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Introduction

Branching processes arise naturally to describe the random development in time of a
population size. Heuristically, a branching process is a stochastic process {Z; : t € T'}
such that at each time instance ¢ the value 7, is interpreted as the size of the pop-
ulation at this time. Although we have not given a rigorous mathematical definition
of a branching process, we can already mention that this model does not contain the
complete genealogical information about the population.

In this thesis, we present a method of coding the genealogical structure of branching
processes and we mainly consider the case of branching processes with continuous state
space. Nevertheless, we deal at first with the discrete setting, which is easier to handle,
to motivate the construction in the continuous case.

Consider a discrete time, discrete state space branching processes. Then, it is natural
to describe its genealogy by family trees. Nevertheless, in the continuous setting is no
obvious and easy way to define any genealogical relations. Therefore, describing such
a genealogy is a mathematically challenging task. Moreover, the construction auto-
matically leads to a wide class of interesting questions on continuous state branching
processes, which depend on their genealogy. Some of these questions are discussed in
this thesis. Furthermore, one can use the genealogy of continuous state branching pro-
cesses to give a snakelike construction of superprocesses as it was proposed by Le Gall
for super Brownian motion with quadratic branching mechanisms in 1993 (see [LG93],
[LGLY98b]).

Most of the work presented in this thesis relies on the work of Jean-Francois Le Gall,
Yves Le Yan and Thomas Duquesne ([LGLY98al, [LGLY98b|, [LGD]). We now give a
survey of the content of the individual chapters of this thesis.

The first chapter deals as a preliminary tool collection for the rest of the thesis. We
introduce Lévy processes and make a particularly intensive look on the case of Lévy
processes without negative jumps, which will be important for the later construction.
Then, we consider local times of Markov processes as they were introduced by Blu-
menthal and Getoor. Finally, we introduce branching processes and state some of
their basic properties.

The second chapter deals with the contruction of the genealogy. First, we consider
the discrete case of Galton-Watson processes. Let i be a probability measure on Ny =
{0,1,2,...}, called the offspring distribution, which we assume to be (sub)critical,
meaning that

If {X7 : j,n € N} is an array of independent y-distributed random variables, we call a



stochastic process {G,, : n > 0} defined by Gy = 0 and

Gn
Gpi = ZX]” forn>1,

j=1
a p-Galton-Watson (branching) process. Heuristically, G, describes the size of
a population at time n. As we already mentioned, it is an intuitive and natural idea
to use family trees to describe the genealogy of a Galton-Watson process. Pictorially,
we can construct a u-Galton-Watson tree T via the following procedure: starting
with one particle at time (generation) 0, this particle has offspring according to the
distribution p. These particles then live in generation 1 and each of them has again an
offspring according to p, independent from the others, and so on. Having constructed
a Galton-Watson tree, it is easy to see that we can get a Galton-Watson branching
process from this tree just by counting all particles alive in each generation.

Although Galton-Watson trees provide a nice and intuitive description of the geneal-
ogy in the discrete setting, it is not at all clear how to extend this contruction to the
continuous case. The main idea behind this extension is to code Galton-Watson trees
via a stochastic process {H,, : n > 0}, the so called discrete height process which
can be defined by the following heuristic: identify each particle in the tree with an
address u € |J,-, N* where N’ := {4} and ¢ is the address of the root:
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Now, let H,, describe the generation of the n-th vertex if we start at time 0 in the root
and then, run through the tree according to the lexicographical order of the addresses.
It is easy to see (e.g. by looking at the pictures below) that we can reconstruct the
tree from the discrete height process. Moreover, we can construct the Galton-Watson
process {G,, : n > 0} from the height process just by summing up all particles in each
level of generation, i.e.

G, :=#{s: H; =n}. (0.1)

In general, the discrete height process can not be a Markov process. Nevertheless,
we prove that we can construct the height process as a functional of a random walk
{W, : n € N} with increment distribution v(k) = u(k + 1) for k = —1,0,1,..., by

Hn:#{je{o,l,...,n—l}:sz inf Wk}. (0.2)

j<k<n

The following pictures may enlighten the key ideas:
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Why do we need such a complicated construction of the height process in terms of
equation (0.2)? As we see, this equation motivates the definition of the continuous
analogue of the discrete height process. At first, let us say a few words what is meant
by continuous state branching processes.

A continuous state branching process {Z; : t > 0} is a strong Markov process
with values in [0, 00), such that it fulfils the branching property

E(Zt\Z0=x+y):,C(Zt|20:x)*£(Zt\Z0:y),

where * denotes convolution. This means that the branching process with initial value
(population) x + y behaves like the sum of two independent copies of Z started at x
and y respectively.

It is well known that a continuous state branching process (shortly: CSBP) {Z, : t > 0}
with start in Zy = 2 > 0 which is (sub)critical, meaning that

E{Z: | Zy =z} <z,
has the Laplace transform
E{e | Zy =z} = exp(—zus(N)).
Moreover, u; is the unique nonnegative solution of

aut(/\)
ot

with initial condition ug(A) = A and a function 9 : [0, 00) — [0, 00) of the form

= = (ui(N))

Y(u) = au + fu® + /Ooo(e”‘ — 1+ ru)w(dr), (0.3)

where «, 8 > 0 and 7 is a o-finite measure on (0, c0) such that

/(r A2) 7(dr) < oc.

Conversely, for any choice of the parameters «, 8 and 7 in the function 1, there is a
CSBP with the corresponding Laplace transform. Hence, a CSBP is completely deter-
mined by defining such a function . We call ¥ the branching mechanism of the



-CSBP {Z, : t > 0}. Moreover, let us denote the class of ¢-CSBP by C.

It turns out (and we show this in the first chapter) that these functions ¢ are exactly
the Laplace exponents of the subclass of Lévy processes £ which are spectrally positive
(meaning that they only make positive jumps), do not tend to oo and have infinite
variation, i.e. if {X; : t > 0} is a Lévy process from the class £, then for allt > 0, A > 0,

E{e "} = exp(~ty())),

where 1) is a function of the type (0.3). As the Laplace exponents determines a Lévy
process uniquely, we can establish an interesting bijection between C and L in a non-
probabilistic way, just in terms of the functions 2.

The main idea behind the construction of the genealogy for 1)-CSBP is to replace the
random walk W in formula (0.2) by a 1-Lévy process {X; : t > 0} of the class L.
Then we can use this equation to define the continuous analogue of the discrete height
process, the so called 1)-hetght process. In analogy to the discrete case, the ¥-CSBP
can be obtained from the local times of H as a function of the level parameter. We
clearly have to go through some technical difficulties to get a rigorous definition of the
continuous height process.

Let us consider a special case of the height processes, perhaps known by the reader, to
describe the main ideas and results of the second chapter:

Let {X; : t > 0} be a Brownian motion which is contained in the class £ and has
Laplace exponent 1/(\) = ;A% We show that the corresponding continuous height
process {H, : t > 0} is distributed as a scaled reflected Brownian motion.

By the well known classical (first) Ray-Knight theorem, one can construct a conti-
nuous state branching process from reflected Brownian motion. To be specific, denote
by {L{ : t > 0,a > 0} the local time of the reflected Brownian motion {H; : ¢t > 0}
and denote by

T, :=inf{s >0: L% =1}
the first hitting time of x by the local time at 0, then, the process
{L7, :a >0} (0.4)

is a 1-CSBP with start in z and branching mechanism ¢ (A) = \?, known as Feller’s
diffusion.

As we can think heuristically of the local time at level a as counting the time instants
when H; = a, the complicated looking equation (0.4) turns out to be the natural ana-
logue of the discrete formula (0.1).



Moreover, it is known for several years (see [Al93],[LG93]) that one can use the ez-
cursions of reflected Brownian motion to code the genealogy of the Feller diffusion.
Denote by H; an excursion of reflected Brownian motion and by o the length of this
excursion. Then this excursion codes a continuum random tree by the following
rules:

(i) each s € [0, 0] corresponds to a particle of generation H;
(i) if s < ¢’ € [0, 0], then the particle s is called an ancestor of the particle s if

H,= inf H,.

s<r<s’

The major aim for the second chapter is to generalize this construction to all bran-
ching mechanisms corresponding to the class of (sub)critical CSBP C (as it is done
in [LGLY98a], [LGD]). Hence, we see in Chapter 2 that for every 1 we can construct
a 1-CSBP from the -height process in the same way as in the classical Ray-Knight
case, and this ¢-height process codes the genealogy of the y)-CSBP.

Moreover, (this is already done in [LGD]) we derive a criterion for the 1)-height process
to have continuous sample paths which turns out to be important for many interesting
purposes (see below).

Another interesting task, which is not treated by Le Gall and Le Yan, is to compute
the Haussdorff dimension of the levelsets of the height process, i.e.

dim{t : H; = a}.

It turns out not to be too hard to derive an explicit formula for the dimension of the
zeroset. Nevertheless, as the height process is not a Markov process, it is very difficult
(and still an open question) to prove the conjecture that all other levelsets have the
same dimension as the zeroset.

Having constructed the genealogy in terms of the 1)-height process, we see that there
is a natural duality between the path properties of the continuous height process at
the one hand, and the properties of the ¥-CSBP which depend on their genealogy at
the other hand.

For example, and this is not treated in the literature so far, let us denote by A%_,
the number ancestors of generation @ alive in generation a — . Then, a natural and
interesting question is to characterize those CSBP with the property that almost surely
for all @ > 0 and € € (0, al,

A4S | < oo. (0.5)

If a ¢-CSBP fulfils condition (0.5), i.e. for all generations, the number of ancestors
of the complete population in any previous generation is finite, then we say that the



CSBP has finite biodiversity.

We treat the characterization of CSBP with finite biodiversity in the third chapter and
it turns out that the following statements are equivalent:

(i) the ¥-CSBP has finite biodiversity
(ii) the -CSBP dies almost surely,
(iii) the sample paths of the t-height process are continuous almost surely and

(iv) the branching mechanism 1) fulfils the analytical condition

<1

Moreover, in the case of finite biodiversity, we compute that the number of ancestors
of any generation in some earlier generation is Poisson distributed.

In the fourth chapter, we present limset theorems that link the discrete and the con-
tinuous setting. It is well known [Lam67] that a sequence of suitable rescaled Galton-
Watson processes converges towards a CSBP. We see that in this case, we also have
convergence of the associated height processes at least in the sense of weak convergence
of the finite dimensional marginal distributions.

In the case when the height process has continuous sample paths, we also present a
functional convergence theorem. In particular, these limit theorems give an a posterior:
legitimation for the choice of the height process as the natural candidate to code the
genealogy of CSBPs.

The fifth and last chapter then treats Zubkov’s theorem for CSBP, i.e. we compute
the distribution of the most recent common ancestor conditioned on the survival of the
CSBP (this is already done in [LGD]). In particular, it turns out that exactly in the
case of stable branching mechanisms ¥ ()\) = A%, 8 € (1, 2], the distribution of the most
recent common ancestor of the particles alive in generation a is uniformly distributed
over [0, a] under the excursion measure of the height process.
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Chapter 1

Preparation and machinery

Before we can start with the main work, we have to introduce some background ma-
chinery which we then use throughout this thesis. We assume that the reader has basic
knowledge of probability and stochastic processes and give a short overview on Poisson
point, Lévy, branching processes and local times of Markov processes.

1.1 Poisson point and Lévy processes

Let (92, F, P) be a probability space and (S,S) a measurable space. If we denote by
C(S) the set of all finite subsets of S, then (C(S),C(S)), with a suitable o-algebra
C(S5), also becomes a measurable space. Let pu be a measure on (5,S). Then, we call
a random variable

A:(Q,F,P)— (C(S),C(9))

a Poisson point process on (S,S) with intensity measure p if for all A € S the
counting functions

Ni:(Q,F,P) =N

defined by Nj(w) := |A(w) N A| are measurable and for disjoint A;,..., A, € S, the
random variables Ny,,..., N4, are independent and Poisson distributed with para-
meters p(Aq), ..., u(Ay).

Sometimes, it is reasonable to look at Poisson point processes not as a random countable
subset of some state space S, but in the slighly different way that the counting functions
serve as random measures on S. In this sense, we call a measurable mapping I" from
(2 in the space of counting measures on S a Potsson point measure if the following
conditions are satisfied:

(i) for all A € S, we have that
w(A) =E{[(4)} < oo

and I'(A) is Poisson distributed with intensity u(A).
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(ii) for all pairwise disjoint A;,..., A, € S the random variables I'(4,),...,'(4,)
are independent.

As Poisson point processes and Poisson point measures can be seen as describing the
same thing from a different point of view, it is clear that we only need to formulate
any theorems for just one perspective.

Theorem 1.1 (Existence of Poisson point processes)
If u is a non atomic, o-finite measure on (S,S), then, there is a Poisson point process
A on (S,8) with intensity measure p.

The condition of o-finiteness can be slightly weakened, which is not really important
for our purpose (for further details and a proof of the theorem see e.g. [Kgm]). For
the work with Lévy- and branching processes, we need the following basic results from
the theory of point processes which can all be found e.g. in [Kgm].

Theorem 1.2 (Mapping Theorem)
Let A be a Poisson point process on (S,S) with o-finite intensity measure u. Further-
more, let

f:(85,8u) = (T,T)

be measurable. Assume that the measure pu* := po f~ induced by f on the space (T, T)
is non atomic. Then, f(A) is a Poisson point process with state space T and intensity
measure |4*.

Theorem 1.3 (Campbell’s Theorem)
Let A be a Poisson point process on (S, S) with intensity measure u and let f: S — R
be a measurable function. Then, the sum

> f(x)

TEA

converges absolutely almost surely if and only if

[ ni@hats) < oc.
In this case, we have for all § € C
E{e’Xeeal®)} = eqp (/(eef(’”) -1) ,u(daﬁ)> (1.1)
S

if one of these expressions exists, and

E{Zf(w)} = [ f@ ntas). (1.2

TEA



1.1. POISSON POINT AND LEVY PROCESSES 15

Let M ;(R) be the set of all finite Borel measures on R. Then, the Fourier transform
of a measure p € M;(R) is given by

A0 = Fulh) = [ explion) ulde),
R
for all A € R In particular, Fourier transforms are continuous and every u € M;(R)
is uniquely determined by Fu (see e.g. [Bau91]).

Moreover, 1 € M¢(R) is said to be infinitely divisible if for all n € N, there exists
a measure v € M(R), such that 4 = 0". For every infinitely divisible measure
p € Mg(R), it holds that f(A) # 0 for all A € R (see [Sato99]) and therefore, there
is a uniquely determined and continuous function ¥ : R — C with ¢(0) = 0 and
(X)) = exp(—1(A)) for all A € R. We call this mapping ¢ characteristic exponent
of the measure y. We now turn our attention to the famous Lévy-Khintchine formula

which characterizes infinitely divisible distributions. A proof can be found for example
in [Fe71].

Theorem 1.4 (Lévy-Khintchine formula)

A function ¢ : R — C is the characteristic exponent of an infinitely divisible measure
@ on R if and only if there ezxists « € R, B > 0 and a measure m on R\{0} with
J (@A 2?)m(dz) < oo, such that for all X € R

P(A) = ia + BN + /R(l — €™ 4+ iAT1 g <1y) T(d2). (1.3)

One has to remark that «, § and 7 are uniquely determined. The measure 7 is called
Lévy measure with respect to p.

We now introduce a very important class of continuous time stochastic processes, the
so called Lévy processes, which can be interpreted heuristically as the continuous time
analogue of random walks.

Definition 1.5 A real valued stochastic process {X; : t > 0}, which can be defined
on some probability space (Q, F, P) starting at Xo = 0 with stationary, independent
increments and almost surely cadlag paths, is called o Lévy process.

More formally, {X; : ¢t > 0} is a Lévy process if
(a) Xo = 0 almost surely,

(b) for any n > 1 and for any choice of 0 < ¢y < ¢; < --- < t,, the random variables
Xy, Xty — Xigy oo, Xy, — Xy, _, are independent
(independence of the increments),

(¢) L(Xsys — X5), i.e. the distribution of X, ; — X, does not depend on s
(stationarity),
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(d) thereis a Qq € F with P(€y) = 1, such that for every w € €, the paths ¢t — X;(w)
are right continuous with left limits as functions of ¢
(cadlag paths).

If X is a Lévy process on (2, F, P), we call X + z for z € R a Lévy process started at
x and we denote its distribution (that is the law of X + z under P) by P,.

Because of (d), it is natural to think of a Lévy process as a random function which
is right continuous and has left limits. Hence, we can assume that the underlying
probability space (2 is the Skorokhod space D of cadlag functions w : [0,00) — R
equipped with the Borel-o-field F generated with respect to the Skorokhod topology
on ). This is a metrizable topology which can be described as follows: Define

A:={g: R, — R, : continuous with ¢g(0) = 0 and ¢(s) T oo as s 1 oo}

to be the set of time changes, then a sequence (f,) C D converges to an element
f € D in the Skorokhod topology if and only if there exists a sequence of time changes
(gn) C A, such that

(i) SUP;>q |9n(s) — 5| "% 0 and

(ii) sups<py [fu(gn(s)) — f(3)] "% 0 for all N € N.

Moreover, one can show that D endowed with this topology becomes a complete,
separable metric space, i.e. a Polish space. For more details see [JaS87].

Lemma 1.6 Let {X; : t € [0,00)} be a Lévy process on (2, F,P). Then, the one
dimensional distributions Pt are infinitely divisible for all t > 0. Moreover, there are
a €R,8 >0 and a measure m on R\{0}, such that with

P(A) = ia) + A + /(1 — €™ 4+ iAT1 )y <1y) T(d),
R

we have that E(e?*t) = exp(—ty())) for all X € R.
Proof: Consider for £ > 0 and n € N the decomposition
Xy =X+ (Xa = Xo ) oo+ (Xae = X ).
The stationarity of X implies that
FP' = (FP:)",

hence, P! is infinitely divisible. In particular, E{exp(:AX;)} # 0 for all ¢ > 0 and
P! is infinitely divisible. By the Lévy-Khintchine formula, there is a continuous %) :
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R — C, with the stated properties, such that E{e*X1} = exp(—())) for all X € R.
Furthermore, the mapping ¢ — log E{e®*Xt} is linear, since
logE{ei)‘Xt“} = log]E{ei’\(X““LXt*X‘)}
logE { ei’\(Xt+s_Xt)} +logE {e“‘Xt}
= logE{ei)‘Xs} + logE{ei’\Xt} .
As log E{e?**1} = —1)()), we can complete the proof by
log]E{ei’\Xt} = t-log]E{ei)‘Xl}
= —tp(A).
U

The function v is called characteristic exponent of the Lévy process X. The
following theorems state together that a L.évy process could be described completely in
terms of the characteristic exponent. At first, it seems to be reasonable to give some
examples of Lévy processes.

Examples (i) The easiest examples are the deterministic pure drift Lévy processes
X; = at for some a € R. It is clear that all requirements of Definition 1.5 are fulfilled
and that P’ = §,,, where d, denotes the Dirac point mass in at. Therefore, by

]E{ei)‘X*} = /e”‘zéat(dx)

— ei/\at

we can easily compute the characteristic exponent of a trivial Lévy process to 1(\) =

—iAa.

(ii)) Another well known example is standard Brownian motion which has the
characteristic exponent ¢(A) = £A\?. This can be seen easily by substitution:

. 1 ) 22
]E{EZ)‘XI} - - ezAm.e—de
V2T
1 ) ) 1/ 1 a2
- = ez)\(z+z)\)ef§(z+z)\) dz
\/27r/
]. _l)\2/ _122
= ——e¢ 2 e 2% dz
V2T

= 6_%/\2.

More general, if {B; : t > 0} is a standard Brownian motion, then Y; := \/fB; — at
for 5 > 0 and a € R, is a Brownian motion with diffusion parameter § and drift o.
An easy modification of the last computations shows that the characteristic exponent
of Y is just

D(N) = iah + BAZ.
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We need both examples for the first step in the proof of Theorem 1.8 which will give
a nice construction of Lévy processes. First, we notice that the distribution of a Lévy
process is uniquely determined by his characteristic exponent.

Theorem 1.7 Let X and X be two Lévy processes with the same characteristic expo-
nent 1, then X and X have the same distribution.

Proof: It follows readily from the uniqueness of the Fourier transform that the one di-
mensional marginal distributions agree for every fixed ¢ > 0. Moreover, the increments
of the processes X and X are stationary and independent, hence, the finite dimensional
distributions also agree. This gives the statement because of the right continuity of the
paths (for more details, that the finite dimensional distributions determine laws on D
see [JaS87| p.314). O

The next theorem guarantees the existence of Lévy processes for a given characteristic
exponent. Moreover, the proof gives a probabilistic interpretation of Lévy processes,
which is sometimes refered as the Lévy-Ité decomposition (see [It642]): informally,
we can think of a Lévy process as the sum of a Brownian motion with drift and a
pure jump process. In particular, the proof also shows that any Lévy process is also a
semimartingale.

Theorem 1.8 Let « € R, § > 0 and 7w be a o-finite measure on R\{0}, such that

/(1 A l2l?) 7(dz) < oo.
For \ € R, define
PY(A) = iaX + A% + /(1 — € 4+ iAT1 1 <1y) T(d2).

Then, there ezists a probability space (2, F, P) and a Lévy process {X; : t > 0} on
(Q, F, P) with characteristic exponent 1.

We do not prove the theorem in complete detail. Nevertheless, it seems to be important
to understand the key ideas of the construction of Lévy processes.

Idea of the proof: Let (2, F,P) be a probability space on which we can define a
Poisson point process A with state space R x RJ and intensity measure 7 ® m, where
m denotes the Lebesgue measure, and a standard Brownian motion {B; : t > 0}, which
should be independent of A. The key idea of the proof is to construct a Lévy process
with the given characteristic exponent from these probabilistic objects.

