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Abstract. The immiscible lattice BGK method for solving the two-phase incompressible Navier-Stokes

equations is analysed in great detail. Equivalent moment analysis and local differential geometry are

applied to examine how interface motion is determined and how surface tension effects can be included

such that consistency to the two-phase incompressible Navier-Stokes equations can be expected. The
results obtained from theoretical analysis are verified by numerical experiments. Since the intrinsic

interface tracking scheme of immiscible lattice BGK is found to produce unsatisfactory results in two-

dimensional simulations several approaches to improving it are discussed but all of them turn out to yield

no substantial improvement. Furthermore, the intrinsic interface tracking scheme of immiscible lattice

BGK is found to be closely connected to the well-known conservative volume tracking method. This
result suggests to couple the conservative volume tracking method for determining interface motion with

the Navier-Stokes solver of immiscible lattice BGK. Applied to simple flow fields, this coupled method
yields much better results than plain immiscible lattice BGK.
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Introduction

Lattice Boltzmann methods are relatively new and quite popular numerical methods for solving the
incompressible Navier-Stokes equations of mathematical fluid dynamics in a very special way. Unlike
conventional Navier-Stokes solvers, they do not approximate the equations directly but simulate fluid
behaviour on a mesoscopic level and determine the solution of the incompressible Navier-Stokes equations
by computing certain moments of the particle density. The lattice BGK equation is a particularly simple
lattice Boltzmann method. Lattice Boltzmann has been developed as an advancement of the lattice gas
method which models the motion of microscopic fluid particles in a very simple way. A detailed historic
review is given at the beginning of Section 1.1.

The main advantage of lattice Boltzmann methods is the simplicity of the underlying mesoscopic
equations in comparison to Navier-Stokes. Thus, it is natural to believe in lattice Boltzmann to outper-
form conventional methods of computational fluid dynamics in the simulation of complicated flow, such
as flow in porous media or two-phase flow. In fact, there is a huge number of papers on lattice Boltzmann
methods for two-phase flow, a small extract is listed at the beginning of Section 2.2. However, so far,
rigorous numerical analysis of lattice Boltzmann methods for two-phase flow has hardly been performed.
Nevertheless, such kind of analysis is a very reliable tool for understanding the behaviour of a given
numerical scheme, so it is surely a good idea to apply it to lattice Boltzmann methods for two-phase flow
as well.

Keeping to this idea we shall proceed as follows. In Chapter 1, we will introduce the lattice BGK
method for simulating single-phase flow and show its consistency to the incompressible Navier-Stokes
equations by so-called equivalent moment analysis. The validity of this analysis will be underlined by
numerical experiments. Chapter 2 starts with the presentation of mathematical theory of two-phase
flow. After this, we will introduce the immiscible lattice BGK method which is one of several lattice
BGK schemes for two-phase flow. We will perform a detailed analysis of this method with particular
focus on interface tracking and the treatment of surface tension effects. Additionally, we will isolate the
intrinsic interface tracking method of immiscible lattice BGK and consider it as a stand-alone transport
scheme. In Chapter 3, we will define a benchmark problem for transport schemes and then present results
computed with ILBGK interface tracking. Those results will turn out to be quite unsatisfactory and thus,
we will also discuss several ideas how the scheme could possibly be improved. Unfortunately, none of
those ideas is to provide the desired result. Chapter 4 contains a detailed numerical analysis of ILBGK
interface tracking. We will learn that this scheme is a special case of a parameter-dependent general
method and consider numerical results for some reasonable choices of parameters. However, a careful
choice of parameters does not generally improve the scheme. Therefore, a conservative volume tracking
method will be presented in Chapter 5 as an alternative to the intrinsic interface tracking scheme of
immiscible lattice BGK. Numerical results will be presented for conservative volume tracking as a stand-
alone interface tracking scheme and in combination with the Navier-Stokes solver of immiscible lattice
BGK. After this, we will draw some conclusions from the work we performed and finally, the Appendix
will provide an interesting supplement to the theoretical studies in Chapter 2.

Let us now conclude this introduction with a few remarks on notation. In the following, we will print
matrices and vectors in boldface and their respective components, as well as other scalars, in normalface,
for example Aαβ denotes the entry in the α-th line and β-th column of the matrix A and xα stands for
the α-th component of the vector x. Especially, 0 = (0, . . . , 0)T . Subscripts denoting components are
separated from other lower indices by a semicolon, for example cj;α represents the α-th component of the
vector cj . Summation is implicitly assumed over repeated lowercase Greek but not uppercase Greek or
Latin indices. Furthermore, we will use shortcuts of the form ∂t for the derivative with respect to the
scalar variable t and ∂α for the derivative with respect to the α-th component of the position vector.
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CHAPTER 1

The lattice BGK equation

This chapter introduces the lattice BGK method for solving the incompressible Navier-Stokes equations.
The lattice BGK equation belongs to the family of lattice gas/lattice Boltzmann methods, see for example
Benzi et al. [3], Chen and Doolen [10], Rothman and Zaleski [67], or Wolf-Gladrow [81] for a detailed
overview of such methods. The main feature of lattice gas/lattice Boltzmann methods is that they
do not approximate the Navier-Stokes equations directly. Instead, they simulate particle dynamics on
a microscopic (lattice gas) respectively mesoscopic (lattice Boltzmann) scale and the solution of the
macroscopic Navier-Stokes equations is obtained via averaging. In particular, the lattice BGK equation
is a very simple lattice Boltzmann method.

Section 1.1 contains a short description of the lattice BGK method and a proof of its consistency to the
incompressible Navier-Stokes equations. In Section 1.2, one of the basic prerequisites of the consistency
proof, namely the assumption on the order of magnitude of some particular moments of the mesoscopic
particle distribution function, is justified by numerical experiments.

1.1. Overview of the lattice BGK equation

In 1986, Frisch et al. [17] introduced the lattice gas method for the incompressible Navier-Stokes equations
in two-dimensional space and in the same year d’Humières et al. [38] extended the method to three space
dimensions. The lattice Boltzmann method was developed in 1988 by McNamara and Zanetti [53] in
order to overcome an essential drawback of lattice gas, namely intrinsic statistical noise, and in 1989,
Higuera and Jiménez [33] introduced a linearised version of lattice Boltzmann. In 1992, Chen et al. [9]
and Qian et al. [63] independently proposed to apply the ideas of Bhatnagar et al. [4] to the lattice
Boltzmann method, thus inventing the lattice BGK (LBGK) method. In 1997, Abe [1] as well as He
and Luo [31] independently proved that the governing equations of LBGK can be derived directly from
the continuous Boltzmann equation with BGK type collision operator and in 1999, Junk [40] showed
the formal connection between the lattice Boltzmann equation and other kinetic schemes. It should also
be noted that Luo [51, 52] derived a similar set of equations from the continuous Enskog equation and
proved consistency of this model to the incompressible Navier-Stokes equations.

In the following, we will discuss the lattice BGK method (Section 1.1.1) and prove its consistency to
the incompressible Navier-Stokes equations (Section 1.1.2).

1.1.1. Description of the method. In LBGK, we assume that a domain Ω ⊂ IRd is covered by a
regular lattice with equidistant nodes and we denote the set of lattice nodes with X. At a given time t,
we consider the particle density f(t,x;v) of fluid particles located at position x ∈ X and moving with
velocity v ∈ Vq, where Vq = {cj : j = 0, . . . , q − 1} with some q ∈ IN contains only a finite number of
velocity vectors. Given two functions g1, g2 : Vq → IR, we introduce the scalar product

〈g1, g2〉v =
∑

v

g1(v)g2(v).

Defining now a discrete moment M of order m ∈ IN of f by

M(t,x) = 〈f(t,x;v), P (v)〉v ,

where P is a polynomial of degree m in v, we can write mass density ρ as a zeroth order moment of f
and momentum density ρu as a first order moment of f , in particular

ρ(t,x) = 〈f(t,x;v), 1〉v and (ρuα) (t,x) = 〈f(t,x;v), vα〉v . (1.1)

Flow velocity u is then given by uα = ρuα/ρ.
In this thesis, we will exclusively consider the D2Q9 [63] LBGK model which is an LBGK model in

two space dimensions (D2) with a square lattice and nine discrete velocities (Q9). In lattice units, the

9



10 1. The lattice BGK equation

Figure 1.1: The D2Q9 LBGK model: Each grey circle marks a node of the square lattice. Under the magnifier, we can see

the nine groups of particles (marked with black dots) and the corresponding particle velocities (pictured as arrows). This

Figure is taken from Junk [43].

velocity vectors are given by

c0 =

(
0

0

)
, c1 =

(
1

0

)
, c2 =

(
1

1

)
, c3 =

(
0

1

)
, c4 =

(
−1

1

)
, c5 =

(
−1

0

)
,

c6 =

(
−1

−1

)
, c7 =

(
0

−1

)
, c8 =

(
1

−1

)
.

Note that non-zero particle velocities are chosen such that particles are moving from a given node to
one of its next neighbours in lattice direction (c1, c3, c5, c7) or diagonal direction (c2, c4, c6, c8), as
illustrated in Figure 1.1. Figure 1.2 visualises a typical particle density at a given lattice node. In the
D2Q9 LBGK model, the lattice BGK equation for f has the form

f(t+ δt,x;v) = (1− ω)f(t,x− vδt;v) + ωf eq(ρ(t,x− vδt),u(t,x− vδt);v), (1.2)

for v = c0, . . . , c8, where δt denotes the time step size and ω ∈ [1, 2) plays the role of a relaxation
parameter. Note that for the side length δx of the lattice, we have

δx = ‖c1δt‖2 = δt. (1.3)

The equilibrium particle density f eq is given by

feq(ρ,u;v) = f∗(v)

(
ρ+ 3ρuαvα +

9

2
ρuαuβ

(
vαvβ −

δαβ
3

))
, (1.4)

where

f∗(cj) =





4/9 for j = 0

1/9 for j = 1, 3, 5, 7

1/36 for j = 2, 4, 6, 8

and δαβ =

{
1 for α = β

0 otherwise.

By straight calculation, we obtain

〈feq , 1〉v = ρ and 〈feq , vα〉v = ρuα. (1.5)

Equation (1.2) is typically solved in two steps, the collision step

f̃(t,x;v) = (1− ω)f(t,x;v) + ωf eq(ρ(t,x),u(t,x);v) (1.6)

and the propagation step

f(t+ δt,x;v) = f̃(t,x− vδt;v). (1.7)

Combining (1.1) and (1.5) we find that conservation of both mass density ρ and momentum density ρuα
is guaranteed in the collision step. Since it is not possible to create or destroy mass or momentum by
pure propagation we conclude that also the full LBGK equation (1.2) conserves mass density as well as
momentum density. The complete LBGK method is summarised in Algorithm 1.1.
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c1

c3
c5

c7

c2

c4

c6

c8

f(t,x; c0)

f(t,x; c3)

Figure 1.2: The relative magnitude of particle densities when the fluid is in equilibrium: The particle density corresponding

to zero velocity is largest, the common magnitude of particle densities corresponding to velocities in lattice directions is

larger than that of particle densities corresponding to velocities in diagonal direction. This Figure is taken from Junk [43].

initialise ρ(0,x) and u(0,x);

let f(0,x;v) = feq(ρ(0,x),u(0,x)) as defined in (1.4);

while t < tmax

determine feq(ρ(t,x),u(t,x)) according to (1.4);

do collision according to (1.6);

do propagation according to (1.7);

let t = t+ δt;

compute ρ(t,x) and ρuα(t,x) according to (1.1);

let uα(t,x) = ρuα(t,x)/ρ(t,x);

Algorithm 1.1: The lattice BGK method

1.1.2. Consistency analysis. We shall now follow the equivalent moment approach proposed by Junk
[42, 43] to show consistency of the scheme (1.2) to the incompressible Navier-Stokes equations [15, 49,
50, 80]

∂αuα = 0 and ∂t(%uα) + ∂β(%uαuβ) = ∂βταβ . (1.8)

In (1.8), % denotes the constant density of the incompressible fluid while

ταβ = −pδαβ + µ (∂αuβ + ∂βuα) (1.9)

represents the stress tensor with dynamic pressure p and dynamic viscosity µ. Note that incompressible
one-phase flow does not depend on density and in fact, the second equation in (1.8) can be reformulated
such that % does no longer appear. However, we will stick to the formulation above in order to maintain
notational analogy to the two-phase case considered in Section 2.1.

Equivalent moment analysis makes sense only under the condition that the lattice distance δx is
small compared to the characteristic length L of the flow, i. e.

∆x =
δx

L
¿ 1,

because otherwise, space resolution is too coarse for (1.2) to produce reasonable results. Reider and
Sterling [64] showed that for a consistent approximation to incompressible flow, the characteristic speed
U of the flow must fulfill U = O (∆x). For simplicity, we set the proportionality to one, i. e. we choose
U = ∆x. Introducing the characteristic time scale T = L/U and using (1.3), we find that

∆t =
δt

T
=
δx

L
U = ∆x2.

The relation ∆t = ∆x2 will be frequently used in the following. Introducing additional scaled quantities

x̂α =
xα
L
, t̂ =

t

T
, f̂

(
t̂, x̂;v

)
= f(t,x;v), ρ̂

(
t̂, x̂
)
= ρ(t,x), ûα

(
t̂, x̂
)
=

1

U
uα(t,x),

and

f̂eq (ρ̂, û;v) = f∗(v)

(
ρ̂+ 3∆xρ̂ûαvα +

9∆x2

2
ρ̂ûαûβ

(
vαvβ −

δαβ
3

))
,
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we can write the LBGK equation (1.2) in in terms of scaled quantities,

f̂
(
t̂+∆t, x̂;v

)
= (1− ω) f̂

(
t̂, x̂− v∆x;v

)
+ ωf̂eq

(
ρ̂
(
t̂, x̂− v∆x

)
, û
(
t̂, x̂− v∆x

)
;v
)
.

In the following, we will exclusively work in the described scaling, so from now on we allow ourselves to
skip the hat-superscripts. Therefore, the equation above takes the form

f(t+∆t,x;v) = (1− ω)f(t,x− v∆x;v) + ωf eq(ρ(t,x− v∆x),u(t,x− v∆x);v) (1.10)

with

feq(ρ,u;v) = f∗(v)

(
ρ+ 3∆xρuαvα +

9∆x2

2
ρuαuβ

(
vαvβ −

δαβ
3

))
. (1.11)

Our aim is now to transform the LBGK equation (1.10) into a system of moment equations that
contains mass and momentum equations as a subsystem. Similar reformulations of lattice Boltzmann
equations can be found in d’Humières [36], d’Humières et al. [37], Klar [45], as well as Lallemand and
Luo [48]. Here, we choose the scaled polynomials

Q0(v) = 1, Q1(v) =
v1
∆x

, Q2(v) =
v2
∆x

, (1.12a)

Q3(v) =
1

∆x2

(
v21 −

1

3

)
, Q4(v) =

v1v2
∆x2

, Q5(v) =
1

∆x2

(
v22 −

1

3

)
, (1.12b)

Q6(v) =
1

∆x3
(
3‖v‖22 − 4

)
v1, Q7(v) =

1

∆x3
(
3‖v‖22 − 4

)
v2, (1.12c)

and

Q8(v) =
1

∆x4
(
9‖v‖42 − 15‖v‖22 + 2

)
(1.12d)

to produce the moments

Mk = 〈f,Qk〉v and Meq
k = 〈feq , Qk〉v , (1.13)

for k = 0, . . . , 8. Note that due to (1.12a), we obtain from (1.13)

M0 =Meq
0 = ρ, M1 =Meq

1 = ρu1, and M2 =Meq
2 = ρu2.

Furthermore, we will often use the notation

ϑ =

(
M3 M4

M4 M5

)
.

The chosen scaling of the polynomials (1.12) will be justified in Section 1.2.
We find that the mapping f 7→ Qf = (M0, . . . ,M8)

T respectively feq 7→ Qfeq = (Meq
0 , . . . ,M

eq
8 )T

is linear and invertible, so we can write

f =

8∑

k=0

Qk

〈f∗, Q2k〉v
Mkf

∗ respectively feq =

8∑

k=0

Qk

〈f∗, Q2k〉v
Meq

k f∗

which yields

(1− ω)f(t,x− v∆x;v) + ωf eq(ρ(t,x− v∆x),u(t,x− v∆x);v)

=

8∑

k=0

Qk(v)

〈f∗, Q2k〉v

(
(1− ω)Mk + ωMeq

k

)
(t,x− v∆x)f∗(v).

Inserting this into (1.10) and applying Q to the resulting equation we obtain the discrete equivalent
moment system of (1.10) which reads

Mk(t+∆t,x) =

8∑

j=0

1〈
f∗, Q2j

〉
v

〈
f∗, QkQj

(
(1− ω)Mj + ωMeq

j

)
(t,x− v∆x)

〉
v
. (1.14)
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Since the summands on the right hand side of (1.14) are expressions of the form 〈f∗, Pg(x− v∆x)〉v,
where P is a polynomial in v and g is a smooth function in x, we now have a closer look at structures of
this form. By definition, we have

〈f∗, Pg(x− v∆x)〉v =
8∑

k=0

f∗(ck)P (ck)g(x− ck∆x) (1.15)

which can be interpreted as a finite difference expression. Usually, the coefficients P (v)f ∗(v) of such an
expression are collected in a so-called stencil defined by



P (c8)f

∗(c8) P (c7)f
∗(c7) P (c6)f

∗(c6)

P (c1)f
∗(c1) P (c0)f

∗(c0) P (c5)f
∗(c5)

P (c2)f
∗(c2) P (c3)f

∗(c3) P (c4)f
∗(c4)


 g(x) =

8∑

k=0

f∗(ck)P (ck)g(x− ck∆x).

Applying Taylor expansion to check the consistency of all stencils appearing in (1.14) we find the discrete
equivalent moment system (1.14) to be a finite difference approximation to a system of partial differential
equations consisting of

∂tρ+ ∂α(ρuα) =
1

6
∂ααρ+ O

(
∆x2

)
, (1.16a)

∂t(ρuα) + ∂β

(
(1− ω)ϑαβ + ωρuαuβ

)
+

1

3∆x2
∂αρ =

1

6

(
∂ββ(ρuα) + 2∂αβ(ρuβ)

)
−

1

18
∂αββρ+ O

(
∆x2

)
,

(1.16b)

ϑαβ = ρuαuβ −
1

3ω

(
∂β(ρuα) + ∂α(ρuβ)−

1

3
∂αβρ

)
+ O

(
∆x2

)
, (1.16c)

and three other equations (see details in Junk [42, 43]). Since the remaining equations decouple
from (1.16) and are not needed to show consistency of (1.14) to the incompressible Navier-Stokes equa-
tions (1.8), we will simply ignore them.

The number of equations in (1.16) can be further reduced by inserting (1.16c) into (1.16b) which
yields

∂t(ρuα) + ∂β(ρuαuβ) +
1

3∆x2
∂αρ

=
1

3

(
1

ω
−

1

2

)
∂β

(
∂β(ρuα) + ∂α(ρuβ)

)
+

1

3
∂αβρuβ −

1

18
∂αββρ+ O

(
∆x2

)
.

Requiring that all terms in this equation are of O (1) we find that we need ∂αρ to be of O
(
∆x2

)
which

justifies the assumption

ρ(t,x) = %+ 3%∆x2p(t,x), (1.17)

where % is a constant and p is an order one function. We can now rewrite (1.16) in the form

∂αuα = O
(
∆x2

)
and ∂t(%uα) + ∂β(%uαuβ) + ∂αp =

%

3

(
1

ω
−

1

2

)
∂β(∂βuα + ∂αuβ) + O

(
∆x2

)
.

Now we define the dynamic viscosity µ by

µ =
%

3

(
1

ω
−

1

2

)
(1.18)

and apply (1.9), so we finally obtain

∂αuα = O
(
∆x2

)
and ∂t(%uα) + ∂β(%uαuβ) = ∂βταβ + O

(
∆x2

)
. (1.19)

Up to O
(
∆x2

)
, those are in fact the incompressible Navier-Stokes equations (1.8) with constant density

% and dynamic pressure p. This yields

Proposition 1.1. The discrete equivalent moment system (1.14) of the lattice BGK equation (1.10) is
an approximation of O

(
∆x2

)
to the incompressible Navier-Stokes equations (1.8).
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1.1.3. Alternative formulation. He and Luo [30] proposed to exploit the pressure law (1.17) from
the beginning by using the equilibrium distribution

feq
HL(ρ,u;v) = f∗(v)

(
ρ+ 3∆x%uαvα +

9∆x2

2
%uαuβ

(
vαvβ −

δαβ
3

))

instead of (1.11). This implies that in place of (1.5) we have

〈feq
HL, 1〉v = ρ and 〈feq

HL, vα〉v = %uα,

so to guarantee conservation of mass and momentum we must replace (1.1) with

〈f, 1〉v = ρ and 〈f, vα〉v = %uα.

Performing then a moment analysis completely analogous to the one presented in Section 1.1.2 we obtain

∂αuα = O
(
∆x2

)
,

∂t(%uα) + ∂β

(
(1− ω)ϑαβ + ω%uαuβ

)
+ ∂αp =

1

6

(
∂ββ(%uα) + 2∂αβ(%uβ)

)
+ O

(
∆x2

)
,

and

ϑαβ = %uαuβ −
1

3ω

(
∂β(%uα) + ∂α(%uβ)

)
+ O

(
∆x2

)

instead of (1.16). Continuing the analysis, the above system of equations can be easily reduced to (1.19)
if definitions (1.18) and (1.9) are applied. Thus, we can formulate

Proposition 1.2. The discrete equivalent moment system (1.14) of the LBGK equation (1.10) with
equilibrium distribution f eq

HL instead of f
eq produces an approximation of O

(
∆x2

)
to the incompressible

Navier-Stokes equations (1.8).

1.2. Experimental investigation of moments

The scaling of the polynomials (1.12) is chosen in order to produce moments Mk and Meq
k of O (1). Since

feq is given explicitly we directly calculate

Meq
0 = ρ, Meq

1 = ρu1, Meq
2 = ρu2, Meq

3 = ρu21, Meq
4 = ρu1u2, Meq

5 = ρu22,

Meq
6 = 0, Meq

7 = 0, and Meq
8 = 0.

The equilibrium moments M eq
0 to Meq

5 are obviously O (1), so we expect the moments M0 to M5 to be
O (1) as well, see Junk et al. [44] for a detailed discussion of the ideas involved. However, we cannot prove
that this expectation is fulfilled and, even worse, for k = 6, 7, 8 we cannot even guess the scaling of Mk

from what we know about M eq
k . Therefore, we want at least to experimentally investigate the moments

appearing in some slightly non-trivial situation, namely in laminar flow around a circular cylinder [82].
We consider a two-dimensional channel with length 27.5L and height L, where L is the characteristic

length of the flow, bounded by solid walls at top and bottom. Let this channel contain a solid circular
cylinder with radius L/4 whose centre point is located at a distance of L/2 from both bottom and inflow
of the channel. At each fluid-solid interface, we impose a no-slip condition by applying the bounce-back
rule

f(t+∆t,x;−ck) = f(t,x; ck) (1.20)

if x + ck∆x is is located outside the fluid domain. The bounce-back rule (1.20) sends each particle
distribution streaming towards a boundary node back to the direction it came from. Bounce-back is
known to be not very accurate at curved boundaries if certain care is not taken, however, here it is used
because it is the most common boundary condition for the lattice BGK equation. Even though boundary
conditions are not the major concern here, it should be noted that in the given situation, bounce-back can
be considered a boundary condition either for the (smooth) cylinder itself or for a zig-zag approximation
of it, being more accurate in the second case than in the first one. For a more detailed discussion of
the treatment of no-slip boundary conditions in LBGK consult for example Ginzbourg and Adler [19],
Ginzbourg and d’Humières [20], He et al. [32], or Mei et al. [54, 55]. At the inflow boundary, we apply
a parabolic velocity profile whose maximum value equals the characteristic speed U of the flow.

This flow is now simulated on three different lattices with three different values of U and L, namely
on a 220× 40 lattice with U = 0.1 and L = 2.5, on a 440× 80 lattice with U = 0.05 and L = 5, and on
a 880 × 160 lattice with U = 0.025 and L = 10. We assume that the fluid has constant density % = 1
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Figure 1.3: Stream lines of the velocity field of laminar flow around a circular cylinder for Re = 3 (top), Re = 36 (middle),

and Re = 108 (bottom).
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Figure 1.4: Left: mean absolute value of M0 in each simulation, right: M0 for Re = 3.

and carry out experiments for the dynamic viscosities µ = 1/12 (ω = 4/3), µ = 1/144 (ω = 48/25), and
µ = 1/432 (ω = 144/73). Therefore, the dimensionless Reynolds number Re = %UL/µ takes the values
Re = 3, Re = 36, and Re = 108. We perform 10000 time steps on the 220× 20 lattice, 20000 time steps
on the 440 × 80 lattice, and 40000 time steps on the 880 × 160 lattice. Note that computation times
are chosen such that a given fluid particle is moving the same dimensionless distance in each simulation
(remember that U = ∆x). In the remainder of this Section, we will refer to the 220 × 40 lattice as
refinement level one, to the 440 × 80 lattice as refinement level two, and to the 880 × 160 lattice as
refinement level three. The final velocity fields of the experiments on refinement level three are visualised
in Figure 1.3.

Let us now turn our attention to the moments M0 to M8 of the particle distribution function f . For
the above simulations, the mean absolute values of those moments are visualised in Figures 1.4 to 1.12.
Furthermore, each Figure contains an exemplifying contour plot of the corresponding moment for Re = 3
on refinement level three.

We find that in each simulation, the moments M0 to M5 can be considered to be O (1) throughout
the computational domain but M6 and M7 may take absolute values that are somewhat too large, even
though their respective mean absolute values are clearly O (1). Furthermore, M8 may take values that
are far too large and even its mean absolute value is very often larger that O (1).

To obtain more detailed information about this problem, we consider histograms showing the decadic
logarithm of the frequency of occurrence of the values of M6, M7, and M8 in Figures 1.13, 1.14, respec-
tively 1.15. The logarithm is plotted instead of the frequency of occurrence itself to show more details
for values which do not appear very often. We learn from those histograms that nearly all values of
the moments under investigation can be considered to be O (1). In fact, values larger than O (1) are so
uncommon that they can be considered spurious anomalies. To get an idea of the positions where those
anomalies appear, we consider plots that mark all points where |M6| > 10, |M7| > 10, and |M8| > 10 in
the simulation for Re = 3 on refinement level three (Figure 1.16). It is evident that all the points where
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Figure 1.5: Left: mean absolute value of M1 in each simulation, right: M1 for Re = 3.
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Figure 1.6: Left: mean absolute value of M2 in each simulation, right: M2 for Re = 3.
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Figure 1.7: Left: mean absolute value of M3 in each simulation, right: M3 for Re = 3.
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Figure 1.9: Left: mean absolute value of M5 in each simulation, right: M5 for Re = 3.
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Figure 1.10: Left: mean absolute value of M6 in each simulation, right: M6 for Re = 3.
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Figure 1.11: Left: mean absolute value of M7 in each simulation, right: M7 for Re = 3.
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Figure 1.13: Histograms showing the values of M6 (abscissa) versus the decadic logarithm of their frequency of occurrence

(ordinate) for Re = 3 (left), Re = 36 (middle), and Re = 108 (right), as computed on refinement level three.
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Figure 1.14: Histograms showing the values of M7 (abscissa) versus the decadic logarithm of their frequency of occurrence

(ordinate) for Re = 3 (left), Re = 36 (middle), and Re = 108 (right), as computed on refinement level three.
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Figure 1.15: Histograms showing the values of M8 (abscissa) versus the decadic logarithm of their frequency of occurrence
(ordinate) for Re = 3 (left), Re = 36 (middle), and Re = 108 (right), as computed on refinement level three.

Figure 1.16: Position of the anomalies in M6 (left), M7 (middle), and M8 (right) for Re = 3. Only the front part of the

channel is shown because for each of the moments under consideration, appreciable anomalies appear only there.

any one of the problematic moments has an absolute value larger than 10 are located in the neighbour-
hood of a solid boundary, a great many of them in the surroundings of the obstacle. Also the points of
contact between the solid boundaries and the inflow region turn out to be a source of spurious anomalies.

Remember now that the bounce back condition (1.20) is known to be somewhat inaccurate at curved
boundaries. Remember also that M6 and M7 are computed using the polynomials (1.12c) that scale
with 1/∆x3 while the calculation of M8 is based on (1.12d) which even scales with 1/∆x4. Therefore,
small errors in the particle distribution function f produce large errors in M6, M7, and M8. Note that
sensitivity to such a defect is increasing with Re because regularity of the flow is decreasing with Re.
Note also that by rough analysis of the bulk flow one finds that in lowest order, M6, M7, and M8 depend
on derivatives of u of order three and more, so the absolute values of those moments can be expected to
be large if the derivatives of u are large which is in fact the case in that part of the channel which contains
the obstacle, compare Figure 1.3. Furthermore, such an analysis yields that none of the moments under
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consideration is convected with the velocity field. However, the analysis performed here is not valid at
the boundary, so we do not know whether its results are valid in the vicinity of the solid walls. See
Cornubert et al. [12] for a study of similar effects in the vicinity of solid boundaries.

Concluding this Section we hold the bounce-back condition (1.20) and the amplification of small er-
rors during moment calculation responsible for disturbing the order of magnitude of higher order moments
in the vicinity of no-slip boundaries. Furthermore, we did not explicitly care about proper treatment of
the points of contact between the no-slip boundaries and the inflow/outflow regions, so the appearance
of errors in the surroundings of those points is not really surprising. Therefore, we state that the poly-
nomials (1.12) are in fact scaled such that they produce moments of the particle density f which are of
O (1) in the bulk of the flow.
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CHAPTER 2

Modelling of two-phase flow

Advancing the lattice BGK equation to a suitable model for immiscible two-phase flow is not at all
straightforward. Mathematical theory is complicated by the presence of an interface, where both density
and stress tensor may have a jump singularity and surface tension effects must be taken into account.
Furthermore, the treatment of those singularities in the context of the lattice BGK method is a problem
of its own.

In this Chapter, we will consider those difficulties in detail. Section 2.1 contains the mathematical
theory of two-phase flow, as far as it is needed for the following, and Section 2.2 introduces a corresponding
LBGK model, namely the so-called immiscible lattice BGK approach. Section 2.3 contains a detailed
investigation of the intrinsic interface tracking method of immiscible lattice BGK and finally, Section 2.4
describes the modelling of surface tension effects.

2.1. Mathematical theory of incompressible two-phase flow

This Section provides the theoretical background for the derivation of the immiscible lattice BGK method.
Assuming the flow in each phase is governed by the incompressible Navier-Stokes equations we will deduce
one system of equations governing the flow in the whole domain. This system will consist of weak forms of
the incompressible Navier-Stokes equations and the transport equation, the latter describing the motion
of the interface.

After stating the basic assumptions of the theory in Section 2.1.1, we will derive the full-space form
of the governing equations in Section 2.1.2 and in Section 2.1.3, we will present a reformulation of the
full-space incompressible Navier-Stokes equations. This reformulation will turn out to be essential for
simulating surface tension effects with the immiscible lattice BGK model (compare Section 2.4.2).

2.1.1. Basic assumptions. We consider a bounded open domain Ω = (0, L1)×· · ·× (0, Ld) ⊂ IRd with
Lj > 0, for j = 1, . . . , d, and require all quantities appearing here to be periodic at the boundary ∂Ω. We
assume some red fluid occupies a bounded open domain Ωr(t) ⊂ Ω and some blue fluid covers its open

complement Ωb(t) = Ω \ Ωr(t). The phases are separated by the regular interface Γ(t) = ∂Ωr(t) and we
define the indicator function χ : [0, tmax ]× Ω→ {0, 1} such that

χ(t,x) =

{
1 for x ∈ Ωr(t)

0 for x ∈ Ωb(t).
(2.1)

The whole geometry is exemplified in Figure 2.1. Furthermore, we assume the movement of Γ to be
determined by the velocity field u : [0, tmax ]× Ω→ IRd according to

Γ(t) = {x(t) : ∂tx(t) = u(t,x(t)), x(0) ∈ Γ(0)} .

