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Introduction

It was not until the publication of Sir William Gilbert’s De Magnete in 1600 ([49]) that
the Earth itself was seen as a great magnet. Gilbert discussed the subject of geomagnetism
in a theoretical as well as an experimental framework and came to the conclusion that
Earth behaved as if it were a uniformly magnetized sphere. Though at that time this was
an astounding discovery, it is well known today that the subject is more complex (e.g.
[66, 67, 68] as well as [8, 58]). According to its sources, the geomagnetic field comprises
three major parts usually referred to as the main or core field, the lithospheric or crustal
field and the external field. The main field is the dominant contribution and is generated by
magneto-hydrodynamic dynamo action in the Earth’s outer liquid core. This makes the main
field a valuable tool for probing the Earth’s core as well as its impact on the surrounding
Earth itself. The lithospheric or crustal field is due to magnetized rocks and sediments in the
Earth’s crust and upper mantle. Understanding that field contribution yields insight into the
structure and tectonics of the Earth and is as well widely used in the field of geoprospecting.
The external field, finally, is fed by ionospheric and magnetospheric current systems and
consequently contributes to the comprehension of solar-terrestrial interrelationships as well
as to the understanding of the Earth’s electro-magnetic environment.

Indispensable for the comprehension of the temporal and spatial structure of the geomagnetic
field and its sources are precise and rather continuous measurements. After 1805 Alexander
von Humboldt organized first simultaneous geomagnetic measurements at locations around
the world which marks the beginning of the worldwide network of about 200 magnetic ob-
servatories today. It is this network together with ground-based or aeromagnetic surveys that
helps to gain insights into the temporal behaviour of the geomagnetic field on time-scales
of seconds to decades. Reasonably modelling the geomagnetic field on global or regional
(e.g. continental) scales, however, requires dense and homogeneous – preferably vectorial
– data sets so that ground-based observations must be regarded supplemental in this con-
text. As regards the subject of global and dense coverage, satellites orbiting the Earth in low,
near-polar orbits provide a firm basis for acquiring the necessary high resolution observations.
MAGSAT (1979-1980) was the first, and for a very long time only, geomagnetic satellite mis-
sion with appropriate vector instrumentation. Despite its comparatively short duration (6
months), the MAGSAT mission built the foundation for a huge amount of scientific geomag-
netic results from main to crustal as well as external field modelling and the description of the
corresponding sources. The Danish satellite Ørsted, which is also equipped with highly accu-
rate vector instrumentation, orbits the Earth since 1999 and has great impact on main field
as well as external field modelling. Global sets of scalar data are provided by the Argentinean
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INTRODUCTION 2

SAC-C mission since 2001 which, however, is mainly dedicated to other geoscientific tasks.
The German CHAMP mission which started in the summer of 2000 is, besides other tasks,
designed for highly accurate geomagnetic field mappings. Due to its low orbit compared to
Ørsted and MAGSAT and due to its advanced instrumentation, for example, it is expected to
provide the scientific community with scalar as well as vector data enabling an improvement
in accuracy by one order of magnitude compared to the MAGSAT results in main, crustal
and external field modelling. For more information about the geomagnetic satellite missions
one might contact ”http://www.dsri.dk/multimagsatellites/” (Ørsted, CHAMP, SAC-C) or
e.g. ”http://nsdc.gsfc.nasa.gov/database/MasterCatalog?sc=1979-094A” (MAGSAT) as a
starting point.

In geomagnetism it is not only essential to have available adequate data sets, it is also
necessary to have at hand the appropriate mathematical tools allowing for reasonable analysis
and physical interpretation of the field data. The standard technique of geomagnetic field
modelling is the spherical Fourier expansion of a geomagnetic potential in terms of spherical
harmonics (orthogonal series). The expansion coefficients (Fourier coefficients) are chosen
in a way, that the gradient of the potential fits - in the sense of some suitable metric -
the given data as good as possible. This method, introduced by C.F. Gauss (cf. [47]) and
therefore named Gauss Representation, has been used for more than 150 years now, so that
profound numerical methods are existent. However, in order to guarantee the existence
of such a scalar potential, one assumes the corresponding magnetic field to be curl-free
which, in connection with Maxwell’s equations, means that no electric current densities
must be present at the satellite’s orbit. As far as Earth-bound or low-atmosphere mappings
are concerned, this assumption is true since the sources of the geomagnetic field, i.e. the
electric current densities, are located within the Earth’s body as well as in the iono- and
magnetosphere. So, conventionally, the potential is developed by means of inner and outer
harmonic representations, reflecting the external and internal contributions corresponding
to the geomagnetic field sources (see e.g. [8, 66, 76, 93]). Geomagnetic satellite missions,
however, collect their data within the ionosphere and therefore within a source region of the
geomagnetic field. This means that satellite data do, in general, not meet the prerequisites
for the application of the Gauss representation and usually need to be carefully preselected
prior to the modelling process. An alternative approach to resolve this problem is given by
the so-called Mie Representation for solenoidal vector fields, i.e. by splitting the magnetic
field into so-called poloidal and toroidal parts (e.g. [7, 8, 48, 97]). As regards the magnetic
field, the Mie representation can be seen as a generalization of the Gauss representation
that is also valid within magnetic source regions, i.e. in regions where the electric current
densities are no longer negligible. It is noteworthy that, in the quasi-static approximation
of electrodynamics, the electric current densities admit a Mie representation, too, which is
dependent on the Mie representation of the corresponding magnetic field. This shows that
the ’direct source problem’ of calculating the magnetic effects of a given current distribution
as well as the ’inverse source problem’ of calculating current systems corresponding to a given
magnetic field can both be approached using the Mie representation. This is important since
the (ionospheric and magnetospheric) current distributions and the resulting magnetic effects
are more and more subject of recent research (see, for example, [2, 4, 5, 11, 19, 21, 65, 74, 77,
90, 91, 94]). There remains the question of how to numerically obtain – in terms of suitable
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trial functions – the Mie representation of a given set of vectorial data. Both, poloidal
as well as toroidal vector fields can be derived from certain scalar functions, the so-called
Mie scalars. In [21, 82, 91] a spherical harmonic parametrization is suggested, i.e. the Mie
scalars of the geomagnetic field and of the corresponding currents are expanded in terms
of spherical harmonics such that one can fall back on the experiences made when using the
Gauss representation.

Fourier techniques, whether scalar or vectorial are very attractive because of their ortho-
gonality properties (which in the concrete examples of scalar or vector spherical harmonics
leads to the interpretation in terms of multipoles). Nevertheless, the respective trial func-
tions are of polynomial nature and consequently globally supported and do therefore not
show any localization in the space domain. In the Fourier domain these functions exhibit
an intrinsic ideal localization, commonly referred to as ideal frequency or momentum lo-
calization. Thus, local changes or features of a function (data) will affect the whole set of
Fourier coefficients hence changing the model representation of the data function globally.
Uncertainty principles (cf. e.g. [28, 46] for the scalar theory and [12] for a generalization to
the vector case) provide adequate classifications of trial functions by determining the connec-
tion between localization in the space and Fourier domain. The essential result states that
simultaneous ideal localization in space and frequency is mutually exclusive. For instance,
extreme trial functions in the sense of uncertainty principles are given by scalar/vectorial
spherical harmonics on the one hand and Dirac kernels/functionals on the other hand. The
scalar or vector spherical harmonics show ideal localization in the Fourier domain but do
not show any localization in the space domain. In contrast, the Dirac kernels are ideally
localized in space but admit no frequency localization at all. An ideal system of trial func-
tions would possess both, ideal localization in the space as well as in the Fourier domain and
would hence admit models of highest resolution which were interpretable in terms of single
frequencies (like multipoles, for example). In conclusion, Fourier methods are surely well
suited to resolve low and medium frequency phenomena while their application to obtain
high resolution global or regional models is critical. Thus, a trade-off between space and
frequency localization has to be found.

Such a compromise can be obtained by special kernel functions – so-called bandlimited and
non-bandlimited – which can be constructed as to decay towards high and low frequencies
and consequently cover certain frequency bands which are characterized by the so-called scale
of the kernel function. According to the uncertainty principles, this reduction of frequency
localization leads to an enhancement of space localization such that these kernels show only
small spatial extensions. Therefore, these kernels can be designed to show all intermediate
stages of space/frequency localization (see, for example, [30]). Actually it turns out that
non-bandlimited kernels show much stronger space localization properties than their band-
limited counterparts. Roughly spoken, this is due to the fact that bandlimited kernels can
be represented as finite sums of polynomials and therefore – though strongly smoothed
compared to polynomial functions – tend to oscillate. In contrast, non-bandlimited kernels
cannot be displayed as finite sums of polynomials and hence yield a stronger space loca-
lization. This fact helps us to find a suitable characterization and categorization of the
trial functions for modelling and approximation (cf. [29]): Fourier methods (in terms of
scalar/vector spherical harmonics, for example) are the canonical starting point to obtain an
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approximation of low frequency contributions (global modelling), while band-limited kernel
functions can be used for the intermediate cases between long and short wavelengths (global
to regional modelling). Due to their extreme space localization, non-bandlimited kernels can
be utilized to deal with short wavelength phenomena (local modelling). Table 1 sketches
this categorization of trial functions; the left hand side represents ideal frequency but no
space localization and appoints polynomial functions as the appropriate trial functions. The
right hand side symbolizes no frequency but ideal space localization and shows that Dirac
functionals exhibit these characteristics. In between, tending from no to ideal space loca-
lization and, correspondingly, from ideal to no frequency localization, the bandlimited and
non-bandlimited kernels are situated.

Ideal frequency localization No frequency localization
No space localization Ideal space localization
� -

scalar and vector harmonics kernel functions Dirac functionals
↙↘

bandlimited non-bandlimited

Table 1: The uncertainty principle.

Most data show correlation in space as well as in frequency, and the kernel functions with
their simultaneous space and frequency localization allow for the efficient detection and ap-
proximation of essential features in the data by only using fractions of the original information
(decorrelation). Using kernels at different scales (multiscale modelling), the corresponding
approximation techniques can be constructed as to be suitable for the particular data si-
tuation. One method of multiscale modelling, i.e. based on kernel functions at different
scales, are spline techniques in terms of the respective kernels. In analogy to the methods
known in Earth’s gravitational potential determination for example (cf. [25, 26]), harmonic
spline concepts have been introduced for the geomagnetic case by [99]. Arguably, the main
drawback of spline interpolation or smoothing of satellite geomagnetic data is that to each
datum there corresponds a linear equation for determining the spline coefficients. Hence,
due to the huge amount of data available from satellite surveys, the occurring linear sys-
tems are of high dimensions and, additionally, almost always ill-conditioned. Consequently,
sophisticated solvers need to be applied. One such method is a certain variant of domain
decomposition methods for such spline systems, called Multiplicative Schwartz Alternating
Algorithm (see e.g. [37, 51, 56]), which significantly reduces both, runtime and memory re-
quirements. It should also be mentioned that in [50] a special fast multipole method (FMM)
is developed which is also able to accelerate an iterative solver for certain spline systems.
Spline methods, however, are not the subject of this thesis.

In this thesis we are concerned with wavelet techniques, i.e. multiscale methods that are
based on certain classes of kernel functions, the so-called wavelets. It is an essential cha-
racteristic of wavelet techniques that they are able to realize a multiresolution analysis, i.e.
the function (data) space under consideration is decomposed into a nested sequence of ap-
proximating subspaces, so-called scale spaces. In other words, suitably constructed wavelets
admit a basis property in certain function spaces the elements of which – the data functions
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– admit a series representation in terms of a structured sequence of kernels at different po-
sitions and at different scales (multiscale approximation). It is thus possible to break up
complicated functions like the geomagnetic field, electric current densities or geopotentials,
into different pieces and to study these pieces separately. Consequently, the efficiency of
wavelets lies in the fact that only a few wavelet coefficients are needed in areas where the
data is smooth, and in regions where the data exhibits more complicated features higher
resolution approximations can be derived by ’zooming-in’ with more and more wavelets of
higher scales and consequential stronger space-localization. To be more concrete, the pro-
cedure of multiscale approximation with wavelets is as follows. Starting from a sequence
of certain kernels, so-called scaling functions, the multiresolution analysis of the function
space under consideration is obtained in terms of the corresponding scale spaces. In each
of these scale spaces an approximation of the function under consideration is constructed.
For increasing scales, the approximation improves and the information contained on coarse
levels is also contained in all levels of approximation above. The difference between two
levels of approximation, i.e. the additional information we gain going from one scale space
to the subsequent one, is called the detail information and is contained in what is called the
detail spaces. The wavelets serve as basis functions in the detail spaces and consequently
the function (signal) under consideration can be displayed using a combined representation
in terms of scaling functions and wavelets. In spectral language, scaling functions help to
build up low-pass filters while wavelets can be used to construct appropriate band-pass fil-
ters. [29, 30] extensively deal with this subject in a general context while [9, 11, 81] apply
vectorial wavelet techniques to the problem of geomagnetic field modelling.

The present thesis has to be seen in the context summarized above. In the course of this thesis
a comprehensive theoretical framework for the application of multiscale methods in space-
borne magnetometry is established and examined from a mathematical point of view. Based
on a construction principle for scalar and vectorial wavelet techniques in separable Hilbert
spaces the discussed subjects include multiscale signal-to-noise thresholding, a wavelet ap-
proach to crustal field determination and downward continuation, a wavelet-parametrization
of the magnetic field in Mie representation and, last but not least, simultaneous time- and
space-dependent multiscale approximation. Numerical applications illustrate some of the
introduced approaches and demonstrate the applicability and practicability of the proposed
wavelet methods. It should be made clear that the numerical examples presented here are
not intended to be detailed physical case studies but ought to be seen as the starting point
for such research. A short outline of the thesis is presented next.

Chapter 1 introduces some basic notations and relations which we are going to use throughout
the thesis. Additionally, a couple of well-known results useful for an easy understanding of the
subsequent discussions are briefly recapitulated. Topics include reproducing kernel Hilbert
spaces and splines, scalar and vector spherical harmonics, inner and outer harmonics, the
Helmholtz and the Mie representation of vector fields as well as a short summary of inverse
problems and their regularization.

In Chapter 2 a general approach to the theory and algorithmic aspects of wavelets in sepa-
rable Hilbert spaces is presented. In Section 2.1 we start with the introduction of a scalar
theory of multiscale approximation. Having the theoretical aspects at hand, we turn to some
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special realizations of scalar wavelets, i.e. Legendre wavelets and scalar spherical wavelets,
which will be of importance in later chapters. Section 2.2 deals with the extension of the
scalar concept to the multiresolution analysis of vector fields. Spherical vectorial wavelets
are presented as a certain example which turns out to be helpful for later considerations. The
formulation of both, the scalar as well as the vectorial techniques, is based on the Fourier
theory in the respective Hilbert spaces such that the results can easily be interpreted in
terms of conventional methods.

We have to assume that, like every physical measurement, the geomagnetic satellite data
are to some extend noisy. Within the context of multiresolution analysis it is therefore rea-
sonable to think of an appropriate multiscale technique to denoise the satellite observations.
The method should maintain the multiscale character of our approaches, i.e. it should be
possible to deal with noise that spatially changes its frequency behaviour. This is the subject
of Chapter 3. As far as (spherical) scalar fields are concerned, we recapitulate the necessary
spectral theory which is then generalized to the concept of multiscale signal-to-noise thresh-
olding in Section 3.1. Influenced by the results of the scalar case we extend the considerations
to (spherical) vectorial data sets in Section 3.2. In order to do so, we first develop a spectral
framework which then serves as a starting point for a generalization to a multiscale method
in terms of so-called tensor radial basis functions. Though numerically difficult to handle,
this tensor based approach is the canonical extension of the scalar technique. In order to
obtain a multiscale method that is easily applicable, we then derive a technique in terms
of vector spherical wavelets and show its equivalence to the tensor results. The chapter is
completed with a numerical study illustrating the application of the vector based method to
a noisy (synthetic) data set.

As far as crustal field determination is concerned, multiscale techniques are of great impor-
tance, too. Crustal field signatures are of comparatively small spatial extend and therefore it
is reasonable to avoid global trial functions and choose a modelling technique that can cope
with the regional features. Apart from this challenge there is the problem of downward con-
tinuation, i.e. calculating crustal field contributions at the Earth’s surface from the vectorial
data at satellite altitude. Since the magnetic signatures are exponentially smoothed out and
never free of noise, this problem is known to be an ill-posed problem that needs proper means
of regularization. In order to get a general multiscale method for the downward continua-
tion of crustal field contributions fitting completely in the multiscale formalism of this thesis,
we present in Chapter 4 a formulation of the problem in terms of integral equations which
are then to be solved by so-called regularization wavelets. This leads to regularizations of
the occurring integral equations within a multiresolution analysis where the regularization
parameter plays the role of the scale in the usual wavelet approach. Consequently, a space
dependent regularization is obtained mirroring the regional structure of the crustal field and
enabling us to perform regional as well as global computations of spatially varying resolu-
tion. Since we derive the singular systems of the appearing integral operators explicitly,
the regularization wavelets can be appropriately designed for every single integral equation
under consideration. The formalism will first be introduced in spherical approximation, i.e.
assuming that the radial variations of the satellite are negligible. In a second step a combined
spline and wavelet approach will be presented that can incorporate the altitude variations
of the satellite into the context of the integral equations. A numerical example will be given



INTRODUCTION 7

that illustrates global as well as regional crustal field approximations at the mean Earth’s
surface from one month of CHAMP vector data.

The Mie representation for the geomagnetic field has the advantage that it can equally
be applied in regions of vanishing as well as non-vanishing electric current densities. As
we have already mentioned, it is common practise to deal with this subject in terms of a
spherical harmonic parametrization, i.e. the Mie scalars of the magnetic field and of the
corresponding electric current densities are expanded into a series of spherical harmonics.
The global support of the spherical harmonics might limit the applicability of this approach,
however, since it cannot suitably cope with current densities (and the corresponding magnetic
effects) that very rapidly with longitude or latitude, or that are confined to certain regions.
In Chapter 5 we derive a wavelet-parametrization of the magnetic field in Mie representation
which is able to reflect the various levels of space localization in form of a multiresolution
analysis of the electric currents or the magnetic field, respectively. Starting point of the
treatment is an expansion of the Mie scalars in terms of scalar wavelets, which then soon
leads to a parametrization of the Mie representation in terms of vectorial kernel functions.
The chapter is completed with a numerical application showing the global and regional
determination of radial current densities from given sets of vectorial MAGSAT data.

Chapter 6, finally, deals with the subject of time-space dependent multiscale modelling of
(spherical) vector fields. We assume that time-dependent vector fields can be expanded in
terms of vector spherical harmonics with time-dependent Fourier coefficients. This enables
us to derive two different variants of time-space dependent modelling. Variant 1, presented
in Section 6.1, combines separate multiscale techniques for the temporal as well as the spatial
domain. To be more concrete, Legendre wavelets and vector spherical wavelets are separately
used for multiscale approximation in the temporal and the spatial domain, respectively, and
the results are suitably combined to get a time-space dependent approach. The second
variant, presented in Section 6.2, introduces time-space wavelets in tensor-product form.
This means that Legendre wavelets and vector spherical wavelets are suitably combined to
create a new set of time- and space-dependent wavelets which then can be applied to deal
with time-dependent vector fields within a multiscale framework.



Chapter 1

Preliminaries

The main goal of this chapter is to provide the essential mathematical tools building the
groundwork for our later considerations. We start by introducing some basic notation that
will be used throughout this thesis.

1.1 Notations and Relations

The set of all integers, positive integers and non-negative integers is denoted by Z, N, and
N0 respectively. R is the set of real numbers and R3 = R × R × R denotes the real, three-
dimensional Euclidean space with the canonical orthonormal basis ε1, ε2 and ε3.

During the course of this thesis, we will constantly be confronted with scalar, vector and
tensor fields. In order to avoid notational complications we will, unless stated otherwise,
use the following scheme: Scalar Fields will be denoted by capital roman letters (F,G, etc.),
vector fields are symbolized by lower-case roman letters (f, g, etc.) and tensor fields are
represented by boldface roman letters (f ,g, etc.).

Let now x, y ∈ R3, with x = (x1, x2, x3)
T and y = (y1, y2, y3)

T . The inner, vector and tensor
product, respectively, are defined by

x · y = xTy =
3∑
i=1

xiyi,

x ∧ y = (x2y3 − x3y2, x3y1 − x1y3, x1y2 − x2y1)
T ,

x⊗ y = xyT =

 x1y1 x1y2 x1y3

x2y1 x2y2 x2y3

x3y1 x3y2 x3y3

 . (1.1)

As usual, a second order tensor f ∈ R3×3 is understood to be a linear mapping assigning
to each vector x ∈ R3 a vector y ∈ R3. The tensor f can be represented by its cartesian

8
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components Fij ∈ R defined by

Fij = (εi)T (fεj) = εi · (fεj)

such that y = fx is equivalent to

y · εi =
3∑
j=1

Fij(x · εj).

In what follows, tr(f) denotes the trace, and det(f) the determinant of f . The transpose fT

of f is the unique tensor satisfying

(fy) · x = y · (fx)

for all x, y ∈ R3. It is also very useful to know that the tensor product x⊗ y, x, y ∈ R3 (see
(1.1)) is the tensor that assigns to each vector u ∈ R3 the vector (y · u)x, i.e.

(x⊗ y)u = (y · u)x

for every u ∈ R3.

Moreover, we can define an inner product of two second order tensors f ,g ∈ R3×3 by

f · g = tr(fTg) =
3∑
i=1

3∑
j=1

FijGij (1.2)

and the associated norm via
|f | = (f · f)1/2.

Using (1.2) it can easily be seen that, for any tensor f ∈R3×3 and any pair x, y ∈ R3, the
relation

x · (fy) = f · (x⊗ y) (1.3)

holds true. Moreover we have
(x⊗ y)f = x⊗ fTy.

Furthermore, for vectors x, y, w, z ∈ R3 it can be seen that

(x⊗ y)(w ⊗ z) = (y · w)(x⊗ z).

Using the canonical orthonormal Euclidean basis ε1, ε2, ε3 it holds true that

(εi ⊗ εj) · (εk ⊗ εl) = δikδjl,

such that the nine tensors εi ⊗ εj are orthonormal (note that δik denotes the Kronecker
symbol). Moreover, it follows that

3∑
i=1

3∑
j=1

(Fijε
i ⊗ εj)x =

3∑
i=1

3∑
j=1

Fij(x · εj)εi = fx,
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thus f ∈R3×3 with

f =
3∑
i=1

3∑
j=1

Fijε
i ⊗ εj.

In particular, the identity tensor i ∈R3×3 is given by

i =
3∑
i=1

εi ⊗ εi.

Furthermore, it is easy to see that

tr(x⊗ y) = x · y, x, y ∈ R3,

and, for f ,g,h ∈ R3×3,
f ·(gh) = (gT f) · h = (fhT ) · g,

as well as
(fx) · (gy) = (fTg) · (x⊗ y). (1.4)

Any element x ∈ R3 with |x| 6= 0 may be written in the form x = rξ, where r = |x| is
the distance from x to the origin 0 and ξ ∈ R3, ξ = (ξ1, ξ2, ξ3)

T is the uniquely deter-
mined directional unit vector of x. A sphere of radius R centered in the origin, i.e. the set
{x ∈ R3 : |x| = R} will be denoted by ΩR. In particular, Ω(= Ω1) is the unit sphere in R3.
We set Ωint for the ’inner space’ of Ω, while Ωext denotes the ’outer space’ of Ω.

Any point ξ ∈ Ω can be represented in polar coordinates as follows:

ξ = ε3t+
√

1− t2
(
ε1 cosϕ+ ε2 sinϕ

)
, (1.5)

−1 ≤ t ≤ 1, 0 ≤ ϕ < 2π, t = cosϑ

(ϑ: latitude, ϕ: longitude, t: polar distance) or equivalently

ξ = ε1 sinϑ cosϕ+ ε2 sinϑ sinϕ+ ε3 cosϑ.

Note that in the geophysical literature ϑ is sometimes also referred to as the co-latitude,
depending on the parametrization of the angle. The unit vectors corresponding to the
spherical polar coordinates will be denoted by εr, εϕ and εt = −εϑ and form a so-called local
moving triad.

The relation of the local system to the canonical basis is given via

εr(ϕ, t) = ε1
√

1− t2 cosϕ+ ε2
√

1− t2 sinϕ+ ε3t,

εϕ(ϕ, t) = −ε1 sinϕ+ ε2 cosϕ,

εt(ϕ, t) = −ε1t cosϕ− ε2t sinϕ+ ε3
√

1− t2.
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One can express the canonical basis vectors of R3 in terms of εr, εϕ, εt in the following sense:

ε1 = εr(ϕ, t)
√

1− t2 cosϕ− εϕ(ϕ, t) sinϕ− εt(ϕ, t)t cosϕ,

ε2 = εr(ϕ, t)
√

1− t2 sinϕ+ εϕ(ϕ, t) cosϕ− εt(ϕ, t)t sinϕ,

ε3 = εr(ϕ, t)t+ εt(ϕ, t)
√

1− t2.

See also the Appendix for some information on geophysical nomenclature concerning spher-
ical coordinates.

In terms of polar coordinates (1.5) the gradient ∇ in R3 reads

∇x = ξ
∂

∂r
+

1

r
∇∗
ξ ,

where the horizontal part ∇∗ is the surface gradient on the unit sphere Ω. Moreover, the
Laplace operator ∆ = ∇ · ∇ in R3 has the representation

∆x =

(
∂

∂r

)2

+
2

r

∂

∂r
+

1

r2
∆∗
ξ ,

where ∆∗ is the Beltrami operator on the unit sphere Ω. The surface curl gradient L∗ on
the unit sphere can be calculated from ∇∗ by the relation L∗ξ = ξ ∧∇∗

ξ , ξ ∈ Ω.

It is worth mentioning that the operators ∇∗, L∗ and ∆∗ will always be used in coordinate-
free representation throughout this thesis, thereby avoiding any singularities at the poles.
Nevertheless, for the convenience of the reader, we give a list of their expressions in local
coordinates (see [30], for example):

∇∗
ξ = εϕ

1

sinϑ

∂

∂ϕ
+ εϑ

∂

∂ϑ
,

L∗ξ = εϕ
∂

∂ϑ
− εϑ

1

sinϑ

∂

∂ϕ
,

∆∗
ξ =

1

sinϑ

∂

∂ϑ
sinϑ

∂

∂ϑ
+

1

sin2 ϑ

∂2

∂ϕ2
.

A variety of function spaces will be needed in this thesis. Let C (Σ) be the set of all real and
continuous functions defined on the domain Σ ⊂ R3 (F : Σ → R), equipped with the norm

‖F‖C(Σ) = sup
x∈D

|F (x)| .

A function is said to be of class C(k) (Σ), 0 ≤ k <∞, if it possesses k continuous derivatives
on Σ. If Σ ⊂ R3 is a measurable subset, the set of scalar functions F : Σ → R which are
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measurable and for which

‖F‖Lp(Σ) =

∫
Σ

|F (x)|p dω(x)

 1
p

<∞, 1 ≤ p <∞,

is denoted by Lp(Σ).

The space L2(ΩR), equipped with the inner product

(F1, F2)L2(ΩR) =

∫
ΩR

F1 (x)F2 (x) dωR(x)

forms a Hilbert space. In addition, L2(ΩR) is the completion of C(∞)(ΩR) with respect to

the norm ‖·‖L2(ΩR), i.e. L2(ΩR) = C(∞)(ΩR)
‖·‖L2(ΩR) . Observe that for the rest of the thesis

all integrals are understood in the Lebesgue sense.

Remark 1.1 Any function of the form

G̃ξ : Ω → R, ξ ∈ Ω fixed

η 7→ G̃ξ(η) = G(ξ · η), η ∈ Ω

is called a zonal or radial basis function. The set of all zonal functions is isomorphic to
the set of all functions G : [−1, 1] → R, hence one can regard C(k) [−1, 1] and L(2) [−1, 1],
equipped with the corresponding norms, as subspaces of C(k)(Ω) and L(2)(Ω). The value of
any zonal function G̃ξ(η) depends only on the spherical distance between ξ and η. This
is why zonal functions are frequently called radial basis functions or, sometimes, isotropic
functions.

It is very important for the main concept of this thesis that radial basis functions show
an important principle for many applications on the sphere, namely rotational invariance.
By taking into account the zonal functions, i.e. functions of axial symmetry, and moving
their axes on the sphere, modern techniques such as spline approximation and multiscale
approximation by spherical wavelets (cf. [25, 26, 43, 45, 46], for example) become possible.

Some useful relations concerning the application of the surface gradient and the surface curl
gradient to radial basis functions can be given (cf. [30]), i.e. if F ∈ C(1)[−1, 1], then

∇∗
ξF (ξ · η) = F ′(ξ · η)(η − (ξ · η)ξ), (1.6)

L∗ξF (ξ · η) = F ′(ξ · η)ξ ∧ η, (1.7)

where ξ, η ∈ Ω. These relations are very important when, in later chapters, explicit repre-
sentations of kernel functions are derived.

The function spaces for vector-valued spherical functions are defined in analogy to the scalar
case, i.e. c(k)(Σ), 0 ≤ k <∞, denotes the space of k-times continuously differentiable vector
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fields on D and l2(Σ) represents the space of square-integrable spherical vector fields on Σ.
As in the scalar case, equipped with the inner product

(f, g)l2(ΩR) =

∫
ΩR

f(y) · g(y) dωR(y), f, g ∈ l2(ΩR)

and the corresponding norm

‖f‖l2(ΩR) =

∫
ΩR

|f(y)|2 dωR(y)

1/2

, f ∈ l2(ΩR)

the space l2(ΩR) is a Hilbert space. As in the scalar case

l2(ΩR) = c(ΩR)
‖·‖l2(ΩR)

holds true.

1.2 Reproducing Kernel Hilbert Spaces and Splines

Reproducing kernel Hilbert spaces as well as spline techniques in such spaces play an impor-
tant role in many branches of constructive approximation. Though the explicit use of such
methods in this thesis is of minor importance, some results and aspects will nevertheless be
needed. In what follows we present a very brief summary of this subject and we recommend
[6, 16, 25, 27, 29, 30] and [44] for further reading.

Definition 1.2 Let Σ ⊂ Rn and let H be a Hilbert space of functions F : Σ → R, equipped
with the inner product (·, ·)H. Then any function KH(x, y) of two variables on Σ is called
reproducing kernel function for the space H, if

• for each fixed x ∈ Σ, KH (x, ·) is a member of H,

• for every function F ∈ H and for every y ∈ Σ, the reproducing property

F (x) = (F (y) , KH (x, y))H

holds.

The following theorem summarizes the most important results from the theory of reproducing
kernel Hilbert spaces (cf. [6, 16]).

Theorem 1.3 Suppose (H, (·, ·)H) to be a Hilbert space of functions defined on Σ ⊂ Rn,
then the following statements hold true.
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(1) H possesses a reproducing kernel if and only if for each y ∈ Σ the linear functional
Ly(F ) = F (y) is bounded, i.e. |Ly(F )| ≤ cy ‖F‖H holds for some constant cy and for
all F ∈ H.

(2) If H has a reproducing kernel then the kernel is unique.

(3) If H has a reproducing kernel and the kernel is bounded on the domain Σ ⊂ Rn, then
the Fourier expansion of a function in H converges uniformly to the function.

(4) Let H have a reproducing kernel KH (·, ·) and, furthermore, let L be a bounded linear
functional defined on H. Then Lx (KH (x, ·)) is the representer of L and

L (F ) = (F (y) ,Lx (KH (x, y)))H

holds for all F ∈ H.

(5) If H has a reproducing kernel and if {L1
x (KH (x, y)) ,L2

x (KH (x, y)) , . . .} is a complete
sequence of functions, where Lnx, n = 1, 2, . . . are bounded linear functionals defined on
H, then

spann=1,2,...{Lnx (KH (x, y))}
‖·‖H = H.

The last theorem enables us to formulate the solution of the interpolation problem in repro-
ducing kernel Hilbert spaces.

In what follows, H is supposed to be a reproducing kernel Hilbert space of functions defined
on a subset Σ ⊂ Rn. The interpolation problem in H is given as follows: For F ∈ H and a
given set of linearly independent bounded linear functionals L1, . . . ,LN on H the smallest
interpolant in the H-topology, i.e.

‖S‖H = inf
H∈IFL1,...,LN

‖H‖H , (1.8)

is wanted. Note that IFL1,...,LN denotes the set of all possible interpolants and is given by

IFL1,...,LN = {H ∈ H |LiF = LiH, i = 1, . . . , N} .

The uniquely determined solution of the interpolation problem (1.8) can always be repre-
sented as a spline function in H. The following definition clarifies what is meant by that.

Definition 1.4 Suppose that L1, . . . ,LN denote N linearly independent bounded linear func-
tionals on a reproducing kernel Hilbert space H with reproducing kernel KH (·, ·). Then any
function of the form

S (x) =
N∑
i=1

aiLiKH (·, x) , (1.9)

is called an H-spline relative to the system L1, . . . ,LN . The space of all H-splines relative
to L1, . . . ,LN is an N-dimensional linear subspace of H and is denoted by SH (L1, . . . ,LN).
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The following theorem yields the main result of spline theory.

Theorem 1.5 Let F ∈ H be given. The interpolation problem (1.8) is uniquely solvable
and it’s solution SFL1,...,LN is an H-spline relative to the system L1, . . . ,LN , i.e. SFL1,...,LN ∈
SH (L1, . . . ,LN) ∩ IFL1,...,LN . The unique solution is given in the form (1.9), where the coef-
ficients a1, . . . , aN satisfy the linear equations

N∑
i=1

aiLiLjKH (·, ·) = LjF, j = 1, . . . , N.

1.3 Scalar and Vector Spherical Harmonics

Scalar as well as vector spherical harmonics are commonly used functions to cope with prob-
lems of scalar or vectorial nature and spherical geometry. While the scalar spherical har-
monics form a complete orthonormal system in the Hilbert space L2(Ω) of square-integrable
spherical scalar functions, the vector spherical harmonics are a complete orthonormal set in
the space l2(Ω) of square-integrable spherical vector fields. A Fourier theory in the afore-
mentioned function spaces can thus be based on scalar and vector spherical harmonics.

The approach to scalar as well as vector spherical harmonics presented here is based on [30].
We start by introducing scalar spherical harmonics as restrictions of homogeneous harmonic
polynomials in R3 to the unit sphere Ω. More explicitly, let Hn : R3 → R be a homogeneous
harmonic polynomial of degree n, then the restriction Yn = Hn|Ω is called a scalar spherical
harmonic of degree n (we will drop the adjective ’scalar’ as long as no confusion is likely
to arise). The space of all spherical harmonics of degree n is denoted by Harmn(Ω). This
space is of dimension 2n + 1, i.e. d(Harmn(Ω)) = 2n + 1. Spherical harmonics of different
degrees are orthogonal in the sense of the L2(Ω)-inner product

(Yn, Ym)L2(Ω) =

∫
Ω

Yn(ξ)Ym(ξ)dω(ξ) = 0, n 6= m.

A main result of the theory of spherical harmonics is the fact that any spherical harmonic
Yn, n ∈ N0, is an infinitely often differentiable eigenfunction of the Beltrami operator corre-
sponding to the eigenvalue −n (n+ 1), n ∈ N0. To be specific,

∆∗
ξYn(ξ) = (∆∗)∧ (n)Yn(ξ), ξ ∈ Ω, Yn ∈ Harmn(Ω),

where the ’spherical symbol’
{
(∆∗)∧ (n)

}
n∈N0

of the Beltrami operator ∆∗ is given by

(∆∗)∧ (n) = −n (n+ 1), n ∈ N0. As we have already mentioned, the space Harmn(Ω)
is (2n+1)-dimensional. Therefore, throughout the remainder of this work, we denote by
{Yn,k}k=1,...,2n+1 a (maximal) complete orthonormal system in the space Harmn(Ω) with re-

spect to (·, ·)L2(Ω). It is clear that
{
Y ρ1
n,k

}
k=1,...,2n+1

with Y ρ1
n,k = 1/ρ1Yn,k denotes an L2(Ωρ1)-

orthonormal system.
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A certain kind of functions which is closely related to the spherical harmonics are the so-
called Legendre polynomials. Legendre polynomials can uniquely be defined by means of an
eigenvalue equation with respect to the Legendre operator

Lt = (d/dt)
(
1− t2

)
(d/dt) .

More precisely, the Legendre polynomial Pn : [−1,+1] → R of degree n is defined as the
unique infinitely often differentiable eigenfunction of the Legendre operator Lt corresponding
to the eigenvalue −n (n+ 1), i.e.

LtPn(t) = −n (n+ 1)Pn(t), t ∈ [−1,+1],

which satisfies Pn(1) = 1. It is helpful to know that the Legendre operator Lt is that part of
the Beltrami operator that is solely dependent on the latitude. The Legendre polynomials
are orthogonal with respect to the L2 ([−1,+1])-inner product, i.e.

2π

+1∫
−1

Pn(t)Pm(t)dt = δnm
4π

2n+ 1
.

The Legendre polynomial Pn has the explicit representation

Pn(t) =

[n/2]∑
s=0

(−1)s
(2n− 2s)!

2n (n− 2s)! (n− s)!s!
tn−2s, t ∈ [−1,+1].

Another representation can be given using the Rodriguez’s formula, to be more specific:

Pn (t) =
1

2nn!

(
d

dt

)n (
t2 − 1

)n
, t ∈ [−1,+1].

The system {Pn}n∈N0
is a closed and complete set in L2 ([−1,+1]) (with respect to the norm

‖·‖L2([−1,+1])). The series
∞∑
n=0

2n+ 1

4π
G∧(n)Pn

is called the Legendre expansion of G. The Legendre coefficients G∧(n), n = 0, 1, . . . are
given via

G∧(n) = (G,Pn)L2([−1,+1]) = 2π

+1∫
−1

G(t)Pn(t)dt.

For all G ∈ L2 ([−1,+1]) we have

lim
N→∞

∥∥∥∥∥G−
N∑
n=0

2n+ 1

4π
G∧(n)Pn

∥∥∥∥∥
L2([−1,+1])

= 0.

Legendre polynomials belong to the class of radial basis functions in the sense that Pn(ξ·) :
η 7→ Pn(ξ · η), ξ ∈ Ω fixed, η ∈ Ω, is a zonal function. This is closely related to a famous
theorem connecting the spherical harmonics on Ω with the univariate Legendre polynomials
on the unit interval [−1, 1], the so-called addition theorem of spherical harmonics:
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Theorem 1.6 (Addition Theorem). Let {Yn,k}k=1,...,2n+1 be an orthonormal system of spher-
ical harmonics with respect to (·, ·)L2(Ω) in Harmn(Ω). Then

2n+1∑
k=1

Yn,k (ξ)Yn,k (η) =
2n+ 1

4π
Pn(ξ · η), ξ, η ∈ Ω.

The addition theorem is closely related to the fact that the Legendre polynomial (seen as
zonal functions on the sphere) Pn(ξ·), is the only spherical harmonic of degree n that is
invariant with respect to orthogonal transformations which leave ξ ∈ Ω fixed.

The series
∞∑
n=0

2n+1∑
k=1

F∧(n, k)Yn,k

is called the Fourier expansion (or spherical harmonic expansion) of F with Fourier (or
spherical harmonic) coefficients given by

F∧(n, k) =

∫
Ω

F (ξ)Yn,k (ξ) dω (ξ) ,

n = 0, 1, . . .; k = 1, . . . , 2n+ 1. For all F ∈ L2 (Ω) we have

lim
N→∞

∥∥∥∥∥F −
N∑
n=0

2n+1∑
k=1

F∧(n, k)Yn,k

∥∥∥∥∥
L2(Ω)

= 0.

Denoting by Harmp,...,q(Ω), q ≥ p ≥ 0 the space of all spherical harmonics of degree n with
p ≤ n ≤ q. Then the orthogonality of spherical harmonics of different degrees yields

Harmp,...,q(Ω) =

q⊕
n=p

Harmn(Ω).

The dimension of Harmp,...,q(Ω) is
∑q

n=p(2n+ 1) and, in particular, we have

d (Harm0,...,q(Ω)) = (q + 1)2 .

If Yn ∈ Harmn(Ω), then

2n+ 1

4π

∫
Ω

Pn (ξ · η)Yn (η) dω (η) = Yn (ξ) , ξ ∈ Ω.

In other words, KHarmn(Ω) (·, ·) : Ω× Ω → R defined by

KHarmn(Ω) (ξ, η) =
2n+ 1

4π
Pn (ξ · η) , (ξ, η) ∈ Ω× Ω,
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represents the unique reproducing kernel in Harmn(Ω). Moreover,

KHarmp,...,q(Ω) (ξ, η) =

q∑
n=p

2n+ 1

4π
Pn (ξ · η) , (ξ, η) ∈ Ω× Ω

is the reproducing kernel in Harmp,...,q(Ω).

The formula of Funk and Hecke,∫
Ω

G (ξ · η)Yn (η) dω (η) = G∧ (n)Yn (ξ) , ξ ∈ Ω, G ∈ L1[−1,+1],

establishes a connection between spherical harmonics and radial basis functions and – to-
gether with the reproducing kernel KHarmp,...,q(Ω) – founds the basis for the introduction of
spherical singular integrals and spherical wavelets (cf. [30] and [45], for example).

As there exist infinitely many L2 (Ω)-orthonormal systems in Harmn(Ω), we present and
illustrate, in Appendix A, one special example frequently used in geomagnetic applications.
It is the system of Schmidt semi-normalized spherical harmonics in terms of Legendre func-
tions (cf., e.g. [55]). A realization of a geomagnetic potential U in terms of this very system
of spherical harmonics is also presented in Appendix A. A potential of this form will be used
in later chapters.

For later use we now introduce the inner (outer) harmonics as the solution of the exterior
(interior) Dirichlet problem in the interior Ωint

R (exterior Ωext
R ) of ΩR corresponding to the

L2-boundary values Yn,k on ΩR. The systems of inner (outer) harmonics,
{
H int
n,k(R; ·)

}({
Hext
n,k(R; ·)

})
, n = 0, 1, . . .; k = 1, . . . , 2n+ 1, of degree n defined by

H int
n,k(R;x) =

1

R

(
|x|
R

)n
Yn,k

(
x

|x|

)
, x ∈ Ωint

R , (1.10)

Hext
n,k(R;x) =

1

R

(
R

|x|

)n+1

Yn,k

(
x

|x|

)
, x ∈ Ωext

R , (1.11)

satisfy the following properties:

• Hext
n,k (R; ·) is of class C(∞) (Ωext

R ).

• H int
n,k (R; ·) is of class C(∞) (Ωint

R )

• Hext
n,k (R; ·) satisfies Laplace’s equation in Ωext

R , that is ∆xH
ext
n,k (R;x) = 0 for all x ∈ Ωext

R .

• H int
n,k (R; ·) satisfies Laplace’s equation in Ωint

R , that is ∆xH
int
n,k (R;x) = 0 for all x ∈ Ωint

R .

• Hext
n,k (R; ·) |ΩR = H int

n,k (R; ·) |ΩR = (1/R)Yn,k.

• Hext
n,k (R; ·) is regular at infinity, i.e.

∣∣Hext
n,k (R;x)

∣∣ = O
(
|x|−1) and

∣∣∇xH
ext
n,k (R;x)

∣∣ =

O
(
|x|−2) as |x| → ∞.
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•
(
H i
n,k (R; ·) , Hj

p,q (R; ·)
)
L2(ΩR)

= δn,pδk,q for i, j ∈ {int, ext}.

(Note that in the case of ΩR = Ω, we have H int
n,k (R; ·) |R=1 = Hext

n,k (R; ·) |R=1 = Yn,k for all n =

0, 1, . . .; k = 1, . . . , 2n + 1). Thus the system
{
Y R
n,k

}
=
{
Hext
n,k (R; ·) |ΩR

}
=
{
H int
n,k (R; ·) |ΩR

}
forms an orthonormal system in L2 (ΩR).

We proceed with the introduction of vector spherical harmonics. The approach to vector
spherical harmonics as presented in this chapter allows a decomposition of square-integrable
spherical vector fields into a normal and a tangential part, where the tangential field can
further be split up into a curl-free and a divergence-free part. This turns out to be useful
when dealing with the geomagnetic or the gravitational field, for example. In order to clarify
the matters we introduce the projection operators pnor and ptan by

pnorf(ξ) = (f(ξ) · ξ)ξ, ξ ∈ Ω, f ∈ c(Ω),

ptanf(ξ) = f(ξ)− pnorf(ξ), ξ ∈ Ω, f ∈ c(Ω).

These definitions can be extended to the case of square-integrable vector fields via

l2nor(Ω) =
{
f ∈ l2(Ω)|f = pnorf

}
,

l2tan(Ω) =
{
f ∈ l2(Ω)|f = ptanf

}
.

A vector field f ∈ l2(Ω) is said to be a normal (or radial) if f = pnorf and tangential if
f = ptanf .

The aforementioned decomposition of spherical vector fields can be established by intro-
ducing three special operators o

(i)
ξ , i = 1, 2, 3 mapping scalar fields to vector fields. To be

specific, let F ∈ C(0i)(Ω), then the operators o
(i)
ξ : C(0i)(Ω) → c(Ω) are given by

o
(1)
ξ F (ξ) = ξF (ξ), ξ ∈ Ω,

o
(2)
ξ F (ξ) = ∇∗

ξF (ξ), ξ ∈ Ω,

o
(3)
ξ F (ξ) = L∗ξF (ξ), ξ ∈ Ω,

(1.12)

Where 0i is an abbreviation given by 01 = 0 and 0i = 1 for i ∈ {2, 3}.

Clearly, o
(1)
ξ F (ξ) is a radial field. From the definitions of the operators ∇∗ and L∗ it is easy

to see that o
(2)
ξ F (ξ) and o

(3)
ξ F (ξ) are purely tangential. Furthermore o

(2)
ξ F (ξ) is curl-free,

whereas o
(3)
ξ F (ξ) is divergence free, which is clear from ∇∗

ξF (ξ) being a gradient- and L∗ξF (ξ)
being a curl-field. Additionally it is not difficult to see that

o
(i)
ξ F (ξ) · o(j)

ξ F (ξ) = 0, for all i 6= j i, j ∈ {1, 2, 3} . (1.13)

The next step towards our definition of vector spherical harmonics is given by the well-known
Helmholtz decomposition theorem.
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Theorem 1.7 Let f : Ω → R3 be a continuously differentiable vector field, i.e. f ∈ c(1)(Ω).
Then there exist uniquely determined scalar functions F1 ∈ C(1)(Ω) and F2, F3 ∈ C(2)(Ω)
satisfying ∫

Ω

Fi(ξ)dω(ξ) = 0, i = 2, 3 (1.14)

such that

f =
3∑
i=1

o(i)Fi. (1.15)

It should be mentioned that F1 is just the radial projection of f while representations for the
Helmholtz scalars F2 and F3 are available in terms of the Green’s function with respect to
the Beltrami operator (cf. [30]). Note that the above theorem is also valid for vector fields
on ΩR, since they are isomorphic to those on Ω.

