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Abstract

For defining attribute types to be used in the cae representation, taxonomies occur
quite often. The symbadlic values at any node of the taxonomy tree ae used as
attribute values in a cae or a query. A taxonomy type represents a relationship
between the symbds through their position within the taxonomy-tree which
expresses knowledge aout the similarity between the symbadls. This paper analyzes
several situations in which taxonomies are used in different ways and propases a
systematic way of spedfying locd similarity measures for taxonomy types. The
propased simil arity measures have a ¢ea semantics and are eay to compute & run-
time.

1. Introduction

In current academic and commercial CBR systems, cases are often represented in
an obed-oriented fashion. Cases are mlledions of objeds, eatch of which is
described by a set of attribute-value pairs. The structure of an oljed is described
by an ojed classthat defines the set of attributes together with a type (set of
possble values) for ead attribute. Usually, the similarity between a query and a
case from the cae base is computed in a bottom up fashion: for ead attribute, a
locd similarity measure determines the similarity between two attribute values
and for ead ojed (and the cae) a global similarity measure determines the
simil arity between two oljeds (or between the cae and the query) based onthe
locd simil arities of the belonging attributes (Wess 95).

For defining attribute types (sets of posgble dtribute values), taxonamies are
widely used. A taxonamy is an nrary treein which the nodes represent symbalic
values. The symbals at any noce of the tree ca be used as attribute values in a
case or a query. Unlike aplain symbad type, which orly lists possble &tribute
values, a taxonamy represents an additional relationship between the symbadls
through their paosition within the taxonamy-tree This relationship expresses



Graphics Card

| S3 GraphicsCard | | MGA Graphics Card |

|S3VirgeCard | |S3Trio Card | | Matrox Mill. 220 | | Matrox Mystique |

| ELSA 2000 | | Stedth 3D200 | [MiroVideo | [VGA V64 |

Fig. 1. Taxonomy of Graphics Cards.

knowledge éou the similarity of the symbds in the taxonamy. The cae
representation language CASUEL (Manago, Bergmann, et a. 1994 includes such
a taxonamy type, which is very often used for modeling a CBR applicaion. For
example, the “clasdficaion d marine sporges’ applicaion contains a taxonamy
of body forms of spornges and the PC configuration damain contains a taxonamy
of PC comporents*.

Although taxonamies are widely used, there is currently no clea picture of what
knowledge aou locd similaritiesis cgptured in ataxonamy. The impresgon that
similarity measures are usualy constructed in an ad hac manner (Osborne &
Bridge, 19969 aso hdds for locd similarity measures for taxonamy type
attributes. This paper analyzes ®veral situations in which taxonamies are used in
different ways and proposes a systematic way of spedfying locd similarity
measures for taxonamy types. The proposed similarity measures have a clea
semantics and are eay to compute & run-time.

2. Examplesfor Different use of Taxonomies
We now describe four examples in which the taxonamy shown in Figure 1 is used.

Example 1a. Consider a CBR system for the sales suppat of Personal Computers.
A Case represents an available PC from the stock. The cae representation
contains an attribute ,, graphics card”, and the taxonamy from Figure 1 represents
the set of possble values. Consider a cae ¢ with the ELSA 2000card and a cae
C; with Matrox Mystique card. If we assume that a austomer enters a query to our
hypotheticd CBR system in which she/he spedfies that she/he wants a Miro Video
graphics cad, then c; is certainly closer than c¢,, becaise Miro Video and Elsa
2000have more in common (e.g. the S3 chip) than the Miro Video and the Matrox
Mystique. In general, we @muld use asimilarity measure that assesses smilarity
based onthe distance between case and the query value in the taxonamy tree

Example 1b. Imagine, the austomer states in the query arequest for a S3Graphcs
Card. Then, any of the graphics cads in the S3 sub-tree ae perfedly suited.



Hence we exped the locd similarity value between this query and case ¢ (from
example 1a) to be 1. From this consideration we can conclude that whenever the
query valueislocaed above the cae vaue, the simil arity measure shoud be 1.

