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Abstract

Multiobjective combinatorial optimization problems have received increasing attention
in recent years. Nevertheless, many algorithms are still restricted to the bicriteria case.
In this paper we propose a new algorithm for computing all Pareto optimal solutions.
Our algorithm is based on the notion of level sets and level curves and contains as a
subproblem the determination of K best solutions for a single objective combinatorial
optimization problem. We apply the method to the Multiobjective Quadratic Assignment
Problem (MOQAP ). We present two algorithms for ranking QAP solutions and finally
give computational results comparing the methods.
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1 Multiobjective Programming and Level Sets

In many real world decision problems several conflicting objectives have to be taken into
account. With increasing awareness of this, multicriteria problem formulations have become
more and more popular. In order to solve the resulting mathematical models, methods of mul-
ticriteria optimization have been developed and incorporated into Decision Support Systems.
This branch of mathematical programming has been flourishing over the last two decades and
is still gaining popularity, see e.g. [14, 46, 25, 16, 8] for recent monographs and surveys.
A multiobjective mathematical program is written as

min
X∈X

(g1(X), g2(X), . . . , gQ(X)) (1)

where gq, q = 1, . . . , Q are Q conflicting objective functions. We denote by g : IR
n −→ IR

Q,
g(X) = (g1(X), g2(X), . . . , gQ(X)) the vector valued objective function of the multicriteria
optimization problem (1). We will use the concept of Pareto optimality to define the mini-
mization in (1) in this paper.

Definition 1 A solution X∗ ∈ X is called Pareto optimal if and only if there is no X ∈ X
such that gq(X) < gq(X

∗), q = 1, . . . , Q and g(X) 6= g(X∗) (denoted by g(X) < g(X∗)). If
X∗ is Pareto optimal then g(X∗) is called efficient. If X,Y ∈ X and g(X) < g(Y ) we say
that X dominates Y and g(X) dominates g(Y ). The set of all Pareto optimal solutions is
denoted by XPar, the Pareto set. The set of all efficient points is denoted by Yeff , the efficient
set.

Independent of the properties of the objective function g or the constraint set X , Pareto
optimal solutions can be characterized geometrically. In order to state this characterization
we introduce the notion of level sets and level curves.

Definition 2 Let bq ∈ IR.

1. The set Lq
≤(bq) := {X ∈ X : gq(X) ≤ bq} is called the level set of gq with respect to the

level bq.

2. The set Lq
=(bq) := {X ∈ X : gq(X) = bq} is called the level curve of gq with respect to

the level bq.

The following characterization of Pareto optimal solutions by level sets and level curves was
given by Ehrgott et al. [17].

Lemma 1 Let X∗ ∈ X . Then X∗ is Pareto optimal if and only if

Q
⋂

q=1

Lq
≤ (gq(X

∗)) =

Q
⋂

q=1

Lq
= (gq(X

∗)) ,

i.e. X∗ is Pareto optimal if and only if the intersection of all Q level sets of gq, q = 1, . . . , Q
with respect to the levels gq(X

∗) is equal to the intersection of the level curves of gq, q =
1, . . . , Q with respect to the same levels.
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Because we will use the result of Lemma 1 throughout the paper the following notation will
be convenient. For b ∈ IR

Q let

X (b) := {x ∈ X : gq(X) ≤ bq, q = 1, . . . , Q} =

Q
⋂

q=1

Lq
≤(bq).

Correspondingly, X (b)Par will denote the Pareto set of X (b). Because of Lemma 1, level sets
are useful tools to answer certain questions, that are both relevant to decision makers in real
world applications and interesting from a theoretical point of view.

Problem 1: Given a feasible solution X, does there exist a feasible solution which dominates
X? Literally, this means checking the condition of Lemma 1.

Problem 2: Given a vector b ∈ IR
Q of upper bounds, determine X (b)Par. Note that many in-

teractive methods include the possibility for the decision maker to specify upper bounds
as reservation levels, see e.g. [46][Section 5.6] and references there.

Problem 3: Compute XPar. This has to be done when a final decision is made in an a-
posteriori fashion and a most preferred solution is chosen from among the Pareto set.

All three problems can be solved using the characterization given in Lemma 1. We will now
show that the essential problem in this list is Problem 2.

Lemma 2

1. Problem 1 is a special case of Problem 2.

2. Problems 2 and 3 are equivalent.

Proof:

1. This is obvious by choosing bq = gq(X).

2. Problem 2 is a special case of Problem 3 with X = X (b). For the converse, choose bq

big enough so that XPar = XPar(b), e.g. bq = supX∈X gq(X). 2

For a more detailed answer to the relation of problems 2 and 3, note that the range of values
that efficient points can attain is given by a lower and upper bound on the efficient set Yeff

defined by the ideal and nadir point of the multiobjective programming problem (1). The
ideal point yI = (yI

1 , . . . , yI
Q) is given by

yI
q := inf

X∈X
gq(X)

and the nadir point yN = (yN
1 , . . . , yN

Q ) is defined by

yN
q := sup

X∈XPar

gq(X).

For the combinatorial problems we consider later in this paper, the set of efficient points
is finite, i.e. compact, so that we will be able to substitute inf by min and sup by max.
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Although the ideal point can be found through the solution of Q single objective problems
minX∈X gq(X), computing the nadir point yN is in general a hard problem, when Q > 2
objectives are present (see [18] for a recent discussion of this topic).
A popular heuristic to get an estimation of the nadir point uses the pay-off table. With a
minimizer Xq of each objective function gq compute the pay-off table, a Q × Q matrix

P =
(

gi(X
j)

)

i=1,...,Q;j=1,...,Q

and let
ỹN

q := max
i=1,...,Q

gq(X
i).