The Helmholtz decomposition from Theorem 1.7 can also be formulated for regular surfaces
but in a somewhat weaker form (cf. [8]). We just sketch the results. Let U ⊂ R3 be an open
set containing a regular surface S and let F : U → R be a continuously differentiable scalar
field. Then, for every x ∈ S the normal derivative of F is given by ν · ∇F , where ν denotes
the outer normal of S. The surface gradient ∇S on S is given by ∇SF = ∇F − ν · ∇F . The
corresponding surface curl on S is defined to be LS = ν ∧∇S (note that these operators are
generalizations of the corresponding operators on the sphere). The Helmholtz decomposition
theorem for regular surfaces then reads as follows.

Theorem 1.8 Let S be a regular surface. Let f : S → R3 be a continuously differentiable
vector field on S. Then there exist uniquely determined scalar functions F1 ∈ C(1)(S) and
F2, F3 ∈ C(2)(S) satisfying ∫

S

Fi(ξ)dω(ξ) = 0, i = 2, 3

such that

f = νF1 +∇SF2 + LSF3 =
3∑
i=1

o
(i)
S Fi.

See [8] for a proof.

Motivated by the Helmholtz decomposition for the sphere we will now introduce the vector
spherical harmonics. More precisely, let Yn ∈ Harmn(Ω), then any vector field

o(i)Yn, n ≥ 0i, i = 1, 2, 3 (1.16)

is called a vector spherical harmonic of degree n and type i. Clearly o(1)Yn is a normal field,
while o(2)Yn and o(3)Yn are tangential fields. The next theorem defines an l2(Ω)-orthonormal
system of vector spherical harmonics, starting from an L2(Ω)− orthonormal system of scalar
spherical harmonics.
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Theorem 1.9 Let the set {Yn,k} n=0,1,...
k=1,...2n+1

be an L2(Ω)-orthonormal system of scalar spherical

harmonics. Then the system
y

(i)
n,k = (µ(i)

n )−1/2o(i)Yn,k, (1.17)

i = 1, 2, 3, n = 0i, 0i + 1, . . . , k = 1, . . . , 2n+ 1 forms an l2(Ω)-orthonormal system of vector
spherical harmonics when the normalization factor is chosen to be

µ(i)
n =

{
1 if i = 1
n(n+ 1) if i = 2, 3.

(1.18)

Let harm
(i)
n denote the set of all vector spherical harmonics of type i and degree n. Further-

more we define

harm0(Ω) = harm
(1)
0 (Ω) = span{y(1)

0,1},

harmn(Ω) =
3⊕
i=1

harm
(i)
n (Ω) =

3⊕
i=1

(
span{y(i)

n,k}k=1,...,2n+1

)
, n > 0.

(1.19)

Additionally we let

harm
(i)
pi,...,qi(Ω) =

qi⊕
n=pi

harm
(i)
n (Ω),

harmp,...,q(Ω) =
3⊕
i=1

qi⊕
n=pi

harm
(i)
n (Ω),

(1.20)

where p = (p1, p2, p3)
T , q = (q1, q2, q3)

T with 0i ≤ pi ≤ qi, i = 1, 2, 3. Any member of class
harmp,...,q(Ω) is called a bandlimited vector field of bandwidth q − p.

Using this notation, Theorem 1.9 tells us that

l2(i)(Ω) =
∞⊕
n=0i

harm
(i)
n (Ω)

‖·‖l2(Ω)

=
∞⊕
n=0i

span{y(i)
n,k}k=1,...,2n+1

‖·‖l2(Ω)

and (1.21)

l2(Ω) =
3⊕
i=1

∞⊕
n=0i

harm
(i)
n (Ω)

‖·‖l2(Ω)

, (1.22)

i.e. the spaces harm
(i)
n (Ω), n = 0i, . . . are dense in l2(i)(Ω) and the sets harmn, n = 0, 1, . . .

are dense in l2(Ω). In other words, every l2(Ω)-vector field can be represented by means of
its Fourier expansion in terms of vector spherical harmonics, i.e.

lim
N→∞

∥∥∥∥∥f −
3∑
i=1

N∑
n=0i

2n+1∑
k=1

(f (i))∧(n, k)y
(i)
n,k

∥∥∥∥∥
l2(Ω)

= 0, for all f ∈ l2(Ω) (1.23)

with Fourier coefficients

(f (i))∧(n, k) =

∫
Ω

f(ξ) · y(i)
n,k(ξ)dω(ξ). (1.24)
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Alternatively we may of course write

f =
3∑
i=1

f (i) (1.25)

with the vector fields f (i) given by

f (i) =
∞∑
n=0i

2n+1∑
k=1

(f (i))∧(n, k)y
(i)
n,k, i = 1, 2, 3 (1.26)

where the equalities are meant in the sense of the l2(Ω)-topology. For later use we introduce
the Helmholtz projectors p(i) corresponding to the decomposition l2(Ω) = ⊕3

i=1l
2
(i)(Ω) by

p(i) : l2(Ω) → l2(i)(Ω), f 7→ p(i)f = f (i), i ∈ {1, 2, 3}.

We can extend the definitions of the o(i)-operators to vector fields. To be more specific, we let
f : Ω → R3 be a sufficiently smooth vector field on the sphere, admitting the representation

f(ξ) =
3∑

ν=1

Fν(ξ)ε
ν , (1.27)

where εν are unit coordinate vectors. Then we define o
(i)
ξ f(ξ) to be

o
(i)
ξ f(ξ) =

3∑
ν=1

(o
(i)
ξ Fν(ξ))⊗ εν , i = 1, 2, 3. (1.28)

This enables us to find the so-called Legendre tensors which, in the vector theory, play the
role of the Legendre functions. That is, the (i, k)-Legendre-tensor-field of degree n p

(i,k)
n :

Ω× Ω → R3 ⊗ R3 is defined via

p(i,k)
n (ξ, η) = (µ(k)

n )−1/2(µ(i)
n )−1/2o

(i)
ξ o

(k)
η Pn(ξ · η), ξ, η ∈ Ω. (1.29)

The connection between the vector spherical harmonics and the Legendre tensor can be
established via the addition theorem for vector spherical harmonics (cf. [30]):

Theorem 1.10 Let {y(i)
n,k}

i=1,2,3
k=1,...,2n+1 be an l2(Ω)-orthonormal set in harmn and let further-

more p
(i,l)
n be the (i, l)-Legendre-tensor-field of degree n. Then

2n+1∑
k=1

y
(i)
n,k(ξ)⊗ y

(l)
n,k(η) =

2n+ 1

4π
p(i,l)
n (ξ, η), ξ, η ∈ Ω. (1.30)

Finally it should be stated that, as one of the most important consequences of the last
theorem, the uniquely determined reproducing kernel of harm

(i)
pi,...,qi(Ω) is given by

k
harm

(i)
pi,...,qi

(Ω)
(ξ, η) =

qi∑
n=pi

2n+ 1

4π
p(i,i)
n (ξ, η),
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where the Legendre tensors p
(i,i)
n , i ∈ {1, 2, 3}, can explicitly be presented via

p(1,1)
n (ξ, η) = Pn(ξ · η)ξ ⊗ η,

p(2,2)
n (ξ, η) =

1

n(n+ 1)
(P ′′

n (ξ · η)(η − (ξ · η)ξ)⊗ (ξ − (ξ · η)η)

+P ′
n(ξ · η)(itan(ξ)− (η − (ξ · η)ξ)⊗ η)),

p(2,2)
n (ξ, η) =

1

n(n+ 1)
(P ′′

n (ξ · η)ξ ∧ η ⊗ η ∧ ξ

+P ′
n(ξ · η)(ξ · η)itan(ξ)− (η − (ξ · η)ξ)⊗ ξ)).

Note that itan is the surface identity tensor field and is given by itan = i− ξ⊗ ξ, ξ ∈ Ω, with
the identity tensor i =

∑3
i=1 ε

i ⊗ εi. For more details the interested reader might consult
[30] and the references therein.

1.4 Mie Representation

Apart from the Helmholtz representation which has been presented in the last section, we
will make use of the so-called Mie representation for solenoidal vector fields. The Mie re-
presentation is well known in the literature and we will just recapitulate some important
results in a formulation that is useful for our later considerations. For a detailed and general
treatment the reader might consult [7, 8, 48, 97], for example.

A vector field f on an open subset U ⊂ R3 is called solenoidal if and only if the integral∫
S
f(x) · ν(x)dω(x) vanishes for every closed surface S lying entirely in U (ν denotes the

outward normal of S). Every such solenoidal vector field admits a representation in terms
of two uniquely defined scalar functions by means of the Mie representation theorem (e.g.
[7, 8, 48, 97]):

Theorem 1.11 Let 0 < R1 < R2 and let f : Ω(R1,R2) → R3 be a solenoidal vector field in
the spherical shell Ω(R1,R2). Then there exist unique scalar functions Pf , Qf : Ω(R1,R2) → R,
such that

(1)
∫

Ωr
Pf (x)dωr(x) =

∫
Ωr
Qf (x)dωr(x) = 0,

(2) f = ∇∧ LPf + LQf ,

for all r ∈ (R1, R2) with the operator L given by Lx = x ∧∇x.

(Note that Ω(R1,R2) = {x ∈ R3 : R1 ≤ |x| ≤ R2}). Vector fields of the form ∇ ∧ LPf are
called poloidal while vector fields of the form LQf are denoted toroidal. For the sake of
completeness we present the following theorem (cf. [8]).

Theorem 1.12 Let 0 < R1 < R2 and let f : Ω(R1,R2) → R3 be a solenoidal vector field in
the spherical shell Ω(R1,R2). Then there exist a unique poloidal field p as well as a unique
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toroidal field t such that
f = p+ t,

in Ω(R1,R2).

For each x = rξ with R1 < r < R2 and ξ ∈ Ω the Mie representation f = ∇ ∧ LPf + LQf

can be rewritten as

f(rξ) = ξ
∆∗
ξPf (rξ)

r
−∇∗

ξ

∂rrPf (rξ)

r
+ L∗ξQf (rξ) (1.31)

(cf. e.g. [7, 8, 82, 91]), where we have used the abbreviation ∂r = ∂/∂r. Actually, as regards
the second term, it is mathematically correct to write(

∂

∂r̃
r̃Pf (r̃ξ)

)
|r̃=r.

We avoid this awkward notation, however, and stick to the easy nomenclature for the rest
of the thesis. Concerning the third term, one might argue that the representation (1.31) is
critical since, for the toroidal part, the operator Lx – which is an operator in R3 – is basically
replaced by the L∗ξ-operator which is a differential operator on the sphere. Consequently, in
order to calculate LQf on Ωr requires Qf to be extended off the sphere. Nevertheless it can
be shown that the values of LQf obtained on Ωr are independent of which extension is chosen
(cf. [7, 8] and the references therein) such that the above representation is mathematically
sound.

Finally, we mention a last result which is concerned with the curl of a Mie representation:

Corollary 1.13 Let f, g : Ω(R1,R2) → R3 be two solenoidal vector fields with representations

f = ∇∧ LPf + LQf ,

g = ∇∧ LPg + LQg,

and which are connected via ∇∧ f = λg, λ ∈ R \ {0}. Then the Mie scalars are related via

Pg =
1

λ
Qf ,

Qg = −1

λ
∆Pf .

This shows us that the curl of a poloidal field is a toroidal field, and vice versa.

1.5 Inverse Problems and Regularization

In the following we recapitulate some important facts for the solution of so-called ill-posed
problems which will be convenient for the reader in order to access the proposed approach
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to the problem of downward continuation in Chapter 4. For detailed reviews the interested
reader might consult [22, 23, 78], for example.

Let (H, (·, ·)H) and (K, (·, ·)K) be separable Hilbert spaces and let there be given a function
G ∈ K. We are interested in an approximation of a function F ∈ H that is related to G via
the operator equation

A : H → K, AF = G,

where A is assumed to be a bounded linear operator. The construction of a solution is not
difficult if A is bijective (i.e. a unique solution exists) and if A−1 is continuous (i.e. the
solution depends continuously on the data). These properties are equivalent to Hadamard’s
definition of a well-posed problem (cf. [52]). If at least one of the properties is violated, then
the problem is said to be ill-posed. This can equivalently be interpreted as follows:

• A surjective ⇐⇒ K = R (A),

• A injective ⇐⇒ ker (A) = {0},

• A bijective ⇐⇒ A−1 exists,

• the solution depends continuously on the given data ⇐⇒ continuity and boundedness
of A−1.

(R (A) denotes the range, ker (A) the kernel of A). In practical applications we are generally
not concerned with the ideal situation of a well-posed problem. First of all a solution of
AF = G exists only for those right hand sides G which are in the range of A. Errors due
to unavoidable unprecise measurements, for example, result in noisy data and we may end
up with G /∈ R (A) which violates the condition of surjectivity. In order to define a solution
even for non-surjective operators it is reasonable to consider an approximate solution which
occupies particular properties such as the least-squares property, i.e. one seeks that very
element of H solving minF∈H ‖AF −G‖K. In the case of G ∈ R (A), the least-squares
solution fulfills ‖AF −G‖K = 0, of course. With A being injective, the solution F of

minF∈H ‖AF −G‖K is uniquely determined as the orthogonal projection of G ontoR (A)
‖·‖K ,

else there exist infinitely many solutions if G ∈ R (A)⊥. Then one usually is interested in
the least-squares solution which is of minimal norm ‖F‖H.

Determining the least-squares solution of minimal norm is equivalent to the determination
of the (unique) generalized solution F+. The latter is defined via an additional mapping, the
so-called Moore-Penrose inverse (or generalized inverse) A+ : R (A)⊕R (A)⊥ → H. Let A∗

denote the adjoint operator of A then, for G ∈ R (A)⊕R (A)⊥, any F ∈ H is least-squares
solution of AF = G if and only if the normal equations A∗AF = A∗G are fulfilled. It follows
that the generalized solution is just that very least-squares solution that minimizes ‖F‖H.
The space of all least-squares solutions is F+ + ker (A). It is well known that the described
concept fails if G /∈ R (A)⊕R (A)⊥ or the inverse operator A−1 is not continuous. Then, the
lack of continuity needs to be replaced by a regularization of A+. To be specific, given the
situation that only a disturbed right hand side is known instead of G, we are interested in
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an approximation of the generalized solution F+ which depends continuously on the given
data.

An important tool in this context is the concept of the singular system of the operator A.
More precisely, the non negative numbers σn =

√
τn, where τn are the eigenvalues of the

self-adjoint operator A∗A, are called the singular values of A. If A is linear and compact
(cf. e.g. [57, 72]) and if σ1 ≥ σ2 ≥ · · · ≥ 0 is the ordered sequence of the corresponding
singular values, then there exist orthonormal systems {Hn} ∈ H and {Kn} ∈ K such that
AHn = σnKn and A∗Kn = σnHn. The set {σn, Hn, Kn} is called the singular system of A.
The generalized inverse can be given in terms of the singular system, i.e.

F+ = A+G =
∞∑
n=0

σ−1
n (G,Kn)KHn, G ∈ R (A)⊕R (A)⊥ .

If the operator A is compact then the condition that A has a finite dimensional range is
fulfilled if and only if A has finitely many singular values σn, otherwise the sequence {σn}
has a unique cluster point 0, i.e. limn→∞ σn = 0. Additionally, the closure of the range of
a compact operator is equivalent to the property of a finite dimensional range. It can be
shown that if A is compact with non-closed range, the generalized inverse is not continuous
and thus, the generalized solution F+ does not depend continuously on the given data. A
regularization can be obtained by filtering the singular value decomposition, i.e.

AγjG =
∞∑
n=0

Fγj (σn) (G,Kn)KHn.

More precisely:

Definition 1.14 Let
{
Sγj
}
γj>0

, with j ∈ Z, limj→∞ γj = 0 as well as limj→−∞ γj = ∞, be

a sequence of operators Sγj : K → H such that

SγjKn = Fγj (σn)Hn, n = 0, 1, . . . .

Furthermore, let the filter Fγj (σn) satisfy the following properties:

(i) sup
n

∣∣Fγj (σn)
∣∣ = c (γj) <∞,

(ii) lim
γ→0

Fγj (σn) = 1 pointwise in σn for all n = 0, 1, . . .,

(iii)
∣∣Fγj (σn)

∣∣ ≤ c <∞ for all γj > 0 and n = 0, 1, . . ..

Then the family
{
Sγj
}
γj>0

is a regularization of A+ .

Finally, we present three possible choices of filters Fγj , namely the truncated singular value
decomposition (TSVD), the smoothed truncated singular value decomposition as well as the
Tikhonov filter (TF):
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(i) TSVD

Fγj(σn) =

{
σ−1
n : n ≤ N(γj)
0 : n > N(γj).

This filter is the simplest method. The singular values are considered up to a certain
threshold N(γj), while all the others are discarded.

(ii) smoothed TSVD

Fγj(σn) =


σ−1
n : n ≤M(γj)

σ−1
n τγj(n) : n = M(γj) + 1, ..., N(γj)

0 : n > N(γj)
,

where τγj , is monotonically decreasing in [M(γj), N(γj)].

(iii) TF

Fγj(σn) =
σn

σ2
n + γ2

j

.

For singular values σn that are large compared to γj, we obtain Fγj ' 1/σn, i.e. there is
almost no regularization. If the singular values are comparatively small (i.e. the errors
in the data are amplified), we end up with Fγj ' 0 thus attenuating these effects.



Chapter 2

A General Approach to Scalar and
Vectorial Multiscale Methods

This chapter briefly discusses an approach to the theory and algorithmic aspects of wavelets
within a general separable functional Hilbert space framework. As far as scalar wavelets
are concerned we follow our treatment in [36] (see also [29, 31]). For the case of vectorial
wavelets the scalar concept is extended and the necessary modifications to the theory are
presented.

The introduction of general scaling functions and wavelets will be shown to provide an
adequate tool of representing each member of the Hilbert space as linear combinations of
dilated and shifted copies of a corresponding ’mother kernel’. In consequence, the wavelet
transform maps the elements of the Hilbert space into a two-parameter class of scale- and
space-dependent elements, finally giving us the possibility to achieve accurate approxima-
tions by using only fractions of the original information about a member of the Hilbert space.
For the simple and fast decomposition and reconstruction of Hilbert space elements into or,
respectively, from the corresponding wavelet coefficients we present a new scalar pyramid
scheme including bandlimited as well as non-bandlimited scalar kernel functions (see also our
approach in [33]). For later use we define Legendre wavelets, as well as scalar and vectorial
spherical wavelets as concrete examples.

2.1 Scalar Approach

2.1.1 H-Fourier Expansions

We start with the Fourier theory in separable Hilbert spaces. Let (H, (·, ·)H) be a real
separable Hilbert space over a certain domain Σ ⊂ Rn, equipped with the inner product
(·, ·)H. Then there exists a countable orthonormal system {U∗

n}n=0,1,... which is complete in
(H, (·, ·)H) and which we suppose to be known. It is a well known fact (e.g. [16]) that, in
the sense of the induced norm ‖ · ‖H, each F ∈ H can be represented by its orthonormal or

28
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Fourier expansion with respect to the system {U∗
n}n=0,1,..., i.e. F admits the series expansion

F =
∞∑
n=0

F∧(n)U∗
n, (2.1)

with Fourier coefficients

F∧(n) = (F,U∗
n)H, n = 0, 1, 2, . . . .

Orthogonal expansions like (2.1) are very useful for picking out ’frequencies’ n from a func-
tion F ∈ H, which is due to the ideal localization of the trial functions U∗

n in the Fourier
domain. Uncertainty principles, however, tell us that this is unavoidably accompanied by
non-localization of the U∗

n in the space domain. As a consequence thereof, functions (sig-
nals) varying on small spatial scales cannot properly be dealt with using non-space localizing
(for example polynomial) basis functions on Σ. In this context it is worth mentioning that
signals frequently consist of contributions corresponding to certain frequencies which - in
turn - are themselves spatially changing. This spatial distribution of frequency-content is
not reflected in a Fourier series in terms of non-space localizing (e.g. polynomial) trial func-
tions U∗

n. In what follows we are therefore going to present the necessary groundwork for
introducing certain basis functions (i.e. wavelets) which enable us to automatically adapt
the amount of localization in the space and Fourier domain and thus are able to cope with
the aforementioned problem of space-varying frequency-content.

2.1.2 H-Product Kernels and H-Convolutions

Scaling functions as well as wavelets are realizations of a larger class of functions, the so-called
H-product kernels.

Definition 2.1 Let Γ : Σ× Σ → R be of the form

Γ(x, y) =
∞∑
n=0

Γ∧(n)U∗
n(x)U

∗
n(y), x, y ∈ Σ, (2.2)

with Γ∧(n) ∈ R, n ∈ N0. Then Γ is called an H-product kernel or, briefly, H-kernel. The
sequence {Γ∧(n)}n=0,1,... is called the symbol of the H-kernel (2.2).

Next we give a definition which enables us to ensure that an H-kernel, for any one of the
two arguments fixed, is a member of the corresponding Hilbert space.

Definition 2.2 The symbol {Γ∧(n)}n=0,1,... of an H-product kernel (2.2) is said to be H-
admissible if it satisfies the following conditions:

(i)
∞∑
n=0

(Γ∧(n))
2
<∞, (ii)

∞∑
n=0

(Γ∧(n)U∗
n(x))

2
<∞ (2.3)

for all x ∈ Σ.
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That is, if we have an H-kernel Γ : Σ× Σ → R of the form (2.2) with H-admissible symbol
{Γ∧(n)}n=0,1,..., then the functions

Γ(x, ·) : Σ → R, x ∈ Σ fixed,

respectively
Γ(·, x) : Σ → R, x ∈ Σ fixed,

are elements of H. Definition 2.2 guarantees that the convolution (which is to be defined in
Definition 2.3 below) of a Hilbert space function against an admissible H-kernel is again a
member of H.

The basic concept for expanding functions in terms of space localizing kernels is the convolu-
tion of the functions against these kernels. The upcoming definition clarifies what is meant
by that.

Definition 2.3 Let Γ : Σ × Σ → R be an H-kernel of the form (2.2) with H-admissible
symbol {Γ∧(n)}n=0,1,.... Furthermore let F ∈ H. The H-convolution of Γ against F is
defined by

(Γ ∗H F )(x) = (Γ(x, ·), F )H =
∞∑
n=0

Γ∧(n)F∧(n)U∗
n(x). (2.4)

Note that the righthand side of (2.4) immediately yields

(Γ ∗H F )∧(n) = Γ∧(n)F∧(n), n ∈ N0. (2.5)

As we have mentioned before, an H-kernel with H-admissible symbol is an element of the
corresponding separable Hilbert space H if one argument is held fix. As a consequence of
that we can expand Definition 2.3 to additionally hold for the convolution of two H-kernels
with H-admissible symbols. By doing so we end up with

Theorem 2.4 Let {Γ∧1 (n)}n=0,1,... and {Γ∧2 (n)}n=0,1,... be H-admissible symbols correspond-
ing to the H-product kernels Γ1 and Γ2, respectively. Then

(Γ1 ∗H Γ2)(x, y) = (Γ1 ∗H Γ2(·, y))(x)
= (Γ1(x, ·),Γ2(·, y))H

=
∞∑
n=0

Γ∧1 (n)Γ∧2 (n)U∗
n(x)U

∗
n(y)

holds for all x, y ∈ Σ, and the sequence {(Γ1 ∗H Γ2)
∧(n)}n=0,1,... given by

(Γ1 ∗H Γ2)
∧(n) = Γ∧1 (n)Γ∧2 (n). (2.6)

constitutes an H-admissible symbol of the H-kernel Γ1 ∗H Γ2.



CHAPTER 2. GENERAL APPROACH TO MULTISCALE METHODS 31

2.1.3 H-Scaling Functions

Having defined the H-product kernels with H-admissible symbols, the convolution of two of
those kernels as well as the convolution of anH-kernel against a member of the corresponding
Hilbert space, we are now in a position to define the so-called H-scaling functions as certain
families ofH-product kernels. TheseH-scaling functions will enable us to construct operators
on H which can be interpreted as bandpass filters for the Hilbert space functions. We start
with the introduction of the so-called dilation and shifting operators.

Definition 2.5 Let {ΓJ}, J ∈ Z, be a countable family of H-product kernels with H-
admissible symbols. Then the dilation operator Dk, k ∈ Z is defined by

DkΓJ = ΓJ+k

and the shifting operator Sx, x ∈ Σ by

SxΓJ = ΓJ(x, ·).

The kernel Γ0 ∈ {ΓJ}J∈Z is defined to be the mother kernel of the family, since

ΓJ(x, ·) = SxDJΓ0

holds for all x ∈ Σ and all J ∈ Z.

Next, the generating symbol of an H-scaling function, as well as the H-scaling function itself
will be introduced:

Definition 2.6 Let (Φ0)
∧(n) be an H-admissible symbol additionally satisfying

(i) (Φ0)
∧(0) = 1,

(ii) n > k ⇒ (Φ0)
∧(n) ≤ (Φ0)

∧(k),

then (Φ0)
∧(n) is said to be the generating symbol of the mother H-scaling function given by

Φ0(x, y) =
∞∑
n=0

(Φ0)
∧(n)U∗

n(x)U
∗
n(y), x, y ∈ Σ.

We are now interested in the dilated versions of the mother scaling function and therefore
need to extend the definition of the generating symbol:

Definition 2.7 Let {(ΦJ)
∧(n)}n=0,1,..., J ∈ Z, be an H-admissible symbol satisfying, in

addition, the following properties:

(i) lim
J→∞

(
(ΦJ)

∧ (n)
)2

= 1 , n ∈ N,

(ii)
(
(ΦJ)

∧ (n)
)2 ≥ ((ΦJ−1)

∧ (n)
)2

, J ∈ Z, n ∈ N ,

(iii) lim
J→−∞

(
(ΦJ)

∧ (n)
)2

= 0, n ∈ N ,

(iv) ((ΦJ)
∧ (0))2 = 1 , J ∈ Z .
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Then
{
(ΦJ)

∧ (n)
}
n=0,1,...

, J ∈ Z is called the generating symbol of an H-scaling function.

The corresponding family {ΦJ}, J ∈ Z, of H-product kernels given by

DJSxΦ0 = ΦJ(x, ·) :=
∞∑
n=0

(ΦJ)
∧(n)U∗

n(x)U
∗
n(·), x ∈ Σ ,

is called H-scaling function.

By virtue of Definition 2.7 we are thus able to represent any member of theH-scaling function
{ΦJ}, J ∈ Z as a dilated and shifted version of the mother H-scaling function.

From Theorem 2.4 it is obvious that, for n = 0, 1, . . . and J ∈ Z, the kernel Φ
(2)
J = ΦJ ∗HΦJ is

an H-kernel with H-admissible symbol
{
((ΦJ)

∧ (n))2
}
. This helps us to proof the following

theorem, which provides us with the central result in the theory of H-scaling functions.

Theorem 2.8 Let {(ΦJ)
∧(n)}n=0,1,..., J ∈ Z, be the generating symbol of an H-scaling func-

tion {ΦJ}. Let furthermore

FJ = Φ
(2)
J ∗H F = (ΦJ ∗H ΦJ) ∗H F , F ∈ H,

be the so-called J-level approximation of F . Then

lim
J→∞

FJ = F

holds, in the sense of the H-metric, for all F ∈ H.

Proof. For the sake of brevity we introduce the operator TJ : H → H, J ∈ Z, via

FJ = TJF = (ΦJ ∗H ΦJ) ∗H F.

From Theorem 2.4 and by virtue of Definition 2.3 it immediately follows that

TJF =
∞∑
n=0

((ΦJ)
∧(n))2F∧(n)U∗

n .

This implies that

‖TJ‖ = sup
G∈H

‖G‖H=1

‖TJG‖H

=

(
∞∑
n=0

((ΦJ)
∧(n))4(G∧(n))2

) 1
2

≤ sup
n∈N0

((ΦJ)
∧(n))2

(
∞∑
n=0

(G∧(n))2

) 1
2

≤ sup
n∈N0

((ΦJ)
∧(n))2 <∞
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for every J ∈ Z, since {(ΦJ)
∧(n)}n=0,1,... , J ∈ Z, is H-admissible. Parseval’s identity tells us

that

lim
J→∞

‖TJF − F‖2
H = lim

J→∞

∞∑
n=0

(1− ((ΦJ)
∧(n))2)2(F∧(n))2. (2.7)

From conditions (i), (ii), and (iv) of Definition 2.7 it can be deduced that

0 ≤ (1− ((ΦJ)
∧(n))2)2 ≤ 1

is valid for all n ∈ N0. Therefore, the limit and the infinite sum in (2.7) may be interchanged.
Using conditions (i) and (ii) of Definition 2.7 completes the proof.

From Theorem 2.8 it follows that, for any F ∈ H, each double convolution

FJ = TJF = (ΦJ ∗H ΦJ) ∗H F

provides us with an approximation of F at a different scale J . In terms of filtering the
H-product kernels (ΦJ ∗H ΦJ) may be interpreted as low-pass filters in H. TJ represents the
corresponding convolution operator. Accordingly, we understand the corresponding scale
space VJ to be the image of H under the operator TJ , i.e.

VJ = TJ(H) = {(ΦJ ∗H ΦJ) ∗H F | F ∈ H} .

The scale spaces VJ define a so-called H-multiresolution analysis (MRA) in the following
sense:

Theorem 2.9 The scale spaces satisfy the following properties:

(a) {U∗
0} ⊂ VJ ⊂ VJ ′ ⊂ H , J ≤ J

′
,

(b)
∞⋂

J=−∞

VJ = {U∗
0} ,

(c)
∞⋃

J=−∞

VJ

‖·‖H

= H,

(d) if FJ ∈ VJ then D−1FJ ∈ VJ−1, J ∈ Z.

Proof. The assertion (a) follows from conditions (ii) and (iv) of Definition 2.7. The identity
(b) follows from conditions (iii) and (iv) of Definition 2.7, while (c) is a direct consequence
of Theorem 2.8 and condition (iii) of Definition 2.7. Assertion (d) follows immediately from
Definition 2.5.

One might expect that there is some more structure in the MRA, e.g. that the scale spaces
are of finite, predictable dimension. This, however, is in general not true. The dimension and
composition of the scale spaces depend on the particular choice of the generating symbols of
the H-scaling functions; some more details will be given later on.
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2.1.4 H-Wavelets

The definition of the H-scaling functions in the last section now enables us to introduce the
associated H-wavelets. The basic idea is to break up the functions F ∈ H into pieces of
information at different locations and at different scales (i.e. different levels of resolution).
Essential again is the concept of H-convolutions and -product kernels.

Definition 2.10 Let {(ΦJ)
∧(n)}n=0,1,..., J ∈ Z, be the generating symbol of an H-scaling

function as defined in Definition 2.7. Then the generating symbol

{(Ψj)
∧(n)}n=0,1,... , j ∈ Z,

of the associated H-wavelet is defined via the refinement equation

(Ψj)
∧(n) =

(
((Φj+1)

∧(n))
2 − ((Φj)

∧(n))
2
) 1

2
. (2.8)

The family {Ψj}, j ∈ Z, of H–product kernels given by

Ψj(x, y) =
∞∑
n=0

(Ψj)
∧(n)U∗

n(x)U
∗
n(y), x, y ∈ Σ, (2.9)

is called H-wavelet associated to the H-scaling function {ΦJ}, J ∈ Z. The corresponding
mother wavelet is denoted by Ψ0.

As in the case of the H-scaling functions, any H-wavelet can be interpreted as a dilated and
shifted version of the corresponding mother wavelet, i.e.

Ψj(x, ·) = SxDjΨ0(·, ·),

where the shifting and dilation operators are given by Definition 2.5.

Similar to the definition of the operator Tj, j ∈ Z, we are now led to the convolution
operators Rj : H → H given by

RjF = Ψ
(2)
j ∗H F = (Ψj ∗H Ψj) ∗H F, F ∈ H.

From the refinement equation (2.8) we can easily derive that

((ΦJ+1)
∧(n))2 =

J∑
j=−∞

((Ψj)
∧(n))2

= ((Φ0)
∧(n))2 +

J∑
j=0

((Ψj)
∧(n))2 .

This is equivalent to

ΦJ+1 ∗H ΦJ+1 =
J∑

j=−∞

(Ψj ∗H Ψj) = Φ0 ∗H Φ0 +
J∑
j=0

(Ψj ∗H Ψj) (2.10)
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or, in operator formulation,

TJ+1 =
J∑

j=−∞

Rj = T0 +
J∑
j=0

Rj. (2.11)

In terms of filtering, Ψ
(2)
j = Ψj ∗H Ψj, j ∈ Z, may be interpreted as a band-pass filter. Thus,

the convolution operators Rj describe the ’detail information’ corresponding to a certain
scale j. Therefore, in analogy to the scale spaces, we introduce the detail spaces via

Wj = Rj(H) = {(Ψj ∗H Ψj) ∗H F | F ∈ H} .

Using the concept of the scale and detail spaces we can translate the operator equation (2.11)
into a corresponding relation for the spaces:

J∑
j=−∞

Wj = V0 +
J∑
j=0

Wj = VJ+1, VJ +WJ = VJ+1, J ∈ Z . (2.12)

This can be interpreted as follows: The detail space WJ contains all the necessary detail
information to go from an approximation at scale J up to an approximation at scale J + 1.
It is important to note that the sum in (2.12) is neither direct nor orthogonal. This is, as
in the case of the MRA structure, dependent on the underlying generating symbols of the
H-scaling functions and, consequently, of the underlying H-wavelets.

For later use we define, in close resemblance to the Fourier transform, the so-called wavelet
transform:

Definition 2.11 Let F ∈ H and let {Ψj}, j ∈ Z be an H-wavelet associated to the H-scaling
function {ΦJ}, J ∈ Z. Then the wavelet transform WT of F at scale j ∈ Z and position
x ∈ Σ is given by

WT (F )(j;x) = (Ψj(x, ·), F )H = (Ψj ∗H F )(x), F ∈ H. (2.13)

The following theorem summarizes the main results of this section:

Theorem 2.12 Let {(ΦJ)
∧(n)}n=0,1,..., J ∈ Z, be the generating symbol of an H-scaling

function. Suppose that {(Ψj)
∧(n)}n=0,1,..., j ∈ Z, is the generating symbol of the associated

H-wavelet. Furthermore, let F ∈ H. Then

FJ = (Φ0 ∗H Φ0) ∗H F +
J−1∑
j=0

Ψj ∗H (WT (F )(j, ·)) (2.14)

is the J-level approximation of F satisfying

lim
J→∞

‖FJ − F‖H = 0. (2.15)
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Proof. Equation (2.10) together with Theorem 2.8 and Definition 2.11 lead to the desired
result.

Theorem 2.12 shows the essential characteristic of the H-wavelets: Any F ∈ H can be
approximated, starting with the coarse approximation T0F , by successively adding the detail
information R0F, . . . , RJF , thus ending up with the (J + 1)-level approximation TJ+1F .
Obviously, the ’partial reconstruction’ RjF is just the difference of two consecutive ap-
proximations, i.e. RjF = Tj+1F − TjF . Finally, the process of adding up detail information
in order to approximate any F ∈ H guarantees the convergence in the H-topology. The
following scheme illustrates the results of Theorem 2.12:

T0F T1F . . . TjF Tj+1F . . . j→∞
→ F

V0 ⊂ V1 . . . ⊂ Vj ⊂ Vj+1 . . . = H
V0 + W0 + . . .+ Wj−1 + Wj + . . . = H

T0F +R0F + . . .+Rj−1F + RjF + . . . = F .

Bandlimited H-wavelets

An important class of H-scaling functions and -wavelets, yielding a more structured mul-
tiresolution analysis, are the so-called bandlimited H-wavelets. They are characterized by
the fact that the generating symbol {(Φj)

∧(n)}n=0,1,..., j ∈ Z, of the associated H-scaling
function vanishes above a certain degree Nj. For the sake of simplicity we assume that
{Φj}j∈Z is a family of bandlimited kernels such that

((Φj)
∧(n))2 > 0 for n = 0, . . . , Nj = 2j − 1 (2.16)

and
((Φj)

∧(n))2 = 0 for n ≥ Nj + 1 = 2j. (2.17)

Then it is clear that, for any fixed x ∈ Σ,

Φj(x, ·) ∈ H0,...,2j−1 = span{U∗
0 , . . . , U

∗
2j−1} (2.18)

and
Ψj(x, ·) ∈ H0,...,2j+1−1 = span{U∗

0 , . . . , U
∗
2j+1−1} (2.19)

hold true. Note that (2.19) follows directly from (2.16), (2.17) and the refinement equation
(2.8) of Definition 2.10. As a consequence of (2.18) and (2.19) the scale and detail spaces
fulfill

Vj = H0,...,2j−1,

Wj ⊂ H0,...,2j+1−1.

As simple bandlimited examples we present:
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(a) Shannon scaling function

(Φj)
∧(n) =

{
1 for n = 0, . . . , Nj

0 for n ≥ Nj + 1
,

(b) cubic polynomial (CP-) scaling function

(Φj)
∧(n) =

{
(1− 2−jn)2(1 + 2−j+1n) for n = 0, . . . , Nj

0 for n ≥ Nj + 1

with

Nj =

{
0 for j ∈ Z, j < 0

2j − 1 for j ∈ Z, j ≥ 0
.

In the case of the Shannon scaling function and the associated wavelets we are led to an
orthogonal MRA and the detail and scale spaces satisfy

Vj+1 = Vj ⊕Wj and Wj ⊥ Wk,

with k 6= j, j ∈ N0. In the case of the cubic polynomial scaling function, the scale and detail
spaces remain finite dimensional, but the detail spaces are no longer orthogonal. Other
examples of bandlimited scaling functions and wavelets can be found in [30] for example.
For graphical impressions see Section 2.1.6.

Non-Bandlimited H-wavelets

For the sake of completeness we also present non-bandlimited H-scaling functions and asso-
ciated wavelets. These are generated by a generating symbol with global support (see e.g.
[30] for more details). As examples we present:

(a) Abel-Poisson scaling function: The generating symbol {(Φj)
∧(n)}n=0,1,..., j ∈ Z is given

by
(Φj)

∧(n) = enR2−j , n, j ∈ N0, R > 0.

The generating symbols of the associated H-wavelets can be derived by the refinement
equation (2.8):

(Ψj)
∧(n) =

√(
e−nR2−j−1

)2 − (e−nR2−j
)2
, n, j ∈ N0, R > 0.

(b) Tikhonov scaling function: The generating symbol {(Φj)
∧(n)}n=0,1,..., j ∈ Z is given

by

(Φj)
∧(n) =

σ2
n

σ2
n + ρ2

j

, n ∈ N0,

where {ρj}j∈Z is a strictly monotonically decreasing sequence of integers satisfying

lim
j→−∞

ρj = ∞ and lim
j→∞

ρj = 0,
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and where {σn}n∈N0
is a sequence satisfying

σn 6= 0 for all n ∈ N0

as well as
∞∑
n=0

σ2
n <∞.

Observe the relation to the Tikhonov filter in Section 1.5.

As a direct consequence of these constructions the scale and detail spaces are of infinite
dimension and the detail spaces are not orthogonal. Nevertheless, though the MRAs obtained
with non-bandlimited wavelets do not show as much structure as in the bandlimited case
(orthogonality or, at least, finite dimension of the scale and detail spaces), the global support
of the generating symbols is equivalent to only little localization in the Fourier domain. Thus,
non-bandlimited wavelets show very strong localization properties in the space domain. For
graphical impressions see Section (2.1.6).

2.1.5 A Pyramid Scheme

Up to now, we have established the theoretical basis properties for approximating Hilbert
space functions in terms of scaling functions and associated wavelets. This section deals
with some algorithmic aspects for the numerical application of the H-wavelet concept, i.e.
we present means of fast computation in terms of a so-called pyramid scheme. The approach
is similar to our treatment in [33] and has been generalized to the H-approach.

As can be seen from Theorems 2.8 and 2.12, it is crucial to compute double-convolutions of
the form

VJ0;y = (Φ
(2)
J0
∗H F )(y) = ((ΦJ0 ∗H ΦJ0) ∗H F )(y) (2.20)

and
Wj;y = (Ψ

(2)
j ∗H F )(y) = ((Ψj ∗H Ψj) ∗H F )(y). (2.21)

We now assume that, to each scale j ∈ N0, there are Nj ∈ N0 known weights w
Nj
i ∈ R and

corresponding knots y
Nj
i ∈ Σ such that

VJ0;y w

NJ0∑
i=1

w
NJ0
i Φ

(2)
J0

(y, y
NJ0
i )F (y

NJ0
i ),

Wj;y w
Nj∑
i=1

w
Nj
i Ψ

(2)
j (y, y

Nj
i )F (y

Nj
i ), j = J0, . . . , J − 1

(‘w’ always means that the error is assumed to be negligible; more details about the so-called
integration rules, i.e. the knots and corresponding weights, can be found in [30] for example).
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We will now realize a pyramid scheme for the (approximate) recursive computation of the
convolutions (2.20) and (2.21) for j = J0 . . . J−1. We use the following ingredients: Starting
from a sufficiently large J , such that

F (y) w Φ
(2)
J (·, y) ∗H F w

NJ∑
i=1

Φ
(2)
J (y, yNJi )ãNJi , y ∈ Σ, (2.22)

we want to show that the coefficient vectors

ãNj =
(
ã
Nj
1 , . . . , ã

Nj
Nj

)T
∈ RNj , j = J0, . . . , J − 1,

(being, of course, dependent on the function F under consideration) can be calculated such
that the following statements are valid:

(i) The vectors ãNj , j = J0, . . . , J − 1, are obtainable by recursion from the values ãNJi .

(ii) For j = J0, . . . , J

Φ
(2)
j (·, y) ∗H F '

Nj∑
i=1

Φ
(2)
j (y, y

Nj
i )ã

Nj
i .

For j = J0, . . . , J − 1

Ψ
(2)
j (·, y) ∗H F '

Nj∑
i=1

Ψ
(2)
j (y, y

Nj
i )ã

Nj
i .

Our considerations towards this result are divided into two consecutive steps, viz. the initial
step which is concerned with the highest scale J and the pyramid step which enables us to
establish the recursion relation:

The Initial Step

From Theorem 2.8 it follows that, for a suitably large integer J , the kernel Φ
(2)
J replaces the

’Dirac-functional’ δ in the sense that

Φ
(2)
J (·, y) ∗H F w F (y) = (δ ∗H F ) (y) = δy ∗H F , (2.23)

where

δ(x, y) = δx(y) =
∞∑
n=0

U∗
n(x)U

∗
n(y).

Note that the series has to be understood in the distributional sense. For i = 1, . . . NJ let

ãNJi = wNJi F (yNJi ) (2.24)

such that

Φ
(2)
J (y, ·) ∗H F ' F (y) '

NJ∑
i=1

wNJi Φ
(2)
J (y, yNJi )F (yNJi )

=

NJ∑
i=1

Φ
(2)
J (y, yNJi )ãNJi , i = 1, . . . , NJ .



CHAPTER 2. GENERAL APPROACH TO MULTISCALE METHODS 40

The Pyramid Step.

The central idea of the pyramid step is the existence of certain H-product kernels Ξj :
Σ× Σ → R such that

Φ
(2)
j ' Ξj ∗H Φ

(2)
j (2.25)

and
Ξj ' Ξj+1 ∗H Ξj (2.26)

hold true. In the case of bandlimited H-scaling functions the kernels Ξj can be chosen to be
kernels of the form

2j−1∑
n=0

U∗
n(x)U

∗
n(y) ∈ Vj = H0,...,2j−1, x, y ∈ Σ,

(see Section 2.1.4). In the non-bandlimited case one might choose Ξj = δ ' Φ
(2)
J (see (2.23);

note that, if H is a reproducing kernel Hilbert space, then Ξj can be chosen to be the
reproducing kernel of that very space).
In connection with relation (2.25) we are now able to write

Φ
(2)
j ∗ F ' Φ

(2)
j ∗ Ξj ∗ F '

Nj∑
i=1

Φ
(2)
j (·, yNji )ã

Nj
i , (2.27)

where we have introduced the coefficients at scale j, i.e.

ã
Nj
i = w

Nj
i

(
Ξj ∗ F

)
(y
Nj
i ), j = J0, . . . , J − 1. (2.28)

Hence, using Equation (2.26) it follows that

ã
Nj
i = w

Nj
i

(
Ξj ∗ F

)
(y
Nj
i )

' w
Nj
i

(
Ξj ∗ Ξj+1 ∗ F

)
(y
Nj
i )

' w
Nj
i

Nj+1∑
l=1

w
Nj+1

l Ξj(y
Nj
i , y

Nj+1

l )
(
Ξj+1 ∗ F

)
(y
Nj+1

l )

= w
Nj
i

Nj+1∑
l=1

Ξj(y
Nj
i , y

Nj+1

l )ã
Nj+1

i . (2.29)

Thus, we have managed to derive a recursion relation such that the coefficients ã
NJ−1

i can be

calculated recursively starting from the data ãNJi for the initial level J , ã
NJ−2

i can be deduced

recursively from ã
NJ−1

i , etc. This finally leads us to the formulae

Φ
(2)
j (·, y) ∗ F w

Nj∑
i=1

Φ
(2)
j (y, y

Nj
i )ã

Nj
i , j = J0, . . . , J,

and

Ψ
(2)
j (·, y) ∗ F w

Nj∑
i=1

Ψ
(2)
j (y, y

Nj
i )ã

Nj
i , j = J0, . . . , J − 1,
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with coefficients given by (2.24) and (2.29). This recursion procedure can be summarized in
the decomposition scheme

F → ãNJ → ãNJ−1 → . . . → ãNJ0

↓ ↓ ↓
WJ ;y WJ−1;y WJ0;y .

as well as the corresponding reconstruction scheme

ãNJ0 ãNJ0+1 ãNJ0+2

↓ ↓ ↓
Ψ(2)
ρJ0

∗ F Ψ(2)
ρJ0+1 ∗ F Ψ(2)

ρJ0+2 ∗ F

↘ ↘ ↘
Φ(2)
ρJ0

∗ F → + → Φ(2)
ρJ0+1 ∗ F → + → Φ(2)

ρJ0+2 ∗ F → + → . . . .