Example 2a. Consider a troude-shoaing CBR system for PCs in which cases
encode diagnostic situations and faults that have occurred previously. The domain
expert describes a fault that can occur with any S3 card. Therefore, the respedive
case @ntains the dtribute value S3Graphics Card. Assume now, a PC user has a
problem and she/he states that there is an Elsa 2000card in the PC, than the locd
similarity for the graphics cad attribute shoud be equal to 1 kecaise the cae
matches exadly w.r.t. this attribute. From this consideration we can conclude that
whenever the cae value is located above the query value the simil arity measure
shoud be 1.

Example 2b. For the same troude-shoaing example, imagine now a different
query in which the user does nat exadly know what kind o graphics cad is
installed in the PC, but she/he knows that it is a S3Trio cad. She/He therefore
enters S3 Trio as attribute value in the query. Again, the cae @ou S3 cards
mentioned in Example 2a matches exadly becaise, whatever graphics card the
user has, we known it is an S3card and the situation described in the cae gplies.
However, if we consider a different case that describes a problem with the Miro
Video cad, then this case does not match exadly. Since we don't know what
graphics card the user has (it can be aMiro Video but it can aso be aVGA V64)
we eped alocd similarity value lessthan 1. Therefore we canna conclude that
whenever the query value is locaed abowe the cae value the similarity measure
shoud be 1.

Although we have used the same taxonamy in al four examples, it is obvious that
they have to be treaed dfferently for the similarity computation. In the query and
cases from example la, only led nodes from the taxonamy are used. The
examples 1b to 2bmake use of inner nodes of the taxonamy, but in ead example
the semantics of the inner nodes is different which lead to dfferent similarity
measures.

3. Knowledge Contained in Taxonomies

We now analyze the knowledge that is contained in taxonamies. We will show
that ataxonamy contains two dff erent kinds of knowledge:

1. Knowledge about classes of objeds’ (represented by inner nodes).
2. Knowledge dou the simil arity between led nodes.

! Here, theword objed is not meant in the sense of the objed-oriented paradigm.



Fig. 2. lllustration of basic notions

3.1 Basic Notions

We briefly introduce afew nations (see Fig. 2) that will be further used in the
paper. Let K be a1 inner nock of the taxonamy, then Lk denctes the set of al |ed
notes from the sub-tree starting at K. Further, K; < K, denotes that K; is a
succesr node of Ky, i.e., K; is on a path from K; to the root node. Moreover,
<K3,K4> stands for the noce that is the neaest common predecessor of K3 and Ky,
i.e., <K3,Ks> = Ks and <K3,Ks> = K4 and it does not exist a noce K'< <K3,K4>
such that K’ > Kz and K’ > K4 hdds.

3.2 Semantic of Taxonomy Nodes

In a taxonamy, we must distinguish between led nodes and inner nodes. Led
nodes represent concrete objeds’ of the red world, e.g., existing graphics cads.
Inner nodes, howvever, describe classes of red world olgeds. An inner node K
represents a dasswith certain properties that al of the cncrete objeds from the
led nodes L have in common. Unlike dasses that occur in the objed-oriented
paradigm, the dasses that are represented by the inner nodes of a taxonamy are
not described intentionally by a set of properties, but extensionally through the set
of concrete objeds Lk that belong to the dass Therefore, an inner node K stands
for the set Lk of red world ojeds.

In the taxonamy shown in Figure 1, the led nodes represent existing graphics
cads and the inner nodes represent classes of graphics cards. For instance S3
Virge stands for all graphics cards with the S3 Virge chip onthem, i.e, for the set
of cards{ Elsa 200Q Sealth 3D 2000.

When a CBR applicaion developer builds a taxonamy, she/he shoud introduce
useful sets of red-world oljeds, i.e., sets that are likely to occur in a cae or a
query. The taxonamy defines unique names (like S3 Virge) for these sets which
are then used as abbreviations. Since the sets that are represented by these inner
nodes are defined by the taxonamy itself, they are the same in al of the examples
shown abowe, eg., S3Virge aways dands for {Elsa 200Q Sealth 3D 2000.
However, the meaning of this st is quite different in the examples as we will
discussin detail in sedion 3.5.