ỹN
q is called the estimated nadir point. It should be mentioned that arbitrarily large over- or

underestimation of the nadir point is possible if there are more than two objective functions
and a minimizer of one of the objectives is not unique (see [36] for an example).
With the nadir point, we can choose bq = yN

q as upper bounds to see that Problem 3 is a

special case of Problem 2. We will comment on the effects of using bq = ỹN
q rather than

bq = yN
q in Section 4 when we present numerical results.

In the following section we develop an algorithm to solve Problem 2 above for multiobjective
combinatorial optimization (MOCO) problems.

2 An Algorithm for Multiobjective Combinatorial Optimiza-
tion Based on Level Sets

In this section we develop a method for the determination of Pareto optimal solutions in
a multicriteria combinatorial optimization problem (MOCO) based on the characterization
given in Lemma 1. The procedure uses an algorithm which solves the problem of finding a K
best solution in a combinatorial optimization problem.
A multiobjective combinatorial optimization problem is a multiobjective program (1) where
the feasible set X is finite. The feasible set is given by a set of linear constraints with integer
(in particular, binary) variables that define some combinatorial structure as trees, paths,
cycles, etc. of a graph. The objective functions are generally linear functions, often arising as
the sum of weights of the elements of the combinatorial structure described by the constraints.
For a survey on the state of the art in multiobjective combinatorial optimization see [15].
The goal is to find all Pareto optimal solutions of a MOCO problem respecting given reser-
vation levels bq, q = 1, . . . , Q. In other words we want to compute X (b)Par.
Instead of an explicit computation of the intersection of level sets and checking the condition
of Lemma 1, we will generate one level set (L1

≤(b1), without loss of generality) in order of
increasing values of the corresponding objective function, and then check for each element of
this level set if it is also contained in the other level sets and if it dominates or is dominated
by a solution found before.
Let us assume that we have found L̃ = {X1

1 , . . . , X1
K} ⊆ L1

≤(b1) and that g1(X
1
1 ) ≤ · · · ≤

g1(X
1
K) and no X ∈ X \ L̃ with g1(X) < g1(XK) exists. Furthermore assume that Xpot =

{Xi1 , . . . , Xik} = L̃Par ⊆ L̃ is the subset of (potentially) Pareto optimal solutions.
Let X be a K + 1-best solution for minX∈X g1(X) and assume gq(X) ≤ bq, q = 2, . . . , Q
(otherwise X cannot satisfy the criterion of Lemma 1). Then

g1(Xi1) ≤ · · · ≤ g1(Xik) ≤ g1(X).
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and {Xi1 , . . . , Xik , X} ⊂ L1
≤ (g1(X)). Let imax be the maximal index such that g1(Ximax) <

g1(Xl). We consider two situations.
If there exists j ∈ {i1, . . . , imax} such that gq(Xj) ≤ gq(X) for all q = 2, . . . , Q then Xj 6∈
⋂Q

q=1 Lq
= (gq(X)) but Xj ∈

⋂Q
q=1 Lq

≤ (gq(X)) and X is not Pareto optimal due to Lemma 1.
Considering some Xj in the set {Ximax+1, . . . , Xik} we can restrict our attention to the re-
stricted objective function vector g2 = (g2, . . . , gQ). Here four cases can occur.

• If g2(Xj) < g2(X) Xl is not Pareto optimal.

• If g2(X) < g2(Xj) Xj is not Pareto optimal.

• If g2(Xj) = g2(X) Xl is a potentially Pareto optimal solution (since Xj is) and is
included in Xpot

• Otherwise g2(Xj) and g2(X) are not comparable and Xj and X do not dominate each
other. If this situation occurs for all Xj , X is added to Xpot.

Because a level set Lq
≤(bq) is either empty if bq < minX∈X gq(X) or can be written as

{X1, . . . , XK} with gq(Xj) ≤ gq(Xj+1), j = 1, . . . ,K − 1 we will now turn our attention
to the computation of K best solutions for combinatorial optimization problems.

2.1 K-Best Solutions of Combinatorial Optimization Problems

In 1985 Hamacher and Queyranne [28] published a binary search tree (BST) algorithm for
finding a K best solution in a combinatorial optimization problem. Assuming that a method
for computing a best and second best solution for a combinatorial optimization problem is
available the BST Algorithm is based upon the following idea.
First, determine a best solution X1 and a second best solution X2 with respect to the whole
feasible set X . Then partition X into two disjoint subsets X1 and X2 in such a way that X1

is a best solution with respect to X1 and X2 is a best solution with respect to X2. In both
subsets X1 and X2 find a second best solution X2

1 , respectively X2
2 . The comparison of X2

1

and X2
2 yields the third best solution X3 with respect to X .

Supposing that X3 = X2
2 , rename X2 as X̃2 and partition X̃2 into two disjoint subsets X2

and X3, again in such a way that X2 is a best solution with respect to X2 and X3 is a best
solution with respect to X3. A comparison of second best solutions X2

1 , X2
2 (with respect to

X2) and X2
3 (with respect to X3) yields the fourth best solution X4 with respect to X .