In addition, we suppose

Ωl(t) =
{
x(t) : ∂tx(t) = u(t,x(t)), x(0) ∈ Ωl(0)

}
for l = r, b,

as well as

u
∣∣∣
[0,tmax ]×Ωr(t)

∈ C2
(
[0, tmax ]× Ωr(t), IRd

)

and

u
∣∣∣
[0,tmax ]×Ωb(t)

∈ C2
(
[0, tmax ]× Ωb(t), IRd

)
.

Finally, to make sure the ordinary differential equation ∂tx = u(t,x) has a unique solution in [0, tmax ],
we assume u is uniformly Lipschitz continuous in Ω = Ωr(t) ∪ Ωb(t) ∪ Γ(t). This implies that in each
phase, χ(t,x) is described by the transport equation

∂tχ+ uα∂αχ = 0. (2.2)

21
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Figure 2.1: Example of a two-phase flow geometry in IR2

2.1.2. Derivation of the full-space equations. Let now the flow in each phase be governed by the
incompressible Navier-Stokes equations (1.8). Note that the density % is supposed to be constant in each
phase, i. e.

%(t,x) =

{
%r for x ∈ Ωr(t)

%b for x ∈ Ωb(t),

where %r and %b are non-negative real constants, and that due to the first equation in (1.8), the transport
equation (2.2) can be written in the form

∂tχ+ ∂α (uαχ) = 0. (2.3)

The conditions at the interface Γ(t) are [49, 68]

[uα] = 0 and [ταβnβ ] = σκnα, (2.4)

where σ is the coefficient of surface tension, κ is the curvature of Γ, n denotes the inner unit normal
vector of Γ (see again Figure 2.1), and [·] denotes the jump over the interface, i. e.

[g](t,x) = lim
y→x

y∈Ωb(t)

g(t,y)− lim
y→x

y∈Ωr(t)

g(t,y), for x ∈ Γ(t).

For our purpose, it is convenient to transform the one-phase Navier-Stokes equations (1.8) together
with the jump conditions (2.4) into one system of partial differential equations on the whole domain Ω,
as it is frequently done in mathematical modelling of two-phase flow. For example, Brackbill et al. [5]
give a rather physical approach to this transformation while Chang et al. [8] as well as Miller [56] arrive
at similar results using level set functions. In the following, we will present a transformation based on
distribution theory [13, 18, 69].

We start with defining D(Ω) = C∞
0 (Ω, IR) and denoting the space of continuous linear forms on D(Ω)

by D′(Ω). If K ∈ D′(Ω) we mark its value on the test function ϕ ∈ D(Ω) with 〈K,ϕ〉Ω. Furthermore, we
say that a sequence {ϕk ∈ D(Ω)}k∈IN converges in D(Ω) to ϕ ∈ D(Ω) if (i) there is a fixed compact set
Φ ⊂ Ω such that suppϕk ⊂ Φ for each k ∈ IN and (ii) for any multi-index J each sequence {∂Jϕk}k∈IN
of |J |-th derivatives of the ϕk converges uniformly on Φ to ∂Jϕ. Continuity of K ∈ D′(Ω) denotes that
for any sequence of test functions {ϕk}k∈IN with limk→∞ ϕk = ϕ we have

lim
k→∞

〈K,ϕk〉Ω = 〈K,ϕ〉Ω

and linearity of K ∈ D′(Ω) means that for any a, b ∈ IR and arbitrary ϕ1, ϕ2 ∈ D(Ω) it is true that

〈K, aϕ1 + bϕ2〉Ω = a〈K,ϕ1〉Ω + b〈K,ϕ2〉Ω.

Additionally, we say that a sequence {Kk}k∈IN of continuous linear forms converges in D′(Ω) to the
continuous linear form K if for every ϕ ∈ D(Ω)

lim
k→∞

〈K −Kk, ϕ〉Ω = 0. (2.5)
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The space D′(Ω) is often referred to as the dual space of D(Ω) and a continuous linear form K ∈ D′(Ω)
is called a distribution on Ω. Distributions that can be expressed in the form

〈K,ϕ〉Ω =

∫

Ω

K(x)ϕ(x) dx

are called regular while all others are denoted as singular.
Now, we start the derivation of the full-space equations. First, we multiply the single-phase Navier-

Stokes equations (1.8) with an arbitrary test function ϕ ∈ D(Ω) and integrate over Ωr(t) as well as Ωb(t).
This results in∫

Ωl(t)

∂αuαϕdx = 0 and

∫

Ωl(t)

∂t(%uα)ϕdx+

∫

Ωl(t)

∂β(%uαuβ)ϕdx =

∫

Ωl(t)

(∂βταβ)ϕdx (2.6)

for l = r, b. Applying the transport theorem [15] provides
∫

Ωl(t)

∂t(%uα)ϕdx =
d

dt

∫

Ωl(t)

%uαϕdx−

∫

Ωl(t)

∂β(%uαuβϕ) dx

and the divergence theorem yields [16]

−

∫

Ωl(t)

∂β(%uαuβϕ) dx =

∫

∂Ωl(t)

%uαuβn
l
βϕd

� � l,

where nl denotes the inner unit normal vector of ∂Ωl(t) and � � l stands for the surface measure on ∂Ωl(t).
Therefore, we have

∫

Ωl(t)

∂t(%uα)ϕdx =
d

dt

∫

Ωl(t)

%uαϕdx+

∫

∂Ωl(t)

%uαuβn
l
βϕd

� � l.
Exploiting again the divergence theorem we obtain

∫

Ωl(t)

∂αuαϕdx = −

∫

∂Ωl(t)

uαn
l
αϕd

� � l −
∫

Ωl(t)

uα∂αϕdx,

∫

Ωl(t)

∂β(%uαuβ)ϕdx = −

∫

∂Ωl(t)

%uαuβn
l
βϕd

� � l −
∫

Ωl(t)

%uαuβ∂βϕdx,

as well as ∫

Ωl(t)

(∂βταβ)ϕdx = −

∫

∂Ωl(t)

ταβn
l
βϕd

� � l −
∫

Ωl(t)

ταβ∂βϕdx.

Inserting now all those results into (2.6) and remembering ϕ is compactly supported on Ω we end up
with ∫

Ωl(t)

uα∂αϕdx+

∫

Γ(t)

uαn
l
αϕd

� � = 0 (2.7a)

and

d

dt

∫

Ωl(t)

%uαϕdx−

∫

Ωl(t)

%uαuβ∂βϕdx = −

∫

Ωl(t)

ταβ∂βϕdx−

∫

Γ(t)

ταβn
l
βϕd

� � , (2.7b)

where � � denotes the surface measure on Γ(t). Since the functions uα : [0, tmax ]×Ω→ IR, %uα : [0, tmax ]×
Ω→ IR, %uαuβ : [0, tmax ]× Ω→ IR, and ταβ : [0, tmax ]× Ω→ IR are smooth on Ω up to at most a finite
jump at Γ(t) we know that uα, %uα, %uαuβ , and ταβ are regular distributions on Ω, so we have

〈K,ϕ〉Ω =

∫

Ωr(t)

Kϕdx+

∫

Ωb(t)

Kϕdx

for K ∈ {uα, %uα, %uαuβ , ταβ} and some arbitrary ϕ ∈ D(Ω). Furthermore, using the relation n = nr =
−nb on Γ(t) we can now rewrite (2.7) in the form

〈uα, ∂αϕ〉Ω −

∫

Γ(t)

[uα]nαϕd
� � = 0

respectively

d

dt
〈%uα, ϕ〉Ω − 〈%uαuβ , ∂βϕ〉Ω = −〈ταβ , ∂βϕ〉Ω +

∫

Γ(t)

[ταβnβ ]ϕd
� � .
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At this stage, we exploit the jump conditions (2.4) which results in

〈uα, ∂αϕ〉Ω = 0 and
d

dt
〈%uα, ϕ〉Ω − 〈%uαuβ , ∂βϕ〉Ω = −〈ταβ , ∂βϕ〉Ω +

∫

Γ(t)

σκnαϕd
� � . (2.8)

Let us now consider differentiation in D′(Ω). If K ∈ C1(Ω, IR) the divergence theorem yields
〈∂αK,ϕ〉Ω = −〈K, ∂αϕ〉Ω for each ϕ ∈ D(Ω). In analogy to this rigorous result, the derivative in
the sense of distributions is for any K ∈ D′(Ω) defined by

〈∂αK,ϕ〉Ω = −〈K, ∂αϕ〉Ω, for each ϕ ∈ D(Ω). (2.9)

Moreover, given some K : [0, tmax ] → D′(Ω) we say that K ∈ C1
(
[0, tmax ] ,D

′(Ω)
)
if 〈K(t), ϕ〉Ω ∈

C1 ([0, tmax ] , IR) for each test function ϕ ∈ D′(Ω) and ∂tK is then defined by

〈∂tK(t), ϕ〉Ω =
d

dt
〈K(t), ϕ〉Ω, where

d

dt
〈K(t), ϕ〉Ω = lim

∆t→0

〈
K(t+∆t)−K(t)

∆t
, ϕ

〉

Ω

for each ϕ ∈ D(Ω). From (2.5), we obtain ∂tK ∈ D′(Ω) and thus, we conclude there is a distribution
∂t(%uα) ∈ D′(Ω) given by

〈∂t(%uα), ϕ〉Ω =
d

dt
〈%uα, ϕ〉Ω for each ϕ ∈ D(Ω). (2.10)

Finally, we want to express the surface integral in equation (2.8) by a continuous linear form in D′(Ω).
Thus, we define δΓ(t) for each g ∈ C0(Γ, IR) and any ϕ ∈ D(Ω) by

〈gδΓ(t), ϕ〉Ω =

∫

Γ(t)

gϕ d� � . (2.11)

This definition yields

〈nαδΓ, ϕ〉Ω =

∫

Γ

nβδαβϕd
� � ,

due to the divergence theorem, we obtain
∫

Γ

nβδαβϕd
� � = −

∫

Ωr
∂β(ϕδαβ) dx,

and recalling definitions (2.1) and (2.9) we find that

−

∫

Ωr
∂β(ϕδαβ) dx = −

∫

Ω

χ∂αϕdx = −〈χ, ∂αϕ〉Ω = 〈∂αχ, ϕ〉Ω .

Consequently, we obtain

〈∂αχ, ϕ〉Ω = 〈nαδΓ, ϕ〉Ω .

Using (2.9), (2.10), and (2.11) we can reformulate the incompressible Navier-Stokes equations (2.8)
as

〈∂αuα, ϕ〉Ω = 0 and 〈∂t(%uα), ϕ〉Ω + 〈∂β(%uαuβ), ϕ〉Ω = 〈∂βταβ , ϕ〉Ω + 〈σκnαδΓ, ϕ〉Ω.

In addition, we find in complete analogy to the above derivation that the full-space form of the transport
equation (2.3) is

〈∂tχ, ϕ〉Ω + 〈∂α (uαχ) , ϕ〉Ω = 0.

Since all those equations hold for each ϕ ∈ D(Ω) they express relations between distributions on Ω.
Thus, we can formulate

Theorem 2.1. On the assumptions summarised in Section 2.1.1, the incompressible Navier-Stokes equa-
tions (1.8) on Ωl for l = r, b and the jump conditions (2.4) on Γ can be merged to the full-space Navier-
Stokes equations in D′(Ω),

∂αuα = 0 and ∂t(%uα) + ∂β(%uαuβ) = ∂βταβ + σκnαδΓ. (2.12)

Furthermore, on the same assumptions, the transport equation (2.3) can be written in D′(Ω) as

∂tχ+ ∂α(uαχ) = 0 (2.13)

and the indicator distribution χ ∈ D′(Ω) fulfils

∂αχ = nαδΓ. (2.14)
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Figure 2.2: Example of an oriented one-dimensional C2-surface Γ with inner unit normal vector n in a domain Ω ⊂ IR2.

2.1.3. Divergence form of the surface tension term. In Section 2.4.2, we will find it essential to
make use of the relation

σκnαδΓ = σ∂β ((δαβ − nαnβ)δΓ) . (2.15)

By means of a sketchy and formal proof, Lafaurie et al. [47] already demonstrated the availability of (2.15)
in three-dimensional space. In the following, we will present a rigorous derivation in d-dimensional space,
for 2 ≤ d ∈ IN, which is based only on elementary tools from differential geometry [7, 74].

For this purpose, let us consider an oriented (d−1)-dimensional C2-surface Γ ⊂ Ω ⊂ IRd, as exemplified
in Figure 2.2. First, we recall that due to (2.9) and (2.11), we have

〈
∂β

(
(δαβ − nαnβ)δΓ

)
, ϕ
〉
Ω
= −

∫

Γ

(δαβ − nαnβ)∂βϕd
� �

for each ϕ ∈ D(Ω). Then, we remark that since Γ is a C2-surface there exists for each point y ∈ Γ an open

neighbourhood Uk ⊂ Ω such that y ∈ Uk and Uk ∩Γ is the image of a bijective C2-mapping hk : IRd−1 ⊃

Θk → Ω ⊂ IRd. Next, we define
(
ϕ ◦ hk

)
: Θk → IR, where ’◦’ means

(
ϕ ◦ hk

)
(zk) = ϕ

(
hk(zk)

)
for

each zk ∈ Θk. If we now choose a partition of unity
{
ψk
}
such that the support of

(
ϕψk

)
◦hk is compact

in Θk we can write

−

∫

Γ

(δαβ − nαnβ)∂βϕd
� � = −∑

k

(∫

Γ

(δαβ − nαnβ)∂β
(
ϕψk

)
d� �
)
.

Our next aim is to transform the integral on the right hand side of this equation to an integral over
Θk. We know the columns of the matrix



∂1h
k
1 · · · ∂d−1h

k
1

...
...

∂1h
k
d · · · ∂d−1h

k
d




to be tangential vectors of Γ which implies that for the inner unit normal vector n of Γ we have

nβ∂γh
k
β = 0, (2.16)

where β = 1, . . . , d and γ = 1, . . . , d − 1. From this, we obtain ∂ε

(
nβ∂γh

k
β

)
= 0 for ε = 1 . . . d − 1 and

therefore,

∂εnβ∂γh
k
β + nβ∂γεh

k
β = 0. (2.17)

Assuming now ϕ ∈ D(Ω) we can decompose ∂βϕ at any point y ∈ Γ according to

∂βϕ = aγ∂γh
k
β + bnβ

with aγ , b ∈ IR. Using (2.16) and nαnα = 1 we conclude

(δαβ − nαnβ)∂βϕ = aγ∂γh
k
α (2.18)

for α = 1, . . . , d. Using again (2.16) we find that

∂ε

(
ϕ ◦ hk

)
= ∂εh

k
β∂βϕ = ∂εh

k
βaγ∂γh

k
β .

Thus, we can express aγ in the form

aγ =
(
∂εh

k
β∂γh

k
β

)−1
∂ε

(
ϕ ◦ hk

)
,
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where the superscript ’−1’ denotes the corresponding entry of the inverse matrix, and inserting this result
into (2.18) we obtain

(δαβ − nαnβ)∂βϕ = ∂γh
k
α

(
∂εh

k
β∂γh

k
β

)−1
∂ε

(
ϕ ◦ hk

)
.

Together with the substitution theorem, this finally yields

−

∫

Γ

(δαβ − nαnβ)∂β
(
ϕψk

)
d� � = −

∫

Θk
∂γh

k
α

(
∂εh

k
β∂γh

k
β

)−1
∂ε

((
ϕψk

)
◦ hk

)
J dzk,

where

J =




det







∂1h
k
1 · · · ∂1h

k
d

...
...

∂d−1h
k
1 · · · ∂d−1h

k
d







∂1h
k
1 · · · ∂d−1h

k
1

...
...

∂1h
k
d · · · ∂d−1h

k
d











1/2

(2.19)

denotes the Jacobian of the transformation Uk ∩ Γ 3 y 7→ zk ∈ Θk [16]. Since we chose
{
ψk
}
such that

the support of
(
ϕψk

)
◦ hk is compact in Θk we can now use the divergence theorem to achieve

−

∫

Θk
J∂γh

k
α

(
∂εh

k
β∂γh

k
β

)−1
∂ε

((
ϕψk

)
◦ hk

)
dzk =

∫

Θk
∂ε

(
J∂γh

k
α

(
∂εh

k
β∂γh

k
β

)−1) (
ϕψk

)
◦ hk dzk.

(2.20)

Next, we want to express the right hand side of equation (2.20) in terms of the curvature κ of Γ.
However, before we can do this, we must find a way to calculate κ.

Curvature is defined by the negative of the differential of the trace of the Gaußian mapping, compare

for example do Carmo [7] or Spivak [74]. We define the Gaußian mapping N by N = n ◦
(
hk
)−1

, so if

we further use D to represent the differential then curvature is given by

κ = − traceDN. (2.21)

Since the trace of an operator is invariant under basis transformation we can now represent DN in the

basis
{
∂γh

k
}

of TyΓ, where TyΓ denotes the tangent space at y ∈ Γ, and calculate κ as the trace of the

resulting matrix Ak.
The above definition of N yields N ◦ hk = n which implies

DNDhk = Dn and therefore, DN = DnD
(
hk
)−1

. (2.22)

Furthermore, from nn = 1 we conclude D (nn) = 0 and therefore, nDn = 0. This means n is

perpendicular to each column of Dn ∈ IRd×(d−1) and therefore, each column of Dn is tangential to Γ.
Thus we know that locally, we have Dn : TzkΘ

k → TyΓ, where TzkΘ
k represents the tangent space at

zk ∈ Θk, and since we also know that Dhk : TzkΘ
k → TyΓ we find that DN : TyΓ → TyΓ. Now, we

deduce the representation of DN in the basis
{
∂εh

k
}

of Γ, i. e. we determine Ak ∈ IR(d−1)×(d−1) such

that

DN = DhkAkD
(
hk
)−1

.

Multiplying from the right with Dhk and using (2.22) we find

Dn = DhkAk.

In component notation, this equation has the form

∂γnα = ∂εh
k
αA

k
εγ .

Multiplying this from the left with ∂ζh
k
α, where ζ = 1, . . . , d− 1, and then isolating Ak

εγ we gain

Ak
εγ =

(
∂εh

k
β∂ζh

k
β

)−1
∂ζh

k
α∂γnα.

Using now (2.17) we finally end up with

Ak
εγ = −

(
∂εh

k
β∂ζh

k
β

)−1
nα∂ζγh

k
α. (2.23)
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In the basis
{
∂εh

k
}
, definition 2.21 reduces to

κ = −Ak
εε, (2.24)

so we have

κ =
(
∂εh

k
β∂ζh

k
β

)−1
nα∂ζεh

k
α.

At this stage, we are able to derive a representation of the right hand side of equation (2.20) in
terms of κ. For this purpose, we assume without loss of generality that locally, the C2-surface Γ can be
interpreted as the graph of a function h̃k : Θk → IR, i. e. we can write

hkβ(z
k) =

{
zkβ for β = 1, . . . , d− 1

h̃k(zk) for β = d

for each zk ∈ Θk. In this situation, we have

∂εh
k
β =

{
δεβ for β = 1, . . . , d− 1

∂εh̃
k for β = d

(2.25)

as well as

J =
(
1 + ∂γ h̃

k∂γ h̃
k
)1/2

,

so we obtain from (2.16) and nαnα = 1

nβ =

{
∂β h̃

k/J for β = 1, . . . , d− 1

1/J for β = d.
(2.26)

From (2.25), we gain

∂εh
k
β∂γh

k
β = δεγ + ∂εh̃

k∂γ h̃
k

which yields

(
∂εh

k
β∂γh

k
β

)−1
= δεγ −

1

J2
∂εh̃

k∂γ h̃
k (2.27)

and therefore, using again equation (2.25) we have

∂γh
k
α

(
∂εh

k
β∂γh

k
β

)−1
=

{
δεα − ∂εh̃

k∂αh̃
k/J2 for α = 1, . . . , d− 1

∂εh̃
k/J2 for α = d.

(2.28)

Additionally, we conclude from (2.25)

∂εγh
k
β = δβd∂εγ h̃

k

and since we know from (2.26) that nd = −1/J we have

nβ∂εγh
k
β = nβδβd∂εγ h̃

k = −
∂εγ h̃

k

J
.

Inserting now (2.27) and the above result into (2.23) we obtain

Aεγ =

(
δεζ −

1

J2
∂εh̃

k∂ζ h̃
k

)
∂ζγ h̃

k

J

and using (2.24) we end up with

κ = −

(
∂εεh̃

k

J
−

1

J3
∂εζ h̃

k∂εh̃
k∂ζ h̃

k

)
.

Due to (2.28), we know

J∂γh
k
α

(
∂εh

k
β∂γh

k
β

)−1
=

{
Jδεα − ∂εh̃

k∂αh̃
k/J for α = 1, . . . , d− 1

∂εh̃
k/J for α = d.

(2.29)
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Now, we want to calculate ∂ε

(
J∂γh

k
α

(
∂εh

k
β∂γh

k
β

)−1)
for later use. Noting that

∂εJ =
1

J
∂ζεh̃

k∂ζ h̃
k and ∂ε

1

J
= −

1

J3
∂εζ h̃

k∂ζ h̃
k

we compute

∂ε
∂εh̃

k

J
=

(
∂εεh̃

k

J
−

1

J3
∂ζεh̃

k∂εh̃
k∂ζ h̃

k

)
= −κ

and

∂ε

(
Jδεα −

1

J
∂εh̃

k∂αh̃
k

)
=
∂αζ h̃

k

J
∂ζ h̃

k − ∂ε

(
∂εh̃

k

J

)
∂αh̃

k −
∂αεh̃

k

J
∂εh̃

k = κ∂αh̃
k.

Together with (2.26) and (2.29), those results lead to

∂ε

(
J∂γh

k
α

(
∂εh

k
β∂γh

k
β

)−1)
= κnαJ

and comparing this with the right hand side of equation (2.20) we find that
∫

Θk
∂ε

(
J∂γh

k
α

(
∂εh

k
β∂γh

k
β

)−1) (
ϕψk

)
◦ hk dzk =

∫

Θk
κnα

((
ϕψk

)
◦ hk

)
J dzk. (2.30)

Transforming now Θk 3 z → y ∈ Uk and summing over k we get

∑

k

(∫

Θk
κnα

((
ϕψk

)
◦ hk

)
J dzk

)
=

∫

Γ

κnαϕd
� � .

Finally, we apply again (2.11) to obtain
∫

Γ

κnαϕd
� � = 〈κnαδΓ, ϕ〉Ω.

Summarising all the results derived so far in this Section we have a rigorous proof of (2.15) and therefore,
we showed

Theorem 2.2. Suppose the assumptions collected in Section 2.1.1 hold and Γ is a (d − 1)-dimensional
C2-surface in Ω. Then, in D′(Ω), the two-phase incompressible Navier-Stokes equations (2.12) can be
written in the form

∂αuα = 0 and ∂t(%uα) + ∂β
(
%uαuβ − σ(δαβ − nαnβ)δΓ(t)

)
= ∂βταβ . (2.31)

Let us conclude this Section with a short excursion. Suppose for a smooth function g : Γ → IR we
define the surface derivative ∂Sg by

(∂Sg)α = ∂εh
k
α

(
∂γh

k
β∂εh

k
β

)−1
∂γ

(
g ◦ hk

)

and the Laplace-Beltrami operator ∂2
S
by

∂2Sg =
1

J
∂ε

(
J∂γ

(
g ◦ hk

) (
∂εh

k
β∂γh

k
β

)−1)
.

Then, we find that after a transformation of coordinates, the integrals in equation (2.30) can be rewritten
in the form ∫

Θk
∂ε

(
J∂γh

k
α

(
∂εh

k
β∂γh

k
β

)−1)((
ϕψk

)
◦ hk

)
dzk =

∫

Γ

∂2SidΓ;α
(
ϕψk

)
d� � ,

where idΓ denotes identity on Γ, respectively
∫

Θk
κnα

((
ϕψk

)
◦ hk

)
J dzk =

∫

Γ

κnα
(
ϕψk

)
d� � .

Therefore, summing over k we obtain
∫

Γ

∂2SidΓ;αϕd
� � =

∫

Γ

κnαϕd
� �

and thus, we see that it is also possible to define the curvature κ by κn = ∂2
S
idΓ, as it is done in

Bänsch [2], instead of using (2.21).
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2.2. Immiscible lattice BGK

In this Section, we present an LBGK model of two-phase flow which is consistent to the full-space
incompressible Navier-Stokes equations (2.31). To the best of the author’s knowledge, there are presently
three competitive approaches to simulating two-phase flow with LBGK, namely the immiscible LBGK
(ILBGK) method described below, the interacting potential method [70, 71, 72, 73], and the free energy
method [34, 58, 59, 76, 77]. Each of those approaches has its respective drawbacks, see Hou et al. [35]
and Luo [51, 52]. We settle on ILBGK because it is the only technique that allows to separate the
treatment of surface tension effects from interface tracking. Furthermore, it is a common drawback of
the interacting potential method and the free energy approach that in general flow, it is not possible to
explicitly fix the coefficient of surface tension a priori.

Simulating two-phase flow we must solve the transport equation (2.13) together with the two-phase
Navier-Stokes equations (2.31). Note that both density % and stress tensor ταβ are likely to jump across the
interface Γ. The possibility of jumps on Γ is a very crucial point because the appearance of discontinuities
does not coincide with the consistency analysis presented in Section 1.1.2. However, here we will bypass
this problem by requiring that neither % nor ταβ jumps across the interface.

The basic ideas of immiscible lattice BGK date back to the immiscible lattice gas model published
in 1988 by Rothman and Keller [66]. The immiscible lattice Boltzmann method in two space dimensions
was introduced in 1991 by Gunstensen et al. [28], extended to three space dimensions by Gunstensen
and Rothman [27] in 1992, and further improved by Grunau et al. [26] in 1993. In the latter paper,
immiscible lattice BGK was introduced by adopting the ideas of Chen et al. [9] and Qian et al. [63] to
the immiscible lattice Boltzmann model. Note that ILBGK is a very simple form of immiscible lattice
Boltzmann.

We shall describe the classical formulation of immiscible lattice BGK in Section 2.2.1 and present a
more reasonable variation in Section 2.2.2.

2.2.1. Original method. We consider again the situation described in Section 2.1.1. As in one-phase
LBGK, we assume that Ω is covered by a regular lattice with equidistant nodes and again, we denote
the set of lattice nodes by X. At a given time t, we consider particle densities f r(t,x;v) and f b(t,x;v)
of red respectively blue fluid particles located at position x ∈ X and moving with velocity v ∈ V9 =
{cj : j = 0, . . . , 8}.

Recalling the polynomials (1.12) we can express red and blue mass density in the form

ρl =
〈
f l, Q0

〉
v

for l = r, b. (2.32)

Full (or uncoloured) particle density f is defined by

f(t,x;v) = f r(t,x;v) + f b(t,x;v). (2.33)

Therefore, full mass density ρ and uncoloured momentum density ρu are given by

ρ = 〈f,Q0〉v respectively ρu1 = 〈f,Q1〉v and ρu2 = 〈f,Q2〉v . (2.34)

In analogy to one-phase LBGK, we determine the flow velocity u by uα = ρuα/ρ.
Coloured particle density is governed by the lattice BGK equation

f l(t+∆t,x;v) = (1− ω)f l(t,x− v∆x;v) + ωf l,eqS

(
ρl(t,x− v∆x),u(t,x− v∆x);v

)
(2.35)

with equilibrium particle density

f l,eqS

(
ρl,u;v

)
= f∗(v)

(
ρl + 3∆xρluαvα +

9∆x2

2
ρluαuβ

(
vαvβ −

δαβ
3

))
+

1

2
S(v), (2.36)

where the relaxation parameter ω is assumed to be constant in Ω. The term S(v) in (2.36) models
the effects of surface tension and will be discussed in detail in Section 2.4.2. Note here that S fulfils
〈S,Q0〉v = 0 and therefore,

ρl =
〈
f l,eqS , Q0

〉
v
.

Together with (2.32), this yields mass conservation for both phases in immiscible lattice BGK.
In analogy to one-phase LBGK, the evolution equation (2.35) is typically solved by conducting first

the collision step

f̃ l(t,x;v) = (1− ω)f l(t,x;v) + ωf l,eqS (ρl(t,x),u(t,x);v) (2.37)
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and then the propagation step

f l(t+∆t,x;v) = f̃ l(t,x− v∆x;v), (2.38)

compare (1.6) and (1.7). Note that due to

ρl =
〈
f l, Q0

〉
v
=
〈
f l,eqS , Q0

〉
v
,

ρl is not affected by the collision step.
To prevent both phases from mixing with each other, we apply a third step between collision and

propagation, the so-called recolouring step. The basic idea of recolouring is to keep the interface sharp
by reallocating f̃ l(t,x;v) in the vicinity of Γ(t) such that as few coloured mass as possible crosses the
interface in the propagation step. To achieve this goal, we first have to compute the local colour gradient
which is for x ∈ X typically defined by

F̂ (t,x) =
1

∆x

∑

j

cj

(
ρr(t,x+ cj∆x)− ρ

b(t,x+ cj∆x)
)
. (2.39)

Then, we seek particle densities R(t,x;v) and B(t,x;v) such that

F̂1 〈R−B, Q1〉v + F̂2 〈R−B, Q2〉v → max (2.40a)

under the constraints

〈R, Q0〉v = ρr, 〈B, Q0〉v = ρb, and R + B = f. (2.40b)

Note that (2.40a) maximises the projection of the difference between the coloured momentum vectors

(〈R, Q1〉v , 〈R, Q2〉v)
T

and (〈B, Q1〉v , 〈B, Q2〉v)
T

into the direction of the local colour gradient F̂ and
that (2.40b) ensures conservation of coloured and uncoloured mass as well as uncoloured momentum.
Note also that this procedure has an effect only if the colour gradient is non-zero.

Let us now rewrite the constrained maximisation problem (2.40) in a form which is more convenient
for implementation. For this purpose, we insert the last constraint in (2.40b) into (2.40a) to obtain

2
(
F̂1 〈R, Q1〉v + F̂2 〈R, Q2〉v

)
−
(
F̂1 〈f,Q1〉v + F̂2 〈f,Q2〉v

)
→ max .

Since f is conserved during the recolouring step, F̂1 〈f,Q1〉v + F̂2 〈f,Q2〉v is also conserved. For this
reason, we may require

F̂1 〈R, Q1〉v + F̂2 〈R, Q2〉v → max

instead of (2.40a), as it is done for example in Grunau et al. [26] or Nie et al. [57].
Furthermore, it is possible to drop the second constraint in (2.40b), as we will show in the following.