Define Xt(l) := /BB, — at, then {Xt(l) :t > 0} is a Lévy process with characteristic
exponent (1) = jaX + SN2, By the mapping theorem, the restriction

A® = {(z,5) e Az >1}
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of A is also a Poisson point process with intensity measure 1{(; ).z>1} 7(dx) m(ds).
Now, we use this restriction A? to define the process

Xt(2) = Z T.

(z,8)€AR) s<t

Then X® is a Lévy process independent of X1). To compute the characteristic expo-
nent of X it is enough to consider the process at time ¢ = 1,

X = Y. tlEaeatocec)-
(z,5)€A@

Since [(1 A z?)7w(dz) < oo, we get that

J[ @A pscincn@ s w(nmias) = [ wds) < .

Hence, we can apply Campbells Theorem and the characteristic exponent of X com-
putes to

¢(2) ) = //(1 _ eiAml{(m,s):OSSSI})1{(;678):;621} 7(dx) m(ds)
1
= / m(ds) /(1 — €i)‘$)1{m21} 7T(d.’L')
0
= /(]_ — Gi/\z)l{le} 7T(d.’L')

Finally, let A® := {(2,5) € A : z < 1}. Then A® is a Poisson point process with
intensity measure 1{( s).c<1} 7(dz) m(ds), which is obviously independent of A®. For
€ > 0, the process

X = Z j’71{(:c,s);s<:c<1}_t/xl{s<w<1}”(d$)

(z,5)€AB) s<t

is a Lévy process independent of XV, X and expectation E{X,fg’)’e} =0 forallt > 0.
Hence, X®)* is a martingale with respect to the filtration G, which is defined to be the
smallest o-field, such that all counting functions Na.c for A € B([0,t]),C € B(R) of
the Poisson point process A are measurable.

With a similar argument as before, one can show that Campbells Theorem is applicable
and the characteristic exponent of X®)* computes to

¢(3),5()\) = //(1 — U@ e)e<a<ti0<s<1}) 1 (dg) m(ds)
+/i)\:c1{s<z<1} 7(dz)

— /(1 — eiAw + iAx)1{5<w<1} W(dﬂ?).
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For n € (0,¢), X®< — X3 is also a G,-martingale with

EX® - X2 < 00, forall t > 0.

Hence, we get by Doob’s inequality

E {sup|X(3)’5 — X @) 2}
s<t s s

2

= E{ sup Z xl{(z,s):n<w<s}_t/x1{77<$<5}7r(dx)

st (z,8)€EAB) s<t
< 4t/x21{n<w<€} 7(dx) 0.
Therefore, for any sequence () | 0, the processes X () form a Cauchy sequence
in the space of cadlag processes with respect to the locally uniform convergence in
probability (lup, or even in L'). As this space is complete and every lup-convergent

sequence has a subsequence which converges locally uniformly almost surely, we can
choose a sequence (g;) such that

limX @) = X )
el0

locally uniformly almost surely (see e.g. [vWW]). Moreover, one can show that X®) in-
herits the martingale property of X )¢ and it is a process with stationary, independent
increments and characteristic exponent

PO () = / (1— ™ 4 iAa)Lpery 7(da).

If we define X := X® + X® 4 X®) then X is a Lévy process with characteristic
exponent 1) = () + @ 4 H3), -

To construct a Lévy process, it suffices by Theorem 1.8 to define a suitable character-
istic exponent. Consider the following important examples.

Examples: (i) Suppose that @« = =0 and 7 = ¢d; for some ¢ € R. Then,
E{e™} = exp(~ty()))
= exp (—tc/(l — €M 4+ iAT1 4<1) 51(dm)>
= exp (—te(1 — ")),

which is the Fourier transform of a classical Potsson process.
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(ii) Let now ¢ > 0 and o be a probability measure on R with o({0}) = 0. Then, with
a = =0 and m = co, one can easily compute that

E{e?*} = exp (—tc/(l — ) J(dx)) :
which uniquely determines the so called compound Poisson process.

As it is described e.g. in [Bau91] or [ReY99], there is another way to construct Lévy
processes using convolution semigroups and the Daniell-Kolmogoroff Extension
Theorem. In this context, there is a one-to-one correspondence between Lévy pro-
cesses and convolution semigroups. In other words, for any convolution semigroup of
probability measures {yu; : t > 0}, there exists a Lévy process such that

‘C(Xt - Xs) = HUi—s

and any Lévy process has transition kernels given by a convolution semigroup. This
construction becomes clear if we think of the Lévy Khintchine formula and remark
that every infinitely divisible probability distribution can be embedded in a unique
convolution semigroup (see for instance [ReY99] or [RW00a)).

A Lévy process is said to be of finite variation (on compact intervals) if almost
surely all paths are of finite variation on compact intervals, i.e. if there is a 2y C 2
such that P(€p) =1 and for all w € Qq and all compact intervals [a, b], we have

sup {Z |Xp (w) = Xty (W) ta=ty<---<t,=bne N} < . (1.4)
i=1

The following Lemma gives a useful criterion.

Corollary 1.9 A Lévy process {X; : t > 0} on (Q, F, P) with Lévy measure © and
characteristic exponent ¢ s of finite variation if and only if

b=0 and /(1 A J2]) w(dz) < oo.

Proof: Since Brownian motion is of infinite variation, b = 0 is clearly a necessary
condition. Let A C RxR] be the Poisson point process associated to X with intensity
measure 7 ® [. Then, X is of finite variation if for all ¢ > 0

Z |z| < oo almost surely.
(z,8)€A,s<t

By Campbell’s theorem, this is fulfiled if and only if [(1 A |z|) 7(dz) < . O

We have to remark that with this knowledge, we see that the proof of Theorem 1.8
shows in particular that any Lévy process {X; : t > 0} is a semimartingale, as we can
decompose X even in an martingale part (the Brownian motion and the part which
comes from the jumps less than 1) and a part of finite variation (the part from the
jumps which are bigger than 1 and the drift).
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Corollary 1.10 Let {X; : t > 0} be a Lévy process with Lévy measure m and finite
variation. Then there is a 8 € R and a Poisson point process A C R x Ry with
intensity measure m ® m, such that

(z,s)€A,s<t

The opposite direction of the corollary is obviously not true, i.e. there are Lévy pro-
cesses X without Gaussian part (8 = 0) and infinite variation. For example, let
7(dz) == w%da:. Then, one can compute easily that

/(1A\x|)7r(dx):oo and /(1/\x2)7r(dac)<oo.

Suppose for now (and forever if it is not explicitly otherwise stated), that the underlying
probability space 2 is the Skorokhod space D of real valued functions w : Rf — R which
are right continuous and have left limits, equipped with the Borel-o-field F, generated
with respect to the open sets in the Skorokhod topology and the distributions P, of a
Lévy process started in . On €2, we introduce for all s > 0 the shift operators

0,,0,:0Q—Q

by Osw(t) = w(t+ s) and O,w(t) = w(t +s) — w(s). Clearly, we can consider 5 and O,
as (2-valued random variables and thus as stochastic processes. Now, we introduce a
filtration {F; : t > 0} where F; is the P-completed o-field generated by {X; : s < t}.
Then, X is adapted to this filtration and (Q, F, P, {F;}) forms the canocical stochas-
tic basis to treat Lévy processes.

In fact, one can show that the right continuity of the paths of X imply that the filtration
F; is right continuous in the sense that

Fi = ﬂfs, for all ¢t > 0. (1.5)

s>t

Moreover, the well known Blumenthals 01-law (which we know from Brownian mo-
tion, see e.g. [M600]), i.e. that Fy is P-trivial, also holds for Lévy processes (see e.g.
[Ber96]).

A random variable T with values in [0, o0] is called a stopping time if {T <t} € F
for all t > 0. By the right continuity of the filtration {F; : ¢ > 0}, one sees that T is a
stopping time if and only if {T' <t} € F, for all t > 0, i.e. if T is a strict stopping
time. For a stopping time 7', define the o-field

Fr={AeF: {T<t}nAeFforallt>0} (1.6)

We now turn our attention to a very useful property of Lévy processes, the so called
Markov property, which pictorially states that the future behaviour of the Lévy
process only depends on the current state and not on the past of the process.
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Theorem 1.11 (Strong Markov property)

Let {X; : t > 0} be a Lévy process on (2, F, P) with start in x. Then, for every almost
surely finite stopping time T and every bounded random variable Y : (Q, F, P) — R,
we have almost surely

E.’E {Y O ®T|]:T} = EXTY

In particular, {X1y¢ — X7 : t > 0} is a Lévy process independent of Fr and with the
same distribution as X.

The proof of the strong Markov property of Lévy processes is very similar to the one
for ordinary Brownian motion as it is done e.g. in [M600]. See for instance [Ber96] or
[Sa99].

1.2 Lévy processes without negative jumps

Let us introduce an important subclass of Lévy processes, namely Lévy processes with-
out negative jumps. We will later see why it is important to restrict our attention to
this case. For the moment, just keep the following in mind:

Definition 1.12 A Lévy process {X; : t > 0} with characteristic exponent ¢ is called
spectrally positive if its Lévy measure 7 is supported in (0,00), i.e. X makes no
negative jumps.

To prepare the linking between Lévy processes and continuous state branching pro-
cesses in Chapter 2, we need to characterize spectrally positive Lévy processes in terms
of their Laplace transforms. Hence, we need the following fact which is proved in
[Ber96].

Lemma 1.13 Let {X,;:t > 0} be a spectrally positive Lévy process. Then,
E{exp(—AX})} < oo for all At > 0.

Now, let {X; : ¢ > 0} be a spectrally positive Lévy process with characteristic exponent

Y, i.e.
E{exp (1AX;)} = exp(—typ(N)) for all A € R,
where 1 is a function of the type

P(A) = da\ + BN + /(1 — ™ +idzlicny) m(dz), (1.7)

with « € R, 8 > 0 and 7 a o-finite measure on R\{0} which is supported on (0, c0)
and fulfils the integrability condition [(1 A 2?) 7(dz) < co.
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Our aim is to extend A — E{exp(iAX;)}, A € R, to define an analytic function on the
upper complex halfplane

U:={reC:Im(N) > 0}.

Since supp(7) C (0,00), and by the Lévy Khintchine formula, 1 is well-defined and
analytic on . Hence, using analytic continuation, we can define " : [0,00) — R by

PEA) = (i)
= - [ia(i)\) + B(iN)* + /0 (1 — €% 1 §(iN) 21 p<ry) 7(d)

= aX+ BN+ / (e — 1+ Azl{zeny) m(da), (1.8)
0

and therefore,
E{exp(—AX;)} = exp(—tp" (X)) for all A > 0

and we call 1" the Laplace exponent of X. To simplify notation, let us still write 1
instead of y”.

Now, we go one step ahead and consider again a subclass of spectrally positive Lévy
processes, the so called subordinators, which are Lévy processes with non decreasing
paths. For the moment, it may look quite artificial to be interested in such processes.
But, as we will see, they appear very naturally in many situations. For example, one
can prove that the first passage time process of Brownian motion is such a subordinator
(see Lemma 1.16). Moreover, we see that subordinators are closely related to local times
of Markov processes (see Section 1.3). It is also worth to remark, that any Markov
process time changed by a subordinator is still a Markov process.

Definition 1.14 A stochastic process {o; : t > 0} with values in [0, 00| and lifetime
& :=inf{t > 0: 0y = 0o} is called a subordinator if {0, : 0 < t < &} is a Lévy process
with non decreasing paths.

In particular, subordinators are of finite variation. So, using Corollary 1.10, there is a
d > 0 and a Poisson point process A C R x R with intensity measure m ® m, such
that

op=d-t+ Z x,

(z,5)€A,s<t

for t < £ and 0, = oo for t > £. This representation of ¢ is often referred as the Lévy-
It6 decomposition of subordinators. Moreover, the parameter d is called the drift of
the subordinator.
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Now, let ¢/ : R, — R, be the Laplace exponent of o, i.e.

E{exp(—Aoy)} = exp(—ty (X))
for A € R. Then, by dominated convergence, we get
P{E>t} = E{lyey}
= lim E{exp(—Aoy)}
A—=0

lim exp(—t1 (X))
A—=0
= eXP(—W)(O))a

and therefore, € is exponentially distributed with parameter ¢(0) =: k, the so called
killing rate of the subordinator o. Using Campbell’s theorem, we can easily compute
the Laplace exponent of o to

Y(A) =k+dr+ /(1 — e ) 7(dx),

for A < 0. Conversely, a mimic of the proof of Theorem 1.8 shows that for any choice
of k,d > 0 and o-finite 7 with [(1 A z) 7(dz) < oo, there is a subordinator with the
corresponding Laplace exponent.

Important examples of subordinators are the so called a-stable subordinators (for
a € (0,1)) which are characterized by their Laplace transform

P(A) =\ = m/0 (1 — e ?)r dg.

If {0, :t > 0} is a subordinator with drift d, then
R:={o,:t>0}%

is called the closed range of the subordinator o. If we introduce the right continuous
inverse L; := inf{s > 0: g, > t} of o, then we have the following nice characterization
of the size of the range (which can be found for example in [Ber00]).

Theorem 1.15 Almost surely for allt > 0, we have
m{R N[0,t]} =d- Ly,
where m denotes the Lebesgue measure on the real line. In particular, R has zero

Lebesgue measure if and only if d = 0.

Proof: Without loss of generality, we can assume that £ = 0. We use the Lévy-Ito
decomposition of o,

o=d-t+ Y = (1.9)

(z,5)€A,s<t
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for ¢t < £ and a suitable Poisson point process A. Denote by
J:={s<&:(z,s) € A and z > 0 for some z}

the set of jump times of A. Then, we can decompose R¢ by
R = U (05—, 0%)

and one gets almost surely for all t > 0

m{RN[0,04]} = Ut_m{ U (Us,US)}

s<t,s€J

= 0t — Z .%‘Zd't.

(z,8)€A,s<t
Clearly, RN(0y-, 0¢) = {0:} and therefore, m{RN|0, ;- |} = d-t. Note that s € (04—, 0y)
if and only if Ly = t, which leads to
m{RN[0,s]} = d-t
= d- Lsa
almost surely for all s > 0 which gives the statement. U

The next lemma gives the key to a wide and interesting class of examples for subor-
dinators. We prove that the first passage time process of a spectrally positive Lévy
process is a subordinator.

Let 9 : [0,00) — R be the Laplace exponent of a spectrally positive Lévy process, then
the function 1 is convex and

lim ¥(\) = o0

A—00

(see [Ber00]). Denote by ¢(0) the largest root of 1. As ¢(0) = 0, the convexity of v
implies that 0 and ¢(0) are the only roots in the case of ¢(0) > 0. Hence,

¥ 2 [6(0), 00) = [0, 00)
is a continuous bijection which is invertible, and we denote by
¢ : [0,00) = [¢(0), o0)
the inverse function of 1), i.e. the unique function ¢, such that 1) o ¢(\) = A, for all

A > 0. Now, we are ready to formulate the promised first passage time lemma:

Lemma 1.16 (First passage times)
Let X be a spectrally positive Lévy process with Laplace exponent v and denote by ¢
the inverse function of . Then, the process {T, : x > 0} defined by

T, :=inf{s > 0: X, = —x} forz >0,

1s a subordinator with Laplace exponent ¢.
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Proof: 1t is clear that T is non-decreasing and by the strong Markov property of the
Lévy process X the first passage process T inherits the independence and stationarity
of the increments from X. So, {7, : x > 0} is a subordinator. But we still have to
compute its Laplace transform.

For all A > 0, let M, := exp(—¢(N\)X; — At). Then for all s < ¢, the stationarity and
independence of the increments of X and the fact that

E{e ¢MXt1 = exp(—A\t)
implies that

]E{Mt|'7:s} = E{eXp(_¢()‘)Xt - )‘t)|~7:s}
= exp(—p(A)X; — As)E{exp(—¢(A) Xy — M — (—d(A) X; — As)}
= exp(—p(N) X, — As) - 1= M,

and hence, {M,; : t > 0} is a martingale. Note that Mr, A, is a uniformly integrable
martingale and as X is assumed to be spectrally positive, X;;, = —z for all x > 0. By
the martingale convergence theorem, My 7., converges to exp(¢(A)z—AT,) on {T, < oo}
almost surely and in L'. Hence,

1 =E{Mo}E{Mr,} = E{exp(¢(N)z — AT3)}
= E{exp(—AT,)} - exp(d(N)x).

O

In particular, this Lemma generalizes the well known fact that the first passage time
process of Brownian motion (BM is of course spectrally positve) is a stable subordinator
of index 3.

1.3 Local times

Before we can introduce local times, we first have to fix a suitable class of processes
for which the construction works. In general, one could use methods of stochastic
calculus to introduce local times for semimartingales (this could be achieved via the
Meyer-Tanaka-formula for the case of continuous semimartingales, see e.g. [M600b]).
Nevertheless, we will follow the different way of Blumenthal and Getoor who introduce

local times for Markov processes which have some regularity condition. Throughout
this section, let (F, B(F)) a Polish space with Borel-o-field.

Definition 1.17 A family of functions P, : E x B(E) — [0,1] for t > 0, is called
a family of transition functions (sometimes also called kernels), if the following
conditions are satisfied

(i) fort >0 and any x € E, Py(x,-) is a probability measure on E,

(i) fort >0 and A € B(E), P(-, A) is B(E)-measurable and
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(#ii) fors,t > 0,z € E and A € B(F), we have the so called Chapman-K olmogoroff-
equation

Pryi(z, A) = / Py(y, A)Py(x, dy). (1.10)

E

In particular, the Chapman-Kolmogoroff-equation can be seen as the basis for the weak
Markov property. Let us now define what we mean by a Markov process.

Definition 1.18 An E-valued stochastic process {M; : s > 0}, defined on some fil-
tered probability space (2, G, (Gi), Py) which is adapted to the filtration (Gy), is called a
Markov process if for everyt > 0,s > 0 and any Borel set A € B(E)

P:L‘{Mt—i-s € A | gt} - PMt{Ms € A}
Py-almost surely for all x € E.

As it is shown for example in [EK86] (p.157), for any given family of transition kernels,
there exists a probability space (2,3, (G;), P;) and an E-valued Markov process {M; :
s > 0}, which can be defined on this space, such that

P.(M; € A) = Py(z, A),
forallt > 0,2 € E and A € B(E).

If we could replace the deterministic ¢'s in the definition of Markov processes by any
almost surely finite G;-stopping time 7', then we call M a strong Markov process.
So in particular, we already saw by Theorem 1.11 that every Lévy process is a strong
Markov process.

Now assume that {M; : t > 0} is a Markov process with values in E which can be
defined on the stochastic basis (2, G, (G;), P,). (The following description of local times
can be similarly found in [Ber96] and [Ber00].)

A point a € F is called regular if
PAinf{t >0: My =a} =0} =1.

Informally, a is a regular point for the Markov process M if the process returns to a
at arbitrarily small times almost surely. Our motivation for this section is to find a
method how to measure the size of sets of those times, when M returns to a. As it
was shown by Blumenthal and Getoor, there is an interesting link of this question and
subordinators. They proved that the closure of the set of times when M started at a
returns to a, can be identified as the closed range of some subordinator ¢® defined on
the same probability space, i.e.

R:={s>0:M,=a}"={of: t >0}
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Moreover, the subordinator ¢ is uniquely determined by M up to a multiplicative
constant, i.e. if ¢’ is another subordinator with close range R, then there exists a

¢ > 0, such that o} = 0, for all ¢ > 0 almost surely.

Now, denote by L{ the inverse of o given by
L} :=inf{s > 0: 07 > t}.
Then, one can show that {L§ : t > 0} has the following properties
(i) {L¢ :t > 0} is Gi-adapted,

(ii) L¢ = 0 almost surely and the paths ¢ — L¢ of L* are almost surely continuous
and non decreasing,

(iii) for all ¢, s > 0, we have the additivity property

La

t+s — Lg +[~’g

almost surely, where L refers to the shifted Markov process M),
(iv) the support of the Stieltjes measure dL® is {t : M; = a}* and

(v) {L¢ :t >0} is uniquely defined up to a multiplicative constant.

Definition 1.19 We call the continuous additive functional {L} : t > 0} that
increases only on the set of timest > 0, when M; = a the local time at level a of the
Markov process M.

Moreover, this construction can be achieved simultaneously for all ¢« € E and sometimes
the jointly measurable two parameter random field

{L¢:t>0,a€E}

is called local time of the Markov process M.

In this thesis, we are particularly interested to study the local time at 0 of a subclass
of real-valued Markov processes for which 0 necessarily is a regular point. Consider the
closure of the zeros of a given Markov process {t : M; = 0}. Clearly, if M is continuous
the set of zeros is automatically closed. Then its complement can be written as the
union of countably many open intervals

ft: M= 01 = (8, (1.11)
jeJ
for some J C N. Recall that D is the Skorokhod space of cadlag functions and define
w; € D by

UJ](S) = M(aj+5)/\ﬂj' (1.12)
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We call the w;,j € J the excursions of the Markov process M associated to the
excursion intervals (o, 5;).

The following theorem due to It6 forms the basis of excursion theory:

Theorem 1.20 (Point process of excursions)
There exists a o-finite measure N on D, called the excursion measure, such that
the countable random set

{(Lo, wj) =5 € J}
forms a Poisson point process on R, X D with intensity measure dl @ dN.

As a preparation for the later chapters, we now introduce local times for a special class
of Markov processes.

Therefore, let {X; : ¢ > 0} be a Lévy process. Then, the processes {S; : t > 0} and
{I; : t > 0} given by

S;:= sup Xy, and [;:= inf X,
0<s<t 0<s<t

are called supremum and infimum process of X. Note that S and I are both no
Markov processes, so they do not belong to any class of processes we introduced so far.
Nevertheless, our aim is to define a local time at 0 of the reflected processes S — X and
X — I. Due to the last section, we need the following:

Lemma 1.21 Let {X;:t > 0} be a Lévy process. Then, the processes {S;—X; : t > 0}
and {X; — I, : t > 0} are strong Markov processes in R,. Moreover, if X has infinite
variation, then 0 is a reqular point for the Markov processes S — X and X — I.