Continuing this procedure up to the kth iteration the feasible set X is partitioned into k
disjoint subsets X = X1∪̇X2∪̇ . . . ∪̇Xk, and a best and second best solution with respect to
each of these subsets is known. A comparison of all second best solutions X 2

1 , X2
2 , . . . , X2

k

yields the (k + 1) best solution Xk+1 with respect to X .
Note that in the BST Algorithm only once (in the first step) a best solution has to be
computed. In all subsequent iterations second best solutions are required.
Figure 1 gives an example with four iterations in the BST Algorithm, where the fourth best
solution X4 is the best of X2

1 , X2
2 and X2

3 .
An alternative general procedure has been given by Lawler [39] and Murty [47]. This proce-
dure is not a binary one as opposed to the BST Algorithm.
As mentioned before the use of the algorithm requires a method for computing a best and
second best solution of the combinatorial optimization problem under consideration. For
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Figure 1: Four Iterations in the BST Algorithm.

many problems, special algorithms are available which exploit the particular structure of the
problem. We briefly review some of these here.
The largest amount of research on ranking solutions is available for the shortest path prob-
lem. Algorithms developed by Azevedo et al. [1], Martins et al. [43] or Eppstein [20] are very
efficient. The best complexity known is O(m + n log n + K) by Eppstein’s method. How-
ever, numerical experiments reported by Martins et al. [44] show their algorithm to be very
competitive. Its complexity is O(m + Kn log n).
The second problem for which several methods are known, is the minimum spanning tree
problem. We mention papers by Gabow [24] and Katoh et al. [32]. The best known complexity
is O(Km + min(n2,m log log n)).
The application of the BST algorithm led to algorithms for matroids (Hamacher and Queyran-
ne [28]), with the special case of uniform matroids discussed in Ehrgott [12]. The complexity
of the latter is O(K(n + m) + min{n log n, nm}). Ranking methods for matroid intersec-
tions are proposed by Camerini and Hamacher [4]. Chegireddy and Hamacher [6] present
an O(Kn3) algorithm to find K-best perfect matchings, Brucker and Hamacher [2] discuss
K-best solutions for polynomially solvable scheduling problems, and finally, an algorithm to
rank (integer) network flows was presented in Hamacher [27]. Its complexity is O(Knm2).
Using the previous tools we are now able to describe the general algorithm for finding Pareto
optimal solutions of a MOCO problem.

Pareto optimal solutions with reservation levels

Input: Instance of a MOCO with Q criteria, reservation levels b1, . . . , bQ

Output: The set X(b)Par of all Pareto optimal solutions respecting reservation levels b

Step 1: Find an optimal solution X1 of minX∈X g1(X)
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Step 2: if g1(X1) > b1 then Stop, X(b)Par = ∅
k := 1
X(b)Par := {Xk}

Step 3: k := k + 1
Apply a ranking algorithm to compute the k-best solution Xk for g1

if g1(Xk) > b1 then Stop, Output X(b)Par

Step 4: if Xk ∈ Lq
≤ for all q = 2, . . . , Q then goto Step 5

else goto Step 3
Step 5: for 1 ≤ i ≤ k − 1

if Xk dominates Xi, then X(b)Par = X(b)Par \ {Xi}
else if Xi dominates Xk then break and goto Step 3
else if g(Xk) = g(Xi) then X(b)Par = X(b)Par ∪ {Xk} break and goto Step 3

Step 6: X(b)Par = X(b)Par ∪ {Xk}
goto Step 3

A question that remains to be answered is the choice of the objective for which the level set is
constructed. Obviously, one that is small seems to be an intuitively good choice. Therefore,
the q which yields the smallest value bq − yI

q is recommended. This choice was confirmed in
our numerical tests for the multiobjective quadratic assignment problem in Section 4.

3 Solving the Multiobjective Quadratic Assignment Problem

3.1 Quadratic Assignment Problems

The first appearance of the quadratic assignment problem (QAP) was in 1957 in an article
by Koopmans and Beckmann [35] as a mathematical model of assigning a set of economic
activities to a set of locations. Thus, the QAP occurred at first in the context of a facility
location problem, still one of its major applications. Examples for facility location problems
are the design of a hospital layout [19] and a campus planning model [9].
Another example for the usage of the QAP is the so called wiring problem in electronics
[55]: n modules have to be placed on n places on a board, where the modules are pairwise
connected by a number of wires and the places on the board are given. Let fij be the number
of wires connecting two modules i and j, and dkl be the distance between two places k and l
on the board. Then the length of wires needed for connecting the modules i and j which are
assigned to the places k and l is given by fijdkl. Now the problem is to find an assignment of
modules to places that minimizes the total length of the wires needed.
A general formulation of the QAP is given by Lawler [38]: Let B = bkilj, where i, j, k, l =
1, . . . , n, be a 4-dimensional array of reals. Then the QAP is given by

min
π∈Sn

n
∑

i=1

n
∑

j=1

bπ(i)iπ(j)j (2)

where Sn is the set of all permutations of {1, . . . , n}.
In the case of a facilities layout problem n facilities are to be assigned to n locations. A flow
matrix F = (fij) is given, where fij is the flow of materials moving from facility i to facility
j, in a pre-specified period of time, and a distance matrix D = (dij), where dij represents the
distance from location i to location j, are given. Then fπ(i)π(j)dij is the cost of simultaneously
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assigning facility π(i) to location i and facility π(j) to location j. The objective is to find a
permutation π such that the total cost g(π) =

∑n
i=1

∑n
j=1 fπ(i)π(j)dij is minimized.

