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Abstract

For defining attribute types to be used in the case representation, taxonomies occur
quite often. The symbolic values at any node of the taxonomy tree are used as
attribute values in a case or a query. A taxonomy type represents a relationship
between the symbols through their position within the taxonomy-tree which
expresses knowledge about the similarity between the symbols. This paper analyzes
several situations in which taxonomies are used in different ways and proposes a
systematic way of specifying local similarity measures for taxonomy types. The
proposed similarity measures have a clear semantics and are easy to compute at run-
time.

1. Introduction
In current academic and commercial CBR systems, cases are often represented in
an object-oriented fashion. Cases are collections of objects, each of which is
described by a set of attribute-value pairs. The structure of an object is described
by an object class that defines the set of attributes together with a type (set of
possible values) for each attribute. Usually, the similarity between a query and a
case from the case base is computed in a bottom up fashion: for each attribute, a
local similarity measure determines the similarity between two attribute values
and for each object (and the case) a global similarity measure determines the
similarity between two objects (or between the case and the query) based on the
local similarities of the belonging attributes (Wess, 95).

For defining attribute types (sets of possible attribute values), taxonomies are
widely used. A taxonomy is an n-ary tree in which the nodes represent symbolic
values. The symbols at any node of the tree can be used as attribute values in a
case or a query. Unlike a plain symbol type, which only li sts possible attribute
values, a taxonomy represents an additional relationship between the symbols
through their position within the taxonomy-tree. This relationship expresses



knowledge about the similarity of the symbols in the taxonomy. The case
representation language CASUEL (Manago, Bergmann, et al. 1994) includes such
a taxonomy type, which is very often used for modeling a CBR application. For
example, the “classification of marine sponges“ application contains a taxonomy
of body forms of sponges and the PC configuration domain contains a taxonomy
of PC components“ .

Although taxonomies are widely used, there is currently no clear picture of what
knowledge about local similarities is captured in a taxonomy. The impression that
similarity measures are usually constructed in an ad hoc manner (Osborne &
Bridge, 1996) also holds for local similarity measures for taxonomy type
attributes. This paper analyzes several situations in which taxonomies are used in
different ways and proposes a systematic way of specifying local similarity
measures for taxonomy types. The proposed similarity measures have a clear
semantics and are easy to compute at run-time.

2. Examples for Different use of Taxonomies
We now describe four examples in which the taxonomy shown in Figure 1 is used.

Example 1a. Consider a CBR system for the sales support of Personal Computers.
A Case represents an available PC from the stock. The case representation
contains an attribute „graphics card“ , and the taxonomy from Figure 1 represents
the set of possible values. Consider a case c1 with the ELSA 2000 card and a case
c2 with Matrox Mystique card. If we assume that a customer enters a query to our
hypothetical CBR system in which she/he specifies that she/he wants a Miro Video
graphics card, then c1 is certainly closer than c2, because Miro Video and Elsa
2000 have more in common (e.g. the S3 chip) than the Miro Video and the Matrox
Mystique. In general, we could use a similarity measure that assesses similarity
based on the distance between case and the query value in the taxonomy tree.

Example 1b. Imagine, the customer states in the query a request for a S3 Graphics
Card. Then, any of the graphics cards in the S3 sub-tree are perfectly suited.

 Graphics Card

 S3 Graphics Card  MGA Graphics Card

 ELSA 2000  Stealth 3D200  Miro Video

 Matrox Mill. 220  Matrox Mystique
220

 VGA V64

 S3 Virge Card  S3 Trio Card

Fig. 1. Taxonomy of Graphics Cards.



Hence, we expect the local similarity value between this query and case c1 (from
example 1a) to be 1. From this consideration we can conclude that whenever the
query value is located above the case value, the similarity measure should be 1.

Example 2a. Consider a trouble-shooting CBR system for PCs in which cases
encode diagnostic situations and faults that have occurred previously. The domain
expert describes a fault that can occur with any S3 card. Therefore, the respective
case contains the attribute value S3 Graphics Card. Assume now, a PC user has a
problem and she/he states that there is an Elsa 2000 card in the PC, than the local
similarity for the graphics card attribute should be equal to 1 because the case
matches exactly w.r.t. this attribute. From this consideration we can conclude that
whenever the case value is located above the query value the similarity measure
should be 1.