The fact, that both reflected processes are strong Markov processes is proved in [Ber96],
p.156, and could be done by standard arguments. To proof the regularity of the point
0, one needs some more machinery about Lévy processes which we want to omit here
(see [Ber00], p.26).

As the regularity of 0 is necessary to define local times, we assume that {X; : ¢t > 0} is
a Lévy process with infinite variation for the rest of the thesis. Then, by the previous
statements, there exists a local time at 0 denoted by {L; : ¢t > 0} of the reflected Lévy
process S — X, which is uniquely determined up to a multiplicative constant.

With the help of the next theorem, we want to fix this constant for the rest of this
thesis. A proof of this theorem can be found in [LGD].
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Theorem 1.22 (Normalization of local time)
We can fiz the normalization of {L; : t > 0} such that for all t > 0, in probability
t

1
L; = lim — 1o _ ds. 1.1
¢ = lim - lsexe<a) s (1.13)

In particular, for every ¢ > 0, we can choose a sequence ¢, converging to zero, such
that

1

t
Li=lim — [ 15 xcond 1.14
: kggogk/o (Ss—Xo<ep} S (1.14)

holds almost surely. Moreover, using the monotonicity of ¢ — L;, we could choose a
suitable subsequence of () such that (1.14) holds almost surely for all ¢ > 0.

Let L71(t) := inf{s : L > t} be the inverse of the local time with the convention that
X1y =00 if t > L. Then, we have the following useful fluctuation formula:

Theorem 1.23 (Fluctuation formula)
Let {X; : t > 0} be a spectrally positive Lévy process with Laplace exponent 1. Then,
{Xr-1¢) : t > 0} is a subordinator with Laplace exponent

P(\) = —— =+ fA+ /000(1 — e )7 ([r, 00)) dr. (1.15)

In particular in the case o # 0, we have by dominated convergence that
P{L7'(t) < oo} = P{Xp-1@ < oo}
= ]E{I{XL_I(t)<OO}}

= E{l}%f(()l(eXp—)\XL—l(t))}
= limexp(~t(3))

= exp(—ta), (1.16)

which shows that L., is exponentially distributed with parameter o > 0.

Theorem 1.23 is due to Bingham (see [Bi76]). It originally states that

]E{e‘*XL”(t)} = exp(—ctip(N)),

for some ¢ > 0 which depends on the normalization of the local time L. One can prove
(this is done in [LGD]) that, due to our choice of the normalization in Theorem 1.22,
we get that ¢ = 1. This is one motivation to choose the normalization in the way of
Theorem 1.22.
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In particular, if we assume that 3 > 0, the subordinator Xj,-1(; has drift 8 and we can
use Theorem 1.15 to measure the range of X1, by Lebesgue measure, which leads
to a nice modification of the local time L.

Corollary 1.24 Let {X; : t > 0} be a spectrally positive Lévy process with Laplace
exponent ¢ as defined by (1.8) with B > 0 and let {L; : t > 0} be the local time at 0 of
S — X. Then for every t > 0, almost surely,

L= %m{Sr cr <t}

Proof: We have just shown that {X -1 : ¢ > 0} is a subordinator. Hence we can
apply Theorem 1.15 to obtain, almost surely for all u > 0

m{X -1 1 t < u, L7 (t) < oo} = B(u A Lo).

Moreover, the set {X -1 : t < u,L7'(t) < oo} coincides with the set {S, : r <
L~ Y(u)} except for at most countably many points, which do not affect the Lebesgue
measure. Hence, we get

m{S, :r <t} = pL,.

1.4 Branching processes

Branching processes can be seen as describing the random evolution of a population
size. Therefore, it is natural to assume, that if one divides the population at any time in
two parts and let them develop independently, then the sum of these two parts should
behave like the original population process. This heuristic directly lead us to the formal
definition of a branching process. Nevertheless, this description does not contain any
genealogical information, meaning that looking at branching processes does not help
to get information about the ancestrial lines of certain particles in the population. The
main subject of this thesis is to develop structures which can be interpreted as coding
the genealogy of branching processes. At first we like to introduce these branching
processes formally.

Definition 1.25 A strong Markov process {Z; : t € T} with some ordered time set T
and values in (R, B(R)) is called branching process, if for all families

{P(z,-):t >0,z € E}
of transition kernels the branching property is fulfiled, i.e.

B(.’L' + Y, ) = Pt(x’ ) * Pt(y, )
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The most important examples are the following ones:

Exzamples: (a) Suppose that p is a probability distribution on N and let {X7' : n, j €
N} be an array of independent and identical u-distributed random variables. Then the
process {G,, : n € N} given by Gy =1 and

Gn
n
j=1

is called a Galton- Watson process with offspring distribution p. The class of
Galton-Watson processes form the simplest class of branching processes. They describe
the evolution in discrete time of a population with offspring (or birth) distribution p
and are intensively studied for more than 30 years. We refer to the books of Harris
and Athreya/Ney for more information about Galton-Watson processes.

(b) A strong Markov process {Z; : t € R, } with values in Ry, whose transition kernels
fulfil the branching property, is said to be a continuous time continuous state branching
process or just continuous state branching process (shortly a CSBP).

The CSBPs are the main subject of interest for the rest of this thesis. To motivate
the methods used in the continuous case, we will nevertheless first develop the theory
for Galton-Watson processes. The following theorem is originally due to Silverstein.
A proof can be found in [LG99]. It will give a first idea how to relate Lévy- and
continuous state branching processes.

Theorem 1.26 Let {Z; : t > 0} be a CSBP with start in x > 0 which is critical or
subcritical, i.e. for allt >0

/yPt(x,dy) < 7.

Then, the Laplace transform of the transition kernels is given by

/0°° e M Py(z,dy) = exp(~zus())),

where u; s the unique non-negative solution of

aut()\) .
o = (ue(A))

with initial condition ug(X) = A and a function 1 : [0,00) — [0,00) of the type

Y(u) = au+ fu® + /oo(em — 1+ ru) n(dr),
0

where a, f > 0 and 7 is a o-finite measure on (0,00), such that

/(r Ar?) w(dr) < oo.
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Conversely, for any choice of the parameters in 1, there is a CSBP with the corre-
sponding Laplace transform.

Therefore, one can describe any (sub)critical CSBP just by defining a suitable . In
this case, we just write ¢)-CSBP for a continuous-state branching process {Z; : t > 0}
and we call the function ¥ the branching mechanism of Z. Moreover, we denote
by C the class of (sub)critical CSBP.

An important example of a CSBP is the so called Feller diffusion, the 1-CSBP
corresponding to ¥(u) = Bu?. Another way to obtain the Feller diffusion is via a
stochastic differential equation (see e.g. [LG99]).

Theorem 1.27 Let {B; : t > 0} be a one dimensional Brownian motion then the
Feller diffusion is the unique strong solution of the stochastic differential equation

dXt =V 2/8Xt dBt

Intuitively, it is clear that if a CSBP reaches 0, then the process stays there forever
and the population dies. To be riguros, let {Z; : t > 0} be a ¢-CSBP and let T :=
inf{t > 0: Z, = 0}. Then, the strong Markov property of Z implies that Z; = 0, for
every t > T almost surely. Hence, the following definition makes sense:

Definition 1.28 Let {Z,:t > 0} be a CSBP, then, the time T := inf{t > 0: Z, = 0}
s called extinction time of Z. Moreover, if T < oo almost surely, we say that the
CSBP {Z, :t > 0} dies in finite time.

The following theorem gives a necessary and sufficient condition for a CSBP to die in
finite time in terms of the branching mechanism.

Theorem 1.29 (Extinction of CSBP)
A -CSBP {Z; : t > 0} dies in finite time if and only if

<1

If this condition fails, then T = oo almost surely.

Proof: Using dominated convergence, we can compute that for any fixed ¢ > 0,

P{z, =0} = E{l{tho}}
= lim E{e™?%}

A—00

= lim exp(—zui(N)). (1.17)

A—00
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Moreover, the continuity of P and the last formula yields

P{Z,=0somet>0} = P {U{Zt = o}}

>0
= JmPUn=0)
= lim lim exp(—zu(A)). (1.18)

t—00 A—00
Recall that u;(A) is the unique non negative solution of

0

Eut(/\) = _w(ut()\))

for t > 0 and ug(\) = A, hence,

1 0
oo =

and we get by substitution that

g . X 5
/utm Ok _/0 Bl () g5 oW ds =1 (1.19)

We now show that the right hand side in formula (1.18) is equal to 1 if and only if

> 1
——ds < o0. 1.20
e (120
As the function v has its only zero at 0, (1.20) holds if and only if, for all € > 0,
T e (1.21)
——ds < 0. .
e Y(s)

If lim; o ug(00) = 0, then (1.19) implies that (1.21) holds for all € > 0. Moreover,
under the assumption that (1.21) holds, (1.19) implies that lim; . u;(00) < € for all
e > 0 and we infer that limy ., us(00) = 0.

Furthermore, if (1.21) fails, then the right hand side in formula (1.18) is 0 as u(c0) = oo
for any ¢ > 0. O

In particular, this condition is true in the case of the Feller diffusion and in the stable
case, i.e. where the branching mechanisms are of the form (\) = A\'*# for 8 € (0, 1].

Recall that any critical or subcritical Galton-Watson process dies in finite time. Hence,
the condition for the extinction of a CSBP, given by Theorem 1.29, is different from the
discrete case, i.e. there are critical (or subcritical) CSBP which do not die. Moreover,
another difference to the case of Galton-Watson processes is the following 01-law, which
is directly inspired by Theorem 1.29.
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Corollary 1.30 (01-law for the extinction time)
Let T be the extinction time of a CSBP, then P{T < oo} € {0,1}.

To finish this chapter, notice that the functions 1 in Theorem 1.26 which determine a
CSBP in a unique way, look very similar to Laplace exponents of Lévy processes. In
fact, we can find a subclass £ of Lévy processes, such that there is a one-to-one corre-
spondence between £ and C just via the Laplace exponents respectively the branching
mechanisms . Our aim for the rest of this chapter is to define this subclass L.

Definition 1.31 Denote by L the class of all Lévy processes {X; : t > 0} defined on
(Q, F, P) with start in Xo = 0 with the following properties:

(L1) X is spectrally positive,
(L2) X does not tend to +oo,

(L3) the paths of X are of infinite variation almost surely.

As we already pointed out in Section 1.2, due to (L1), the Laplace transform of X is
well defined and we have for A > 0,1 > 0,

E{exp —A\X;} = exp(—tp())), (1.22)
with a function ¢ of the form
P(A) = aph + B2+ / (e — 1+ LypenyAr) w(dr), (1.23)
(0,00)

where ap € R/ > 0 and 7 is a o-finite measure on (0, 00), such that

/ (1 AT 7(dr) < co.
(0,00)

To go ahead, we need the following equivalence for the fact that a Lévy process does
not tend to oo:

Lemma 1.32 A Lévy process {X; : t > 0} does not tend to oo almost surely if and
only if Xy has first moments and E{X;} <0 for allt > 0.

For a proof of this lemma see e.g. [Ber96]. Of course, we could replace (L2) by the

condition in the lemma, but we think that this would be less intuitive to start with.
Assume now, that (L2) holds. Then, due to the Lemma,

E{X;} = %]E{e_’\xt}

A=0

= Sreww)|

= —t4'(0) <0. (1.24)
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Therefore, we get
P'(0) = g — / rm(dr) >0,
[1,00)

and so f[l o) T (dr) must be finite. Hence, with a := ag — f[ ra(dr) > 0, we can

rewrite ¢ : [0, 00) — [0, 00) as

1,00)

P(A) = aX + BA? + /(0 )(6_)‘7" — 1+ Ar)n(dr), (1.25)

where 7 satisfies the stronger integrability condition

/(7“ Ar?) w(dr) < oo.
Thus, we have established the promised bijection
U:C—>L

between (sub)critical CSBP and certain subclass of Lévy processes via the branching
mechanisms respectively the Laplace exponents . The aim of Chapter 2 is to give an
explicit pathwise construction of an element Z € C from a certain functional of the
corresponding Lévy process V(7).



38

CHAPTER 1. PREPARATION AND MACHINERY



Chapter 2

Construction of the genealogy

In order to understand the coding of the genealogical structure of a CSBP, we first con-
sider the discrete time, discrete state space case of Galton-Watson trees and branching
processes. Later we will try to link both concepts considering the limit behaviour of
the discrete setting.

2.1 Galton-Watson trees and random walks

Let N={1,2,...}, u be a probability measure on Ny = {0,1,2,...} and

where N° := {6}. Each v € N* can be written as u = u;...u, with u; € N for all
i=1,...,n and |u| = n. Formally let |§| = 0. Denote by uv the concatenation of u
and v and introduce the canonical lexicographical order <; on U.

Definition 2.1 A tree 7 is a subset of U such that
(i) 6 €T
(1) if v € T and v = uj for someu € U and j € N then u € 7
(#i) for allu = uy...ux € 7 also uy...up_18 € T for all1 < s < uy,.

Denote by T the set of trees.

These requirements are intuitively clear if we think of ¢/ as an address space. 1t is
natural that we can not take every subset of U to get a tree-structure. Assumption (i)
just means that every tree must contain a root ¢. (ii) means that every element of the
tree (except the root) contains a mother in the tree and the third requirement is that
existent older brothers of an element should also be contained in the tree.
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Definition 2.2 Let {C(u) : u € U} be a family of independent u-distributed random
variables and define

Ti={up...up €U 1 <up <Cluy...up 1) for all 1 < k <n}.

Then by construction T is a random element of T and we call T a p-Galton- Watson
tree.

This construction induces a probability measure P* on the set of trees 7 (see e.g.
[Ne86]). Intuitively, Galton-Watson trees can be seen as family trees of Galton-Watson
process, which can be easily constructed from a given tree by summing up all particles
in each generation

Gn = #{ue7:|ul =n},

Nevertheless, the genealogical information which was contained in the tree is lost if we
consider just Galton-Watson processes. In other words, the Galton-Watson trees con-
tain more information than the Galton-Watson processes alone, namely the genealogy.

In this thesis we will only consider critical or subcritical probability measures pu, i.e.
o0
> kulk) <1,
k=0

and we always exclude the boring case y = ¢;. Moreover, if y is (sub)critical we also
call a p-Galton-Watson tree or process (sub)critical. We start with the well known
result, that in this case the corresponding trees are finite and the pu-Galton-Watson
processes die out almost surely.

Lemma 2.3 Suppose that T is a (sub)critical p-Galton-Watson tree, then T is finite
almost surely and the corresponding p-Galton-Watson process {G,, : n € Ny} dies out
in finite time, i.e.

P{G, =0 for finally alln} = 1.

A proof of this lemma, which uses generating functions and standard analysis methods,
can be found in almost any book on branching processes or probability.

Assume now that 7 is a (sub)critical y-Galton-Watson tree and let o be the number
of particles in the tree 7.

Definition 2.4 Let u(0) =6 <, u(l) <; --- <, u(o — 1) the addresses of all nodes in
T listed in lexicographical order. Define the process {H,(T) :n € No} by

H, () ;:{ lu(n)| f0<n<o-—1

A otherwise ’

where A is an absorbing cementary point. We will the process {H,(7) : n € Ny} the
discrete height process associated to a Galton-Watson tree 7.
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Pictorially, H,(7) describes the generation of the n-th vertex if we run through the tree
in lexicographical order. It is clear that the discrete height process codes the genealogy
of a Galton-Watson tree. Unfortunately, the height process is not a Markov process.
However, we can describe H as a functional of a random walk:

Theorem 2.5 Let {H,(T) : n € Ny} be the discrete height process associated to a
(sub)critical p-Galton-Watson tree. Then there ezists a random walk {W, : n €
No} with values in Ny U {—1} and increment distribution v(k) = pu(k + 1) for k =
—1,0,1,2,... such that for every n € N,

Hn:#{jE{O,l,...,n—l}:Wj: inf Wk} (21)

J<k<n

Proof: Let 7 be a p-Galton-Watson tree and let v = u;...u, € U be a vertex in 7.
Then for every k < p the ancestor of u in the k-th generation is denoted by

[u]g == u1 ... ug.
Foralln € {0,1,...,0 — 1} and j € {1,..., H,(7)} define

B, (1) == #{v e 1 :|v| = j,[u(n)]-1 = [v]j-1, u(n) <; v},

which pictorially describes the number of younger brothers of the ancestor of u(n) in
the j-th generation. Now, we introduce the process {p, : n € Ny} by setting

| Bnp,---3Bym,) ifn<o
pn = A

otherwise.

Then one can easily check, that {p, : n € N} is a Markov chain with values in A/ U{A}
whose transition probabilities @ for b= (b;...b,) € U and k € N are given by

Q(b, (b, k}) = p(k+1) and
Q(ba b) = /L(O),

where b = (by...by_1by, — 1) if m =sup{j : b; > 0} and b= A if by = --- = b, = 0.
Clearly, Q(A,A) = 1. To make the statement clear, think of u(n) as the particle in
the tree wvisited at time n. Then for every | € N, the probability thatu(n) has [ + 1
succestors is (I +1). In this case, u(n+1) = u(n)1 and p,1 = (pn,!) by construction.
Moreover, with probability 1(0) the particle u(n) has nos child. Hence, u(n + 1) is
the first younger brother of u(n), respectively the first younger brother of the ancestor
ofu(n) if u(n) has no younger brother and so on.

With the help of this Markov chain, it is easy to define the process {W,, : n € Ny} by

Hy
W, = ZBW- foralln <o

i=1
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and killed at time o. Then it is clear by construction that W,, is a random walk with
jump distribution v, but we still have to show equation (2.1). To this end, remark that
W; = inf{W : j < k < n} if and only if n < inf{l > j : W, < W;} which is equal to
the first time of visit of an individual that is not a descendant of u(j). Hence,

Wj = inf Wk

j<k<n

if and only if u(j) is an ascendent of u(n), and therefore

# {j €{0,1,...,n—=1}: W; = <121£ Wk} = #{ancestor of u(n)}
JSKRSn
= generation of u(n) = H,,

which finishes the proof. O

A few remarks are in order here. At first, the whole procedure of the discrete coding
may be enlighten by some pictures. As we know how the construction works for one

K\:/f H, W
Y

u-GW tree p-height process ™

v-random walk "

Figure 2.1: The coding of a GW tree

Galton-Watson tree (see Figure 2.1), one may wonder how to code a sequence (7,)
of Galton-Watson trees. For example, consider the trees 71,7, 73. We can code such
a sequence of trees, just by glueing together the corresponding height processes (see
Figure 2.2). Then each ezcursion of the height process corresponds to a tree. To get
the corresponding random walk, it is not possible to get a unique representation by
gluing together the random walks for each tree, as these random walks may take the
value 0 several times while coding one tree. Therefore, we have to code every tree
alone, then we shift the path of the k-th tree by —(k — 1) and then we obtain W by
glueing together these shifted parts (see Figure 2.3).
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Figure 2.2: A sequence of u-GW trees and the associated height process

W

Figure 2.3: The random walk associated to 11, 7, 73

Moreover, we can easily obtain a p-Galton-Watson process {G,, : n € Ny} from a given
height process just by counting the level sets of the discrete height process

Gn:=#{seN: H; =n}. (2.2)

In the continuous time setting, we get a similar formula to count the particles in a given
level-set. Nevertheless, as one could imagine, we have to deal with a lot of technical
difficulties. In particular, Lebesgue measure does not work as a substitute for the
counting in the above formula and we have to introduce local times of the continuous
analogue of the height process to measure the size of each generation.
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2.2 The coding of CSBP

Recall from Chapter 1 that there is a very natural bijection from the class of (sub)critial
CSBP C and the class of spectrally positive Lévy processes £ which have infinite
variation and do not tend to oo. This bijection can be realised via the branching
mechanism respectively the Laplace exponents which are of the form

D) = ad+ BX? + / (e — 14 Ar)m(dr), (2.3)

(0,00)

where a, 3 > 0 and the Lévy measure 7 satisfies [(r A r?)m(dr) < oco.

The major aim in this chapter is to give an explicit probabilistic construction of a -
CSBP from a given 1-Lévy process for any ¢ of the form (2.3). Compared with the
discrete setting, the Lévy process corresponds to the random walk W, which is spec-
trally positive in the sense that W makes only negative jumps of size 1. To get a formula
analogous to (2.2) in the continuous setting, we have to introduce the continuous time
analogue of the discrete height process. Clearly, it is not possible to define a continuous
height process in the same way as in the discrete case in terms of a walk through a tree,
because we do not know whatever a continuous tree should be (at least at the moment).

Nevertheless, Theorem 2.5 gives the major idea how to define a continuous height
process. To get a formula, similar to (2.1), we first replace the random walk W by a
Lévy process X € L. So, let {X; : ¢t > 0} be a Lévy process in the class £, which can
be defined on the canonical stochastic basis (2, F, P, F;) as described in Chapter 1.

Definition 2.6 For everyt > 0, define the time reversed process {Xs(t) :s€10,t)}

A

X0 =X, — Xy,
with the convention that X,- := 0, and its supremum process {gét) : s €[0,t]} by

SO = sup{X® : r < s}.
Although the definition of the time reversed process looks very strange at the first
glance, we should keep the following picture in mind which helps us to understand the
procedure:

Lemma 2.7 (Duality)
Let {X; : t > 0} be a Lévy process defined on (2, F,P) and fit a t > 0. Then
{X;:0<s<t} and {Xs(t) : 0 < s <t} have the same distribution under P.

Proof: Let t > 0. It is clear that the one dimensional distributions agree, because for
all s € [0,t] we have that

PXt— :PXS-

X(t—s)—
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X

Figure 2.4: Construction of the time reversed process X

Moreover, X is a process started at 0 with independent, homogeneous increments
and almost surely cadlag paths on [0, ¢]. Hence, { X, : 0 < s <t} and {Xs(t) :0<s<t}
must have the same distribution. O
As consequence of Lemma 1.21 the process {th) — ,é's(t) : 0 < s <t} is a strong Markov

process with regular point 0, for every fixed ¢ > 0. Hence, due to Section 1.3, the local
time at 0 exists and we can pass to the following definition:

Definition 2.8 Set Hy := 0 and for every t > 0 let Hy := Lﬁt), where {Eﬁ” :s > 0}
denotes the local time at 0 the the reflected, time reversed Lévy process

{X® - 80 .5 <1}

We call the process {H; : t > 0} the 1 -height process associated with the underlying
-Lévy Process {X; : t > 0}.