In this case B can be divided into two matrices F and D, where bkilj = fkldij for 1 ≤ i, j, k, l ≤
n. Using the correspondence between permutations and permutation matrices we get another
QAP formulation given by Koopmans and Beckmann [35].
Consider the set {1, . . . , n} and two n×n matrices F = (fij), D = (dij), i, j = 1, . . . , n. Then
the (QAP ) can be written as

min

n
∑

i=1

n
∑

j=1

n
∑

k=1

n
∑

l=1

fijdklxikxjl

subject to

n
∑

i=1

xij = 1 j = 1, . . . , n

n
∑

j=1

xij = 1 i = 1, . . . , n

xij ∈ {0, 1} i, j = 1, . . . , n.

(3)

The QAP is NP-complete in the strong sense (see the book by Çela [5] for references) and
notorious for its difficulty. The largest instance solved optimally to date has n = 27 [21].
The feasible set of the QAP is denoted by X , where X is the set of permutation matrices.
Throughout this paper we will focus on the Koopmans-Beckmann formulation (3) which can
be linearized using the following well known result of Kaufman and Broeckx [33] from 1978.
In the literature there are many different linearizations, see for example [3, 23, 33, 48, 50],
but the one by Kaufman and Broeckx is probably the smallest one in terms of the number of
variables and constraints.
The integer formulation (3) of the QAP is equivalent to the following mixed integer linear
program with n2 Boolean variables, n2 real variables and n2 + 2n constraints.

min
n

∑

i=1

n
∑

k=1

yik

subject to
n

∑

i=1

xik = 1 k = 1, . . . , n

n
∑

k=1

xik = 1 i = 1, . . . , n

cikxik +

n
∑

j=1

n
∑

l=1

fijdklxjl − yik ≤ cik i, k = 1, . . . , n

xik ∈ {0, 1} i, k = 1, . . . , n

yik ≥ 0 i, k = 1, . . . , n

(4)

In this formulation cik =
∑n

j=1

∑n
l=1 fijdkl and the additional variables take the values yik =

xik

∑n
j=1

∑n
l=1 fijdklxjl.
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The best existing exact algorithms are branch and bound algorithms the performance of which
depends strongly on the quality of the lower bounds. These lower bounds can be computed
by solving a relaxed linearization.

3.2 Multicriteria Models of the QAP

The QAP with multiple objectives (MOQAP) has found little attention so far. We only found
a few references [30, 41]. These are closely related to the facility layout problems. A number
of papers propose approaches to facility layout based on the quadratic assignment problem
[10, 22, 40, 51, 57].
Probably the first time the multicriteria facilities layout problem appeared in literature was in
1979: Rosenblatt [51] considered a bicriteria problem where one criterion was to minimize the
material handling costs and the second one was to maximize the total adjacency score. To this
end Rosenblatt proposed to reformulate the adjacency-maximization problem as a quadratic
assignment problem. This reformulation allowed him to linearly combine the two objective
functions and to determine the complete set of supported efficient solutions by varying the
parameters and solve single objective QAPs (in fact he disregarded the set of nonsupported
efficient solutions). A very similar approach was followed by Dutta and Sahu [10]. They also
combined the qualitative and quantitative measure linearly. In [22], the objective function
is different. Instead of combining the two objective functions linearly Fortenberry and Cox
propose to take the parameters representing the desirability of being adjacent as weights
resulting in a “multiplicity model”.
Urban [57] points out that this multiplicity model has two main disadvantages. First of
all if there is no flow between two facilities i and k then this pair of facilities does not
contribute to the objective function at all, regardless of the adjacency desirability value. The
second disadvantage is concerned with the consequences of taking a negative value (−1) for
representing undesirable adjacencies as proposed by Fortenberry and Cox [22]. But taking a
negative value results in the odd effect that pairs of facilities are more penalized if they have
a large work flow between them than if they have a small amount of flow. To overcome these
deficiencies Urban [57] proposes to consider a QAP having as objective function a combination
of an additive and a multiplicity model.
Malakooti and D’Souza [41] also used the quadratic assignment problem with additively
aggregated objective functions as the basis for their investigations. In contrast to the other
approaches presented so far they put emphasis on the question of how to determine the weights
for the linear combination.
Jacobs [30] pursues a different approach. He describes an interactive layout system for un-
equally sized rooms and forbidden areas (solid space, circulation space). The subprocedure he
uses to generate feasible layouts is mainly a trial and error approach. For measuring the qual-
ity of the resulting layout he mentions four objectives, namely distances, structure (as simple
as possible), available space (either to minimize or to maximize) and adjacency preferences.
He combines the objectives linearly to obtain again a single objective function.
To our knowledge Malakooti [40] stresses the need for determining the nonsupported efficient
solutions for the first time in the area of multicriteria facilities layout problems explicitly.
There are different research articles which are based on the models and objective functions de-
scribed so far, e.g. [29] (additive aggregation of different qualitative and quantitative criteria
not given in detail as in [57], but not restricted to the bicriteria case and including normal-
ization of parameters; construction heuristic with pairwise exchange), [54] (objective function
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as in [57], enhanced with two factors a and b corresponding to fik resp. rik; rik determined
by applying the Analytical Hierarchy Process (AHP), see [52]; Simulated Annealing) and [56]
(model and objective function of [51]; Simulated Annealing).
In [37] Krause and Nissen consider a restricted QAP, where the model is extended by “positive
zoning constraints” forcing certain facilities to be adjacent. Apart from several approaches
where these zoning constraints are added to the objective function they also deal with “real”
bicriteria problems where the second objective is to minimize the number of violated zoning
constraints.
In [7] and [53] Chen and Sha propose a quite different way to tackle multicriteria facilities
layout problems. They use the fact that for the quadratic assignment problem it is possible
to find a closed form expression for the mean and the variance of the cost distribution of all
feasible layouts. These expressions were already presented by Graves and Whinston in 1970
[26] and rely on the given data only. The determination does not involve any optimization
procedure. See also [58] and [34] for extensions. Using two slightly different approaches
to normalize the objectives to include both quantitative and qualitative measure into one
objective Chen and Sha define two new measures to evaluate the quality of the layout. Given
a tolerance probability α of the solution being dominated by another solution the authors
propose a two-exchange heuristic in which only layouts are returned for which the probability
of being not dominated is larger than 1 − α. They also determine an expression for the
probability of one solution being better than the others. This probability is returned with
the corresponding solution so that the decision maker has an additional possibility to rate
the quality of the solution.
So generally, there is a lack of methods that consider more than two objectives and that are
able to generate all (supported and unsupported) Pareto optimal solutions of MOQAPs. Our
method addresses both issues.