It should be noted that the coefficient vectors ãNj are independent of the special choice of
the kernel functions. This can be seen from the uniqueness of the Fourier coefficients and
the fact that Equation (2.27) is equivalent to F∧(n) '

∑Nj
i=1 ã

Nj
i U∗

n(y
Nj
i ).

2.1.6 Examples

This section presents concrete examples of H-scaling functions and wavelets which will be
of particular importance during the further course of this work. Starting with the one
dimensional Legendre wavelets (cf. [101]) defined on the unit interval, we will then present
two dimensional spherical wavelets defined on spherical surfaces (see e.g. [30, 41] for further
details).

Legendre Wavelets

As a first example we consider the space L2[−1,+1] of square–integrable functions F :
[−1,+1] → R, i.e. Σ = [−1,+1] and H = L2[−1,+1]. On the space L2[−1,+1] we are able
to introduce, as usual, the inner product

(F,G)L2[−1,+1] =

+1∫
−1

F (t)G(t) dt, F,G ∈ L2[−1,+1].

The L2[−1,+1]–orthonormal Legendre polynomials P ∗
n : [−1,+1] → R given by

P ∗
n =

√
2n+ 1

2
Pn, n = 0, 1, . . .

with

Pn(t) =

[n/2]∑
s=0

(−1)s
(2n− 2s)!

2n(n− 2s)!(n− s)!s!
tn−2s, t ∈ [−1,+1]
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form a Hilbert basis in L2[−1,+1] (see also Section 1.3). In other words, every F ∈
L2[−1,+1] admits a Fourier expansion F =

∑∞
n=0 F

∧(n)P ∗
n , where the Fourier coefficients

read as follows:

F∧(n) = (F, P ∗
n)L2[−1,+1] =

+1∫
−1

F (t)P ∗
n(t) dt, n = 0, 1, . . . .

The L2[−1,+1]–admissible product kernels are given by

Γ(x, t) =
∞∑
n=0

Γ∧(n)P ∗
n(x)P ∗

n(t), x, t ∈ [−1,+1]

with Γ∧(n) ∈ R, n ∈ N0, where the symbol of the L2[−1, 1]–kernel has to satisfy the estimates

(i)
∞∑
n=0

(Γ∧(n))2 <∞, (ii)
∞∑
n=0

(Γ∧(n)P ∗
n(t))2 <∞ (2.30)

for all t ∈ [−1,+1] (see the general admissibility condition given in Definition 2.2). Note
that a sufficient condition for the validity of the conditions (i) and (ii) in (2.30) is given by

∞∑
n=0

(Γ∧(n))2 2n+ 1

2
<∞,

since |Pn(t)| ≤ 1 holds true for all t ∈ [−1,+1]) (e.g. [30]).
In correspondence to the general approach the convolution of Γ against F is defined by(

Γ ∗L2[−1,+1] F
)
(x) = (Γ(x, ·), F )L2[−1,+1]

=

+1∫
−1

Γ(x, t)F (t) dt

=
∞∑
n=0

Γ∧(n)F∧(n)P ∗
n(x), x ∈ [−1,+1].

Let {(Φj)
∧(n)}n=0,1,..., j ∈ Z, be the generating symbol of a scaling function {Φj}. Then, as

can be seen by use of Theorem 2.8,

lim
J→∞

‖FJ − F‖L2[−1,+1] = 0

holds for all F ∈ L2[−1,+1], where the J–level approximation FJ is given by

FJ =

+1∫
−1

ΦJ(·, x)
+1∫
−1

ΦJ(x, t)F (t) dt dx =

+1∫
−1

Φ
(2)
J (·, t)F (t) dt.
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Accordingly, the scale spaces Vj are given by

Vj =


+1∫
−1

Φ
(2)
j (·, t)F (t) dt

∣∣F ∈ L2[−1,+1]

 ,

while the detail spaces are of the form

Wj =


+1∫
−1

Ψ
(2)
j (·, t)F (t) dt

∣∣F ∈ L2[−1,+1]

 .

In accordance to Definition 2.11 the wavelet transform WT at scale j and position x ∈
[−1,+1] is defined to be:

(WT )(F )(j;x) =

+1∫
−1

Ψj(x, t)F (t) dt, F ∈ L2[−1,+1].

The reconstruction formula of F ∈ L2[−1,+1] allows the (bilinear) representation

F =

+1∫
−1

Φ0(·, x)
+1∫
−1

Φ0(x, t)F (t) dt dx

+
∞∑
j=0

+1∫
−1

Ψj(·, x)(WT )(F )(j;x) dx

which is just a special realization of Theorem 2.12.

Spherical Wavelets

As reference space we now use the space L2(Ω) of square–integrable functions F : Ω → R
on the unit sphere Ω in three–dimensional Euclidean space R3 (i.e.: Σ = Ω ⊂ R3 and
H = L2(Ω), see also Chapter 1). We consider L2(Ω) to be equipped with the inner product

(F,G)L2(Ω) =

∫
Ω

F (ξ)G(ξ) dω(ξ), F,G ∈ L2(Ω).

As L2(Ω)–orthonormal system we choose the system {Yn,k} n=0,1,...,
k=1,...,2n+1

of spherical harmonics

Yn,k of degree n and order k. Clearly, every function F ∈ L2(Ω) can be represented in the
form

F =
∞∑
n=0

2n+1∑
k=1

F∧(n, k)Yn,k,
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where the Fourier coefficients are given by

F∧(n, k) = (F, Yn,k)L2(Ω) =

∫
Ω

F (η)Yn,k(η) dω(η).

In accordance to our general results, the L2(Ω)–product kernels are of the form

Γ(ξ, η) =
∞∑
n=0

2n+1∑
k=1

Γ∧(n)Yn,k(ξ)Yn,k(η)

with Γ∧(n) ∈ R for n = 0, 1, . . . ; k = 1, . . . , 2n+ 1, where

∞∑
n=0

(Γ∧(n))2 2n+ 1

4π
<∞

is a sufficient condition for the L2(Ω)-admissibility (see Definition 2.2 and note that |Yn,k(ξ)| ≤√
(2n+ 1)/4π for all ξ ∈ Ω). For the sake of completeness we mention that non-isotropic

spherical kernels can also be constructed. It is clear that the generating symbol is then given
to be dependent on n ∈ N0 as well as k = 1, . . . , 2n + 1. The L2(Ω)-admissibility can then
be guaranteed by assuming

∞∑
n=0

2n+1∑
k=1

(Γ∧(n, k))2 2n+ 1

4π
<∞.

The convolution of Γ against F is canonically understood to be(
Γ ∗L2(Ω) F

)
(ξ) = (Γ(ξ, ·), F )L2(Ω)

=

∫
Ω

Γ(ξ, η)F (η) dω(η)

=
∞∑
n=0

2n+1∑
k=1

Γ∧(n)F∧(n, k)Yn,k(ξ), ξ ∈ Ω .

Let {(ΦJ)
∧(n)}n=0,1,..., J ∈ Z, be the generating symbol of a scaling function {ΦJ}. Then,

by use of Theorem 2.8, we have
lim
J→∞

‖FJ − F‖ = 0

for all F ∈ L2(Ω), where FJ is accordingly given by

FJ =

∫
Ω

Φ
(2)
J (·, η)F (η) dω(η).

The scale and detail spaces as well as the wavelet transform are given in canonical way i.e.

Vj =


∫
Ω

Φ
(2)
j (·, η)F (η) dω(η)

∣∣F ∈ L2(Ω)

 ,
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for the scale spaces,

Wj =


∫
Ω

Ψ
(2)
j (·, η)F (η) dω(η)

∣∣F ∈ L2(Ω)

 ,

for the detail spaces and finally

(WT )(F )(j; ξ) =

∫
Ω

Ψj(ξ, η)F (η) dω(η), F ∈ L2(Ω)

for the wavelet transform.
The reconstruction formula of Theorem 2.12 for recovering a function F ∈ L2(Ω) now reads

F =

∫
Ω

Φ
(2)
0 (·, η)F (η) dω(η) +

∞∑
j=0

∫
Ω

Ψ
(2)
j (·, η)F (η) dω(η) .

Figures 2.1 to 2.3 present some illustrations of generators for scaling functions and wavelets
as well as the corresponding kernel functions. Note that the plots show continuous versions of
the generating symbols for better visibility. The abscissa of the kernel plots shows the angle
between the two argument vectors ξ, η ∈ Ω of the corresponding kernel function Φ(ξ, η)
or Ψ(ξ, η), respectively. Looking at the Shannon generators in Figure 2.1 (top), one can
realize what orthogonality of a multiresolution analysis means, i.e. the generating functions
of the Shannon wavelets show no overlap thus creating a comparatively good localization in
the Fourier domain. Consequently, in the space domain, the Shannon kernels show strong
oscillations. As one can see from Figure 2.2, the generating functions of the CP kernels
are less localized in the Fourier domain and overlap significantly. This, however, results in
kernel functions which are much less oscillating in the space domain or, in other words, show
a much better localization there. Last but not least we present some graphical illustrations
of the non-bandlimited Abel-Poisson kernels in Figure 2.3. Since their generating symbols
basically cover the whole Fourier domain the space localization is much higher than in the
bandlimited examples. Observe that every example presented so far shows a basic feature of
the wavelet approach: Increasing the scale parameter reduces the localization in the Fourier
domain and consequently increases the space localization. It should be remarked that the
balance of localization in the Fourier as well as the space domain is quantitatively given
by uncertainty principles (as well known in theoretical physics). For a formulation of such
uncertainty principles for wavelets the reader is directed to [28].
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Figure 2.1: Top: Continuous versions of generating symbols of Shannon scaling functions
(left) and wavelets (right) at different scales j. Bottom: Shannon scaling functions (left) and
wavelets (right) at different scales j; the abscissa shows the angle between the two argument
vectors in radian.
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Figure 2.2: Top: Continuous versions of generating symbols of CP scaling functions (left)
and wavelets (right) at different scales j. Bottom: CP scaling functions (left) and wavelets
(right) at different scales j; the abscissa shows the angle between the two argument vectors
in radian.
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Figure 2.3: Top: Continuous versions of generating symbols of Abel-Poisson scaling functions
(left) and wavelets (right) at different scales j. Bottom: Abel-Poisson scaling functions
(left) and wavelets (right) at different scales j; the abscissa shows the angle between the two
argument vectors in radian.

2.2 Vectorial Approach

While, up to now, we have dealt with scalarH-wavelets on domains Σ ⊂ Rn, i.e. Γ : Σ×Σ →
R, we will now extend the theory to the case of vectorial h-wavelets on regular surfaces, i.e.
we will deal with vectorial kernel functions γ : Σ′ × Σ′ → R3, where Σ′ ⊂ R3 is a regular
surface. Since the formalism is closely related to the previously introduced scalar approach,
the treatise will be brief.

2.2.1 h-Fourier Expansions

Let now (h, (·, ·)h) be a real separable Hilbert space over a regular surface Σ′ ⊂ R3. We

suppose that we know a complete countable orthonormal system {u∗(i)n }i=1,2,3
n=0i,0i+1,... in h, where

the index i is in accordance to the Helmholtz decomposition on regular surfaces (see Section
1.3). It is clear that, in the sense of the induced norm ‖ · ‖h, each element f ∈ h can be
represented by its vectorial Fourier series, that is

f =
3∑
i=1

∞∑
n=0i

(f (i)
n )∧(n)u∗(i)n , (2.31)



CHAPTER 2. GENERAL APPROACH TO MULTISCALE METHODS 48

where the Fourier coefficients are given by

(f (i)
n )∧(n) = (f, u∗(i)n )h, i = 1, 2, 3, n = 0i, 0i + 1, . . . .

2.2.2 h-Product Kernels and h-Convolutions

In order to replace the vectorial Fourier expansion with an expansion in terms of vectorial h-
product kernels, it is crucial to define the kernel functions and convolutions in an appropriate
manner. As in the scalar case, we start with the definitions of the h-product kernels, the
admissibility conditions and finally end up with the corresponding convolutions.

Definition 2.13 Let (h, (·, ·)h) and (H, (·, ·)H) be real separable Hilbert spaces of vectorial

and scalar functions on the regular surface Σ′, respectively. Let furthermore {u∗(i)n }i=1,2,3
n=0i,0i+1,...

and {U∗
n}n=0,1,... be corresponding countable, orthonormal and complete systems. Any kernel

function γ(i) : Σ′ × Σ′ → R3 of the form

γ(i)(x, y) =
∞∑
n=0i

(γ(i))∧(n)U∗
n(x)u

∗(i)
n (y), x, y ∈ Σ′, (2.32)

with (γ(i))∧(n) ∈ R, i ∈ {1, 2, 3}, n = 0i, 0i + 1, . . . is called an h-product kernel of type i
or, briefly, h-kernel of type i. For i ∈ {1, 2, 3} the sequences {(γ(i))∧(n)}n=0i,0i+1,... are called
the symbol of the h-kernel of type i. The kernel obtained by summing up the type i kernels,
i.e.

γ(x, y) =
3∑
i=1

∞∑
n=0i

(γ(i))∧(n)U∗
n(x)u

∗(i)
n (y), x, y ∈ Σ′, (2.33)

is called an h-product kernel or, briefly, h-kernel.

The definition of admissibility is similar to the scalar case:

Definition 2.14 For i ∈ {1, 2, 3} the symbols {(γ(i))∧(n)}n=0i,0i+1,... of type i h-product
kernels are said to be h−admissible if they satisfy the following conditions:

(i)
∞∑
n=0

(
(γ(i))∧(n)

)2
<∞, (ii)

∞∑
n=0

(
(γ(i))∧(n)U∗

n(x)
)2
<∞

for all x ∈ Σ′.

In contrast to the scalar approach, we now have to introduce two different convolutions, i.e.
a decomposition convolution (the h-convolution) which yields a scalar valued function and
a reconstruction convolution (the ?-convolution) which maps scalar functions to vectorial
functions:
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Definition 2.15 Let, for i ∈ {1, 2, 3}, γ(i) : Σ′ × Σ′ → R3 be h-kernels of type i as given in
(2.32) with h-admissible symbols. The h-convolution of γ(i) against a vector-valued function
f ∈ h is defined by

(γ(i) ∗h f)(x) = (γ(i)(x, ·), f)h =
∞∑
n=0i

(γ(i))∧(n)(f (i))∧(n)U∗
n. (2.34)

The ?-convolution of γ(i) against a scalar-valued function F ∈ H is defined to be

(γ(i) ? F )(x) =
∞∑
n=0i

(γ(i))∧(n)F∧(n)u∗(i)n . (2.35)

Furthermore, by definition, we let

γ∗hf =
3∑
i=1

γ(i)∗hf

and

γ ? F =
3∑
i=1

γ(i) ? F,

where the h-kernel γ is obtained from the kernels γ(i) by summation (see (2.33)).

Remark 2.16 As a first consequence of Definition 2.15 it is clear that the h-convolution
(2.34) yields a scalar-valued function whereas the ?-convolution (2.35) yields a vector-valued
function. In addition, utilizing Definition 2.14, we can state that

γ(i)∗h · : h → H,
γ(i) ? · : H → h.

From the types of functions involved in the aforementioned convolutions it becomes obvious
that the h-convolution can be interpreted as a scalar product in the Hilbert space h. The
?-convolution, however, represents a scalar vector multiplication. It is also noteworthy that,
due to condition (ii) in Definition 2.14, the h-kernels γ(i)(x, ·) as well as γ(x, ·), x ∈ Σ′ fixed,
are elements of h.

The next theorem, which can be seen in close relation to Theorem 2.4, leads us to the
construction of h-scaling functions and h-wavelets in the subsequent sections.

Theorem 2.17 Let, for i ∈ {1, 2, 3}, γ(i)
1 and γ

(i)
2 be h-kernels of type i with corresponding

h-admissible symbols. Let, furthermore, γ1 and γ2 be the corresponding h-kernels. For each
f ∈ h it holds that

γ
(i)
2 ? γ

(i)
1 ∗hf =

∞∑
n=0i

(γ
(i)
1 )∧(n)(γ

(i)
2 )∧(n)(f (i))∧(n)u∗(i)n
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as well as

γ2 ? γ1∗hf =
3∑
i=1

∞∑
n=0i

(γ
(i)
1 )∧(n)(γ

(i)
2 )∧(n)(f (i))∧(n)u∗(i)n .

Proof. Using Definition 2.15 where the right hand side of Equation (2.34) serves as the
function F in Equation (2.35) proves the assertion.

2.2.3 h-Scaling Functions and h-Wavelets

With the definitions of the h-product kernels, admissibility conditions and convolutions at
hand, we can now proceed with the introduction of the corresponding h-scaling functions
and h-wavelets. This, however, will enable us to come up with a multiresolution analysis
similar to the scalar case. As far as the dilation and shifting operators are concerned, we
can apply Definition 2.5 and just have to note that the dilation operator, when applied to a
vectorial kernel, acts on each symbol corresponding to type i simultaneously.

Definition 2.18 Let, for i ∈ {1, 2, 3}, (ϕ
(i)
0 )∧(n) be h-admissible symbols which additionally

satisfy

(i) (ϕ
(i)
0 )∧(0) = 1,

(ii) n > k ⇒ (ϕ
(i)
0 )∧(n) ≤ (ϕ

(i)
0 )∧(k),

then (ϕ
(i)
0 )∧(n) is said to be the generating symbol of the mother h-scaling function of type

i, viz

ϕ
(i)
0 (x, y) =

∞∑
n=0i

(ϕ
(i)
0 )∧(n)U∗

n(x)u
∗(i)
n (y), x, y ∈ Σ′.

The vector (ϕ0)
∧(n) =

(
(ϕ

(1)
0 )∧(n), (ϕ

(2)
0 )∧(n), (ϕ

(3)
0 )∧(n)

)T
is called the generating symbol

of the h-scaling function given by

ϕ0(x, y) =
3∑
i=1

∞∑
n=0i

(ϕ
(i)
0 )∧(n)U∗

n(x)u
∗(i)
n (y), x, y ∈ Σ′.

Being interested in the dilated versions of the mother scaling functions we extend the defi-
nition of the generating symbols:

Definition 2.19 Let, for i ∈ {1, 2, 3},
{

(ϕ
(i)
J )∧(n)

}
n=0i,0i+1,...

, J ∈ Z, be an h-admissible
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symbol satisfying, in addition, the following properties:

(i) lim
J→∞

((
ϕ

(i)
J

)∧
(n)

)2

= 1 ,

(ii)

((
ϕ

(i)
J

)∧
(n)

)2

≥
((

ϕ
(i)
J−1

)∧
(n)

)2

,

(iii) lim
J→−∞

((
ϕ

(i)
J

)∧
(n)

)2

= 0 ,

(iv)

((
ϕ

(i)
J

)∧
(0)

)2

= 1 .

Then

{(
ϕ

(i)
J

)∧
(n)

}
n=0i,0i+1,...

, J ∈ Z, i ∈ {1, 2, 3}, is called the generating symbol of an

h-scaling function of type i. The corresponding family
{
ϕ

(i)
J

}
, J ∈ Z, i ∈ {1, 2, 3}, of

h-product kernels given by

ϕ
(i)
J (x, y) :=

∞∑
n=0i

(ϕ
(i)
J )∧(n)U∗

n(x)u
∗(i)
n (y), x, y ∈ Σ′ ,

is called h-scaling function of type i. The h-scaling function {ϕJ}, J ∈ Z is defined by

ϕJ(x, y) :=
3∑
i=1

∞∑
n=0i

(ϕ
(i)
J )∧(n)U∗

n(x)u
∗(i)
n (y), x, y ∈ Σ′ ,

and the vectors
{
(ϕJ)

∧ (n)
}
n=0i,0i+1,...

, J ∈ Z, given by

(ϕJ)
∧ (n) =

(
(ϕ

(1)
J )∧(n), (ϕ

(2)
J )∧(n), (ϕ

(3)
J )∧(n)

)T
denote the corresponding generating symbol.

Combining Theorem 2.17 with Definitions 2.18 and 2.19 we can come up with the following
result:

Theorem 2.20 Let, for i ∈ {1, 2, 3} and J ∈ Z,
{

(ϕ
(i)
J )∧(n)

}
n=0i,0i+1,...

be the generating

symbols of h-scaling functions of type i, i.e. {ϕ(i)
J }. Let {ϕJ} be the corresponding h-scaling

function. For f ∈ h let
f

(i)
J = ϕ

(i)
J ? ϕ

(i)
J ∗hf

and
fJ = ϕJ ? ϕJ∗hf

be the type i J-level approximations and the J-level approximation of f , respectively. Then

lim
J→∞

‖f (i)
J − f (i)‖h = 0, i ∈ {1, 2, 3}

and
lim
J→∞

‖fJ − f‖h = 0.
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Proof. By virtue of Equation (2.31) and Theorem 2.17 we have

lim
J→∞

∥∥∥∥∥
3∑
i=1

f
(i)
J − f

∥∥∥∥∥
2

h

=

lim
J→∞

3∑
i=1

∞∑
n=0i

((
ϕ

(i)
J )∧(n)

)2

− 1

)2 (
(f (i))∧(n)

)2
. (2.36)

Using Definitions 2.18 and 2.19 it is easy to see that
(
(ϕ

(i)
J )∧(n))2 − 1

)
is smaller than one,

hence we can interchange sum and limit in (2.36). Using conditions (i) and (ii) of Definition
2.19 completes the proof.

We immediately proceed with the introduction of h-wavelets, that is:

Definition 2.21 Let, for i ∈ {1, 2, 3} and J ∈ Z,
{

(ϕ
(i)
J )∧(n)

}
n=0i,0i+1,...

be the generating

symbols of h-scaling functions of type i. Then, for i ∈ {1, 2, 3} and j ∈ Z, the generating
symbols {

(ψ
(i)
j )∧(n)

}
n=0i,0i+1,...

of the associated h-wavelets of type i are defined via the refinement equation

(ψ
(i)
j )∧(n) =

((
(ϕ

(i)
j+1)

∧(n)
)2

−
(
(ϕ

(i)
j )∧(n)

)2
) 1

2

. (2.37)

The families
{
ψ

(i)
j

}
, j ∈ Z, i ∈ {1, 2, 3}, of h-product kernels given by

ψ
(i)
j (x, y) =

∞∑
n=0i

(ψ
(i)
j )∧(n)U∗

n(x)u
∗(i)
n (y), x, y ∈ Σ′,

are called h-wavelets of type i associated to the h-scaling functions
{
ϕ

(i)
J

}
of type i, J ∈ Z.

The family {ψj}, j ∈ Z, defined by

ψj =
3∑
i=1

ψ
(i)
j (2.38)

is called the h-wavelet associated to the h-scaling function {ϕJ}, J ∈ Z.

Closely resembling the scalar case, we are now in a position to define the wavelet transform
for vector fields f ∈ h:

Definition 2.22 Let f ∈ h and let
{
ψ

(i)
j

}
, j ∈ Z, i ∈ {1, 2, 3}, be the h-wavelets of type i

associated to
{
ϕ

(i)
J

}
, J ∈ Z, i.e. the h-scaling function of type i. Then the type i wavelet

transform WT (i) of f at scale j ∈ Z and position x ∈ Σ′ is given by

WT (i)(f)(j, x) = (ψ
(i)
j (x, ·), f)h = (ψ

(i)
j ∗hf)(x), f ∈ h.
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The wavelet transform of f at scale j ∈ Z and position x ∈ Σ′ is defined via

WT (f)(j, x) = (ψj(x, ·), f)h = (ψj∗hf)(x), f ∈ h,

where ψj is given as in (2.38).

With the formalism constructed so far, we can state the main result of the vectorial wavelet
approach, i.e. we can establish a multiscale reconstruction principle for vector-valued func-
tions.

Theorem 2.23 Let
{
ψ

(i)
j

}
, j ∈ Z, i ∈ {1, 2, 3}, be the h-wavelets of type i associated to{

ϕ
(i)
J

}
, J ∈ Z, i.e. the h-scaling function of type i. Furthermore, for f ∈ h and i ∈ {1, 2, 3},

let

f
(i)
J = ϕ

(i)
0 ? (ϕ

(i)
0 ∗hf) +

J−1∑
j=0

ψ
(i)
j ? (WT (i)(f)(j, ·))

as well as

fJ = ϕ0 ? (ϕ0∗hf) +
J−1∑
j=0

ψj ? (WT (f)(j, ·)).

Then
lim
J→∞

‖f (i)
J − f (i)‖h = 0, i ∈ {1, 2, 3}

and
lim
J→∞

‖fJ − f‖h = 0.

Proof. Via summation we obtain from the refinement equation (2.37) that

((ϕ
(i)
J+1)

∧(n))2 = ((ϕ
(i)
0 )∧(n))2 +

J∑
j=0

((ψ
(i)
j )∧(n))2, i ∈ {1, 2, 3}.

This, however, is equivalent to

ϕ
(i)
J+1 ? (ϕ

(i)
J+1∗hf) = ϕ

(i)
0 ? (ϕ

(i)
0 ∗hf) +

J∑
j=0

ψ
(i)
j ? (ψ

(i)
j ∗hf), i ∈ {1, 2, 3},

which, in combination with Theorem 2.20, leads to the required result.

In terms of filtering the application of ϕJ ?ϕJ∗h, respectively ϕ
(i)
J ?ϕ

(i)
J ∗h, to a vector-valued

function f ∈ h can be interpreted as low-pass filtering of this function, while the application
of ψj ? ψj∗h, respectively ψ

(i)
j ? ψ

(i)
j ∗h, is equivalent to the application of a band-pass filter.

Therefore, in analogy to the scale and detail spaces of the scalar approach, we can define
vectorial scale and detail spaces via

v
(i)
j = {ϕ(i)

j ? ϕ
(i)
j ∗hf |f ∈ h}, i ∈ {1, 2, 3},

vj = {ϕj ? ϕj∗hf |f ∈ h},
w

(i)
j = {ψ(i)

j ? ψ
(i)
j ∗hf |f ∈ h}, i ∈ {1, 2, 3}, and

wj = {ψj ? ψj∗hf |f ∈ h}.
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The spaces v
(i)
j are the scale spaces of type i and scale j, vj the scale spaces of scale j. The

spaces w
(i)
j , respectively wj, are the detail spaces of type i and scale j, respectively the detail

spaces of scale j. The detail spaces contain all the necessary detail information to go from
approximations at lower scales to approximations at subsequently higher scales, i.e.

v
(i)
0 +

J∑
j=0

w
(i)
j = v

(i)
J+1, v

(i)
J + w

(i)
J = v

(i)
J+1, J ∈ Z, i ∈ {1, 2, 3},

and

v0 +
J∑
j=0

wj = vJ+1, vJ + wJ = vJ+1, J ∈ Z.

The concept of a multiresolution analysis for vector fields can, of course, be carried over from
the scalar case and will, for the sake of brevity, be omitted (compare Definitions 2.7 and
2.19). In the vectorial case it is also possible to construct bandlimited and non-bandlimited
h-scaling functions and wavelets. The construction principles are those given in the scalar
case, but need to be applied to each generating symbol of type i, simultaneously. Last but
not least we present a realization of h-wavelets, namely spherical vectorial wavelets, which
will be of tremendous importance for our further considerations.

2.2.4 Example

Spherical Vectorial Wavelets

Now we consider the space l2(Ω) of square-integrable vector-valued functions f : Ω → R3 on
the unit sphere (i.e. Σ′ = Ω ⊂ R3, h = l2(Ω), see also Chapter 1). Equipped with the inner
product

(f, g)l2(Ω) =

∫
Ω

f(η) · g(η) dω(η), f, g ∈ l2(Ω),

l2(Ω) is a Hilbert space. Using the L2(Ω)-orthonormal system {Yn,k} n=0,1,...,
k=1,...,2n+1

of spherical

harmonics we are able to introduce an l2(Ω)-orthonormal system{
y

(i)
n,k

}i=1,2,3

n=0i,0i+1,...,
k=1,...,2n+1

(2.39)

via

y
(1)
n,k(ξ) = ξYn,k(ξ),

y
(2)
n,k(ξ) =

1√
(n(n+ 1))

∇∗
ξYn,k(ξ),

y
(3)
n,k(ξ) =

1√
(n(n+ 1))

L∗ξYn,k(ξ),
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where ξ ∈ Ω. Using the system (2.39), every function f ∈ l2(Ω) can then be represented by
its Fourier series, i.e.

f =
3∑
i=1

∞∑
n=0i

2n+1∑
k=1

(f (i))∧(n, k)y
(i)
n,k

with coefficients

(f (i))∧(n, k) =

∫
Ω

f(η) · y(i)
n,k(η) dω(η).

UsingH = L2(Ω), the vectorial l2(Ω)-kernel functions of type i are of the form (see Definition
2.13)

γ(i)(ξ, η) =
∞∑
n=0i

2n+1∑
k=1

(γ(i))∧(n)Yn,k(ξ)y
(i)
n,k(η), (2.40)

and the vectorial l2(Ω)-kernel functions are then derived by

γ(ξ, η) =
3∑
i=1

γ(i)(ξ, η),

with (γ(i))∧(n) ∈ R for i ∈ {1, 2, 3}, n = 0, 1, . . . . Admissibility is guaranteed provided that

∞∑
n=0i

(
(γ(i))∧(n)

)2 2n+ 1

4π
<∞

is assumed (see [9, 10]). It should be observed that, if Pn denotes the Legendre polynomial
of degree n, we obtain (see Equations (1.6) and (1.7))

∇∗
ξPn(ξ · η) = (η − (ξ · η)ξ)P ′

n(ξ · η),

L∗ξPn(ξ · η) = ξ ∧ ηP ′
n(ξ · η),

such that singularities at the poles are completely avoided by use of the kernel representa-
tions (2.40). In connection with the addition theorem (see Theorem 1.6) of scalar spherical
harmonics this leads to the following, numerically very useful, representations of the vectorial
kernel functions of type i:

γ(1)(ξ, η) = ξ

∞∑
n=0i

2n+1∑
k=1

2n+ 1

4π
(γ(1))∧(n)Pn(ξ · η),

γ(2)(ξ, η) = (η − (ξ · η)ξ)
∞∑
n=0i

2n+1∑
k=1

2n+ 1

4π

1√
n(n+ 1)

(γ(2))∧(n)P ′
n(ξ · η),

γ(3)(ξ, η) = (ξ ∧ η)
∞∑
n=0i

2n+1∑
k=1

2n+ 1

4π

1√
n(n+ 1)

(γ(3))∧(n)P ′
n(ξ · η)

(that is the kernels separate into a vectorial and a scalar part; the vectorial part is easily
available and the scalar sum can be calculated via fast and stable algorithms. See [81] for
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details on the numerical realization). Using those kernels, two kinds of convolutions need to
be introduced (cf. [10] and Definition 2.15), i.e. a convolution of vectorial kernels against
vectorial functions - resulting in scalar coefficients - and a convolution of vectorial kernels
against scalar valued functions - enabling us to reconstruct a vectorial function from scalar
coefficients. The corresponding convolutions are given by

(γ ∗ f)(ξ) =

∫
Ω

γ(ξ, η) · f(η) dω(η) (2.41)

=
3∑
i=1

∞∑
n=0i

2n+1∑
k=1

(γ(i))∧(n)(f (i))∧(n, k)Yn,k(ξ), ξ ∈ Ω, (2.42)

mapping vector fields onto scalar fields and

(γ ? F )(ξ) =

∫
Ω

γ(η, ξ)F (η) dω(η) (2.43)

=
3∑
i=1

∞∑
n=0i

2n+1∑
k=1

(γ(i))∧(n)F∧(n, k)y
(i)
n,k(ξ), ξ ∈ Ω, (2.44)

mapping scalar functions onto vectorial functions. Applying both convolutions consecutively
to a function f ∈ l2(Ω) results in

γ ? γ ∗ f =
3∑
i=1

∞∑
n=0i

2n+1∑
k=1

((γ(i))∧(n))2(f (i))∧(n, k)y
(i)
n,k. (2.45)

Hence, the reconstruction formula recovering a function f ∈ l2(Ω) now reads

f = Φ0 ? Φ0 ∗ f +
∞∑
j=0

Ψj ?Ψj ∗ f

with ϕ0 =
∑3

i=1 ϕ
(i)
0 and ψj =

∑3
i=1 ψ

(i)
j .

Figures 2.4 and 2.5 compare a vector spherical harmonic of type 3 with a CP spherical
vectorial wavelet of type 3. Both functions are plotted on a globe in order to illustrate the
support of these functions when used in geoapplications.
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Figure 2.4: Vector spherical harmonic of type 3, degree 2 and order 1. Colors indicate
absolute value and arrows the direction.

Figure 2.5: CP spherical vectorial wavelet of type 3 and scale 4. Colors indicate absolute
value and arrows the direction.
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2.2.5 Parenthesis: Tensorial Wavelets

The last section on spherical vectorial wavelets provides us with a technique that is easily
put into numerical practise. From a theoretical point of view, however, the canonical way of
dealing with spherical vector fields in a multiscale framework is given by tensor radial basis
functions and tensor convolutions (e.g. [30]). Though tensor radial basis functions cannot be
derived in our general treatise of H− and h−product kernels, we will extensively use them
in Section 3.2.2. This is why we will present a brief introduction here, based on [30] and our
treatise in [34]. It should be noted that in [87] a more general approach to wavelets in Hilbert
spaces is formulated which allows the derivation of tensor radial basis functions as well as
scalar radial basis functions; however, this approach does not allow the use of h−product
kernels – especially spherical vectorial wavelets – which are one of the most important tools
of this thesis. Nevertheless, the concept of tensor radial basis functions is closely related to
that of spherical vectorial scaling functions and wavelets. The connection can be established
by means of appropriate definitions of the corresponding convolution operators (see Theorem
2.28 and [10, 12]).

The reason for tensor radial basis functions being the canonical tool for a multiscale treatment
of spherical vector fields is based on a main result in vector spherical harmonic theory (see

[12, 30]: The reproducing kernels of the spaces harm
(i)
l...m(Ω) are given by linear combinations

of Legendre tensors of type i, i.e.:

m∑
n=l

2n+ 1

4π
p(i,i)
n .

Consequently, any f ∈ l2(Ω) can be expressed as follows:

f =
3∑
i=1

∞∑
n=0i

2n+ 1

4π

∫
Ω

p(i,i)
n (·, η)f(η) dω(η) . (2.46)

Definition 2.24 Any function h(i) : Ω× Ω → R3×3, i ∈ {1, 2, 3}, of the form

h(i)(ξ, η) =
∞∑
n=0i

2n+ 1

4π
(h(i))∧(n)p(i,i)

n (ξ, η), (ξ, η) ∈ Ω× Ω,

is called (square–summable) tensor radial basis function of type i if its symbol{
(h(i))∧(n)

}
n=0i,0i+1,...

⊂ R satisfies the condition:

∞∑
n=0i

2n+ 1

4π

(
(h(i))∧(n)

)2
<∞ .

h =
∑3

i=1 h(i) with h(i) (square–summable) tensor radial basis functions of type i is called
(square–summable) tensor radial basis function.
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A key property of a tensor radial basis function h is its invariance under orthogonal trans-
formations t, i.e.,

h(tξ, tη) = th(ξ, η)tT , (ξ, η) ∈ Ω× Ω .

This property falls back upon the Legendre tensors

p(i,i)
n (tξ, tη) = tp(i,i)

n (ξ, η)tT , (ξ, η) ∈ Ω× Ω .

Looking at Equation (2.46) the following definition is sound:

Definition 2.25 Let h
(i)
1 ,h

(i)
2 be (square–summable) tensor radial basis functions of type i.

Suppose that f is of class l2(Ω). Then h
(i)
1 ∗ f defined by(

h
(i)
1 ∗ f

)
(ξ) =

∫
Ω

h
(i)
1 (ξ, η)f(η) dω(η), ξ ∈ Ω,

is called the convolution of h
(i)
1 against f . Furthermore, h

(i)
2 ∗ h

(i)
1 defined by

(h
(i)
2 ∗ h

(i)
1 )(ξ, η) =

∫
Ω

h
(i)
2 (ξ, ζ)h

(i)
1 (ζ, η) dω(ζ), (ξ, η) ∈ Ω× Ω,

is said to be the ‘ ∗’ convolution of h
(i)
2 against h

(i)
1 . Additionally, we let

h2 ∗ h1 =
3∑
i=1

h
(i)
2 ∗ h

(i)
1 .

It can be shown that

h2 ∗ h1 ∗ f =
3∑
i=1

∞∑
n=0i

2n+1∑
k=1

(h
(i)
1 )∧(n)(h

(i)
2 )∧(n)(f (i))∧(n, k)y

(i)
n,k. (2.47)

Utilizing Definitions 2.19 and 2.21 as well as Definition 2.25 we are now in a position to
define tensor scaling functions and wavelets:

Definition 2.26 Let

{(
Φ

(i)
j

)∧
(n)

}
n=0i,0i+1...

and

{(
Ψ

(i)
j

)∧
(n)

}
n=0i,0i+1...

be generating

symbols of l2(Ω)-scaling functions and corresponding wavelets of type i, i ∈ {1, 2, 3}. The

corresponding families
{
Φ

(i)
j

}
and

{
Ψ

(i)
j

}
of tensor kernels defined by

Φ
(i)
j (ξ, η) =

∞∑
n=0i

2n+1∑
k=1

(Φ
(i)
j )∧(n)y

(i)
n,k(ξ)⊗ y

(i)
n,k(η), (ξ, η) ∈ Ω2, j ∈ Z

and

Ψ
(i)
j (ξ, η) =

∞∑
n=0i

2n+1∑
k=1

(Ψ
(i)
j )∧(n)y

(i)
n,k(ξ)⊗ y

(i)
n,k(η), (ξ, η) ∈ Ω2, j ∈ Z
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are called tensorial scaling functions, respectively wavelets, of type i. Furthermore we set

Φj =
3∑
i=1

Φ
(i)
j

and

Ψj =
3∑
i=1

Ψ
(i)
j

to be the tensorial scaling functions and wavelets.

This, together with Equation (2.47), suffices to proof the following:

Theorem 2.27 Let f ∈ l2(Ω). Suppose
{
Φ

(i)
J

}
and

{
Ψ

(i)
j

}
to be tensorial scaling functions

and wavelets of type i and let ΦJ =
∑3

i=1 Φ
(i)
J as well as Ψj =

∑3
i=1 Ψ

(i)
j , j, J ∈ Z. Then

lim
J→∞

∥∥∥Φ(i)
J ∗Φ

(i)
J ∗ f − f (i)

∥∥∥
l2(Ω)

= 0, i = 1, 2, 3,

and
lim
J→∞

‖ΦJ ∗ΦJ ∗ f − f‖l2(Ω) = 0

as well as

lim
J→∞

∥∥∥∥∥
(

Φ
(i)
0 ∗Φ

(i)
0 ∗ f +

J∑
j=0

Ψ
(i)
j ∗Ψ

(i)
j ∗ f

)
− f (i)

∥∥∥∥∥
l2(Ω)

= 0, i = 1, 2, 3,

and

lim
J→∞

∥∥∥∥∥
(

Φ0 ∗Φ0 ∗ f +
∞∑
l=0

Ψl ∗Ψl ∗ f

)
− f

∥∥∥∥∥
l2(Ω)

= 0.

It is this theorem that serves as the starting point for our considerations in Section 3.2.2.

It will be essential for our examinations in Section 3.2.3 that the link between the tensor
and the vector formalism can be established via the convolutions in the tensor case (see
Definition 2.25) and the two convolutions defined for the vector case (cf. Definition 2.15 for
the general vectorial case and equations (2.41) and (2.43) for the case of spherical vectorial
wavelets):

Theorem 2.28 Let f be of class l2(Ω). Assume that h, k are (square–summable) vector
radial basis functions. Moreover, suppose that h,k are (square–summable) tensor radial
basis functions with

(h(i))∧(n) = (h(i))∧(n),

(k(i))∧(n) = (k(i))∧(n),

for all n = 0i, 0i + 1, . . . and i ∈ {1, 2, 3}. Then

h ∗ k ∗ f = h ? k ∗ f .
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A proof can be found in [10] and is, for the convenience of the reader, recapitulated here.
Proof. From (2.47) we know that

h ∗ k ∗ f =
3∑
i=1

∞∑
n=0i

2n+1∑
k=1

(h(i))∧(n)(k(i))∧(n)(f (i))∧(n, k)y
(i)
n,k.

Using the assumption that

(h(i))∧(n) = (h(i))∧(n),

(k(i))∧(n) = (k(i))∧(n),

for all n = 0i, 0i + 1, . . . and i ∈ {1, 2, 3} this leads to

h ∗ k ∗ f =
3∑
i=1

∞∑
n=0i

2n+1∑
k=1

(h(i))∧(n)(k(i))∧(n)(f (i))∧(n, k)y
(i)
n,k.

The completeness of vector spherical harmonics together with (2.45) yields

h ∗ k ∗ f = h ? k ∗ f .

This theorem, however, shows us that the different types of bilinear convolutions lead to
equivalent results. This is of tremendous importance for our consideration concerning mul-
tiscale denoising of spherical vector fields in Chapter 3.



Chapter 3

Multiscale Denoising of Spherical
Functions

When dealing with real geophysically relevant data it should be kept in mind that each
measurement does not really give the value of the observable under consideration but that
– at least to some extend – the data are contaminated with noise. That is, in order to
successfully improve geomathematical field modelling, one main aspect is to extract the true
portion of the observable from the actual signal. In consequence, a particular emphasis
lies on the subject of denoising. This endeavor is precisely the goal in statistical function
estimation. Here, the interest is to ‘smooth’ the noisy data in order to obtain an estimate
of the underlying function. In Euclidean theory of wavelets signal processors now have new,
fast tools that are well–suited for denoising signals (for a survey the reader is e.g. referred
to [89] and the references therein).

The objective of this Chapter is to introduce multiscale signal-to-noise thresholding thus
providing the wavelet oriented basis of denoising spherical scalar or vectorial data sets.
Our approach is essentially influenced by the concept of sparse wavelet representations in
Euclidean geometries (e.g. [102, 17, 18]) as well as the stochastic model – based on spectral
properties of signals and noise – used in satellite geodesy (see [95, 55] and the references
therein). As far as vectorial, especially geomagnetic satellite data sets are concerned another,
in some sense geometric, approach should be mentioned. This method, introduced and
extended in [61, 62, 63] and [60] is mainly concerned with the reduction of noise produced by
(anisotropic) attitude uncertainties of the satellite and is especially well suited for satellite
missions where the attitude error (due to star cameras etc.) can be well estimated.

We start with the treatment of scalar data. First we will recapitulate the necessary spectral
theory in terms of spherical harmonics which is then generalized to the concept of multiscale
signal-to-noise thresholding (see also [40, 33]). Influenced by the results of the scalar case we
will extend the treatment to vectorial data sets (cf. also our treatment in [34]). Here the first
step will be the development of a spectral framework in terms of vector spherical harmonics.
This will then serve as a starting point for a generalization to a multiscale method in terms
of tensor spherical wavelets. Though numerically difficult to handle, this approach is the

62
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canonical extension of the scalar approach. In order to get a multiscale technique that is
easily applicable we then develop a multiscale framework in terms of vector spherical wavelets
and show its equivalence to the tensor based approach.

3.1 Signal-to-Noise Thresholding of Scalar Fields

3.1.1 Spectral Signal-to-Noise Response

In the geosciences it is often reasonable to consider a measurement (after possible lineariza-
tion) as a linear operator Λ acting on an ’input signal’ F producing an ’output signal’ G,
i.e.

ΛF = G.

Λ is supposed to be an operator mapping the space L2(Ω) onto itself such that

ΛYn,k = Λ∧(n, k)Yn,k, (n, k) ∈ N , (3.1)

where the so–called symbol {Λ∧(n, k)}(n,k)∈N is the sequence of the real numbers Λ∧(n, k)
and where we have used the abbreviation

N = {(n, k)|n = 0, 1, . . . ; k = 1, . . . , 2n+ 1}.

It is clear that different linear operators Λ are characterized by means of different symbols
{Λ∧(n, k)}(n,k)∈N . From Equation (3.1) and the Fourier representation of F we obviously
can conclude that the spectrum {G∧(n, k)}(n,k)∈N of the output signal can, in terms of the
spectrum {F∧(n, k)}(n,k)∈N of the input signal, be described by a simple multiplication by
the ’transfer’ Λ∧(n, k).

Thus far only a (deterministic) function model has been discussed. If a comparison of the
‘output function’ with the actual value were done, discrepancies would be observed. A
mathematical description of these discrepancies has to follow the laws of probability theory
in a stochastic model (see e.g. [89]). Usually the observations are not looked upon as a
time series, but rather a function G̃ on the sphere Ω (‘∼’ for stochastic). According to this
approach we assume that we have

G̃ = G+ ε̃,

where ε̃ is the observation noise. Moreover, in our approach motivated by information in
satellite technology (see [95] and the references therein), we suppose the covariance to be
known, i.e.

Cov
[
G̃(ξ), G̃(η)

]
= E [ε̃(ξ), ε̃(η)] = K(ξ, η), (ξ, η) ∈ Ω× Ω,

where the covariance kernel K is given as follows:

Definition 3.1 Let K : Ω× Ω → R be a kernel of the form

K(ξ, η) =
∑

(n,k)∈N

K∧(n, k)Yn,k(ξ)Yn,k(η)



CHAPTER 3. MULTISCALE DENOISING OF SPHERICAL FUNCTIONS 64

where the symbol {K∧(n, k)}(n,k)∈N satisfies the conditions

(C1) K∧(n, k) ≥ 0 for all (n, k) ∈ N ,

(C2)
∞∑
n=0

2n+1
4π

sup
k=1,...,2n+1

(
K∧(n, k)

)2
<∞.

Then K is called a covariance kernel.

It is noteworthy that this approach assumes that the first two statistical moments suffice
for a complete description, that the error spectrum can be considered invariant over the
measurement’s period and that one realization in space (or mission time) is enough to deduce
the stochastic characteristics. We do not discuss the details of this subject but direct the
reader to the treatment in [104] and the references therein.