Note that this definition is really motivated by the discrete formula (2.1). Let us elabo-
rate a little more on this. The fact that the continuous formula looks different from the
discrete one (at least at the first moment) is due to the following technical difficulties:

Suppose that the Lévy process X plays the role of the random walk W. It is clear,
that we cannot replace the counting measure of the discrete setting by the Lebesgue
measure m, i.e.
m{sgt:Xs: inf X,,}
s<n<t
because this measure is to crude and would always lead to the value 0. Therefore, we
use the local time to measure the size those sets. Nevertheless, the process

{XS— inf Xn:0§$§t}

s<n<t

is not a Markov process and we can not construct local times. To get out of this
dilemma, we do time reversal. Note that

{sgt:Xs: inf Xn}:{sgt:)zu):gg)},

s<n<t
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and so our definition of the continuous height process is the natural continuous ana-
logue to the discrete time formula (2.1).

To simplify notation, let us write

I’ .= inf X

ET
and note that I; = I?. For the local time, we use the normalization provided by
Theorem 1.22, hence we may choose a sequence (gx)x>1 of positive real numbers such
that for all fixed ¢t > 0, almost surely

Y

H, = k]ggloa/o l{sﬁ‘gt)ix‘gt)<€k} ds. (2.4)

Hence, we see in particular, that H; is F;-measurable for all ¢ and that we can choose
a modification of the height process with values in [0, 0o] by setting

.1t
H, = llgllloglfg/o 1{5§t)_)“(§t)<sk} ds. (2.5)
Although this approximation of the height process is very valuable, we may wonder
if one could do an approximation of H; which is directly motivated by the discrete
formula (2.1). Heuristically, by counting the time instants r < ¢, for which X, = I7.
Let us fix ¢t > 0. Using substitution, (2.4) implies that,

1 t
H;, = lim — 1,00 ot dr.
¢ k—o00 Ek 0 {St(—)r_Xt(Jr<6k}

As S#:(t—)r =X, —I" and X® X; — X, for all r <t we get

-

1
Ht = lim —/ l{Xr<IZ+5k} d7‘, (26)
0

k—o0 Ek
almost surely for all fixed ¢t > 0. Recall from Chapter 1, that we denote by {L; : ¢t > 0}
the local time at 0 of the reflected Lévy process S — X. As t — L, is monotone, we can
choose a suitable subsequence of (¢;) (also denoted by (£x)) such that the convergence

1 t

Li=lim — | 15 d 2.7

t kggo 8k/0 {Sr—Xr<ep} AT (2.7)

holds almost surely for all ¢ > 0. In the case of the height process, ¢t — H; is not

monotone. Hence, it is not possible to get neither the approximation (2.4) nor (2.6)

for all ¢ simultaneously for a single zero set in ). Nevertheless, we get the stronger
statement if we restrict ourselves to special time points.

Definition 2.9 A time instant t > 0 is called a low point of the path r — X, if
either AX; > 0 or there is an s > t such that X;- < I..
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The definition may be illustrated by the following picture which shows two examples

t,t" of low points:
X

i i r

The next lemma shows that the disered approximation holds almost surely for all low
points.

Lemma 2.10 There exists a sequence (¢y) decreasing to 0 such that almost surely for
all low points t > 0,

1

t
H, = lim — 1 r dr < oo.
t oo ee Jo {Xr<It +eg}

Proof: Assume that ¢ > 0 is a low point, then either AX; > 0 or there is an s > ¢ such
that X;- < I'. In both cases, there is a rational u > ¢ such that X;- < I'. Recall that
we denote by LY the local time at 0 of X® — S§® at time r, so in particular H, = Lgt).

Using (2.4) there is a sequence () decreasing to 0 such that almost surely, for all low
points t > 0,

Ht - fzgt)
= LSAU) - Luu—)t
= 1 L[ 1 d
T o e Jus (88X <} "
As by our construction S'SL_)T —Xq(ﬁ)r = X, —1I] for all € [0, t], we get using substitution
H, = i L 1 d
o= i o ) L -2 et
1 t
= klgglo 5/0 Lix, <17 4e,)dr-

0

Although these approximation results are quite nice, it is still very unclear from the
definition, if the height process has any nice path properties. In a special case, it is
nevertheless easy to get a continuous modification:

Lemma 2.11 Let {H; : t > 0} be a -height process with a function 1 of the type
(2.3) and suppose 8 > 0. Then H has a continuous modification given by

1
H, = 3 m{l; : 0 <s <t} (2.8)

where m denotes Lebesque measure on the real line.
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Proof: Let t > 0. By Corollary 1.24, we know that
pw _ 1 a(t)
Ht:Lt = Bm{ST . r St}
As Xy — I} = ,SA't(t,)r for all » < ¢, we see that
m{SW :r <t} =m{Il :r <t}

almost surely, which completes the proof. Il

Exzample: Let {X; : t > 0} be standard Brownian motion. Then we already
computed the characteristic exponent to ¥(\) = %/\2. Hence g = % and we get

H, = 2m{l] :r <t}
= 2(Xt — It)

because of the continuity of X. Hence, {H; : ¢t > 0} is distributed as scaled reflected
Brownian motion by a theorem of Paul Lévy (see [ReY99] or [RW00b]).

In the case when the Laplace exponent of the underlying Lévy process has no Brownian
part, i.e. 8 = 0, it is very unclear at the moment, if H has any nice properties. In a
later section we will derive a necessary and sufficient condition for H having continuous
sample paths also in that case.

In general, the height process is not a Markov process. Nevertheless, we see that we
can enlarge the state space of the height process and define a measure valued process
p, the so called exploration process, such that

(i) the exploration process contains the height process, and
(ii) posseses the Markov property.

As we see, this process is a valuable tool to gain path properties of the height process.
In this thesis we use both notations [ fdu and (u, f) to denote integration of f with
respect to the measure p.

Definition 2.12 The exploration process {p; : t > 0} is the process with values
in the space M;(Ry) of finite measures on Ry, equipped with the topology of weak
convergence, defined by

(o, f) = [ [(H)dsI} (2.9)
[0,

where f is any nonnegative measurable function and diI} is the measure which is as-
soctated with the cadlag increasing function s — I;.
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A few remarks seem to be in order here. Let 0 # 1 € M (R} ) then there is a biggest
open set G C R such that pu(G) = 0. We call G¢ =: supp p the support of the measure
1. As the height process is always positve, we have for every ¢ > 0 that supp p; C [0, c0)
almost surely. Moreover, it is easy to compute the fotal mass process of p by

lodl = o1y = [ 148
[0,4]
= II-I) =X, - I. (2.10)

In particular, p, = 0 if and only if X; = I, for all ¢ > 0. Also note, that the exploration
process is by definition adapted to the filtration {F; : ¢t > 0}.

Sometimes, it is useful to rewrite the definition of p; to,
(o fy= [ £(10-10) 4,50, (211)
[0,¢]

where L® denotes the local time of the time reversed process S — X®. To see (2.11),
fix t > 0 and note that S’t(t_)s =X,— [ forall s <t. As Hy, = LY = I:,Et) - ﬁ,ﬁt_)s, we get

ooty = [ (H0-10) 4 (x-80),
[0,4]
and (2.11) follows by substitution. Moreover, we can give the following example:

Example: In the case § > 0, we can obtain a more explicit formula for p;. Note that
Ai={s<t:X,- <I}}

are exactly the jumptimes of the function s — I;. Therefore we get using Lemma 2.11
and a change of variables,

(oe, f) = f(Hy) dsI}

[0,¢]

= [ £ miE <)) d;
[0,2]

= [ i <s)) g
[0,2]

= B  fla)da+) (I} — X, ) f(H,). (2.12)

(0,H¢] SEA
Hence, it follows that
pi(da) = Bl m(a)da+ > (If = X,-) 6y, (da).
sEA

In particular, we see that in the case of a quadratic branching mechanism () = 82,
the exploration process p; is just a multiple of the Lebesgue measure restricted to the
random interval [0, Hy|.
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Definition 2.13 The variation distance of two finite measures p,v € Mp(Ry) is
given by

dy(p,v) = sup |u(A) —v(A)].
AeB(Ry)

We also want to mention that M(R;) becomes a Polish space with respect to this
metric and that convergence with respect to the variation norm implies weak conver-
gence. We are now able to observe the first nice property of the exploration process,
namely that it has cadlag paths with respect to the variation distance.

Lemma 2.14 The exploration process {p; : t > 0} has cadlag paths with respect to the
variation distance of finite measures. Moreover, p has the same discontinuity times as
the underlying Lévy process {X;:t > 0} and

Pt = pr- + (AXt) 5Ht7 (213)

where AX; > 0 denotes the height of the jump of X at time t.

Proof: We first show that limy; d,(py, o) = 0. To this end, note that for ¢’ > ¢ we
have that Ij; < I} and therefore,

sup |pe(4) = o) = swp | [ L)AL - [ La(H)AE
AEB(R.) AeB®+) | /o1 0,4
<  sup / 1a(Hs)ds I}
AeB[Ry) 1V (t,t']
< |I§’_I§‘7

which converges to 0 as ¢’ | £. Similarly for ¢’ < ¢,

dy(py, pr — AX;6p,) < sup
AeB(Ry)

Y

AX,5, (A) / 1a(H,)d, I3

(1]

which converges to zero as t' 1 ¢ as

lim ds1; = / ds1; = AX;.
A T
This yields the existence of the left limits and the explicit form of the jumps. O

Our next aim is to show, how the height process is contained in the exploration process.
To this end we have to introcude some notation. Define a function H : M;(R;) — R,
by

H () == sup{supp p}.

By convention let H(0) := 0 for 0 € M;(Ry). The following lemma enlights the
relationship between the height and the exploration process.
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Lemma 2.15 The process {H(p;) : t > 0} is a modification of the height process and
we have almost surely for every t > 0,

(i) p{0} =0,
(ii) supppy = [0, H(py)] if pi# 0.
Moreover, we have almost surely for all low points t > 0 that H(p;) = Hy.
Proof: Recall that L® = {LY : 0 < s < t} denotes the local time at 0 of S® — X

In particular we have by definition H, = L. By (2.11) we can rewrite the definition
of the exploration process as

(o, ) = /[ ¥ (B9 - 10) .50, (2.14)

Because the monotone increasing functions s +— {:gt) and s — S have the same points
of increase, the associated random measures dngt) and dSSs(t) have the same support
almost surely. Hence, we get for every fixed ¢t > 0 that

suppp; = supp dsSP
= suppd,L{
— [0,H) (2.15)

because s — L is continuous and increasing with i,@ = H;. In particular, we have

for every t > 0, almost surely

H(p;) = sup{supp p:} = H, (2.16)

hence {H(p;) : t > 0} is a modification of the height process {H; : t > 0}. We still
have to prove the properties (i)-(iii). Let us first show (i). By formula (2.14) we get
for any fixed t > 0,

p({0}) = / Loy (£47 — L) a8 =,
01

almost surely. Hence we get the statement almost surely for all rationals. Assume that
P{p:({0}) > 0 for some ¢ > 0} > 0.

then by the right continuity of the paths of p (Theorem 2.14), we would get the con-
tradiction

P{p,({0}) > 0 for some rational ¢ >t} > 0,

hence (i) holds.
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To prove (ii) requires more work. We already saw that (ii) holds for any fixed ¢ > 0.
Hence, (ii) must hold almost surely for all rationals. We now argue on this set of full
measure. Let ¢ > 0 with p; # 0, i.e. X; > I; and set

Y =sup{s < t: I} < X;}. (2.17)

We then have that X,,- < X, and we treat both cases seperately. Assume first that
X,,- < X, (this is in particular true when X has a jump at time ¢). Hence, there
exists a rational ¢ > ¢ sufficiently close to ¢ such that X, - < X, and either X; < X
for all s € (¢,q] or X, — I} <0 for all s € (Z,g]. As in the first case we also have that
H; < H, for all s € (t,q|, we get that in both cases p, and p; have the same restriction

to [0, H;). Hence we know, that

supp pg = [0, H(pg)] and  pg g pry = Pt 0,1,

for all rationals sufficiently close to ¢t. Therefore, we also have supp p; = [0, H(p;)] and
we see in particular that H(p;) = H; in that case.

Now, assume that X,,- = X;. Then define for all € > 0,

(o, ) = /[ Tupen-a () 1. (2.18)
0,t

Then p; converges to p; in variation norm, as € tends to 0. Moreover, for every € > 0
there exists a rational ¢ > ¢ such that Ié > X; —e. Hence,

<p;+Xq_Xt’f> = / 1{1;<Xt—s}f(H5) ds[qs
q

)

= / 1{If<Xt—E}f(HS) dsIts = pi-

As we know, that (ii) holds for all rationals, we have

pp=pg e =10,a],

for some a > 0. And as pj tends to p; in variation norm, we get the desired result.

To complete the proof, we have to show that almost surely for all low points £ > 0 we
have H(p;) = H;. By the first part of the proof we know this holds for all rationals
outside a single set of zero measure. For any ¢ > 0, we have also seen that that
H(p:) = H; in the case AX; > 0. Now assume that there is an s > ¢ such that
X;- < I!. Asin the proof of (ii) we can again find rationals ¢ € (¢, s) such that p, and
p: have the same restriction to [0, H;) and we get the assertion using (ii). O
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Lemma 2.16 Let T be a finite F;-stopping time and fix t > 0. Then almost surely
for all v € [0, 1]

Hr., = H, +H", 2.19
+ r

where u := sup{s € (0,T] : X,- < I}, } with the usual convention that sup@® = 0

and {Ht(T) :t > 0} denotes the height process associated with the shifted Lévy process
XT) = {Xp — Xp:t> 0},

X

Figure 2.5: What’s going on in Lemma 2.16
Proof: As u is a low point by definition, we get by Lemma 2.10 that there exists a
sequence (gx) J 0 with

1

= lim — s ds. 2.2
H, klggoak/o Lix,<rz+ep) dS (2.20)

Let r € [0,t] and note that I} = I}, for all s € (0,u). Hence

1 u
= lim — 1 s d
H, klggo €k /0 {Xs<Ify, +ex} 05
1 T+r T T+r
= ( /0 Lo <ty e 08 = / L(Xo <ty e 08 = /T 1{Xs<f%+r+ek}d8)-

As X, > I3, for all s € [u,T], the second integral is equal to 0. To handle the third
integral, observe that I7.* = I 4 X, for all s € [0,7] where I = inf,c,<, X5©.
Using substitution leads to,

T

T+r
/ 1{XS<I%+T+5k} ds = ds

; Lixry <iZtore

r

1

A
T
= 1
/O (Xrpa—Xp<IfT* ey} ds
/0

(XD 1T 4oy ds. (2.21)
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Hence, plugging (2.21) in the above approximation yields,

1 T+r r
H, = klg{olo 5 (/0 1{XS<I%+T+gk} ds — /0 1{X‘£T)<IT(T),S+€’C} ds) (2.22)
As
1 T T+r
H, + lllg_l)loglf a (/0 1{X§T)<I£T),s+€k} ds) = hggglf (/0 ].{Xs<[%+r—|—sk} ds) )
we get H, = Hr., — H" using (2.5). O

As already pointed out, H is in general not a Markov process. However, we will see
later that H has some Markov-style properties. At this stage, we present the promised
Markov property of the exploration process. But first, we need to say what is meant
by p started at an arbitrary initial value p € Mp(Ry).

To this end, let u € M;(R;) and denote by ||u| := u(R;) < oo the total mass of the
measure p. Let a > 0. If a < ||u||, we define k,p0 to be the unique finite measure on
R, such that for every r > 0,

kapu([0,7]) = p([0,7]) A (|l — @) (2.23)

In the case a > ||u|| let ko = 0 € M;(R;). So, we have in particular ||k.pu|| = ||p||—a
and we can think of the k,u as o cut off at the value a.

If € Mf(R;) has compact support and v € M;(R;) define the concatenation
1,7] € My(R,) of 11 and v by

/ F) [, v (dr) = / £(r) pldr) + / FH () + ) w(dr) (2.24)

for any nonnegative measurable function f. The law of the process {p; : t > 0} started
at po = p € My(Ry) is then the distribution of the process p* defined by

pél = [k,]t/j,, pt] (225)

for t > 0. Note that k_j,pu has compact support, hence (2.25) is well defined. It is easy
to compute the total mass of p}’ by

1ol = (ks o]l
= |lk_ru|| + [|pe]|
(Il + 1) + (X, — L) if ||u|| + L >0 -
Xy — 1 otherwise :
_ X+l it flull+ 1 20
a { X, —1I;  otherwise : (2.27)

Let us now prove the promised Markov property of the exploration process.
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Theorem 2.17 (Markov property)
The exploration process {p; : t > 0} is a cadlag strong Fy-Markov process in the space

of finite measures My(R, ).

Proof: Let T be a finite F;-stopping time. The idea behind the proof is to express pr.¢
in terms of py and the shifted process X (1) = {X74¢— Xp :t > 0}. Then the Markov
property of X implies the Markov property of p. To do so, consider

<pT—|—t>f> = / f(Hs)dsI%ﬂ
[0,T+]

= f(Hs) dsI’ilgq_t + / f(Hs) dsI;’—{—t' (228)

(0,77 (T, T+t]

We will deal the two summands in (2.28) separately. First, we show that

f(HS) dsts“+t = <k,I(T)PTa f) (2-29)
[0,T7] i

for all nonnegative measurable f, where I") denotes the infimum process of the shifted
Lévy process X (1),

By the standard trick, using approximation and the monotone convergence theorem,
it is enough to prove (2.29) for indicator functions f = 1j,). Let

u:=sup{r € 0,7): X,- < I}
and as usual sup® = 0. Then we have

I, = I for all s € [0,u) and I}, = I, for all s € [u,T). (2.30)

Consider the case when « = 0. Then I > I7,, which implies that ||pr|| + I <o
and the right hand side in formula (2.29) is equal to zero. But I3 > I]., also implies
that I],, = I{,, then also the left hand side in formula 2.29 is equal to zero because

A ] 1[0:7"] (HS) ds-[;’-i—t < I’I’l:—i—t - I’;)“_H =0.
0,T

If u > 0, then I¥” = I7,, and I, = I?. Moreover, we have I , — I9 = I%" —I9 >0
and

/[ - Lo, (HS)dsI%H < I’EFP-H: - I%+t =1y — I:(;-
0,
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On the other hand, IT,, — I?, = ||p7|| + I{") and (2.30) implies that

/ 1[0,7«](H5)d5[751+t = / 1[0,,«](H5)d3]%+t+/ 1[0’7](H3)d31%+t
[0,T7] [0,u) [u,T]
- / Low (HL)do I3
0,u)
= pr[0,r] A (I3 — 1)
= prl0.71A (el + 1)
— (k_lt(T)pT> [0, 7], (2.31)

hence equation (2.29) follows.

The second summand of (2.28) is much easier to handle. Using Lemma 2.16 we see
that

Ly PG = [ H ) ot
(T,T+1]

- / f(Hy + 2) 50 (dz). (2.32)

Therefore we get the following expression for pr.,

(proas£) = Gh_gropr. £) + [ £(Eo +2) o (da),

hence by the definition of the concatenation of measures, i.e. formula (2.24), it follows
that

prov=[k_mpr, | (2.33)

The strong Markov property now follows immediately, using the the strong Markov
property of X and the definition of the exploration process started at an arbitrary
inital value. O

Equation (2.33) is the key to the strong Markov property of the exploration process
and is often used in later proofs. Therefore we formulate again:

Corollary 2.18 Let T be a finite Fi-stopping time. Then almost surely, for all t > 0
T
PT+t = [k_IgT)pTapg )] :

The reader who is familiar with the Brownian snake should note that equation (2.33), is
important to extend the Brownian Snake construction to general branching mechanisms
given by the class C. To be more specific: As

inf H(p,) = H (k_It(T)pT) = m(T,T +1),

T<s<T+t
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the evolution of {pr,; : ¢ > 0} can be interpreted as follows: We obtain the measure
pr+¢ by first restricting pr to the interval [0, m(7,T +t)] and then we concatenate this
restricted measure with the random measure pgT) which is independent of the past up
to time 7" and has the same distribution as p;. We refer to [LGLY98b] for the extension
of this idea to construct the generalized Brownian Snake the so called Lévy Snake.

Recall that a function f : R — R] is called lower semicontinuous if

K(f) :==Az: f(z) > ¢}

is an open set for all ¢ > 0. We will now proof that the modification of the height pro-
cess, which we obtained using the exploration process has lower semicontinous paths.

Corollary 2.19 The modification of H given by {H(p;) : t > 0} in Lemma 2.15 has
lower-semicontinuous paths.

Proof: Let ¢ > 0, t € K.(H(p)) and recall that H(p;) = sup{supp p;} by definition.
By Lemma 2.14 the exploration process p has cadlag paths with respect to the vari-
ation distance. As convergence with respect to the variation distance implies weak
convergence, it follows using the Portmanteaux theorem,

liminf pe (2,00 2 pu(, 00),

for all z > 0. Note that sup{supp ps} < z if and only if p;(x,00) = 0 for all s > 0.
Hence sup{supp py } < z for all ¢’ sufficiently close to ¢ implies that py(x, 00) = 0 for
such ¢'. Hence we also have p;(x,00) = 0 and therefore sup{supp p;} < z. In particular,

l:= lirgiitnf sup{supppr} < z

implies also sup{supp p;} < z. Hence, letting = converge from above towards [ leads
lirgﬁnf sup{supp py } > sup{supp p;} > c.

