **EI-Massenspektrum** erkennt man die schrittweise Decarbonylierung des Komplexes neben der Demethylierung der Silylgruppen von $[((Me_3Si)_2C_5H_3)Ru(CO)_2H]$ (1). Der Molekülionenpeak $[M]^+$ wird bei m/z = 368 amu mit einer relativen Intensität von 29% gefunden, der Basispeak des Spektrums ist $[M-Me]^+$ bei m/z = 353 amu. Bei m/z = 340 erscheint der Peak des ersten Decarbonylierungsschrittes mit einer Intensität von 35,4%. Das simulierte Spektrum stimmt mit dem gefundenen überein.

Fragment	gment Zusammensetzung		I _{rel} [%]
$[\mathbf{M}]^+$	$[((Me_3Si)_2C_5H_3)Ru(CO)_2H]$	368	29,0
$[M-Me]^+$	$[((Me_3Si)(Me_2Si)C_5H_3)Ru(CO)_2H]$	353	100
$[M-CO]^+$	$[((Me_3Si)_2C_5H_3)Ru(CO)H]$	340	35,4
$[M-2CO-H]^+$	$[((Me_3Si)_2C_5H_3)Ru]$	311	23,1
$[M-2CO-H-Me]^+$	$[((Me_3Si)(Me_2Si)C_5H_3)Ru]$	296	48,3
$[SiMe_3]^+$	SiMe ₃	73	13,9

Tabelle 2:Ausgewählte EI-massenspektrometrische Daten von $[Cp^{-}Ru(CO)_{2}H]$ (1) $(QT = 20 \ ^{\circ}C, 70 \ eV, 1 \ mA).$

3.1.1.3 Strukturvorschlag für [Cp⁼Ru(CO)₂H] (1)

Aufgrund der spektroskopischen Befunde von **1** läßt sich mit hoher Wahrscheinlichkeit eine Struktur als monomerer Halbsandwichkomplex postulieren. Der Aufbau sollte dem eines sogenannten Klavierstuhls, wie er auch für $[(\eta^6-C_6H_6)M(CO)_3]$ (M = Mo, Cr) gefunden wird, gleichen ^[47]. Dies steht im Einklang mit bereits bekannten Verbindungen ^[2,45].

Abbildung 2: Strukturvorschlag für [Cp⁼Ru(CO)₂H] (1)

Bei 1 handelt es sich um einen 18 VE-Komplex, bei welchem der $Cp^{=}$ -Ring fünf, beide CO-Gruppen je zwei, das Wasserstoffatom eines und das Ruthenium acht Elektronen liefern. Aufgrund der strukturellen Gegebenheiten liegt der Schluß nahe, daß 1 gut als Edukt sowohl in der Organometall- als auch in der Phosphorchemie geeignet sein sollte.

3.1.2 $[{Cp^{=}Ru(CO)_2}_2] (4)$

3.1.2.1 Eigenschaften von $[{Cp^{-}Ru(CO)_2}_2]$ (4)

Der Zweikernkomplex [{ $Cp^{=}Ru(CO)_{2}$ }] (4) fällt nach Entfernen des Lösungsmittels als gelber bis brauner Feststoff an. 4 ist gut in Pentan und sehr gut in polaren Solventien löslich. Das Dimer ist luftstabil und unter Inertgasatmosphäre bei Raumtemperatur unbegrenzt lagerfähig. Es kann durch Variation der Reaktionsbedingungen in hoher Ausbeute (64,7%) hergestellt werden (siehe Experimenteller Teil). Zur Röntgenstrukturanalyse geeignete Einkristalle konnten bisher trotz der guten Kristallisationstendenz aus übersättigten Lösungen von Pentan bzw. Hexan nicht erhalten werden.

3.1.2.2 Spektroskopische Eigenschaften von [{Cp⁼Ru(CO)₂}₂] (4)

Im **IR-Spektrum** erkennt man drei sehr starke Banden bei $\tilde{v} = 2005$, 1961 und 1782 cm⁻¹, eine Schulter bei 1967 cm⁻¹ und eine schwache Bande bei 1936 cm⁻¹.

Das ¹**H-NMR-Spektrum** zeigt drei Singuletts bei $\delta = 0,38$ ppm, 4,79 ppm und 5,64 ppm mit einem Intensitätsverhältnis von 18:2:1. Dabei treten die vier Silylgruppen bei höchstem Feld und die Ringprotonen im typischen Bereich bei $\delta = 4,79$ ppm bzw. 5,64 ppm im Verhältnis 2:1 in Resonanz.

Kern	d [ppm]	Signalaufspaltung	Zuordnung	
$^{1}\mathrm{H}$	0,38	s, 36H	SiMe ₃	
	4,79	s, 4H	C_5H_3	
	5,64	s, 2H	C_5H_3	

Tabelle 3:¹H-NMR-spektroskopische Daten von 4 in C₆D₆ (RT, 200,13 MHz)

Das **EI-Massenspektrum** zeigt den Molpeak $[M]^+$ bei m/z = 733 amu mit einer relativen Intensität von 48%. Als Basispeak findet man bei m/z = 367 amu ein Fragment, welches dem $[Cp^{=}Ru(CO)_2]^+$ -Ion entspricht. Weitere charakteristische Fragmentierungen findet man durch Abspaltungen einzelner Carbonylgruppen. Das Isotopenmuster von **4** stimmt mit dem simulierten Spektrum überein.

Fragment Zusammensetzung		m/z [amu]	I _{rel} [%]
$[\mathbf{M}]^+$	$[{((Me_3Si)_2C_5H_3)Ru(CO)_2}_2]$	733	48,0
$[M-CO]^+$	$[((Me_{3}Si)_{2}C_{5}H_{3})_{2}Ru_{2}(CO)_{3}]$	705	26,6
$[M-3CO]^+$] ⁺ [((Me ₃ Si) ₂ C ₅ H ₃) ₂ Ru ₂ (CO)]		24,3
$[Cp^{=}Ru(CO)_{2}]^{+}$	$p^{=}Ru(CO)_{2}]^{+}$ [((Me_{3}Si)_{2}C_{5}H_{3})Ru(CO)_{2}]		100
$[Cp^{=}Ru(CO)]^{+}$	$[((Me_3Si)_2C_5H_3)Ru(CO)]$	339	88,5
$[Cp^{=}Ru]^{+}$	$p^{=}Ru]^{+}$ [((Me ₃ Si) ₂ C ₅ H ₃)Ru]		63,6
$[SiMe_3]^+$	SiMe ₃	73	16,3

Tabelle 4:Ausgewählte EI-massenspektrometrische Daten von $[{Cp^{=}Ru(CO)_2}_2]$ (4)(QT = 120 °C, 70 eV, 1 mA).

3.1.2.3 Strukturvorschlag für [{Cp⁼Ru(CO)₂}₂] (4)

Aufgrund der spektroskopischen Daten kann für **4** ein Strukturvorschlag gemacht werden, welcher sich an den bekannten Zweikernkomplexen des Typs [{ $Cp^{R}M(CO)_{2}$ }_2] orientiert ^[47]. Eine Unterscheidung, in welchem Verhältnis die vier möglichen Formen, verbrückend cis/trans bzw. terminal cis/trans, in Lösung vorliegen, kann nicht getroffen werden. Jedoch kann davon ausgegangen werden, daß die verbrückenden Spezies aufgrund der sehr intensiven μ -CO-Bande im IR-Spektrum als Hauptprodukt vorliegen. Stellvertretend für die vier möglichen Strukturen soll hier nur die *trans*-Form im CO-verbrückten Molekül als Strukturvorschlag dargestellt werden.

Abbildung 3: Strukturvorschlag für *trans*-[{Cp⁼Ru(CO)₂}₂] (4)

3.2 Reaktion von [Cp⁻Ru(CO)₂H] (1) mit weißem Phosphor

Diese Reaktion, durchgeführt in Heptan im Druckschlenkrohr bei RT, ergibt den Phosphanidokomplex $[Cp^{=}Ru(CO)_2PH_2]$ (6a). Die Reaktion läßt sich vom bereits bekannten $[Cp^{-}Ru(CO)_2PH_2]$ (6b) ^[45] auch auf das Derivat des Bis-(trimethylsilyl)cyclopentadienyl-Liganden übertragen, jedoch läuft sie hier erheblich langsamer ab.

Die Reaktion kann erfolgreich durch Zugabe von weißem Phosphor zur Rohlösung von 1 durchgeführt werden. Die orangegelbe Lösung färbt sich nach Zugabe des Phosphors innerhalb von ein bis zwei Stunden rot. Um eine möglichst hohe Ausbeute zu erreichen, wird die Reaktion erst nach vier Tagen beendet. Im ¹H-NMR-Spektrum erkennt man, daß nur ein relativ kleiner Teil des Eduktes 1 zu 6a umgesetzt wurde, das Verhältnis Edukt:Produkt liegt ungefähr bei 4:1.

Eine säulenchromatographische Aufarbeitung an allen gängigen Materialien scheitert in Analogie zu **6b** erwartungsgemäß.

$$[Cp^{=}Ru(CO)_{2}H] \xrightarrow{Heptan, RT} [Cp^{=}Ru(CO)_{2}PH_{2}]$$
1
(2)
1
(3)

Gleichung 2: Reaktion von 1 mit P₄ in Rohlösung

Mehrere Versuche, **1** als sauberes, aufgearbeitetes Edukt mit weißem Phosphor zur Reaktion zu bringen, scheiterten auch bei höheren Temperaturen.

3.2.1 $[Cp^{=}Ru(CO)_2PH_2]$ (6a)

3.2.1.1 Eigenschaften von $[Cp^{-}Ru(CO)_{2}PH_{2}]$ (6a)

Entfernen des Lösungsmittels hinterläßt einen roten, öligen Rückstand, der sich teilweise in unpolaren Solventien, gut in Toluol und sehr gut in Tetrahydrofuran löst. **6a** ist als 0,025m THF-Lösung unter Inertgasatmosphäre problemlos handhabbar und kann mehrere Monate bei -80 °C gelagert werden. Einkristalle konnten bislang nicht erhalten werden.

3.2.1.2 Spektroskopische Eigenschaften von [Cp⁼Ru(CO)₂PH₂] (6a)

Im **IR-Spektrum** erkennt man im typischen Bereich für terminale Carbonylgruppen zwei starke Banden bei $\tilde{v} = 2026$ und 1968 cm⁻¹. Ein Vergleich mit **1** zeigt die Identität der Banden, eventuell überlagern die starken Banden von **1** auch die von **6a**. Deshalb kann nicht mit Gewißheit davon ausgegangen werden, daß die Carbonylgruppen von **6a** genau bei diesen Wellenzahlen absorbieren. Sie liegen jedoch auf jeden Fall in einem sehr ähnlichen Bereich. Die bei $\tilde{v} = 2250$ cm⁻¹ erscheinende Absorptionsbande kann der P-H-Schwingung zugeordnet werden, sie liegt damit im literaturbekannten Bereich ^[46,48-51].

Das ¹H-NMR-Spektrum zeigt Verbindung **6a** als Nebenprodukt. **6a** erscheint mit vier Peaks im Spektrum, drei Singuletts und einem Dublett. Das Singulett bei $\delta = 0,39$ ppm mit einer Intensität von 18 kann den beiden Silylgruppen, die beiden Singuletts im aromatischen Bereich bei 4,81 ppm und 4,97 ppm mit einem Integrationsverhältnis von 1:2 können den drei Ringprotonen zugeordnet werden. Bei $\delta = 1,39$ ppm treten die beiden Wasserstoffatome der PH₂-Gruppe als Dublett mit einer Kopplungskonstanten von 157 Hz in Resonanz.

Im ³¹**P-NMR-Spektrum** erscheint ein Triplett bei δ = -226 ppm als einzige Resonanz.

Im ³¹P{¹H}-NMR-Spektrum tritt anstelle des Tripletts nur noch ein Singulett auf. Somit kann man dem Signal eindeutig eine PH₂-Gruppe zuordnen.

Kern	d [ppm]	Signalaufspaltung	Kopplungskonst. [Hz]	Zuordnung
$^{1}\mathrm{H}$	0,39	s, 18H		SiMe ₃
	1,39	d, 2H	$^{1}J_{PH} = 157$	PH_2
	4,81	s, 1H		C_5H_3
	4,97	s, 2H		C_5H_3
³¹ P	-226	t, 1P	$^{1}J_{PH} = 157$	PH ₂
$^{31}P{}^{1}H{}$	-226	s, 1P		PH ₂

Tabelle 5:NMR-spektroskopische Daten von 6a bei RT in C6D6(1H-NMR: 200,13 MHz, 31P-NMR: 81,02 MHz)

Im **EI-Massenspektrum** findet man neben dem Molpeak $[M]^+$ bei 400 amu und dem Fragment $[M-2Me]^+$ bei 370 amu weitere charakteristische Fragmente, wie sie auch bei **1** auftreten. Das simulierte Isotopenmuster stimmt mit dem gefundenen überein.

Fragment	Zusammensetzung	m/z [amu]	I _{rel} [%]
$[\mathbf{M}]^+$	$[((Me_3Si)_2C_5H_3)Ru(CO)_2PH_2]$	400	4,9
$[M-2Me]^+$	$[((Me_2Si)_2C_5H_3)Ru(CO)_2PH_2]$	370	9,7
$[M-PH_2]^+$	$[((Me_3Si)_2C_5H_3)Ru(CO)_2]$	367	8,3
$[M-PH_2-Me]^+$	$[((Me_3Si)(Me_2Si)C_5H_3)Ru(CO)_2]$	352	38,8
$[M-PH_2-CO]^+$	$[((Me_3Si)_2C_5H_3)Ru(CO)]$	339	18,1
$[Cp^{=}Ru]^{+}$	$[((Me_3Si)_2C_5H_3)Ru]$	311	11,9
$[SiMe_3]^+$	SiMe ₃	73	100

Tabelle 6:Ausgewählte EI-massenspektrometrische Daten von $[Cp^{=}Ru(CO)_2PH_2]$ (6a) (QT = 80 °C, 70 eV, 1 mA).

3.2.1.3 Strukturvorschlag für [Cp⁼Ru(CO)₂PH₂] (6a)

In Analogie zum bereits bekannten Cp^- -Derivat ^[45] kann ein Komplex mit terminaler Phosphanidogruppe als plausible Struktur postuliert werden. Die Phosphanidogruppe ersetzt das Hydridwasserstoffatom in **1** und fungiert als Ein-Elektronen-Donor, somit handelt es sich auch hier um einen 18 VE-Komplex.

Abbildung 4: Strukturvorschlag für [Cp⁼Ru(CO)₂PH₂] (6a)

3.3 Komplexierungsreaktionen von $[Cp^{R}Ru(CO)_{2}PH_{2}]$ ($Cp^{R} = Cp^{-}, Cp^{-}$) (6a,b)

3.3.1 Umsetzungen mit $[M(CO)_5(thf)]$ (M = Cr, Mo, W) (7, 8, 9)

Hexacarbonylmetallverbindungen der Gruppe 6 eignen sich in Form ihrer mono-thf-Komplexe gut für die Komplexierung von 6a und 6b. Setzt man frisch hergestellte Lösungen von [M(CO)₅(thf)] (7, 8, 9) mit den Phosphanidokomplexen 6a und 6b $[{Cp^{R}(OC)_{2}Ru}(\mu-PH_{2}){Cr(CO)_{5}}]$ erhält die Komplexe (10a,b),um, so man $[{Cp^{R}(OC)_{2}Ru}(\mu-PH_{2}){Mo(CO)_{5}}]$ (11a,b) und $[{Cp^{R}(OC)_{2}Ru}(\mu-PH_{2}){W(CO)_{5}}]$ (12a,b). Bereits nach wenigen Minuten setzt eine Gasentwicklung ein, die rote Farbe der Lösungen verändert sich dabei kaum, sie wird nur leicht dunkler. Die Reaktionen werden erst nach 24h beendet, um eine möglichst hohe Ausbeute zu erreichen. Durch säulenchromatographische Aufarbeitung an Kieselgel können die Verbindungen 10-12 rein erhalten werden. Man eluiert mit einem Lösungsmittelgemisch Petrolether/Toluol 25:1 hellgelbe Fraktionen von $[{Cp^{R}(OC)_{2}Ru}(\mu-PH_{2}){M(CO)_{5}}]$ (10-12).

[Cp ^R Ru(CO) ₂ PH ₂] 6a,b	[M(CO) ₅ (thf)] (7, 8, 9) THF, RT, 24h	$[\{Cp^{R}(OC)_{2}Ru\}(\mu-PH_{2})\{Cr(CO)_{5}\}]$ $Cp^{R} = Cp^{=}: 10a$ $Cp^{R} = Cp^{-}: 10b$ $[\{Cp^{R}(OC)_{2}Ru\}(\mu-PH_{2})\{Mo(CO)_{5}\}]$ $Cp^{R} = Cp^{=}: 11a$ $Cp^{R} = Cp^{-}: 11b$	(3)
		$[{Cp^{R}(OC)_{2}Ru}(\mu-PH_{2}){W(CO)_{5}}]$ Cp ^R = Cp ⁼ : 12a Cp ^R = Cp ⁻ : 12b	

Gleichung 3: Reaktionen von 6a,b mit [M(CO)₅(thf)] (7-9)

Aufgrund der Ähnlichkeit der Verbindungen **10-12** soll hier stellvertretend für die sechs Komplexe nur $[{Cp^{=}(OC)_2Ru}(\mu-PH_2){Mo(CO)_5}]$ (**11a**) diskutiert werden. Die spektroskopischen Daten der anderen fünf Verbindungen werden lediglich tabellarisch im Kapitel 3.3.1.1.2 zusammengefaßt.

3.3.1.1 $[{Cp^{=}(OC)_2Ru}(\mu-PH_2){Mo(CO)_5}]$ (11a)

3.3.1.1.1 Eigenschaften von [{Cp⁼(OC)₂Ru}(µ-PH₂){Mo(CO)₅}] (11a)

Nach Entfernen des Lösungsmittels verbleibt ein hellgelbes Pulver von **11a**. Es ist gut löslich in Pentan, sehr gut in polaren Lösungsmitteln wie Dichlormethan und THF. **11a** kann unter Schutzgasatmosphäre über längere Zeit bei Raumtemperatur gelagert werden. Einkristalle konnten bisher weder durch Abdiffusion verschiedener Lösungsmittel noch durch Auskristallisation aus gesättigten Lösungen erhalten werden.

3.3.1.1.2 Spektroskopische Eigenschaften von [{Cp⁼(OC)₂Ru}(µ-PH₂){Mo(CO)₅}] (11a)

Das **IR-Spektrum** zeigt drei starke und zwei sehr starke Banden sowie eine Schulter im typischen Bereich für terminale Carbonylgruppen. Die drei starken Banden erscheinen bei $\tilde{v} = 2069$, 2037 und 1992 cm⁻¹, die Schulter bei $\tilde{v} = 1988$ cm⁻¹. Zwei sehr starke Banden liefern die Carbonylgruppen, welche bei $\tilde{v} = 1945$ und 1933 cm⁻¹ absorbieren. Die bei $\tilde{v} = 2355$ cm⁻¹ erscheinende sehr schwache Absorptionsbande kann der P-H-Schwingung zugeordnet werden, sie liegt damit im literaturbekannten Bereich ^[45,46,48-51]. Tabelle 7 zeigt einen Vergleich der sechs Verbindungen **10-12**.

11a $[cm^{-1}]$	10a $[cm^{-1}]$	10b $[cm^{-1}]$	11b $[cm^{-1}]$	12a $[cm^{-1}]$	12b $[cm^{-1}]$
1933	1928	1928	1933	1926	1926
1945	1941	1941	1946	1939	1939
1988	1993	1994	1984	1992	1983
1992	1996	1997	1995	1996	1996
2037	2036	2037	2040	2038	2041
2069	2059	2059	2069	2067	2068
2355	2356	2294	2298	2359	2300

 Tabelle 7:
 Vergleich der IR-spektroskopischen Daten von 10a,b, 11a,b und 12a,b

Abbildung 5 zeigt das ¹H-NMR-Spektrum von 11a. Das Spektrum zeigt ein Singulett bei $\delta = 0,04$ ppm, ein Dublett bei $\delta = 2,70$ ppm sowie zwei weitere Singuletts bei 5,03 und 5,08 ppm im Integrationsverhältnis 18:2:1:2. Das Signal der beiden Silylgruppen ist im

Vergleich zu 6 zu höherem Feld verschoben und erscheint bei 0,04 ppm. Die Ringprotonen treten bei 5,03 und 5,08 ppm in Resonanz. Die Protonen der PH₂-Gruppe liefern ein Dublett bei 2,70 ppm mit einer Kopplungskonstanten von 280 Hz. Die Komplexierung mit dem Metallfragment geht einher mit einem signifikanten Tieffeldshift des Signals der beiden Protonen.

In Abbildung 6 ist das ³¹P-NMR-Spektrum von 11a wiedergegeben. Als einzigen Peak erkennt man das Triplett der PH₂-Gruppe bei δ = -189 ppm mit einer ¹J_{PH}-Kopplungs-konstanten von 280 Hz.

Erwartungsgemäß zeigt sich im ³¹P{¹H}-NMR-Spektrum lediglich ein Singulett.

Tabelle 9 zeigt den Vergleich der NMR-spektroskopischen Daten von 10a,b, 11a,b und 12a,b.

Abbildung 5: ¹H-NMR-Spektrum von [{Cp⁼(OC)₂Ru}(µ-PH₂){Mo(CO)₅}] (11a) in C₆D₆

Abbildung 6: ³¹P-NMR-Spektrum von [{ $Cp^{=}(OC)_2Ru$ }(μ -PH₂){Mo(CO)₅}] (11a) in C₆D₆

Kern	d [ppm]	Signalaufspaltung	Kopplungskonst. [Hz]	Zuordnung
$^{1}\mathrm{H}$	0,04	s, 18H		SiMe ₃
	2,70	d, 2H	$^{1}J_{PH} = 280$	PH_2
	5,03	s, 1H		C_5H_3
	5,08	s, 2H		C_5H_3
³¹ P	-189	t, 1P	${}^{1}J_{PH} = 280$	PH ₂
$^{31}P{}^{1}H{}$	-189	s, 1P		PH ₂

 Tabelle 8:
 NMR-spektroskopische Daten von 11a bei RT in C₆D₆

Kern	11a	10a	10b	11b	12a	12b
¹ H [ppm]	s, 0,04	s, 0,03	s, -0,03	s, -0,03	s, 0,03	s, -0,05
	d, 2,70	d, 2,88	d, 2,72	d, 2,55	d, 2,93	d, 2,79
	s, 5,03	s, 5,00	s, 4,66	s, 4,64	s, 5,01	s, 4,62
	s, 5,08	s, 5,14	s, 4,73	s, 4,67	s, 5,10	s, 4,65
³¹ P [ppm]	t, -189	t, -148	t, -147	t, -189	t, -215	t, -214
¹ J _{PH} [Hz]	280	284	285	281	290	295
$^{31}P{^{1}H}[ppm]$	s, -189	s, -148	s, -147	s, -189	s, -215	s, -214

(¹H-NMR: 200,13 MHz, ³¹P-NMR: 81,02 MHz)

Tabelle 9:Vergleich NMR-spektroskopischer Daten von 10a,b, 11a,b und 12a,b in
C₆D₆ bei RT

Im **EI-Massenspektrum** wird der Molekülpeak $[M]^+$ bei m/z = 635 amu gefunden. Weitere charakteristische Fragmente bilden die einzelnen Decarbonylierungsschritte, bei welchen der Verlust von bis zu 5 CO-Gruppen nachzuvollziehen ist. Basispeak des Spektrums ist $[M-5CO-H]^+$ bei m/z = 494 amu. Das gefundene Spektrum stimmt mit dem simulierten überein. Für die massenspektrometrischen Daten der Verbindungen **10a,b**, **11b** und **12a,b** sei hier auf den Experimentellen Teil verwiesen.

Fragment	Zusammensetzung	m/z [amu]	I _{rel} [%]
$[\mathbf{M}]^+$	[Cp ⁼ Ru(CO) ₂ PH ₂ Mo(CO) ₅]	635	20,5
$[M-CO]^+$	[Cp ⁼ Ru(CO) ₂ PH ₂ Mo(CO) ₄]	607	11,0
$[M-2CO]^+$	$[Cp^{=}Ru(CO)_{2}PH_{2}Mo(CO)_{3}]$	579	14,2
[M-3CO] ⁺	$[Cp^{=}Ru(CO)_{2}PH_{2}Mo(CO)_{2}]$	551	25,9

Fragment	Zusammensetzung	m/z [amu]	I _{rel} [%]
[M-4CO] ⁺	[Cp ⁼ Ru(CO) ₂ PH ₂ Mo(CO)]	523	50,3
$[M-5CO-H]^+$	[Cp ⁼ Ru(CO) ₂ PHMo]	494	100
$[M-5CO-2H-SiMe_3]^+$	$[((Me_3Si)C_5H_3)Ru(CO)_2PMo]$	420	76,4
$[SiMe_3]^+$	SiMe ₃	73	67,4

 Tabelle 10:
 Ausgewählte EI-massenspektrometrische Daten von

 $[{Cp^{=}(OC)_2Ru}(\mu-PH_2){Mo(CO)_5}]$ (11a) (QT = 120 °C, 70 eV, 1 mA).

3.3.1.1.3 Strukturvorschlag für die Verbindungen

$[{Cp^{R}(OC)_{2}Ru}(\mu-PH_{2}){M(CO)_{5}}] (Cp^{R} = Cp^{=}, Cp^{-})$ (M = Cr, Mo, W) (10a,b, 11a,b, 12a,b)

Aufgrund der sehr ähnlichen spektroskopischen Daten der Verbindungen **10a,b**, **11a,b** und **12a,b** scheint es gerechtfertigt, einen gemeinsamen Strukturvorschlag für alle sechs Komplexe zu postulieren.

Die IR-Spektren zeigen, daß alle sechs Verbindungen einen annähernd identischen Aufbau bezüglich der Carbonylgruppen besitzen sollten.

Gleiches gilt für den Vergleich der Protonenspektren. Diverse Hoch- bzw. Tieffeldshifts (Silyl- bzw. Phosphanidogruppen) sind auf den Einfluß des jeweils komplexierten Metalls zurückzuführen und stehen nicht im Widerspruch zueinander.

Die ³¹P-NMR-Spektren zeigen einen deutlichen Trend. Je leichter das komplexierte Metallfragment ist, desto stärker fällt der Tieffeldshift gegenüber dem Signal der freien Phosphanidogruppe aus. Eine Wolframkomplexierung führt lediglich zu einem Tieffeldshift von ca. 11 ppm von -226 ppm bei **6a,b** auf ca. -215 ppm in **12a,b**. Die Komplexierung mit Mo(CO)₅ in **11a,b** verschiebt das Signal schon um ungefähr 36 ppm zu tieferem Feld. Den stärksten Shift erzeugt das Chromfragment mit ca. 78 ppm auf -148 ppm in **10a** und **b**.

In den Massenspektren aller Verbindungen stimmen die gefundenen Spektren jeweils mit den simulierten überein, die Molekülionenpeaks können in jedem Fall detektiert werden. Die Fragmentierungsmuster aller sechs Verbindungen weisen große Ähnlichkeiten auf, die Decarbonylierung tritt als Hauptzerfallsmuster auf.

Aufgrund der spektroskopischen Befunde kann für die sechs Verbindungen [{ $Cp^{R}(OC)_{2}Ru$ }(μ -PH₂){ $M(CO)_{5}$ }] ($Cp^{R} = Cp^{-}, Cp^{-}$) (M = Cr, Mo, W) (**10a,b, 11a,b, 12a,b**) eine Struktur postuliert werden, bei welcher die Metallfragmente $\{Cr(CO)_5\}$, $\{Mo(CO)_5\}$ und $\{W(CO)_5\}$ an das freie Elektronenpaar der Phosphanidogruppe in **6a,b** koordinieren. Die verbrückende Phosphanidogruppe fungiert jetzt als Drei-Elektronen-Donor.

Abbildung 7: Strukturvorschlag für die Verbindungen 10a,b, 11a,b und 12a,b

3.3.2 Umsetzung von $[Cp^{=}Ru(CO)_2PH_2]$ (6a) mit $[Cp^{*}Re(CO)_2(thf)]$ (14)

Die Umsetzung einer $[Cp*Re(CO)_3]$ hergestellten Lösung aus (13) frisch von $[Cp*Re(CO)_2(thf)]$ (14) mit **6a** in THF ergibt die Produkte $[\{Cp^{=}(OC)_2Ru\}(\mu-PH_2)\{Re(CO)_2Cp^*\}]$ (15) sowie die bereits literaturbekannten Verbindungen [{ $Cp^{*}(OC)_{2}Re$ }₂PH] (**16**) ^[52,53] und [{ $Cp^{*}(OC)_{2}Re$ }₂(μ -CO)] (**17**) ^[53,54]. Von 17 konnte erstmals eine Röntgenstrukturanalyse angefertigt werden.

Gleichung 4: Reaktion von 6a mit [Cp*Re(CO)₂(thf)] (14)

Die säulenchromatographische Aufarbeitung an Kieselgel ergibt mit reinem Petrolether einen violetten Vorlauf von 13. Petrolether/Toluol 25:1 eluiert eine gelbe Fraktion von 15, ein Gemisch von 10:1 gelboranges 17. Verbindung 16 kann in Analogie zur Literatur nur im

Rohspektrum durch sein charakteristisches Dublettsignal im ³¹P-NMR-Spektrum bei $\delta = 510$ ppm mit einer Kopplungskonstanten ¹J_{PH} = 198 Hz nachgewiesen werden.

3.3.2.1 [{ $Cp^{=}(OC)_2Ru$ }(μ -PH₂){ $Re(CO)_2Cp^*$ }] (15)

3.3.2.1.1 Eigenschaften von $[{Cp^{=}(OC)_2Ru}(\mu-PH_2){Re(CO)_2Cp^{*}}]$ (15)

Nach Entfernen des Lösungsmittels verbleibt ein gelber Rückstand von **15**. **15** ist mäßig löslich in Pentan, gut in Toluol und sehr gut in THF. Einkristalle konnten bisher nicht erhalten werden. **15** ist bei RT einige Tage stabil.

3.3.2.1.2 Spektroskopische Eigenschaften von [{Cp⁼(OC)₂Ru}(µ-PH₂){Re(CO)₂Cp*}] (15)

Das **IR-Spektrum** zeigt vier Banden mittlerer Intensität im Bereich terminaler Carbonylgruppen bei $\tilde{v} = 2013$, 1978, 1946 und 1844 cm⁻¹.

Im ¹H-NMR-Spektrum erscheint 15 mit vier Singuletts bei $\delta = 0,32, 1,89, 5,23$ und 5,52 ppm sowie einem Dublett bei $\delta = 3,62$ ppm. Das Integrationsverhältnis liegt bei 18:15:2:2:1. Man erkennt das Signal der Silylgruppen bei $\delta = 0,32$ und das Singulett des Cp*-Liganden bei 1,89 ppm. Im aromatischen Bereich treten die drei Ringprotonen des Cp⁼-Liganden im Verhältnis 2:1 in Resonanz. Das Dublett der PH₂-Gruppe mit einer Kopplungskonstanten von ¹J_{PH} = 291 Hz erscheint bei $\delta = 3,62$ ppm.

Das ³¹**P-NMR-Spektrum** zeigt das Triplett der PH₂-Gruppe bei δ = -180 ppm mit einer Kopplungskonstanten von ¹J_{PH} = 291 Hz als einzige Resonanz.

Im ³¹P{¹H}-NMR-Spektrum ist bei δ = -180 ppm erwartungsgemäß nur noch ein Singulett zu erkennen, welches die PH₂-Gruppe eindeutig identifiziert.

Kern	d [ppm]	Signalaufspaltung	Kopplungskonst. [Hz]	Zuordnung
$^{1}\mathrm{H}$	0,32	s, 18H		SiMe ₃
	1,89	s, 15H		C ₅ Me ₅
	3,62	d, 2H	$^{1}J_{PH}=291$	PH ₂
	5,23	s, 2H		C_5H_3
	5,52	s, 1H		C_5H_3
³¹ P	-180	t, 1P	$^1J_{PH}=291$	PH ₂

Kern	d [ppm]	Signalaufspaltung	Kopplungskonst. [Hz]	Zuordnung
$^{31}P{^{1}H}$	-180	s, 1P		PH ₂

Tabelle 11:NMR-spektroskopische Daten von 15 bei RT in C6D6(1H-NMR: 200,13MHz, 31P-NMR: 81,02 MHz)

3.3.2.1.3 Strukturvorschlag für [{ $Cp^{=}(OC)_2Ru$ }(μ -PH₂){ $Re(CO)_2Cp^*$ }] (15)

Der Vergleich der spektroskopischen Daten mit denen der Komplexierungsaddukte von Gruppe-6-Metallcarbonylen mit **6a** zeigt eindeutige Parallelen, aufgrund derer man einen zu den Verbindungen **10-12** ähnlichen Strukturvorschlag postulieren kann.

Reaktion Bei der von **6a** mit 14 koordiniert das ${Re(CO)_2Cp^*}$ -Fragment das freie Elektronenpaar des Phosphors an und ergibt so $[{Cp^{=}(OC)_2Ru}(\mu-PH_2){Re(CO)_2Cp^*}]$ (15). Aufgrund der sterischen Verhältnisse sollten die beiden Cp-Liganden eine trans-Position zueinander einnehmen, wie sie auch in $[{Cp*(OC)_2Mn}(\mu-PH_2){Fe(CO)_2Cp}]$ gefunden wird ^[55].

Abbildung 8: Strukturvorschlag für [{Cp⁼(OC)₂Ru}(µ-PH₂){Re(CO)₂Cp*}] (15)

3.3.2.2 [{ $Cp^{*}(OC)_{2}Re_{2}(\mu-CO)$] (17)

3.3.2.2.1 Eigenschaften von [{Cp*(OC)₂Re}₂(µ-CO)] (17)

Entfernen des Lösungsmittels ergibt einen gelben, kristallinen Feststoff, welcher sich nur mäßig in unpolaren Solventien, gut in Toluol und sehr gut in Dichlormethan und THF löst. **17** kann an Luft gehandhabt werden. Zur Röntgenstrukturanalyse geeignete Kristalle können durch langsames Abkühlen einer heiß gesättigten Hexan/Toluol-Lösung auf Raumtemperatur erhalten werden. **17** fällt dabei in Form quaderförmiger, gelber Kristalle an.
3.3.2.2.2 Spektroskopische Eigenschaften von [{Cp*(OC)₂Re}₂(µ-CO)] (17)

Das **IR-Spektrum** zeigt vier terminale und eine verbrückende CO-Bande bei $\tilde{v} = 1967$, 1929, 1901, 1877 und 1714 cm⁻¹. Die gefundenen Banden sind identisch mit denen, die *Graham* für diese Verbindung findet ^[54].

Im ¹H-NMR-Spektrum tritt als einziges Signal des Spektrums der Peak der beiden Cp*-Liganden bei $\delta = 1,85$ ppm auf.

3.3.2.2.3 Röntgenstrukturanalyse von [{Cp*(OC)₂Re}₂(µ-CO)] (17)

Abbildung 9 zeigt das Ergebnis der Kristallstrukturanalyse von [$\{Cp^*(OC)_2Re\}_2(\mu-CO)$] (17). Ausgewählte Bindungsabstände und -winkel sowie vergleichende Daten des Cp-Analogons 17a enthält Tabelle 12.

Die Lageparameter, Temperaturfaktoren, Aufnahmebedingungen und Angaben zum vermessenen Kristall sowie alle ermittelten Bindungslängen und -winkel der Kristallstrukturanalyse von **17** sind dem Anhang zu entnehmen.

Abbildung 9: Kristallstruktur von [{Cp*(OC)₂Re}₂(µ-CO)] (17)

Der Molekülstruktur-Plot von 17 zeigt einen zweikernigen 34 VE-Komplex mit *trans*ständigen Cp*-Liganden, einer verbrückenden sowie vier terminalen CO-Gruppen. Die Geometrie von 17 orientiert sich erwartungsgemäß sehr stark an der des lange bekannten Cp-Derivates [{Cp(OC)₂Re}₂(μ -CO)] (17a) ^[56].

Der Re-Re-Abstand im Kristall beträgt 2,9928(4) Å, dies entspricht einer Einfachbindung, wie es hier auch die 18 VE-Regel fordert. Im Vergleich zum Bindungsabstand von 2,957(1) Å in **17a** ist der Abstand geringfügig größer, dies ist wohl auf sterische Effekte des Cp*-Liganden zurückzuführen.

Die verbrückende Carbonylgruppe ist im Unterschied zu **17a** ein wenig aus der Mittelposition zwischen den beiden Rheniumatomen verschoben, wobei für **17a** jedoch wahrscheinlich gemittelte und somit auch weniger genaue Werte vorliegen. Der Winkel an den verbrückenden Carbonylgruppen in beiden Verbindungen ist annähernd gleich, bei den terminalen Gruppen weichen sie zum Teil etwas ab. Die Winkel der terminalen Carbonylgruppen Re-C-O an den Kohlenstoffatomen C2-C5 betragen in **17** zwischen 173,8(5) und 176,0(5)°, die beiden Cp*-Liganden stehen fast parallel zueinander, der Winkel zwischen beiden beträgt 5,6°.

Atombezeichnung	[{Cp*(OC) ₂ Re} ₂ (µ-CO)] (17)	$\frac{[{Cp(OC)_2Re}_2(\mu-CO)]}{(17a)}$	
Bindung	gsabstände [Å] (Standardabweid	chungen)	
Re1-Re2	2,9928(4)	2,957(1)	
Re1-C1	2,094(6)	2,06(2)	
Re2-C1	2,066(6)	2,06(2)	
Re1-Cp ^R _{Zentrum}	1,960		
Re2-Cp ^R _{Zentrum}	1,956		
Bindu	ungswinkel [•] (Standardabweic	chung)	
Re1-C1-Re2	92,0(2)	91,7(8)	
C2-Re1-C3	85,2(2)	85(1)	
C4-Re2-C5	90,0(3)	85(1)	
Cp ^R _{Zentrum} -Re1-Re2	128,1		
Cp ^R _{Zentrum} -Re2-Re1	131,8		
Diederwinkel der Cp*-Liganden			
Cp* vs. Cp*	5,6		

Tabelle 12:Ausgewählte Strukturdaten von $[{Cp*(OC)_2Re}_2(\mu-CO)]$ (17) und $[(C_{+}(OC), P_{+})]$ (=CO)!

 $[\{Cp(OC)_2Re\}_2(\mu\text{-}CO)]\ (17a)$ im direkten Vergleich

3.4 $[{Cp^{-}Ru(CO)_2}_2]$ (4) als Edukt zur Darstellung von P_n-Komplexen

3.4.1 Thermische Umsetzung von $[{Cp=Ru(CO)_2}_2]$ (4) mit weißem Phosphor P₄

Das bei der Darstellung von **1** als Nebenprodukt anfallende bzw. auch gezielt in hoher Ausbeute (siehe Experimenteller Teil) darzustellende Rutheniumdimer **4** kann auch sehr gut als Einstieg in die Phosphorchemie genutzt werden ^[29,38,39].

Die Cothermolyse von $[{Cp^{=}Ru(CO)_{2}}_{2}]$ (4) mit weißem Phosphor in Dekalin bei 190 °C liefert nach 20h Reaktionszeit die Komplexe $[Cp^{=}Ru(\mathbf{h}^{5}-P_{5})]$ (18) und $[{Cp^{=}Ru}_{2}(\mu-\mathbf{h}^{2:2}-P_{2})_{2}]$ (19) in Ausbeuten von 6,0 und 17,2%.

Gleichung 5: Reaktion von [{Cp⁼Ru(CO)₂}₂] (4) mit P₄

Da die Reaktion zum Ende hin schleppend verläuft, wird diese beendet, sobald die Intensität der Carbonylbanden von **4** stark gesunken ist.

Die säulenchromatographische Aufarbeitung an Kieselgel ergibt mit Petrolether eine schwach orange Fraktion von **18** und mit einem Petrolether/Toluol-Gemisch 25:1 eine gelbgrüne Fraktion von **19**. Die anschließend mit Diethylether erhaltene Fraktion enthält keine weiteren phosphorhaltigen Verbindungen, daher wurde auf eine eingehende Untersuchung verzichtet.

3.4.1.1 $[Cp^{=}Ru(h^{5}-P_{5})]$ (18)

3.4.1.1.1 Eigenschaften von [Cp⁼Ru(**h**⁵-P₅)] (18)

Entfernen des Lösungsmittels am Ölpumpenvakuum hinterläßt einen Feststoff von intensiv oranger Farbe. **18** ist luftstabil und kann unter Inertgasatmosphäre über längere Zeit gelagert werden. **18** ist bereits in unpolaren Solventien wie Pentan und Hexan gut löslich. Kristallisation aus heißer, übersättigter Hexanlösung ergibt zur Röntgenstrukturanalyse geeignete, orange Kristalle.

3.4.1.1.2 Spektroskopische Eigenschaften von [Cp⁼Ru(**h**⁵-P₅)] (18)

Das ¹**H-NMR-Spektrum** zeigt die drei Singuletts des Cp⁼-Liganden als einzige Signale. Die beiden Silylgruppen treten bei $\delta = 0,15$ ppm in Resonanz, die drei Ringprotonen erscheinen bei $\delta = 4,34$ und 4,44 ppm. Das Integrationsverhältnis der Peaks beträgt 18:2:1.

Im ³¹P-NMR-Spektrum treten die fünf Phosphoratome erwartungsgemäß als ein Signal auf. Das Singulett des P₅-Rings erscheint bei $\delta = 94,7$ ppm.

Kern	d [ppm]	Signalaufspaltung	Zuordnung
$^{1}\mathrm{H}$	0,15	s, 18H	SiMe ₃
	4,34	s, 2H	C_5H_3
	4,44	s, 1H	C_5H_3
³¹ P	94,7	s, 5P	P ₅

Tabelle 13:NMR-spektroskopische Daten von 18 bei RT in C6D6(¹H-NMR: 400,14MHz, ³¹P-NMR: 161,98 MHz)

Das **EI-Massenspektrum** zeigt den Peak der Trimethylsilylgruppe bei m/z = 73 amu als Basispeak des Spektrums. Der Molekülionenpeak wird bei m/z = 465 amu mit einer relativen Intensität von 62,0% gefunden. Weitere charakteristische Fragmente liefert das Molekül nach Verlust einer Methylgruppe bei m/z = 450 amu sowie nach Verlust einer SiMe₃-Gruppe bei m/z = 392 amu. Das Isotopenmuster des gemessenen Spektrums stimmt mit dem simulierten überein.

Fragment	Zusammensetzung	m/z [amu]	I _{rel} [%]
$[\mathbf{M}]^+$	$[((Me_3Si)_2C_5H_3)Ru(h^5-P_5)]$	465	62,0
$[M-Me]^+$	$[((Me_3Si)(Me_2Si)C_5H_3)Ru(\mathbf{h}^5-P_5)]$	450	56,3
$[M-SiMe_3]^+$	$[((Me_3Si)C_5H_3)Ru(\mathbf{h}^5-P_5)]$	392	13,7
$[SiMe_3]^+$	SiMe ₃	73	100

Tabelle 14:Ausgewählte EI-massenspektrometrische Daten von $[Cp^{=}Ru(\hbar^{-}P_{5})]$ (18) $(QT = 180 \ ^{\circ}C, 70 \ eV, 1 \ mA).$

3.4.1.1.3 Röntgenstrukturanalyse von [Cp⁼Ru(**h**⁵-P₅)] (18)

Abbildung 10 zeigt das Ergebnis der Kristallstrukturanalyse von $[Cp^{=}Ru(h^{5}-P_{5})]$ (18). Ausgewählte Bindungsabstände und -winkel sowie vergleichende Strukturdaten von $[Cp^{*'}M(\eta^{5}-P_{5})]$ (M = Fe, Ru, Os) (20a-c) enthält Tabelle 15 ^[22,23,24,29].

Die Lageparameter, Temperaturfaktoren, Aufnahmebedingungen und Angaben zum vermessenen Kristall sowie alle ermittelten Bindungslängen und -winkel der Kristallstrukturanalyse von **18** sind dem Anhang zu entnehmen.

Abbildung 10: Kristallstruktur von [Cp⁼Ru(**1**5-P₅)] (18)

Im Kristall liegen die beiden P_5 -Ringe P1-P5 und P1A-P5A aufgrund einer Fehlordnungsproblematik im Verhältnis 70:30 vor. Im Folgenden soll nur die Hauptorientierung der Atome P1-P5 diskutiert werden.

Der Molekülstruktur-Plot von **18** zeigt einen Sandwichkomplex mit planarer cyclo-P₅- und Bis-(trimethylsilyl)cyclopentadienyl-Einheit. Beide Einheiten sind jeweils mit einer Haptizität von fünf an das Zentralmetallatom Ruthenium gebunden.

Beide Ringe besitzen mit 0,0012 Å bzw. 0,0019 Å quasi keine Abweichung aus ihren besten Ebenen und stehen annähernd parallel zueinander, ihr Diederwinkel beträgt 3,0°. Jedoch weicht dieser deutlich von dem des Osmiumderivates **20c** ab, wo er nur 0,75° beträgt. Im Vergleich zu **20a-c** ist der M-P₅-Ringabstand in **18** geringfügig vergrößert, er übertrifft auch

Atom- bezeichnung	$[Cp^{=}Ru(h^{5}-P_{5})]$ (18)	$[Cp*'Fe(\eta^{5}-P_{5})] \\ (20a)^{[22,23,24]}$	$[Cp*'Ru(\eta^{5}-P_{5})] \\ (20b)^{[22,23,24]}$	$\frac{[Cp*'Os(\eta^{5}-P_{5})]}{(20c)}$
	В	indungsabstände [[Å]	
M-P _{5-Zentrum}	1,668	1,526	1,652	1,658
M-Cp ^R _{Zentrum}	1,850	1,707	1,850	1,862
P-P gemittelt	2,08	2,096	2,101	2,109
		Bindungswinkel [•	7]	
P _{5-Zen.} -M-Cp ^R _{Zen.}	176,4	179	178,3	178,1
Ebenende	efinition, Abweichu	ing aus den besten	Ebenen [Å], Diede	rwinkel[•]
E1: P1-P5	0,0012			
E2: P1A-P5A	0,0100			
E3: C1-C5	0,0019			
E1 vs. E2	2,7			
E1 vs. E3	3,0			0,75
E2 vs. E3	1,8			

den des Osmiumkomplexes **20c**. Dies läßt sich auf den sterisch aufwendigeren Cp⁼-Liganden zurückführen.

Tabelle 15:Ausgewählte Strukturdaten von [Cp=Ru(\$\$\$Ru(\$\$\$\$P_5)]\$ (18) und [Cp'M(\$\$\$\$\$\$\$\$\$\$\$\$P_5)](20a-c) im direkten Vergleich

Im Vergleich zu **20a-c** treten bei **18** die kürzesten P-P-Bindungslängen im P₅-Ring auf, im Durchschnitt ist diese nur 2,08 Å lang. Dabei beträgt die kürzeste Bindung 2,045(5) Å, die längste 2,116(6) Å. Der Winkel entlang der Bindungsachse $P_{5-Zentrum}$ -Ru-Cp⁼_{Zentrum} beträgt 176,4° und weicht somit etwas mehr aus der Geraden ab als derjenige der vergleichbaren Verbindungen.

Abbildung 11: Projektion von 18 auf den P5-Ring

Abbildung 11 zeigt die fast ekliptische Anordnung des P₅- und Cp⁼-Rings. Die Abweichung aus der ideal ekliptischen Position beträgt lediglich 5,2°. **18** erreicht damit als erste bekannte Verbindung der Pentaphosphametallocene annähernd die ideal ekliptische Konformation der Ringe, wie sie für die Metallocene [Cp*₂M] (M = Ru, Os) (**21a,b**) bekannt ist ^[57,58].

Bezüglich der Elektronenzahl entspricht das Pentaphospharuthenocen **18** der 18 VE-Regel. Man findet gemäß den Elektronenzählregeln (n + 2) = 8 GEP, dies entspricht einer *nido*-pentagonalen Pyramide ^[4,59].

3.4.1.2 [{ $Cp^{=}Ru$ }₂(μ - $h^{2:2}$ - P_{2})₂] (19)

3.4.1.2.1 Eigenschaften von $[{Cp^{=}Ru}_{2}(\mu - \hbar^{2:2} - P_{2})_{2}]$ (19)

Die säulenchromatographische Aufarbeitung ergibt Verbindung **19** als grünbraunen, kurzzeitig luftstabilen Feststoff. Unter Inertgasatmosphäre ist er über einen längeren Zeitraum bei RT lagerbar. **19** ist bereits in Pentan und Hexan gut, in Benzol und Tetrahydrofuran sehr gut löslich. Zur Röntgenstrukturanalyse geeignete Kristalle können aus heißer Hexanlösung durch Abdampfen des Lösungsmittels erhalten werden. **19** kristallisiert in feinen, grünbraunen Nadeln.

3.4.1.2.2 Spektroskopische Eigenschaften von $[{Cp^{=}Ru}_{2}(\mu-\mu^{2:2}-P_{2})_{2}]$ (19)

Im ¹**H-NMR-Spektrum** erkennt man die drei Singuletts des Cp⁼-Liganden bei $\delta = 0,39, 4,80$ und 5,66 ppm im Integrationsverhältnis 18:2:1.

Kern	d [ppm]	Signalaufspaltung	Zuordnung
$^{1}\mathrm{H}$	0,39	s, 36H	SiMe ₃
	4,80	s, 4H	C_5H_3
	5,66	s, 2H	C_5H_3
³¹ P	15,6	s, 4P	2 P ₂

Das ³¹P-NMR-Spektrum zeigt als einzige Resonanz ein Singulett bei $\delta = 15,6$ ppm.

Tabelle 16:NMR-spektroskopischeDatenvon19beiRTin C_6D_6 (¹H-NMR:400,14MHz, ³¹P-NMR:161,98 MHz)

Im **EI-Massenspektrum** findet man bei m/z = 745 amu den Mol- und zugleich Basispeak des Spektrums. Als weitere Fragmentierungen des Moleküls zeigen sich $[M-Me]^+$ bei m/z = 730 amu als auch die Bruchstücke RuCp⁼ und SiMe₃.

Fragment	Zusammensetzung	m/z [amu]	I _{rel} [%]
$[\mathbf{M}]^+$	$[\{((Me_{3}Si)_{2}C_{5}H_{3})Ru\}_{2}(\mu - \mathbf{h}^{2:2} - P_{2})_{2}]$	745	100
$[M-Me]^+$	$[\{((Me_{3}Si)_{2}C_{5}H_{3})Ru\}\{((Me_{2}Si)(Me_{3}Si)C_{5}H_{3})Ru\} \\ (\mu - h^{2:2} - P_{2})_{2}]$	730	15,0
$[RuCp^{=}]^{+}$	$[((Me_3Si)_2C_5H_3)Ru]$	311	34,4
$[SiMe_3]^+$	SiMe ₃	73	73,9

Tabelle 17:Ausgewählte EI-massenspektrome trische Daten von $[{Cp^=Ru}_2(\mu - \mu^{2:2} - P_2)_2]$ (19) (QT = 20 °C, 70 eV, 1 mA).

3.4.1.2.3 Röntgenstrukturanalyse von $[{Cp^{=}Ru}_{2}(\mu - \hbar^{2:2} - P_{2})_{2}]$ (19)

Abbildung 12: Molekülstruktur von [{Cp⁼Ru}₂(µ-**h**^{2:2}-P₂)₂] (19) im Kristall

Abbildung 12 zeigt den Molekülstrukturplot als Ergebnis der Kristallstrukturanalyse von $[{Cp^{=}Ru}_{2}(\mu - \hbar^{2:2}-P_{2})_{2}]$ (19). Ausgewählte Bindungsabstände und -winkel enthält Tabelle 18. Die Lageparameter, Temperaturfaktoren, Aufnahmebedingungen und Angaben zum vermessenen Kristall sowie alle ermittelten Bindungslängen und -winkel der Kristallstrukturanalyse von 19 können dem Anhang entnommen werden.

Atombezeichnung	[{Cp ⁼ Ru} ₂ (μ - $h^{2,2}$ -P ₂) ₂] (19)	Atombezeichnung	[{Cp ⁼ Ru} ₂ (μ - $h^{2,2}$ -P ₂) ₂] (19)	
1	Bindungsabstände [Å] (Standardabweichungen	ı)	
Ru1-Ru2	2,7223(6)	Ru1-P1	2,3350(17)	
P1-P2	2,073(3)	Ru1-P4	2,3500(15)	
P3-P4	2,080(3)	Ru1-P3	2,3909(17)	
P2-P3	2,644(3)	Ru1-P2	2,4084(18)	
P1-P4	3,830	Ru2-P1	2,3454(15)	
$Ru1-Cp^{=}_{Zentrum}$	1,881	Ru2-P4	2,3424(18)	
Ru2-Cp ⁼ Zentrum	1,890	Ru2-P3	2,4029(17)	
P2-P _{4 Zentrum}	1,663	Ru2-P2	2,3990(16)	
P3-P _{4 Zentrum}	1,658	$Ru1-P_{4 Zentrum}$	1,439	
P1-P _{4 Zentrum}	2,086	$Ru2-P_{4 Zentrum}$	1,444	
P4-P _{4 Zentrum}	2,105			
	Bindungswinkel [•] (Standardabweichung)		
Cp ⁼ _{Zentr.} -Ru1-Ru2	168,3	Ru1-P1-Ru2	71,13(5)	
Cp ⁼ _{Zentr.} -Ru2-Ru1	168,5	Ru2-P2-Ru1	68,98(5)	
P1-P2-P3	103,87(9)	Ru1-P3-Ru2	69,20(5)	
P4-P3-P2	104,37(9)	Ru2-P4-Ru1	70,92(5)	
Ebenendefinition, Abweichung aus den besten Ebenen [Å], Diederwinkel[•]				
E1: P1-P4	0,0111	E1 vs. E2	11,0	
E2: C1-C5	0,0119	E1 vs. E3	10,5	
E3: C12-C16	0,0043	E2 vs. E3	21,4	

Tabelle 18:Ausgewählte Strukturdaten von $[{Cp^{=}Ru}_{2}(\mu - \mu^{2:2} - P_{2})_{2}]$ (19)

Der Molekülstrukturplot von [{ $Cp^{=}Ru$ }₂(μ - $h^{2:2}$ -P₂)₂] (19) zeigt einen Pseudo-Tripeldecker, dessen mittleres Deck von zwei separaten μ - $h^{2:2}$ -P₂-Einheiten gebildet wird.

Der Ru-Ru-Abstand beträgt 2,7223(6) Å, die Zentren der Cp⁼-Liganden weisen einen Abstand von 1,881 Å bzw. 1,890 Å zu Ru1 bzw. Ru2 auf. Der Diederwinkel der beiden Cp⁼-Ringe ist

mit 21,4° dem in [{Cp"Fe}₂(μ - $\eta^{4:4}$ -P₄)] (**21**) gefundenen (22,1°) sehr ähnlich ^[41]. Der Längenunterschied der beiden Abstände M-P_{4-Zentrum} beträgt mit 1,439 und 1,444 Å exakt 0,005 Å, wie er so auch in **21** gefunden wird (1,409 und 1,404 Å). Die Ruthenium-Phosphor-Bindungslängen treten in zwei unterschiedlichen Größenordnungen auf, man kann sie in kürzere und längere unterteilen. Für die Distanz zu den Phosphorkernen P1 und P4 werden von beiden Metallzentren Abstände von durchschnittlich 2,343 Å, zu P2 und P3 von 2,400 Å beobachtet. Dies geht einher mit ähnlichen Tendenzen in **21**.

Die Phosphorabstände unterteilen sich in zwei kurze und zwei unterschiedlich lange Abstände. Die beiden kurzen Bindungslängen von P1-P2 und P3-P4 betragen nur 2,073(3) und 2.080(3) Å. Dies ist deutlich kürzer als die im weißen Phosphor P₄ bestimmte P-P-Einfachbindungslänge mit 2,21(2) Å^[60]. Sie liegen im Mittel fast genau auf dem Niveau, wie sie in **18** für die durchschnittlichen Werte der P-P-Bindungen im P₅-Ring gefunden werden. Somit kann den beiden Bindungen eindeutig ein Mehrfachbindungscharakter zugewiesen werden. Der Abstand der Kerne P2-P3 liegt mit 2,664(3) Å deutlich über der von *Ginsberg* diskutierten, mit 2,462 Å sehr langen P-P-Bindung in [(Ph₃P)Cl₂Rh(η^2 -P₄)] (**22**)^[61]. Der P2-P3-Abstand ist sogar noch länger als derjenige, für den *Bertrand* mit 2,634 Å noch eine bindende 2z-1e-P-P-Wechselwirkung diskutiert^[62]. Die Phosphoratome P2 und P3 weisen somit keinen bindenden Charakter auf. Der P1-P4-Abstand ist mit 3,830 Å eindeutig nichtbindend.

Abbildung 13: Seitenansicht auf $[{Cp}^{=}Ru]_2(\mu - \mu^{2:2} - P_2)_2]$ (19)

Nach *Wade-Mingos*^[4,59] errechnet man für **19** 14 Gerüstelektronen bzw. 7 Gerüstelektronenpaare, damit ergibt sich **19** mit (n + 1) = 7 GEP formal als *closo*-Struktur. **19** kann als Produkt zweier über die Ru-Ru-Bindung kantenverknüpfter Ru_2P_2 -Tetraeder betrachtet werden. Dies steht im Einklang mit der gefundenen erforderlichen Zahl von 46 Valenzelektronen.

19 genügt der 18 VE-Regel, diesbezüglich fungiert der Cp⁼-Ligand als Fünfelektronendonor, Ruthenium liefert 8 VE, die beiden Diphosphoreinheiten je 2 und die Metall-Metall-Bindung ein Valenzelektron.

3.4.2 Thermische Umsetzung von $[{Cp}^{=}Ru(CO)_{2}_{2}]$ (4) mit [Cp*Fe(h^{5} -P₅)] (23)

Die Cothermolyse äquimolarer Mengen von $[{Cp^{=}Ru(CO)_2}_2]$ (4) mit $[Cp^{*}Fe(\eta^{5}-P_5)]$ (23) in Dekalin ergibt nach 22h Reaktionszeit die Komplexe 18, 19, 24, 25 und 26.

$$\begin{bmatrix} Cp^{=}Ru(\mathbf{h}^{5} \cdot P_{5}) \end{bmatrix} \\ 18 \\ \begin{bmatrix} (Cp^{=}Ru_{2}(\mu - \mathbf{h}^{2:2} \cdot P_{2})_{2}] \\ 19 \\ \end{bmatrix} \\ \begin{bmatrix} (Cp^{=}Ru_{2}(\mu - \mathbf{h}^{2:2} \cdot P_{2})_{2} \end{bmatrix} \\ 19 \\ \end{bmatrix} \\ \begin{bmatrix} (Cp^{=}Ru_{2}(\mu - \mathbf{h}^{2:2} \cdot P_{2})_{2} \end{bmatrix} \\ 19 \\ \end{bmatrix} \\ \begin{bmatrix} (Cp^{=}Ru_{3}P_{5}) \end{bmatrix} \\ 24 \\ \begin{bmatrix} (Cp^{=}Ru_{3}P_{5}) \end{bmatrix} \\ 24 \\ \begin{bmatrix} (Cp^{=}Ru_{3}P_{5}) \end{bmatrix} \\ 25 \\ \end{bmatrix} \\ \begin{bmatrix} (Cp^{=}Ru_{3}P_{5}) \end{bmatrix}$$

Gleichung 6: Reaktion von $[{Cp=Ru(CO)_2}_2]$ (4) mit $[Cp*Fe(h^5-P_5)]$ (23)

Die Reaktion wird nach 22h analog zur Umsetzung mit weißem Phosphor beendet, obwohl die IR-Carbonylbanden des Eduktes **4** noch deutlich erkennbar sind.

Die chromatographische Aufarbeitung Kieselgel bei -20 °C ergibt mit Petrolether einen Vorlauf von wenigen Milligramm einer sehr schwach gelben Fraktion von **18** vor wenig nicht abreagiertem Edukt **23**. Mit Petrolether/Toluol 20:1 eluiert man eine gelbgrüne Fraktion von **19** in 8,7% Ausbeute bezogen auf **4**. Beide Produkte können in der Reaktion mit P₄ in besserer Ausbeute erhalten werden (siehe Kap. 3.4.1). Bei Erhöhung der Polarität auf 10:1 erhält man eine gelbe Fraktion von [{Cp⁼Ru}₃P₅] (**24**) in 16,8% Ausbeute. PE/Toluol 7,5:1 eluiert eine Mischfraktion von **24** und **25**. Ein PE/Toluol-Gemisch von 5:1 bis 3:1 liefert im

Anschluß daran eine saubere, braune Fraktion von $[{Cp^{=}Ru}_{2}{Cp^{*}Fe}P_{5}]$ (25) in 12,3% Ausbeute. Erhöhung des Toluolanteils auf 1:1 ergibt $[{Cp^{*}Fe}_{2}{Cp^{=}Ru}P_{5}]$ (26) als grüne Fraktion mit einer Ausbeute von 7,5%.

Im Gegensatz zur Reaktion mit [{Cp''Ru(CO)₂}₂] (**4a**) werden auch im Rohspektrum der Reaktion keine Signalgruppen um $\delta = 800$ ppm gefunden, die auf die Anwesenheit eines Dreiecksdodekaeders mit je vier Metall- und Phosphoratomen im Schweratomgerüst hindeuten würden ^[38,39].

3.4.2.1 [{ $Cp^{=}Ru$ }₃ P_5] (24)

3.4.2.1.1 Eigenschaften von [{Cp⁼Ru}₃P₅] (24)

Nach Entfernen des Lösungsmittels verbleibt mit **24** eine braune bis schwarze Verbindung, welche kurzzeitig an Luft handhabbar ist und unter Argonatmosphäre über längere Zeit gelagert werden kann. **24** ist in Hexan gut, in Dichlormethan sehr gut löslich. Kristallisation aus heißer, übersättigter Hexanlösung ergibt bei 8 °C zur Röntgenstrukturanalyse geeignete Kristalle. **24** fällt dabei in Form rautenförmiger, schwarzer Kristalle an.

3.4.2.1.2 Spektroskopische Eigenschaften von [{Cp⁼Ru}₃P₅] (24)

Im ¹H-NMR-Spektrum erkennt man die drei Liganden in unterschiedlicher chemischer Umgebung. Die sechs Silylgruppen treten in drei Singuletts bei $\delta = 0,33, 0,41$ und 0,61 ppm zu je 18 H-Atomen in Resonanz. Die Ringprotonen erscheinen als Singuletts bei $\delta = 4,21, 4,40, 4,66, 4,91$ und 4,97 ppm im Integrationsverhältnis 2:2:1:2:2.

Das ³¹**P-NMR-Spektrum** zeigt in Analogie zum Cp["]-Derivat vier Signalsätze ^[38,39]. Die fünf Phosphoratome treten in vier Signalen bei δ = 366 ppm (d), 335,6 ppm (d), -113 ppm (dpt) und -301 ppm (dd) (Integrationsverhältnis: 2:1:1:1) in Resonanz. Das A₂BMX-Spinsystem weist auf einen spiegelsymmetrischen Aufbau des Schweratomgerüstes von **24** hin.

Die genauen Daten zum Signalmuster und der Kopplungskonstanten können Tabelle 19 entnommen werden, Abbildung 14 zeigt das ³¹P-NMR-Spektrum von **24**. Für die ausführliche Diskussion der ³¹P-NMR-Spektroskopie sei hier wegen der Identität der Daten auf die Ausführungen von *Koch* ^[38,39] und dort zitierter Literatur verwiesen.

Kern	d [ppm]	Signalaufspaltung	Kopplungskonst. [Hz]	Zuordnung
$^{1}\mathrm{H}$	0,33	s, 18H		SiMe ₃
	0,41	s, 18H		SiMe ₃
	0,61	s, 18H		SiMe ₃
	4,21	s, 2H		C_5H_3
	4,40	s, 2H		C_5H_3
	4,66	s, 1H		C_5H_3
	4,91	s, 2H		C_5H_3
	4,97	s, 2H		C_5H_3
³¹ P	-301	dd, 1P	${}^{1}J_{BX} = 319; {}^{1}J_{MX} = 419$	P _X
	-113	dpt, 1P	${}^{1}J_{MX} = 419; {}^{1}J_{AM} = 27$	P_M
	335,6	d, 1P	${}^{1}J_{BX} = 319$	P _B
	366	d, 2P	${}^{1}J_{AM} = 27;$	2 P _A

 Tabelle 19:
 NMR-spektroskopische Daten von 24 bei RT in C₆D₆

(¹H-NMR: 200,13MHz, ³¹P-NMR: 81,01 MHz)

Abbildung 14: ³¹P-NMR-Spektrum von [{Cp⁼Ru}₃P₅] (24) in C₆D₆

Abbildung 15: Kopplungsdiagramm von [{Cp⁼Ru}₃P₅] (24)

Im **EI-Massenspektrum** kann wegen der großen Molmasse von **24** der Molpeak bei 1086,4 amu nicht detektiert werden (siehe Experimenteller Teil). Jedoch findet man bei einer Quellentemperatur von 280 °C das zweifach geladene Molekülion $[M]^{2+}$ bei m/z = 543,2 mit einer relativen Intensität von 9,8%. Weitere Fragmente sind $[M-RuCp^=]^+$ bei m/z = 776 amu (12,6%) und SiMe₃ als Basispeak des Spektrums. Bei niedrigerer Quelltemperatur (180 °C) erhält man mehrere Fragmente, bei welchen das Schweratomgerüst noch komplett ist und die sich durch den Verlust mehrerer Silylgruppen oder Teile derselben auszeichnen (siehe Tabelle 20). Basispeak des Spektrums ist dann $[Cp^=RuSi_2]^+$ bei m/z = 367 amu.