Example 2b. For the same trouble-shooting example, imagine now a different
query in which the user does not exactly know what kind of graphics card is
installed in the PC, but she/he knows that it is a S3 Trio card. She/He therefore
enters S3 Trio as attribute value in the query. Again, the case about S3 cards
mentioned in Example 2a matches exactly because, whatever graphics card the
user has, we known it is an S3 card and the situation described in the case applies.
However, if we consider a different case that describes a problem with the Miro
Video card, then this case does not match exactly. Since we don’ t know what
graphics card the user has (it can be a Miro Video but it can also be a VGA V64)
we expect a local similarity value less than 1. Therefore we cannot conclude that
whenever the query value is located above the case value the similarity measure
should be 1.

Although we have used the same taxonomy in all four examples, it is obvious that
they have to be treated differently for the similarity computation. In the query and
cases from example 1a, only leaf nodes from the taxonomy are used. The
examples 1b to 2b make use of inner nodes of the taxonomy, but in each example
the semantics of the inner nodes is different which lead to different similarity
measures.

3. Knowledge Contained in Taxonomies
We now analyze the knowledge that is contained in taxonomies. We will show
that a taxonomy contains two different kinds of knowledge:

1. Knowledge about classes of objects1 (represented by inner nodes).

2. Knowledge about the similarity between leaf nodes.

                                                
1 Here, the word object is not meant in the sense of the object-oriented paradigm.
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3.1 Basic Notions
We briefly introduce a few notions (see Fig. 2) that will be further used in the
paper. Let K be an inner node of the taxonomy, then LK denotes the set of all l eaf
notes from the sub-tree starting at K. Further, K1 < K2 denotes that K1 is a
successor node of K2, i.e., K2 is on a path from K1 to the root node. Moreover,
<K3,K4> stands for the node that is the nearest common predecessor of K3 and K4,
i.e., <K3,K4> ≥ K3 and <K3,K4> ≥ K4 and it does not exist a node K’< <K3,K4>
such that K’ ≥ K3 and K’ ≥ K4 holds.

3.2 Semantic of Taxonomy Nodes
In a taxonomy, we must distinguish between leaf nodes and inner nodes. Leaf
nodes represent concrete objects1 of the real world, e.g., existing graphics cards.
Inner nodes, however, describe classes of real world objects. An inner node K
represents a class with certain properties that all of the concrete objects from the
leaf nodes LK have in common. Unlike classes that occur in the object-oriented
paradigm, the classes that are represented by the inner nodes of a taxonomy are
not described intentionally by a set of properties, but extensionally through the set
of concrete objects LK  that belong to the class. Therefore, an inner node K stands
for the set LK of real world objects.

In the taxonomy shown in Figure 1, the leaf nodes represent existing graphics
cards and the inner nodes represent classes of graphics cards. For instance, S3
Virge stands for all graphics cards with the S3 Virge chip on them, i.e, for the set
of cards { Elsa 2000, Stealth 3D 2000}.

When a CBR application developer builds a taxonomy, she/he should introduce
useful sets of real-world objects, i.e., sets that are likely to occur in a case or a
query. The taxonomy defines unique names (like S3 Virge) for these sets which
are then used as abbreviations. Since the sets that are represented by these inner
nodes are defined by the taxonomy itself, they are the same in all of the examples
shown above, e.g., S3 Virge always stands for { Elsa 2000, Stealth 3D 2000}.
However, the meaning of this set is quite different in the examples as we will
discuss in detail i n section 3.5.