3.3 Similarity Between L eaf Nodes

Besides the definition d clases of objeds, a taxonamy aso encodes Kme
knowledge @dou the similarity of the red-world oljeds, i.e., knovledge d@ou the
similarity of the led nodes of the taxonamy. The inner nodes cluster red-world
objeds that have some properties in common. The deeger we decent in the
taxonamy, the more feaures do the objeds, that the inner node represents, have in
common. For example, all red-world ojeds (led nodes) from the hierarchy in
Fig. 1 have in common that they are dl graphics cards. The objeds below the S3
graphcs card noce have in common that the dl use some kind d S3 chip, and the
objeds below the S3Trio node have in common that they all use the speafic S3
Trio chip. We can now define locd similarity as a measure of how many feaures
the compared oljeds have in common. The more feaures are shared, the higher is
the simil arity. For example, the simil arity between Elsa 2000and Sealth 3D200is
higher than the simil arity between Elsa 2000and VGA V64.

This consideration leads to the foll owing general constraint for defining the locd
simil arity measure for the led nodes of ataxonamy:

(1) Sm(K,Kq) < sSm(K,Kp) IF(K,Kq) > (K,K5)

It states that the similarity between the led node K and K; is snaller than the
simil arity between the led node K and K if the neaest common predecesor of K
and K islocaed below the neaest common predecessor of K and K. It does not
state awything abou the relationship between sm(K1,Kz) and sim(K3,K4) uness
K1=Ks. Please note that this constraint defines an ordinal simil arity measure, i.e.,
if the value K is given in the query, a partia order of al cases is induced. A
similar approach can be dso foundin (Osborne and Bridge, 1996.

3.4 Assigning Similarity Valuesfor Leaf Nodes

The taxonamy only represents the cnstraint shown abowve, bu does not define
numeric values for the simil arity between two led node objeds. However, severa
models of similarity computation require anumeric value (e.g. from the interval
[0..1]) to expressthe locd similarity, becaise this value is further used in the
computation d a global similarity. For this purpose, we have to add additional
knowledge to the taxonamy. Basicdly, there can be diff erent ways of doing thisin
a way, that the resulting cardina similarity measure is compatible with the
constraint. We now present a new approad which is quite simple and easy to use,
but neverthelessvery powerful.

Every inner noce K; of the taxonamy is annaated with a similarity value S[0..1],
such that the following condtion hdds. if K;>K; then S<S,. The deeer the
nodes are locaed in the hierarchy, the larger the simil arity value can become. The
semantic of the similarity value is as follows:



The walue S represents a lower boundfor the similarity of two arbitrary objeds
fromthe set Lg;, or written formally: Ox,y OLk; sm(x,y)2 S

Any two oljeds from Lg; are & least similar to eat ather with the value S, bu
their similarity can be higher. The similarity value that is assgned to a node
shoud be justified by the fedures that al of the objeds that belong to this inner
noce (clasg have in common. The fad that the objeds belong to this class and
have cwmmon poperties justifies that we can state a lower bound for their
similarity. However, oljeds belonging to ore dasscan o course dso belong to a
more narrow classfurther down in the taxonamy, which means that these objeds
share even more properties and therefore possbly have ahigher similarity. We
therefore define the simil arity between to oljeds as foll ows:

. = if Ky =Ky
(2) sm(Ky,Kz) = %(Kl,@) otherwise

where Sck1 k2> denotes the simil arity value asgned to the node <Ky,K>>, i.e., the
neaest common predecesor of K; and K. It can be shown that this smilarity
definition preserves constraint (1).

3.5 Semantic and Similarity of Inner Nodes

If we now recdl again the examples that we have presented in sedion 2,it is
obvious that the “graphics cad attribute must be treded dfferently in the
different examples, athough they al use the same taxonamy. From that it
beames clea, that some alditional knowledge which we have not yet discussd,
plays a role during similarity assessment. However, this knowledge is not
contained in the taxonamy itself.

The knowledge that we ae looking for is the knowledge &ou the semantic of the
inner nodks, i.e., the semantic of the set of concrete objeds that they represent. In
our example, the question is: what does it mean when the cae or query contains
the statement: “graphics card: S3 Graphics Card”?

In fad, there ae different interpretations of this gatement that are now discussed.