Fragment	Zusammensetzung	m/z [amu]	I _{rel} [%]
$[M-RuCp^{=}]^{+}$	$[{((Me_3Si)_2C_5H_3)Ru}_2P_5]$	776	12,6
$[M]^{2+}$	$[{((Me_3Si)_2C_5H_3)Ru}_3P_5]$	543,2	9,8
$[SiMe_3]^+$	SiMe ₃	73	100
[M-4SiMe ₃ -4Me] ⁺	$[\{((MeSi)_2C_5H_3)Ru\}\{(C_5H_3)Ru\}_2P_5]$	733	45,7
$[M-5SiMe_3-Me]^+$	$[\{((Me_2Si)C_5H_3)Ru\}\{(C_5H_3)Ru\}_2P_5]$	705	22,6
$[M-6SiMe_3]^+$	$[{(C_5H_3)Ru}_3P_5]$	647	19,4
$[RuCp^{=}Si_2]^+$	$[\{((Me_3Si)_2C_5H_3)Ru\}Si_2]$	367	100
$[RuCp^{=}]^{+}$	$[\{((Me_3Si)_2C_5H_3)Ru\}]$	311	55,9

Tabelle 20:Ausgewählte EI-massenspektrometrische Daten von $[{Cp=Ru}_3P_5]$ (24)(QT = 280 °C bzw. 180 °C, 70 eV, 1 mA).

3.4.2.1.3 Röntgenstrukturanalyse von $[{Cp^{=}Ru}_{3}P_{5}]$ (24)

Wie bereits erwähnt, können von **24** zur Röntgenstrukturanalyse taugliche Kristalle erhalten werden. **24** kristallisiert dabei in mehreren Schichten übereinander liegender, Parallelogrammen ähnlicher Elementarzellen, die gegeneinander verdreht sind. Aufgrund dieser stets auftretenden Verzwilligung konnte bisher trotz mehrfacher Messungen kein Datensatz erhalten werden, welcher es erlaubt, konkrete Aussagen über Bindungslängen und -winkel zu treffen. Eine detaillierte Diskussion der Struktur muß daher unterbleiben. Jedoch kann ein Molekülplot angegeben werden, der die Struktur prinzipiell beschreibt. Abbildung 16 zeigt das Schweratomgerüst von **24** aus zwei Blickrichtungen, Abbildung 17 einen Vergleich mit der Struktur des Cp^{''}-Derivates [{Cp^{''}Ru}₃P₅] (**24a**) von *Koch* ^[38,39]. Für eine ausführliche Diskussion sei hier ebenfalls auf diese Literatur verwiesen.

Abbildung 16: Zwei Ansichten (Drehwinkel 90° entlang der Ru1-Ru3-Achse) des Schweratomgerüstes von [{Cp⁼Ru}₃P₅] (24)

Abbildung 17: Vergleich zwischen 24 und 24a^[38,39]

Man erkennt deutlich, daß die beiden Schweratomgerüste nahezu identisch sind. **24** besitzt genau wie **24a** einen Grundkörper mit dreiecksdodekaedrischem Aufbau. Formal setzt sich der Cluster aus zwei Butterfly-Einheiten zusammen. Dies sind zum einen die Strukturteile Ru1P1P2Ru3, zum anderen Ru2P5P4P3, welche um ca. 90° gegeneinander verdreht sind. Das Phosphoratom P3 besetzt wie die drei Metalle eine Ecke des Dreiecksdodekaeders mit der Konnektivität fünf, die restlichen vier P-Atome jeweils Ecken der Konnektivität vier.

Gemäß den *Wade-Mingos*-Elektronenzählregeln $^{[4,59]}$ erhält man für **24** mit (n+1) = 9 GEP die für einen *closo*-Dreiecksdodekaeder zu erwartenden neun Gerüstelektronenpaare bzw. 18 Gerüstelektronen. Die Gesamtelektronenzahl des Clusters beträgt 64 VE.

3.4.2.2 $[{Cp^{=}Ru}_{2}{Cp^{*}Fe}P_{5}]$ (25)

3.4.2.2.1 Eigenschaften von $[{Cp^{=}Ru}_{2}{Cp^{*}Fe}P_{5}]$ (25)

Entfernen des Lösungsmittels hinterläßt einen dunkelgrünen bis schwarzen Rückstand, welcher kurzzeitig an Luft gehandhabt werden kann und unter Argonatmosphäre über längere Zeit lagerbar ist. **25** ist in Hexan gut, in Toluol und Dichlormethan sehr gut löslich. Kristallisation aus heißer Hexanlösung ergibt bei 8 °C zur Röntgenstrukturanalyse geeignete, grünschwarze Kristalle.

3.4.2.2.2 Spektroskopische Eigenschaften von [{Cp⁼Ru}₂{Cp*Fe}P₅] (25)

Im ¹H-NMR-Spektrum erkennt man vier Singuletts bei $\delta = 0,39, 0,54, 0,72$ und 1,49 ppm sowie ein Multiplett im Ringprotonenbereich bei 4,77 ppm im Integrationsverhältnis 9:18:9:15:6. Die drei Resonanzen bei höchstem Feld können eindeutig den vier Silylgruppen der beiden Cp⁼-Liganden, der Peak bei $\delta = 1,49$ ppm dem Cp*-Liganden zugeordnet werden. Das Auftreten von drei Singuletts für die vier Silylgruppen deutet auf eine unsymmetrische Umgebung im Molekül hin. Dabei scheinen zwei Signale zufällig zusammenzufallen. Die sechs Ringprotonen erscheinen im aromatischen Bereich bei 4,77 ppm.

Im ³¹P-NMR-Spektrum sind vier Signalsätze zu erkennen, die denen in 24 sehr ähnlich sind. Die Phosphoratome treten bei Resonanzen von $\delta = 369,5$ ppm (d), 350,5 ppm (d), -98,6 ppm (dpt) und -269 ppm (dd) im Integrationsverhältnis 1:2:1:1 auf. 25 enthält somit ein AB₂MX-Spinsystem. Im Vergleich zu 24 fällt auf, daß P_A und P_B vertauscht sind. Der Ersatz eines Rutheniumatoms durch Eisen im Schweratomgerüst bewirkt einen Tieffeldshift im ³¹P-NMR-Spektrum. Vergleicht man mit [{Cp''Ru}₂{Cp*Fe}P₅] (25a) ^[38,39], so zeigt sich, daß 25 zwei chemisch äquivalente Atome P_B besitzt, während 25a zwei unterschiedliche Atome P_B und P_C enthält.

Kern	d [ppm]	Signalaufspaltung	Kopplungskonst. [Hz]	Zuordnung
$^{1}\mathrm{H}$	0,39	s, 9H		SiMe ₃
	0,54	s, 18H		SiMe ₃
	0,72	s, 9H		SiMe ₃
	1,49	s, 15H		C_5Me_5
	4,77	m, 6H		C_5H_3

Kern	d [ppm]	Signalaufspaltung	Kopplungskonst. [Hz]	Zuordnung
³¹ P	-269,0	dd, 1P	${}^{1}J_{AX} = 327,9; {}^{1}J_{MX} = 419$	P _X
	-98,6	dpt, 1P	${}^{1}J_{MX} = 419; {}^{1}J_{BM} = 36,4$	P _M
	350,5	d, 2P	${}^{1}J_{BM} = 36,4$	2 P _B
	369,5	d, 1P	${}^{1}J_{AX} = 327,9;$	P _A

Tabelle 21:NMR-spektroskopische Daten von 25 bei RT in C6D6(1H-NMR: 200,13MHz, 31P-NMR: 81,01 MHz)

Im **EI-Massenspektrum** kann der Molpeak aufgrund gerätespezifischer Einschränkungen $((m/z)_{max} = 950 \text{ amu})$ nicht gefunden werden, jedoch tritt das Molekülion nach Verlust zweier Methylgruppen als Basispeak des Spektrums bei m/z = 937 amu auf. Als weitere charakteristische Fragmente erkennt man [M-FeCp*]⁺ bei m/z = 776 amu, sowie weitere, durch (Teil-)Verluste der Silylgruppen auftretende Peaks. Auch hier wird der zweifach geladene Molekülpeak bei m/z = 483,7 amu gefunden. Das simulierte Spektrum für [M-2Me]⁺ stimmt mit dem gefundenen überein.

Fragment	Zusammensetzung	m/z [amu]	I _{rel} [%]
$[M-2Me]^+$	$[{((Me_2Si)_2C_5H_3)Ru}{Cp^{=}Ru}{Cp^{*}Fe}P_5]$	937	100
$[M-FeCp^*]^+$	$[\{Cp^{=}Ru\}_{2}P_{5}]$	776	30,4
[M-FeCp*-2SiMe ₃] ⁺	$[{(C_5H_3)Ru}{Cp^=Ru}P_5]$	631	15,6
$[M]^{2+}$	$[{Cp}^{=}Ru}_{2}{Cp}^{*}Fe}P_{5}]$	483,7	33,1

Tabelle 22:Ausgewählte EI-massenspektrometrische Daten von $[{Cp^{=}Ru}_{2}{Cp*Fe}P_{5}]$ (25) (QT = 215 °C, 70 eV, 1 mA).

3.4.2.2.3 Röntgenstrukturanalyse von $[{Cp^{=}Ru}_{2}{Cp^{*}Fe}P_{5}]$ (25)

Darstellungen der Molekülstruktur als Ergebnis der Kristallstrukturanalyse von $[{Cp}^{=}Ru]_{2}{Cp}^{*}Fe}P_{5}]$ (25) und einen Vergleich mit 25a zeigen die folgenden Abbildungen. Ausgewählte Bindungsabstände und -winkel sowie vergleichende Daten des Cp"-Analogons 25a enthält Tabelle 23.

Die Lageparameter, Temperaturfaktoren, Aufnahmebedingungen und Angaben zum vermessenen Kristall sowie alle ermittelten Bindungslängen und -winkel der Kristallstrukturanalyse von **25** sind im Anhang enthalten.

Abbildung 18: Molekülstrukturplot von $[{Cp^{=}Ru}_{2}{Cp^{*}Fe}P_{5}]$ (25)

Abbildung 19: Vergleich der Kristallstrukturen von 25 und 25a^[38,39]

Abbildung 20: Vergleich der Schweratomgerüste von 24, 25 und 25a^[38,39]

Atombezeich- nung	$[\{Cp^{=}Ru\}_{2} \\ \{Cp^{*}Fe\}P_{5}]$	$[{Cp''Ru}_2 {Cp*Fe}_{F_5}]$	Atombezeich- nung	$[\{Cp^{=}Ru\}_{2} \\ \{Cp^{*}Fe\}P_{5}]$	$[{Cp''Ru}_2 {Cp*Fe}_{F_5}]$
	(23)	(25a)		(23)	(25a)
	Bindung	sabstände [Å] (Standardabweic	hungen)	
Ru1-Ru2	2,8625(7)	2,8765(10)	Fe1-P3	2,389(2)	2,393(3)
Ru2-Fe1	2,8136(10)	2,8280(15)	Fe1-P4	2,2263(17)	2,223(3)
Ru1-P1	2,4704(16)	2,472(3)	P1-P2	2,217(2)	2,206(3)
Ru1-P2	2,4316(17)	2,446(3)	P2-P3	2,132(3)	2,129(4)
Ru1-P3	2,4730(18)	2,496(3)	P3-P4	2,510(2)	2,488(3)
Ru1-P5	2,3264(15)	2,322(3)	P3-P5	2,538(2)	2,504(4)
Ru2-P1	2,2946(15)	2,311(3)	P4-P5	2,169(2)	2,174(4)
Ru2-P4	2,3521(17)	2,354(3)	Ru1-Cp ^R _{Zent.}	1,875	1,88
Ru2-P5	2,3461(17)	2,356(3)	Ru2-Cp ^R _{Zent.}	1,876	1,90
Fe1-P1	2,3563(18)	2,370(3)	Fe1-Cp* _{Zent.}	1,739	1,74
Fe1-P2	2,3538(18)	2,345(3)			
	Bindu	ngswinkel [•] (Standardabweic	hung)	
Ru1-Ru2-Fe1	75,53(2)	75,92(3)	P3-Fe1-Ru2	85,20(5)	84,65(8)
P3-Ru1-Ru2	82,66(4)	81,82(6)	P2-P1-Ru2	114,23(8)	113,86(15)
Ru1-P3-Fe1	91,26(7)	91,70(10)	P5-P4-Fe1	106,78(8)	106,83(13)
P4-P5-Ru1	106,57(7)	107,30(14)	P1-P2-P3	100,17(9)	100,53(14)
Ebener	Ebenendefinition, Abweichung aus den besten Ebenen [Å], Diederwinkel[•]				
E1: Ru2P1P2P3	0,0110	0,0079	E2: Ru1P5P4Fe1	0,0002	0,0074
E1 vs. E2	89,9	89,9			

Tabelle 23:Ausgewählte Strukturdaten von [{Cp=Ru}2{Cp*Fe}P5] (25) und

{Cp**@**Ru}₂{Cp*Fe}P₅] (25a) im direkten Vergleich

Zur Verdeutlichung des Molekülaufbaus sind zwei Ansichten wiedergegeben, welche entlang der Ru1-Fe1-Achse um 90° gegeneinander verdreht sind.

Der Molekülstrukturplot zeigt die dreiecksdodekaedrische Gerüststruktur von 25 deutlich. Rein formal setzt sich 25 zu je einem Teil aus den Edukten $[Cp*Fe(\eta^5-P_5)]$ (23) und dem decarbonylierten $[{Cp=Ru(CO)_2}_2]$ (4) zusammen. Im Vergleich zu 25a fällt die nahezu vollständige Identität der beiden Moleküle auf.

Die in einem Dreiecksdodekaeder auftretenden Trapeze, hier Ru2P1P2P3 und Ru1P5P4Fe1, bilden mit 89,9° fast perfekt den zu fordernden Diederwinkel von 90°. Die Abweichung aus den besten Ebenen kann für E1 mit 0,0110 Å als vernachlässigbar, für E2 mit 0,0002 Å sogar als Null angesehen werden. Aufgrund der unsymmetrischen Gerüst- und Ligandstruktur existieren für **25** keine Symmetrieoperationen, welche das Molekül in sich selbst überführen könnten. Ein symmetrisches Dreiecksdodekaeder, wie es das Schweratomgerüst in $[{CpFe}_4(P_2)_2]$ (**27**)^[63] darstellt, genügt hingegen der D_{2d}-Symmetrie.

Tabelle 23 zeigt, daß sich sämtliche Bindungsabstände und -winkel in **25** und **25a** nur minimal unterscheiden. Für die M-M- sowie M-P-Bindungen ergeben sich Differenzen zwischen 0,002 und 0,02 Å, die P-P-Bindungslängen differieren um maximal 0,03 Å. Die angegebenen Winkel weichen bis zu 0,8° voneinander ab.

Der Ru1-Ru2-Abstand entspricht mit 2,86 Å fast dem des $Ru_3(CO)_{12}$ mit 2,85 Å ^[64] und liegt somit ebenso im Erwartungsbereich wie der Ru2-Fe1-Abstand mit 2,81 Å.

Für die Metall-Phosphor-Abstände existieren pro Metallatom zwei unterschiedliche Größenordnungen von Bindungslängen. Für Ru1 findet man drei lange Bindungen zu P1/P3 mit 2,47 Å bzw. zu P2 mit 2,43 Å und eine kurze zu P5 (2,33 Å). Ru2-P1 ist mit 2,29 Å noch kürzer, die Abstände von Ru2 zu P4 und P5 mit ca. 2,35 Å bewegen sich ungefähr auf dem Niveau der "kurzen" Ru1-P5-Bindung. Fe1-P4 ist mit 2,23 Å die kürzeste auftretende Metall-Phosphorbindung, die drei anderen Abstände bewegen sich im Bereich um 2,35 Å (P1/P2) bzw. 2,39 A (P3). Ein Vergleich der Bindungslängen der Ru-P- bzw. der Fe-P-Bindungen zeigt, daß die Abstände der jeweils kurzen bzw. langen M-P-Bindungen um ungefähr 0,1 Å beim Übergang von Eisen zu Ruthenium zunehmen. Dies steht im Einklang mit der Größenordnung des Kovalenzradius der beiden Metalle (Fe: 1,16 Å, Ru: 1,25 Å, nach *Pauling*, PSE).

Auffallend ist die Strukturierung des P₅-Bausteins. Innerhalb des P₅-Liganden existieren drei unterschiedliche Abstandsbereiche. Man findet zwei sehr kurze Bindungen P2-P3 mit 2,13 Å und P4-P5 mit 2,17 Å, die P1-P2-Bindung ist mit 2,217(2) Å so lang wie im P₄-Molekül. Die zwei langen Abstände von P3-P4 mit 2,51 Å und P3-P5 (2,54 Å) sind sogar deutlich länger

als die im Ginsbergkomplex **22**^[61] diskutierten, liegen jedoch noch um etwa 0,1 Å unterhalb der von *Bertrand* postulierten P-P-Bindung mit 2,643 Å ^[62]. Damit kann eine Unterteilung des P₅-Liganden in eine P₃- und P₂-Untereinheit postuliert werden.

Das Dreiecksdodekaedergerüst von **25** wird aufgrund der drei unterschiedlichen Fragmente FeCp*, RuCp⁼ und P3, welche die vier Ecken der Konnektivität fünf besetzen, verzerrt. Andererseits werden die Bindungsabstände und -winkel auch von geometrischen Zwängen beeinflußt, die durch den Erhalt des Polyedergerüstes entstehen. Deutlich wird dies, wenn man die Winkelsumme der vier Ecken des Polyeders mit der Konnektität fünf betrachtet. Man findet die folgenden Winkelsummen: Ru1: 272°, Ru2: 267°, Fe1: 281°, P3: 286°; d.h. je kleiner das Atom ist, desto größer ist die Summe der umgebenden Winkel.

Gemäß den *Wade-Mingos*-Elektronenzählregeln ^[4,59] zählt man für **25** 18 Gerüstelektronen bzw. neun Gerüstelektronenpaare, somit erhält man mit (n + 1) = 9 GEP die für einen *closo*-Dreiecksdodekaeder zu erwartende Elektronenzahl. Die Gesamtelektronenzahl des Clusters beträgt 64 VE.

3.4.2.3 [{Cp*Fe}₂{Cp⁼Ru}P₅] (26)

3.4.2.3.1 Eigenschaften von $[{Cp*Fe}_2{Cp^=Ru}P_5]$ (26)

Verbindung **26** fällt nach Entfernen des Lösungsmittels als grünschwarzer Rückstand an. **26** kann unter Argonatmosphäre über einen längeren Zeitraum ohne erkennbare Zersetzungserscheinungen gelagert werden. Die Verbindung ist in Hexan und Heptan mäßig bis gut, in polaren und aromatischen Solventien sehr gut löslich. Kristallisation aus heißer Heptanlösung ergibt bei 8 °C zur Röntgenstrukturanalyse geeignete Kristalle von dunkelgrüner bis schwarzer Farbe.

3.4.2.3.2 Spektroskopische Eigenschaften von [{Cp*Fe}₂{Cp⁼Ru}P₅] (26)

Im ¹H-NMR-Spektrum von [{Cp*Fe}₂{Cp⁼Ru}P₅] (26) treten die Protonen in Form von fünf Singuletts in Resonanz. Die beiden Silylgruppen des Cp⁼-Liganden erscheinen als zwei überlappende, leicht verbreiterte Signale bei 0,61 bzw. 0,64 ppm mit einer Gesamtintensität von 18. Bei $\delta = 1,54$ ppm erkennt man die 30 äquivalenten Protonen der beiden

Cp*-Liganden, bei einer Verschiebung von $\delta = 4,35$ und 4,55 ppm treten die drei Ringprotonen im Verhältnis 2:1 in Resonanz.

Das ³¹**P-NMR-Spektrum** zeigt für die fünf Phosphoratome im Gegensatz zu [{Cp⁼Ru}₃P₅] (24) (A₂BMX) und [{Cp⁼Ru}₂{Cp*Fe}P₅] (25) (AB₂MX) ein ABCMX-Spinsystem. Die Phosphoratome treten bei Resonanzen von δ = 401,4 ppm (d), 343,2 ppm (dd), 327,3 ppm (dd), -82,5 ppm (dpt) und -236,5 ppm (dd) auf. Man erkennt für die Atome P_A, P_M und P_X einen deutlichen Tieffeldshift im Vergleich zu 24 und 25. Das ABCMX-Spinsystem deutet darauf hin, daß auch in Lösung keine Symmetrie im Molekül vorhanden ist. Hingegen tritt scheinbar eine formale Symmetrie in 25 auf, welche nicht vorhanden sein dürfte. Hier liegt möglicherweise eine zufällige Äquivalenz der Signale P_B und P_C vor.

Kern	d [ppm]	Signalaufspaltung	Kopplungskonst. [Hz]	Zuordnung
$^{1}\mathrm{H}$	0,61	s, 9H		SiMe ₃
	0,64	s, 9H		SiMe ₃
	1,54	s, 30H		C ₅ Me ₅
	4,35	s, 2H		C_5H_3
	4,55	s, 1H		C_5H_3
³¹ P	-236,5	dd, 1P	${}^{1}J_{AX} = 328; {}^{1}J_{MX} = 410$	P _X
	-82,5	dpt, 1P	${}^{1}J_{MX} = 410; {}^{1}J_{BM/CM} = 55$	P _M
	327,3	dd, 1P	${}^{1}J_{BC} = 292; {}^{1}J_{CM} = 55$	P _C
	343,2	dd, 1P	${}^{1}J_{BC} = 292; {}^{1}J_{BM} = 55$	P _B
	401,4	d, 1P	${}^{1}J_{AX} = 328;$	P _A

Tabelle 24:NMR-spektroskopischeDatenvon26beiRTinC_6D_6(¹H-NMR:400,14MHz, ³¹P-NMR:161,98 MHz)

Das **EI-Massenspektrum** zeigt den Molpeak $[M]^+$ bei m/z = 847,6 als Basispeak des Spektrums. Bei m/z = 423,9 ist das zweifach geladenen Molekülion $[M]^{2+}$ mit einer relativen Intensität von 4,7% zu erkennen. Weitere Fragmente sind $[M-Cp^*]^+$ bzw. $[M-FeCp^*]^+$ bei m/z = 712 amu bzw. 657 amu. Das gefundene Isotopenmuster von $[{Cp^*Fe}_2{Cp^=Ru}P_5]$ (**26**) stimmt mit dem simulierten überein.

Fragment	Zusammensetzung	m/z [amu]	I _{rel} [%]
$[\mathbf{M}]^+$	$[{Cp*Fe}_2{Cp=Ru}P_5]$	847,6	100
$[M-Cp^*]^+$	$[{Cp*Fe}{Fe}{Cp^{=}Ru}P_{5}]$	712	3,2
$[M-FeCp^*]^+$	$[{Cp*Fe}{Cp^{=}Ru}P_{5}]$	657	8,6
$[M]^{2+}$	$[{Cp*Fe}_2{Cp=Ru}P_5]$	423,9	4,7
$[Cp^*]^+$	$[Cp^*]^+$	135	4,8
$[SiMe_3]^+$	$[SiMe_3]^+$	73	4,1

Tabelle 25:Ausgewählte EI-massenspektrometrische Daten von [$\{Cp*Fe\}_2\{Cp^=Ru\}P_5$](26) (QT = 20 °C, 70 eV, 1 mA).

3.4.2.3.3 Röntgenstrukturanalyse von [{Cp*Fe}₂{Cp⁼Ru}P₅] (26)

Darstellungen der Molekülstruktur als Ergebnis der Kristallstrukturanalyse von $[{Cp*Fe}_2{Cp^Ru}P_5]$ (26) und einen Vergleich mit 26a zeigen die folgenden Abbildungen. Ausgewählte Bindungsabstände und -winkel sowie vergleichende Daten des Cp"-Analogons $[{Cp*Fe}_2{Cp''Ru}P_5]$ (26a) ^[38,39] enthält Tabelle 26.

Die Lageparameter, Temperaturfaktoren, Aufnahmebedingungen und Angaben zum vermessenen Kristall sowie alle ermittelten Bindungslängen und -winkel der Kristallstrukturanalyse von **26** sind im Anhang enthalten.

Zur Verdeutlichung des Molekülaufbaus sind zwei Ansichten wiedergegeben, welche entlang der Fe1-Fe2-Achse um 90° gegeneinander verdreht sind.

Der Molekülstrukturplot zeigt die dreiecksdodekaedrische Gerüststruktur von 26 deutlich. Rein formal setzt sich 26 zu zwei Teilen aus den Edukten $[Cp*Fe(\eta^5-P_5)]$ (23) unter Verlust einer P₅-Einheit und zu einem Teil aus dem decarbonylierten $[{Cp^=Ru(CO)_2}_2]$ (4) zusammen. In 26 ersetzt eine {FeCp*}-Einheit eine {RuCp⁼}-Einheit aus 25. Im Vergleich mit 26a erkennt man die unterschiedliche Stellung des Cp⁼- bzw. Cp"-Liganden in beiden Verbindungen.

Abbildung 21: Molekülstruktur von [{Cp*Fe}₂{Cp⁼Ru}P₅] (26) im Kristall

Abbildung 22: Vergleich der Kristallstrukturen von 26 und 26a^[38,39]

Abbildung 23: Vergleich der Schweratomgerüste von 26 und 26a^[38,39]

Atombezeich- nung	$[{Cp*Fe}_2 {Cp=Ru}P_5] (26)$	$[{Cp*Fe}_2 {Cp''Ru}P_5] (26a) [38,39] $	Atombezeich- nung	$[{Cp*Fe}_2 \\ {Cp=Ru}P_5] \\ (26)$	$[{Cp*Fe}_2 {Cp''Ru}P_5] (26a) [38,39] $
	Bindung	sabstände [Å] (Standardabweic	chungen)	
Ru1-Fe1	2,8649(16)	2,8299(6)	Fe2-P3	2,396(3)	2,4063(10)
Ru1-Fe2	2,8127(16)	2,8843(6)	Fe2-P4	2,227(3)	2,2367(10)
Ru1-P1	2,289(3)	2,3027(8)	P1-P2	2,193(4)	2,1837(13)
Ru1-P4	2,349(3)	2,3654(9)	P2-P3	2,128(5)	2,1456(13)
Ru1-P5	2,353(3)	2,3532(9)	P3-P4	2,453(4)	2,4524(12)
Fe1-P1	2,389(3)	2,3972(10)	P3-P5	2,459(4)	2,4523(12)
Fe1-P2	2,332(3)	2,3277(9)	P4-P5	2,177(4)	2,1867(13)
Fe1-P3	2,387(3)	2,3936(10)	Ru1-Cp ^R _{Zent.}	1,878	1,89
Fe1-P5	2,241(3)	2,2298(10)	Fe1-Cp ^R _{Zent.}	1,767	1,74
Fe2-P1	2,386(3)	2,3947(10)	Fe2-Cp* _{Zent.}	1,751	1,75
Fe2-P2	2,326(3)	2,3354(9)			
	Bindu	engswinkel [•] (Standardabweic	hung)	
Fe1-Ru1-Fe2	73,74(4)	73,559(14)	P3-Fe2-Ru1	84,56(8)	83,23(3)
P3-Fe1-Ru1	83,57(8)	84,65(2)	P2-P1-Ru1	114,02(15)	114,29(4)
Fe1-P3-Fe2	90,84(11)	90,94(3)	P5-P4-Fe2	105,80(15)	106,58(4)
P4-P5- Fe1	106,16(14)	105,52(4)	P1-P2-P3	100,62(16)	100,76(4)
Ebener	Ebenendefinition, Abweichung aus den besten Ebenen [Å], Diederwinkel[•]				
E1: Ru1P1P2P3	0,0127	0,0107	E2: Fe1P5P4Fe2	0,0070	0,0055
E1 vs. E2	90,5	89,9			

Tabelle 26:Ausgewählte Strukturdaten von $[{Cp*Fe}_2{Cp=Ru}P_5]$ (26) und $[{Cp*Fe}_2{Cp}Ru]P_5]$ (26a) im direkten Vergleich

Der formale Ersatz eines bzw. zweier {RuCp⁼}-Fragmente in **25** bzw. **24** durch das isovalenzelektronische {FeCp*}-Fragment führt zum isostrukturellen Komplex **26**. Man erhält somit für **26** ebenfalls die Gesamtelektronenzahl von 64 VE und (n + 1) = 9 GEP, die Verbindung ist damit *Wade-Mingos*-konform als *closo*-Polyeder mit dreiecks-dodekaedrischem Gerüst zu beschreiben. Die Trapezebenen Ru1P1P2P3 und Fe1P5P4Fe2 stehen annähernd senkrecht aufeinander (90,5°). Die Abweichungen aus ihren besten Ebenen ist zwar geringfügig größer als bei **25** und **26a**, jedoch mit etwa 0,01 Å immer noch vernachlässigbar klein.

Die M-M-Abstände von **26** und **26a** weisen einen deutlichen Unterschied auf, Ru1-Fe1 und Ru1-Fe2 scheinen gerade vertauscht zu sein. Im Cp⁼-Derivat ist erstere mit 2,8649(16) Å die um 0,05 Å längere Bindung, im Cp["]-Komplex hingegen ist es Ru1-Fe2 mit 2,8843(6). Damit einher geht die Veränderung der Bindungswinkel P4-P5-Fe1 (\pm 0,6°) und P5-P4-Fe2 (\pm 0,8°), eine deutlichere Änderung findet man bei P3-Fe1-Ru1 (\pm 1,1°) und bei P3-Fe2-Ru1 (\pm 1,3°). Vergleicht man mit [{Cp⁼Ru}₂{Cp*Fe}P₅] (**25**), so fällt auf, daß die Ru1-Fe2-Bindung in **26** mit 2,8127(16) Å fast exakt die Länge der entsprechenden Bindung (Ru2-Fe1: 2,8136(10) Å) in **25** besitzt. Erstaunlich ist, daß der Einbau des Eisenfragmentes in **26** fast keinen Unterschied in der Bindungslänge zum Ruthenium verursacht, wie Tabelle 27 zeigt. Man findet für Ru1-Ru2 in **25** 2,8625(7) Å und für Fe1-Ru1 in **26** 2,8649(16) Å. Bei den Cp["]-Komplexen **25a** und **26a** findet hingegen ein Tausch der kurzen und langen M-M-Bindungen statt.

Atombezeich- nung	$[{Cp^{=}Ru}_{2} \\ {Cp^{*}Fe}_{P_{5}}] \\ (25)$	[{Cp*Fe} ₂ {Cp=Ru}P ₅] (26)	$[{Cp''Ru}_2 {Cp*Fe}P_5] (25a)$	[{Cp*Fe} ₂ {Cp"Ru}P ₅] (26a)
	Bindungsabstä	inde [Å] (Standard	abweichungen)	
Ru1-Ru2	2,8625(7)		2,8765(10)	
Ru2-Fe1	2,8136(10)		2,8280(15)	
Ru1-Fe1		2,8649(16)		2,8299(6)
Ru1-Fe2		2,8127(16)		2,8843(6)

Tabelle 27:Vergleich der M-M-Bindungslängen in 25, 25a, 26 und 26a.

Der Erhalt der Bindungslängenverhältnisse in $[{Cp*Fe}_2{Cp=Ru}P_5]$ (26) scheint der Grund dafür zu sein, daß auch die Ausrichtung des Cp=-Liganden entsprechend der vergleichbaren in $[{Cp=Ru}_2{Cp*Fe}P_5]$ (25) erhalten bleibt.

Die restlichen Bindungen im Molekül folgen den Trends in **26a** und auch **25**, wenn man dabei die Kovalenzradien der Metallatome berücksichtigt.

Die P₅-Einheit enthält genau wie in den vergleichbaren Molekülen die Unterteilung in kurze und lange Bindungen. P2-P3 und P4-P5 sind mit 2,13 Å und 2,17 Å wieder auffallend kurz, P1-P2 liegt mit 2,19 Å auf Einfachbindungsniveau, und P3-P4 sowie P3-P5 sind mit 2,45 bzw. 2,46 Å sehr lang. Man kann also auch hier eine Separierung in einen P₂- und einen P₃-Baustein postulieren.

Man findet wie in $[{Cp^{=}Ru}_{2}{Cp^{*}Fe}P_{5}]$ (25) den Zusammenhang zwischen Scheitelatomen und umgebenden Winkeln (Ru1: 263°, Fe1: 282°, Fe2: 280°, P3: 286°).

3.5 Photolysereaktionen von $[Cp^{-}Ru(CO)_{2}H](1)$

3.5.1 Photolyse in THF

Bestrahlt man eine Lösung von $[Cp^{=}Ru(CO)_{2}H]$ (1) in THF in einer wassergekühlten Apparatur, so erhält man die Verbindungen 28, 29 und 30.

Gleichung 7: Photolysereaktion von 1 in THF

Man beobachtet mit zunehmender Reaktionsdauer eine Dunkelfärbung der vorher hellgelben Lösung bis fast schwarz, dies geht einher mit der Abnahme der Carbonylbanden des Eduktes und dem Auftauchen neuer, schwacher Banden zuerst im terminalen, dann auch verbrückenden Bereich. Die Dauer der Reaktion beeinträchtigt das Ausbeuteverhältnis. Bei kurzer Reaktionszeit (ca. 60 min) erhält man **28** und **29** noch in geringer Ausbeute neben **30** als Hauptprodukt, eine längere Reaktionsdauer ergibt neben Spuren von **28** und **29** fast nur **30**.

Die Aufarbeitung des Reaktionsgemisches an einer auf -20 °C gekühlten Kieselgelsäule ergibt mit Petrolether/Toluol 20:1 eine violette Fraktion von **28** (max 4,8%) vor einer Mischfraktion von **28** und **29**. Im Anschluß erhält man mit gleicher Polarität **29** in einer Fraktion von intensiv blauer Farbe (max. 8,6%). Bei höherer Polarität (PE/Toluol 5:1 bis 2:1) erhält man **30** als intensiv dunkelviolette Fraktion in maximal 24% Ausbeute.

3.5.1.1 [{ $Cp^{=}(OC)Ru$ }₂(μ -H)₂] (28)

3.5.1.1.1 Eigenschaften von $[{Cp^{=}(OC)Ru}_{2}(\mu-H)_{2}]$ (28)

Entfernen des Lösungsmittels hinterläßt **28** als violetten Rückstand. **28** ist unter Argonatmosphäre bei -18 °C über einen längeren Zeitraum lagerbar. Die Verbindung ist bereits in unpolaren Lösungsmitteln sehr gut löslich. Einkristalle konnten auch durch Abkühlen von heiß gesättigten Lösungen auf -80 °C nicht erhalten werden.

3.5.1.1.2 Spektroskopische Eigenschaften von $[{Cp^{=}(OC)Ru}_{2}(\mu-H)_{2}]$ (28)

Das **IR-Spektrum** zeigt für die beiden Carbonylgruppen eine starke Bande im terminalen Bereich bei $\tilde{v} = 1935 \text{ cm}^{-1}$.

Das ¹**H-NMR-Spektrum** erstreckt sich über einen großen Verschiebungsbereich. Man findet vier Singuletts bei $\delta = -19,46$ ppm, 0,17 ppm, 4,81 ppm und 5,43 ppm im Integrations-verhältnis 1:18:2:1. Sehr stark zu hohem Feld verschoben sind die beiden die Rutheniumkerne verbrückenden hydridischen Wasserstoffatome. Dies steht im Einklang mit bisher gemachten Beobachtungen für wasserstoffverbrückte Metallzentren ^[3,8]. Mit typischem Signalmuster erscheinen die beiden Cp⁼-Liganden, die Silylgruppen bei $\delta = 0,17$ ppm und die Ringprotonen im typischen Bereich bei 4,81 und 5,43 ppm.

Kern	d [ppm]	Signalaufspaltung	Zuordnung
$^{1}\mathrm{H}$	-19,46	s, 2H	μ-Η
	0,17	s, 36H	SiMe ₃
	4,81	s, 4H	C_5H_3
	5,43	s, 2H	C_5H_3

 Tabelle 28:
 ¹H-NMR-spektroskopische Daten von 28 in C₆D₆ (RT, 400,14MHz)

Im **EI-Massenspektrum** findet man den Molpeak $[M]^+$ bei m/z = 679 amu mit einer relativen Intensität von 1,6%. Basispeak des Spektrums ist $[SiMe_2]^+$ bei m/z = 58 amu. Als weitere charakteristische Fragmentierungen erkennt man $[M-CO]^+$ und $[M-CO-2H]^+$ bei 651 und 649 amu.

Fragment	Zusammensetzung	m/z [amu]	I _{rel} [%]
$[\mathbf{M}]^+$	$[{Cp^{=}(OC)Ru}_2(\mu-H)_2]$	679	1,6
$[M-CO]^+$	$[{Cp^{=}(OC)Ru}{Cp^{=}Ru}(\mu-H)_2]$	651	1,6
$[M-CO-2H]^+$	$[{Cp^{=}(OC)Ru}{Cp^{=}Ru}]$	649	3,0
$[SiMe_3]^+$	[SiMe ₃]	73	12,8
$[SiMe_2]^+$	[SiMe ₂]	58	100

Tabelle 29: ausgewählte EI-massenspektrometrische Daten von [{Cp⁼(OC)Ru}₂(μ-H)₂] (28) (QT = 220 °C, 70eV, 1mA)

3.5.1.1.3 Strukturvorschlag für $[{Cp^{=}(OC)Ru}_{2}(\mu-H)_{2}]$ (28)

Die spektroskopischen Daten von $[{Cp^{=}(OC)Ru}_{2}(\mu-H)_{2}]$ (28) erlauben im Zusammenhang mit den Beobachtungen, die bei den bereits bekannten Verbindungen $[{Cp^{*}(OC)Os}_{2}(\mu-H)_{2}]$ (31a) und $[{Cp(OC)Ru}_{2}(\mu-H)_{2}]$ (31b) (siehe Kap. 1.1) ^[3,8] gemacht wurden, einen plausiblen Strukturvorschlag. Für $[{Cp^{=}(OC)Ru}_{2}(\mu-H)_{2}]$ (28) kann man eine Struktur postulieren, wie sie Abbildung 24 zeigt. Bei 28 handelt es sich um einen Zweikernkomplex mit zwei terminalen Carbonylgruppen, Ru-Ru-Doppelbindung und zwei μ -H-Atomen.

Abbildung 24: Strukturvorschlag für [{Cp⁼(OC)Ru}₂(μ-H)₂] (28)

Der Bereich der gefundenen IR-Bande korreliert gut mit denen in **31a,b** ($\tilde{v} = 1888 \text{ cm}^{-1}$, 1901 cm⁻¹), ebenso verhalten sich die Beobachtungen bei den NMR-Spektren. Als charakteristisches Element erweist sich hier das Hochfeldsignal der verbrückenden Wasserstoffatome bei $\delta = -19,46$ ppm, in den Vergleichsverbindungen findet man ebenfalls stark hochfeldverschobene Signale für die verbrückenden H-Atome bei $\delta = -18,60$ ppm und -17,33 ppm. Der Vergleich mit [Cp⁼Ru(CO)₂H] (**1**) zeigt, daß in **28** keine terminalen Wasserstoffatome vorliegen können. Die Röntgenstrukturanalyse von **31a** ^[3] manifestiert

trotz nicht anzugebender Os-H-Bindungslängen diesen Strukturvorschlag und legt die Vermutung nahe, daß **28** in *trans*-Konformation vorliegt.

3.5.1.2 $[{Cp^{-}Ru(CO)}_{2}{Cp^{-}Ru(CO)H}]$ (29)

3.5.1.2.1 Eigenschaften von $[{Cp^{=}Ru(CO)}_{2}{Cp^{=}Ru(CO)H}]$ (29)

Die säulenchromatographische Aufarbeitung ergibt **29** nach Entfernen des Lösungsmittels als tiefblaue Substanz. **29** besitzt eine feste und zugleich schmierig-klebrige Konsistenz, was die Handhabung als Feststoff stark einschränkt bzw. verhindert. **29** ist äußerst luft- und temperaturempfindlich, kann jedoch unter sorgfältigem Luftausschluß bei -18 °C über mehrere Wochen gelagert werden. Zur Röntgenstrukturanalyse geeignete Kristalle konnten nicht erhalten werden, da **29** fast keinerlei Kristallisationsneigung zeigt. Die einzige erfolgreiche Art der Kristallisation der blauen Substanz, langsames, über Wochen andauerndes Abdampfen einer Pentanlösung bei 8 °C, ergibt Kristalle von **34** (siehe Kap. 3.5.2.2), welche durch Umlagerung aus **29** entstanden sind.

3.5.1.2.2 Spektroskopische Eigenschaften von [{Cp⁼Ru(CO)}₂{Cp⁼Ru(CO)H}] (29)

Das **IR-Spektrum** zeigt drei Banden im Bereich terminaler Carbonylgruppen bei $\tilde{v} = 1956$, 1930 und 1915 cm⁻¹ sowie eine schwache Bande bei $\tilde{v} = 2026$ cm⁻¹, welche einer Ru-H-Schwingung zugeordnet werden kann.

Im ¹**H-NMR-Spektrum** zeigen sich drei Singuletts bei $\delta = -13,25$ ppm, 0,37 ppm und 5,16 ppm (breit) im Integrationsverhältnis 1:54:9. Das Signal bei $\delta = -13,25$ ppm kann dem hydridischen Wasserstoffatom zugeordnet werden. Der Bereich um -13 ppm deutet darauf hin, daß es sich wahrscheinlich um ein terminales und nicht um ein verbrückendes H-Atom handelt. Die sechs Silylgruppen erscheinen bei einer typischen Verschiebung von $\delta = 0,37$ ppm, für die 9 Ringprotonen findet man lediglich ein verbreitertes Singulett bei 5,16 ppm.

Kern	d [ppm]	Signalaufspaltung	Zuordnung
$^{1}\mathrm{H}$	-13,25	s, 1H	Ru-H
	0,37	s, 54H	SiMe ₃
	5,16	s, breit, 9H	C_5H_3

 Tabelle 30:
 ¹H-NMR-spektroskopische Daten von 29 in C₆D₆ (RT, 400,14MHz)

Im **EI-Massenspektrum** kann der Molpeak aufgrund gerätespezifischer Einschränkungen $((m/z)_{max} = 950 \text{ amu})$ nicht detektiert werden. Man findet im Bereich zwischen m/z = 950 und 690 amu für beinahe jedes Masse/Ladungsverhältnis Peaks mit relativen Intensitäten von ca. 5-10%. Bei m/z = 678 amu erscheint das Fragment [M-Cp⁼Ru(CO)H]⁺ mit einer relativen Intensität von 17,5%. Bei m/z = 650 amu findet man das Fragment [M-Cp⁼Ru(CO)H-CO]⁺ mit 95,1% relativer Intensität. Als weiteres Fragment findet man letztgenannten Peak nach Verlust von SiMe₃ und einer weiteren Methylgruppe bei m/z = 562 amu. Basispeak ist die SiMe₃-Gruppe.

Das Massenspektrum von **29** besitzt große Ähnlichkeit bzw. ist annähernd identisch mit den Massenspektren der Verbindungen **33** und **34**.

Fragment	Zusammensetzung	m/z [amu]	I _{rel} [%]
$[M-Cp^{=}Ru(CO)H]^{+}$	$[\{Cp^{=}(OC)Ru\}_2]$	678	17,5
$[M-Cp^{=}Ru(CO)H-CO]^{+}$	$[{Cp^{=}(OC)Ru}{Cp^{=}Ru}]$	650	95,1
[M-Cp ⁼ Ru(CO)H-CO -SiMe ₃ Me] ⁺	$[\{Cp^{=}(OC)Ru\} \\ \{Ru(C_5H_3SiMe_2)]$	562	38,2
$[SiMe_3]^+$	$[SiMe_3]^+$	73	100

Tabelle 31:ausgewählte EI-massenspektrometrische Daten von[{Cp=Ru(CO)}2{Cp=Ru(CO)H}] (29) (QT = 180 °C, 70eV, 1mA)

3.5.1.2.3 Strukturvorschlag für [{Cp⁼Ru(CO)}₂{Cp⁼Ru(CO)H}] (29)

Die spektroskopischen Daten von **29**, insbesondere in Verbindung mit dem Massenspektrum, das auffallende Ähnlichkeiten mit denen der röntgenstrukturanalytisch belegten **33** und **34** besitzt (siehe Kap. 3.5.2), lassen folgenden Strukturvorschlag für $[{Cp^{=}Ru(CO)}_{2}{Cp^{=}Ru(CO)H}]$ **(29**) zu:

Bei **29** handelt es sich um einen triangularen metallorganischen Komplex aus drei Rutheniumfragmenten mit je einer terminalen Carbonylgruppe. Ein Rutheniumfragment trägt zusätzlich ein hydridisches Wasserstoffatom.

Abbildung 25: Strukturvorschlag für [{Cp⁼Ru(CO)}₂{Cp⁼Ru(CO)H}] (29)

Der Dreiring ist mit 46 VE elektronendefizient und bildet daher eine Ru-Ru-Doppelbindung aus, um die 18 VE-Regel zu erfüllen. Das Rutheniumatom ohne Doppelbindung erfüllt diese durch den Ein-Elektronen-Donor Wasserstoff. Damit entspricht **29** einem triangularen M₃-Cluster mit 46 VE bei einer M-M-Doppelbindung im Dreiring ^[47]. Gemäß *Wade-Mingos* ^[4,59] erhält man für **29** eine Zahl von 10 Gerüstelektronen bzw. fünf Gerüstelektronenpaaren. Dies entspricht formal mit (n + 2) = 5 GEP einer *nido*-Struktur. Formal kann **29** aus **28** abgeleitet werden, wobei 1/2 [{Cp⁼(OC)Ru}₂(µ-H)₂] **(28)** die beiden

Wasserstoffatome substituiert.

3.5.1.3 $[{Cp^{=}Ru}_{4}(\mu_{3}-CO)_{4}]$ (30)

3.5.1.3.1 Eigenschaften von $[{Cp^{=}Ru}_{4}(\mu_{3}-CO)_{4}]$ (30)

Nach Entfernen des Lösungsmittels verbleibt **30** als intensiv dunkelvioletter Feststoff. **30** ist luft- und sogar wasserstabil und kann unter Inertgasatmosphäre unbegrenzt gelagert werden. Die Verbindung löst sich schon in Pentan und Hexan äußerst bereitwillig, in stark polaren Solventien wie Alkoholen sehr schlecht, in Wasser gar nicht. **30** zeigt, nachdem es einmal gelöst ist, keinerlei Kristallisationstendenz. Zur Röntgenstrukturanalyse taugliche Kristalle konnten bisher weder durch Abdiffusion verschiedener Lösungsmittel noch durch Abkühlen eigentlich gesättigter Lösungen auf -80 °C noch aus Ethanol/Wassergemischen erhalten werden.

3.5.1.3.2 Spektroskopische Eigenschaften von [{Cp⁼Ru}₄(µ₃-CO)₄] (30)

Das **IR-Spektrum** zeigt nur eine einzige Bande von mittlerer Intensität. Sie erscheint bei relativ niedriger Wellenzahl von $\tilde{v} = 1648 \text{ cm}^{-1}$.

Das ¹**H-NMR-Spektrum** zeigt als einzige Protonensignale die der Cp⁼-Liganden bei $\delta = 0,46$ ppm (s) und 5,39 ppm (m).

Kern	d [ppm]	Signalaufspaltung	Zuordnung
$^{1}\mathrm{H}$	0,46	s, 72H	SiMe ₃
	5,39	m, 12H	C_5H_3

 Tabelle 32:
 ¹H-NMR-spektroskopische Daten von 30 in C₆D₆ (RT, 200,13MHz)

Im **EI-Massenspektrum** kann aufgrund gerätespezifischer Einschränkungen $((m/z)_{max} = 950 \text{ amu})$ kein Molpeak detektiert werden. Man erkennt nach Verlust zweier Ligandeinheiten die schrittweise Decarbonylierung von **30**. Weitere signifikante Peaks ergeben die beiden zweifach geladenen Fragmente $[M-SiMe_3]^{2+}$ bei m/z = 640,5 amu und $[M-Cp^{=}-2CO]^{2+}$ bei m/z = 544. Als Basispeak des Spektrums findet man $C_5H_3SiMe_3$.

Fragment	Zusammensetzung	m/z [amu]	I _{rel} [%]
$[M-2Cp^{=}-2CO]^{+}$	$[{Cp^{=}Ru}_{2}{Ru}_{2}(CO)_{2}]$	878	15,3
$[M-2Cp^{=}-3CO]^{+}$	$[{Cp^{=}Ru}_{2}{Ru}_{2}(CO)]$	850	23,0
$[M-2Cp^{=}-4CO]^{+}$	$[{Cp^{=}Ru}_{2}{Ru}_{2}]$	822	14,7
$\left[\text{M-SiMe}_3\right]^{2+}$	$[{Cp^{=}Ru}_{3} {(C_{5}H_{3}SiMe_{3})Ru}(CO)_{4}]$	640,5	22,5
$[M-Cp^{=}-2CO]^{2+}$	$[{Cp^{=}Ru}_{3}{Ru}(CO)_{2}]$	544	23,5
$[RuCp^{=}]^{+}$	[RuCp ⁼]	311	34,0
$[C_5H_3SiMe_3]^+$	[C ₅ H ₃ SiMe ₃]	136	100
$[SiMe_3]^+$	$[SiMe_3]^+$	73	94,0

Tabelle 33:ausgewählte EI-massenspektrometrische Daten von $[{Cp^{=}Ru}_{4}(\mu_{3}-CO)_{4}]$ (30) (QT = 280 °C, 70eV, 1mA)

3.5.1.3.3 Strukturvorschlag für $[{Cp=Ru}_4(\mu_3-CO)_4]$ (30)

In Analogie zu den bereits bekannten [{CpFe}₄(μ_3 -CO)₄] (**32a**) und [{CpRu}₄(μ_3 -CO)₄] (**32b**) ^[20,21] kann anhand der spektroskopischen Daten eine damit einhergehende Struktur für **30** vorgeschlagen werden. Vor allem die IR-Schwingung der CO-Gruppen bei sehr tiefer Wellenzahl liefert einen entscheidenden Hinweis auf die Struktur.

Abbildung 26 zeigt den Strukturvorschlag für **30**. Bei **30** handelt es sich um einen metallorganischen Cluster mit tetraedrischem Ru_4 -Gerüst. Die vier Flächen des Tetraeders werden von je einer Carbonylgruppe dreifach verbrückend überkappt.

Abbildung 26: Strukturvorschlag für [{Cp⁼Ru}₄(µ₃-CO)₄] (30) und dessen cubanartiges Schweratomgerüst

30 besitzt die für einen Cluster mit tetraedrischer Struktur zu fordernden 60 VE. Nach *Wade-Mingos* ^[4,59] ergibt sich **30** als *nido*-trigonal bipyramidale Struktur mit (n + 2) = 6 GEP. Die vier Carbonylgruppen ergänzen das Tetraeder zu einem Cubus, wie Abbildung 26 zeigt. Formal setzt sich **30** aus vier Einheiten des Eduktes **1** nach Verlust von vier CO-Gruppen und vier Wasserstoffatomen zusammen. Diese Verbindung entsteht nur dann, wenn man die Photolyse in koordinierendem Lösungsmittel, hier THF, durchführt. Vermutlich treten während der Reaktion Intermediate auf, welche koordiniertes THF enthalten.

3.5.2 Photolyse in Hexan

Die Photolyse von $[Cp^{=}Ru(CO)_{2}H]$ (1) in Hexan ergibt die Produkte 28, 29, 33, 34 und 35, dabei fallen 28 und 29 nur als Nebenprodukte mit geringer Ausbeute an.

		[{Cp ⁼ (OC)Ru} ₂ (µ-H) ₂] 28	
		[{Cp ⁼ Ru(CO)} ₂ {Cp ⁼ Ru(CO)H}] 29	
[Cp ⁼ Ru(CO) ₂ H] 1	<u>Hexan, hm, 5,5 h</u> Ar od. N ₂ , 5 °C	$[{Cp^{=}Ru(\mu-CO)}_{2}{Cp^{=}Ru(CO)H}]$ 33	(8)
		$[\{(\mu-CO)\{Cp^{=}Ru\}_{2}\{Cp^{=}RuH\}\}(\mu_{3}-CO)_{2}]$ 34	
		braune Substanz 35	

Gleichung 8: Photolysereaktion von [Cp⁼Ru(CO)₂H] (1) in Hexan

Während der Reaktion tritt eine langsame Verfärbung der Reaktionslösung von hellgelb nach fast schwarz ein. Damit einher geht die langsame Abnahme der Eduktbanden und man erkennt das Entstehen neuer Banden relativ schwacher Intensität sowohl im terminalen als auch im verbrückenden Carbonylbereich.

Die säulenchromatographische Aufarbeitung erfolgt an einer auf -25 °C gekühlten Kieselgelsäule. Man eluiert sofort mit PE/Toluol 20:1 und erhält analog zur THF-Bestrahlung als erste Fraktion **28** vor einer blauen Fraktion von **29**. Erhöhung der Polarität auf 14:1 (im weiteren Verlauf dann 10:1) liefert eine intensiv grüne Lösung von $[{Cp}^{=}Ru(\mu-CO)]_{2}{Cp}^{=}Ru(CO)H}]$ (**33**) in 29% Ausbeute. Im Anschluß erhält man in 10,3% Ausbeute mit einem Petrolether/Toluol-Gemisch von 8:1 bis 5:1 eine gelbgrüne Fraktion von $[{(\mu-CO)}{Cp}^{=}Ru}_{2}{Cp}^{=}RuH}{(\mu_{3}-CO)_{2}}]$ (**34**). Ein 1:1-Lösungsmittelgemisch ergibt die unbekannte braune Substanz (**35**) (18,7 Gew.%).

3.5.2.1 [{ $Cp^{=}Ru(\mu - CO)$ }₂{ $Cp^{=}Ru(CO)H$ }] (33)

3.5.2.1.1 Eigenschaften von [{ $Cp^{=}Ru(\mu-CO)$ }₂{ $Cp^{=}Ru(CO)H$ }] (33)

Nach Entfernen des Lösungsmittels im Ölpumpenvakuum verbleibt **33** als dunkelgrüner Feststoff mit schmierig-klebriger Konsistenz wie **29**. **33** ist luftempfindlich, kann aber unter Inertgasatmosphäre bei -18 °C über einen längeren Zeitraum gelagert werden. Die Verbindung ist gut löslich in Pentan und Hexan, sehr gut in Toluol und Dichlormethan. Zur röntgenstrukturanalytischen Untersuchung geeignete Einkristalle können aus heiß gesättigter Hexanlösung erhalten werden. **33** fällt dabei in Form dunkelgrüner, dünner Plättchen an.

3.5.2.1.2 Spektroskopische Eigenschaften von [{Cp⁼Ru(μ-CO)}₂{Cp⁼Ru(CO)H}] (33)

Das **IR-Spektrum** zeigt drei starke Carbonyl- sowie zwei schwache Ru-H-Schwingungsbanden. Zwei Carbonylbanden erscheinen im verbrückenden Bereich bei $\tilde{v} = 1759$ und 1784 cm⁻¹, eine im terminalen bei 1950 cm⁻¹. Die zwei Ru-H-Banden zeigen sich bei $\tilde{v} = 2004$ und 2026 cm⁻¹.

Im ¹**H-NMR-Spektrum** erkennt man fünf Singulettpeaks bei $\delta = -19,90$ ppm, -14,47 ppm, 0,13 ppm, 5,10 ppm und 5,99 ppm im Integrationsverhältnis 0,6:0,4:54:3:6. Die Signale des Cp⁼-Liganden erscheinen im Erwartungsbereich für die Silylgruppen bzw. Ringprotonen. Man findet im Spektrum für ein einziges Hydridwasserstoffatom zwei Peaks im Verhältnis 60:40. Das stark hochfeldverschobene Signal bei $\delta = -19,90$ ppm deutet auf ein symmetrisch verbrückendes H-Atom hin, der Peak bei tieferem Feld auf ein unsymmetrisch verbrückendes. Dieser Trend wird so auch in der Kristallstruktur gefunden.

Kern	d [ppm]	Signalaufspaltung	Zuordnung
$^{1}\mathrm{H}$	-19,90	s, 1H, 60% WS	Ru-H-Ru
	-14,47	s, 1H, 40% WS	Ru-H-Ru
	0,13	s, 54H	SiMe ₃
	5,10	s, 3H	C_5H_3
	5,99	s, 6H	C_5H_3

 Tabelle 34:
 ¹H-NMR-spektroskopische Daten von 33 in C₆D₆ (RT, 200,13MHz)
Im **EI-Massenspektrum** wird aus gerätetechnischen Gründen kein Molpeak gefunden, jedoch kann das Fragment $[M-3CO]^+$ bei m/z = 932 amu mit einer relativen Intensität von 15,8% detektiert werden. Mit etwa gleicher Intensität findet man auch $[M-3CO-2Me]^+$ bei m/z = 902 amu. Als weitere charakteristische Signale erkennt man $[M-Cp^=Ru(CO)H]^+$ und $[M-Cp^=Ru(CO)H-CO]^+$ bei 679 bzw. 651 amu. Schrittweise Demethylierungen zeigt sich im Bereich zwischen 651 und 480 amu. Als Basispeak des Spektrums findet man die SiMe₃-Gruppe.

Fragment	Zusammensetzung	m/z [amu]	I _{rel} [%]
[M-3CO] ⁺	$[{Cp}^{=}Ru}_{2}{Cp}^{=}RuH]$	932	15,8
$[M-3CO-2Me]^+$	$[{Cp^{=}Ru}_{2} {(C_{5}H_{3}(SiMe_{2})_{2})RuH}]$	902	15,2
$[M-Cp^{=}Ru(CO)H]^{+}$	$[\{Cp^{=}(OC)Ru\}_2]$	679	8,7
[M-Cp ⁼ Ru(CO)H-CO] ⁺	$O]^{+} \qquad [{Cp^{=}(OC)Ru}{Cp^{=}Ru}]$		59,2
[M-Cp ⁼ Ru(CO)H-CO- 10Me] ⁺	$[\{(C_5H_3Si_2)(OC)Ru\} \\ \{(C_5H_3(SiMe_2)Si)Ru\}]$	501	8,1
$[Cp^{=}Ru]^{+}$	[Cp ⁼ Ru]	311	8,3
$[SiMe_3]^+$	[SiMe ₃]	73	100

Tabelle 35:ausgewählte EI-massenspektrometrische Daten von $[{Cp}^{=}Ru(\mu-CO)]_{2}{Cp}^{=}Ru(CO)H}]$ (33) (QT = 220 °C, 70 eV, 1 mA)

3.5.2.1.3 Röntgenstrukturanalyse von [{Cp⁼Ru(μ-CO)}₂{Cp⁼Ru(CO)H}] (33)

Die Abbildungen 27 und 28 zeigen den Molekülstrukturplot von $[{Cp^{Ru}(\mu-CO)}_{2}{Cp^{Ru}(CO)H}]$ (33) als Ergebnis der Kristallstrukturanalyse. Zur Verdeutlichung der Koordinationssphären an den Rutheniumatomen von 33 wurde für Abbildung 28 eine Projektionsrichtung parallel zur Ru₃-Ebene gewählt. Ausgewählte Bindungsabstände und -winkel enthält Tabelle 36.

Die Lageparameter, Temperaturfaktoren, Aufnahmebedingungen und Angaben zum vermessenen Kristall sowie alle ermittelten Bindungslängen und -winkel der Kristallstrukturanalyse von **33** können dem Anhang entnommen werden.

Abbildung 27: Molekülstrukturplot von [{Cp⁼Ru(μ -CO)}₂{Cp⁼Ru(CO)H}] (33)

Abbildung 28: Projektion entlang der Ru₃-Ebene von 33

Atombezeichnung	$[{Cp^{=}Ru(\mu-CO)}_{2} \\ {Cp^{=}Ru(CO)H}] \\ (33)$	Atombezeichnung	$[{Cp^{=}Ru(\mu-CO)}_{2} \\ {Cp^{=}Ru(CO)H}] \\ (33)$	
i	Bindungsabstände [Å] ((Standardabweichunger	ı)	
Ru1-Ru2	2,6467(6)	Ru1-H1a	1,639	
Ru1-Ru3	2,9560(6)	Ru3-H1a	1,615	
Ru2-Ru3	3,0042(6)	Ru2-H1b	1,783	
Ru1-C1	2,026(5)	Ru3-H1b	1,606	
Ru1-C2	2,011(5)	$Ru1-Cp^{=}_{Zent.}$	1,878	
Ru2-C1	2,014(5)	$Ru2-Cp^{=}_{Zent.}$	1,872	
Ru2-C2	2,016(5)	$Ru3-Cp^{=}_{Zent.}$	1,885	
Ru3-C3	1,815(6)			
	Bindungswinkel [•] (Standardabweichung)		
Ru2-Ru1-Ru3	64,574(16)	Cp ⁼ _{2-Zent} -Ru2-Ru1	151,8	
Ru1-Ru2-Ru3	62,706(16)	Cp ⁼ _{2-Zent.} -Ru2-Ru3	145,4	
Ru1-Ru3-Ru2	52,720(13)	Cp ⁼ _{3-Zent} -Ru3-Ru1	125,3	
Cp ⁼ _{1-Zent} -Ru1-Ru2	152,9	Cp ⁼ _{3-Zent.} -Ru3-Ru2	137,4	
Cp ⁼ _{1-Zent.} -Ru1-Ru3	142,4			
Ebenendefinition, Abweichung aus den besten Ebenen [Å], Diederwinkel[•]				
E1: Ru1Ru2Ru3	0,0000	E3: Cp ₂	0,0013	
E2: Cp ₁	0,0074	E4: Cp ₃	0,0025	
E1 vs. E2	90,3	E1 vs. E4	129,1	
E1 vs. E3	88,3			

Tabelle 36:	Ausgewählte Strukturdaten vor	a [{C	$p^{=}Ru(\mu - CO)$	$p^{=}Ru(CO)H$] (33)
I do chie e ot	The set and a set and a set and a set and a set	-10		

Der Kristallstrukturplot von [{Cp⁼Ru(μ -CO)}₂{Cp⁼Ru(CO)H}] (**33**) zeigt einen triangularen, metallorganischen Ru₃-Cluster mit einer Ru-Ru-Doppelbindung, zwei verbrückenden und einer terminalen Carbonylgruppe sowie einem fehlgeordneten Wasserstoffatom. Das Wasserstoffatom kann im Molekül, ausgehend von Ru3, sowohl in Richtung von Ru1 (H1a) als auch in Richtung von Ru2 (H1b) angeordnet sein. Die Wahrscheinlichkeit hierfür beträgt ca. 60:40, wobei H1a mit Bindungsabständen von 1,639 und 1,615 Å annähernd symmetrisch verbrückend vorliegt, H1b hingegen mit 1,783 und 1,606 Å unsymmetrisch verbrückt. Dies steht im Einklang mit den Beobachtungen, die man im ¹H-NMR-Spektrum macht. H1a erscheint bei $\delta = -19,90$ ppm, H1b bei -14,47 ppm. **33** ist mit 46 VE eine elektronendefiziente Verbindung, die 18 VE-Regel wird durch die Ausbildung einer Doppelbindung zwischen den beiden carbonylverbrückten Rutheniumatomen erreicht. Damit entspricht **33** dem Modell der "Magischen Zahlen" ^[47] für einen Metalldreiring mit einer Doppelbindung. Gemäß *Wade-Mingos* ^[4,59] erhält man für **33** eine Zahl von 10 Gerüstelektronen bzw. fünf Gerüstelektronenpaaren. Dies entspricht mit (n + 2) = 5 GEP einer *nido*-Struktur.

Die Ru1-Ru2-Bindung liegt mit 2,6467(6) Å genau zwischen den Werten, die für eine Ru-Ru-Dreifachbindung in [{Cp*Ru}₂(μ -H)₄] (**36**) ^[5] mit 2,463(1) Å und der Einfachbindung in Ru₃(CO)₁₂ mit 2,85 Å gefunden werden. Die Bindungslänge korreliert somit sehr gut mit einer Ru-Ru-Doppelbindung, wie sie aufgrund der 18 VE-Regel zu fordern ist. Die M-M-Bindungslängen Ru1-Ru3 und Ru2-Ru3 mit 2,9560(6) bzw. 3,0042(6) Å sind im Vergleich zur Ru-Ru-Einfachbindung in Ru₃(CO)₁₂ mit 2,85 Å^[64] deutlich verlängert, was wahrscheinlich auf die sterischen Gegebenheiten zurückzuführen ist. Eine ähnliche Å Bindungslänge mit 2,945(1)wird für die Ru-Ru-Einfachbindung in $[{Cp*Ru}_2(\mu-PPh_2)(\mu-H)(\mu-\eta^{2:2}-C_6H_6)]$ (37) ^[65] gefunden. Die Ru2-Ru3-Bindung mit einer Länge von über 3 Å setzt sich davon aber nochmals ab.

Man erkennt, daß die verbrückenden Carbonylgruppen mit Ru-C-Abständen von etwa 2,01 Å fast symmetrisch angeordnet sind.

Abbildung 28 zeigt die räumliche Anordnung der Liganden an den Metallzentren. Man erkennt die orthogonale Anordnung der Cp⁼-Liganden an Ru1 (E1/E2: 90,3°) und Ru2 (E1/E3: 88,3°). An Ru3 findet man aufgrund der zusätzlich vorliegenden terminalen Carbonylgruppe einen Neigungswinkel E1/E4 von 129,1°, d. h. der Ligand ist um 39,1° aus der Ru₃-Ebene abgeneigt.

3.5.2.2 $[{(\mu-CO)}{Cp^{=}Ru}_{2}{Cp^{=}RuH}](\mu_{3}-CO)_{2}](34)$

3.5.2.2.1 Eigenschaften von $[{(\mu-CO)}(Cp^{-}Ru)_{2}(Cp^{-}RuH)](\mu_{3}-CO)_{2}]$ (34)

34 fällt nach Entfernen des Lösungsmittels als mikrokristalliner Feststoff von brauner bis schwarzer Farbe an. Die Verbindung ist kurzzeitig luftstabil und kann unter Inertgasatmosphäre über einen längeren Zeitraum gelagert werden. **34** ist in Pentan und Hexan mäßig bis gut, in THF sehr gut löslich. **34** entsteht immer beim Kristallisationsversuch von **29**, weiterhin auch beim Versuch der Kristallisation von **33** bei Raumtemperatur. Zur

Röntgenstrukturanalyse geeignete Einkristalle können aus gesättigter Hexanlösung bei 8 °C erhalten werden.