3.3 The BST Algorithm Adapted for the QAP

Because the general algorithm presented in Section 2.1 works for any MOCO problem, the only
adaption that has to be made for a specific problem is to design an algorithm to compute the
K best solution to the problem. We first adapt the BST Algorithm to the QAP and develop
an alternative algorithm in the next section.
Finding a best solution X1 can be done using well known solution methods for the QAP (for
example [11, 31, 49, 45]). For computing a second best solution X2 let us assume that a best
solution X1 is already known. Now we exclude X1 from the feasible set X and minimize over
the set X \ {X1}, which means that we have to solve the problem

min
X\{X1}

n
∑

i,j,k,l=1

fijdklxikxjl.

Then a best solution in X \ {X1} is a second best solution in X . By the special structure of
the permutation matrices we can exclude X1 from the feasible set X by adding the constraint

∑

(i,j) :
xij=1 in X1

xij ≤ n − 2 (5)

to the Koopmans-Beckmann formulation (3) of the QAP. Constraint (5) is a generalized upper
bound constraint.
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Lemma 3 The constraint (5) holds for all X ∈ X \ {X1}.

Proof:
Let X ∈ X and X 6= X1. Since X and X1 are permutation matrices and X 6= X1 there exist
at least two index pairs (i, j), (k, l) ∈ {1, . . . , n} × {1, . . . , n} such that xij = xkl = 1 in X1

but xij = xkl = 0 in X. 2

Thus finding a second best solution requires the solution of (3) augmented by a generalized
upper bound constraint:

min

n
∑

i=1

n
∑

j=1

n
∑

k=1

n
∑

l=1

fijdklxikxjl

subject to

n
∑

i=1

xij = 1 j = 1, . . . , n

n
∑

j=1

xij = 1 i = 1, . . . , n

∑

(i,j) :
xij=1 inX1

xij ≤ n − 2

xij ∈ {0, 1} i, j = 1, . . . , n

(6)

The remaining question is how to partition the feasible set X . We assume that X1 is a best
and X2 a second best solution in X and X2 is computed by (6). Then X1 6= X2 and therefore
there exists an index pair (i, j) ∈ {1, . . . , n} × {1, . . . , n} such that xij = 1 in X1 but xij = 0
in X2. Let X1 := {X ∈ X : xij = 1} and X2 := {X ∈ X : xij = 0}. Then X = X1 ∪ X2 and
X1 ∩ X2 = ∅. Furthermore X1 is a best solution in X1 and X2 is a best solution in X2.
In general, let I,O ⊂ {1, . . . , n} × {1, . . . , n}, I ∩ O = ∅ and XI,O ⊂ X be defined as

XI,O := {X ∈ X : xij = 1 ∀ (i, j) ∈ I and xkl = 0 ∀ (k, l) ∈ O}.

XI,O is called restricted feasible set and minX∈XI,O

∑n
i,j,k,l=1 fijdklxikxjl is called restricted

QAP. Then X1 and X2 can be written as XI1,O1
and XI2,O2

, respectively, where I1 = O2 =
{(i, j)} and O1 = I2 = ∅. The sets I and O contain now the information about fixed variables
in the restricted feasible set. In order to find K best solutions, we may have to further
partition a restricted feasible set.
If we add the constraints

xij = 1 for all (i, j) ∈ I

xkl = 0 for all (k, l) ∈ O

to (6) the partition of a restricted feasible set is analogous to the partition of X .

3.4 The Multiple Search Tree Algorithm

In this section we develop an alternative algorithm for computing the K best solutions of a
QAP. As seen in the last section using the BST Algorithm means partitioning the current
feasible set XIq,Oq into two disjoint subsets by fixing a variable xij to one (resulting in X 1

Iq ,Oq
)
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respectively to zero (yielding X 2
Iq ,Oq

). Because feasible solutions X are permutation matrices
fixing xij to one automatically fixes all other variables in row i and column j to zero. Thus, if
the current problem is of size l, the restricted problem on X 1