Any value in the query. The user spedfies the value K in the query. This means
that she/he is looking for a case that contains one of the values from the set Lk.. In
the example 1b, the user wants an S3 graphics card, bu he does not care whether
it isa Elsa 200Q Sealth 3D 200, Miro Video, or an VGA Vb4. It is clea that the
locd similarity between this query and any of these four led nodes is equal to 1.
But what abou the similarity to any other led node? To answer this question
more systematicdly, we can define the required retrieval result indiredly as
follows: Instead of submitting a single query to the system that contains an inner
noce K, the user could aternatively submit several queries to the system, one for
eat concrete value from Lx and merge the retrieval results, i.e., seled the cae



with the highest similarity. The result of using the query with the inner node K
shoud yield the same cae with the same simil arity as the merging of the multiple
retrievals. To adhieve this, the similarity measure for the inner node must selea
the maximum simil arity that arises from ead of the led nodes.

Any valuein case. The cae @ntains an inner noce K, which describes a situation
in which the caeisvalid for al attribute values of the set Lx. Thisleads to akind
of generalized case. The generalized case (in which the atribute value K is used)
stands for the set of cases that results by repladng K by all of the members of the
set Lx. In Example 2a, the cae representing a fault for any S3 gaphics card
stands for a set of four cases, eat of which represents a fault for the Elsa 200Q
Sealth 3D 200, Miro Video, and the VGA V64, respedively. Here, the inner node
is used to keep the number of cases in the cae base small. However, the retrieval
result shoud of course not be dfeded. Therefore, the result of having a cae in the
case-base that contains an inner node K shoud be the same & having all casesin
the cae base, ore for eat concrete value from Lk. Since we ae looking for the
most similar case, we aain have to assess the similarity for the inner node by
seleding the maximum simil arity that arises from ead of the led nodes.

Uncertainty. This stuation dffers sgnificantly from the previous two. Here, the
use of an inner node K means that we dorit know the exad value for this attribute,
but we know that it is one from the set Lx. In Example 2b, we know that the user
has a S3 Trio card which means it can be one from the set {Miro Video, VGA
V64}. This kind d uncertainty can occur in queries as well as in cases. The user
can think o this uncetainty in dfferent ways. treding it optimisticdly,
pessmisticdly, or as an average cae.

We can now define the locd similarity SIM(Q,C) between a query value Q and a
case vaue C eat of which can be ather aled node, an inner node with the “any
value“ interpretation a an inner node with the “uncertainty” interpretation. This
leadsto 9 pssble combinations shownin Table 1. Seven of the 9 combinationsin
the table ae marked with a roman number that is further used to reference the
formulas for computing the similarity. These ae the ones that occur most likely.
However, the following considerations can easily be extend aso to the two
misgng combinations.

Query\ Case |Leaf Node |Any Value |Uncertainty Tab. 1. Combinations of
Leaf Node I 1 \Y, different semantics for
Any Value 1 v taxonamy valuesin query
Uncertainty | VI Vi andcase

In the following, sim(q,c) denctes the similarity between two led nodes, q from
the query and ¢ from the case. It can be computed as rown in sedion 3.4.

[: Only the similarity between led nodes is computed and hence SM(Q,C) =



sm(Q,C) holds.

[I: The query contains a led node and the cae ntains an inner node
representing a set of values eat o which is a mrred vaue for the cae.
Therefore, the use of this st in the dtribute is a shortcut for the use of several
cases, ore for eath value in the set. Sincewe ae looking for the most similar case
in the caes base, the similarity between the query and ou case @ntaining the
inner nock is equa to the highest similarity between the query and ore of the
values from the set. Hence
. 53 if g<C
SM(q,C) = max{sim(q,c)|c ULc} = %@,c) otherwise

halds. This definition ensures, that the similarity is the same & the simil arity that
arises when eat o the caes with led node values would have been stored in the
case base. This measure is appropriate for example 2a.

[11: Here, the spedficaion d this inner node can be viewed as a shortcut for
posing several queries to the system, ore for ead o the values from the set that
the node represents. Sincewe ae ajain interested in the most similar case, we can
again seled the most simil ar attribute value from the set. Hence

. &3 if ¢c<Q
SIM(Q,c¢) = max{sim(q,c)|q OLg} = %@’C) otherwise

halds. Thismeasure is appropriate for example 1b.