3.5.2.2.2 Spektroskopische Eigenschaften von [{(µ-CO){Cp⁼Ru}₂{Cp⁼RuH}}(µ₃-CO)₂] (34)

Das **IR-Spektrum** zeigt zwei Banden im Bereich verbrückender Carbonylgruppen bei $\tilde{v} = 1821 \text{ cm}^{-1} \text{ und } 1793 \text{ cm}^{-1}.$

Im ¹H-NMR-Spektrum von 34 erkennt man drei Singuletts bei $\delta = -8,99$ ppm, 0,36 ppm und 5,11 ppm (breit) im Integrationsverhältnis 1:54:9. Das Signal im Hochfeldbereich bei $\delta = -8,99$ ppm deutet auf die Anwesenheit eines hydridischen, terminal gebundenen Wasserstoffs an einem Rutheniumatom hin. Die Signale des Cp⁼-Liganden erscheinen im typischen Bereich.

Kern	d [ppm]	Signalaufspaltung	Zuordnung
$^{1}\mathrm{H}$	-8,99	s, 1H	Ru-H
	0,36	s, 54H	SiMe ₃
	5,11	s, 9H	C_5H_3

 Tabelle 37:
 ¹H-NMR-spektroskopische Daten von 34 bei RT in C₆D₆ (200,13 MHz)

Im **EI-Massenspektrum** wird wegen gerätespezifischer Einschränkungen $((m/z)_{max} = 950 \text{ amu})$ kein Molpeak gefunden. Als charakteristische Signale erkennt man $[M-Cp^{=}Ru(CO)H]^{+}$ und $[M-Cp^{=}Ru(CO)H-CO]^{+}$ bei 679 bzw. 651 amu. Letztgenanntes Fragment ist zugleich Basispeak des Spektrums. Bei m/z = 560 amu erscheint das Fragment des Basispeaks nach dem weiteren Verlust von SiMe₃ und einer Methylgruppe mit einer relativen Intensität von 43,3%. Die schrittweisen Demethylierungen erkennt man im Bereich zwischen 651 und 480 amu. Das Spektrum ist annähernd identisch mit denen von **29** und **33**.

Fragment	Zusammensetzung	m/z [amu]	I _{rel} [%]
$[M-Cp^{=}Ru(CO)H]^{+}$	$[\{Cp^{=}(OC)Ru\}_2]$	679	27,5
$[M-Cp^{=}Ru(CO)H-CO]^{+}$	$[{Cp^{=}(OC)Ru}{Cp^{=}Ru}]$	651	100
[M-Cp ⁼ Ru(CO)H-CO- SiMe ₃ Me] ⁺	$[{Cp^{=}(OC)Ru} \{(C_5H_3SiMe_2)Ru\}]$	560	43,3
$[Cp^{=}Ru]^{+}$	[Cp ⁼ Ru]	311	23,1
$[SiMe_3]^+$	[SiMe ₃]	73	94,1

 Tabelle 38:
 ausgewählte EI-massenspektrometrische Daten von

 Image: State of the s

 $[\{(\mu-CO)\{Cp^{=}Ru\}_{2}\{Cp^{=}RuH\}\}(\mu_{3}-CO)_{2}] (34) (QT = 180 \ ^{\circ}C, 70 \ eV, 1 \ mA)$

3.5.2.2.3 Röntgenstrukturanalyse von $[\{(\mu-CO)\{Cp^{=}Ru\}_{2}\{Cp^{=}RuH\}\}(\mu_{3}-CO)_{2}] (34)$

Abbildung 29 zeigt die Molekülstruktur von $[{(\mu-CO){Cp^{Ru}_{2}{Cp^{RuH}}(\mu_{3}-CO)_{2}}]$ (34) als Ergebnis der Kristallstrukturanalyse. Abbildung 30 zeigt die Anordnung von zwei unabhängigen Molekülen in einer Elementarzelle. Ausgewählte Bindungsabstände und -winkel enthält Tabelle 39, einen Vergleich der M-M-Abstände und -winkel von 33 und 34 enthält Tabelle 40.

Die Lageparameter, Temperaturfaktoren, Aufnahmebedingungen und Angaben zum vermessenen Kristall sowie alle ermittelten Bindungslängen und -winkel der Kristallstrukturanalyse von **34** können dem Anhang entnommen werden.

Im Molekülstrukturplot von **34** erkennt man eine trigonal bipyramidale Struktur mit zwei dreifach verbrückenden Carbonylgruppen als Spitzen der Pyramiden und einem triangularen Ru₃-Baustein, bei welchem Ru1 und Ru2 zusätzlich carbonylverbrückt sind. Das hydridische Wasserstoffatom an Ru3 konnte bei der Röntgenstrukturanalyse nicht genau lokalisiert werden und ist daher im Plot nicht abgebildet.

Abbildung 29: Molekülstruktur von 34 im Kristall

Abbildung 30: immer wiederkehrende Anordnung zweier unabhängiger Moleküle (ohne Inversionszentrum) von 34 in der Elementarzelle

Atombezeichnung	$[\{(\mu\text{-CO})\{Cp^{=}Ru\}_{2} \\ \{Cp^{=}RuH\}\}(\mu_{3}\text{-CO})_{2}] \\ (\textbf{34})$	Atombezeichnung	$[\{(\mu-CO)\{Cp^{=}Ru\}_{2} \\ \{Cp^{=}RuH\}\}(\mu_{3}-CO)_{2}] \\ (34)$	
	Bindungsabstände [Å] (Standardabweichunger	n)	
Ru1-Ru2	2,638(3)	Ru2-C2	2,437(13)	
Ru1-Ru3	2,751(3)	Ru2-C3	2,494(15)	
Ru2-Ru3	2,823(3)	Ru3-C2	2,009(14)	
Ru1-C1	2,00(2)	Ru3-C3	2,059(15)	
Ru1-C2	2,079(13)	$Ru1-Cp^{=}_{Zent.}$	1,889	
Ru1-C3	2,064(16)	$Ru2-Cp^{=}_{Zent.}$	1,828	
Ru2-C1	2,02(2)	$Ru3-Cp^{=}_{Zent.}$	1,898	
	Bindungswinkel [•] (,	Standardabweichung)		
Ru2-Ru1-Ru3	63,14(8)	Cp ⁼ _{2-Zent} -Ru2-Ru1	157,4	
Ru1-Ru2-Ru3	60,39(7)	Cp ⁼ _{2-Zent} -Ru2-Ru3	142,2	
Ru1-Ru3-Ru2	56,47(7)	Cp ⁼ _{3-Zent.} -Ru3-Ru1	145,6	
Cp ⁼ _{1-Zent} -Ru1-Ru2	162,7	Cp ⁼ _{3-Zent.} -Ru3-Ru2	157,9	
Cp ⁼ _{1-Zent} -Ru1-Ru3	134,1			
Ebenendefinit	Ebenendefinition, Abweichung aus den besten Ebenen [Å], Diederwinkel[•]			
E1: Ru1Ru2Ru3	0,0000	E3: Cp ₂	0,0288	
E2: Cp ₁	0,0058	E4: Cp ₃	0,0449	
E1 vs. E2	89,5	E1 vs. E4	90,0	
E1 vs. E3	90,2			

Tabelle 39: Ausgewählte Strukturdaten von [${(\mu-CO)}{Cp=Ru}_{2}{Cp=RuH}{(\mu_{3}-CO)_{2}}$ (34)

Atombezeichnung	$[{(\mu-CO){Cp^{=}Ru}_{2}} {Cp^{=}RuH}}(\mu_{3}-CO)_{2}]$ (34)	$[{Cp^{=}Ru(\mu-CO)}_{2} \\ {Cp^{=}Ru(CO)H}] \\ (33)$	
Bindungsabstände [Å] (Standardabweichungen)			
Ru1-Ru2	2,638(3)	2,6467(6)	
Ru1-Ru3	2,751(3)	2,9560(6)	
Ru2-Ru3	2,823(3)	3,0042(6)	

Bindungswinkel [•] (Standardabweichung)				
Ru2-Ru1-Ru3	63,14(8)	64,574(16)		
Ru1-Ru2-Ru3	60,39(7)	62,706(16)		
Ru1-Ru3-Ru2	56,47(7)	52,720(13)		

 Tabelle 40:
 Vergleich ausgewählter Strukturdaten von 33 und 34

Ebenso wie **33** ist **34** mit 46 VE eine elektronendefiziente Verbindung, die 18 VE-Regel wird auch hier durch Ausbildung einer Doppelbindung zwischen Ru1 und Ru2 erreicht, wie am Bindungsabstand von 2,638(3) Å zu erkennen ist. Auch **34** entspricht somit einem Dreiringcluster mit einer M-M-Doppelbindung im Metalldreiring und 46 VE^[47].

Vergleicht man die weiteren M-M-Bindungen in **33** und **34**, so fallen die mit 2,751(3) Å und 2,823(3) Å verkürzten Bindungen von Ru1-Ru3 und Ru2-Ru3 in **34** gegenüber denjenigen in **33** mit 2,9560(6) Å und 3,0042(6) Å auf. Die Bindungslänge von Ru1-Ru3 liegt damit noch deutlich unterhalb der Ru-Ru-Einfachbindungslänge von 2,85 Å in $Ru_3(CO)_{12}$ ^[64]

Es zeigt sich deutlich, daß die beiden μ_3 -CO-Gruppen die drei Rutheniumatome unsymmetrisch verbrücken. Man findet für die Bindungslängen von Ru1 zu C2/C3 und Ru3 zu C2/C3 durchschnittlich 2,05 Å, die Bindungen zu Ru2 sind im Schnitt mit 2,46 Å um 0,4 Å länger. Dies steht im Einklang mit den Beobachtungen, die *Stone* in [{Cp*Rh}₂Pt(μ -CO)₂(CO)(PPh₃)] (**38**) ^[11] sowie *Jones* und *Bergman* ^[10] in [Cp₂Rh₃(CO)₄]⁻ (**39**) gemacht haben. Sie finden ebenfalls zwei unterschiedliche Größenordnungen für die Metall-Kohlenstoff-Bindungen, die im selben Bereich liegen wie in **34**. In **38** werden die Rh-C-Abstände mit ca. 2,00 Å und die Pt-C-Abstände mit etwa 2,5 Å gefunden, in **39** sind dies 2,01 Å und 2,40 Å für die Rhodium-Kohlenstoff-Bindungen. Es scheint daher geboten, auch in **34** von Carbonylgruppen auszugehen, welche "semi-triply-bridging" vorliegen.

Die gefundenen Winkel innerhalb des Dreirings unterscheiden sich zum Teil deutlich von denen in **33**. Der Winkel an Ru3 ist in **34** um $3,75^{\circ}$ größer als der vergleichbare in **33**, dies steht im Einklang mit den geringeren Bindungsabständen zu Ru1 und Ru2. Entsprechend kleiner sind die Winkel an Ru1 (1,43°) und Ru2 (2,31°). Die Diederwinkel der Ebenen E1 bis E4 von 89,5° bis 90,2° (siehe Tabelle 39) zeigen, daß die Liganden orthogonal zum Metalldreiring stehen.

Erwähnenswert ist die seltene Anordnung zweier unabhängiger Moleküle ohne Inversionszentrum innerhalb einer Elementarzelle der Raumgruppe P1, wie Abbildung 30 zeigt. Man erkennt, daß die μ -CO-Gruppe immer so gerichtet ist, daß sie nicht auf diejenige des zweiten Moleküls zeigt. Somit liegt in **34** kein Inversionszentrum vor.

Eine Fehlordnung mit zwei unterschiedlichen Positionen der μ -CO-Gruppe und der damit verbundenen Existenz eines Inversionszentrums ist nicht möglich, da sich sonst die Sauerstoffatome der fehlgeordneten Carbonylgruppen zu nahe kommen würden. Ihr Abstand würde innerhalb des Van-der-Waals-Radius der Atome liegen.

3.5.2.3 Unbekannte Verbindung 35

3.5.2.3.1 Eigenschaften von 35

Nach Entfernen des Lösungsmittels verbleibt ein brauner Rückstand, der kurzzeitig an Luft stabil ist und in Argonatmosphäre über längere Zeit gelagert werden kann. **35** ist in Hexan mäßig bis gut, in polaren Solventien sehr gut löslich. Einkristalle konnten bisher weder durch Abdiffusion verschiedener Lösungsmittel noch durch Abkühlen gesättigter Lösungen auf tiefe Temperaturen erhalten werden.

3.5.2.3.2 Spektroskopische Eigenschaften von 35

Im **IR-Spektrum** zeigen sich zwei schwache Banden bei $\tilde{v} = 2006$ und 1961 cm⁻¹ sowie drei sehr starke Banden im verbrückenden Bereich bei 1820, 1774 und 1651 cm⁻¹. Das Absorptionsmuster von **35** deutet darauf hin, daß mindestens zwei zweifach- sowie eine dreifach verbrückende Carbonylgruppe vorliegen sollten.

Das ¹H-NMR-Spektrum von 35 zeigt ein aufgrund des eingesetzten Eduktes ungewöhnliches Signalmuster. Man erkennt Peaks bei $\delta = 0,39$ ppm (s), 1,31 ppm (s, breit), 1,70 ppm (s, breit) und 1,83 ppm (s, breit) sowie sehr schwache Resonanzen im Ringprotonenbereich um etwa 5,0 ppm. Die Signale besitzen ein in etwa gleiches Integrationsverhältnis. Das Singulett bei 0,39 ppm kann einer Silylgruppe zugeordnet werden. Für die weiteren, sehr breiten Peaks kann keine schlüssige Erklärung gefunden werden, sie deuten aufgrund ihrer breiten Struktur auf ein paramagnetisches Produkt hin.

Das **EI-Massenspektrum** zeigt, daß **35** eine Molmasse von mehr als 950 amu besitzt. Es werden für beinahe jedes m/z-Verhältnis Peaks gefunden. Mit Sicherheit kann lediglich das Fragment $[Cp^{=}Ru]^{+}$ bei m/z = 311 amu zugeordnet werden. Aus dem weiteren Zerfallsmuster können keine weiterführenden Rückschlüsse auf die Struktur von **35** gezogen werden.

3.5.2.3.3 Strukturvorschlag für 35

Aufgrund der unschlüssigen spektroskopischen Daten kann für **35** kein vernünftiger Strukturvorschlag gemacht werden.

3.6 Reaktion von $[{Cp^{=}Ru(\mu-CO)}_{2}{Cp^{=}Ru(CO)H}]$ (33) mit P₄

Bringt man $[{Cp^{=}Ru(\mu-CO)}_{2}{Cp^{=}Ru(CO)H}]$ (33) mit weißem Phosphor in siedendem THF zur Reaktion, so erhält man neben 1 die Verbindung $[{Cp^{=}Ru}(\mu-\eta^{4:1:1}-P_{4}){Ru(CO)Cp^{=}}]$ (40).

	[Cp ⁼ Ru(CO) ₂ H]	
[{Cp ⁼ Ru(µ-CO)} ₂ {Cp ⁼ Ru(CO)H}]	<u>THF</u> , D , 1h 1	(9)
33	$[{Cp}^{=}Ru{(\mu-h^{4:1:1}-P_4)}{Ru(CO)Cp}^{=}]$	
	40	

Gleichung 9: Reaktion von 33 mit weißem Phosphor

Die Reaktion wird IR-spektroskopisch anhand der abnehmenden Edukt- sowie der erscheinenden Produktbanden verfolgt. Man erkennt die starken charakteristischen Banden von 1, daneben erscheint eine schwache Bande von 40 im terminalen Bereich. Mit dem Fortschreiten der Reaktion geht eine Farbänderung von dunkelgrün nach gelb einher. Die Reaktion wird beendet, wenn keine Eduktbanden mehr detektiert werden und der Farbumschlag eingetreten ist. Die Aufarbeitung über eine auf -20 °C gekühlte chromatographische Kieselgelsäule Vorlauf ergibt neben einem von wenigen Milligramm einer nicht identifizierten gelben Fraktion (PE/Toluol 40:1) mit einem Petrolether/Toluol-Gemisch von 15:1 eine braune Fraktion von 40 in 21% Ausbeute. Verbindung 1 kann nicht eluiert werden und erscheint nur im Rohspektrum.

3.6.1 $[{Cp^{=}Ru}(\mu-\mathbf{h}^{4:1:1}-\mathbf{P}_{4}){Ru(CO)Cp^{=}}]$ (40)

3.6.1.1 Eigenschaften von [{ $Cp^{=}Ru$ }(μ -**h**^{4:1:1}-P₄){ $Ru(CO)Cp^{=}$ }] (40)

40 fällt nach der säulenchromatographischen Aufarbeitung als brauner, leicht öliger Feststoff an. Unter Inertgasatmosphäre ist die Verbindung auch bei Raumtemperatur einige Wochen stabil. **40** löst sich bereits in unpolaren Solventien wie Pentan und Hexan sehr gut. Zur Röntgenstrukturanalyse geeignete Einkristalle können aus heißer Heptanlösung nach mehrmaligem Einengen des Lösungsmittels am Ölpumpenvakuum bei RT erhalten werden. **40** fällt dabei in Form rotbrauner Kristalle an.

3.6.1.2 Spektroskopische Eigenschaften von $[{Cp^{=}Ru}(\mu-\mathbf{h}^{4:1:1}-\mathbf{P}_{4}){Ru(CO)Cp^{=}}] (40)$

Das **IR-Spektrum** zeigt die Bande einer terminalen Cabonylgruppe bei $\tilde{v} = 1990 \text{ cm}^{-1}$.

Im ¹**H-NMR-Spektrum** erkennt man sechs Singuletts für die Protonensignale bei $\delta = 0.32$ ppm, 0.38 ppm, 4.18 ppm, 4.84 ppm, 4.94 ppm und 5.50 ppm im Integrationsverhältnis 18:18:1:2:2:1. Man erkennt die chemisch unterschiedliche Umgebung der beiden Cp⁼-Liganden.

Das ³¹**P-NMR-Spektrum** (Abbildung 31) zeigt mit zwei Doppeldubletts bei 443 ppm und 86 ppm und Kopplungskonstanten von ${}^{1}J_{PP} = 282$ Hz bzw. ${}^{2}J_{PP} = 109$ Hz ein AA'XX'-Spinsystem (Abbildung 32). Ein annähernd identisches Signalmuster wird von *Schwarz* in [{Cp"Fe}(μ - $\eta^{4:1:1}$ -P₄){Fe(CO)Cp"}] (**41**) ^[41] gefunden, jedoch können hier die ${}^{2}J_{PP}$ -Kopplungen nicht detektiert werden.

Abbildung 31: ³¹P-NMR-Spektrum von 40 in C₆D₆ (RT, 81,01 MHz)

Abbildung 32: Kopplungsschema von $[{Cp^{=}Ru}(\mu-\mathbf{h}^{4:1:1}-\mathbf{P}_{4}){Ru(CO)Cp^{=}}]$ (40)

Kern	d [ppm]	Signalaufspaltung	Kopplungskonst. [Hz]	Zuordnung
$^{1}\mathrm{H}$	0,32	s, 18H		SiMe ₃
	0,38	s, 18H		SiMe ₃
	4,18	s, 1H		C_5H_3
	4,84	s, 2H		C_5H_3
	4,94	s, 2H		C_5H_3
	5,50	s, 1H		C_5H_3
Kern	d [ppm]	Signalaufspaltung	Kopplungskonst. [Hz]	Zuordnung
³¹ P	443	dd, 2P	${}^{1}J_{AX} = {}^{1}J_{XX'} = {}^{1}J_{A'X'} = 282;$ ${}^{2}J_{AX'} = {}^{2}J_{A'X} = 109$	P _A , P _{A'}
	86	dd, 2P	${}^{1}J_{AX} = {}^{1}J_{XX'} = {}^{1}J_{A'X'} = 282;$ ${}^{2}J_{AX'} = {}^{2}J_{A'X} = 109$	P_X, P_{X^\prime}

 Tabelle 41:
 NMR-spektroskopische Daten von [{ $Cp^{=}Ru$ }(μ -**h**^{4:1:1}-P₄){ $Ru(CO)Cp^{=}$ }]

 (40) in C₆D₆ (RT, ¹H-NMR: 200,13 MHz, ³¹P-NMR: 81,01 MHz)

Im **EI-Massenspektrum** erkennt man den Molpeak bei m/z = 745 amu. Er ist zugleich Basispeak des Spektrums. Weitere charakteristische Signale liefern $[M-SiMe_3]^+$ bei m/z = 672 amu und das zweifach geladene Ion $[M-CO]^{2+}$ bei 372,5 atomaren Masseneinheiten. Die Silylgruppe erscheint mit einer relativen Intensität von 99%. Das gefundene Isotopenmuster des Spektrums stimmt mit dem simulierten überein.

Fragment	Zusammensetzung	m/z [amu]	I _{rel} [%]
$[\mathbf{M}]^+$	$[{Cp}^{=}Ru{P_4}{Ru(CO)Cp}^{=}]$	745	100
$[M-SiMe_3]^+$	$[{Cp^{=}Ru}(P_{4}){Ru(CO)(C_{5}H_{3}SiMe_{3})}]$	672	5,2
[M-CO] ²⁺	$[{Cp^{=}Ru}(P_{4}){RuCp^{=}}]$	372,5	5,3
$[SiMe_3]^+$	[SiMe ₃]	73	99

 Tabelle 42:
 Ausgewählte EI-massenspektrometrische Daten von

 $[{Cp^{=}Ru}(\mu-h^{4:1:1}-P_4){Ru(CO)Cp^{=}}]$ (40) (QT = 120 °C, 70 eV, 1 mA).

3.6.1.3 Röntgenstrukturanalyse von $[{Cp^{=}Ru}(\mu-\mathbf{h}^{4:1:1}-P_4){Ru(CO)Cp^{=}}]$ (40)

Die Abbildungen 33 und 34 zeigen den Molekülstrukturplot von [$\{Cp^{=}Ru\}(\mu-\eta^{4:1:1}-P_4)\{Ru(CO)Cp^{=}\}$] (40) als Ergebnis der Kristallstrukturanalyse. Ausgewählte Bindungsabstände und -winkel enthält Tabelle 43.

Die Lageparameter, Temperaturfaktoren, Aufnahmebedingungen und Angaben zum vermessenen Kristall sowie alle ermittelten Bindungslängen und -winkel der Kristallstrukturanalyse von **40** können dem Anhang entnommen werden.

Abbildung 33: Molekülstruktur von 40 im Kristall (mit Zwillingspositionen)

Abbildung 34: Molekülstrukturplots von 40 (nur Hauptorientierungen)

Atombezeichnung	$[{Cp^{=}Ru}(\mu-\eta^{4:1:1}-P_{4}){Ru(CO)Cp^{=}}]$ (40)	Atombezeichnung	$[{Cp^{=}Ru}(\mu-\eta^{4:1:1}-P_{4}){Ru(CO)Cp^{=}}]$ (40)
	Bindungsabstände [Å] (Standardabweichunger	ı)
Ru1-Ru2	2,8355(6)	P1-P2	2,157(3)
Ru1-P1	2,3227(17)	P2-P3	2,120(4)
Ru1-P4	2,3299(17)	P3-P4	2,150(3)
Ru1-P2A	2,417(9)	P4-P3A	2,194(11)
Ru1-P3A	2,359(10)	P1-P2A	2,101(10)
Ru2-P1	2,3399(16)	P2A-P3A	2,099(19)
Ru2-P2	2,453(2)	Ru1-Cp ⁼ _{Zent.}	1,893
Ru2-P3	2,458(2)	Ru2-Cp ⁼ _{Zent.}	1,877
Ru2-P4	2,3393(18)		
	Bindungswinkel [•] (Standardabweichung)	
P1-Ru1-P4	96,46(6)	Ru1-P4-Ru2	74,79(5)
P2A-Ru1-P3A	52,1(4)	P1-P2-P3	108,51(12)
P4-Ru2-P1	95,73(6)	P2-P3-P4	108,04(11)
P2-Ru2-P3	51,13(9)	P3-P4-Ru1	110,03(11)
P1-Ru2-P2	53,43(7)	Cp ⁼ _{1-Zent} -Ru1-Ru2	128,0
Ru1-P1-P2	109,63(11)	Cp ⁼ _{2-Zent} -Ru2-Ru1	132,0
Ru1-P1-Ru2	74,91(5)		

Ebenendefinition, Abweichung aus den besten Ebenen [Å], Diederwinkel[•]			
E1: P1P2P3P4	0,0024	E1 vs. E2	154,7
E2: P1P4Ru1	0,0000		

Tabelle 43:Ausgewählte Strukturdaten von [$\{Cp^{=}Ru\}(\mu-h^{4:1:1}-P_4)\{Ru(CO)Cp^{=}\}$] (40)

Der Molekülplot in Abbildung 33 zeigt **40** als fehlgeordnete Kristallstruktur mit einer Wahrscheinlichkeitsverteilung von 80:20. Die Fehlordnung tritt spiegelsymmetrisch zur Ebene P1P4(Ru1-Ru2)_{Zentrum} auf, dabei wechseln auch die Rollen von Ru1 und Ru2. Im Folgenden soll nur die Hauptorientierung diskutiert werden.

Man erkennt einen Cluster mit Ru₂P₄-Schweratomgerüst und einer terminalen Carbonylgruppe an Ru1. Das {Cp⁼Ru}-Fragment (Ru2) ist zentrosymmetrisch über dem P₄Ru-Inkrement angeordnet, wie Abbildung 34 zeigt. Dies steht im Einklang mit den Ergebnissen des ³¹P-NMR-Spektrums, das zeigt, daß je zwei Phosphoratome chemisch, nicht aber magnetisch äquivalent sein müssen. Ru1 weicht um 25,3° aus der Ebene der vier Phosphoratome ab, somit kann der RuP₄-Fünfring nicht als Tetraphospharuthenol diskutiert werden. In [{Cp*'Rh}(μ - $\eta^{4:1:1}$ -P₄){Rh(CO)Cp*'}] (**42**) findet *Swarowsky* für das Rhodiumatom eine Abwinkelung aus der Ebene von 55,7° ^[66].

Man findet für die Ru1-Ru2-Bindung mit 2,8355(6) Å einen Abstand im typischen Einfachbindungsbereich ^[64]. Vergleicht man mit den vier weiteren Ru2-P-Bindungslängen, welche für Ru2-P2/P3 etwa 2,45 Å und für die Ru2-P1/P4 etwa 2,34 Å betragen, so wird deutlich, daß Ru1 mit einer Bindungslänge von 2,8355(6) Å zu Ru2 nicht in der Ringebene zu liegen kommen kann. Der notwendige kurze Bindungsabstand hierzu würde im Bereich einer Dreifachbindung liegen, dies stünde auch im Widerspruch zur 18 VE-Regel.

Die drei P-P-Bindungsabstände liegen alle unterhalb der Einfachbindungslänge des weißen Phosphors von 2,21 Å ^[60]. Die Abstände betragen für P1-P2 und P4-P3 2,157(3) Å und 2,150(3) Å, für P2-P3 wird mit 2,120(4) Å ein geringfügig kürzerer Wert gefunden. Ein Vergleich mit den in **18** und **19** ermittelten Werten, für welche ein Mehrfachbindungscharakter der P-P-Bindungen deutlich wird (P-P: ca. 2,08 Å), zeigt jedoch, daß in **40** maximal für P2-P3 von einem deutlichen Mehrfachbindungsanteil gesprochen werden kann, für die beiden anderen P-P-Bindungen ist dies wohl nicht zulässig.

Wie anhand der zuvor beschriebenen Spiegelebene zu erwarten ist, findet man mit ca. 2,33 Å fast identische Bindungsabstände von den beiden Metallzentren zu P1 und P4. Dies wird auch durch die gefundenen Winkel Ru1-P1/4-Ru2 mit 74,91(5)° und 74,79(5)° bestätigt.

Man findet für **40** eine Zahl von 16 Gerüstelektronen bzw. acht Gerüstelektronenpaaren, dies entspricht mit (n + 2) = 8 GEP einer *nido*-Struktur.

Interessant ist der Zugangsweg zu Verbindung **40**. Im Gegensatz zur analogen Eisenverbindung [{Cp''Fe}(μ - $\eta^{4:1:1}$ -P₄){Fe(CO)Cp''}] **(41)** ^[41] kann **40** nicht durch Photolyse aus dem Dimer [{Cp''Ru(CO)₂}₂] und weißem Phosphor dargestellt werden, wie die Untersuchungen von *Koch* ^[39] gezeigt haben. Ausgehend vom Edukt [{Cp⁼Ru(μ -CO)}₂{Cp⁼Ru(CO)H}] **(33)** wird deutlich, daß man einen Mechanismus postulieren kann, bei welchem das dreifach kantengeöffnete P₄-Tetraeder an die Ru-Ru-Doppelbindung addiert und dabei sowohl eine Carbonylgruppe als auch mit {Ru(CO)HCp⁼} ein ganzes Metallfragment verdrängt. Bestätigt wird dies auch durch das im Rohspektrum detektierbare [Cp⁼Ru(CO)₂H] **(1)**.

3.7 Orientierende Versuche

3.7.1 Weitere Umsetzungen von $[Cp^{-}Ru(CO)_{2}H](1)$

3.7.1.1 Reaktion mit PPh₃ (43)

Setzt man 1 mit äquimolaren Mengen PPh_3 (43) in Hexan um, so erhält man unter Verdrängung einer Carbonylgruppe in fast quantitativer Ausbeute $[Cp^{=}Ru(CO)(PPh_3)H]$ (44).

$$\begin{bmatrix} Cp^{=}Ru(CO)_{2}H \end{bmatrix} \xrightarrow{Hexan, \mathbf{D}, 60 \text{ min}}_{+ PPh_{3}, - CO} \begin{bmatrix} Cp^{=}Ru(CO)(PPh_{3})H \end{bmatrix}$$
(10)

Gleichung 10: Reaktion von 1 mit PPh₃ (43)

Während der Reaktion ist ein Verblassen der orangen Farbe der Lösung zu beobachten, damit einher geht das Verschwinden der Eduktbanden von 1 im IR-Spektrum sowie das Auftauchen einer neuen Bande. Die Reaktion wird beendet, wenn 1 nicht mehr im IR-Spektrum zu erkennen ist. Die säulenchromatographische Aufarbeitung erfolgt an einer auf -20 °C gekühlten Kieselgelsäule und ergibt mit einem Lösungsmittelgemisch Petrolether/Diethylether von 400:1 eine orangebraune Fraktion von 44 als einziges isolierbares Produkt in 80% Ausbeute.

3.7.1.1.1 Eigenschaften, spektroskopische Daten und Strukturvorschlag von [Cp⁼Ru(CO)(PPh₃)H] (44)

Nach Entfernen des Lösungsmittels verbleibt **44** als braunes Öl von hoher Viskosität, das sich bereitwillig in unpolaren Solventien löst. **44** ist kurzzeitig luftstabil und kann unter Inertgasatmosphäre bei -18 °C über mehrere Monate gelagert werden. Durch Lagerung bei Raumtemperatur kristallisiert **44** aus dem eigenen Öl in stark verwachsenen Kristallen aus.

Das **IR-Spektrum** zeigt eine einzige starke Bande im Bereich einer terminalen CO-Gruppe bei $\tilde{v} = 1934 \text{ cm}^{-1}$.

Im ¹**H-NMR-Spektrum** erkennt man die drei Phenylgruppen in Form dreier Multipletts bei $\delta = 7,75, 7,40$ und 7,10 ppm im Integrationsverhältnis 6:3:6. Durch die Substitution einer Carbonylgruppe erscheinen für den Cp⁼-Liganden fünf Singuletts bei $\delta = 5,13, 4,88, 4,26, 0,33$ und 0,29 ppm (Verhältnis 1:1:1:9:9). Das hydridische Wasserstoffatom tritt bei hohem Feld bei $\delta = -11,35$ ppm als Dublett mit einer ²J_{PH}-Kopplungskonstanten von 33,5 Hz in Resonanz. Die spektroskopischen Daten lassen auf die Chiralität der Verbindung schließen.

Im ³¹**P-NMR-Spektrum** ist die ²J_{PH}-Kopplung nicht zu erkennen und es erscheint lediglich ein Singulett bei $\delta = 67$ ppm.

Das **EI-Massenspektrum** (QT = 120 °C, 70 eV, 1mA) zeigt den Molpeak bei m/z = 602 amu mit 41,0% relativer Intensität. Man erkennt weitere signifikante Fragmentierungsmuster durch Verlust der CO- und Silylgruppen, sowie PPh₃ (siehe Experimenteller Teil). PPh₃ ist zugleich Basispeak des Spektrums. Das gefundene Spektrum stimmt mit dem simulierten überein.

Die spektroskopischen Befunde erlauben einen plausiblen Strukturvorschlag für 44. Die PPh₃-Gruppe verdrängt dabei erwartungsgemäß eine Carbonylgruppe in 1 und ergibt 44. Dies steht im Einklang mit bereits bekannten Beobachtungen für das Cp-Derivat ^[2].

Abbildung 35: Strukturvorschlag für [Cp⁼Ru(CO)(PPh₃)H] (44)

3.7.1.1.2 Folgereaktionen von [Cp⁻Ru(CO)(PPh₃)H] (44)

Der Versuch der thermischen Umsetzung von 44 mit weißem Phosphor scheitert auch bei hohen Temperaturen in Dekalin. Es erfolgt keine Reaktion.

Die photolytische Umsetzung von 44 in THF ergibt kein spezifisches Produktbild, als Hauptreaktion erhält man den Zerfall von 44 in die Bestandteile.

3.7.1.2 Reaktion von [Cp⁻Ru(CO)₂H] (1) mit P₄

Die thermische Umsetzung von $[Cp^{=}Ru(CO)_2H]$ (1) mit P₄ bleibt auch bei Temperaturen von 190 °C erfolglos.

Der Versuch, **1** und P_4 durch Photolyse zur Reaktion zu bringen, scheitert zwar nicht, jedoch ergibt diese Reaktion nur Substanzen, welche im ¹H-NMR-Spektrum sehr breite Signale ergeben (paramagnetische Verunreinigungen), die säulenchromatographisch nicht getrennt werden können. Auch die Variation des Lösungsmittels, Hexan bzw. THF, hat darauf keinen Einfluß.

3.7.2 Oxidation von $[Cp^{R}Ru(CO)_{2}PH_{2}]$ (6a,b) mit S₈ und Se_x

Die Umsetzung von **6a,b** mit gelbem Schwefel S₈ bzw. grauem Selen Se_x ergibt ein diffuses Produktbild, wie das ³¹P-NMR-Spektrum erkennen läßt. Als Nebenprodukte mit sehr geringem Anteil erkennt man in den Rohspektren der jeweiligen Reaktionen jedoch die sulfurierten bzw. selenierten Produkte [Cp^RRu(CO)₂PH₂S] (**45a,b**) und [Cp⁻Ru(CO)₂PH₂Se] (**46**) durch ihre charakteristischen Triplettsignale. **45a,b** erscheinen bei $\delta = -145$ ppm mit einer Kopplungskonstanten von 330 Hz, die Resonanz von **46** erkennt man bei $\delta = -101$ ppm mit einer ¹J_{PH}-Kopplung von 381 Hz. Die Verschiebung des Phosphorsignals zu höherem Feld durch die Oxidation ist ein allgemein bekannter Trend und ist für die höheren Gruppenhomologen stärker ausgeprägt. Durch säulenchromatographische Aufarbeitung an allen gängigen Materialien können weder die gewünschten sulfurierten und selenierten noch andere phosphorhaltige Produkte erhalten werden.

3.7.3 Reaktionen von $[{Cp^{-}Ru}_{4}(\mu_{3}-CO)_{4}]$ (30)

Zur Reaktivität von [{ $Cp^{=}Ru$ }₄(μ_{3} -CO)₄] (**30**) wurden mehrere Versuche durchgeführt. Dabei zeigt sich, daß **30** sehr reaktionsträge ist. Der Versuch, wenigstens eine der vier dreifach verbrückenden Carbonylgruppen durch PPh₃ zu verdrängen, scheitert auch bei höheren Temperaturen. Auch ist keine photolytische Aktivierung von **30** beim Versuch der Reaktion mit P₄ mehr möglich.

Die thermische Umsetzung mit weißem Phosphor in Dekalin erfolgt sehr langsam (ca. 10% Umsatz 24h), detektiert im nach man Rohspektrum ein Singulett bei $\delta = 94$ ppm neben unregelmäßig auftretenden weiteren Peaks. Das Singulettsignal liegt genau im Bereich eines Cyclopentaphospharuthenocens, jedoch müßte diese Substanz aufzuarbeiten sein, was nicht der Fall ist. Die säulenchromatographische Aufarbeitung ergab in jedem Falle immer nur nicht abreagiertes Edukt 30. Phosphorhaltige Produkte konnten nicht isoliert werden.

Eine ähnliche Problematik ergibt sich bei der Reaktion mit $[Cp*Fe(\eta^5-P_5)]$ (23). Eine Reaktionsdauer von 24 h bei 190 °C ergibt ein Singulettsignal bei $\delta = 84$ ppm, eine Dauer von 120 h zwei dublettähnliche Signalsätze bei $\delta = 36$ ppm und -15 ppm. In beiden Fällen können diese Produkte nur in den Rohspektren nachgewiesen werden, der Versuch der Aufarbeitung ergibt wieder **30** als einzige isolierbare Verbindung.

3.7.4 Weitere Umsetzungen von $[{Cp^{=}Ru(\mu-CO)}_{2}{Cp^{=}Ru(CO)H}]$ (33)

3.7.4.1 Cophotolyse mit weißem Phosphor

Eine photolytisch induzierte Reaktion von **33** und weißem Phosphor in THF bzw. Hexan ergibt keine phosphorhaltigen, isolierbaren Produkte. Die Reaktion erfolgt schnell, bereits nach 30 min ist die zuvor grüne Lösung rot gefärbt und man kann im IR-Spektrum keine Eduktbanden mehr nachweisen. Bei dieser Reaktion findet man in Analogie zur Umsetzung von **1** mit P₄ im ¹H-NMR-Spektrum stark verbreiterte Signale, welche auf paramagnetische Verunreinigungen hinweisen, die säulenchromatographisch nicht abgetrennt werden konnten.

3.7.4.2 Reaktion mit [Cp*Fe(**h**⁵-P₅)] (23)

Die Cothermolyse von [{Cp⁻Ru(μ -CO)}₂{Cp⁻Ru(CO)H}] (33) mit 23 in Hexan ergibt keine phosphorhaltigen Produkte. Man erkennt während der Reaktion den Zerfall des Eduktes 33 und detektiert im IR-Spektrum wieder die Banden von 1, dies geht einher mit der Änderung der Farbe von grün nach gelbbraun, jedoch tritt keine Reaktion mit 23 ein. Im Phosphor-NMR-Spektrum ist außer dem Peak von 23 bei $\delta = 153$ ppm keine weitere Resonanz zu finden.

4 Experimenteller Teil

4.1 Analysenmethoden

Zur spektroskopischen und analytischen Untersuchung der synthetisierten Verbindungen wurden folgende Analysenmethoden eingesetzt:

Infrarotspektroskopie:

Die Aufnahme der Infrarotspektren erfolgte mit dem FT-IR-Spektrometer 16 PC der Firma Perkin-Elmer. Die Lösungen wurden in Calciumfluorid-Küvetten mit 0,2 mm Schichtdicke vermessen; die Kompensation erfolgte jeweils mit dem reinen Lösungsmittel.

NMR-Spektroskopie:

Die NMR-Spektren wurden an den FT-NMR-Geräten DPX-200 und DPX-400 der Firma Bruker gemessen. Die Substanzen wurden als Deuterobenzol- bzw. Deuterochloroformlösungen unter Argonatmosphäre in 5 mm Röhrchen vermessen. Die chemischen Verschiebungen sind entsprechend der δ -Skala angegeben. Zur Charakterisierung der Spinmultiplizitäten werden die allgemein üblichen Abkürzungen verwendet:

s = Singulett, d = Dublett, dd = Doppeldublett, t = Triplett, dpt = Doppelpseudotriplett, m = Multiplett

Die Angabe der Kopplungskonstanten erfolgt in Hertz (Hz), sie sind aus den Spektren entnommen.

Für die unterschiedlichen Kerne gelten folgende Meßfrequenzen und Standards:

 31 P-NMR: 81,02 MHz; 161,97 MHz, 85 % ige Phosphorsäure, extern ($\delta = 0$ ppm)

- ¹H-NMR: 200,13 MHz, 400,14 MHz; als interner Standard wurde das Signal der im Lösungsmittel vorhandenen, nicht vollständig deuterierten Moleküle verwendet, dabei wurde folgende Zuordnung getroffen: $\delta(C_6D_5H) = 7,20$ ppm; $\delta(CHC_3) = 7,25$ ppm.

Massenspektrometrie:

Die Massenspektren wurden an einem Massenspektrometer MAT 90 der Firma Finnigan von Frau *Dr. G. Hornung* aufgenommen. Der Aufnahmebereich umfaßt einen Bereich von 30 bis 950 atomaren Masseneinheiten.

Elementaranalyse:

Die C,H,N-Analysen wurden mit dem Elementaranalyzer 240 der Firma Perkin-Elmer von Frau *E. Biehl* bzw. Frau *B. Menéndez* im Fachbereich Chemie der Universität Kaiserslautern durchgeführt.

Röntgenstrukturanalysen:

Die Röntgenbeugungsexperimente (Diffraktometer IPDS der Firma Stoe) sowie die Strukturlösungen (Strukturlösungs- bzw. Strukturverfeinerungsprogramm: SHELXS-97 (*Sheldrick*, 1990) bzw. SHELXL-97 (*Sheldrick*, 1997) wurden von Herrn *Dr. G. Wolmershäuser* (Universität Kaiserslautern) durchgeführt. Einzelheiten dazu können dem Anhang entnommen werden. Für die geometrischen Berechnungen und die Strukturplots wurde das Programm SHELXP verwendet.

Strukturvorschläge:

Der räumlichen Darstellung der Moleküle, für welche Strukturvorschlägen gemacht wurden, liegt eine Berechnung dieser Verbindungen mit dem Programm "Alchemy III" zugrunde. Den berechneten Strukturen wurden im Anschluß mit "C-Design" die räumlichen Darstellungen hinzugefügt.

4.2 Ausgangsverbindungen

Die folgenden Verbindungen wurden nach den zitierten Literaturvorschriften synthetisiert:

- Trimethylsilylcyclopentadien C₅H₅SiMe₃^[67]
- 1,3-Bis-(trimethylsilyl)cyclopentadien $C_5H_4(SiMe_3)_2$ ^[68]
- Dicarbonyl-phosphanido-trimethylsilylcyclopentadienyl-ruthenium
 [Cp⁻Ru(CO)₂PH₂] (6b) ^[45]
- Pentacarbonyl-tetrahydrofuran-metall (0) $[M(CO)_5(thf)]$ (M = Cr, Mo, W) (7,8,9) ^[69]
- Dicarbonyl-tetrahydrofuran- η^5 -pentamethylcyclopentadienyl-rhenium [Cp*Re(CO)₂(thf)] (14) ^[52]
- η^{5} -Pentamethylcyclopentadienyl- η^{5} -pentaphosphacyclopentadienyl-eisen [Cp*Fe(η^{5} -P₅)] (23) ^[70]

Alle weiteren Edukte wurden käuflich erworben oder waren im Arbeitskreis vorhanden.

4.3 Versuchsbeschreibungen

Alle Versuche wurden unter Argonatmosphäre in mehrfach ausgeheizten und evakuierten Glasgeräten in absolutierten Lösungsmitteln durchgeführt. Die verwendeten Lösungsmittel wurden wie folgt absolutiert und unter Argonatmosphäre aufbewahrt:

- Petrolether, Diethylether, Pentan: Na/K-Legierung
- Dichlormethan: Phosphorpentoxid
- C₆D₆, CDC₃, Heptan: Calciumhydrid
- THF (jeweils frisch destilliert): K-Metall

Das als Säulenmaterial verwendete Kieselgel (Hersteller: ICN Biochemicals GmbH) wurde 12 Stunden bei 190 °C im Ölpumpenvakuum ausgeheizt, mit 2% destilliertem und entgastem Wasser desaktiviert (Aktivitätsstufe II) und unter Argon aufbewahrt.

Die Lösungsmittel wurden am Ölpumpenvakuum bei ca. 10⁻³ mbar entfernt. Der unter Wasser aufbewahrte weiße Phosphor wurde vor der Reaktion 20 Minuten im Ölpumpenvakuum getrocknet.

Die säulenchromatographischen Aufarbeitungen als auch die Photolyseexperimente erfolgten teilweise mit Wasserkühlung, teilweise gekühlt auf 5 °C und -20 °C. Zur Kühlung wurde ein Kryostat F81 der Firma Julabo eingesetzt, Kühlmittel war Ethanol.

Die photochemischen Experimente wurden in einer kühlbaren Tauchlampen-Duranglasapparatur unter ständiger Durchmischung mittels eines Stickstoff- bzw. Argonstroms durchgeführt. Zur Bestrahlung wurde eine 150 W Quecksilberhochdrucklampe (TQ 150, Heraeus, Hanau) verwendet. Deren Emission umfaßt einen Wellenlängenbereich von ca. 220-500 nm, das Intensitätsmaximum liegt bei einer Wellenlänge von $\lambda_{max} = 366$ nm. Zur Darstellung von [Cp*Re(CO)₂(thf)] (**14**) wurde in Analogie zur Literatur eine 300 ml Quarzglasapparatur verwendet.

4.3.1 Synthese von $[Cp^{-}Ru(CO)_{2}H](1)$

950 mg (1,49 mmol) $\operatorname{Ru}_3(\operatorname{CO})_{12}$ (2) und 1,3 ml (1,13 g, 5,39 mmol) Cp⁼H werden in 100 ml Heptan unter striktem Luftausschluß im Druckschlenkrohr für ca. 5 h auf 125 °C erhitzt. Während der Reaktion wird ca. alle 30 min erneut ein Unterdruck am Ölpumpenvakuum erzeugt, um entstandenes CO zu entfernen. Man erkennt eine langsame Farbänderung von rot nach orangegelb und das Erreichen des Intensitätsmaximums der Banden von **1** im IR-Spektrum. Die Reaktion wird beendet, sobald das Auftauchen einer IR-Bande im verbrückenden Carbonylbereich das Entstehen des Dimers $[{Cp^=Ru(CO)_2}_2]$ (**4**) anzeigt. Nach Entfernen des Lösungsmittels am Ölpumpenvakuum verbleibt ein gelbbraunes Öl, welches als Pentanlösung auf eine chromatographische Säule (PE, SiO₂ 2%, 24x2 cm, 5 °C) aufgebracht wird. Man eluiert mit reinem Petrolether eine gelbe Fraktion von **1**. Mit PE/Et₂O 50:1 erhält man eine orange Fraktion von $[{Cp^=Ru(CO)_2}_2]$ (**4**) (gezielte Darstellung und analytische Daten von **4**: siehe Kapitel 4.3.2).

Ausbeute von 1:	843 mg (2,29 mmol), 51,7%		
IR-Daten von 1:	siehe Kapitel 3.1.1.2, S. 10		
NMR-Daten von 1:	siehe Kapitel 3.1.1.2, Tabelle 1, S. 10		
Massenspektrometrie von 1:	siehe Kapitel 3.1.1.2, Tabelle 2, S. 11		
Elementaranalyse von 1:	$C_{13}H_{22}O_2RuSi_2$ (M = 367,54 g/mol)		
	berechnet:	C: 42,48%	H: 6,03%
	gefunden:	C: 42,60%	H: 6,07%

Ausbeute von 4 :	228 mg (0,311 mmol),	14%
-------------------------	----------------------	-----

4.3.2 Darstellung von $[{Cp^{-}Ru(CO)_2}_2]$ (4)

1 g (1,56 mmol) Ru₃(CO)₁₂ (**2**) und 1,4 ml (1,22 g, 5,80 mmol) Cp⁼H werden in 70 ml Heptan ohne Luftausschluß für 72 h am Rückfluß erhitzt. Nach 3 Tagen ist das Intensitätsmaximum der IR-Banden von **4** erreicht und die Reaktion wird beendet. Nach Entfernen des Lösungsmittels am Ölpumpenvakuum verbleibt ein gelbbrauner Feststoff, der als PE-Lösung auf eine chromatographische Säule (PE, SiO₂ 2%, 20x2 cm, 5 °C) aufgebracht wird. Man eluiert mit PE/Et₂O 50:1 eine orange Fraktion von [{Cp⁼Ru(CO)₂}₂] (**4**).

Ausbeute von 4:	1,11 g (1,516 mmol), 64,7%		
IR-Daten von 4:	siehe Kapitel 3.1.2.2, S. 12		
NMR-Daten von 4:	siehe Kapitel 3.1.2.2, Tabelle 3, S. 12		
Massenspektrometrie von 4:	siehe Kapitel 3.1.2.2, Tabelle 4, S. 13		
Elementaranalyse von 4:	$C_{26}H_{42}O_4Ru_2Si_4$ (M = 733,10 g/mol)		
	berechnet:	C: 42,60%	H: 5,77%
	gefunden:	C: 41,88%	H: 5,79%

4.3.3 Darstellung von $[Cp^{-}Ru(CO)_2PH_2]$ (6a)

Zu einer Lösung von in situ dargestelltem **1** aus 950 mg (1,49 mmol) Ru₃(CO)₁₂ (**2**) und 1,3 ml (1,13 g, 5,39 mmol) Cp⁼H in 100 ml Heptan werden 220 mg (1,77 mmol) P₄ zur noch warmen Reaktionslösung gegeben. Die orangegelbe Lösung färbt sich unter kräftigem Rühren innerhalb von ein bis zwei Stunden rot. Die Reaktion wird nach vier Tagen beendet und das Lösungsmittel entfernt. Der Umsatz beträgt dabei zwischen 20 und 25%. Eine Aufarbeitung mittels Säulenchromatographie oder Sublimation führt in jedem Fall zur unspezifischen Zersetzung von **6a**. **6a** kann als 0,025 m THF-Lösung bei -80 °C über einen längeren Zeitraum gelagert werden. Als Nebenprodukt kann in der Lösung auch das je nach Zeitpunkt der Phosphorzugabe bis dato schon gebildete Dimer **4** in geringem Umfang (< 5%) zu finden sein, Hauptprodukt bleibt nicht umgesetztes **1**.

IR-Daten von 6a :	siehe Kapitel 3.2.1.2, S. 15
NMR-Daten von 6a:	siehe Kapitel 3.2.1.2, Tabelle 5, S. 15
Massenspektrometrie von 6a:	siehe Kapitel 3.2.1.2, Tabelle 6, S. 16
Summenformel von 6a :	$C_{13}H_{23}O_2PRuSi_2$ (M = 399,52 g/mol)

4.3.4 Komplexierungsreaktionen von $[Cp^{R}Ru(CO)_{2}PH_{2}]$ ($Cp^{R} = Cp^{=}, Cp^{-}$) (6a,b)

4.3.4.1 Umsetzungen mit $[M(CO)_5(thf)]$ (M = Cr, Mo, W) (7, 8, 9)

0,25 mmol $[Cp^{R}Ru(CO)_{2}PH_{2}]$ (**6a,b**) (10 ml einer 0,025 m THF-Lösung) werden bei RT unter Rühren mit einer frisch hergestellten THF-Lösung von 1,5 mmol $[M(CO)_{5}(thf)]$ (M = Cr, Mo, W) (**7, 8, 9**) versetzt. Bereits nach wenigen Minuten erkennt man eine leichte Gasentwicklung, die rote Farbe der Lösung verändert sich dabei nur wenig. Um eine möglichst hohe Ausbeute zu erzielen, wird die Reaktion erst nach 24 h beendet. Nach Entfernen des Lösungsmittels löst man den Rückstand in wenig CH₂Cl₂, zieht anschließend auf Kieselgel (SiO₂ 2%) auf und trocknet am Ölpumpenvakuum bis zur Rieselfähigkeit. Die säulenchromatographische Aufarbeitung (10x2 cm, SiO₂ 2%, PE, Wasserkühlung) ergibt mit Petrolether/Toluol 25:1 hellgelbe Fraktionen von [{Cp^R(OC)₂Ru}(μ -PH₂){Cr(CO)₅}] (**10a,b**), [{Cp^R(OC)₂Ru}(μ -PH₂){Mo(CO)₅}] (**11a,b**) oder [{Cp^R(OC)₂Ru}(μ -PH₂){W(CO)₅}] Elementaranalyse von 10a:

(12a,b). Die Verbindungen 10b, 11	b und 12b besitzen eine klebrige Konsistenz, daher ist
eine Elementaranalyse nur unter erso	chwerten Umständen bzw. gar nicht möglich.
Ausbeute von 10a:	56,4 mg (0,095 mmol), 38%
IR-Daten von 10a:	siehe Kapitel 3.3.1.1.2, Tabelle 7, S. 18
NMR-Daten von 10a:	siehe Kapitel 3.2.1.1.2, Tabelle 9, S. 20
Massenspektrometrie von 10a (QT =	= 120 °C, 70 eV, 1 mA) [amu (Fragment, I _{rel})]:
	$591 ([M]^+, 11, 8), 479 ([M-4CO]^+, 18, 8), 451 ([M-5CO]^+, $
	100), 423 ([M-6CO] ⁺ , 70,7), 389 ([M-2SiMe ₃ -2CO] ⁺ ,

Ausbeute von 10b:	31,2 mg (0,06 mmol), 24%
IR-Daten von 10b:	siehe Kapitel 3.3.1.1.2, Tabelle 7, S. 18
NMR-Daten von 10b :	siehe Kapitel 3.2.1.1.2, Tabelle 9, S. 20

Massenspektrometrie von 10b (QT = 20 °C, 70 eV, 1 mA) [amu (Fragment, I_{rel})]:

berechnet:

gefunden:

519 ([M]⁺, 19,2), 435 ([M-3CO]⁺, 7,2), 407 ([M-4CO]⁺, 27,7), 379 ([M-5CO]⁺, 100), 351 ([M-6CO]⁺, 81,2), 319 $([M-2Me-6CO]^+, 35,3), 52 ([Cr]^+, 21,0), 43 ([SiMe]^+,$ 21,3); das gefundene Isotopenmuster stimmt mit dem simulierten überein.

18,5), 372 ([M-Cr(CO)₅-CO]⁺, 16,5), 344 ([M-Cr(CO)₅-

2CO⁺, 5,2), 73 ([SiMe₃]⁺, 16,2); das gefundene

H: 3.92%

H: 3.90%

Isotopenmuster stimmt mit dem simulierten überein.

 $C_{18}CrH_{23}O_7PRuSi_2$ (M = 591,57 g/mol)

C: 36,55%

C: 37.09%

Summenformel von **10b**: $C_{15}CrH_{15}PRuSi (M = 519,39 \text{ g/mol})$

Ausbeute von 11a :	41,8 mg (0,066 mmol), 26,4%
IR-Daten von 11a:	siehe Kapitel 3.3.1.1.2, Tabelle 7, S. 18
NMR-Daten von 11a:	siehe Kapitel 3.2.1.1.2, Tabellen 8 und 9, S. 20
Massenspektrometrie von 11a (QT	= 120 °C, 70 eV, 1 mA) [amu (Fragment, I_{rel})]:

635 ([M]⁺, 20,5), 607 ([M-CO]⁺, 11,0), 579 ([M-2CO]⁺, 13,9), 551 ([M-3CO]⁺, 25,9), 523 ([M-4CO]⁺, 50,3), 494 $([M-5CO-H]^+, 100), 420 ([M-5CO-SiMe_3-2H]^+, 76,4),$ 73 ($[SiMe_3]^+$, 67,4); das gefundene Isotopenmuster stimmt mit dem simulierten überein.

Elementaranalyse von 11a:	$C_{18}H_{23}MoO_7PRuSi_2$ (M = 635,52 g/mol)			
	berechnet:	C: 34,02%	H: 3,65%	
	gefunden:	C: 34,26%	H: 3,69%	
Ausbeute von 11b:	14,6 mg (0,02	6 mmol), 10,4	%	
IR-Daten von 11b:	siehe Kapitel	3.3.1.1.2, Tabe	elle 7, S. 18	
NMR-Daten von 11b:	siehe Kapitel	3.2.1.1.2, Tabe	elle 9, S. 20	
Massenspektrometrie von 11b (QT	' = 20 °C, 70 eV, 1 mA) [amu (Fragment, Irel)]:			
	563 ([M] ⁺ , 4,6), 535 ([M-CO] ⁺ , 4,0), 507 ([M-2CO] ⁺ ,			
	4,4), 479 ([M	1-3CO] ⁺ , 6,8),	451 ([M-4CO] ⁺ , 15,3), 423	
	([M-5CO] ⁺ , 3	2,4), 395 ([M-	•6CO] ⁺ , 14,5), 365 ([M-6CO-	
	2Me] ⁺ , 32,2	c), 32 ([PH] ⁺ , 100); das gefundene	
	Isotopenmuste	er stimmt mit d	lem simulierten überein.	
Summenformel von 11b:	C ₁₅ H ₁₅ MoO ₇ H	PRuSi ($M = 56$	3,34 g/mol)	
Ausbeute von 12a:	39,8 mg (0,05	5 mmol), 22,3	%	
IR-Daten von 12a:	siehe Kapitel 3.3.1.1.2, Tabelle 7, S. 18			
NMR-Daten von 12a:	siehe Kapitel 3.2.1.1.2, Tabelle 9, S. 20			
Massenspektrometrie von 12a (QT =	$(QT = 20 \ ^{\circ}C, 70 \ eV, 1 \ mA) \ [amu (Fragment, I_{rel})]:$			
	723 ([M] ⁺ , 37,0), 695 ([M-CO] ⁺ , 22,7), 637 ([M-2CO-			
	2Me] ⁺ , 26,5), 609 ([M-3CO-2Me] ⁺ , 54,2), 581 ([M-4CO-			
	2Me] ⁺ , 70,7), 553 ([M-5CO-2Me] ⁺ , 24,3), 523 ([M-5CO-			
	4Me] ⁺ , 44,3), 351 ([M-W(CO) ₅ -Me] ⁺ , 19,1), 183 ([W] ⁺ ,			
	4,7) 73 ([SiMe ₃] ⁺ , 100); das gefundene Isotopenmuster			
	stimmt mit dem simulierten überein.			
Elementaranalyse von 12a:	C ₁₈ H ₂₃ O ₇ PRu	$Si_{2}W$ (M = 72)	3,42 g/mol)	
	berechnet:	C: 29,89%	H: 3,21%	
	gefunden:	C: 29,78%	H: 3,21%	
Ausbeute von 12b:	33,9 mg (0,05	2 mmol), 20,8	%	
IR-Daten von 12b :	siehe Kapitel 3.3.1.1.2, Tabelle 7, S. 18			
NMR-Daten von 12b:	siehe Kapitel 3.2.1.1.2, Tabelle 9, S. 20			
Massenspektrometrie von 12b (QT	= 220 °C, 70 e	V, 1 mA) [amu	ı (Fragment, I _{rel})]:	
	siehe ^[45]			
Summenformel von 12b:	$C_{15}H_{15}O_7PRu$	SiW (M = 651	,25 g/mol)	

4.3.4.2 Umsetzung von 6a mit [Cp*Re(CO)₂(thf)] (14)

Eine frisch hergestellte Lösung von [Cp*Re(CO)₂(thf)] (14) aus 400 mg (0,98 mmol) [Cp*Re(CO)₃] (13) in 125 ml THF (Annahme: ca. 80% iger Umsatz) wird bei RT unter Rühren mit 6 ml (0,15 mmol) einer 0,025 m Lösung von [Cp⁼Ru(CO)₂PH₂] (6a) versetzt und 20 h gerührt. Im Verlauf der Reaktion erkennt man eine Farbänderung von rot über braun ³¹P-NMR-Rohspektrum zeigt sich Im nach schwarz. neben dem Signal von $[{Cp^{=}(OC)_2Ru}(\mu-PH_2){Re(CO)_2Cp^*}]$ (15) bei $\delta = -180$ ppm das charakteristische Dublettsignal von [{ $Cp^{*}(OC)_{2}Re$ }₂PH] (16) bei -510 ppm (¹J_{PH} = 198 Hz). Nach Entfernen des Lösungsmittels am Ölpumpenvakuum löst man in wenig Dichlormethan, versetzt mit wenig SiO₂ 2% und trocknet am Vakuum bis zur Rieselfähigkeit. Die säulenchromatographische Aufarbeitung (8x2cm, SiO₂ 2%, PE, Wasserkühlung) ergibt mit reinem Petrolether einen lila Vorlauf von 13. Petrolether/Toluol 25:1 eluiert eine gelbe Fraktion von 15. ein Gemisch von 10:1 literaturbekanntes, gelboranges $[Cp^*(OC)_2Re]_2(\mu-CO)]$ (17). Verbindung 16 kann in Analogie zur Literatur nur im Rohspektrum nachgewiesen werden.

Ausbeute von 15:	15,5 mg (0,020 mmol), 13,2%
IR-Daten von 15:	siehe Kapitel 3.3.2.1.2, S. 23
NMR-Daten von 15:	siehe Kapitel 3.2.2.1.2, Tabelle 11, S. 23
Summenformel von 15:	$C_{25}H_{38}O_4PReRuS_{2}$ (M = 776,94 g/mol)

Ausbeute	von	17:
IR-Daten	von	17:

¹H-NMR-Daten (C₆D₆, RT, 200,13 MHz) von **17**:

 $\delta = 1,85 \text{ ppm (30H)}$ Summenformel von **17**: $C_{25}H_{30}O_5Re_2 \text{ (M} = 782,93 \text{ g/mol)}$

4.3.5 Thermische Umsetzung von $[{Cp}Ru(CO)_2]_2$ (4) mit weißem Phosphor

17,4 mg (0,022 mmol), 14,8%

siehe Kapitel 3.3.2.2.2, S. 25

440 mg (0,6 mmol) [{ $Cp^{=}Ru(CO)_{2}$ }] (4) in 60 ml Dekalin werden mit 220 mg (1,78 mmol) P₄ versetzt und unter Rückfluß für 20 h erhitzt. Man erkennt im Verlauf der Reaktion eine Farbänderung von orange nach braun. Aufgrund des schleppenden Verlaufs zum Ende der

Reaktion hin wird diese abgebrochen, obwohl auch nach 20 h im IR-Spektrum noch die Banden des Eduktes detektierbar sind (Intensität noch ca. 1/3 bis 1/4 der Anfangswerte). Das Lösungsmittel wird abdestilliert und der Rückstand in ca. 10 ml Dichlormethan aufgenommen. Man versetzt mit wenig Kieselgel (II) und trocknet am Ölpumpenvakuum bis zur Rieselfähigkeit. Die säulenchromatographische Aufarbeitung (Säule 10x2 cm, SiO₂ 2%, PE, Wasserkühlung) ergibt mit reinem Petrolether eine schwach orange Fraktion von $[Cp^{=}Ru(\hbar^{5}-P_{5})]$ (18). Mit PE/Toluol 25:1 eluiert man gelbgrünes $[{Cp^{=}Ru}_{2}(\mu-\hbar^{2:2}-P_{2})_{2}]$ (19). Weitere phosphorhaltige Verbindungen können nicht erhalten werden.

Ausbeute von 18:	33,6 mg (0,072 mmol), 6,0%		
NMR-Daten von 18:	siehe Kapitel 3.4.1.1.2, Tabelle 13, S. 28		
Massenspektrometrie von 18:	siehe Kapitel 3.4.1.1.2, Tabelle 14, S. 28		
Elementaranalyse von 18:	$C_{11}H_{21}P_5RuSi_2$ (M = 465,38 g/mol)		
	berechnet:	C: 28,39%	H: 4,55%
	gefunden:	C: 29,05%	H: 4,57%

Ausbeute von 19:	76,6 mg (0,103 mmol), 17,2%		
NMR-Daten von 19:	siehe Kapitel 3.4.1.2.2, Tabelle 16, S. 3		
Massenspektrometrie von 19:	siehe Kapitel 3.4.1.2.2, Tabelle 17, S. 32		
Elementaranalyse von 19:	$C_{22}H_{42}P_4Ru_2Si_4$ (M = 744,93 g/mol)		
	berechnet:	C: 35,47%	H: 5,68%
	gefund en:	C: 38,82%	H: 5,68%

4.3.6 Thermische Umsetzung von $[{Cp^{=}Ru(CO)_2}_2]$ (4) mit [Cp*Fe(h^5 -P₅)] (23)

630 mg (0,86 mmol) [{Cp⁼Ru(CO)₂}₂] (4) und 300 mg (0,86 mmol) [Cp*Fe(η^5 -P₅)] (23) werden in 170 ml Dekalin am Rückfluß für 22 h erhitzt. Im Verlauf der Reaktion verändert sich die Farbe der Lösung von grün nach braun. Die Reaktion wird nach 22 h abgebrochen, obwohl die IR-Banden des Eduktes 4 noch zu erkennen sind. Das Lösungsmittel wird abdestilliert, anschließend der Rückstand in Petrolether aufgenommen und als PE-Lösung auf eine chromatographische Säule (20x2 cm, SiO₂ 2%, PE, -20 °C) aufgebracht. Man eluiert mit reinem Petrolether einen Vorlauf von wenigen Milligramm einer sehr schwach gelben Fraktion von 18 vor ebenso wenig nicht abreagiertem Edukt 23. Mit Petrolether/Toluol 20:1 erhält man eine gelbgrüne Fraktion von 19 in 8,7% Ausbeute bezogen auf 4. Erhöhung der Polarität auf 10:1 ergibt eine gelbe Fraktion von

 $[{Cp^{=}Ru}_{3}P_{5}]$ (24) in 16,8% Ausbeute. PE/Toluol 7,5:1 eluiert eine Mischfraktion von 24 und 25. Ein Gemisch von 5:1 bis 3:1 liefert im Anschluß daran eine saubere, braune Fraktion von $[{Cp^{=}Ru}_{2}{Cp^{*}Fe}P_{5}]$ (25) in 12,3% Ausbeute. Weitere Zunahme des Toluolanteils auf 1:1 ergibt $[{Cp^{*}Fe}_{2}{Cp^{=}Ru}P_{5}]$ (26) als grüne Fraktion mit einer Ausbeute von 7,5%.