3.3 Similarity Between Leaf Nodes
Besides the definition of classes of objects, a taxonomy also encodes some
knowledge about the similarity of the real-world objects, i.e., knowledge about the
similarity of the leaf nodes of the taxonomy. The inner nodes cluster real-world
objects that have some properties in common. The deeper we decent in the
taxonomy, the more features do the objects, that the inner node represents, have in
common. For example, all real-world objects (leaf nodes) from the hierarchy in
Fig. 1 have in common that they are all graphics cards. The objects below the S3
graphics card node have in common that the all use some kind of S3 chip, and the
objects below the S3 Trio node have in common that they all use the specific S3
Trio chip. We can now define local similarity as a measure of how many features
the compared objects have in common. The more features are shared, the higher is
the similarity. For example, the similarity between Elsa 2000 and Stealth 3D200 is
higher than the similarity between Elsa 2000 and VGA V64.

This consideration leads to the following general constraint for defining the local
similarity measure for the leaf nodes of a taxonomy:

(1) sim K K sim K K K K K K( , ) ( , ) , ,1 2 1 2≤ >IF

It states that the similarity between the leaf node K and K1 is smaller than the
similarity between the leaf node K and K2 if the nearest common predecessor of K
and K1 is located below the nearest common predecessor of K and K2. It does not
state anything about the relationship between sim(K1,K2) and sim(K3,K4) unless
K1=K3. Please note that this constraint defines an ordinal similarity measure, i.e.,
if the value K is given in the query, a partial order of all cases is induced. A
similar approach can be also found in (Osborne and Bridge, 1996).

3.4 Assigning Similarity Values for Leaf Nodes
The taxonomy only represents the constraint shown above, but does not define
numeric values for the similarity between two leaf node objects. However, several
models of similarity computation require a numeric value (e.g. from the interval
[0..1]) to express the local similarity, because this value is further used in the
computation of a global similarity. For this purpose, we have to add additional
knowledge to the taxonomy. Basically, there can be different ways of doing this in
a way, that the resulting cardinal similarity measure is compatible with the
constraint. We now present a new approach which is quite simple and easy to use,
but nevertheless very powerful.

Every inner node Ki of the taxonomy is annotated with a similarity value Si∈ [0..1],
such that the following condition holds: if K1>K2 then S1≤S2. The deeper the
nodes are located in the hierarchy, the larger the similarity value can become. The
semantic of the similarity value is as follows:



The value Si represents a lower bound for the similarity of two arbitrary objects
from the set LKi, or written formally: ∀ ∈ ≥x y L sim x y SK i i, ( , )

Any two objects from LKi are at least similar to each other with the value Si, but
their similarity can be higher. The similarity value that is assigned to a node
should be justified by the features that all of the objects that belong to this inner
node (class) have in common. The fact that the objects belong to this class and
have common properties justifies that we can state a lower bound for their
similarity. However, objects belonging to one class can of course also belong to a
more narrow class further down in the taxonomy, which means that these objects
share even more properties and therefore possibly have a higher similarity. We
therefore define the similarity between to objects as follows:

(2) sim K K
K K

S K K
( , )

,
1 2

1 21

1 2

=
=




î

            if 

 otherwise   

where S<K1,K2> denotes the similarity value assigned to the node <K1,K2> , i.e., the
nearest common predecessor of K1 and K2. It can be shown that this similarity
definition preserves constraint (1).

3.5 Semantic and Similarity of Inner Nodes
 If we now recall again the examples that we have presented in section 2, it is
obvious that the “graphics card“ attribute must be treated differently in the
different examples, although they all use the same taxonomy. From that it
becomes clear, that some additional knowledge which we have not yet discussed,
plays a role during similarity assessment. However, this knowledge is not
contained in the taxonomy itself.

The knowledge that we are looking for is the knowledge about the semantic of the
inner nodes, i.e., the semantic of the set of concrete objects that they represent. In
our example, the question is: what does it mean when the case or query contains
the statement: “graphics card: S3 Graphics Card“?

In fact, there are different interpretations of this statement that are now discussed.

Any value in the query. The user specifies the value K in the query. This means
that she/he is looking for a case that contains one of the values from the set LK.. In
the example 1b, the user wants an S3 graphics card, but he does not care whether
it is a Elsa 2000, Stealth 3D 200, Miro Video, or an VGA V64. It is clear that the
local similarity between this query and any of these four leaf nodes is equal to 1.
But what about the similarity to any other leaf node? To answer this question
more systematically, we can define the required retrieval result indirectly as
follows: Instead of submitting a single query to the system that contains an inner
node K, the user could alternatively submit several queries to the system, one for
each concrete value from LK and merge the retrieval results, i.e., select the case



with the highest similarity. The result of using the query with the inner node K
should yield the same case with the same similarity as the merging of the multiple
retrievals. To achieve this, the similarity measure for the inner node must select
the maximum similarity that arises from each of the leaf nodes.