IV: Thisis a combination d Il and Ill. We ae looking for the highest possble
similarity between two oljeds from the two sets snce baoth, the query and the
case, represent alternatives that are suited equally well. Hence,

. gl if C<QorQ<C
SIM(Q,C) = max{sim(q,c)|q OLg,c OLc} = %(QC) otherwise hdds.
V: The cae @ntains an inner node which represents a set of values from which
only one value is adualy corred for the cae, bu we don't know which ore.
Therefore, our simil arity measure has to refled this ladk of information. There ae
three posgble gproades. we can assess the similarity in a pessmistic or
optimistic fashion, a we can foll ow an averaging approadh:

Pessimistic approach: We assssthe similarity between the known oljed (in the
query) and the partialy unknovn objed (in the cae) by computing the lower
boundfor the simil arity as follows: SIM(qg,C) = min{sm(qg,c)|c OLc} = Si.c) -

Optimistic approach: We asessthe simil arity between the known oljed (in the
query) and the partialy unknovn objed (in the cae) by computing the upper
boundfor the simil arity, which results in the same formula that was already shown
inlll.



Average approach: We assssthe similarity between the known oljed (in the
query) and the partially unknavn oljed (in the cae) by computing the expeded
value of the similarity as follows. SM(q,C) = ch P(c) @m(qg,c), where P(c) is the

probability that the value of the dtribute under consideration hes the value cgiven
the fad that we know that clJLc and given the known information abou the
current case. Since P(c) is hard to determine, we can, for example, estimate P(c)
by 1|Lc|, asuming that all attribute values are equally distributed and that all
attributes are independent.

VI: The uncertain information is contained in the query; the information in the
caseis ceatain. This caseis quite similar to the previous case V, i.e., we can again
use apessmistic, an ogimistic, or an average gproach. The only change in the
formulas for similarity computation is the fad that the minimum, maximum, and
sum operations are now performed using the dements from the query Lg and nd
the dements form the cae.

VII: The uncertain information is contained in the query and in the cae. The
simil arity is computed as foll ows:

Pessimistic approach: SM(Q,C) = min{sim(g,c)|c OL¢,qOLg} = Sia.0)

AL if C<QorQ<C
o} = é"S(Q’C) otherwise

Averageapproach: SM(Q.C)=3 o g, P(C)EP(A) (EM(G,0).

Optimistic approach: Sm(Q,C) = max{sim(g,c)|q OLg,c OL

We seethat in al of these caes (except for the arerage gpproach to urcertainty),
similarity between inner nodes can be wmputed very easily by determining the
pasition d the query and the cae value in the taxonamy and by looking up the
similarity value & the gpropriate taxonamy node. This enables the use of
taxonamiesin CBR.

4. Conclusion

We have shown that taxonamies represent two kinds of knowledge: first,
knowledge a&ou classes of objeds and semnd, knavledge &ou the simil arity
between led nodes which represent red-world oljeds. We have presented a new
approac for defining a numeric simil arity-value between led nodes by assgning
simil arity values to the inner nodes of the taxonamy. Moreover, we have shown
that additional knowledge is required to deade how the similarity between inner
nodes of the taxonamy can be computed. This knowledge states how the dasses
(set of red-world oljeds) have to be interpreted: as any value from the set or as a
kind d uncertainty. However, independent on the kind d interpretation, thereis a
guite simple way of computing the similarity between two inner nodes, if the



propcsed approach to determine the simil arity between led nodesis used.

From these ansiderations we can seethat ataxonamy can be used (and shoud be
used because of the simple cmputation d simil arities) if

* an attribute shall contain a set of values in the query and/or in the cae and

» these sets represent either uncertainty or a list of equally well suited oljeds
and

» we can definein advance ahierarchy of digoint sets of similar objeds that can
occur in the query or the cae.

These threerules of thumb can be used as guidelines within a simil arity definition

method d a cae-based reasoning methoddogy (Bergmann et a., 1997.

In ou discusgon, we restricted ouselves to taxonamies of basic objeds which
dont have an interna structure. However, our considerations aso apply to the
generali zation/spedali zation herarchy of the objed classes in an oljed-oriented
data (or case) model. This inheritance hierarchy is of the same nature than the
taxonamies we have just discussed. The only differenceis that the objeds, which
are instances of classes, have an additiona internal structure, i.e., eat ojjed is
described by a set of attributes. Therefore, we can extend the gproach presented
here to a simil arity framework for comparing cases using an oljed-oriented case
representation. Thisisue will be the topic of aforthcoming paper.
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