Bei der angeführten Säulenchromatographie ist zu beachten, daß erhebliche Mengen trockener Lösungsmittel benötigt werden (PE: 3,5 l, Toluol: 0,75 l).

Ausbeute von 24:	105,0 mg (0,097 mmol), 16,8%			
NMR-Daten von 24:	siehe Kapitel 3.4.2.1.2, Tabelle 19, S. 37			
Massenspektrometrie von 24:	siehe Kapitel 3.4.2.1.2, Tabelle 20, S. 38			
Elementaranalyse von 24:	$C_{33}H_{63}P_5Ru_3Si_6$ (M = 1086,42 g/mol)			
	berechnet: C: 36,48% H: 5,5		H: 5,84%	
	gefunden:	C: 36,48%	H: 5,81%	

Ausbeute von 25:	101,5 mg (0,	105 mmol), 12,	3%
NMR-Daten von 25:	siehe Kapitel 3.4.2.2.2, Tabelle 21, S. 40		
Massenspektrometrie von 25:	siehe Kapitel	3.4.2.2.2, Tabe	elle 22, S. 41
Elementaranalyse von 25:	$C_{32}H_{57}FeP_5Ru_2Si_4$ (M = 966,98 g/mol)		
	berechnet:	C: 39,75%	H: 5,94%
	gefunden:	C: 40,01%	H: 5,85%

Ausbeute von 26:	109,3 mg (0,129 mmol), 7,5%		
NMR-Daten von 26:	siehe Kapitel 3.4.2.3.2, Tabelle 24, S. 46		
Massenspektrometrie von 26:	siehe Kapite	l 3.4.2.3.2, Tab	elle 25, S. 47
Elementaranalyse von 26:	$C_{31}H_{51}Fe_2P_5RuSi_2$ (M = 847,54 g/mol)		
	berechnet:	C: 43,93%	H: 6,06%
	gefunden:	C: 38,77%	H: 5,81%

4.3.7 Photolyse von [Cp⁼Ru(CO)₂H] (1) in THF

4.3.7.1 Photolyse in THF (60 min)

184 mg (0,5 mmol) $[Cp=Ru(CO)_2H]$ (1) werden in 50 ml THF in einer Tauchlampenapparatur bei ca. 10 °C für 60 min bestrahlt. Man beobachtet mit zunehmender Reaktionsdauer eine Dunkelfärbung der vorher hellgelben Lösung, dies geht einher mit der Abnahme der Carbonylbanden des Eduktes und dem Auftauchen neuer, schwacher Banden im terminalen und verbrückenden Bereich. Die Reaktion wird nach 60 min abgebrochen und das Lösungsmittel am Ölpumpenvakuum entfernt. Der Rückstand wird in wenig Petrolether gelöst und auf eine chromatographische Säule (SiO₂ 2%, 22x1 cm, PE, -20 °C) aufgebracht. Man eluiert sofort mit PE/Toluol 20:1 und erhält [{Cp⁼(OC)Ru}₂(μ -H)₂] (**28**) vor einer Mischfraktion von **28** und [{Cp⁼Ru(CO)}₂{Cp⁼Ru(CO)H}] (**29**). Im Anschluß erhält man mit gleicher Polarität **29** in einer Fraktion von intensiv blauer Farbe. Mit höherer Polarität (PE/Tol 5:1 bis 2:1) erhält man [{Cp⁼Ru}₄(μ ₃-CO)₄] (**30**) als intensiv dunkelviolette Fraktion.

Ausbeute von 28:	8,1 mg (0,012 mmol), 4,8%			
IR-Daten von 28:	siehe Kapite	siehe Kapitel 3.5.1.1.2, S. 52		
NMR-Daten von 28:	siehe Kapitel 3.5.1.1.2, Tabelle 28, S. 52			
Massenspektrometrie von 28:	siehe Kapitel 3.5.1.1.2, Tabelle 29, S. 53			
Elementaranalyse von 28:	$C_{24}H_{44}O_2Ru_2Si_4$ (M = 679,07 g/mol)			
	berechnet:	C: 42,45%	H: 6,53%	
	gefunden:	C: 42,77%	H: 6,37%	

Ausbeute von 29 :	14,5 mg (0,0	14,5 mg (0,014 mmol), 8,6%		
IR-Daten von 29:	siehe Kapite	siehe Kapitel 3.5.1.2.2, S. 54		
NMR-Daten von 29:	siehe Kapite	siehe Kapitel 3.5.1.2.2, Tabelle 30, S. 54		
Massenspektrometrie von 29:	siehe Kapite	siehe Kapitel 3.5.1.2.2, Tabelle 31, S. 55		
Elementaranalyse von 29:	$C_{36}H_{64}O_3Ru$	$C_{36}H_{64}O_3Ru_3Si_6 \ (M = 1016,59 \ g/mol)$		
	berechnet: C: 42,53% H: 6,35%			
	gefunden:	C: 38,54%	H: 7,17%	
Ausbeute von 30 :	26,4 mg (0,0	26,4 mg (0,020 mmol), 15,6%		
IR-Daten von 30 :	siehe Kapitel 3.5.1.3.2, S. 57			
NMR-Daten von 30 :	siehe Kapitel 3.5.1.3.2, Tabelle 32, S. 57			
Massenspektrometrie von 30:	siehe Kapitel 3.5.1.3.2, Tabelle 33, S. 57			
Elementaranalyse von 30:	$C_{48}H_{84}O_4Ru_4Si_8 (M = 1354,11 \text{ g/mol})$			
	berechnet:	C: 42,58%	H: 6,25%	
	gefunden: C: 42,44% H: 6,309			

4.3.7.2 Photolyse in THF (5,5 h)

700 mg (1,9 mmol) $[Cp=Ru(CO)_2H]$ (1) werden in 150 ml THF in einer Tauchlampenapparatur mit Wasserkühlung (ca. 10 °C) 5,5 h bestrahlt. Man beobachtet mit

zunehmender Reaktionsdauer eine Dunkelfärbung der vorher hellgelben Lösung bis nach dunkelviolett, dies geht einher mit der Abnahme der Carbonylbanden des Eduktes und dem Auftauchen neuer, schwacher Banden im terminalen und verbrückenden Bereich. Während der Reaktion ist darauf zu achten, daß das Lösungsmittelvolumen nicht zu sehr abnimmt, eventuell muß zwischenzeitlich THF zugegeben werden. Die Reaktion wird nach 5,5 h beendet und das Lösungsmittel am Ölpumpenvakuum entfernt. Der fast schwarze Rückstand wird in wenig Petrolether gelöst und auf eine chromatographische Säule (SiO₂ 2%, 13x2 cm, PE, Wasserkühlung) aufgebracht. Mit reinem Petrolether erhält man eine schwach Fraktion $[{Cp^{=}(OC)Ru}_{2}(\mu-H)_{2}]$ (28). Die Anwesenheit violette von von $[{Cp^{Ru}(CO)}_{2}{Cp^{Ru}(CO)H}]$ (29) wird nur durch eine schwache Blaufärbung des Säulenmaterials angezeigt, gleichzeitig wird die Verbindung im Verlauf der Aufarbeitung zerstört. Mit PE/Et₂O 100:1 eluiert man im Anschluß dunkelviolettes [{Cp⁼Ru}₄(μ_3 -CO)₄] (30).

Ausbeute von 28:	3,2 mg (0,005 mmol), 0,5%
Ausbeute von 30 :	155,9 mg (0,115 mmol), 24,0%

4.3.8 Photolyse von [Cp⁼Ru(CO)₂H] (1) in Hexan

[Cp⁼Ru(CO)₂H] (1) werden in 150 ml Hexan in einer mmol) 367 mg (1 Tauchlampenapparatur bei 5 °C 5,5 h bestrahlt. Während der Reaktion tritt eine langsame Verfärbung der Reaktionslösung von hellgelb nach fast schwarz ein. Damit einher geht die langsame Abnahme der Eduktbanden und man erkennt das Entstehen neuer Banden relativ schwacher Intensität sowohl im terminalen als auch im verbrückenden Carbonylbereich. Während der Reaktion ist darauf zu achten, daß das Lösungsmittelvolumen nicht zu sehr abnimmt, eventuell muß zwischenzeitlich Hexan zugegeben werden. Die Reaktion wird nach 5,5 h beendet und das Lösungsmittel am Ölpumpenvakuum entfernt. Der fast schwarze Rückstand wird in wenig Petrolether gelöst und auf eine chromatographische Säule (SiO₂ 2%, 25x1 cm, PE, -25 °C) aufgebracht. Man eluiert sofort mit PE/Toluol 20:1 und erhält als erste Fraktion 28 vor einer blauen Fraktion von 29. Erhöhung der Polarität auf 14:1 weiteren Verlauf dann 10:1) liefert eine intensiv (im grüne Lösung von $[{Cp^{=}Ru(\mu-CO)}_{2}{Cp^{=}Ru(CO)H}]$ (33). Im Anschluß erhält man mit einem Petrolether/Toluol-Gemisch von 8:1 bis 5:1 eine gelbgrüne Fraktion von $[{(\mu-CO)}{Cp^{=}Ru}_{2}{Cp^{=}RuH}](\mu_{3}-CO)_{2}]$ (34). Ein 1:1-Gemisch ergibt die unbekannte braune Substanz (35).

Ausbeute von 28:	8,0 mg (0,012 mmol), 2,3%			
Ausbeute von 29:	13,2 mg (0,013 mmol), 3,9%			
Ausbeute von 33:	98,3 mg (0,0	98,3 mg (0,097 mmol), 29,0%		
IR-Daten von 33:	siehe Kapite	siehe Kapitel 3.5.2.1.2, S. 60		
NMR-Daten von 33:	siehe Kapite	1 3.5.2.1.2, Tab	elle 34, S. 60	
Massenspektrometrie von 33:	siehe Kapite	siehe Kapitel 3.5.2.1.2, Tabelle 35, S. 61		
Elementaranalyse von 33:	$C_{36}H_{64}O_3Ru$	$_{3}\text{Si}_{6} (\text{M} = 1016)$,59 g/mol)	
	berechnet:	C: 42,53%	H: 6,35%	
	gefunden:	C: 42,18%	H: 6,35%	
Ausbeute von 34:	43,0 mg (0,042 mmol), 12,7%			
IR-Daten von 34 :	siehe Kapitel 3.5.2.2.2, S. 65			
NMR-Daten von 34:	siehe Kapitel 3.5.2.2.2, Tabelle 37, S. 65			
Massenspektrometrie von 34:	siehe Kapitel 3.5.2.2.2, Tabelle 38, S. 66			
Elementaranalyse von 34:	$C_{36}H_{64}O_3Ru$	$_{3}$ Si ₆ (M = 1016	,59 g/mol)	
	berechnet:	C: 42,53%	H: 6,35%	
	gefunden:	C: 42,77%	H: 6,37%	
Ausbeute von 35:	68,6 mg, 18,	68,6 mg, 18,7 Gew%		
IR-Daten von 35:	siehe Kapite	1 3.5.2.3.2, S. 7	0	
NMR-Daten von 35:	siehe Kapitel 3.5.2.3.2, S. 70			
Massenspektrometrie von 35:	siehe Kapitel 3.5.2.3.2, S. 71			

4.3.9 Reaktion von $[{Cp^{=}Ru(\mu-CO)}_{2}{Cp^{=}Ru(CO)H}]$ (33) mit P₄

80 mg (0,079 mmol) [{Cp⁼Ru(μ -CO)}₂{Cp⁼Ru(CO)H}] (**33**) und 60 mg (0,48 mmol) P₄ werden in 65 ml THF 60 min unter Rückfluß erhitzt. Die Reaktion wird IR-spektroskopisch anhand der abnehmenden Edukt- sowie der erscheinenden Produktbanden verfolgt. Man erkennt die starken charakteristischen Banden von **1**, daneben erscheint eine schwache Bande von [{Cp⁼Ru}(μ - $\eta^{4:1:1}$ -P₄){Ru(CO)Cp⁼}] (**40**) im terminalen Bereich. Mit dem Fortschreiten der Reaktion geht eine Farbänderung von dunkelgrün nach gelb einher. Die Reaktion wird beendet, wenn keine Eduktbanden mehr detektiert werden und der Farbumschlag eingetreten ist. Nach Entfernen des Lösungsmittels am Ölpumpenvakuum wird der Rückstand in wenig Petrolether gelöst und auf eine chromatographische Säule (SiO₂ 2%, 20x1 cm, PE, -20 °C) aufgebracht. Mit PE/Toluol erhält man einen Vorlauf von 6 mg einer nicht identifizierten gelben Fraktion. Ein PE/Toluol-Gemisch von 15:1 eluiert eine braune Fraktion von 40. Verbindung 1 kann nicht eluiert werden und erscheint nur im Rohspektrum.

Ausbeute von 40:	19,3 mg (0,0	19,3 mg (0,025 mmol), 21,1%		
IR-Daten von 40:	siehe Kapite	siehe Kapitel 3.6.1.2, S. 72		
NMR-Daten von 40:	siehe Kapite	siehe Kapitel 3.6.1.2, Tabelle 41, S. 72/73		
Massenspektrometrie von 40:	siehe Kapitel 3.6.1.2, Tabelle 42, S. 74			
Elementaranalyse von 40:	$C_{23}H_{42}OP_4Ru_2Si_4$ (M = 772,94 g/mol)			
	berechnet:	C: 35,74%	H: 5,48%	
	gefunden:	C: 35,63%	H: 6,02%	

4.3.10 Orientierende Versuche

4.3.10.1 Reaktion von [Cp⁼Ru(CO)₂H] (1) mit PPh₃ (43)

588 mg (1,6 mmol) **1** und 420 mg (1,6 mmol) **43** werden in 120 ml Hexan unter Rückfluß erhitzt. Während der Reaktion ist ein Verblassen der orangen Farbe der Lösung zu beobachten, damit einher geht das Verschwinden der Eduktbanden von **1** im IR-Spektrum sowie das Auftauchen einer neuen Bande. Nach 80 min sind die CO-Banden von **1** nicht mehr im IR-Spektrum zu erkennen und die Reaktion wird beendet. Nach Entfernen des Lösungsmittels am Ölpumpenvakuum wird der Rückstand in wenig Petrolether gelöst. Die säulenchromatographische Aufarbeitung (SiO₂ 2%, 24x1 cm, PE, -20 °C) ergibt mit PE/Et₂O 400:1 eine orangebraune Fraktion von [Cp⁼Ru(CO)(PPh₃)H] (**44**) als einziges isolierbares Produkt.

Ausbeute von 44:	775,6 mg (1,28 mmol), 80,0%
IR-Daten von 44:	siehe Kapitel 3.7.1.1.1, S. 78
NMR-Daten von 44:	siehe Kapitel 3.7.1.1.1, S. 78
Massenspektrometrie von 44 (QT =	20 °C, 70eV, 1mA) [amu (Fragment, I _{rel})]:
	602 ([M] ⁺ , 41,0), 573 ([M-CO-H] ⁺ , 18,1), 500 ([M-CO-
	$H-SiMe_3]^+$, 20,1), 496 ([M-CO-H-Ph] ⁺ , 11,6), 277 ([M-
	$PPh_{3}]^{+}, \hspace{0.1cm}82,\!4), \hspace{0.1cm}262 \hspace{0.1cm}([PPh_{3}]^{+}, \hspace{0.1cm}100), \hspace{0.1cm}183 \hspace{0.1cm}([PPh_{2}\text{-}2H]^{+},$
	52,6), 108 ([PPh] ⁺ , 13,5), 77 ([Ph] ⁺ , 8,3); das gefundene
	Isotopenmuster stimmt mit dem simulierten überein.

Elementaranalyse von 44:	$C_{30}H_{37}OPRuSi_2$ (M = 601,82 g/mol)		
	berechnet:	C: 59,87%	H: 6,19%
	gefunden:	C: 61,83%	H: 6,35%

4.3.10.2 Folgereaktionen von [Cp⁻Ru(CO)(PPh₃)H] (44)

4.3.10.2.1 Reaktion mit P₄

180 mg (0,3 mmol) [Cp⁼Ru(CO)(PPh₃)H] (**44**) und 80 mg (0,64 mmol) P₄ werden in 60 ml Hexan unter Rückfluß erhitzt. Die Reaktion wird IR-spektroskopisch verfolgt. Auch nach drei Stunden Reaktionszeit ist keine Umsetzung zu erkennen, die Reaktion wird daraufhin abgebrochen. Das Lösungsmittel wird am Ölpumpenvakuum entfernt, durch Heptan ersetzt und zwei Stunden am Rückfluß erhitzt. Auch hier erhält man keine Reaktion. Der Ersatz des Lösungsmittels durch Dekalin und weiteres Erhitzen unter Rückfluß für 48 Stunden ergeben keine Reaktion.

4.3.10.2.2 Photolyse in THF

140 mg (0,23 mmol) 44 werden in 150 ml THF 2,5 h bestrahlt. Die zu Beginn fast farblose Lösung wird im Verlauf der Reaktion dunkler. Im IR-Spektrum erkennt man die Abnahme der Eduktbande von 44 sowie zwei neue Banden im terminalen Bereich bei $\tilde{v} = 2019$ und 1956 cm⁻¹, welche auf Entstehung von 1 hinweisen. Die anschließende säulenchromatographische Aufarbeitung (SiO₂ 2%, 20x1 cm, PE, -20 °C) ergibt keine spezifischen Produkte.

4.3.10.3 Reaktion von [Cp⁻Ru(CO)₂H] (1) mit P₄

4.3.10.3.1 Cothermolyse

184 mg (0,5 mmol) **1** und 20 mg (0,16 mmol) P_4 werden in 25 ml THF im Druckschlenkrohr auf 100 °C erhitzt. Nach einer Stunde wird die Reaktion abgebrochen. Die IR- und NMRspektroskopischen Daten zeigen, daß keine Reaktion stattgefunden hat. Nach Entfernen des Lösungsmittels wird dieses durch Xylol ersetzt, nochmals 80 mg (0,64 mmol) P_4 zugesetzt
und für weitere 25 h auf 160 °C erhitzt. Auch hier setzt keine Reaktion ein. Die Durchführung in Dekalin führt zum gleichen Ergebnis.

4.3.10.3.2 Cophotolyse

220 mg (0,6 mmol) **1** und 70 mg (0,56 mmol) P₄ werden in 50 ml Hexan bestrahlt. Die Reaktion wird IR-spektroskopisch verfolgt, man erkennt das Verschwinden der Eduktbanden von **1**, neue Banden tauchen nicht auf. Nach 3 Stunden wird die Reaktion abgebrochen, mit dem Verlauf der Reaktion geht eine Farbänderung von hellgelb nach tiefrot einher. In den NMR-Rohspektren erkennt man keine Phosphorsignale, die Protonenspektren zeigen, daß neben **1** nur paramagnetische Verbindungen vorliegen. Die anschließende säulenchromatographische Aufarbeitung (SiO₂ 2%, 20x1 cm, PE, -20 °C) ergibt mit reinem Petrolether, mit PE/Toluol 5:1, 2:1 und reinem Toluol jeweils eine orange Fraktion, Et₂O eluiert zum Ende eine tiefrote Fraktion. Sämtliche Fraktionen ergeben im ¹H-NMR-Spektrum sehr breite Signale im Ringprotonen- und Silylgruppenbereich, die auf Paramagnetismus hindeuten.

4.3.10.4 Oxidation von [Cp^RRu(CO)₂PH₂] (6a,b) mit S₈ und Se_x

60 mg bzw. 50 mg (0,15 mmol) **6a,b** werden mit 20 mg (0,08 mmol) gelbem Schwefel bzw. 60 mg (0,75 mmol) grauem Selen in je 25 ml THF bzw. CH₂Cl₂ 20 h bei Raumtemperatur gerührt. Die Farbe ändert sich bei der Sulfurierung von rot nach orangegelb, bei der Selenierung verbleibt die graugrüne Farbe der Lösung wie zu Reaktionsbeginn. Die ³¹P-NMR-Rohspektrum ergeben ein diffuses Produktbild, die eine Zuordnung der Peaks nicht erlauben. Als Nebenprodukte mit sehr geringem Anteil erkennt man in den Rohspektren der jeweiligen Reaktionen jedoch die sulfurierten bzw. selenierten Produkte [Cp^RRu(CO)₂PH₂S] (**45a,b**) und [Cp⁻Ru(CO)₂PH₂Se] (**46**) durch ihre charakteristischen Triplettsignale. Durch säulenchromatographische Aufarbeitung an allen gängigen Materialien können weder die gewünschten sulfurierten und selenierten noch andere phosphorhaltige Produkte erhalten werden.

³¹ P-NMR-Daten von 45a :	$\delta = -145 \text{ ppm}, {}^{1}\text{J}_{\text{PH}} = 330 \text{ Hz}$
³¹ P-NMR-Daten von 45b :	$\delta = -145 \text{ ppm}, {}^{1}J_{PH} = 330 \text{ Hz}$
³¹ P-NMR-Daten von 46 :	$\delta = -101 \text{ ppm}, {}^{1}\text{J}_{\text{PH}} = 381 \text{ Hz}$

4.3.10.5 Reaktionen von $[{Cp^{=}Ru}_{4}(\mu_{3}-CO)_{4}]$ (30)

4.3.10.5.1 Cothermolyse von 30 mit PPh₃ (43)

65 mg (0,048 mmol) **30** und 50 mg (0,192 mmol) **43** werden in 50 ml Hexan am Rückfluß erhitzt. Auch nach 6 h hat keine Reaktion stattgefunden. Nach Entfernen des Lösungsmittels im Ölpumpenvakuum wird dieses durch Dekalin ersetzt, jedoch erhält man auch hier nach 8 h Thermolyse keine Reaktion.

4.3.10.5.2 Cophotolyse von 30 mit P₄

40 mg (0,059 mmol) **30** werden mit 70 mg (0,56) mmol P_4 in 50 ml Hexan bestrahlt. Die Reaktion wird IR-spektroskopisch verfolgt und man erkennt, daß auch nach 90 min keine Reaktion stattgefunden hat. Die Reaktion wird daraufhin abgebrochen.

4.3.10.5.3 Cothermolyse von 30 mit P₄

37,5 mg (0,028 mmol) **30** und 130 mg (0,105 mmol) P₄ werden in Dekalin 24 h bzw. 120 h am Rückfluß erhitzt. Dabei bleibt die dunkelviolette Farbe der Lösung bis zum Schluß bestehen. Die Reaktion erfolgt dabei sehr langsam (ca. 10% Umsatz nach 24 h, welcher sich auch bei längerer Thermolyse nicht deutlich erhöht). Im Rohspektrum erkennt man nach 24 h wie auch nach 120 h ein Singulett bei $\delta = 94$ ppm neben unregelmäßig auftretenden weiteren Peaks. Eine säulenchromatographische Aufarbeitung ergab in jedem Falle immer nur nicht abreagiertes Edukt **30**. Phosphorhaltige Produkte konnten nicht isoliert werden.

4.3.10.5.4 Cothermolyse von 30 mit [Cp*Fe(**h**⁵-P₅)] (23)

37,5 mg (0,028 mmol) **30** und 100 mg (0,29 mmol) **23** werden in 70 ml Dekalin 24 h bzw. 120 h am Rückfluß erhitzt. Nach 24 h Reaktionsdauer erhält man im ³¹P-NMR-Rohspektrum ein Singulettsignal bei $\delta = 84$ ppm, eine Dauer von 120h zeigt zwei dublettähnliche Signalsätze bei $\delta = 36$ ppm und -15 ppm im Rohspektrum. In beiden Fällen konnten diese Produkte nur in den Rohspektren nachgewiesen werden, der Versuch der Aufarbeitung ergab wieder **30** als einzige isolierbare Verbindung.

4.3.10.6 Weitere Umsetzungen von $[{Cp^{=}Ru(\mu-CO)}_{2}{Cp^{=}Ru(CO)H}]$ (33)

4.3.10.6.1 Cophotolyse mit weißem Phosphor

52 mg (0,051 mmol) **33** und 80 mg (0,645 mmol) P₄ werden in 50 ml THF bzw. Hexan 30 min bestrahlt und die Reaktion IR-spektroskopisch verfolgt. Bereits nach 30 min ist keine Eduktbande mehr zu erkennen und die Bestrahlung wird beendet. Die Farbe ändert sich im Verlauf der Reaktion von grün nach rot. In den Rohspektren sind keine phosphorhaltigen Verbindungen zu erkennen, die Protonenspektren zeigen, daß neben **1** nur noch paramagnetische Produkte gebildet wurden. Dies schränkt die Auswertung der Phosphorspektren stark ein. Die säulenchromatographische Aufarbeitung ergab in keinem Fall diamagnetische Substanzen.

4.3.10.6.2 Cothermolyse mit [Cp*Fe(**h**⁵-P₅)] (23)

40 mg (0,039 mmol) **33** und 80 mg (0,23 mmol) **23** werden in 70 ml Hexan am Rückfluß erhitzt. Nach 2,5 h wird die Reaktion beendet, die Farbe hat sich dabei von grün nach gelbbraun geändert. Im ³¹P-NMR-Rohspektrum kann man nur das Signal von **23** erkennen. Die säulenchromatographische Aufarbeitung (SiO₂ 2%, 15x1 cm, PE, -20 °C) ergibt neben **23** keine weiteren phosphorhaltigen Produkte.

5 Zusammenfassung

[Cp⁼Ru(CO)₂H] (1) kann in vielfältiger Weise zur Synthese neuer phosphorhaltiger als auch rein metallorganischer Verbindungen eingesetzt werden.

Der direkte Einstieg in die Phosphorchemie ist durch Reaktion einer Rohlösung von $[Cp^{=}Ru(CO)_{2}H]$ (1) mit weißem Phosphor möglich. Dabei erhält man den Komplex $[Cp^{=}Ru(CO)_{2}PH_{2}]$ (6a) mit freier Phosphanidogruppe, welcher selbst nicht isoliert, dessen Existenz jedoch spektroskopisch und durch Folgereaktionen eindeutig belegt werden kann.

Abbildung 36: Reaktion von [Cp⁼Ru(CO)₂H] (1) mit weißem Phosphor

Das freie Elektronenpaar des Phosphors kann sowohl durch $[M(CO)_5(thf)]$ (M = Cr, Mo, W) (7,8,9) als auch durch $[Cp*Re(CO)_2(thf)]$ (14) nach Verlust von deren thf-Liganden komplexiert werden.

Abbildung 37: Komplexierungsreaktionen von [Cp^RRu(CO)₂PH₂] (6a,b)

Die Reaktionen mit **7**, **8** und **9** wurden auch mit $[Cp^{-}Ru(CO)_2PH_2]$ (**6b**) durchgeführt. Die Komplexierungsaddukte **10a,b, 11a,b, 12a,b** und **15** konnten spektroskopisch charakterisiert werden. Die Existenz von $[{Cp^{*}(OC)_2Re}_2PH]$ (**16**) wurde in Analogie zur Literatur lediglich durch dessen charakteristisches Signal im ³¹P-NMR-Rohspektrum nachgewiesen ^[52,53]. Das bei der Reaktion mit **14** als Nebenprodukt entstandene, lange bekannte $[{Cp^{*}(OC)_2Re}_2(\mu-CO)]$ (**17**) konnte erstmals röntgenstrukturanalytisch untersucht werden ^[54]

Ausgehend von $[{Cp^{=}Ru(CO)_{2}}_{2}]$ (4) können durch Reaktion mit weißem Phosphor bzw. $[Cp^{*}Fe(\eta^{5}-P_{5})]$ (23) Verbindungen erhalten werden, wie sie bereits für den Cp"-Liganden bekannt sind ^[38,39]. Die Cothermolyse von 4 mit P₄ liefert $[Cp^{=}Ru(\eta^{5}-P_{5})]$ (18) und $[{Cp^{=}Ru}_{2}(\mu-\eta^{2:2}-P_{2})_{2}]$ (19), die beide röntgenstrukturanalytisch charakterisiert werden konnten. 18 erweist sich als erstes Pentaphosphametallocen, das eine annähernd ekliptische Konformation aufweist. Im Zweikernkomplex 19 konnten erstmals für einen Komplex der 8. Gruppe zwei separate P₂-Brückenliganden eindeutig belegt werden, da das Molekül im Kristall keinerlei Fehlordnung unterliegt.

Abbildung 38: Cothermolyse von 4 mit weißem Phosphor und [Cp*Fe(h⁵-P₅)] (23)

Die Cothermolyse von 4 mit 23 liefert neben 18 und 19 die Homo- und Heterotrimetallcluster der allgemeinen Formel [$\{Cp^{=}Ru\}_{n}\{Cp^{*}Fe\}_{3-n}P_{5}$] (n = 1, 2, 3) mit verzerrt dreiecks-dodekaedrischen Gerüststrukturen. Die Röntgenstrukturanalysen von [$\{Cp^{=}Ru\}_{3}P_{5}$] (24),

 $[{Cp^{Ru}}_{2}{Cp^{*}Fe}P_{5}]$ (25) und $[{Cp^{*}Fe}_{2}{Cp^{Ru}}P_{5}]$ (26) zeigen, daß die Metallfragmente ${Cp^{*}Fe}$ und ${Cp^{Ru}}$ nahezu ohne Auswirkungen auf die Gerüststruktur ausgetauscht werden können. Von 24 konnte wegen einer stets vorhandenen Verzwilligung lediglich ein Plot des Schweratomgerüstes erstellt werden, der diesem Trend allerdings nicht widerspricht. Der Vergleich mit den Cp''-Derivaten ^[38,39] zeigt die annähernde Kongruenz der Verbindungen. Bei 26 bleibt jedoch die Stellung des Cp⁼-Liganden am Ruthenium nach Einbau eines Eisenfragmentes erhalten, während in $[{Cp^{*}Fe}_{2}{Cp''Ru}P_{5}]$ (26a) ein Wechsel in der Stellung des Cp''-Liganden am Ruthenium stattfindet.

Die Photolyse von $[Cp^{=}Ru(CO)_{2}H]$ (1) in THF ergibt die spektroskopisch identifizierten Verbindungen $[{Cp^{=}Ru(CO)}_{2}(\mu-H)_{2}]$ (28), $[{Cp^{=}Ru(CO)}_{2}{Cp^{=}Ru(CO)H}]$ (29) und $[{Cp^{=}Ru}_{4}(\mu_{3}-CO)_{4}]$ (30).

Abbildung 39: Photolysereaktion von [Cp⁼Ru(CO)₂H] (1) in THF

Das in geringen Mengen anfallende **28** ist eine vom Typ her lange bekannte Verbindung ^[8] und konnte als dimere Struktur mit zwei verbrückenden Wasserstoffatomen identifiziert werden. Für Komplex **29** wurde in Verbindung mit den Spektren der röntgenstrukturanalytisch gesicherten **33** und **34** eine Struktur als triangularer Metalldreiring

postuliert, der diesen Verbindungen sehr ähnlich ist. Bei **29** handelt es sich um einen 46 VE-Komplex mit einer Ru-Ru-Doppelbindung im Dreiring. Verbindung **30** mit tetraedrischem Ru₄-Gerüst kann durch die Photolyse in hoher Ausbeute dargestellt werden. **30** ist luft- und wasserstabil und überaus reaktionsträge. Es kann daher nicht sinnvoll als Edukt für eine weiterführende Phosphorchemie genutzt werden.

Führt man die Photolyse von 1 in Hexan als nichtkoordinierendem Lösungsmittel durch, so erhält man neben 28 und 29 die Komplexe [$\{Cp^{=}Ru(\mu-CO)\}_{2}\{Cp^{=}Ru(CO)H\}$] (33), $[{(\mu-CO)}{Cp^{=}Ru}_{2}{Cp^{=}RuH}{(\mu_{3}-CO)_{2}}$ (34) sowie die unbekannte Verbindung 35. Die Röntgenstrukturanalysen von 33 und 34 zeigen zwei mit 46 VE elektronendefiziente, triangulare Ru₃-Cluster mit einer M-M-Doppelbindung im Ring, welche beide der Vorgabe der "Magischen Zahlen" entsprechen^[47]. Beide Cluster besitzen die gleiche Zusammensetzung, jedoch liegen in 33 neben einer terminalen zwei die Ru-Ru-Doppelbindung zweifach verbrückenden Carbonylgruppen vor, während in 34 diese nur von einer CO-Gruppe µ-verbrückt wird. Die beiden weiteren Carbonylgruppen sind semi-triply-bridging als Spitzen einer trigonalen Bipyramide positioniert. Die Kristallstrukturanalyse von **34** zeigt auch, daß in der Elementarzelle der Raumgruppe P1 zwei voneinander unabhängige Moleküle, die keiner Fehlordnung unterliegen, stets so angeordnet sind, daß die µ-CO-Gruppen immer auf eine nicht µ-verbrückte Ru-Ru-Kante zeigen.

Abbildung 40: Photolysereaktion von [Cp⁼Ru(CO)₂H] (1) in Hexan

33 reagiert bereitwillig mit weißem Phosphor unter Abspaltung von {Cp⁼Ru(CO)₂H} und ergibt den Komplex [{Cp⁼Ru}(μ - $\eta^{4:1:1}$ -P₄){Ru(CO)Cp⁼}] (**40**). Die Röntgenstrukturanalyse von **40** zeigt, daß aufgrund der Ru-Ru-Einfachbindung mit einer Bindungslänge von 2,8355(6) Å kein planares Tetraphospharuthenol verwirklicht werden kann. Ru1 ist um 25,3° aus der Ebene der vier Phosphoratome P1-P4 abgewinkelt. Die Aufsicht auf die P₄Ru-Ebene läßt jedoch deutlich das Bestreben erkennen, die Konstitution einer pentagonalen Pyramide auszubilden.

Abbildung 41: Reaktion von 33 mit weißem Phosphor

6 Literaturverzeichnis

1	A. Davison, J. A. McCleverty, G. Wilkinson, J. Chem. Soc. 1963, 1133.
2	A. P. Humphries, S. A. R. Knox, J. Chem. Soc. Dalton 1975, 1710-1714.
3	J. K. Hoyano, W. A. G. Graham, J. Am. Chem. Soc. 1982, 104, 3722-3723.
4	K. Wade, Adv. Inorg. Radiochem. 1976, 18, 1-66.
5	H. Suzuki, H. Omori, D. H. Lee, Y. Yoshida, Y. Moro-oka, Organometallics 1988, 7,
	2243-2245.
6	Y. Ohki, H. Suzuki, Angew. Chem. 2000, 112, 3250-3252.
7	N. Koga, K. Morokuma, J. Mol. Struct. 1993, 300, 181-189.
8	K. A. Mahmoud, A. J. Rest, J. Chem. Soc. Dalton 1985, 1365-1373.
9	S. P. Gubin, Russian Chem. Rev. 1985, 54(4), 305-322.
10	W. D. Jones, M. A. White, R. G. Bergmann, J. Am. Chem. Soc. 1978, 100, 6770.
11	N. M. Boag, M. Green, R. M. Mills, G. N. Pain, F. G. A. Stone, P. Woodward, Chem.
	<i>Comm.</i> 1980 , 1171.
12	C. P. Gibson, A. D. Rae, D. R. Tomchick, L. F. Dahl, J. Org. Chem. 1988, 340,
	C23-C30.
13	S. R. Wang, C. P. Cheng, J. Org. Chem. 1995, 490, 111-116.
14	W. L. Olson, A. M. Stacy, L. F. Dahl, J. Am. Chem. Soc. 1986, 108, 7646-7656.
15	G. Winter, B. Schulz, A. Trunschke, H. Miessner, HC. Böttcher, B. Walther, Inorg.
	<i>Chim. Acta</i> 1991 , <i>184</i> , 27-34.
16	A. J. Deeming, Adv. Org. Chem. 1986, 26, 1-96.
17	Comprehensive Organometallic Chemistry, 1982, Bd. 7, 687-745.
18	V. F. Allen, R. Mason, P. B. Hitchcock, J. Org. Chem. 1977, 140, 297-307.
19	D. E. Sherwood, M. B. Hall, Inorg. Chem. 1982, 21, 3458.
20	R. B. King, Inorg. Chem. 1966, 5, 2227-2230.
21	T. Blackmore, J. D. Cotton, M. I. Bruce, F. G. A. Stone, J. Chem. Soc. 1968,
	2931-2936.
22	O. J. Scherer, T. Brück, Angew. Chem. 1987, 99, 59, Angew. Chem. Int. Ed. Engl.
22	1987 , <i>26</i> , 59.
17	

²³ O. J. Scherer, T. Brück, G. Wolmershäuser, *Chem. Ber.* **1988**, *121*, 935-938.

24	T. Brück, Dissertation, Universität Kaiserslautern 1989.
25	O. J. Scherer, T. Brück, G. Wolmershäuser, Chem. Ber. 1989, 122, 2049-2054.
26	G. Friedrich, Dissertation, Universität Kaiserslautern 1995.
27	G. Friedrich, O. J. Scherer, G. Wolmershäuser, Z. Anorg. Allg. Chem. 1996, 622,
	1478-1486.
28	O. J. Scherer, M. Detzel, T. Mohr, G. Wolmershäuser, Angew. Chem. 1994, 106,
	1142-1144; Angew. Chem. Int. Ed. Engl. 1994, 33, 1110-1112.
29	B. Rink, O. J. Scherer, G. Wolmershäuser, Chem. Ber. 1995, 128, 71.
30	M. Detzel, Dissertation, Universität Kaiserslautern 1995.
31	E. Hauck, Dissertation, Universität Kaiserslautern 1995.
32	C. Hofmann, Diplomarbeit, Universität Kaiserslautern 1995.
33	C. Hofmann, Dissertation, Universität Kaiserslautern 1997.
34	C. Hofmann, O. J. Scherer, G. Wolmershäuser, J. Organomet. Chem. 1998, 559,
	219-222.
35	O. J. Scherer, Angew. Chem. 2000, 112, Nr. 6, 1069-1071.
36	O. J. Scherer, Chemie in unserer Zeit 2000, Nr. 6, 374-381.
37	M. Ehses, A. Romerosa, M. Peruzzini, Topics in Current Chemistry 2002, 220,
	107-140.
38	B. Koch, O. J. Scherer, G. Wolmershäuser, Z. Anorg. Allg. Chem. 2000, 626, 1797-1802
39	B. Koch. <i>Dissertation</i> . Universität Kaiserslautern 2001 .
40	L F Dahl M F. Barr, Organometallics 1991 10 3991-3996
41	O I Scherer G Schwarz G Wolmershäuser Z Anorg Allg Chem 1996 622
	951-957.
42	O. J. Scherer, T. Hilt, G. Wolmershäuser, <i>Organometallics</i> 1998 , <i>17</i> , 4110-4112.
43	J. C. Green, M. L. H. Green, G. E. Morris, J. Chem. Soc. Chem. Comm. 1974,
	212-213.
44	M. Peruzzini, J. A. Ramirez, F. Vizza, Angew. Chem. 1998, 110, 16, 2376-2378.
45	C. Müller, Diplomarbeit, Universität Kaiserslautern 2000.
46	J. Weidlein, U. Müller, K. Dehnicke, Schwingungsspektroskopie, Thieme Stuttgart,
	1982.

- ⁴⁷ Ch. Elschenbroich, A. Salzer, *Organometallchemie*, Teubner Studienbücher Chemie, 1993.
- ⁴⁸ E. Hey-Hawkins, *Chem. Rev.* **1994**, *94*, 1661-1717.
- ⁴⁹ D. J. Cardin, M. F. Lappert, C. L. Raston, P. I. Riley, *Comprehensive Organomet. Chem.*; G. Wilkinson, Ed.; Pergamon Press: Oxford, **1982**, *3*, 559ff.
- ⁵⁰ E. Hey, U. Müller, Z. Naturforsch. Teil B **1989**, 44, 1538.
- ⁵¹ G. A. Vaughan, G. L. Hillhouse, A. L. Rheingold, *Organometallics* **1989**, *8*, 1760.
- ⁵² M. P. Ehses, *Dissertation*, Universität Kaiserslautern **1998**.
- ⁵³ G. Schmitt, *Dissertation*, Universität Kaiserslautern **2001**.
- ⁵⁴ J. K. Hoyano, W. A. Graham, J. Chem. Soc. Chem. Comm. **1982**, 27-28.
- ⁵⁵ W. A. Herrmann, B. Koumbouris, E. Herdtweck, M. L. Ziegler, P. Weber, *Chem. Ber.* **1987**, *120*, 931-936.
- ⁵⁶ A. S. Foust, J. K. Hoyano, W. A. G. Graham, J. Org. Chem. **1971**, 32, C65-C66.
- ⁵⁷ D. P. Freyberg, J. L. Robbins, K. N. Raymond, J. C. Smart, J. Am. Chem. Soc. 1979, 101, 892-897.
- ⁵⁸ M. O. Albers, D. C. Liles, D. J. Robinson, A. Shaver, E. Singleton, M. B. Wiege, *Organometallics* **1986**, *5*, 2321-2327.
- ⁵⁹ D. M. P. Mingos, Acc. Chem. Res. 1984, 17, 311-319.
 R. L. Johnston, D. M. P. Mingos, J. Chem. Soc. Dalton Trans. 1987, 647-656.
- ⁶⁰ D. E. C. Corbridge, *The Structural Chemistry of Phosphorus*, Elsevier Scientific Publishing Company, Amsterdam, **1974**, 23.
- ⁶¹ A. P. Ginsberg, W. E. Lindsell, K. J. McCullough, C. R. Sprinkle, A. J. Welch, *J. Am. Chem. Soc.* **1986**, *108*, 403-416.
 - A. P. Ginsberg, W. E. Lindsell, J. Am. Chem. Soc. 1971, 93, 2082-2084.
- ⁶² Y. Canac, D. Bourissou, A. Baceiredo, H. Gornitzka, W. W. Schoeller, G. Bertrand, *Science* **1998**, *279*, 2080-2082.
- ⁶³ O. J. Scherer, G. Kemény, G. Wolmershäuser, *Chem. Ber.* **1995**, *128*, 1145.
- ⁶⁴ M. R. Churchill, F. J. Hollander, J. P. Hutchinson, *Inorg. Chem.* **1977**, *16*, 2655.
- ⁶⁵ H. Omori, H. Suzuki, Y. Take, Y. Moro-Oka, *Organometallics*, **1989**, *8*, 2270-2272.
- ⁶⁶ O. J. Scherer, M. Swarowsky, H. Swarowsky, G. Wolmershäuser, *Angew. Chem.* **1988**, *100*, 738-739.
- ⁶⁷ S. Kraihanzel, M. L. Losee, J. Org. Chem. **1968**, 33, 4701-4705.

- ⁶⁸ I. M. Pribytkova, A. V. Kisin, Y. u. N. Luzikov, N. P. Makoveyeda, V. N. Torocheshnikov, Y. u. A. Ustynyuk, *J. Organomet. Chem.* **1971**, *30*, C57-C60.
- ⁶⁹ W. Strohmeier, K. Gerlach, *Chem. Ber.* **1961**, *94*, 398-406.
- ⁷⁰ M. Detzel, G. Friedrich, O. J. Scherer, G. Wolmershäuser, *Angew. Chem.* 1995, 107, 1454; *Angew. Chem. Int. Ed.* 1995, 34, 1321.

7 Anhang

Kristallstrukturanalysen

7.1	$[{Cp*(OC)_2Re}_2(\mu-CO)] (17)$	109
7.2	$[Cp^{=}Ru(h^{5}-P_{5})]$ (18)	115
7.3	$[{Cp^{=}Ru}_{2}(\mu - h^{2:2} - P_{2})_{2}] (19) \dots$	120
7.4	$[{Cp^{=}Ru}_{2}{Cp^{*}Fe}P_{5}]$ (25)	126
7.5	$[{Cp*Fe}_{2}{Cp=Ru}P_{5}]$ (26)	133
7.6	$[{Cp^{=}Ru(\mu - CO)}_{2}{Cp^{=}Ru(CO)H}]$ (33)	140
7.7	$[{(\mu-CO){Cp^{=}Ru}_{2}{Cp^{=}RuH}}(\mu_{3}-CO)_{2}] (34) \dots$	147
7.8	$[{Cp^{=}Ru}(\mu-\eta^{4:1:1}-P_4){Ru(CO)Cp^{=}}]$ (40)	159

7.1 $[{Cp^{*}(OC)_{2}Re}_{2}(\mu-CO)]$ (17)

Tabelle 1. Kristalldaten und Strukturverfeinerung für 0121.

$C_{25}H_{30}O_5Re_2$				
782.89				
293(2) K				
ΜοΚα				
0.71073 Å				
Phi- Rotation				
Triklin				
P1				
a = 8.9975(9) Å	$\alpha = 83.266(12)^{\circ}$			
b = 10.5877(11) Å	$\beta = 86.255(12)^{\circ}$			
c = 14.1461(14) Å	$\gamma = 66.911(11)^{\circ}$			
1230.8(2) $Å^3$	•			
2				
2.112 Mg/m^3				
9.858 mm ⁻¹				
0.47 x 0.31 x 0.29 mm				
2.79 bis 25.68°				
17224				
4362 (Rint = 0.0556)				
Empirisch (MULABS/PLATON 9	98)			
0.16680 und 0.08438				
Stoe IPDS				
Direkte Methoden				
SHELXS-97 (Sheldrick, 1990)				
Vollmatrix Least-Squares gegen F	72			
SHELXL-97 (Sheldrick, 1997)				
4362 / 0 / 300				
R1 = 0.0264, wR2 = 0.0638				
R1 = 0.0327, wR2 = 0.0663				
0.0051(3)				
sschema $w=1/[\sigma^2(Fo^2)+(0.0445P)^2+0.0000P]$ mit $P=(Fo^2+2Fc^2)/3$				
	C ₂₅ H ₃₀ O ₅ Re ₂ 782.89 293(2) K MoK α 0.71073 Å Phi- Rotation Triklin Pl a = 8.9975(9) Å b = 10.5877(11) Å c = 14.1461(14) Å 1230.8(2) Å ³ 2 2.112 Mg/m ³ 9.858 mm ⁻¹ 0.47 x 0.31 x 0.29 mm 2.79 bis 25.68° 17224 4362 (Rint = 0.0556) Empirisch (MULABS/PLATON 9 0.16680 und 0.08438 Stoe IPDS Direkte Methoden SHELXS-97 (Sheldrick, 1990) Vollmatrix Least-Squares gegen F SHELXL-97 (Sheldrick, 1997) 4362 / 0 / 300 R1 = 0.0264, wR2 = 0.0638 R1 = 0.0327, wR2 = 0.0663 0.0051(3) w=1/[σ^2 (Fo ²)+(0.0445P) ² +0.0000			

GooF (alle Daten)1.001Größtes Maximum und Minimum1.326 und -0.927 eÅ-3

Verfeinerung nach F^2 mit ALLEN Reflexen. Die gewichteten R-Werte wR2 und alle GooF's basieren auf F^2 . Die konventionellen R-Werte R1 basieren auf F, wobei F für negative F^2 gleich Null gesetzt wird. Das Ablehnungskriterium $F^2 > 2\sigma(F^2)$ wird nur zum Berechnen von R(obs) etc. verwendet. Zur Verfeinerung wurden alle Reflexe herangezogen. Grundsätzlich gilt: Auf F^2 bezogene R-Werte sind statistisch etwa doppelt so groß wie die auf F basierenden. Auf ALLE Reflexe bezogene R-Werte sind noch größer.

Die Wasserstoffatome wurden geometrisch lokalisiert. Für die Verfeinerung wurde ein Reitermodell angenommen. Als Temperaturfaktor wurde der 1.5-fache Wert (CH₃-Gruppen des äquivalenten isotropen Temperaturfaktors desjenigen C-Atoms eingesetzt, an welches das jeweilige H-Atom gebunden ist. Einzelheiten können dem Handbuch für das Verfeinerungsprogramm SHELXL entnommen werden.

$$wR_{2} = \sqrt{\frac{\sum \left[w(F_{o}^{2} - F_{c}^{2})^{2}\right]}{\sum \left[w(F_{o}^{2})^{2}\right]}} \qquad \qquad R_{1} = \frac{\sum \left\|F_{o}\right| - \left|F_{c}\right\|}{\sum \left|F_{o}\right|}$$

$$GooF = \sqrt{\frac{\sum \left[w\left(F_o^2 - F_c^2\right)\right]}{(n-p)}} \qquad n =$$

= Zahl der Reflexe; p = Zahl der verfeinerten Parameter

Tabelle 2. Atomkoordinaten [x 10^4] und äquivalente isotrope Auslenkungsparameter [Å² x 10^3] für 0121. U(eq) wird berechnet als ein Drittel der Spur des orthogonalisierten U_{ii} -Tensors.

	x	У	Z	U(eq)
Re(1)	1573(1)	1346(1)	2905(1)	26(1)
Re(2)	2738(1)	3564(1)	2147(1)	31(1)
0(1)	-47(7)	3273(5)	1194(4)	72(2)
0(2)	2491(7)	1972(6)	4785(3)	59(1)
O(3)	-1894(5)	2824(6)	3593(5)	71(2)
O(4)	5635(6)	1423(6)	3237(5)	73(2)
0(5)	4343(9)	2645(7)	246(5)	98(2)
C(1)	970(7)	2929(6)	1786(4)	39(1)
C(2)	2162(6)	1789(6)	4060(4)	35(1)
C(3)	-574(7)	2306(6)	3316(5)	40(1)
C(4)	4525(7)	2166(6)	2817(5)	48(2)
C(5)	3722(9)	2933(7)	976(5)	56(2)
C(11)	1411(8)	-738(6)	3163(5)	43(1)
C(12)	927(7)	-202(6)	2212(5)	41(1)
C(13)	2263(8)	-107(6)	1687(5)	45(2)
C(14)	3610(7)	-584(6)	2303(5)	47(2)
C(15)	3095(8)	-966(6)	3207(5)	49(2)
C(21)	957(8)	5396(6)	2935(5)	46(2)
C(22)	2565(8)	5163(6)	3172(4)	43(1)
C(23)	3399(7)	5392(5)	2298(5)	38(1)
C(24)	2262(7)	5785(6)	1546(4)	38(1)
C(25)	783(7)	5784(5)	1938(5)	39(1)
C(111)	384(12)	-1126(8)	3933(6)	75(3)
C(121)	-694(10)	77(9)	1818(7)	77(3)
C(131)	2312(14)	296(9)	630(5)	80(3)

Anhang				
C(141)	5309(9)	-802(9)	1963(9)	92(4)
C(151)	4098(13)	-1606(8)	4088(8)	91(3)
C(211)	-383(10)	5397(7)	3621(6)	65(2)
C(221)	3235(12)	4856(8)	4153(5)	71(2)
C(231)	5047(8)	5417(8)	2216(6)	61(2)
C(241)	2588(10)	6271(8)	549(5)	60(2)
C(251)	-751(8)	6275(7)	1389(6)	62(2)
C(251)	-/51(8)	02/5(/)	T203(0)	62(2)

Tabelle 3. Bindungslängen [Å] und -winkel [°] für 0121.

Re(1)-C(3)	1.885(6)		O(5)-C(5)	1.156(8)	
Re(1)-C(2)	1.912(6)		C(11)-C(15)	1.442(9)	
Re(1)-C(1)	2.094(6)		C(11)-C(12)	1.424(9)	
Re(1)-C(11)	2.254(6)		C(11)-C(111)	1.506(9)	
Re(1)-C(12)	2.277(5)		C(12)-C(13)	1.402(9)	
Re(1)-C(15)	2.291(6)		C(12)-C(121)	1.501(9)	
Re(1)-C(13)	2.336(5)		C(13)-C(14)	1.428(10)	
Re(1)-C(14)	2.351(5)		C(13)-C(131)	1.508(10)	
Re(1)-Re(2)	2.9928(4)		C(14)-C(15)	1.400(10)	
Re(2)-C(5)	1.891(7)		C(14)-C(141)	1.508(9)	
Re(2)-C(4)	1.917(7)		C(15)-C(151)	1.515(11)	
Re(2)-C(1)	2.066(6)		C(21)-C(22)	1.425(9)	
Re(2)-C(23)	2.272(5)		C(21)-C(25)	1.423(10)	
Re(2)-C(24)	2.286(6)		C(21)-C(211)	1.497(9)	
Re(2)-C(22)	2.309(5)		C(22)-C(23)	1.450(9)	
Re(2)-C(21)	2.326(5)		C(22)-C(221)	1.499(10)	
Re(2)-C(25)	2.317(5)		C(23)-C(24)	1.434(8)	
O(1)-C(1)	1.200(8)		C(23)-C(231)	1.490(8)	
O(2)-C(2)	1.145(7)		C(24)-C(25)	1.408(8)	
O(3)-C(3)	1.159(7)		C(24)-C(241)	1.495(9)	
O(4) - C(4)	1.150(8)		C(25)-C(251)	1.504(9)	
C(3) - Re(1) - C(2)		85.2(2)	C(15)-Re(1)-C(14))	35.1(3)
C(3) - Re(1) - C(1)		83.4(2)	C(13) - Re(1) - C(14))	35.5(2)
C(2) - Re(1) - C(1)		115.4(2)	C(3) - Re(1) - Re(2)		104.52(17)
C(3) - Re(1) - C(11)		94.0(2)	C(2) - Re(1) - Re(2)		79.40(17)
C(2) - Re(1) - C(11)		109.1(2)	C(1)-Re(1)-Re(2)		43.62(15)
C(1)-Re(1)-C(11)		135.0(2)	C(11) - Re(1) - Re(2))	160.38(15)
C(3)-Re(1)-C(12)		93.1(2)	C(12)-Re(1)-Re(2))	133.67(17)
C(2)-Re(1)-C(12)		145.6(2)	C(15)-Re(1)-Re(2))	127.29(18)
C(1)-Re(1)-C(12)		98.5(2)	C(13)-Re(1)-Re(2))	103.37(16)
C(11)-Re(1)-C(12))	36.6(2)	C(14)-Re(1)-Re(2))	100.47(15)
C(3)-Re(1)-C(15)		127.1(3)	C(5)-Re(2)-C(4)		90.0(3)
C(2)-Re(1)-C(15)		93.5(2)	C(5)-Re(2)-C(1)		84.4(3)
C(1)-Re(1)-C(15)		140.8(2)	C(4)-Re(2)-C(1)		115.2(2)
C(11)-Re(1)-C(15))	37.0(2)	C(5) - Re(2) - C(23)		104.1(2)
C(12)-Re(1)-C(15))	60.5(2)	C(4) - Re(2) - C(23)		97.9(2)
C(3)-Re(1)-C(13)		123.4(2)	C(1)-Re(2)-C(23)		146.1(2)
C(2)-Re(1)-C(13)		148.2(2)	C(5)-Re(2)-C(24)		90.1(3)
C(1)-Re(1)-C(13)		84.2(2)	C(4)-Re(2)-C(24)		132.3(2)
C(11)-Re(1)-C(13))	59.9(2)	C(1)-Re(2)-C(24)		112.3(2)
C(12)-Re(1)-C(13))	35.4(2)	C(23)-Re(2)-C(24))	36.7(2)
C(15)-Re(1)-C(13))	59.2(2)	C(5)-Re(2)-C(22)		140.8(2)
C(3)-Re(1)-C(14)		151.6(2)	C(4)-Re(2)-C(22)		91.9(2)
C(2)-Re(1)-C(14)		112.8(2)	C(1)-Re(2)-C(22)		129.1(2)
C(1)-Re(1)-C(14)		106.2(2)	C(23)-Re(2)-C(22)	36.9(2)
C(11)-Re(1)-C(14))	60.0(2)	C(24)-Re(2)-C(22))	60.7(2)
C(12)-Re(1)-C(14)	59.5(2)	C(5)-Re(2)-C(21)		147.1(3)

C(4) - Re(2) - C(21)	119,5(3)	C(131)-C(13)-Re(1)	127.5(5)
C(1)-Re(2)-C(21)	94.5(2)	C(15) - C(14) - C(13)	107.9(5)
C(23) - Re(2) - C(21)	60.5(2)	C(15)-C(14)-C(141)	128.0(8)
C(24) - Re(2) - C(21)	59.9(2)	C(13)-C(14)-C(141)	123.6(8)
C(22)-Re(2)-C(21)	35.8(2)	C(15) - C(14) - Re(1)	70.1(3)
C(5) - Re(2) - C(25)	111.7(3)	C(13)-C(14)-Re(1)	71.7(3)
C(4) - Re(2) - C(25)	151.7(2)	C(141)-C(14)-Re(1)	130.2(4)
C(1)-Re(2)-C(25)	85.9(2)	C(14) - C(15) - C(11)	108.4(6)
C(23) - Re(2) - C(25)	60.3(2)	C(14) - C(15) - C(151)	128.0(8)
C(24) - Re(2) - C(25)	35.6(2)	C(11) - C(15) - C(151)	123.5(8)
C(22) - Re(2) - C(25)	59.8(2)	C(14) - C(15) - Re(1)	74.8(3)
C(21)-Re(2)-C(25)	35.7(2)	C(11)-C(15)-Re(1)	70.1(3)
C(5)-Re(2)-Re(1)	101.53(18)	C(151)-C(15)-Re(1)	124.0(5)
C(4) - Re(2) - Re(1)	74.50(17)	C(22)-C(21)-C(25)	108.2(5)
C(1)-Re(2)-Re(1)	44.37(17)	C(22)-C(21)-C(211)	126.4(7)
C(23)-Re(2)-Re(1)	153.25(16)	C(25)-C(21)-C(211)	125.1(7)
C(24)-Re(2)-Re(1)	151.26(14)	C(22)-C(21)-Re(2)	71.4(3)
C(22)-Re(2)-Re(1)	116.71(15)	C(25)-C(21)-Re(2)	71.8(3)
C(21)-Re(2)-Re(1)	100.36(15)	C(211)-C(21)-Re(2)	127.7(4)
C(25)-Re(2)-Re(1)	116.23(14)	C(21)-C(22)-C(23)	107.5(6)
O(1)-C(1)-Re(2)	137.1(5)	C(21)-C(22)-C(221)	126.3(7)
O(1)-C(1)-Re(1)	130.9(4)	C(23)-C(22)-C(221)	126.0(7)
Re(2)-C(1)-Re(1)	92.0(2)	C(21)-C(22)-Re(2)	72.7(3)
O(2)-C(2)-Re(1)	174.8(5)	C(23)-C(22)-Re(2)	70.2(3)
O(3)-C(3)-Re(1)	176.0(5)	C(221)-C(22)-Re(2)	126.4(4)
O(4)-C(4)-Re(2)	173.8(5)	C(22)-C(23)-C(24)	107.2(5)
O(5)-C(5)-Re(2)	174.5(6)	C(22)-C(23)-C(231)	126.3(6)
C(15)-C(11)-C(12)	106.8(5)	C(24)-C(23)-C(231)	126.0(6)
C(15)-C(11)-C(111)	127.4(7)	C(22)-C(23)-Re(2)	72.9(3)
C(12)-C(11)-C(111)	125.5(7)	C(24)-C(23)-Re(2)	72.2(3)
C(15)-C(11)-Re(1)	72.9(3)	C(231)-C(23)-Re(2)	126.8(4)
C(12)-C(11)-Re(1)	72.6(3)	C(25)-C(24)-C(23)	108.4(5)
C(111)-C(11)-Re(1)	124.6(4)	C(25)-C(24)-C(241)	127.3(6)
C(13)-C(12)-C(11)	108.5(5)	C(23)-C(24)-C(241)	124.0(5)
C(13)-C(12)-C(121)	125.8(7)	C(25)-C(24)-Re(2)	73.4(3)
C(11)-C(12)-C(121)	125.4(7)	C(23)-C(24)-Re(2)	71.1(3)
C(13)-C(12)-Re(1)	74.6(3)	C(241)-C(24)-Re(2)	126.9(4)
C(11)-C(12)-Re(1)	70.8(3)	C(24)-C(25)-C(21)	108.8(5)
C(121)-C(12)-Re(1)	125.1(5)	C(24)-C(25)-C(251)	124.0(6)
C(12)-C(13)-C(14)	108.4(6)	C(21)-C(25)-C(251)	126.8(6)
C(12)-C(13)-C(131)	125.7(7)	C(24)-C(25)-Re(2)	71.0(3)
C(14)-C(13)-C(131)	125.6(7)	C(21)-C(25)-Re(2)	72.5(3)
C(12)-C(13)-Re(1)	70.0(3)	C(251)-C(25)-Re(2)	127.7(4)
C(14)-C(13)-Re(1)	72.8(3)		

	U ₁₁	U ₂₂	U ₃₃	U 23	U ₁₃	U ₁₂
Re(1)	27(1)	25(1)	25(1)	0(1)	-1(1)	-10(1)
Re(2)	37(1)	28(1)	31(1)	-4(1)	8(1)	-15(1)
0(1)	103(4)	60(3)	65(4)	22(3)	-56(3)	-45(3)
0(2)	81(3)	73(3)	33(3)	-2(3)	-14(2)	-39(3)
0(3)	34(2)	69(3)	100(5)	-15(3)	16(3)	-12(2)
O(4)	43(3)	61(3)	112(5)	0(3)	-23(3)	-15(2)
0(5)	144(6)	92(4)	77(4)	-45(4)	74(4)	-67(5)
C(1)	53(3)	36(3)	32(3)	0(3)	-4(3)	-21(3)
C(2)	34(3)	40(3)	29(3)	1(3)	-2(2)	-13(2)
C(3)	43(3)	33(3)	45(4)	1(3)	-5(3)	-16(2)
C(4)	40(3)	37(3)	72(5)	-12(3)	3(3)	-18(3)
C(5)	75(4)	48(4)	54(4)	-13(3)	29(4)	-37(3)
C(11)	59(4)	34(3)	41(4)	-6(3)	6(3)	-23(3)
C(12)	46(3)	33(3)	46(4)	-6(3)	-7(3)	-18(2)
C(13)	61(4)	34(3)	41(4)	-16(3)	7(3)	-16(3)
C(14)	36(3)	25(3)	78(5)	-18(3)	12(3)	-7(2)
C(15)	62(4)	23(3)	58(5)	-1(3)	-22(3)	-8(3)
C(21)	59(4)	29(3)	49(4)	-17(3)	17(3)	-15(3)
C(22)	65(4)	27(3)	36(4)	-2(3)	-4(3)	-18(3)
C(23)	42(3)	24(2)	50(4)	2(3)	-5(3)	-17(2)
C(24)	43(3)	30(3)	41(4)	3(3)	-3(2)	-16(2)
C(25)	37(3)	27(3)	49(4)	-8(3)	3(3)	-6(2)
C(111)	120(7)	50(4)	68(6)	-9(4)	29(5)	-51(5)
C(121)	71(5)	81(6)	95(7)	-22(5)	-27(5)	-39(4)
C(131)	144(9)	68(5)	39(4)	-16(4)	16(5)	-54(6)
C(141)	48(4)	61(5)	171(11)	-57(6)	43(5)	-21(4)
C(151)	107(7)	44(4)	108(9)	13(5)	-69(6)	-11(4)
C(211)	86(5)	45(4)	62(5)	-22(4)	38(4)	-27(4)
C(221)	122(7)	56(4)	41(4)	-3(4)	-22(4)	-38(5)
C(231)	53(4)	57(4)	80(6)	4(4)	-14(4)	-29(3)
C(241)	80(5)	58(4)	43(4)	12(4)	4(4)	-33(4)
C(251)	38(3)	49(4)	89(6)	-5(4)	-13(3)	-6(3)

Tabelle 4. Anisotrope Auslenkungsparameter [Ų x 10³] für 0121.Der Exponent des anisotropen Auslenkungsfaktors hat die Form: $-2\pi^2$ [$(ha^*)^2 U_{11} + ... + 2hka^*b^*U_{12}$]

x	У	Z	U(eq)
396	-2017	3850	112
-705	-453	3896	112
808	-1155	4545	112
-961	840	1332	115
-1499	297	2320	115
-659	-727	1551	115
2769	-521	303	120
2964	831	501	120
1235	833	415	120
5991	-1013	2502	138
5309	21	1598	138
5708	-1555	1572	138
4758	-2556	4018	136
3394	-1550	4636	136
4775	-1118	4168	136
56	4747	4164	97
-1131	5141	3315	97
-935	6303	3824	97
2997	5706	4425	107
4384	4358	4120	107
2752	4308	4544	107
4963	6352	2189	92
5578	5025	1647	92
5661	4888	2759	92
2095	5931	111	90
3733	5932	427	90
2144	7261	468	90
-1312	7253	1407	93
-1426	5812	1668	93
-494	6073	740	93
	x 396 -705 808 -961 -1499 -659 2769 2964 1235 5991 5309 5708 4758 3394 4775 56 -1131 -935 2997 4384 2752 4963 5578 5661 2095 3733 2144 -1312 -1426 -494	xy 396 -2017 -705 -453 808 -1155 -961 840 -1499 297 -659 -727 2769 -521 2964 831 1235 833 5991 -1013 5309 21 5708 -1555 4758 -2556 3394 -1550 4775 -1118 56 4747 -1131 5141 -935 6303 2997 5706 4384 4358 2752 4308 4963 6352 5578 5025 5661 4888 2095 5931 3733 5932 2144 7261 -1312 7253 -1426 5812 -494 6073	xyz 396 -2017 3850 -705 -453 3896 808 -1155 4545 -961 840 1332 -1499 297 2320 -659 -727 1551 2769 -521 303 2964 831 501 1235 833 415 5991 -1013 2502 5309 21 1598 5708 -1555 1572 4758 -2556 4018 3394 -1550 4636 4775 -1118 4168 56 4747 4164 -1131 5141 3315 -935 6303 3824 2997 5706 4425 4384 4358 4120 2752 4308 4544 4963 6352 2189 5578 5025 1647 5661 4888 2759 2095 5931 111 3733 5932 427 2144 7261 468 -1312 7253 1407 -1426 5812 1668 -494 6073 740

7.2 $[Cp^{=}Ru(h^{5}-P_{5})]$ (18)

Tabelle 1. Kristalldaten und Strukturverfeinerung für 0181.