We consider the zeroth order discrete moment of equation (2.33),

〈fr, Q0〉v +
〈
f b, Q0

〉
v
= 〈f,Q0〉v ,

and due to (2.32) and (2.34), this yields ρr + ρb = ρ. From the first and the third constraint in (2.40b),
we now obtain

〈R, Q0〉v + ρb = 〈R + B, Q0〉v ,

so we just deduced ρb = 〈B, Q0〉v which therefore needs not be required as a constraint. Thus, (2.40)
reduces to

F̂1 〈R, Q1〉v + F̂2 〈R, Q2〉v → max such that 〈R, Q0〉v = ρr and R + B = f. (2.41)

The resulting treatment of the maximisation problem is summarised in Algorithm 2.1, the recolouring
step is described in Algorithm 2.2, and the complete ILBGK method is presented in Algorithm 2.3.
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compute F̂α(t,x)cj;α for each j;

list the results in descending order;

let dens = 0;

while the list is nonempty and dens < ρr(t,x)

assuming that F̂α(t,x)c̃;α is the first element of the list

let inc = min {ρr(t,x)− dens, f(t,x, c̃)};

let R(t,x; c̃) = inc;

let B(t,x; c̃) = f(t,x, c̃)− inc;

let dens = dens + inc;

remove F̂α(t,x)c̃;α from the list;

Algorithm 2.1: Typical implementation of the constrained maximisation problem (2.41)

compute F̂ (t,x) according to (2.39);

use Algorithm 2.1 to find R(t,x;v) and B(t,x;v) such that (2.41) is fulfilled;

let f̃r(t,x,v) = R(t,x;v);

let f̃ b(t,x,v) = B(t,x;v);

Algorithm 2.2: The original recolouring step

initialise ρl(0,x) and u(0,x);

let f l(0,x;v) = f l,eqS (ρr(0,x),u(0,x)) as defined by (2.36);

while t < tmax

determine f l,eqS according to (2.36);

do collision according to (2.37);

do recolouring according to Algorithm 2.2;

do propagation according to (2.38);

let t = t+∆t;

compute ρl(t,x) according to (2.32);

compute f(t,x;v) according to (2.33);

compute ρ(t,x) and ρuα(t,x) according to (2.34);

let uα(t,x) = ρuα(t,x)/ρ(t,x);

Algorithm 2.3: The immiscible lattice BGK method

2.2.2. Reformulation. In the following, we will present a very convenient reformulation of ILBGK
which was introduced by Ginzburg and Steiner [22, 23]. Instead of solving LBGK equations for red and
blue particle densities and computing uncoloured particle density according to (2.33), we now solve the
LBGK equation for uncoloured particle density,

f(t+∆t,x;v) = (1− ω)f(t,x− v∆x;v) + ωf eq
S (ρ(t,x− v∆x),u(t,x− v∆x);v) , (2.42)

with equilibrium particle density

feq
S (ρ,u;v) = f∗(v)

(
ρ+ 3∆xρuαvα +

9∆x2

2
ρuαuβ

(
vαvβ −

δαβ
3

))
+ S(v) (2.43)

along with equation (2.35) for red particle density. As usual, we divide (2.42) into the collision step

f̃(t,x;v) = (1− ω)f(t,x;v) + ωf eq
S (ρ(t,x),u(t,x);v) (2.44)

and the propagation step

f(t+∆t,x;v) = f̃(t,x− v∆x;v). (2.45)

Blue particle density is finally given by f b = f − fr.
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We will now show that also the recolouring step can be formulated without explicitly considering
the blue phase. For this purpose, we must replace the colour gradient F̂ with a quantity that can be
computed without knowledge of ρb. In order to find a proper replacement, we must find out what F is
consistent to.

For this purpose, we shall proceed as follows. We know that lattice BGK computes no functions
in the strict sense but only discrete values at the lattice points x ∈ X. However, we suppose there
are smooth ∆x-dependent functions interpolating those values. We further assume those interpolating
functions to converge in a suitable sense towards limit functions for ∆x→ 0. Finally, we say the scheme is
consistent to a given system of continuous equations if those equations are fulfilled by the limit functions
for ∆x→ 0. Remark that this concept applies not only to lattice BGK but to any finite difference-based
numerical scheme.

In particular, we assume for l = r, b there are functions ρl∆x ∈ C1 ([0, tmax ]× Ω, IR) such that
ρl∆x(t,x) = ρl(t,x) for each t ∈ [0, tmax ] and x ∈ X and we define

ρ+∆x = ρr∆x + ρb∆x as well as ρ−∆x = ρr∆x − ρ
b
∆x.

Therefore, the local colour gradient F̂ takes the form

F̂∆x(t,x) =
1

∆x

∑

j

cjρ
−
∆x(t,x+ cj∆x).

Additionally, we assume

lim
∆x→0

〈
ρl∆x, ϕ

〉
Ω
=
〈
ρl0, ϕ

〉
Ω

(2.46a)

for any test function ϕ ∈ D′(Ω) and inspired by (1.17), we suppose

ρr0(t,x) =

{
%r for x ∈ Ωr(t)

0 for x ∈ Ωb(t)
and ρb0(t,x) =

{
0 for x ∈ Ωr(t)

%b for x ∈ Ωb(t),
(2.46b)

where %r and %b denote the constant density of red respectively blue incompressible fluid. This implies

ρ+0 (t,x) =

{
%r for x ∈ Ωr(t)

%b for x ∈ Ωb(t)
as well as ρ−0 (t,x) =

{
%r for x ∈ Ωr(t)

−%b for x ∈ Ωb(t).
(2.46c)

Let us now start analysing the consistency of the local colour gradient F̂∆x. First, we state

〈
F̂∆x;α(t,x), ϕ(x)

〉
Ω
=

〈
1

∆x

∑

j

cj;αρ
−
∆x(t,x+ cj∆x), ϕ(x)

〉

Ω

, (2.47)

where ϕ ∈ D(Ω) is an arbitrary test function. Since ρ−∆x is a regular distribution we have
〈

1

∆x

∑

j

cj;αρ
−
∆x(t,x+ cj∆x), ϕ(x)

〉

Ω

=
1

∆x

∑

j

cj;α

∫

Ω

ρ−∆x(t,x+ cj∆x)ϕ(x) dx,

and because ϕ is of compact support in Ω we know that

1

∆x

∑

j

cj;α

∫

Ω

ρ−∆x(t,x+ cj∆x)ϕ(x) dx =
1

∆x

∑

j

cj;α

∫

suppϕ

ρ−∆x(t,x+ cj∆x)ϕ(x) dx.

The coordinate transformation x+ cj∆x 7→ y yields

1

∆x

∑

j

cj;α

∫

suppϕ

ρ−∆x(t,x+ cj∆x)ϕ(x) dx =
1

∆x

∑

j

cj;α

∫

suppϕ+cj∆x

ρ−∆x(t,y)ϕ(y − cj∆x) dy,

where suppϕ+ cj∆x = {y : y − cj∆x ∈ suppϕ}. Since Ω is open and suppϕ is compact in Ω, we find
that also suppϕ+ cj∆x is compact in Ω if ∆x is chosen small enough. Thus,

1

∆x

∑

j

cj;α

∫

suppϕ+cj∆x

ρ−∆x(t,y)ϕ(y − cj∆x) dy =
1

∆x

∑

j

cj;α

∫

Ω

ρ−∆x(t,y)ϕ(y − cj∆x) dy.

At this stage, we obtain by Taylor expansion

ϕ(y − cj∆x) = ϕ(y)−∆xcj;β∂βϕ(y) +
∆x2

2
cj;βcj;γ∂βγϕ(y) + O

(
∆x3

)
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and therefore,

1

∆x

∑

j

cj;α

∫

Ω

ρ−∆x(t,y)ϕ(y − cj∆x) dy =
1

∆x

∑

j

cj;α

∫

Ω

ρ−∆x(t,y)ϕ(y) dy

−
∑

j

cj;αcj;β

∫

Ω

ρ−∆x(t,y)∂βϕ(y) dy +
∆x

2

∑

j

cj;αcj;βcj;γ

∫

Ω

ρ−∆x(t,y)∂βγϕ(y) dy + O
(
∆x2

)
,

where the first and third term on the right hand side equal zero because
∑

j cj;α = 0 respectively∑
j cj;αcj;βcj;γ = 0. By virtue of (2.46), the second term on the right hand side fulfils

lim
∆x→0


−

∑

j

cj;αcj;β

∫

Ω

ρ−∆x(t,y)∂βϕ(y) dy


 = −

∑

j

cj;αcj;β

∫

Ω

ρ−0 (t,y)∂βϕ(y) dy.

Observing
∑

j

cj;αcj;β = 6δαβ and ρ−0 (t,y) =
(
%r + %b

)
χ(t,y)− %b,

where χ is given by (2.1), we gain

−
∑

j

cj;αcj;β

∫

Ω

ρ−0 (t,y)∂βϕ(y) dy = −6
(
%r + %b

) ∫

Ω

χ(t,y)∂αϕ(y) dy + 6%b
∫

Ω

∂αϕ(y) dy. (2.48)

Due to the divergence theorem [16],

6%b
∫

Ω

∂αϕ(y) dy = 0,

so the right hand side of (2.48) can be rewritten in the form

−6
(
%r + %b

) ∫

Ω

χ(t,y)∂αϕ(y) dy = 6
(
%r + %b

)
〈∂αχ, ϕ〉Ω ,

and applying now (2.14) we obtain

6
(
%r + %b

)
〈∂αχ, ϕ〉Ω = 6

(
%r + %b

)
〈nαδΓ, ϕ〉Ω

for an arbitrary test function ϕ ∈ D(Ω). Thus, we can formulate

Proposition 2.1. In D′(Ω),

lim
∆x→0

F̂∆x;α = 6
(
%r + %b

)
nαδΓ.

The colour gradient F̂∆x is needed only for the maximisation procedure (2.41) and it converges for
∆x → 0 to a vector which is parallel to n. However, the term which is maximised in (2.41) can be

interpreted as the Euclidean scalar product of the vectors F̂∆x and (〈R, Q1〉v , 〈R, Q2〉v)
T
, where the

latter represents coloured momentum of the red phase. Due to the fact that the Euclidean scalar product
of two vectors in IRd is maximal if those vectors point into the same direction, minimal if they point into
opposite directions, and zero if they are perpendicular to each other, the maximisation procedure (2.41)

moves for ∆x → 0 as much red mass as possible into the direction parallel to F̂∆x, i. e. the direction
parallel to n. However, this behaviour does not change if we replace F̂∆x with any other vector whose
limit for ∆x→ 0 points into the same direction. Inspired by (2.14) we choose

F∆x(t,x) =
1

6∆x

∑

j

cjχ∆x(t,x+ cj∆x), (2.49)

where χ∆x ∈ C1 ([0, tmax ]× Ω, IR) and lim∆x→0 χ∆x = χ with χ defined by (2.1), and then, we repeat
the arguments above to show

Proposition 2.2. In D′(Ω),

lim
∆x→0

F∆x;α = nαδΓ.
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compute Fα(t,x)cj;α for each j;

list the results in descending order;

let dens = 0;

while the list is nonempty and dens < ρr(t,x)

assuming Fα(t,x)c̃;α is the first element of the list

let inc = min {ρr(t,x)− dens, f(t,x, c̃)};

let R(t,x; c̃) = inc;

let dens = dens + inc;

remove Fα(t,x)c̃;α from the list;

Algorithm 2.4: Implementation of the constrained maximisation problem (2.51)

compute F (t,x) according to (2.49);

use Algorithm 2.4 to find R(t,x;v) such that (2.51) is fulfilled;

let f̃r(t,x;v) = R(t,x;v);

Algorithm 2.5: The reformulated recolouring step

Let us remark that from definition (2.49), we obtain

F∆x;1(t,x) =
1

6∆x



−1 0 1

−1 0 1

−1 0 1


χ∆x(t,x) = ∂1χ∆x + O

(
∆x2

)
in D′(Ω) (2.50a)

as well as

F∆x;2(t,x) =
1

6∆x




1 1 1

0 0 0

−1 −1 −1


χ∆x(t,x) = ∂2χ∆x + O

(
∆x2

)
in D′(Ω). (2.50b)

It is also possible to prove Proposition 2.2 using some other stencils for computing the local colour
gradient as long as they are consistent to the components of the gradient. For example,

1

12∆x



−1 0 1

−4 0 4

−1 0 1


↔ ∂1 + O

(
∆x2

)
and

1

12∆x




1 4 1

0 0 0

−1 −4 −1


↔ ∂2 + O

(
∆x2

)

are a reasonable choice. However, from now on, we will exclusively work with the colour gradient F ∆x

defined by (2.49). Furthermore, to avoid complicated notation, we will from now on skip the ∆x-subscripts
as long as we do not perform a consistency analysis for ∆x → 0. Thus, the constrained maximisation
problem (2.41) takes the form

F1 〈R, Q1〉v + F2 〈R, Q2〉v → max such that 〈R, Q0〉v = ρr and R ≤ f. (2.51)

For this reason, the maximisation Algorithm 2.1 reduces to Algorithm 2.4 and recolouring itself takes the
form presented in Algorithm 2.5.

Next, we observe that red particle density is completely reorganised by the recolouring Algorithm 2.5
and therefore, the preceding collision step for the red phase is obsolete. Furthermore, combining (2.32)
and (2.38) we find that

ρr(t+∆t,x) =
〈
f̃r(t,x− v∆x;v), Q0(v)

〉
v
, (2.52)

i. e. red density can be updated directly from the output of the recolouring step. Altogether, we obtain
the ILBGK Algorithm 2.6.

Finally, we realize red particle density is needed only for computing ρr. Since 〈S,Q0〉v=0 the surface
tension term S(v) does not influence (2.52). Therefore, we remove it from the definition of red equilibrium
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initialise ρ(0,x), ρr(0,x), and u(0,x);

let f(0,x;v) = feq
S (ρ(0,x),u(0,x)) as defined by (2.43);

while t < tmax

determine feq
S (ρ(t,x),u(t,x)) according to (2.43);

do uncoloured collision according to (2.44);

do recolouring according to Algorithm 2.5;

compute ρr(t+∆t,x) according to (2.52);

do uncoloured propagation according to (2.45);

let t = t+∆t;

compute ρ(t,x) and ρuα(t,x) according to (2.34);

let uα(t,x) = ρuα(t,x)/ρ(t,x);

Algorithm 2.6: Reformulation of the immiscible lattice BGK method

particle density and use

fr,eq (ρr,u;v) = f∗(v)

(
ρr + 3∆xρruαvα +

9∆x2

2
ρruαuβ

(
vαvβ −

δαβ
3

))
(2.53)

instead of f r,eqS for the theoretical investigations to be performed in subsequent Sections.

2.3. Interface tracking in immiscible lattice BGK

In this Section, we want to investigate the intrinsic interface tracking scheme of immiscible lattice BGK.
Again, we will assume that both % and ταβ are continuous in Ω.

First, we will perform an equivalent moment analysis to learn which part of immiscible lattice BGK
is responsible for interface tracking (Section 2.3.1) and after this, we shall isolate the interface tracking
portion and consider it separately (Section 2.3.2). Finally, we will numerically investigate the isolated
ILBGK interface tracking scheme (Section 2.3.3).

2.3.1. Equivalent moment analysis. Let us now investigate how interface tracking is managed in
ILBGK and why it is necessary to recolour particle densities. For this purpose, we first consider the
evolution equation (2.35) for the red phase with equilibrium particle density f r,eq as defined by (2.53)
without any recolouring and apply the equivalent moment analysis introduced in Section 1.1.2.

Recalling the polynomials (1.12) we define

Mr
k = 〈fr, Qk〉v and Mr,eq

k = 〈fr,eq , Qk〉v for k = 0, . . . , 8

which yields

Mr,eq
0 = ρr, Mr,eq

1 = ρru1, Mr,eq
2 = ρru2, Mr,eq

3 = ρru21, Mr,eq
4 = ρru1u2,

Mr,eq
5 = ρru22, Mr,eq

6 = 0, Mr,eq
7 = 0, Mr,eq

8 = 0.

Proceeding now in analogy to what we did in Section 1.1.2 we find the equivalent moment system of
equation (2.35) for l = r to take the form

Mr
k (t+∆t,x) =

8∑

j=0

1〈
f∗, Q2j

〉
v

〈
f∗, QkQj

(
(1− ω)M r

j + ωMr,eq
j

)
(t,x− v∆x)

〉
v
,
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compare (1.14), and therefore, due to coloured mass conservation we obtain for k = 0

ρr(t+∆t,x) = 〈f∗, Q0ρ
r(t,x− v∆x)〉v +

〈
f∗, 3∆x2Q1

(
(1− ω)M r

1 + ω (ρru1)
)
(t,x− v∆x)

〉
v

+
〈
f∗, 3∆x2Q2

(
(1− ω)M r

2 + ω (ρru2)
)
(t,x− v∆x)

〉
v

+

〈
f∗,

9∆x4

2
Q3

(
(1− ω)M r

3 + ωρru21

)
(t,x− v∆x)

〉

v

+
〈
f∗, 9∆x4Q4

(
(1− ω)M r

4 + ωρru1u2

)
(t,x− v∆x)

〉
v

+

〈
f∗,

9∆x4

2
Q5

(
(1− ω)M r

5 + ωρru22

)
(t,x− v∆x)

〉

v

+

〈
f∗,

3∆x6

2
Q6(1− ω)M

r
6 (t,x− v∆x)

〉

v

+

〈
f∗,

3∆x6

2
Q7(1− ω)M

r
7 (t,x− v∆x)

〉

v

+

〈
f∗,

∆x8

16
Q8(1− ω)M

r
8 (t,x− v∆x)

〉

v

. (2.54)

In those regions of Ω where f b = 0, we have f r = f (compare (2.33)) which yields M r
1 = ρru1 as

well as M r
2 = ρru2 and therefore, u1 = Mr

1 /ρ
r as well as u2 = Mr

2 /ρ
r. However, in those regions where

both fr and f b are positive we find that f r 6= f and therefore, M r
1 6= ρru1 as well as M r

1 6= ρru1. This
implies u1 6= Mr

1 /ρ
r and u2 6= Mr

2 /ρ
r. Thus, in regions of mixed phases, equation (2.54) forces the red

phase to move with a velocity which is different from the actual flow velocity u. Fortunately, ILBGK
does not suffer from this effect because before propagation takes place, coloured particle densities are
redistributed by the recolouring step.

Let us now avoid this problem by choosing ω = 1 which turns (2.35) into

fr(t+∆t,x;v) = f r,eq (ρr(t,x− v∆x),u(t,x− v∆x);v) (2.55)

and (2.54) into

ρr(t+∆t,x) = 〈f∗, Q0ρ
r(t,x− v∆x)〉v +

〈
f∗, 3∆x2Q1 (ρ

ru1) (t,x− v∆x)
〉

v

+
〈
f∗, 3∆x2Q2 (ρ

ru2) (t,x− v∆x)
〉

v
+

〈
f∗,

9∆x4

2
Q3
(
ρru21

)
(t,x− v∆x)

〉

v

+
〈
f∗, 9∆x4Q4 (ρ

ru1u2) (t,x− v∆x)
〉

v
+

〈
f∗,

9∆x4

2
Q5
(
ρru22

)
(t,x− v∆x)

〉

v

. (2.56)

The right hand side of this equation consists of expressions of the form (1.15) which can be interpreted
as finite difference stencils. In particular, the polynomials

Q0, 3∆x2Q1, 3∆x2Q2,
9∆x4

2
Q3, 9∆x4Q4, and

9∆x4

2
Q5

produce the stencils

Q0 ↔
1

36



1 4 1

4 16 4

1 4 1


 = 1 +

1

36



1 4 1

4 −20 4

1 4 1


↔ 1 +

∆x2

6
∂αα + O

(
∆x4

)
,

3∆x2Q1 ↔ −
∆x

12



−1 0 1

−4 0 4

−1 0 1


↔ ∆x2∂1 + O

(
∆x4

)
,

3∆x2Q2 ↔ −
∆x

12




1 4 1

0 0 0

−1 −4 −1


↔ ∆x2∂2 + O

(
∆x4

)
,

9∆x4

2
Q3 ↔

∆x2

12



1 −2 1

4 −8 4

1 −2 1


↔

∆x4

2
∂11 + O

(
∆x6

)
,
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9∆x4Q4 ↔
∆x2

4



−1 0 1

0 0 0

1 0 −1


↔ ∆x4∂12 + O

(
∆x6

)
,

respectively

9∆x4

2
Q5 ↔

∆x2

12




1 4 1

−2 −8 −2

1 4 1


↔

∆x4

2
∂22 + O

(
∆x6

)
.

Therefore, (2.56) is equivalent to

ρr(t+∆t,x) = ρr(t,x)

+
1

36



1 4 1

4 −20 4

1 4 1


 ρr(t,x)−

∆x

12



−1 0 1

−4 0 4

−1 0 1


 (ρru1) (t,x)−

∆x

12




1 4 1

0 0 0

−1 −4 −1


 (ρru2) (t,x)

+
∆x2

12



1 −2 1

4 −8 4

1 −2 1



(
ρru21

)
(t,x) +

∆x2

4



−1 0 1

0 0 0

1 0 −1


 (ρru1u2) (t,x)

+
∆x2

12




1 4 1

−2 −8 −2

1 4 1



(
ρru21

)
(t,x)

and thus,

〈ρr(t+∆t,x), ϕ(x)〉Ω = 〈ρr(t,x), ϕ(x)〉Ω

+
1

36

〈

1 4 1

4 −20 4

1 4 1


 ρr(t,x), ϕ(x)

〉

Ω

−
∆x

12

〈

−1 0 1

−4 0 4

−1 0 1


 (ρru1) (t,x), ϕ(x)

〉

Ω

−
∆x

12

〈


1 4 1

0 0 0

−1 −4 −1


 (ρru2) (t,x), ϕ(x)

〉

Ω

+
∆x2

12

〈

1 −2 1

4 −8 4

1 −2 1



(
ρru21

)
(t,x), ϕ(x)

〉

Ω

+
∆x2

4

〈

−1 0 1

0 0 0

1 0 −1


 (ρru1u2) (t,x), ϕ(x)

〉

Ω

+
∆x2

12

〈


1 4 1

−2 −8 −2

1 4 1



(
ρru21

)
(t,x), ϕ(x)

〉

Ω

for any test function ϕ ∈ D(Ω). Adjoining the finite difference stencils we obtain

〈ρr(t+∆t,x), ϕ(x)〉Ω = 〈ρr(t,x), ϕ(x)〉Ω

+
1

36

〈
ρr(t,x),



1 4 1

4 −20 4

1 4 1


ϕ(x)

〉

Ω

−
∆x

12

〈
(ρru1) (t,x),



1 0 −1

4 0 −4

1 0 −1


ϕ(x)

〉

Ω

−
∆x

12

〈
(ρru2) (t,x),



−1 −4 −1

0 0 0

1 4 1


ϕ(x)

〉

Ω

+
∆x2

12

〈
(
ρru21

)
(t,x),



1 −2 1

4 −8 4

1 −2 1


ϕ(x)

〉

Ω

+
∆x2

4

〈
(ρru1u2) (t,x),



−1 0 1

0 0 0

1 0 −1


ϕ(x)

〉

Ω

+
∆x2

12

〈
(
ρru21

)
(t,x),




1 4 1

−2 −8 −2

1 4 1


ϕ(x)

〉

Ω
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and Taylor expansion yields

〈ρr(t+∆t,x), ϕ(x)〉Ω = 〈ρr(t,x), ϕ(x)〉Ω +
∆x2

6
〈ρr(t,x), ∂ααϕ(x)〉Ω +∆x2 〈(ρru1) (t,x), ∂1ϕ(x)〉Ω

+∆x2 〈(ρru2) (t,x), ∂2ϕ(x)〉Ω +
∆x4

2

〈(
ρru21

)
(t,x), ∂11ϕ(x)

〉
Ω
+∆x4 〈(ρru1u2) (t,x), ∂12ϕ(x)〉Ω

+
∆x4

2

〈(
ρru21

)
(t,x), ∂22ϕ(x)

〉
Ω
+ O

(
∆x4

)

which is equivalent to

〈ρr(t+∆t,x), ϕ(x)〉Ω = 〈ρr(t,x), ϕ(x)〉Ω +
∆x2

6
〈ρr(t,x), ∂ααϕ(x)〉Ω

+∆x2 〈(ρru1) (t,x), ∂1ϕ(x)〉Ω +∆x2 〈(ρru2) (t,x), ∂2ϕ(x)〉Ω + O
(
∆x4

)
.

Using now ∆t = ∆x2 we obtain
〈
ρr(t+∆t,x− ρr(t,x)

∆t
, ϕ(x)

〉

Ω

− 〈(ρru1) (t,x), ∂1ϕ(x)〉Ω − 〈(ρ
ru2) (t,x), ∂2ϕ(x)〉Ω

=
1

6
〈ρr(t,x), ∂ααϕ(x)〉Ω + O

(
∆x2

)

and Taylor expanding the first term on the left hand side provides

〈∂tρ
r(t,x), ϕ(x)〉Ω − 〈(ρ

ru1) (t,x), ∂1ϕ(x)〉Ω − 〈(ρ
ru2) (t,x), ∂2ϕ(x)〉Ω =

1

6
〈ρr(t,x), ∂ααϕ(x)〉Ω

+ O
(
∆x2

)

for each test function ϕ ∈ D(Ω). By definition, this is equivalent to

∂tρ
r + ∂α (ρruα) =

1

6
∂ααρ

r + O
(
∆x2

)
(2.57)

in D′(Ω). Note that we cannot apply an analogue to (1.17) here because in the vicinity of the interface,
the gradient of ρr is of O (1/∆x). Therefore, the viscous term on the right hand side of (2.57) must be
explicitly dealt with.

Neglecting the O
(
∆x2

)
term on the right hand side we find that equation (2.57) combines the effects

of the transport equation

∂tρ
r + ∂α (ρruα) = 0 (2.58)

and the diffusion equation

∂tρ
r =

1

6
∂ααρ

r. (2.59)

(This behaviour can be illustrated by considering the case of a constant velocity field u(const), where the
split scheme

ρ̂r(t+∆t,x) = ρ̃r(t,x) +
∆t

6
∂ααρ̃

r(t,x), ρ̃r(t,x) = ρ̂r(t,x)−∆tu(const)
α ∂αρ̂

r(t,x)

with initial condition ρ̂r(0,x) = ρr(0,x) for each x ∈ X determines exactly the same approximation to
the solution ρr of the convection-diffusion equation

∂tρ
r + u(const)

α ∂αρ
r =

1

6
∂ααρ

r

as the unsplit scheme

ρ̂r(t+∆t,x) = ρ̂r(t,x) + ∆t

(
1

6
∂ααρ̂

r(t,x)− u(const)
α ∂αρ̂

r(t,x)

)

with the same initial condition.) Interpreting now ρr as a non-normalised indicator function for the red
phase we find (2.58) to be in some sense a non-normalised variant of the transport equation (2.13) and,
therefore, to be responsible for interface tracking. Equation (2.59), however, causes the phases to diffuse
into each other and thus, it is responsible for the smearing of the interface. Altogether, we find that (2.57)
effectuates both tracking and smearing of the interface. The latter is another reason for the necessity of
the recolouring step.
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compute Fα(t,x)cj;α for each j;

list the results in descending order;

let dens = 0;

while the list is nonempty and dens < χ(t,x)

assuming Fα(t,x)c̃;α is the first element of the list

let inc = min{χ(t,x)− dens, � � (u(t,x), c̃);
let R(t,x; c̃) = inc;

let dens = dens+ inc;

remove Fα(t,x)c̃;α from the list;

Algorithm 2.7: Typical implementation of the maximisation problem (2.65)

2.3.2. Isolation. To study the intrinsic ILBGK interface tracking scheme, it is most convenient to
separate interface tracking from the remainder of ILBGK. For this purpose, we will now put up a stand-
alone ILBGK interface tracking method.

Recalling the derivation of (2.57) from (2.55) we find that the nonlinear term

f∗(v)
9∆x2

2
ρruαuβ

(
vαvβ −

δαβ
3

)

in the equilibrium distribution (2.53) contributes only to the error term in (2.57), so we decide to remove
it. Furthermore, it seems most suitable to solve a transport equation for the normalised indicator function
χ instead of ρr (Section 2.3.1). Therefore, we consider a pseudo-particle density R such that 〈R,Q0〉v = χ
and a corresponding equilibrium pseudo-particle density

Req(χ,u;v) = f∗(v) (χ+ 3∆xχuαvα) (2.60)

which obviously fulfils 〈Req , Q0〉v = χ. Then, we solve the LBGK equation

R (t+∆t,x;v) = Req
(
χ(t,x− v∆x),u(t,x− v∆x);v

)
(2.61)

whose zeroth order moment equation

χ(t+∆t,x) = χ(t,x) +
1

36



1 4 1

4 −20 4

1 4 1


χ(t,x)

−
∆x

12



−1 0 1

−4 0 4

−1 0 1


 (χu1) (t,x)−

∆x

12




1 4 1

0 0 0

−1 −4 −1


 (χu2) (t,x) (2.62)

is in D′(Ω) consistent to

∂tχ+ ∂α(χuα) =
1

6
∂ααχ+ O

(
∆x2

)
. (2.63)

Scheme (2.61) can be used independently of the actual ILBGK method. However, if we want to
apply recolouring to this stand-alone scheme we have to construct a proper substitute for the uncoloured
particle density f . Motivated by (2.60) and (2.61), we define

� � (u;v) = f∗(v) (1 + 3∆xuαvα) . (2.64)

and replace (2.51) with

F1 〈R, Q1〉v + F2 〈R, Q2〉v → max such that 〈R, Q0〉v = χ and R ≤ � � . (2.65)

This results in the maximisation Algorithm 2.7 and the recolouring Algorithm 2.8. Note that � � plays in
fact the role of uncoloured particle density in the sense of representing the total amount of mass that is
sent into the direction of v. After recolouring, we update χ according to

χ(t+∆x,x) = 〈R(t,x− v∆x;v), Q0(v)〉v , (2.66)

compare (2.52). The complete immiscible lattice BGK procedure for solving the transport equation (2.13)
is summarised in Algorithm 2.9.
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compute F (t,x) according to (2.49);

compute � � (u(t,x);v) according to (2.64);

use Algorithm 2.7 to find R(t,x;v) such that (2.65) is fulfilled;

Algorithm 2.8: recolouring step for stand-alone ILBGK interface tracking

initialise ρr(0,x) and u(0,x);

while t ≤ tmax

do recolouring according to Algorithm 2.8;

compute χ(t+∆t,x) according to (2.66);

let t = t+∆t;

if necessary, update u(t,x) with any method;

Algorithm 2.9: ILBGK interface tracking

PSfrag replacements χ = 0χ = 0

χ = 1

L

4L

Γ Γ

F F

Figure 2.3: The initial situation of the model problem with straight interface Γ, χ = 1 in a slice of width L and χ = 0
everywhere else on Ω = [0, 4L]× [0, 4L].
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Figure 2.4: Initial state and the ILBGK solution of the model problem for uα(t,x) = 0. Each graphic shows a cut through

the twentieth line of the 40× 40 lattice. The pictures are taken at t = 0 (left), t = ∆t (middle), and t = 2∆t (right).

2.3.3. Numerical investigation. Let us now investigate the interface tracking Algorithm 2.9 by means
of a simple model problem. We consider a square domain Ω = [0, 4L] × [0, 4L], where χ(0,x) = 1 on a
slab of width L and χ(0x) = 0 everywhere else on Ω, as illustrated in Figure 2.3. For our convenience,
we assume ρ = 1 in [0, tmax ]×Ω. We further assume ∂Ω is periodic in each direction, so transport of the
slab to the left or right is essentially a one-dimensional process.

Let us now perform some numerical experiments. For the beginning, we consider the static case,
i. e. uα(t,x) = 0 for each t ∈ [0, tmax ] and every x ∈ Ω. In this case, χ(t,x) = χ(0,x) for each t ∈ [0, tmax ].
Nevertheless, ILBGK interface tracking exhibits diffusion during the first time step. However, diffusive
effects are completely compensated at the end of the second time step, see Figure 2.4 for an illustration.
This procedure repeats again and again until tmax is reached. To make clear where this behaviour comes
from, we will now exemplify the performance of Algorithm 2.9 in the given situation.
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For this purpose, we choose x̃ ∈ X such that χ (0, x̃) = 1 and χ (0, x̃+ c1∆x) = 0, for example
x̃ = ∆x(26, 20)T on a 40× 40 lattice. Initialising the pseudo-particle density R with its equilibrium state
we obtain from (2.60) and (2.64)

R (0, x̃;v) = � � (u (t, x̃) ;v) = f∗(v), R (0, x̃+ c1∆x;v) = 0, and � � (u (t, x̃+ cj∆x) ;v) = f∗(v).