Degree Variances

Using the fact that any ’output function’ (more clearly the output signal, i.e. the observable)
can be expanded into an orthogonal series in terms of spherical harmonics

G̃ = Λ̃F =
∑

(n,k)∈N

Λ∧(n, k)F̃∧(n, k)Yn,k

=
∑

(n,k)∈N

G̃∧(n, k)Yn,k

in the sense of ‖ · ‖L2(Ω), we get a spectral representation of the form

G̃∧(n, k) = (Λ̃F )∧(n, k) = Λ∧(n, k)F̃∧(n, k), (n, k) ∈ N . (3.2)

Since this representation clearly distinguishes between the different degrees and orders one
is led to observe the root-mean-square power per spherical harmonic degree and order, re-
spectively per degree, to characterize the signal:

Definition 3.2 Let G ∈ L2(Ω). Let, for (n, k) ∈ N , G∧(n, k) be the corresponding orthogo-
nal coefficients. Then, for (n, k) ∈ N , the signal degree and order variances of G are defined
by

V arn,k (G) =

∫
Ω

∫
Ω

G(ξ)G(η)Yn,k(ξ)Yn,k(η)dω(ξ)dω(η) (3.3)

= (G∧(n, k))
2
.
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Correspondingly, for n ∈ N0, the signal degree variances of G are defined by

V arn (G) =
2n+ 1

4π

∫
Ω

∫
Ω

G(ξ)G(η)Pn(ξ · η)dω(ξ)dω(η)

=
2n+1∑
k=1

(G∧(n, k))
2

=
2n+1∑
k=1

V arn,k (G) .

From Parseval’s identity we get that

‖G‖2
L2(Ω) =

∞∑
n=0

V arn (G) =
∑

(n,k)∈N

V arn,k (G) , (3.4)

connecting the signal degree and order variances as well as the signal degree variances with
the ’L2(Ω)-energy’ of the corresponding function.

In order to determine the variances in the case of the ’output function’ G̃ = Λ̃F we can use
representation (3.2) and end up with

V arn,k

(
Λ̃F
)

=

((
Λ̃F
)∧

(n, k)

)2

and

V arn

(
Λ̃F
)

=
2n+1∑
k=1

((
Λ̃F
)∧

(n, k)

)2

.

It should be noted that physical devices do not transmit signals of arbitrarily high frequency
without severe attenuation. Therefore, the ’transfer’ Λ∧(n, k) usually tends to zero with
increasing degree n. Consequently, the amplitude spectra of the responses (observations) to
functions (signals) of finite L2(Ω)-energy are negligibly small beyond some finite frequency.
Thus, because of the frequency limiting nature of the used devices and because of the re-
sulting nature of the ’transmitted signals’, one is soon led to consider bandlimited functions.
These are functions G̃ ∈ L2(Ω), whose amplitude spectra vanish for all n > N ∈ N0, N
fixed. In other words V arn(G̃) = 0 for all n > N .

Degree Error Covariances

The spectral approach to signal-to-noise thresholding is, in addition to the previously defined
degree variances, based on similar measures calculated from the a priorily known covariance
kernel of the noise:
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Definition 3.3 Let, in accordance with Definition 3.1, {K∧(n, k)}(n,k)∈N be the symbol of
a covariance kernel K : Ω × Ω → R. Then the degree and order error covariance of K is
defined by

Covn,k(K) =

∫
Ω

∫
Ω

K(ξ, η)Yn,k(ξ)Yn,k(η)dω(ξ)dω(η) (3.5)

= K∧(n, k), n ∈ N .

For n ∈ N0, the spectral degree error covariance of K is defined by

Covn(K) =
2n+1∑
k=1

∫
Ω

∫
Ω

K(ξ, η)Yn,k(ξ)Yn,k(η)dω(ξ)dω(η)

=
2n+1∑
k=1

K∧(n, k)

=
2n+1∑
k=1

Covn,k(K).

Definition 3.3 shows that the degree and order error covariance is just given by the orthogonal
coefficient of the corresponding covariance kernel K.

In order to make the preceding considerations more concrete we present two examples of
spectral error covariances:

Example 3.4 Bandlimited white noise. Suppose that for some nK ∈ N0

K∧(n, k) = K∧(n) =

{
σ2

(nK+1)2
, n ≤ nK , k = 1, . . . , 2n+ 1

0 , n > nK , k = 1, . . . , 2n+ 1,

where ε̃ is assumed to be N(0, σ2)-distributed. The associated covariance kernel is isotropic
and reads

K(ξ, η) =
σ2

(nK + 1)2

nK∑
n=0

2n+ 1

4π
Pn(ξ · η) .

Apart from a multiplicative constant this kernel can be understood as a truncated Dirac δ-
functional.

Example 3.5 Non-bandlimited colored noise. Assume that K : Ω × Ω → R is given
in such a way that

(i) K∧(n, k) = K∧(n) > 0 for an infinite number of pairs (n, k) ∈ N ,

(ii) for ε > 0 and for some δ ∈ (1− ε, 1) the integral
∫ δ
−1
K(t)dt is sufficiently small and
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(iii) K(ξ, ξ) coincides with σ2 for all ξ ∈ Ω.

A concrete realization is given by

K(ξ, η) =
σ2

exp(−c)
exp(−c(ξ · η)),

where c is to be understood as the inverse spherical correlation length (first degree Gauß–
Markov model). Another realization, i.e. the model of small correlation length, is based on
locally supported singular integrals and can be found in [33].

Spectral Estimation

With Definitions 3.2 and 3.3 at hand we are now in a position to compare the signal spectrum
with that of the noise and thus can decide whether signal or noise are dominant. The next
definition clarifies the situation (cf. [40, 33]):

Definition 3.6 Signal and noise spectrum intersect at the degree and order resolution set
Nres ⊂ N defined by the following relations:

(i) signal dominates noise

V arn,k(Λ̃F ) ≥ Covn,k(K), (n, k) ∈ Nres,

(ii) noise dominates signal

V arn,k(Λ̃F ) < Covn,k(K), (n, k) 6∈ Nres .

In order to obtain an estimated denoised version Λ̂F of the signal Λ̃F , the signal must
somehow be filtered. Filtering is achieved by convolving a square-summable product kernel
L : Ω× Ω → R with symbol {L∧(n, k)}(n,k)∈N against Λ̃F , i.e.

Λ̂F =

∫
Ω

L(·, η)Λ̃F (η) dω(η).

In spectral language this reads

Λ̂F (n, k) = L∧(n, k)Λ̃F (n, k), (n, k) ∈ N .

Two important types of filters are well known:

(i) Spectral thresholding. This filtering technique is best represented by the filter equation

Λ̂F =
∑

(n,k)∈N

INres(n, k)L
∧(n, k)

(
Λ̃F
)∧

(n, k)Yn,k,
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where INres denotes the indicator function of the set Nres. This approach represents a
‘keep or kill’ filtering, where the signal dominated coefficients are filtered by a square-
summable product kernel, while the noise dominated coefficients are set to zero. This
thresholding can be thought of as a non–linear operator on the set of coefficients, result-
ing in a set of estimated coefficients. As a special realization of this filter we mention
the ideal low-pass (Shannon) filter, the kernel of which can best be characterized by
its spectral properties:

L∧(n, k) = L∧(n) =

{
1 , (n, k) ∈ Nres

0 , (n, k) 6∈ Nres.

In that case all contributions corresponding to pairs (n, k) ∈ Nres are allowed to pass,
whereas all other portions of the signal are completely eliminated.

(ii) Wiener-Kolmogorov filtering. In the spectral domain this filter is given by

L∧(n) =
V arn(Λ̃F )

V arn(Λ̃F ) + Covn(K)
, n ∈ N0 .

Assuming complete independence of signal and noise this filter produces an optimal
weighting between signal and noise. Note that the Wiener-Kolmogorov filter bears a
close resemblance to the Tikhonov kernel used for the regularization of ill-posed inverse
problems.

3.1.2 Multiscale Signal-to-Noise Response

In the preceding section we have recapitulated the theory of spectral signal-to-noise thresh-
olding. The definitions of variances and error covariances in this approach are mainly in-
fluenced by the fact that the signal under consideration can be represented in terms of a
spherical harmonic expansion. The main subject of this section is to extend this theory to
the multiscale case, i.e. we present a method that makes use of the wavelet representation
of a signal. It is clear that the main task is to find suitable definitions of variances and
error covariances which, due to the space localizing character of the wavelets, will not be
functions of degree and order, but of scale and position. In Chapter 2 (see Equation (2.10) in
connection with Theorem 2.12 as well as pages 43 ff.) we have verified that any output signal
G̃ ∈ L2(Ω) can be represented in multiscale approximation by means of spherical wavelets:

G̃ =
+∞∑
j=−∞

∫
Ω

Ψ
(2)
j (·, η)G̃(η) dω(η),

where the equality is understood in ‖·‖L2(Ω)–sense. For our further considerations it is useful
to introduce the Hilbert space L2(Z× Ω) of functions H : Z× Ω → R satisfying

∞∑
j=−∞

∫
Ω

(H(j; η))2 dω(η) <∞ .
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For H,H1, H2 ∈ L2(Z×Ω), the inner product as well as the norm in L2(Z×Ω) are given by

(H1, H2)L2(Z×Ω) =
+∞∑
j=−∞

∫
Ω

H1(j; η)H2(j; η) dω(η),

respectively

‖H‖L2(Z×Ω) =

 +∞∑
j=−∞

∫
Ω

(H(j; η))2 dω(η)

1/2

. (3.6)

Scale and Space Variances

The form of the definition of the spectral degree and order variances (see Definition 3.2)
leads us to a similar definition for the so-called scale and space variances of functions, more
explicitly, in Equation (3.3) we formally replace the spherical harmonics of certain degrees
and orders by wavelets of certain scales at certain positions:

Definition 3.7 Let G ∈ L2(Ω) and let the family {Ψj}, j ∈ Z, of L2(Ω)-product kernels be
an L2(Ω)-wavelet. Then the scale and space variance of G at position η ∈ Ω and scale j ∈ Z
is defined by

V arj;η (G) =

∫
Ω

∫
Ω

G(ξ)G(ζ)Ψj(ξ, η)Ψj(ζ, η)dω(ξ)dω(ζ) .

The corresponding integrated quantity is defined to be the scale variance of G at scale j ∈ Z
given by

V arj(G) =

∫
Ω

V arj;η(G)dω(η) .

If these quantities satisfy a relation similar to Equation (3.4), i.e. if they can reasonably be
connected to the L2-norm of the function under consideration, then we can assume Definition
3.7 to be sound. The necessary connection is established by the following theorem:

Theorem 3.8 Let G ∈ L2(Ω). Let V arj;· and V arj, j ∈ Z, be defined as in Definition 3.7.
Then it holds that

‖G‖2
L2(Ω) =

+∞∑
j=−∞

V arj(G)

=
+∞∑
j=−∞

∫
Ω

V arj;η (G) dω(η)

= ‖V ar·;· (G)‖2
L2(Z×Ω) .
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Proof. Starting with (3.6) we get

‖V ar·;· (G)‖2
L2(Z×Ω)

=
∞∑

j=−∞

∫
Ω

∫
Ω

∫
Ω

(G) (ξ) (G) (ζ)Ψj(ξ, η)Ψj(ζ, η) dω(ξ) dω(ζ)

 dω(η)

=
∞∑

j=−∞

∫
Ω

∫
Ω

(G) (ξ) (G) (ζ)Ψ
(2)
j (ξ, ζ) dω(ξ) dω(ζ)

=
∑

(n,k)∈N

(
(G)∧ (n, k)

)2 ∞∑
j=−∞

(
(Ψj)

∧ (n)
)2

= (G,G)L2(Ω) .

As all integrations are understood in the sense of the Lebesgue integral, the Beppo-Levi
Theorem justifies to interchange integration and summation.

Using (3.2) we add, by way of explanation, the following spectral representation:

V arj

(
Λ̃F
)

=

∫
Ω

V arj;η

(
Λ̃F
)
dω(η) (3.7)

=
∑

(n,k)∈N

(
Ψ∧
j (n)

)2((
Λ̃F
)∧

(n, k)

)2

(3.8)

=
∑

(n,k)∈N

(
Ψ∧
j (n)

)2 (
Λ∧(n, k)F̃∧(n, k)

)2

. (3.9)

Scale and Space Error Covariances

Having defined the scale and space variances for signals, the missing link is a correspond-
ing definition for the scale and space error covariances which will replace the degree error
covariances of the spectral approach. In accordance with our approach in Definition 3.7,
we replace the spherical harmonics in Equation (3.5) with wavelets corresponding to the
multiscale representation of functions.

Definition 3.9 Let, in accordance with Definition 3.1, K : Ω × Ω → R be a covariance
kernel. Let the family {Ψj}, j ∈ Z, of L2(Ω)-product kernels be an L2(Ω)-wavelet. Then the
scale and space error covariance at scale j ∈ Z and position η ∈ Ω is defined by

Covj;η(K) =

∫
Ω

∫
Ω

K(ξ, ζ)Ψj(ξ, η)Ψj(ζ, η)dω(ξ) dω(ζ), η ∈ Ω .

The integrated quantity

Covj(K) =

∫
Ω

Covj;η(K) dω(η)
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is said to be the scale error covariance at scale j ∈ Z.

In spectral representation the scale and space error covariance can be expressed as

Covj;η(K) =
∑

(n,k)∈N

K∧(n, k)
(
Ψ∧
j (n)

)2
(Yn,k(η))

2 ,

while

Covj(K) =
1

4π

∑
(n,k)∈N

Covn(K)
(
Ψ∧
j (n)

)2
. (3.10)

This is of course reasonable compared to (3.7), (3.8) and (3.9). Note that from our stochastic
model, i.e. the special representation of the covariance as a product kernel, the scale error
covariance cannot be dependent on the position η ∈ Ω; a fact that is also indicated by
Equation (3.10).

Scale and Space Estimation

As in the spectral approach of the previous section, we now need a criterion to decide whether
noise or signal are predominant. Since with the scale and space variances as well as the scale
and space error covariances we have defined local measures dependent on the location η ∈ Ω
under consideration, the criterion is also of local nature:

Definition 3.10 Signal and noise scale intersect at the so-called scale and space resolution
set Zres with Zres ⊂ Z = Z× Ω defined by

(i) signal dominates noise

V arj;η

(
Λ̃F
)
≥ Covj;η(K), (j; η) ∈ Zres ,

(ii) noise dominates signal

V arj;η

(
Λ̃F
)
< Covj;η(K), (j; η) 6∈ Zres .

Similar to what is done in the spectral approach, we are able to replace the (unknown)
error-free function ΛF of the representation

(ΛF )J =

∫
Ω

Φ(2)
ρJ0

(·, ζ)(ΛF )(ζ) dω(ζ)

+
J−1∑
j=J0

∫
Ω

Ψ(2)
ρj

(·, ζ)(ΛF )(ζ) dω(ζ)
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by (an estimate from) the error–affected function Λ̃F such as

(Λ̃F )J =

∫
Ω

Φ(2)
ρJ0

(·, ζ)(Λ̃F )(ζ) dω(ζ)

+
J−1∑
j=J0

∫
Ω

Ψ(2)
ρj

(·, ζ)(Λ̃F )(ζ) dω(ζ),

J > J0. It is clear that, in order to get a good approximation of the true signal, the signal and
the noise content as given in Definition 3.10 needs to be incorporated in the approximation
process. This is the subject of the next section.

3.1.3 Scalar Selective Multiscale Reconstruction

Starting point is the multiscale approximation

(
Λ̃F
)
J

= ΦJ0 ∗ ΦJ0 ∗ Λ̃F +
J−1∑
j=J0

Ψj ∗Ψj ∗ Λ̃F

with J > J0. The double convolutions

ṼJ0;η(Λ̃F ) = (ΦJ0 ∗ ΦJ0 ∗ Λ̃F )(η)

=

∫
Ω

ΦJ0(η, ζ)

∫
Ω

ΦJ0(ξ, ζ)Λ̃F (ξ) dω(ξ) dω(ζ)

and

W̃j;η(Λ̃F ) = (Ψj ∗Ψj ∗ Λ̃F )(η)

=

∫
Ω

ΨJ0(η, ζ)

∫
Ω

ΨJ0(ξ, ζ)Λ̃F (ξ) dω(ξ) dω(ζ)

need to be calculated by approximate integration in combination with the criteria presented
in Definition 3.10. We base our considerations on approximate integration formulae (see also
our comments in Section 2.1.5 and, for a detailed discussion of approximate integration, [30]

and the references therein) with weights v
Nj
s , w

Lj
l ∈ R and associated knots ζ

Nj
s , ξ

Lj
l ∈ Ω,

s = 1, . . . , Nj, l = 1, . . . , Lj, of the form:

ṼJ0,η(Λ̃F ) '
NJ0∑
s=1

v
NJ0
s ΦJ0(η, ζ

NJ0
s )ã

NJ0
s ,

W̃j,η(Λ̃F ) '
Nj∑
s=1

vNjs Ψj(η, ζ
Nj
s )b̃Njs , j = J0, . . . , J − 1,
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where

ã
NJ0
s '

LJ0∑
l=1

w
LJ0
l ΦJ0(ξ

LJ0
l , ζ

NJ0
s )Λ̃F (ξ

LJ0
l ), (3.11)

b̃Njs '
Lj∑
l=1

w
Lj
l Ψj(ξ

Lj
l , ζ

Nj
s )Λ̃F (ξ

Lj
l ) . (3.12)

The sign ’'’ always means that the error is assumed to be negligible. The large ’true’
coefficients are the ones that ought to be included in a selective reconstruction for estimating

an unknown field. It is sensible to include only coefficients ã
NJ0
s and b̃

Nj
s larger than some

specified threshold value. In accordance with Definition 3.10 ’larger’ coefficients are taken
to be those that satisfy the estimates (cf. Definitions 3.7 and 3.9)(

ã
NJ0
s

)2

=

∫
Ω

∫
Ω

Λ̃F (α)Λ̃F (β)Φj(α, ζ
NJ0
s )Φj(β, ζ

NJ0
s ) dω(α) dω(β)

'
LJ0∑
p=1

LJ0∑
q=1

w
LJ0
p w

LJ0
q ΦJ0

(
ξ
LJ0
p , ζ

NJ0
s

)
ΦJ0

(
ξ
LJ0
q , ζ

NJ0
s

)
Λ̃F (ξ

LJ0
p )Λ̃F (ξ

LJ0
q )

≥
LJ0∑
p=1

LJ0∑
q=1

w
LJ0
p w

LJ0
q ΦJ0

(
ξ
LJ0
p , ζ

NJ0
s

)
ΦJ0

(
ξ
LJ0
q , ζ

NJ0
s

)
K(ξ

LJ0
p , ξ

LJ0
q ) (3.13)

'
∫
Ω

∫
Ω

ΦJ0(α, ζ
NJ0
s )ΦJ0(β, ζ

NJ0
s )K(α, β) dω(α) dω(β)

= kΦJ0
(ζ
NJ0
s )

and (
b̃Njs

)2

=

∫
Ω

∫
Ω

Ψj(α, ζ
Nj
s )Ψj(β, ζ

Nj
s )Λ̃F (α)Λ̃F (β) dω(α) dω(β)

'
Lj∑
p=1

Lj∑
q=1

wLjp w
Lj
q Ψj

(
ξLjp , ζ

Nj
s

)
Ψj

(
ξLjq , ζ

Nj
s

)
Λ̃F (ξLjp )Λ̃F (ξLjq )

≥
Lj∑
p=1

Lj∑
q=1

wLjp w
Lj
q Ψj

(
ξLjp , ζ

Nj
s

)
Ψj

(
ξLjq , ζ

Nj
s

)
K(ξLjp , ξ

Lj
q ) (3.14)

'
∫
Ω

∫
Ω

Ψj(α, ζ
Nj
s )Ψj(β, ζ

Nj
s )K(α, β) dω(α) dω(β)

= kΨj(ζ
Nj
s )
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(the values kΦJ0
(ζ
NJ0
s ) and kΨj(ζ

Nj
s ) are introduced as abbreviations of the appearing double

integrals).

With the threshold values kΦJ0
(ζ
NJ0
s ), s = 1, . . . , NJ0 , and kΨj(ζ

Nj
s ), s = 1, . . . , Nj, which

are to be calculated from the a priorily known covariance kernel K, an estimator for the
sought-after approximation can be written in the form

(Λ̂F )J(η) =

NJ0∑
s=1

I
{(ã

NJ0
s )2≥kΦJ0 (ζ

NJ0
s )}

v
NJ0
s ΦJ0(η, ζ

NJ0
s ) ã

NJ0
s

+
J−1∑
j=J0

Nj∑
s=1

I
{(b

Nj
s )2≥kΨj (ζ

Nj
s )}

vNjs Ψj(η, ζ
Nj
s ) b̃Njs .

IA denotes the indicator function of the set A. This means, in other words, that the ’large’
coefficients relative to the threshold are used in the approximation while the small coefficients
are set to zero. Up to now, the thresholding estimators for the true coefficients VJ0;η(Λ̃F )

and Wj;η(Λ̃F ) can be written in the form

VJ0;η(Λ̃F ) =

NJ0∑
s=1

δhard

kΦJ0
(ζ
NJ0
s )

((
ã
NJ0
s

)2
)
v
NJ0
s ΦJ0(η, ζ

NJ0
s ) ã

NJ0
s ,

Wj;η(Λ̃F ) =

Nj∑
s=1

δhard

kΦj (ζ
Nj
s )

((
b̃Njs

)2
)
vNjs Ψj(η, ζ

Nj
s ) b̃Njs ,

where the function δhard
λ is the hard thresholding function

δhard
λ (x) =

{
1 , |x| ≥ λ
0 , |x| < λ

.

As in the spectral approach, the hard or ’keep or kill’ thresholding operation is not the
only reasonable way of estimating the coefficients. Considering the fact that the coefficients
ṼJ0,η(Λ̃F ) and W̃j,η(Λ̃F ) consist of both, a signal and a noise contribution, it might be
desirable to attempt to isolate the signal part by removing the noisy part (see also Subsection
3.1.1 pages 67 ff.). This idea leads to the soft thresholding function (cf. the considerations
by [17, 18])

δsoft
λ (x) =

{
max{0, 1− λ

|x|} , x 6= 0

0 , x = 0,

which can also be used in the above identities. When soft thresholding is applied to a set
of empirical coefficients, only coefficients greater than the threshold (in absolute value) are
included, but their values are ’shrunk’ toward zero by an amount equal to the threshold λ.

The following theorem summarizes our results and presents the general thresholding multi-
scale estimator.

Theorem 3.11 Let {Φj} and {Ψj}, j ∈ Z, be an L2(Ω)-scaling function and an L2(Ω)-

wavelet, respectively. Let, furthermore, v
Nj
s , w

Lj
l ∈ R be integration weights and ζ

Nj
s , ξ

Lj
l ∈
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Ω, s = 1, . . . , Nj, l = 1, . . . , Lj, the associated knots of approximate integration formulae.
Assume δλ to be either the hard or the soft thresholding function.

If the coefficients ã
NJ0
s and b̃

Nj
s are given as in equations (3.11) and (3.12), respectively, while

the threshold values kΦJ0
(ζ
NJ0
s ) and kΨj(ζ

Nj
s ) are calculated from the covariance kernel K as

shown in (3.13) and (3.14), then the thresholding multiscale estimator of a signal Λ̃F reads

Λ̂F J(η) =

NJ0∑
s=1

δ
kΦJ0

(ζ
NJ0
s )

((
ã
NJ0
s

)2
)
v
NJ0
s ΦJ0(η, ζ

NJ0
s )ã

NJ0
s

+
J−1∑
j=J0

Nj∑
s=1

δ
kΨj (ζ

Nj
s )

((
b̃Njs

)2
)
vNjs Ψj(η, ζ

Nj
s )b̃Njs .

Using this approach, (Λ̂F )J is first approximated by a thresholded (Λ̂F )J0 which represents
the denoised smooth components of the data. Then the coefficients at a higher resolution
are thresholded such that the noise is suppressed but the fine details are included in the
calculation. The whole approximation is, due to the characteristics of the scaling functions
and wavelets, space adapting.

It should be remarked that the whole process of selective multiscale thresholding can of
course be combined with the pyramid scheme as presented in Section 2.1.5. For an extensive
derivation we direct the reader to our treatise in [33]. Here we just mention the main
result, i.e. the representation of the thresholding multiscale estimator in terms of coefficients
obtainable by means of the pyramid scheme. Again, the starting point are approximate
integration formulae with given weights w

Nj
i ∈ R and associated knots η

Nj
i ∈ Ω. In the

nomenclature of Section 2.1.5 we start from a sufficiently large scale J such that

Λ̃F (η) w Φ
(2)
J (·, η) ∗ Λ̃F w

NJ∑
i=1

Φ
(2)
J (η, ηNJi )ãNJi , η ∈ Ω,

where the coefficients for the initial step are given by

ãNJi = wNJi

(
Λ̃F
) (
ηNJi
)
, i = 1, . . . , NJ .

The coefficients ã
NJ−1

i can be calculated recursively starting from the data ãNJi for the initial

level J , ã
NJ−2

i can be deduced recursively from ã
NJ−1

i , etc. where the recursion relation reads

ã
Nj
i = w

Nj
i

Nj+1∑
l=1

Ξj(η
Nj
i , η

Nj+1

l )ã
Nj+1

i , j = 0 . . . J

(the different choices of the kernel Ξj have been explained in Section 2.1.5).

Having achieved the recursion relation, the thresholding criteria have to be incorporated.
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This is done via the estimate(
ã
Nj
i

)2

=
(
w
Nj
i

(
Ξj ∗ Λ̃F

)
(η
Nj
i )
)2

= (w
Nj
i )2

∫
Ω

∫
Ω

Λ̃F (ξ)Λ̃F (ζ) Ξj(ξ, η
Nj
i ) Ξj(ζ, η

Nj
i ) dω(ξ) dω(ζ)

≥ (w
Nj
i )2

∫
Ω

∫
Ω

K(ξ, ζ) Ξj(ξ, η
Nj
i ) Ξj(ζ, η

Nj
i ) dω(ξ) dω(ζ)

= (kji )
2

which basically corresponds to Definition 3.10. Summarizing our results the following repre-
sentation of the thresholding multiscale estimator can be obtained in combination with the
pyramid scheme:

(
Λ̂F
)
J

=

NJ0∑
i=1

δ
(k
J0
i )2

(
(ã
NJ0
i )2

)
Φ

(2)
J (·, ηNJ0i )ã

NJ0
i

+
J−1∑
j=J0

Nj∑
i=1

δ(kji )2
(
(ã
Nj
i )2

)
Ψ

(2)
j

(
·, ηNji

)
ã
Nj
i ,

where δλ is the previously defined hard or soft thresholding function.
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3.2 Signal-to-Noise Thresholding of Vector Fields

While up to now we have dealt with a multiscale denoising procedure for spherical scalar
fields, we are now concerned with the extension of this approach to spherical vector fields.
Analogously to the scalar case we start in Section 3.2.1 with the definition of the respective
covariance kernels and present the spectral theory in terms of vector spherical harmonics.
Section 3.2.2 deals with multiscale signal-to-noise thresholding of vector fields based on
tensorial radial basis functions. This approach is the canonical extension of the scalar theory
but holds some disadvantages for numerical implementations, though. Therefore, in Section
3.2.3, we use the tensorial technique to develop a method based on vector radial basis
functions, an approach being well suited for numerical realizations (see also our treatment
in [34]).

3.2.1 Vector Spectral Signal-to-Noise Response

In analogy to the scalar case (cf. Section 3.1.1) let us think of an ’output signal’ g as
produced by a linear operator Λ applied to an ’input signal’ f

Λf = g,

where Λ is an operator mapping l2(Ω) onto itself such that

Λy
(i)
n,k =

(
Λ(i)

)∧
(n, k) y

(i)
n,k

for i = 1, 2, 3, (n, k) ∈ N (i). The symbol
{(

Λ(i)
)∧

(n, k)
}

(n,k)∈N (i)
is supposed to be sequences

of real numbers for i = 1, 2, 3. Note that we have used the abbreviation

N (i) = {(n, k)|n = 0i, 0i + 1, . . . ; k = 1, . . . , 2n+ 1}

(01 = 0, 0i = 1, for i = 2, 3).

In practise, an error-affected ’output signal’

g̃ = g + ε̃,

is observed, where ε̃ is the observation noise. Analogously to the scalar case and in accor-
dance with the approach used by [95] we assume that

Cov[g̃(ξ), g̃(η)] = E[ε̃(ξ), ε̃(η)] = k(ξ, η), (ξ, η) ∈ Ω× Ω,

is known, where the tensorial covariance kernel k(·, ·) : Ω×Ω → R3×3 is explicitly given by:

Definition 3.12 Let k(i) : Ω× Ω → R3×3, i ∈ {1, 2, 3}, be a tensor kernel of the form

k(i)(ξ, η) =
∑

(n,k)∈N (i)

(k(i))∧(n, k)(µ(i)
n )−1o

(i)
ξ o

(i)
η Yn,k(ξ)Yn,k(η)

=
∑

(n,k)∈N (i)

(k(i))∧(n, k)y
(i)
n,k(ξ)⊗ y

(i)
n,k(η), (ξ, η) ∈ Ω2,
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with the symbol
{
(k(i))∧(n, k)

}
(n,k)∈N (i), i ∈ {1, 2, 3}, satisfying the conditions:

(C1) (k(i))∧(n, k) ≥ 0 for (n, k) ∈ N (i),

(C2)
∑

(n,k)∈N (i)

(
k(i)
)∧

(n, k) sup
η∈Ω

(
y

(i)
n,k(η)

)2

<∞ .

Then k(i), i ∈ {1, 2, 3} is called a tensorial covariance kernel of type i, while

k =
3∑
i=1

k(i)

is called a tensorial covariance kernel.

Degree Variances

Any ’output function’ (output signal) can be expanded into an orthogonal series in terms of
vector spherical harmonics:

g̃ = Λ̃f =
3∑
i=1

∑
(n,k)∈N (i)

(
Λ(i)

)∧
(n, k)(f̃ (i))∧(n, k)y

(i)
n,k

=
3∑
i=1

∑
(n,k)∈N (i)

(g̃(i))∧(n, k)y
(i)
n,k,

where the equality has to be understood in the sense of ‖·‖l2(Ω) . Using this series expansion
we get, for i ∈ {1, 2, 3}, the spectral representation

(g̃(i))∧(n, k) = (Λ̃f)∧(n, k) =
(
Λ(i)

)∧
(n, k)(f̃ (i))∧(n, k), (n, k) ∈ N (i).

This is the vectorial analogue for Equation (3.2) and also hints at using the root-mean-
square power per degree and order, respectively per degree, to characterize the vectorial
signal. Motivated by the corresponding definitions for the scalar case and by Parseval’s
identity we define:

Definition 3.13 Let g ∈ l2(Ω). Let, for i ∈ {1, 2, 3} and (n, k) ∈ N (i), (g(i))∧(n, k) be the
corresponding orthogonal coefficients. Then, for i ∈ {1, 2, 3} and (n, k) ∈ N (i), the signal
degree and order variances of type i of g are defined by

V ar
(i)
n,k(g) =

∫
Ω

∫
Ω

(
y

(i)
n,k(ξ)⊗ y

(i)
n,k(η)

)
· (g(ξ)⊗ g(η)) dω(ξ) dω(η)

=

∫
Ω

∫
Ω

g(ξ) ·
(
y

(i)
n,k(ξ)⊗ y

(i)
n,k(η)

)
g(η) dω(ξ) dω(η)

=
((
g(i)
)∧

(n, k)
)2

.
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Accordingly the signal degree variances of type i of g are given by

V ar(i)
n (g) =

2n+ 1

4π

∫
Ω

∫
Ω

g(ξ) · p(i,i)
n (ξ, η)g(η) dω(η) dω(ξ)

=
2n+1∑
k=1

((
g(i)
)∧

(n, k)
)2

=
2n+1∑
k=1

V ar
(i)
n,k(g),

while the signal degree variances of g read as follows:

V arn(Λ̃f) =
3∑
i=1

V ar(i)
n (Λ̃f).

Obviously, by virtue of Parseval’s identity, we obtain

∥∥∥Λ̃f∥∥∥
l2(Ω)

=
3∑
i=1

∑
(n,k)∈N (i)

V ar
(i)
n,k(Λ̃f),

again connecting the signal degree and order variances as well as the signal degree variances
with the ’l2(Ω)-energy’ of the corresponding vectorial signal.

It is clear that the remarks concerning the frequency limiting characteristics of physical
devices and the resulting bandlimited nature of the ’transmitted signals’ are valid in the
vectorial case as well. That is, one is usually able to consider bandlimited vector fields
g̃ ∈ l2(Ω), the signal degree variances of which satisfy V arn(g̃) = 0 for all n > N ∈ N.

Degree Error Covariances

In addition to the previously defined signal variances the tensorial covariance kernel k is
used to calculate suitable measures to characterize the noise:

Definition 3.14 In accordance with Definition 3.12, let{
(k(i))∧(n, k)

}
(n,k)∈N (i) , i ∈ {1, 2, 3}

be the symbol of a tensorial covariance kernel k : Ω×Ω → R3×3. Then the degree and order
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error covariance of type i is given by

Cov
(i)
n,k(k)

=

∫
Ω

∫
Ω

(
y

(i)
n,k(ξ)⊗ y

(i)
n,k(η)

)
· k(ξ, η) dω(ξ) dω(η)

=
3∑
l=1

∑
(p,q)∈N (i)

(k(l))∧(p, q)

∫
Ω

∫
Ω

(
y

(i)
n,k(η) · y

(l)
p,q(η)

)(
y

(i)
n,k(ξ) · y

(l)
p,q(ξ)

)
dω(ξ) dω(η)

= (k(i))∧(n, k).

Moreover the error covariance of type i as well as the error covariance are defined by

Cov(i)
n (k) =

2n+1∑
k=1

Cov
(i)
n,k(k) =

2n+1∑
k=1

(k(i))∧(n, k)

and

Covn(k) =
3∑
i=1

2n+1∑
k=1

(k(i))∧(n, k).

Examples 3.4 and 3.5 can be applied to the case of tensorial error covariance kernels in a
canonical way.

Spectral Estimation

The signal-to-noise relation is determined by the degree and order resolution set N (i)
res of type

i:

Definition 3.15 Signal and noise spectrum intersect at the degree and order resolution set
of type i, N (i)

res ⊂ N (i), defined by the following relations:

(i) signal dominates noise

V ar
(i)
n,k(Λ̃f) ≥ Cov

(i)
n,k(k), (n, k) ∈ N (i)

res ,

(ii) noise dominates signal

V ar
(i)
n,k(Λ̃f) < Cov

(i)
n,k(k), (n, k) /∈ N (i)

res .

The technique of filtering the signal Λ̃f in order to get an estimated denoised version Λ̂f
can be canonically carried over from the scalar case (cf. Section 3.1.1 pages 67 ff.)
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3.2.2 Tensor-Based Multiscale Signal-to-Noise Response

We now want to extend the theory of scalar multiscale signal-to-noise response to the case
of noisy vector fields, keeping in mind the spectral approach in terms of vector spherical
harmonics. Theorem 2.27 forms the basis necessary to continue with our multiscale approach
since it is equivalent to the fact that the output signal g̃ can be presented in multiscale
approximation as follows:

g̃ = Λ̃f =
∞∑

j=−∞

Ψj ∗Ψj ∗ (Λ̃f) ,

where {Ψj} are tensorial wavelets and the equality is understood in the ‖·‖l2(Ω)-sense. There-

fore, it is useful for our further considerations to introduce the space l(2)(Z × Ω) of fields
h : Z× Ω → R3 satisfying the inequality

∞∑
j=−∞

∫
Ω

(
h(j; η) · h(j; η)

)
dω(η) <∞.

The space l(2)(Z× Ω) is a Hilbert space equipped with the inner product

(h1, h2)l(2)(Z×Ω) =
∞∑

j=−∞

∫
Ω

(
h1(j; η) · h2(j; η)

)
dω(η)

corresponding to the norm

‖h‖l(2)(Z×Ω) =

 ∞∑
j=−∞

∫
Ω

∣∣h(j; η)∣∣2dω(η)

1/2

. (3.15)

Tensor Based Scale and Space Variances

Having introduced tensor scaling functions and wavelets in Section 2.2.5 we can use these
kernel functions to introduce the tensor based scale and space variances for vector fields.
The next definition clarifies what is meant by that:

Definition 3.16 Let g ∈ l2(Ω) and let the family
{
Ψ

(i)
j

}
, j ∈ Z, i ∈ {1, 2, 3}, be a tensor

wavelet in the sense of Definition 2.26. Then the tensor based scale and space variance at
position η ∈ Ω, scale j ∈ Z and type i ∈ {1, 2, 3} of g is defined by

TV ar
(i)
j;η (g) =

∫
Ω

∫
Ω

(
Ψ

(i)
j (ξ, η)Ψ

(i)
j (η, ζ)

)
· (g(ξ)⊗ g(ζ)) dω(ξ) dω(ζ),

while the tensor based scale and space variance at η ∈ Ω and scale j ∈ Z is given by

TV arj,η(g) =
3∑
i=1

TV ar
(i)
j;η(g).
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The corresponding integrated quantities are defined to be the tensor based scale variance of
type i ∈ {1, 2, 3} of g, i.e.

TV ar
(i)
j (g) =

∫
Ω

TV ar
(i)
j;η(g) dω(η),

and the tensor based scale variance of g,

TV arj(g) =
3∑
i=1

TV ar
(i)
j (g).

If, with this definitions, we can find a relation similar to Theorem 3.8 we can reasonably
connect the l2-norm of the vector field under consideration with the tensor based scale and
space variances. The following theorem states this result and justifies Definition 3.16.

Theorem 3.17 Suppose g ∈ l2(Ω). Let TV arj and TV arj,·, j ∈ Z be given as in Definition
3.16. Then

‖g‖2
l2(Ω) =

∞∑
j=−∞

TV arj(g)

=
∞∑

j=−∞

∫
Ω

TV arj;η(g) dω(η)

= ‖TV ar·;·(g)‖2
l2(Z×Ω)

holds true.

Proof. On the one hand we have

3∑
i=1

∞∑
j=−∞

∫
Ω

∫
Ω

∫
Ω

(
Ψ

(i)
j (ξ, η)Ψ

(i)
j (η, ζ)

)
·

· (g(ξ)⊗ g(ζ)) dω(ξ) dω(ζ)dω(η)

=
3∑
i=1

∞∑
j=−∞

∫
Ω

∫
Ω

∫
Ω

Ψ
(i)
j (η, ξ)g(ξ) ·Ψ(i)

j (η, ζ)g(ζ) dω(ξ) dω(ζ) dω(η)

= ‖TV ar·;·(g)‖2
l2(Z×Ω)

where we have used the Equation (1.4) and the fact that for the tensorial kernels we have
Ψ(ξ, η) = (Ψ(η, ξ))T .
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On the other hand it holds that

3∑
i=1

∞∑
j=−∞

∫
Ω

∫
Ω

∫
Ω

(
Ψ

(i)
j (ξ, η)Ψ

(i)
j (η, ζ)

)
·

· (g(ξ)⊗ g(ζ)) dω(ξ) dω(ζ)dω(η)

=
3∑
i=1

∞∑
j=−∞

∫
Ω

∫
Ω

(
Ψ

(i)
j ∗Ψ

(i)
j

)
(ξ, ζ) · (g(ξ)⊗ g(ζ)) dω(ξ) dω(ζ)

=
3∑
i=1

∞∑
j=−∞

∫
Ω

∫
Ω

g(ξ) ·
((

Ψ
(i)
j ∗Ψ

(i)
j

)
(ξ, ζ)g(ζ)

)
dω(ξ) dω(ζ)

=
3∑
i=1

∞∑
j=−∞

∫
Ω

g(ξ) ·
(
Ψ

(i)
j ∗Ψ

(i)
j ∗ g

)
(ξ) dω(ξ)

=
3∑
i=1

∑
(n,k)∈N (i)

((
g(i)
)∧

(n, k)
)2

∞∑
j=−∞

((
Ψ

(i)
j

)∧
(n)

)2

= ‖g‖2
l2(Ω),

where we have used Definition 2.25 and relation (1.3). This completes the proof (note that
again all integrations are understood in the Lebesgue-sense and that the interchange of
summation and integration is justified by the Beppo-Levi Theorem).

For the ’output signal’ g̃ = Λ̃f we get, in spectral representation,

TV ar
(i)
j,η(Λ̃f) =

∑
(n,k)∈N (i)

((
Ψ

(i)
j

)∧
(n)

)2((
(Λ̃f)(i)

)∧
(n, k)

)2 (
y

(i)
n,k(η)

)2

and

TV ar
(i)
j (Λ̃f) =

∑
(n,k)∈N (i)

((
Ψ

(i)
j

)∧
(n, k)

)2(((
Λ̃f
)(i)
)∧

(n, k)

)2

,

which completely resembles equations (3.8) and (3.9) of the scalar multiscale approach.

Tensor Based Scale and Space Error Covariances

What we need now to complete the tensor based theory are the corresponding definitions
for the scale and space error covariances. With our results up to now, these definitions are
straightforward.

Definition 3.18 Let, in accordance with Definition 3.12, k : Ω × Ω → R3×3 be a tensorial

covariance kernel. Suppose the family
{
Ψ

(i)
j

}
, j ∈ Z, i ∈ {1, 2, 3}, to be a tensor wavelet in
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the sense of Definition 2.26. The tensor based scale and space error covariance at position
η ∈ Ω, scale j ∈ Z, and type i ∈ {1, 2, 3} is given by

TCov
(i)
j;η(k) =

∫
Ω

∫
Ω

(
Ψ

(i)
j (ξ, η)Ψ

(i)
j (η, ζ)

)
· k(ξ, ζ) dω(ξ) dω(ζ).

Furthermore,

TCovj;η(k) =
3∑
i=1

TCov
(i)
j;η(k)

denotes the tensor based scale and space error covariance at position η ∈ Ω and scale j ∈ Z.
The tensor based scale error covariance of type i is defined by

TCov
(i)
j (k) =

∫
Ω

TCov
(i)
j;η(k) dω(η),

whereas

TCovj(k) =
3∑
i=1

TCov
(i)
j (k)

is the tensor based scale error covariance.

By way of explanation we add the corresponding spectral representations:

TCov
(i)
j;η(k) =

∑
(n,k)∈N (i)

(k(i))∧(n, k)
(
(Ψ

(i)
j )∧(n)

)2 (
y

(i)
n,k(η)

)2

,

TCov
(i)
j (k) =

∑
(n,k)∈N (i)

(k(i))∧(n, k)
(
(Ψ

(i)
j )∧(n)

)2

and

TCovj(k) =
3∑
i=1

∑
(n,k)∈N (i)

(k(i))∧(n, k)

((
Ψ

(i)
j

)∧
(n)

)2

.

The correspondence to the scalar case is obvious. Note that the multiscale noise model is
able to specify pointwise dependent error covariances which is not possible in spectral theory
by means of vector spherical harmonics.

Tensor Scale and Space Estimation

A criterion to decide whether noise or signal are predominant is given by the tensor based
scale and space resolution sets of type i. To be more specific:

Definition 3.19 Signal and noise scale ’intersect’ at the so-called tensor based scale and
space resolution set T Z(i)

res(η) ⊂ Z = Z× Ω of type i at position η defined by:
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(i) signal dominates noise

TV ar
(i)
j;η(Λ̃f) ≥ TCov

(i)
j;η(k), (j; η) ∈ T Z(i)

res(η).

(ii) noise dominates signal

TV ar
(i)
j;η(Λ̃f) < TCov

(i)
j;η(k), (j; η) /∈ T Z(i)

res(η).

Finally we have managed to complete the tensor based theory. It is clear that the next
step would be to combine this approach with a tensorial multiscale approximation in order
to develop a tensorial selective multiscale reconstruction principle. Though tensor kernels
obviously present a suitable tool to construct an elegant theoretical approach they are, from
the view of numerical realization, a very complicated matter. This is why we do not develop
a selective reconstruction algorithm using tensor kernels but try to find a vectorial analogue
based on the tensorial results. This is the main subject of the next section.

3.2.3 Vector-Based Multiscale Signal-to-Noise Response

In Chapter 2, i.e. in Section 2.2.4, we have shown spherical vectorial scaling functions and
wavelets to be appropriate kernels to approximate spherical vector fields within a multiscale
framework. In Section 3.2.2, however, we have introduced the use of spherical tensorial
scaling functions and wavelets as a canonical extension to the scalar approach. It is clear
that somehow both techniques need to be connected. The link between both, the tensor
and the vector formalism, has already been established by Theorem 2.28. This theorem,
however, shows us that the different types of bilinear convolutions lead to equivalent results.
Therefore, our attempts to replace the formal tensor approach to signal-to-noise thresholding
of vector fields by a vectorial technique in order to obtain easier computability is justified.

Vector Based Scale and Space Variances

In what follows we define vector based scale and space variances in correspondence to the
tensor based quantities. Then we show that the vector based measures are equivalent to the
tensor based ones.

Definition 3.20 Let g ∈ l2(Ω) and let the family
{
ψ

(i)
j

}
, j ∈ Z, i ∈ {1, 2, 3}, be a spherical

vector wavelet. The vector based scale and space variance at position η ∈ Ω, scale j ∈ Z
and type i ∈ {1, 2, 3} is defined by

V V ar
(i)
j;η(g) =

∫
Ω

∫
Ω

(
ψ

(i)
j (ξ, η)⊗ ψ

(i)
j (ζ, η)

)
· (g(ξ)⊗ g(ζ)) dω(ξ) dω(ζ) .

The vector based scale variance at scale j ∈ Z of type i is given by

V V ar
(i)
j (g) =

∫
Ω

V V ar
(i)
j,η(g) dω(η),
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while the vector based scale variance at scale j ∈ Z reads as follows

V V arj(g) =
3∑
i=1

V V ar
(i)
j (g) .

For the ’output signal’ g̃ = Λ̃f we calculate V V ar
(i)
j;η(Λ̃f) in spectral language and obtain

V V ar
(i)
j;η(Λ̃f) =

∑
(n,k)∈N (i)

((
ψ

(i)
j

)∧
(n)

)2(((
Λ̃f
)(i)
)∧

(n, k)

)2 (
Yn,k(η)

)2
.

Hence it follows that

TV ar
(i)
j (Λ̃f) = V V ar

(i)
j (Λ̃f), i ∈ {1, 2, 3}

and
TV arj(Λ̃f) = V V arj(Λ̃f) .