Summenformel	$C_{11}H_{21}P_5RuSi_2$	
Molmasse	465.38	
Temperatur	293(2) K	
Strahlung	ΜοΚα	
Wellenlänge	0.71073 Å	
Scanmodus	Phi- Rotation	
Kristallsystem	Triklin	
Raumgruppe	P1	
Zelldimensionen	a = 6.6837(6) Å	$\alpha = 102.979(11)^{\circ}$
	b = 10.2995(10) Å	$\beta = 90.679(11)^{\circ}$
	c = 15.4823(15) Å	$\gamma = 104.452(11)^{\circ}$
Zellvolumen	$1003.08(16) \text{ Å}^3$	
Formeleinheiten pro Zelle Z	2	
Berechnete Dichte	1.541 Mg/m^3	
Absorptionskoeffizient	1.286 mm^{-1}	
Kristallgröße	0.60 x 0.44 x 0.18 mm	
Gemessener θ-Bereich	3.80 bis 25.68°	
Anzahl der gemessenen Reflexe	10318	
Unabhängige Reflexe	3555 (Rint = 0.0380)	
Absorptionskorrektur	Empirisch (MULABS/PLATON 9	98)
Max. und min. Transmission	0.73596 und 0.53542	
Diffraktometer	Stoe IPDS	
Strukturlösung	Direkte Methoden	
Strukturlösungsprogramm	SHELXS-97 (Sheldrick, 1990)	2
Strukturverfeinerung	Vollmatrix Least-Squares gegen F	72
Strukturverfeinerungsprogramm	SHELXL-97 (Sheldrick, 1997)	
Daten / Restraints / Parameter	3555 / 10 / 224	
Endgültige R-Werte $[I>2\sigma(I)]$	R1 = 0.0311, wR2 = 0.0820	
R-Werte (alle Daten)	R1 = 0.0335, wR2 = 0.0834	
Wichtungsschema	$w=1/[\sigma^{2}(Fo^{2})+(0.0513P)^{2}+0.4974]$	P] mit P= $(Fo^2 + 2Fc^2)/3$
GooF (alle Daten)	1.043	
Größtes Maximum und Minimum	$0.483 \text{ und } -0.613 \text{ e}\text{\AA}^{-3}$	

Verfeinerung nach F^2 mit ALLEN Reflexen. Die gewichteten R-Werte wR2 und alle GooF's basieren auf F^2 . Die konventionellen R-Werte R1 basieren auf F, wobei F für negative F^2 gleich Null gesetzt wird. Das Ablehnungskriterium $F^2 > 2\sigma(F^2)$ wird nur zum Berechnen von R(obs) etc. verwendet. Zur Verfeinerung wurden alle Reflexe herangezogen. Grundsätzlich gilt: Auf F^2 bezogene R-Werte sind statistisch etwa doppelt so groß wie die auf F basierenden. Auf ALLE Reflexe bezogene R-Werte sind noch größer.

Die P-Atome sind rotationsfehlgeordnet (Populationsverhältnis 0.7:0.3). Die Wasserstoffatome wurden geometrisch lokalisiert. Für die Verfeinerung wurde ein Reitermodell angenommen. Als Temperaturfaktor wurde der 1.5-fache Wert (CH₃-Gruppen) bzw. der 1.2-fache Wert (Cp-H) des äquivalenten isotropen Temperaturfaktors desjenigen C- Atoms eingesetzt, an we Iches das jeweilige H-Atom gebunden ist. Einzelheiten können dem Handbuch für das Verfeinerungsprogramm SHELXL entnommen werden.

$$GooF = \sqrt{\frac{\sum \left[w\left(F_o^2 - F_c^2\right)\right]}{(n-p)}}$$
 n = Zahl der Reflexe; p = Zahl der verfeinerten Parameter

Tabelle 2. Atomkoordinaten [x 10⁴] und äquivalente isotrope Auslenkungsparameter [Å² x 10³] für 0181. U(eq) wird berechnet als ein Drittel der Spur des orthogonalisierten U_{ij} -Tensors.

	x	У	Z	U(eq)
				20(1)
Ru(I)	6661(1)	7678(I)	2019(1)	38(1)
P(1)	3134(7)	6999(8)	1390(5)	120(2)
P(2)	5385(11)	7721(5)	540(3)	93(1)
P(3)	7635(7)	6669(5)	554(3)	69(1)
P(4)	6869(7)	5339(3)	1370(2)	80(1)
P(5)	4081(9)	5510(5)	1900(2)	113(2)
P(1A)	4360(3)	7614(12)	784(11)	116(5)
P(2A)	7070(3)	6950(16)	445(7)	121(6)
P(3A)	7198(14)	5516(13)	1172(10)	122(5)
P(4A)	4660(2)	5304(8)	1905(7)	102(4)
P(5A)	2872(16)	6618(17)	1712(9)	102(4)
Si(1)	7874(2)	11424(1)	2076(1)	53(1)
Si(2)	6379(2)	7460(1)	4368(1)	51(1)
C(1)	6676(5)	9379(3)	3179(2)	41(1)
C(2)	8021(5)	9938(3)	2562(2)	42(1)
C(3)	9611(4)	9236(3)	2484(2)	42(1)
C(4)	9243(5)	8280(3)	3033(2)	44(1)
C(5)	7418(5)	8356(3)	3480(2)	40(1)
C(6)	9054(8)	11271(6)	995(3)	92(2)
C(7)	5139(7)	11477(5)	1968(4)	87(1)
C(8)	9426(8)	12991(4)	2879(3)	89(1)
C(9)	7062(8)	5788(5)	4189(3)	86(1)
C(10)	3545(7)	7245(6)	4383(3)	85(1)
C(11)	7685(9)	8599(6)	5439(3)	93(2)

Tabelle 3. Bindungslängen [Å] und -winkel [°] für 0181.

Ru(1)-C(4)	2.189(3)		P(1A)-P(2A)	2.120(13)	
Ru(1)-C(3)	2.202(3)		P(2A)-P(3A)	2.066(13)	
Ru(1)-C(1)	2.207(3)		P(3A)-P(4A)	2.043(12)	
Ru(1)-C(5)	2.225(3)		P(4A)-P(5A)	2.083(14)	
Ru(1)-C(2)	2.236(3)		Si(1)-C(7)	1.849(5)	
Ru(1)-P(1)	2.410(4)		Si(1)-C(6)	1.850(4)	
Ru(1)-P(1A)	2.420(9)		Si(1)-C(8)	1.860(5)	
Ru(1)-P(5)	2.424(3)		Si(1)-C(2)	1.873(3)	
Ru(1)-P(2A)	2.422(10)		Si(2) - C(10)	1.852(5)	
Ru(1)-P(3A)	2.430(8)		Si(2) - C(9)	1.852(4)	
Ru(1) - P(4)	2.432(3)		Si(2) - C(11)	1.862(5)	
Ru(1) - P(3)	2.442(4)		S1(2) - C(5)	1.871(3)	
P(1) - P(5)	2.095(8)		C(1) - C(5)	1.431(4)	
P(1) - P(2)	2.116(6)		C(1) - C(2)	1.435(4)	
P(2) - P(3)	2.064(5)		C(2) - C(3)	1.420(4)	
P(3) - P(4) D(4) - D(5)	2.045(5)		C(3) = C(4)	1.419(4)	
P(4) - P(5) $D(1\lambda) D(E\lambda)$	2.070(5)		C(4) = C(5)	1.420(4)	
P(IA) - P(JA)	2.072(12)				
C(4) - Ru(1) - C(3)		37.69(11)	C(2) - Ru(1) - P	(3A)	146.8(3)
C(4) - Ru(1) - C(1)		62.06(11)	P(1)-Ru(1)-P	(3A)	89.9(2)
C(3)-Ru(1)-C(1)		61.94(11)	P(1A)-Ru(1)-H	P(3A)	87.5(4)
C(4)-Ru(1)-C(5)		37.51(11)	P(5) - Ru(1) - P	(3A)	58.7(3)
C(3)-Ru(1)-C(5)		63.10(10)	P(2A)-Ru(1)-I	P(3A)	50.4(3)
C(1)-Ru(1)-C(5)		37.68(10)	C(4)-Ru(1)-P((4)	98.73(12)
C(4)-Ru(1)-C(2)		63.07(11)	C(3)-Ru(1)-P((4)	116.75(14)
C(3)-Ru(1)-C(2)		37.30(11)	C(1)-Ru(1)-P((4)	151.40(10)
C(1)-Ru(1)-C(2)		37.69(10)	C(5)-Ru(1)-P((4)	114.24(10)
C(5)-Ru(1)-C(2)		63.85(10)	C(2)-Ru(1)-P((4)	153.61(14)
C(4)-Ru(1)-P(1)		158.7(2)	P(1)-Ru(1)-P((4)	87.76(17)
C(3)-Ru(1)-P(1)		151.8(2)	P(1A)-Ru(1)-R	₽(4)	91.2(4)
C(1)-Ru(1)-P(1)		103.57(15)	P(5)-Ru(1)-P((4)	50.63(14)
C(5)-Ru(1)-P(1)		121.56(19)	P(2A)-Ru(1)-I	2(4)	59.4(4)
C(2)-Ru(1)-P(1)		116.3(2)	P(3A)-Ru(1)-I	₽(4)	10.1(4)
C(4) - Ru(1) - P(1A)		163.4(4)	C(4) - Ru(1) - P((3)	112.19(13)
C(3) - Ru(1) - P(1A)		125.7(4)	C(3) - Ru(1) - P((3)	97.83(13)
C(1)-Ru(1)-P(1A)		112.9(5)	C(1) - Ru(1) - P((3)	154.65(15)
C(5) - Ru(1) - P(1A)		146.5(6)	C(5) - Ru(1) - P((3)	148.47(13)
C(2) - Ru(1) - P(1A)		102.8(3)	C(2) - Ru(1) - P(1)	(3)	116.96(14)
P(1) - Ru(1) - P(1A)		33.9(4)	P(1) - Ru(1) - P(1)	(3)	87.46(15)
C(4) = Ru(1) = P(5) C(2) = Pu(1) = D(5)		110.99(10)	P(IA) = Ru(I) = P(IA) = Ru(I) = P(IA) = Ru(I) = P(IA) = Ru(I) = P(IA) = P(IA) = Ru(I) = P(IA) = Ru(I) = Ru(I	(3)	04.9(5) 97.06(14)
C(3) Ru(1) P(3) C(1) - P(1)(1) - P(5)		117 74(12)	$P(2\Delta) = R_{11}(1) = I$	(3)	13 6(6)
C(5) - Ru(1) - P(5)		101 29(12)	$P(3A) - R_{11}(1) - R_{11}(1$	⊃(3)	39 9(4)
C(2) - Ru(1) - P(5)		154.05(15)	$P(4) - R_1(1) - P(4)$	(3)	49.61(13)
$P(1) - R_1(1) - P(5)$		51 37(19)	P(5)-P(1)-P(2)	2)	107 8(2)
P(1A) - Ru(1) - P(5)		77.6(3)	P(5)-P(1)-Ru((1)	64.66(17)
C(4)-Ru(1)-P(2A)		123.1(5)	P(2)-P(1)-Ru((1)	65.08(15)
C(3)-Ru(1)-P(2A)		102.0(3)	P(3)-P(2)-P(1	L)	106.7(3)
C(1)-Ru(1)-P(2A)		148.2(4)	P(3)-P(2)-Ru((1)	64.88(16)
C(5)-Ru(1)-P(2A)		160.5(5)	P(1)-P(2)-Ru((1)	63.27(14)
C(2)-Ru(1)-P(2A)		112.8(3)	P(4)-P(3)-P(2	2)	109.5(3)
P(1)-Ru(1)-P(2A)		77.6(4)	P(4)-P(3)-Ru((1)	64.95(14)
P(1A)-Ru(1)-P(2A	.)	51.9(3)	P(2)-P(3)-Ru((1)	65.18(14)
P(5)-Ru(1)-P(2A)		88.2(3)	P(3)-P(4)-P(5)	5)	108.8(2)
C(4)-Ru(1)-P(3A)		100.1(3)	P(3)-P(4)-Ru((1)	65.44(12)
C(3)-Ru(1)-P(3A)		111.9(2)	P(5)-P(4)-Ru((1)	64.50(14)
C(1)-Ru(1)-P(3A)		158.7(4)	P(4)-P(5)-P(1	L)	107.13(18)
C(5)-Ru(1)-P(3A)		121.0(4)	P(4) - P(5) - Ru((1)	64.88(12)

63.97(15) 109.9(6)	C(10)-Si(2)-C(5) C(9)-Si(2)-C(5)	109.91(16) 109.61(17)
66.7(4)	C(11)-Si(2)-C(5)	106.26(18)
64.1(4)	C(5)-C(1)-C(2)	110.7(3)
106.4(6)	C(5)-C(1)-Ru(1)	71.81(15)
65.0(3)	C(2)-C(1)-Ru(1)	72.22(15)
64.0(4)	C(3)-C(2)-C(1)	105.3(2)
107.7(6)	C(3)-C(2)-Si(1)	127.4(2)
65.5(3)	C(1)-C(2)-Si(1)	126.9(2)
64.6(4)	C(3)-C(2)-Ru(1)	70.08(16)
111.4(5)	C(1)-C(2)-Ru(1)	70.09(15)
64.9(3)	Si(1)-C(2)-Ru(1)	129.52(14)
66.2(4)	C(4)-C(3)-C(2)	109.3(3)
104.6(5)	C(4)-C(3)-Ru(1)	70.66(16)
63.3(3)	C(2)-C(3)-Ru(1)	72.62(16)
63.9(4)	C(3)-C(4)-C(5)	109.4(3)
111.9(2)	C(3)-C(4)-Ru(1)	71.66(16)
110.8(3)	C(5)-C(4)-Ru(1)	72.59(16)
109.2(3)	C(4)-C(5)-C(1)	105.3(2)
109.20(16)	C(4)-C(5)-Si(2)	127.1(2)
110.08(19)	C(1)-C(5)-Si(2)	127.2(2)
105.52(17)	C(4)-C(5)-Ru(1)	69.90(15)
112.1(2)	C(1)-C(5)-Ru(1)	70.51(15)
109.6(3)	Si(2)-C(5)-Ru(1)	128.94(14)
109.2(3)		
	63.97(15) 109.9(6) 66.7(4) 64.1(4) 106.4(6) 65.0(3) 64.0(4) 107.7(6) 65.5(3) 64.6(4) 111.4(5) 64.9(3) 66.2(4) 104.6(5) 63.3(3) 63.9(4) 111.9(2) 110.8(3) 109.2(3) 109.20(16) 110.08(19) 105.52(17) 112.1(2) 109.6(3) 109.2(3)	$\begin{array}{llllllllllllllllllllllllllllllllllll$

Tabelle 4. Anisotrope Auslenkungsparameter [Ų x 10³] für 0181.Der Exponent des anisotropen Auslenkungsfaktors hat die Form: $-2\pi^2$ [(ha*)²U₁₁ + ... + 2hka*b*U₁₂]

	U ₁₁	U ₂₂	U ₃₃	U ₂₃	U ₁₃	U ₁₂
Ru(1)	36(1)	40(1)	36(1)	4(1)	2(1)	9(1)
P(1)	38(2)	168(5)	111(4)	-59(3)	-17(2)	34(2)
P(2)	133(4)	78(2)	62(1)	6(1)	-46(2)	29(2)
P(3)	63(1)	83(1)	44(2)	-9(1)	10(1)	7(1)
P(4)	120(3)	38(1)	76(1)	1(1)	-19(2)	23(1)
P(5)	104(2)	104(3)	70(2)	-7(1)	32(2)	-58(2)
P(1A)	144(11)	82(4)	110(9)	14(5)	-84(8)	19(7)
P(2A)	150(12)	122(9)	36(2)	10(4)	10(5)	-57(7)
P(3A)	40(3)	125(8)	150(8)	-85(6)	-5(4)	34(4)
P(4A)	146(9)	37(2)	105(6)	14(2)	-45(6)	-6(4)
P(5A)	35(3)	130(7)	97(6)	-44(5)	14(3)	4(3)
Si(1)	57(1)	50(1)	61(1)	27(1)	16(1)	18(1)
Si(2)	60(1)	56(1)	47(1)	23(1)	11(1)	23(1)
C(1)	45(2)	42(1)	39(1)	7(1)	8(1)	17(1)
C(2)	46(2)	37(1)	40(1)	8(1)	5(1)	10(1)
C(3)	36(2)	43(1)	44(1)	7(1)	3(1)	4(1)
C(4)	41(2)	44(2)	44(1)	5(1)	-5(1)	13(1)
C(5)	46(2)	39(1)	36(1)	8(1)	2(1)	11(1)
C(6)	104(4)	119(4)	77(3)	57(3)	40(3)	41(3)
C(7)	70(3)	89(3)	129(4)	62(3)	24(3)	37(2)
C(8)	105(4)	50(2)	107(3)	23(2)	6(3)	11(2)
C(9)	105(4)	70(3)	110(3)	48(2)	37(3)	44(2)
C(10)	75(3)	117(4)	89(3)	60(3)	31(2)	39(3)
C(11)	116(4)	114(4)	47(2)	22(2)	2(2)	27(3)

	х	У	Z	U(eq)
н(1)	5486	9645	3358	49
H(3)	10720	9380	2129	51
H(4)	10068	7695	3092	52
H(6A)	8289	10444	586	138
H(6B)	10464	11235	1076	138
H(6C)	9022	12056	763	138
H(7A)	5049	12208	1691	131
H(7B)	4616	11637	2546	131
H(7C)	4332	10613	1610	131
H(8A)	9397	13795	2668	133
H(8B)	10831	12933	2936	133
H(8C)	8850	13053	3448	133
H(9A)	6884	5452	4721	129
H(9B)	8479	5912	4044	129
H(9C)	6177	5133	3710	129
H(10A)	2862	6576	3860	128
H(10B)	3243	8112	4394	128
H(10C)	3061	6935	4902	128
H(11A)	7518	9512	5491	139
H(11B)	9133	8631	5455	139
H(11C)	7076	8241	5924	139

Tabelle 5. H-Atomkoordinaten [x 10⁴] und äquivalente isotrope Auslenkungsparameter [Å² x 10³] für 0181.

7.3 $[{Cp^{=}Ru}_{2}(\mu-h^{2:2}-P_{2})_{2}]$ (19)

Tabelle 1. Kristalldaten und Strukturverfeinerung für 0182.

Summenformel	$C_{22}H_{42}P_4Ru_2Si_4$	
Molmasse	744.94	
Temperatur	293(2) K	
Strahlung	ΜοΚα	
Wellenlänge	0.71073 Å	
Scanmodus	Phi-Oszillation	
Kristallsystem	Triklin	
Raumgruppe	P1	
Zelldimensionen	a = 6.9918(6) Å	$\alpha = 83.229(12)^{\circ}$
	b = 12.4323(12) Å	$\beta = 88.561(11)^{\circ}$
	c = 20.399(2) Å	$\gamma = 75.709(11)^{\circ}$
Zellvolumen	$1706.3(3) \text{ Å}^3$	
Formeleinheiten pro Zelle Z	2	
Berechnete Dichte	1.450 Mg/m^3	
Absorptionskoeffizient	1.224 mm^{-1}	
Kristallgröße	0.48 x 0.17 x 0.11 mm	
Gemessener θ-Bereich	2.78 bis 25.68°	
Anzahl der gemessenen Reflexe	20301	
Unabhängige Reflexe	6076 (Rint = 0.0867)	
Absorptionskorrektur	Numerisch (ABST/PLATON 98)	
Max. und min. Transmission	0.87869 und 0.78124	
Diffraktometer	Stoe IPDS	
Strukturlösung	Direkte Methoden	
Strukturlösungsprogramm	SHELXS-97 (Sheldrick, 1990)	2
Strukturverfeinerung	Vollmatrix Least-Squares gegen F	72
Strukturverfeinerungsprogramm	SHELXL-97 (Sheldrick, 1997)	
Daten / Restraints / Parameter	6076 / 0 / 301	
Endgültige R-Werte $[I > 2\sigma(I)]$	R1 = 0.0398, wR2 = 0.0840	
R-Werte (alle Daten)	R1 = 0.0740, wR2 = 0.0912	
Wichtungsschema	$w=1/[\sigma^{2}(Fo^{2})+(0.0390P)^{2}+0.0000]$	P] mit P=(Fo ² +2Fc ²)/3
GooF (alle Daten)	0.854	
Größtes Maximum und Minimum	0.631 und -0.505 eÅ ⁻³	

Verfeinerung nach F^2 mit ALLEN Reflexen. Die gewichteten R-Werte wR2 und alle GooF's basieren auf F^2 . Die konventionellen R-Werte R1 basieren auf F, wobei F für negative F^2 gleich Null gesetzt wird. Das Ablehnungskriterium $F^2 > 2\sigma(F^2)$ wird nur zum Berechnen von R(obs) etc. verwendet. Zur Verfeinerung wurden alle Reflexe herangezogen. Grundsätzlich gilt: Auf F^2 bezogene R-Werte sind statistisch etwa doppelt so groß wie die auf F basierenden. Auf ALLE Reflexe bezogene R-Werte sind noch größer.

Die Wasserstoffatome wurden geometrisch lokalisiert. Für die Verfeinerung wurde ein Reitermodell angenommen. Als Temperaturfaktor wurde der 1.5-fache Wert (CH₃-Gruppen) bzw. der 1.2-fache Wert (Cp-H) des äquivalenten isotropen Temperaturfaktors desjenigen C-Atoms eingesetzt, an welches das jeweilige H-Atom gebunden ist.

Einzelheiten können dem Handbuch für das Verfeinerungsprogramm SHELXL entnommen werden.

$$GooF = \sqrt{\frac{\sum \left[w\left(F_o^2 - F_c^2\right)\right]}{(n-p)}}$$
 n = Zahl der Reflexe; p = Zahl der verfeinerten Parameter

Tabelle 2. Atomkoordinaten [x 10⁴] und äquivalente isotrope Auslenkungsparameter [Å² x 10³] für 0182. U(eq) wird berechnet als ein Drittel der Spur des orthogonalisierten U_{ij} -Tensors.

	x	У	Z	U(eq)
Ru(1)	10559(1)	-2909(1)	2561(1)	46(1)
Ru(2)	12781(1)	-5022(1)	2902(1)	44(1)
Si(1)	9603(4)	-2228(2)	745(1)	93(1)
Si(2)	10238(3)	-227(1)	3195(1)	66(1)
Si(3)	13054(3)	-7014(1)	4404(1)	59(1)
Si(4)	13580(3)	-6810(2)	1508(1)	72(1)
P(1)	13853(2)	-3581(1)	2270(1)	74(1)
P(2)	13435(3)	-3379(1)	3262(1)	90(1)
P(3)	10177(3)	-4045(1)	3562(1)	96(1)
P(4)	9381(3)	-4535(1)	2689(1)	82(1)
C(1)	9305(9)	-1868(4)	1600(3)	63(2)
C(2)	10398(8)	-1291(4)	1957(3)	54(1)
C(3)	9550(8)	-1062(4)	2583(3)	53(1)
C(4)	7873(9)	-1540(4)	2620(3)	66(2)
C(5)	7738(9)	-2012(5)	2032(4)	71(2)
C(6)	7894(17)	-1061(7)	219(4)	159(5)
C(7)	12186(14)	-2326(7)	482(4)	127(3)
C(8)	8904(16)	-3567(6)	704(4)	133(3)
C(9)	9840(16)	-831(7)	4053(4)	132(4)
C(10)	12825(11)	-172(6)	3074(5)	117(3)
C(11)	8590(11)	1196(5)	3026(4)	93(2)
C(12)	13780(8)	-6656(4)	3532(3)	49(1)
C(13)	12875(8)	-6818(3)	2945(3)	51(1)
C(14)	13944(8)	-6556(4)	2370(3)	52(1)
C(15)	15551(8)	-6191(4)	2614(3)	55(1)
C(16)	15446(8)	-6257(4)	3315(3)	55(1)
C(17)	10390(10)	-6963(6)	4433(3)	84(2)
C(18)	13681(13)	-6043(6)	4930(3)	103(3)
C(19)	14572(13)	-8443(6)	4667(4)	115(3)
C(20)	14363(13)	-5738(6)	925(4)	110(3)
C(21)	10937(12)	-6814(7)	1405(4)	105(2)
C(22)	15184(14)	-8205(6)	1386(4)	119(3)

Tabelle 3. Bindungslängen [Å] und -winkel [°] für 0182.

Ru(1)-C(4)	2.213(5)	Si(2)-C(10) 1	.836(8)
Ru(1)-C(2)	2.210(5)	Si(2)-C(3) 1	.856(6)
Ru(1) - C(3)	2.235(5)	Si(2)-C(9) 1	.864(8)
$R_{11}(1) - C(5)$	2, 243(6)	Si(3) - C(19) = 1	856(6)
$R_{11}(1) - C(1)$	2.283(5)	Si(3) - C(17) = 1	848(7)
$D_{1}(1) = D(1)$	2.205(5)	$G_{1}(2) - C(12) = 1$	970(5)
Ru(1) - P(1) Ru(1) - P(4)	2.330(17)	SI(3) - C(12) = 1	.070(3)
Ru(1) - P(4)	2.3500(13)	SI(3) = C(10) I	.042(7)
Ru(1) - P(3)	2.3909(17)	S1(4) = C(14) 1	
Ru(1) - P(2)	2.4084(18)	S1(4) - C(22) = 1	.859(7)
Ru(1)-Ru(2)	2.7223(6)	Si(4) - C(21) = 1	.867(8)
Ru(2)-C(16)	2.214(5)	Si(4) - C(20) 1	.855(7)
Ru(2)-C(12)	2.235(4)	P(1)-P(2) 2	.073(3)
Ru(2)-C(13)	2.209(4)	P(2)-P(3) 2	.644(3)
Ru(2)-C(15)	2.227(5)	P(3)-P(4) 2	.080(3)
Ru(2)-C(14)	2.270(5)	C(1)-C(5) 1	.422(8)
Ru(2)-P(4)	2.3424(18)	C(1)-C(2) 1	.432(8)
Ru(2)-P(1)	2.3454(15)	C(2)-C(3) 1	.424(7)
Ru(2)-P(2)	2.3990(16)	C(3)-C(4) 1	.436(8)
Ru(2)-P(3)	2.4029(17)	C(4) - C(5) 1	.412(9)
Si(1) - C(1)	1.846(6)	C(12)-C(16) 1	.417(7)
Si(1)-C(8)	1.857(8)	C(12)-C(13) 1	.426(7)
Si(1) - C(6)	1 878(7)	C(13) - C(14) = 1	424(7)
$S_{1}(1) = C(7)$	1 850(9)	C(14) - C(15) = 1	433(8)
SI(1) C(7) SI(2) - C(11)	1.857(6)	C(15) - C(15) = 1	122(7)
$\operatorname{DI}(Z)$ $\operatorname{C}(\operatorname{II})$	1.037(0)	C(13) C(10) 1	.425(7)
C(4)-Ru(1)-C(2)	61.4(2)	P(4)-Ru(1)-P(2)	103.91(7)
C(4) - Ru(1) - C(3)	37,66(19)	P(3) - Ru(1) - P(2)	66.85(8)
C(2) - Ru(1) - C(3)	37,37(18)	C(4) - Ru(1) - Ru(2)	152.84(15)
$C(4) - R_1(1) - C(5)$	36.9(2)	C(2) - Ru(1) - Ru(2)	145.80(15)
$C(2) - R_{11}(1) - C(5)$	60.7(2)	$C(3) - R_{11}(1) - R_{11}(2)$	$156\ 88(15)$
C(3) = Ru(1) = C(5)	62.4(2)	C(5) - Ru(1) - Ru(2)	140 13(16)
$C(4) = P_{11}(1) = C(1)$	62 2(2)	$C(1) = P_{11}(1) = P_{11}(2)$	135 59(15)
$C(2) = P_1(1) = C(1)$	27 1(2)	$D(1) - D_{11}(1) - D_{12}(2)$	54 61(A)
C(2) - Ru(1) - C(1)	57.1(2)	P(1) - Ru(1) - Ru(2) D(4) - Ru(1) - Ru(2)	54.01(4)
C(3) = Ru(1) = C(1)	63.4(2)	P(4) - Ru(1) - Ru(2)	54.41(4)
C(5) = Ru(1) = C(1)	30.0(2)	P(3) - Ru(1) - Ru(2)	55.61(4)
C(4) - Ru(1) - P(1)	151.97(15)	P(2) - Ru(1) - Ru(2)	55.35(4)
C(2) - Ru(1) - P(1)	91.49(15)	C(16) - Ru(2) - C(12)	37.14(19)
C(3)-Ru(1)-P(1)	115.82(14)	C(16)-Ru(2)-C(13)	61.4(2)
C(5)-Ru(1)-P(1)	136.50(19)	C(12)-Ru(2)-C(13)	37.43(18)
C(1)-Ru(1)-P(1)	101.05(17)	C(16)-Ru(2)-C(15)	37.38(19)
C(4)-Ru(1)-P(4)	104.06(16)	C(12)-Ru(2)-C(15)	62.47(19)
C(2)-Ru(1)-P(4)	145.27(16)	C(13)-Ru(2)-C(15)	61.2(2)
C(3)-Ru(1)-P(4)	141.49(14)	C(16)-Ru(2)-C(14)	62.6(2)
C(5)-Ru(1)-P(4)	88.39(16)	C(12)-Ru(2)-C(14)	63.20(18)
C(1)-Ru(1)-P(4)	108.37(16)	C(13)-Ru(2)-C(14)	37.03(18)
P(1)-Ru(1)-P(4)	102.61(6)	C(15)-Ru(2)-C(14)	37.1(2)
C(4)-Ru(1)-P(3)	98.90(16)	C(16)-Ru(2)-P(4)	149.73(15)
C(2)-Ru(1)-P(3)	153.45(15)	C(12)-Ru(2)-P(4)	112.94(15)
C(3) - Ru(1) - P(3)	116.18(14)	C(13) - Ru(2) - P(4)	91.23(15)
$C(5) - R_{11}(1) - P(3)$	115,17(18)	$C(15) - R_1(2) - P(4)$	140 77(16)
$C(1) - R_{11}(1) - P(3)$	150,91(18)	$C(14) - R_{11}(2) - P(4)$	104 14(16)
$D(1) = R_{11}(1) = D(2)$	104 22(6)	$C(16) = P_{11}(2) = D(1)$	107 17(15)
$D(4) = P_{11}(1) = D(2)$	52 04(8)	$C(12) = D_1(2) = D(1)$	107.17(13) 144.21(15)
$C(A) = D_{11}(1) = P(3)$	107 75/10)	C(12) - Ru(2) - F(1)	1/0 1 = (10)
C(T) = Ru(T) = P(Z)	100 CT(16)	C(12) - Ru(2) - P(1)	142.13(14) 07 61/14)
C(Z) = Ru(I) = P(Z)	TO3.07(TO)	C(12) = KU(2) = F(1)	0/.04(14)
C(3) - Ru(1) - P(2)	101./1(15)	C(14) - Ru(2) - P(1)	105.11(14)
C(5) - Ru(1) - P(2)	140.00(10)	P(4) - Ru(2) - P(1)	LU2.53(6)
C(1) - Ru(1) - P(2)	142.00(18)	C(16) - Ru(2) - P(2)	98.49(15)
P(1)-Ru(1)-P(2)	51.80(8)	C(12)-Ru(2)-P(2)	119.03(14)

C(13)-Ru(2)-P(2)	156.42(15)	Ru(2)-P(2)-P(3)	56.67(6)
C(15)-Ru(2)-P(2)	111.28(16)	Ru(1)-P(2)-P(3)	56.26(6)
C(14)-Ru(2)-P(2)	146.70(16)	P(4)-P(3)-Ru(1)	62.97(7)
P(4)-Ru(2)-P(2)	104.43(7)	P(4)-P(3)-Ru(2)	62.51(7)
P(1) - Ru(2) - P(2)	51.80(7)	$R_{11}(1) - P(3) - R_{11}(2)$	69.20(5)
$C(16) = P_{11}(2) = D(3)$	123,97(16)	D(4) - D(3) - D(2)	104 37(9)
$C(12) - P_{11}(2) - D(2)$	$101 \ 39(14)$	$P_{1}(1) = P(2) = P(2)$	E6 89(6)
C(12) - Ru(2) - P(3)	110 = 4(15)	Ru(1) - P(3) - P(2)	50.09(0)
C(13) - Ru(2) - P(3)	1(1,20(15)	Ru(2) - P(3) - P(2)	50.53(0)
C(15) - Ru(2) - P(3)	161.30(15)	P(3) - P(4) - Ru(2)	65.51(8)
C(14)-Ru(2)-P(3)	146.30(15)	P(3)-P(4)-Ru(1)	65.00(7)
P(4)-Ru(2)-P(3)	51.97(8)	Ru(2)-P(4)-Ru(1)	70.92(5)
P(1)-Ru(2)-P(3)	103.53(6)	C(5)-C(1)-C(2)	104.1(5)
P(2)-Ru(2)-P(3)	66.80(8)	C(5)-C(1)-Si(1)	125.7(5)
C(16)-Ru(2)-Ru(1)	153.57(14)	C(2)-C(1)-Si(1)	129.9(5)
C(12) - Ru(2) - Ru(1)	156.57(14)	C(5)-C(1)-Ru(1)	70.2(3)
$C(13) - R_1(2) - R_1(1)$	144 98(15)	$C(2) - C(1) - R_{11}(1)$	68 6(3)
$C(15) - P_{11}(2) - P_{11}(1)$	$140 \ 50(14)$	$S(2) = C(1) - R_1(1)$	129 6(3)
$C(14) = P_{11}(2) = P_{11}(1)$	125 54(12)	C(3) - C(2) - C(1)	112 1(5)
C(14) - Ru(2) - Ru(1)	ISS. SE(IS)	C(3) - C(2) - C(1)	TTZ.4(J)
P(4) - Ru(2) - Ru(1)	54.67(4)	C(3) - C(2) - Ru(1)	72.3(3)
P(1)-Ru(2)-Ru(1)	54.26(4)	C(1)-C(2)-Ru(1)	74.2(3)
P(2)-Ru(2)-Ru(1)	55.67(4)	C(4)-C(3)-C(2)	104.2(5)
P(3)-Ru(2)-Ru(1)	55.19(4)	C(4)-C(3)-Si(2)	126.1(4)
C(1)-Si(1)-C(8)	109.2(3)	C(2)-C(3)-Si(2)	129.5(4)
C(1)-Si(1)-C(6)	106.5(4)	C(4)-C(3)-Ru(1)	70.3(3)
C(8)-Si(1)-C(6)	110.4(5)	C(2)-C(3)-Ru(1)	70.3(3)
C(1)-Si(1)-C(7)	109.3(4)	Si(2)-C(3)-Ru(1)	127.3(3)
C(8) - Si(1) - C(7)	111.4(4)	C(3) - C(4) - C(5)	109.2(5)
C(6) - Si(1) - C(7)	1099(5)	$C(3) - C(4) - R_{11}(1)$	72.0(3)
C(11) - Si(2) - C(10)	110 1(4)	$C(5) - C(4) - B_{11}(1)$	72.7(3)
C(11) SI(2) C(10)		C(3) C(4) Ru(1)	$110 \ 1(6)$
C(11) - SI(2) - C(3)	100.5(3)	C(4) - C(5) - C(1)	110.1(0)
C(10) - S1(2) - C(3)	109.5(3)	C(4) - C(5) - Ru(1)	70.4(3)
C(11)-Si(2)-C(9)	109.8(4)	C(1) - C(5) - Ru(1)	73.2(3)
C(10) - Si(2) - C(9)	110.7(5)	C(16)-C(12)-C(13)	105.2(5)
C(3)-Si(2)-C(9)	110.8(3)	C(16)-C(12)-Si(3)	127.2(4)
C(19)-Si(3)-C(17)	111.5(4)	C(13)-C(12)-Si(3)	127.4(4)
C(19)-Si(3)-C(12)	105.9(3)	C(16)-C(12)-Ru(2)	70.6(3)
C(17)-Si(3)-C(12)	109.3(3)	C(13)-C(12)-Ru(2)	70.3(3)
C(19)-Si(3)-C(18)	108.7(4)	Si(3)-C(12)-Ru(2)	127.3(2)
C(17) - Si(3) - C(18)	111.7(4)	C(14) - C(13) - C(12)	111.9(5)
C(12) - Si(3) - C(18)	109.6(3)	$C(14) - C(13) - R_{11}(2)$	73 8(3)
C(12) = SI(3) = C(10)	107.6(3)	$C(12) - C(12) - P_{11}(2)$	73.0(3)
C(14) - SI(4) - C(22)	100,1(2)	C(12) - C(13) - Ru(2)	104 4(E)
C(14) - SI(4) - C(21)	100.1(3)	C(15) = C(14) = C(13)	104.4(5)
C(22) - S1(4) - C(21)	109.7(4)	C(15) - C(14) - S1(4)	126.7(4)
C(14) - Si(4) - C(20)	109.6(3)	C(13) - C(14) - S1(4)	128.4(4)
C(22) - Si(4) - C(20)	108.6(4)	C(15)-C(14)-Ru(2)	69.8(3)
C(21)-Si(4)-C(20)	113.0(4)	C(13)-C(14)-Ru(2)	69.1(3)
P(2)-P(1)-Ru(1)	65.93(7)	Si(4)-C(14)-Ru(2)	131.0(3)
P(2)-P(1)-Ru(2)	65.43(7)	C(14)-C(15)-C(16)	109.3(5)
Ru(1)-P(1)-Ru(2)	71.13(5)	C(14)-C(15)-Ru(2)	73.1(3)
P(1)-P(2)-Ru(2)	62.77(6)	C(16) - C(15) - Ru(2)	70.8(3)
$P(1) - P(2) - R_{11}(1)$	62.28(7)	C(12) - C(16) - C(15)	109.1(5)
$P_{11}(2) - P(2) - P_{11}(1)$	68 98(5)	C(12) - C(16) - Ru(2)	72 3(3)
D(1) - D(2) - D(2)	102 27/01	$C(15) = C(16) = D_{12}(2)$	71 0/21
F(T) = F(T) = F(T)	103.07(9)	C(12) - C(10) - Ru(2)	17.0(2)

Tabelle 4. Anisotrope Auslenkungsparameter [Å² x 10³] für 0182. Der Exponent des anisotropen Auslenkungsfaktors hat die Form: $-2\pi^2$ [(ha^{*})²U₁₁ + ... + 2hka^{*}b^{*}U₁₂]

	U ₁₁	U ₂₂	U ₃₃	U ₂₃	U ₁₃	U ₁₂
	44(1)	30(1)	62(1)	2(1)	2(1)	-8(1)
Ru(1) Ru(2)	45(1)	28(1)	57(1)	-3(1)	2(1) 1(1)	-7(1)
$\operatorname{Si}(1)$	143(2)	60(1)	72(1)	5(1)	-24(1)	-22(1)
Si(2)	68(1)	38(1)	86(1)	-11(1)	0(1)	4(1)
Si(3)	76(1)	43(1)	57(1)	2(1)	-7(1)	-13(1)
Si(4)	92(2)	65(1)	59(1)	-15(1)	12(1)	-20(1)
P(1)	47(1)	40(1)	129(2)	12(1)	12(1)	-12(1)
P(2)	105(2)	36(1)	126(2)	-15(1)	-59(1)	-1(1)
P(3)	119(2)	52(1)	86(1)	15(1)	48(1)	19(1)
P(4)	43(1)	40(1)	159(2)	14(1)	-1(1)	-16(1)
C(1)	61(4)	45(3)	74(4)	9(3)	-16(3)	-5(3)
C(2)	53(4)	37(3)	70(4)	7(2)	-2(3)	-12(2)
C(3)	41(4)	34(2)	76(4)	5(2)	4(3)	-2(2)
C(4)	51(4)	43(3)	93(5)	10(3)	8(3)	-2(3)
C(5)	43(4)	51(3)	111(5)	13(3)	-24(3)	-6(3)
C(6)	236(13)	102(6)	112(7)	23(5)	-86(8)	1(7)
C(7)	161(10)	121(7)	97(6)	-6(5)	26(6)	-34(6)
C(8)	201(11)	87(6)	125(7)	-20(5)	-28(7)	-55(6)
C(9)	211(11)	93(6)	84(5)	-6(4)	5(6)	-24(6)
C(10)	82(6)	100(6)	178(9)	-60(6)	-1(5)	-18(5)
C(11)	100(6)	49(3)	125(6)	-28(4)	-9(4)	2(3)
C(12)	58(4)	25(2)	63(3)	-5(2)	-7(3)	-4(2)
C(13)	62(4)	25(2)	66(3)	-7(2)	2(3)	-9(2)
C(14)	62(4)	26(2)	66(3)	-8(2)	5(3)	-7(2)
C(15)	41(4)	37(3)	82(4)	-6(3)	7(3)	1(2)
C(16)	47(4)	34(3)	81(4)	-6(2)	-7(3)	-3(2)
C(17)	97(6)	94(5)	68(4)	5(3)	3(3)	-43(4)
C(18)	139(8)	115(6)	73(4)	-21(4)	-2(4)	-62(5)
C(19)	142(8)	71(4)	109(6)	29(4)	6(5)	1(5)
C(20)	138(8)	113(6)	81(5)	4(4)	23(5)	-45(5)
C(21)	113(7)	128(7)	83(5)	-20(5)	-7(4)	-44(5)
C(22)	166(9)	90(5)	99(6)	-45(5)	5(5)	-11(5)

	х	У	Z	U(eq)
ц(2)	1152/	_1089	1700	65
H(Z)	7012	-1538	2976	79
H(5)	6765	-2367	1941	85
н(бд)	6556	-1023	353	238
H(6B)	8043	-1197	-236	238
H(6C)	8210	-367	270	238
H(7A)	12541	-1647	546	191
H(7B)	12313	-2436	24	191
H(7C)	13045	-2944	740	191
н(8д)	9372	-4069	1093	200
H(8B)	9485	-3895	320	200
H(8C)	7493	-3427	678	200
H(9A)	9815	-285	4351	198
H(9B)	10894	-1478	4175	198
H(9C)	8606	-1042	4075	198
H(10A)	12960	245	2655	176
H(10B)	13643	-918	3082	176
H(10C)	13225	185	3421	176
H(11A)	8922	1675	3319	140
H(11B)	7243	1161	3096	140
H(11C)	8754	1490	2577	140
Н(13)	11724	-7065	2938	62
Н(15)	16512	-5948	2356	66
Н(16)	16330	-6068	3587	66
H(17A)	10150	-7562	4215	126
H(17B)	9661	-6261	4214	126
H(17C)	9975	-7041	4884	126
H(18A)	13511	-6299	5385	154
H(18B)	12831	-5311	4823	154
H(18C)	15029	-6012	4856	154
H(19A)	14464	-8611	5136	173
H(19B)	15927	-8483	4554	173
H(19C)	14111	-8974	4447	173
H(20A)	13731	-5008	1039	165
H(20B)	13994	-5802	484	165
H(20C)	15769	-5851	950	165
H(21A)	10635	-7410	1700	157
H(21B)	10709	-6921	958	157
H(21C)	10109	-6113	1504	157
H(22A)	16542	-8196	1434	179
H(22B)	14969	-8378	952	179
H(22C)	14868	-8760	1709	179

fabelle 5.	
I-Atomkoordinaten [x 10^4] und äquivalente isotrope Auslenkungsparameter [Å 2 x 10^3] für 0182	2.

7.4 $[{Cp^{=}Ru}_{2}{Cp^{*}Fe}P_{5}]$ (25)

Tabelle 1. Kristalldaten und Strukturverfeinerung für 0213.

Summenformel	$C_{32}H_{57}FeP_5Ru_2Si_4$	
Molmasse	966.98	
Temperatur	293(2) K	
Strahlung	ΜοΚα	
Wellenlänge	0.71073 Å	
Scanmodus	Phi- Rotation	
Kristallsystem	Monoklin	
Raumgruppe	$P2_1/c$	
Zelldimensionen	a = 17.6376(14) Å	$\alpha = 90^{\circ}$
	<i>b</i> = 13.9291(8) Å	$\beta = 106.644(10)^{\circ}$
	c = 18.7637(16) Å	$\gamma = 90^{\circ}$
Zellvolumen	4416.7(6) Å ³	•
Formeleinheiten pro Zelle Z	4	
Berechnete Dichte	1.454 Mg/m^3	
Absorptionskoeffizient	1.310 mm^{-1}	
Kristallgröße	0.62 x 0.52 x 0.28 mm	
Gemessener θ-Bereich	2.80 bis 25.68°	
Anzahl der gemessenen Reflexe	60908	
Unabhängige Reflexe	7992 (Rint = 0.1075)	
Absorptionskorrektur	Numerisch (ABST/PLATON 98)	
Max. und min. Transmission	0.65619 und 0.43221	
Diffraktometer	Stoe IPDS	
Strukturlösung	Direkte Methoden	
Strukturlösungsprogramm	SHELXS-97 (Sheldrick, 1990)	2
Strukturverfeinerung	Vollmatrix Least-Squares gegen I	72
Strukturverfeinerungsprogramm	SHELXL-97 (Sheldrick, 1997)	
Daten / Restraints / Parameter	7992 / 36 / 414	
Endgültige R-Werte $[I > 2\sigma(I)]$	R1 = 0.0509, wR2 = 0.1175	
R-Werte (alle Daten)	R1 = 0.0766, wR2 = 0.1263	
Wichtungsschema	$w=1/[\sigma^{2}(Fo^{2})+(0.0597P)^{2}+4.1291$	P] mit P= $(Fo^2+2Fc^2)/3$
GooF (alle Daten)	1.028	
Größtes Maximum und Minimum	1.166 und -0.836 eÅ ⁻³	

Verfeinerung nach F^2 mit ALLEN Reflexen. Die gewichteten R-Werte wR2 und alle GooF's basieren auf F^2 . Die konventionellen R-Werte R1 basieren auf F, wobei F für negative F^2 gleich Null gesetzt wird. Das Ablehnungskriterium $F^2 > 2\sigma(F^2)$ wird nur zum Berechnen von R(obs) etc. verwendet. Zur Verfeinerung wurden alle Reflexe herangezogen. Grundsätzlich gilt: Auf F^2 bezogene R-Werte sind statistisch etwa doppelt so groß wie die auf F basierenden. Auf ALLE Reflexe bezogene R-Werte sind noch größer.

Die Wasserstoffatome wurden geometrisch lokalisiert. Für die Verfeinerung wurde ein Reitermodell angenommen. Als Temperaturfaktor wurde der 1.5-fache Wert (CH₃-Gruppen), bzw. der 1.2-fache Wert (Cp-H) des äquivalenten isotropen Temperaturfaktors desjenigen C-Atoms eingesetzt, an welches das jeweilige H-Atom gebunden ist.

Einzelheiten können dem Handbuch für das Verfeinerungsprogramm SHELXL entnommen werden.

$$GooF = \sqrt{\frac{\sum \left[w\left(F_o^2 - F_c^2\right)\right]}{(n-p)}}$$
 n = Zahl der Reflexe; p = Zahl der verfeinerten Parameter

Tabelle 2. Atomkoordinaten [x 10⁴] und äquivalente isotrope Auslenkungsparameter [Å² x 10³] für 0213. U(eq) wird berechnet als ein Drittel der Spur des orthogonalisierten U_{ij} -Tensors.

	x	У	Z	U(eq)
Ru(1)	2977(1)	3830(1)	3279(1)	46(1)
Ru(2)	1925(1)	5149(1)	3681(1)	45(1)
Fe(1)	1277(1)	4892(1)	2138(1)	49(1)
P(1)	2549(1)	5448(1)	2786(1)	49(1)
P(2)	2455(1)	4265(1)	1974(1)	59(1)
P(3)	1742(1)	3279(1)	2369(1)	59(1)
P(4)	888(1)	4146(1)	3023(1)	55(1)
P(5)	1929(1)	3468(1)	3754(1)	51(1)
Si(1)	3355(1)	1339(2)	4000(1)	65(1)
Si(2)	4805(1)	4313(2)	2657(1)	86(1)
Si(3)	1624(1)	4430(2)	5505(1)	73(1)
Si(4)	3197(1)	7394(2)	4235(1)	77(1)
C(1)	3688(3)	2569(5)	3844(3)	52(2)
C(2)	3928(3)	2840(5)	3200(3)	58(2)
C(3)	4264(3)	3763(5)	3288(4)	65(2)
C(4)	4211(3)	4115(5)	3980(4)	65(2)
C(5)	3863(3)	3395(5)	4321(3)	60(2)
C(6)	4269(5)	600(7)	4260(6)	112(3)
C(7)	2858(8)	1273(8)	4729(7)	142(5)
C(8)	2682(6)	865(7)	3114(6)	130(4)
C(9)	4626(9)	5612(8)	2525(9)	176(7)
C(10)	5856(5)	4008(12)	3094(7)	178(7)
C(11)	4503(7)	3672(10)	1756(6)	147(5)
C(12)	1793(4)	5343(5)	4830(3)	59(2)
C(13)	2540(4)	5717(5)	4801(3)	62(2)
C(14)	2428(4)	6503(5)	4299(4)	61(2)
C(15)	1588(4)	6592(5)	3992(4)	65(2)
C(16)	1207(4)	5888(5)	4314(4)	61(2)
C(17)	2514(5)	3671(7)	5866(5)	93(3)
C(18)	1459(6)	5144(7)	6294(5)	112(3)
C(19)	735(5)	3712(6)	5060(5)	98(3)
C(20)	2863(6)	8090(7)	3347(6)	123(4)
C(21)	4153(5)	6807(7)	4312(6)	107(3)
C(22)	3305(8)	8234(8)	5029(7)	159(6)
C(23)	1089(4)	5706(6)	1148(4)	68(2)
C(24)	783(4)	6214(5)	1641(4)	69(2)
C(25)	192(4)	5660(7)	1798(4)	74(2)
C(26)	128(4)	4798(7)	1417(5)	87(3)
C(27)	705(5)	4800(6)	1003(4)	79(2)
C(28)	1701(5)	6079(8)	816(5)	116(4)
C(29)	1001(7)	7232(7)	1888(5)	118(3)
C(30)	-312(6)	6009(10)	2262(6)	158(6)
C(31)	-483(6)	4022(9)	1383(7)	172(7)
C(32)	800(8)	4056(8)	477(5)	156(6)

Tabelle 3. Bindungslängen [Å] und -winkel [°] für 0213.

Ru(1) - C(5)	2.209(6)	Si(1)-C(8)	1.866(10)	
Ru(1) - C(2)	2,209(6)	Si(1)-C(1)	1.860(7)	
$R_{11}(1) - C(4)$	2,233(6)	Si(2) - C(9)	1.842(12)	
$P_{11}(1) = C(1)$	2 241(6)	Si(2) - C(10)	1 849(11)	
$P_{11}(1) - C(2)$	2.211(0)	SI(2) = C(10) SI(2) = C(11)	1.019(11)	
Ru(1) - C(3) Pu(1) - D(E)	2.208(0)	$G_{1}^{2}(2) = C(11)$	1,001(11)	
Ru(1) - P(5)	2.3204(15)	SI(2) = C(3)	1.002(7)	
Ru(1) - P(2)	2.4316(17)	S1(3) - C(19)	1.845(9)	
Ru(1)-P(1)	2.4704(16)	S1(3) - C(17)	1.853(8)	
Ru(1)-P(3)	2.4730(18)	Si(3) - C(18)	1.874(8)	
Ru(1)-Ru(2)	2.8625(7)	Si(3) - C(12)	1.877(7)	
Ru(2)-C(13)	2.217(6)	Si(4)-C(21)	1.843(9)	
Ru(2)-C(15)	2.220(7)	Si(4)-C(22)	1.861(9)	
Ru(2)-C(16)	2.222(6)	Si(4) - C(14)	1.867(7)	
Ru(2)-C(12)	2.251(6)	Si(4)-C(20)	1.871(10)	
Ru(2)-C(14)	2.258(7)	C(1) - C(5)	1.436(9)	
Ru(2)-P(1)	2.2946(15)	C(1) - C(2)	1.440(8)	
Ru(2) - P(5)	2.3461(17)	C(2) - C(3)	1.405(9)	
$R_{1}(2) - P(4)$	2.3521(17)	C(3) - C(4)	1.417(10)	
$R_{11}(2) - Fe(1)$	2.8136(10)	C(4) - C(5)	1.420(9)	
Fe(1) - C(27)	2.084(7)	C(12) - C(16)	1 419(9)	
$F_{0}(1) = C(26)$	2.094(7)	C(12) - C(13)	1 433(9)	
Fe(1) = C(20)	2.054(7)	C(12) - C(13)	1,433(9)	
Fe(1) = C(25)	2.121(0)	C(13) - C(14)	1,421(9)	
Fe(1) - C(25)	2.124(6)	C(14) - C(15)	1.433(9)	
Fe(1) - C(24)	2.134(7)	C(15) - C(16)	1.419(9)	
Fe(1) - P(4)	2.2263(17)	C(23)-C(24)	1.391(10)	
Fe(1)-P(2)	2.3538(18)	C(23)-C(27)	1.420(11)	
Fe(1)-P(1)	2.3563(18)	C(23)-C(28)	1.487(10)	
Fe(1)-P(3)	2.389(2)	C(24)-C(25)	1.395(10)	
P(1)-P(2)	2.217(2)	C(24)-C(29)	1.507(12)	
P(2)-P(3)	2.132(3)	C(25)-C(26)	1.385(12)	
P(3)-P(4)	2.510(2)	C(25)-C(30)	1.494(11)	
P(3)-P(5)	2.538(2)	C(26)-C(27)	1.447(12)	
P(4) - P(5)	2.169(2)	C(26) - C(31)	1.514(11)	
Si(1) - C(7)	1.827(10)	C(27) - C(32)	1.474(11)	
Si(1) - C(6)	1.856(8)	-(, -(,	,	
C(5)-Ru(1)-C(2)	61.9(2)	C(4)-Ru(1)-P(1)		101.5(2)
C(5)-Ru(1)-C(4)	37.3(2)	C(1)-Ru(1)-P(1)		164.11(17)
C(2)-Ru(1)-C(4)	61.3(3)	C(3)-Ru(1)-P(1)		103.79(19)
C(5)-Ru(1)-C(1)	37.6(2)	P(5)-Ru(1)-P(1)		98.64(5)
C(2)-Ru(1)-C(1)	37.8(2)	P(2)-Ru(1)-P(1)		53.77(6)
C(4)-Ru(1)-C(1)	62.7(2)	C(5)-Ru(1)-P(3)		141.76(19)
C(5)-Ru(1)-C(3)	61.9(2)	C(2)-Ru(1)-P(3)		107.20(18)
C(2)-Ru(1)-C(3)	36.6(2)	C(4)-Ru(1)-P(3)		168.23(19)
C(4) - Ru(1) - C(3)	36.7(2)	C(1)-Ru(1)-P(3)		110.25(17)
$C(1) - R_{11}(1) - C(3)$	62 7(2)	$C(3) = R_1(1) = P(3)$		1324(2)
$C(5) = R_1(1) = P(5)$	92.26(18)	$D(5) - P_{11}(1) - D(3)$		63 76(6)
$C(2) = R_{11}(1) = D(5)$	126 31/18)	$P(2) = P_{11}(1) = D(2)$		51 52(6)
$C(2) = R_1(1) = D(5)$	120.07(18)	$D(1)_{D_1}(1)_{D(2)}$		84 88(C)
$C(1) = D_{1}(1) = D(2)$	121.07(10) 02 60/16)	r(1) = r(3) r(5) = r(1) = r(3)		106 26/101
C(1) = Ru(1) = P(3)	92.09(10) 152 14/10)	C(2) = Ku(1) = Ku(2)		160 66(17)
C(3) = KU(1) = P(3)	153.14(13)	C(Z) = KU(I) = KU(Z)		100.00(1/)
C(5) = KU(1) = P(2)	15/.99(1/)	C(4) - Ru(1) - Ru(2)		TOA.02(12)
C(Z) = Ru(I) = P(Z)	99.49(⊥/)	C(1)-Ru(1)-Ru(2)		134.U/(15)
C(4) - Ru(1) - P(2)	124.98(19)	C(3)-Ru(1)-Ru(2)		138.41(19)
C(1)-Ru(1)-P(2)	132.16(16)	P(5)-Ru(1)-Ru(2)		52.53(4)
C(3)-Ru(1)-P(2)	96.20(19)	P(2)-Ru(1)-Ru(2)		91.03(4)
P(5)-Ru(1)-P(2)	109.03(6)	P(1)-Ru(1)-Ru(2)		50.31(4)
C(5)-Ru(1)-P(1)	130.09(19)	P(3)-Ru(1)-Ru(2)		82.66(4)
C(2)-Ru(1)-P(1)	134.51(17)	C(13)-Ru(2)-C(15)	61.5(3)

C(13)-Ru(2)-C(16)	61.8(3)	C(24)-Fe(1)-P(2)	121.8(2)
C(15)-Ru(2)-C(16)	37.2(2)	P(4)-Fe(1)-P(2)	113.34(7)
C(13)-Ru(2)-C(12)	37.4(2)	C(27)-Fe(1)-P(1)	131.1(3)
C(15)-Ru(2)-C(12)	62.0(2)	C(26)-Fe(1)-P(1)	163.1(2)
C(16)-Ru(2)-C(12)	37.0(2)	C(23)-Fe(1)-P(1)	99.4(2)
C(13)-Ru(2)-C(14)	37.0(2)	C(25)-Fe(1)-P(1)	129.3(3)
C(15)-Ru(2)-C(14)	37.3(2)	C(24)-Fe(1)-P(1)	98.7(2)
C(16)-Ru(2)-C(14)	62.6(2)	P(4)-Fe(1)-P(1)	102.75(6)
C(12)-Ru(2)-C(14)	62.7(2)	P(2)-Fe(1)-P(1)	56.16(6)
C(13)-Ru(2)-P(1)	114.96(17)	C(27)-Fe(1)-P(3)	99.7(2)
C(15)-Ru(2)-P(1)	104.39(17)	C(26)-Fe(1)-P(3)	106.1(3)
C(16)-Ru(2)-P(1)	140.69(18)	C(23)-Fe(1)-P(3)	128.4(2)
C(12)-Ru(2)-P(1)	151.95(18)	C(25)-Fe(1)-P(3)	139.6(3)
C(14)-Ru(2)-P(1)	91.38(16)	C(24)-Fe(1)-P(3)	165.2(2)
C(13)-Ru(2)-P(5)	107.95(19)	P(4)-Fe(1)-P(3)	65.76(7)
C(15)-Ru(2)-P(5)	152.24(17)	P(2)-Fe(1)-P(3)	53.41(7)
C(16)-Ru(2)-P(5)	115.09(18)	P(1)-Fe(1)-P(3)	89.33(6)
C(12)-Ru(2)-P(5)	93.62(18)	C(27) - Fe(1) - Ru(2)	174.1(2)
C(14)-Ru(2)-P(5)	144.05(18)	C(26)-Fe(1)-Ru(2)	134.9(3)
P(1)-Ru(2)-P(5)	103.27(6)	C(23)-Fe(1)-Ru(2)	138.5(2)
C(13)-Ru(2)-P(4)	143.69(17)	C(25)-Fe(1)-Ru(2)	108.1(2)
C(15)-Ru(2)-P(4)	116.71(19)	C(24) - Fe(1) - Ru(2)	109.5(2)
C(16)-Ru(2)-P(4)	94.54(19)	P(4)-Fe(1)-Ru(2)	54.13(5)
C(12)-Ru(2)-P(4)	107.22(18)	P(2)-Fe(1)-Ru(2)	93.89(5)
C(14)-Ru(2)-P(4)	153.92(17)	P(1)-Fe(1)-Ru(2)	51.78(4)
P(1)-Ru(2)-P(4)	100.82(6)	P(3)-Fe(1)-Ru(2)	85.20(5)
P(5)-Ru(2)-P(4)	54.98(6)	P(2)-P(1)-Ru(2)	114.23(8)
C(13)-Ru(2)-Fe(1)	164.82(18)	P(2)-P(1)-Fe(1)	61.86(6)
C(15)-Ru(2)-Fe(1)	108.96(18)	Ru(2)-P(1)-Fe(1)	74.44(5)
C(16)-Ru(2)-Fe(1)	118.87(18)	P(2)-P(1)-Ru(1)	62.22(6)
C(12)-Ru(2)-Fe(1)	151.40(17)	Ru(2)-P(1)-Ru(1)	73.74(5)
C(14)-Ru(2)-Fe(1)	128.24(18)	Fe(1)-P(1)-Ru(1)	92.12(6)
P(1)-Ru(2)-Fe(1)	53.78(4)	P(3)-P(2)-P(1)	100.17(9)
P(5)-Ru(2)-Fe(1)	85.77(5)	P(3)-P(2)-Fe(1)	64.15(7)
P(4)-Ru(2)-Fe(1)	50.09(4)	P(1)-P(2)-Fe(1)	61.97(6)
C(13)-Ru(2)-Ru(1)	107.49(18)	P(3)-P(2)-Ru(1)	65.24(6)
C(15)-Ru(2)-Ru(1)	153.21(18)	P(1)-P(2)-Ru(1)	64.01(6)
C(16)-Ru(2)-Ru(1)	161.88(17)	Fe(1)-P(2)-Ru(1)	93.16(6)
C(12)-Ru(2)-Ru(1)	125.61(17)	P(2)-P(3)-Fe(1)	62.44(7)
C(14)-Ru(2)-Ru(1)	118.84(16)	P(2)-P(3)-Ru(1)	63.24(7)
P(1)-Ru(2)-Ru(1)	55.95(4)	Fe(1)-P(3)-Ru(1)	91.26(7)
P(5)-Ru(2)-Ru(1)	51.91(4)	P(2)-P(3)-P(4)	110.84(9)
P(4) - Ru(2) - Ru(1)	86.88(5)	Fe(1) - P(3) - P(4)	53.99(6)
Fe(1) - Ru(2) - Ru(1)	75.53(2)	Ru(1) - P(3) - P(4)	92.67(7)
C(27) - Fe(1) - C(26)	40.5(3)	P(2) - P(3) - P(5)	111.85(9)
C(27) - Fe(1) - C(23)	39.5(3)	Fe(1) - P(3) - P(5)	91.41(7)
C(26) - Fe(1) - C(23)	65.6(3)	Ru(1) - P(3) - P(5)	55.31(5)
C(2/) - Fe(1) - C(25)	66.0(3)	P(4) - P(3) - P(5)	50.89(6)
C(26) - Fe(1) - C(25)	38.3(3)	P(5) - P(4) - Fe(1)	106.78(8)
C(23) - Fe(1) - C(25)	64.3(3)	P(5) - P(4) - Ru(2)	62.37(6)
C(2/) - Fe(1) - C(24)	65.7(3)	Fe(1) - P(4) - Ru(2)	75.78(5)
C(20) = FE(1) = C(24)	64.8(3)	F(2) - F(4) - F(3)	65.23(7)
C(23) = Fe(1) = C(24)	30.2(3)	Fe(1) - F(4) - F(3)	60.24(6)
C(23) = Fe(1) = C(24)	30.3(<i>3)</i>	KU(2) - P(4) - P(3)	93.25(7) 106 57(7)
C(2/) - Fe(1) - F(4)	$\perp 24.0(3)$	F(4) = F(5) = KU(1)	LUO.5/(/)
C(20) = re(1) = P(4) C(22) = re(1) = P(4)	JU.J(2) 152 07/10)	F(4) = F(0) = KU(2) $F(1) = F(0) = F(0)$	02.03(0) 75 56(5)
C(23) = Fe(1) = F(4)	TO2.0(0)	RU(1) = P(5) = RU(2)	(2,00(2))
C(25) - Fe(1) - F(4)	۶U.۶(Z)	$\frac{F(4)-F(5)-F(3)}{F(1)-F(5)-F(3)}$	03.00(7)
C(24) - Fe(1) - F(4)	123.7(2)	KU(1) - P(3) - P(3)	00.93(0)
C(2i) = Fe(1) = F(2)	91./(2) 100 2(2)	RU(2) = P(3) = P(3)	92.0/(/) 110 0/E)
C(20) = re(1) = P(2) C(22) = Fo(1) = D(2)	120.3(3) 00 25(10)	C(7) = SI(1) = C(0)	100 2(C)
C(25) = re(1) = P(2)	90.33(19) 154 9(9)	C(1) = ST(1) = C(0)	100 7/E)
C(23) = P(2)	104.2(2)	C(0) = DT(T) = C(0)	T00./(2)

C(7)-Si(1)-C(1)	113.9(4)	Si(3)-C(12)-Ru(2)	130.2(4)
C(6)-Si(1)-C(1)	105.2(4)	C(14)-C(13)-C(12)	110.5(6)
C(8) - Si(1) - C(1)	109.6(4)	C(14) - C(13) - Ru(2)	73.1(4)
C(9) = Si(2) = C(10)	113 4(7)	C(12) - C(13) - Ru(2)	72.6(4)
C(9) = Gi(2) = C(11)	110.9(7)	C(12) = C(13) + C(15)	105 4(6)
C(J) DI(Z) C(II)	106 E(6)	C(13) C(14) C(13)	105.1(0)
C(10) = SI(2) = C(11)	110.5(0)	C(15) - C(14) - SI(4)	120.1(5)
C(9) - S1(2) - C(3)	112.7(4)	C(15) - C(14) - S1(4)	127.0(5)
C(10) - S1(2) - C(3)	104.6(4)	C(13) - C(14) - Ru(2)	69.9(4)
C(11) - S1(2) - C(3)	108.2(4)	C(15)-C(14)-Ru(2)	69.9(4)
C(19)-Si(3)-C(17)	112.2(4)	Si(4)-C(14)-Ru(2)	135.1(3)
C(19)-Si(3)-C(18)	110.0(5)	C(16)-C(15)-C(14)	109.3(6)
C(17)-Si(3)-C(18)	108.7(4)	C(16)-C(15)-Ru(2)	71.4(4)
C(19)-Si(3)-C(12)	109.9(3)	C(14)-C(15)-Ru(2)	72.8(4)
C(17)-Si(3)-C(12)	110.6(3)	C(15)-C(16)-C(12)	108.6(6)
C(18)-Si(3)-C(12)	105.3(4)	C(15)-C(16)-Ru(2)	71.3(3)
C(21)-Si(4)-C(22)	109.6(5)	C(12)-C(16)-Ru(2)	72.6(3)
C(21)-Si(4)-C(14)	111.4(4)	C(24) - C(23) - C(27)	109.0(7)
C(22) - Si(4) - C(14)	106.0(4)	C(24) - C(23) - C(28)	124.6(9)
C(21) - Si(4) - C(20)	$110 \ 3(5)$	C(27) - C(23) - C(28)	126.4(8)
C(22) = Si(4) = C(20)	108 8(6)	$C(24) = C(23) = E_{0}(1)$	$71 \ 4(4)$
C(22) DI(4) C(20)	110.6(4)	C(21) C(23) Fe(1) C(27) C(23) Fe(1)	(1) (1)
C(14) = SI(4) = C(20)	104 E(6)	C(27) - C(23) - Fe(1)	107.9(4)
C(5) = C(1) = C(2)	104.5(6)	C(28) - C(23) - Fe(1)	127.1(5)
C(5) - C(1) - S1(1)	131.4(5)	C(23) - C(24) - C(25)	108.2(8)
C(2) - C(1) - S1(1)	123.7(5)	C(23) - C(24) - C(29)	124.8(8)
C(5)-C(1)-Ru(1)	70.0(3)	C(25)-C(24)-C(29)	126.6(8)
C(2)-C(1)-Ru(1)	69.9(3)	C(23)-C(24)-Fe(1)	70.4(4)
Si(1)-C(1)-Ru(1)	129.6(3)	C(25)-C(24)-Fe(1)	70.5(4)
C(3)-C(2)-C(1)	110.9(6)	C(29)-C(24)-Fe(1)	129.9(5)
C(3)-C(2)-Ru(1)	74.0(4)	C(26)-C(25)-C(24)	109.1(7)
C(1)-C(2)-Ru(1)	72.3(3)	C(26)-C(25)-C(30)	127.5(9)
C(2)-C(3)-C(4)	106.7(6)	C(24)-C(25)-C(30)	123.2(10)
C(2)-C(3)-Si(2)	124.9(5)	C(26)-C(25)-Fe(1)	69.7(4)
C(4)-C(3)-Si(2)	127.9(6)	C(24)-C(25)-Fe(1)	71.3(4)
C(2)-C(3)-Ru(1)	69.4(3)	C(30)-C(25)-Fe(1)	128.6(5)
C(4) - C(3) - Ru(1)	70.3(3)	C(25)-C(26)-C(27)	108.0(7)
Si(2)-C(3)-Ru(1)	131.7(4)	C(25)-C(26)-C(31)	126.4(10)
C(3) - C(4) - C(5)	108 6(6)	C(27) - C(26) - C(31)	125.5(11)
C(3) - C(4) - Ru(1)	73 0(4)	C(25) - C(26) - Fe(1)	72 0(4)
C(5) - C(4) - Pu(1)	70 4(2)	$C(27) - C(26) - E_{C}(1)$	69 A(A)
C(3) = C(4) = Ru(1)	100.2(6)	C(21) - C(20) - Fe(1)	120 1(6)
C(4) = C(5) = C(1)	109.2(0)	C(31) - C(20) - Fe(1)	120.1(0)
C(4) - C(5) - Ru(1)	72.3(3)	C(23) - C(27) - C(26)	105.6(7)
C(1) - C(5) - Ru(1)	/2.4(3)	C(23) - C(27) - C(32)	12/.8(10)
C(16) - C(12) - C(13)	106.1(6)	C(26) - C(27) - C(32)	126.2(10)
C(16) - C(12) - S1(3)	126.7(5)	C(23)-C(27)-Fe(1)	71.6(4)
C(13)-C(12)-Si(3)	126.7(5)	C(26)-C(27)-Fe(1)	70.1(4)
C(16)-C(12)-Ru(2)	70.4(3)	C(32)-C(27)-Fe(1)	127.8(6)
C(13)-C(12)-Ru(2)	70.0(3)		

	U ₁₁	U ₂₂	U ₃₃	U ₂₃	U ₁₃	U ₁₂
	43(1)	47(1)	48(1)	6(1)	12(1)	6(1)
Ru(2)	43(1)	44(1)	50(1)	7(1)	17(1)	3(1)
Fe(1)	46(1)	50(1)	50(1)	12(1)	10(1)	6(1)
P(1)	47(1)	49(1)	55(1)	10(1)	21(1)	2(1)
P(2)	59(1)	68(1)	49(1)	5(1)	18(1)	13(1)
P(3)	61(1)	51(1)	58(1)	0(1)	6(1)	5(1)
P(4)	43(1)	57(1)	62(1)	13(1)	11(1)	-4(1)
P(5)	50(1)	46(1)	58(1)	15(1)	17(1)	2(1)
Si(1)	64(1)	58(1)	71(1)	16(1)	14(1)	14(1)
Si(2)	68(1)	101(2)	99(2)	8(1)	40(1)	-8(1)
Si(3)	87(1)	78(2)	64(1)	15(1)	39(1)	9(1)
Si(4)	79(1)	56(1)	106(2)	-12(1)	43(1)	-14(1)
C(1)	47(3)	54(4)	54(3)	9(3)	9(3)	16(3)
C(2)	52(3)	66(5)	58(4)	-2(3)	18(3)	8(3)
C(3)	45(3)	68(5)	81(5)	б(4)	18(3)	4(3)
C(4)	45(3)	71(5)	68(4)	3(3)	3(3)	3(3)
C(5)	50(3)	71(5)	49(3)	7(3)	-2(3)	13(3)
C(6)	87(6)	71(7)	165(10)	38(6)	15(6)	30(5)
C(7)	212(13)	90(8)	163(11)	59(7)	117(10)	39(8)
C(8)	135(8)	69(7)	136(9)	3(6)	-40(7)	3(6)
C(9)	234(15)	95(9)	274(17)	26(10)	192(14)	-6(9)
C(10)	66(6)	330(2)	146(11)	9(11)	45(7)	-22(9)
C(11)	148(10)	218(15)	98(8)	-11(8)	69(8)	-9(9)
C(12)	64(4)	67(5)	52(3)	1(3)	26(3)	7(3)
C(13)	70(4)	61(5)	54(4)	-7(3)	18(3)	-4(3)
C(14)	60(4)	56(5)	71(4)	-4(3)	26(3)	-3(3)
C(15)	81(5)	54(5)	69(4)	5(3)	39(4)	13(3)
C(16)	61(4)	62(5)	71(4)	2(3)	36(3)	9(3)
C(17)	90(0)	108(8)	81(5) 72(5)	27(5) 22(5)	33(5)	20(5)
C(10)	147(9) 102(6)	134(9) 97(7)	12(3) 122(7)	22(5)	62(6)	-4(5)
C(19)	131(8)	71(7)	122(7)	42(6)	46(7)	-16(6)
C(20)	71(5)	106(8)	142(9)	-18(6)	27(5)	-19(5)
C(22)	209(13)	113(10)	204(13)	-94(9)	134(11)	-81(9)
C(23)	67(4)	82(6)	53(4)	31(4)	14(3)	15(4)
C(24)	67(4)	61(5)	72(4)	23(4)	9(3)	15(3)
C(25)	51(4)	91(6)	76(5)	29(4)	11(3)	24(4)
C(26)	62(4)	90(7)	84(5)	41(5)	-18(4)	-16(4)
C(27)	90(5)	77(6)	51(4)	8(4)	-10(4)	25(4)
C(28)	94(6)	164(10)	99(7)	69(7)	40(5)	17(6)
C(29)	166(10)	63(7)	111(8)	23(5)	15(7)	25(6)
C(30)	99(7)	258(16)	132(9)	90(9)	60(7)	113(9)
C(31)	97(7)	168(12)	192(12)	89(10)	-55(8)	-73(8)
C(32)	204(12)	131(10)	79(6)	-41(6)	-49(7)	80(9)

Tabelle 4. Anisotrope Auslenkungsparameter [Ų x 10³] für 0213.Der Exponent des anisotropen Auslenkungsfaktors hat die Form: $-2\pi^2$ [$(ha^*)^2 U_{11} + ... + 2hka^*b^*U_{12}$]

Tabelle 5. H-Atomkoordinaten [x 10^4] und äquivalente isotrope Auslenkungsparameter [Å² x 10^3] für 0213.