According to Algorithm 2.9, we now have to apply the recolouring step. Following Algorithm 2.7, we find
that R(0,x;v) = R(0,x;v) for each x ∈ Ω. Propagating R according to (2.61) we obtain

R (∆t, x̃; cj) =





4/9, for j = 0

1/9, for j = 1, 3, 7

1/36, for j = 2, 8

0, for j = 4, 5, 6

and R (∆t, x̃+ c1∆x; cj) =





1/9, for j = 1

1/36, for j = 2, 8

0, for j = 0, 3, 4, 5, 6, 7.

At this stage, the first time step is finished and we have

χ (∆t, x̃) = 5/6 and χ (∆t, x̃+ c1∆x) = 1/6.

Thus, during the first time step, one sixth of the red mass at x̃ diffuses into the blue phase while one
sixth of the blue mass at x̃+ c1∆x diffuses into the red phase. This coincides exactly with the diffusion
term in equation (2.63).

The second time step starts again with the recolouring Algorithm 2.8. This time, we obtain

R (∆t, x̃; cj) =





4/9, for j = 0

1/9, for j = 3, 5, 7

1/36, for j = 4, 6

0, for j = 1, 2, 8

and R (∆t, x̃+ c1∆x; cj) =





1/9, for j = 5

1/36, for j = 4, 6

0, for j = 0, 1, 2, 3, 7, 8

which leads to

R (2∆t, x̃;v) = R (0, x̃;v) and R (2∆t, x̃+ c1∆x;v) = R (0, x̃+ c1∆x;v)

after propagation. An analogous investigation of the second interface in the model problem, i. e. the
jump from χ = 0 to χ = 1, reveals completely symmetric behaviour and away from the jumps in χ,
Algorithm 2.9 shows no effect at all. Thus, we conclude χ(2∆t,x) = χ(0,x) throughout Ω.

Since the situation at the end of the second time step is identical to the initial condition we now
deduce that the scene will repeat again and again if we continue the experiment. Therefore, we find that
ILBGK interface tracking yields the correct solution if we run the code for an even number of time steps
while the result is perturbed if we run the code for an odd number of time steps. Note, however, that
red mass is always perfectly conserved in the sense that percental mass loss is below machine accuracy.

Let us now assume χ is moved to the right by the constant velocity field u = (0.25, 0)T , again on
a 40 × 40 lattice. Figure 2.5 illustrates the initial setting and the first eight time steps of the ILBGK
interface tracking Algorithm 2.9 in this case.

The correct solution corresponds to the red slice being moved one lattice point to the right in four
time steps. We observe that this is nearly perfectly met, only the fronts are smeared out a little bit after
the fourth time step. However, after eight time steps, we have exactly the same situation as after four
time steps, so we conclude that the same scene will repeat again and again until the simulation stops.
Thus, we know the smearing of the interface not to grow in time. At the end of the eighth time step, the
loss of red mass equals 1.4211 · 10−14 percent.

2.4. Modelling surface tension in immiscible lattice BGK

In the following, we shall examine how to include surface tension effects into immiscible lattice BGK,
i. e. how to find an ILBGK model which is consistent to the two-phase incompressible Navier-Stokes
equations (2.31). As before, we shall allow neither density % nor stress tensor ταβ to be discontinuous at
the interface.

We will start with some theoretical investigations in Section 2.4.1, construct a consistent LBGK
model of surface tension in Section 2.4.2, and finally, we will perform some numerical experiments in
Section 2.4.3.



42 2. Modelling of two-phase flow

10 20 30 40

0

0.2

0.4

0.6

0.8

1

10 20 30 40

0

0.2

0.4

0.6

0.8

1

10 20 30 40

0

0.2

0.4

0.6

0.8

1

10 20 30 40

0

0.2

0.4

0.6

0.8

1

10 20 30 40

0

0.2

0.4

0.6

0.8

1

10 20 30 40

0

0.2

0.4

0.6

0.8

1

10 20 30 40

0

0.2

0.4

0.6

0.8

1

10 20 30 40

0

0.2

0.4

0.6

0.8

1

10 20 30 40

0

0.2

0.4

0.6

0.8

1

Figure 2.5: The initial setting and the first eight time steps (line by line, top left to bottom right) of the ILBGK interface

tracking Algorithm 2.9 for the model problem with u = (0.25, 0)T on a 40 × 40 lattice. All graphs show a cut through χ
along the twentieth line of the lattice.

2.4.1. Theoretical background. Here, we want to give reasons for the assertion that it is possible to
express the surface tension term ∂β((δαβ − nαnβ)δΓ) in terms of the local colour gradient F∆x. Note
that we put the subscript ∆x because we carry out a consistency analysis for ∆x→ 0. In particular, we
will constitute the claim that for an arbitrary test function ϕ ∈ D(Ω)

〈(δαβ − nαnβ)δΓ, ϕ〉Ω = lim
∆x→0

〈
δαβ‖F∆x‖2 −

F∆x;αF∆x;β

‖F∆x‖2
, ϕ

〉

Ω

, (2.67)

where the right hand side is well-defined because for ‖F∆x‖2 → 0 also F∆x;α → 0 and F∆x;β/‖F∆x‖2
remains bounded, by proving

〈(δαβ − nαnβ)δΓ, ϕ〉Ω = lim
∆x→0

〈
δαβ‖∇χ∆x‖2 −

∂αχ∆x∂βχ∆x

‖∇χ∆x‖2
, ϕ

〉

Ω

, (2.68)

where ∇ = (∂1, . . . , ∂d)
T . The idea of replacing

〈
δαβ‖F∆x‖2 −

F∆x;αF∆x;β

‖F∆x‖2
, ϕ

〉

Ω

with

〈
δαβ‖∇χ∆x‖2 −

∂αχ∆x∂βχ∆x

‖∇χ∆x‖2
, ϕ

〉

Ω

is supported by (2.50). To be well prepared for the investigations to follow, we will first consider some
facts from differential geometry [7, 74]. Note that geometrical considerations are presented in the general
context of d-dimensional space, not in the special D2Q9 setting.

In Section 2.1.3, we already assumed Γ to be an oriented (d− 1)-dimensional C2-surface in Ω ⊂ IRd.
For this reason, there is a tubular neighbourhood of Γ [7], i. e. for each y ∈ Γ we can choose an interval
Iy of length ε(y) along the normal direction of Γ in y such that for any Γ 3 y1 6= y2 ∈ Γ we have
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Figure 2.6: The tubular neighbourhood Γ2∆x around an interface Γ

Iy1 ∩ Iy2 = ∅. Thus, if we choose

∆x ≤
1

2
min
y∈Γ
{ε(y)}

there is an open neighbourhood Γ2∆x(t) of Γ(t) such that any x ∈ Γ2∆x(t) can be uniquely represented
by

x = y +∆x`n(y),

where y ∈ Γ is fixed, n(y) denotes the inner unit normal vector of Γ at y, and ` ∈ (−2, 2), see Figure 2.6
for a sketch. Note that for ` ∈ (−1, 1), the above equation describes points in the tubular neighbourhood
Γ∆x ⊂ Γ2∆x of Γ. Furthermore, we already found in Section 2.1.3 that since Γ is a C2-surface there
exists for each point y ∈ Γ an open neighbourhood Uk ⊂ Ω such that Uk ∩ Γ is the image of a bijective
C2-mapping hk : IRd−1 ⊃ Θk → Ω ⊂ IRd. Thus, each x ∈ Γ2∆x can be written in the form

x = hk
(
zk
)
+∆x`n ◦ hk

(
zk
)

(2.69)

with zk ∈ Θk.
Let us now recall the function χ∆x ∈ C1 ([0, tmax ]× Ω, IR) fulfilling lim∆x→0 χ∆x = χ. In Sec-

tion 2.2.2, we did not need any further assumptions on the structure of χ∆x in order to analyse the
consistency of the local colour gradient F∆x. Here, however, we shall not investigate the colour gradient
F∆x, which is a linear function of χ, but instead, we will examine nonlinear terms containing ‖F ∆x‖2.
Therefore, we need the additional assumptions

χ∆x(t,x) =





1 for x ∈ Ωr \ Γ∆x

η∆x

(
t, zk, `

)
for x ∈ Γ∆x ∩ Uk

0 for x ∈ Ωb \ Γ∆x

(2.70a)

as well as

η∆x ∈ C1
(
[0, tmax ]×Θk × (−1, 1), IR

)
, ∂`η∆x ≥ 0, lim

∆x→0
η∆x

(
t, zk, `

)
= η0

(
t, zk, `

)
(2.70b)

η0 ∈ C1
(
[0, tmax ]×Θk × (−1, 1), IR

)
, and ∂`η0 ≥ 0. (2.70c)

An example of such a function will be given in the Appendix. Note that due to (2.70a) and χ∆x ∈
C1 ([0, tmax ]× Ω, IR), we have

η∆x

(
t, zk, 1

)
= 1, η∆x

(
t, zk,−1

)
= 0, ∂`η∆x

(
t, zk,±1

)
= 0, (2.71)

and analogous properties of η0. Note also that since Γ∆x reduces to Γ in the limit ∆x → 0, condi-
tion (2.70a) immediately implies

lim
∆x→0

χ∆x =

{
1 for x ∈ Ωr

0 for x ∈ Ωb.

Let us now investigate the right hand side of (2.68). For this purpose, we first consider

〈‖∇χ∆x‖2 , ϕ〉Ω =

∫

Ω

‖∇χ∆x(t,x))‖2 ϕ(x) dx

for an arbitrary test function ϕ ∈ D(Ω). Outside of Γ∆x, the function χ∆x is, by definition, constant in
space, so we gain

∫

Ω

‖∇χ∆x(t,x)‖2 ϕ(x) dx =

∫

Γ∆x

‖∇χ∆x(t,x)‖2 ϕ(x) dx.
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At this stage, It is convenient to represent x ∈ Γ∆x in the form (2.69). For this reason, we choose a

partition of unity
{
ψk
}
such that the support of

(
ϕψk

)
◦ hk is compact in Θk (compare Section 2.1.3).

This yields
∫

Γ∆x

‖∇χ∆x(t,x)‖2 ϕ(x) dx =
∑

k

∫

Γ∆x

‖∇χ∆x(t,x)‖2
(
ϕψk

)
(x) dx.

Then, we apply the coordinate transformation Γ∆x 3 x 7→
(
zk, `

)
∈ Θk × (−1, 1) to obtain

∫

Γ∆x

‖∇χ∆x(t,x)‖2 ϕ(x) dx =

∫

Θk

∫ 1

−1

∥∥∥∇χ∆x

(
t,hk

(
zk
)
+∆x`n ◦ hk

(
zk
))∥∥∥

2

·
(
ϕψk

) (
hk
(
zk
)
+∆x`n ◦ hk (z)

)
Ĵ
(
zk, `

)
d` dzk

with the Jacobian Ĵ
(
zk, `

)
given by

Ĵ
(
zk, `

)
=

∣∣∣∣∣∣∣∣
det




∂1x1 · · · ∂d−1x1 ∂`x1
...

...
...

∂1xd · · · ∂d−1xd ∂`xd




∣∣∣∣∣∣∣∣
,

where ∂β means ∂/∂zkβ for β = 1, . . . , d− 1 and ∂` stands for ∂/∂`. Thus,

Ĵ(z, `) =

∣∣∣∣∣∣∣∣
det




∂1h
k
1 +∆x`∂1n

k
1 · · · ∂d−1h

k
1 +∆x`∂d−1n

k
1 ∆xnk1

...
...

...

∂1h
k
d +∆x`∂1n

k
d · · · ∂d−1h

k
d +∆x`∂d−1n

k
d ∆xnkd




∣∣∣∣∣∣∣∣
(2.72)

with nk = n ◦ hk. Applying now (2.70a) we obtain

∫

Θk

∫ 1

−1

∥∥∥∇χ∆x

(
t,hk

(
zk
)
+∆x`n ◦ hk

(
zk
))∥∥∥

2

(
ϕψk

) (
hk
(
zk
)
+∆x`n ◦ hk (z)

)
Ĵ
(
zk, `

)
d` dzk

=

∫

Θk

∫ 1

−1

∥∥∂βη∆x

(
t, zk, `

)
∇zkβ + ∂`η∆x

(
t, zk, `

)
∇`
∥∥
2

(
ϕψk

) (
hk
(
zk
)
+∆x`n ◦ hk (z)

)

· Ĵ
(
zk, `

)
d` dzk. (2.73)

Now, we have to investigate ∇` in some more detail. We know the Jacobian of the transformation
Γ∆x 3 x 7→

(
zk, `

)
∈ Θk×(−1, 1) is given by (2.72) and that of the inverse transformation Θk×(−1, 1) 3(

zk, `
)
7→ x ∈ Γ∆x has the form

Ĵ−1(x) =

∣∣∣∣∣∣∣∣∣∣

det




∂1z
k
1 · · · ∂dz

k
1

...
...

∂1z
k
d−1 · · · ∂dz

k
d−1

∂1` · · · ∂d`




∣∣∣∣∣∣∣∣∣∣

,

where ∂α represents ∂/∂xα for α = 1, . . . , d, so the implicit function theorem provides



∂1z
k
1 · · · ∂dz

k
1

...
...

∂1z
k
d−1 · · · ∂dz

k
d−1

∂1` · · · ∂d`







∂1h
k
1 +∆x`∂1n

k
1 · · · ∂d−1h

k
1 +∆x`∂d−1n

k
1 ∆xnk1

...
...

...

∂1h
k
d +∆x`∂1n

k
d · · · ∂d−1h

k
d +∆x`∂d−1n

k
d ∆xnkd


 =




1
. . .

1


 .

In particular, this means



∂1h
k
1 +∆x`∂1n

k
1 · · · ∂1h

k
d +∆x`∂1n

k
d

...
...

∂d−1h
k
1 +∆x`∂d−1n

k
1 · · · ∂d−1h

k
d +∆x`∂d−1n

k
d

∆xnk1 · · · ∆xnkd







∂1`
...

∂d`


 =




0
...

0

1



. (2.74)
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In Section 2.1.3, we already found nkα∂βh
k
α = 0 as well as nkα∂βn

k
α = 0. Since also nkαn

k
α = 1 by definition

we realize that

∇` =
1

∆x
nk (2.75)

is a solution of (2.74). This solution is unique because the matrix in (2.74) is invertible.
Using (2.75) we find the right hand side of equation (2.73) to fulfil

∫

Θk

∫ 1

−1

∥∥∂βη∆x

(
t, zk, `

)
∇zkβ + ∂`η∆x

(
t, zk, `

)
∇`
∥∥
2

(
ϕψk

) (
hk
(
zk
)
+∆x`nk

(
zk
))

Ĵ
(
zk, `

)
d` dzk

=

∫

Θk

∫ 1

−1

∥∥∆x∂βη∆x

(
t, zk, `

)
∇zkβ + ∂`η∆x

(
t, zk, `

)
nk
(
zk
)∥∥
2

(
ϕψk

) (
hk
(
zk
)
+∆x`nk

(
zk
))

· J̃
(
zk, `

)
d` dzk,

where

J̃(z, `) =
1

∆x
Ĵ(z, `) =

∣∣∣∣∣∣∣∣
det




∂1h
k
1 +∆x`∂1n

k
1 · · · ∂d−1h

k
1 +∆x`∂d−1n

k
1 nk1

...
...

...

∂1h
k
d +∆x`∂1n

k
d · · · ∂d−1h

k
d +∆x`∂d−1n

k
d nkd




∣∣∣∣∣∣∣∣
,

and therefore, applying the third condition in (2.70b) we determine

lim
∆x→0

∫

Θk

∫ 1

−1

∥∥∆x∂βη∆x

(
t, zk, `

)
∇zkβ + ∂`η∆x

(
t, zk, `

)
nk
(
zk
)∥∥
2

(
ϕψk

) (
hk
(
zk
)
+∆x`nk

(
zk
))

· J̃
(
zk, `

)
d` dzk =

∫

Θk

∫ 1

−1

∥∥∂`η0
(
t, zk, `

)
nk
(
zk
)∥∥
2

(
ϕψk

) (
hk
(
zk
))

J
(
zk
)
d` dzk

with

J(z) =

∣∣∣∣∣∣∣∣
det




∂1h
k
1 · · · ∂d−1h

k
1 nk1

...
...

...

∂1h
k
d · · · ∂d−1h

k
d nkd




∣∣∣∣∣∣∣∣

=



det




∂1h
k
1 · · · ∂1h

k
d

...
...

∂d−1h
k
1 · · · ∂d−1h

k
d

nk1 · · · nkd




det




∂1h
k
1 · · · ∂d−1h

k
1 nk1

...
...

...

∂1h
k
d · · · ∂d−1h

k
d nkd







1/2

.

Using again nkα∂βh
k
α = 0 and nkαn

k
α = 1 we find by straight calculation that



det




∂1h
k
1 · · · ∂1h

k
d

...
...

∂d−1h
k
1 · · · ∂d−1h

k
d

nk1 · · · nkd




det




∂1h
k
1 · · · ∂d−1h

k
1 nk1

...
...

...

∂1h
k
d · · · ∂d−1h

k
d nkd







1/2

=




det







∂1h
k
1 · · · ∂1h

k
d

...
...

∂d−1h
k
1 · · · ∂d−1h

k
d







∂1h
k
1 · · · ∂d−1h

k
1

...
...

∂1h
k
d · · · ∂d−1h

k
d











1/2

and thus, J(z) equals the Jacobian given by (2.19), i. e. the Jacobian of the transformation Uk ∩Γ 3 y 7→
zk ∈ Θk. Furthermore, due to

∥∥nk
∥∥
2
= 1 we have

∫

Θk

∫ 1

−1

∥∥∂`η0
(
t, zk, `

)
nk
(
zk
)∥∥
2

(
ϕψk

) (
hk
(
zk
))

J
(
zk
)
d` dzk

=

∫

Θk

(∫ 1

−1

∣∣∂`η0
(
t, zk, `

)∣∣ d`
)(

ϕψk
) (

hk
(
zk
))

J
(
zk
)
dzk.
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At this stage, the fourth condition in (2.70b) yields
∫ 1

−1

∣∣∂`η0
(
t, zk, `

)∣∣ d` =
∫ 1

−1

∂`η0
(
t, zk, `

)
d`

and due to (2.71), we find that independent of t and zk,
∫ 1

−1

∂`η0
(
t, zk, `

)
d` = η0

(
t, zk, 1

)
− η0

(
t, zk,−1

)
= 1. (2.76)

Therefore,
∫

Θk

(∫ 1

−1

∣∣∂`η0
(
t, zk, `

)∣∣ d`
)(

ϕψk
) (

hk
(
zk
))

J
(
zk
)
dzk =

∫

Θk

(
ϕψk

) (
hk
(
zk
))

J
(
zk
)
dzk.

Summing over k and performing the coordinate transformation Θk 3 zk 7→ y ∈ Uk ∩ Γ we finally obtain
∑

k

∫

Θk

(
ϕψk

) (
hk
(
zk
))

J
(
zk
)
dzk =

∫

Γ

ϕ(y)d� � (y) = 〈δΓ, ϕ〉Ω ,

where � � denotes the surface measure on Γ. This completes the proof of

Proposition 2.3. In D′(Ω),

lim
∆x→0

‖∇χ∆x‖2 = δΓ.

Let us now consider the consistency of ∂αχ∆x∂βχ∆x/‖∇χ∆x‖2 in D′(Ω). Due to definition (2.70),
we first obtain in analogy to the above

∫

Ω

∂αχ∆x(x)∂γχ∆x(x)

‖∇χ∆x(x)‖2
ϕ(x) dx =

∑

k

∫

Θk

∫ 1

−1

(
∆x∂βη∆x

(
t, zk, `

)
∂αz

k
β + ∂`η∆x

(
t, zk, `

)
nkα
(
zk
))

·
∆x∂βη∆x

(
t, zk, `

)
∂γz

k
β + ∂`η∆x

(
t, zk, `

)
nkγ
(
zk
)

∥∥∥∆x∂βη∆x (t, zk, `)∇zkβ + ∂`η∆x (t, zk, `)nk (zk)
∥∥∥
2

(
ϕψk

) (
hk
(
zk
)
+∆x`nk

(
zk
))

J̃
(
zk, `

)
d` dzk,

where ∂α means ∂/∂xα and ∂γ stands for ∂/∂xγ while ∂β represents ∂/∂zkβ . We determine

lim
∆x→0

∫

Θk

∫ 1

−1

(
∆x∂βη∆x

(
t, zk, `

)
∂αz

k
β + ∂`η∆x

(
t, zk, `

)
nkα
(
zk
))

·
∆x∂βη∆x

(
t, zk, `

)
∂γz

k
β + ∂`η∆x

(
t, zk, `

)
nkγ
(
zk
)

∥∥∥∆x∂βη∆x (t, zk, `)∇zkβ + ∂`η∆x (t, zk, `)nk (zk)
∥∥∥
2

(
ϕψk

) (
hk
(
zk
)
+∆x`nk

(
zk
))

J̃
(
zk, `

)
d` dzk

=

∫

Θk

∫ 1

−1

(
∂`η0

(
t, zk, `

)
nkα
(
zk
)) (

∂`η0
(
t, zk, `

)
nkγ
(
zk
))

‖∂`η0 (t, zk, `)nk (zk)‖2

(
ϕψk

) (
hk
(
zk
))

J
(
zk
)
d` dzk

and using now
∥∥nk

∥∥
2
= 1 together with the second condition in (2.70c) we obtain

∫

Θk

∫ 1

−1

(
∂`η0

(
t, zk, `

)
nkα
(
zk
)) (

∂`η0
(
t, zk, `

)
nkγ
(
zk
))

‖∂`η0 (t, zk, `)nk (zk)‖2

(
ϕψk

) (
hk
(
zk
))

J
(
zk
)
d` dzk

=

∫

Θk

(∫ 1

−1

∂`η0
(
t, zk, `

)
d`

)
nkα
(
zk
)
nkγ
(
zk
) (
ϕψk

) (
hk
(
zk
))

J
(
zk
)
dzk.

Recalling equation (2.76) we find

∫

Θk

(∫ 1

−1

∂`η0
(
t, zk, `

)
d`

)
nkα
(
zk
)
nkγ
(
zk
) (
ϕψk

) (
hk
(
zk
))

J
(
zk
)
dzk

=

∫

Θk
nkα
(
zk
)
nkγ
(
zk
) (
ϕψk

) (
hk
(
zk
))

J
(
zk
)
dzk

which leads to
∑

k

∫

Θk
nkα
(
zk
)
nkγ
(
zk
) (
ϕψk

) (
hk
(
zk
))

J
(
zk
)
dzk =

∫

Γ

nα(y)nγ(y)ϕ(y)d
� � (y),

so we finally gain
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Proposition 2.4. In D′(Ω),

lim
∆x→0

∂αχ∆x∂βχ∆x

‖∇χ∆x‖2
= nαnγδΓ.

Combining now Propositions 2.3 and 2.4 we have a proof of relation (2.68). Note that defining

�
∆x;α =

{
∂αχ∆x/‖∇χ∆x‖2 for ‖∇χ∆x‖2 > 0

0 otherwise

we can proceed in complete analogy to the above to show

Proposition 2.5. In D′(Ω),

lim
∆x→0

�
∆x;α = nαδΓ.

2.4.2. Consistent modelling of surface tension. Let us consider again the lattice BGK equa-
tion (2.42). In this equation, surface tension is modelled by the term S(v) in the equilibrium particle
density feq

S defined by (2.43). We shall now discuss how to choose this term properly.
In equivalent moment analysis for one-phase lattice BGK (Section 1.1.2), it is striking that the term

f∗(v)
9∆x2

2
ρuαuβ

(
vαvβ −

δαβ
3

)

in the equilibrium particle density f eq given by (1.11) produces the term ∂β(ρuαuβ) in the Navier-Stokes
equations (1.8). Inspired by this observation, we choose

S(v) = f∗(v)
9∆x2

2
σ

(
F∆x;αF∆x;β

‖F∆x‖2
− δαβ‖F∆x‖2

)(
vαvβ −

δαβ
3

)

and therefore,

feq
S (ρ,u;v) =

f∗(v)

(
ρ+ 3∆xρuαvα +

9∆x2

2

(
ρuαuβ + σ

(
F∆x;αF∆x;β

‖F∆x‖2
− δαβ‖F∆x‖2

))(
vαvβ −

δαβ
3

))
. (2.77)

Performing now an equivalent moment analysis of (2.42) we obtain the governing equations

〈∂αuα, ϕ〉Ω = O
(
∆x2

)
, (2.78a)

〈
∂t(ρuα) + ∂β

(
(1− ω)ϑαβ + ωρuαuβ + ωσ

(
F∆x;αF∆x;β

‖F∆x‖2
− δαβ‖F∆x‖2

))
+ ∂αp, ϕ

〉

Ω

=

〈
1

6

(
∂ββ(ρuα) + 2∂αβ(ρuβ)

)
, ϕ

〉

Ω

+ O
(
∆x2

)
, (2.78b)

and

〈ϑαβ , ϕ〉Ω =

〈
ρuαuβ + σ

(
F∆x;αF∆x;β

‖F∆x‖2
− δαβ‖F∆x‖2

)
−

1

3ω

(
∂β(ρuα) + ∂α(ρuβ)

)
, ϕ

〉

Ω

+ O
(
∆x2

)
,

(2.78c)

where ϕ ∈ D(Ω) is an arbitrary test function. Note that sufficient regularity of % and ταβ in Ω is crucial at
this point because otherwise, the basic prerequisites of equivalent moment analysis do not hold. Inserting
now (2.78c) into (2.78b) and applying (1.9), (1.17) as well as (1.18) we end up with

〈∂αuα, ϕ〉Ω = O
(
∆x2

)

and

〈∂t(%uα) + ∂β(%uαuβ), ϕ〉Ω −

〈
σ∂β

(
δαβ‖F∆x‖2 −

F∆x;αF∆x;β

‖F∆x‖2

)
, ϕ

〉

Ω

= 〈∂βηαβ , ϕ〉Ω + O
(
∆x2

)
.

Assuming now (2.67) holds we can rewrite this system of equations for ∆x→ 0 in the form

〈∂αuα, ϕ〉Ω = 0 and 〈∂t(%uα) + ∂β(%uαuβ), ϕ〉Ω − 〈σ∂β ((δαβ − nαnβ) δΓ) , ϕ〉Ω = 〈∂βηαβ , ϕ〉Ω ,

so we gain
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Proposition 2.6. In D′(Ω), the equivalent moment equations of the lattice BGK scheme (2.42) with the
equilibrium particle density f eq

S defined by (2.77) are consistent to the two-phase incompressible Navier-
Stokes equations (2.31) if assumption (2.67) holds and if both density % and stress tensor ταβ are suffi-
ciently smooth at the interface.

Note that Nie et al. [57] suggest the surface tension term Ŝ(v) defined by Ŝ(c0) = 0 and

Ŝ(cj) = f∗(cj)
9∆x2

2

A

ω

(
2
F∆x;αF∆x;β

‖F∆x‖2

cj;αcj;β
‖cj‖22

− 1

)
for j = 1, . . . , 8

instead of S. Following this proposal we obtain the equilibrium particle density f eq

Ŝ
given by feq

Ŝ
(ρ,u; c0) =

f∗(cj)ρ as well as

feq

Ŝ
(ρ,u; cj) =

f∗(cj)

{
ρ+ 3∆xρuαcj;α +

9∆x2

2

(
ρuαuβ

(
cj;αcj;β −

δαβ
3

)
+
A

ω

(
2
F∆x;αF∆x;β

‖F∆x‖2

cj;αcj;β
‖cj‖22

− 1

))}

for j = 1, . . . , 8 and using this equilibrium particle density instead of f eq
S we find that the equivalent

moment system of (2.42) contains

〈∂αuα, ϕ〉Ω = O
(
∆x2

)
, (2.79a)

〈
∂t(ρuα) + ∂β

(
(1− ω)ϑαβ + ωρuαuβ +A

(
F∆x;αF∆x;β

‖F∆x‖2
−Υ∆x;αβ

))
+ ∂αp, ϕ

〉

Ω

=

〈
1

6

(
∂ββ(ρuα) + 2∂αβ(ρuβ)

)
, ϕ

〉

Ω

+ O
(
∆x2

)
, (2.79b)

and

〈ϑαβ , ϕ〉Ω =

〈
ρuαuβ +

A

ω

(
F∆x;αF∆x;β

‖F∆x‖2
−Υ∆x;αβ

)
−

1

3ω

(
∂β(ρuα) + ∂α(ρuβ)

)
, ϕ

〉

Ω

+ O
(
∆x2

)
,

(2.79c)

where

Υ∆x =

(
F 2∆x;2/‖F∆x‖2 0

0 F 2∆x;1/‖F∆x‖2

)
,

in place of (2.78). We observe
(
F 2∆x;2/‖F∆x‖2 0

0 F 2∆x;1/‖F∆x‖2

)
=

(
‖F∆x‖2 0

0 ‖F∆x‖2

)
−

(
F 2∆x;1/‖F∆x‖2 0

0 F 2∆x;2/‖F∆x‖2

)
,

so assuming

lim
∆x→0

〈‖F∆x‖2 , ϕ〉Ω = 〈δΓ, ϕ〉Ω and lim
∆x→0

〈
F∆x;αF∆x;β

‖F∆x‖2
, ϕ

〉

Ω

= 〈nαnβδΓ, ϕ〉Ω

(compare Propositions 2.3 and 2.4) we obtain

lim
∆x→0

〈(
F∆x;αF∆x;β

‖F∆x‖2
−Υ∆x;αβ

)
, ϕ

〉

Ω

= −〈(δαβ − nαnβ)δΓ, ϕ〉Ω + 〈Nαβ , ϕ〉Ω ,

where

N =

(
n21 0

0 n22

)
,

and therefore, in the limit ∆x→ 0, we can rewrite (2.79) in the form 〈∂αuα〉Ω = 0 respectively
〈
∂t(%uα) + ∂β

(
%uαuβ −

A

ω
(δαβ − nαnβ)δΓ +

A

ω
Nαβ

)
, ϕ

〉

Ω

= 〈∂βηαβ , ϕ〉Ω .

Defining now the surface tension coefficient σ
Ŝ
= A/ω is the best we can do to bring this result as close as

possible to the two-phase incompressible Navier-Stokes equations (2.31). However, we can not eliminate
the spurious term σ

Ŝ
∂βNαβ in the momentum equation. Due to this inconsistency, we claim that the
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Figure 2.7: The setting of the bubble test with a bubble of radius � located at the centre of a basin Ω = [0, 4 � ]× [0, 4 � ]

surface tension term S is a better choice than Ŝ. We will now underline this claim with a numerical
experiment, the so-called bubble test.

2.4.3. Bubble test. Here, we simulate a circular bubble of red fluid resting in a basin of blue fluid, as
illustrated in Figure 2.7, and we use this setting to verify Laplace’s law [49]

pin − pout =
σ�
,

where

�
stands for the radius of the bubble while pin and pout denote the pressure inside respectively

outside the bubble. The latter are determined by averaging the pressure calculated with (1.17) over all
lattice points at an Euclidean distance of less than 0.7

�
respectively more than 1.3

�
from the centre of

the bubble. We consider a quadratic basin with side length 4

�
and periodic boundaries and suppose the

bubble is located at the centre of this basin, see again Figure 2.7. Furthermore, we assume that

ρ(0,x) = %(0,x) = 1, uα(0,x) = 0, and f(0,x;v) = f eq
S (ρ(0,x),u(0,x);v) (2.80a)

for x ∈ X as well as

ρr(0,x) =

{
ρ(0,x) for x ∈ X ∩ Ωr(0)

0 for x ∈ X ∩ Ωb(0).
(2.80b)

Then, we proceed as described in Algorithm 2.6. Note that due to (2.80), we have ρr = χ in the given
situation. For our convenience, we choose ω = 1 for all the computations discussed here.