Iq ,Oq
is a of size l − 1. But fixing

a variable xij to zero does not reduce problem size. Therefore to find the next best solution
with respect to XIq,Oq we have to solve one problem of size (l − 1) and one of size l.
In order to reduce problem size for all restricted QAPs the idea is to fix variables to one
only. To explain the idea in more detail let us consider the feasible set X with known best
and second best solution X1 and X2. Furthermore let i be a row where a variable xij occurs
with xij = 1 in X1 and xij = 0 in X2 (alternatively this can be done with respect to a
column). We partition X into n disjoint subsets by fixing each variable in row i to one. This
is possible since {X ∈ X : xij = 0} = ∪̇k 6=j{X ∈ X : xik = 1}). Then X1 is a best solution
with respect to one of these subsets and the same holds for X2. So X is partitioned into
X = X1∪̇X2∪̇ . . . ∪̇Xn, where X1 is a best solution with respect to Xi for one i ∈ {1, . . . , n}
and X2 is a best solution with respect to Xj for one j ∈ {1, . . . , n}, j 6= i.
Thus finding candidates for the third best solution requires the computation of a second best
solution with respect to Xi and Xj and the computation of best solutions with respect to
Xk, k ∈ {1, . . . , n}, k 6= i, j. This means that two times a second best solution and (n − 2)
times a best solution has to be computed. Since each of these problems has size (n−1) finding
a third best solution with respect to X requires the solution of n problems of size (n − 1) as
compared to solving two problems of size (n − 1) and n, respectively. Because of the strong
NP-hardness of the QAP and because of the dramatic increase in computation times needed
for solving when n increases it seems to be a good idea to solve more smaller problems rather
than fewer problems of full size, see Section 4 for empirical confirmation of this intuition.
Similar to the last section let I ⊂ {1, . . . , n} × {1, . . . , n} and define XI ⊂ X as

XI := {X ∈ X : xij = 1 ∀ (i, j) ∈ I}.

Then XI is called restricted feasible set and minX∈XI
g(X) is called a restricted QAP. Adding

the constraints

xij = 1 (i, j) ∈ I
∑

(i,j) :
xij=1 inXrest

xij ≤ n − 2,

where Xrest is a best solution with respect to XI to the QAP leads to the following mini-
mization problem that gives a second best solution in a restricted QAP, where a best solution

12



Xrest is known.

min

n
∑

i=1

n
∑

j=1

n
∑

k=1

n
∑

l=1

fijdklxikxjl

subject to

n
∑

i=1

xij = 1 j = 1, . . . , n

n
∑

j=1

xij = 1 i = 1, . . . , n

xij = 1 (i, j) ∈ I
∑

(i,j) :
xij=1 in Xrest

xij ≤ n − 2

xij ∈ {0, 1} i, j = 1, . . . , n.

Now consider a restricted feasible set XIq , |XIq | ≥ 2 , with Xq and X2
q as known local best

and second best solution. Choose two index pairs (iq, j1), (iq , j2) ∈ {1, . . . , n} × {1, . . . , n},
(iq, j1) 6= (iq, j2), in such a way that xiqj1 = 1 in Xq and xiqj2 = 1 in X2

q .
Let J = {j : (i, j) /∈ Iq} (i.e. |J | = n − |Iq|) be the set of all column indices that do not
occur in Iq. Therefore J contains all column indices such that in the corresponding column
a variable is not fixed to one so far, i.e. the information which of the variables xiqj in row iq
can be fixed to one.
Let Inew

j := Iq ∪ {(iq, j)} for j ∈ J . Then XIq =
⋃

j∈J XInew
j

and XInew
j

∩ XInew
k

= ∅ for all

j, k ∈ J, j 6= k. Furthermore Xq is a best solution in XInew
j1

and X2
q is a best solution in XInew

j2
.

Therefore the restricted feasible set XIq is partitioned into n − |Iq| disjoint subsets XInew
j

in
such a way that in two of them a best solution is known. This leads to the following MST
Algorithm.

Multiple Search Tree (MST) Algorithm

Input: Instance of a QAP of size n with flow matrix F and distance matrix D
Integer K, 2 ≤ K ≤ n!

Output: A K-best solution XK for the QAP

Step 1: I1 := ∅
BestSol := SecBestSol := ∅
k := 2

Step 2: Compute X1 and X2
1 in XI1 = X

SecBestSol := SecBestSol ∪ {X2
1}

Step 3: Xk := argmin { g(X) : X ∈ BestSol ∪ SecBestSol }
If k = K then STOP

Step 4: If Xk ∈ BestSol then BestSol := BestSol \ {Xk}, goto Step 5
else SecBestSol := SecBestSol \ {Xk}, goto Step 6

Step 5: (Xk is a best solution in XIl
j

, 1 ≤ l ≤ k − 1 , j ∈ Jl )

Ik := I l
j

Compute X2
k in XIk

SecBestSol := SecBestSol ∪ {X2
k}

k := k + 1, goto Step 3
Step 6: (Xk is a second best solution in XIq , 1 ≤ q ≤ k − 1)

If |XIq | = 2 then k := k + 1, goto Step 3
Step 7: Choose (i, j1) 6= (i, j2) such that xij1 = 1 in Xq (best solution in XIq)

and xij2 = 1 in Xk

Jk := {j : (i, j) /∈ Iq}
Ik := Iq ∪ {(i, j2)}
Ik
j := Iq ∪ {(i, j)} for all j ∈ Jk \ {j1, j2}

Iq := Iq ∪ {(i, j1)}
Step 8: Compute a second best solution X2

q and X2
k in XIq and XIk

, respectively

Compute a best solution Y k
j in each set XIk

j
∀j ∈ Jk \ {j1, j2}

BestSol := BestSol ∪ {Y k
j } for all j ∈ Jk \ {j1, j2}

SecBestSol := SecBestSol ∪ {X2
q , X2

k}
k := k + 1, goto Step 3
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Figure 2: Example of the MST Algorithm for n = 4.

Figure 2 shows an example for n = 4, where the feasible set X is partitioned into 4 disjoint
subsets XI1 ,XI2 ,XI3

2 and XI4
2 . Local second best solutions X2

1 and X2
2 in XI1 and XI2 ,

respectively, and local best solutions Y 2
3 and Y 2

4 in XI2

3

and XI2

4

, respectively, have to be
computed. These solutions are the candidates for the third best solution X3 and it turns out
that Y 2

4 = X3. Then a local second best solution X2
3 in XI3 has to be computed and the

candidates for the fourth best solution are X2
1 , X2

2 , Y 2
3 , X2

3 and it turns out that X4 = X2
2 .