Therefore, we can pick ; > 0 such that s € K.(H(p)) for all s € [t,1+ &1).
Assume that p jumps at time ¢. Then we get by (2.13) that

supp p; = supp p- U {H:},

and because sup{supp p;- } = H; we get that H(p;-) = H(p;) > c hence there is a
g9 > 0 such that s € K.(H(p)) for all s € (t — €2, 1]. In the case when p does not jump
at time t, the existence of such an ¢, is clear, as we could do the same construction as
above. With ¢ := &; A e, we found an open ball B.(t) around ¢ which is contained in
K.(H(p)), so K.(H(p)) is an open set. O

From now on, we will always use this lower-semicontinuous modification and write
indifferently H; or H(p;). The next lemma provides a nice path property of H which is
reminiscent of the intermediate value property of continuous functions. Nevertheless,
it turns out that H is not always continuous. Therefore, the next theorem tells us that
the height process must behave very wildy in the case of noncontinuity.
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Theorem 2.20 (Intermediate value property)
Almost surely, for allt < t' the process {Hy : t > 0} takes all values between H; and
Hy on the time interval [t,t'].

Proof: We proceed in several steps. Let us first assume that ¢ € Q and that H; > Hy.
Corollary 2.18 applied to ¢ yields,

Prir = [k,lgtmt,m(f)] (2.34)
for all » > 0 almost surely. Denote by
Vr = inf{s >0: Is(t) = —7“}

the first time instant, when the infimum process of the shifted Lévy process X ® reaches
—r. As ng) = Iasf) implies that pgfr) = 0, we have that p;,,, = k,p; and therefore
H,.., = H(k,p) for all 7 > 0 almost surely. Now, (2.23) implies that the mapping

r— H(k,py) (2.35)

is continuous. If r = 0, then Hy,, = Hy. If r = X, — I}, = — t(,tlt we have that
v < t'—t. In any case H;;,, < Hy by construction, and the continuity of the mapping
(2.35) implies that every point between H; and Hy is hitten on the time intervall [¢,#].
By the lower-semicontinuity of the height process we get the statement for all ¢ > 0.

Now assume that H; < Hy. In this case we have to argue differently. Again, we can
assume that ¢ € Q. Recall the notation [A/(t',) for the local time of S®) — X®) g0 that
by definition of the height process Hy = L,E,t ) Forr ¢ [0, Xy — Iy] define

o, =inf{s >0:85® >r}

as the first time instant, when the supremum process of the time reversed Lévy process
reaches r and note that r +— o, is continuous. The continuity of the local time then
implies that the mapping

r— LE)

is continuous for all r € [0, Xy — Iy] almost surely. Note that Hy , = f;gf’) — IA,((,'Z) for
all r € [0, Xy — Iy] almost surely, hence for r = Xy — Iy = S’g,t’_)t we have t/ — o0, > ¢
and Hy_,, < H; and also in this case every point between H; and Hy is hitten on the
time intervall [¢,#'] which finishes the proof of the theorem. O

For a > 0, define the following random times

T = inf{s >0: / L, >a) dr > t}
0
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and for a > 0

74 = inf {s >0: / L{n,<ay dr > t} .
0

Then 7%, 7% can be interpreted as the inverse of clocks that run only if the height pro-
cess is above or below level a respectively. In order to use these random times in a
meaningful way, it is important to know that they are almost surely finite. To proof this
property we have to make the following observations, which are of independent interest:

As for any ¢ > 0, the value of the height and the exploration process depends only
on the excursion of X — I that contains ¢, we can define both processes under the
excursion measure N of the Markov process X — I away from 0. Moreover, as 0 is a
regular point for X — I, the measure 0 is a regular point for the exploration process
and the excursion measure of p away from 0 is the law of p under N. Similarly, even
if the height process is not a Markov process, we deal with the law of H under N as
the excursion measure of H away from 0. Let us denote by N|[-] an integration over D
with respect to the o-finite measure N and by o the length of an excursion.

Let {U; : t > 0} be a subordinator with Laplace exponent @ — a. And let for all
a>0

Jo(dr) == 1j9,4)(r) AU,

be a random element of M(R;). Recall, that we denote by {L; : ¢ > 0} the local
time at 0 of S — X. The following lemma turns out to be very useful:

Lemma 2.21 We have for every nonnegative, measurable funtional F': D — R that

N [/OUF({Xgﬂ 0<s<t}) dt] — ]E{/OLW FUX,:0< s < L' (a)}) da} . (2.36)

In particular, for every nonnegative measurable functional ® : Mf(R;) — R we have
that

N [ /0 "5 (p) dt] _ /0 " @ R[D(],)} da. (2.37)

Proof: We only proof the in particular statement. The proof of the first assertion can
be found in [LGD]. Recall that we can represent p; by

Gy = [ 1 (E0 - 0) a5, (2.35)

hence we can express p; as a functional I' of the time reversed Lévy process {X M0 <
s < t}. Therefore

Qol':D—=R
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and by (2.36) we get
N [/ @(pt)dt] = N [/ dol({XM:0< sgt})dt]
0 0
L
- IE{/ BoT{X,:0<s< L (a)}) da} o (2.39)
0
If @ < Ly we get using (2.38) and substitution,
L \(a)
/ FAT({X,:0< s < L\ (a)}) = / F(Ly 1) — L) dS,
0
L\ (a)
_ / fla— Ly)dsS,
0

= /a f(a — S) dsSL—l(s). (240)
0

By the fluctuation formula in Chapter 1, we get that P{a < Ly} = e ®* and that
conditionally on {a < L}, {Sp-1(r) : 0 < r < a} is a subordinator with the same
distribution as U. Hence, conditionally on {a < L} the measure

F{X,:0<s<L7'(a)})

has the same distribution as .J,. Therefore, we get using (2.39) and Fubinis theorem,
v [ewa] = B{ [Mteae i)
— [ E{lcsy 20} da

- /0 " e m{0(J,)} da. (2.41)

Now we can use this Lemma, to prove
Lemma 2.22 For everya > 0 andt > 0 the random times 7' are almost surely finite.

Proof: Let a > 0. It is enough to show that the height process spends an infinite
amount of time above level ¢, i.e. that almost surely

/ 1{Hs>a}d8 = Q. (2.42)
0

Recall that H(p;) = H;. Then by Lemma 2.21 applied to ®(p¢) = 1{sup{supp p:}>a}, there

are € > 0,0 > 0 such that
N [/ ]-{Ht>a} dt > €:| > 0.
0
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Hence (2.42) follows using the Borel-Cantelli lemma. O

Recall that 7¢ is the inverse of the clock that runs only if the height process is below level
a. Denote for a > 0 the o-field H, generated by the cadlag process {(Xze, pza) : t > 0}
with values in R x M (R, ) and the class of P-negligible sets of F. If a = 0, let H, be
the o-field generated by the class of P-negligible sets of F.

Theorem 2.23 Let a > 0 and for every t > 0, let pf be the random measure on Ry
defined by

) = /( =) ) (2.43)

Then {p¢ : t > 0} has the same distribution as {p; : t > 0} and is independent of H,.

Before we start to prove the theorem, we have to make an important remark. Theorem
2.23 tells us, that the process {Hf : ¢t > 0} defined by H? := H(p}), which can be seen
as glueing together the upward excursions of the height process above level a, has the
same distribution as the original height process {H; : ¢t > 0}.

H, LV HY
S e

Figure 2.6: The idea behind Theorem 2.23

This property can be seen as a certain pseudo Markov property of the height process.

Proof: We proceed by several steps: First, we show that the total mass processes of p*
and p have the same distribution and then we will verify that p® can be obtained from
its total mass process in the same way as p. To complete the proof, we then show the
independence of p® of the o-field H,.

So, let @ > 0 and let us start in showing that {|[p{|| : ¢ > 0} has the same distribution

as {[|pd|| - ¢ = 0}.
First, we fix some notation. For £ > 0, define stopping times

Sl = inf{s>0: ps(a,00) > ¢}

TF = inf{s > S*: p,(a,c0) = 0}
SHL = inf{s > T* : p,(a,00) > €},
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for £ > 1. Recall that 0 is a regular point for the reflected Lévy process X — I and that
Xy — I; = 0 if and only if H; = 0, moreover for any a > 0, the height process spends

an infinite amount of time above level a, hence for all k£ > 1, the stopping times S¥, T*

are almost surely finite and tend with k to infinity. By plugging S* in Corollary 2.18
we get

k

s
PSkyt = [If_lgsév),osgk),ﬂg E)] ) (2.44)
hence we obtain for every k£ > 1,

TF = inf{s>SF:p,(a,00) =0}
= inf {s > 0: pgi,(a,00) =0}

= inf {S 2 0: k,ls(S?)pS?(a’ OO) = O}
= inf {5 > 0 [|psell - pss[0,0] + 19 = 0}
= inf {52 0: 169 = —pgy(a,00) }

= inf{s>0: Xge s — Xgr = —pgi(a,00)}
= inf{s> SF: X, = Xg — psr(a,0)}. (2.45)

In particular, we see that for every s € [0, 7% — S¥],
p5§+s (aa OO) = (pSéc (CL, OO) + I§S§)> + (ngﬁ) - I§S§)>
= Xsiys — (Xsp — psi(a, 00)). (2.46)
Using (2.45) and (2.46) we proved in fact that the processes {Y*¢: s > 0} defined by
Ytsk,g = P(Sk+s)ATE (CL, OO)

are distributed, conditionally on Fgs, like the underlying Lévy process X started at
psk(a,00) and stopped at its first hitting time of 0.

Moreover, conditionally on Fgk, the processes {ZkF:0 < s < TF— S} given by

ke .__ vk . k.
45 =Y, — inf Y ™°,

0<r<s

are distributed like the reflected process X — I, stopped when its local time at 0
(which is —TI) hits pgk(a, 00). By patching together the paths of the processes Z%# for
k > 1 we obtain a process U¢, which is distributed like the reflected Lévy process X —1I.

Now, define

o
73 := inf {t >0: Z/ Ligk vy (1) dr > s} .
k=170



2.2. THE CODING OF CSBP 63

Recall that Y*¢ was exactly constructed in such a way, that the time changed process
{pree(a,00) : s > 0} can be obtained by patching together the paths of Y** for all
k > 1. Moreover, for every k > 1,

sup (Y;Jc,s — Zf,f) = sup < inf (p(S§+s)/\TEk (a, oo)))
0<s<Tk—Sk 0<s<Tk—Sk 0<r<s
= psi(a,00) (2.47)
— Y/C,E
= Yy~

Because 72° tends to 7¢ as ¢ tends to 0 and U* is distributed like the reflected process
X — I, we would complete the proof of the first step, if we could show that

lim (sup \Uz — proe(a, oo)|> = 0. (2.48)

€0 s<t

Because then the total mass process of p®

{llosl] : s 2 0} = {prg(a,00) : 5 = 0},

is distributed as X — I which is known to be the total mass process of p.

But we still have to show formula (2.48). By (2.47), it is enough to show that for every
t>0,

lim sup (YFe—ZF) =1lim sup pgr(a,00) =0
10 s s 10 & )
VY k>1, 58 <t,0<s<Tk Sk &V k>1,5k<t

almost surely. By Lemma 2.14, the mapping t — p;(a, 00) is cadlag and the disconti-
nuity times are those times ¢ such that AX; > 0 and H; > a. Moreover, the height of
the corresponding jump is exactly AX;. Hence, we get

sup  pgi(a,00) < e +sup{AX, :s <t H, > a,ps(a,00) < e}
k>1,8k<t

Because the sets
{s<t:AX;>0,H; > a,ps(a,0) <e}

decrease to () as ¢ goes to 0 we get the statement.

Let us now show, that p® can be obtained as a functional of the total mass process
||p*|| in the same way as p is obtained from ||p||.

By the Markov property of the exploration process, it is enough to consider one excur-
sion w of ||p®|| away from 0. Let (u,v) be the corresponding excursion interval. Recall
that by the lower-semicontinuity of the height process, the set {s : Hy; > a} is open
and there is a unique open subinterval

(p,q) C{s: Hy>a}



64 CHAPTER 2. CONSTRUCTION OF THE GENEALOGY

such that 77, = p+ r for every r € [0,v — u) and ¢ = 7. Heuristically, (u,v) and

(p, q) describe the same times, measured by a different clock. The mean value property
of the height process now implies that H, = H, = a. Moreover, we have X, > X, for
every 1 € (p, q) because otherwise we could find an r € (p, ¢) such that

X, =inf{X;:p<s<r}

which would imply H, < H, = a and therefore contradicts the fact that H, > a, as
r € (p,q). Recall the definition of the exploration process

<pt7 f) = } f(Hs) dslts

[0t

Let A C [0,a]. As X, > X, for all r € (p, q), we get
pld) = [ uam)ar
[0,r]

_ / La(H,) doI* + / Lu(H,) d I
[0,p]

(pr]
_ / 1A(H,) dyI2. (2.49)
[0,p]
Hence, for every r € (p, q) the restriction of p, to [0, a] is just p,. Now define,
w(r) = X(piring — Xp-
As Iy 1r)nqg = Ip we can use the total mass formula to compute

W(T) = X(p+r)/\q - I(p+r)/\q —Xp+1p
= |[lp@+radl = llowll
= ||p((1u+r)/\v ” (250)

Hence, w(r) is the excursion of ||p?|| corresponding to the interval (u,v). Therefore we
getforO<r<g—p=u—v

Pp+r = [pp, pr(w)] and pj.. = pr(w),

where p,(w) denotes the exploration process constructed from the excursion w(r).
Hence we succeeded in showing that p® has the same distribution as the original ex-
ploration process p.

We still have to show the independence of p® from the o-field H,. Let € > 0 and denote
by H: the o-field generated by the processes

{X(Ts’“—l—s)/\Sf"'l .S 2 0}, k Z 1
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and the negligible sets of F,. As for all £ > 1, the processes

{p(TE’c+s)/\S§+1 182 0}

are H:-measureable and the fact that H; > a for all ¢ € (S, TF), we get that H, C HE
for all ¢ > 0. Conditionally on H¢ the processes Z¥¢ k > 1, constructed in the first
step of the proof, are independent and distributed as independent copies of the reflected
process X — I stopped when its local time at 0 hits pgx (a,00). As the process U® is
obtained by glueing together the paths of Z*< we see that U* is independent of H and
as H, C HE also independent of H,. By passing to € | 0, and using (2.48) it follows
that the total mass process ||p®|| is independent of H,. Using our construction of the
second part of the proof, where we constructed p® from its total mass process, we get

the independence of {p? : s > 0} from the o-field H,. O

Our next aim is to introduce local times for {H; : t > 0}. As already pointed out, the
height process is in general neither a Markov process nor a semimartingale. Therefore,
we cannot use the standard machinery to ensure the existence of local times of the
height process. Remember, that we introduced a process p which is measure valued
and in fact Markovian. Hence the following definition makes sense.

Definition 2.24 For every a > 0, let {I*(s) : s > 0} be the local time of p* at level 0.

We set
t
L} =1° (/ L{H, >a) dr) , (2.51)
0

and call the process {L% : s > 0} the local time at level a of the height process

We justify the name local time of the height process by an occupation time formula
(Theorem 2.26) below. To prepare this, we prove the following lemma, which also
justifies our intuition, that —/ is a natural candidate to be the local time at 0 of the
height process.

Lemma 2.25 For allt > 0, we have

t

1
lim — 1{Hs<€} ds = —It,
EJ,O 13 0 -

where the limit is taken in the L'-sense.

Proof: Recall that we denote by N the excursion measure of X — I away from 0 and
that we can define the height process H under N because the value of H at time ¢
does only depend on the excursion of X — I that contains . We denote by 7T the first
hitting time of —x by the Lévy process X. As —I is the local time at 0 for X — I,
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the stopping time T}, is also the first time instant, when the local time of X — I hits z.
Also recall, that the local times at the beginning of an excursion and the excursions of
X — I away from 0 form a Poisson point process with intensity measure m ® N. The
proof is done in several steps.

Step 1 We show that for all x > 0

1 [Te
IimE< — 1 = z.
im { - /0 {H,<e} dS } x

Define for any measurable real function g a mapping ®, : M;(R;) — R by

@y (1) := g (sup{supp p}) .

From Lemma 2.21 follows that

v [ wooas] = v | [Catyal

— [T Bl do

= / e “g(x)dz. (2.52)
0
Using Campbells theorem (especially formula 1.2) and (2.52) leads to
1 Tz T o
E< - 1{Hs<g} ds = —N 1{Hs<g} ds (2.53)
g 0 - £ 0 =
1 — e~
= = (76) <u. (2.54)
€ e

In particular, we get step 1 by letting & decrease to zero in the previous formula.

Step 2 We show that for any fixred K > 0

o 2
Ake =N [( / 1{H555}1{X85K}d8) ] = o(e”).
0

We clearly have that

Ake = N { / La<e}lix, <k} ds - / 1{Ht$6}1{XtSK}dt}
0 0
< 2N [/ / 1{H856}1{X35K}1{Ht56}dtds]- (2.55)
0 S

Denote by H(® the height process associated with the shifted Lévy process X(). By
the monotonicity of the local time, we have that Ht(f)s < H, for all 0 < s <t. Using
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this bound and (2.53),

Age < 2N [ / / Lm,<eplixo <yl e <e}dtd5]
0 s 8=

o To
= 2N [/ Lim,<eplix,<xy Bx, {/ Lim<ey dt} dé‘] :
0 0

Now, by (2.54) and Lemma 2.21, we see that the last equation is less or equal

< 2N [ / 1{HssE}1{X35K}Xst}
0

= 2 / E{XL’I(y)I{L’l(y)<00,XL—1(y)SK}}
0
< 22°E{ X AK}.
Step 3 We show that for all K > 0 one has

1 [T

i [ st neids =+

where the limit is in L? .

So fix K > 0. By the same arguments as they were explicitly done in step 1, it follows
that

1 [T
hmE{—/ 1{Hs§5}1{Xs*Is§K} dS} =x. (256)

Moreover, as X; — I, > X, for all s > 0, step 2 implies that we also have,

o 2
N [(/ I{Hst}l{Xs—Ist} d8> ] S 282K. (257)
0

Hence we get step 3, by combining (2.53), (2.56) and (2.57).

Step 4 We show that
t

1
lim= | lig,<ads=—1,
gﬂf}go {Hs<e}dS t

in probability.

As step 3 holds for very K > 0, this particularly implies that

Ty

IEIE)IE ; 1{]-[355} ds=2zx
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in probability. As T, is the first time, when the Lévy process X hits —x respectively
the first time when the infimum process —I hits = we get step 4. As step 4 together
with some boundedness condition would imply the assertion, we finish the proof by the
following:

Step 5. We show that éfot lym,<eyds is L*-bounded for all e > 0.

Using Fubinis theorem and the fact that H; has the same distribution as L, we compute,

t t
E{/ ]‘{HsSE} dS} = / P{Hs S 8} ds
0 0

= /tP{Ls <e}ds
= E{L'(e) At} (2.58)

As L7! is a strictly increasing subordinator, there exists a constant C only depending on
t, such that (2.58) is equal to C'-c. We now use this estimate to get the L>-boundedness
via the following estimation

t 2
E (/ 1{Hs<5} dS) = 2E // 1{H <5}1{H <e} d’/’dS}
0 B {0<r<s<t}
QE{// 1 H.<e 1 (r) deS}
{0<r<s<t} { J {H,—<e}
t—r
ZE{ 1{H¢«<6}]E (/ 1{Hs§€} dS) dT}
0
2
(o 1021

< 20% (2.59)

IA

IN

Step 6 (Conclusion) Because * [ 1, <ds is L>-bounded (step 5), it is uniformly
integrable and therefore we get L'-convergence because we know the convergence in
probability (Step 4). O

As promised earlier, the next theorem justifies the name local time for the process L®
in terms of an occupation time formula.

Theorem 2.26 (Occupation time formula)

There ezists a jointly measurable modification of the collection {L% : a > 0,s > 0},
which is continuous and nondecreasing in the variable s, such that almost surely for
any nonnegative measurable function g on Ry and any s > 0 we have the occupation
time formula

/O " G(H,)dr = /R + g(a)Lida. (2.60)
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Proof: We split the proof into two parts. First we show that

1 S
—/ Lia<H, <ateydr — L } —0 (2.61)
0

9

sup E {sup
a>0 s<t
as € tends to 0. From this approximation result, we show then the existence of such
a jointly measurable modification which fulfils the occupation time density formula as
stated in the theorem.

First consider the case a = 0. Then p° = p and L? = I? = —I;. We now use Lemma
2.25 and a monotonicity argument to see that
1 [° 0
Eq{sup |- | liocm,<apdr—Lg| ¢ —0ase |0. (2.62)
s<t |€ Jo -

Let 6 > 0. The almost sure continuity of s — L? allows us to choose n large enough
such that

ke{l,...,n—1}

]E{ sup | Liy/m — L?lc—kl)t/n‘} <.

Moreover, we have that

1

kt/n
- / Lio<H, <} dr — Lgt/n
€Jo

E sup
kt/n:ke{l,...,n—1}
n 1 kt/n o
< E g/ Lo<n,<ey dr — Ly ¢
0

k=1

which tends to 0 as € | 0 using Lemma 2.25. Using the monotonicity of the function
s LY we get

1
]E{sup —
s<t €

/ ]‘{0<H7‘S5} dr — LS
0

1 [kE+D)n
kt/n

1 [k+D)n

< E ke{lsup L g/o Lio<m,<e} dT—L(()kH)t/n
kt/n
‘HE{ Sup |L2t/n - L?k+1)t/n‘ } + E{ Sup / Lo<n, <y dr — Lgt/n
ke{l,..,n—1} ke{l,...,n—1} |J0O

< 39,

}
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if n is large enough. Hence (2.62) follows.