Any value in case. The case contains an inner node K, which describes a situation
in which the case is valid for all attribute values of the set LK. This leads to a kind
of generalized case. The generalized case (in which the attribute value K is used)
stands for the set of cases that results by replacing K by all of the members of the
set LK. In Example 2a, the case representing a fault for any S3 graphics card
stands for a set of four cases, each of which represents a fault for the Elsa 2000,
Stealth 3D 200, Miro Video, and the VGA V64, respectively. Here, the inner node
is used to keep the number of cases in the case base small . However, the retrieval
result should of course not be affected. Therefore, the result of having a case in the
case-base that contains an inner node K should be the same as having all cases in
the case base, one for each concrete value from LK. Since we are looking for the
most similar case, we again have to assess the similarity for the inner node by
selecting the maximum similarity that arises from each of the leaf nodes.

Uncertainty. This situation differs significantly from the previous two. Here, the
use of an inner node K means that we don’ t know the exact value for this attribute,
but we know that it is one from the set LK. In Example 2b, we know that the user
has a S3 Trio card which means it can be one from the set { Miro Video, VGA
V64}. This kind of uncertainty can occur in queries as well as in cases. The user
can think of this uncertainty in different ways: treating it optimistically,
pessimistically, or as an average case.

We can now define the local similarity SIM(Q,C) between a query value Q and a
case value C each of which can be either a leaf node, an inner node with the “any
value“ interpretation or an inner node with the “uncertainty“ interpretation. This
leads to 9 possible combinations shown in Table 1. Seven of the 9 combinations in
the table are marked with a roman number that is further used to reference the
formulas for computing the similarity. These are the ones that occur most likely.
However, the following considerations can easily be extend also to the two
missing combinations.

Query \ Case Leaf Node Any Value Uncertainty Tab. 1. Combinations of

Leaf Node I II V different semantics for

Any Value III IV taxonomy values in query

Uncertainty VI VII and case

In the following, sim(q,c) denotes the similarity between two leaf nodes, q from
the query and c from the case. It can be computed as shown in section 3.4.

I: Only the similarity between leaf nodes is computed and hence SIM(Q,C) =



sim(Q,C) holds.

II: The query contains a leaf node and the case contains an inner node
representing a set of values each of which is a correct value for the case.
Therefore, the use of this set in the attribute is a shortcut for the use of several
cases, one for each value in the set. Since we are looking for the most similar case
in the cases base, the similarity between the query and our case containing the
inner node is equal to the highest similarity between the query and one of the
values from the set. Hence:

SIM q C sim q c c L
q C

SC
q C

( , ) max{ ( , )| }
,

= ∈ =
<




î

1          if   

 otherwise

holds. This definition ensures, that the similarity is the same as the similarity that
arises when each of the cases with leaf node values would have been stored in the
case base. This measure is appropriate for example 2a.

III: Here, the specification of this inner node can be viewed as a shortcut for
posing several queries to the system, one for each of the values from the set that
the node represents. Since we are again interested in the most similar case, we can
again select the most similar attribute value from the set. Hence:

SIM Q c sim q c q L
c Q

SQ
Q c

( , ) max{ ( , )| }
,

= ∈ =
<




î

1          if   

 otherwise

holds. This measure is appropriate for example 1b.

IV: This is a combination of II and III . We are looking for the highest possible
similarity between two objects from the two sets since both, the query and the
case, represent alternatives that are suited equally well . Hence,

SIM Q C sim q c q L c L
C Q Q C

SQ C
Q C

( , ) max{ ( , )| , }
,

= ∈ ∈ =
< <




î

1          if    or 

   otherwise               
 holds.