Simulations are performed with L = 10 on a 40 × 40 lattice and with L = 20 on an 80 × 80 lattice
for σ = 0.00005, 0.0001, 0.0005, 0.001, 0.005, 0.01, 0.05, and 0.1. We always perform 1000 time steps on
the 40 × 40 lattice and 2000 time steps on the 80 × 80 lattice. Plotting the values of ∆p = pin − pout
versus σ/

�
in Figure 2.8, we find that on both lattices, the surface tension term S produces significantly

better results than Ŝ for any choice of σ. We also observe the so-called spurious currents, a well-known
numerical artifact that originates from the discretisation of the surface tension term ∂β((δαβ −nαnβ)δΓ),
see for example Ginzburg and Wittum [24] or Lafaurie et al. [47]. The velocity fields produced by S

and Ŝ are exemplified for σ = 0.005 and σ = 0.01 in Figures 2.9 (40 × 40 lattice) and 2.10 (80 × 80

lattice). It is striking that the flow field produced by Ŝ is far more widespread than that produced by

S. Furthermore, we learn from Figure 2.11 that for the surface tension term Ŝ, also ‖u‖2 becomes larger
than for S. For the sake of completeness, we also show percental mass loss and computing times for

the simulations with surface tension term S in Table 2.1 and for those with surface tension term Ŝ in
Table 2.2. Finally, we remark that total momentum is always zero while the bubble radius equals 10
lattice units in all computations on a 40×40 lattice and 20 lattice units in all computations on an 80×80
lattice.

Altogether, we find the surface tension term S to produce more accurate results and less distinctive

numerical artifacts than Ŝ. Therefore, we will from now on exclusively use S to include surface tension
effects into lattice BGK simulations.
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Figure 2.8: Verification of Laplace’s law by bubble tests with surface tension terms S (’∗’) and Ŝ (’x’) on a 40× 40 (left)

and an 80× 80 (right) lattice. The straight line represents the correct solution.

Figure 2.9: Velocity fields produced by the surface tension terms S (left) and Ŝ (right) in bubble tests with σ = 0.005

(top) and σ = 0.01 (bottom). All computations were performed on a 40× 40 lattice.
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Figure 2.10: Velocity fields produced by the surface tension terms S (left) and Ŝ (right) in bubble tests with σ = 0.005
(top) and σ = 0.01 (bottom). All computations were performed on a 80× 80 lattice.
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Figure 2.11: Comparison of max ‖u‖2 produced by bubble tests with surface tension terms S (’∗’) and Ŝ (’x’) on a 40× 40
(left) and an 80× 80 (right) lattice.
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Lattice σ Mass loss in % Number of flops

40× 40 0.00005 6.96088 · 10−8 4.44087 · 109

40× 40 0.0001 7.14132 · 10−8 4.44087 · 109

40× 40 0.0005 7.17161 · 10−8 4.44085 · 109

40× 40 0.001 7.17161 · 10−8 4.44085 · 109

40× 40 0.005 7.38076 · 10−8 4.44085 · 109

40× 40 0.01 7.47666 · 10−8 4.44085 · 109

40× 40 0.05 7.34006 · 10−8 4.44081 · 109

40× 40 0.1 7.28928 · 10−8 4.44074 · 109

80× 80 0.00005 1.30909 · 10−7 1.00613 · 1011

80× 80 0.0001 1.31692 · 10−7 1.00613 · 1011

80× 80 0.0005 1.31763 · 10−7 1.00613 · 1011

80× 80 0.001 1.32412 · 10−7 1.00613 · 1011

80× 80 0.005 1.32478 · 10−7 1.00613 · 1011

80× 80 0.01 1.32132 · 10−7 1.00613 · 1011

80× 80 0.05 1.28786 · 10−7 1.00612 · 1011

80× 80 0.1 1.28483 · 10−7 1.00612 · 1011

Table 2.1: Percentage loss of red mass and computing times in the bubble tests with surface tension term S.

Lattice σ Mass loss in % Number of flops

40× 40 0.00005 7.25899 · 10−8 4.39853 · 109

40× 40 0.0001 7.22619 · 10−8 4.39852 · 109

40× 40 0.0005 7.33344 · 10−8 4.39852 · 109

40× 40 0.001 7.26404 · 10−8 4.39850 · 109

40× 40 0.005 7.42429 · 10−8 4.39850 · 109

40× 40 0.01 7.41135 · 10−8 4.39849 · 109

40× 40 0.05 7.43217 · 10−8 4.39847 · 109

40× 40 0.1 7.14921 · 10−8 4.39836 · 109

80× 80 0.00005 1.35872 · 10−7 1.00290 · 1011

80× 80 0.0001 1.36000 · 10−7 1.00290 · 1011

80× 80 0.0005 1.36397 · 10−7 1.00290 · 1011

80× 80 0.001 1.36386 · 10−7 1.00290 · 1011

80× 80 0.005 1.34733 · 10−7 1.00290 · 1011

80× 80 0.01 1.33235 · 10−7 1.00290 · 1011

80× 80 0.05 1.31966 · 10−7 1.00290 · 1011

80× 80 0.1 1.29152 · 10−7 1.00289 · 1011

Table 2.2: Percentage loss of red mass and computing times in the bubble tests with surface tension term Ŝ.



CHAPTER 3

Some numerical experiments

Since ILBGK interface tracking achieved very reasonable results for the essentially one-dimensional model
problem discussed in Section 2.3.3 we now want to try this method for really two-dimensional flow.
Therefore, we first define a benchmark in Section 3.1, then we simulate it with ILBGK in Section 3.2.
Because we find that the only shortcoming of this method are spurious oscillations in the run of the
interface we try two approaches for smoothing those oscillations, namely adding anisotropic diffusion to
the interface as well as applying artificial surface tension. Those approaches are dealt with in Sections 3.3
and 3.4, respectively.

3.1. A two-dimensional benchmark

In this Section, we shall define a benchmark test for interface tracking in two space dimensions. To
stay in the setting of Chapters 1 and 2, we force all quantities except the indicator function χ to be
smooth throughout the computational domain. This restriction guarantees a thorough investigation of
interface tracking which is not disturbed by numerical difficulties due to jump singularities. Note that the
benchmark is chosen with regard to comparison of numerical schemes and not with respect to physical
relevance.

Let the domain Ω = [0, 2L] × [0, 2L] ⊂ IR2 contain the open square bubble Ωr = (L/2, 3L/2) ×
(L/2, 3L/2) of red fluid and let Ωb = Ω \ Ωr be the domain of the blue fluid. We denote the interface
between Ωr and Ωb by Γ and the unit normal vector of Γ that points into Ωr by n. The whole framework
of the benchmark is illustrated in Figure 3.1.

In the setting described above, we assume both fluids have the same constant density % and constant
dynamic viscosity µ and suppose their respective flow is governed by the two-phase incompressible Navier-
Stokes equations (2.31). Additionally, we consider the transport equation (2.13) for χ. We will perform
numerical experiments on 40 × 40, 80 × 80, and sometimes 160 × 160 lattices with initial velocity fields
u(1)(0,x) = (0.1, 0)T , u(2)(0,x) = (0.1, 0.1)T , and u(3)(0,x) = Cu(3) · (−x2, x1)

T as well as surface
tension coefficients σ ∈ {0, 0.1, 0.01, 0.001}. The initial velocity fields are sketched in Figure 3.2. In the
definition of u(3), the point (0, 0)T is assumed to be the centre of the bubble and, therefore, of Ω while
the constant Cu(3) is given by

Cu(3) =





π/500 on the 40× 40 lattice

π/1000 on the 80× 80 lattice

π/2000 on the 160× 160 lattice

PSfrag replacements

χ = 0

χ = 1Γ

n

L

2L

Figure 3.1: The initial situation for the two-dimensional benchmark: Ωr and Ωb are filled with red respectively blue fluid,
χ = 1 in Ωr and χ = 0 in Ωb, Γ = ∂Ωr, and n is the unit normal vector of Γ pointing into Ωr.
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Figure 3.2: The initial velocity fields u(1) (left), u(2) (middle), and u(3) (right) of the benchmark

which yields maxx∈X

∥∥u(3)
∥∥
2
≈ 0.177715. However, compressibility effects are not a crucial point in the

investigations to follow, so maximum flow speed is not as important in the given situation as it is in other
lattice BGK simulations.

Inserting the above velocity fields into the Navier-Stokes equations (2.31) we find that the continuity
equation ∂αuα = 0 is always fulfilled while the momentum equation takes the form

∂αp =

{
σ∂β(δαβ − nαnβ) for u ∈

{
u(1),u(2)

}

%C2
u(3)

xα + σ∂β(δαβ − nαnβ) for u = u(3).

In the case σ = 0, this reduces to ∂αp = 0 respectively ∂αp = %C2
u(3)

xα. Thus, for σ = 0 each of the initial

velocity fields u(1), u(2), u(3) is a stationary solution of the incompressible Navier-Stokes equations (2.31)
if we choose the initial pressure field

p(0,x) = 0 for u ∈
{
u(1),u(2)

}
respectively p(0,x) =

%C2
u(3)

2
xαxα for u = u(3). (3.1)

In other words, this choice of initial pressure guarantees that neither u nor p changes in time if surface
tension is neglected. For this reason, choosing σ = 0, u(0,x) ∈

{
u(1),u(2),u(3)

}
, and p(0,x) according

to (3.1) we reduce the Navier-Stokes equations (2.31) to a model of plain interface tracking. Note,
however, that this is no longer true for non-zero surface tension.

Let us now assume that u is constant in time. Then, choosing u = u(3) we force the bubble to
perform exactly one revolution by running 1000 time steps on the 40× 40 lattice, 2000 time steps on the
80 × 80 lattice, respectively 4000 time steps on the 160 × 160 lattice. For u ∈

{
u(1),u(2)

}
and periodic

boundary conditions, the bubble will also perform one revolution if we stop the simulation after 400
time steps on the 40 × 40 lattice, 800 time steps on the 80 × 80 lattice, respectively 1600 time steps on
the 160 × 160 lattice. Therefore, the final state of the benchmark will always be identical to the initial
situation.

3.2. Plain ILBGK

Here, we consider plain ILBGK interface tracking according to Algorithm 2.9. Since the velocity field is
not affected by stand-alone interface tracking we always know the analytical solution of the benchmark,
as explained in Section 3.1. Furthermore, we know from Section 3.1 that for u ∈

{
u(1),u(2),u(3)

}
plain

interface tracking is equivalent to simulating Navier-Stokes flow with σ = 0 and pressure field p according
to (3.1).

To get a deeper understanding of how ILBGK interface tracking works, we investigate the case of
zero velocity before we consider the actual benchmark. Applying uα(x) = 0 for each x ∈ Ω we find
ILBGK interface tracking to exhibit oscillatory behaviour in t, i. e.

χ(m∆t,x)

{
= χ(0,x) if m ∈ IN is even

6= χ(0,x) if m ∈ IN is odd,

see Figure 3.3 for an illustration. These oscillations behave completely analogous to those already observed
in Section 2.3.3.

Let us now examine the motion of the square bubble in the velocity fields u(1) (Figure 3.4), u(2)

(Figure 3.5), and u(3) (Figure 3.6). For u = u(1), ILBGK advection produces heavy oscillations along
the interface sections perpendicular to u(1). Those oscillations decrease with increasing lattice resolution.
However, fine lattice computations are expensive, so we should try to avoid or, at least, to damp those
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Figure 3.3: Behaviour of a static square bubble on a 40 × 40 lattice under the influence of the ILBGK interface tracking

Algorithm 2.9 for uα = 0. The plots show a cut through the centre of the simulation result, i. e. the fortieth line of the

lattice, after 400 time steps (left) and after 401 time steps (right). In the case of zero velocity, the square bubble always

oscillates between those two states.

Lattice Velocity Mass loss in % Number of flops

40× 40 u(1) 1.70530 · 10−13 2.07773 · 108

40× 40 u(2) 1.29319 · 10−12 2.07769 · 108

40× 40 u(3) −3.26850 · 10−13 5.19433 · 108

80× 80 u(1) 2.13163 · 10−13 1.59739 · 109

80× 80 u(2) 1.90425 · 10−12 1.59743 · 109

80× 80 u(3) −9.66338 · 10−13 3.99364 · 109

160× 160 u(1) 2.13163 · 10−13 1.25263 · 1010

160× 160 u(2) 3.01270 · 10−12 1.25266 · 1010

160× 160 u(3) −3.26850 · 10−12 3.13169 · 1010

Table 3.1: Percentage loss of red mass and computing times for the simulations shown in Figures 3.4 to 3.6

oscillations. For u = u(2), the spurious oscillations are even worse, covering now the complete interface.
At least, they can again be damped by using finer lattices. Lastly, concerning rotation in the velocity field
u = u(3), simulation results are most unsatisfactory. Nevertheless, interpreting χ as a pseudo density of
the red fluid we find that red mass is perfectly conserved in plain ILBGK interface tracking, as can be
seen from Table 3.1. For the sake of completeness, this table also shows the number of floating point
operations needed for the different simulations.

It is interesting to observe that keeping the nonlinear term

f∗(v)
9∆x2

2
χuαuβ

(
vαvβ −

δαβ
3

)

in the equilibrium distribution (2.60) we obtain irregularities away from the interface in the solution of
the benchmark problem with u = u(3), see Figure 3.7 for an illustration. Those irregularities represent
errors in χ which are considerably larger than O

(
∆x2

)
. Therefore, they cannot be identified with the

numerical error produced by the transport scheme (2.62). One possible explanation for their appearance
is the recolouring step trying to produce sharp interfaces from small perturbations in the numerical
approximation of the indicator function χ. Such a problem does not appear for u ∈

{
u(1),u(2)

}
, so the

velocity field u(3) (which is non-constant in space and features curved streamlines) is most likely to be
responsible for perturbing χ. However, there is no rigorous proof of this conjecture, so the explanation of
the spurious irregularities of χ must be considered an unsolved problem. We shall face similar difficulties
in Sections 3.4 and 5.3.

Note that neither using a symmetrised variant of the recolouring step [21] nor decreasing the flow
speed results in a considerable improvement of ILBGK interface tracking, corresponding numerical results
are shown in Figures 3.8 and 3.9, respectively. Note also that to overcome the perturbation of the interface,
D’Ortona et al. [14] as well as Tölke [78] proposed special modifications of the recolouring step. The
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Figure 3.4: Solution of the benchmark problem for u = u(1) with Algorithm 2.9 on a 40 × 40 (top line), 80 × 80 (centre

line), and 160× 160 (bottom line) lattice, all pictures taken after one complete revolution. Left: simulation result, middle:
isoline for χ = 1/2 of the true solution (dotted line) and the ILBGK approximation (solid line), right: absolute value of the
Euclidean error in the ILBGK approximation.

idea behind both those approaches is to reduce the perturbation of the interface by spreading it over a
wider range of lattice nodes. Here, however, we are exclusively interested in sharp interfaces, so we do
not consider this idea any further.

3.3. Anisotropic diffusion

In Section 2.3.1, we learned that recolouring serves as artificial anti-diffusion for the viscous numerical
scheme (2.61). Unfortunately, for really two-dimensional flow this kind of anti-diffusion has the bad side-
effect of disturbing the interface. Since everything works well if the flow is essentially one-dimensional
(compare Section 2.3.3) we claim that those defects are not generated by too much anti-diffusion across the
interface, which should cause trouble in 1-d, too, but maybe they are provoked by a lack of diffusion along
the interface. Thus, it is a natural idea to seek help in the replacement of the recolouring Algorithm 2.8
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Figure 3.5: Solution of the benchmark problem for u = u(2) with Algorithm 2.9 on a 40 × 40 (top line), 80 × 80 (centre

line), and 160 × 160 (bottom line) lattice, all pictures taken after one complete revolution. Left: the simulation result,
middle: isoline for χ = 1/2 of the true solution (dotted line) and the ILBGK approximation (solid line), right: absolute
value of the Euclidean error in the ILBGK approximation.

with an anisotropic diffusion procedure that applies diffusion along the interface and anti-diffusion across
it.

The theory of anisotropic diffusion has been developed in recent years as a powerful tool for image
processing. A very good overview of the theory and its application to images is given by Weickert [79].
Grahs et al. [25] use anisotropic diffusion for the numerical computation of shock solutions of nonlinear
hyperbolic conservation laws, and Jawerth et al. [39] published two lattice Boltzmann models of the
anisotropic diffusion process. However, we do not use one of their models but directly implement a
numerical scheme developed by Weickert [79].

In the remainder of this Section, we will try to annihilate the negative effects of the spurious diffusion
term in the transport equation (2.63) by adopting the ideas of Weickert [79] and of Grahs et al [25].

3.3.1. Theoretical Background. The basic idea is to solve a nonlinear diffusion equation of the form

∂t̂χ̂ = ∂α (dαβ∂βχ̂) (3.2)
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Figure 3.6: Solution of the benchmark problem for u = u(3) with Algorithm 2.9 on a 40 × 40 (top line), 80 × 80 (centre

line), and 160 × 160 (bottom line) lattice, all pictures taken after one complete revolution. Left: the simulation result,
middle: isoline for χ = 1/2 of the true solution (dotted line) and the ILBGK approximation (solid line), right: absolute
value of the Euclidean error in the ILBGK approximation.
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Figure 3.7: Solution of the benchmark problem for u = u(3) with Algorithm 2.9 on a 40× 40 (left), 80× 80 (middle), and

160× 160 (right) lattice if the nonlinear term in the equilibrium distribution is kept.
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Figure 3.8: Solution of the benchmark problem for u = u(1) (left), u = u(2) (middle), and u = u(3) (right). All pictures

show the level line for χ = 1/2 of the analytical solution (dotted line), the ILBGK approximation (dashed line), and the

ILBGK result with symmetrised recolouring (solid line) after one complete revolution.
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Figure 3.9: Solution of the benchmark problem for u = u(1) (left), u = u(2) (middle), and u = u(3) (right). All pictures
show the level line for χ = 1/2 of the analytical solution (dotted line), the ILBGK approximation (dashed line), and the

ILBGK result computed with flow speed u/10 (solid line) after one complete revolution.

with initial condition χ̂(0,x) = χ(t,x) until a suitable value of t̂ is reached and then use χ̂ as a smoothed
version of χ. The diffusion tensor dαβ is defined such that it produces forward diffusion along the smeared

jump in χ̂, i. e. along the interface Γ, and backward diffusion across it. Note that the variable t̂ plays
the role of time in the sense that it measures the duration of the diffusion process. However, it does
not represent physical time t. In the following, we will give a short outline of the techniques involved
in putting up dαβ and solving equation (3.2). See Weickert’s book [79] and references therein for more
details.

We start this overview with defining the structure tensor

s0αβ(x) = ∂αχ̂(x)∂βχ̂(x).

This tensor implies an orthonormal basis
{
w0
1,w

0
2

}
of IR2 consisting of the eigenvectors w0

1 ‖∇χ̂ and

w0
2⊥∇χ̂ of s0, where ∇ = (∂1, ∂2)

T
. The corresponding eigenvalues ∂αχ̂∂αχ̂ respectively 0 measure the

steepness of χ̂ in the eigendirections of s0. To avoid any trouble with jumps, we apply Gaußian smoothing
to s0αβ , i. e. instead of s0αβ we use the smoothed structure tensor

sϑαβ(x) =
(
Gϑ ∗ (∂αχ̂∂βχ̂)

)
(x), (3.3)

where for any g ∈ L1
(
IR2, IR

)

(Gϑ ∗ g) (x) =

∫

IR2
Gϑ(x− y)g(y) dy (3.4)
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denotes the convolution of g with the Gaußian Gϑ given by

Gϑ(x) =
1

2πϑ2
exp

(
−
xαxα
2ϑ2

)
(3.5)

with standard deviation ϑ > 0. Note that Gaußian smoothing is equivalent to solving the linear diffusion
equation

∂t̃χ̃ = ∂ααχ̃ (3.6)

with initial condition χ̃(0,x) = χ̂(t̂,x) until pseudo time t̃ = ϑ2/2 and that ϑ is therefore a measure for
the intensity of the smoothing.

The symmetric matrix sϑ ∈ IR2×2 is positive semi-definite and has two orthonormal eigenvectors,

wϑ
1 ‖

(
2sϑ12

sϑ22 − s
ϑ
11 +

√(
sϑ11 − s

ϑ
22

)2
+ 4

(
sϑ12
)2

)
and wϑ

2 ⊥wϑ
1 . (3.7)

The corresponding eigenvalues ν1 and ν2 are given by

ν1,2 =
1

2

(
sϑ11 + sϑ22 ±

√(
sϑ11 − s

ϑ
22

)2
+ 4

(
sϑ12
)2
)
, (3.8)

where the ’+’ in front of the square root belongs to ν1 and the ’−’ belongs to ν2. In order to achieve
forward diffusion along the jump and backward diffusion across it, we define the diffusion tensor d such
that it possesses the same eigenvectors wϑ

1 and wϑ
2 as the smoothed structure tensor sϑ while we define

its eigenvalues by

λ1 (ν1) = Ψ (ν1) and λ2 = 1, where Ψ(ν1) =

{
1 for ν1 ≤ 0

1− exp
(

−CΨ
(ν1/ν)4

)
for ν1 > 0.

(3.9)

The constant CΨ must be chosen such that the flux function Φ(ν1) = ν1Ψ(ν1) is increasing, i. e. ∂ν1Φ > 0,
for 0 ≤ ν1 < ν and decreasing, i. e. ∂ν1Φ < 0, for ν < ν1 < ∞ because then, we have forward diffusion
for 0 ≤ ν1 < ν and backward diffusion for ν < ν1 <∞.

Weickert [79] claims without further explanation that (3.9) implies CΨ ≈ 3.31488. However, we find
that for ν1 > 0

∂ν1Φ = 1−

(
1 + 4CΨ

(ν1
ν

)−4)
exp

(
−CΨ

(ν1/ν)−4

)

and therefore,

(∂ν1Φ)
∣∣∣
ν1=ν

= 1− (1 + 4CΨ) e
−CΨ .

Requiring (∂ν1Φ)
∣∣∣
ν1=ν

= 0, which is necessary for a change in the sign of ∂ν1Φ at ν1 = ν, we obtain

CΨ ∈

{
0,W−1

(
−
1

4
e−1/4

)
−

1

4

}
,

where W represents the Lambert W function [11]. The choice CΨ = 0 produces a flux function which is
neither increasing for 0 ≤ ν1 < ν nor decreasing for ν < ν1 <∞, so we chose

CΨ =W−1

(
−
1

4
e−1/4

)
−

1

4
≈ 2.33666

which differs significantly from Weickert’s choice. Figure 3.10 shows plots of both Φ and Ψ with CΨ =
2.33666 and CΨ = 3.31488 for several values of ν. In the case CΨ = 2.33666, the change in the sign of
∂ν1Φ always occurs at ν1 = ν, so for this choice, Φ produces forward diffusion if 0 < ν1 < ν and backward
diffusion if ν < ν1 < ∞ while the choice CΨ = 3.31488 slightly perturbs this relation. Even though this
perturbation is barely relevant in practice, we shall use CΨ = 2.33666 for all the simulations below.

The parameter ν must also be chosen with care. If we choose it too large it causes too much forward
diffusion perpendicular to the interface, so the jump in χ will smear too much, and if we choose it too
small the rapid decrease of the flux function Φ (see again Figure 3.10) will reduce backward diffusion to
some negligibly small amount. Obviously, it strongly depends on the given situation whether or not a
certain value of ν is reasonable. For the problems considered below, numerical experiments yield that

ν = min
{
max

x
{ν1},max

x
{ν2}

}
(3.10)
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Figure 3.10: The functions Φ (solid line) and Ψ (dashed line) with CΨ = 2.33666 (top) and CΨ = 3.31488 (bottom) for
ν = 0.1 (left column), ν = 0.3 (middle column), and ν = 0.5 (right column) versus ν1. In each plot, the axis of ordinates
shows the function values, the abscissa represents ν1, and the dotted vertical line marks the spot where ν1 = ν.

is a proper choice.
At this stage, we are finally able to determine the diffusion tensor d by computing the inverse principal

axis transform of diag (λ1, λ2), i. e.

dαβ = wϑ
1;αw

ϑ
1;βλ1 + wϑ

2;αw
ϑ
2;βλ2. (3.11)

This formula guarantees d to have the eigenvalues λ1 and λ2 as well as the eigenvectors wϑ
1 and wϑ

2 .
Therefore, it guarantees that dαβ has exactly the properties we want it to have and thus, we are now
able to set up the anisotropic diffusion equation (3.2).

3.3.2. Numerical algorithm. In order to permit easy use of anisotropic diffusion in immiscible lattice
BGK, we discretise equation (3.2) on a regular quadratic lattice with spacing ∆x, as it is used in ILBGK
itself. Weickert [79] showed that for any diffusion tensor d with suitable condition number, the finite
difference stencil 


k4(x) k3(x) k2(x)

k5(x) k0(x) k1(x)

k6(x) k7(x) k8(x)


↔ ∂α (dαβ∂β) + O

(
∆x2

)

with

k0(x) =−
2d11(x) + d11(x+ c1∆x) + d11(x+ c5∆x)

2∆x2
+

2 |d12(x)|+ |d12(x+ c1∆x)|+ |d12(x+ c3∆x)|

2∆x2

+
|d12(x+ c5∆x)|+ |d12(x+ c7∆x)|

2∆x2
−
|d12(x+ c2∆x)|+ d12(x+ c2∆x)

4∆x2

−
|d12(x+ c4∆x)| − d12(x+ c4∆x)

4∆x2
−
|d12(x+ c6∆x)|+ d12(x+ c6∆x)

4∆x2

−
|d12(x+ c8∆x)| − d12(x+ c8∆x)

4∆x2
−

2d22(x) + d22(x+ c3∆x) + d22(x+ c7∆x)

2∆x2
,

(3.12a)

k1(x) =
d11(x+ c1∆x) + d11(x)− |d12(x+ c1∆x)| − |d12(x)|

2∆x2
, (3.12b)

k2(x) =
d12(x+ c2∆x) + d12(x) + |d12(x+ c2∆x)|+ |d12(x)|

4∆x2
, (3.12c)
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let χ̂(0,x) = χ(t,x);

at each lattice point,

compute sϑαβ according to (3.3);

compute ν1,2 according to (3.8);

compute ν according to (3.10);

compute λ1,2 according to (3.9);

compute dαβ according to (3.11);

perform t̂max time steps of the scheme (3.12);

let χ(t,x) = χ̂
(
t̂max ,x

)
;

Algorithm 3.1: Anisotropic diffusion

initialise;

while t < tmax

determine χ(t+∆t,x) according to (2.62);

do anisotropic diffusion according to Algorithm 3.1;

t = t+∆t;

Algorithm 3.2: ILBGK interface tracking with anisotropic diffusion instead of recolouring

k3(x) =
d22(x+ c3∆x) + d22(x)− |d12(x+ c3∆x)| − |d12(x)|

2∆x2
, (3.12d)

k4(x) =
−d12(x+ c4∆x)− d12(x) + |d12(x+ c4∆x)|+ |d12(x)|

4∆x2
, (3.12e)

k5(x) =
d11(x+ c5∆x) + d11(x)− |d12(x+ c5∆x)| − |d12(x)|

2∆x2
, (3.12f)

k6(x) =
d12(x+ c6∆x) + d12(x) + |d12(x+ c6∆x)|+ |d12(x)|

4∆x2
, (3.12g)

k7(x) =
d22(x+ c7∆x) + d22(x)− |d12(x+ c7∆x)| − |d12(x)|

2∆x2
, (3.12h)

and

k8(x) =
−d12(x+ c8∆x)− d12(x) + |d12(x+ c8∆x)|+ |d12(x)|

4∆x2
(3.12i)

leads to a stable numerical scheme for the anisotropic diffusion equation (3.2), namely

χ̂
(
t̂+∆t̂,x

)
= χ̂

(
t̂,x
)
+∆t̂



k4(x) k3(x) k2(x)

k5(x) k0(x) k1(x)

k6(x) k7(x) k8(x)


 χ̂

(
t̂,x
)

(3.12j)

if the pseudo-time step size ∆t̂ is properly chosen. Computing dαβ according to (3.11) and approximating
the anisotropic diffusion equation (3.2) by scheme (3.12) we obtain the anisotropic diffusion Algorithm 3.1.
Note that a suitable stopping time t̂max is still to be determined.

3.3.3. Anisotropic diffusion instead of recolouring. In the following, we perform some experiments
with ILBGK interface tracking, where the recolouring step (Algorithm 2.8) is replaced with anisotropic
diffusion (Algorithm 3.1), as outlined in Algorithm 3.2. In particular, we perform one time step of this
algorithm for the benchmark problem with uα = 0. In Figures 3.11, 3.12, and 3.13, we present results
computed on a 40× 40, 80× 80, and 160× 160 lattice, respectively, with one, 100, and 2000 pseudo-time
steps of anisotropic diffusion.

In analogy to the one-dimensional case (compare Section 2.3.3), we observe that during one time step
of the transport scheme (2.62), a certain part of the red mass located at those lattice points x ∈ X ∩ Ωr

next to the interface diffuses into the blue phase. In particular, away from the corners of Ωr, exactly
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Figure 3.11: Solution of the benchmark problem with Algorithm 3.2 on a 40 × 40 lattice for uα = 0 and one (top line),
100 (centre line), respectively 2000 (bottom line) iterations of Algorithm 3.1. Left: surface plot of the indicator function χ,

middle: horizontal cut through χ (solid line, ’∗’ marking the values at the lattice points), taken at the vertical centre of Ω,

versus corresponding cuts through the exact solution (dotted line) and the result of unmodified viscous transport according
to (2.62) (’¤’ marking the values at the lattice points), right: absolute value of the Euclidean error in χ.

one sixth of the red mass at x is diffusing into the blue phase which perfectly coincides with the one-
dimensional case. Note that in the middle columns of Figures 3.11 to 3.13, the smeared indicator function
is represented by ’¤’ marking its values at the lattice points. Now, we would like anisotropic diffusion to
return the diffused mass to its original phase. The value of χ after anisotropic diffusion was applied is
marked with ’∗’ in the middle columns of Figures 3.11 to 3.13, so concerning the plots we would like no
’∗’ to be located on any other level than zero or one after anisotropic diffusion was applied.

We clearly see from the Figures that one pseudo-time step of anisotropic diffusion does not yield any
appreciable sharpening of the interface. After 100 steps, we find that the diffused lattice points have in
fact started to move back to their respective phases but after 2000 steps, we realize that those lattice
points are still far away from their destination while the indicator function already starts converging to
a constant value. The latter is a typical behaviour if too many pseudo-time steps of anisotropic diffusion
are applied, see again Weickert’s book [79] for more details.
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Figure 3.12: Solution of the benchmark problem with Algorithm 3.2 on a 80 × 80 lattice for uα = 0 and one (top line),

100 (centre line), respectively 2000 (bottom line) iterations of Algorithm 3.1. Left: surface plot of the indicator function χ,
middle: horizontal cut through χ (solid line, ’∗’ marking the values at the lattice points), taken at the vertical centre of Ω,

versus corresponding cuts through the exact solution (dotted line) and the result of unmodified viscous transport according
to (2.62) (’¤’ marking the values at the lattice points), right: absolute value of the Euclidean error in χ.

From the above results, we conclude that anisotropic diffusion is not capable of considerably reducing
the strong smearing of the interface produced by the viscous transport scheme (2.62) without introducing
other side-effects of similar relevance. Furthermore, we have to remark that the original ILBGK interface
tracking Algorithm 2.9 is troublesome only in the case of non-zero velocity but has no real problems with
simulating the static case considered here. For those reasons, we decide to give up the idea of replacing
the recolouring step with an anisotropic diffusion approach to interface sharpening. However, it should be
mentioned that Algorithm 3.2 is perfectly mass conserving for the experiments discussed in this Section,
as can be seen from Table 3.2.

