Cyclo-(PhAs)₆ als Edukt für Übergangsmetallcyclopentadienyl-Komplexe mit As_n und (PhAs)_n-Liganden

Vom Fachbereich Chemie der Universität Kaiserslautern zur Verleihung des akademischen Grades "Doktor der Naturwissenschaften" genehmigte Dissertation (D 386)

vorgelegt von

Dipl.-Chem. Michael Barry

aus Annweiler a. Tr.

Betreuer der Arbeit: Prof. Dr. O.J. Scherer Tag der wissenschaftlichen Aussprache: 20.12.2002

Kaiserslautern 2002

Vom Fachbereich Chemie der Universität Kaiserslautern am 23. Dezember 2002 als Dissertation angenommen.

Dekan: Prof. Dr. Dr. D. Schrenk

Prüfungskommission:

Prof. Dr. HG. Kuball
Prof. Dr. O.J. Scherer
Prof. Dr. H. Sitzmann

Die vorliegende Arbeit entstand in der Zeit von November 1999 bis September 2002 im Fachbereich Chemie der Universität Kaiserslautern

Meinem Betreuer, Herrn Prof. Dr. O.J. Scherer, danke ich recht herzlich für den mir gewährten Freiraum bei der Gestaltung meines Themas sowie für seine stete Diskussionsbereitschaft und Begeisterungsfähigkeit

Abkürzungsverzeichnis

amu	Atomare Masseneinheiten	
Ср	Cyclopentadienyl	
Cp*	Pentamethylyclopentadienyl	
Cp ⁻	(Trimethylsilyl)cyclopentadienyl	
Cp ⁼	1,3-Bis-(trimethylsilyl)cyclopentadienyl	
Cp´´	1,3-Di-(tertbutyl)cyclopentadienyl	
Cp´´´	1,3,4-Tri-(tertbutyl)cyclopentadienyl	
Cp ^R	Cyclopentadienyl-Derivat	
S	Singulett	
d	Dublett	
t	Triplett	
m	Multiplett	
M _{ber}	Berechnete Molmasse	
Me	Methyl-Rest	
Mes	Mesitylen	
NMR	Nuclear magnetic resonance	
Ph	Phenyl-Rest	
RT	Raumtemperatur	
GE	Gerüstelektronen	
GEP	Gerüstelektronenpaar	
R	Rest	
THF	Tetrahydrofuran	
Tms	Trimethylsilyl-Rest	
VE	Valenzelektronen	

Inhaltsverzeichnis

I. Einleitung	• • • •
1. Kurze Einführung in die Chemie der Cyclopolyarsane (RA	s) _n
 Cyclo-(PhAs)₆ als Edukt f ür Komplexe mit substituentenfreien Arsenliganden 	
 Cyclo-(PhAs)₆ als Edukt f ür Komplexe mit substituentenhaltigen Arsenliganden 	
4. Arsiniden-(Arsandiyl)-Komplexe	
5. Übergangsmetall-Arsen-Sauerstoff-Komplexe	
II. Problemstellung	••••
III. Eigene Ergebnisse	• • • •
1. Cothermolyse von <i>cyclo</i> -(PhAs) ₆ (1) mit [Cp ⁻ Co(CO) ₂] (2a siedendem Dekalin.	ı) in
1.1 Charakterisierung von [{Cp⁻Co}₃(μ_3-As)₂] (6a) 1.1.1 Eigenschaften von [{Cp⁻Co}₃(μ_3-As)₂] (6a) 1.1.2 ¹H-NMR-Spektroskopie von [{Cp⁻Co}₃(μ_3-As)₂] (6a) 1.1.3 Massenspektrometrie von [{Cp⁻Co}₃(μ_3-As)₂] (6a) 1.1.4 Strukturdiskussion von [{Cp⁻Co}₃(μ_3-As)₂] (6a)	
1.2 Charakterisierung von [{Cp ⁻ Co} ₄ As ₄] (7a)	•••••
1.2.1 Eigenschaften von [{Cp ⁻ Co} ₄ As ₄] (7 a) 1.2.2 ¹ H-NMR-Spektroskopie von [{Cp ⁻ Co} ₄ As ₄] (7 a) 1.2.3 Strukturdiskussion von [{Cp ⁻ Co} ₄ As ₄] (7 a)	
2. Cothermolyse von <i>cyclo</i> -(PhAs) ₆ (1) mit [Cp ⁼ Co(CO) ₂] (2t siedendem Dekalin.) in
2.1 Charakterisierung von [{Cp ⁼ Co}₃(μ₃-As)₂] (6b)	•••••
2.1.1 Eigenschaften von [{ $Cp^{=}Co$ } ₃ (μ_{3} -As) ₂] (6b) 2.1.2 ¹ H-NMR-Spektroskopie von [{ $Cp^{=}Co$ } ₃ (μ_{3} -As) ₂] (6b)	