Now let @ > 0. Define Af := f(f 1{H,>a) ds which can be seen as a clock that runs only
if the height process is above a given level a. Recall that we can think of the height
process as embedded in the exploration process as supremum of its support. So we get

{a < H; <a-+e}={ps(a,00) >0} N{ps(a+¢e,00) =0}. (2.63)

Recall that we denote by 77 = inf{s > 0 : fos Li#,>qydr > t} the right continuous
inverse of Af.
By using (2.63), the substitution s = 7% and the definition of p* we get

t t
[ toczarads = [ (a0 > 0} (ot e,00) = 0} s
0 OA(tz
= / 1{P7g(a+e,oo):0} dr
OA?
= /0 Lipa(e,00)=0} dr

Af
= / Lio<me<e) dr, (2.64)
0

where H* = H(p?). As we know that p® has the same distribution as p, we can use
formula (2.64) to get the desired aproximation

1 [¢ 1[4
supIE{sup —/ L{a<H,<atey dr — L } = supIE{sup —/ Ljo<cma<ey dr — L }
a>0 s<t |€ Jo a>0 s<t |€ Jo
1 S
< supIE{sup —/ Lio<H,<e} dr — L(S) } — 0,
a>0 s<t |€ Jo -

where the last estimation also uses that A% <.

By (2.62), we can choose a sequence (¢x) | 0 independent from ¢ > 0 to define

. { limg oo (2 f; Tfa<r,<atey) dr) if the limit exists

0 otherwise.

Then {L%:a > 0,s > 0} provides a measureable modification of {L% : a > 0,5 > 0}
such that s — L% is continuous and non-decreasing. We use this modification from
now on and write L instead of L.

To complete the proof, we still have to show formula (2.60). Let A € B(R) by an open
Borel set. Using

.1 .
lim —/1A(a)1{a<HT§a+5k} da = lim [ Lang,—cp,m,)(a) da

k—o0 €k k—o0

1 ifH, €A
0 otherwise,
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we get the desired result using the modification of L{ choosen above, Fubini’s theorem
and dominated convergence. (]

Corollary 2.27 For everyt > 0, we have

limsup E { sup
&0 g>¢ s<t

} 0

For the proof of the next theorems, we need to extend the definition of local times to
the exploration process started at an arbitrary initial value y € M(R,) for which we
only assume that p is supported on [0,a) for some @ > 0. The main ingredient for
the construction of local time was in fact Theorem 2.23, which remains valid, if one
replaces p by p*, the exploration process started at p. Therefore, we can also generalize
Theorem 2.26 from which follows that, in probability,

1 s
- / 1{a—5<H7«§a} dr — L?
€Jo

S

a 1
L (n") = 151,{51 - . 1{aL<H(p‘T‘)<a—|-zs} dr.

For now, and the following proofs, let
7o :=inf{s > 0: p¥ = 0}

and denote by wj, (e, 5;), j € Jr, the excursions and excursion intervals of X — I
before time 7. Set r; := H(k,laj 1), and denote by L' " (w;) the local time of the
height process at level a — r; constructed from the excursion w;. Then one can show

(we omit the proof and refer to [LGD]) that

La() = 3 L5, %, ). (2.65)

i€z

Now, we are ready to come to the main result of this chapter, namely the construction
of a 1)-CSBP from a ¢/-height process via a Ray-Knight Theorem. Therefore recall that
T, was defined to be the first hitting time of —x by the underlying Lévy process X, or
equivalently the first hitting time of x by the local time at 0 of the height process.

Theorem 2.28 (Le Gall, Le Yan, Duquésne)
Let x> 0, then the process {Lg, : a > 0} is a ¢-CSBP adapted to the filtration {H,}
with start in x.

Example. Let the underlying Lévy process {X; : ¢ > 0} be standard Brownian
motion. We already computed that ¢(\) = %)\2 and that the height process H is dis-
tributed as reflected linear Brownian motion. Then {L%, : a > 0} is a ¢-CSBP, in this
case an example from Chapter 1, the so called Feller diffusion. This is known to be the

classical first Ray-Knight Theorem.
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To prove Theorem 2.28 we need the following Lemma which can be proved very similarly
to Lemma 2.21. Therefore we omit the proof and refer to [LGD]. Recall that the random
measure J, is defined by

Ja(dT) = 1[0,(1] dUra

where {U; : t > 0} is a subordinator with Laplace exponent

Lemma 2.29 Let F : D — R be any nonnegative, measurable functional, then we
have for all a > 0

N [/ F(XD :r>0) dLZ] = E{1g 1(@eo} F(Xpnr1(a) : 7 > 0)} .
0

So, in particular we have for ® : M;(R) — R which are nonnegative and measurable

N [ /O " ®(0,) dLg] — e R{D(],)}.

Proof of Theorem 2.28: The idea of the proof is the following: We define for a > 0
ug(A) =N [1 —e 7], (2.66)

where o denotes, as usual, the length of an excursion. Then we proceed in two steps.
First, we show that for all @ > 0, A > 0 the function {u,(\) : @ > 0} solves the equation

Uqg(N) +/ P(us(A))ds = A (2.67)
0
Then, we show that
]E{ e~ ALk, L%w} = exp (= L& w,_a(N)), (2.68)

and we are done, because by Theorem 1.26, {L}, : a > 0} is a 1-CSBP which is of
course uniquely determined.

Before doing this, let us first see that for each a > 0, L%, is H,-measurable. For a = 0
this is trivial because L%z = r is constant by our construction. If a > 0, recall that we
can use Corollary 2.27 to approximate L7, in probability,
Ty
L3 =lim— 1o dr.
Ty 51¢I(I)1 e Jo {a—e<H,<a} OT

With T :=inf{s > 0 : X7 = —z} we have using a change of variable,

T, T@
/ 1{a—s<Hs§a} ds = / 1{a—s<H;7q <a} dr
0 0
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and the right hand side is measurable with respect to H,. Plugging this in the approx-
imation result yields also the H,- measurability of L7, .

Now, we can go ahead in proving that ue(A) solves equation (2.67). For any u €
M (R, ) supported on [0,a) define

F(u) == E{exp(=AL3 (1))} -

By an elementary integration and the strong Markov property of the exploration process
p under the excursion measure, we get that for every a > 0,

wa(N) = N[1—e ]

= | [Mres-aws - royaz:]
~ N [ /O UF(ps)dL‘;.] (2.69)

Recall that by our extension of the local times for the exploration process with start
at an arbitrary initial value we have that

a T]
Z Lﬂ] _aj
J€Jry

where r; = H(k_ I, ). Also recall, that we only consider the excursions of X — I before
time 7y indexed by J;,. Moreover,

7o = inf{t>0:p} =0}
= inf{t>0:[k_rpup]=0}
= inf{t>0:-L=|pl}- (2.70)

As —1 is the local time at 0 of X — I, the local times and excursions

A= {(Lq;,wj):j € Jr} CRy x D,

form a Poisson point process with intensity measure 1) @l dN. Hence, we can apply
Campbells theorem to compute,

F(p) = E{exp(=AL: (0")}

- Ejen (A T

JE€Jr
= exp <—/N [1 — eXp(—)\L(;_H(k““))] 1[0,||M||] (u) du) . (2.71)

As H(ky,p) = supsupp {ky,u}, we get by change of variable,

Fn) = exp (= [ N1 = exp(-AZ ) u(ar) ) (2.72)
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Plugging this into (2.69) and the use of Lemma 2.29 yields

w = N[ e (= [V - espaz ] ) ) are]

= [[Cew (= [aamr ) azz]
_ )\e_‘m]E{exp (— / tar(V) Ja(dr)> } (2.73)

where J, is the random element of M (R, ) which is given by J,(dr) = 1j,q(r) dU,
and U is a subordinator with Laplace exponent 1)(\) — a.. Hence,

a(A) = /\e_a“]E{exp (- /0 tacr (V) dU,.)}

= etenp (= [ s 0) - yar)
~ dexp (— /O a@/?(uar(/\))dr), (2.74)

which solves equation (2.67). So, we succeeded in the first step of the proof.

Let us now proof the second step. Because L7, is H,-measurable, it is enough to show
that

E {exp(—AL%, ) | Ha} = exp(—L§, up—a(N)). (2.75)

Denote by L¢ the local time of H* = H(p®) and recall that A% = Js 1{H, >y dr is the
clock that runs only if H is above level a. Recall that {%(-) denotes the local time at 0
of p®. Then using the definitions,

Tz
ngz = lb (/ 1{Hr>b} d'f’)
0
Ag,
= [ (/ LiHa>b-a} d7“>
0

= E”A—%‘;. (2.76)
Let 7% :=inf{t > 0:I¢ > r}. Then we have
lixaTm =Lz,
by the definition of L7, . Moreover, as
Iy > 15 8
for all £ > A%, it follows that

Ay = inf{t>0:1f> L3}
= Tfa , (2.77)
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which leads to

E{exp(=AL}) | Ha} = ]E{exp (—)\EZ—%‘:) ‘ Ha}
E{ exp (—/\LI}ES ‘ Ha}
]E{exp ( /\LbTa“ )} ) (2.78)

since the process {L5%® : u > 0} is a functional of p® and therefore independent of #,.
Now, (2.76) implies that

E{exp(=ALY) | Ho} = E{exp(—)\L!};;m)} : (2.79)

As we can apply the mapping and Campbell theorem to the Poisson point process of
local times and excursions

{(Lq;,wi) 11 € I},
of X — I, we get

E{exp(—AL},)} = EQexp|—A Z LT, (w;)

i'Lal <z

= exp (// "—1 1{l<w}dldN>

exp(—zN[1 — exp(—AL%)])
= exp(—zua(\)),

with which we can complete the proof by

b . b—a
]E{exp(—)\LTm) | 'Ha} = E{GXP (‘ALTL(I%) }

= oxp (~Loupa(N)) -

Note, that we have particularly shown that
ug(A) :== N [1 - e)‘Lg} ,

solves the integral equation

+ /Oa Y(us(A))ds = A (2.80)
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We will use this fact in Section 2.5 and in Chapter 5.

What have we done so far? In fact, we know that there is a natural bijection of a
subclass of Lévy processes £ and the (sub)critical CSBP C just via the Laplace ex-
ponents respectively the branching mechanism /. Then we have seen a probabilistic
version of such a bijection by a direct construction of a -CSBP from a certain local
time functional of a 1-Lévy process, the so called height-process:

Y-Lévy process

via ¢

1-CSBP -« 1-height process

via Ray-Knight

In the next section, we give an interpretation of this height process as coding the
genealogy of such a CSBP.

2.3 The genealogy given by the height process

We have seen in the last chapter , that one can use the height process to construct a
CSBP in terms of a generalized Ray-Knight theorem. This construction is in particular
similar to the discrete setting, where we constructed a Galton-Watson process from a
given tree just by counting the number of particles on each tree level. Of course also in
the continuous setting the height process contains more information than the CSBP,
which we will now use to define the genealogical structure of a CSBP.

Let {H; : t > 0} be a continuous -height process, respectively its lower semicontinuous
version which is crucial in the sequel. Consider an excursion H. of the height process
away from 0 and again denote by o the length of this excursion. Then H. encodes a
continuum random tree Ty by the following rules

e cach s € [0, 0] corresponds to a vertex (or a particle) of generation H,

o if s < s €[0,7], then the vertex s is called an ancestor of vertex s’ if

H,= inf H,=:m(s,s).

s<r<s’

In the left side picture, the particle s is an ancestor of s’. The right side picture shows
two particles s and s’ and the generation m of the most recent common ancestor of s
and s'.
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Ht‘ Ht‘

Figure 2.7: How does the height process code the genealogy?

In general, m(s, s') is the generation of the last common ancestor of the particles s and
s'. With

d(s,s') := Hy+ Hy — 2m(s, s') for 5,8 € [0,7],

([0, 7], d) becomes a metric space on which we introduce the equivalence relation s ~ s’
if and only if d(s, s') = 0.

Definition 2.30 The quotient set Ty/ ~ is called continuum random tree with
respect to H.

In this way, each excursion (o, 3;) of the height process codes a continuum random tree
which represents the genealogical dependence of the descendents of a single particle «;.
In particular, this definition generalizes the continuum random tree of Aldous [Ald93]
which coincides with the special case when H is reflected Brownian motion.

Let us make a very important remark: As one can imagine, it is difficult to
deal directly with contiuum random trees. For example, the question of convergence
of Galton-Watson trees towards continuum random trees. It seems to be very unclear
how to make this convergence precise. But due to our coding of the genealogy, we
do not really need to talk about trees, because the genealogical structure of Galton-
Watson trees, resp. continuum random trees, is coded in the discrete and continuous
height processes. These processes can be handled with the full machinery to establish
for example limit theorems, which deal as a legetimation of the height process as the
natural genealogy of CSBP (see Chapter 4). Moreover we can study paths properties
of the height process which can then be interpreted as properties of CSBPs and their
genealogy. A very nice example is given in the next two sections.

2.4 Continuity of the height process

We now turn back to the interesting search of a necessary and sufficient condition for
the sample paths continuity of the height process. This will lead on the one hand to
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a nice interpretation if we think of the height process as the genealogical structure
of CSBP and on the other hand it will provide a class of height processes which are
possible limits in a functional convergence theorem.

Theorem 2.31 (Coninuity of the height process)
The height process {Hy : t > 0} has continuous sample paths P-almost surely if and

only if
* 1

Remark. Recall that due to Theorem 1.29, the analytical condition for the 1-height
process to have continuous sample paths is the same as for the almost sure extinction
of the associated 1-CSBP.

Corollary 2.32 The -height process {Hy : t > 0} has almost surely continuous
sample paths if and only if the associated 1)-CSBP dies in finite time.

For the proof of Theorem 2.31 we need the following key lemma.
Lemma 2.33 For all a > 0 set

v(a) :=N[Sup H; >a] .

0<s<o
Then the following s true
(1) If [ d‘; = 00, we have v(a) = oo for all a > 0.

(2) If foo d“ < 00, the function {v(a) : a > 0} is determined by

/(00) ﬁdu = aq. (2.82)

Proof: Let a > 0 and recall the notation A} = fot 1{H,>q}ds, for the clock that runs only
if the height process is above the given level a. Using the approximation, in probability,

t
L, =1im— 1 ds
t 0 ¢ J, {a<Hs;<a+e} W9,

for the local time, we have that A7 > 0 if and only if L} > 0, as

t
Ly =1" (/ L{H,>a} ds) = ["(A}).
0
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Moreover, we see that A7 > 0 is equivalent to supy<,«; Hs > a. If supy<,«, Hs > a ,
then by the lower-semincontinuity of the height process, the set {s < t: Hy > a} is
open and not empty. Hence, this set contains an open ball which implies that Af > 0.
The other implication is trivial.

As these statements are also true under the excursion measure, we get by dominated
convergence

v(a) = N[sup H5>a,]

0<s<a
= NJ[L: >0
lim N [1 — e_)‘LZ}
A—00

= lim wuy(N), (2.83)

A—00

where u,()\) solves (see remark after Theorem 2.28)

A 1
——du =a.
/ua(wu) he

Hence we get the statement. U

Now, we are able to prove the continuity Theorem

Proof: (Theorem 2.31) Recall that T is the first hitting time of —z of the underlying
Lévy process X or equivalently, the first time when the local time at 0 of the height
process reaches x. Campbells theorem applied to the Poisson point process of local
times and excursions of the height process

{(La;, H(w;)) 1€ J}

yields, (to simplify notation, H(w;)s = Hy)

P{ sup Hg > a} = lim E{l — exp <_A1{SUP0<S<T,; Hs>a})}

0<s<Ty, A—00

= limE<{1 - exp —A Z 1{Sup0§s§gHs>a}

A—00
i€J,Lo; <t
= 1—exp (—xN [ sup wg > a})
0<s<o
= 1—exp(—zv(a)). (2.84)

As we know by (2.33), that v(a) = oo for all a > 0 in the case that [ ﬁ du = o0,

the height process H is almost surely unbounded on [0, T;] and thus cannot have con-
tinuous sample paths.
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Assume now, that

/ — du < 00 (2.85)

holds. Our aim is to show that the height process has continuous paths almost surely.
By Lemma 2.33, we have in the case that (2.85) holds, that v(a) < oo for all a > 0.
Moreover, we have already shown in the first part of the proof that

p{ sup H, > a} =1 — exp(—zv(a)).

0<s<T,

Therefore, we get using that 7T, | 0 as x | 0, almost surely

lim H, = 0. (2.86)
tl0

So the height process is right continuous at 0 almost surely. The continuity of H then
follows, by the intermediate value theorem if we show that for every fixed interval
[a —¢,a],a > 0,e € (0,a], the number of upcrossings of this interval by the height
process is almost surely finite.

Let 7 := 0 and define inductively
Op :=1inf{t > ~,_1 : H; > a} and Yo = 1nf{t > 6, : H; < a —¢e}.
Moreover, define the number of upcrossings
Unla —¢,a] :=sup{n € N:§, < T,}.
Because we need it later again, we proof that this number is finite almost surely as a

Lemma which also completes the proof of Theorem 2.31. U

Lemma 2.34 If foo d“ < 00, then Ugla — €,a] < oo almost surely.

Proof: A mimic of the proof of Lemma 2.16, shows that almost surely for every ¢ > 0,
Hyyo < Hy, + H™ (2.87)

where HO#) refers to the height process associated with the shifted Lévy process X ).
Define

—inf{t >0: H™ > ¢}.

By the strong Markov property of the underlying Lévy process X, the ki, ko, ... form
a sequence of independent identically distributed random variables. By the lower sem-
incontinuity of H we have that H, < a —e. This implies with formula (2.87) that

5n71 — Tn Z Kn, (288)
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i.e. the time needed by the height process for the nth crossing of [a — €, a] is bigger
than the time in which H(") reaches level e. By (2.87) we get that x, > 0 almost
surely as € > 0. Hence §,, tends to infinity almost surely. Because T, is almost surely
finite we get that

sup{n e N:§, <T,} < o0

almost surely, which completes the proof. Il



82 CHAPTER 2. CONSTRUCTION OF THE GENEALOGY

2.5 The dimension of the zerosets

Let {|B:| : t > 0} be a reflected Brownian motion, then it is well known how to compute
the Hausdorff dimension of their levelsets. As the height process is distributed as a
reflected Brownian motion in the case of a quadratic branching mechanism ¢ () = %/\2,
it is a very natural question to ask about the dimension of the levelsets

{t: H = a}

of an arbitrary continuous t-height process { H; : t > 0}, a question which seems to be
not treated in the literature so far.

Recall that, —1I is a local time for the height process in level 0 and that H, = 0 if and
only if X; — I, = 0. Moreover, because the underlying Lévy process X is assumed to

be spectrally positive, we can write the inverse local time as

T, = inf{s>0:X; < —x}
= inf{s>0:-1, >z} (2.89)

By Theorem 1.16, {7, : > 0} is a subordinator with Laplace exponent ¢, where ¢ is
the inverse function of ). Hence, we have by our construction that

{t: H =0} ={T, : © > 0},
i.e. the zero-set of the height process agrees with the range of the inverse local time

at zero. Therefore we can use the following lemma to compute the dimension of the
zero-set (a proof can be found in [Ber96)):

Lemma 2.35 Let {T,: x > 0} be a subordinator with Laplace exponent ¢, then
dim{T,:2 >0} =0
almost surely, where o = sup{s > 0 : limy_,00 A™*¢(\) = c0}.

Using this lemma, directly yields the formula for the Hausdorff dimension of the zeroset
of the height process:

Theorem 2.36 (the zeroset dimension)
Let {Hy; : t > 0} be a 1p-height process with continuous sample paths, then almost surely,

dim{t¢ : H; = 0} = sup {s >0: lim A °¢(N) = oo} ,
A—00

where ¢ denotes the inverse of the function .
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In particular, in the interesting case of stable branching mechanisms, i.e. (¥(\) =
2 o e (1,2]), we get that ¢(A) = Aa and

1
o= sup{s >0: lim )\_S/\é} =—.
A—00 o
This result also entails the well known fact, that the dimension of the zeroset of re-
flected Brownian motion is 1/2 almost surely.

Because the height process is not Markovian it is not obvious how to extend this result
for an arbitrary levelset. Nevertheless, this extension would be the basis to generalize
the work of [M699] to get an alternative (and more general) proof for the dimension of
the support of super Brownian motion as it is done in [Del96].
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Chapter 3

Biodiversity of CSBP

Pictorially, we say that a CSBP has finite biodiversity, if all particles alive at any
given time are descendants of only finitely many individuals alive in any fixed earlier
generation - with respect to the genealogy provided by the height process. In this
chapter, we want to show that the concept of finite biodiversity is equivalent to the
almost sure extinction of the CSBP in finite time and thus to the continuity of the
height process.

3.1 A characterization of finite biodiversity

Let {Z, : a > 0} be a -CSBP from the class C. Denote by {H; : t > 0} the associated
height process that codes the genealogical structure of Z. Recall that

T

Z, = lim - 1 ds,
a 20 € J, {a<H;<a+e}

in probability, where T} is the first hitting time of —z of the underlying -Lévy process,
respectively the first time, where the local time in level 0 of the height process reaches x.

Moreover, recall that we call s an ancestor of s’ if

H,= inf H,,

s<r<s’
and we denote by A(s) the set of all ancestors of s. Let

H *(a):={s€[0,T;] : H, = a} and

A® _:={s€ H '(a—¢): there exists s € H'(a) such that s € A(s")}.

Then |A2__| represents the number of ancestors of generation @ living in generation
a—e.
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Definition 3.1 A ¢-CSBP {Z, : a > 0} is said to have finite biodiversity, with
respect to the genealogy provided by the 1-height process, if almost surely for all a > 0
and all € € (0,a], we have |A%__| < co.

So, finite biodiversity pictorially states that all particles alive at any given time have
only finitely many ancestors in the generations before. The main result of this chapter
is the following theorem which gives an analytical condition and relates the finite
biodiversity of a CSBP to his almost sure extinction and to the continuity of the
associated height process.

Theorem 3.2 (Finite biodiversity charaterization)
A Y-CSBP {Z, : a > 0} has finite biodiversity if and only if

> 1
/1 wd)\<oo.