Now XI2 is partitioned into 3 disjoint subsets XI4

1

,XI4 and XI2 . A local best solution Y 4
1

in XI4

1

and local second best solutions X2
4 and X2

2 in XI4 and XI2 , respectively, have to be

computed. Thus the candidates for the fifth best solution X5 are X2
1 , Y 4

1 , X2
4 , X2

2 , Y 2
3 and X2

3 .

4 Computational Results

In this section we give computational results obtained by using the MST and BST Algorithm
for the determination of Pareto optimal solutions of MOQAP.
A method for finding a K best solution in the single criterion problem is required (see Sections
3.3 and 3.4). We solved the single objective QAP using the linearization of Kaufman &
Broeckx (see Section 3). This linearization was implemented using AMPL and CPLEX 7.0.
The main algorithm of Section 2.1 was implemented in C++. If a state of the art QAP code
is available, this can be substituted for our generic AMPL/CPLEX calls.
All examples in this section are generated uniformly distributed (integers in the interval
[0, 49]). The main diagonals of the distance matrices Dq are set to zero (dq

jj = 0 for all
j = 1, . . . , n and q = 1, . . . , Q), and we did not assume that the triangle inequality is satisfied.
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In all examples the estimated Nadir point ỹN was chosen as reservation level vector.
Table 1 shows results achieved by problems of size n = 4, . . . , 7 and number of objective
functions Q = 2, . . . , 6. The values are average values over five problems.

n 4 5 6 7
Q BST MST BST MST BST MST BST MST

2 #QAPs solved 12.8 15.2 79.8 84.8 346.4 375.4 1798.5 2019.6
Total QAP time 0.84 0.92 5.50 5.19 30.57 26.15 213.84 174.35

3 #QAPs solved 17.8 19.4 100.6 102.8 521.2 550.6 2226.3 2371.6
Total QAP time 1.16 1.18 6.68 6.05 41.59 36.57 242.03 198.63

4 #QAPs solved 21.4 22.2 101.6 104.2 629.6 647.6 3195.4 3461.6
Total QAP time 1.35 1.38 6.83 6.32 47.74 42.17 325.97 272.1

5 #QAPs solved 102.6 103.8 541 570.6
Total QAP time 7.38 6.79 43.38 37.31

6 #QAPs solved 532.2 563.5
Total QAP time 43.27 38.13

Table 1: Computational results.

The value in the first row specifies the average number of QAPs that have to be solved by
using the BST and MST Algorithm, the second row value specifies the average total time
(CPU time in seconds) that is needed for solving the QAPs.

Number of
facilities n

Q = 2 Q = 3 Q = 4

b = ỹN b = ∞ b = ỹN b = ∞ b = ỹN b = ∞

4 3.4 3.4 4.8 7.1 7.2 10.8
[1, 7] [1, 7] [2, 9] [4, 9] [4, 12] [8, 14]

5 6 6 8.2 11.8 16.6 27.2
[3, 9] [3, 9] [4, 15] [6, 22] [7, 35] [15, 44]

6 7.2 7.2 22.6 27.9 44.6 68.8
[3, 16] [3, 16] [15, 34] [16, 46] [22, 64] [39, 100]

7 10.2 10.2 36.3 44.2 94.0 130.1
[6, 15] [6, 15] [24, 57] [30, 60] [50, 114] [99, 179]

Table 2: Number of Pareto optimal solutions.

Table 2 shows the number of Pareto optimal solutions using the estimated Nadir point as
reservation levels and the true number of Pareto optimal solutions (and are the same for BST
and MST, of course). Again the entries of the coefficient matrices of the objective functions
are integers, uniformly distributed in the interval [0, 49]. The values given in the first row are
average values over ten instances, in the second row we give the mimimum and the maximum
number of Pareto solutions we found for the ten instances. This shows how the number
increases with problem size and number of objectives. It also clearly illustrates that the use
of the estimated Nadir point prevents many Pareto optimal solutions from being found.
In each of these examples using the MST method had the effect that more QAPs than using
the BST method had to be solved. But except for n = 4 the time needed using the MST
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Algorithm was shorter than using the BST Algorithm which confirms our intuition that
reducing the problem size outweighs an increased number of problems to be solved.
Figure 3 shows the difference in the number of QAPs solved using the MST and BST method
in the case of two, three and four objective functions, depending on the problem size n.
4|QAP | represents the difference in the number of solved QAPs. The pictures show that
with increasing problems size n the difference in the number of solved QAPs using the MST
and BST Algorithm is also increasing.
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Figure 3: Difference in the number of solved QAPs using the MST and BST method depending
on the problem size n.

Figure 4 shows the time needed to solve the QAPs using the MST method in percentage of
the time needed using the BST method depending on the problem size n. This illustrates
that the advantage of the MST over the BST method increases with problem size.
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Figure 4: MST time in percentage of BST time depending on problem size n.
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Table 3 shows the results for 10 examples of size n = 7 and Q = 4 objectives. The table
contains the size of L1

≤(ỹN
1 ), the size of X (ỹN ) and the number of Pareto optimal solutions,

|X (ỹN )Par|. Additionally we give the number of AMPL calls, i.e. the number of QAPs solved
during the procedure, and the time used for all AMPL computations.