3.3.4. Anisotropic diffusion after recolouring. The idea behind this approach is to apply the re-
colouring step to compensate the strong smearing of the interface and then use anisotropic diffusion to
smooth the resulting surface waves, as summarised in Algorithm 3.3.
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Figure 3.13: Solution of the benchmark problem with Algorithm 3.2 on a 160× 160 lattice for uα = 0 and one (top line),
100 (centre line), respectively 2000 (bottom line) iterations of Algorithm 3.1. Left: surface plot of the indicator function χ,

middle: horizontal cut through χ (solid line, ’∗’ marking the values at the lattice points), taken at the vertical centre of Ω,

versus corresponding cuts through the exact solution (dotted line) and the result of unmodified viscous transport according
to (2.62) (’¤’ marking the values at the lattice points), right: absolute value of the Euclidean error in χ.

initialise;

while t < tmax

do recolouring according to Algorithm 2.8;

determine χ(t+∆t,x) according to (2.66);

do anisotropic diffusion according to Algorithm 3.1;

t = t+∆t;

Algorithm 3.3: ILBGK interface tracking with anisotropic diffusion after recolouring
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Lattice t̂max Mass loss in % Number of flops

40× 40 1 −4.26326 · 10−14 1768277

40× 40 100 −1.42109 · 10−14 22286423

40× 40 2000 −8.52651 · 10−14 416069023

80× 80 1 0 6840117

80× 80 100 −8.52651 · 10−14 88425423

80× 80 2000 −4.12115 · 10−13 1.6542 · 109

160× 160 1 0 27022357

160× 160 100 −5.68434 · 10−14 352393183

160× 160 2000 −3.69482 · 10−13 6.5969 · 109

Table 3.2: Percentage loss of red mass and computing times for the experiments shown in Figures 3.11 to 3.13

Lattice Velocity Mass loss in % Number of flops

40× 40 u(1) -0.0926773 1.2738 · 1011

40× 40 u(2) -0.0926773 1.2738 · 1011

40× 40 u(3) -0.0926773 8.0307 · 1011

80× 80 u(1) -0.0247983 2.0111 · 1012

80× 80 u(2) -0.0247983 2.0111 · 1012

80× 80 u(3) -0.0247983 1.2692 · 1013

160× 160 u(1) -0.00620029 3.1938 · 1013

160× 160 u(2) -0.00620029 3.1939 · 1013

160× 160 u(3) -0.00620029 8.4693 · 1013

Table 3.3: Percentage loss of red mass and computing times for the experiments with anisotropic diffusion after recolouring

Figures 3.14, 3.15, and 3.16 show benchmark results for u = u(1), u = u(2), and u = u(3), re-
spectively, with t̂max = 1 in Algorithm 3.1. All plots show very sharp interfaces without any spurious
oscillations, only the corners are smoothed. Unfortunately, looking at Table 3.3 we find that a severe
gain of mass occurs in each simulation. This effect depends on lattice size but it seems to be unattached
to the velocity field. Anyway, we do not investigate this method any further because mass gain of this
magnitude is not acceptable.

3.4. Artificial surface tension

The surface tension term σκnδΓ appearing in the incompressible Navier-Stokes equations (2.12) acts only
on the interface Γ, its magnitude is proportional to the local curvature κ of Γ, and the direction of its
virtue is parallel to the inner unit normal vector n of Γ. Its main effect is the smoothing of strongly
curved parts of the boundary. Solving only the transport equation (2.13) we do not have any surface
tension, so we do not benefit from such a smoothing effect. However, due to the spurious waves in the
interface produced by Algorithm 2.9 it was most welcome. Thus, it is a natural idea to try to smooth those
oscillations with some artificial surface tension. Typically, artificial surface tension is used depending on
a parameter that measures the disturbance of the interface. In the benchmark, the unperturbed edges
of the square are straight lines, i. e. their curvature is zero, so we interpret κ as a governing parameter
of artificial surface tension. Note that with this choice, we must accept the corners of the square to be
rounded off by surface tension.

In order to apply ILBGK interface tracking with artificial surface tension, we solve the transport
equation (2.13) together with the incompressible Navier-Stokes equations (2.31). For this purpose, we
proceed as we did for the bubble test in Section 2.4.3, initialising u(0,x) ∈

{
u(1),u(2),u(3)

}
instead of

uα(0,x) = 0 for each x ∈ X. Again, we choose the relaxation parameter ω = 1 for all the computations to
follow, thus enforcing the dynamic viscosity µ = 1/6. We perform simulations for σ ∈ {0.001, 0.01, 0.1} on
a 40×40 and an 80×80 lattice. Note that simulations on a 160×160 lattice are no longer performed because
of their excessive need of computing time. Benchmark results are shown in Figures 3.17 and 3.18 for
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Figure 3.14: Solution of the benchmark problem for u = u(1) with Algorithm 3.3. We present results computed on a

40× 40 (top line), 80× 80 (centre line), and a 160× 160 lattice (bottom line). Left: simulation result, middle: contour line
for χ = 1/2 of the analytical solution (dotted line), the plain ILBGK approximation (dashed line) and the simulation result
(solid line), right: absolute value of the Euclidean error in χ.

u(0,x) = u(1), in Figures 3.19 and 3.20 for u(0,x) = u(2), and in Figures 3.21 and 3.22 for u(0,x) = u(3).
Finally, computing times and percentage loss of red mass are summarised in Table 3.4.

We learn from these experiments that σ = 0.001 is not enough for smoothing the interface. Also
for σ = 0.01 we still find many spurious waves in Γ, even though the corners of the square are already
smoothed a lot. For σ = 0.1 surface tension already turned the square into a circle. It is especially the
contrast between the smoothing of the corners and the non-smoothing of the spurious waves for σ = 0.01
that teaches us the disability of artificial surface tension to damp the oscillations produced by ILBGK
interface tracking.

We also observe severe mass loss in the simulations with u(0,x) ∈
{
u(1),u(2)

}
as well as considerably

increased (compare Table 3.1) but not really severe mass loss in the simulations with u(0,x) = u(3). In
any case, mass loss is increasing with σ. Furthermore, the plots for u(0,x) = u(3) show irregularities in
χ which are very similar to those we already observed in Figure 3.7. Due to the latter, it is natural to
expect a connection between the difficulties arising here and those discussed at the end of Section 3.2.
However, the reason why mass loss and irregularities appear cannot be rigorously explained.
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Figure 3.15: Solution of the benchmark problem for u = u(2) with Algorithm 3.3. We present results computed on a

40× 40 (top line), 80× 80 (centre line), and a 160× 160 lattice (bottom line). Left: simulation result, middle: contour line

for χ = 1/2 of the analytical solution (dotted line), the plain ILBGK approximation (dashed line) and the simulation result

(solid line), right: absolute value of the Euclidean error in χ.
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Figure 3.16: Solution of the benchmark problem for u = u(3) with Algorithm 3.3. We present results computed on a

40× 40 (top line), 80× 80 (centre line), and a 160× 160 lattice (bottom line). Left: simulation result, middle: contour line

for χ = 1/2 of the analytical solution (dotted line), the plain ILBGK approximation (dashed line) and the simulation result

(solid line), right: absolute value of the Euclidean error in χ.
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Figure 3.17: ILBGK solution of the benchmark problem with σ = 0.001 (top), σ = 0.01 (centre), and σ = 0.1 (bottom) for

u(0,x) = u(1) on a 40× 40 lattice. Left: surface plot of χ, middle: level line for χ = 1/2 of the exact solution (dotted line),
the ILBGK approximation (dashed line), and the ILBGK result with artificial surface tension (solid line), right: absolute

value of the Euclidean error in the ILBGK result with artificial surface tension.
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Figure 3.18: ILBGK solution of the benchmark problem with σ = 0.001 (top), σ = 0.01 (centre), and σ = 0.1 (bottom) for

u(0,x) = u(1) on a 80× 80 lattice. Left: surface plot of χ, middle: level line for χ = 1/2 of the exact solution (dotted line),

the ILBGK approximation (dashed line), and the ILBGK result with artificial surface tension (solid line), right: absolute
value of the Euclidean error in the ILBGK result with artificial surface tension.
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Figure 3.19: ILBGK solution of the benchmark problem with σ = 0.001 (top), σ = 0.01 (centre), and σ = 0.1 (bottom) for

u(0,x) = u(2) on a 40× 40 lattice. Left: surface plot of χ, middle: level line for χ = 1/2 of the exact solution (dotted line),
the ILBGK approximation (dashed line), and the ILBGK result with artificial surface tension (solid line), right: absolute

value of the Euclidean error in the ILBGK result with artificial surface tension.
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Figure 3.20: ILBGK solution of the benchmark problem with σ = 0.001 (top), σ = 0.01 (centre), and σ = 0.1 (bottom) for

u(0,x) = u(2) on a 80× 80 lattice. Left: surface plot of χ, middle: level line for χ = 1/2 of the exact solution (dotted line),

the ILBGK approximation (dashed line), and the ILBGK result with artificial surface tension (solid line), right: absolute
value of the Euclidean error in the ILBGK result with artificial surface tension.
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Figure 3.21: ILBGK solution of the benchmark problem with σ = 0.001 (top), σ = 0.01 (centre), and σ = 0.1 (bottom) for

u(0,x) = u(3) on a 40× 40 lattice. Left: surface plot of χ, middle: level line for χ = 1/2 of the exact solution (dotted line),
the ILBGK approximation (dashed line), and the ILBGK result with artificial surface tension (solid line), right: absolute

value of the Euclidean error in the ILBGK result with artificial surface tension.
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Figure 3.22: ILBGK solution of the benchmark problem with σ = 0.001 (top), σ = 0.01 (centre), and σ = 0.1 (bottom) for

u(0,x) = u(3) on a 80× 80 lattice. Left: surface plot of χ, middle: level line for χ = 1/2 of the exact solution (dotted line),

the ILBGK approximation (dashed line), and the ILBGK result with artificial surface tension (solid line), right: absolute
value of the Euclidean error in the ILBGK result with artificial surface tension.
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Lattice u(0,x) σ Mass loss in % Number of flops

40× 40 u(1) 0.001 0.00266895 1.77729 · 109

40× 40 u(1) 0.01 0.0320708 6.44152 · 109

40× 40 u(1) 0.1 0.282062 6.72455 · 109

40× 40 u(2) 0.001 0.00479016 5.33269 · 108

40× 40 u(2) 0.01 0.0343632 5.33257 · 108

40× 40 u(2) 0.1 0.346245 5.33157 · 108

40× 40 u(3) 0.001 7.57425 · 10−8 4.44354 · 109

40× 40 u(3) 0.01 7.73500 · 10−8 4.44341 · 109

40× 40 u(3) 0.1 7.4175 · 10−8 4.44325 · 109

80× 80 u(1) 0.001 0.00143724 6.73781 · 1010

80× 80 u(1) 0.01 0.0188019 6.13699 · 1010

80× 80 u(1) 0.1 0.155951 6.3404 · 1010

80× 80 u(2) 0.001 0.00232742 4.08821 · 109

80× 80 u(2) 0.01 0.0221576 4.08812 · 109

80× 80 u(2) 0.1 0.146429 4.08773 · 109

80× 80 u(3) 0.001 1.34075 · 10−7 1.00634 · 1011

80× 80 u(3) 0.01 1.31308 · 10−7 1.00634 · 1011

80× 80 u(3) 0.1 1.34066 · 10−7 1.00633 · 1011

Table 3.4: Percentage loss of red mass and computing times for ILBGK interface tracking with artificial surface tension



CHAPTER 4

Numerical analysis of the viscous transport scheme

Due to the unsatisfactory behaviour of ILBGK interface tracking (compare Chapter 3) we now try to
modify this method such that it produces more reasonable results. In particular, we generalise the
ILBGK transport scheme (2.62) and seek a choice of parameters that produces a stable scheme for
interface tracking which is less diffusive than (2.62). The idea behind this approach is that a scheme with
only little diffusion requires only little anti-diffusion, i. e. recolouring, to produce a sharp interface and
that little recolouring should produce only little disturbance of the interface. In the ideal case, we even
ended up with a scheme that does not need any recolouring at all.

We will construct a general transport scheme in Section 4.1 and use its stability properties to find the
most reasonable choice of parameters in Section 4.2. Finally, in Section 4.3, we will apply the resulting
transport scheme with and without recolouring to the benchmark problem.

4.1. Generalisation of the viscous transport scheme

The ILBGK transport scheme (2.61) yields a solution of the viscous transport equation (2.63). Here, we
want to investigate whether it is possible to reduce the undue diffusion in (2.63) by modifying the viscous
transport scheme (2.61). Therefore, we consider the general lattice BGK transport equation

R(t+∆t,x;v) = Req
gen

(
χ(t,x− v∆x),u(t,x− v∆x);v

)
(4.1)

for the pseudo-particle density R with 〈R, 1〉v = χ. The general equilibrium density Req
gen of pseudo-

particles is given by

Req
gen (χ,u;v) = f∗gen(v) (χ+ a∆xχuαvα) , (4.2)

where 0 < a ∈ IR and f∗gen is a weight function (see Junk [41] for guidance in constructing equilib-

rium (pseudo-)particle densities). Furthermore, we remove the constraint ∆t = ∆x2 to gain additional
flexibility.

Taking the zeroth order equivalent moment of both sides of equation (4.1) we obtain

χ(t+∆t,x) =
〈
f∗gen , χ(t,x− v∆x) + a∆xvαχ(t,x− v∆x)uα(t,x− v∆x)

〉
v
, (4.3)

compare Section 1.1.2. Taylor expansion yields

χ(t,x− v∆x) = χ(t,x)−∆xvα∂αχ(t,x) +
∆x2

2
vαvβ∂αβχ(t,x)−

∆x3

6
vαvβvγ∂αβγχ(t,x) + O

(
∆x4

)

as well as

uα(t,x− v∆x) = uα(t,x)−∆xvβ∂βuα(t,x) +
∆x2

2
vβvγ∂βγuα(t,x)−

∆x3

6
vβvγvε∂βγεuα(t,x)

+ O
(
∆x4

)

and inserting those results into (4.3) we find that assuming

〈
f∗gen , 1

〉
v
= 1,

〈
f∗gen , vα

〉
v
= 0,

〈
f∗gen , vαvβ

〉
v
=

∆t

a∆x2
δαβ , and

〈
vαvβvγ , f

∗
gen

〉
v
= 0

(4.4)

equation (4.3) is equivalent to

χ(t+∆t,x)− χ(t,x) + ∆tuα(t,x)∂αχ(t,x) + ∆t∂αuα(t,x)χ(t,x) =
∆t

2a
∂ααχ(t,x) + O

(
∆x2

)

which can be interpreted as explicit Euler time discretisation of

∂tχ+ ∂α(uαχ) =
1

2a
∂ααχ+ O

(
∆t,∆x2

)
. (4.5)

Note that for a = 3 and ∆t = ∆x2, this coincides exactly with the viscous transport equation (2.63).

77



78 4. Numerical analysis of the viscous transport scheme

Let us now derive the most general weight function f ∗gen fulfilling (4.4). Rewriting (4.4) we obtain
the linear system of equations




1 1 1 1 1 1 1 1 1

c0;1 c1;1 c2;1 c3;1 c4;1 c5;1 c6;1 c7;1 c8;1

c0;2 c1;2 c2;2 c3;2 c4;2 c5;2 c6;2 c7;2 c8;2

c20;1 c21;1 c22;1 c23;1 c24;1 c25;1 c26;1 c27;1 c28;1
c0;1c0;2 c1;1c1;2 c2;1c2;2 c3;1c3;2 c4;1c4;2 c5;1c5;2 c6;1c6;2 c7;1c7;2 c8;1c8;2

c20;2 c21;2 c22;2 c23;2 c24;2 c25;2 c26;2 c27;2 c28;2
c30;1 c31;1 c32;1 c33;1 c34;1 c35;1 c36;1 c37;1 c38;1

c20;1c0;2 c21;1c1;2 c22;1c2;2 c23;1c3;2 c24;1c4;2 c25;1c5;2 c26;1c6;2 c27;1c7;2 c28;1c8;2

c0;1c
2
0;2 c1;1c

2
1;2 c2;1c

2
2;2 c3;1c

2
3;2 c4;1c

2
4;2 c5;1c

2
5;2 c6;1c

2
6;2 c7;1c

2
7;2 c8;1c

2
8;2

c30;2 c31;2 c32;2 c33;2 c34;2 c35;2 c36;2 c37;2 c38;2







f∗gen (c0)

f∗gen (c1)

f∗gen (c2)

f∗gen (c3)

f∗gen (c4)

f∗gen (c5)

f∗gen (c6)

f∗gen (c7)

f∗gen (c8)




=
(
1, 0, 0,∆t/

(
a∆x2

)
, 0,∆t/

(
a∆x2

)
, 0, 0, 0, 0

)T
.

This is a system of ten equations for nine unknowns. However, explicitly calculating the entries of the
system matrix we find




1 1 1 1 1 1 1 1 1

0 1 1 0 −1 −1 −1 0 1

0 0 1 1 1 0 −1 −1 −1

0 1 1 0 1 1 1 0 1

0 0 1 0 −1 0 1 0 −1

0 0 1 1 1 0 1 1 1

0 1 1 0 −1 −1 −1 0 1

0 0 1 0 1 0 −1 0 −1

0 0 1 0 −1 0 −1 0 1

0 0 1 1 1 0 −1 −1 −1







f∗gen (c0)

f∗gen (c1)

f∗gen (c2)

f∗gen (c3)

f∗gen (c4)

f∗gen (c5)

f∗gen (c6)

f∗gen (c7)

f∗gen (c8)




=




1

0

0

∆t/
(
a∆x2

)

0

∆t/
(
a∆x2

)

0

0

0

0




and at this stage, we observe the second equation to equal the seventh and the third equation to equal
the tenth, so actually, the system contains only eight linear independent equations for nine unknowns
and it yields the one-parameter solution

f∗gen (cj) =





1 + 4 ∆t
2a∆x2 (

� � − 1) for j = 0
∆t

2a∆x2 (1− 2� � ) for j = 1, 3, 5, 7
∆t

2a∆x2
� � for j = 2, 4, 6, 8

with parameter � � . Note that for � � = 1/6, a = 3, and ∆t = ∆x2 the weight function f∗gen coincides exactly
with f∗. The moment equation (4.3) can now be rewritten in the form

χ(t+∆t,x) = χ(t,x) +
∆t

2a∆x2




� � 1− 2� � � �
1− 2� � 4(� � − 1) 1− 2� �

� � 1− 2� � � �


χ(t,x)

−
∆t

2∆x



−� � 0 � �

2� � − 1 0 1− 2� �
−� � 0 � �


 (χu1) (t,x)−

∆t

2∆x




� � 1− 2� � � �
0 0 0

−� � 2� � − 1 −� �


 (χu2) (t,x), (4.6)

so we just proved

Proposition 4.1. The finite difference scheme (4.6) which is equivalent to equation (4.1) is consistent of
O
(
∆t,∆x2

)
to the viscous transport equation (4.5). The classical ILBGK interface tracking scheme (2.61)

coincides with the choice � � = 1/6, a = 3, and ∆t = ∆x2.
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Checking the consistency of the stencils in (4.6) we find by straight Taylor expansion that

1

∆x2




� � 1− 2� � � �
1− 2� � 4(� � − 1) 1− 2� �

� � 1− 2� � � �


↔ ∂αα + O

(
∆x2

)
, (4.7)

1

2∆x



−� � 0 � �

2� � − 1 0 1− 2� �
−� � 0 � �


↔ ∂1 + O

(
∆x2

)
, and

1

2∆x




� � 1− 2� � � �
0 0 0

−� � 2� � − 1 −� �


↔ ∂2 + O

(
∆x2

)
.

Let us think a little bit more about the Laplace stencil (4.7). By Taylor expansion, we find that for a
general nine-point stencil and a smooth function g : [0, tmax ]× Ω→ IR,




� �
4

� �
3

� �
2� �

5
� �
0

� �
1� �

6
� �
7

� �
8


 g(t,x) = g(t,x)

8∑

j=0

� �
j +∆x∂αg(t,x)

8∑

j=1

� �
jcj;α

+
∆x2

2
∂αβg(t,x)

8∑

j=1

� �
jcj;αcj;β +

∆x3

6
∂αβγg(t,x)

8∑

j=1

� �
jcj;αcj;βcj;γ + O

(
∆x4

)
(4.8)

and therefore,



� �
4

� �
3

� �
2� �

5
� �
0

� �
1� �

6
� �
7

� �
8


↔ ∂αα + O

(
∆x2

)
(4.9)

if and only if

8∑

j=0

� �
j = 0,

8∑

j=1

� �
jcj;α = 0,

8∑

j=1

� �
jcj;αcj;β =

2

∆x2
δαβ , and

8∑

j=1

� �
jcj;αcj;βcj;γ = 0.

In complete analogy to the above, those conditions can be rewritten in the form



1 1 1 1 1 1 1 1 1

0 1 1 0 −1 −1 −1 0 1

0 0 1 1 1 0 −1 −1 −1

0 1 1 0 1 1 1 0 1

0 0 1 0 −1 0 1 0 −1

0 0 1 1 1 0 1 1 1

0 1 1 0 −1 −1 −1 0 1

0 0 1 0 1 0 −1 0 −1

0 0 1 0 −1 0 −1 0 1

0 0 1 1 1 0 −1 −1 −1







� �
0� �
1� �
2� �
3� �
4� �
5� �
6� �
7� �
8




=




0

0

0

2/∆x2

0

2/∆x2

0

0

0

0




.

This system of equations reduces to




1 1 1 1 1 1 1 1 1

0 1 1 0 −1 −1 −1 0 1

0 0 1 1 1 0 −1 −1 −1

0 1 1 0 1 1 1 0 1

0 0 1 0 −1 0 1 0 −1

0 0 1 1 1 0 1 1 1

0 0 1 0 1 0 −1 0 −1

0 0 1 0 −1 0 −1 0 1







� �
0� �
1� �
2� �
3� �
4� �
5� �
6� �
7� �
8




=




0

0

0

2/∆x2

0

2/∆x2

0

0



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which yields the one-parameter solution

� �
j =





4(� � − 1)/∆x2 for j = 0

(1− 2� � )/∆x2 for j = 1, 3, 5, 7
� � /∆x2 for j = 2, 4, 6, 8,

so (4.9) holds if and only if the stencil can be written in the form (4.7). Therefore, we just proved

Theorem 4.1. Any nine-point stencil that is second order consistent to the Laplace operator can be
written in the form

1

∆x2




� � 1− 2� � � �
1− 2� � 4(� � − 1) 1− 2� �

� � 1− 2� � � �




and any difference stencil of this form is second order consistent to the Laplace operator. Especially,

the choice � � = 1/6 yields the nine-point Laplace stencil that appears in the original ILBGK transport
scheme (2.62) and � � = 0 results in the standard five-point stencil for the Laplace operator [29].

4.2. Stability of the general viscous transport scheme

To reduce diffusion in ILBGK interface tracking, we have to choose the parameter a in equation (4.5)
and, therefore, in the general viscous transport scheme (4.6) as large as possible. In the following, we will
investigate the stability properties of scheme (4.6) to find the largest value of a that can be chosen without
causing numerical instability. In (4.6), the parameter a appears only within the fraction ∆t/

(
2a∆x2

)
in

front of the Laplace stencil, so the choice of a is of course connected to the choice of ∆x and ∆t.
For the beginning, we consider the simple case uα = 0, so we actually study the scheme

χ(t+∆t,x) = χ(t,x) +
∆t

2a∆x2




� � 1− 2� � � �
1− 2� � 4(� � − 1) 1− 2� �

� � 1− 2� � � �


χ(t,x) (4.10)

which is consistent to the diffusion equation

∂tχ =
1

2a
∂ααχ+ O

(
∆t,∆x2

)
.

We will investigate under which conditions (4.10) is L∞-stable respectively L2-stable, i. e. we will check
under which conditions

‖χ(t+∆t)‖L∞ ≤ ‖χ(t)‖L∞ respectively ‖χ(t+∆t)‖L2 ≤ ‖χ(t)‖L2

for t ∈ [0, tmax −∆t].
Let us start with L∞-stability. First of all, we recall that by definition,

‖χ(t+∆t)‖L∞ = max
x
|χ(t+∆t,x)| for t ∈ [0, tmax −∆t].

From (4.10), we obtain

χ(t+∆t,x) =

(
1 +

4(� � − 1)∆t

2a∆x2

)
χ(t,x)

+
(1− 2� � )∆t
2a∆x2

(
χ(t,x+ c1∆x) + χ(t,x+ c3∆x) + χ(t,x+ c5∆x) + χ(t,x+ c7∆x)

)

+
� � ∆t

2a∆x2

(
χ(t,x+ c2∆x) + χ(t,x+ c4∆x) + χ(t,x+ c6∆x) + χ(t,x+ c8∆x)

)

and therefore, χ(t+∆t,x) is of the structure

χ(t+∆t,x) =
8∑

j=0

γjχ(t,x+ cj∆x) with
8∑

j=0

γj = 1.

Assuming χ(t+∆t,x) is a convex combination of the χ(t,x+ cj∆x), i. e. assuming also γj ≥ 0 holds for
j = 0, . . . , 8, we find that

min
j
χ(t,x+ cj∆x) ≤ χ(t+∆t,x) ≤ max

j
χ(t,x+ cj∆x). (4.11)
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Since for any given x ∈ X

min
y∈X

χ(t,y) ≤ min
j
χ(t,x+ cj∆x) and max

y∈X

χ(t,y) ≥ max
j
χ(t,x+ cj∆x)

condition (4.11) immediately implies L∞-stability. Thus, for L∞-stability it is sufficient to require

1 +
4∆t

2a∆x2
(� � − 1) ≥ 0,

∆t

2a∆x2
� � ≥ 0, and

∆t

2a∆x2
(1− 2� � ) ≥ 0

and simplifying those conditions we can formulate

Proposition 4.2. Scheme (4.10) is L∞-stable if

0 ≤ � � ≤ 1

2
and

∆t

a∆x2
≤

1

2(1− � � ) .
By definition, L2-stability means

(
1

NX

∑

x∈X

|χ(t+∆t,x)|2

)1/2
≤

(
1

NX

∑

x∈X

|χ(t,x)|2

)1/2
for each t ∈ [0, tmax −∆t],

where NX denotes the number of lattice points in X. The above inequality reduces to
∑

x∈X

|χ(t+∆t,x)|2 ≤
∑

x∈X

|χ(t,x)|2 for each t ∈ [0, tmax −∆t].

To enforce this condition, we proceed as exemplified for the one-dimensional case by Peyret and Tay-
lor [60], i. e. we decompose χ in Fourier space, thus obtaining

χ(t,x) =
∞∑

ξ1,ξ2=−∞

X(t, ξ) exp (iξαxα) and χ(t+∆t,x) =
∞∑

ξ1,ξ2=−∞

X(t+∆t, ξ) exp (iξαxα) ,

where i denotes the imaginary unit. Afterwards, we insert those results into (4.10) and obtain by straight
calculation

X(t+∆t, ξ) =

1 +

∆t

2a∆x2


4� � − 4 +

∑

j=1,3,5,7

� � exp (iξαcj;α∆x) +
∑

j=2,4,6,8

(1− 2� � ) exp (iξαcj;α∆x)



X(t, ξ).

(4.12)

Our aim is now to prevent the amplitudes of X(t+∆t, ξ) for each t ∈ [0, tmax −∆t] and arbitrary ξ ∈ Z
2

from being amplified by (4.12). Defining the so-called amplification factor

A(ξ) = 1 +
∆t

2a∆x2


4� � − 4 +

∑

j=1,3,5,7

� � exp (iξαcj;α∆x) +
∑

j=2,4,6,8

(1− 2� � ) exp (iξαcj;α∆x)

 (4.13)

we can abbreviate (4.12) by X(t+∆t, ξ) = A(ξ)X(t, ξ). Hence, we obtain

X(m∆t, ξ) =

(
m∏

α=1

A(ξ)

)
X(0, ξ) for m ∈ IN

and therefore,

|X(m∆t, ξ)| =

(
m∏

α=1

|A(ξ)|

)
|X(0, ξ)| for m ∈ IN.

To avoid any amplification of amplitudes of X, we now apply the strict von Neumann condition [60]
|A(ξ)| ≤ 1 which implies

∣∣∣∣∣∣
1 +

∆t

2a∆x2


4� � − 4 +

∑

j=1,3,5,7

� � exp (iξαcj;α∆x) +
∑

j=2,4,6,8

(1− 2� � ) exp (iξαcj;α∆x)


∣∣∣∣∣∣
≤ 1 (4.14)

for each 0 ≤ ξαcj;α∆x < 2π. This yields

Proposition 4.3. The scheme (4.10) is L2-stable if condition (4.14) is fulfilled.
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let � � = 0 and ∆x = 2π/NX;

while � � < 1/2

let ∆t = 0 and Amax (
� � ) = 0;

repeat

let ∆t = ∆t+ 1/ (10NX);

determine A according to (4.13);

if maxξ |A| ≤ 1 then Amax (
� � ) = maxξ |A|;

until maxξ |A| > 1;

let � � = � � + 1/ (2NX);

Algorithm 4.1: Test for L2-stability of scheme (4.10)
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Figure 4.1: Maximal value of ∆t/
(
2a∆x2

)
for which (4.10) is still L2-stable (dashed line) respectively L∞-stable (solid

line). The axis of ordinates represents the values of ∆t/
(
2a∆x2

)
while the axis of abscissae shows the stencil parameter 	 
 .

The dotted vertical line marks the original ILBGK scheme with 	 
 = 1/6 and a = 3.

Since (4.14) is very complicated to evaluate we will investigate it numerically using Algorithm 4.1.
The result on a 40×40 lattice is compared to the conditions for L∞-stability in Figure 4.1. Note that up
to a negligibly small discretisation error, calculations on finer grids yield the same result. It is clear that
the classical five point stencil for the Laplace operator (� � = 0) has the worst stability properties while
the best stencil is in some sense quite its opposite (� � = 1/2). The ILBGK scheme (� � = 1/6, a = 3) is
L2-stable for ∆t/∆x2 . 2.2388 and L∞-stable for ∆t/∆x2 ≤ 9/5. Since ILBGK is based on the scaling
∆t = ∆x2 it is in fact unconditionally stable in the L2 norm and the L∞ norm.

Let us now consider the general transport scheme (4.6) for a constant non-zero velocity field u.
Adapting the above arguments we obtain the conditions

∆t

2a∆x2
≤

1

4− 4� � ,

(1− 2� � )
(

1

a∆x
+ u1

)
≥ 0, (1− 2� � )

(
1

a∆x
− u1

)
≥ 0,

(1− 2� � )
(

1

a∆x
+ u2

)
≥ 0, (1− 2� � )

(
1

a∆x
− u2

)
≥ 0,

(4.15a)

and

� � ( 1

a∆x
+ u1 + u2

)
≥ 0, � � ( 1

a∆x
− u1 + u2

)
≥ 0,

� � ( 1

a∆x
− u1 − u2

)
≥ 0, � � ( 1

a∆x
+ u1 − u2

)
≥ 0

(4.15b)

for L∞-stability. Let us first consider (4.15a) for the case � � > 1/2. This yields

1

a∆x
+ uα ≤ 0 as well as

1

a∆x
− uα ≤ 0

and multiplying the latter inequality with −1 we obtain
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1

a∆x
≤ uα ≤ −

1

a∆x
.

This contradicts the assumption a > 0 and therefore, � � ≤ 1/2 is a first condition for L∞-stability of (4.6).
Using this result we summarise (4.15a) in the form

|uα| ≤
1

a∆x
for � � < 1/2.