In particular, finite biodiversity is equivalent to the almost sure extinction of Z in
finite time and to the property that the associated -height process has continuous
paths almost surely.

Before we start with the proof of Theorem 3.2, we fix some notation. Define the
following random times 74 := 0, 0, := inf{t > 7,1 : H; > a} and 7,, := inf{t > o, :
H; < a—¢} for all n > 1. Then, {1,01},{71,02},... describe the upcrossings of the
interval [a — ¢, a] by the height process and

Ugla —¢,a] :=sup{n € N:o, <T,}

denotes the number of such upcrossings. Note, that by the lower semicontinuity of the
height process we have that H, <a—¢ for alln > 1.
a [~

i i
v \/V V\

70 To o1 T Ty (op)

In this picture, {79, 01} and {71, 02} describe crossings of the interval [a — £, a] by the
height process {H, : ¢t > 0}. Note, that oy and o, both live in generation a. Moreover,
To 1s an ancestor of o; living in generation 0 and 71 lives in generation a — ¢, but is
not an ancestor of o,. Nevertheless, both intervals |19, 01] and [r, 09 contain 75 and
71 living in generation a — € such that 7 is an ancestor of oy and 7 is an ancestor of
9.

The following lemma gives the main idea how to prove Theorem 3.2.
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Lemma 3.3 (Upcrossing lemma)

A p-CSBP {Z, : a > 0} has finite biodiversity if and only if almost surely for all a > 0
and € € (0,a] the number of upcrossings of [a — €, a] by the associated height process
Unla — €, a] is finite.

Proof: Let a > 0 and € € (0,a]. As Uyla —¢,a] > |A%__|, Unla — €,a] < oo implies
that [A2_,| < oo.

Now assume that Ug|a,a — €] = co. Let n € N and consider the upcrossing {7,,, 0p41}-
By the lower semicontinuity of the height process we know that H, < a —e. Further-
more, we have either 7, < 0,41 with H, . > a or we can find a ¢’ > 0,41 such that
H,» > a. To simplify notation, let ¢’ := 0,1 even in the first case and in any case
T := T,. The idea of the proof is use the intermediate value property of the height
process to construct 7,5 € [7,0'] such that H; = a — e, H; = a and 7 is an ancestor of
6. Define

A:={tero]:H <a-c}.

As 7 € A, we see that A is not empty. As A is bounded, we can define 7 := sup A.
The lower semicontinuity of the height process implies that H,» < a — . Moreover,
by definition of 7 we see that H; > a — ¢ for all t € (7',0']. Hence we can use the
intermediate value property of H to find first 7 € [, 0] such that H: = a — ¢ and
then 6 € [7,0'] with H; = a. As H; > a — ¢ for all t € (7, 5], we see that

H:= inf H
4 %ﬂlg& 8
Hence 7 is an ancestor of & which completes the proof of the lemma. ]

Now we are ready to start with the proof of the characterization theorem.

Proof of Theorem 3.2: Recall from Lemma 2.34 that

/ —du<oo

implies that Ug[a — €, a] < oo, which implies finite biodiversity by the previous lemma.
But we still have to prove the converse. Therefore, assume that

/ gdu =0

Recall that in this case, the time of extinction of the associated ¥-CSBP is oo almost
surely. Hence, the Ray-Knight Theorem implies that for all z > 0, almost surely

sup H, = oo.
0<s<Ty

Since T}, | 0 almost surely as x | 0, it follows that

P{sup Hs:oo}zl
0<s<a
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for all @ > 0. Now let 0 < a < b and let H® be the height process associated with the
shifted Lévy process X (. Recall that H,,, > Ht(a) almost surely for all £ > 0. Hence,

sup H;, > sup HS(“) = 00
a<s<b 0<s<b—a

almost surely. So, in particular

P{ sup H; # oo for all rationals a < b} =1,

a<s<b

and hence, almost surely for all a < b,

sup H, = oo. (3.1)
a<s<b
This is in particular an alternative proof to show that H cannot be continuous in this
case. But our aim here is now to show that we cannot have finite biodiversity.

Assume that there is a set of full P-measure such that for all @ > 0 and € € (0, q]
we have Uyla — €,a] < oco. Denote by {7,0} such an upcrossing, i.e. H, < a—c¢
and o = inf{t > 7 : H; > a}. Note, that 7 < o, because otherwise, we could find a
stricly monotone sequence &,, | o such that o, > o and Hz, > a. Moreover, by the
intermediate value property, we can assume that H; = a. Using (3.1) and again the
intermediate value property of the height process, we can find a § > 0, such that for
every n > 1 we could find a 4,, € [6,, Gp41] With Hs, > a+ 4. Hence, Ugla,a+ 6] = 0o
which contradicts our assumption.

Therefore we can assume that (7,0) # () and (3.1) leads to

sup Hy, = oo.
7<s<0

Using the intermediate value property, we can find & € |7, 0] such that H; = a, which
contradicts our choice of 0. Hence our assumption that Ug|a—¢] < oo for all @ > 0 and
all € € (0,a] must be wrong and we cannot have finite biodiversity which completes
the proof. O

Corollary 3.4 (Finite biodiversity 01-law)
Let {Z; .t > 0} be a ¥-CSBP, then

P{Z has finite biodiversity} € {0,1}.

3.2 The distribution of the number of ancestors

Let {Z, : a > 0} be a ¢-CSBP of finite biodiversity, i.e. we have almost surely for all
a >0 and all € € (0, a], that

[ Aa—e| < oo
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We will now prove that in this case, the random variables | A% _| are Poisson dis-
tributed. Recall, that we denote by {LY : ¢ > 0} the local time of the height process
at level 0 and denote by

T, =inf{s > 0: L) = z},
it’s right continuous inverse.

Theorem 3.5 Let {Z,:a > 0} be a1p-CSBP started in Zy = 1 with finite biodiversity.
Then for every a > 0 and every € € (0,al], we have

/\k
P { A | =k ‘ Do > 0} = E_AH’

where \ := lim,_, o np,(e) and p,(g) is the probability that the height process reaches
level € in the time interval [0,T ).

for all k >0,

Proof: Let a > 0 and consider at first the case ¢ = a. In particular, the conditioning
in the assertion is void. For all n € N and : = 1,...,n consider,

Ti/n:inf{t>0:Lg:1}.
n
In particular, we have Hr,, =0 for all n,7 < n. Now define
B { 1 if there is an s € (TE,TL] such that H; = a

0 otherwise.

Since we know from Chapter 2, that the height process starts anew after a zero,
B?, ..., B} are independent identically distributed Bernoulli variables with

P{B}! =1} =: p,(a).

Hence, their sum

Ay = ilBZ"

is binomial (n, p,(a)) distributed. Because we assume finite biodiversity, we have that
Uw[0,a] < oo almost surely and therefore, there is an almost surely finite random
variable N(a) such that each interval [T(;_1)/n(a), Ti/n(a)] cOntains at most one crossing
of [0, a] by the height process H. Therefore

P{AN(a)+k = AN(a) for all k£ € N} =1

and therefore A, = | A}| for eventually all n almost surely. In particular, A, converges
to | A§| almost surely, and we also have for all £ € N

lim P{A, = k} = P{|Af = k}.
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To simplify the notation let p, = p,(a) and we compute, using Euler’s formula,

n—o0 n—oQ

lim P{A, =k} = Ilim ( Z )Pﬁ (1 _pn)nik

o1 np,\ "k n!

~ 1 _(1_ ) L
n30 ! " p"(n— k)]
.1 NP

- A (=) ok

k
1-— npn> Hn—k-l—j
j=1

1 k

= —exp (— lim npn) (lim npn) .
k! n— n—0o0

In particular, limnp, exists and must be finite because otherwise we could not have

finite biodiversity. In the case when € < a, recall that

Hp~ = H(p ™),

which is the process obtained by glueing together the upward excursions above level
a — ¢, has the same distribution as the original height process. Hence, the assertion,
conditioned that the CSBP {Z, : t > 0} survives at least up to time a — &, follows using
the first part of the proof. O

Similar results could also be achieved using excursion theory (see e.g. Lemma 5.3). To
finish this chapter, consider the following interesting example:

Example: Let us consider the Feller diffusion. Then

_ 1
Lyt (;) =T

where {7, : > 0} is the inverse local time of reflected Brownian motion at 0 i.e. the
stable subordinator of index 1/2. Then we can compute (using a formula of [BS96])

1
pu(a) =Pq sup |Bj|>ap=1—exp (——)
0<I<Tyn 2an

Using this, we can easily compute the parameter

1
li = —.
Jim npa(a) = o
Hence, the number of ancestors A$ of generation a living in the starting generation
is Poisson distributed with parameter % In particular, this result coincides with the
well known fact, that the number of excursions of reflected Brownian motion that reach

level a is Poisson distributed (see e.g. [RWO00b)).
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Limit theorems

4.1 Motivation

It is well known for several years that a suitably rescaled sequence of Galton-Watson
processes converges in the sense of the finite dimensional marginals towards a CSBP.
This was first shown by Lamperti in 1967 (see [Lam67]).

At first, we recall and fix some notation. Let {Z; : t > 0} be a -CSBP from the class
C started at Zy = 1. Moreover, denote by {X; : t > 0} the associated ¢-Lévy process
from the class £. For a sequence (y,) of (sub)critical probability measures on Ny, we
denote by {G? : n € Ny } the associated u,-Galton-Watson processes started at Gf) = p.
Finally, we let {W? : n € Ny} be a sequence of random walks on Z starting at 0 with
increment distribution v,(k) = p,(k + 1) for £ = —-1,0,1,....

The following theorem is a result due to Grimvall (see [Gr74] or [LGD]) which gener-
alizes Lampertis work.

Theorem 4.1 (GW Convergence) Let (c,)pen be a nondecreasing sequence of pos-
itive integers converging to oo. Then, the convergence in distribution on the Skorokhod
space D

1 (d)
— (P . >
{p G[o,,t} > 0} p—)_)oo {Z,:t >0} (4.1)
holds if and only if
1 (d)
P .
{1_7 Wihey 162 0} o {X;:t>0}. (4.2)

Knowing Theorem 4.1, it is a natural question to ask if there is a similar result for the
convergence of (suitable rescaled) discrete height processes towards continuous height
processes. This would give a certain a-posteriori legitimation of our genealogical model
in terms of the continuous height process, i.e. if we think of a tree as the natural way to
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code a genealogical structure in the discrete case and these trees (coded in the discrete
height process) converge towards a certain process, then, it is very natural to think of
this process as the coding of a continuous tree.

The plan for this chapter is to prove first the convergence of the finite dimensional
marginals of the suitably rescaled discrete height processes (see [LGLY98al). As a
second step we then prove the tightness under the weakest technical conditions (see
[LGD]) to get a functional convergence theorem.

4.2 Convergence of the finite-dimensional marginals

Let us denote throughout the chapter by { H? : n € Ny } the discrete u,-height processes
associated with the p,-Galton-Watson processes {G?. : n € Ny}. As usual, we denote
by {H; : t > 0} the 1)-height process corresponding to the ¥-CSBP {Z, : t > 0}.

Theorem 4.2 (fd-Convergence)
Under either one of the conditions (4.1) or (4.2), we have also

| (fd)
- . > . >

where the convergence holds in the sense of weak convergence of the finite dimensional
distributions.

Proof: Let {H} : k > 1} be the sequence of discrete height processes associated with
an independent sequence of GW-trees with offspring distribution p,. Recall that due
to Theorem 2.5
P _ : 1 P — s p
Hk—#{je{o,...,k 1} Wj ]gll;fkl/Vl} (4.4)
Since the time reversed random walk has the same distribution as W in analogy to
Lemma 2.7, we have that for all p > 1 and k£ € N that the random variable

AP :=#{je {1,...,k}: W} = sup I/le}
0<I<;j

has the same distribution as the discrete height process HE at time k. Denote by L;
the local time at level 0 of the reflected Lévy process S — X. Without loss of generality,
we can assume, by Skorokhod embedding, that the convergence

1 14

— 1t > >

{pW[pcpt] t> 0} I;)o {Xt t> 0}

holds almost surely in the sense of Skorokhods topology in D (see e.g. [RWO00a, p.215]).
Hence, to complete the proof of the theorem, it will be enough to show that

1 %0
gAﬁ)cpt] =3 I, (4.5)
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in probability for all fixed ¢ > 0, because this would imply that

1 A

—gp P2 7)) _

Cp H[Pcpt] — L = H;
in probability for all ¢ > 0. Then the convergence of the finite dimensional distribu-
tions follows, as fd-convergence is weaker than the convergence in probability of the
one dimensional marginals.

So, we still have to prove equation (4.5). In the case when X is a Brownian motion,
then, (4.5) automatically holds true. To prove this relation in the non-Brownian case,
which is in fact the key and the most difficult part of the proof of the convergence
theorem, we need the following tool from the book of Jean Jacod [Ja85]. Recall that
{X;:t> 0} is a Lévy process with Laplace exponent 1. Moreover, recall that ¢ and
hence, its parameters a, 8, 7 determine the law of X.

Lemma 4.3 Let fy be a truncation function, i.e. a bounded, continuous function
fo: R =R, such that fo(z) = x for all x in a neighbourhood of 0. Then,

1 (4)
{gw[cht] 1t > 0} 1;)0 {Xt 1t > 0} (46)

if and only if the following three conditions are satisfied:

) Jimp - 5o (5) ) = oot [0 =yt

(C2) lim pe, i o (g)uc) —25+ [ hr(an)

(@) tmpe > o (E)n = [ ot

k=-1

for any bounded, continuous function ¢ on R that vanishes on a neighbourhood of 0.

We do not show the proof of Lemma 4.3 (see e.g. [Ja85]). Nevertheless, we use this
result to prove equation (4.5).

At first, we fix some notation. Define inductively 75 := 0 and

,7.17

m

+1::inf{n>T£L:W£2Wfp}.

Then the Markov property of the random walk W? implies that conditionally on the
event {77 < oo}, the random variable

Lt 1 <o) (pr - Wfa)

Tm+1
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is independent of the past of the process W? up to time 77 and has the same law
as 1grooWF. Moreover, it is a classical result (see e.g. [Fe7lb] or [Ber96] for the
1

analogue formula in the continuous setting) that for j > 0,

P{r < oo, Wh=j}= iyp(i) = 1,([j, 00)). (4.7)

1=j

In particular, we have that

Pir < oo} =Y i 00) = 3 Fup(h). (4.9
§=0 k=0
Define for u > 6 > 0,

r) dz w(dr)

8

Nﬁ
= s~

((r—20)* — ) 7 (dr). (4.9)
Moreover, let

Zp5<jgpu Vpl3, 00)

> >0 Vpld> o0)

Due to (4.7) and (4.8), we can rewrite the definition of k,(d, ) in the more intuitive
form

Kp(0, u) =

/ﬁp(é,u):P{p(5<Wf_’lp §pu‘ Tf’<oo}. (4.10)

Let us make two more definitions. Recall that we denote by {S; : ¢ > 0} the supremum
process of the Lévy process X. Then, define

L = #{s <t:AS,- € (6,u]}
PO = <k W;’ +pd <W}, < Wa? + pu},

where W :=sup{W?: 0 <i < j}.
Recall that we want to show that, for every ¢t > 0,

lim Ap

p—00 C [pcnt

=L,

in probability. The rought idea to prove this relation is the following: at first, we ap-
proximate L“ by [?%* letting p tend to infinity, then, we use L** (suitably normalized)
for an approximation of L; as 6 | 0. We then see that we can also relate [»»%* and AP
in a suitable way, and finally, we put all these approximations together to get the result.
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As we can assume that the convergence

{ W[I;,cpt]t>0}_>{Xtt20}

holds almost surely in the sense of the Skorokhod topology, we also have that for every
fixed t > 0

lim [P0 = Lo (4.11)

P—00 [p Pt]

almost surely. Next, we want to show that almost surely, for all u > 0

lim L = L,. (4.12)

50 (0, u)

Recall that L, is finite almost surely and exponentially distributed if the underlying
Lévy process X drifts to —oo and Ly, = oo in the recurrent case. Denote by (g;,d;),i €
I the excursion intervals of S — X away from 0. Then, classical results on excursion
theory (see e.g. [Ro84]) imply that the point measure

: : 5(LdiaASdi 7AXdi)

i€l,d; <oo

is distributed as 1y« N (dldz dy ), where N is a Poisson point measure on Ry x R%
with intensity measure dln(dzdy) and 7 is an independent exponential time with
parameter o. Moreover, one can choose the normalization of L, such that

n(dz dy) = 1oy (x) dz m(dy).
Hence, due to our definition of (4, u),
n( (6, u] x Ry ) = (4, u). (4.13)
Let (6,) 4 0 and choose disjoint A7, ..., A%, such that

(O, u] = UA” and  n(A} xR,) = ((5n,u)

for all 7 =1,...,n. Then,
#{iel: Ly <u,ASy € (0p,ul}

is the sum of n independent and identically distributed Poisson variables with param-
eter u-n(A} x Ry) = u - +£(0n, u). Therefore, the strong law of large number implies
that almost surely

lim

R0 K(5n,u)#{i €1: Ly <u,ASy € (6p,ul} = u A Leo.
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Hence, we must also have almost surely for all v > 0,

Lo ANu= 1}%1#{8 >0:Ls <u,AS,- € (0,u]}

as whenever AS,- > 0 for some s, also a new excursion of S — X starts. Hence, the
disered result (4.12) follows.

The next step is to show that limc,k,(d,u) = k(J,u), which is by the definition of
kp(0, u) equivalent to prove that

lim ¢ Zp‘kjﬁpu VplJ, 00)

o P 1yl 00) = K(6, u). (4.14)

Now we need the help of Lemma 4.3. Consider at first the denominator of (4.14).
Recall that

(6, 1) = /Ooo((r —8) A (u— 8)) m(dr).

Then (C3) applied to the function p(x) = (x — §)* A (u — §) shows that

pli)rgopcp i vp(k) ((% - (5)+ A (u— 5)) = /000 o(r)m(dr) = (5, u).

k=—1
Therefore,
o0 k +
pep Z vp(k) ((‘ - 5) A (u— 5)) — G Z vplj,0)| < ¢ Z vp(k),
k=—1 p pi<j<pu k>dp

which tends to 0 as p — oo by (C3). Hence, we have
plggo Cp Z Vplg, 00) = K(J, u).
pé<j<pu

Now, let us look at the enumerator of (4.14). Recall that the measures y, are (sub)critical,
hence,

1> Zkﬂp(k) = Z kvp (k)

k=—1

and by (C1) this tends to 0 as p 1 co. So,

Zyp[j, 00) =1+ Y kuy(k)

tends to 1 as p — oo and we succeeded in showing formula (4.14).
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The next step is to relate lﬁ’a’“ and Afpcp To do so, observe that, conditionally on

{°
{mf < oo}, the random variable is the sum of k£ independent Bernoulli variables
B; with parameter x,(d,u). Fix any integer A > 0 and define A, := ¢,A + 1. Then,

Doob’s inequality implies that

D,0,u
lk

1 1 2
ES sup |[—(AF — [P 4.15
0<j<rh Cp( 7 kp(6,u) Y ) (4.15)
1 1 2
= E<{ sup lyreon|— [ £k — lp’p‘s’u>
{ngézp et ( rip(0, u) Tk }
» 2
1 -
= EQ sup lpreoy|————— | kk,p(d,u) — B;
ockn, EN e, (6, ) (0,1 ;
P 2
< E su EBZ _Bz
- 02k, | Cotin(0, ) ;( )
1 2 Ap 2
< 4(—) E{ |3 EB, - B)
Cpkip (0, u) 12:1:
8(A+1
(A+1) (4.16)
Cpkip(6, u)
This implies using (4.14) that
2
limsupE < sup 1 (AP _ l"-’"s’“> < limsup (8(A + 1)*)
p—o0 jSTﬁp Cp ! Kp((s’ U’) / o p—0o0 Cpﬁp(5, U)
1
< 8(A+1 . 4.17
< S+ (4.17)

Now, let € > 0 and choose A large enough, such that
P{L,>A—3¢}<e.

Fix u > 0 and use (4.12) and (4.16) to find a § > 0 small enough, and a py (which
depends on this §), such that

"

1
k(6,u)

L™ —r,

> a} <e (4.18)

and

>e p <k, (4.19)
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for all p > py. Moreover, using (4.11) and (4.14), we can find a p; € N (also depending
on the ¢ chosen above), such that for all p > p;

"
Using these last three estimates (4.18),(4.19) and (4.20), we get for all p > py V py
|

So to complete the proof, we just have to bound the second summand in the last
formula, this can be done via

pou 1 Ld,u
cphip(6,u) Pl k(6 u)

> e} <e. (4.20)

1A”

o pent] Ly

> 35} < 3e + P{[peyt] > 7} }.

P{7} <I[pcpt]} < P{TA < 00, lp"“‘ > lp’du}

[pept]

1
P 7lp’5u > A—
o {Cp’fp((s u) [peyt] }
< 3e+4+ P{Li > A —3c} < 4e.

IA

4.3 Tightness

In this section, we prove a functional limit theorem. As we have already seen in Chapter
2, the behaviour of the height process is very wild if it has no continuous sample paths,
i.e. if the condition

/ —d)\ < 0 (4.21)

is not fulfilled. Hence, we have to assume that (4.21) holds to have any chance to get
a functional convergence, as otherwise, the paths of the height process do not belong
to any meaningful function space.

Recall that we denote by {G? : n € Ny} the sequence of p,-Galton-Watson processes
associated to the sequence of discrete y,-height processes { H? : n € Ny }. The following
theorem is due to Le Gall and Duqueésne (see [LGD]).

Theorem 4.4 (Functional Convergence)

Suppose that the convergence of the finite dimensional marginals (4.3) holds and that
the height process {H; : t > 0} has continuous sample paths. Moreover, assume that
for every § >0

liminf P{G[;_, = 0} > 0. (4.22)

p—00
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Then, the convergence

1
“gr >0 Yot e>0) (4.23)
C [pCpt] P—00

14

in distribution on the Skorokhod space D.