Example L1
≤(ỹN

q ) X (ỹN ) |X (ỹN )Par| #AMPL calls AMPL time

BST MST BST MST

1 3020 1934 101 3996 4193 369.33 310.63
2 2468 1191 101 3479 3700 348.85 288.03
3 3560 1564 107 4464 4544 374.63 315.74
4 1797 1411 96 2847 3225 298.27 257.06
5 4892 4162 112 5034 5036 425.53 351.98
6 3504 1011 93 4463 4611 395.14 321.42
7 4461 3403 85 4899 4897 402.02 326.15
8 4385 3552 80 4932 4962 415.14 336.57
9 2692 2014 128 4031 4203 377.33 305.71
10 3669 1382 97 4760 4834 407.31 332.06

Table 3: Computational results for 10 examples with n = 7 and Q = 4.

Figure 5 illustrates the results of Table 3. It shows the number of solved QAPs against the
size of in L1

≤(ỹN
1 ). In each example the number of solved QAPs using the MST method is

higher than using the BST method. With increasing size of L1
≤(ỹ1N) the difference between

the MST and BST Algorithm is getting smaller.
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Figure 5: Number of solved QAPs versus the size of L1
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q ) for n = 7 and Q = 4.

Figure 6 illustrates Table 3 by showing the total QAP time needed for the MST and BST
algorithms depending on |L1

≤(ỹN
1 )|. For each example the computation time of the BST

method is higher than for the MST method.
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Figure 6 shows (unsurprisingly) that the computation time depends on the size of the level
set L1

≤(ỹN
1 ). Therefore the goal should be to compute the smallest level set Lq

≤(ỹN
q ). In our

experiments it turned out that computing the level set with ỹN
min − yI

min = min{ỹN
q − yI

q : q =
1, . . . , Q} often achieves this goal.
All results obtained for the examples indicate the advantage of using the MST instead of the
BST Algorithm. But further computations with dimensions n ≥ 8 should be performed with
a competitive QAP solver.

5 Conclusions and Final Remarks

We have developed a general algorithm for the computation of Pareto optimal solutions in a
MOCO. The main advantage of our algorithm is that it is not restricted to two objectives.
It works with any number of criteria, by considering one of the objectives explicitly by the
K best procedure and evaluate the others in the process. It can therefore be seen as a
generalization of a ranking algorithm for bicriteria shortest path problems [42]. The main
drawback appears to be that in the worst case all feasible solutions have to be enumerated.
But remember that this will be the case for any algorithm that finds the complete Pareto set,
because every feasible solution could be Pareto optimal, see [13] for some further references
on this.
Our algorithm can also be converted to an interactive procedure, where the decision maker
can change reservation levels in the course of the process, to guide the search towards a
most preferred solution. In such a procedure aspiration levels can also be considered. The
algorithm would then discard solutions below the aspiration level value.
We have adapted this algorithm to the MOQAP and proposed an alternative method for
determining a level set in the QAP. There are a couple of open questions concerning the
algorithm and the implementation. Having shown that the method proposed in this paper
works it would be interesting to use more sophisticated algorithms to solve the single objective
QAPs occurring as subproblems, in particular to solve problems with n ≥ 8. Special cases
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of the QAP with symmetric matrices or polynomially solvable cases could be investigated.
In future research we will apply the general algorithm to other combinatorial optimization
problems.
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[5] E. Çela. The Quadratic Assignment Problem. Kluwer Academic Publishers, Dordrecht,
Boston, London, 1998.

[6] C.R. Chegireddy and Hamacher H.W. Algorithms for finding k-best perfect matchings.
Discrete Applied Mathematics, 18:155–165, 1987.

[7] C.-W. Chen and D. Y. Sha. A design approach to the multi-objective facility layout
problem. International Journal of Production Research, 37(5):1175–1196, 1999.

[8] K. Deb. Multi-Objective Optimization using Evolutionary Algorithms. Wiley-Interscience
Series in Systems and Optimization. John Wiley & Sons, Chichester, 2001.

[9] J.W. Dickey and J.W. Hopkins. Campus building arrangement using topaz. Transporta-
tion Research, 6:59–68, 1972.

[10] K.N. Dutta and S. Sahu. A multigoal heuristic for facilities design problems: MUGHAL.
International Journal of Production Research, 20:147–154, 1982.

[11] C.S. Edwards. A branch and bound algorithm for the koopmans-beckmann quadratic
assignment problem. Mathematical Programming Study, 13:35–52, 1980.

[12] M. Ehrgott. On matroids with multiple objectives. Optimization, 38(1):73–84, 1996.

[13] M. Ehrgott. Approximation algorithms for combinatorial multicriteria optimization prob-
lems. International Transcations in Operational Research, 7:5–31, 2000.

[14] M. Ehrgott. Multicriteria Optimization. Number 491 in Lecture Notes in Economics and
Mathematical Systems. Springer, Berlin, 2000.

19



[15] M. Ehrgott and X. Gandibleux. An annotated bibliography of multiobjective combi-
natorial optimization. Technical report, University of Kaiserslautern, Department of
Mathematics, 2000. Report in Wirtschaftsmathematik Nr. 62/2000, submitted to OR
Spektrum.

[16] M. Ehrgott and X. Gandibleux, editors. Multiple Criteria Optimization – State of the
Art Annotated Bibliographic Surveys, volume 52 of Kluwer’s International Series in Op-
erations Research and Management Science. Kluwer Academic Publishers, Norwell, MA,
2002.

[17] M. Ehrgott, H.W. Hamacher, K. Klamroth, S. Nickel, A. Schöbel, and M.M. Wiecek.
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