V: The case contains an inner node which represents a set of values from which
only one value is actually correct for the case, but we don’ t know which one.
Therefore, our similarity measure has to reflect this lack of information. There are
three possible approaches: we can assess the similarity in a pessimistic or
optimistic fashion, or we can follow an averaging approach:

Pessimistic approach: We assess the similarity between the known object (in the
query) and the partially unknown object (in the case) by computing the lower
bound for the similarity as follows: SIM q C sim q c c L SC q C( , ) min{ ( , )| } ,= ∈ =  .

Optimistic approach: We assess the similarity between the known object (in the
query) and the partially unknown object (in the case) by computing the upper
bound for the similarity, which results in the same formula that was already shown
in III .



Average approach: We assess the similarity between the known object (in the
query) and the partially unknown object (in the case) by computing the expected
value of the similarity as follows: SIM q C P c sim q cc LC

( , ) ( ) ( , )= ⋅∈∑ , where P(c) is the

probabilit y that the value of the attribute under consideration has the value c given
the fact that we know that c∈ LC and given the known information about the
current case. Since P(c) is hard to determine, we can, for example, estimate P(c)
by 1/|LC|, assuming that all attribute values are equally distributed and that all
attributes are independent.

VI: The uncertain information is contained in the query; the information in the
case is certain. This case is quite similar to the previous case V, i.e., we can again
use a pessimistic, an optimistic, or an average approach. The only change in the
formulas for similarity computation is the fact that the minimum, maximum, and
sum operations are now performed using the elements from the query LQ and not
the elements form the case.

VII: The uncertain information is contained in the query and in the case. The
similarity is computed as follows:

Pessimistic approach: SIM Q C sim q c c L q L Sc Q Q C( , ) min{ ( , )| , } ,= ∈ ∈ =  

Optimistic approach: SIM Q C sim q c q L c L
C Q Q C

SQ c
Q C

( , ) max{ ( , )| , }
,

= ∈ ∈ =
< <




î

1          if    or 

   otherwise               

Average approach: SIM Q C P c P q sim q cc L q LC Q
( , ) ( ) ( ) ( , ),= ⋅ ⋅∈ ∈∑ .

We see that in all of these cases (except for the average approach to uncertainty),
similarity between inner nodes can be computed very easily by determining the
position of the query and the case value in the taxonomy and by looking up the
similarity value at the appropriate taxonomy node. This enables the use of
taxonomies in CBR.

4. Conclusion
We have shown that taxonomies represent two kinds of knowledge: first,
knowledge about classes of objects and second, knowledge about the similarity
between leaf nodes which represent real-world objects. We have presented a new
approach for defining a numeric similarity-value between leaf nodes by assigning
similarity values to the inner nodes of the taxonomy. Moreover, we have shown
that additional knowledge is required to decide how the similarity between inner
nodes of the taxonomy can be computed. This knowledge states how the classes
(set of real-world objects) have to be interpreted: as any value from the set or as a
kind of uncertainty. However, independent on the kind of interpretation, there is a
quite simple way of computing the similarity between two inner nodes, if the



proposed approach to determine the similarity between leaf nodes is used.

From these considerations we can see that a taxonomy can be used (and should be
used because of the simple computation of similarities) if

•  an attribute shall contain a set of values in the query and/or in the case and
•  these sets represent either uncertainty or a li st of equally well suited objects

and
•  we can define in advance a hierarchy of disjoint sets of similar objects that can

occur in the query or the case.
These three rules of thumb can be used as guidelines within a similarity definition
method of a case-based reasoning methodology (Bergmann et al., 1997).

In our discussion, we restricted ourselves to taxonomies of basic objects which
don’ t have an internal structure. However, our considerations also apply to the
generalization/specialization hierarchy of the object classes in an object-oriented
data (or case) model. This inheritance hierarchy is of the same nature than the
taxonomies we have just discussed. The only difference is that the objects, which
are instances of classes, have an additional internal structure, i.e., each object is
described by a set of attributes. Therefore, we can extend the approach presented
here to a similarity framework for comparing cases using an object-oriented case
representation. This issue will be the topic of a forthcoming paper.
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