From (4.15b), we conclude that in the case � � < 0 we must require

1

a∆x
≤ u1 + u2 ≤ −

1

a∆x

and therefore, � � ≥ 0 is also necessary for L∞-stability. Thus, (4.15b) implies

|u1|+ |u2| ≤
1

a∆x

for � � > 0 and we can finally formulate

Proposition 4.4. For a constant velocity field u, the general transport scheme (4.6) is L∞-stable if

0 ≤ � � ≤ 1

2
,

∆t

a∆x2
≤

1

2(1− � � ) ,

|uα| ≤
1

a∆x
for � � 6= 1

2
, and |u1|+ |u2| ≤

1

a∆x
for � � 6= 0. (4.16)

Thus, the maximal value of a for which (4.6) is L∞-stable in the case � � 6= 0 is

a =
1

∆x (|u1|+ |u2|)
.

Analysing L2-stability we find the general transport scheme (4.6) to yield the amplification factor

B(ξ) = 1 +
∆t

2∆x


4� � − 4

a∆x
+

∑

j=1,3,5,7

� �
(

1

a∆x
+ cj;αuα

)
eiξαcj;α∆x

+
∑

j=2,4,6,8

(1− 2� � )
(

1

a∆x
+ cj;αuα

)
eiξαcj;α∆x


 ,

for u = const, so we obtain

Proposition 4.5. For a constant velocity field u, the general transport scheme (4.6) is L2-stable if

|B| ≤ 1.

However, replacing A with B in Algorithm 4.1 has no influence on the result of the analysis. Therefore,
as long as conditions (4.16) hold, plotting the maximal value of ∆t/

(
2a∆x2

)
for which (4.6) is still

L2-stable respectively L∞-stable results again in the chart already presented in Figure 4.1. Thus, we
conclude that stability of the general viscous transport scheme (4.6) is governed by stability of its parabolic
part (4.10).

4.3. Numerical experiments with improved ILBGK interface tracking

From Section 4.2, we know that for a constant velocity field u the general viscous transport scheme (4.6)
allows the largest time step size and suffers least diffusion if

� � =
1

2
and a =

1

∆x (|u1|+ |u2|)
for u ∈

{
u(1),u(2)

}
. (4.17)

Furthermore, we know that

max
∆t

2a∆x2
=

1

2
and therefore, ∆tmax = a∆x2 =

∆x

|u1|+ |u2|
,
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initialise χ and u;

choose � � and a according to (4.17);

let t = 0;

while t < tmax

determine χ(t+∆t,x) according to (4.18);

let t = t+∆t;

Algorithm 4.2: Interface tracking with scheme (4.18)

so scheme (4.6) takes the form

χ(t+∆t,x) = χ(t,x) +
1

4



1 0 1

0 −4 0

1 0 1


χ(t,x)−

1

4 (|u1|+ |u2|)



−1 0 1

0 0 0

−1 0 1


 (χu1) (t,x)

−
1

4 (|u1|+ |u2|)




1 0 1

0 0 0

−1 0 −1


 (χu2) (t,x). (4.18)

We perform benchmark simulations for the above scheme with u = u(1) and u = u(2). The largest
possible value of a is then ten respectively five and therefore, we need 40 respectively 80 time steps for
one revolution on the 40 × 40 lattice as well as 80 respectively 160 time steps on the 80 × 80 lattice.
Algorithm 4.2 gives an overview of the whole procedure. Simulation results are collected in Figures 4.2
and 4.3 while mass loss and computing times are shown in Table 4.1. Note that for u = u(1) and
∆t = 10∆x the viscous transport scheme (4.18) reduces to

χ(t+∆t,x) = χ(t,x) +
1

2



1 0 0

0 −2 0

1 0 0


χ(t,x)

which, on the given assumptions, approximates

∂tχ+ ∂1χu1 =
∆x

20
∂ααχ,

for which in those directions parallel to the flow field u(1), the transport term clearly dominates diffusion.
Nevertheless, we learn from the plots that there is still too much diffusion in the scheme, so we must
apply the recolouring step. However, it should be mentioned that both mass loss and computing time for
the benchmark are highly competitive.

Following Algorithm 4.3 we simulate the benchmark for u ∈
{
u(1),u(2)

}
using (4.18) and the re-

colouring step, where we replace the uncoloured pseudo-particle density � � (u;v) with
� �
gen(u;v) = f∗gen (1 + a∆xuαvα)

for the above choice of parameters. If u = u(3) we cannot use (4.17), so we define

� � =
1

2
and a =

1

∆xmaxx {|u1|+ |u2|}
for u = u(3). (4.19)

Therefore, we need approximately 264 time steps for one revolution on the 40 × 40 lattice and approxi-
mately 515 time steps for one revolution on the 80× 80 lattice.

The corresponding results are just perfect for u = u(1) and quite unsatisfactory for u ∈
{
u(2),u(3)

}
,

as can be seen in Figures 4.4 to 4.6 and Table 4.2. Still, we chose ∆t such that ∆t/
(
2a∆x2

)
= 1/2 which

is exactly the border between the stable and the unstable regime (recall Figure 4.1) and choosing ∆t not
quite as large may avoid some severe numerical difficulties. Therefore, we present results computed with
Algorithm 4.3 for the lattice BGK time step size ∆t = ∆x2 in Figures 4.7 to 4.9 and Table 4.3.

In the given situation, the result for u(0,x) = u(1) is worse than before, that for u(0,x) = u(2) is
better, and that for u(0,x) = u(3) is of the same quality as its predecessor. Since we cannot obtain any
substantial improvement for the general case we decide to give up this method.
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Figure 4.2: Solution of the benchmark problem with Algorithm 4.2 for u = u(1) on a 40 × 40 (top line) and an 80 × 80
(bottom line) lattice. Left: surface plot of the simulation result, middle: contour lines for χ = 1/2 of the simulation result

(solid line), the correct solution (dotted line), and the outcome of ILBGK interface tracking (dashed line), right: absolute
value of the Euclidean error in the simulation result.
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Figure 4.3: Solution of the benchmark problem with Algorithm 4.2 for u = u(2) on a 40 × 40 (top line) and an 80 × 80

(bottom line) lattice. Left: surface plot of the simulation result, middle: contour lines for χ = 1/2 of the simulation result
(solid line), the correct solution (dotted line), and the outcome of ILBGK interface tracking (dashed line), right: absolute

value of the Euclidean error in the simulation result.
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Figure 4.4: Solution of the benchmark problem with Algorithm 4.3 for u = u(1) and ∆t = a∆x2 on a 40 × 40 (top line)
and an 80 × 80 (bottom line) lattice. Left: surface plot of the simulation result, middle: contour lines for χ = 1/2 of the

simulation result (solid line), the correct solution (dotted line), and the outcome of ILBGK interface tracking (dashed line),
right: absolute value of the Euclidean error in the simulation result.
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Figure 4.5: Solution of the benchmark problem with Algorithm 4.3 for u = u(2) and ∆t = a∆x2 on a 40 × 40 (top line)

and an 80 × 80 (bottom line) lattice. Left: surface plot of the simulation result, middle: contour lines for χ = 1/2 of the
simulation result (solid line), the correct solution (dotted line), and the outcome of ILBGK interface tracking (dashed line),

right: absolute value of the Euclidean error in the simulation result.
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Figure 4.6: Solution of the benchmark problem with Algorithm 4.3 for u = u(3) and ∆t = a∆x2 on a 40 × 40 (top line)
and an 80 × 80 (bottom line) lattice. Left: surface plot of the simulation result, middle: contour lines for χ = 1/2 of the
simulation result (solid line), the correct solution (dotted line), and the outcome of ILBGK interface tracking (dashed line),
right: absolute value of the Euclidean error in the simulation result.
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Figure 4.7: Solution of the benchmark problem with Algorithm 4.3 for u = u(1) and ∆t = ∆x2 on a 40 × 40 (top line)
and an 80 × 80 (bottom line) lattice. Left: surface plot of the simulation result, middle: contour lines for χ = 1/2 of the

simulation result (solid line), the correct solution (dotted line), and the outcome of ILBGK interface tracking (dashed line),

right: absolute value of the Euclidean error in the simulation result.
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Figure 4.8: Solution of the benchmark problem with Algorithm 4.3 for u = u(2) and ∆t = ∆x2 on a 40 × 40 (top line)
and an 80 × 80 (bottom line) lattice. Left: surface plot of the simulation result, middle: contour lines for χ = 1/2 of the

simulation result (solid line), the correct solution (dotted line), and the outcome of ILBGK interface tracking (dashed line),
right: absolute value of the Euclidean error in the simulation result.
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Figure 4.9: Solution of the benchmark problem with Algorithm 4.3 for u = u(3) and ∆t = ∆x2 on a 40 × 40 (top line)
and an 80 × 80 (bottom line) lattice. Left: surface plot of the simulation result, middle: contour lines for χ = 1/2 of the

simulation result (solid line), the correct solution (dotted line), and the outcome of ILBGK interface tracking (dashed line),

right: absolute value of the Euclidean error in the simulation result.
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initialise χ and u;

if u ∈
{
u(1),u(2)

}
choose � � and a according to (4.17);

if u = u(3) choose � � and a according to (4.19);

let t = 0;

while t < tmax

do recolouring according to Algorithm 2.8 with � �
gen instead of � � ;

determine χ(t+∆t,x) according to (2.66);

let t = t+∆t;

Algorithm 4.3: Interface tracking with equation (4.1) and recolouring

Lattice u(0,x) Mass loss in % Number of flops

40× 40 u(1) 0 5.11392 · 106

40× 40 u(2) −4.26326 · 10−14 1.02278 · 107

40× 40 u(3) 0 3.37519 · 107

80× 80 u(1) 0 3.88550 · 107

80× 80 u(2) −4.26326 · 10−14 7.77101 · 107

80× 80 u(3) −1.98952 · 10−13 2.50129 · 108

Table 4.1: Percentage loss of red mass and computing times for the simulations with Algorithm 4.2

Lattice u(0,x) Mass loss in % Number of flops

40× 40 u(1) 0 1.05043 · 107

40× 40 u(2) 0 2.11877 · 107

40× 40 u(3) 2.41585 · 10−13 7.00696 · 107

80× 80 u(1) 0 8.14550 · 107

80× 80 u(2) 0 1.64395 · 108

80× 80 u(3) 7.38964 · 10−13 5.29820 · 108

Table 4.2: Percentage loss of red mass and computing times for the simulations with Algorithm 4.3 for ∆t = a∆x2

Lattice u(0,x) Mass loss in % Number of flops

40× 40 u(1) 5.82645 · 10−13 1.05249 · 108

40× 40 u(2) 1.73372 · 10−12 1.05886 · 108

40× 40 u(3) 1.15108 · 10−12 2.65433 · 108

80× 80 u(1) 5.96856 · 10−13 8.15681 · 108

80× 80 u(2) 3.42482 · 10−12 8.20843 · 108

80× 80 u(3) 4.95959 · 10−12 2.05742 · 109

Table 4.3: Percentage loss of red mass and computing times for the simulations with Algorithm 4.3 for ∆t = ∆x2
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CHAPTER 5

Volume tracking lattice BGK

After we separated interface tracking from the Navier-Stokes solver in ILBGK, we now want to combine
the ILBGK Navier-Stokes solver with a classical method for interface tracking, namely the conservative
volume tracking method. Even though immiscible lattice BGK and conservative volume tracking seem
to be based on completely different ideas, we will see that they have a lot of things in common.

We first introduce a conservative volume tracking method and apply it to the benchmark in Sec-
tion 5.1, then we point out mutualities and differences of ILBGK and conservative volume tracking in
Section 5.2. Finally, in Section 5.3, we introduce a volume tracking lattice BGK method which solves the
Navier-Stokes equations with lattice BGK and determines the motion of interface with volume tracking.
At the end of Section 5.3, this method is applied to the benchmark and the results are compared to those
achieved with plain ILBGK.

5.1. Conservative volume tracking

In this Section, we will consider a conservative volume tracking method [24, 46, 62, 65] which is based
on the ideas of Rider and Kothe [65] in their most simple form. Let us therefore interpret each lattice
point x ∈ X as the centre point of a quadratic grid cell � (x), as shown in Figure 5.1. Choosing all cell
edges to be of length ∆x we make sure that the uniform lattice X is then covered by a uniform grid.
Now, the basic idea of volume tracking is to interpret χ(x) as that volume fraction of grid cell � (x) which
is filled with red fluid and to solve the transport equation (2.13) with a conservative algorithm based on
the so-called volume fluxes of red fluid across the cell boundaries.

In Section 5.1.1, we will discuss the basic prerequisite of volume tracking, namely the reconstruction
of the interface in a given grid cell. Section 5.1.2 deals with the actual volume tracking algorithm and in
Section 5.1.3, we present some numerical results.

5.1.1. Interface reconstruction. We are particularly interested in cells containing both red and blue
fluid, i. e. cells with 0 < χx < 1, where

χx(t) =
1

∆x2

∫

� (x) χ(t,y) dy. (5.1)

Remember that all edges of � (x) have length ∆x, so the volume of � (x) is exactly ∆x2. Let us now
assume each Γx = � (x) ∩ Γ to be a straight line, so we can describe it with the line equation

nx;αyα + Lx = 0 for y ∈ Γx, (5.2)

PSfrag replacements
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x + c3∆x

Figure 5.1: The quadratic grid cell � (x) (boldface square) around lattice point x
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Figure 5.2: Example of a reconstructed interface in a grid cell. Points 1 to 4 are collected counter clockwise for the

calculation of V (Ωrx) with equation (5.4).

where nx = n(x) is the inner unit normal vector of Γx and the line constant Lx is still to be determined.
Since by definition, n points into the red liquid we have in general

nx;αyα + Lx





> 0 for y ∈ Ωr
x

= 0 for y ∈ Γx

< 0 for y ∈ Ωb
x

(5.3)

with Ωr
x = � (x) ∩ Ωr and Ωb

x = � (x) ∩ Ωb.
Suppose for a moment Lx is known. Then, we can use (5.3) to check whether or not a given point

y ∈ � (x) belongs to Ωr
x. Since Γx is assumed to be a straight line and � (x) is known to be a square

Ωr
x must be a triangle, a tetragon, or a pentagon. The vertices of the polygon Ωr

x consist exactly of the
vertices of � (x) that lie inside the red phase and the intersection points of Γx with the cell edges of � (x).
Once for m = 1, . . . ,M, with M ∈ {3, 4, 5}, the vertices ym of Ωr

x are known in Cartesian coordinates,
we can calculate the volume V (Ωr

x) of Ω
r
x using the formula

V (Ωr
x) =

1

2

M∑

m=1

(
ym1 y

m+1
2 − ym+11 ym2

)
, (5.4)

where yM+1 = y1 is implicitly assumed (see Figure 5.2 for an exemplifying illustration). Afterwards, we
express the volume fraction χx occupied by red fluid in the form χx = V (Ωr

x) /∆x
2 or vice versa, we

have V (Ωr
x) = χx∆x

2.
To compute Lx, we first pass a line perpendicular to nx through each vertex of � (x) and denote

the corresponding line constant by Lm
x , where m specifies the vertex (see Figure 5.3 for more details).

Together with the cell edges of � (x), those lines form a polygon which is uniquely defined by the condition
that nx must point into its interior (recall Figure 5.2). The volume V (Lm

x ) of this polygon is named
truncation volume. If one of the Lm

x solves now V (Lm
x ) = V (Ωr

x) we are already done. Otherwise, we
compute V (Lm

x ) − V (Ωr
x) for each Lm

x and sort the results in ascending order. Then, we pick L+x such
that

V
(
L+x
)
= min

m=1...4
{V (Lm

x ) : V (Lm
x )− V (Ωr

x) > 0}

and L−
x such that

V
(
L−

x

)
= max

m=1...4
{V (Lm

x ) : V (Lm
x )− V (Ωr

x) < 0} .

Afterwards, we interpolate the function V (Lx) − V (Ωr
x) between L−

x and L+x . Finally, we use Algo-
rithm 5.1, which is typically referred to as Brent’s algorithm [6, 61], to solve

Vol (Lx) = V (Lx)− V (Ωr
x) = 0

for Lx. Knowing nx and Lx we are now able to completely describe Γx by equation (5.2).

5.1.2. Volume tracking. The next step will be the determination of the fluxes of red fluid across the
cell boundaries. Those fluxes correspond to the amount of red fluid flowing from � x to a neighbouring
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Figure 5.3: Two lines with identical normal vector passing through vertices 2 respectively 4. Those lines are marked with

their particular line constants L2x and L4x. The parallel lines passing through vertices 1 and 3 intersect the grid cell in one

point only, so the corresponding truncation volume can only be zero or ∆x2.

let � 

1 = L−

x ,
� 

2 = L+x , and

� 

3 =

� 

1;

while Vol(� 

2) 6= 0

if Vol(� 

2)Vol(

� 

3) > 0 let � 


3 =
� 

1;

if |Vol(� 

3)| < |Vol(

� 

2)| exchange

� 

2 with � 


3 and let � 

1 =

� 

3;

let � � = (� 

3 −

� 

2)/2;

if � � ≈ 0 or Vol(� 

2) ≈ 0 stop here, � 


2 is the solution;

else

try to update � 

2 with one step of inverse quadratic interpolation;

if that works out well go on, everything is fine;

else

update � 

2 with a bisection step;

Algorithm 5.1: Brent’s algorithm

grid cell. In particular, we apply here a conservative fractional step (or operator split) algorithm [62, 65],
i. e. we apply a scheme of the form

χx

(
t+

∆t

2

)
= χx(t) +

∆t

∆x

(
F

(
t,x+

c5

2
∆x
)
− F

(
t,x+

c1

2
∆x
))

(5.5a)

and

χx(t+∆t) = χx

(
t+

∆t

2

)
+

∆t

∆x

(
F

(
t+

∆t

2
,x+

c7

2
∆x

)
− F

(
t+

∆t

2
,x+

c3

2
∆x

))
, (5.5b)

where F
(
t,x+ c1

2 ∆x
)
represents the normalised volume flux across the eastern edge of � (x) computed

at time t. All other normalised volume fluxes are denoted analogously.
There is a simple geometric interpretation of the volume fluxes which we will now exemplify for

F
(
t,x+ c1

2 ∆x
)
in the case u1

(
t,x+ c1

2 ∆x
)
≥ 0. Let us therefore divide the grid cell � (x) into two

disjoint rectangles, one of area u1
(
t,x+ c1

2 ∆x
)
∆t∆x and one of area

(
∆x− u1

(
t,x+ c1

2 ∆x
)
∆t
)
∆x,

as illustrated in Figure 5.4. Then, all the fluid contained in the first rectangle will cross the eastern cell
edge in the present time step while all the fluid in the latter one will fail to do so. In particular, this means
that the mass flux of red fluid across the eastern cell boundary corresponds exactly to the amount of red
fluid contained in the volume u1

(
t,x+ c1

2 ∆x
)
∆t∆x. This, in turn, coincides with the fluid contained

in the dark tetragon in the south-eastern corner of the example grid cell � (x) in Figure 5.4. Therefore, if
V
(
t,x+ c1

2 ∆x
)
denotes the volume of red fluid in u1

(
t,x+ c1

2 ∆x
)
∆t∆x the volume flux is given by

FVol
(
t,x+

c1

2
∆x
)
= V

(
t,x+

c1

2
∆x
)

and if Volx(t) denotes the volume of red fluid in grid cell � (x) at time t we have

Volx

(
t+

∆t

2

)
= Volx(t) +

(
V
(
t,x+

c5

2
∆x
)
− V

(
t,x+

c1

2
∆x
))

.
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Figure 5.4: The volume flux of red fluid over the eastern cell edge in the case u1
(
t,x + c1

2
∆x
)
≥ 0 corresponds exactly to

the volume of the dark tetragon at the lower right of the example grid cell � (x). The full, i. e. uncoloured, volume flux over

the eastern cell edge is given by the volume of the rectangle u1
(
t,x + c1

2
∆x
)
∆t∆x while the volume of its complement

in � (x), (∆x− u1
(
t,x + c1

2
∆x
)
∆t
)
∆x, corresponds the volume of (uncoloured) fluid that does not pass the eastern cell

edge. Volume fractions and normalised volume fluxes are obtained by dividing the volumes of the polygons and the volume

fluxes, respectively, by ∆x2.

Dividing this equation by the volume of the grid cell, ∆x2, we obtain

χx

(
t+

∆t

2

)
= χx(t) +

∆t

∆x

(
1

∆t∆x
V
(
t,x+

c5

2
∆x
)
−

1

∆t∆x
V
(
t,x+

c1

2
∆x
))

and comparing this equation with (5.5a) we find that

F

(
t,x+

c5

2
∆x
)
=

1

∆t∆x
V
(
t,x+

c5

2
∆x
)

(5.6a)

and

F

(
t,x+

c1

2
∆x
)
=

1

∆t∆x
V
(
t,x+

c1

2
∆x
)
. (5.6b)

In exactly the same way, we gain

F

(
t+

∆t

2
,x+

c7

2
∆x

)
=

1

∆t∆x
V

(
t+

∆t

2
,x+

c7

2
∆x

)
(5.6c)

and

F

(
t+

∆t

2
,x+

c3

2
∆x

)
=

1

∆t∆x
V

(
t+

∆t

2
,x+

c3

2
∆x

)
, (5.6d)

so we can apply (5.6a) as well as (5.6b) to update χx(t+∆t/2) using equation (5.5a) and then exploit (5.6c)
as well as (5.6d) to update χx(t) using equation (5.5b).

Let us now give a more classical interpretation of (5.6). Knowing from (5.1) that χx(t) = Volx(t)/∆x
2

we define

χx+
c1
2 ∆x(t) =

V
(
t,x+ c1

2 ∆x
)

u1
(
t,x+ c1

2 ∆x
)
∆t∆x

,

i. e. we let χx+
c1
2 ∆x(t) equal the volume fraction of the red fluid in the rectangle u1

(
t,x+ c1

2 ∆x
)
∆t∆x

(see again Figure 5.4), so we gain

u1

(
t,x+

c1

2
∆x
)
χx+

c1
2 ∆x(t) =

1

∆t∆x
V
(
t,x+

c1

2
∆x
)
.

Since analogous results hold at each cell edge of � (x) and
∂1 (u1χ)x (t) =

1

∆x

(
u1

(
t,x+

c1

2
∆x
)
χx+

c1
2 ∆x(t)− u1

(
t,x+

c5

2
∆x
)
χx+

c5
2 ∆x(t)

)
+ O

(
∆x2

)
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initialise χx(0) and u(0,x);

let t = 0;

while t < tmax

reconstruct the interface in each grid cell as described in Section 5.1.1;

if t mod 2 = 1

compute F (t,x+ c1∆x/2) in each grid cell according to (5.6b);

compute χx (t+∆t/2) in each grid cell according to (5.5a);

compute F (t+∆t/2,x+ c3∆x/2) in each grid cell according to (5.6d);

compute χx(t+∆t) in each grid cell according to (5.5b);

else

compute F (t,x+ c3∆x/2) in each grid cell according to (5.6d);

compute χx (t+∆t/2) in each grid cell according to (5.7a);

compute F (t+∆t/2,x+ c1∆x/2) in each grid cell according to (5.6b);

compute χx(t+∆t) in each grid cell according to (5.7b);

let t = t+∆t;

if necessary, update u(t,x) with any method;

Algorithm 5.2: Conservative volume tracking

respectively

∂2 (u2χ)x

(
t+

∆t

2

)
=

1

∆x

(
u2

(
t+

∆t

2
,x+

c3

2
∆x

)
χx+

c3
2 ∆x

(
t+

∆t

2

)

− u2

(
t+

∆t

2
,x+

c7

2
∆x

)
χx+

c7
2 ∆x

(
t+

∆t

2

))
+ O

(
∆x2

)
,

where (uαχ)x (t) = uα(t,x)χx(t), we find that (5.5) is in fact a proper discretisation of the transport
equation (2.13) if (5.6) is true.

Note that we can dramatically improve the accuracy of scheme (5.5) by employing the so-called Strang
splitting [75], i. e. by applying (5.5) only in uneven time steps and sweeping the directions otherwise.
This means that in even time steps, we have to solve

χx

(
t+

∆t

2

)
= χx(t) +

∆t

∆x

(
F

(
t,x+

c7

2
∆x
)
− F

(
t,x+

c3

2
∆x
))

(5.7a)

and

χx(t+∆t) = χx

(
t+

∆t

2

)
+

∆t

∆x

(
F

(
t+

∆t

2
,x+

c5

2
∆x

)
− F

(
t+

∆t

2
,x+

c1

2
∆x

))
(5.7b)

while in uneven time steps, we stick to (5.5). The complete volume tracking procedure is summarised in
Algorithm 5.2.

5.1.3. Numerical experiments with conservative volume tracking. Let us now apply Algo-
rithm 5.2 to the benchmark problem. Figures 5.5, 5.6, and 5.7 show the results computed with u = u(1),
u = u(2), respectively u = u(3). We find that for all simulations, conservative volume tracking yields very
accurate results and clearly outperforms the ILBGK interface tracking Algorithm 2.9. However, looking
at Table 5.1 we find that in return for its poor accuracy, ILBGK interface tracking needs less computing
time than conservative volume tracking. Furthermore, this table teaches us that none of these methods
suffers from considerable mass loss.

5.2. ILBGK interface tracking versus conservative volume tracking

Let us now have a closer look at the relation between the ILBGK interface tracking Algorithm 2.9 and the
conservative volume tracking Algorithm 5.2. Both have in common that they use the indicator function
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Figure 5.5: Solution of the benchmark problem for u = u(1) with Algorithm 5.2 on a 40 × 40 (top) and an 80 × 80
(bottom) lattice, all pictures taken after one complete revolution. Left: volume fraction χx of red fluid, middle: level line

for χ = 1/2 respectively χx = 1/2 of the correct solution (dotted line), the ILBGK approximation (dashed line), and the
volume tracking result (solid line), right: absolute value of the Euclidean error in the volume tracking result.
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Figure 5.6: Solution of the benchmark problem for u = u(2) with Algorithm 5.2 on a 40 × 40 (top) and an 80 × 80
(bottom) lattice, all pictures taken after one complete revolution. Left: volume fraction χx of red fluid, middle: level line

for χ = 1/2 respectively χx = 1/2 of the correct solution (dotted line), the ILBGK approximation (dashed line), and the

volume tracking result (solid line), right: absolute value of the Euclidean error in the volume tracking result.
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Figure 5.7: Solution of the benchmark problem for u = u(3) with Algorithm 5.2 on a 40 × 40 (top) and an 80 × 80
(bottom) lattice, all pictures taken after one complete revolution. Left: volume fraction χx of red fluid, middle: level line

for χ = 1/2 respectively χx = 1/2 of the correct solution (dotted line), the ILBGK approximation (dashed line), and the
volume tracking result (solid line), right: absolute value of the Euclidean error in the volume tracking result.

Lattice u Mass loss (CVT) Mass loss (ILBGK) Flops (CVT) Flops (ILBGK)

40× 40 u(1) −5.00222 · 10−12 1.70530 · 10−13 9.29160 · 108 2.07773 · 108

40× 40 u(2) −1.42478 · 10−10 1.29319 · 10−12 2.49489 · 109 2.07769 · 108

40× 40 u(3) −1.87498 · 10−10 −3.26850 · 10−13 9.18812 · 109 5.19433 · 108

80× 80 u(1) −1.25056 · 10−12 2.13163 · 10−13 3.63342 · 109 1.59739 · 109

80× 80 u(2) −6.43610 · 10−11 1.90425 · 10−12 9.76144 · 109 1.59743 · 109

80× 80 u(3) −1.70616 · 10−10 −9.66338 · 10−13 3.83166 · 1010 3.99364 · 109

Table 5.1: Percentage loss of red mass and computing times for the simulations with the conservative volume tracking

Algorithm 5.2 (CVT) and the ILBGK interface tracking Algorithm 2.9 (ILBGK)

χ of red fluid to determine the position of the interface Γ but they use very different approaches to solve
the transport equation (2.13).

ILBGK interface tracking determines the local colour gradient F , which is an inner normal vector
of Γ, and distributes red pseudo-mass, i. e. χ, into q different directions (for example q = 9 in the D2Q9
model used here) such that as much red pseudo-mass as possible is distributed into the direction closest
to F . If there is some red pseudo-mass left the direction which is second closest to F obtains as much
as possible, and so on until there is no more red pseudo-mass left. This procedure results, in fact, in a
perfectly sharp interface, never more than two grid cells wide, but the run of the interface is not kept
under control. Actually, this is not very surprising since the whole procedure is designed to keep the
interface sharp but no care at all is taken about its correct shape.

In contrast to ILBGK interface tracking, the conservative volume tracking Algorithm 5.2 is more
sophisticated. It calculates the inner unit normal vector n of Γ according to Proposition 2.5 and then
utilises nx and χx to find a reasonable approximation to Γ in each grid cell. After this, the volume
tracking method retraces in some sense the characteristics of the transport equation (2.13) to find the
full flux of fluid volume over the cell boundaries. Since in each grid cell, the position of Γ is known
the volume tracking Algorithm can now determine the fluxes of red fluid over the cell boundaries. The
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initialise ρ(0,x), χx(0), and u(0,x);

let f(0,x;v) = feq
S (ρ(0,x),u(0,x)) as defined by (2.43);

while t < tmax

determine feq
S (ρ(t,x),u(t,x)) according to (2.43);

do uncoloured collision according to (2.44);

do uncoloured propagation according to (2.45);

determine χx(t+∆t) according to Algorithm 5.2;

let t = t+∆t;

compute ρ(t,x) and ρuα(t,x) according to (2.34);

let uα(t,x) = ρuα(t,x)/ρ(t,x);

Algorithm 5.3: Volume tracking lattice BGK

change in χx is then given by the sum of the normalised fluxes of red volume over all boundaries of the
grid cell. Altogether, we see that volume tracking provides a very detailed treatment of all aspects of
interface motion by carefully determining the amount of red fluid to be moved to a given direction. This
guarantees not only the sharpness of the interface but also its correct motion.

Comparing both methods we find that ILBGK is in some sense a crude version of conservative volume
tracking. This interpretation coincides with the results presented in Section 5.1, where we found that
ILBGK interface tracking is faster but less accurate than conservative volume tracking.

5.3. Combination of conservative volume tracking and lattice BGK

Our goal is now to design a lattice BGK method for two-phase flow which does not suffer from too much
disturbance of the interface. For this reason, we construct a volume tracking lattice BGK (VTLBGK)
method by combining the volume tracking Algorithm 5.2 with the Navier-Stokes solver of the immiscible
lattice BGK Algorithm 2.6. The whole procedure is summarised in Algorithm 5.3.

Let us now apply this Algorithm to the benchmark problem. In analogy to Section 3.4, we assume % =
1 and ω = 1, which yields the dynamic viscosity µ = 1/6, and we run simulations for σ ∈ {0.001, 0.01, 0.1}.
Results for σ = 0.001 are shown in Figures 5.8 to 5.10, those for σ = 0.01 are collected in Figures 5.11
to 5.13, and those for σ = 0.1 can finally be found in Figures 5.14 to 5.16. Note that we do not know the
analytical solution for any of those experiments . Mass loss and computing times for all simulations are
collected in Table 5.2.

In analogy to the results presented in Section 5.1.3, we find that for σ = 0.001 VTLBGK yields more
accurate results than ILBGK. For σ = 0.1 surface tension turns the square into a smooth circle in the
VTLBGK simulations and into a perturbed circle in the ILBGK computations, i. e, surface tension is
already quite strong but still too weak to cure the spurious oscillations produced by ILBGK interface
tracking. In the simulations for σ = 0.1, both methods produce a smooth circle from which we conclude
that surface tension does no longer allow any other shape of the interface. Note that computing time in
VTLBGK simulations is always higher than in ILBGK calculations.