But this is just what we tried to establish, vector based quantities that lead to results equi-
valent to the tensor based approach. In conclusion we can find the connection between the
vector based scale and space variances and the l2(Ω)-energy of the signal under consideration:

‖Λ̃f
(i)
‖l2(Ω) = ‖TV ar(i).; .(Λ̃f)‖l2(Z×Ω) = ‖V V ar(i).; .(Λ̃f)‖l2(Z×Ω) .

What remains is the definition of the corresponding error covariances.

Vector Based Scale and Space Error Covariances

The vector based multiscale error theory is based on the vector analog to the tensor based
error covariances:

Definition 3.21 Let the family
{
ψ

(i)
j

}
, j ∈ Z, i ∈ {1, 2, 3}, be a spherical vector wavelet

and suppose k : Ω × Ω → R3×3 to be a tensorial covariance kernel. Then the vector based
scale and space error covariance at position η ∈ Ω, scale j ∈ Z, and type i ∈ {1, 2, 3} is
given by

V Cov
(i)
j;η(k) =

∫
Ω

∫
Ω

(
ψ

(i)
j (ξ, η)⊗ ψ

(i)
j (ζ, η)

)
· k(ξ, ζ) dω(ξ) dω(ζ) .

Furthermore we define

V Covj;η(k) =
3∑
i=1

V Cov
(i)
j;η(k) .

The vector based scale error covariance of type i is defined by

V Cov
(i)
j (k) =

∫
Ω

V Cov
(i)
j;η(k) dω(η) .
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Expressing V Cov
(i)
j;η(k) in terms of spherical harmonics we end up with

TCov
(i)
j (k) = V Cov

(i)
j (k), i ∈ {1, 2, 3}

as well as
TCovj(k) = V Covj(k) .

This, however, is just the sought for equivalence of tensor based and vector based error
covariances and justifies, together with the corresponding result for the signal scale and
space variances, the use of the vector based approach.

Vector Scale and Space Estimation

The decision whether noise or signal are predominant can be made using

Definition 3.22 Signal and noise scale intersect at the so–called vector based scale and
space resolution set VZ(i)

res(η) ⊂ Z = Ω× R of type i ∈ {1, 2, 3} at position η ∈ Ω given by

(i) signal dominates noise

V V ar
(i)
j;η(Λ̃f) ≥ V Cov

(i)
j;η(k), (j; η) ∈ VZ(i)

res .

(ii) noise dominates signal

V V ar
(i)
j;η(Λ̃f) < V Cov

(i)
j;η(k), (j; η) ∈ VZ(i)

res .

Similar to what we have done in the case of the scalar multiscale method, the vector variant
of multiscale approximation of a signal function can be formulated by replacing the unknown
error-free field (Λf)(i), i ∈ {1, 2, 3}, being approximated by

(Λf)
(i)
J = ϕ

(i)
J0
? ϕ

(i)
J0
∗ (Λf) +

J−1∑
j=J0

ψ
(i)
j ? ψ

(i)
j ∗ (Λf),

by the error-affected field
(
Λ̃f
)(i)

, i ∈ {1, 2, 3} such that

(Λ̃f)
(i)
J = ϕ

(i)
J0
? ϕ

(i)
J0
∗ (Λ̃f) +

J−1∑
j=J0

ψ
(i)
j ? ψ

(i)
j ∗ (Λ̃f),

J > J0. It is obvious that, in order to obtain a suitable approximation of the true signal,
the different signal and noise content, i.e. the criteria given by the vector based scale and
position resolution set, have to be incorporated in the approximation process. The next
section deals with this subject.
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3.2.4 Vectorial Selective Multiscale Reconstruction

Initial point is the multiscale approximation

(Λ̃f)
(i)
J = ϕ

(i)
J0
? ϕ

(i)
J0
∗ (Λ̃f) +

J−1∑
j=J0

ψ
(i)
j ? ψ

(i)
j ∗ (Λ̃f).

As in the previously developed scalar framework there are coefficients

p̃
(i)
J0

(Λ̃f)(η) =

∫
Ω

ϕ
(i)
J0

(η, ζ)

∫
Ω

ϕ
(i)
J0

(ξ, ζ) · (Λ̃f)(ξ) dω(ξ) dω(ζ),

r̃
(i)
j (Λ̃f)(η) =

∫
Ω

ψ
(i)
j (η, ζ)

∫
Ω

ψ
(i)
j (ξ, ζ) · (Λ̃f)(ξ) dω(ξ) dω(ζ),

which have to be calculated by approximate integration combined with the criteria given in
Definition 3.22. Again we chose integration formulae with weights (v(i))

Nj
s , (w(i))

Lj
l ∈ R and

knots ζ
Nj
s , ξ

Lj
l ∈ Ω, s = 1, . . . , Nj; l = 1, . . . , Lj, of the form:

p̃
(i)
J0

(f)(η) '
NJ0∑
s=1

(v(i))
NJ0
s ϕ

(i)
J0

(η, ζ
NJ0
s )(ã(i))

NJ0
s ,

r̃
(i)
j (f)(η) '

Nj∑
s=1

(v(i))Njs ψ
(i)
j (η, ζNjs )(b̃(i))Njs , j = J0, . . . , J − 1,

where

(ã(i))
NJ0
s '

LJ0∑
l=1

(w(i))
LJ0
l ϕ

(i)
J0

(ξ
LJ0
l , ζ

NJ0
s ) · (Λ̃f)(ξ

LJ0
l ), (3.16)

(b̃(i))Njs '
Lj∑
l=1

(w(i))
Lj
l ψ

(i)
j (ξ

Lj
l , ζ

Nj
s ) · (Λ̃f)(ξ

Lj
l ) . (3.17)

Note that the sign ’'’ means that we assume the error to be negligible. Reasonably only
those coefficients are included that are in accordance with the thresholds given by the cor-
responding scale and space resolution sets VZ(i)

res. That is, only those coefficients containing
a predominant amount of the signal are considered in the reconstruction process.
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More explicitly we get((
ã(i)
)NJ0
s

)2

=

∫
Ω

∫
Ω

(
ϕ

(i)
J0

(α, ζ
NJ0
s )⊗ ϕ

(i)
J0

(β, ζ
NJ0
s )

)
·
(
(Λ̃f)(α)⊗ (Λ̃f)(β)

)
dω(α) dω(β)

'
LJ0∑
p=1

LJ0∑
q=1

(w(i))
LJ0
p (w(i))

LJ0
q

(
ϕ

(i)
J0

(
ξ
LJ0
p , ζ

NJ0
s

)
⊗ ϕ

(i)
J0

(
ξ
LJ0
q , ζ

NJ0
s

))

·
(
Λ̃f)(ξ

LJ0
p )⊗ (Λ̃f)(ξ

LJ0
q )

)

≥
LJ0∑
p=1

LJ0∑
q=1

(w(i))
LJ0
p (w(i))

LJ0
q

(
ϕ

(i)
J0

(
ξ
LJ0
p , ζ

NJ0
s

)
⊗ ϕ

(i)
J0

(
ξ
LJ0
q , ζ

NJ0
s

))
· k(ξ

LJ0
p , ξ

LJ0
q )

'
∫
Ω

∫
Ω

ϕ
(i)
J0

(α, ζ
NJ0
s )⊗ ϕ

(i)
J0

(β, ζ
NJ0
s ) · k(α, β) dω(α) dω(β)

= κ
ϕ

(i)
J0

(ζ
NJ0
s )

and((
b̃(i)
)Nj
s

)2

=

∫
Ω

∫
Ω

(
ψ

(i)
j (α, ζNjs )⊗ ψ

(i)
j (β, ζNjs )

)
·
(
(Λ̃f)(α)⊗ (Λ̃f)(β)

)
dω(α) dω(β)

'
Lj∑
p=1

Lj∑
q=1

(w(i))Ljp (w(i))Ljq

(
ψ

(i)
j

(
ξLjp , ζ

Nj
s

)
⊗ ψ

(i)
j

(
ξLjq , ζ

Nj
s

))
·
(
(Λ̃f)(ξLjp )⊗ (Λ̃f)(ξLjq )

)

≥
Lj∑
p=1

Lj∑
q=1

(w(i))Ljp (w(i))Ljq

(
ψ

(i)
j

(
ξLjp , ζ

Nj
s

)
⊗ ψ

(i)
j

(
ξLjq , ζ

Nj
s

))
· k(ξLjp , ξ

Lj
q )

'
∫
Ω

∫
Ω

ψ
(i)
j (α, ζNjs )⊗ ψ

(i)
j (β, ζNjs ) · k(α, β) dω(α) dω(β)

= κ
ψ

(i)
j

(ζNjs ) .

In combination with the hard and soft thresholding functions (cf. Section 3.1.3) we can
summarize our results for a multiscale thresholding estimator of the signal:
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Theorem 3.23 Let {ϕj} and {ψj}, j ∈ Z, be an l2(Ω)-scaling function and an l2(Ω)-

wavelet, respectively. Let, furthermore, (v(i))
Nj
s , (w(i))

Lj
l ∈ R be integration weights and

ζ
Nj
s , ξ

Lj
l ∈ Ω, s = 1, . . . , Nj, l = 1, . . . , Lj, the associated knots of approximate integra-

tion formulae. Assume δλ to be either the hard or the soft thresholding function.

If the coefficients (ã(i))
NJ0
s and (b̃(i))

Nj
s are given as in equations (3.16) and (3.17), respec-

tively, and if κ
ϕ

(i)
J0

(ζ
NJ0
s ) as well as κ

ψ
(i)
j

(ζ
Nj
s ) are the corresponding threshold values, then the

vector based thresholding multiscale estimator of a signal Λ̃f reads

(Λ̂f)
(i)
J (η) =

NJ0∑
s=1

δ
κ
ϕ
(i)
J0

(ζ
NJ0
s )

(((
ã(i)
)NJ0
s

)2
)

(v(i))
NJ0
s ϕ

(i)
J0

(η, ζ
NJ0
s )(ã(i))

NJ0
s

+
J−1∑
j=J0

Nj∑
s=1

δ
κ
ψ

(i)
j

(ζ
Nj
s )

(((
b̃(i)
)Nj
s

)2
)

(v(i))Njs ψ
(i)
j (η, ζNjs )(b̃(i))Njs .

Therefore, as in the scalar multiscale approach, the estimated signal consists of a thresh-
olded smooth part representing the overall features and, additionally, contributions due to
coefficients at higher resolution which are thresholded such that the noise is suppressed but
the fine details are included in the reconstruction.
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3.3 Example

In order to test and illustrate the functionality of multiscale signal-to-noise thresholding we
will present an example using synthetic geomagnetic vector data. The data are synthesized
on a grid of nodal points due to [20]. More explicitly, the grid used is such that on each
spherical latitude, as well as on each spherical longitude, there will be an equal number
of equiangular distributed nodal points. Consequently, the data density in polar regions is
higher than in the vicinity of the equator thus mimicking the situation known from satellites
with almost polar orbits. During the process of decomposition and reconstruction this effect
is taken into account by weighting each data point by integration weights which attenuate
the contributions of the polar regions in the appropriate way (see [20] for more details
on this subject). As a reference field bclear we use a vectorial data set generated from a
bandlimited (up to degree and order 12) geomagnetic potential due to [13]. The noisy
data set bnoisy is calculated from bclear by adding bandlimited white noise of variance σ and
bandlimit nK of approximately 2.9 and 60 (see Sections 3.1.1 and 3.2.1), respectively, to
each of the three field components in spherical polar coordinates. This procedure resulted
in noise of the order of magnitude of 100 Nanoteslas (nT) in field components of the order
of magnitude of 104 nT. In what follows we restrict ourselves to the radial component (−εr
component) and one of the tangential components (εϕ component). The results for the εϑ

component are similar and will therefore be omitted. Figure 3.1 shows −(bnoisy · εr) and
(bnoisy · εϕ) (i.e. the geomagnetic downward and east components of bnoisy), respectively,
while Figure 3.2 shows the absolute value of the noise contained in these components. In

Figure 3.1: −εr component (left) and εϕ component (right) of the noisy geomagnetic input
data bnoisy (in 10000 nT).

order to denoise the noisy data set bnoisy, it is decomposed and reconstructed using spherical
vectorial Shannon wavelets of type i ∈ {1, 2} up to a maximum scale Jmax = 3. Note that,
since the input data is a gradient field, we need not use type i = 3 vector wavelets. Applying
the method of hard thresholding, only those wavelet coefficients containing a predominant
amount of the clear signal are used during the reconstruction process in accordance with
our considerations in Sections 3.2.3 and 3.2.4. Using this approach, the root-mean-square
error of the noisy −εr component w.r.t. the reference field bclear, (∆εrnoisy)rms = 4.9 [nT],
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Figure 3.2: Absolute value of noise [nT].

has been reduced to (∆εrdenoised)rms = 0.6 [nT], which is an improvement of about 87 per
cent. In the εϕ component we have (∆εϕnoisy)rms = 4.9 [nT] and (∆εrdenoised)rms = 0.5 [nT]
which is an improvement of about 89 per cent. The denoised reconstructions of the −εr and
εϕ components can be seen in Figure 3.3. Figure 3.4 shows the corresponding errors w.r.t.
the reference field bclear.

Figure 3.3: Denoised reconstructions of the −εr component (left) and the εϕ component
(right) in 10000 nT.

Figure 3.4: Error of the denoised reconstructions of the −εr component (left) and the εϕ

component (right) w.r.t. the reference data set bclear [nT].
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As can be expected, comparing Figures 3.2 and 3.4 we see how the comparatively rough
structure of the noise has been smoothed out and attenuated by the denoising procedure.

For illustrational purposes we present Figures 3.5, 3.6 and 3.7 showing a multiscale analysis
of the radial component including scales J = 1, 2 and 3, respectively, giving an impression
of what happens on the different scales of the denoising process. The plots on the left
hand side show the difference between the denoised partial wavelet reconstruction of the
noisy data and the corresponding partial reconstruction without applying the denoising
procedure. Consequently, these plots give an illustration of how strong the noise influences
this very scale and of how active the denoising procedure is on this scale. The right hand
sides present the difference between the denoised partial reconstruction of the noisy data
and a corresponding partial reconstruction of the reference data set, thus showing how the
noise (or what is left of it) influences the final approximation. On the left of Figure 3.5 one
can hardly see any structure and the order of magnitude of the plotted difference is 10−6nT.
This is understandable if one takes into account that the noise is very small compared to the
vector field at scale J = 1. Nevertheless, we can see an error in the reconstruction (right hand
side of Figure 3.5) which, though small in magnitude, has a large spatial structure. This
large spatial extend reflects the typical size of spatial features at this scale. The difference
between the denoised and the undenoised partial reconstruction at scale J = 2 is of the order
10−3nT and can be seen on the left of Figure 3.6. This increasing difference shows that the
noise plays a more important role at scale J = 2 than at scale J = 1 since the noise at
this scale becomes comparable with the vector field. Of course, this results in an increased -
but still small - error of the denoised reconstruction with respect to the corresponding clear
data (Figure 3.6, right). Again the spatial extend of the visible features is correspondent to
the typical lengthscales at scale J = 2. Going up to scale J = 3 we obtain similar effects,
i.e. an increasing difference between the denoised and the undenoised partial reconstruction
(order of magnitude 100, Figure 3.7, left) and a larger error with respect to the reference
data (Figure 3.7, right). Again the reason is the noise which, at this scale, is of the same
order of magnitude as the vector field.

Figure 3.5: Difference between partial reconstruction with and without denoising (left,
10−6[nT]); difference between partial reconstruction with denoising and partial reconstruc-
tion of reference data (right, [nT]); scale J = 1.
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Figure 3.6: Difference between partial reconstruction with and without denoising (left,
10−3[nT]); difference between partial reconstruction with denoising and partial reconstruc-
tion of reference data (right, [nT]); scale J = 2.

Figure 3.7: Difference between partial reconstruction with and without denoising (left,
100[nT]); difference between partial reconstruction with denoising and partial reconstruc-
tion of reference data (right, [nT]); scale J = 3.

This example clearly demonstrates the functionality and effectiveness of the multiscale ap-
proach. As far as the noise is concerned, the use of ’white noise’ or ’bandlimited white noise’
is a reasonable and widespread tool for testing such numerical procedures. Nevertheless,
it is clear that in the future more realistic noise models (i.e. covariance kernels in a form
appropriate for our technique) need to be developed for recent satellite missions and then
need to be tested under realistic conditions as soon as they are available. Then a combined
application of this technique and the methods derived in Chapter 4, for example, to actual
satellite data become reasonable. First investigations in this direction can be found in [105].

Last but not least we need to mention that for physical reasons we cannot assume the input
data to be a pure gradient field in the case of real satellite data. This means that type 3
vector wavelets need to be used in the denoising process, too. However, this is not a difficulty
since various examples of vector wavelet modelling of all types (i = 1, 2, 3) have been already
successfully applied to geomagnetic satellite data (e.g. [81, 9] and [11]).



Chapter 4

A Wavelet Approach to Crustal Field
Modelling

Lithospheric magnetization gives rise to a geomagnetic field contribution that can be mapped
by appropriately low-flying satellites. The German geoscientific satellite CHAMP, for ex-
ample, is designed, among other tasks, for such lithospheric studies. CHAMP provides us
with highly accurate scalar (Overhauser magnetometer) as well as vectorial (Fluxgate mag-
netometer, FGM) data on an almost circular orbit with almost global coverage. While the
scalar data are commonly used to derive magnetic anomaly maps at satellite height, the vec-
torial data are usually used to derive crustal field maps at Earth’s level, a process commonly
referred to as downward continuation.

The standard technique for crustal field modelling and downward continuation is to assume
the existence of a scalar harmonic geomagnetic potential. The potential is expanded in
terms of scalar spherical harmonics with a predefined bandlimit (i.e. maximum degree) and
the corresponding expansion coefficients are determined such that the resulting geomagnetic
field is in accordance with the given data. Obviously, assuming the existence of a harmonic
potential is a critical point when satellite data are used. It is this assumption that makes
the selection and preprocessing of proper data sets a crucial point (see also [58, 83, 93] and
Section 4.1.4). A very detailed and recent review on several theoretical and practical as-
pects of crustal field determination from satellite data is presented in [58]. [13, 14, 15, 103],
for example, apply variants of the standard technique to satellite data (mostly MAGSAT
data) in order to obtain crustal field contributions. Nevertheless, though being the stan-
dard approach, spherical harmonic analysis does not reflect the special characteristics of
the crustal field particularly well. Crustal field contributions are of regional or local spatial
structure and the modelling technique should take this into account. This becomes more
and more important in view of the many modern satellite missions supplying us with con-
tinuous, highly accurate scalar as well as vectorial geomagnetic data of almost dense global
coverage. Consequently, the mathematical tools to calculate the crustal field contributions
should take into consideration the regional and local characteristics. [54, 53], for exam-
ple, consider spherical cap harmonic analysis (SCHA)as an alternative approach to regional
modelling, involving associated Legendre functions of integral order but non-integral degree

95
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resulting in the possibility to consider regional data sets. Though this method is well suited
for regional modelling, there are some known drawbacks (cf. [58] for a review), e.g. the
geomagnetic potential determined by SCHA has infinite discontinuities at the opposite pole
and its radial dependence must include non-integer powers of the spherical harmonic degree
n in order to approximate the real radial dependence of the field. Furthermore, the SCHA
regional solutions cannot be incorporated into a global modelling concept since the poten-
tials obtained from SCHA are only valid approximations over the spherical cap that is used
for their derivation and significantly differ from the real potential anywhere else. Downward
continuation of SCHA potentials (or their derivatives) is also critical if the altitude range of
the data is exceeded (see [58] and the references therein). The authors of [1] apply an ansatz
based on the space localizing Abel-Poisson kernel function and therefore make allowance
for the regional structures of geomagnetic crustal field signatures. This approach is, from
a potential-theoretical point of view, somewhat related to what we will present here, the
theoretical procedure as well as the numerical realizations are completely different, though.
Promising up to date results obtained from analyzing CHAMP data sets in terms of spherical
harmonics can be found in [83].

Based on the existence of a harmonic scalar geomagnetic potential, the basic idea of our
treatment is to formulate the problem of downward continuation in terms of integral equa-
tions relating the radial or the tangential projections of the geomagnetic field at satellite
height with the magnetic field at the Earth’s surface (see also [1]). From a mathematical
point of view, these integral equations are exponentially ill-posed and their numerical solu-
tion requires regularization. As an appropriate solution method a multiscale technique in
terms of scalar and vectorial regularization kernels is proposed. As regards the construction
of those kernel functions we take advantage of the fact that we can determine the singular
systems of the aforementioned integral operators analytically. Section 4.1 approaches the
subject in spherical approximation, i.e. we assume the Earth’s surface and the satellite’s
orbit to be spheres of fixed radii centered around the origin. This approximation can be
utilized if the satellite’s track is almost circular or the effects of height variations of the
satellite can be neglected. Applying this approach turns out to be advantageous from a
numerical point of view since the solution of linear systems of equations can be avoided
completely. A numerical example illustrating how to apply the spherical technique to a
CHAMP vectorial data set in order to calculate the geomagnetic crustal field at the mean
Earth surface is given in Section 4.1.4. In Section 4.2 we will extend the spherical approach
by means of (harmonic) splines leading to an ansatz which is also suitable for non-spherical
geometries but is of higher complexity as far as numerical realizations are concerned. Our
overall treatment is significantly influenced by the general approach to spaceborne geodata
in [29], the introduction of regularization wavelets in [42] and the multiscale treatment of
the satellite-to-satellite tracking problem (SST) in [32] which, from a mathematical point of
view, is closely related to the subject of this chapter. For additional reading the interested
reader might also consult [38, 39] and [98]. [22, 23, 78] deal with integral equations and
inverse problems in a general functional-analytic framework.
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4.1 Downward Continuation in Spherical Approxima-

tion

In the course of this section we suppose the spherical approximation to be valid, more
explicitly we assume the Earth’s surface Ωρ1 as well as the satellite’s orbit Ωρ2 to be spheres
of fixed radii ρ1, ρ2 ∈ R+, ρ1 < ρ2, centered around the origin. If the data used are suitably
chosen and preprocessed (i.e. data of quiet days and night local times, correction for external
field contributions as well as corresponding induced internal parts etc., (see e.g. [58, 83, 93]
and Section 4.1.4), we can assume that there exists a geomagnetic potential Umag : Ωext

ρ1
→ R

harmonic in Ωext
ρ1

. The geomagnetic field is then just given by b = ∇Umag. We render the
class of potentials under consideration more precisely:

Definition 4.1 Let
{
Yn,k

}
(n,k)∈N and

{
Y ρ1
n,k

}
(n,k)∈N be L2(Ω)- and L2(Ωρ1)-orthonormal sys-

tems of spherical harmonics, respectively. Then the space Pot(Ωext
ρ1

) is defined to be the space

of all potentials U : Ωext
ρ1
→ R of the form

U(x) =
∞∑
n=0

2n+1∑
k=1

U∧
ρ1

(n, k)

(
ρ1

|x|

)n
1

|x|
Yn,k

(
x

|x|

)
, x ∈ Ωext

ρ1
, (4.1)

with Fourier coefficients

U∧
ρ1

(n, k) =

∫
Ωρ1

U(x)Y ρ1
n,k(x)dωρ1(x)

that satisfy
∞∑
n=0

2n+1∑
k=1

|U∧
ρ1

(n, k)|2 <∞.

More explicitly, the space Pot(Ωext
ρ1

) consists of all harmonic functions in Ωext
ρ1

corresponding
to square-integrable Dirichlet boundary conditions on Ωρ1 , i.e. U |Ωρ1 ∈ L2(Ωρ1). From a
physical point of view this guarantees finite energy of the corresponding gradient field (e.g.
the geomagnetic field) on Ωρ1 and all other spheres Ωr with ρ1 ≤ r <∞.

The gradient fields corresponding to the potentials of class Pot(Ωext
ρ1

) can easily be derived

using the decomposition of the ∇-operator in terms of the o(i)-operators (see Section 1.3).
For U ∈ Pot(Ωext

ρ1
) we obtain

fU(x) = (∇U)(x)

=
∞∑
n=0

2n+1∑
k=1

U∧
ρ1

(n, k)

(
ρ1

|x|

)n(
−n+ 1

|x|2
o(1)Yn,k

(
x

|x|

)
+

1

|x|2
o(2)Yn,k

(
x

|x|

))
,

for all x ∈ Ωext
ρ1

. Applying the Helmholtz-projectors p(i) (see Section 1.3) to the last result
we end up with the following lemma (cf. [32]):
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Lemma 4.2 Let U ∈ Pot(Ωext
ρ1

). Then, for ρ1 ≤ r <∞ and x ∈ Ωext
ρ1

it holds that:

(i) p(1)(∇U)(x)|Ωr = 0 if and only if U = 0,

(ii) p(2)(∇U)(x)|Ωr = 0 if and only if U(x) = c/|x| for a constant c ∈ R,

(iii) p(3)(∇U)(x)|Ωr = 0.

Consequently, any potential U ∈ Pot(Ωext
ρ1

) is uniquely determined by its first order radial
derivative or, up to an additive zero-order term, by its surface gradient field on Ωr. In case of
U being the geomagnetic potential, the constant c in Lemma 4.2 can be set to zero because
there exist no magnetic monopoles, i.e. the zero-order term vanishes and it also suffices to
know the surface gradient field on Ωr in order to determine the potential uniquely. This is
the starting point for our further treatment.

4.1.1 Integral Equations for the Radial Derivative

We now investigate the background for the case of given negative first order radial deriva-
tive at some height r and therefore establish its connection to the potential as well as the
corresponding gradient field which is the physically interesting quantity, actually. Note that
the negative radial derivative is chosen in order to obtain positive singular values later on.
If we let U ∈ Pot(Ωext

ρ1
) and x ∈ Ωext

ρ1
with x = rξ, ρ1 ≤ r <∞, ξ ∈ Ω, then it can easily be

deduced that

− ∂

∂r
U(rξ) =

∞∑
n=0

2n+1∑
k=1

(ρ1

r

)n n+ 1

r
U∧
ρ1

(n, k)Y r
n,k(ξ), (4.2)

with
{
Y r
n,k

}
(n,k)∈N being an L2(Ωr)-orthonormal systems of spherical harmonics. Comparing

equations (4.1) and (4.2) we immediately get (see also [32]):

Lemma 4.3 Let the operator ΛPot : L2(Ωρ1) → L2(Ωr) be defined via

(ΛPotF )(x) =

∫
Ωρ1

KΛPot(x, y)F (y) dωρ1(y), F ∈ L2(Ωρ1), x ∈ Ωr,

where the integral kernel is defined by

KΛPot(x, y) =
∞∑
n=0

2n+1∑
k=1

(ΛPot)
∧ (n)Y r

n,k(x)Y
ρ1
n,k(y), y ∈ Ωρ1

with symbol
{
(ΛPot)

∧ (n)
}
n=0,1,...

given by

(ΛPot)
∧ (n) =

(ρ1

r

)n n+ 1

r
.
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Let U ∈ Pot(Ωext
ρ1

), and let G be the corresponding negative radial derivative. Then it holds
that

G(x) = (ΛPotU)(x) =

∫
Ωρ1

KΛPot(x, y)U(y) dωρ1(y), x ∈ Ωr. (4.3)

We have thus managed to establish a connection between the potential and its given negative
first order radial derivatives in terms of the integral equation (4.3).

Evaluating Equation (4.2) on Ωρ1 , a straightforward calculation leads to the following result:

Lemma 4.4 Let the operator ΛAP : L2(Ωρ1) → L2(Ωr) be defined via

(ΛAPF )(x) =

∫
Ωρ1

KΛAP (x, y)F (y) dωρ1(y), F ∈ L2(Ωρ1), x ∈ Ωr,

where the kernel function is defined to be

KΛAP (x, y) =
∞∑
n=0

2n+1∑
k=1

(ΛAP )∧ (n)Y r
n,k(x)Y

ρ1
n,k(y), y ∈ Ωρ1

with symbol
{
(ΛAP )∧ (n)

}
n=0,1,...

given by

(ΛAP )∧ (n) =
(ρ1

r

)n
.

Let Gρ1, Gr denote the negative radial derivative of U ∈ Pot(Ωext
ρ1

) on Ωρ1 and Ωr, respec-
tively. Then it holds that

rGr(x) = (ΛAPρ1Gρ1)(x) =

∫
Ωρ1

KΛAP (x, y)ρ1Gρ1(y) dωρ1 , x ∈ Ωr. (4.4)

KΛAP is the so-called Abel-Poisson kernel function which is well known from potential theory.
By means of Lemma 4.4 we have established the link between the negative radial derivative
of a potential U ∈ Pot(Ωext

ρ1
) on Ωρ1 and the corresponding values on Ωr via the integral

equation (4.4). Note that we actually connect rGr and ρ1Gρ1 , i.e. the negative first order
radial derivative times the radius of the sphere where it is taken, since these are harmonic
functions.

Now, we direct our attention to the surface gradient field. Applying ∇∗ to Equation (4.1) it
follows that

∇∗
ξU(x) = ∇∗

ξU(rξ) =
∞∑
n=0

2n+1∑
k=1

U∧
ρ1

(n, k)
(ρ1

r

)n 1

r
∇∗
ξYn,k(ξ)

=
∞∑
n=0

2n+1∑
k=1

U∧
ρ1

(n, k)
(ρ1

r

)n 1

r

√
n(n+ 1)y

(2)
n,k(ξ), (4.5)
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where we have utilized the definition of the vector spherical harmonics in Section 1.3. Eval-
uating this on the surface Ωρ1 we end up with

(∇∗U)(ρ1ξ) =
∞∑
n=0

2n+1∑
k=1

U∧
ρ1

(n, k)
1

ρ1

√
n(n+ 1)y

(2)
n,k(ξ)

=
∞∑
n=0

2n+1∑
k=1

U∧
ρ1

(n, k)
√
n(n+ 1)y

(2),ρ1
n,k (ξ).

Remembering the orthogonality relations of the vector spherical harmonics, the last result
helps us to find the integral operator wanted.

Lemma 4.5 Let the operator λ∇∗ : l2(2)(Ωρ1) → L2(Ωr) be defined via

(λ∇∗f)(x) =

∫
Ωρ1

kλ∇∗ (x, y) · f(y) dωρ1(y), f ∈ l2(2)(Ωρ1), x ∈ Ωr,

where the vectorial kernel function is given by

kλ∇∗ (x, y) =
∞∑

n=02

2n+1∑
k=1

(λ∇∗)
∧ (n)Y r

n,k(x)y
(2),ρ1
n,k (y), y ∈ Ωρ1 ,

with symbol
{
(λ∇∗)

∧ (n)
}
n=02,02+1,...

defined via

(λ∇∗)
∧ (n) =

(ρ1

r

)n n+ 1

r

1√
n(n+ 1)

=
(ρ1

r

)n 1

r

√
n+ 1

n
.

Let U ∈ Pot(Ωext
ρ1

). Let G denote the negative first order radial derivative of U and, further-
more, let g be the surface gradient field of U on Ωρ1. Then

G(x) = (λ∇∗g)(x) =

∫
Ωρ1

kλ∇∗ (x, y) · g(y) dωρ1 , x ∈ Ωr. (4.6)

Integral equation (4.6) links the surface gradient field of the potential U on Ωρ1 to the values
of the negative first order radial derivative on Ωr.

In fact, the integral equations (4.3), (4.4) and (4.6) define the so-called direct problems or,
in other words, they actually show which operator must be applied to the quantities on Ωρ1

in order to obtain the negative radial derivative of U on some sphere Ωr. As a matter of
fact, when dealing with Lemma 4.2 we have already pointed out that the real problem is
just the other way round, i.e. we want to calculate the above mentioned quantities on Ωρ1

from the radial derivative data on Ωr. Consequently, we have to solve the integral equations
for the sought for quantities on Ωρ1 (in our case the geomagnetic potential or, which is even
more important, the radial as well as the horizontal part of the geomagnetic field vector).
These inverse problems and their solution by means of regularization wavelets will be dealt
with in Section 4.1.3. As regards this subject, the following theorem will supply some useful
information concerning the operators under consideration.
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Theorem 4.6 Let the operators

ΛPot : L2(Ωρ1) → L2(Ωr),

ΛAP : L2(Ωρ1) → L2(Ωr),

λ∇∗ : l2(2)(Ωρ1) → L2(Ωr)

be defined as in Lemmata 4.3, 4.4 and 4.5, respectively. Then ΛPot, ΛAP and λ∇∗ are compact
operators with infinite dimensional range. The corresponding adjoint operators

Λ∗
Pot : L2(Ωr) → L2(Ωρ1),

Λ∗
AP : L2(Ωr) → L2(Ωρ1),

λ∗∇∗ : L2(Ωr) → l2(2)(Ωρ1)

are given by

(Λ∗
PotGr) =

∫
Ωr

KΛPot(x, ·)Gr(x) dωr(x), Gr ∈ L2(Ωr),

(Λ∗
APGr) =

∫
Ωr

KΛAP (x, ·)Gr(x) dωr(x), Gr ∈ L2(Ωr),

(λ∗∇∗Gr) =

∫
Ωr

kλ∇∗ (x, ·)Gr(x) dωr(x), Gr ∈ L2(Ωr).

Furthermore, for the singular systems SΛPot, SΛAP and Sλ∇∗ it holds that

SΛPot =
{
(ΛPot)

∧ (n), Y ρ1
n,k, Y

r
n,k

}
(n,k)∈N ,

SΛAP =
{
(ΛAP )∧ (n), Y ρ1

n,k, Y
r
n,k

}
(n,k)∈N ,

Sλ∇∗ =
{

(λ∇∗)
∧ (n), y

(2),ρ1
n,k , Y r

n,k

}
(n,k)∈N (2)

.

Proof. We start with the compactness of the operators. Obviously it is true that KΛPot(·, ·),
KΛAP (·, ·)∈ C(Ωr) × C(Ωρ1), and kλ∇∗ (·, ·) ∈ c(Ωr) × C(Ωρ1). Consequently, ΛPot, ΛAP and
λ∇∗ are compact with infinite dimensional range (cf. [78, 98]).

In order to obtain the representations of the adjoint operators we need to show that, for
F ∈ L2(Ωρ1), G ∈ L2(Ωr) and f ∈ l2(2)(Ωρ1), it holds that

(ΛPotF,G)L2(Ωr) = (F,Λ∗
PotG)L2(Ωρ1 ),

(ΛAPF,G)L2(Ωr) = (F,Λ∗
APG)L2(Ωρ1 ),

(λ∇∗f,G)L2(Ωr) = (f, λ∗∇∗G)l2
(2)

(Ωρ1 ),

which is a straightforward calculation using Fubini’s theorem.
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Let us now turn to the singular systems. It suffices to show that

ΛPotY
ρ1
n,k = (ΛPot)

∧ (n)Y r
n,k, (4.7)

Λ∗
PotY

r
n,k = (ΛPot)

∧ (n)Y ρ1
n,k, (4.8)

in the case of SΛPot and

ΛAPY
ρ1
n,k = (ΛAP )∧ (n)Y r

n,k, (4.9)

Λ∗
APY

r
n,k = (ΛAP )∧ (n)Y ρ1

n,k, (4.10)

for SΛAP . As regards Sλ∇∗ we need to show that

λ∇∗y
(2),ρ1
n,k = (λ∇∗)

∧ (n)Y r
n,k, (4.11)

λ∗∇∗Y
r
n,k = (λ∇∗)

∧ (n)y
(2),ρ1
n,k , (4.12)

hold true. Equations (4.7), (4.8), (4.9) (4.10) and (4.12) follow directly from the orthonor-
mality of the spherical harmonics, while Equation (4.11) is a direct consequence of the
orthonormality of the vector spherical harmonics.

Remark 4.7 It is clear that from a theoretical point of view it suffices to know Lemma 4.3,
since it presents the integral equation the solution of which, i.e. the potential, contains all
the necessary information to calculate the gradient field. Nevertheless, this usually involves
numerical differentiation which is disadvantageous with respect to errors of any nature. If
the potential is subject to any errors, however, numerical differentiation will amplify their
effects. By means of Lemmata 4.4 and 4.5 the differentiation has been transferred to the
kernel functions which can be handled in a numerically stable framework (see also Remark
4.11). This means that in our approach we have a one-step regularization while, otherwise,
differentiation would demand for a second regularization process, too.

4.1.2 Integral Equations for the Surface Gradient

This section deals with the background for the case of a given surface gradient field. Like in
Section 4.1.1 we establish relationships in terms of integral equations which will help us to
calculate the geomagnetic field vector on Ωρ1 from surface gradient data on Ωr. We begin
with the connection of the potential and the surface gradient. From equations (4.1) and
(4.5) it can easily be obtained that the following lemma is valid.

Lemma 4.8 Let the operator λPot : L2(Ωρ1) → l2(2)(Ωr) be defined via

(λPotF )(x) =

∫
Ωρ1

kλPot(x, y)F (y) dωρ1(y), F ∈ L2(Ωρ1), x ∈ Ωr,

where the vectorial kernel kλPot is defined by

kλPot(x, y) =
∞∑

n=02

2n+1∑
k=1

(λPot)
∧ (n)y

(2),r
n,k (x)Y ρ1

n,k(y), x ∈ Ωr, y ∈ Ωρ1 ,
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with symbol
{
(λPot)

∧ (n)
}
n=02,02+1,...

being given by

(λPot)
∧ (n) =

(ρ1

r

)n√
n(n+ 1).

Let U ∈ Pot(Ωext
ρ1

) and let g be the corresponding surface gradient field on Ωr. Then it holds
that

g(x) = (λPotU)(x) =

∫
Ωρ1

kλPot(x, y)U(y) dωρ1(y), x ∈ Ωr. (4.13)

It is also possible to find an integral operator that connects the surface gradient field on
some height r with the negative radial derivative of the corresponding potential on ρ1. This
is closely related to Lemma 4.5 and can be derived using equations (4.2) and (4.5).

Lemma 4.9 Let the operator λ∂r : L2(Ωρ1) → l2(2)(Ωr) be defined via

(λ∂rF )(x) =

∫
Ωρ1

kλ∂r(x, y)F (y) dωρ1(y), F ∈ L2(Ωρ1) x ∈ Ωr,

with the kernel function kλ∂r defined by

kλ∂r(x, y) =
∞∑

n=02

2n+1∑
k=1

(λ∂r)
∧ (n)y

(2),r
n,k (x)Y ρ1

n,k(y), x ∈ Ωr, y ∈ Ωρ1 ,

where the symbol
{
(λ∂r)

∧ (n)
}
n=02,02+1,...

is given via

(λ∂r)
∧ (n) =

(ρ1

r

)n ρ1

n+ 1

√
n(n+ 1) =

(ρ1

r

)n
ρ1

√
n

n+ 1
.

Let U ∈ Pot(Ωext
ρ1

) and let G be the negative radial derivative on Ωρ1. Furthermore, g is
supposed to be the corresponding surface gradient field on Ωr. Then

g(x) = (λ∂rG)(x) =

∫
Ωρ1

kλ∂r(x, y)G(y) dωρ1(y), x ∈ Ωr.

What remains is to establish a link between the surface gradient field on Ωρ1 and on Ωr.
However, this is not in the scope of this thesis since operators in terms of tensor kernels are
necessary (see [88] for more details concerning this subject). Nevertheless, it is well known
(e.g. [1]) that, for U ∈ Pot(Ωext

ρ1
), ∇∗U · εϑ and ∇∗U · εϕ (i.e. the geomagnetic north and

east component) are harmonic functions. Consequently we can use the Abel-Poisson kernel
for connecting any of these two quantities on Ωρ1 with its values on Ωr.

Lemma 4.10 Let U ∈ Pot(Ωext
ρ1

). Let Gρ1 and Gr denote either ∇∗U · εϑ or ∇∗U · εϕ on
Ωρ1 and Ωr, respectively. Then it holds that

rGr(x) = (ΛAPρ1Gρ1)(x) =

∫
Ωρ1

KΛAP (x, y)ρ1Gρ1(y) dωρ1 , x ∈ Ωr. (4.14)
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Remark 4.11 One might argue that the idea of Lemma 4.10 is unfortunate since one cannot
use the information of the whole surface gradient field at once which might lead to a loss of
redundancy from a numerical point of view (not from a mathematical point of view, though).
In fact, solving integral equation (4.13) of Lemma 4.8, i.e. calculation of the potential,
makes use of the whole information available. Numerical differentiation of the potential (i.e.
calculating the surface gradient field) would then lead to the desired quantities. Nevertheless,
in Remark 4.7 we have already mentioned that this is disadvantageous because differentiation
amplifies possible errors, a fact that led us to the introduction of several integral operators
that help circumvent this problem by transferring the differentiation to the corresponding
integral kernels. Despite the fact that this is not possible here, we can give an alternative
using the potential. If we suppose that we have numerically calculated the potential U we can
derive an approximation of ∇∗U using

∇∗
ξU(rξ) '

∫
Ωρ1

U(ρ1η)∇∗
ξKj(rξ, ρ1η) dωρ1(η),

where the bandlimited kernel Kj : Ωr × Ωρ1 → R is a product kernel of the form

Kj(rξ, ρ1η) =

Nj∑
n=0

2n+1∑
k=1

K∧(n)
1

r
Yn,k(ξ)

1

ρ1

Yn,k(η),

and the symbol can be chosen as in the cases of the bandlimited scaling functions in Section
2.1. On the one hand, our results of Chapter 2 tell us that we can approximate ∇∗U in
ε-accuracy (note that U is bandlimited for it has been numerically calculated) by choosing
an appropriately high j and by noting that the integral can be calculated precisely using
appropriate integration formulas (see e.g. [20]). On the other hand it can be shown that

∇∗
ξKj(rξ, ρ1η) = (η − (ξ · η)ξ) 1

rρ1

Nj∑
n=0

2n+ 1

4π
K∧(n)P ′

n(ξ · η),

which can be easily calculated by means of the numerically stable Clenshaw algorithm (for
more details on this subject see e.g. [81, 51] and the references therein). Actually, we will
come back to this subject at the end of Section 4.1.3 where we will be able to incorporate
these considerations in the framework of the regularization wavelets.

Last but not least we will now characterize the integral operators of this section in analogy
to Theorem 4.6.

Theorem 4.12 Let the operators

λPot : L2(Ωρ1) → l2(2)(Ωr)

λ∂r : L2(Ωρ1) → l2(2)(Ωr)

be defined as in Lemmata 4.8 and 4.9, respectively. Then λPot and λ∂r are compact operators
with infinite dimensional range. The corresponding adjoint operators

λ∗Pot : l2(2)(Ωr) → L2(Ωρ1)

λ∗∂r : l2(2)(Ωr) → L2(Ωρ1)
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are given by

(λ∗Potgr) =

∫
Ωr

kλPot(x, ·) · gr(x) dωr(x), gr ∈ l2(2)(Ωr),

(λ∗∂rgr) =

∫
Ωr

kλPot(x, ·) · gr(x) dωr(x), gr ∈ l2(2)(Ωr).

Furthermore, for the singular systems Sλpot and Sλ∂r it holds that

SλPot =
{

(λPot)
∧ (n), Y ρ1

n,k, y
(2),r
n,k

}
(n,k)∈N (2)

,

Sλ∂r =
{

(λ∂r)
∧ (n), Y ρ1

n,k, y
(2),r
n,k

}
(n,k)∈N (2)

.

Proof. The proof is analogous to the proof of Theorem 4.6.

4.1.3 The Inverse Problems and Spherical Regularization Wavelets

In the last sections we have formulated several integral equations connecting functions on
Ωρ1 with functions on Ωr. In the scope of application of the spherical approximation, the
quantities on Ωr correspond to the actual observables (i.e. the satellite measurements) while
those on Ωρ1 are to be calculated from the former ones (inverse problem). In what follows
we want to treat this subject in a unified functionalanalytic framework. Formally, all the
integral equations under consideration are of the form

AH = K, H ∈ H, K ∈ K,

where A : H → K is a compact operator and H and K are separable Hilbert spaces of
square-integrable (scalar or vectorial) functions. Table 4.1 summarizes all the information
derived in Sections 4.1.1 and 4.1.2: A denotes the operator under consideration, H and K are
the corresponding Hilbert spaces. {σn, Hn,k, Kn,k} is the singular system of the operator A.
It should be remarked that {Hn,k} forms a complete orthonormal system in H, while {Kn,k}
forms a complete orthonormal system in K (see e.g. ([22, 23, 78]) and the introduction in
Chapter 1).

Remembering Hadamard’s definition of a well-posed problem, i.e. existence, uniqueness and
continuity of the inverse, we realize that the problem of calculating

H = A+K (4.15)

is ill-posed since it violates the first and the third property. The singular system of A
indicates the type of ill-posedness, which can be seen from the form of the generalized
solution of (4.15), i.e. the Moore-Penrose inverse which in the nomenclature of this chapter
reads:

A−1K =
∑

(n,k)∈N

σ−1
n (K,Kn,k)KHn,k. (4.16)
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on Ωρ1 on Ωr A H K Hn,k Kn,k σn

U ∂
∂r
U ΛPot L2(Ωρ1) L2(Ωr) Y ρ1

n,k Y r
n,k

(
ρ1
r

)n n+1
r

∂
∂r
U ∂

∂r
U ΛAP L2(Ωρ1) L2(Ωr) Y ρ1

n,k Y r
n,k

(
ρ1
r

)n
∇∗U ∂

∂r
U λ∇∗ l2(2)(Ωρ1) L2(Ωr) y

(2),ρ1
n,k Y r

n,k

(
ρ1
r

)n 1
r

√
n+1
n

U ∇∗U λPot L2(Ωρ1) l2(2)(Ωr) Y ρ1
n,k y

(2),r
n,k

(
ρ1
r

)n√
n(n+ 1)

∂
∂r
U ∇∗U λ∂r L2(Ωρ1) l2(2)(Ωr) Y ρ1

n,k y
(2),r
n,k

(
ρ1
r

)n
ρ1

√
n
n+1

∇∗U · εϑ ∇∗U · εϑ ΛAP L2(Ωρ1) L2(Ωr) Y ρ1
n,k Y r

n,k

(
ρ1
r

)n
∇∗U · εϕ ∇∗U · εϕ ΛAP L2(Ωρ1) L2(Ωr) Y ρ1

n,k Y r
n,k

(
ρ1
r

)n
Table 4.1: Functionalanalytic framework

For arbitrary functions K ∈ K (note that we need to assume observational errors or noise
in any practical application) the right hand side of (4.16) is not necessarily convergent and
in order to force convergence we have to replace the series (4.16) by a filtered version of this
singular value expansion. In Chapter 1 we have introduced the necessary definitions and
results from a general point of view.