One may wonder about the meaning of the technical condition (4.22). It is shown in
[LGD] that:

e The condition (4.22) is really a necessary condition to get functional convergence.
e The condition (4.22) is not automatically satisfied.

Nevertheless, in the important special case of stable branching mechanisms 1(\) = \!*#
for B € (1,2], the condition (4.22) is automatically fulfilled (see [LGD]).

Before we start to prove the theorem, note the following: As we already know the
convergence of the finite dimensional marginal distributions, it is enough to show the
tightness property of the laws of the processes {éH [’;cp git= 0} in the set of probability

measures P(D) on the Skorokhod space D. In our case of interest, one can find a very
useful (generally valid) lemma in the book of Ethier/Kurtz ([EK86], Corollary 3.7.4).
We directly apply this lemma to our situation.

Lemma 4.5 The laws of the processes {éHﬁcpt] :t > 0} are tight in the set of proba-
bility measures P(D) if the following two conditions are satisfied:

(i) For allt > 0 and all n > 0, there exists a K > 0, such that

1
limian{—Hp SK}Zl—n.
Cp

p—0o0 [pcpt]

(ii) For every T > 0 and every 6 > 0,

g Ll

lim limsup P { sup sup pept] [pep(i—1)2-7T]
Cp Cp

n—00  poy00 { 1<i<2m te[(i—1)2-nT,i2—nT)

>6}:0.

The first part of the lemma just means that the one-dimensional distributions are uni-
formly tight. The second part should be interpreted as a regularity condition, which
is necessary to get the tightness of the laws of the whole processes from the uniform
tightness of the one-dimensional marginals. Let us now use this lemma to prove the
functional convergence theorem.

Proof of Theorem 4.4: Our aim is to show that the conditions (i) and (ii) of the pre-
vious lemma are satisfied. Note that (i) is clear by the finite-dimensional convergence.
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To complete the proof, we only have to show the regularity condition (ii). Therefore,
fix > 0 and T > 0. Then, we can cut the problem into several parts by

)

1 1
H[P;Jcpt] pH[I]))c (i—1)2—"T)

1<i<2m te[(i—1)2-"T,i2—"T)

P{ sup sup
S Al(nap) + AZ(nap) + A3(nap)7
where summands of the right hand side are of the form

1 1

— P _ L gp

- Hipeio—n - Hipe (i—1)2-n1]
P P

Ai(n,p) = P{ sup

1<i<2n

.
5

1 1 45
As(n,p) == P sup —HP? —H? N — for some 1 < ¢ <27
te[(i—1)2-nT,i2nT) Cp pert] = Cp lpep(i=1)2 T] 5
1
¢

Az(n,p) = P{t i inf Hp

46
P . n
B L pest] < H[pc 1) T 5 for some 1 <1 <2 } )

So, the proof reduces to bound each of these summands. For the first one, this is easy,
because the convergence of the finite dimensional distributions implies that

. )
lim sup A;(n,p) < P{ sup |H2 np — H(z'fl)Q—”T‘ > _}7

P00 1<i<on )

which tends to 0 as n — 0o, because we assumed that the paths of the height process
{H; : t > 0} are continuous almost surely.

As one could expect, the proofs for As(n,p) and Az(n,p) are very similar. So we only
show the one for Ay(n,p). Therefore, let i € {1,...,2"}, such that

1 1 16
p P
tel(i- 1)51?%2 nT) € H[”Cpt] ~ H[:vc (i-12-r1] T 5 (4.24)

Let us introduce a sequence of stopping times (7;) by 75 = 0 and

1 1 )
P . p
Thyq = inf {t > T cpH[”CPt] > r}g’l;fq . H[pcpr] + 5} ) for k£ > 1.

Hence, the interval [(i — 1)27"T,427™T] must contain at least one of the random times
7,k > 0. Denote by 7' the first such time. Then,

1 )
sup —HP < Hpc i_ng—ngr + =
climery & et S o Hpeti-vmen T

Note that the positive jumps of { H[pc git= 0} are of size é, hence,

1 1 5 1 1 25
Lo P O, _tpgr <0
H[pcpr P S cpH[pcm e TR TS CpH[pcm—m—nT} T
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as we can choose p so large, that ¢, > %. Then, (4.24) implies that
1 )

1
su —HP > —HP -,
tefrf ,i2p—nT] cp P T gy ety i

and therefore, TJP 1 <4277, This yields that for such large p,
As(n,p) < P{mf <T and 78, — 7% <2 ™1 some k >0} . (4.25)

With very similar arguments, one gets the same bound for As(n,p). To complete the
proof, we have to study the limit behaviour of the right hand side in formula (4.25).
This can be achieved via the following lemmas:

Lemma 4.6 The random variables T,fH — 1, (k > 1) are independent identically
distributed. Moreover, under the assumptions of the theorem,

lim(lim sup P{r¥ < z}) = 0.

zl0 p—00

Lemma 4.7 For all x > 0 and integers p > 1, set
Gp(z) =P {1 <T, 18, — 1% <z for some k >0} and
Fy(z):=supP{r} <T and 7f , — 17 < z}.
k>0

Then, for all integers L > 1, we have
G, (x) < LE,(z) + LeT / e M () dy.
0

We do not prove the second lemma, this is in fact Lemma 8.2 of [EK86] directly applied
to our setting. Before we prove the first one, we already show how to use it to complete
the proof of the functional convergence theorem.

Recall that we are interested in the limit behaviour of  — G, (z). Hence, define

F(z) :=limsupF,(z) and G(z):=limsupG,(z).

pP—0Q pP—00

By the first lemma, we have that F(z) | 0 as = | 0. By the second one and the
monotonicity of the limit superior, we have for all integers L > 1,

G(z) < LF(z) + Le* /000 e ME (y)dy. (4.26)

Hence, G(z) tends also to 0 as x | 0 and L 1 oo, as the second summand in equation
(4.26) becomes arbitrarily small if L is large enough. Therefore, (4.25) implies that

lim (lim sup As(n,p)) =0

n—oo p—>00
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and the same for A3(n,p), which completes the proof of the theorem. Il

To be rigorus, we still have to show Lemma 4.7. This can be done via the following
arguments:

Proof of Lemma 4.7: Recall that we denote by {W? : n € Ny} the sequence of random
walks with increment distribution v, (k) = pp(k +1) for £ = —1,0,1,.... Fixa k > 1
and let W7’ be the shifted random walk

Wp pr Pt

P
WT}:,
and denote by {I:Iﬁ :n € Ny} the associated discrete height process. By the Markov
property of WP, this shifted random walk is independent of the past of WP? up to time
7, and has the same distribution as W?. Note, that for every ¢ > 0,

1 1
—H? = — j < Pyro)] - wh = inf wp
c, Per(mtt] cp# {] eyl + 1)) 7, szSL;g(an)] ’ }
1
= = i < [pe, P WP = inf wP
o {] il W= s ocpotapon s}
1
— Pl<j< v4t)] WP = inf w?
+Cp# {[pCka] <= e+ 0l io<lpantiten) }
1 1
= inf —HP H 4.27
T;fS?l"I%T;fﬂt Cp [pepr] + [pept]” ( )
Hence,
) b 1 -, )
Tk-{—l —_ Tk = ]nf t Z 0 H[pc t] > g ) (428)

and the random variables 7., — 74,k > 1 are indentically distributed, because the
right hand side of the last displayed formula does not depend on k. As the shifted
random walk W7 is independent of the past of the random walk W? up to time T
(4.28) also implies that the random variables 7; ., — 77,k > 1 are independent.

Let us now examine the limit behaviour of P{r¥ < z}. For n > 0, define

Tj;::inf{tzo Wp = M}

[pept]
v p

Note that

)
P{rP < = P —HE >
{Tl = :L'} {SUP [peps] 5}

s<z C

J
< P { sup _H[I;;c,,n] 5} + P{T? < x}. (4.29)

s<TE Cp
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We deal both summands separately. Firstly, recall that we denote by {7, : z < 0}
the first passage time process of —z by the underlying Lévy process X. Moreover,
recall the assumption that the suitable rescaled random walk converges in distribution
towards this Lévy process. Hence, we also have that

limsup P{T} <z} < P{T, <z},

pP—o0

for any n > 0. Nevertheless, the right hand side tends to 0 as « | 0 just using the
continuity of P.

So, we only have to deal with the first summand in formula (4.29). Recall that we can
construct a Galton-Watson process from the discrete height process, by counting the
numbers of particles in each level of the discrete height process. Hence, the maximum
of the discrete height process corresponds to the extinction time of the associated
Galton-Watson process. Moreover, recall that we can construct the discrete height
process from the random walk W stopped at its first hitting time of some —s, s € N.
Then, s corresponds to the number of ercursions of the discrete height process or
equivalently to the starting mass of the associated Galton-Watson process. Hence, due
to our scaling,

1
sup —HP
! S}%, ¢, pers

is distributed like ¢, '(M, —1), where M, is the extinction time of a u,-Galton-Watson
process started at [pn]. Therefore,

1 ) )
P —HP >—% = P{M,> - 1
{f;]% cp [pcps) 5} { P 501) + }

_ _ ~p,M
=1 P {G[%Cp]'f'l} ’

where we denote by {G?7 : n € Ny} a p,-Galton-Watson process with start in [pn]. As
forallp <1

P{G?%cp]zo} Sp{éf(;”}:()}’

56p

our assumption (4.22) implies that for small 7

lim inf P {ép;" = 0} > 0.

pP—00 [gcp

As we assumed the measures i, to be (sub)critical, we get

lim liminf P {7 =0} =1,
5Cp

n0 p—oo
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and we infer

1 0 ~
lim | limsup P § sup —Hp o> - = lim|1—liminfP {Gpén = 0}
70 p—>00 SSTrI]) Cp Cp$ 5 70 p—00 [Ecl’]
= 0,

which completes the proof of Lemma 4.7. O

Let us denote by T := inf{t > 0 : Z; = 0} the extinction time of the )-CSBP
{Z; : t > 0}. Under our assumption of finite biodiversity, we know that 7" < oo almost
surely. The following corollary in an interesting consequence of the last proof.

Corollary 4.8 Denote by T, the extinction time of the p,-Galton- Watson processes
{GP : n € Ny} with start in G = p and assume that the functional convergence (4.23)
holds. Then, we also have that éTp — T in distribution, as p tends to infinity.

As we already pointed out, in the case of stable branching mechanisms ¢()\) = A\'*? for
B € (1, 2], the technical condition (4.22) is automatically fulfilled and the statement of
the functional convergence theorem holds true.

Corollary 4.9 Assume that p, = p for every p € N and that either one of the condi-
tions (4.1) or (4.2) holds. Then, there is a B € (1,2], such that for the height process
{H; : t > 0}, associated with a (-stable branching mechanism, the convergence

1
{C—H[pc,,t] t> 0} @y {H,: 1> 0} (4.30)
14

pP—0Q

holds in distribution on the Skorokhod space D.

We do not prove this corollary here and refer to [LGD]. Nevertheless, it is interesting
to summarize some of the results for 1-CSBP with stable branching mechanisms.

So assume that ¥(\) = A*# for B8 € (1,2]. Then, the following facts hold true:
e the ¢-CSBP die out in finite time (Theorem 1.29)
e the associated -height process has continuous sample paths (Theorem 2.31)

e we can compute the Hausdorff dimension of the zeroset of their height processes

1
to 115

e and last but not least, the convergence of suitable discrete height processes always
holds in a functional sense ( Corollary 4.9).

In the next chapter, we discuss a generalization of a classical result by Zubkov for
CSBP. As we also see, in this context, the special role played by the stable branching
mechanisms.



Chapter 5

Zubkov’s Theorem for CSBP

Consider a critical py-Galton-Watson tree 7 and let «, be the generation of the most
recent common ancestor of all particles in the tree alive at generation n. Moreover,
denote by {G,, : n € N} the u-Galton-Watson branching process associated with 7 that
counts the particles alive in each generation.

As we know that (sub)critical Galton-Watson trees are finite almost surely, it is in
interesting question to look at the long term behaviour of v,, conditioned on the survival
of the tree. In 1975, A. Zubkov proved his celebrated theorem saying that

lim P{n"'y, <u|G,>0}=u (5.1)
n—oo
for all 0 < u < 1, i.e. the suitable rescaled limit of the last common ancestor, condi-
tioned on the survival of the tree, is uniformly distributed.

It is very natural to ask, if we have a similar behaviour also for the continuous setting
where the genealogy is given by the height process. Jean-Francois Le Gall and Thomas
Duquesne answered this question positively ([LGD]). But before we state the main
results, we have to fix some notation.

Throughout this chapter, let {X; : ¢ > 0} a 1-Lévy process from the class £ and assume
moreover, that the associated ¢-height process is continuous. This means, speaking in
terms of genealogy, that the corresponding 1-CSBP is of finite biodiversity.

Recall that we denote by N the excursion measure of X — I away from 0 and that we
can define the height process H under N. Then, for every T' > 0, denote N(7) to be
the conditional law

N [

where o denotes the length of an excursion. We have to note that Ny introduces a
probability measure on the set of excursions that reach level T'. Moreover, recall from

o 121]

0<s<o

105
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Chapter 2 (especially the remark after Theorem 2.28) that u,(\) = N[1 — e~*E¢] is the
unique solution of the equation

w() + /0 (us(N)ds = A (5.2)
Let us define
v(t) = uy(o0)
= NI[L! >0
= N Lil:EUHS > t} ) (5.3)

which is due to Lemma 2.33 uniquely determined by

* 1
——dz = 1.
/u(t) Y(z) vt

For all t € [0,T), let AT be the number of excursions of H above level ¢ that hit level T
Speaking in terms of genealogy, this means that A7 is equal to the number of particles
in generation ¢ that have descendants in generation 7. By our assumption of finite
biodiversity, we clearly have that A} < co almost surely. It is time to state now the
main theorem of this chapter.

Theorem 5.1 (Zubkov’s theorem)
Let vr be generation of the most recent common ancestor of all particles alive at some
time T > 0. Then, we can characterize its distribution under Ny by

(5.4)

for all't €[0,T), where i(z) = z " (z).

Later we see that yr is uniformly distributed under N7y if and only if the branching
mechanism v is stable, i.e. (\) = A%, for some a € (1,2]. But first, let us prove
Theorem 5.1.

The key to proof is to consider for some fixed 7' > 0 the numbers AT as a stochastic
process in t. Then we can characterize yr by the fact that vz > t if and only if
AT = 1. We will see the details later, at first consider the following theorem, which is
of independent interest.

Theorem 5.2 For everyT > 0, we can characterize the one-dimensional distributions

of the process { AT : 0 <t < T} under Niry by

(1 — e Mo(T —1t))
v(T)

Ny [exp—MA]| =1 — for A > 0.
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Proof of Theorem 5.2: Before we really start, we fix some notation and state the
key lemma. Let us fix a ¢ € (0,7]. Then the definition of A7 makes also sense
under the conditional probability V. We already know from Chapter 3 that AT is
Poisson distributed under P, conditioned on the survival of the CSBP up to generation
t. The main ingrediant to prove Theorem 5.2 is to show that A7 is also Poisson
distributed under Ny and to compute the parameter in terms of v. Then, we can use
this information to compute it’s Laplace transform. Denote by

E={el:i=1,..., A}

the successive excursions of the height process H above level ¢ that hit level T — ¢,
shifted in time and space, such that they start at time 0 in the point 0. Note, that by
our assumption of finite biodiversity, the set £ is finite almost surely. Moreover, recall
that even if the height process is in general not a Markov process, we have shown in
Chapter 2 that we can construct a local time of H at any level a > 0, denoted by Lj.
Let us use Lfi) to denote the local time of H at the beginning of the excursion ef. The
key to the proof of Theorem 5.2 is the following lemma:

Lemma 5.3 Under Ny, conditionally on Lt i.e. the local time at level t at the end
of an excursion of the height process, the point measure

A7
Z 6(Léi)762)
i=1
15 a Poisson point measure on the space R, x D with intensity measure

Lio,c¢1 (1)1 sup o, >7—1y dl AN.

Proof: Denote by f! the successive excursions of the height process H above level ¢
that hit level 7" under the original probability measure P. Moreover, let I} be the
corresponding local times at the beginning of such an excursion.

Moreover, let us denote by A; the local time of the height process at level ¢ at the end
of the first excursion that hits level 7". Note that the distribution of

My Y b
{@:li <}

under P is the same as the one of

Af
t
Ly, E O(L ety
i—1

under the conditional probability N. Hence, to prove the assertion, it is enough to
show that, conditionally on A;, the point measure

> bany (5.5)

{i:lf <}
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is a Poisson point measure with intensity measure

1[0,/\1](1)1{supHs>T7t} dldN. (56)

Recall that {H! : s > 0} is the process obtained by glueing together the positive
excursions of the height process above level ¢. Then by our construction, the f} are the
successive excursions of { H! : s > 0} that hit level T'—¢ and the [} are the corresponding
local times at level 0. As we know by Theorem 2.23 that {H! : s > 0} has the same
distribution as {H, : s > 0}, we get the assertion. O

Now, we come back to the proof of Theorem 5.2. By the previous lemma, it follows
immediately that, conditionally on L! , the random variables A7 are Poisson distributed
under Ny with parameter

/ 1[O,Lg]1{supHs>T—t} dl N(de) = N [ sup H, > 1T — t:| Lfr
Ry xD 0<s<o
= o(T —t)LL.
We therefore get, using that u;(\) = N[1 — exp(—AL%)],
N [e"\AtT} = Ny [exp (—Liv(T —t)(1 - e_)‘))}

1oty [1—exp—Lio(T —1)(1 — )]

v(t)
1
= 1— —u((1—e Mo(T —1)). :
Sl = (T =) (57)
Moreover, we can observe that
1
_ M AT
No[1=e] = SN [1-e ]
(™) —AAT
= U(t) N(T) [1 —e€ t i| . (58)
Hence, we get the assertion using (5.7). U

Now we are ready to start with the proof of the main Theorem 5.1.

Proof of Theorem 5.1: As 7 >t if and only if A7 = 1, we have by Theorem 5.2 that

Nerylyr > 1] = lim e*Nigy [e—MtT]
— e (1o D)

As v(t) = u(o0) and uyy, = ugou,., we also have that u;(v(r)) = v(t+r) which implies
that uy(v(T —t)) = v(T). Using a first order Taylor expansion of the function u(-),
we get that

w (1 — e )o(T —t))

= u@WT —t)+ [(1—eMo(T—t)—v(T —t)] %ut(v(T — 1)) + o(e?).
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Plugging this into (5.9) yields

Nl >4 = Jim [ (020 Byl — 1) 4ol )|
= U(Z;;)t)%ut(v(T—t)).

To complete the proof, we have to verify that

0 _1/J(Ut()\))
() = 50y (5.10)

because then, using uy(v(T — t)) = v(T) we get

0 (T~ 1)
5ut(U(T_t)) - ’(/J(U(T—t))
_ (D)
(T —1))’

which yields the assertion

(T—t) () _ $@T)
o(T) YT —1) DT -1)

To prove (5.10), recall from (5.2) that

v
N(T) [’)/T > t] =

ug(A) + /0 P(us(N)) ds = A

Differentiating this integral equation yields

9 v 9
() + /0 ¥ (us(N) () ds = 1.

To get a solvable equation, we differentiate now with respect to ¢

0 0 0 '
aaut()\) = —5%()\)1# (ue(A)),

which is solved by {u;(A) : ¢, A > 0} with

S = (= [ Wy ds) .11

Recall that 2us(X) = —9(uy(X)), hence,

0 1 , 0
alogw(ut()\)) = m@b (Ut(/\))aut()\)

= —w’(ut(A))-
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Hence, by the fundamental theorem of calculus,

- [wonds = [ Fogvtu)ds

= log(us(A)) — log 1 (ue(X))

g V)
P(A)

Finally, we get using (5.11)

0 Tﬁ(ut(/\))> P(u(N))
—us(A) = exp <lo =
ax"™ S0 ) T e
which leads to formula (5.10) and finishes the proof of the theorem. O

As promised, we now present the interesting case of stable branching mechanisms. This
special case is in fact the analogue to the classical theorem in the discrete setting.

Corollary 5.4 For everyT > 0, the random variable yr is uniformly distributed over
[0, T] under N¢ry if and only if the branching mechanisms are stable, i.e. P(X) = A*
for some « € (1,2].

Proof: Let us first assume that the branching mechanism is stable, i.e. ¥(\) = cA?, for
some ¢ > 0 and some « € (1,2]. Recall that v(t) is determined by

© 1
/v(t) ) d\ =t, (5.12)

and it is elementary to check that

° 1
/ 1 —a d)\ - t,
(c(a—1)t) a—T CcA

such that we have v(t) = (c¢(a — 1)t)_ﬁ in that case. Using Theorem 5.1, it is easy
to compute

N>t = S,
_ dlele—nT) =10 [e(a—1)(T —1)] =
(ela— D7) el(e(a— 1)(T — 1)) =1
t
= 1-

To view the opposite direction, assume that vz is uniformly distributed over [0,7]
under N(7y. Again, by Theorem 5.1, we see that

) ot
J(u(T 1) T
T
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such that ¢ (v(t)) = € for some C' > 0. Moreover, differentiating log v(t) yields

(logu(t)) = —=v'(t)

Now, formula (5.12) and the substitution rule imply that

¢
1
t = —/ ———v(z) dzx
o Y(v(x))
[ Zoogewya
= — [ =(logv(x)) dx
o C
and we get that v(t) = ¢t~ ¢, which implies that
() = cAlTT,

Hence, 9 has the desired form. U

We have to remark that one could certainly give a different approach to these results
using approximation by the discrete setting, as it is provided by Chapter 4. Never-
theless, the nicest way to answer questions concerning the genealogy, is to treat the
height process directly and use its properties - ezxactly what we have done. Moreover,
this way also includes (using the functional convergence theorem) a new proof of the
classical Zubkov theorem for discrete case.
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