The simulations for u(0,x) = u(3) produce the kind of irregularities we already observed in Sec-
tions 3.2 and 3.4. Still, there is no rigorous explanation for this phenomenon. Note that this time,
we also observe perturbations of χx in the results for u(0,x) = u(1) but their order of magnitude is
much smaller. Also the rigorous investigation of their origin is a task for future research. One possible
explanation for the irregularities in χx might be the incompressibility error in the velocity field causing
perturbations of χx which are then amplified in later time steps. However, this is pure speculation.
Fortunately, mass loss is only of O

(
10−10

)
for all VTLBGK computations.
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Figure 5.8: Solution of the benchmark problem for u(0,x) = u(1) and σ = 0.001 using Algorithm 5.3 on a 40 × 40 (top
line) and an 80× 80 (bottom line) lattice, all pictures taken after one revolution. Left: the volume fraction χx, right: level

line for χ = 1/2 respectively χx = 1/2 of the ILBGK approximation (dashed line) and the VTLBGK result (solid line).
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Figure 5.9: Solution of the benchmark problem for u(0,x) = u(2) and σ = 0.001 using Algorithm 5.3 on a 40 × 40 (top

line) and an 80× 80 (bottom line) lattice, all pictures taken after one revolution. Left: the volume fraction χx, right: level
line for χ = 1/2 respectively χx = 1/2 of the ILBGK approximation (dashed line) and the VTLBGK result (solid line).
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Figure 5.10: Solution of the benchmark problem for u(0,x) = u(3) and σ = 0.001 using Algorithm 5.3 on a 40× 40 (top
line) and an 80× 80 (bottom line) lattice, all pictures taken after one revolution. Left: the volume fraction χx, right: level

line for χ = 1/2 respectively χx = 1/2 of the ILBGK approximation (dashed line) and the VTLBGK result (solid line).
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Figure 5.11: Solution of the benchmark problem for u(0,x) = u(1) and σ = 0.01 using Algorithm 5.3 on a 40 × 40 (top

line) and an 80× 80 (bottom line) lattice, all pictures taken after one revolution. Left: the volume fraction χx, right: level
line for χ = 1/2 respectively χx = 1/2 of the ILBGK approximation (dashed line) and the VTLBGK result (solid line).
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Figure 5.12: Solution of the benchmark problem for u(0,x) = u(2) and σ = 0.01 using Algorithm 5.3 on a 40 × 40 (top
line) and an 80× 80 (bottom line) lattice, all pictures taken after one revolution. Left: the volume fraction χx, right: level

line for χ = 1/2 respectively χx = 1/2 of the ILBGK approximation (dashed line) and the VTLBGK result (solid line).
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Figure 5.13: Solution of the benchmark problem for u(0,x) = u(3) and σ = 0.01 using Algorithm 5.3 on a 40 × 40 (top

line) and an 80× 80 (bottom line) lattice, all pictures taken after one revolution. Left: the volume fraction χx, right: level
line for χ = 1/2 respectively χx = 1/2 of the ILBGK approximation (dashed line) and the VTLBGK result (solid line).
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Figure 5.14: Solution of the benchmark problem for u(0,x) = u(1) and σ = 0.1 using Algorithm 5.3 on a 40 × 40 (top
line) and an 80× 80 (bottom line) lattice, all pictures taken after one revolution. Left: the volume fraction χx, right: level

line for χ = 1/2 respectively χx = 1/2 of the ILBGK approximation (dashed line) and the VTLBGK result (solid line).
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Figure 5.15: Solution of the benchmark problem for u(0,x) = u(2) and σ = 0.1 using Algorithm 5.3 on a 40 × 40 (top

line) and an 80× 80 (bottom line) lattice, all pictures taken after one revolution. Left: the volume fraction χx, right: level
line for χ = 1/2 respectively χx = 1/2 of the ILBGK approximation (dashed line) and the VTLBGK result (solid line).
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Figure 5.16: Solution of the benchmark problem for u(0,x) = u(3) and σ = 0.1 using Algorithm 5.3 on a 40 × 40 (top
line) and an 80× 80 (bottom line) lattice, all pictures taken after one revolution. Left: the volume fraction χx, right: level

line for χ = 1/2 respectively χx = 1/2 of the ILBGK approximation (dashed line) and the VTLBGK result (solid line).

Lattice u(0,x) σ Mass loss in % Number of flops

40× 40 u(1) 0.001 −5.75014 · 10−10 7.88354 · 109

40× 40 u(1) 0.01 2.80039 · 10−10 6.44152 · 109

40× 40 u(1) 0.1 −2.80011 · 10−10 6.72455 · 109

40× 40 u(2) 0.001 1.72520 · 10−10 5.28694 · 109

40× 40 u(2) 0.01 −1.15008 · 10−10 4.64590 · 109

40× 40 u(2) 0.1 −1.22498 · 10−10 5.34097 · 109

40× 40 u(3) 0.001 −8.77520 · 10−10 2.91615 · 1010

40× 40 u(3) 0.01 3.34978 · 10−10 2.86207 · 1010

40× 40 u(3) 0.1 −9.22469 · 10−10 2.27901 · 1010

80× 80 u(1) 0.001 1.48745 · 10−10 6.73781 · 1010

80× 80 u(1) 0.01 2.90640 · 10−10 6.13699 · 1010

80× 80 u(1) 0.1 −2.25015 · 10−10 6.34040 · 1010

80× 80 u(2) 0.001 −3.09370 · 10−10 2.72286 · 1010

80× 80 u(2) 0.01 1.88123 · 10−10 2.34716 · 1010

80× 80 u(2) 0.1 −5.81366 · 10−10 2.73493 · 1010

80× 80 u(3) 0.001 2.23096 · 10−10 2.85516 · 1011

80× 80 u(3) 0.01 −3.22501 · 10−10 2.53958 · 1011

80× 80 u(3) 0.1 −2.03130 · 10−10 2.12220 · 1011

Table 5.2: Percentage loss of red mass and computing times for the simulations with Algorithm 5.3
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Conclusions

Assuming the absence of jumps in density and stress at the interface we have studied the immiscible
lattice BGK model of incompressible two-phase flow. Even though many parts of the analysis have been
performed for the particular D2Q9 model, the underlying ideas apply directly to other lattices structures
because they are based only on general properties of lattice BGK. Adopting those ideas to more general
immiscible lattice Boltzmann models is also straightforward.

By detailed mathematical analysis, we have found a recently published [22, 23] variant of ILBGK to
be more reasonable than the original. Furthermore, we have presented a model of surface tension for which
immiscible lattice BGK is formally consistent to the full-space form of the incompressible Navier-Stokes
equations. The proof of this consistency has turned out to be not at all straightforward.

Particular focus was given on the intrinsic interface tracking method of immiscible lattice BGK. This
method allows a sharp interface to smear out during one time step and corrects the smearing during the
next one. This correction is done by the recolouring step. In one space dimension, this method works
very well but in 2-d, the recolouring step produces severe perturbation in the interface. Furthermore, for
a special velocity field we have observed irregularities in the solution which we have not yet been able to
rigorously explain. However, it should be mentioned that ILBGK interface tracking performs definitely
better than a Riemann solver because Riemann solvers are not able to maintain a sharp interface in more
than one space dimension.

We have tried two approaches to cure the perturbation of the interface, anisotropic diffusion and
artificial surface tension. Using anisotropic diffusion we have managed to remove the disturbance of
the interface but the price we had to pay for this was unacceptable mass loss. The artificial surface
tension approach has turned out to be of no help for removing the perturbation of the interface but
produced unacceptable mass loss as well. With artificial surface tension, we have again observed the
above irregularities in the solution for a special velocity field.

Furthermore, we have found that ILBGK interface tracking is only a special case of a more general
method which first solves a parameter-dependent viscous transport equation for the indicator function
of one phase and then applies the recolouring step to correct the resulting diffusion of the phases into
each other. Detailed analysis of the stability properties of the general viscous transport scheme has
yielded a numerical method with improved theoretical properties but even for this improved scheme, the
recolouring step has turned out to produce severe disturbance of the interface.

As an alternative to the unreliable ILBGK interface tracking, we have presented a relatively simple
conservative volume tracking method. In numerical experiments, this method has turned out to be more
accurate but also more expensive than ILBGK interface tracking. Furthermore, we have realized a close
connection between the concepts of ILBGK interface tracking and conservative volume tracking. Coupling
conservative volume tracking with the Navier-Stokes solver of ILBGK we have found the numerical
results computed with this coupled method to be quite promising, even though again, we have observed
irregularities in the solution for a special velocity field.

Once the reason why those irregularities appear is rigorously explored, it may be possible to use this
knowledge for the improvement of both the (general) ILBGK interface tracking scheme and the coupled
volume tracking lattice BGK method. Also the reason why mass loss appears if anisotropic diffusion is
used to remove the disturbance of the interface is not yet investigated, so it might also be possible to
cure this defect and to construct a reliable transport scheme from ILBGK interface tracking in this way.

In addition, it should also be examined in how far the difficulties of ILBGK interface tracking can
be reduced by allowing the interface to smear out over a few lattice points, as already proposed by some
authors. Furthermore, also the other lattice Boltzmann models of two-phase flow (interacting potential
and free energy) have not yet been mathematically investigated. Finally, to investigate the consequences
of jumps in density and stress is another challenging task for future research.
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APPENDIX

Example of a smooth indicator function

Let us now consider an example of an indicator function χ∆x ∈ C1 ([0, tmax ]× Ω, IR) fulfilling

χ∆x(t,x) =





1 for x ∈ Ωr \ Γ∆x

η∆x

(
t, zk, `

)
for x ∈ Γ∆x ∩ Uk

0 for x ∈ Ωb \ Γ∆x

(A.1a)

as well as

η∆x ∈ C1
(
[0, tmax ]×Θk × (−1, 1), IR

)
, ∂`η∆x ≥ 0, lim

∆x→0
η∆x

(
t, zk, `

)
= η0

(
t, zk, `

)
(A.1b)

η0 ∈ C1
(
[0, tmax ]×Θk × (−1, 1), IR

)
, and ∂`η0 ≥ 0. (A.1c)

in a d-dimensional domain Ω (compare Section 2.4.1). Note that due to lim∆x→0 Γ∆x = Γ, condi-
tion (2.70a) immediately implies

lim
∆x→0

χ∆x =

{
1 for x ∈ Ωr

0 for x ∈ Ωb.

First, we introduce the so-called smoothing kernel

Ψ∆x(x) =
1

∆xd
Ψ0

( x

∆x

)
(A.2a)

with [13]

Ψ0(x) =





exp(−1/(1−‖x‖22))∫
Ω
exp(−1/(1−‖y‖22)) dy

for ‖x‖2 < 1

0 otherwise,
(A.2b)

see Figure A.1 for an exemplifying illustration. Then, for any regular distribution K ∈ D′(Ω) we define
K∆x by

K∆x(x) = (Ψ∆x ∗K) (x),

where

(Ψ∆x ∗K) (x) =

∫

Ω

Ψ∆x(x− y)K(y) dy (A.3)

denotes the convolution of K with Ψ∆x, compare Figure A.2.

−2 −1 0 1 2

0

0.5

1

1.5

2

2.5

3

3.5

Figure A.1: The smoothing kernels Ψ0 (solid), Ψ1/2 (dashed), and Ψ1/4 (dash-dotted) in one-dimensional space
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Figure A.2: The function χ (left), the smoothing kernel Ψ1/2 (middle), and the convolution product Ψ1/2 ∗ χ (right) in

one-dimensional space

Later in this Appendix, we will show χ∆x = Ψ∆x ∗ χ, where

χ(t,x) =

{
1 for x ∈ Ωr(t)

0 for x ∈ Ωb(t),

to fulfill (A.1). First, however, we want to show one basic property of convolution with Ψ∆x, namely

〈K∆x, ϕ〉Ω = 〈K,ϕ〉Ω + O
(
∆x2

)

for each regular distribution K ∈ D′(Ω) and any test function ϕ ∈ D(Ω). By definition, we have

|〈K∆x −K,ϕ〉Ω| =

∣∣∣∣
∫

Ω

∫

Ω

Ψ∆x(x− y)K(y)ϕ(x) dx dy −

∫

Ω

K(x)ϕ(x) dx

∣∣∣∣ (A.4)

and from (A.2) and the coordinate transformation (x− y)/∆x 7→ x̃ we obtain
∫

Ω

∫

Ω

Ψ∆x(x− y)K(y)ϕ(x) dx dy =

∫

Ω

∫

B1(0)

Ψ0(x̃)K(y)ϕ(y + x̃∆x) dx̃ dy, (A.5)

where B1(0) =
{
x̃ ∈ IRd : ‖x̃‖2 < 1

}
. By Taylor expansion, we find that

ϕ (y + x̃∆x) = ϕ(y) + ∆xx̃α∂αϕ(y) + O
(
∆x2

)

and therefore,
∫

Ω

∫

B1(0)

Ψ0(x̃)K(y)ϕ(y + x̃∆x) dx̃ dy

=

∫

B1(0)

Ψ0(x̃) dx̃

∫

Ω

K(y)ϕ(y) dy +∆x

∫

Ω

∫

B1(0)

Ψ0(x̃)K(y)zα∂αϕ(y) dx̃ dy + O
(
∆x2

)
.

From (A.2b), we learn that
∫

B1(0)

Ψ0(x̃) dx̃ = 1,

so (A.5) takes the form
∫

Ω

∫

Ω

Ψ∆x(x− y)K(y)ϕ(x) dx dy

=

∫

Ω

K(y)ϕ(y) dy +∆x

∫

Ω

∫

B1(0)

Ψ0(x̃)K(y)x̃α∂αϕ(y) dx̃ dy + O
(
∆x2

)

and inserting this into (A.4) we obtain

|〈K∆x −K,ϕ〉Ω| =

∣∣∣∣∣∆x
∫

B1(0)

Ψ0(x̃)x̃α dx̃

∫

Ω

K(y)∂αϕ(y) dy + O
(
∆x2

)
∣∣∣∣∣

which already yields

〈K∆x, ϕ〉Ω = 〈K,ϕ〉Ω + O (∆x) .

Note, however, that the smoothing kernel Ψ0 is even and the function x̃α is odd, so we have
∫

B1(0)

Ψ0(x̃)x̃α dx̃ = 0
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Figure A.3: B∆x(x) for x ∈ Ω \ Γ∆x (left) and for x ∈ Γ∆x (right)

and therefore,

〈K∆x, ϕ〉Ω = 〈K,ϕ〉Ω + O
(
∆x2

)

in this special case. Altogether, we gain

Proposition A.1. For any regular distribution K ∈ D′(Ω) and an arbitrary test function ϕ ∈ D(Ω)

〈Ψ∆x ∗K,ϕ〉Ω = 〈K,ϕ〉Ω + O
(
∆x2

)
,

where the smoothing kernel Ψ∆x is given by (A.2). If Ψ0 was not an even function only

〈Ψ∆x ∗K,ϕ〉Ω = 〈K,ϕ〉Ω + O (∆x)

was fulfilled.

In the remainder of this Appendix, we want to show that Ψ∆x ∗ χ also fulfils conditions (A.1a)
to (A.1c). Note that by construction, Ψ∆x ∗K ∈ C∞(Ω, IR) for any regular distribution K ∈ D′(Ω) [13]
and therefore, we have Ψ∆x ∗ χ ∈ C1 ([0, tmax ]× Ω, IR). Since Ψ∆x is even, i. e.

Ψ∆x (x− y) = Ψ∆x (y − x) ,

and suppΨ∆x = B∆x(0), where B∆x(x) = {y : ‖y − x‖2 < ∆x}, we obtain from (A.3)

Ψ∆x ∗ χ(t,x) =

∫

B∆x(x)

Ψ∆x (y − x)χ(t,y) dy.

For x ∈ Ω\Γ∆x, we have B∆x(x)∩Γ = ∅ and therefore, χ(y) = χ(x) for each y ∈ B∆x(x), see Figure A.3
for a sketch. Thus,

∫

B∆x(x)

Ψ∆x (y − x)χ(t,y) dy = 0 for x ∈ Ωb(t) \ Γ∆x(t)

and ∫

B∆x(x)

Ψ∆x (y − x)χ(t,y) dy =

∫

B1(z)

Ψ0(z) dz = 1 for x ∈ Ωr(t) \ Γ∆x(t),

where B1(x) = {y : ‖y − x‖2 < 1}. Therefore,

Ψ∆x ∗ χ(t,x) = χ(t,x) for x ∈ Ω \ Γ∆x. (A.6)

Let us now assume x ∈ Uk ∩ Γ∆x. In this case,

Ψ∆x ∗ χ(t,x) =

∫

B∆x(x)

Ψ∆x(x− y)χ(y) dy =

∫

B∆x(x)∩Ωr(t)

Ψ∆x(x− y) dy

and using (A.2a) together with the representation

x = hk
(
zk
)
+∆x`n ◦ hk

(
zk
)
, (A.7)

where zk ∈ Θk and ` ∈ (−1, 1) (compare Section 2.4.1), we obtain

∫

B∆x(x)∩Ωr(t)

Ψ∆x(x− y) dy =

∫

B∆x(x)∩Ωr(t)

1

∆xd
Ψ0

(
hk
(
zk
)
− y

∆x
+ `n ◦ hk

(
zk
)
)
dy.
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Defining now

η∆x

(
t, zk, `

)
=

∫

B∆x(x)∩Ωr(t)

1

∆xd
Ψ0

(
hk
(
zk
)
− y

∆x
+ `n ◦ hk

(
zk
)
)
dy (A.8)

and recalling (A.6) we find that Ψ∆x ∗ χ is in fact of the structure (A.1a).
In the following, we turn our attention to the conditions collected in (A.1b). Recall that by construc-

tion, Ψ∆x ∗ χ ∈ C1 ([0, tmax ]× Ω, IR). Since Γ is by definition a C2-surface we also have

hk ∈ C2
(
Θk,Γ

)
as well as n ∈ C1

(
Γ, IRd

)

and therefore,

η∆x ∈ C1
(
[0, tmax ]×Θk × (−1, 1), IR

)
.

Then, we determine

∂`η∆x =

∫

B∆x(x)∩Ωr(t)

1

∆xd

(
nα ◦ h

k
(
zk
))
∂αΨ0

(
hk
(
zk
)
− y

∆x
+ `n ◦ hk

(
zk
)
)
dy,

where α = 1, . . . , d. At this stage, we apply (A.7) and (A.2a) to obtain

∫

B∆x(x)∩Ωr(t)

1

∆xd

(
nα ◦ h

k
(
zk
))
∂αΨ0

(
hk
(
zk
)
− y

∆x
+ `n ◦ hk

(
zk
)
)
dy.

=

∫

B∆x(x)∩Ωr(t)

(
nα ◦ h

k
(
zk
))
∂αΨ∆x(x− y) dy.

Drawing now nα ◦ h
k
(
zk
)
under the derivative and using the divergence theorem we write

∫

B∆x(x)∩Ωr(t)

(
nα ◦ h

k
(
zk
))
∂αΨ∆x(x− y) dy =

∫

B∆x(x)∩Γ(t)

nα(y)
(
nα ◦ h

k
(
zk
))

Ψ∆x(x− y) d� � (y),
where � � denotes the surface measure on Γ. Since Γ is a C2-surface it is possible to choose ∆x small
enough such that for y1,y2 ∈ B∆x(x) ∩ Ωr(t) we have nα

(
y1
)
nα
(
y2
)
> 0, i. e. the angle between the

inner unit normal vectors at two arbitrary points in B∆x(x) ∩ Γ is less than π/2. This yields

nα(y)
(
nα ◦ h

k
(
zk
))

> 0 for ∆x small enough.

Furthermore, Ψ∆x(x−y) > 0 on B∆x(x) by definition and for x ∈ Γ∆x, the volume measure of B∆x(x)∩Γ
is non-zero by construction. Thus, we conclude

∫

B∆x(x)∩Γ(t)

nα(y)
(
nα ◦ h

k
(
zk
))

Ψ∆x(x− y) d� � (y) > 0

and therefore, ∂`η∆x ≥ 0 for ∆x small enough.
In the following, we shall consider properties (A.1c). For any x ∈ Γ∆x ∩ Uk we have B∆x(x) ⊂

Γ2∆x ∩ Uk, so we can use the representation

y = hk
(
ẑk
)
+∆xˆ̀n ◦ hk

(
ẑk
)

with ẑk ∈ Θk and ˆ̀∈ (−2, 2) to rewrite the right hand side of definition (A.8) in the form

∫

B∆x(x)∩Ωr(t)

1

∆xd
Ψ0

(
hk
(
zk
)
− y

∆x
+ `n ◦ hk

(
zk
)
)
dy

=

∫

Θk(t)

∫ 2

0

1

∆xd
Ψ0



hk
(
zk
)
− hk

(
ẑk
)

∆x
+ `n ◦ hk

(
zk
)
− ˆ̀n ◦ hk

(
ẑk
)

 Ĵ

(
ẑk, ˆ̀

)
dˆ̀dẑ. (A.9)

The Jacobian Ĵ

(
ẑk, ˆ̀

)
is given by

Ĵ

(
ẑk, ˆ̀

)
=

∣∣∣∣∣∣∣∣
det




∂1y1 · · · ∂d−1y1 ∂ˆ̀y1
...

...
...

∂1yd · · · ∂d−1yd ∂ˆ̀yd




∣∣∣∣∣∣∣∣
(A.10a)



Appendix. Example of a smooth indicator function 111

and thus,

Ĵ

(
ẑk, ˆ̀

)
=

∣∣∣∣∣∣∣∣
det




∂1ĥ
k
1 +∆xˆ̀∂1n̂

k
1 · · · ∂d−1ĥ

k
1 +∆xˆ̀∂d−1n̂

k
1 ∆xn̂k1

...
...

...

∂1ĥ
k
d +∆xˆ̀∂1n̂

k
d · · · ∂d−1ĥ

k
d +∆xˆ̀∂d−1n̂

k
d ∆xn̂kd




∣∣∣∣∣∣∣∣
, (A.10b)

where ĥ
k
= hk

(
ẑk
)
and n̂k = n ◦ ĥ

k
. This yields

Ĵ

(
ẑk, ˆ̀

)
= ∆xJ̃(ẑ, ˆ̀) = ∆x

∣∣∣∣∣∣∣∣
det




∂1ĥ
k
1 +∆xˆ̀∂1n̂

k
1 · · · ∂d−1ĥ

k
1 +∆xˆ̀∂d−1n̂

k
1 n̂k1

...
...

...

∂1ĥ
k
d +∆xˆ̀∂1n̂

k
d · · · ∂d−1ĥ

k
d +∆xˆ̀∂d−1n̂

k
d n̂kd




∣∣∣∣∣∣∣∣
. (A.11)

By Taylor expansion, we obtain

hk
(
zk
)
= hk

(
ẑk
)
+
(
zkβ − ẑ

k
β

)
∂βh

k
(
ẑk
)
+ O

((
zkβ − ẑ

k
β

)2)
,

where β = 1, . . . , d− 1, and therefore,

hk
(
zk
)
− hk

(
ẑk
)

∆x
=
zkβ − ẑ

k
β

∆x
∂βh

k
(
ẑk
)
+ O


∆x

(
zkβ − ẑ

k
β

∆x

)2
 .

Inserting now the definition

wk =
1

∆x

(
ẑk − zk

)
(A.12)

into the right hand side yields

hk
(
zk
)
− hk

(
ẑk
)

∆x
= −wk

β∂βh
k
(
zk +wk∆x

)
+ O (∆x) .

Expanding n ◦ hk
(
zk
)
in exactly the same way and using again (A.12) we obtain

n ◦ hk
(
zk
)
= n ◦ hk

(
zk +wk∆x

)
+ O (∆x)

and substituting those expansions into Ψ0 we find that

Ψ0



hk
(
zk
)
− hk

(
ẑk
)

∆x
+ `n ◦ hk

(
zk
)
− ˆ̀n ◦ hk

(
ẑk
)



= Ψ0

(
− wk

β∂βh
k
(
zk +wk∆x

)
+
(
`− ˆ̀

)(
n ◦ hk

(
zk +wk∆x

))
+ O (∆x)

)
.

Inserting definition (A.12) into J̃ yields

J̃

(
zk,wk, ˜̀

)
=

∣∣∣∣∣∣∣∣
det




∂1h̃
k
1 +∆x˜̀∂1ñ

k
1 · · · ∂d−1h̃

k
1 +∆x˜̀∂d−1ñ

k
1 ñk1

...
...

...

∂1h̃
k
d +∆x˜̀∂1ñ

k
d · · · ∂d−1h̃

k
d +∆x˜̀∂d−1ñ

k
d ñkd




∣∣∣∣∣∣∣∣
,

where h̃
k
= hk

(
zk +wk∆x

)
and ñk = n◦h̃

k
, and recalling (A.11) we find the coordinate transformation

Θk 3 ẑk 7→ wk ∈ Θ̃k to turn the right hand side of equation (A.9) into

∫

Θk(t)

∫ 2

0

1

∆xd
Ψ0



hk
(
zk
)
− hk

(
ẑk
)

∆x
+ `n ◦ hk

(
zk
)
− ˆ̀n ◦ hk

(
ẑk
)

 Ĵ

(
ẑ, ˆ̀
)
dˆ̀dẑ

=

∫

Θ̃k(t)

∫ 2

0

Ψ0

(
−wk

β∂βh
k
(
zk +wk∆x

)
+
(
`− ˆ̀

)
n ◦ hk

(
zk +wk∆x

)
+ O (∆x)

)

· J̃
(
zk,wk, ˆ̀

)
dˆ̀dwk.

Note here that the Jacobian of the transformation Θk 3 ẑk 7→ wk ∈ Θ̃k equals ∆xd−1.
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At this stage, we determine

lim
∆x→0

∫

Θ̃k(t)

∫ 2

0

Ψ0

(
−wk

β∂βh
k
(
zk +wk∆x

)
+
(
`− ˆ̀

)
n ◦ hk

(
zk +wk∆x

)
+ O (∆x)

)

· J̃
(
zk,wk, ˆ̀

)
dˆ̀dwk =

∫

Θ̃k(t)

∫ 2

0

Ψ0

(
−wk

β∂βh
k
(
zk
)
+
(
`− ˆ̀

)
n ◦ hk

(
zk
))

J
(
zk
)
dˆ̀dwk

with

J(zk) =

∣∣∣∣∣∣∣∣
det




∂1h
k
1

(
zk
)
· · · ∂d−1h

k
1

(
zk
)

n1 ◦ h
k
(
zk
)

...
...

...

∂1h
k
d

(
zk
)
· · · ∂d−1h

k
d

(
zk
)

nd ◦ h
k
(
zk
)




∣∣∣∣∣∣∣∣
,

so we define

η0
(
t, zk, `

)
=

∫

Θ̃k(t)

∫ 2

0

Ψ0

(
−wk

β∂βh
k
(
zk
)
+
(
`− ˆ̀

)
n ◦ hk

(
zk
))

J
(
zk
)
dˆ̀dwk (A.13)

to obtain lim∆x→0 η∆x = η0. Recalling

Ψ0 ∈ C∞(Ω, IR), hk ∈ C2
(
Θk,Γ

)
as well as n ∈ C1

(
Γ, IRd

)

and observing that J
(
zk
)
cannot become zero we obtain

η0 ∈ C1
(
[0, tmax ]×Θk × (−1, 1), IR

)
.

Now, it only remains to show ∂`η0 ≥ 0. Recalling definition (A.13) we find that

∂`η0 =

∫

Θ̃k(t)

∫ 2

0

(
nα ◦ h

k
(
zk
))
∂αΨ0

(
−wk

β∂βh
k
(
zk
)
+
(
`− ˆ̀

)
n ◦ hk

(
zk
))

J
(
zk
)
dˆ̀dwk

and the coordinate transformation Θ̃k × [0, 2] 3
(
wk, ˆ̀

)
7→ ξ ∈ Ωr ∩ Γk

2 , where

Γk
2 =

{
ξ ∈ IRd : ξ = hk

(
zk
)
+ wk

β∂βh
k
(
zk
)
+ ˆ̀n ◦ hk

(
zk
)
with ˆ̀∈ (−2, 2)

}
,

yields
∫

Θ̃k(t)

∫ 2

0

(
nα ◦ h

k
(
zk
))
∂αΨ0

(
−wk

β∂βh
k
(
zk
)
+
(
`− ˆ̀

)
n ◦ hk

(
zk
))

J
(
zk
)
dˆ̀dwk

=

∫

Ωr(t)∩Γk2

(
nα ◦ h

k
(
zk
))
∂αΨ0 (ζ − ξ) dξ,

where

ζ = hk
(
zk
)
+ `n ◦ hk

(
zk
)

with ` ∈ (−1, 1).

Drawing
(
nα ◦ h

k
(
zk
))

under the derivative and using the divergence theorem we obtain
∫

Ωr(t)∩Γk2

(
nα ◦ h

k
(
zk
))
∂αΨ0 (ζ − ξ) dξ =

∫

∂{Ωr(t)∩Γk2}
nα(ξ)

(
nα ◦ h

k
(
zk
))

Ψ0 (ζ − ξ) d� � (ξ).

Due to (A.2b), we have for ζ fixed

suppΨ0 (ζ − ξ) =
{
ξ ∈ IRd : ‖ζ − ξ‖ < 1

}

and by definition of ζ and Γk
2 , we know that
{
ξ ∈ IRd : ‖ζ − ξ‖ < 1

}
∩ ∂

{
Ωr(t) ∩ Γk

2

}

is not of measure zero. This implies Ψ0 > 0 on a set of non-zero measure in the domain of integration.

Since for ∆x → 0 also nα(ξ)
(
nα ◦ h

k
(
zk
))

> 0 we have ∂`η0 > 0 which yields that, in fact, ∂`η0 ≥ 0.

Therefore, we finally gain

Theorem A.1. If the assumptions stated in Section 2.1.1 hold and ∆x is chosen small enough then the
function Ψ∆x ∗ χ with Ψ∆x defined by (A.2) fulfils the conditions (A.1).
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cited on page(s) 55
[79] J. Weickert, Anisotropic Diffusion in Image Processing, Teubner, Stuttgart, 1998. cited on page(s) 57, 59, 60, 61,

63
[80] F. M. White, Viscous Fluid Flow, McGraw-Hill, Singapore, 2nd ed., 1991. cited on page(s) 11

[81] D. Wolf-Gladrow, Lattice-Gas Cellular Automata and Lattice Boltzmann Models, Springer, Berlin, 2000. cited on

page(s) 9
[82] M. M. Zdravkovich, Flow around Circular Cylinders, vol. 1, Oxford University Press, Oxford, 1997. cited on

page(s) 14



Rhabarber Rhabarber

Rhabarber Rhabarber



On the author

Personal data

Name: Dirk Kehrwald

Date of birth: 27th October 1972

Place of birth: Annweiler am Trifels, Germany

School education

August 1979 to June 1983 Schillerschule, Münchweiler an der Rodalb, Germany

(primary school)

August 1983 to June 1992 Immanuel-Kant-Gymnasium, Pirmasens (secondary school)

June 1992 Abitur (final examination)

National service

July 1992 to June 1993 National service in the German army

University studies

October 1993 to March 1999 Student of technomathematics at the University of

Kaiserslautern, Germany (physics and computer science as

secondary subjects)

March 1996 Intermediate Diploma in Technomathematics

October 1996 to March 1999 Participant of the ECMI Industrial Mathematics Educational

Programme

March 1999 Diploma in Technomathematics

Since April 1999 Doctoral candidate at the Mathematical Department of the

University of Kaiserslautern

Professional career

April 1999 to April 2000 Holder of a scholarship from the Deutsche

Forschungsgemeinschaft (German Research Council)

May 2000 to October 2000 Scientific employee of the Mathematical Department of

University of Kaiserslautern

November 2000 to September 2001 Holder of a scholarship from the Deutsche

Forschungsgemeinschaft

October 2001 to June 2002 Collaborator in the project ”Analysis of lattice Boltzmann

methods” of the Deutsche Forschungsgemeinschaft

Since July 2002 Scientific employee of the Fraunhofer Institute for

Industrial Mathematics (ITWM), Kaiserslautern



Rhabarber Rhabarber

Rhabarber Rhabarber
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