The idea we are going to discuss now is to realize the regularization procedure by a multi-
resolution analysis in terms of certain wavelets. This will enable us to obtain a (j + 1)-
level regularization from a j-level regularization by just adding the corresponding detail
information. Since the wavelet coefficients contain (more or less) regional information, our
approach realizes a space dependent regularization procedure. It should be noted that any
classical regularization technique based on filtering the singular value expansion can be
reformulated in terms of our approach. Thus any parameter choice strategy depending on
the respective filtering method is also applicable here. Consequently we omit this discussion
here (cf. [50] for more details).

Basic tools for our treatment are the decomposition and reconstruction regularization scaling
functions and wavelets (cf. [32] and the references therein).

Definition 4.13 Let {σn, Hn,k, Kn,k} be the singular system of a compact operator A as
given in Table 4.1. Then the corresponding decomposition regularization scaling function at
scale j ∈ Z,

{
Φd
j

}
, is given by

Φd
j (y, ·) =

∑
(n,k)∈N

(Φj)
∧(n)Hn,k(y)Kn,k(·), y ∈ Ωρ1 .

The associated reconstruction regularization scaling function at scale j ∈ Z,
{
Φr
j

}
, is given
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by

Φr
j(y, ·) =

∑
(n,k)∈N

(Φj)
∧(n)Hn,k(y)Hn,k(·), y ∈ Ωρ1 .

(Note that the reconstruction regularization scaling function is just a certain realization of
the scaling functions in Chapter 2.) In terms of the choices of filters presented in Chapter
1 , i.e. truncated singular value decomposition (TSVD), smoothed truncated singular value
decomposition (STSVD) and Tikhonov filter (TF), we are led to three possible choices of
the generating symbols {(Φj)

∧(n)}:

(i) TSVD

(Φj)
∧(n) =

{
σ
−1/2
n , n = 0, . . . , Nj

0 , n ≥ Nj + 1
,

with

Nj =

{
0 for j ∈ Z, j < 0

2j − 1 for j ∈ Z, j ≥ 0
.

(ii) STSVD

(Φj)
∧(n) =


σ
−1/2
n , n = 0, . . . ,Mj

σ
−1/2
n (τj(n))1/2 , n = Mj + 1, . . . , Nj

0 , n ≥ Nj + 1

,

with

Nj =

{
0 for j ∈ Z, j < 0

2j+1 − 1 for j ∈ Z, j ≥ 0

and

Mj =

{
0 for j ∈ Z, j < 0

2j − 1 for j ∈ Z, j ≥ 0
.

τj is given by τj(t) = 2− 2−j(t+ 1), t ∈ [2j − 1, 2j+1 − 1], j ∈ N0.

(iii) TF

Φ∧
j (n) =

(
σn

σ2
n + γ2

j

)1/2

, n ∈ N0, j ∈ Z,

with {γj}, j ∈ Z, being a sequence of real numbers satisfying limj→∞ γj = 0 and
limj→−∞ γj = ∞.

The reconstruction and decomposition regularization wavelets are again defined via a scaling
equation.

Definition 4.14 Let {(Φj)
∧(n)} be the generating symbol of a reconstruction and a decom-

position regularization scaling function. Then the associated decomposition regularization
wavelet at scale j ∈ Z,

{
Ψd
j

}
, is given by

Ψd
j (y, ·) =

∑
(n,k)∈N

(Ψj)
∧(n)Hn,k(y)Kn,k(·), y ∈ Ωρ1 .
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The associated reconstruction regularization wavelet at scale j ∈ Z,
{
Ψr
j

}
, is given by

Ψr
j(y, ·) =

∑
(n,k)∈N

(Ψj)
∧(n)Hn,k(y)Hn,k(·), y ∈ Ωρ1 .

The generating symbol of the regularization wavelets, {(Ψj)
∧(n)}, is defined via the refine-

ment equation
((Ψj)

∧(n))2 = ((Φj+1)
∧(n))2 − ((Φj)

∧(n))2.

Consequently, for the aforementioned filters, we get the following generating symbols for the
wavelets:

(i) TSVD

(Ψj)
∧(n) =


0 , n = 0, . . . , Nj

σ
−1/2
n , n = Nj + 1, . . . , Nj+1

0 , n ≥ Nj+1 + 1

,

(ii) STSVD

(Ψj)
∧(n) =



0 , n = 0, . . . ,Mj

σ
−1/2
n (1− τj(n))1/2 , n = Mj + 1, . . . ,Mj+1

σ
−1/2
n (τj+1(n)− τj(n))1/2 , n = Mj+1 + 1, . . . , Nj

σ
−1/2
n (τj+1(n))1/2 , n = Nj + 1, . . . Nj+1

0 , n ≥ Nj+1 + 1

,

(iii) TF

(Ψj)
∧(n) =

(
σn

σ2
n + γ2

j+1

− σn
σ2
n + γ2

j

)
,

where Nj, Mj, τj and γj have been previously defined.

Obviously, the generating symbols {(Φj)
∧(n)} of the regularization scaling functions are

constructed such that limj→∞(Φj)
∧(n) = σ−1

n . Due to the refinement equation for the
regularization wavelets we can carry over our results from Chapter 2 and formulate the
following theorem:

Theorem 4.15 Let A : H → K be defined as in Table 4.1. Let
{
Φd
j

}
and

{
Φr
j

}
be the cor-

responding decomposition and reconstruction regularization scaling functions. Suppose
{
Ψd
j

}
and

{
Ψr
j

}
to be the associated decomposition and reconstruction regularization wavelets.

Then, for A ∈ {ΛPot,ΛAP , λPot, λ∂r} the sequence {SJ} of operators SJ : K → H given
by

SJ(K) = Φr
J ∗ (Φd

J ∗K) = Φr
0 ∗ (Φd

0 ∗K) +
J−1∑
j=0

Ψr
j ∗ (Ψd

j ∗K), K ∈ K
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is a regularization of A+, i.e.
lim
J→∞

SJ(K) = A+K,

where the equality is understood in the H-sense. For A = λ∇∗ the sequence {sJ} of operators
sJ : K → H given by

sJ(K) = Φr
J ? (Φd

J ∗K) = Φr
0 ? (Φd

0 ∗K) +
J−1∑
j=0

Ψr
j ? (Ψd

j ∗K), K ∈ K

is a regularization of A+.

Theorem 4.15 forms the theoretical background for the multiscale solution of the afore-
mentioned problems of downward continuation. In a first step, the convolutions of the
decomposition kernels against the data function yield sets of scalar coefficients connecting
the data at satellite altitude with the sought for quantity at e.g. the mean Earth surface.
This can be seen from the construction of the decomposition kernels which are composed of
the respective basis functions in H (consisting of functions on e.g. the mean Earth surface)
and K (consisting of the functions on satellite altitude). From these sets of coefficients one
can, in a second step, calculate the solution of the corresponding inverse problem in terms of
the reconstruction kernels. It is clear that in practical applications the limit J →∞ cannot
be performed and one has to choose some suitable Jmax in order to get a good approximation
of the solution. As we have already mentioned, any classical regularization technique for fil-
tering the singular value expansion can be incorporated into our approach and consequently
any parameter choice- or stop-strategy depending on the respective filtering method is also
applicable here; this is why we omit this discussion here (for a detailed study of how to apply
the so-called L-curve method in a multiscale framework the interested reader might consult
[50]). In Section 4.1.4 we will show how our results can be used to calculate geomagnetic
crustal field contributions at the mean Earth surface from a set of CHAMP FGM-data.

We conclude this section with some considerations useful for practical applications involving
surface gradient field data. Up to now, we have presented two ways of calculating the surface
gradient field on Ωρ1 from surface gradient field data on Ωr, ρ1 < r. The first method is to
project the surface gradient field onto certain directions and then downward continue the
respective projections using the (inverse) Abel-Poisson kernel (Lemma 4.10 in combination
with Theorem 4.15). The second way is to take the detour via the potential (see Lemma
4.8) which can then be used to calculate an approximation of the surface gradient field in an
additional step (as shown in Remark 4.11). Having the decomposition and reconstruction
regularization scaling functions and wavelets at hand, we can modify the second method
such that it is not necessary to determine the potential anymore and an approximation of
the surface gradient field on Ωρ1 is available at once: Let gr be the surface gradient field
on Ωr corresponding to a potential U . Furthermore, for the time being, let

{
Φ̄d
j

}
,
{
Φ̄r
j

}
,{

Ψ̄d
j

}
and

{
Ψ̄r
j

}
be the regularization kernels corresponding to the operator λPot. From our

considerations so far we know that, for suitably chosen Jmax,

UJmax = Φ̄r
0 ∗ (Φ̄d

0 ∗ gr) +
Jmax−1∑
j=0

Ψ̄r
j ∗ (Ψ̄d

j ∗ gr), (4.17)
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is a good approximation of U on Ωρ1 , i.e. UJmax ' U . Presenting (4.17) more explicitly we
have, with ξ ∈ Ω, y ∈ Ωρ1 ,

UJmax(ρ1ξ) =

∫
Ωρ1

Φ̄r
0(ρ1ξ, y)ST0(gr)(y)dωρ1(y) + (4.18)

+
Jmax−1∑
j=0

∫
Ωρ1

Ψ̄r
0(ρ1ξ, y)WTj(gr)(y)dωρ1(y), (4.19)

where we have used the abbreviations

ST0(gr)(y) = (Φ̄d
0 ∗ gr)(y)

and
WTj(gr)(y) = (Ψ̄d

j ∗ gr)(y).
Applying the surface gradient to (4.18-4.19) we get

∇∗
ξUJmax(ρ1ξ) =

∫
Ωρ1

∇∗
ξΦ̄

r
0(ρ1ξ, y)ST0(gr)(y)dωρ1(y) + (4.20)

+
Jmax−1∑
j=0

∫
Ωρ1

∇∗
ξΨ̄

r
0(ρ1ξ, y)WTj(gr)(y)dωρ1(y), (4.21)

i.e. the differentiation is, once again, transferred to the kernel functions. Introducing the
abbreviations Φ̆r

0(ρ1ξ, ·) = ∇∗
ξΦ̄

r
0(ρ1ξ, ·) as well as Ψ̆r

j(ρ1ξ, ·) = ∇∗
ξΨ̄

r
j(ρ1ξ, ·) for the now

vectorial kernels and utilizing the ?-convolution for spherical vectorial kernels (see (2.43)),
Equation (4.20-4.21) is equivalent to

∇∗UJmax = Φ̆r
0 ? (Φ̄d

0 ∗ gr) +
Jmax−1∑
j=0

Ψ̆r
j ? (Ψ̄d

j ∗ gr).

Summarizing these considerations we end up with the following corollary:

Corollary 4.16 Let gr be a surface gradient field on Ωr. Under the foregoing assumptions,
an approximation of the corresponding surface gradient field on Ωρ1 can be calculated via

Φ̆r
0 ? (Φ̄d

0 ∗ gr) +
Jmax−1∑
j=0

Ψ̆r
j ? (Ψ̄d

j ∗ gr).

Finally it should be noted that the kernels Φ̆r
0 and Ψ̆r

j can easily be obtained from Φ̄r
0 and

Ψ̄r
j by using the information of Table 4.1 and the definition of vector spherical harmonics of

type 2 (i.e. y
(2)
n,k, see Chapter 1); more explicitly we arrive at

Φ̆r
0(·, ·) =

∑
(n,k)∈N (2)

(Φ0)
∧(n)

√
n(n+ 1)y

(2),ρ1
n,k (·)Y ρ1

n,k(·),
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and
Ψ̆r
j(·, ·) =

∑
(n,k)∈N (2)

(Ψj)
∧(n)

√
n(n+ 1)y

(2),ρ1
n,k (·)Y ρ1

n,k(·).

Remark 4.17 All our considerations of Sections 4.1.1, 4.1.2 as well as 4.1.3 include the
evaluation of spherical integrals. It is clear that in every practical application involving
discrete satellite measurements these integrals have to be suitably discretized. As we have
already mentioned, there are numerous ways to do so and we will not go into detail here.

4.1.4 Example

In this section we apply the previously presented multiscale approach in spherical approxi-
mation to a set of CHAMP vector magnetic FGM data (namely the vertical component) and
derive a wavelet representation of the crustal geomagnetic field at mean Earth radius (see
also our results in [35]; in [71, 105] details can be found concerning numerical realizations
and numerous tests with synthetic data).

CHAMP vector magnetic data spanning September 2001 are used. The data selection follows
the common criteria for main and crustal field mapping (see e.g. [58] for a detailed review or
[83, 93] for recent studies). From the September 2001 measurements we use night data (local
time between 20:00 LT and 04:00 LT) with global index of geomagnetic activity Kp ≤ 2o.
Main field, including secular variations, external field and ring current contributions are
subtracted using a model given by the gradient field of a harmonic potential U as presented
in Appendix A. In this example we set ρ1=6371.2 km to be the mean radius of the Earth.
Gauss coefficients (gmn , h

m
n ) and (qmn , s

m
n ) as well as secular variation coefficients (ġmn , ḣ

m
n )

(around t0 = 2000) are taken from the model Ørsted-10b-01 (see [92, 93]) and the one
hourly Dst index can be downloaded from the World Data Center for Geomagnetism, Kyoto,
(http://swdcdb.kugi.kyoto-u.ac.jp). The induced parts are considered to contribute with a
factor Q1 = 0.27, a value found by [74].

As experienced before (cf. [83]), there are still contributions of large spatial scale in the
residual field which may be due to external as well as internal sources. We extract these
parts on the satellite’s track by high-pass filtering with an appropriate scaling function model,
derived by a Shannon vectorial scaling function of scale 3 (see Section 2.2 and [9, 11]).
It should be remarked that this filtering procedure preserves the potential nature of the
geomagnetic field, of course.

All the data manipulations mentioned so far are equally applied to polar data and low
latitude track segments. However, looking at the residual downward component at low
latitudes (dipole latitude less than or equal to 60 degrees) and in polar regions (dipole
latitude greater than 60 degrees) one realizes that, in polar regions, the rms varies from 4
nT up to 54 nT. This indicates that there are still magnetic contributions other than those of
the crustal field. Most likely these contributions are mainly due to large ionospheric current
systems – like the polar electrojet or field aligned currents – which are also present at night
local times (cf. e.g. [91] and the references therein as well as our results in Section 5.4).
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In order to minimize these effects we choose track segments with minimal residual rms and
drop the other data.

In contrast to past satellite missions like POGO or MAGSAT, the orbit of the CHAMP
satellite is almost spherical and we assume the spherical approximation to be valid. This
assumption is even more justified since, for the present study, we use data acquired within
only one month hence covering an altitude range of 442 ± 30 km. Actually, the authors
of [14] neglect radial variations in the much more eccentric MAGSAT orbit. Consequently,
after subtracting the low frequency contributions, we suppose the altitude variations to be
negligible and, in what follows, assume the data to be given on a mean altitude of 442 km
(cf. [83]).

In order to apply the method of Section 4.1.3 we need to discretize the appearing integrals by
means of an appropriate integration rule. As we have already mentioned in Section 3.3, the
method proposed in [20] is advantageous since the resulting regular equiangular longitude-
latitude grids mimic the real situation of higher data density in the vicinity of the poles
and the corresponding integration weights are given in closed form. Consequently, the next
step in our approach is to average the scattered data onto the nodal points of that very
integration grid. Figure 4.1 shows the data points chosen from the September 2001 data
(blue points) together with grid points onto which the data is averaged. Several techniques

Figure 4.1: Blue dots: Data points from September 2001 used for modelling; Red circles:
Nodal points of regular equiangular longitude-latitude grid used for integral discretization.

for averaging given disturbed data to regular grids have been discussed in the literature (see
e.g. [3]) and have been used in magnetic field analysis (e.g. [91] and [83] for satellite data
and [3] for terrestrial data). Commonly used methods can roughly be divided up into two
categories, i.e. distance methods and distribution methods. For the time being we utilize a
combination of both methods which is mainly influenced and developed by [84]. For a given
point x on the regular grid we search for all data points lying within a spherical distance of
500 km around x. Classical distance methods would weight all data points with respect to
their distance thus getting an average value at x. In contrast, the method applied here can
be divided up into two steps. First a robust iterative M-estimation to detect outliers in the
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distribution of the data in the vicinity of x is performed. The underlying weight function is a
manipulated Huber’s weight function with zero-weighting for outliers. For more information
about robust estimation the reader might consult [59]. Note that there are several different
reasons for such outliers, e.g. errors in the performance of the instruments or, especially in
the polar regions, magnetic signatures of strong field aligned currents. After detecting and
eliminating outliers the remaining data are averaged using a distance weight function given
by

(0.5 + 0.5 cos(πd/500))4 ,

where d is the spherical distance between x and the data point at the mean orbital altitude.
This weight function is able to bridge the 3◦ polar gaps and has already been successfully
applied by other groups working with CHAMP magnetic data (cf. [83]).

Having averaged the data onto the grid points of the chosen integration rule, we apply the
techniques developed in the previous sections to the downward (−εr) component of the
residual data. To be more precise, we invert the operator equations corresponding to the
operators ΛAP and λ∇∗ using regularization wavelets constructed from the respective basis
systems and singular values (see Table 4.1). For regularizing the inverse problem we select
the TSVD filter with a maximum wavelet scale of 3, i.e. the global results obtained in this
study correspond to the contributions that could also be derived by a spherical harmonic
expansion from degrees 16 up to 32. Observe, however, that the regional results presented
can also be interpreted to include contributions of spherical harmonic degrees 16 up to 32,
but cannot be derived by standard spherical harmonic techniques since the calculations are
confined to certain regions only and are not performed globally. It is clear that deriving higher
scale models or using non-bandlimited filtering in terms of the strongly space localizing TF
wavelets is only reasonable when the spatial coverage of the data is enhanced by taking into
account measurements obtained within longer time intervals. Nevertheless, since the main
task of this example is to demonstrate the wavelet approach the application of TSVD seems
to be well justified.

Figures 4.2 and 4.3 show global reconstructions of the crustal geomagnetic downward (−εr)
and north (εϑ) components. The contrast between continental (strong magnetization) and
oceanic (weak magnetization) lithospheric signals is clearly visible. The signals of the north
component are weak and comparatively smooth in the Pacific as well as the Atlantic ocean
(Figure 4.3). The radial component, however, is weak and smooth in the Pacific region, while
in the Atlantic ocean north-south trending signatures can be determined (Figure 4.2). These
north-south trending features are also visible in the results obtained from scalar magnetic
CHAMP data in [83]. Note that a geophysical interpretation of the results lies beyond the
scope of this thesis and the interested reader might consult [58, 83] and the references therein,
for example.
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Figure 4.2: Global reconstruction of the lithospheric magnetic contribution, geomagnetic
downward (−εr) component, continued downward to the Earth’s mean spherical surface
(6371.2 km) [nT].

Figure 4.3: Global reconstruction of the lithospheric magnetic contribution, geomagnetic
north (εϑ) component, continued downward to the Earth’s mean spherical surface (6371.2
km) [nT].
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In order to illustrate the possibility of regional and local calculations Figure 4.4 presents
a regional downward continuation over the African continent showing the famous Bangui-
Anomaly, while Figure 4.5 illustrates a regional reconstruction over the European continent
exhibiting the well known Kiruna and Kursk anomalies. It is well known that, whenever
regional data sets are used, there occur oscillatory effects (usually referred to as Gibb’s
phenomena or geographic truncation errors) at the boundary of that very region. In order
to suppress these effects we choose the data window a little larger than the integration
window which in turn is somewhat larger than the visualization window. To be specific, the
results in Figure 4.4 are derived by restricting the integrations to a spherical cap centered at
20◦E, 5◦N with a half angle of 50◦ using a data window with the same center and a half angle
of 55◦. The reconstruction in Figure 4.5 is calculated on a spherical cap centered at 17◦E
and 48◦N with a half angle of 45◦ using a data window centered at the same coordinates and
having a half angle of 50◦.

Figure 4.4: Regional reconstruction of the lithospheric magnetic contribution over Africa,
geomagnetic down (−εr, Z) component, continued downward to the spherical mean Earth’s
surface (6371.2 km) [nT].

The regional as well as the global reconstructions presented here have been calculated from
the same set of data (or subsets thereof) spanning one month. With the growing amount
of high quality vector data from modern satellite missions like CHAMP, Ørsted and SAC-C
it will be possible to come from regional to very high precision local studies. The method
presented here is a suitable technique for dealing with this task. Due to the localization
property of the kernel functions it will be possible to choose low data densities over regions
of comparatively smooth crustal signals (like the Pacific) and very high density data distri-
butions over areas with significant geomagnetic structures (continents, Bangui area, Kursk
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Figure 4.5: Regional reconstruction of the lithospheric magnetic contribution over Europe,
geomagnetic down (−εr, Z) component, continued downward to the spherical mean Earth’s
surface (6371.2 km) [nT].

area, Arctica etc.). The corresponding wavelet scales (or the regularization parameters) can
be selected appropriately in a regionally adaptive manner (see also [50]). In this example we
have used a bandlimited approach (TSVD) but it is clear that the higher the data density
and, consequently, the higher the achievable resolution, the better the situation for the use
of non-bandlimited wavelets (like the ones obtained by Tikhonov filters) which, in the case
of crustal field determination, is the next reasonable step.
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4.2 Downward Continuation in Non-Spherical Geome-

tries: A Combined Spline and Wavelet Approach

While in the last sections we have been concerned with problems of downward continuation
in spherical approximation, this section is intended to approach this subject in non-spherical
geometries such that in practical applications it is no longer necessary to consider additional
assumptions concerning the geometry of the satellite’s orbit. There exist many different mul-
tiscale approaches to cope with downward continuation in non-spherical geometries. Most
of them are based on the well-known Runge-Walsh Theorem and have been developed for
gravitational field determination (see e.g. [29] and the references therein for a very detailed
general approach) but can, as far as harmonicity of the geomagnetic field can be assumed,
be modified as to be applicable to geomagnetic field determination and downward continu-
ation. One possible way, for example, is to represent the geomagnetic potential in terms of
harmonic wavelets (cf. [29] for more details on harmonic wavelets) and then perform a least
squares (or other) fit of the corresponding gradient field to the vectorial components of the
data; this could be considered to be the multiscale extension of standard spherical harmonic
techniques. The approach presented here, however, is especially intended to combine the
results from Section 4.1 with a suitable technique accounting for the real orbit geometry and
originated from many discussions with the authors of [24] and [50]. Actually, [50] already
provides a short introduction of how to use a similar method in gravitational field determi-
nation while in [24] a very detailed case study can be found concerning the application of
a similar method to the problem of gravitational field modelling from SST and SGG data.
While we will introduce the basic theoretical concept as well as the necessary information
needed to implement this approach, we direct the interested reader to [24] for an extensive
treatment of all the numerical and practical aspects. The basic idea of the approach is the
combination of (harmonic) spline approximation (e.g. [26, 25, 27, 44] or, in the case of ge-
omagnetic main field modelling, [99]) and spherical regularization wavelets. While the use
of splines provides us with a comparatively easy way to incorporate the orbit geometry, the
possibility of employing the spherical regularization wavelets immediately helps us to fall
back on our results of Section 4.1, i.e. multiscale regularization can be applied and we still
can take advantage of the knowledge of the operators and corresponding singular systems
under consideration such that any numerical singular value decomposition can be avoided.
The method introduced can roughly be divided into three steps. In the first step a spline is
determined that will be used to – in a second step – ‘transport‘ the measurements from the
actual orbit positions onto a convenient set of nodal points on a sphere with mean orbital
radius. In the third step the ‘transported measurements‘ are used for downward continuation
within the framework of spherical regularization scaling functions and wavelets.

For the sake of brevity we still assume that we are interested in results on a mean (spherical)
Earth surface Ωρ1 . The measurements performed by the satellite give us the possibility to
derive, from a specific function G, N discrete samples G(xs) at positions {x1, . . . , xN} ⊂
Ωext
ρ1

in the exterior Ωext
ρ1

of the sphere Ωρ1 with radius ρ1 < infs=1,...,N |xs|. In the case
of geomagnetic field modelling, G may be any of the horizontal (east, north) components
of the presumably internal geomagnetic field, the product of the vertical component of the
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internal magnetic field times the radius and, though not really an observable, the geomagnetic
potential (see also [1], for example).

In a first step, the selected measurements are interpolated by a spline function

S =
N∑
s=1

asLsxKH(x, ·)

in a suitable reproducing kernel Hilbert space H with reproducing kernel KH (see Chapter
1). For s = 1, . . . , N , the spline coefficients as of S ∈ H are to be determined by solving the
linear system of equations

N∑
s=1

asLlyLsxKH(x, y) =
N∑
s=1

∞∑
n=0

2n+1∑
k=1

as
1

An
Hext
n,k(r;xs)H

ext
n,k(r;xl) = G(xl), (4.22)

where {Hext
n,k} are the outer harmonics as presented in Chapter 1 and where {An} is assumed

to be a sequence of real numbers satisfying
∑∞

n=0
2n+1
4π

1
An2 <∞. The sequence {An} charac-

terizes the reproducing kernel Hilbert space as well as the corresponding reproducing kernel
(different choices of {An} lead to different kernels like the Abel-Poisson kernel, for example).
A detailed discussion of this subject is possible within the theory of Sobolev spaces which
is beyond the scope of this thesis. For a detailed description see e.g. [29]. It is notewor-
thy that, if the data are assumed to be noisy, spline interpolation might not be the most
reasonable approach. In this case spline smoothing is usually the favourable technique (for
more details see e.g. [26, 44]). However, whether spline interpolation or smoothing is used
does not influence the following considerations. The linear system (4.22) usually is highly
ill-conditioned (note that, basically, singularity could occur, too; nevertheless, experience
shows that singularity is only obtained if the data distribution is very unfavorable; cf. [73]
for more details). This is especially the case if the data are not uniformly distributed, i.e. if
there are areas where the data density is much higher than anywhere else (since this leads to
some almost equal rows in the linear system). In general, this is true for measurements from
satellites with an almost polar orbit (like e.g. CHAMP) since one can expect the data den-
sity to be much higher in the vicinity of the poles than in equatorial regions (see Figure 4.6
for exemplary CHAMP tracks). Consequently, from the vast amount of observational data
Y = {y1, . . . , yNmax}, the set X = {x1, . . . , xN} ⊂ Y used for field determination and down-
ward continuation should be chosen as to ensure a preferably global coverage and uniform
distribution in order to reduce the condition of the linear system. A promising technique for
data selection is to generate a uniformly distributed set X̃ = {x̃1, . . . , x̃N} of grid points on
the mean orbital sphere Ωrmean of radius rmean given by

inf
l=1,...,Nmax

|yl| ≤ rmean =
Nmax∑
l=1

|yl|
Nmax

≤ sup
l=1,...,Nmax

|yl|, yl ∈ Y ,

first. Then, for every grid point x̃s ∈ X̃ , s = 1, . . . , N , we choose that very position yl ∈ Y ,
l = 1, . . . , Nmax, that has the shortest minimal Euclidean distance to the grid point x̃s, i.e.
we set

xs := yl, if |x̃s − yl| = min
p=1,...,Nmax

|x̃s − yp|.
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Figure 4.6: Exemplary CHAMP tracks in global view (left) and in polar regions (right) (3
days). The resulting data density in polar regions is higher than in low- or mid-latitude
regions.

In [30] algorithms for the construction of various uniformly distributed point systems on the
sphere are presented. First numerical tests as well as the results in [24] and [50] indicate
that the so-called Reuter Grid is well suited for our purposes. For the convenience of the
reader we recapitulate the construction principle of that very point set in standard spherical
coordinates:

Definition 4.18 A set X̃N(γ) of N(γ) points on the unit sphere is called Reuter Grid cor-
responding to the control parameter γ ∈ N, if the points (ϕij, ϑi) are given as follows:

(i) ϑ0 = 0, ϕ0,1 = 0 (north pole)

(ii) ∆ϑ = π/γ

(iii) ϑi = i∆ϑ, 1 ≤ i ≤ γ − 1

(iv) γi = 2π/ arccos
(
(cos(∆ϑ)− cos2(ϑi))/sin

2(ϑi)
)

(v) ϕij = (j − 1/2)(2π/γi), 1 ≤ j ≤ γi

(vi) ϑγ = π, ϕγ,1 = 0 (south pole).

The number N(γ) of grid points of a Reuter grid can be estimated by the following Lemma
(cf. [30]):

Lemma 4.19 The number N(γ) of points of a Reuter grid corresponding to a given control
parameter γ ∈ N can be estimated by

N(γ) ≤ 2 +
4

π
γ2.
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Figure 4.7: Distribution of 1130 grid points of a Reuter Grid (γ = 29) suggested for data
selection.

For the purpose of illustration Figure 4.7 shows a Reuter Grid of 1130 grid points (γ = 29);
note that the point density in low-, mid- and high-latitude areas is approximately equal.

As regards numerical effort it should be noted that directly solving the linear system (4.22)
requires O(N3) operations and the computational effort of iterative solvers is O(N2) in each
iteration step. In [50] a special fast multipole method (FMM) is developed which is able
to accelerate an iterative solver to O(N) when certain kernel functions (singularity kernel,
Abel-Poisson kernel and logarithmic kernel) are used in the spline approach. The FMM
approach is based on the space localization of the kernel functions which allows a far-field
near-field approximation of the kernels. For more details on this subject the reader should
consult [50, 85] and the references therein. We would also like to mention the works of [37, 51]
and [56] which introduce a certain domain decomposition method for such spline systems
like (4.22). This so-called Multiplicative Schwartz Alternating Algorithm (MSAA) splits a
system of linear equations into several smaller matrices of the same type and solves systems
of linear equations with these matrices successively in an iterative algorithm. The smaller
subsystems can be solved using direct solvers. Like the Fast Multipole Method mentioned
above, MSAA allows a considerable reduction of runtime and memory requirements. It is a
task for future work to apply these methods in geomagnetic field modelling.

After having solved the linear system, the second step consists of evaluating the resulting
spline S at the nodal points of a suitable (approximate) integration formula on the sphere
Ωrmean , i.e. the information of the measurements is ‘transported‘ to that very sphere by
means of the spline (note that this sphere is chosen since it can be expected that the error
due to the spline approximation is comparatively small, cf. [24]). This, however, enables us
to apply – in a third step – the methods that have been developed in Section 4.1, i.e. the
downward continuation process is performed by means of the regularization scaling functions
and wavelets in a spherical framework.

Remark 4.20 Though one might argue that the spline is already the solution of the under-
lying inverse problem, there are two main reasons for us to suggest the combined spline and
wavelet approach. First, the linear systems that occur when determining the spline coeffi-
cients are almost always ill-conditioned and hence solving the linear systems requires some
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means of regularization. Despite the fact that very sophisticated methods are known, it is
clear that regularizing the linear systems includes the regularization of the underlying inverse
problem without using (or knowing the effects on) the corresponding singular system. The
combined approach, however, gives us complete control over the singular systems since the
regularization scaling functions and wavelets are just constructed such that the regularization
can be performed within a multiscale framework. Second, the space localization of regular-
ization kernels allows the determination of locally adapted regularization parameters within
a global concept, i.e. calculations can be performed using different parameters for different
regions thus providing an easy and efficient transition from global to regional modelling.

Finally it should be noted that, at the time being, only first numerical tests have been per-
formed. A thorough application of the combined spline and wavelet approach to geomagnetic
data (simulations with synthetic data as well as real vectorial data) is a task for future work.
Nevertheless, the previously mentioned results obtained by similar methods in gravitational
field determination are promising.



Chapter 5

A Wavelet-Parametrization of the
Magnetic Field in
Mie Representation

Dealing with satellite measurements of the geomagnetic field b encounters the difficulty that
the field is sampled within a source region of b, i.e. there are non-vanishing electric current
densities j where the observations are taken. Consequently, data of low-orbiting satellites do
usually not meet the prerequisites for the classical Gauss representation of b as the gradient
field of a scalar harmonic potential. Assuming the quasi-static approximation of Maxwell’s
equations, [7, 8, 48, 100] suggest the resolution of the magnetic field by means of the Mie
representation as an adequate replacement of the Gauss approach. The Mie representation,
i.e. splitting the magnetic field into poloidal and toroidal parts, has the advantage that
it can equally be applied in regions of vanishing as well as non-vanishing electric current
densities. It is this characteristic that makes the Mie approach a powerful tool for dealing
with geomagnetic source problems, i.e. the problems of calculating magnetic effects due to
given electric currents (direct source problem) and – vice versa – determining those current
distributions that produce a predefined magnetic field (inverse source problem). [21, 91]
and [82] thoroughly examine and apply the Mie representation in this context. Most of the
considerations in [7, 8] and all the results in [21, 82, 91] are based on a spherical harmonic
parametrization, i.e. starting point of the considerations are expansions of the poloidal
and toroidal scalars in terms of spherical harmonics. On the one hand, this approach is
advantageous since it admits the possibility to incorporate radial dependencies of magnetic
fields and electric currents in a natural way. On the other hand, the global support of the
spherical harmonics might limit the practicability of this technique since it cannot cope
with electric currents (and corresponding magnetic effects) that vary rapidly with latitude
or longitude, or that are confined to certain regions. In fact, the author of [7] states that
is might be advantageous to find a field parametrization in terms of functions that take
efficient account of the specific concentration of the current densities in space. In [81] and
[11] we therefore have already presented first methods to deal with the Mie representation
in terms of spherical vectorial wavelets thus being able to reflect the various levels of space
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localization in form of a vectorial multiresolution analysis. However, these techniques are
not able to deal with radial dependencies in a canonical way and hence their application is
limited to fixed heights (or neglected radial variations).

In what follows we will introduce a wavelet-parametrization of the magnetic field that is able
to deal with both, space localization and radial variations. The approach is inspired by the
considerations of [21, 82] and [91] as well as our results in [11] and [81].

5.1 Setup

Since the magnetic field is of zero divergence in R3, the Mie representation can be applied
and hence b can be represented as

b = ∇∧ LPb + LQb, (5.1)

where Pb, Qb are the poloidal and toroidal scalars of b respectively (see also Section 1.4).
The sources of the magnetic field are the electric current densities j given by

j = ∇∧ LPj + LQj, (5.2)

where the poloidal and toroidal scalars Pj and Qj are connected with Pb and Qb via (e.g.
[7, 8])

Pj =
1

µ0

Qb, (5.3)

Qj = − 1

µ0

∆Pb. (5.4)

For each x = rξ with r 6= 0 and ξ ∈ Ω, (5.1) and (5.2) can be rewritten as

b = ξ
∆∗
ξPb

r
−∇∗

ξ

∂rrPb
r

+ L∗ξQb (5.5)

and

j = ξ
∆∗
ξPj

r
−∇∗

ξ

∂rrPj
r

+ L∗ξQj, (5.6)

where we have omitted the arguments for the sake of clarity and where we have used the
abbreviation ∂r = ∂/∂r (see also Section 1.4).

Following [7] we assume either the geomagnetic field b or the electric current distributions j
to be sampled within a spherical shell Ω(R1,R2), 0 < R1 < R2 < ∞. This assumption takes
into account elliptical satellite orbits as well as the decrease in altitude with the lifetime of
the satellite. The geomagnetic field within the shell Ω(R1,R2) consists of four different parts
(cf. [91]), i.e.

b = bintpol + bextpol + bshpol + btor. (5.7)

bintpol denotes the poloidal magnetic field due internal toroidal currents in the region with
r < R1. b

ext
pol is the poloidal part caused by external toroidal current densities in the region
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with r > R2, and bshpol is the poloidal magnetic field due to the toroidal electric currents within
Ω(R1,R2). Finally, btor is the toroidal part of b generated by poloidal currents in Ω(R1,R2). If
there are no currents in the shell Ω(R1,R2), then bshpol = btor = 0 and b can be represented
as the gradient field of a scalar harmonic potential or by means of the Mie representation
equivalently. If only the toroidal currents vanish within the shell, then bshpol = 0, and the
magnetic field within the shell can be represented by

b = bintpol + bextpol + btor (5.8)

(see e.g. (5.4), i.e. toroidal currents are the only sources of poloidal magnetic fields).

The situation changes if the toroidal currents within Ω(R1,R2) do not vanish. Let us suppose
that the radii of the shell satisfy (cf. [7])

R2 −R1 <<
R2 +R1

2
, (5.9)

i.e. the thickness of the shell is small compared to the mean radius. Such a shell is called a
thin shell. As pointed out by [7] and [91], even for non-vanishing (toroidal) current densities
in the shell, the magnetic field within a thin shell can (approximately) be represented by
(5.8), i.e. the poloidal field bshpol tends to zero in thin shells while the toroidal part btor remains
finite. Note that (5.8) is as well exactly true in a thick shell provided that the shell contains
only radial currents (cf. [91]).

Remark 5.1 Actually, for thin shells, it holds that bshpol → 0 as (R2−R1)/H → 0, where H
is a reference length characterizing the vertical scale of the current density (e.g. [7, 91]). In
more detail, if in a thin shell,

R2 −R1 << H ' R2 +R1

2
,

i.e. the current density changes significantly on vertical scales that can be compared to the
mean radius and that are much larger than the thickness of the shell, then the thin shell
approximation (5.8) is surely valid. If, in a thin shell,

R2 −R1 ' H <<
R2 +R1

2
,

i.e. the currents change significantly on vertical length scales that are small compared to
the mean radius but that can be compared to the thickness of the shell, then the thin shell
approximation can as well fail. For more details the interested reader is directed to [7].

In view if the examples presented in Section 5.4, it is noteworthy that the thin shell approx-
imation is surely valid for the MAGSAT mission (see also [91], for example).

5.2 Parametrization of Poloidal Fields

Separating the poloidal magnetic field into internal and external parts in the shell Ω(R1,R2)

is obviously possible if there are no toroidal currents in Ω(R1,R2) or, in an approximate sense,
if the thin shell approximation is valid.
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As can be seen from Equation (5.4), in the case of vanishing toroidal currents, the poloidal
scalar can be represented by a harmonic potential due to internal (r < R1) and external
(r > R2) sources, i.e. we have (with x = rξ, y = r′η)

Pb = P int
b + P ext

b , in Ω(R1,R2)

with

P int
b =

∑
(n,k)∈N

(P int
b )∧(R1;n, k)H

ext
n,k(R1, ·)

=
∑

(n,k)∈N

(P int
b )∧(n, k)

(
R1

r

)n+1

Yn,k(·) (5.10)

and

P ext
b =

∑
(n,k)∈N

(P ext
b )∧(R2;n, k)H

int
n,k(R2, ·)

=
∑

(n,k)∈N

(P ext
b )∧(n, k)

(
r

R2

)n
Yn,k(·). (5.11)

{
Hext
n,k(R1, ·)

}
,
{
H int
n,k(R2, ·)

}
and {Yn,k} are systems of outer, inner and spherical harmonics.

The corresponding Fourier coefficients are given by

(P int
b )∧(R1;n, k) =

∫
ΩR1

P int
b (y)Hext

n,k(R1, y)dωR1(y),

(P ext
b )∧(R2;n, k) =

∫
ΩR2

P ext
b (y)H int

n,k(R2, y)dωR2(y),

(P int
b )∧(n, k) =

∫
Ω

P int
b (R1η)Yn,k(η)dω(η), R1η = y, (5.12)

(P ext
b )∧(n, k) =

∫
Ω

P ext
b (R2η)Yn,k(η)dω(η), R2η = y. (5.13)

Note that the integrals in (5.12) and (5.13) are well defined since functions on any sphere
Ωr are isomorphic to functions on Ω.

P int
b and P ext

b can as well be expanded in terms of wavelets, so-called outer and inner harmonic
wavelets (see also [29] and the references therein), that can be defined within the framework
of Chapter 2.

Definition 5.2 Let, for J ∈ Z, {(ΦJ)
∧(n)}n=0,1,..., be the generating symbol of an L2(Ω)-

scaling function and let {(ΨJ)
∧(n)}n=0,1,... , be the generating symbol of the associated L2(Ω)-

wavelet. Then the outer harmonic scaling functions {Φext,J} and wavelets {Ψext,J} of scale
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J are defined by

Φext,J(x, y) =
∑

(n,k)∈N

(ΦJ)
∧(n)Hext

n,k(R1, x)H
ext
n,k(R1, y)

=
∑

(n,k)∈N

(ΦJ)
∧(n)

1

R1

(
R1

r

)n+1

Yn,k(ξ)
1

R1

(
R1

r′

)n+1

Yn,k(η)

and

Ψext,J(x, y) =
∑

(n,k)∈N

(ΨJ)
∧(n)Hext

n,k(R1, x)H
ext
n,k(R1, y)

=
∑

(n,k)∈N

(ΨJ)
∧(n)

1

R1

(
R1

r

)n+1

Yn,k(ξ)
1

R1

(
R1

r′

)n+1

Yn,k(η),

respectively. The inner harmonic scaling functions {Φint,J} and wavelets {Ψint,J} of scale J
are defined by

Φint,J(x, y) =
∑

(n,k)∈N

(ΦJ)
∧(n)H int

n,k(R2, x)H
int
n,k(R2, y)

=
∑

(n,k)∈N

(ΦJ)
∧(n)

1

R2

(
r

R2

)n
Yn,k(ξ)

1

R2

(
r′

R2

)n
Yn,k(η)

and

Ψint,J(x, y) =
∑

(n,k)∈N

(ΨJ)
∧(n)H int

n,k(R2, x)H
int
n,k(R2, y)

=
∑

(n,k)∈N

(ΨJ)
∧(n)

1

R2

(
r

R2

)n
Yn,k(ξ)

1

R2

(
r′

R2

)n
Yn,k(η),

respectively.

A straightforward calculation leads us to the following result:

Lemma 5.3 Let {Ψext,J} as well as {Ψint,J} be given as in Definition 5.2. Then, if no
toroidal currents are present in the spherical shell Ω(R1,R2), the poloidal scalar Pb can be
represented via

Pb = P int
b + P ext

b

=
∞∑
J=0

Ψext,J ∗L2(ΩR1
)

(
Ψext,J ∗L2(ΩR1

) P
int
b

)
︸ ︷︷ ︸

P intb

+
∞∑
J=0

Ψint,J ∗L2(ΩR2
)

(
Ψint,J ∗L2(ΩR2

) P
ext
b

)
︸ ︷︷ ︸

P extb
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=
∞∑
J=0

Ψext,J ∗L2(ΩR1
) WText,J(P

int
b )

+
∞∑
J=0

Ψint,J ∗L2(ΩR1
) WTint,J(P

ext
b )

in Ω(R1,R2).

Observe that the last two terms are just introduced as abbreviations. Note that in Lemma
5.3 there occurs no zero order contribution i.e. there is neither a Φext,0 ∗L2(ΩR1

) Φext,0-term
nor the corresponding inner term. This is due to the fact that the Mie scalars have no zero
order moment or, in other words, their mean value over the sphere must be zero.

According to (5.5), we need to calculate ∆∗Pb as well as ∂rrPb in order to derive the corres-
ponding magnetic field:

Lemma 5.4 Let Pb in Ω(R1,R2) be given as in Lemma 5.3. Then

∆∗P int
b =

∞∑
J=0

Ψ̃ext,J ∗L2(ΩR1
) WText,J(P

int
b ),

∆∗P ext
b =

∞∑
J=0

Ψ̃int,J ∗L2(ΩR2
) WTint,J(P

ext
b ),

∂rrP
int
b =

∞∑
J=0

Ψ̂ext,J ∗L2(ΩR1
) WText,J(P

int
b ),

∂rrP
ext
b =

∞∑
J=0

Ψ̂int,J ∗L2(ΩR2
) WTint,J(P

ext
b )

in Ω(R1,R2), where

Ψ̃ext,J(rξ, r
′η) =

∑
(n,k)∈N

−n(n+ 1)(ΨJ)
∧(n)Hext

n,k(R1, x)H
ext
n,k(R1, y)

Ψ̃int,J(rξ, r
′η) =

∑
(n,k)∈N

−n(n+ 1)(ΨJ)
∧(n)H int

n,k(R2, x)H
int
n,k(R2, y),

Ψ̂ext,J(rξ, r
′η) =

∑
(n,k)∈N

−n(ΨJ)
∧(n)Hext

n,k(R1, x)H
ext
n,k(R1, y),

Ψ̂int,J(rξ, r
′η) =

∑
(n,k)∈N

(n+ 1)(ΨJ)
∧(n)H int

n,k(R2, x)H
int
n,k(R2, y).

Proof. From Lemma 5.3 we know that, in Ω(R1,R2),

P int
b =

∞∑
J=0

Ψext,J ∗L2(ΩR1
) WText,J(P

int
b ).
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This means that

∆∗P int
b =

∞∑
J=0

∫
ΩR1

∆∗Ψext,J(·, y)WText,J(P
int
b )(y)dωR1(y),

i.e. the Beltrami operator is applied to the kernel functions. The expressions for the kernels
Ψ̃ext,J = ∆∗Ψext,J and Ψ̃int,J = ∆∗Ψint,J can be derived directly from the representations in
Definition 5.2 and using ∆∗Yn,k = −n(n + 1)Yn,k. The representations of the other kernel
functions involving radial derivatives can also be calculated in a straightforward way using
the series representations of the corresponding kernels in terms of inner and outer harmonics.