2.1.3 Massenspektrometrie von [$\{Cp^{=}C\}$	$Co_{3}(\mu_{3}-As)_{2}]$ (6b)
2.1.4 Röntgenstrukturanalyse von [{Cp	$\int Co_{3}(\mu_{3}-As)_{2} \int (\mathbf{6b})$
2.1.5 Vergleich von [{Cp ⁼ Co}3(µ3-As)2 Bipyramiden] (6b) mit anderen trigonalen
2.2 Charakterisierung von [{Cp ⁼ Co} ₄ A	As ₄] (7b)
2.2.1 Eigenschaften von [{Cp ⁼ Co}4As4] (7b)
2.2.2 ¹ H-NMR-Spektroskopie von [{Cp	$=Co_{4}As_{4}[(7b)$
2.2.3 Röntgenstrukturanalyse von [{Cp	$\int Co_4 As_4 \int (7b)$
3. Cothermolyse von <i>cyclo</i> -(PhAs) ₆ siedendem Dekalin	(1) mit [Cp ["] Co(CO) ₂] (2c) in
3.1 Charakterisierung von [{Cp''Co}4(.	AsO) ₂ As ₂] (8)
3.1.1 Eigenschaften von [{Cp"Co}4(Ast	$O)_2 A s_2] (8) \dots$
3.1.2 ¹ H-NMR-Spektroskopie von [{Cp	"Co} ₄ (AsO) ₂ As ₂] (8)
3.1.3 Röntgenstrukturanalyse von [{Cp	$"Co_{4}(AsO_{2}As_{2}]$ (8)
4. Umsetzung von [$\{Cp^-Co\}_3(\mu_3-As(M=Mo, W)$	(6a) mit [M(CO) ₅ (thf)]
4.1 Charakterisierung von [{Cp ⁻ Co} ₃ {	(µ4-As)Mo(CO)5}2] (11a)
4.1.1 Eigenschaften von [{Cp ⁻ Co} ₃ {(µ	4-As)Mo(CO)5}2] (11a)
4.1.2 ¹ H-NMR-Spektroskopie von [{Cp	$-Co_{3}{(\mu_{4}-As)Mo(CO)_{5}_{2}} (11a)$
4.1.3 IR-Spektroskopie von [{Cp ⁻ Co} ₃	{(µ4-As)Mo(CO)5}2] (11a)
4.1.4 Röntgenstrukturanalyse von [{Cp	$[-Co]_{3}{(\mu_{4}-As)Mo(CO)_{5}_{2}]}$ (11a)
4.2 Charakterisierung von [{Cp ⁻ Co} ₃ {	(µ4-As)W(CO)5}2] (11b)
4.2.1 Eigenschaften von [{Cp ⁻ Co} ₃ {(µ	$(4-As)W(CO)_5_2] (11b)$
4.2.2 ¹ H-NMR-Spektroskopie von [{Cp	$[Co_{3}{(\mu_{4}-As)W(CO)_{5}_{2}}]$ (11b)
5. Oxidationsversuche an [{Cp ⁻ Co}]	$_{3}(\mu_{3}-As)_{2}]$ (6a) und
$[{CP CO}_{3}(\mu_{3}-AS)_{2}](OD)$	
6. Cothermolyse von <i>cyclo</i> -(PhAs) ₆ in siedendem Dekalin	(1) mit $[Cp^{-}Rh(CO)_{2}]$ (3a)
6.1 Charakterisierung von [{Cp ⁼ Rh} ₃ ()	1-CO)(AsPh ₂)As] (12)
6.1.1 Eigenschaften von [{ $Cp^{=}Rh$ } ₃ (μ -C	CO)(AsPh ₂)As] (12)
6.1.2 ¹ H-NMR-Spektroskopie von [{Cp	⁼ <i>Rh</i> } ₃ (µ-CO)(AsPh ₂)As] (12)
6.1.3 IR-Spektroskopie von [{Cp ⁼ Rh} ₃ ([μ-CO)(AsPh ₂)As] (12)
6.1.4 Massenspektrometrie von [{ $Cp^{=}R$	$h_{3}(\mu-CO)(AsPh_{2})As] (12)$
6.1.5 Röntgenstrukturanalyse von [{Cp	$^{=}Rh_{3}(\mu-CO)(AsPh_{2})As]$ (12)