х

У

z

U(eq)

 Anhang		

(0)			0	
H(2)	3900	2418	2776	69
H(4)	4414	4734	4202	77
H(5)	3792	3436	4819	72
Н(бА)	4655	899	4667	168
H(6B)	4477	547	3841	168
II(60)	11/7	29	4407	160
H(OC)	4140	-20	4407	100
H(7A)	2690	625	4770	213
H(7B)	2406	1690	4607	213
H(7C)	3218	1469	5195	213
H(8A)	2463	263	3207	195
H(8B)	2974	773	2759	195
н(9 <u>С</u>)	2261	1215	2010	105
H(OC)	2201		2919	195
H(9A)	4860	5941	2985	264
H(9B)	4066	5731	2368	264
H(9C)	4857	5842	2152	264
H(10A)	6159	4162	2758	266
H(10B)	5903	3334	3205	266
н(10С)	6053	4369	3545	266
н(100) ц(11л)	2051	2702	1515	200
$\Pi(IIA)$	15934	3793	1040	221
H(IIB)	4584	2995	1840	221
H(11C)	4815	3895	1446	221
H(13)	3056	5492	5111	74
H(15)	1319	7090	3640	77
H(16)	634	5823	4223	73
H(17A)	2446	3269	6259	140
н(17в)	2970	4073	6055	140
$\Pi(\perp 7D)$	2570	2075	6000	140
H(I/C)	2589	3277	5472	140
H(18A)	958	5467	6130	167
H(18B)	1874	5610	6456	167
H(18C)	1461	4722	6699	167
H(19A)	876	3195	4784	147
H(19B)	348	4112	4729	147
H(19C)	520	3454	5435	147
ц(20л)	2226	9502	22/0	195
II(20A)	2250	0325	2202	105
H(20B)	2352	8365	3302	185
H(20C)	2830	7668	2934	185
H(21A)	4557	7286	4369	160
H(21B)	4115	6440	3870	160
H(21C)	4285	6388	4736	160
H(22A)	3527	7897	5488	239
н(22в)	2796	8486	5020	239
II(22D)	2650	0100	4000	232
$\Pi(ZZC)$	3050	0/55	4990	239
H(28A)	1512	6655	542	1/4
H(28B)	1811	5605	487	174
H(28C)	2177	6217	1204	174
H(29A)	1559	7323	1974	178
H(29B)	863	7356	2339	178
H(29C)	717	7668	1508	178
II(200)	726	6204	1062	227
II(20D)	- UCI - C	6200	1904	221
H(30B)	3	0389		231
H(30C)	-528	5470	2457	237
H(31A)	-456	3818	1879	259
H(31B)	-378	3485	1105	259
H(31C)	-1001	4270	1145	259
H(32A)	384	4114	19	235
H(32R)	777	3432	688	235
н(32С)	1300	4125	380	225
11()2()	TJUZ	LTDD	500	
7.5 $[{Cp^*Fe}_2{Cp^-Ru}P_5]$ (26)

Tabelle 1. Kristalldaten und Strukturverfeinerung für 0218.

Summenformel	$C_{31}H_{51}Fe_2P_5RuSi_2$	
Molmasse	847.52	
Temperatur	293(2) K	
Strahlung	ΜοΚα	
Wellenlänge	0.71073 Å	
Scanmodus	Phi-Oszillation	
Kristallsystem	Monoklin	
Raumgruppe	$P2_1/c$	
Zelldimensionen	a = 11.9726(8) Å	$\alpha = 90^{\circ}$
	b = 13.8544(10) Å	$\beta = 101.637(9)^{\circ}$
	$c = 23.302(2) \text{ Å}$ $\gamma = 90^{\circ}$	•
Zellvolumen	3785.7(5) Å ³	
Formeleinheiten pro Zelle Z	4	
Berechnete Dichte	1.487 Mg/m^3	
Absorptionskoeffizient	1.445 mm^{-1}	
Kristallgröße	0.48 x 0.36 x 0.04 mm	
Gemessener θ-Bereich	2.73 bis 25.35°	
Anzahl der gemessenen Reflexe	50451	
Unabhängige Reflexe	6930 (Rint = 0.2499)	
Absorptionskorrektur	Analytical	
Max. und min. Transmission	0.94375 und 0.72659	
Diffraktometer	Stoe IPDS	
Strukturlösung	Direkte Methoden	
Strukturlösungsprogramm	SHELXS-97 (Sheldrick, 1990)	2
Strukturverfeinerung	Vollmatrix Least-Squares gegen I	72
Strukturverfeinerungsprogramm	SHELXL-97 (Sheldrick, 1997)	
Daten / Restraints / Parameter	6930 / 186 / 386	
Endgültige R-Werte $[I > 2\sigma(I)]$	R1 = 0.0493, wR2 = 0.0881	
R-Werte (alle Daten)	R1 = 0.1842, wR2 = 0.1137	
Wichtungsschema	$w=1/[\sigma^2(Fo^2)+(0.0010P)^2+0.0000$	P] mit P= $(Fo^{2}+2Fc^{2})/3$
GooF (alle Daten)	0.707	
Größtes Maximum und Minimum	0.807 und -0.348 eÅ ⁻³	

Verfeinerung nach F^2 mit ALLEN Reflexen. Die gewichteten R-Werte wR2 und alle GooF's basieren auf F^2 . Die konventionellen R-Werte R1 basieren auf F, wobei F für negative F^2 gleich Null gesetzt wird. Das Ablehnungskriterium $F^2 > 2\sigma(F^2)$ wird nur zum Berechnen von R(obs) etc. verwendet. Zur Verfeinerung wurden alle Reflexe herangezogen. Grundsätzlich gilt: Auf F^2 bezogene R-Werte sind statistisch etwa doppelt so groß wie die auf F basierenden. Auf ALLE Reflexe bezogene R-Werte sind noch größer.

Die Wasserstoffatome wurden geometrisch lokalisiert. Für die Verfeinerung wurde ein Reitermodell angenommen. Als Temperaturfaktor wurde der 1.5-fache Wert (CH₃-Gruppen) bzw. der 1.2-fache Wert (Cp-H oder Ar-H) des äquivalenten isotropen Temperaturfaktors desjenigen C-Atoms eingesetzt, an welches das jeweilige H-Atom gebunden ist.

Einzelheiten können dem Handbuch für das Verfeinerungsprogramm SHELXL entnommen werden.

$$GooF = \sqrt{\frac{\sum \left[w\left(F_o^2 - F_c^2\right)\right]}{(n-p)}}$$
 n = Zahl der Reflexe; p = Zahl der verfeinerten Parameter

Tabelle 2. Atomkoordinaten [x 10⁴] und äquivalente isotrope Auslenkungsparameter [Å² x 10³] für 0218. U(eq) wird berechnet als ein Drittel der Spur des orthogonalisierten U_{ij} -Tensors.

	x	У	Z	U(eq)
Ru(1)	8621(1)	2905(1)	1674(1)	80(1)
Fe(1)	7126(1)	1363(1)	1194(1)	76(1)
Fe(2)	7450(1)	2359(1)	2555(1)	86(1)
P(1)	6681(2)	2881(2)	1579(1)	88(1)
P(2)	6023(3)	1556(2)	1905(1)	95(1)
P(3)	7561(3)	763(2)	2174(1)	90(1)
P(4)	9181(3)	1862(2)	2475(1)	90(1)
P(5)	8983(2)	1245(2)	1601(1)	87(1)
Si(1)	11605(3)	2732(3)	1437(2)	111(1)
Si(2)	7564(3)	5231(3)	812(2)	107(1)
C(1)	10292(9)	3403(7)	1459(5)	85(3)
C(2)	9331(10)	3700(8)	1001(5)	102(3)
C(3)	8612(10)	4358(8)	1218(5)	91(3)
C(4)	9111(10)	4451(8)	1828(5)	99(4)
C(5)	10102(10)	3893(7)	1980(5)	96(3)
C(6)	11344(11)	1864(11)	797(6)	171(6)
C(7)	12708(9)	3635(8)	1343(5)	126(4)
C(8)	12135(10)	2130(9)	2161(5)	146(5)
C(9)	8360(2)	6105(17)	482(11)	332(12)
C(10)	6810(2)	5789(16)	1209(9)	328(12)
C(11)	6772(17)	4812(13)	146(8)	265(10)
C(12)	7472(11)	658(12)	461(5)	108(4)
C(13)	6811(14)	84(8)	729(5)	103(4)
C(14)	5794(12)	504(11)	728(4)	99(4)
C(15)	5864(11)	1384(10)	446(5)	99(4)
C(16)	6854(13)	1455(9)	276(5)	97(3)
C(17)	8589(13)	339(14)	304(7)	228(8)
C(18)	7242(17)	-903(11)	989(7)	226(8)
C(19)	4803(13)	57(12)	939(5)	189(7)
C(20)	4869(13)	2118(12)	313(6)	213(7)
C(21)	7271(15)	2199(12)	-105(6)	214(7)
C(22)	7820(12)	2218(11)	3445(5)	109(4)
C(23)	8113(12)	3138(10)	3308(5)	109(4)
C(24)	7124(13)	3588(10)	3009(5)	108(4)
C(25)	6246(12)	2934(12)	3002(5)	109(4)
C(26)	6650(12)	2106(11)	3256(5)	104(4)
C(27)	8579(13)	1465(11)	3816(5)	162(6)
C(28)	9284(11)	3613(11)	3494(5)	161(6)
C(29)	7069(14)	4634(10)	2832(6)	174(6)
C(30)	5014(12)	3170(11)	2734(5)	172(6)
C(31)	5958(12)	1225(10)	3378(5)	155(6)

Tabelle 3. Bindungslängen [Å] und -winkel [°] für 0218.

Ru(1)-C(2)	2.221(10)	Si(1)-C(1)	1.837(11)	
Ru(1)-C(5)	2.240(11)	Si(1)-C(7)	1.864(11)	
Ru(1)-C(4)	2.230(11)	Si(1)-C(6)	1.891(13)	
Ru(1)-C(1)	2.266(10)	Si(1)-C(8)	1.875(11)	
Ru(1)-C(3)	2.274(10)	Si(2)-C(10)	1.613(17)	
Ru(1)-P(1)	2.289(3)	Si(2)-C(11)	1.747(18)	
Ru(1)-P(4)	2.349(3)	Si(2)-C(9)	1.80(2)	
Ru(1)-P(5)	2.353(3)	Si(2) - C(3)	1.859(11)	
Ru(1)-Fe(2)	2.8127(16)	C(1) - C(2)	1.461(13)	
Ru(1) - Fe(1)	2.8649(16)	C(1) - C(5)	1.449(12)	
Fe(1) - C(13)	2.0/2(11)	C(2) - C(3)	1.415(13)	
Fe(1) - C(16)	2.103(11)	C(3) - C(4)	1.432(13)	
Fe(1) - C(15)	2.064(10)	C(4) - C(5)	1.401(13)	
Fe(1) - C(12)	2.082(10) 2.108(12)	C(12) - C(16)	1.350(15)	
Fe(1) = C(14) Fo(1) = D(E)	2.108(12)	C(12) - C(13)	1.300(15)	
Fe(1) - P(3) Fe(1) - D(2)	2.241(3)	C(12) - C(17)	1,321(10) 1,349(15)	
Fe(1) = P(1)	2 389(3)	C(13) - C(18)	1,549(15) 1,541(17)	
Fe(1) - P(3)	2 387(3)	C(14) - C(15)	1,396(14)	
Fe(2) - C(22)	2.042(11)	C(14) - C(19)	1.506(14)	
Fe(2) - C(26)	2.084(12)	C(15) - C(16)	1.327(14)	
Fe(2)-C(24)	2.084(13)	C(15) - C(20)	1.549(16)	
Fe(2)-C(25)	2.099(12)	C(16) - C(21)	1.510(15)	
Fe(2)-C(23)	2.078(11)	C(22) - C(23)	1.377(15)	
Fe(2)-P(4)	2.227(3)	C(22) - C(26)	1.390(15)	
Fe(2)-P(2)	2.326(3)	C(22)-C(27)	1.531(16)	
Fe(2)-P(1)	2.386(3)	C(23)-C(24)	1.394(16)	
Fe(2)-P(3)	2.396(3)	C(23)-C(28)	1.529(15)	
P(1)-P(2)	2.193(4)	C(24)-C(25)	1.385(15)	
P(2)-P(3)	2.128(5)	C(24)-C(29)	1.504(15)	
P(3)-P(4)	2.453(4)	C(25)-C(26)	1.336(16)	
P(3)-P(5)	2.459(4)	C(25)-C(30)	1.517(16)	
P(4)-P(5)	2.177(4)	C(26)-C(31)	1.534(16)	
$C(2) = R_{11}(1) = C(5)$	$62 \ 0(4)$	$C(3) = R_{11}(1) = P(5)$		144 6(3)
C(2) - Ru(1) - C(4)	60.8(4)	$P(1) - R_1(1) - P(5)$		100.22(11)
C(5) - Ru(1) - C(4)	36.5(3)	$P(4) - R_1(1) - P(5)$		55.15(10)
C(2)-Ru(1)-C(1)	38.0(3)	C(2)-Ru(1)-Fe(2)		165.2(3)
C(5)-Ru(1)-C(1)	37.5(3)	C(5)-Ru(1)-Fe(2)		114.3(3)
C(4)-Ru(1)-C(1)	61.8(4)	C(4) - Ru(1) - Fe(2)		107.1(3)
C(2)-Ru(1)-C(3)	36.7(3)	C(1)-Ru(1)-Fe(2)		146.7(3)
C(5)-Ru(1)-C(3)	62.4(4)	C(3)-Ru(1)-Fe(2)		128.5(3)
C(4)-Ru(1)-C(3)	37.1(3)	P(1)-Ru(1)-Fe(2)		54.61(8)
C(1)-Ru(1)-C(3)	63.1(4)	P(4)-Ru(1)-Fe(2)		50.12(8)
C(2)-Ru(1)-P(1)	117.7(3)	P(5)-Ru(1)-Fe(2)		85.18(8)
C(5)-Ru(1)-P(1)	139.7(3)	C(2)-Ru(1)-Fe(1)		113.1(3)
C(4)-Ru(1)-P(1)	105.0(3)	C(5)-Ru(1)-Fe(1)		166.4(3)
C(1)-Ru(1)-P(1)	155.1(3)	C(4)-Ru(1)-Fe(1)		154.4(3)
C(3) - Ru(1) - P(1)	93.4(3)	C(1)-Ru(1)-Fe(1)		130.6(3)
C(2) - Ru(1) - P(4)	141.1(3)	C(3) - Ru(1) - Fe(1)		122.3(3)
C(5) - Ru(1) - P(4)	92.4(3)	P(1) - Ru(1) - Fe(1)		53.83(8)
C(4) - Ru(1) - P(4)	102 0(3)	P(4) - Ku(1) - Fe(1)		84.65(8)
C(1) - Ku(1) - P(4)	LU3.9(3)	F(2) = KU(1) = FO(1) $FO(2) = FO(1)$	١	49.08(8) 72 71(1)
C(3) = KU(1) = P(4) D(1) = D(1) = O(4)	100 20(11)	re(2) - ru(1) - re(1) C(12) - ro(1) - C(16))	13.14(4) 62 Q/E)
P(T) = P(T) = P(T) P(T) = P(T)	100.02(11)	$C(12) = E_{C}(1) C(10)$)	62.3(3)
C(2) = Ru(1) = P(3) $C(5) = P_1(1) = D(5)$	1102.3(3)	C(15) - re(1) - C(15))	37 1(1)
$C(4) - R_1(1) - D(5)$	154 7(3)	C(13) = Fe(1) = C(13))	38.2(4)
C(1)-Ru(1)-P(5)	95.6(3)	C(16) - Fe(1) - C(12))	37.6(4)
, ,		-,, -0(-, 0(-1	,	

136

C(15)-Fe(1)-C(12)	63.0(5)	C(24)-Fe(2)-P(1)	99.2(4)
C(13)-Fe(1)-C(14)	37.6(4)	C(25)-Fe(2)-P(1)	100.7(4)
C(16)-Fe(1)-C(14)	64.1(4)	C(23)-Fe(2)-P(1)	131.0(4)
C(15)-Fe(1)-C(14)	39.1(4)	P(4)-Fe(2)-P(1)	101.62(11)
C(12)-Fe(1)-C(14)	64.3(5)	P(2)-Fe(2)-P(1)	55.47(11)
C(13)-Fe(1)-P(5)	102.7(4)	C(22)-Fe(2)-P(3)	105.7(4)
C(16)-Fe(1)-P(5)	111.8(4)	C(26)-Fe(2)-P(3)	101.8(4)
C(15)-Fe(1)-P(5)	148.6(4)	C(24)-Fe(2)-P(3)	166.5(4)
C(12)-Fe(1)-P(5)	88.2(4)	C(25)-Fe(2)-P(3)	129.0(4)
C(14)-Fe(1)-P(5)	139.5(4)	C(23)-Fe(2)-P(3)	138.8(5)
C(13)-Fe(1)-P(2)	113.6(5)	P(4)-Fe(2)-P(3)	63.98(11)
C(16)-Fe(1)-P(2)	136.2(4)	P(2)-Fe(2)-P(3)	53.55(11)
C(15)-Fe(1)-P(2)	100.1(4)	P(1)-Fe(2)-P(3)	88.12(11)
C(12)-Fe(1)-P(2)	150.6(4)	C(22)-Fe(2)-Ru(1)	136.8(4)
C(14)-Fe(1)-P(2)	87.3(3)	C(26)-Fe(2)-Ru(1)	173.3(4)
P(5)-Fe(1)-P(2)	111.35(11)	C(24) - Fe(2) - Ru(1)	108.9(4)
C(13)-Fe(1)-P(1)	156.7(4)	C(25)-Fe(2)-Ru(1)	138.9(5)
C(16)-Fe(1)-P(1)	109.2(4)	C(23) - Fe(2) - Ru(1)	108.4(3)
C(15)-Fe(1)-P(1)	97.1(3)	P(4)-Fe(2)-Ru(1)	54.07(8)
C(12)-Fe(1)-P(1)	144.9(5)	P(2)-Fe(2)-Ru(1)	93.58(8)
C(14)-Fe(1)-P(1)	119.2(4)	P(1)-Fe(2)-Ru(1)	51.45(7)
P(5)-Fe(1)-P(1)	100.55(11)	P(3)-Fe(2)-Ru(1)	84.56(8)
P(2)-Fe(1)-P(1)	55.35(11)	P(2)-P(1)-Ru(1)	114.02(15)
C(13)-Fe(1)-P(3)	100.6(3)	P(2)-P(1)-Fe(2)	60.88(11)
C(16)-Fe(1)-P(3)	162.5(4)	Ru(1)-P(1)-Fe(2)	73.94(9)
C(15)-Fe(1)-P(3)	142.6(5)	P(2)-P(1)-Fe(1)	61.01(12)
C(12)-Fe(1)-P(3)	125.5(5)	Ru(1)-P(1)-Fe(1)	75.50(9)
C(14)-Fe(1)-P(3)	107.0(4)	Fe(2)-P(1)-Fe(1)	91.04(12)
P(5)-Fe(1)-P(3)	64.10(11)	P(3)-P(2)-P(1)	100.62(16)
P(2)-Fe(1)-P(3)	53.60(11)	P(3)-P(2)-Fe(2)	64.91(12)
P(1)-Fe(1)-P(3)	88.27(10)	P(1)-P(2)-Fe(2)	63.66(11)
C(13)-Fe(1)-Ru(1)	151.1(5)	P(3)-P(2)-Fe(1)	64.52(11)
C(16)-Fe(1)-Ru(1)	108.0(3)	P(1)-P(2)-Fe(1)	63.63(11)
C(15)-Fe(1)-Ru(1)	127.8(4)	Fe(2)-P(2)-Fe(1)	94.00(12)
C(12)-Fe(1)-Ru(1)	117.3(4)	P(2)-P(3)-Fe(1)	61.88(12)
C(14)-Fe(1)-Ru(1)	166.0(4)	P(2)-P(3)-Fe(2)	61.54(12)
P(5)-Fe(1)-Ru(1)	53.18(8)	Fe(1)-P(3)-Fe(2)	90.84(11)
P(2)-Fe(1)-Ru(1)	92.11(8)	P(2)-P(3)-P(4)	110.57(16)
P(1)-Fe(1)-Ru(1)	50.67(7)	Fe(1)-P(3)-P(4)	93.70(12)
P(3)-Fe(1)-Ru(1)	83.57(8)	Fe(2)-P(3)-P(4)	54.65(10)
C(22)-Fe(2)-C(26)	39.3(4)	P(2)-P(3)-P(5)	110.64(16)
C(22)-Fe(2)-C(24)	65.5(5)	Fe(1)-P(3)-P(5)	55.06(10)
C(26)-Fe(2)-C(24)	64.9(5)	Fe(2)-P(3)-P(5)	92.66(13)
C(22)-Fe(2)-C(25)	64.0(5)	P(4)-P(3)-P(5)	52.61(11)
C(26)-Fe(2)-C(25)	37.2(4)	P(5)-P(4)-Fe(2)	105.80(15)
C(24)-Fe(2)-C(25)	38.7(4)	P(5)-P(4)-Ru(1)	62.50(10)
C(22)-Fe(2)-C(23)	39.0(4)	Fe(2)-P(4)-Ru(1)	75.80(10)
C(26)-Fe(2)-C(23)	65.3(5)	P(5)-P(4)-P(3)	63.83(12)
C(24)-Fe(2)-C(23)	39.1(4)	Fe(2)-P(4)-P(3)	61.37(11)
C(25)-Fe(2)-C(23)	64.3(5)	Ru(1)-P(4)-P(3)	94.16(12)
C(22)-Fe(2)-P(4)	92.3(4)	P(4)-P(5)-Fe(1)	106.16(14)
C(26)-Fe(2)-P(4)	126.6(4)	P(4)-P(5)-Ru(1)	62.35(11)
C(24)-Fe(2)-P(4)	124.6(4)	Fe(1)-P(5)-Ru(1)	77.14(10)
C(25)-Fe(2)-P(4)	154.5(4)	P(4)-P(5)-P(3)	63.57(12)
C(23)-Fe(2)-P(4)	91.6(4)	Fe(1)-P(5)-P(3)	60.84(11)
C(22)-Fe(2)-P(2)	126.6(4)	Ru(1)-P(5)-P(3)	93.93(12)
C(26)-Fe(2)-P(2)	92.1(4)	C(1)-Si(1)-C(7)	107.1(5)
C(24)-Fe(2)-P(2)	122.2(4)	C(1)-Si(1)-C(6)	109.8(6)
C(25)-Fe(2)-P(2)	91.0(4)	C(7)-Si(1)-C(6)	110.1(5)
C(23)-Fe(2)-P(2)	154.7(4)	C(1)-Si(1)-C(8)	109.6(5)
P(4)-Fe(2)-P(2)	111.81(12)	C(7)-Si(1)-C(8)	106.5(5)
C(22)-Fe(2)-P(1)	163.7(4)	C(6)-Si(1)-C(8)	113.6(7)
C(26)-Fe(2)-P(1)	130.4(4)	C(10)-Si(2)-C(11)	113.8(11)

C(10) = Gi(2) = C(9)	109 1(13)	$C(19) - C(14) - E_{C}(1)$	128 9(7)
C(10) = SI(2) = C(9)	94 7(10)	C(15) - C(15) - C(14)	120.9(7)
C(11) - Si(2) - C(3)	114 7(7)	C(16) - C(15) - C(20)	126.1(15)
C(10) = SI(2) = C(3)	115 2(7)	C(14) - C(15) - C(20)	123.4(15)
C(11) = S1(2) = C(3)	107 1(8)	$C(15) - C(15) - E_{2}(1)$	123.4(13)
C(2) - C(1) - C(5)	101.2(10)	$C(10) = C(15) = F_{0}(1)$	73.0(7)
C(2) - C(1) - C(3)	122 A(9)	C(14) - C(15) - Fe(1)	125 5(7)
C(2) - C(1) - SI(1)	122.7(0)	C(20) - C(15) - Fe(1) C(12) - C(16) - C(15)	123.3(7)
C(3) - C(1) - SI(1)	122.7(9)	C(12) - C(10) - C(13)	100.0(12) 101.4(15)
C(2) - C(1) - Ru(1)	09.3(0)	C(12) - C(10) - C(21)	121.4(13)
C(5) - C(1) - Ru(1)	70.3(6) 120 C(E)	C(15) - C(16) - C(21)	130.3(10)
SI(1) - C(1) - Ru(1)	111 4(10)	C(12) - C(10) - Fe(1)	70.4(7)
C(3) = C(2) = C(1)	111.4(10)	C(15) - C(16) - Fe(1)	69.8(7)
C(3) - C(2) - Ru(1)	/3./(6)	C(21) - C(16) - Fe(1)	129.6(8)
C(1) - C(2) - Ru(1)	/2./(6)	C(23) - C(22) - C(26)	108.5(14)
C(2) - C(3) - C(4)	104.6(10)	C(23) - C(22) - C(27)	127.7(14)
C(2)-C(3)-S1(2)	129.3(9)	C(26) - C(22) - C(27)	123.3(15)
C(4) - C(3) - Si(2)	123.4(8)	C(23)-C(22)-Fe(2)	71.9(7)
C(2) - C(3) - Ru(1)	69.6(6)	C(26)-C(22)-Fe(2)	72.0(7)
C(4)-C(3)-Ru(1)	69.8(6)	C(27)-C(22)-Fe(2)	128.3(9)
Si(2)-C(3)-Ru(1)	138.8(6)	C(22)-C(23)-C(24)	107.4(13)
C(5)-C(4)-C(3)	111.3(10)	C(22)-C(23)-C(28)	126.5(15)
C(5)-C(4)-Ru(1)	72.1(6)	C(24)-C(23)-C(28)	126.0(14)
C(3)-C(4)-Ru(1)	73.1(6)	C(22)-C(23)-Fe(2)	69.1(7)
C(4)-C(5)-C(1)	108.3(10)	C(24)-C(23)-Fe(2)	70.7(7)
C(4)-C(5)-Ru(1)	71.4(7)	C(28)-C(23)-Fe(2)	129.4(8)
C(1)-C(5)-Ru(1)	72.2(6)	C(23)-C(24)-C(25)	106.3(13)
C(16)-C(12)-C(13)	107.0(12)	C(23)-C(24)-C(29)	123.6(14)
C(16)-C(12)-C(17)	127.8(16)	C(25)-C(24)-C(29)	129.5(16)
C(13)-C(12)-C(17)	124.2(17)	C(23)-C(24)-Fe(2)	70.2(8)
C(16)-C(12)-Fe(1)	72.0(7)	C(25)-C(24)-Fe(2)	71.3(8)
C(13)-C(12)-Fe(1)	70.5(6)	C(29)-C(24)-Fe(2)	130.5(8)
C(17)-C(12)-Fe(1)	131.6(9)	C(26)-C(25)-C(24)	110.5(14)
C(14)-C(13)-C(12)	110.9(12)	C(26)-C(25)-C(30)	127.0(15)
C(14)-C(13)-C(18)	127.9(16)	C(24)-C(25)-C(30)	122.5(16)
C(12)-C(13)-C(18)	121.2(16)	C(26)-C(25)-Fe(2)	70.8(8)
C(14)-C(13)-Fe(1)	72.6(7)	C(24)-C(25)-Fe(2)	70.1(8)
C(12)-C(13)-Fe(1)	71.3(7)	C(30)-C(25)-Fe(2)	125.8(8)
C(18)-C(13)-Fe(1)	122.8(8)	C(25)-C(26)-C(22)	107.2(14)
C(13)-C(14)-C(15)	103.7(11)	C(25)-C(26)-C(31)	127.2(14)
C(13)-C(14)-C(19)	126.3(15)	C(22)-C(26)-C(31)	125.3(15)
C(15)-C(14)-C(19)	129.7(15)	C(25)-C(26)-Fe(2)	72.0(8)
C(13)-C(14)-Fe(1)	69.7(7)	C(22) - C(26) - Fe(2)	68.7(7)
C(15) - C(14) - Fe(1)	68,8(7)	C(31) - C(26) - Fe(2)	129 0(8)
	00.0(7)		122.0(0)

Tabelle 4. Anisotrope Auslenkungsparameter [Ų x 10³] für 0218.Der Exponent des anisotropen Auslenkungsfaktors hat die Form: $-2\pi^2$ [$(ha^*)^2 U_{11} + ... + 2hka^*b^*U_{12}$]

	U ₁₁	U ₂₂	U ₃₃	U 23	U ₁₃	U ₁₂
Ru(1)	74(1)	81(1)	83(1)	-6(1)	12(1)	4(1)
Fe(1)	81(1)	79(1)	68(1)	-14(1)	13(1)	4(1)
Fe(2)	86(1)	99(1)	74(1)	-25(1)	15(1)	-16(1)
P(1)	76(2)	95(2)	90(2)	-28(2)	12(1)	7(2)
P(2)	83(2)	115(2)	87(2)	-34(2)	18(2)	-18(2)
P(3)	99(2)	88(2)	82(2)	-6(2)	17(2)	-13(2)
P(4)	85(2)	90(2)	90(2)	-2(2)	4(2)	-2(2)
P(5)	79(2)	82(2)	96(2)	-3(2)	12(2)	10(2)
Si(1)	85(2)	97(3)	160(3)	14(2)	44(2)	11(2)
Si(2)	113(3)	92(3)	107(3)	7(2)	5(2)	28(2)
C(1)	83(7)	81(6)	92(6)	10(5)	23(5)	-2(5)
C(2)	97(7)	99(7)	114(7)	-4(б)	30(6)	-6(6)
C(3)	99(7)	86(6)	87(6)	6(5)	17(6)	14(6)
C(4)	99(7)	95(7)	101(7)	0(6)	14(6)	4(6)
C(5)	97(7)	86(7)	98(7)	0(5)	7(6)	-3(6)
C(6)	134(11)	175(12)	222(13)	-53(10)	81(10)	-7(9)
C(7)	117(10)	114(9)	149(10)	15(7)	34(8)	-2(8)
C(8)	98(9)	123(9)	205(11)	66(9)	6(8)	2(8)
C(9)	262(19)	320(2)	380(2)	157(17)	-28(16)	11(16)
C(10)	370(2)	357(19)	269(17)	85(14)	85(15)	263(16)
C(11)	298(18)	190(15)	253(16)	19(12)	-74(14)	81(14)
C(12)	100(8)	138(8)	92(7)	-39(6)	35(6)	1(7)
C(13)	128(8)	78(7)	86(6)	-11(6)	-16(6)	8(7)
C(14)	95(7)	134(8)	70(6)	-13(6)	20(6)	-24(7)
C(15)	98(7)	102(7)	82(6)	-29(6)	-16(6)	22(7)
C(16)	124(8)	91(7)	76(6)	1(6)	23(6)	-18(7)
C(17)	147(13)	340(18)	208(13)	-149(13)	60(11)	24(12)
C(18)	288(17)	123(12)	224(14)	-36(11)	-56(13)	-3(12)
C(19)	187(13)	275(15)	113(9)	-84(10)	51(9)	-146(12)
C(20)	199(13)	211(13)	172(11)	-81(11)	-95(10)	92(12)
C(21)	308(17)	212(14)	111(9)	18(10)	14(10)	-117(13)
C(22)	123(8)	122(8)	84(6)	-23(6)	23(6)	5(7)
C(23)	112(8)	115(8)	103(7)	-29(6)	30(6)	-38(7)
C(24)	126(8)	97(7)	107(7)	-22(6)	34(7)	-15(7)
C(25)	115(8)	127(8)	90(6)	-41(7)	33(6)	-5(8)
C(26)	114(8)	111(7)	90(6)	-30(6)	25(6)	-9(7)
C(27)	183(13)	187(12)	112(9)	-7(9)	22(9)	17(11)
C(28)	126(11)	214(13)	147(10)	-72(9)	38(9)	-62(10)
C(29)	225(14)	151(12)	172(11)	-39(9)	103(11)	38(10)
C(30)	132(11)	246(14)	147(10)	-82(10)	48(9)	26(11)
C(31)	187(13)	180(13)	118(9)	-31(8)	79(9)	-54(10)

	х	У	Z	U(eq)
н(2)	9207	3483	615	122
H(4)	8815	4833	2090	119
H(5)	10560	3844	2352	115
н(ба)	10966	1298	900	256
H(6B)	12060	1684	702	256
H(6C)	10874	2169	464	256
H(7A)	12403	4058	1023	188
H(7B)	13365	3308	1262	188
H(7C)	12923	4006	1696	188
H(8A)	12147	2590	2471	218
H(8B)	12891	1888	2175	218
H(8C)	11637	1605	2208	218
H(9A)	7843	6578	274	499
H(9B)	8746	5784	214	499
H(9C)	8905	6418	782	499
H(10A)	6029	5810	1006	492
H(10B)	7093	6436	1283	492
H(10C)	6863	5455	1575	492
H(11A)	6343	4253	214	398
H(11B)	7280	4644	-109	398
H(11C)	6259	5308	-33	398
H(17A)	8547	425	-109	343
H(17B)	8722	-329	403	343
H(17C)	9203	720	519	343
H(18A)	6665	-1201	1161	340
H(18B)	7920	-813	1284	340
H(18C)	7410	-1309	683	340
H(19A)	4728	-607	820	283
H(19B)	4116	398	773	283
H(19C)	4933	96	1359	283
H(20A)	4916	2553	637	319
H(20B)	4156	1779	251	319
H(20C)	4919	2478	-34	319
H(21A)	8064	2329	45	322
H(21B)	6841	2784	-104	322
H(21C)	7174	1959	-499	322
H(27A)	9364	1598	3810	243
H(27B)	8384	834	3657	243
H(27C)	8467	1491	4212	243
H(28A)	9379	3833	3892	242
H(28B)	9339	4152	3242	242
H(28C)	9868	3152	3465	242
H(29A)	7348	5027	3170	261
H(29B)	6294	4806	2668	261
H(29C)	7531	4735	2545	261
H(30A)	4713	2686	2450	258
H(30B)	4975	3789	2546	258
H(30C)	4574	3183	3036	258
H(31A)	6013	1158	3793	232
H(31B)	6254	656	3227	232
H(JTC)	51/3	1311	3190	232

7.6 $[{Cp^{=}Ru(\mu - CO)}_{2}{Cp^{=}Ru(CO)H}]$ (33)

Tabelle 1. Kristalldaten und Strukturverfeinerung für 0151.

Summenformel	$C_{12}H_{21.33}ORuSi_2$	
Molmasse	338.87	
Temperatur	293(2) K	
Strahlung	ΜοΚα	
Wellenlänge	0.71073 Å	
Scanmodus	Phi-Oszillation	
Kristallsystem	Triklin	
Raumgruppe	P1	
Zelldimensionen	a = 11.7023(8) Å	$\alpha = 76.470(9)^{\circ}$
	b = 11.8180(9) Å	$\beta = 87.887(9)^{\circ}$
	c = 19.1034(16) Å	$\gamma = 65.942(8)^{\circ}$
Zellvolumen	$2340.4(3) \text{ Å}^3$	•
Formeleinheiten pro Zelle Z	6	
Berechnete Dichte	1.443 Mg/m^3	
Absorptionskoeffizient	1.139 mm ⁻¹	
Kristallgröße	0.32 x 0.28 x 0.04 mm	
Gemessener θ-Bereich	2.78 bis 25.68°	
Anzahl der gemessenen Reflexe	33101	
Unabhängige Reflexe	8352 (Rint = 0.0742)	
Absorptionskorrektur	Analytisch (ABST/PLATON 98)	
Max. und min. Transmission	0.95475 und 0.70888	
Diffraktometer	Stoe IPDS	
Strukturlösung	Direkte Methoden	
Strukturlösungsprogramm	SHELXS-97 (Sheldrick, 1990)	2
Strukturverfeinerung	Vollmatrix Least-Squares gegen F	72
Strukturverfeinerungsprogramm	SHELXL-97 (Sheldrick, 1997)	
Daten / Restraints / Parameter	8352 / 2 / 458	
Endgültige R-Werte $[I>2\sigma(I)]$	R1 = 0.0325, wR2 = 0.0644	
R-Werte (alle Daten)	R1 = 0.0655, wR2 = 0.0699	2 2
Wichtungsschema	$w=1/[\sigma^2(Fo^2)+(0.0284P)^2+0.0000]$	P] mit P= $(Fo^2 + 2Fc^2)/3$
GooF (alle Daten)	0.802	
Größtes Maximum und Minimum	0.468 und -0.415 eÅ ⁻³	

Verfeinerung nach F^2 mit ALLEN Reflexen. Die gewichteten R-Werte wR2 und alle GooF's basieren auf F^2 . Die konventionellen R-Werte R1 basieren auf F, wobei F für negative F^2 gleich Null gesetzt wird. Das Ablehnungskriterium $F^2 > 2\sigma(F^2)$ wird nur zum Berechnen von R(obs) etc. verwendet. Zur Verfeinerung wurden alle Reflexe herangezogen. Grundsätzlich gilt: Auf F^2 bezogene R-Werte sind statistisch etwa doppelt so groß wie die auf F basierenden. Auf ALLE Reflexe bezogene R-Werte sind noch größer.

Die Wasserstoffatome wurden geometrisch lokalisiert. Für die Verfeinerung wurde ein Reitermodell angenommen. Als Temperaturfaktor wurde der 1.5-fache Wert (CH₃-Gruppen) bzw. der 1.2-fache Wert (Cp-H) des äquivalenten isotropen Temperaturfaktors desjenigen C- Atoms eingesetzt, an welches das jeweilige H-Atom gebunden ist. Für das Hydridatom an Ru(3) wurde ein Fehlordnungsmodell mit fixierter Bindungslänge für Ru-H angenommen.

Einzelheiten können dem Handbuch für das Verfeinerungsprogramm SHELXL entnommen werden.

$$GooF = \sqrt{\frac{\sum \left[w\left(F_o^2 - F_c^2\right)\right]}{(n-p)}}$$
 n = Zahl der Reflexe; p = Zahl der verfeinerten Parameter

Tabelle 2. Atomkoordinaten [x 10⁴] und äquivalente isotrope Auslenkungsparameter [Å² x 10³] für 0151. U(eq) wird berechnet als ein Drittel der Spur des orthogonalisierten U_{ij} -Tensors.

	х	У	Z	U(eq)
Ru(1)	4328(1)	8220(1)	2861(1)	31(1)
$R_{11}(2)$	6645(1)	6425(1)	3075(1)	32(1)
$R_{11}(3)$	5321(1)	7092(1)	1622(1)	35(1)
Si(1)	1268(1)	7973(1)	3125(1)	44(1)
Si(2)	3449(1)	11799(1)	2372(1)	45(1)
Si(3)	7373(1)	7126(1)	4746(1)	46(1)
Si(4)	8243(1)	2867(1)	3436(1)	50(1)
Si(5)	8255(1)	6900(1)	725(1)	50(1)
Si(6)	2983(2)	7770(2)	198(1)	67(1)
O(1)	6407(3)	9111(3)	2554(2)	57(1)
O(2)	4646(3)	5707(3)	3815(2)	52(1)
O(2)	4848(5)	4731(4)	2068(3)	100(2)
C(1)	6005(5)	8333(4)	2000(3) 2713(2)	41(1)
C(1)	5013(5)	6392(4)	2/21/2)	40(1)
C(2)	5025(5)	5659(5)	1910(2)	FQ(2)
C(3)	3035(0)	0000(1)	1910(3)	JO(Z) 27(1)
C(11)	2314(4)	0023(4)	311/(2) 2555(2)	37(1)
C(12)	2439(4)	9011(4) 10227(4)	2000(0)	37(1)
C(13)	3190(4)	10337(4)	2000(2)	37(1)
C(14)	3585(4)	9617(4)	3537(2)	38(1)
C(15)	3040(4)	8/49(4)	3/15(2)	39(1)
C(21)	8132(4)	444/(4)	3527(2)	38(1)
C(22)	7564(4)	5049(4)	4095(2)	39(1) 27(1)
C(23)	/800(4)	61/4(4)	4048(3)	37(1)
C(24)	8507(4)	6252(4)	3428(2)	38(1)
C(25)	8/00(4)	5236(4)	311/(3)	42(1)
C(31)	4417(5)	7886(5)	504(3)	4/(_)
C(32)	5709(5)	7049(5)	493(2)	45(1) 40(1)
C(33)	6511(4)	/536(4)	730(2)	40(1) 42(1)
C(34)	5704(4)	8708(4)	904(3)	43(⊥) 44(1)
C(35)	4468(5)	8897(4)	/6/(2)	44(1)
C(111)	1932(5)	5566(5)	2/3/(4)	72(2)
C(112)	991(6)	7452(6)	4087(3)	72(2)
C(113)	-226(5)	9151(5)	2610(4)	68(2)
C(131)	1882(6)	13172(5)	2271(4)	88(2)
C(132)	4525(7)	11977(5)	2970(4)	86(2)
C(133)	4110(6)	11765(6)	1481(3)	74(2)
C(211)	8173(7)	2849(6)	2468(3)	88(2)
C(212)	9809(6)	1621(5)	3866(4)	75(2)
C(213)	6982(6)	2533(6)	3903(4)	88(2)
C(231)	8628(5)	6335(5)	5480(3)	64(2)
C(232)	5888(6)	7110(6)	5111(3)	71(2)
C(233)	7235(6)	8766(5)	4362(3)	71(2)
C(311)	3205(8)	6085(7)	393(6)	141(4)
C(312)	2640(9)	8499(12)	-780(4)	170(5)
C(313)	1644(6)	8680(7)	671(4)	101(2)
C(331)	8878(6)	7391(6)	1419(3)	69(2)
C(332)	8889(6)	5151(5)	861(4)	81(2)
C(333)	8681(6)	7616(6)	-165(3)	75(2)

C(14)-Ru(1)-C(13)

C(12)-Ru(1)-C(13)

C(11)-Ru(1)-C(13)

64.574(16) 96.7(2)

98.82(17)

37.74(16)

106.24(18)

Tabelle 3. Bindun	igslangen [A] ui	nd -winkel [*] fu	ir 0151.		
$P_{11}(1) = C(2)$	2 011(5)		Gi(3)_C(231)	1 850/5)	
Ru(1) = C(2) Ru(1) = C(1)	2.011(5) 2.026(5)		Si(3) - C(231)	1 846(6)	
$R_{11}(1) - C(15)$	2.020(5)		Si(4) - C(213)	1.827(7)	
Ru(1) - C(14)	2.203(3)		Si(4) - C(21)	1.868(4)	
Ru(1) - C(12)	2.226(4)		Si(4) - C(211)	1.858(6)	
Ru(1) - C(11)	2.239(5)		Si(4)-C(212)	1.883(5)	
Ru(1) - C(13)	2.281(4)		Si(5)-C(33)	1.866(5)	
Ru(1)-Ru(2)	2.6467(6)		Si(5)-C(332)	1.844(6)	
Ru(1)-Ru(3)	2.9560(6)		Si(5)-C(331)	1.846(6)	
Ru(2)-C(1)	2.014(5)		Si(5)-C(333)	1.861(6)	
Ru(2)-C(2)	2.016(5)		Si(6)-C(31)	1.863(5)	
Ru(2)-C(22)	2.206(4)		Si(6)-C(311)	1.847(8)	
Ru(2)-C(23)	2.230(4)		Si(6)-C(312)	1.848(8)	
Ru(2)-C(24)	2.219(4)		Si(6)-C(313)	1.845(7)	
Ru(2)-C(25)	2.229(4)		O(1) - C(1)	1.171(6)	
Ru(2)-C(21)	2.255(4)		O(2)-C(2)	1.166(6)	
Ru(2)-Ru(3)	3.0042(6)		O(3)-C(3)	1.175(6)	
Ru(3) - C(3)	1.815(6)		C(11)-C(15)	1.414(6)	
Ru(3)-C(32)	2.195(5)		C(11)-C(12)	1.441(6)	
Ru(3)-C(31)	2.232(5)		C(12)-C(13)	1.416(6)	
Ru(3)-C(35)	2.229(4)		C(13)-C(14)	1.443(6)	
Ru(3) - C(33)	2.263(5)		C(14) - C(15)	1.389(6)	
Ru(3) - C(34)	2.270(5)		C(21) - C(22)	1.425(6)	
S1(1) - C(113)	1.861(5)		C(21) - C(25)	1.432(7)	
S1(1) - C(11)	1.8/2(5)		C(22) - C(23)	1.435(6)	
S1(1) - C(112)	1.858(6)		C(23) - C(24)	1.42/(7)	
S1(1) - C(111)	1.843(6)		C(24) - C(25)	1.395(6)	
S1(2) - C(132)	1.836(6)		C(31) - C(35)	1.422(7)	
SI(2) = C(13)	1.005(5)		C(31) - C(32)	1.433(7)	
SI(2) = C(133) SI(2) = C(131)	1.045(0)		C(32) - C(33)	1.417(7)	
SI(2) - C(131)	1 854(6)		C(34) - C(34)	1.431(0) 1.395(7)	
Si(3)-C(23)	1.866(5)		0(31) 0(33)	1.333(7)	
C(2)-Ru(1)-C(1)	<u>(</u>	96.5(2)	C(2)-Ru(1)-Ru(2)	48.99(15)
C(2)-Ru(1)-C(15)	8	39.09(19)	C(1)-Ru(1)-Ru(2)	48.87(13)
C(1)-Ru(1)-C(15)	12	28.42(18)	C(15)-Ru(1)-Ru	ι(2)	125.21(11)
C(2)-Ru(1)-C(14)	11	L3.62(18)	C(14)-Ru(1)-Ru	ι(2)	122.24(12)
C(1)-Ru(1)-C(14)		96.95(18)	C(12)-Ru(1)-Ru	ι(2)	173.39(13)
C(15)-Ru(1)-C(14)) 3	36.67(17)	C(11)-Ru(1)-Ru	ι(2)	148.27(11)
C(2) - Ru(1) - C(12)	1.	36.4(2)	C(13) - Ru(1) - Ru(1	ι(2)	142.20(12)
C(1)-Ru(1)-C(12)	, Lž	26.75(18)	C(2) - Ru(1) - Ru(1)	3)	84.13(14)
C(15) - Ru(1) - C(12)) 6	(1.15(1/))	C(1) - Ru(1) - Ru(1)	3)	74.54(13)
C(14) - KU(1) - C(12)	, 6	$D_{1,10}(10)$	C(15) - KU(1) - KU(1	u())	161 20(12)
C(2) - Ku(1) - C(11)	11	19.4U(19)	C(14) - KU(1) - KU(1	L(3)	110 JE(12)
C(1) - KU(1) - C(11))	$D_{1}, D(\perp 1)$	C(12)- $RU(1)$ - RU	u(3)	100.35(12)
C(12) - Ku(1) - C(11)		57.12(10)	C(12) - RU(1) - RU(1)	u(3)	126.42(11)
$C(12) = D_1(1) = C(11)$		$32.30(\pm 7)$	$C(\pm 3) = RU(\pm) = RU$ $P_{11}(3) = P_{12}(\pm 1)$	1(3)	123.07(12) 64 577/14
$C(2) = R_1(1) = C(12)$	/	19 93(18)	$C(1)_{\text{Pu}}(2)_{-\text{C}}(2)$)	96 7/21
C(1) - Ru(1) - C(13)	С Т-	95.78(18)	$C(1) - R_{11}(2) - C(2)$	(2)	134,63(17)
C(15)-Ru(1)-C(13)) 6	51.97(17)	C(2) - Ru(2) - C(2)	22)	88.03(18)

37.43(16)

36.61(16)

63.05(17)

C(1)-Ru(2)-C(23)

C(2)-Ru(2)-C(23)

C(22)-Ru(2)-C(23)

Taballa 2 Dind $\begin{bmatrix} 1 \\ 1 \end{bmatrix}$ und winkel $\begin{bmatrix} 0 \\ 1 \end{bmatrix}$ für 0151 dia.

143

	00,00(10)		100 0(2)
C(1) - Ru(2) - C(24)	92.29(18)	C(112) - S1(1) - C(111)	108.9(3)
C(2)-Ru(2)-C(24)	143.64(18)	C(132)-Si(2)-C(13)	108.9(2)
C(22)-Ru(2)-C(24)	61.49(18)	C(132)-Si(2)-C(133)	108.5(3)
C(23) - Ru(2) - C(24)	37.43(17)	C(13) - Si(2) - C(133)	113.5(2)
$C(1) - R_{11}(2) - C(25)$	119 0(2)	C(132) - Si(2) - C(131)	110 0(3)
$C(2) = D_1(2) = C(25)$	142 10(10)	C(12) $C(12)$ $C(121)$	106 E(2)
C(2) = Ru(2) = C(25)	143.19(10)	C(13) - SI(2) - C(131)	100.5(3)
C(22) - Ru(2) - C(25)	61.27(18)	C(133)-Si(2)-C(131)	109.5(3)
C(23)-Ru(2)-C(25)	62.40(16)	C(232)-Si(3)-C(23)	107.9(2)
C(24)-Ru(2)-C(25)	36.54(16)	C(232)-Si(3)-C(231)	109.0(3)
$C(1) = R_{11}(2) = C(21)$	154 29(19)	C(23) = Si(3) = C(231)	$108 \ 1(2)$
$C(2) - P_{11}(2) - C(21)$	105 05(19)	C(22) - C(22)	111 0(2)
C(2) - Ru(2) - C(21)	103.95(16)	C(232) = SI(3) = C(233)	110.0(3)
C(22) = Ru(2) = C(21)	37.24(16)	C(23) - SI(3) - C(233)	110.9(3)
C(23)-Ru(2)-C(21)	63.60(15)	C(231)-Si(3)-C(233)	108.9(3)
C(24)-Ru(2)-C(21)	62.23(17)	C(213)-Si(4)-C(21)	109.4(3)
C(25)-Ru(2)-C(21)	37.25(17)	C(213)-Si(4)-C(211)	111.2(4)
$C(1) - R_{11}(2) - R_{11}(1)$	49 27(15)	C(21) = Si(4) = C(211)	$110 \ 4(3)$
$C(2) - P_{11}(2) - P_{11}(1)$	19 92(12)	C(212) = C(212)	100 8(2)
C(2) - Ru(2) - Ru(1)	40.03(13)	C(213) - 31(4) - C(212)	109.0(3)
C(22)-Ru(2)-Ru(1)	127.63(13)	C(21) - S1(4) - C(212)	107.6(2)
C(23)-Ru(2)-Ru(1)	118.43(11)	C(211) - Si(4) - C(212)	108.3(3)
C(24)-Ru(2)-Ru(1)	136.40(11)	C(33)-Si(5)-C(332)	108.6(3)
C(25)-Ru(2)-Ru(1)	167.97(13)	C(33)-Si(5)-C(331)	109.8(2)
$C(21) - R_{11}(2) - R_{11}(1)$	154 78(13)	C(332) - Si(5) - C(331)	112 7(3)
$C(1) - P_{11}(2) - P_{11}(2)$	72 52(12)	C(32) - C(5) - C(322)	109 9(2)
C(1) - Ru(2) - Ru(3)	/3.33(13)	C(33) - SI(3) - C(333)	100.0(2)
C(2)-Ru(2)-Ru(3)	82.//(13)	C(332) - S1(5) - C(333)	109.7(3)
C(22) - Ru(2) - Ru(3)	151.44(12)	C(331) - Si(5) - C(333)	107.2(3)
C(23) - Ru(2) - Ru(3)	169.04(13)	C(31)-Si(6)-C(311)	110.4(3)
C(24)-Ru(2)-Ru(3)	133.45(13)	C(31)-Si(6)-C(312)	109.5(3)
C(25) - Ru(2) - Ru(3)	113,99(13)	C(311) - Si(6) - C(312)	110.1(5)
$C(21) = R_{11}(2) = R_{11}(3)$	120.63(11)	C(31) - Si(6) - C(313)	108 8(3)
C(21) $Ru(2)$ $Ru(3)$	120.03(11)	C(31) D1(0) C(313)	110.0(1)
Ru(1)-Ru(2)-Ru(3)	62.706(16)	C(311) - S1(6) - C(313)	110.0(4)
C(3) - Ru(3) - C(32)	99.7(2)	C(312)-Si(6)-C(313)	108.0(4)
C(3)-Ru(3)-C(31)	101.9(2)	O(1)-C(1)-Ru(2)	138.7(4)
C(32)-Ru(3)-C(31)	37.77(18)	O(1) - C(1) - Ru(1)	139.2(4)
C(3) - Ru(3) - C(35)	134.9(2)	$R_{11}(2) - C(1) - R_{11}(1)$	81,9(2)
$C(32) = B_{11}(3) = C(35)$	60.99(18)	O(2) - C(2) - Bu(1)	138 0(4)
Q(21) Pr(2) Q(25)	27 19(17)	O(2) C(2) Iu(1)	120.0(4)
C(31) - Ru(3) - C(35)	37.18(17)	O(2) - C(2) - Ru(2)	139.0(4)
C(3) - Ru(3) - C(33)	128.0(2)	Ru(1) - C(2) - Ru(2)	82.2(2)
C(32)-Ru(3)-C(33)	37.03(17)	O(3) - C(3) - Ru(3)	177.3(5)
C(31)-Ru(3)-C(33)	63.07(18)	C(15)-C(11)-C(12)	104.2(4)
C(35)-Ru(3)-C(33)	61.07(18)	C(15)-C(11)-Si(1)	126.1(4)
$C(3) - R_{11}(3) - C(34)$	160 8(2)	C(12) - C(11) - Si(1)	129 2(3)
$C(32) = P_{11}(3) = C(34)$	61 10(19)	C(15) - C(11) - Du(1)	$70 \ 1(3)$
C(32) - Ru(3) - C(34)	(10)	C(13) - C(11) - Ru(1)	70.1(3)
C(31) - Ru(3) - C(34)	62.27(18)	C(12) - C(11) - Ru(1)	/0./(3)
C(35) - Ru(3) - C(34)	36.12(17)	Si(1)-C(11)-Ru(1)	129.2(2)
C(33) - Ru(3) - C(34)	36.79(16)	C(13)-C(12)-C(11)	111.6(4)
C(3)-Ru(3)-Ru(1)	98.20(18)	C(13)-C(12)-Ru(1)	73.8(2)
C(32)-Ru(3)-Ru(1)	157.56(12)	C(11)-C(12)-Ru(1)	71.6(2)
$C(31) - R_{11}(3) - R_{11}(1)$	124 57(13)	C(12) - C(13) - C(14)	$104 \ 3(4)$
$Q(2E) p_{1}(2) p_{2}(1)$	06 60(12)	G(12), G(12), G(11)	120 0(2)
C(33) - Ru(3) - Ru(1)	90.09(13)	C(12) - C(13) - SI(2)	130.0(3)
C(33) - Ru(3) - Ru(1)	132.18(11)	C(14) - C(13) - S1(2)	124.8(3)
C(34)-Ru(3)-Ru(1)	99.92(12)	C(12)-C(13)-Ru(1)	69.6(2)
C(3)-Ru(3)-Ru(2)	88.14(16)	C(14)-C(13)-Ru(1)	68.7(2)
C(32)-Ru(3)-Ru(2)	141.06(13)	Si(2)-C(13)-Ru(1)	133.1(2)
C(31)-Ru(3)-Ru(2)	169.96(13)	C(15)-C(14)-C(13)	109.2(4)
$C(35) - R_{11}(3) - R_{11}(2)$	133 46(12)	$C(15) - C(14) - F_{11}(1)$	71 2(2)
$C(22) = D_1(2) D_2(2)$	110 60(11)	$C(12) = C(14) = D_{14}(1)$	72.0(0)
C(33) = Ru(3) = Ru(2)	102 00(10)	C(13) - C(14) - RU(1)	13.9(2)
C(34) - Ru(3) - Ru(2)	TO1.88(TS)	C(14) - C(15) - C(11)	LLU.6(4)
Ru(1)-Ru(3)-Ru(2)	52.720(13)	C(14)-C(15)-Ru(1)	72.0(3)
C(113)-Si(1)-C(11)	107.1(2)	C(11)-C(15)-Ru(1)	72.8(3)
C(113)-Si(1)-C(112)	110.5(3)	C(22) - C(21) - C(25)	104.5(4)
C(11) - Si(1) - C(112)	106 1(2)	C(22) - C(21) - Si(4)	126 1(4)
$C(113)_{C'}(1)_{C'}(111)$	100 9/2)	C(25) = C(21) = C(4)	100.1(1)
C(11) C(1) C(11)		C(22) = C(21) = D1(4)	$\pm 20.7(4)$
C(11) - S1(1) - C(111)	114.4(2)	C(ZZ) - C(ZL) - Ru(Z)	69.5(2)

C(25)-C(21)-Ru(2)	70.4(2)	C(32)-C(31)-Si(6)	129.3(4)
Si(4)-C(21)-Ru(2)	129.9(2)	C(35)-C(31)-Ru(3)	71.3(3)
C(21)-C(22)-C(23)	111.4(5)	C(32)-C(31)-Ru(3)	69.7(3)
C(21)-C(22)-Ru(2)	73.2(2)	Si(6)-C(31)-Ru(3)	125.4(3)
C(23)-C(22)-Ru(2)	72.0(2)	C(33)-C(32)-C(31)	111.2(4)
C(24)-C(23)-C(22)	104.4(4)	C(33)-C(32)-Ru(3)	74.1(3)
C(24)-C(23)-Si(3)	131.1(3)	C(31)-C(32)-Ru(3)	72.5(3)
C(22)-C(23)-Si(3)	124.1(4)	C(32)-C(33)-C(34)	106.0(4)
C(24)-C(23)-Ru(2)	70.9(2)	C(32)-C(33)-Si(5)	127.8(4)
C(22)-C(23)-Ru(2)	70.2(2)	C(34)-C(33)-Si(5)	125.9(4)
Si(3)-C(23)-Ru(2)	128.3(2)	C(32)-C(33)-Ru(3)	68.9(3)
C(25)-C(24)-C(23)	109.9(4)	C(34)-C(33)-Ru(3)	71.9(3)
C(25)-C(24)-Ru(2)	72.1(3)	Si(5)-C(33)-Ru(3)	128.7(2)
C(23)-C(24)-Ru(2)	71.7(2)	C(35)-C(34)-C(33)	107.7(4)
C(24)-C(25)-C(21)	109.7(4)	C(35)-C(34)-Ru(3)	70.3(3)
C(24)-C(25)-Ru(2)	71.3(3)	C(33)-C(34)-Ru(3)	71.3(3)
C(21)-C(25)-Ru(2)	72.3(2)	C(34)-C(35)-C(31)	111.4(4)
C(35)-C(31)-C(32)	103.7(4)	C(34)-C(35)-Ru(3)	73.5(3)
C(35)-C(31)-Si(6)	126.9(4)	C(31)-C(35)-Ru(3)	71.5(3)

Tabelle 4. Anisotrope Auslenkungsparameter [Ų x 10³] für 0151.Der Exponent des anisotropen Auslenkungsfaktors hat die Form: $-2\pi^2$ [$(ha^*)^2 U_{11} + ... + 2hka^*b^*U_{12}$]

	U ₁₁	U ₂₂	U ₃₃	U ₂₃	U ₁₃	U ₁₂
Ru(1)	27(1)	32(1)	33(1)	-6(1)	0(1)	-12(1)
Ru(2)	28(1)	33(1)	34(1)	-6(1)	-2(1)	-11(1)
Ru(3)	34(1)	37(1)	35(1)	-10(1)	-1(1)	-13(1)
Si(1)	33(1)	45(1)	55(1)	-8(1)	2(1)	-20(1)
Si(2)	50(1)	34(1)	51(1)	-9(1)	1(1)	-18(1)
Si(3)	46(1)	53(1)	41(1)	-14(1)	-4(1)	-20(1)
Si(4)	50(1)	38(1)	57(1)	-11(1)	-6(1)	-13(1)
Si(5)	40(1)	61(1)	49(1)	-15(1)	7(1)	-19(1)
Si(6)	56(1)	95(1)	57(1)	-18(1)	-12(1)	-38(1)
0(1)	42(2)	40(2)	74(3)	-4(2)	2(2)	-21(2)
0(2)	40(2)	52(2)	88(3)	10(2)	5(2)	-19(2)
0(3)	120(4)	61(3)	138(4)	-15(3)	8(3)	-60(3)
C(1)	38(3)	44(3)	38(3)	-7(2)	-4(2)	-16(2)
C(2)	37(3)	40(3)	40(3)	-3(2)	0(2)	-15(2)
C(3)	67(4)	49(3)	61(3)	-19(3)	-7(3)	-23(3)
C(11)	29(3)	40(2)	40(3)	-8(2)	2(2)	-14(2)
C(12)	30(3)	32(2)	42(3)	-2(2)	-5(2)	-9(2)
C(13)	32(3)	29(2)	45(3)	-10(2)	1(2)	-8(2)
C(14)	33(3)	42(2)	44(3)	-23(2)	2(2)	-14(2)
C(15)	34(3)	45(3)	35(2)	-5(2)	3(2)	-16(2)
C(21)	28(3)	26(2)	46(3)	-4(2)	-8(2)	0(2)
C(22)	31(3)	40(2)	39(3)	4(2)	-6(2)	-12(2)
C(23)	25(3)	37(2)	46(3)	-7(2)	-7(2)	-11(2)
C(24)	26(3)	42(3)	46(3)	-7(2)	-3(2)	-16(2)
C(25)	27(3)	45(3)	46(3)	-10(2)	-2(2)	-6(2)
C(31)	47(3)	59(3)	37(3)	-10(2)	-2(2)	-24(3)
C(32)	52(3)	50(3)	38(3)	-18(2)	-3(2)	-20(2)
C(33)	41(3)	47(3)	34(2)	-12(2)	3(2)	-20(2)
C(34)	40(3)	42(3)	46(3)	-5(2)	2(2)	-19(2)
C(35)	46(3)	39(3)	39(3)	-3(2)	-4(2)	-11(2)

C(111)	49(4)	63(4)	112(5)	-28(3)	-1(4)	-25(3)
C(112)	80(5)	93(5)	60(4)	-7(3)	11(3)	-59(4)
C(113)	49(4)	58(3)	100(5)	-12(3)	-14(3)	-25(3)
C(131)	76(5)	45(3)	110(6)	-1(3)	10(4)	-3(3)
C(132)	127(6)	59(4)	91(5)	-5(3)	-26(5)	-62(4)
C(133)	92(5)	66(4)	69(4)	-8(3)	22(4)	-42(4)
C(211)	122(6)	57(4)	70(4)	-17(3)	-18(4)	-20(4)
C(212)	69(4)	46(3)	89(5)	-15(3)	-11(4)	-2(3)
C(213)	79(5)	74(4)	128(6)	-26(4)	16(5)	-49(4)
C(231)	65(4)	72(4)	55(3)	-15(3)	-18(3)	-25(3)
C(232)	61(4)	110(5)	54(4)	-34(3)	13(3)	-40(4)
C(233)	76(4)	59(3)	79(4)	-24(3)	-3(4)	-22(3)
C(311)	106(7)	111(6)	234(12)	-82(7)	-41(7)	-45(5)
C(312)	135(8)	350(16)	64(5)	-14(7)	-23(6)	-156(10)
C(313)	57(4)	109(6)	134(7)	-25(5)	4(5)	-33(4)
C(331)	56(4)	104(5)	63(4)	-24(3)	9(3)	-47(4)
C(332)	65(4)	61(4)	105(5)	-25(4)	б(4)	-10(3)
C(333)	63(4)	86(4)	65(4)	-10(3)	13(3)	-26(3)

Tabelle 5.H-Atomkoordinaten [x 10⁴] und äquivalente isotrope Auslenkungsparameter [Å² x 10³] für 0151.

	x	У	Z	U(eq)
H(12)	2069	10070	2090	45
H(14)	4116	9719	3844	45
H(15)	3139	8195	4166	47
H(22)	7142	4749	4451	47
H(24)	8796	6885	3256	46
Н(25)	9133	5093	2706	51
H(32)	5986	6285	350	54
H(34)	5957	9247	1078	51
H(35)	3767	9595	838	53
H(11A)	1335	6197	2748	109
H(11B)	2686	5947	3015	109
H(11C)	2121	6819	2248	109
H(11D)	705	8168	4303	109
H(11E)	1758	6804	4338	109
H(11F)	366	7114	4117	109
H(11G)	-630	9822	2854	102
H(11H)	-767	8734	2576	102
H(11I)	-51	9505	2134	102
H(13A)	1583	13251	2739	132
H(13B)	1301	13029	1999	132
H(13C)	1956	13943	2023	132
H(13D)	4218	11947	3444	129
H(13E)	4578	12781	2784	129
H(13F)	5342	11296	2995	129
H(13G)	4152	12568	1272	111
H(13H)	3585	11617	1171	111
H(13I)	4938	11092	1537	111
H(21A)	8081	2095	2428	132
H(21B)	8931	2851	2260	132
H(21C)	7469	3591	2217	132
H(21D)	9894	1673	4354	112

Anh	ang
	0

H(21E)	10467	1767	3599	112
H(21F)	9864	789	3865	112
H(21G)	7055	2525	4403	132
H(21H)	7044	1716	3861	132
H(21I)	6187	3182	3689	132
H(23A)	8401	6779	5860	96
H(23B)	9398	6348	5296	96
H(23C)	8736	5467	5666	96
H(23D)	5264	7398	4721	106
H(23E)	5602	7666	5435	106
H(23F)	6028	6257	5366	106
H(23G)	6658	9148	3943	107
H(23H)	8042	8740	4228	107
H(23I)	6932	9261	4715	107
H(31A)	3967	5595	199	212
H(31B)	2509	6030	175	212
H(31C)	3254	5754	905	212
H(31D)	2813	9246	-901	254
H(31E)	1772	8733	-904	254
H(31F)	3156	7896	-1045	254
H(31G)	1929	8625	1147	152
H(31H)	1028	8330	703	152
H(31I)	1277	9557	408	152
H(33A)	8716	8279	1257	103
H(33B)	9766	6892	1503	103
H(33C)	8477	7259	1860	103
H(33D)	8614	4791	1303	122
H(33E)	9789	4806	886	122
H(33F)	8595	4947	465	122
H(33G)	8424	7328	-536	112
Н(ЗЗН)	9572	7361	-157	112
H(33I)	8266	8530	-260	112
H(01)	4230(7)	7820(9)	2110(5)	50
H(02)	6470(5)	6180(5)	2210(3)	50

7.7 $[\{(\mu-CO)\{Cp^{=}Ru\}_{2}\{Cp^{=}RuH\}\}(\mu_{3}-CO)_{2}](34)$

Tabelle 1. Kristalldaten und Strukturverfeinerung für 0210.