Summarizing our considerations we can come up with the following theorem:

Theorem 5.5 If no toroidal currents are present in the spherical shell Ω(R1,R2), then the
poloidal magnetic field in that shell is given by bpol = bintpol + bextpol , with

bintpol =
∞∑
J=0

ψ̃
(1)
ext,J ?l2(ΩR1

) WText,J(P
int
b ) +

+
∞∑
J=0

ψ̂
(2)
ext,J ?l2(ΩR1

) WText,J(P
int
b ),

and

bextpol =
∞∑
J=0

ψ̃
(1)
int,J ?l2(ΩR2

) WTint,J(P
ext
b ) +

+
∞∑
J=0

ψ̂
(2)
int,J ?l2(ΩR2

) WTint,J(P
ext
b ),

where the kernel functions are given by

ψ̃
(1)
ext,J(rξ, r

′η) = ξ
1

r
Ψ̃ext,J(rξ, r

′η)

=
∑

(n,k)∈N

−n(n+ 1)(ΨJ)
∧(n)

1

rR1

(
R1

r

)n+1

y
(1)
n,k(ξ)H

ext
n,k(R1, y),

ψ̂
(2)
ext,J(rξ, r

′η) = −∇∗
ξ

1

r
Ψ̂ext,J(rξ, r

′η)

=
∑

(n,k)∈N (i)

√
n3(n+ 1)(ΨJ)

∧(n)
1

rR1

(
R1

r

)n+1

y
(2)
n,k(ξ)H

ext
n,k(R1, y)
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as well as

ψ̃
(1)
int,J(rξ, r

′η) = ξ
1

r
Ψ̃int,J(rξ, r

′η)

=
∑

(n,k)∈N

−n(n+ 1)(ΨJ)
∧(n)

1

rR2

(
r

R2

)n
y

(1)
n,k(ξ)H

int
n,k(R2, y),

ψ̂
(2)
int,J(rξ, r

′η) = −∇∗
ξ

1

r
Ψ̂int,J(rξ, r

′η)

=
∑

(n,k)∈N (2)

−
√
n(n+ 1)3(ΨJ)

∧(n)
1

rR2

(
r

R2

)n
y

(2)
n,k(ξ)H

int
n,k(R2, y).

Proof. We only need to prove the expressions for the kernel functions. These, however, can
be obtained in a straightforward calculation using Definition 5.2 and the definitions of the
vector spherical harmonics.

Theorem 5.5 presents a wavelet-parametrization for the poloidal magnetic field in a shell
Ω(R1,R2) in the absence of toroidal currents within that shell (or in thin shell approximation).
This result is consistent with the spherical harmonic parametrizations presented in [82] and
[91], but allows for regional modelling within a multiresolution analysis. In order to include
the effects of toroidal currents in the shell Ω(R1,R2), additional contributions to Pb except for
P int
b and P ext

b need to be incorporated in the approach. Fur that purpose, let us assume that
we need to add a further poloidal scalar P add

b for the poloidal magnetic field, where P add
b is

of the form
P add
b (rξ) = Pb,1(r)Pb,2(ξ), rξ ∈ Ω(R1,R2)

(i.e. we apply separation of variables). Then, we can express the angular part in terms of
L2(Ω)-wavelets {ΨJ} (see the results in Chapter 2):

P add
b (r·) = Pb,1(r)

(
∞∑
J=0

ΨJ ∗ΨJ ∗ Pb,2

)
. (5.14)

Applying (5.5) to (5.14) helps us to derive the additional contribution to the poloidal mag-
netic field, that is

baddpol (r·) =
1

r
Pb,1(r)

(
∞∑
J=0

ψ̃
(1)
J ?ΨJ ∗ Pb,2

)
+ (5.15)

+
1

r
(Pb,1(r) + r∂rPb,1(r))

∞∑
J=0

ψ̂
(2)
J ?ΨJ ∗ Pb,2, (5.16)

where the appearing vectorial wavelets are given by ψ̃
(1)
J (ξ, η) = ξ∆∗

ξΨJ(ξ, η) and ψ̂
(2)
J (ξ, η) =

−∇∗
ξΨJ(ξ, η). The additional poloidal magnetic field (5.15-5.16) is due to the toroidal electric
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current density

µ0jtor(r·) = − 1

r2

[(
r∂2

rrPb,1(r)
) ∞∑
J=0

ψ̄
(3)
J ?ΨJ ∗ Pb,2 + (5.17)

+ Pb,1(r)
∞∑
J=0

ψ̃
(3)
J ?ΨJ ∗ Pb,2

]
, (5.18)

where the kernel functions ψ̄
(3)
J and ψ̃

(3)
J can be derived from the scalar kernels via ψ̄

(3)
J (ξ, η) =

L∗ξΨJ(ξ, η) as well as ψ̃
(3)
J (ξ, η) = L∗ξ∆

∗
ξΨJ(ξ, η). This, however, is straightforward using the

definitions of the spherical kernels as well as the definition of vector spherical harmonics.

The radial behaviour of the toroidal currents is, of course, dependent on the underlying
physical cause. In the simple case of Pb,1 = P0, P0 ∈ R \ {0} constant, the expression
(5.17-5.18) for the toroidal current reduces to

µ0jtor(r·) = − 1

r2
P0

∞∑
J=0

ψ̃
(3)
J ?ΨJ ∗ Pb,2,

i.e. the toroidal current decreases with r−2 which is equivalent to the simple assumption
that the current decreases solely due to spherical divergence (see also [82]).

5.3 Parametrization of Toroidal Fields

In what follows, we direct our attention to the wavelet-parametrization of toroidal magnetic
fields and the corresponding poloidal electric current densities in the spherical shell Ω(R1,R2).
Starting point for our considerations is a separation of variables for the toroidal field scalar
Qb, i.e. we assume that

Qb(rξ) = Qb,1(r)Qb,2(ξ) in Ω(R1,R2). (5.19)

Relation (5.3) suggests to proceed likewise in the case of the scalar Pj for the poloidal
currents, hence we suppose that

Pj(rξ) = Pj,1(r)Pj,2(ξ) =
1

µ0

Qb,1(r)Qb,2(ξ) in Ω(R1,R2).

Obviously, the angular parts Qb,2 and Pj,2 can be expanded in terms of spherical wavelets
{ΨJ}, i.e.

Qb,2 =
∞∑
J=0

ΨJ ∗ΨJ ∗Qb,2

Pj,2 =
∞∑
J=0

ΨJ ∗ΨJ ∗ Pj,2.

Using (5.5) and (5.2) we can come up with the following result:
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Theorem 5.6 Let, for J ∈ Z, {ΨJ} be an L2(Ω)-wavelet. Under the assumptions above,
the toroidal magnetic field in Ω(R1,R2) can be represented via

btor(r·) = Qb,1(r)
∞∑
J=0

ψ̄
(3)
J ?ΨJ ∗Qb,2, (5.20)

where the kernel ψ̄
(3)
J is given via ψ̄

(3)
J (ξ, η) = L∗ξΨJ(ξ, η).

The corresponding poloidal current density in Ω(R1,R2) is given by

µ0jpol(r·) =
1

r
Qb,1(r)

∞∑
J=0

ψ̃
(1)
J ?ΨJ ∗Qb,2 + (5.21)

+ (∂rQb,1(r) +
1

r
Qb,1(r))

∞∑
J=0

ψ̂
(2)
J ?ΨJ ∗Qb,2, (5.22)

where the kernel functions ψ̃
(1)
J and ψ̂

(2)
J are defined to be ψ̃

(1)
J (ξ, η) = ξ∆∗

ξΨJ(ξ, η) and

ψ̂
(2)
J (ξ, η) = −∇∗

ξΨJ(ξ, η).

Theorem 5.6 can be seen in correspondence to Theorem 5.5 and presents the wavelet-
parametrization of the toroidal magnetic field and the corresponding poloidal electric cur-
rents in the spherical shell Ω(R1,R2). Obviously, this representation yields the possibility to
derive different models of Qb in different regions depending on the underlying physical effects
and, of course, the data situation. It should be remarked that in [82] an explicit formula for
Qb,1(r) is derived assuming that the currents at satellite altitudes are primarily field-aligned
and that the magnetic field is, to a good approximation, dipolar. Without going into detail
we quote this results in our notation:
Under the previously stated assumptions, the magnitude of the radial current density in the
shell Ω(R1,R2) is estimated by (cf. [82])

Jrad(rξ) ' ξ

(
r′

r

)3
√

3

2
− r

2r′
Jrad(r

′ξ), (5.23)

where rξ and r′ξ are supposed to be two different positions located on the same magnetic
field line. This then leads to the following ansatz for the radial part

Qb,1(r) =

(
R1

r

)2√
3

2
− r

2R1

. (5.24)

In order to derive (5.23) the author of [82] assumes that r−r′ is small and, consequently, the
shift in latitude along a field line is negligible (small angle approximation). None the less,
in [82] it is suggested to expand the horizontal part Qb,2 in terms of spherical harmonics.
Arguably, this is the weak point of that very approach since the spherical harmonic expansion
does not really take into account the small angle approximation but connects contributions
from all over the sphere. It is an interesting task for future work to numerically test (5.23)
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and (5.24) in combination with the wavelet-parametrization (Theorem 5.6), since then it
becomes possible to take into account regional contributions only.

It is obvious that the ansatz (5.19) is quite simple and might fail if the radial dependency is
very complex (see also the considerations in [82]). Nevertheless, assumption (5.19) is reason-
able as long as the data situation is such that the radial behaviour of the field is difficult to
extract. This is arguably the case when using data from single satellite missions (see also the
comments in [7, 82, 91] concerning time-variations and single satellite missions). Neverthe-
less, if the data situation allows for determination of higher order radial dependencies (e.g. if
data from multi-satellite missions are used, or if measurements from satellites are combined
with terrestrial observations) we might expand our ansatz by adding further toroidal scalars
with different radial behaviour. In more detail, (5.19) might be replaced by

Qb(r·) = Qb,1(r)Qb,2 +Qb,3(r)Qb,4 +Qb,5(r)Qb,6 + . . . (5.25)

such that, following Theorem 5.6,

btor(r·) = Qb,1(r)
∞∑
J=0

ψ̄
(3)
J ?ΨJ ∗Qb,2 + (5.26)

+ Qb,3(r)
∞∑
J=0

ψ̄
(3)
J ?ΨJ ∗Qb,4 + (5.27)

+ Qb,5(r)
∞∑
J=0

ψ̄
(3)
J ?ΨJ ∗Qb,6 + . . . . (5.28)

A similar representation holds true for the current density. [91] approaches this very subject
by combining the spherical harmonic parametrization of the toroidal scalar with a Taylor
series for the corresponding Fourier coefficients. This is consistent with (5.26-5.28) if the
radial dependencies of the radial functions Qb,1, Qb,3, Qb,5, . . . are suitably chosen. As regards
practical applications, it should be noted that the wavelet-coefficients in (5.26-5.28) can,
by no means, be determined by direct integration anymore but need to be simultaneously
estimated using least-squares techniques. Nevertheless, the ansatz as a series representation
in terms of space localizing wavelets is arguably suitable in order to determine different radial
dependencies in different regions of interest.

The product ansatz for the toroidal field scalar Qb is reflected in the corresponding toroidal
magnetic field (see (5.20)) as well as in the representation of the corresponding poloidal
current density. As regards the poloidal current, both its radial (5.21) and its tangential
parts (5.22) admit a product representation, too. In more detail, let jrad and j∇∗ be the
radial and the tangential parts of jpol, respectively. Then it is straightforward that jrad and
j∇∗ can be represented as

jrad(rξ) = Jrad,1(r)jrad,2(ξ)

and
j∇∗(rξ) = J∇∗,1(r)j∇∗,2(ξ).
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In this context, Theorem 5.6 yields that the scalars Jrad,1(r) and J∇∗,1(r) are given via

µ0Jrad,1(r) =
1

r
Qb,1(r),

µ0J∇∗,1(r) = (∂rQb,1(r) +
1

r
Qb,1(r))

and the vectorial parts are

µ0jrad,2 =
∞∑
J=0

ψ̃
(1)
J ?ΨJ ∗Qb,2,

µ0j∇∗,2 =
∞∑
J=0

ψ̂
(2)
J ?ΨJ ∗Qb,2.

Using the ansatz (5.19) together with (5.6) immediately leads us to the same results for
Jrad,1 and J∇∗,1 but, as regards jrad,2 and j∇∗,2, we end up with

µ0jrad,2(ξ) = ξ∆∗
ξQb,2(ξ),

µ0j∇∗,2(ξ) = −∇∗
ξQb,2(ξ),

which is independent from any parametrization of Qb. From Section 2.2, however, we know
that we can expand the radial vector field µ0jrad,2 and the tangential vector field µ0j∇∗,2

using vectorial l2(Ω)-wavelets
{
ψ

(i)
J

}
of type i = 1 and i = 2, respectively. Consequently we

are led to the following alternative representation in terms of l2(Ω)-wavelets, i.e.

µ0jrad(r·) = µ0

∞∑
J=0

ψ
(1)
J ?

(
ψ

(1)
J ∗ jrad

)
(r) (5.29)

= µ0
1

r
Qb,1(r)

∞∑
J=0

ψ
(1)
J ? ψ

(1)
J ∗ jrad,2 (5.30)

= µ0

∞∑
J=0

ψ
(1)
J ?

(
ψ

(1)
J ∗ j

)
(r), (5.31)

and

µ0j∇∗(r·) = µ0

∞∑
J=0

ψ
(2)
J ?

(
ψ

(2)
J ∗ j∇∗

)
(r) (5.32)

= µ0(∂rQb,1(r) +
1

r
Qb,1(r))

∞∑
J=0

ψ
(2)
J ? ψ

(2)
J ∗ j∇∗,2 (5.33)

= µ0

∞∑
J=0

ψ
(2)
J ?

(
ψ

(2)
J ∗ j

)
(r), (5.34)
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Note that equations (5.31) and (5.34) are true since only the poloidal current density does
contain a radial or ∇∗-contribution (see (5.6)) and therefore we can state that

µ0jrad(r·) = µ0

∞∑
J=0

ψ
(1)
J ?

(
ψ

(1)
J ∗ jrad

)
(r) = µ0

∞∑
J=0

ψ
(1)
J ?

(
ψ

(1)
J ∗ j

)
(r),

and

µ0j∇∗(r·) = µ0

∞∑
J=0

ψ
(2)
J ?

(
ψ

(2)
J ∗ j∇∗

)
(r) = µ0

∞∑
J=0

ψ
(2)
J ?

(
ψ

(2)
J ∗ j

)
(r),

on each Ωr with R1 < r < R2. In other words the radial current density (on each Ωr with
R1 < r < R2) can be derived from expanding the total current density in terms of spherical
vectorial wavelets of type i = 1 while the tangential part of the poloidal current density
can be calculated via spherical vectorial wavelets of type i = 2. Equations (5.29-5.34) can
therefore be used to determine the toroidal field scalar (or, of course, the corresponding
toroidal magnetic field) in a comparatively easy way. If we suppose the current density j
to be given on a dense grid covering the whole spherical shell Ω(R1,R2), then an – to some
degree – easy method to obtain Qb,1(r) and Qb,2(ξ) is the following:

(1) For a sequence of spheres Ωrl of radii rl, l = 0, 1, . . . , lmax, with R1 < r0 < r1 <
· · · < rlmax < R2, a wavelet expansion of the current density j is performed in terms
of spherical vectorial wavelets of type i = 1 up to an appropriate maximum scale Jmax
(i.e. (5.31) is computed). From the wavelet expansions on the spheres with radii rl the
values of Qb,1(rl) are determined via (5.30) and then interpolated to obtain Qb,1(r).

(2) In a second step the wavelet coefficients ψ
(1)
J ∗ jrad,2 are calculated from the wavelet

coefficients
(
ψ

(1)
J ∗ j

)
(rl) of the current density on one sphere Ωrl via

1

rl
Qb,1(rl)

(
ψ

(1)
J ∗ jrad,2

)
=
(
ψ

(1)
J ∗ j

)
(rl)

(see (5.30-5.31)).

(3) From (5.6) and (5.30) it is clear that

ξ(∆∗
ξQb,2(ξ)) '

(
Jmax∑
J=0

ψ
(1)
J ? ψ

(1)
J ∗ jrad,2

)
(ξ)

and therefore

∆∗
ξQb,2(ξ) '

(
Jmax∑
J=0

ΨJ ∗ ψ(1)
J ∗ jrad,2

)
(ξ), (5.35)

where ΨJ(ξ, η) = ξ · ψ(1)
J (η, ξ) is given by

ΨJ(ξ, η) =
∑

(n,k)∈N (1)

(
ψ

(1)
J

)∧
(n)Yn,k(ξ)Yn,k(η).

Equation (5.35) is the well known Beltrami differential equation and can be solved by
means of the corresponding Green’s function which is explicitly known (cf. [30]).
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A similar approach can be applied in order to determine the poloidal current density jpol in
Ω(R1,R2) from the corresponding toroidal field btor. Assuming the product ansatz for Qb and
applying (5.5) we see that the toroidal magnetic field admits a product representation as
well (see also Theorem 5.6), i.e.

btor(rξ) = Btor,1(r)btor,2(ξ)

where btor,2 = L∗Qb,2 can be expressed in terms of spherical vectorial l2(Ω)-wavelets
{
ψ

(3)
J

}
of type i = 3 as follows

btor,2 =
∞∑
J=0

ψ
(3)
J ? ψ

(3)
J ∗ btor,2. (5.36)

We know from Theorem 5.6 that the scalar Btor,1 is just given by

Btor,1(r) = Qb,1(r).

Since the toroidal magnetic field btor is the only part of b that contributes a L∗-portion it is
clear that

btor(r·) =
∞∑
J=0

ψ
(3)
J ?

(
ψ

(3)
J ∗ btor

)
(r) =

∞∑
J=0

ψ
(3)
J ?

(
ψ

(3)
J ∗ b

)
(r),

on any sphere Ωr with R1 < r < R2. Summarizing the above considerations we are led to

btor(r·) = Qb,1(r)
∞∑
J=0

ψ
(3)
J ? ψ

(3)
J ∗ btor,2 =

∞∑
J=0

ψ
(3)
J ?

(
ψ

(3)
J ∗ b

)
(r) (5.37)

on any sphere Ωr with R1 < r < R2. This yields one possible way of determining the
poloidal field scalar (and consequently the corresponding poloidal electric current density)
from magnetic measurements in Ω(R1,R2). In what follows, we assume the geomagnetic field
to be sampled on a dense grid throughout the whole spherical shell Ω(R1,R2).

(1) For a sequence of spheres Ωrl of radii rl, l = 0, 1, . . . , lmax, with R1 < r0 < r1 <
· · · < rlmax < R2, a wavelet expansion of the magnetic field b is performed in terms of
spherical vectorial wavelets of type i = 3 up to an appropriate maximum scale Jmax
(i.e. the right hand side of (5.37) is computed). From the wavelet expansions on the
spheres with radii rl the values of Qb,1(rl) are determined and then interpolated to
obtain Qb,1(r).

(2) The second step consists of calculating the coefficients ψ
(3)
J ∗ btor,2 from the coefficients(

ψ
(3)
J ∗ b

)
(rl) on one fixed sphere Ωrl via

Qb,1(rl)ψ
(3)
J ∗ btor,2 =

(
ψ

(3)
J ∗ b

)
(rl)

(see (5.37)).
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(3) Finally, since btor,2 = L∗Qb,2 =
∑∞

J=0 ψ
(3)
J ? ψ

(3)
J ∗ btor,2, we can state that

Qb,2(ξ) '
Jmax∑
J=0

ΨJ ∗ ψ(3)
J ∗ btor,2,

where the kernels ΨJ(ξ, η) are constructed such that ψ
(3)
J (η, ξ) = L∗ξΨJ(η, ξ), i.e.

ΨJ(η, ξ) =
∑

(n,k)∈N (3)

1√
(n(n+ 1))

(
ψ

(3)
J

)∧
(n)Yn,k(η)Yn,k(ξ). (5.38)

Finally, neglecting radial dependencies, the previous approach can be simplified and easily
applied to calculate radial current densities on a sphere Ωr, with R1 < r < R2, from
measurements of the magnetic field on that very sphere. We assume that the magnetic field
b is sampled on a dense grid on the sphere Ωr. We have already made use of the fact that,
with a suitably chosen maximum scale Jmax, we can approximate the toroidal part btor on
Ωr via a series expansion in terms of l2(Ω)-wavelets

btor(rξ) '

(
Jmax∑
J=0

ψ
(3)
J ?

(
ψ

(3)
J ∗ b

)
(r)

)
(ξ).

Using the fact that btor(r, ·) = L∗Qb we immediately get an approximation for the toroidal
scalar, i.e.

Qb(rξ) '

(
Jmax∑
J=0

ΨJ ∗
(
ψ

(3)
J ∗ b

)
(r)

)
(ξ) (5.39)

where, as before, the kernel is given by (5.38), i.e. it holds that ψ
(3)
J (η, ξ) = L∗ξΨJ(η, ξ).

Using (5.39) together with (5.6) we arrive at an approximation of the radial current density
on Ωr corresponding to the toroidal magnetic field there:

µ0jrad(rξ) =
1

r
ξ∆∗

ξQb(rξ)

' 1

r

(
Jmax∑
J=0

ψ̃
(1)
J ∗

(
ψ

(3)
J ∗ b

)
(r)

)
(ξ), (5.40)

with ψ̃
(1)
J (η, ξ) = ξ∆∗

ξΨJ(η, ξ), i.e.

ψ̃
(1)
J (η, ξ) =

∑
(n,k)∈N (3)

−
√
n(n+ 1)

(
ψ

(3)
J

)∧
(n)Yn,k(η)y

(1)
n,k(ξ).

Note that this equation is just a different expression of a well known fact, i.e. the toroidal
magnetic field at a certain altitude is solely due to the radial current distributions at that
very height. It is Equation (5.40) that serves as the starting point for the numerical example
in the next section.



CHAPTER 5. WAVELET-PARAMETRIZATION OF MAGNETIC FIELDS 137

5.4 Example

As an example of the wavelet parametrization of the magnetic field, electric current distri-
butions at satellite altitudes are determined from data sets of vectorial MAGSAT data. The
method is based on our considerations in Section 5.3, especially Equation (5.40). In [91] a
similar technique, in terms of spherical harmonics however, is applied to MAGSAT data,
too. The current distributions under consideration are due to ionospheric F region currents
which are extensively treated in the literature (see [91] and the references therein).

The data sets used in this example are similar to those used in [91]. They have kindly
been made available to us by the author of [91] who has also carried out the preprocessing
and averaging processes. MAGSAT was orbiting the Earth in a Sun synchronous orbit thus
acquiring only data at dawn and dusk local times. Neglecting the variations in altitude of the
MAGSAT satellite, one month of MAGSAT data (centered at March 21, 1980) is transformed
to geomagnetic components and is then averaged onto the equiangular longitude-latitude grid
(90×90 grid points) proposed in [20], which has already been used in Sections 3.3 and 4.1.4.
Averaging the data onto the nodal points of the integral formula is performed using a robust
Tuckeys biweight method (cf. [59]). The dusk and dawn data are treated separately such
that two separate data sets are obtained. Prior to the averaging process a geomagnetic
field model (GSFC(12/83) up to degree and order 12) due to [75] is subtracted from the
measurements in order to avoid spurious effects due to the neglected altitude variations (cf.
[91]).

According to Equation (5.40) the radial current distribution at a fixed height can be calcu-

lated from the wavelet coefficients of the toroidal field at that altitude, i.e.
(
ψ

(3)
J ∗ b

)
(r). As

regards the present example, we calculate these coefficients by means of spherical vectorial
cubic polynomial (CP) wavelets up to scale 5 from the evening data set. Then, in a second
step, these coefficients are utilized to calculate the corresponding radial current distribution
in accordance with Equation (5.40). Figures 5.1 and 5.2 show the reconstruction of the
radial current density Jrad = (ξ · jrad(ξ)) using two different color-scales in order to enhance
the visibility of the appearing features. The largest radial current densities (|Jrad| . 150
nA/m2) are present in the polar regions. In agreement with the results in [91] the main
current flow in the polar cap is directed into the ionosphere (Jrad < 0) during evening. At
the poleward boundary of the polar oval the currents flow out of the ionosphere (Jrad > 0)
while the main current direction is into the ionosphere at the equatorward boundary. At the
magnetic dip equator one realizes comparatively weak upward currents (|Jrad| . 25 nA/m2)
accompanied by even weaker downward currents at low latitudes. These current distribu-
tions are the radial components of the so-called meridional current system of the equatorial
electrojet. Following the discussion in [91] Figure 5.3 presents the same results as Figures 5.1
and 5.2 but in a different projection, thus enabling a better view of the meridional currents.
As can be expected from theoretical considerations, the corresponding signatures follow the
geomagnetic dip equator.
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Figure 5.1: Radial current density during evening local time obtained from a vectorial cubic
polynomial wavelet expansion of MAGSAT data up to scale 5 [nA/m2].

Figure 5.2: Radial current density during evening local time obtained from a vectorial cubic
polynomial wavelet expansion of MAGSAT data up to scale 5. [nA/m2]
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Figure 5.3: Radial current density during evening local time obtained from a vectorial cubic
polynomial wavelet expansion of MAGSAT data up to scale 5; left and right differ in the
color-scales used. [nA/m2]

In order to demonstrate the possibility of regional calculations again, Figure 5.4 presents a
reconstruction of the radial current systems during dusk local times over the polar region.
These results are obtained using vectorial cubic polynomial wavelets of scales 4 and 5 and
a data window centered at the geographic north pole with a half angle of 60◦ as well as an
integration window with the same center but a half angle of 55◦ (the white border approxi-
mately illustrates the extend of the calculation region). As we have indicated in Section
4.1.4, the visualization window is smaller than the calculation window in order to suppress
Gibbs phenomena.

Figure 5.4: Local reconstruction of radial current density during evening local time obtained
from a vectorial cubic polynomial wavelet expansion of MAGSAT data at scales 4 and 5.
The white area corresponds to the calculation region. [nA/m2]
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Comparing Figure 5.4 with Figures 5.1 or 5.2 shows that the structures of the radial currents
are clearly visible though slightly weaker in magnitude. This slight difference is due to the
fact that we have omitted the contributions of wavelet scales up to 3. Consequently, the
signatures seen in our results are clearly effects of higher wavelet scales (4 and 5) and the
contributions of lower scales can be neglected. This, however, demonstrates the regional
character of the radial current distributions and suggests the use of regional methods like
the one presented here.

Finally, for the sake of completeness, we present a global reconstruction of the radial current
densities during morning local time (Figure 5.5). This result is obtained from the dawn data

Figure 5.5: Radial current density during morning local time obtained from a vectorial
Shannon wavelet expansion of MAGSAT data up to scale 4. [nA/m2]

set by means of vectorial Shannon wavelets up to scales 4. As expected, in the polar regions
the current direction during morning local time is reversed with respect to the dusk data.
The meridional current system of the equatorial electrojet is not present in the dawn data
set.

As regards future studies, the next reasonable step is to incorporate the variations in altitude
of the satellite – at least to some extend – in the analysis of electric current distributions. This
would allow for the determination of horizontal current distributions, as well. Furthermore,
it is an interesting task to derive – either in studies using synthetic data, or based on satellite
data sampled over large time intervals, or using data from multi satellite missions – a wavelet
parametrization of the poloidal and toroidal magnetic fields from the corresponding electric
currents or vice versa. This, however, is beyond the scope of this thesis.

It should be noted that within the Graduiertenkolleg ”Mathematik und Praxis” (Graduate
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Research Training Programme ”Mathematics and Practice”), Dipl.-Math. C. Mayer, Geo-
mathematics Group, University of Kaiserslautern, prepares his PhD thesis in the project
”Modelling of Ionospheric Current Systems”. He is especially concerned with the determi-
nation and modelling of electric current densities from geomagnetic satellite measurements.
In this context techniques similar to those presented here are derived and applied to various
data sets. It is surely an interesting task for future studies to compare his approaches to the
methods of this chapter and to eventually combine both techniques.



Chapter 6

Multiscale Methods for the Analysis
of Time-Dependent
Spherical Vector Fields

Besides its spatial variations, the geomagnetic field is subject to a variety of fluctuations on
a wide range of time scales, as manifold as the responsible physical processes. Due to its
dynamo action the Earth’s core, for example, contributes geomagnetic variations on time
scales of years up to more than several centuries – the secular-variation is one of the most
prominent examples thereof. The Earth’s electromagnetic environment is also a source of a
diversity of geomagnetic fluctuations spanning the whole range from milliseconds to days –
well known examples of the latter are the Sq- and Dst-variations. The reader interested in
the many geophysical processes and the resulting temporal fluctuations might, for instance,
consult [66, 67, 68, 69, 70] and the references therein.

The standard method for approaching the time-dependency of the geomagnetic field is to
assume the existence of a corresponding scalar potential which then is expressed in terms of
spherical harmonics with time-dependent Fourier coefficients. The temporal variation of the
field is therefore fully carried over to the temporal behaviour of the expansion coefficients.
Depending on the processes under consideration there exist several sophisticated techniques
of modelling the evolution of the Fourier coefficients in time; [66] presents a general intro-
duction, for up-to-date overviews and applications the reader is directed to e.g. [77, 93, 96]
and the references therein.

What we introduce here are two variants of a technique combining a wavelet approach for
the temporal as well as the spatial domain. We therefore assume that the (spherical) vector
field under consideration can be expanded in terms of vector spherical harmonics with time-
dependent Fourier coefficients or, in other words, we also assume that the time-dependency
of the vector field is fully represented by its expansion coefficients with respect to vector
spherical harmonics. Though we will not need to calculate the expansion explicitly, this
assumption helps us to find the appropriate multiscale technique for the temporal domain
– Legendre kernels – and the spatial domain – spherical vectorial kernels. This combination

142
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of different wavelet techniques will enable us to approximate all different combinations of
temporal and spatial variations, e.g. small or large scale temporal variations combined with
global or regional spatial effects. It is clear that this (especially the combination of regional
spatial effects with different temporal variations) can only be achieved if the data situation
is appropriate, a prerequisite that can, most probably, not be met by measurements of
single satellite missions. Nevertheless, our approach can be seen as a first step into the
direction of the newly planned multi-satellite mission SWARM. The scientific aims of the
SWARM mission are the sophisticated separation of the various field sources and, what is
more important in the context of this chapter, the accurate determination of the spatial and
temporal structure of the geomagnetic field achieved by a constellation of four to six satellites
with high-precision magnetometers. This multi-point principle will lead to measurements of
relatively high temporal resolution complementary to those of single-satellite missions (for
more information on the SWARM mission see e.g. http://www.dsri.dk/swarm).

Variant 1, presented in Section 6.1 is inspired by the time-space approach for scalar fields
given in [86] and finally leads to similar results as variant 2 of Section 6.2, a technique based
on the principle of tensor-product wavelets (see e.g. [79, 80] and, closely related to our
approach, [101] ).

6.1 Time-Space-Multiscale Approach: Variant 1

Without loss of generality we suppose the time interval under consideration to be transformed
to the unit interval [−1, 1]. Consequently, we consider elements of the space l2(Ω× [−1, 1])
when we refer to time-dependent vector fields. The corresponding norm is given by

‖f‖l2(Ω×[−1,1]) =
( 1∫
−1

∫
Ω

(f(ξ, t) · f(ξ, t)) dω(ξ)dt
)1/2

, f ∈ l2(Ω× [−1, 1]).

As usual, for fixed t ∈ [−1, 1], any f ∈ l2(Ω× [−1, 1]) can be represented by its Fourier series
with respect to ‖ · ‖l2(Ω), i.e.

f(·, t) =
3∑
i=1

∞∑
n=0i

2n+1∑
k=1

(f (i))∧(n, k)(t)y
(i)
n,k(·). (6.1)

It is clear that the same holds true for every time dependent vector field of type i ∈ {1, 2, 3}
and therefore we introduce the spaces l2(i)(Ω× [−1, 1]), for i ∈ {1, 2, 3}, such that

l2(Ω× [−1, 1]) =
3⊕
i=1

l2(i)(Ω× [−1, 1]).

Note that Equation (6.1) shows that, in the spectral domain, the time-dependency of the
vector field under consideration is transferred to its Fourier coefficients. As regards this
subject the following lemma will help us find the appropriate multiscale technique for dealing
with the time-dependency:
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Lemma 6.1 Let f ∈ l2(Ω× [−1, 1]). Then the corresponding Fourier coefficients fulfill

(f (i))∧(n, k)(·) ∈ L2([−1, 1]), i ∈ {1, 2, 3}, (n, k) ∈ N (i).

Proof. Since f ∈ l2(Ω× [−1, 1]) we now that

1∫
−1

∫
Ω

(f(ξ, t) · f(ξ, t)) dω(ξ)dt <∞.

This is equivalent to

1∫
−1

‖f(·, t)‖2
l2(Ω) dt <∞

⇔
1∫

−1

3∑
i=1

∞∑
n=0i

2n+1∑
k=1

(
(f (i))∧(n, k)(t)

)2
<∞.

But then it is clear that
1∫

−1

((f (i))∧(n, k)(t))2 dt <∞.

In Section 2.1.6 we have already introduced the use of Legendre scaling functions and wavelets
as a multiscale technique appropriate for dealing with functions in L2([−1, 1]). Therefore,
we may define temporal scaling functions and wavelets as follows:

Definition 6.2 Assume, for J ∈ Z, {(ΦJ)
∧(n)}n=0,1,... to be the generating symbol of an

L2([−1, 1])-scaling function and let {(ΨJ)
∧(n)}n=0,1,... be the generating symbol of the as-

sociated L2([−1, 1])-wavelet. Then the temporal scaling functions {Φtemp,J} and wavelets
{Ψtemp,J} of scale J are defined by

Φtemp,J(s, t) =
∞∑
n=0

Φ∧
J (n)P ∗

n(s)P ∗
n(t), s, t ∈ [−1, 1],

Ψtemp,J(s, t) =
∞∑
n=0

Ψ∧
J (n)P ∗

n(s)P ∗
n(t), s, t ∈ [−1, 1],

respectively.

The corresponding temporal convolutions are given by the L2([−1, 1])-convolutions as pre-
sented in Section 2.1.6.

As regards the spatial domain, Chapter 2 – especially Section 2.2.4 – provides us with the
necessary kernel functions, i.e. the spherical vector scaling functions and wavelets will serve
as the spatial kernels. In this context, the following lemma will be helpful.
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Lemma 6.3 Let the families {ϕ(i)
J }, {ψ

(i)
J }, i ∈ {1, 2, 3}, J ∈ Z, be a spherical vector scaling

function and the associated spherical vector wavelet, respectively. Then

1∫
−1

(
ϕ

(i)
J ? ϕ

(i)
J ∗ f(·, t)

)2

dt <∞

as well as
1∫

−1

(
ψ

(i)
J ? ψ

(i)
J ∗ f(·, t)

)2

dt <∞

hold true.

Proof. We start with the scaling function. From our treatment so far we know

1∫
−1

(
ϕ

(i)
J ? ϕ

(i)
J ∗ f(·, t)

)2

dt

=

1∫
−1

 ∑
(n,k)∈N (i)

(
(ϕ

(i)
J )∧(n)

)2

(f (i))∧(n, k)(t)︸ ︷︷ ︸
∈L2([−1,1])

y
(i)
n,k(ξ)


2

dt

=
∑

(n,k)∈N (i)

∑
(l,m)∈N (i)

(
(ϕ

(i)
J )∧(n)

)2 (
(ϕ

(i)
J )∧(l)

)2

y
(i)
n,k(ξ)y

(i)
l,m(ξ)

·
1∫

−1

(f (i))∧(n, k)(t)(f (i))∧(l,m)(t) dt.

But

1∫
−1

(f (i))∧(n, k)(t)(f (i))∧(l,m)(t) dt

=

1∫
−1

∫
Ω

f(ξ, t) · y(i)
n,k(ξ) dω(ξ)

∫
Ω

f(ξ, t) · y(i)
l,m(ξ) dω(ξ) dt

≤

 1∫
−1

(

∫
Ω

f(ξ, t) · y(i)
n,k(ξ) dω(ξ))2 dt

1/2 1∫
−1

(

∫
Ω

f(ξ, t) · y(i)
l,m(ξ) dω(ξ))2 dt

1/2
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≤


1∫

−1

∫
Ω

(f(ξ, t))2 dω(ξ)

∫
Ω

(y
(i)
n,k(ξ))

2 dω(ξ)

︸ ︷︷ ︸
=1

dt


1/2

·


1∫

−1

∫
Ω

(f(ξ, t))2 dω(ξ)

∫
Ω

(y
(i)
l,m(ξ))2 dω(ξ)

︸ ︷︷ ︸
=1

dt


1/2

= ‖f‖2
l2(Ω×[−1,1]).

Therefore,

1∫
−1

(
ϕ

(i)
J ? ϕ

(i)
J ∗ f(·, t)

)2

dt

≤ ‖f‖2
l2(Ω×[−1,1])

∑
(n,k)∈N (i)

∑
(l,m)∈N (i)

|
(
(ϕ

(i)
J )∧(n)

)2 (
(ϕ

(i)
J )∧(l)

)2

| |y(i)
n,k(ξ) · y

(i)
l,m(ξ)|

= ‖f‖2
l2(Ω×[−1,1]) ·

 ∑
(n,k)∈N (i)

(
ϕ

(i)
J )∧(n)

)2

|y(i)
n,k(ξ)|

2

.

From [30] we know that

|y(i)
n,k(ξ)|

2 ≤ 2n+ 1

4π
.

Together with the admissibility of the generating symbol
{

(ϕ
(i)
J )∧(n)

}
this guarantees that

the last sum is finite such that the proof is complete. The proof for the wavelet part can be
done analogously.

Hence, we are now in a position to combine the spatial (l2(Ω)-product kernels) and the
temporal (L2([−1, 1])-product kernels) approach. In order to keep the following treatment
clear, we introduce an auxiliary convolution:

Definition 6.4 Let K be a L2([−1, 1])-product kernel and let k(i) be a l2(Ω)-product kernel
of type i ∈ {1, 2, 3}. Then, for f ∈ l2(Ω× [−1, 1]), the convolution

K ∗K ∗
(
k(i) ? k(i) ∗ f

)
(6.2)

is understood in the following sense:
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K ∗K ∗
(
k(i) ? k(i) ∗ f

)
= K(2) ∗

(
k(i) ? k(i) ∗ f

)
=

1∫
−1

K(·, s)
∑

(n,k)∈N (i)

(
(k(i))∧(n)

)2
((f (i))∧(n, k))(s)y

(i)
n,k ds

=
∑

(n,k)∈N (i)

(
(k(i))∧(n)

)2
y

(i)
n,k

1∫
−1

K(2)(·, s)((f (i))∧(n, k))(s) ds

=
∑

(n,k)∈N (i)

∞∑
m=0

(
(k(i))∧(n)(K)∧(m)

)2 (
(f (i))∧(n, k)

)∧
(m)y

(i)
n,kP

∗
m.

That is, the convolution of the temporal kernels is not meant to be acting on the vector field
(which is not defined in the sense of the convolutions presented in Chapter 2), but on its time-
dependent Fourier coefficients w.r.t. vector spherical harmonics (note that interchanging sum
and integral is guaranteed by the Beppo-Levi theorem). However, concerning Definition 6.4
a remark is indicated since we do not suppose the Fourier coefficients of the vector field
under consideration to be known.

Remark 6.5 From a purely mathematical point of view Definition 6.4 is justified and sat-
isfactory. From a practical point of view, however, (6.2) cannot be computed from a given
function f since the series expansion in terms of vector spherical harmonics is not known
and – what is yet more important – is not even wanted for we intend to use expansions
in terms of scaling functions and wavelets. Nevertheless, Definition 6.4 will be used in the
following treatment since it helps us keeping the upcoming proofs clear and straightforward.
For practical applications, however, the right way to perform the convolutions is given by

k(i) ?
(
K ∗K ∗ (k(i) ∗ f)

)
,

which can be calculated directly from any given function f ∈ l2(Ω× [−1, 1]) in terms of the
convolutions defined in Chapter 2. It is easy to show that

K ∗K ∗
(
k(i) ? k(i) ∗ f

)
= k(i) ?

(
K ∗K ∗ (k(i) ∗ f)

)
holds true.

Having the necessary tools at hand, we can now turn to the definitions of scale and detail
spaces in the combined temporal and spatial multiscale approach:
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Definition 6.6 Let the families {Φtemp,j1} and {Ψtemp,j1}, j1 ∈ Z, of L2([−1, 1])-product
kernels be temporal scaling functions and wavelets, respectively. Furthermore, the families
of l2(Ω)-product kernels {ϕ(i)

j2
} and {ψ(i)

j2
}, i ∈ {1, 2, 3}, j2 ∈ Z, are supposed to be spherical

vector scaling functions and wavelets, respectively. Then the time-space scale spaces (6.3)
and the time-space detail spaces (6.4),(6.5) and (6.6) of type i are defined by

VV(i)
j1,j2

=
{
Φtemp,j1 ∗ Φtemp,j1 ∗

(
ϕ

(i)
j2
? ϕ

(i)
j2
∗ f
)
|f ∈ l2(Ω× [−1, 1])

}
, (6.3)

VW(i)
j1,j2

=
{
Φtemp,j1 ∗ Φtemp,j1 ∗

(
ψ

(i)
j2
? ψ

(i)
j2
∗ f
)
|f ∈ l2(Ω× [−1, 1])

}
, (6.4)

WV(i)
j1,j2

=
{
Ψtemp,j1 ∗Ψtemp,j1 ∗

(
ϕ

(i)
j2
? ϕ

(i)
j2
∗ f
)
|f ∈ l2(Ω× [−1, 1])

}
, (6.5)

WW(i)
j1,j2

=
{
Ψtemp,j1 ∗Ψtemp,j1 ∗

(
ψ

(i)
j2
? ψ

(i)
j2
∗ f
)
|f ∈ l2(Ω× [−1, 1])

}
. (6.6)

The corresponding time-space scale and detail spaces are given by

VVj1,j2 =
3⊕
i=1

VV(i)
j1,j2

, (6.7)

VWj1,j2 =
3⊕
i=1

VW(i)
j1,j2

, (6.8)

WVj1,j2 =
3⊕
i=1

WV(i)
j1,j2

, (6.9)

WWj1,j2 =
3⊕
i=1

WW(i)
j1,j2

. (6.10)

Note that the first index always represents the scale for the temporal kernels while the second
index represents the scale for the spatial kernel functions.

While the spaces in (6.3), (6.6), (6.7) and (6.10) are what one would expect from the theory
of H- and h-wavelets, the occurrence of the hybrid spaces (6.4), (6.5), (6.8) and (6.9) is – on
first sight – somewhat surprising (note that in the following ’hybrid’ denotes the combination
of temporal scaling functions and spatial wavelets and the other way round; the expression
’pure’ will indicate the combination of temporal and spatial scaling functions or wavelets
only). Our further investigations concerning the interrelationships of the spaces will clarify
this subject and justify Definition 6.6 ex post. In the second variant of the time-space
multiscale approach, as given in Section 6.2, the hybrid spaces come into play more naturally.

We now turn to the relationships of the spaces in Definition 6.6. We restrict our considera-
tions to the time-space scale and detail spaces of type i ∈ {1, 2, 3}, since the results are, by
definition, valid for the time-space scale and detail spaces as well. Let f ∈ l2(Ω× [−1, 1])
and, furthermore, let j1, j2, j3, j4 ∈ N, with j1 ≤ j3 and j2 ≤ j4. It is clear that, for
i ∈ {1, 2, 3},

Φ
(2)
temp,j3

∗
(
ϕ

(i)
j4
? ϕ

(i)
j4
∗ f
)

= Φtemp,j3 ∗ Φtemp,j3 ∗
(
ϕ

(i)
j4
? ϕ

(i)
j4
∗ f
)
∈ VV(i)

j3,j4
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is valid. Due to our considerations in Chapter 2 we get

Φ
(2)
temp,j3

∗
(
ϕ

(i)
j4
? ϕ

(i)
j4
∗ f
)

= Φ
(2)
temp,j1

∗
(
ϕ

(i)
j4
? ϕ

(i)
j4
∗ f
)

+

j3−1∑
j=j1

Ψ
(2)
temp,j ∗

(
ϕ

(i)
j4
? ϕ

(i)
j4
∗ f
)

= Φ
(2)
temp,j1

∗

(
ϕ

(i)
j2
? ϕ

(i)
j2
∗ f +

j4−1∑
j=j2

ψ
(i)
j ? ψ

(i)
j ∗ f

)
+

+

j3−1∑
j=j1

Ψ
(2)
temp,j ∗

(
ϕ

(i)
j2
? ϕ

(i)
j2
∗ f +

j4−1∑
j=j2

ψ
(i)
j ? ψ

(i)
j ∗ f

)

= Φ
(2)
temp,j1

∗
(
ϕ

(i)
j2
? ϕ

(i)
j2
∗ f
)

+

j4−1∑
j=j2

Φ
(2)
temp,j1

∗
(
ψ

(i)
j ? ψ

(i)
j ∗ f

)
+

+

j3−1∑
j=j1

Ψ
(2)
temp,j ∗

(
ϕ

(i)
j2
? ϕ

(i)
j2
∗ f
)

+

j3−1∑
j=j1

j4−1∑
j′=j2

Ψ
(2)
temp,j ∗

(
ψ

(i)
j′ ? ψ

(i)
j′ ∗ f

)
.

This, however, is equivalent to the following relation

VV(i)
j1,j2

+

j4−1∑
j=j2

VW(i)
j1,j

+

j3−1∑
j=j1

WV(i)
j,j2

+

j3−1∑
j=j1

j4−1∑
j′=j2

WW(i)
j,j′ ⊂ VV

(i)
j3,j4

, (6.11)

for all i ∈ {1, 2, 3}. Hence,

VVj1,j2 +

j4−1∑
j=j2

VWj1,j +

j3−1∑
j=j1

WVj,j2 +

j3−1∑
j=j1

j4−1∑
j′=j2

WWj,j′ ⊂ VVj3,j4 .

Similar considerations lead us to the following lemma:

Lemma 6.7 Let the time-space scale and detail spaces (of type i ∈ {1, 2, 3}) be defined as
in Definition 6.6. Then, for all i ∈ {1, 2, 3}, the following relations hold true:

(i) VV(i)
j1,j2

+ VW(i)
j1,j2

⊂ VV(i)
j1,j2+1,

(ii) VV(i)
j1,j2

+WV(i)
j1,j2

⊂ VV(i)
j1+1,j2

,

(iii) WV(i)
j1,j2

+WW(i)
j1,j2

⊂ WV(i)
j1,j2+1,

(iv) VW(i)
j1,j2

+WW(i)
j1,j2

⊂ VW(i)
j1+1,j2

,

(v) VV(i)
j1,j2

+ VW(i)
j1,j2

+WV(i)
j1,j2

⊂ VV(i)
j1+1,j2+1

(v) VV(i)
j1,j2

+ VW(i)
j1,j2

+WV(i)
j1,j2

+WW(i)
j1,j2

⊂ VV(i)
j1+1,j2+1
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Equivalent relations hold for the time-space scale and detail spaces.