Summenformel	$C_{36}H_{63}O_3Ru_3Si_6$	
Molmasse	1015.61	
Temperatur	293(2) K	
Strahlung	ΜοΚα	
Wellenlänge	0.71073 Å	
Scanmodus	Phi-Oszillation	
Kristallsystem	Triklin	
Raumgruppe	P1	
Zelldimensionen	a = 11.4630(10) Å	$\alpha = 99.298(11)^{\circ}$
	b = 12.8401(13) Å	$\beta = 103.268(10)^{\circ}$
	c = 16.4961(14) Å	$\gamma = 93.740(12)^{\circ}$
Zellvolumen	2318.9(4) Å ³	• • • •
Formeleinheiten pro Zelle Z	2	
Berechnete Dichte	1.455 Mg/m^3	
Absorptionskoeffizient	1.150 mm^{-1}	
Kristallgröße	0.26 x 0.18 x 0.13 mm	
Gemessener θ-Bereich	2.72 bis 25.03°	
Anzahl der gemessenen Reflexe	24774	
Unabhängige Reflexe	15394 (Rint = 0.0586)	
Absorptionskorrektur	Analytisch (ABST/PLATON 98)	
Max. und min. Transmission	0.88513 und 0.74545	
Diffraktometer	Stoe IPDS	
Strukturlösung	Direkte Methoden	
Strukturlösungsprogramm	SHELXS-97 (Sheldrick, 1990)	2
Strukturverfeinerung	Vollmatrix Least-Squares gegen F	72
Strukturverfeinerungsprogramm	SHELXL-97 (Sheldrick, 1997)	
Daten / Restraints / Parameter	15394 / 435 / 902	
Endgültige R-Werte $[I>2\sigma(I)]$	R1 = 0.0656, wR2 = 0.1391	
R-Werte (alle Daten)	R1 = 0.1197, wR2 = 0.1543	
Absolutstrukturparameter	0.25(6)	2 2
Wichtungsschema	$w=1/[\sigma^2(Fo^2)+(0.0600P)^2+0.0000]$	P] mit P=(Fo ² +2Fc ²)/3
GooF (alle Daten)	0.995	
Größtes Maximum und Minimum	$1.803 \text{ und } -0.714 \text{ e}\text{Å}^{-3}$	

Verfeinerung nach F^2 mit ALLEN Reflexen. Die gewichteten R-Werte wR2 und alle GooF's basieren auf F^2 . Die konventionellen R-Werte R1 basieren auf F, wobei F für negative F^2 gleich Null gesetzt wird. Das Ablehnungskriterium $F^2 > 2\sigma(F^2)$ wird nur zum Berechnen von R(obs) etc. verwendet. Zur Verfeinerung wurden alle Reflexe herangezogen. Grundsätzlich gilt: Auf F^2 bezogene R-Werte sind statistisch etwa doppelt so groß wie die auf F basierenden. Auf ALLE Reflexe bezogene R-Werte sind noch größer.

Es wurde ein Inversionszwilling (3:1) angenommen. Die Struktur kann auch mit einem Fehlordnungsmodell in P1 verfeinert werden. Dieses Modell ist allerdings unrealistisch, weil sich die auf das Inversionszentrum gerichteten CO-Gruppen zu nah kommen würden. Die Wasserstoffatome wurden geometrisch lokalisiert. Für die Verfeinerung wurde ein Reitermodell angenommen. Als Temperaturfaktor wurde der 1.5-fache Wert (CH₃-Gruppen) bzw. der 1.2-fache Wert (Cp-H) des äquivalenten isotropen Temperaturfaktors desjenigen C-Atoms eingesetzt, an welches das jeweilige H-Atom gebunden ist.

Einzelheiten können dem Handbuch für das Verfeinerungsprogramm SHELXL entnommen werden.

$$GooF = \sqrt{\frac{\sum \left[w\left(F_o^2 - F_c^2\right)\right]}{(n-p)}}$$
 n = Zahl der Reflexe; p = Zahl der verfeinerten Parameter

Tabelle 2.

Atomkoordinaten [x 10⁴] und äquivalente isotrope Auslenkungsparameter [Å² x 10³] für 0210. U(eq) wird berechnet als ein Drittel der Spur des orthogonalisierten U_{ij} -Tensors.

	x	У	Z	U(eq)
Ru(1)	4421(1)	-2283(1)	1362(1)	57(1)
Ru(2)	4928(1)	-438(1)	2406(1)	76(1)
Ru(3)	4387(1)	-2293(1)	3023(1)	61(1)
Si(1)	6815(4)	-3141(3)	350(3)	35(1)
Si(2)	1664(4)	-2651(4)	-398(4)	49(1)
Si(3)	7923(5)	684(5)	3635(4)	66(2)
Si(4)	2761(5)	1330(5)	2917(4)	52(1)
Si(5)	6465(5)	-4269(5)	3911(4)	60(2)
Si(6)	1371(5)	-3638(5)	3135(4)	55(2)
0(1)	4896(10)	-350(9)	555(8)	86(4)
0(2)	6824(11)	-2243(11)	2602(9)	58(3)
O(3)	2153(12)	-1702(11)	1871(10)	65(4)
C(1)	4801(15)	-824(15)	1153(13)	77(5)
C(2)	5765(11)	-2127(10)	2474(9)	37(3)
C(3)	3182(13)	-1836(12)	2048(10)	46(4)
C(4)	5240(12)	-3258(11)	403(9)	38(3)
C(5)	4287(15)	-2682(14)	-20(12)	60(5)
C(6)	3149(13)	-3035(12)	135(10)	43(4)
C(7)	3448(11)	-3810(10)	614(8)	31(3)
C(8)	4622(11)	-3944(11)	782(9)	37(3)
C(9)	7453(15)	-1622(14)	571(12)	49(4)
C(10)	7684(16)	-3960(14)	951(12)	60(5)
C(11)	6788(14)	-3581(12)	-817(10)	38(4)
C(12)	447(15)	-3305(14)	-54(12)	66(5)
C(13)	1440(2)	-3202(17)	-1561(14)	76(6)
C(14)	1629(18)	-1162(15)	-194(13)	70(5)
C(15)	6371(14)	801(13)	3093(11)	53(4)
C(16)	5317(13)	937(12)	3391(11)	45(4)
C(17)	4285(14)	1064(13)	2811(11)	49(4)
C(18)	4701(13)	1151(13)	2129(12)	65(4)
C(19)	6000(I3) 07(1(10)	1013(12)	2277(11)	62(4)
C(20)	8/61(18)	112(17)	2870(14) 4121(10)	/8(6)
C(21)	8030(2)	2000(2) 170(1E)	$4 \perp 2 \perp (\perp 8)$	100(8) 72(E)
C(22)	/86U(1/) 1620(17)	-1/2(15)	4455(13) 1970(12)	/3(5) 60(E)
C(23)	1038(17)	930(15)	1879(12) 2220(15)	69(5) 05(7)
C(24)	2700(2) 2201(1E)	2/40(1/)	3320(15)	95(7) EQ(4)
C(25)	2391(13)	497(14)	3062(11)	59(4)
C(20)	3090(19)	-3333(17)	3035(13)	59(5) FF(F)
C(27)	3903(19)	-3097(17)	3295(14)	55(5) 47(4)
C(20)	3077(10) 2610(2)	-3200(13)	3540(12) 4104(14)	47(4)
C(29)	2010(2) 2000(2)	$-2+3+(\pm 0)$ -2580(10)	4215(16)	79(7)
C(30)	4990(2) 6000(2)	-2309(19) -5300(0)	4515(10) 4520(2)	104(0)
C(3T)	0290(3) 7830(3)	-3320(2)	7520(2) AA22(16)	エリエ(タ) 87(7)
C(32)	6452(10)	_4970(19)	7733(10) 2842(14)	80(6)
C(34)	600(2)	-2390(10)	2073(17)	95(9)
C(35)	850(2)	-4480(2)	3797(17)	92(8)
C(36)	1071/10\	_4400(2)	2045(12)	57(5)
0(00)	TO / T (TO)		2010(10)	0,(0)

Ru(1A)	5090(2)	525(1)	7495(1)	71(1)
Ru(2A)	5610(1)	2272(1)	6961(1)	56(1)
Ru(3A)	5597(1)	2321(1)	8656(1)	61(1)
Si(1A)	2017(5)	-863(5)	6568(4)	57(2)
Si(2A)	7168(5)	-1521(4)	7297(4)	52(1)
Si(3A)	3491(5)	4159(5)	6263(4)	57(2)
Si(4A)	8627(5)	3500(5)	7022(4)	56(2)
Si(5A)	3128(4)	2857(3)	9862(3)	34(1)
Si(6A)	8291(4)	2370(4)	10545(3)	45(1)
O(1A)	5026(10)	320(8)	5601(6)	78(3)
O(2A)	7752(10)	1367(11)	8282(8)	66(4)
O(3A)	3074(10)	1972(10)	7619(8)	57(3)
C(1A)	5160(10)	791(10)	6290(9)	43(3)
C(2A)	6738(15)	1547(13)	8134(11)	57(5)
C(3A)	4102(13)	1861(12)	7784(10)	49(4)
C(4A)	3625(14)	-895(12)	7171(11)	46(4)
C(5A)	4619(15)	-1138(13)	6811(13)	52(4)
C(6A)	5721(13)	-1148(12)	7469(10)	46(4)
C(7A)	5435(12)	-704(12)	8269(10)	57(4)
C(8A)	4132(12)	-517(12)	8085(10)	55(4)
C(9A)	1160(2)	-358(19)	7345(15)	88(7)
C(10A)	1470(2)	-2265(18)	6061(16)	87(7)
C(11A)	1890(2)	-101(19)	5709(16)	100(7)
C(12A)	7600(18)	-903(16)	6473(14)	81(6)
C(13A)	6929(17)	-2977(14)	6862(13)	72(5)
C(14A)	8327(18)	-1276(16)	8270(13)	80(6)
C(15A)	4915(15)	3536(14)	6273(11)	43(4)
C(16A)	6109(17)	3911(15)	6763(13)	47(5)
C(17A)	7001(18)	3280(16)	6570(13)	54(5)
C(18A)	6262(15)	2461(14)	5841(11)	45(4)
C(19A)	5111(16)	2616(14)	5665(12)	45(4)
C(20A)	2207(19)	3176(17)	5772(15)	76(6)
C(21A)	3560(2)	5200(2)	5545(18)	86(7)
C(22A)	3370(2)	4699(18)	7342(15)	89(7)
C(23A)	9200(2)	4450(2)	6384(17)	89(7)
C(24A)	8880(2)	4168(18)	8124(14)	81(6)
C(25A)	9360(18)	2301(15)	6937(14)	60(5)
C(26A)	4735(11)	2965(10)	9738(9)	33(3)
C(27A)	5642(13)	2340(12)	10045(10)	41(4)
C(28A)	6790(11)	2764(10)	10027(9)	32(3)
C(29A)	6650(13)	3643(12)	9655(9)	42(4)
C(30A)	5280(13)	3780(12)	9471(10)	44(4)
C(31A)	2430(3)	1570(2)	9540(2)	120(10)
C(32A)	2202(16)	3639(14)	9100(12)	62(5)
C(33A)	3252(19)	3385(16)	10996(13)	65(5)
C(34A)	9520(16)	2884(14)	10092(13)	70(5)
C(35A)	8522(18)	2914(15)	11681(13)	67(5)
C(36A)	8172(19)	954(15)	10393(14)	74(6)

Ru(1)-C(1)	2.00(2)	C(16)-C(17)	1.38(2)
Ru(1)-C(3)	2.064(16)	C(17)-C(18)	1.34(2)
Ru(1)-C(2)	2.079(13)	C(18)-C(19)	1.48(2)
Ru(1)-C(7)	2.216(13)	C(26)-C(30)	1.35(3)
Ru(1)-C(5)	2.22(2)	C(26)-C(27)	1.41(3)
Ru(1)-C(6)	2.233(15)	C(27)-C(28)	1.43(3)
Ru(1)-C(4)	2.268(15)	C(28)-C(29)	1.31(3)
Ru(1)-C(8)	2.240(14)	C(29)-C(30)	1.58(3)
Ru(1)-Ru(2)	2.638(3)	Ru(1A)-C(1A)	2.088(14)
Ru(1)-Ru(3)	2.751(3)	Ru(1A)-C(2A)	2.172(17)
Ru(2)-C(1)	2.02(2)	Ru(1A)-C(3A)	2.165(15)
Ru(2)-C(16)	2.143(17)	Ru(1A)-C(8A)	2.160(15)
Ru(2)-C(17)	2.169(16)	Ru(1A)-C(7A)	2.186(15)
Ru(2) - C(15)	2.183(17)	Ru(1A) - C(5A)	2.217(18)
Ru(2) - C(18)	2.181(16)	Ru(1A) - C(4A)	2.303(16)
Ru(2) - C(19)	2.231(16)	Ru(IA) - C(6A)	2.308(15)
Ru(2) - C(2)	2.43/(13)	Ru(IA) - Ru(2A)	2.621(3)
Ru(2) - C(3)	2.494(15)	Ru(IA) - Ru(3A) Ru(2A) - Ru(3A)	2.685(3)
$\operatorname{Ru}(2) - \operatorname{Ru}(3)$ $\operatorname{Ru}(2) - \operatorname{Ru}(3)$	2.823(3)	Ru(2A) - C(1A) Du(2A) - C(19A)	2.010(13) 2.107(17)
Ru(3) - C(2)	2.009(14) 2.056(15)	Ru(2A) = C(16A) Pu(2A) = C(16A)	2.10/(1/)
Ru(3) - C(3)	2 19(2)	Ru(2A) - C(10A) Pu(2A) - C(15A)	2.239(10) 2.214(15)
$P_{11}(3) = C(29)$	2.19(2)	$\operatorname{Ru}(2A) = \operatorname{C}(19A)$ $\operatorname{Pu}(2A) = \operatorname{C}(19A)$	2.214(13) 2.206(17)
Ru(3) = C(27) Ru(3) = C(27)	2 225(19)	Ru(2A) = C(17A) Ru(2A) = C(17A)	2.200(17) 2.260(19)
Ru(3) = C(28)	2 293(18)	Ru(2A) = C(2A) Ru(2A) = C(2A)	2.200(17) 2 423(17)
Ru(3) - C(26)	2,336(18)	$R_{11}(2A) - C(3A)$	2.510(16)
Si(1)-C(10)	1.762(17)	Ru(2A) - Ru(3A)	2.791(3)
Si(1)-C(4)	1.825(15)	Ru(3A) - C(3A)	1.954(15)
Si(1)-C(11)	1.909(17)	Ru(3A)-C(2A)	1.963(17)
Si(1)-C(9)	1.983(17)	Ru(3A)-C(30A)	2.224(16)
Si(2)-C(12)	1.826(18)	Ru(3A)-C(29A)	2.229(15)
Si(2)-C(6)	1.864(15)	Ru(3A)-C(27A)	2.275(16)
Si(2)-C(13)	1.89(2)	Ru(3A)-C(26A)	2.298(14)
Si(2)-C(14)	1.891(19)	Ru(3A)-C(28A)	2.318(13)
Si(3)-C(15)	1.826(17)	Si(1A)-C(9A)	1.85(2)
Si(3)-C(20)	1.84(2)	Si(1A)-C(11A)	1.83(2)
Si(3)-C(22)	1.887(19)	Si(1A)-C(4A)	1.890(16)
Si(3)-C(21)	1.87(3)	Si(1A)-C(10A)	1.86(2)
Si(4)-C(17)	1.844(16)	Si(2A)-C(14A)	1.80(2)
Si(4)-C(24)	1.83(2)	Si(2A)-C(6A)	1.827(17)
Si(4) - C(23)	1.863(19)	Si(2A)-C(12A)	1.82(2)
Si(4) - C(25)	1.881(18)	Si(2A) - C(13A)	1.869(19)
$S_1(5) - C(31)$	1.83(3)	S1(3A) - C(20A)	1.82(2)
S1(5) - C(26)	1.87(2)	S1(3A) - C(22A)	1.84(3)
S1(5) = C(33)	1.84(2)	S1(3A) - C(15A)	1.862(18)
SI(5) = C(32) Si(6) = C(35)	1.00(2)	SI(3A) = C(2IA) Si(4A) = C(17A)	1,94(2)
SI(6) = C(35)	1.62(2)	SI(4A) = C(1/A) Si(4A) = C(24A)	1.03(2)
SI(0) - C(30) Si(6) - C(34)	1.88(3)	SI(4A) = C(24A) Si(4A) = C(25A)	1.03(2)
Si(6) - C(28)	1 918(19)	Si(4A) = C(23A)	1.002(1)
O(1) - C(1)	1.26(2)	Si(5A) - C(31A)	1.73(3)
O(2) - C(2)	1 206(16)	Si(5A) - C(33A)	1,85(2)
O(3) - C(3)	1.180(18)	Si(5A) - C(26A)	1.898(14)
C(4) - C(8)	1.40(2)	Si(5A) - C(32A)	1.910(17)
C(4) - C(5)	1.47(2)	Si(6A)-C(36A)	1.79(2)
C(5)-C(6)	1.44(2)	Si(6A)-C(35A)	1.84(2)
C(6)-C(7)	1.382(19)	Si(6A)-C(28A)	1.877(13)
C(7)-C(8)	1.338(17)	Si(6A)-C(34A)	1.871(19)
C(15)-C(19)	1.39(2)	O(1A)-C(1A)	1.169(15)
C(15)-C(16)	1.42(2)	O(2A)-C(2A)	1.178(18)

O(3A)-C(3A)	1.170(17)	C(16A)-C(17A) 1.41(3)	
C(4A)-C(5A)	1.43(2)	C(17A)-C(18A) 1.51(3)	
C(4A)-C(8A)	1.47(2)	C(18A)-C(19A) 1.32(2)	
C(5A)-C(6A)	1.47(2)	C(26A)-C(30A) 1.37(2)	
C(6A) - C(7A)	1.47(2)	C(26A)-C(27A) 1.408(18)	
C(7A)-C(8A)	1.498(18)	C(27A)-C(28A) 1.400(19)	
C(15A) - C(16A)	1.43(2)	C(28A)-C(29A) 1.371(19)	
C(15A)-C(19A)	1.48(3)	C(29A)-C(30A) 1.56(2)	
C(1)-Ru(1)-C(3)	94.4(7)	C(17)-Ru(2)-C(18)	35.8(6)
C(1)-Ru(1)-C(2)	95.3(6)	C(15)-Ru(2)-C(18)	64.0(6)
C(3)-Ru(1)-C(2)	90.6(6)	C(1)-Ru(2)-C(19)	82.6(7)
C(1)-Ru(1)-C(7)	137.1(7)	C(16)-Ru(2)-C(19)	59.4(6)
C(3)-Ru(1)-C(7)	99.0(6)	C(17)-Ru(2)-C(19)	64.0(6)
C(2)-Ru(1)-C(7)	124.9(5)	C(15)-Ru(2)-C(19)	36.7(6)
C(1)-Ru(1)-C(5)	81.3(8)	C(18)-Ru(2)-C(19)	39.2(5)
C(3)-Ru(1)-C(5)	132.4(6)	C(1)-Ru(2)-C(2)	84.6(6)
C(2)-Ru(1)-C(5)	136.9(6)	C(16)-Ru(2)-C(2)	126.4(5)
C(7)-Ru(1)-C(5)	59.8(6)	C(17) - Ru(2) - C(2)	160.1(5)
C(1)-Ru(1)-C(6)	101.5(7)	C(15)-Ru(2)-C(2)	106.6(5)
C(3)-Ru(1)-C(6)	99.0(6)	C(18) - Ru(2) - C(2)	159.5(6)
C(2)-Ru(1)-C(6)	159.8(5)	C(19) - Ru(2) - C(2)	122.5(5)
C(7) - Ru(1) - C(6)	36.2(5)	C(1)-Ru(2)-C(3)	81.9(6)
C(5)-Ru(1)-C(6)	37.8(6)	C(16) - Ru(2) - C(3)	128.0(6)
C(1)-Ru(1)-C(4)	100.5(7)	C(17) - Ru(2) - C(3)	107.6(5)
C(3)-Ru(1)-C(4)	159.2(6)	C(15)-Ru(2)-C(3)	163.1(6)
C(2) - Ru(1) - C(4)	102.3(5)	C(18) - Ru(2) - C(3)	121.2(5)
C(7) - Ru(1) - C(4)	60.2(5)	C(19) = Ru(2) = C(3)	156.6(5)
C(5) - Ru(1) - C(4)	38.1(5)	C(2) - Ru(2) - C(3)	73.3(4)
C(6) - Ru(1) - C(4)	63.9(5)	C(1) - Ru(2) - Ru(1)	48.6(5)
C(1) - Ru(1) - C(8)	136.5(7)	C(16) - Ru(2) - Ru(1)	1/2.0(4)
C(3) = Ru(1) = C(8)	120.2(3)	C(17) - Ru(2) - Ru(1) C(15) - Ru(2) - Ru(1)	140.0(4)
C(2) - Ru(1) - C(0)	20.0(3)	C(12) - Ru(2) - Ru(1)	144.4(5)
C(7) - Ru(1) - C(8)	54.9(4)	C(10) - Ru(2) - Ru(1) C(10) - Pu(2) - Pu(1)	129.1(5) 127.9(5)
C(5) = Ru(1) = C(8) C(6) = Ru(1) = C(8)	61 2(5)	C(1) - Ru(2) - Ru(1) C(2) - Ru(2) - Ru(1)	48 2(3)
$C(4) = R_{11}(1) = C(8)$	36 2(5)	C(2) - Ru(2) - Ru(1)	47.3(4)
C(1) - Ru(1) - Ru(2)	49.2(6)	C(1) - Ru(2) - Ru(3)	109.0(6)
C(3) - Ru(1) - Ru(2)	62.7(4)	C(16) - Ru(2) - Ru(3)	111.6(4)
C(2) - Ru(1) - Ru(2)	60.8(4)	C(17) - Ru(2) - Ru(3)	122.5(4)
C(7) - Ru(1) - Ru(2)	161.6(4)	C(15)-Ru(2)-Ru(3)	123.4(4)
C(5)-Ru(1)-Ru(2)	130.5(5)	C(18) - Ru(2) - Ru(3)	156.3(4)
C(6)-Ru(1)-Ru(2)	139.3(4)	C(19) - Ru(2) - Ru(3)	158.4(4)
C(4) - Ru(1) - Ru(2)	138.0(4)	C(2)-Ru(2)-Ru(3)	44.2(3)
C(8)-Ru(1)-Ru(2)	159.2(3)	C(3)-Ru(2)-Ru(3)	45.0(3)
C(1)-Ru(1)-Ru(3)	112.3(6)	Ru(1)-Ru(2)-Ru(3)	60.39(7)
C(3)-Ru(1)-Ru(3)	48.0(4)	C(2)-Ru(3)-C(3)	92.8(6)
C(2)-Ru(1)-Ru(3)	46.6(4)	C(2)-Ru(3)-C(30)	112.0(7)
C(7)-Ru(1)-Ru(3)	106.8(4)	C(3)-Ru(3)-C(30)	153.8(8)
C(5)-Ru(1)-Ru(3)	166.3(5)	C(2)-Ru(3)-C(29)	153.6(7)
C(6)-Ru(1)-Ru(3)	132.6(4)	C(3)-Ru(3)-C(29)	112.1(7)
C(4)-Ru(1)-Ru(3)	135.0(3)	C(30)-Ru(3)-C(29)	42.1(8)
C(8)-Ru(1)-Ru(3)	107.2(4)	C(2)-Ru(3)-C(27)	116.2(7)
Ru(2)-Ru(1)-Ru(3) 63.14(8)	C(3)-Ru(3)-C(27)	116.5(7)
C(1)-Ru(2)-C(16)	139.4(7)	C(30)-Ru(3)-C(27)	60.6(9)
C(1)-Ru(2)-C(17)	115.2(7)	C(29)-Ru(3)-C(27)	61.0(9)
C(16)-Ru(2)-C(17) 37.2(6)	C(2) - Ru(3) - C(28)	153.0(6)
C(1)-Ru(2)-C(15)	115.0(7)	C(3)-Ru(3)-C(28)	99.6(6)
C(16)-Ru(2)-C(15) 38.2(6)	C(30) - Ru(3) - C(28)	61.7(8)
C(17)-Ru(2)-C(15)) 66.5(6)	C(29) - Ru(3) - C(28)	33.7(7)
C(1)-Ru(2)-C(18)	83.6(7)	C(27) - Ru(3) - C(28)	36.9(7)
C(16)-Ru(2)-C(18)) 58.3(6)	C(2) - Ru(3) - C(26)	99.2(6)

C(3) - Ru(3) - C(26)	152.3(7)	Ru(3)-C(2)-Ru(2)	78.2(4)
C(30) - Ru(3) - C(26)	34.6(8)	Ru(1) - C(2) - Ru(2)	71.0(4)
C(29) - Ru(3) - C(26)	62,6(8)	O(3) - C(3) - Ru(3)	138.0(13)
C(27) - Ru(3) - C(26)	36 0(7)	$O(3) - C(3) - R_{11}(1)$	134 7(14)
C(28) - Ru(3) - C(26)	60,0(6)	$R_{11}(3) = C(3) = R_{11}(1)$	83 8(6)
$C(2) = P_{11}(3) = P_{11}(1)$		$O(3) = C(3) = P_{11}(2)$	$126 \ 4(12)$
C(2) Ru(3) Ru(1) C(2) Pu(2) Pu(1)	40.0(4)	D(3) C(3) Ru(2)	120.4(12)
C(3) - Ru(3) - Ru(1)	16.2(3)	Ru(3) - C(3) - Ru(2)	70.0(J)
C(30) = Ru(3) = Ru(1)	157.9(6)	Ru(1) - C(3) - Ru(2)	70.0(5)
C(29) = Ru(3) = Ru(1)	157.5(6)	C(8) - C(4) - C(5)	103.3(13)
C(2/) - Ru(3) - Ru(1)	114.0(6)	C(8) - C(4) - S1(1)	130.4(9)
C(28) - Ru(3) - Ru(1)	128.7(5)	C(5) - C(4) - Si(1)	126.2(12)
C(26) - Ru(3) - Ru(1)	128.0(6)	C(8)-C(4)-Ru(1)	70.8(8)
C(2) - Ru(3) - Ru(2)	57.7(4)	C(5)-C(4)-Ru(1)	69.2(9)
C(3) - Ru(3) - Ru(2)	59.0(4)	Si(1)-C(4)-Ru(1)	126.8(8)
C(30)-Ru(3)-Ru(2)	127.5(7)	C(6) - C(5) - C(4)	109.8(14)
C(29)-Ru(3)-Ru(2)	128.1(6)	C(6)-C(5)-Ru(1)	71.6(10)
C(27)-Ru(3)-Ru(2)	170.4(6)	C(4)-C(5)-Ru(1)	72.7(10)
C(28)-Ru(3)-Ru(2)	148.4(5)	C(7) - C(6) - C(5)	102.9(13)
C(26)-Ru(3)-Ru(2)	147.2(5)	C(7)-C(6)-Si(2)	131.8(11)
Ru(1)-Ru(3)-Ru(2)	56.47(7)	C(5)-C(6)-Si(2)	124.3(12)
C(10)-Si(1)-C(4)	112.6(8)	C(7)-C(6)-Ru(1)	71.2(8)
C(10)-Si(1)-C(11)	109.1(8)	C(5)-C(6)-Ru(1)	70.6(10)
C(4)-Si(1)-C(11)	105.5(7)	Si(2)-C(6)-Ru(1)	129.8(8)
C(10)-Si(1)-C(9)	116.1(8)	C(6)-C(7)-C(8)	113.7(12)
C(4) - Si(1) - C(9)	109.8(7)	C(6)-C(7)-Ru(1)	72.6(8)
C(11) - Si(1) - C(9)	102.7(7)	C(8) - C(7) - Ru(1)	73.5(8)
C(12)-Si(2)-C(6)	110.5(7)	C(7) - C(8) - C(4)	110.3(11)
C(12)-Si(2)-C(13)	106.6(9)	C(7) - C(8) - Ru(1)	71.5(8)
C(6)-Si(2)-C(13)	105.9(9)	C(4) - C(8) - Ru(1)	73.0(8)
C(12) - Si(2) - C(14)	110.4(9)	C(19) - C(15) - C(16)	101.2(14)
C(6) - Si(2) - C(14)	111.6(8)	C(19) - C(15) - Si(3)	125.3(12)
C(13) - Si(2) - C(14)	111 8(9)	C(16) - C(15) - Si(3)	132 2(14)
C(15) - Si(3) - C(20)	$110\ 5(9)$	C(19) - C(15) - Bu(2)	73 5(10)
C(15) - Si(3) - C(22)	107 3(8)	C(16) - C(15) - Ru(2)	69.4(10)
C(20) = Si(3) = C(22)	111 7(9)	C(10) = C(15) - Ru(2) Si(3) - C(15) - Ru(2)	129.7(9)
C(15) = Si(3) = C(21)	106 6(10)	C(17) - C(16) - C(15)	$117 \ 4(17)$
$C(20) = G_1(3) = C(21)$	108.4(12)	$C(17) - C(16) - P_{11}(2)$	72 4(10)
C(20) = SI(3) = C(21)	$112 \ 2(11)$	$C(15) - C(16) - P_{11}(2)$	72.4(10) 72.4(10)
C(22) SI(3) C(21)		C(12) C(10) Ru(2)	$101 \ 0(14)$
C(17) = SI(4) = C(24)	110.7(0)	C(18) - C(17) - C(16)	101.9(14) 104.7(11)
C(17) = S1(4) = C(23)	110.7(9)	C(16) - C(17) - SI(4)	124.7(11)
C(24) = SL(4) = C(23)	10.2(10)	C(10) - C(17) - S1(4)	132.4(14)
C(17) = S1(4) = C(25)	100.2(7)	C(16) - C(17) - Ru(2)	72.0(10)
C(24) = SI(4) = C(25)	100, 2(0)	C(10) - C(17) - Ru(2)	70.4(9)
C(23) - SI(4) - C(25)	109.3(8)	S1(4) - C(17) - Ru(2)	128.8(8)
C(31) - S1(5) - C(26)	106.9(12)	C(17) = C(18) = C(19)	111./(14)
C(31) - S1(5) - C(33)	105.0(13)	C(17) - C(18) - Ru(2)	71.0(9)
C(26) - S1(5) - C(33)	109.2(10)	C(19) - C(18) - Ru(2)	72.2(9)
C(31) - S1(5) - C(32)	111.7(13)	C(15) - C(19) - C(18)	107.1(14)
C(26) - Si(5) - C(32)	108.8(10)	C(15)-C(19)-Ru(2)	69.7(9)
C(33) - Si(5) - C(32)	114.8(11)	C(18)-C(19)-Ru(2)	68.6(9)
C(35) - Si(6) - C(36)	107.7(12)	C(30)-C(26)-C(27)	107(2)
C(35)-Si(6)-C(34)	108.1(12)	C(30)-C(26)-Si(5)	128.5(18)
C(36)-Si(6)-C(34)	114.7(11)	C(2')-C(26)-Si(5)	124.4(18)
C(35)-Si(6)-C(28)	109.2(10)	C(30)-C(26)-Ru(3)	66.7(12)
C(36)-Si(6)-C(28)	108.4(9)	C(27)-C(26)-Ru(3)	67.7(10)
C(34)-Si(6)-C(28)	108.7(11)	Si(5)-C(26)-Ru(3)	130.5(10)
O(1)-C(1)-Ru(1)	140.3(15)	C(26)-C(27)-C(28)	109(2)
O(1)-C(1)-Ru(2)	137.5(14)	C(26)-C(27)-Ru(3)	76.3(11)
Ru(1)-C(1)-Ru(2)	82.2(8)	C(28)-C(27)-Ru(3)	74.1(11)
O(2)-C(2)-Ru(3)	139.4(11)	C(29)-C(28)-C(27)	109.9(19)
O(2)-C(2)-Ru(1)	132.0(12)	C(29)-C(28)-Si(6)	125.9(17)

C(27)-C(28)-Si(6)

C(29)-C(28)-Ru(3)

124.1(16)

69.1(12)

84.6(5)

125.1(10)

Ru(3)-C(2)-Ru(1) O(2)-C(2)-Ru(2) C(27) - C(28) - Ru(3)Si(6)-C(28)-Ru(3)C(28)-C(29)-C(30)C(28)-C(29)-Ru(3)C(30)-C(29)-Ru(3)C(26)-C(30)-C(29)C(26)-C(30)-Ru(3)C(29)-C(30)-Ru(3)C(1A)-Ru(1A)-C(2A)C(1A)-Ru(1A)-C(3A)C(2A)-Ru(1A)-C(3A)C(1A)-Ru(1A)-C(8A)C(2A)-Ru(1A)-C(8A)C(3A)-Ru(1A)-C(8A) C(1A)-Ru(1A)-C(7A)C(2A)-Ru(1A)-C(7A) C(3A)-Ru(1A)-C(7A) C(8A)-Ru(1A)-C(7A) C(1A)-Ru(1A)-C(5A)C(2A)-Ru(1A)-C(5A)C(3A)-Ru(1A)-C(5A)C(8A)-Ru(1A)-C(5A)C(7A)-Ru(1A)-C(5A)C(1A)-Ru(1A)-C(4A)C(2A)-Ru(1A)-C(4A)C(3A)-Ru(1A)-C(4A)C(8A)-Ru(1A)-C(4A)

69.0(11)	C(1A) - Ru(2A) - C(17A)	115.7(7)
130.0(8)	C(18A) - Ru(2A) - C(17A)	39.6(7)
105(2)	C(16A) - Ru(2A) - C(17A)	36.4(7)
77.2(14)	C(15A) - Ru(2A) - C(17A)	64.4(6)
68.6(11)	C(19A) - Ru(2A) - C(17A)	63.4(7)
107(2)	C(1A)-Ru(2A)-C(2A)	89.1(5)
78.7(14)	C(18A)-Ru(2A)-C(2A)	123.7(6)
69.2(11)	C(16A)-Ru(2A)-C(2A)	121.8(6)
94.3(6)	C(15A)-Ru(2A)-C(2A)	156.2(6)
95.6(5)	C(19A)-Ru(2A)-C(2A)	157.2(6)
87.9(6)	C(17A)-Ru(2A)-C(2A)	105.0(6)
139.9(5)	C(1A)-Ru(2A)-C(3A)	87.7(5)
124.9(6)	C(18A)-Ru(2A)-C(3A)	157.0(6)
94.4(6)	C(16A)-Ru(2A)-C(3A)	123.3(6)
139.4(5)	C(15A)-Ru(2A)-C(3A)	105.9(6)
95.7(6)	C(19A)-Ru(2A)-C(3A)	123.6(6)
124.0(6)	C(17A)-Ru(2A)-C(3A)	156.6(7)
40.3(5)	C(2A)-Ru(2A)-C(3A)	75.2(5)
82.0(6)	C(1A)-Ru(2A)-Ru(1A)	51.6(4)
136.3(6)	C(18A)-Ru(2A)-Ru(1A)	129.0(5)
135.8(6)	C(16A)-Ru(2A)-Ru(1A)	169.1(5)
64.2(6)	C(15A)-Ru(2A)-Ru(1A)	146.8(5)
63.9(6)	C(19A)-Ru(2A)-Ru(1A)	128.7(5)
101.5(5)	C(17A)-Ru(2A)-Ru(1A)	147.0(5)
159.9(6)	C(2A)-Ru(2A)-Ru(1A)	50.8(4)
102.7(6)	C(3A)-Ru(2A)-Ru(1A)	49.9(3)
38.4(6)	C(1A)-Ru(2A)-Ru(3A)	111.0(4)
64.3(5)	C(18A)-Ru(2A)-Ru(3A)	160.2(5)
36.8(6)	C(16A)-Ru(2A)-Ru(3A)	109.7(5)
101.4(5)	C(15A)-Ru(2A)-Ru(3A)	121.9(5)
102.4(6)	C(19A)-Ru(2A)-Ru(3A)	159.2(5)
159.4(6)	C(17A)-Ru(2A)-Ru(3A)	122.1(5)
65.0(6)	C(2A)-Ru(2A)-Ru(3A)	43.5(4)
38.0(6)	C(3A)-Ru(2A)-Ru(3A)	42.8(3)
37.7(6)	Ru(1A)-Ru(2A)-Ru(3A)	59.40(8)
62.6(5)	C(3A)-Ru(3A)-C(2A)	100.4(7)
48.9(4)	C(3A)-Ru(3A)-C(30A)	106.7(6)
59.9(4)	C(2A)-Ru(3A)-C(30A)	147.4(6)
62.4(4)	C(3A)-Ru(3A)-C(29A)	145.9(6)
156.7(4)	C(2A)-Ru(3A)-C(29A)	107.9(6)
155.4(4)	C(30A)-Ru(3A)-C(29A)	40.9(5)
130.9(5)	C(3A)-Ru(3A)-C(27A)	120.4(6)
140.2(4)	C(2A)-Ru(3A)-C(27A)	120.0(6)
138.2(4)	C(30A)-Ru(3A)-C(27A)	59.4(5)
112.4(4)	C(29A)-Ru(3A)-C(27A)	59.4(6)
46.2(5)	C(3A) - Ru(3A) - C(26A)	97.3(6)
46.0(4)	C(2A)-Ru(3A)-C(26A)	155.9(6)

C(26A)-Ru(3A)-Ru(1A)

C(28A)-Ru(3A)-Ru(1A)

C(7A)-Ru(1A)-C(4A)	64.3(5)	C(18A)-Ru(2A)-Ru(3A)
C(5A)-Ru(1A)-C(4A)	36.8(6)	C(16A)-Ru(2A)-Ru(3A)
C(1A)-Ru(1A)-C(6A)	101.4(5)	C(15A)-Ru(2A)-Ru(3A)
C(2A)-Ru(1A)-C(6A)	102.4(6)	C(19A)-Ru(2A)-Ru(3A)
C(3A)-Ru(1A)-C(6A)	159.4(6)	C(17A)-Ru(2A)-Ru(3A)
C(8A)-Ru(1A)-C(6A)	65.0(6)	C(2A)-Ru(2A)-Ru(3A)
C(7A)-Ru(1A)-C(6A)	38.0(6)	C(3A)-Ru(2A)-Ru(3A)
C(5A)-Ru(1A)-C(6A)	37.7(6)	Ru(1A)-Ru(2A)-Ru(3A)
C(4A)-Ru(1A)-C(6A)	62.6(5)	C(3A)-Ru(3A)-C(2A)
C(1A)-Ru(1A)-Ru(2A)	48.9(4)	C(3A) - Ru(3A) - C(30A)
C(2A)-Ru(1A)-Ru(2A)	59.9(4)	C(2A) - Ru(3A) - C(30A)
C(3A)-Ru(1A)-Ru(2A)	62.4(4)	C(3A) - Ru(3A) - C(29A)
C(8A)-Ru(1A)-Ru(2A)	156.7(4)	C(2A) - Ru(3A) - C(29A)
C(7A)-Ru(1A)-Ru(2A)	155.4(4)	C(30A)-Ru(3A)-C(29A)
C(5A)-Ru(1A)-Ru(2A)	130.9(5)	C(3A)-Ru(3A)-C(27A)
C(4A)-Ru(1A)-Ru(2A)	140.2(4)	C(2A)-Ru(3A)-C(27A)
C(6A)-Ru(1A)-Ru(2A)	138.2(4)	C(30A)-Ru(3A)-C(27A)
C(1A)-Ru(1A)-Ru(3A)	112.4(4)	C(29A)-Ru(3A)-C(27A)
C(2A)-Ru(1A)-Ru(3A)	46.2(5)	C(3A)-Ru(3A)-C(26A)
C(3A)-Ru(1A)-Ru(3A)	46.0(4)	C(2A)-Ru(3A)-C(26A)
C(8A)-Ru(1A)-Ru(3A)	102.3(4)	C(30A)-Ru(3A)-C(26A)
C(7A)-Ru(1A)-Ru(3A)	102.7(4)	C(29A)-Ru(3A)-C(26A)
C(5A)-Ru(1A)-Ru(3A)	165.6(5)	C(27A)-Ru(3A)-C(26A)
C(4A)-Ru(1A)-Ru(3A)	134.1(4)	C(3A)-Ru(3A)-C(28A)
C(6A)-Ru(1A)-Ru(3A)	133.6(4)	C(2A)-Ru(3A)-C(28A)
Ru(2A)-Ru(1A)-Ru(3A)	63.46(8)	C(30A) - Ru(3A) - C(28A)
C(1A)-Ru(2A)-C(18A)	80.3(6)	C(29A)-Ru(3A)-C(28A)
C(1A)-Ru(2A)-C(16A)	139.3(7)	C(27A)-Ru(3A)-C(28A)
C(18A)-Ru(2A)-C(16A)	61.1(7)	C(26A)-Ru(3A)-C(28A)
C(1A)-Ru(2A)-C(15A)	114.7(6)	C(3A)-Ru(3A)-Ru(1A)
C(18A)-Ru(2A)-C(15A)	62.8(7)	C(2A)-Ru(3A)-Ru(1A)
C(16A)-Ru(2A)-C(15A)	37.4(6)	C(30A)-Ru(3A)-Ru(1A)
C(1A)-Ru(2A)-C(19A)	79.8(6)	C(29A)-Ru(3A)-Ru(1A)
C(18A)-Ru(2A)-C(19A)	35.0(6)	C(27A)-Ru(3A)-Ru(1A)

61.6(7)

39.3(6)

C(16A)-Ru(2A)-C(19A)

C(15A) - Ru(2A) - C(19A)

35.1(5)

62.5(5)

35.9(5)

155.8(6)

98.2(6)

62.1(5)

35.0(5)

35.5(5)

60.8(5)

52.8(4) 53.0(5)

158.8(4)

160.3(4)122.4(4)

132.2(3)

133.6(3)

C(3A)-Ru(3A)-Ru(2A)	60.9(5)	C(8A)-C(4A)-Si(1A)	126.5(12)
C(2A)-Ru(3A)-Ru(2A)	58.2(5)	C(5A)-C(4A)-Ru(1A)	68.3(9)
C(30A)-Ru(3A)-Ru(2A)	121.7(4)	C(8A)-C(4A)-Ru(1A)	65.5(8)
C(29A)-Ru(3A)-Ru(2A)	120.3(4)	Si(1A)-C(4A)-Ru(1A)	124.1(8)
C(27A)-Ru(3A)-Ru(2A)	178.2(3)	C(4A) - C(5A) - C(6A)	111.5(17)
C(26A)-Ru(3A)-Ru(2A)	145.9(3)	C(4A)-C(5A)-Ru(1A)	74.9(10)
C(28A) - Ru(3A) - Ru(2A)	143.3(3)	C(6A) - C(5A) - Ru(1A)	74.5(10)
Ru(1A) - Ru(3A) - Ru(2A)	57.14(7)	C(7A) - C(6A) - C(5A)	105.2(14)
C(9A)-Si(1A)-C(11A)	112.5(11)	C(7A)-C(6A)-Si(2A)	128.2(11)
C(9A) - Si(1A) - C(4A)	107.5(9)	C(5A) - C(6A) - Si(2A)	126.4(14)
C(11A) - Si(1A) - C(4A)	113,4(9)	C(7A) - C(6A) - Ru(1A)	66.5(8)
C(9A) - Si(1A) - C(10A)	111.4(12)	C(5A) - C(6A) - Ru(1A)	67.8(9)
C(11A) - Si(1A) - C(10A)	106.5(12)	Si(2A)-C(6A)-Ru(1A)	125.7(8)
C(4A) - Si(1A) - C(10A)	105.2(9)	C(6A) - C(7A) - C(8A)	108.3(13)
C(14A) - Si(2A) - C(6A)	111.8(9)	C(6A) - C(7A) - Ru(1A)	75.5(8)
C(14A) - Si(2A) - C(12A)	112.5(10)	C(8A) - C(7A) - Ru(1A)	68,9(8)
C(6A) - Si(2A) - C(12A)	111.8(8)	C(4A) - C(8A) - C(7A)	107.1(13)
C(14A) - Si(2A) - C(13A)	109.0(9)	C(4A) - C(8A) - Ru(1A)	76.1(9)
C(6A) - Si(2A) - C(13A)	106.2(8)	C(7A) - C(8A) - Ru(1A)	70.8(8)
C(12A) - Si(2A) - C(13A)	105 2(10)	C(16A) - C(15A) - C(19A)	$102 \ 7(16)$
C(20A) - Si(3A) - C(22A)	107 9(11)	C(16A) - C(15A) - Si(3A)	129 1(15)
C(20A) - Si(3A) - C(15A)	109.7(10)	C(19A) - C(15A) - Si(3A)	127 4(13)
C(22A) - Si(3A) - C(15A)	111 6(9)	C(16A) - C(15A) - Ru(2A)	72.3(9)
C(20A) - Si(3A) - C(21A)	$109 \ 3(11)$	C(19A) - C(15A) - Ru(2A)	70.1(9)
C(22A) - Si(3A) - C(21A)	114 9(12)	Si(3A) - C(15A) - Ru(2A)	$128 \ 3(9)$
C(15A) - Si(3A) - C(21A)	103 2(10)	C(17A) - C(16A) - C(15A)	114 5(19)
C(17A) - Si(4A) - C(24A)	107.8(11)	C(17A) - C(16A) - Ru(2A)	72 6(11)
C(17A) - Si(4A) - C(25A)	113 4(10)	C(15A) - C(16A) - Ru(2A)	70.3(10)
C(24A) - Si(4A) - C(25A)	111 7(10)	C(16A) - C(17A) - C(18A)	100.9(16)
$C(17\Delta) - Si(4\Delta) - C(23\Delta)$	104 3(10)	C(16a) - C(17a) - Si(4a)	$128 \ 3(17)$
$C(24\lambda) - Si(4\lambda) - C(23\lambda)$	109 1(12)	C(18a) - C(17a) - Si(4a)	130.5(17)
C(24A) - SI(4A) - C(23A)	$110 \ 3(11)$	$C(16\lambda) - C(17\lambda) - D_1(2\lambda)$	130.3(13)
C(23A) - G(23A)	113 0(12)	$C(18\lambda) - C(17\lambda) - Du(2\lambda)$	67 6(9)
C(31A) - Si(5A) - C(35A)	$112 \ 3(11)$	C(10A) - C(17A) - Ru(2A) Si(Aa) - $C(17a) - Ru(2a)$	128 1(9)
C(33A) - Si(5A) - C(26A)	105 1(8)	C(192) - C(182) - C(172)	112 0(17)
C(31A) - Si(5A) - C(32A)	$104 \ 3(12)$	$C(19\lambda) - C(18\lambda) - Bu(2\lambda)$	73 3(11)
C(33A) - Si(5A) - C(32A)	114 2(9)	C(17A) - C(18A) - Bu(2A)	72.8(10)
C(26A) - Si(5A) - C(32A)	$108 \ 1(7)$	$C(18\Delta) - C(19\Delta) - C(15\Delta)$	109.6(17)
$C(36\lambda) - Si(6\lambda) - C(35\lambda)$	109 3(10)	$C(18\lambda) - C(19\lambda) - Bu(2\lambda)$	71 7(10)
C(36A) - Si(6A) - C(28A)	107.8(8)	C(15A) - C(19A) - Ru(2A)	71.7(10) 70.7(9)
C(35A) - Si(6A) - C(26A)	105.0(8)	$C(30\lambda) - C(26\lambda) - C(27\lambda)$	107 0(12)
C(36A) - Si(6A) - C(34A)	105.0(0) 110.4(10)	C(30A) - C(26A) - Si(5A)	125 8(10)
C(35A) - Si(6A) - C(34A)	112 5(9)	C(27A) - C(26A) - Si(5A)	125.0(10) 126.4(10)
$C(28\Delta) - Si(6\Delta) - C(34\Delta)$	112.5(7)	C(30A) - C(26A) - Ru(3A)	69 5(8)
$O(1\Delta) - C(1\Delta) - R_{11}(2\Delta)$	140.6(11)	C(27A) - C(26A) - Ru(3A)	71 2(8)
$O(1A) - C(1A) - R_1(1A)$	139 9(11)	Si(5A) - C(26A) - Ru(3A)	133 0(7)
$R_{11}(2A) - C(1A) - R_{11}(1A)$	79 5(5)	C(28A) - C(27A) - C(26A)	1125(13)
$O(2A) - C(2A) - R_{11}(3A)$	141 1(15)	C(28A) - C(27A) - Ru(3A)	74 0(9)
O(2A) - C(2A) - Bu(1A)	131 1(14)	C(26A) - C(27A) - Ru(3A)	73 0(8)
$P_{11}(3\Delta) = C(2\Delta) = P_{11}(1\Delta)$	80.8(6)	C(20A) - C(28A) - C(27A)	$107 \ 4(12)$
$O(2\Delta) - C(2\Delta) - R_{11}(2\Delta)$	129 1(13)	C(29A) - C(28A) - Si(6A)	123 9(10)
$R_{11}(3\Delta) - C(2\Delta) - R_{11}(2\Delta)$	78 3(5)	C(27A) - C(28A) - Si(6A)	123.9(10) 128.2(10)
$R_{11}(1\Delta) - C(2\Delta) - R_{11}(2\Delta)$	69 3(5)	C(29A) - C(28A) - Ru(3A)	68 9(8)
$O(3\Delta) - C(3\Delta) - Bu(3\Delta)$	$142\ 2(13)$	C(27A) - C(28A) - Ru(3A)	70 6(8)
$O(3A) - C(3A) - R_{11}(1A)$	132 6(12)	Si(6A) - C(28A) - Ru(3A)	132 2(7)
$R_{11}(3\Delta) - C(3\Delta) - R_{11}(1\Delta)$	81 2(5)	C(28A) - C(29A) - C(30A)	$106\ 2(12)$
$O(3\Delta) - C(3\Delta) - R_{11}(2\Delta)$	127 1(11)	$C(28A) - C(29A) - R_{11}(3A)$	76 1(8)
$P_{11}(3\Delta) = C(3\Delta) = D_{11}(3\Delta)$	76 2(5)	C(201) = C(201) = D(1)(21)	69 4(8)
$\frac{1}{2} \sum_{n=1}^{\infty} \frac{1}{2} \sum_{n=1}^{\infty} \frac{1}$	67 7(4)	C(26A) - C(20A) - C(20A)	106 8(12)
$C(5\Delta) - C(4\Delta) - C(2\Delta)$	106 6(14)	C(20A) = C(20A) = C(20A) C(26A) = C(20A) = E(20A)	$75 \ 4(9)$
$C(5\Delta) = C(\Delta\Delta) = C(\Delta\Delta)$	126 2(14)	C(20A) = C(20A) + C(2A)	69 7(2)
C(JA) C(TA) DI(IA)	120.3(17)	C(2)A) C(3)A) - AU(3A)	09.1(0)

Tabelle 4. Anisotrope Auslenkungsparameter $[Å^2 \times 10^3]$ für 0210. Der Exponent des anisotropen Auslenkungsfaktors hat die Form: $-2\pi^2$ [$(ha^*)^2 U_{11} + ... + 2hka^*b^*U_{12}$]

	U ₁₁	U ₂₂	U ₃₃	U 23	U ₁₃	U ₁₂
Ru(1)	43(1)	68(1)	47(1)	-19(1)	2(1)	14(1)
Ru(2)	33(1)	68(1)	95(2)	-44(1)	-7(1)	14(1)
Ru(3)	42(1)	58(1)	70(1)	-13(1)	4(1)	12(1)
Si(1)	41(2)	33(2)	38(3)	23(2)	18(2)	-4(2)
Si(2)	41(2)	58(3)	46(3)	15(2)	1(2)	6(2)
Si(3)	36(3)	73(4)	76(4)	-11(3)	9(2)	-7(2)
Si(4)	45(3)	61(3)	48(3)	2(2)	10(2)	21(2)
Si(5)	45(3)	73(4)	60(4)	11(3)	7(2)	22(3)
S1(6)	42(3)	64(3)	56(4)	5(3)	12(2)	8(2)
O(1)	88(8) 29(6)	77(8)	74(9)	-33(7)	19(6)	14(6) 2(E)
O(2)	50(0) 52(7)	70(0)	70(9)	20(7)	10(5)	2(5) 21(6)
C(3)	77(5)	78(5)	77(5)	12(2)	19(2)	9(2)
C(2)	36(3)	37(4)	36(4)	6(2)	9(2)	5(2)
C(3)	46(4)	47(4)	46(4)	8(2)	12(2)	5(2)
C(4)	39(4)	37(4)	37(4)	7(2)	7(2)	5(2)
C(5)	60(5)	60(5)	60(5)	11(2)	14(2)	6(2)
C(6)	43(4)	43(4)	43(4)	7(2)	11(2)	2(2)
C(7)	33(3)	30(3)	32(4)	8(2)	7(2)	3(2)
C(8)	37(4)	36(4)	37(4)	8(2)	11(2)	3(2)
C(9)	47(5)	54(5)	49(5)	5(4)	23(4)	-6(3)
C(10)	54(5)	63(6)	63(6)	9(4)	17(4)	7(4)
C(11)	44(5)	40(5)	35(5)	15(3)	17(3)	1(3)
C(12)	61(5)	69(6)	67(6)	13(4)	13(4)	6(4)
C(13)	76(7)	76(7)	73(7)	13(4)	12(4)	7(4)
C(14)	71(6)	69(6)	67(6)	12(4)	11(4)	15(4)
C(15)	52(5) 4E(4)	53(5) 4E(4)	53(5)	$\perp \perp (2)$	13(2)	5(Z)
C(10)	45(4)	45(4)	44(4)	0(Z) 11(2)	12(2)	5(2)
C(17)	49(4) 64(4)	49(4) 65(5)	49(4) 65(5)	11(2)	12(2)	9(2)
C(10)	61(4)	62(4)	63(4)	10(2)	16(2)	7(2)
C(20)	72(6)	82(7)	79(7)	9(4)	19(4)	10(4)
C(21)	106(9)	106(9)	105(9)	14(4)	25(4)	6(4)
C(22)	72(6)	74(6)	73(6)	19(4)	11(4)	7(4)
C(23)	69(6)	69(6)	68(6)	10(4)	16(4)	9(4)
C(24)	97(8)	93(8)	94(8)	12(4)	24(4)	14(4)
C(25)	54(5)	62(6)	61(6)	10(4)	18(4)	3(4)
C(26)	58(5)	60(5)	58(5)	11(2)	13(2)	7(2)
C(27)	55(6)	55(6)	54(6)	10(2)	13(2)	6(2)
C(28)	45(5)	49(5)	46(5)	7(2)	13(2)	6(2)
C(29)	73(6)	75(6)	74(6)	11(2)	20(2)	10(2)
C(30)	78(7)	80(7)	78(7)	13(2)	18(2)	9(2)
C(31)	104(9)	106(9)	104(9)	26(4) 16(4)	25(4)	$\bot \bot (4)$ 12(4)
C(32)	04(0) 77(7)	90(8) 83(7)	80(7)	10(4)	20(4)	13(4) 19(4)
C(34)	91(8)	97(8)	96(8)	17(4)	25(4)	12(4)
C(35)	92(8)	92(8)	93(8)	18(4)	25(4)	8(4)
C(36)	63(6)	71(6)	65(6)	9(4)	15(4)	2(4)
Ru(1A)	39(1)	69(1)	81(1)	-34(1)	-4(1)	13(1)
Ru(2A)	32(1)	55(1)	67(1)	-13(1)	0(1)	9(1)
Ru(3A)	38(1)	78(1)	50(1)	-24(1)	2(1)	14(1)
Si(1A)	41(3)	55(3)	67(4)	5(3)	2(2)	-5(2)
Si(2A)	52(3)	44(3)	57(4)	5(2)	10(2)	12(2)
Si(3A)	49(3)	81(4)	53(4)	29(3)	21(2)	26(3)
Si(4A)	38(3)	65(3)	68(4)	15(3)	16(2)	11(2)
Si(5A)	40(2)	40(2)	33(3)	23(2)	22(2)	3(2)
Si(6A)	42(2)	61(3)	33(3)	13(2)	5(2)	4(2)