Proof. Let f ∈ l2(Ω× [−1, 1]). Obviously,

Φ
(2)
temp,j1

∗
(
ϕ

(i)
j2
? ϕ

(i)
j2
∗ f
)

+ Φ
(2)
temp,j1

∗
(
ψ

(i)
j2
? ψ

(i)
j2
∗ f
)

= Φ
(2)
temp,j1

∗
(
ϕ

(i)
j2
? ϕ

(i)
j2
∗ f + ψ

(i)
j2
? ψ

(i)
j2
∗ f
)

= Φ
(2)
temp,j1

∗
(
ϕ

(i)
j2+1 ? ϕ

(i)
j2+1 ∗ f

)
.

But this is just (i). Relations (ii) to (iv) can be derived similarly.

Furthermore, from (i) we know that

VV(i)
j1,j2

+ VW(i)
j1,j2

⊂ VV(i)
j1,j2+1. (6.12)

In combination with (ii) we can deduce that

VV(i)
j1,j2+1 +WV(i)

j1,j2
⊂ VV(i)

j1+1,j2+1. (6.13)

Combining (6.12) and (6.13) completes the proof of (v). Relation (vi) can be derived by
connecting (6.12) and (iii).

Last but not least, by forming the orthogonal sums of the time-space scale and detail spaces
of type i ∈ {1, 2, 3} we end up with the corresponding results for the time-space scale and
detail spaces.

From Lemma 6.7 it is easy to see that, for all i ∈ {1, 2, 3} and j1, j2, j3, j4 ∈ N, with j1 ≤ j3
and j2 ≤ j4, we get

VW(i)
j3−1,j4

⊃ VW(i)
j3−2,j4

+WW(i)
j3−2,j4

⊃ · · · ⊃ VW(i)
j1,j4

+

j3−1∑
j=j1

WW(i)
j,j4

as well as

WV(i)
j3,j4−1 ⊃ WV

(i)
j3,j4−2 +WW(i)

j3,j4−2 ⊃ · · · ⊃ WV
(i)
j3,j2

+

j4−1∑
j=j2

WW(i)
j3,j
.

Consequently,
j3−1∑
j=j1

WV(i)
j,j2

+

j3−1∑
j=j1

j4−1∑
j′=j2

WW(i)
j,j′ ⊂

j3−1∑
j=j1

WV(i)
j,j4
.

By adding VVj1,j4 this leads to

VVj1,j4 +

j3−1∑
j=j1

WV(i)
j,j2

+

j3−1∑
j=j1

j4−1∑
j′=j2

WW(i)
j,j′ ⊂ VVj3,j4 . (6.14)

Linking relations (i) and (ii) from Lemma 6.7 with equations (6.11) and (6.14) we can come
up with the following result:
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Theorem 6.8 Let the time-space scale and detail spaces of type i ∈ {1, 2, 3}, as well as the
corresponding time-space scale and detail spaces be defined as in Definition 6.6. Additionally,
let j1, j2, j3, j4 ∈ N, with j1 ≤ j3 and j2 ≤ j4. Then

VV(i)
j1,j2

+

j3−1∑
j=j1

WV(i)
j,j2

+

j4−1∑
j=j2

VW(i)
j1,j

+

j3−1∑
j=j1

j4−1∑
j′=j2

WW(i)
j,j′ = VV(i)

j3,j4
, i ∈ {1, 2, 3},

and,

VVj1,j2 +

j3−1∑
j=j1

WVj,j2 +

j4−1∑
j=j2

VWj1,j +

j3−1∑
j=j1

j4−1∑
j′=j2

WWj,j′ = VVj3,j4

are valid.

This immediately shows the following corollary to be true, i.e.

Corollary 6.9 Under the assumptions of Theorem 6.8 the time-space scale spaces of type
i ∈ {1, 2, 3}, as well as the time-space scale spaces fulfill

VV(i)
j1,j2

⊂ VV(i)
j3,j4

, i ∈ {1, 2, 3},

and
VVj1,j2 ⊂ VVj3,j4 ,

respectively.

What remains is to show the approximation properties of the time-space approach. We let
f ∈ l2(Ω× [−1, 1]) and look at the following expression:

f
(i)
j1,j2

= Φtemp,j1 ∗ Φtemp,j1 ∗
(
ϕ

(i)
j2
? ϕ

(i)
j2
∗ f
)

= Φ
(2)
temp,j1

∗
(
ϕ

(i)
j2
? ϕ

(i)
j2
∗ f
)

=

1∫
−1

Φ
(2)
temp,j1

(·, s)
∑

(n,k)∈N (i)

(
(ϕ

(i)
j2

)∧(n)
)2

((f (i))∧(n, k))(s)y
(i)
n,k ds

=
∑

(n,k)∈N (i)

(
(ϕ

(i)
j2

)∧(n)
)2

y
(i)
n,k

1∫
−1

Φ
(2)
temp,j1

(·, s)((f (i))∧(n, k))(s) ds

=
∑

(n,k)∈N (i)

∞∑
m=0

(
(ϕ

(i)
j2

)∧(n)(Φj1)
∧(n)

)2

·

·
(
(f (i))∧(n, k)

)∧
(m)y

(i)
n,kP

∗
m. (6.15)

(Note that interchanging summation and integration is justified by the theorem of Beppo-
Levi.) This result will help us proof the next theorem:
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Theorem 6.10 Let the families {Φtemp,j1} and {ϕ(i)
j2
}, j1, j2 ∈ Z, i ∈ {1, 2, 3}, be tem-

poral scaling functions and spherical vector scaling functions of type i, respectively. Let
f ∈ l2(Ω× [−1, 1]) with f =

∑3
i=1 f

(i) and

f
(i)
j1,j2

= Φtemp,j1 ∗ Φtemp,j1 ∗
(
ϕ

(i)
j2
? ϕ

(i)
j2
∗ f
)
.

Then
lim
j1→∞
j2→∞

‖f (i) − f
(i)
j1,j2

‖l2(Ω×[−1,1]) = 0 (6.16)

as well as

lim
j1→∞
j2→∞

∥∥∥∥∥f −
3∑
i=1

f
(i)
j1,j2

∥∥∥∥∥
l2(Ω×[−1,1])

= 0. (6.17)

Proof. Using Equation (6.15) we can deduce that

‖f (i) − f
(i)
j1,j2

‖2
l2(Ω×[−1,1])

=
∑

(n,k)∈N (i)

∞∑
m=0

(
1−

(
(ϕ

(i)
j2

)∧(n)(Φj1)
∧(n)

)2
)2 ((

(f (i))∧(n, k)
)∧

(m)
)2

≤ ‖f (i)‖2
l2(Ω×[−1,1]),

where in the last step we have made use of the characteristics of the generating symbols of
the scaling functions. Due to this uniform convergence we end up with (6.16). The proof for
(6.17) can be derived analogously.

Finally, combining Theorems 6.8 and 6.10 we get the following result:

Corollary 6.11 Let f ∈ l2(Ω× [−1, 1]) with f =
∑3

i=1 f
(i). Under the terms of Theorems

6.8 and 6.10 the equalities

f (i) = lim
j1→∞
j2→∞

(
Φ

(2)
temp,0 ∗

(
ϕ

(i)
0 ? ϕ

(i)
0 ∗ f

)
+

j2−1∑
j=0

Φ
(2)
temp,0 ∗

(
ψ

(i)
j ? ψ

(i)
j ∗ f

)
+

+

j1−1∑
j=0

Ψ
(2)
temp,j ∗

(
ϕ

(i)
0 ? ϕ

(i)
0 ∗ f

)
+

j1−1∑
j=0

j2−1∑
j′=0

Ψ
(2)
temp,j ∗

(
ψ

(i)
j′ ? ψ

(i)
j′ ∗ f

))
,

i ∈ {1, 2, 3}, as well as

f = lim
j1→∞
j2→∞

(
Φ

(2)
temp,0 ∗ (ϕ0 ? ϕ0 ∗ f) +

j2−1∑
j=0

Φ
(2)
temp,0 ∗ (ψj ? ψj ∗ f) +

+

j1−1∑
j=0

Ψ
(2)
temp,j ∗ (ϕ0 ? ϕ0 ∗ f) +

j1−1∑
j=0

j2−1∑
j′=0

Ψ
(2)
temp,j ∗ (ψj′ ? ψj′ ∗ f)

)

hold true in the sense of ‖ · ‖l2(Ω×[−1,1]).
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What we have established with Theorems 6.8 and 6.10 in combination with Corollaries 6.9
and 6.11 is basically a multiresolution analysis of the space l2(Ω× [−1, 1]) that is, in the
terms of this chapter, a combined temporal and spatial multiresolution analysis. There
remains the question of how to interpret the time-space scale and detail spaces.

We start with the scale spaces VV(i)
j1,j2

. As previously mentioned, double convolutions with
scaling functions can, in the spectral domain, be interpreted as low-pass filtering of the
function under consideration. Therefore, if f ∈ l2(Ω× [−1, 1]) denotes a time-dependent

vector field and P
(i)
VVj1,j2

(f) denotes the projection of f onto the space VV(i)
j1,j2

, then

3∑
i=1

P
(i)
VVj1,j2

(f) ∈ VVj1,j2

can be understood as that part of f that shows coarse spatial structures varying compara-
tively slowly with time. P

(1)
VVj1,j2

(f), P
(2)
VVj1,j2

(f) and P
(3)
VVj1,j2

(f) are the corresponding radial

part, the part of zero surface curl and of zero surface divergence, respectively.

Looking at the definition of the detail spaces VW(i)
j1,j2

, one realizes that these spaces contain
information obtained by applying temporal scaling functions as well as spatial (spherical

vector) wavelets to functions f ∈ l2(Ω× [−1, 1]). Consequently, if P
(i)
VWj1,j2

(f) denotes the

projection of f onto the spaces VW(i)
j1,j2

, then

3∑
i=1

P
(i)
VWj1,j2

(f) ∈ VWj1,j2

can be interpreted as the temporally slowly varying spatial detail information of f or, in
other words, regional spatial structures of lower temporal variation. P

(1)
VWj1,j2

(f), P
(2)
VWj1,j2

(f)

and P
(3)
VWj1,j2

(f) may be understood accordingly.

As regards the spaces WV(i)
j1,j2

, similar reasoning leads us to the conclusion that

3∑
i=1

P
(i)
WVj1,j2

(f) ∈ WVj1,j2 ,

represents coarse spatial structures of f ∈ l2(Ω× [−1, 1]) of higher temporal variation.

Finally,
3∑
i=1

P
(i)
WWj1,j2

(f) ∈ WWj1,j2 ,

may be interpreted as that part of f ∈ l2(Ω× [−1, 1]) that consists of regional details
in space which show – more or less – short-term temporal fluctuations. With respect to
what we have said before, the interpretation of P

(i)
WWj1,j2

(f) and P
(i)
WVj1,j2

(f), i ∈ {1, 2, 3}, is

straightforward.
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6.2 Time-Space-Multiscale Approach: Variant 2

We now turn to the second variant of the time-space multiscale approach. In order to
formulate variant 1 we started with the a priori definition of the time-space scale and detail
spaces which then was justified ex post during the course of our considerations. Though
variant 2 will, in the end, lead to results similar to the treatment in Section 6.1, the modus
operandi will be just the other way round and will resemble the considerations in Chapter
2. The advantage of this second approach lies surely in the fact that the spaces of Definition
6.6 come into play more naturally. Based on the temporal scaling functions and wavelets
defined in Definition 6.2 and the spherical vectorial (i.e. spatial) kernels, we will define
certain tensor-product kernels which will then serve as the time-space scaling functions and
wavelets (for more details on tensor-product wavelets see e.g. [79, 80, 101]).

Starting point is the definition of the generating symbol of a time-space scaling function:

Definition 6.12 Suppose, for j1 ∈ Z, {(Φj1)
∧(n1)}n1=0,1,... to be the generating symbol

of a temporal scaling function. Furthermore, for i ∈ {1, 2, 3} and j2 ∈ Z, we assume{
(ϕ

(i)
j2

)∧(n2)
}
n2=0i,0i+1,...

to be the generating symbols of spherical vectorial scaling functions

of type i. Then the generating symbols of time-space (tensor-product) scaling functions of
type i are given by the sequence{

(ϕ̂
(i)
j1,j2

)∧(n1;n2)
}

n1=0,1,...
n2=0i,0i+1,...

,

with
(ϕ̂

(i)
j1,j2

)∧(n1;n2) = (Φj1)
∧(n1)(ϕ

(i)
j2

)∧(n2).

The sequence of vectors
{(ϕ̂j1,j2)∧(n1;n2)} n1=0,1,...

n2=0i,0i+1,...
,

with

(ϕ̂j1,j2)
∧(n1;n2) =

(
(ϕ̂

(1)
j1,j2

)∧(n1;n2), (ϕ̂
(2)
j1,j2

)∧(n1;n2), (ϕ̂
(3)
j1,j2

)∧(n1;n2)
)T

,

is called the generating symbol of a time-space (tensor-product) scaling function.

The time-space scaling functions are defined as follows:

Definition 6.13 Let
{

(ϕ̂
(i)
j1,j2

)∧(n1;n2)
}

n1=0,1,...
n2=0i,0i+1,...

, i ∈ {1, 2, 3}, j1, j2 ∈ Z be the generating

symbols of time-space scaling functions of type i. Then the families of kernels
{
ϕ̂

(i)
j1,j2

}
denote

the time-space (tensor-product) scaling functions of type i ∈ {1, 2, 3} and are defined by

ϕ̂
(i)
j1,j2

(ξ, η; s, t) =
∞∑

n1=0

∑
(n2,k)∈N (i)

(ϕ̂
(i)
j1,j2

)∧(n1;n2)Yn2,k(ξ)P
∗
n1

(s)y
(i)
n2,k

(ξ)P ∗
n1

(t),
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where ξ, η ∈ Ω and s, t ∈ [−1, 1]. The corresponding time-space scaling functions are given
by the families of kernels {ϕ̂j1,j2} defined via

ϕ̂j1,j2 =
3∑
i=1

ϕ̂
(i)
j1,j2

.

As in variant 1, the first index always denotes the scale of the temporal part, while the second
index represents the scale of the spatial part. It is noteworthy that the characteristics of the
generating symbols, like admissibility for example, carry over to the time-space case as well.

In Chapter 2 we have derived the wavelets from the associated scaling functions by means
of so-called refinement equations for the generating symbols (see Definitions 2.10 and 2.21).
We will now proceed likewise and define the symbols of the time-space wavelets by means
of a refinement equation.

Definition 6.14 Let
{

(ϕ̂
(i)
j1,j2

)∧(n1;n2)
}

n1=0,1,...
n2=0i,0i+1,...

, i ∈ {1, 2, 3}, j1, j2 ∈ Z be the generating

symbols of time-space scaling functions of type i. The generating symbols of the associated

pure time-space wavelets of type i are given by the sequences
{

(ψ̂
(i)
j1,j2

)∧(n1;n2)
}

n1=0,1,...
n2=0i,0i+1,...

,

with
(ψ̂

(i)
j1,j2

)∧(n1;n2) = (Ψj1)
∧(n1)(ψ

(i)
j2

)∧(n2),

fulfilling the refinement equation(
(ψ̂

(i)
j1,j2

)∧(n1;n2)
)2

=
(
((Φj1+1)

∧(n1))
2 − ((Φj1)

∧(n1))
2) ·

·
((

(ϕ
(i)
j2+1)

∧(n2)
)2

−
(
(ϕ

(i)
j2

)∧(n2)
)2
)
.

(6.18)

The sequence of vectors {
(ψ̂j1,j2)

∧(n1;n2)
}

n1=0,1,...
n2=0i,0i+1,...

,

with

(ψ̂j1,j2)
∧(n1;n2) =

(
(ψ̂

(1)
j1,j2

)∧(n1;n2), (ψ̂
(2)
j1,j2

)∧(n1;n2), (ψ̂
(3)
j1,j2

)∧(n1;n2)
)T

,

is called the generating symbol of the associated pure time-space (tensor-product) wavelets

Before we use the previous definition in order to construct time-space wavelets, we should
have a closer look at the refinement equation (6.18) in order to see what effects arise from
the ’simultaneous’ refinement in time and space.
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Expanding the product we arrive at

((Ψj1)
∧(n1))

2
(
(ψ

(i)
j2

)∧(n2)
)2

= ((Φj1+1)
∧(n1))

2
(
(ϕ

(i)
j2+1)

∧(n2)
)2

− ((Φj1+1)
∧(n1))

2
(
(ϕ

(i)
j2

)∧(n2)
)2

+

+ ((Φj1)
∧(n1))

2
(
(ϕ

(i)
j2

)∧(n2)
)2

− ((Φj1)
∧(n1))

2
(
(ϕ

(i)
j2+1)

∧(n2)
)2

= ((Φj1+1)
∧(n1))

2
(
(ϕ

(i)
j2+1)

∧(n2)
)2

+ ((Φj1)
∧(n1))

2
(
(ϕ

(i)
j2

)∧(n2)
)2

+

− ((Φj1)
∧(n1))

2

[(
(ϕ

(i)
j2

)∧(n2)
)2

+
(
(ψ

(i)
j2

)∧(n2)
)2
]

+

−
(
(ψ

(i)
j2

)∧(n2)
)2 [

((Φj1)
∧(n1))

2
+ ((Ψj1)

∧(n1))
2
]
,

where in the last step we have made use of the refinement equations for the Legendre as well
as the spherical vector wavelets. Expanding the products again, cancelling out the equal
terms and rearranging slightly we end up with

(Φj1+1)
∧(n1)(ϕ

(i)
j2+1)

∧(n2) = (Φj1)
∧(n1)(ϕ

(i)
j2

)∧(n2) + (6.19)

+ (Φj1)
∧(n1)(ψ

(i)
j2

)∧(n2) + (6.20)

+ (Ψj1)
∧(n1)(ϕ

(i)
j2

)∧(n2) + (6.21)

+ (Ψj1)
∧(n1)(ψ

(i)
j2

)∧(n2). (6.22)

It is this results that enlightens the definitions of the time-space scale and detail spaces
of variant 1. The right-hand side of Equation (6.19), i.e. an expression related to scaling

functions for the temporal and the spatial part, corresponds to the spaces VV(i)
j1,j2

. The

term (6.20) is related to VW(i)
j1,j2

, while (6.21) corresponds to the spaces WV(i)
j1,j2

. Finally,

expression (6.22) relates to WW(i)
j1,j2

. Therefore, the necessity for the hybrid spaces VW(i)
j1,j2

and WV(i)
j1,j2

to occur arises naturally from the fact that two refinement equations, namely
for the temporal as well as the spatial wavelets, need to be fulfilled simultaneously (see
refinement equation (6.18)). Consequently, from (6.19) to (6.22) there appear four different
expressions in order to go from an approximation of scales j1 and j2 to scales j1 + 1 and
j2 + 1, respectively. Basically this is just another way of expressing the results of Corollary
6.11.

Equations (6.19) to (6.22) now show us what kinds of time-space kernels are necessary. While
the kernel functions corresponding to (6.19) are just the previously defined time-space scaling
functions of Definition 6.13, we need to construct three different types of wavelets, i.e. two
kinds of hybrid time-space wavelets which are really a combination of scaling functions and
wavelets, and one kind of pure time-space wavelets.
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Definition 6.15 Let
{

(ϕ̂
(i)
j1,j2

)∧(n1;n2)
}

n1=0,1,...
n2=0i,0i+1,...

, i ∈ {1, 2, 3}, j1, j2 ∈ Z be the gener-

ating symbols of time-space scaling functions of type i ∈ {1, 2, 3}. Additionally, suppose{
(ψ̂

(i)
j1,j2

)∧(n1;n2)
}

n1=0,1,...
n2=0i,0i+1,...

to be the generating symbol of the associated pure time-space

wavelets of type i. Let ξ, η ∈ Ω and s, t ∈ [−1, 1]. The pure time-space (tensor-product)

wavelets of type i, i.e. the families
{
ψ̂

(i)
j1,j2

}
, are defined by

ψ̂
(i)
j1,j2

(ξ, η; s, t) =
∞∑

n1=0

∑
(n2,k)∈N (i)

(ψ̂
(i)
j1,j2

)∧(n1;n2)Yn2,k(ξ)P
∗
n1

(s)y
(i)
n2,k

(ξ)P ∗
n1

(t).

The hybrid time-space (tensor-product) wavelets of type i, i.e.
{
σ̂

(i)
j1,j2

}
and

{
τ̂

(i)
j1,j2

}
are

given by

σ̂
(i)
j1,j2

(ξ, η; s, t) =
∞∑

n1=0

∑
(n2,k)∈N (i)

(Φj1)
∧(n1)(ψ

(i)
j2

)∧(n2)Yn2,k(ξ)P
∗
n1

(s)y
(i)
n2,k

(ξ)P ∗
n1

(t)

and

τ̂
(i)
j1,j2

(ξ, η; s, t) =
∞∑

n1=0

∑
(n2,k)∈N (i)

(Ψj1)
∧(n1)(ϕ

(i)
j2

)∧(n2)Yn2,k(ξ)P
∗
n1

(s)y
(i)
n2,k

(ξ)P ∗
n1

(t),

respectively. The corresponding pure and hybrid time-space wavelets or, in more detail, the

families
{
ψ̂j1,j2

}
, {σ̂j1,j2} and {τ̂j1,j2} are defined by

ψ̂j1,j2 =
3∑
i=1

ψ̂
(i)
j1,j2

,

σ̂j1,j2 =
3∑
i=1

σ̂
(i)
j1,j2

,

τ̂j1,j2 =
3∑
i=1

τ̂
(i)
j1,j2

.

The next step in formulating this variant of time-space approximation is the introduction of
convolutions of the time-space kernels with time-dependent vector fields.

Definition 6.16 Let
{
k̂

(i)
j1,j2

}
be a time-space scaling function or wavelet of type i ∈ {1, 2, 3},

j1, j2 ∈ Z. For f ∈ l2(Ω× [−1, 1]) the time-space decomposition convolution of f is given
by

(
k̂

(i)
j1,j2

∗ f
)

(η; s) =

1∫
−1

(

∫
Ω

k̂
(i)
j1,j2

(η, ξ; , s, t) · f(η; s) dω(η)) ds, s, t ∈ [−1, 1], η, ξ ∈ Ω. (6.23)
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If we let F
(i)
j1,j2

= k̂
(i)
j1,j2

∗ f , then the time-space reconstruction convolution of f is defined to
be (

k̂
(i)
j1,j2

? F
(i)
j1,j2

)
(ξ; t) =

∫
Ω

(

1∫
−1

F
(i)
j1,j2

(η; s)k̂
(i)
j1,j2

(ξ, η; s, t) ds) dω(η). (6.24)

Note that Definition 6.16 is just the canonical extension of Definition 2.15 to the case of
time-dependent spherical vector fields. In other words, the decomposition convolution as-
signs a scalar function, the so-called ’coefficients’, to the vector field under consideration.
The reconstruction convolution is used to approximate the vector field from these scalar
coefficients.

Finally, having introduced the kernel functions and convolutions, the last ingredient for the
variant 2 multiscale approach are the corresponding scale- and detail spaces. While in the
first variant there are four spaces defined via four different combinations of temporal and
spatial kernels, the spaces of the second variant are given in correspondence to the four
different time-space kernels. In other words, what is a mere definition in the first approach
is directly related to the existence of four types of time-space kernels and therefore an
immediate consequence of the combined time and space refinement.

Definition 6.17 Suppose
{
ϕ̂

(i)
j1,j2

}
to be time-space scaling functions of type i ∈ {1, 2, 3}

and let
{
ψ̂

(i)
j1,j2

}
,
{
σ̂

(i)
j1,j2

}
and

{
τ̂

(i)
j1,j2

}
be the associated pure and hybrid time-space wavelets

of scales j1, j2 ∈ Z. The pure time-space scale spaces of type i are defined by

V̂V
(i)

j1,j2
=
{
ϕ̂

(i)
j1,j2

? (ϕ̂
(i)
j1,j2

∗ f)|f ∈ l2(Ω× [−1, 1])
}
.

The hybrid time-space detail spaces of type i are given by

V̂W
(i)

j1,j2
=

{
σ̂

(i)
j1,j2

? (σ̂
(i)
j1,j2

∗ f)|f ∈ l2(Ω× [−1, 1])
}
,

ŴV
(i)

j1,j2
=

{
τ̂

(i)
j1,j2

? (τ̂
(i)
j1,j2

∗ f)|f ∈ l2(Ω× [−1, 1])
}
,

while the pure time-space detail spaces of type i are defined via

ŴW
(i)

j1,j2
=
{
ψ̂

(i)
j1,j2

? (ψ̂
(i)
j1,j2

∗ f)|f ∈ l2(Ω× [−1, 1])
}
.

Correspondingly we define

V̂Vj1,j2 =
3⊕
i=1

V̂V
(i)

j1,j2
,

V̂Wj1,j2 =
3⊕
i=1

V̂W
(i)

j1,j2
,
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ŴVj1,j2 =
3⊕
i=1

ŴV
(i)

j1,j2
,

ŴWj1,j2 =
3⊕
i=1

ŴW
(i)

j1,j2

to be the pure time-space scale space as well as the hybrid and pure time-space detail spaces.

What remains is to show that the definitions so far suffice to get a multiresolution analysis
of a time-dependent vector field f ∈ l2(Ω× [−1, 1]), i.e. that variant 2 bears results that
correspond to Theorems 6.8 and 6.10, as well as Corollaries 6.9 and 6.11. By means of direct
calculations it is not hard to verify the following lemma which will help us to carry over the
results of variant 1 to variant 2.

Lemma 6.18 Suppose the families {Φtemp,j1} and {ϕ(i)
j2
}, j1, j2 ∈ Z, i ∈ {1, 2, 3}, to be

temporal scaling functions and spherical vector scaling functions of type i, respectively. Fur-

thermore, let
{
ϕ̂

(i)
j1,j2

}
be time-space scaling functions of type i and let

{
ψ̂

(i)
j1,j2

}
,
{
σ̂

(i)
j1,j2

}
and{

τ̂
(i)
j1,j2

}
be the associated pure and hybrid time-space wavelets. For f ∈ l2(Ω× [−1, 1]) it

holds that

Φtemp,j1 ∗ Φtemp,j1 ∗
(
ϕ

(i)
j2
? ϕ

(i)
j2
∗ f
)

= ϕ̂
(i)
j1,j2

? (ϕ̂
(i)
j1,j2

∗ f),

Φtemp,j1 ∗ Φtemp,j1 ∗
(
ψ

(i)
j2
? ψ

(i)
j2
∗ f
)

= σ̂
(i)
j1,j2

? (σ̂
(i)
j1,j2

∗ f),

Ψtemp,j1 ∗Ψtemp,j1 ∗
(
ϕ

(i)
j2
? ϕ

(i)
j2
∗ f
)

= τ̂
(i)
j1,j2

? (τ̂
(i)
j1,j2

∗ f),

as well as
Ψtemp,j1 ∗Ψtemp,j1 ∗

(
ψ

(i)
j2
? ψ

(i)
j2
∗ f
)

= ψ̂
(i)
j1,j2

? (ψ̂
(i)
j1,j2

∗ f),

where the convolutions on the left hand side are understood in the sense of Definition 6.4,
while the convolutions on the right hand side are in accordance with Definition 6.16.

This means that the insights of variant 1 can immediately be translated into the language
of variant 2, thus enabling us to formulate the final result:

Theorem 6.19 Let, for j1, j2 ∈ Z,
{
ϕ̂

(i)
j1,j2

}
be time-space scaling functions of type i ∈

{1, 2, 3} and let
{
ψ̂

(i)
j1,j2

}
,
{
σ̂

(i)
j1,j2

}
and

{
τ̂

(i)
j1,j2

}
be the associated pure and hybrid time-space

wavelets of type i. {ϕ̂j1,j2},
{
ψ̂j1,j2

}
, {σ̂j1,j2} and {τ̂j1,j2} are assumed to be the correspond-

ing time-space scaling functions, the hybrid and the pure time-space wavelets, respectively.
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Suppose f ∈ l2(Ω× [−1, 1]) with f =
∑3

i=1 f
(i). Then,

f (i) = lim
j1→∞
j2→∞

(
ϕ̂

(i)
j1,j2

? (ϕ̂
(i)
j1,j2

∗ f)
)

= lim
j1→∞
j2→∞

(
ϕ̂

(i)
0,0 ? (ϕ̂

(i)
0,0 ∗ f) +

j2−1∑
j=0

σ̂
(i)
0,j ? (σ̂

(i)
0,j ∗ f) +

+

j1−1∑
j=0

τ̂
(i)
j,0 ? (τ̂

(i)
j,0 ∗ f) +

j1−1∑
j=0

j2−1∑
j′=0

ψ̂
(i)
j,j′ ? (ψ̂

(i)
j,j′ ∗ f)

)
,

as well as

f = lim
j1→∞
j2→∞

(ϕ̂j1,j2 ? (ϕ̂j1,j2 ∗ f))

= lim
j1→∞
j2→∞

(
ϕ̂0,0 ? (ϕ̂0,0 ∗ f) +

j2−1∑
j=0

σ̂0,j ? (σ̂0,j ∗ f) +

+

j1−1∑
j=0

τ̂j,0 ? (τ̂j,0 ∗ f) +

j1−1∑
j=0

j2−1∑
j′=0

ψ̂j,j′ ? (ψ̂j,j′ ∗ f)

)

hold true in the sense of the l2(Ω× [−1, 1])-metric. Accordingly, for the time-space scale and
detail spaces of Definition 6.17 we have

V̂V
(i)

j1,j2
+

j3−1∑
j=j1

ŴV
(i)

j,j2
+

j4−1∑
j=j2

V̂W
(i)

j1,j
+

j3−1∑
j=j1

j4−1∑
j′=j2

ŴW
(i)

j,j′ = V̂V
(i)

j3,j4
, i ∈ {1, 2, 3},

and,

V̂Vj1,j2 +

j3−1∑
j=j1

ŴVj,j2 +

j4−1∑
j=j2

V̂Wj1,j +

j3−1∑
j=j1

j4−1∑
j′=j2

ŴWj,j′ = V̂Vj3,j4 ,

with j3, j4 ∈ Z and j1 ≤ j3, j2 ≤ j4.

No matter which variant is used it is obvious that, as far as numerical applications are
concerned, one main task is to visualize the huge amount of information obtained, i.e. the
content of the three scale spaces and the nine detail spaces. Concerning numerical realiza-
tion, visualization and first numerical examples utilizing synthetic vector data, the interested
reader is redirected to [64]. Together with the author of [64] we have developed and imple-
mented a multiscale analysis and visualization tool for time-dependent spherical vector fields
which is introduced circumstantially in the aforementioned work. We do not go into detail
here, since this would be way beyond the scope of this thesis. Nevertheless, for illustra-
tional purposes we present some impressions of the analysis and visualization tool in action.
Figures 6.1 and 6.2 show screen shots of the tool during a time-space analysis process of
synthetic test vector fields. In Figure 6.1 a global vector field is analyzed that varies slowly
in time but shows sudden short local disturbances. In Figure 6.2 a similar vector field is
analyzed but this time the local disturbances appear and decay a bit more slowly (cf. [64]).
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Figure 6.1: Multiscale analysis and visualization tool for time-dependent spherical vector
fields. Left window: At a high spatial wavelet scale local effects are detected in a global
vector field . Right window: The corresponding wavelet coefficients in the temporal domain
indicate the very moment of their appearance and the comparatively short duration of the
effects.
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Figure 6.2: Multiscale analysis and visualization tool for time-dependent spherical vector
fields. Left window: At a high spatial wavelet scale local effects are detected in a global
vector field. Right window: The corresponding wavelet coefficients in the temporal domain
indicate the very moment of their appearance and the comparatively long duration of the
effects. The pop-ups show additional auxiliary information.



Summary and Outlook

During the course of this thesis a comprehensive theoretical framework for the application of
multiscale methods in spaceborne magnetometry is introduced and examined from a mathe-
matical point of view. A general approach to scalar as well as vectorial wavelet techniques
is established in Chapter 2 and several concrete examples, i.e. Legendre wavelets, scalar
spherical wavelets and vectorial spherical wavelets, are shown to be deducible from these
general principles.

Based on the knowledge of a priori known covariance kernels, basic concepts of spectral and
multiscale selective reconstruction from error-affected data are outlined for spherical scalar
as well as vector fields in Chapter 3. The resulting techniques, i.e. multiscale signal-to-noise
thresholding for scalar and vector fields are able to deal with noise that spatially changes its
frequency behaviour, i.e. the multiscale character of our modelling approaches from Chapter
2 is maintained. In the case of denoising of vector fields, two different approaches, i.e. tensor
based and vector based, are derived. The tensor based approach is the canonical extension
of the scalar case but might lead to numerical obstacles in applications. The vector based
technique is shown to lead to results equivalent to the tensor approach, but seems to be
numerically easier to handle. A numerical example, utilizing synthetic geomagnetic vector
data, is presented which provides an insight into the principles of multiscale signal-to-noise
thresholding and demonstrates its efficiency. As regards the future application to real satel-
lite data, it is necessary to develop appropriate covariance kernels that are especially well
suited for current satellite missions. Having those kernels at hand, multiscale signal-to-noise
thresholding can be reasonably combined with multiscale regularization techniques, for ex-
ample, and then be applied for the determination and downward continuation of geomagnetic
crustal field signatures from satellite data.

Chapter 4 is concerned with the determination and downward continuation of crustal field
signals from vectorial satellite measurements within a multiscale framework. Since, on the
one hand, one cannot expect the measurements to be free of noise, the problem of down-
ward continuation is ill-posed and requires sophisticated means of regularization. On the
other hand, crustal signatures are of comparatively small spatial extend such that a suitable
approximation demands appropriate, space localizing trial functions. We combine both as-
pects, i.e. regularization and localizing ansatz functions, in our approach. The basic idea is
to formulate the problem in terms of integral equations relating the radial or tangential field
at satellite altitudes with the magnetic field at the Earth’s surface. The integral equations
are then solved in terms of scalar as well as vectorial regularization wavelets. The prob-
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lem is tackled in two steps. First, the formalism is derived in spherical approximation, i.e.
assuming that the satellite’s orbit as well as the Earth’s surface can be approximated by
spheres of fixed radii. In a second step a combined spline and wavelet approach is considered
that enables us to incorporate the real orbit geometries as well as the real Earth’s surface if
necessary. In a numerical example (in spherical approximation) we derive, from one month
of CHAMP vector data, global as well as regional wavelet models of the crustal field signa-
tures at Earth’s mean spherical surface. The application of the combined spline and wavelet
approach is an interesting task for future studies. Additionally, as we have already men-
tioned, it is interesting to study the combination of multiscale signal-to-noise thresholding
and multiscale downward continuation in detail. Another task for future investigations is
the simultaneous use of geomagnetic satellite as well as observatory data in a multiscale
framework.

The Mie representation for the geomagnetic field has the advantage that it can equally be ap-
plied in regions of vanishing as well as non-vanishing electric current densities. The standard
method of deriving the Mie representation is given by a spherical harmonic parametrization,
i.e. by expanding the corresponding Mie scalars in terms of spherical harmonics. Consider-
ing the measurements (magnetic field or currents) to be given in a spherical shell we present,
in Chapter 5, a wavelet parametrization of the magnetic field and the corresponding electric
current densities in Mie representation. On the one hand, the use of wavelets as trial func-
tions for field parametrization enables us to cope with electric currents (and corresponding
magnetic effects) that vary rapidly with latitude or longitude, or that are confined to certain
regions. Consequently, we are able to reflect the various levels of space localization in form of
a vectorial multiresolution analysis and can thus take efficient account of the specific concen-
tration of the current densities in space. On the other hand, radial dependencies can suitably
be modelled within this approach by means of a product ansatz for the toroidal magnetic
Mie scalar and by series expansions of the poloidal magnetic Mie scalar in terms of harmonic
wavelets. Using our approach, the direct as well as the inverse geomagnetic source problem
admit a treatment within a multiscale framework. In more detail, we present explicit mul-
tiscale algorithms for the approximation of the toroidal field from given (poloidal) current
densities (in a spherical shell) and, vice versa, for the determination of the poloidal current
densities from a given corresponding (toroidal) field. Neglecting variations in altitude, we
present a numerical example that illustrates the multiscale approximation of radial current
distributions from two sets of vectorial MAGSAT magnetic field data (dawn and dusk local
time). Global as well as regional reconstructions of the radial current densities are calculated
and demonstrate the efficiency of the multiscale approach. As regards future studies, the
next reasonable step is to incorporate the variations in altitude of the satellite – at least to
some extend – since this would allow for the determination of horizontal current distribu-
tions, also. Additionally, – either in studies using synthetic data, or based on satellite data
sampled over large time intervals, or using data from multi satellite missions and including
observatory data – a wavelet parametrization of the poloidal and toroidal magnetic fields
from the corresponding electric currents (or vice versa) should be derived in future works.

Future multi-satellite missions are believed to be able to resolve not only the spatial but
also the temporal structures of the geomagnetic field. In view of such missions we intro-
duce, in Chapter 6, two variants of multiscale time- and space-dependent modelling. While
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the first variant uses suitable combinations of separate wavelet techniques for the spatial as
well as the temporal domain, the second technique tackles the subject by means of certain
tensor-product wavelets combining temporal and spatial multiresolution techniques. This
combination of different wavelet techniques enables us to approximate all different com-
binations of temporal and spatial variations, e.g. small or large scale temporal variations
combined with global or regional spatial effects are accessible within a multiresolution frame-
work. Future studies should include the time-space multiscale analysis of data obtained from
realistic multi-satellite simulations.



Appendix A

Standard Geomagnetic Nomenclature

In this Appendix we present, for the convenience of the reader, some brief information
concerning the geophysical nomenclature. We start with the denomination of geomagnetic
coordinates and then present a special realization of spherical harmonics. A representation
of a geomagnetic potential in terms of this very system of spherical harmonics is also given.

In Chapter 1 spherical polar coordinates have been introduced. If the parametrization is
chosen such that −180◦ ≤ ϕ < 180◦, −90◦ ≤ ϑ ≤ 90◦ and if the equator is identified with
ϑ = 0◦ while ϕ = 0◦ is identified with Greenwich, then the corresponding unit vectors −ε̂r,
ε̂ϕ and ε̂ϑ can be identified with the components of the geomagnetic coordinates, i.e. the
assignment of Table A.1 holds true.

Local Coordinates Geomagnetic Coordinates Name

ε̂ϑ X north component

ε̂ϕ Y east component

−ε̂r Z downward or vertical component

Table A.1: Relation of spherical and geomagnetic coordinates

It should be noted that the tangential components, i.e. the geomagnetic north and east
component, are frequently referred to as the horizontal components.

Spherical harmonics have been introduced in Chapter 1 in coordinate free form, thus leaving
open the numerical realization. As there exist infinitely many L2 (Ω)-orthonormal systems
of spherical harmonics one special example frequently used in geomagnetic applications is
presented for the convenience of the reader. It is the system of Schmidt semi-normalized
spherical harmonics in terms of Legendre functions (cf., e.g. [55]). Consider the 2n + 1
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functions, expressed in polar coordinates

Ỹn,k (ξ) = cn,kP
|k|
n (t) cos(kϕ), k = −n, . . . , 0, (A.1)

Ỹn,k (ξ) = cn,kP
|k|
n (t) sin(kϕ), k = 1, . . . , n, (A.2)

where the normalization coefficients cn,k are given by

cn,k =

√
2 (n− |k|)!
(n+ |k|)!

,

and P k
n denotes the associated Legendre functions of degree n and order k:

P k
n (t) =

(
1− t2

)k/2( d

dt

)k
Pn(t),

k = 1, . . . , n, t ∈ [−1,+1]. Note that the tilde is supposed to point at the fact that in this
very example the second index of the function Ỹn,k runs from k = −n . . . n, which is a special
realization of the 2n + 1 linearly independent spherical harmonics of degree n. Graphical
impressions of the system (A.1-A.2) can be found in Figure A.1.
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Figure A.1: Spherical harmonics of degree 10 and orders 6 (left) and -3 (right).

Next we present a realization of a geomagnetic potential U in terms of the special previously
mentioned system of spherical harmonics:

U = ρ1

{
13∑
n=1

n∑
k=0

(gkn cos(kϕ) + hkn sin(kϕ))
(ρ1

r

)n+1

P̄ k
n (cos(ϑ))

+
13∑
n=1

n∑
k=0

(ġkn cos(mϕ) + ḣkn sin(kϕ))
(ρ1

r

)n+1

(t− t0)P̄
k
n (cos(ϑ))

+
2∑

n=1

n∑
k=0

(qkn cos(kϕ) + skn sin(kϕ))

(
r

ρ1

)n
P̄ k
n (cos(ϑ))

+ Dst

[
r

ρ1

+Q1

(ρ1

r

)2
] [
q̃0
1P̄

0
1 (cos(ϑ)) + (q̃1

1 cos(ϕ) + s̃1
1 sin(ϕ))P̄ 1

1 (cos(ϑ))
]}

,
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where P̄ k
n = cn,kP

k
n . The quantities (gkn, h

k
n) and (qkn, s

k
n) are the so-called Gauss coefficients

(special realizations of the Fourier coefficients) describing internal and external sources, re-
spectively. The pair (ġkn, ḣ

k
n) gives the linear secular variation around a certain reference time

t0. The last term of the equation above accounts for the variability of the contributions from
the magnetospheric ring current (as measured by Dst index) and the corresponding internal,
induced counterpart. For more details concerning this or similar geomagnetic potentials as
well as the individual contributions the reader might consult [74, 92, 93], for example.



Bibliography

[1] J. Achache, A. Abtout, and J.L. Le Mouël. The downward continuation of Magsat
crustal anomaly field over southeast asia. J. Geophys. Res., B, 92(11):11,584–11,596,
1987. 96, 103, 118

[2] O. Amm. Ionospheric elementary current systems in spherical coordinates and their
application. J. Geomag. Geoelectr., 49:947–955, 1997. 2
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[70] W. Kertz. Einführung in die Geophysik 2. B.I. Hochschultaschenbücher, Mannheim,
Wien, Zürich, 1969. 142

[71] K. Kohrt. Crustal Field Modelling of the Geomagnetic Field from Spaceborne Data.
Diploma Thesis, Geomathematics Group, Department of Mathematics, University of
Kaiserslautern, 2001. 111

[72] R. Kress. Linear Integral Equations. Springer, Berlin, Heidelberg, New York, 1989.
26



BIBLIOGRAPHY 174

[73] J. Kusche. Inverse Probleme bei der Gravitationsfeldbestimmung mittels SST- und
SGG-Satellitenmissionen. Habilitationsschrift. Institute of Theoretical Geodesy, Uni-
versity of Bonn, 2000. 118

[74] R.A. Langel and R.H. Estes. Large-scale, near-Earth magnetic fields from external
sources and the corresponding induced internal field. J. Geophys. Res., 90:2487–2494,
1985. 2, 111, 168

[75] R.A. Langel and R.H. Estes. The near-Earth magnetic field at 1980 determined from
magsat data. J. Geophys. Res., 90:2495–2510, 1985. 137

[76] R.A. Langel, N. Olsen, and T.J. Sabaka. A comprehensive model of the near-earth
magnetic field: Phase 3. Technical Report TM-2000-209894, NASA, 2000. 2

[77] R.A. Langel, T.J. Sabaka, R.T. Baldwin, and J.A. Conrad. The near-Earth magnetic
field from magnetospheric and quiet-day ionospheric sources and how it is modeled.
Phys. Earth Planet. Inter., 98:235–267, 1996. 2, 142

[78] A.K. Louis. Inverse und schlecht gestellte Probleme. Teubner, Stuttgart, 1989. 25,
96, 101, 105

[79] A.K. Louis, P. Maaß, and A. Rieder. Wavelets. Teubner, Stuttgart, 1994. 143, 154

[80] P. Maaß and H.-G. Rieder. Wavelets and digital image processing. Surv. Math. Ind.,
4:195–235, 1994. 143, 154

[81] T. Maier. Multiscale Analysis of the Geomagnetic Field. Diploma Thesis, Geomathe-
matics Group, Department of Mathematics, and Computational Material Science
Group, Department of Physics, University of Kaiserslautern, 1999. 5, 55, 94, 104,
122, 123

[82] S. Maus. New Statistical Methods in Gravity and Magnetics. Habilitation, Gemeinsame
Naturwissenschaftliche Fakultät der Technischen Universität Carolo-Wilhelmina zu
Braunschweig, 2001. 3, 24, 122, 123, 129, 130, 131, 132
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Hiermit erkläre ich an Eides statt, dass ich die vorliegende Arbeit selbst und nur unter Ver-
wendung der in der Arbeit genannten Hilfen und Literatur angefertigt habe.

Kaiserslautern, 20. September 2002


	Introduction
	Preliminaries
	Notations and Relations
	Reproducing Kernel Hilbert Spaces and Splines
	Scalar and Vector Spherical Harmonics
	Mie Representation
	Inverse Problems and Regularization

	A General Approach to Scalar and Vectorial Multiscale Methods
	Scalar Approach
	H-Fourier Expansions
	H-Product Kernels and H-Convolutions
	H-Scaling Functions
	H-Wavelets
	A Pyramid Scheme
	Examples

	Vectorial Approach
	h-Fourier Expansions 
	h-Product Kernels and h-Convolutions
	h-Scaling Functions and h-Wavelets
	Example
	Parenthesis: Tensorial Wavelets


	Multiscale Denoising of Spherical Functions
	Signal-to-Noise Thresholding of Scalar Fields
	Spectral Signal-to-Noise Response
	Multiscale Signal-to-Noise Response
	Scalar Selective Multiscale Reconstruction

	Signal-to-Noise Thresholding of Vector Fields
	Vector Spectral Signal-to-Noise Response
	Tensor-Based Multiscale Signal-to-Noise Response
	Vector-Based Multiscale Signal-to-Noise Response
	Vectorial Selective Multiscale Reconstruction

	Example

	A Wavelet Approach to Crustal Field Modelling
	Downward Continuation in Spherical Approximation
	Integral Equations for the Radial Derivative
	Integral Equations for the Surface Gradient
	The Inverse Problems and Spherical Regularization Wavelets
	Example

	Downward Continuation in Non-Spherical Geometries: A Combined Spline and Wavelet Approach

	A Wavelet-Parametrization of the Magnetic Field in Mie Representation
	Setup
	Parametrization of Poloidal Fields
	Parametrization of Toroidal Fields
	Example

	Multiscale Methods for the Analysis of Time-Dependent  Spherical Vector Fields
	Time-Space-Multiscale Approach: Variant 1
	Time-Space-Multiscale Approach: Variant 2

	Summary and Outlook
	Standard Geomagnetic Nomenclature
	Bibliography