O(1A)	121(9)	61(7)	35(7)	-22(5)	9(6)	8(6)
O(2A)	30(6)	103(10)	61(9)	-1(7)	б(5)	21(6)
O(3A)	40(6)	84(9)	46(7)	5(6)	9(5)	23(6)
C(1A)	44(3)	42(3)	42(4)	9(2)	11(2)	3(2)
C(2A)	57(5)	57(5)	57(5)	10(2)	14(2)	7(2)
C(3A)	48(4)	49(4)	49(4)	7(2)	12(2)	5(2)
C(4A)	45(4)	46(4)	46(4)	10(2)	12(2)	4(2)
C(5A)	53(5)	51(5)	52(5)	9(2)	12(2)	5(2)
C(6A)	45(4)	46(4)	46(4)	10(2)	11(2)	7(2)
C(7A)	56(4)	57(4)	57(4)	10(2)	13(2)	7(2)
C(8A)	54(4)	57(4)	55(4)	9(2)	15(2)	6(2)
C(9A)	83(7)	92(7)	87(7)	13(4)	20(4)	13(4)
C(10A)	86(7)	84(7)	87(8)	9(4)	18(4)	4(4)
C(11A)	98(8)	100(8)	99(8)	21(4)	19(4)	12(4)
C(12A)	77(7)	82(7)	84(7)	9(4)	21(4)	11(4)
C(13A)	76(6)	65(6)	74(6)	6(4)	18(4)	13(4)
C(14A)	79(7)	81(7)	78(7)	14(4)	18(4)	10(4)
C(15A)	42(4)	44(4)	43(5)	9(2)	9(2)	6(2)
C(16A)	47(5)	48(5)	47(5)	8(2)	11(2)	6(2)
C(17A)	53(5)	55(5)	53(5)	9(2)	14(2)	7(2)
C(18A)	45(4)	45(4)	44(4)	7(2)	13(2)	5(2)
C(19A)	45(4)	46(4)	43(4)	8(2)	10(2)	4(2)
C(20A)	70(7)	79(7)	78(7)	14(4)	17(4)	12(4)
C(21A)	87(8)	83(7)	88(8)	24(4)	14(4)	14(4)
C(22A)	88(8)	89(8)	92(8)	15(4)	24(4)	14(4)
C(23A)	87(8)	91(8)	90(8)	15(4)	24(4)	10(4)
C(24A)	77(7)	83(7)	81(7)	11(4)	16(4)	8(4)
C(25A)	54(6)	63(6)	65(6)	12(4)	17(4)	10(4)
C(26A)	35(3)	33(4)	33(4)	7(2)	10(2)	2(2)
C(27A)	40(4)	42(4)	40(4)	8(2)	9(2)	5(2)
C(28A)	32(3)	31(4)	31(4)	6(2)	7(2)	2(2)
C(29A)	41(4)	42(4)	43(4)	7(2)	10(2)	3(2)
C(30A)	44(4)	43(4)	44(4)	9(2)	11(2)	7(2)
C(31A)	119(10)	120(10)	121(10)	16(4)	34(4)	9(4)
C(32A)	58(6)	65(6)	63(6)	9(4)	15(4)	8(4)
C(33A)	68(6)	65(6)	64(6)	10(4)	21(4)	9(4)
C(34A)	65(6)	76(6)	70(6)	15(4)	14(4)	5(4)
C(35A)	67(6)	65(6)	64(6)	8(4)	8(4)	11(4)
C(36A)	74(6)	73(7)	73(7)	14(4)	12(4)	10(4)

Tabelle 5. H-Atomkoordinaten [x 10^4] und äquivalente isotrope Auslenkungsparameter [Å² x 10^3] für 0210.

	x	У	Z	U(eq)
H(5)	4398	-2166	-339	72
H(7)	2887	-4203	803	38
H(8)	4977	-4422	1104	44
H(9A)	8147	-1490	1043	73
H(9B)	6843	-1190	700	73
H(9C)	7677	-1451	79	73
H(10A)	7849	-3653	1542	90
H(10B)	8430	-4023	786	90
H(10C)	7248	-4650	854	90
H(11A)	7588	-3692	-872	57
H(11B)	6494	-3042	-1128	57
H(11C)	6267	-4230	-1039	57
H(12A)	524	-4051	-108	99
H(12B)	-316	-3197	-401	99

H(12C) 493 -3010 527 99 $H(13R)$ 1501 -3951 -1637 114 $H(13C)$ 650 -3078 -1862 114 $H(13C)$ 650 -3078 -1862 114 $H(14R)$ 837 -1002 -150 104 $H(14R)$ 1225 -855 325 104 $H(14C)$ 2205 -855 325 104 $H(16)$ 5321 941 3956 54 $H(18)$ 4232 1283 1623 78 $H(19)$ 6479 1059 1896 75 $H(20A)$ 8403 -595 2611 117 $H(20C)$ 8730 542 2441 117 $H(21R)$ 9440 2521 3714 160 $H(21R)$ 9492 2062 24293 1100 $H(21R)$ 9492 2062 4293 1100 $H(22R)$ 7844 -903 4207 110 $H(22R)$ 7844 -903 4207 1100 $H(23R)$ 19441 1200 1449 103 $H(23R)$ 19941 1200 1449 103 $H(23R)$ 1996 2887 3404 422 $H(24A)$ 3370 2946 3848 1422 $H(24A)$ 3370 2946 3848 1422 $H(24A)$ 3370 2946 3847 65 $H(25C)$ 3110 458 4105 88					
H(13B) 1501 -3951 -1.637 1144 $H(13B)$ 2039 -2857 -1.775 1144 $H(14B)$ 650 -3078 -1862 1114 $H(14A)$ 837 -1002 -150 1004 $H(14C)$ 2205 -855 325 1044 $H(14C)$ 2205 -855 325 1044 $H(18)$ 4232 12833 1623 788 $H(19)$ 6479 1059 1896 75 $H(20A)$ 8403 -5955 2611 1177 $H(20B)$ 9585 933 3159 117 $H(21C)$ 8730 5422 2441 1177 $H(21B)$ 9492 2062 42933 160 $H(21L)$ 8332 2314 4606 1600 $H(22A)$ 7141 -80 4652 1100 $H(22B)$ 8554 32 4923 1100 $H(23B)$ 894 1214 1916 1033 $H(23B)$ 894 1214 1916 1033 $H(23B)$ 894 1214 1916 1033 $H(23B)$ 1906 814 3950 888 $H(24B)$ 1996 2887 3404 1422 $H(24B)$ 1996 2887 3404 1422 $H(24B)$ 2917 3149 2917 1422 $H(24B)$ 2917 3149 2917 1422 $H(25D)$ 1806 -5294 4105	H(12C)	493	-3010	527	99
H(13B) 2039 -2857 -1775 114 H(14C) 650 -3078 -1662 114 H(14C) 837 -1002 -150 104 H(14C) 2205 -855 325 104 H(16) 5321 941 3956 54 H(18) 4332 1283 1623 78 H(19) 6479 1059 1896 75 H(20A) 8403 -595 2611 117 H(20C) 8730 542 2441 117 H(21B) 9492 2062 4293 160 H(21B) 9492 2062 4293 160 H(21C) 8332 2314 4606 160 H(22B) 8554 32 4923 110 H(22B) 8554 32 4923 110 H(23A) 1941 1200 1449 103 H(23C) 1502 170 1737 103 H(24A) 3370 2946 3848 142 H(24C) 2971 3149 2917 142 H(24E) 2971 3149 2917 142 H(25B) 1806 6144 39	H(13A)	1501	-3951	-1637	114
H(13C) 650 -3078 -1862 114 H(14B) 1828 -874 -653 104 H(14C) 2205 -855 325 104 H(16) 5321 941 3956 54 H(18) 4232 1283 1623 78 H(19) 6479 1059 1866 75 H(20A) 8403 -595 2611 117 H(20B) 9585 93 3159 117 H(21C) 8332 2214 4606 160 H(21C) 8332 2214 4606 160 H(21C) 8332 2214 4606 160 H(22C) 7454 -903 4207 110 H(23B) 894 1214 1916 103 H(23B) 894 1214 1916 103 H(23C) 1502 170 1737 103 H(24B) 1996 2887 3404 142 H(24B) 1996 2887 3404 142 H(24C) 2971 3149 2917 142 H(24C) 2971 3149 3245 -1863 H(25D) 1806 814 3950 88 H(27) 815 -4456 2837 65 H(31A) 5914 -5054 4962 156 H(31A) 5914 -5064 4962 156 H(31A) 732 -2266 3121 142 H(34B) 651 -2041 276	H(13B)	2039	-2857	-1775	114
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	H(13C)	650	-3078	-1862	114
	H(14A)	837	-1002	-150	104
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	H(14B)	1828	-874	-653	104
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	H(14C)	2205	-855	325	104
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	H(10) U(10)	5321 4222	941 1292	3950	54 79
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	H(10) H(10)	6479	1059	1896	70
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	H(20A)	8403	-595	2611	117
H $(20C)$ 8730 542 2441 117 H(21A) 8440 2521 3714 160 H(21C) 8332 2062 4293 160 H(21C) 8332 2314 4606 160 H(22A) 7141 -80 4652 110 H(22C) 7854 -903 4207 110 H(23A) 1941 1200 1449 103 H(23B) 894 1214 1916 103 H(23C) 1502 170 1737 103 H(24A) 3370 2946 3848 142 H(24C) 2971 3149 2917 142 H(24C) 2971 3149 2917 142 H(25A) 2067 -204 3383 88 H(25C) 3110 458 4105 88 H(25C) 3110 458 4105 88 H(27) 3815 -4456 2837 65 H(30) 5610 -2122 4684 95 H(31A) 5914 -5064 4962 156 H(31B) 7074 -5517 4760 156 H(31B) 7074 -5517 4760 156 H(31A) 5914 -2978 4017 311 H(32B) 8081 -2279 4857 312 H(32B) 8081 -2978 4017 313 H(32B) 6236 -4508 2442 120 H(33B) 6236	H(20B)	9585	93	3159	117
H(21A)844025213714160 $H(21B)$ 949220624293160 $H(21C)$ 833223144606610 $H(22A)$ 7141-804652110 $H(22B)$ 8554324923110 $H(22B)$ 8554324923110 $H(22B)$ 8554324923110 $H(22B)$ 89412141916103 $H(24A)$ 337029463848142 $H(24A)$ 337029463848142 $H(24A)$ 337029463848142 $H(24A)$ 199628873404142 $H(25A)$ 2067-204338388 $H(25E)$ 1806814395088 $H(27)$ 3815-4456283765 $H(29)$ 3245-1863432989 $H(31A)$ 5914-50644962156 $H(31A)$ 5914-50644962156 $H(31A)$ 5914-50644962156 $H(31A)$ 5914-20794857131 $H(32B)$ 8081-29784017131 $H(32B)$ 6236-45082442120 $H(33A)$ 7239-51802836120 $H(33A)$ 7239-51802836120 $H(33A)$ -739-51913647138 $H(35A)$ -7-44943713138 $H(36A)$ 1555-5	H(20C)	8730	542	2441	117
H(21E) 9492 2062 4293 160 $H(21C)$ 8332 2314 4606 160 $H(22R)$ 8554 32 4923 110 $H(22R)$ 8554 32 4923 110 $H(22C)$ 7854 -903 4207 110 $H(23a)$ 1941 1200 1449 103 $H(23a)$ 1502 170 1737 103 $H(24A)$ 3370 2946 3848 442 $H(24B)$ 1996 2887 3404 142 $H(24C)$ 2971 3149 2917 142 $H(25b)$ 1806 814 3950 88 $H(25c)$ 3110 458 4105 88 $H(27)$ 3615 -4456 2837 65 $H(29)$ 3245 -1663 4329 89 $H(30)$ 5610 -2122 4684 95 $H(31a)$ 5914 -5064 4962 156 $H(31a)$ 5914 -5064 4962 156 $H(31a)$ 7239 -5180 2836 120 $H(33a)$ 7239 -5180 2836 120 $H(33a)$ 7239 -5180 2836 120 $H(34a)$ -232 -2566 3212 142 $H(34c)$ 986 -1926 3749 142 $H(34c)$ 1235 -704 4382 138 $H(35b)$ 1235 -5004 2045 101 <t< td=""><td>H(21A)</td><td>8440</td><td>2521</td><td>3714</td><td>160</td></t<>	H(21A)	8440	2521	3714	160
H(21C) 8332 2314 4606 160 $H(22A)$ 7141 -80 4652 110 $H(22B)$ 8554 32 4923 110 $H(23A)$ 1941 1200 1449 103 $H(23B)$ 894 1214 1916 103 $H(23A)$ 1952 170 1737 103 $H(24A)$ 3370 2946 3848 142 $H(24C)$ 2971 3149 2917 142 $H(24C)$ 2971 3149 2917 142 $H(24C)$ 2971 3149 2917 142 $H(25B)$ 1806 814 3950 88 $H(25C)$ 3110 458 4105 88 $H(27)$ 3815 -4456 2837 65 $H(29)$ 3245 -1863 4329 89 $H(30)$ 5610 -2122 4684 95 $H(31)$ 5914 -5064 4962 156 $H(31E)$ 5806 -5924 4150 156 $H(32C)$ 8462 -3700 4693 131 <	H(21B)	9492	2062	4293	160
H(22h)7141 -80 4652 110 $H(22B)$ 8554 32 4923 110 $H(22h)$ 1954 -903 4207 110 $H(22h)$ 1941 1200 1449 103 $H(22h)$ 1502 170 1737 103 $H(24h)$ 3370 2946 3848 142 $H(24h)$ 1996 2887 3404 1424 $H(24h)$ 2067 -204 3383 88 $H(25h)$ 2067 -204 3383 88 $H(25b)$ 1806 814 3950 88 $H(25c)$ 3110 458 4105 88 $H(27)$ 3815 -4456 2837 65 $H(29)$ 3245 -1863 4329 89 $H(30)$ 5610 -2122 4684 95 $H(31h)$ 5914 -5064 4962 156 $H(31k)$ 5914 -5064 4962 156 $H(31c)$ 5806 -5924 4150 156 $H(31c)$ 5806 -2978 4017 311 $H(32c)$ 8462 -3700 4693 131 $H(32c)$ 8462 -3700 4693 131 $H(32c)$ 866 -1926 3749 142 $H(34h)$ -232 -2566 3212 142 $H(34b)$ 651 -2041 2760 142 $H(34b)$ 651 -2041 2760 142 H	H(21C)	8332	2314	4606	160
H(22b) 8554 32 4923 110 $H(22c)$ 7854 -903 4207 110 $H(23b)$ 1941 1200 1449 103 $H(23c)$ 1502 170 1737 103 $H(24b)$ 1996 2887 3404 142 $H(24b)$ 1996 2887 3404 142 $H(24c)$ 2971 3149 2917 142 $H(25b)$ 1806 814 3950 88 $H(25c)$ 3110 458 4105 88 $H(27)$ 3815 -4456 2837 65 $H(29)$ 3245 -1863 4329 89 $H(30)$ 5610 -2122 4684 95 $H(31a)$ 5914 -5064 4962 156 $H(31b)$ 7074 -5517 4760 156 $H(31c)$ 5806 -5924 4150 156 $H(32c)$ 8462 -3700 4693 131 $H(32c)$ 8462 -3700 4693 120 $H(33a)$ 7239 -5180 2836 120 $H(34b)$ -232 -2566 3212 120 $H(34b)$ 651 -2041 2760 442 $H(34c)$ 986 -1926 3749 142 $H(34b)$ -512 -5266 3212 120 $H(34b)$ 1525 -5004 2045 101 $H(36c)$ 234 -4691 1856 101 <td>H(22A)</td> <td>7141</td> <td>-80</td> <td>4652</td> <td>110</td>	H(22A)	7141	-80	4652	110
H(22C) 7854 -903 4207 110 $H(23A)$ 1941 1200 1449 103 $H(23B)$ 894 1214 1916 103 $H(24A)$ 3370 2946 3848 142 $H(24A)$ 1370 2946 3848 142 $H(24C)$ 2971 3149 2917 142 $H(24C)$ 2971 3149 2917 142 $H(25A)$ 2067 -204 3383 88 $H(25C)$ 3110 458 4105 88 $H(25C)$ 3110 458 4105 88 $H(27)$ 3815 -4456 2837 65 $H(29)$ 3245 -1863 4329 89 $H(30)$ 5610 -2122 4684 955 $H(31A)$ 5914 -5064 4962 156 $H(31B)$ 7074 -5517 4760 156 $H(32A)$ 7640 -2799 4857 131 $H(32B)$ 8081 -2978 4017 131 $H(32B)$ 8081 -2978 2836 120 $H(33A)$ 7239 -5180 2836 120 $H(33C)$ 5876 -5589 2694 120 $H(34B)$ 651 -2041 2760 142 $H(34B)$ 651 -2041 2760 142 $H(34B)$ 651 -2041 876 101 $H(35B)$ 1225 -5704 2633 63 <td>Н(22В)</td> <td>8554</td> <td>32</td> <td>4923</td> <td>110</td>	Н(22В)	8554	32	4923	110
H(23A) 1941 1200 1449 103 $H(23B)$ 894 1214 1916 103 $H(24A)$ 3370 2946 3848 142 $H(24B)$ 1996 2887 3404 142 $H(24C)$ 2971 3149 2917 142 $H(25A)$ 2067 -204 3383 88 $H(25E)$ 1806 814 3950 88 $H(25C)$ 3110 458 4105 88 $H(27)$ 3815 -4456 2837 65 $H(29)$ 3245 -1863 4329 89 $H(30)$ 5610 -2122 4684 955 $H(31A)$ 5914 -5064 4962 156 $H(31B)$ 7074 -5517 4760 156 $H(31C)$ 5806 -5924 4150 156 $H(32A)$ 7640 -2799 4857 131 $H(32C)$ 8462 -3700 4693 131 $H(32C)$ 8626 -4508 2442 120 $H(33A)$ 7239 -5180 2836 120 $H(33A)$ -232 -2566 3212 142 $H(34B)$ 651 -2041 2760 142 $H(34B)$ 651 -2041 2760 142 $H(34B)$ 1235 -4209 4382 138 $H(35A)$ -7 -4494 3713 138 $H(35B)$ 1268 -3976 1671 101 <	H(22C)	7854	-903	4207	110
H(23C) $B94$ 1214 1916 103 $H(24A)$ 3370 2946 3848 142 $H(24A)$ 3370 2946 3848 142 $H(24A)$ 1996 2887 3404 142 $H(24C)$ 2971 3149 2917 142 $H(25A)$ 2067 -204 3383 88 $H(25B)$ 1806 814 3950 88 $H(25C)$ 3110 458 4105 88 $H(27)$ 3815 -4456 2837 65 $H(29)$ 3245 -1863 4329 89 $H(30)$ 5610 -2122 4684 95 $H(31A)$ 5914 -5064 4962 156 $H(31C)$ 5806 -5924 4150 156 $H(32A)$ 7640 -2799 4857 131 $H(32A)$ 7640 -2798 4017 131 $H(32A)$ 7640 -2798 4017 131 $H(32C)$ 8462 -3700 4693 131 $H(33A)$ 7239 -5180 2836 1200 $H(34A)$ -232 -22566 3212 142 $H(34B)$ 651 -2041 2760 142 $H(34A)$ -235 -4494 3713 138 $H(35A)$ 175 -5004 2045 101 $H(36B)$ 1268 -3976 1671 101 $H(36B)$ 1268 -3976 1671 101 <td>H(23A)</td> <td>1941</td> <td>1200</td> <td>1449</td> <td>103</td>	H(23A)	1941	1200	1449	103
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	H(23B)	894	1214	1910	103
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	н(23C) н(24b)	3370	2946	3848	142
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	H(24B)	1996	2887	3404	142
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	H(24C)	2971	3149	2917	142
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	H(25A)	2067	-204	3383	88
H(25C) 3110 458 4105 88 $H(27)$ 3815 -4456 2837 65 $H(29)$ 3245 -1863 4329 89 $H(30)$ 5610 -2122 4684 95 $H(31A)$ 5914 -5064 4962 156 $H(31B)$ 7074 -5517 4760 156 $H(31C)$ 5806 -5924 4150 156 $H(32A)$ 7640 -2799 4857 131 $H(32C)$ 8462 -3700 4693 131 $H(33A)$ 7239 -5180 2836 120 $H(33B)$ 6236 -4508 2442 120 $H(33C)$ 5876 -5589 2694 120 $H(34A)$ -232 -22566 3212 142 $H(34B)$ 651 -2041 2760 142 $H(34C)$ 986 -1926 3749 142 $H(35S)$ $1-7$ -4494 3713 138 $H(35C)$ 1053 -5191 3647 138 $H(36A)$ 1555 -5004 2045 101 $H(36B)$ 1268 -3976 1671 101 $H(36C)$ 234 -4691 1856 101 $H(36A)$ 1557 -562 8800 68 $H(8A)$ 3720 -219 8474 66 $H(9A1)$ 1335 399 7500 132 $H(9A3)$ 316 -539 7099 132 <td>H(25B)</td> <td>1806</td> <td>814</td> <td>3950</td> <td>88</td>	H(25B)	1806	814	3950	88
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	H(25C)	3110	458	4105	88
H(29)3245-1863432989H(30)5610-2122468495H(31A)5914-50644962156H(31B)7074-55174760156H(31C)5806-59244150156H(32A)7640-27994857131H(32B)8081-29784017131H(32C)8462-37004693131H(33C)5876-55892694120H(33C)5876-55892694120H(34A)-232-25663212142H(34C)986-19263749142H(34C)986-19263749142H(35D)-7-44943713138H(35B)1235-42094382138H(35C)1053-51913647138H(36A)1555-50042045101H(36B)1268-39761671101H(36B)1268-39761671101H(5A)4572-1273623363H(9A1)13353997500132H(9A2)1395-6737840132H(9A3)316-5397099132H(10D)1293-22845621130H(10F)750-22845621130H(11E)2434-3245370149H(11E)2434-3245370149	H(27)	3815	-4456	2837	65
H(30)5610 -2122 468495 $H(31A)$ 5914 -5064 4962156 $H(31B)$ 7074 -5517 4760156 $H(31C)$ 5806 -5924 4150156 $H(32A)$ 7640 -2799 4857131 $H(32B)$ 8081 -2978 4017131 $H(32C)$ 8462 -3700 4693131 $H(33A)$ 7239 -5180 2836120 $H(33B)$ 6236 -4508 2442120 $H(34A)$ -232 -2566 3212142 $H(34B)$ 651 -2041 2760142 $H(34C)$ 986 -1926 3749142 $H(35B)$ 1235 -4209 4382138 $H(35B)$ 1235 -4209 4382138 $H(36A)$ 1555 -5004 2045101 $H(36B)$ 1268 -3976 1671101 $H(36B)$ 1268 -3976 1671101 $H(36C)$ 234 -4691 1856101 $H(5A)$ 3720 -219 847466 $H(9A1)$ 13353997500132 $H(9A2)$ 1395 -673 7840132 $H(10D)$ 1293 -2652 6477130 $H(10D)$ 1293 -2652 6477130 $H(11D)$ 1077 -222 5364149 $H(11E)$ 2434 -324 5370149 $H(11E)$ 2434 -324 <	H(29)	3245	-1863	4329	89
H(31A) 5914 -5064 4962 156 $H(31C)$ 5806 -5517 4760 156 $H(31C)$ 5806 -5924 4150 156 $H(32A)$ 7640 -2799 4857 131 $H(32B)$ 8081 -2978 4017 131 $H(32C)$ 8462 -3700 4693 131 $H(33A)$ 7239 -5180 2836 120 $H(33C)$ 5876 -5589 2694 120 $H(34A)$ -232 -2566 3212 142 $H(34C)$ 986 -1926 3749 142 $H(35A)$ -7 -4494 3713 138 $H(35C)$ 1053 -5191 3647 138 $H(36A)$ 1555 -5004 2045 101 $H(36B)$ 1268 -3976 1671 101 $H(36C)$ 234 -4691 1856 101 $H(3A)$ 3720 -219 8474 66 $H(9A1)$ 1335 399 7500 132 $H(9A2)$ 1395 -673 7840 132 $H(9A3)$ 316 -539 7099 132 $H(1DD)$ 2078 -2284 5621 130 $H(1DF)$ 750 -2284 5621 130 $H(11E)$ 2434 -324 5370 149 $H(11E)$ 2434 -324 5370 149 $H(11E)$ 2695 -1033 5975 12	H(30)	5610	-2122	4684	95
H(31E) 7074 -5517 4760 156 $H(31C)$ 5806 -5924 4150 156 $H(32A)$ 7640 -2799 4857 131 $H(32B)$ 8081 -2978 4017 131 $H(32C)$ 8462 -3700 4693 131 $H(33A)$ 7239 -5180 2836 120 $H(33B)$ 6236 -4508 2442 120 $H(33C)$ 5876 -5589 2694 120 $H(34A)$ -232 -2566 3212 142 $H(34B)$ 651 -2041 2760 1442 $H(34C)$ 986 -1926 3749 1442 $H(35A)$ -7 -4494 3713 138 $H(35B)$ 1235 -4209 4382 138 $H(36A)$ 1555 -5004 2045 101 $H(36B)$ 1268 -3976 1671 101 $H(36C)$ 234 -4691 1856 101 $H(36A)$ 3720 -219 8474 66 $H(9A1)$ 1335 399 7500 132 $H(9A3)$ 316 -539 7099 132 $H(9A3)$ 316 -539 7099 132 $H(1DD)$ 1293 -2652 6477 130 $H(1DD)$ 1077 -222 5364 149 $H(11E)$ 2434 -324 5370 149 $H(11E)$ 2434 -324 5370 1	H(31A)	5914	-5064	4962	156
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	H(31B)	7074	-5517	4760	156
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	H(3LC)	5806	-5924	4150	150 121
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	н(32A) н(32B)	8081	-2799	4057	131
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	H(32C)	8462	-3700	4693	131
H (33B) 6236 -4508 2442 120 H (33C) 5876 -5589 2694 120 H (34A) -232 -2566 3212 142 H (34B) 651 -2041 2760 142 H (34C) 986 -1926 3749 142 H (35A) -7 -4494 3713 138 H (35B) 1235 -4209 4382 138 H (35C) 1053 -5191 3647 138 H (36A) 1555 -5004 2045 101 H (36B) 1268 -3976 1671 101 H (36C) 234 -4691 1856 101 H (36C) 234 -4691 1856 101 H (36A) 3720 -219 8474 66 H (9A1) 1335 399 7500 132 H (9A2) 1395 -673 7840 132 H (9A3) 316 -539 7099 132 H (10D) 1293 -2652 6477 130 H (10D) 1293 -2284 5621 130 H (11D) 1077 -2224 5364 149 H (11E) 2434 -324 5770 149 H (11F) 2083 641 5945 149 H (12D) 7787 -152 6671 122 H (12F) 8295 -1199 6339 122	H(33A)	7239	-5180	2836	120
H(33C) 5876 -5589 2694 120 $H(34A)$ -232 -2566 3212 142 $H(34B)$ 651 -2041 2760 142 $H(34C)$ 986 -1926 3749 142 $H(35A)$ -7 -4494 3713 138 $H(35B)$ 1235 -4209 4382 138 $H(35C)$ 1053 -5191 3647 138 $H(36A)$ 1555 -5004 2045 101 $H(36B)$ 1268 -3976 1671 101 $H(36C)$ 234 -4691 1856 101 $H(5A)$ 4572 -1273 6233 63 $H(7A)$ 5972 -562 8800 68 $H(8A)$ 3720 -219 8474 66 $H(9A1)$ 1335 399 7500 132 $H(9A2)$ 1395 -673 7840 132 $H(10D)$ 1293 -2652 6477 130 $H(10D)$ 1293 -2652 6477 130 $H(10F)$ 750 -2284 5621 130 $H(11E)$ 2434 -324 5370 149 $H(11E)$ 2434 -324 5370 149 $H(12D)$ 7787 -152 6671 122 $H(12E)$ 6945 -1033 5975 122 $H(12F)$ 8295 -1199 6339 122	H(33B)	6236	-4508	2442	120
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	H(33C)	5876	-5589	2694	120
H(34B) 651 -2041 2760 142 $H(34C)$ 986 -1926 3749 142 $H(35A)$ -7 -4494 3713 138 $H(35B)$ 1235 -4209 4382 138 $H(35C)$ 1053 -5191 3647 138 $H(36A)$ 1555 -5004 2045 101 $H(36B)$ 1268 -3976 1671 101 $H(36C)$ 234 -4691 1856 101 $H(5A)$ 4572 -1273 6233 63 $H(7A)$ 5972 -562 8800 68 $H(8A)$ 3720 -219 8474 66 $H(9A1)$ 1335 399 7500 132 $H(9A2)$ 1395 -673 7840 132 $H(10D)$ 1293 -2652 6477 130 $H(10E)$ 2078 -2581 5821 130 $H(10F)$ 750 -2284 5621 130 $H(11F)$ 2083 641 5945 149 $H(11F)$ 2083 641 5945 149 $H(12D)$ 7787 -152 6671 122 $H(12E)$ 6945 -1033 5975 122 $H(12F)$ 8295 -1199 6339 122	H(34A)	-232	-2566	3212	142
H(34C)986 -1926 3749 142 $H(35A)$ -7 -4494 3713 138 $H(35B)$ 1235 -4209 4382 138 $H(35C)$ 1053 -5191 3647 138 $H(36A)$ 1555 -5004 2045 101 $H(36B)$ 1268 -3976 1671 101 $H(36C)$ 234 -4691 1856 101 $H(5A)$ 4572 -1273 6233 63 $H(7A)$ 5972 -562 8800 68 $H(8A)$ 3720 -219 8474 66 $H(9A1)$ 1335 399 7500 132 $H(9A2)$ 1395 -673 7840 132 $H(9A3)$ 316 -539 7099 132 $H(10D)$ 1293 -2652 6477 130 $H(10E)$ 2078 -2284 5621 130 $H(11D)$ 1077 -222 5364 149 $H(11E)$ 2434 -324 5370 149 $H(11F)$ 2083 641 5945 149 $H(12D)$ 7787 -152 6671 122 $H(12E)$ 6945 -1033 5975 122 $H(12F)$ 8295 -1199 6339 122	H(34B)	651	-2041	2760	142
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	H(34C)	986	-1926	3749	142
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	H(35A)	-7	-4494	3713	138
H(35C) 1053 -5191 3647 138 $H(36A)$ 1555 -5004 2045 101 $H(36B)$ 1268 -3976 1671 101 $H(36C)$ 234 -4691 1856 101 $H(5A)$ 4572 -1273 6233 63 $H(7A)$ 5972 -562 8800 68 $H(8A)$ 3720 -219 8474 66 $H(9A1)$ 1335 399 7500 132 $H(9A2)$ 1395 -673 7840 132 $H(9A3)$ 316 -539 7099 132 $H(10D)$ 1293 -2652 6477 130 $H(10E)$ 2078 -2581 5821 130 $H(10F)$ 750 -2284 5621 130 $H(11D)$ 1077 -222 5364 149 $H(11E)$ 2434 -324 5370 149 $H(11F)$ 2083 641 5945 149 $H(12D)$ 7787 -152 6671 122 $H(12E)$ 6945 -1033 5975 122 $H(12F)$ 8295 -1199 6339 122	H(35B)	1235	-4209	4382	138
H(36A) 1535 -5004 2043 101 $H(36B)$ 1268 -3976 1671 101 $H(36C)$ 234 -4691 1856 101 $H(5A)$ 4572 -1273 6233 63 $H(7A)$ 5972 -562 8800 68 $H(8A)$ 3720 -219 8474 66 $H(9A1)$ 1335 399 7500 132 $H(9A2)$ 1395 -673 7840 132 $H(9A3)$ 316 -539 7099 132 $H(10D)$ 1293 -2652 6477 130 $H(10F)$ 750 -2284 5621 130 $H(10F)$ 750 -2284 5621 130 $H(11D)$ 1077 -222 5364 149 $H(11E)$ 2434 -324 5370 149 $H(11F)$ 2083 641 5945 149 $H(12D)$ 7787 -152 6671 122 $H(12E)$ 6945 -1033 5975 122 $H(12F)$ 8295 -1199 6339 122	H(35C)	1053 1666	-5191	3647	138 101
H(30B) 1203 -3976 1671 101 $H(36C)$ 234 -4691 1856 101 $H(5A)$ 4572 -1273 6233 63 $H(7A)$ 5972 -562 8800 68 $H(8A)$ 3720 -219 8474 66 $H(9A1)$ 1335 399 7500 132 $H(9A2)$ 1395 -673 7840 132 $H(9A3)$ 316 -539 7099 132 $H(10D)$ 1293 -2652 6477 130 $H(10E)$ 2078 -2581 5821 130 $H(10F)$ 750 -2284 5621 130 $H(11D)$ 1077 -222 5364 149 $H(11E)$ 2434 -324 5370 149 $H(11F)$ 2083 641 5945 149 $H(12D)$ 7787 -152 6671 122 $H(12E)$ 6945 -1033 5975 122 $H(12F)$ 8295 -1199 6339 122	H(30A)	1060	-5004	2045	101
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	н(36С) н(36С)	234	- 3970	1856	101
H(7A) 1372 -562 8800 68 $H(7A)$ 5972 -562 8800 68 $H(8A)$ 3720 -219 8474 66 $H(9A1)$ 1335 399 7500 132 $H(9A2)$ 1395 -673 7840 132 $H(9A3)$ 316 -539 7099 132 $H(10D)$ 1293 -2652 6477 130 $H(10E)$ 2078 -2581 5821 130 $H(10F)$ 750 -2284 5621 130 $H(11D)$ 1077 -222 5364 149 $H(11E)$ 2434 -324 5370 149 $H(11F)$ 2083 641 5945 149 $H(12D)$ 7787 -152 6671 122 $H(12E)$ 6945 -1033 5975 122 $H(12F)$ 8295 -1199 6339 122	H(5A)	4572	-1273	6233	63
H(8A) 3720 -219 8474 66 $H(9A1)$ 1335 399 7500 132 $H(9A2)$ 1395 -673 7840 132 $H(9A3)$ 316 -539 7099 132 $H(10D)$ 1293 -2652 6477 130 $H(10E)$ 2078 -2581 5821 130 $H(10F)$ 750 -2284 5621 130 $H(11D)$ 1077 -222 5364 149 $H(11E)$ 2434 -324 5370 149 $H(11F)$ 2083 641 5945 149 $H(12D)$ 7787 -152 6671 122 $H(12E)$ 6945 -1033 5975 122 $H(12F)$ 8295 -1199 6339 122	H(7A)	5972	-562	8800	68
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	H(8A)	3720	-219	8474	66
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	H(9A1)	1335	399	7500	132
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	H(9A2)	1395	-673	7840	132
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	H(9A3)	316	-539	7099	132
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	H(10D)	1293	-2652	6477	130
H(10F)750-22845621130H(11D)1077-2225364149H(11E)2434-3245370149H(11F)20836415945149H(12D)7787-1526671122H(12E)6945-10335975122H(12F)8295-11996339122	H(10E)	2078	-2581	5821	130
H(11D)1077-2225364149H(11E)2434-3245370149H(11F)20836415945149H(12D)7787-1526671122H(12E)6945-10335975122H(12F)8295-11996339122	H(10F)	750	-2284	5621	130
H(11E)2434-3245370149H(11F)20836415945149H(12D)7787-1526671122H(12E)6945-10335975122H(12F)8295-11996339122	H(IID)	1077 2424	-222	5364	149
H(112)20030415945149H(12D)7787-1526671122H(12E)6945-10335975122H(12F)8295-11996339122	대(エエピ) 대(11만)	2434 2002	-324	53/U 50/5	149 140
H(12E)6945-10335975122H(12F)8295-11996339122	н(12р)	2003 7787	04⊥ -150	6671	19 190
H(12F) 8295 -1199 6339 122	H(12E)	6945	-1033	5975	122
	H(12F)	8295	-1199	6339	122

H(13D)	7673	-3217	6773	108
H(13E)	6331	-3111	6334	108
H(13F)	6660	-3350	7257	108
H(14D)	8666	-548	8386	120
H(14E)	8947	-1732	8216	120
H(14F)	7985	-1417	8725	120
H(16A)	6283	4523	7175	57
H(18A)	6580	1911	5551	54
H(19A)	4514	2212	5228	54
H(20D)	2337	2532	5989	114
H(20E)	2113	3036	5170	114
H(20F)	1492	3439	5898	114
H(21D)	3778	4887	5041	128
H(21E)	4146	5788	5844	128
H(21F)	2781	5458	5393	128
H(22D)	2711	5125	7312	134
H(22E)	4106	5128	7649	134
H(22F)	3236	4125	7629	134
H(23D)	9132	4089	5817	134
H(23E)	10029	4709	6646	134
H(23F)	8726	5044	6370	134
H(24D)	8466	4793	8147	122
H(24E)	9730	4364	8358	122
H(24F)	8584	3697	8445	122
H(25D)	8953	1775	7157	90
H(25E)	10185	2449	7256	90
H(25F)	9334	2041	6353	90
H(27A)	5495	1714	10238	49
H(29A)	7252	4071	9535	51
H(30A)	4904	4313	9226	52
H(31D)	2631	1191	10002	180
H(31E)	2704	1228	9069	180
H(31F)	1575	1588	9379	180
H(32D)	2205	3338	8529	93
H(32E)	2547	4366	9228	93
H(32F)	1388	3606	9161	93
H(33D)	2517	3175	11140	97
H(33E)	3391	4145	11097	97
H(33F)	3912	3107	11338	97
H(34D)	10262	2624	10339	106
H(34E)	9614	3646	10216	106
H(34F)	9316	2646	9490	106
H(35D)	7880	2618	11887	100
H(35E)	8528	3672	11761	100
H(35F)	9278	2735	11987	100
H(36D)	8889	734	10720	112
H(36E)	8078	668	9804	112
H(36F)	7486	698	10573	112

7.8 $[{Cp^{=}Ru}(\mu-h^{4:1:1}-P_{4}){Ru(CO)Cp^{=}}]$ (40)

Tabelle 1. Kristalldaten und Strukturverfeinerung für 0201.

$C_{23}H_{42}OP_4Ru_2Si_4$	
772.95	
293(2) K	
ΜοΚα	
0.71073 Å	
Phi-Oszillation	
Triklin	
P1	
a = 7.7645(7) Å	$\alpha = 85.516(11)^{\circ}$
b = 14.8562(13) Å	$\beta = 82.375(11)^{\circ}$
c = 15.7765(14) Å	$\gamma = 85.635(11)^{\circ}$
$1794.2(3) \text{ Å}^{3}$	•
2	
1.431 Mg/m^3	
1.169 mm^{-1}	
0.38 x 0.21 x 0.21 mm	
2.80 bis 25.68°	
17309	
4784 (Rint = 0.1332)	
Analytical (ABST/PLATON 98)	
0.84409 und 0.62269	
Stoe IPDS	
Direkte Methoden	
SHELXS-97 (Sheldrick, 1990)	2
Vollmatrix Least-Squares gegen F	72
SHELXL-97 (Sheldrick, 1997)	
4784 / 6 / 356	
R1 = 0.0389, wR2 = 0.0942	
R1 = 0.0579, wR2 = 0.0996	2 2
$w=1/[\sigma^2(Fo^2)+(0.0350P)^2+0.0000]$	P] mit P= $(Fo^2 + 2Fc^2)/3$
0.901	
$0.503 \text{ und } -0.316 \text{ e}\text{Å}^{-3}$	
	C ₂₃ H ₄₂ OP ₄ Ru ₂ Si ₄ 772.95 293(2) K MoKα 0.71073 Å Phi-Oszillation Triklin Pl a = 7.7645(7) Å b = 14.8562(13) Å c = 15.7765(14) Å 1794.2(3) Å ³ 2 1.431 Mg/m ³ 1.169 mm ⁻¹ 0.38 x 0.21 x 0.21 mm 2.80 bis 25.68° 17309 4784 (Rint = 0.1332) Analytical (ABST/PLATON 98) 0.84409 und 0.62269 Stoe IPDS Direkte Methoden SHELXS-97 (Sheldrick, 1990) Vollmatrix Least-Squares gegen F SHELXL-97 (Sheldrick, 1997) 4784 / 6 / 356 R1 = 0.0389, wR2 = 0.0942 R1 = 0.0579, wR2 = 0.0996 w=1/[σ^{2} (Fo ²)+(0.0350P) ² +0.00001 0.901 0.503 und -0.316 eÅ ⁻³

Verfeinerung nach F^2 mit ALLEN Reflexen. Die gewichteten R-Werte wR2 und alle GooF's basieren auf F^2 . Die konventionellen R-Werte R1 basieren auf F, wobei F für negative F^2 gleich Null gesetzt wird. Das Ablehnungskriterium $F^2 > 2\sigma(F^2)$ wird nur zum Berechnen von R(obs) etc. verwendet. Zur Verfeinerung wurden alle Reflexe herangezogen. Grundsätzlich gilt: Auf F^2 bezogene R-Werte sind statistisch etwa doppelt so groß wie die auf F basierenden. Auf ALLE Reflexe bezogene R-Werte sind noch größer.

Der Kristall war nach 1 0 0 verzwillingt. Überlappende Reflexe wurden nicht in die Verfeinerung einbezogen. Es besteht eine Fehlordnung (0.8:0.2) im Bereich der CO-Gruppe. Die Wasserstoffatome wurden geometrisch lokalisiert. Für die Verfeinerung wurde ein Reitermodell angenommen. Als Temperaturfaktor wurde der 1.5fache Wert (CH₃-Gruppen) bzw. der 1.2-fache Wert (Cp-H) des äquivalenten isotropen Temperaturfaktors desjenigen C-Atoms eingesetzt, an welches das jeweilige H-Atom gebunden ist. Einzelheiten können dem Handbuch für das Verfeinerungsprogramm SHELXL entnommen werden.

$$GooF = \sqrt{\frac{\sum \left[w\left(F_o^2 - F_c^2\right)\right]}{(n-p)}}$$
 n = Zahl der Reflexe; p = Zahl der verfeinerten Parameter

Tabelle 2. Atomkoordinaten [x 10⁴] und äquivalente isotrope Auslenkungsparameter [Å² x 10³] für 0201. U(eq) wird berechnet als ein Drittel der Spur des orthogonalisierten U_{ij} -Tensors.

	х	У	Z	U(eq)
Ru(1)	-1023(1)	7178(1)	11717(1)	49(1)
Ru(2)	-871(1)	7863(1)	13331(1)	45(1)
P(1)	-45(2)	8559(1)	11971(1)	59(1)
P(2)	2039(2)	8337(2)	12757(2)	74(1)
P(3)	1963(3)	7008(2)	13351(1)	74(1)
P(4)	-160(2)	6381(1)	12938(1)	60(1)
Si(1)	-2020(3)	8406(2)	9678(1)	87(1)
Si(2)	-2971(3)	4964(2)	11778(1)	87(1)
Si(3)	-2297(2)	10295(1)	13582(1)	66(1)
Si(4)	-1682(3)	6776(1)	15558(1)	77(1)
0(1)	2650(7)	6718(6)	10904(4)	114(3)
C(1)	1302(11)	6886(8)	11239(6)	75(3)
C(2)	-2571(7)	7570(4)	10614(3)	58(2)
C(3)	-2144(8)	6614(4)	10663(3)	59(2)
C(4)	-2959(8)	6186(4)	11440(4)	60(2)
C(5)	-3856(7)	6917(5)	11887(4)	62(2)
C(6)	-3616(7)	7741(4)	11384(4)	60(2)
C(7)	-2409(13)	9564(6)	10028(6)	123(3)
C(8)	-3452(17)	8181(9)	8865(6)	171(6)
C(9)	271(12)	8226(7)	9234(6)	129(4)
C(10)	-4428(18)	4447(8)	11120(8)	171(6)
C(11)	-3849(12)	4842(6)	12930(5)	112(3)
C(12)	-715(14)	4418(6)	11602(7)	144(4)
C(13)	-2421(6)	9071(4)	13913(3)	50(1)
C(14)	-1550(7)	8542(4)	14554(3)	49(1)
C(15)	-2176(7)	7654(4)	14699(3)	53(1)
C(16)	-3427(6)	7618(4)	14121(3)	56(2)
C(17)	-3551(6)	8455(4)	13648(3)	55(1)
C(18)	-3548(12)	10570(6)	12661(5)	110(3)
C(19)	-30(10)	10602(5)	13298(5)	89(2)
C(20)	-3343(11)	10913(5)	14523(5)	101(3)
C(21)	631(12)	6729(7)	15714(6)	121(3)
C(22)	-2359(14)	5678(6)	15278(5)	124(3)
C(23)	-3022(13)	7132(6)	16557(5)	113(3)
P(2A)	1792(11)	7749(9)	11215(6)	78(4)
P(3A)	1747(11)	6423(9)	11779(7)	78(3)
0(1A)	2980(2)	7840(3)	13450(2)	148(16)
C(1A)	1350(7)	7890(3)	13440(2)	93(13)

Tabelle 3. Bindungslängen [Å] und -winkel [°] für 0201.

Ru(1)-C(1)	1.893(8)		Si(1)-C(8)	1.870(8)	
Ru(1)-C(3)	2.221(5)		Si(1)-C(2)	1.880(6)	
Ru(1)-C(6)	2.233(5)		Si(2)-C(4)	1.851(7)	
Ru(1)-C(5)	2.240(5)		Si(2)-C(11)	1.854(8)	
Ru(1)-C(2)	2.258(5)		Si(2)-C(12)	1.870(10)	
Ru(1)-C(4)	2.287(6)		Si(2)-C(10)	1.876(9)	
Ru(1)-P(1)	2.3227(17)		Si(3)-C(19)	1.841(7)	
Ru(1) - P(4)	2.3299(17)		Si(3) - C(13)	1.858(6)	
Ru(1) - P(3A)	2.359(10)		Si(3) - C(18)	1.856(7)	
Ru(1) - P(2A)	2.417(9)		S1(3) - C(20)	1.867(7)	
Ru(1) - Ru(2)	2.8355(6)		S1(4) - C(21)	1.841(9)	
Ru(2) = C(1A)	1.70(5)		SI(4) = C(23)	1.000(0)	
Ru(2) - C(17) Ru(2) - C(17)	2.207(5)		SI(4) - C(22) SI(4) - C(15)	1.854(9)	
Ru(2) = C(14) Pu(2) = C(16)	2.231(5)		O(1) - C(1)	1.002(0) 1.128(9)	
Ru(2) = C(10) Ru(2) = C(15)	2.250(5)		C(2) - C(6)	1,120(9) 1,397(8)	
$R_{11}(2) - C(13)$	2.269(5)		C(2) - C(3)	1,337(0) 1,432(8)	
Ru(2) - P(4)	2.3393(18)		C(3) - C(4)	1.429(8)	
Ru(2) - P(1)	2.3399(16)		C(4) - C(5)	1.427(8)	
Ru(2) - P(2)	2.453(2)		C(5) - C(6)	1.417(9)	
Ru(2) - P(3)	2.458(2)		C(13) - C(14)	1.441(7)	
P(1)-P(2A)	2.101(10)		C(13)-C(17)	1.435(7)	
P(1)-P(2)	2.157(3)		C(14)-C(15)	1.432(8)	
P(2)-P(3)	2.120(4)		C(15)-C(16)	1.425(7)	
P(3)-P(4)	2.150(3)		C(16)-C(17)	1.403(8)	
P(4)-P(3A)	2.194(11)		P(2A)-P(3A)	2.099(19)	
Si(1)-C(9)	1.831(9)		O(1A)-C(1A)	1.26(5)	
Si(1)-C(7)	1.839(10)				
$C(1) = R_{11}(1) = C(3)$	93 4	(3)	$C(6) - R_{11}(1) - P(3A)$		$167\ 2(3)$
C(1) - Ru(1) - C(6)	143.0	(4)	C(5) - Ru(1) - P(3A)		141.3(4)
C(3) - Ru(1) - C(6)	60.7	(2)	C(2) - Ru(1) - P(3A)		132.1(3)
C(1)-Ru(1)-C(5)	150.4	(3)	C(4) - Ru(1) - P(3A)		110.1(3)
C(3)-Ru(1)-C(5)	60.6	(2)	P(1)-Ru(1)-P(3A)		92.6(3)
C(6)-Ru(1)-C(5)	36.9	(2)	P(4)-Ru(1)-P(3A)		55.8(3)
C(1)-Ru(1)-C(2)	107.2	(4)	C(1)-Ru(1)-P(2A)		34.2(4)
C(3)-Ru(1)-C(2)	37.3	(2)	C(3)-Ru(1)-P(2A)		111.2(3)
C(6)-Ru(1)-C(2)	36.3	(2)	C(6)-Ru(1)-P(2A)		127.6(3)
C(5)-Ru(1)-C(2)	61.4	(2)	C(5)-Ru(1)-P(2A)		164.0(3)
C(1)-Ru(1)-C(4)	113.8	(3)	C(2)-Ru(1)-P(2A)		103.4(3)
C(3) - Ru(1) - C(4)	36.9	(2)	C(4)-Ru(1)-P(2A)		143.4(3)
C(6) - Ru(1) - C(4)	61.9	(2)	P(1)-Ru(1)-P(2A)		52.6(3)
C(5) - Ru(1) - C(4)	36.7	(2)	P(4) - Ru(1) - P(2A)	、	95.4(3)
C(2) - Ru(1) - C(4)	62.7	(2)	P(3A) - Ru(1) - P(2A)	.)	52.1(4)
C(1) - Ru(1) - P(1)	85.8	(3)	C(1) - Ru(1) - Ru(2)		106.9(3)
C(3) - Ru(1) - P(1)	136.4 OF F	U(17)	C(3) - Ru(1) - Ru(2)		159.06(16)
C(6) = Ru(1) = P(1) C(5) = Pu(1) = D(1)	100 2	9(17) 2(17)	C(6) - Ru(1) - Ru(2) C(5) - Pu(1) - Pu(2)		103.10(16)
C(2) = Ru(1) = P(1)	101 7	J(17)	C(3) = Ru(1) = Ru(2) C(2) = Pu(1) = Pu(2)		33.30(15)
C(2) Ru(1) P(1) C(4) - Ru(1) - P(1)	157 2	F(17)	C(2) Ru(1) Ru(2) C(4) - Ru(1) - Ru(2)		125 44(15)
$C(1) - R_1(1) - P(4)$	83 7	(3)	$P(1) - R_1(1) - R_1(2)$		52 82(4)
$C(3) - R_{11}(1) - P(4)$	126 8	3(17)	P(4) - Ru(1) - Ru(2)		52.76(4)
C(6)-Ru(1)-P(4)	132.5	0(17)	P(3A) - Ru(1) - Ru(2))	89.7(2)
C(5)-Ru(1)-P(4)	100.4	0(17)	P(2A)-Ru(1)-Ru(2)	89.0(2)
C(2)-Ru(1)-P(4)	159.3	2(17)	C(1A)-Ru(2)-C(17)	147.7(12)
C(4)-Ru(1)-P(4)	96.9	9(16)	C(1A)-Ru(2)-C(14)	89.5(12)
P(1)-Ru(1)-P(4)	96.4	6(6)	C(17)-Ru(2)-C(14)	61.4(2)
C(1)-Ru(1)-P(3A)	28.1	(4)	C(1A)-Ru(2)-C(16)	140.6(12)
$\alpha(2) = \alpha(1) = \alpha(2\pi)$	106 7	(3)	C(17) - Ru(2) - C(16))	368(2)

C(14)-Ru(2)-C(16)	61.3(2)	P(3)-P(4)-Ru(1)	110.03(11)
C(1A)-Ru(2)-C(15)	104.0(12)	P(3A)-P(4)-Ru(1)	62.8(3)
C(17)-Ru(2)-C(15)	61.8(2)	P(3)-P(4)-Ru(2)	66.24(8)
C(14)-Ru(2)-C(15)	37.1(2)	P(3A)-P(4)-Ru(2)	108.4(3)
C(16)-Ru(2)-C(15)	36.86(19)	Ru(1)-P(4)-Ru(2)	74.79(5)
C(1A)-Ru(2)-C(13)	110.6(12)	C(9)-Si(1)-C(7)	109.0(5)
C(17)-Ru(2)-C(13)	37.38(19)	C(9)-Si(1)-C(8)	109.9(6)
C(14)-Ru(2)-C(13)	37.34(19)	C(7)-Si(1)-C(8)	112.2(6)
C(16)-Ru(2)-C(13)	62.4(2)	C(9)-Si(1)-C(2)	110.4(4)
C(15)-Ru(2)-C(13)	62.9(2)	C(7)-Si(1)-C(2)	109.7(4)
C(1A)-Ru(2)-P(4)	85.7(12)	C(8)-Si(1)-C(2)	105.6(4)
C(17)-Ru(2)-P(4)	124.60(16)	C(4)-Si(2)-C(11)	108.4(4)
C(14)-Ru(2)-P(4)	136.34(15)	C(4)-Si(2)-C(12)	110.2(4)
C(16)-Ru(2)-P(4)	97.60(16)	C(11)-Si(2)-C(12)	110.2(5)
C(15)-Ru(2)-P(4)	102.76(15)	C(4)-Si(2)-C(10)	107.5(4)
C(13)-Ru(2)-P(4)	159.94(14)	C(11)-Si(2)-C(10)	110.1(6)
C(1A)-Ru(2)-P(1)	83.6(12)	C(12)-Si(2)-C(10)	110.3(6)
C(17)-Ru(2)-P(1)	102.18(16)	C(19)-Si(3)-C(13)	111.8(3)
C(14)-Ru(2)-P(1)	126.82(15)	C(19)-Si(3)-C(18)	110.6(4)
C(16)-Ru(2)-P(1)	134.41(16)	C(13)-Si(3)-C(18)	108.6(4)
C(15)-Ru(2)-P(1)	160.38(16)	C(19)-Si(3)-C(20)	109.8(4)
C(13)-Ru(2)-P(1)	97.56(14)	C(13)-Si(3)-C(20)	106.1(3)
P(4) - Ru(2) - P(1)	95.73(6)	C(18) - Si(3) - C(20)	109.9(5)
C(1A) - Ru(2) - P(2)	30.4(12)	C(21)-Si(4)-C(23)	108.6(5)
C(17)-Ru(2)-P(2)	139.70(18)	C(21) - Si(4) - C(22)	112.6(5)
C(14) - Ru(2) - P(2)	104.89(16)	C(23)-Si(4)-C(22)	109.8(4)
C(16)-Ru(2)-P(2)	166.18(14)	C(21) - Si(4) - C(15)	111.2(3)
C(15)-Ru(2)-P(2)	131.12(15)	C(23) - Si(4) - C(15)	106.0(3)
C(13)-Ru(2)-P(2)	107.77(15)	C(22) - Si(4) - C(15)	108.4(3)
P(4) - Ru(2) - P(2)	92.21(8)	O(1) - C(1) - Ru(1)	175.6(9)
P(1)-Ru(2)-P(2)	53.43(7)	C(6)-C(2)-C(3)	105.4(5)
C(1A) - Ru(2) - P(3)	33.0(12)	C(6)-C(2)-Si(1)	126.9(5)
C(17) - Ru(2) - P(3)	165.16(17)	C(3)-C(2)-Si(1)	127.5(4)
C(14) - Ru(2) - P(3)	109.05(15)	C(6)-C(2)-Ru(1)	70.9(3)
C(16)-Ru(2)-P(3)	129.58(18)	C(3)-C(2)-Ru(1)	70.0(3)
C(15)-Ru(2)-P(3)	103.60(15)	Si(1)-C(2)-Ru(1)	127.5(3)
C(13) - Ru(2) - P(3)	140.55(14)	C(2)-C(3)-C(4)	111.4(5)
P(4) - Ru(2) - P(3)	53.18(7)	C(2)-C(3)-Ru(1)	72.8(3)
P(1)-Ru(2)-P(3)	92.65(7)	C(4) - C(3) - Ru(1)	74.1(3)
P(2)-Ru(2)-P(3)	51.13(9)	C(5)-C(4)-C(3)	103.9(6)
C(1A) - Ru(2) - Ru(1)	106.5(12)	C(5)-C(4)-Si(2)	127.2(5)
C(17) - Ru(2) - Ru(1)	101.88(14)	C(3)-C(4)-Si(2)	128.7(5)
C(14) - Ru(2) - Ru(1)	163.22(14)	C(5)-C(4)-Ru(1)	69.8(3)
C(16) - Ru(2) - Ru(1)	106.36(14)	C(3)-C(4)-Ru(1)	69.0(3)
C(15)-Ru(2)-Ru(1)	138.03(15)	Si(2) - C(4) - Ru(1)	127.2(3)
C(13)-Ru(2)-Ru(1)	128.25(13)	C(6)-C(5)-C(4)	109.7(5)
P(4)-Ru(2)-Ru(1)	52.46(4)	C(6)-C(5)-Ru(1)	71.3(3)
P(1)-Ru(2)-Ru(1)	52.27(4)	C(4) - C(5) - Ru(1)	73.4(3)
P(2) - Ru(2) - Ru(1)	87.34(5)	C(5)-C(6)-C(2)	109.4(5)
P(3) - Ru(2) - Ru(1)	87.53(5)	C(5) - C(6) - Ru(1)	71.8(3)
P(2A) - P(1) - P(2)	78.1(3)	C(2) - C(6) - Ru(1)	72.8(3)
P(2A) - P(1) - Ru(1)	66.0(3)	C(14) - C(13) - C(17)	103.9(5)
P(2)-P(1)-Ru(1)	109.63(11)	C(14)-C(13)-Si(3)	128.3(4)
P(2A) - P(1) - Ru(2)	112.5(3)	C(17)-C(13)-Si(3)	127.5(4)
P(2)-P(1)-Ru(2)	65.98(8)	C(14) - C(13) - Ru(2)	69.9(3)
Ru(1) - P(1) - Ru(2)	74.91(5)	C(17) - C(13) - Ru(2)	69.0(3)
P(3)-P(2)-P(1)	108.51(12)	Si(3) - C(13) - Ru(2)	129.3(2)
$P(3) - P(2) - R_{11}(2)$	64.54(9)	C(15) - C(14) - C(13)	110.9(5)
$P(1) - P(2) - R_1(2)$	60.59(6)	$C(15) - C(14) - R_{11}(2)$	72.8(3)
P(2) - P(3) - P(4)	108.04(11)	$C(13) - C(14) - R_{11}(2)$	72.8(3)
$P(2) - P(3) - R_{11}(2)$	64,33(9)	C(16) - C(15) - C(14)	105.8(5)
$P(4) - P(3) - R_{11}(2)$	60.58(6)	C(16) - C(15) - Si(4)	126.5(4)
P(3)-P(4)-P(3A)	77.5(3)	C(14) - C(15) - Si(4)	127.3(4)
		. ,,,	- (- /

C(16)-C(15)-Ru(2)	70.4(3)	C(13)-C(17)-Ru(2)	73.7(3)
C(14)-C(15)-Ru(2)	70.0(3)	P(3A) - P(2A) - P(1)	107.4(5)
Si(4)-C(15)-Ru(2)	129.9(3)	P(3A)-P(2A)-Ru(1)	62.5(4)
C(17)-C(16)-C(15)	108.6(5)	P(1)-P(2A)-Ru(1)	61.4(2)
C(17)-C(16)-Ru(2)	70.4(3)	P(2A) - P(3A) - P(4)	109.7(5)
C(15)-C(16)-Ru(2)	72.7(3)	P(2A)-P(3A)-Ru(1)	65.4(4)
C(16)-C(17)-C(13)	110.7(5)	P(4)-P(3A)-Ru(1)	61.4(2)
C(16)-C(17)-Ru(2)	72.8(3)	O(1A) - C(1A) - Ru(2)	173(3)

Tabelle 4. Anisotrope Auslenkungsparameter [Ų x 10³] für 0201.Der Exponent des anisotropen Auslenkungsfaktors hat die Form: $-2\pi^2$ [(ha*)²U₁₁ + ... + 2hka*b*U₁₂]

	U ₁₁	U ₂₂	U ₃₃	U 23	U ₁₃	U ₁₂
Ru(1)	42(1)	61(1)	42(1)	-13(1)	1(1)	-1(1)
Ru(2)	35(1)	59(1)	41(1)	-11(1)	-2(1)	-4(1)
P(1)	56(1)	71(1)	48(1)	-7(1)	4(1)	-18(1)
P(2)	40(1)	110(2)	76(2)	-26(1)	0(1)	-17(1)
P(3)	45(1)	109(2)	70(1)	-18(1)	-13(1)	12(1)
P(4)	59(1)	64(1)	57(1)	-11(1)	-9(1)	12(1)
Si(1)	118(2)	82(2)	65(1)	10(1)	-26(1)	-18(1)
Si(2)	118(2)	68(2)	80(1)	-6(1)	-16(1)	-25(1)
Si(3)	74(1)	60(1)	59(1)	1(1)	6(1)	3(1)
Si(4)	112(2)	60(1)	54(1)	4(1)	1(1)	-9(1)
0(1)	48(3)	202(9)	91(5)	-63(5)	13(3)	17(4)
C(1)	61(5)	91(8)	71(6)	-26(5)	12(4)	4(5)
C(2)	62(3)	65(5)	51(3)	-7(3)	-14(3)	-9(3)
C(3)	73(4)	65(5)	41(3)	-14(3)	-11(3)	-9(3)
C(4)	65(3)	64(4)	55(3)	-10(3)	-11(3)	-14(3)
C(5)	40(3)	87(5)	59(3)	-13(3)	-2(2)	-8(3)
C(6)	49(3)	62(4)	73(4)	-9(3)	-20(3)	-2(3)
C(7)	152(9)	81(7)	137(8)	32(6)	-44(7)	-10(6)
C(8)	260(15)	183(12)	96(7)	37(7)	-99(9)	-98(10)
C(9)	137(8)	110(8)	123(8)	22(6)	33(6)	-26(6)
C(10)	270(16)	113(10)	158(10)	-20(8)	-92(11)	-79(9)
C(11)	135(8)	107(8)	94(6)	26(5)	-13(5)	-43(6)
C(12)	185(11)	71(8)	168(11)	-25(7)	-4(8)	24(6)
C(13)	45(3)	53(4)	48(3)	-5(2)	7(2)	2(2)
C(14)	50(3)	57(4)	38(3)	-11(2)	4(2)	-2(3)
C(15)	62(3)	55(4)	40(3)	-8(2)	9(2)	-5(3)
C(16)	46(3)	66(5)	55(3)	-20(3)	11(2)	-14(3)
C(17)	38(3)	74(5)	50(3)	-16(3)	4(2)	4(3)
C(18)	123(7)	99('/)	104(6)	30(5)	-35(5)	5(5)
C(19)	104(5)	70(6)	89(5)	-13(4)	15(4)	-21(4)
C(20)	119(7)	67(6)	103(6)	-17(4)	40(5)	5(5)
C(21)	140(8)	113(8)	105(7)	24(5)	-34(6)	18(6)
C(22)	218(11)	67(7)	81(5)	-2(4)	11(6)	-30(6)
C(23)	180(9)	84(7)	67(5)	-5(4)	18(5)	-25(6)
P(2A)	47(5)	127(11)	58(5)	-20(5)	12(4)	-18(5)
P(3A)	49(5)	106(9)	81(7)	-38(6)	-8(4)	18(5)
O(1A)	170(4)	$3 \pm 0 (4)$	140(2)	-100(3)	-25(12)	-14(16)
C(IA)	1/U(4)	40(3)	60(2)	-Z(17)	-IU(2)	-30(2)

	х	У	Z	U(eq)
н(3)	_1427	6310	10242	70
H(5)	-4501	6861	12427	74
н(б)	-4082	8308	11541	72
H(7A)	-1597	9663	10414	185
H(7B)	-3576	9644	10314	185
H(7C)	-2258	9989	9538	185
H(8A)	-3091	8514	8333	256
H(8B)	-4637	8367	9066	256
H(8C)	-3363	7545	8779	256
H(9A)	478	8569	8693	193
H(9B)	540	7594	9152	193
H(9C)	997	8419	9624	193
H(10A)	-5520	4799	11138	256
H(10B)	-4626	3840	11347	256
H(10C)	-3884	4437	10537	256
H(11A)	-3176	5171	13254	168
H(11B)	-3786	4214	13126	168
H(11C)	-5041	5079	13006	168
H(12A)	-315	4434	10999	216
H(12B)	-718	3800	11833	216
H(12C)	49	4738	11885	216
H(14)	-697	8750	14837	59
Н(16)	-4057	7122	14066	67
H(17)	-4267	8592	13221	65
H(18A)	-3781	11213	12588	164
H(18B)	-4628	10281	12768	164
H(18C)	-2882	10357	12150	164
H(19A)	608	10438	13775	133
H(19B)	-14	11243	13160	133
H(19C)	499	10287	12812	133
H(20A)	-2849	10674	15027	152
H(20B)	-4572	10839	14604	152
H(20C)	-3144	11545	14422	152
H(21A)	952	7326	15791	181
H(21B)	1332	6498	15221	181
H(21C)	815	6340	16213	181
H(22A)	-1736	5524	14736	186
H(22B)	-3587	5725	15241	186
H(22C)	-2105	5216	15713	186
H(23A)	-2779	6713	17028	169
H(23B)	-4234	7140	16490	169
H(23C)	-2743	7726	16669	169

Tabelle 5.
H-Atomkoordinaten [x 10 ⁴] und äquivalente isotrope Auslenkungsparameter [Å ² x 10 ³] für 0201

Dank

Mein Dank gilt all jenen, welche zum Gelingen dieser Arbeit beigetragen haben. Besonders bedanken möchte ich mich bei:

- Herrn Dr. G. Wolmershäuser f
 ür die Anfertigung der R
 öntgenstrukturanalysen und seine stete Diskussions- und Hilfsbereitschaft
- Frau Dr. G. Hornung für die Aufnahme der Massenspektren
- Herrn Dipl.-Chem. T. Sögding, Frau Dipl.-Chem. C. Eichhorn, Herrn Dr. G. Schmitt und Herrn Dipl.-Chem. J. Ertl für die Aufnahme der NMR-Spektren
- Herrn U. Gumsheimer für das gewissenhafte Korrekturlesen dieser Arbeit
- Bei den Mitarbeitern der Arbeitskreise von Herrn Prof. Dr. O. J. Scherer und Herrn Prof.
 Dr. H. Sitzmann f
 ür die sehr angenehme Arbeitsatmosph
 äre in der AC
- Guido, Jörg und Udo für die sehr gute Zusammenarbeit und Kurzweiligkeit im Labor
- Dietmar f
 ür Alles

Lebenslauf

Persönliche Daten

Name	Christian Müller
geboren am	12.03.1974
Geburtsort	Ludwigshafen/Rhein
Nationalität	deutsch
Familienstand	ledig
Eltern	Heinz-Peter Müller und Barbara Rosa Müller, geb. Böhm

Schulbildung

Wehrdienst	
08/1984 - 06/1993	Heinrich-Böll-Gymnasium Ludwigshafen
08/1980 - 06/1984	Alfred-Delp-Grundschule Ludwigshafen

08/1993 - 10/1994	Zivildienst bei der Johanniter-Unfall-Hilfe Ludwigshafen

Chemiestudium (Diplom) an der Universität Kaiserslautern

10/1994 - 11/1996	Grundstudium mit Vordiplom
11/1996 - 09/2000	Hauptstudium mit Diplom
04/2000 - 09/2000	Diplomarbeit im Arbeitskreis von Prof. Dr. O. J. Scherer
10/2000 - 09/2002	Promotionsarbeit im Arbeitskreis von Prof. Dr. O. J. Scherer