 Cothermolyse von <i>cyclo</i>-(PhAs)₆ (1) mit [Cp["]Rh(CO)₂] (3b) in siedendem Dekalin. 	60
7.1 Charakterisierung von [{Cp'''Rh(µ-CO)} ₂] (3c)	61
7.1.1 Eigenschaften von [{Cp'''Rh(μ-CO)} ₂] (3c)	61
7.1.2 ¹ H-NMR-Spektroskopie von [{ $Cp'''Rh(\mu-CO)$ } ₂] (3 c)	61
7.1.3 IR-Spektroskopie von [{Cp'''Rh(μ-CO)} ₂] (3c)	62
7.1.4 Massenspektrometrie von [$\{Cp'''Rh(\mu-CO)\}_2$] (3c)	62
7.1.5 Röntgenstrukturanalyse von [{ $Cp'''Rh(\mu-CO)$ }] (3 c)	63
8. Umsetzung von [{ $Cp^{=}Rh$ } ₃ (µ-CO)(AsPh ₂)As] (12) mit	60
$[W(CO)_5(thf)]$	09
8.1 Charakterisierung von [{Cp ⁼ Rh(CO)} ₂ (AsPh)W(CO) ₅] (13)	70
8.1.1 Eigenschaften von [{ $Cp^{=}Rh(CO)$ } ₂ (AsPh)W(CO) ₅] (13)	70
8.1.2 ¹ H-NMR-Spektroskopie von [{ $Cp^{=}Rh(CO)$ } ₂ (AsPh)W(CO) ₅] (13)	70
8.1.3 IR-Spektroskopie von [$\{Cp^{=}Rh(CO)\}_{2}(AsPh)W(CO)_{5}$] (13)	71
8.1.4 Röntgenstrukturanalyse von [{ $Cp^{=}Rh(CO)$ } ₂ (AsPh)W(CO) ₅] (13)	71
8.2 Charakterisierung von [{Cp ⁼ Rh} ₃ (Rh(CO) ₂)(AsPh)(AsO)] (14)	74
8.2.1 Eigenschaften von [{ $Cp^{=}Rh$ } ₃ ($Rh(CO)_{2}$)($AsPh$)(AsO)] (14)	74
8.2.2 ¹ H-NMR-Spektroskopie von [{ $Cp^{=}Rh$ } ₃ ($Rh(CO)_{2}$)(AsPh)(AsO)] (14)	74
8.2.3 IR-Spektroskopie von [$\{Cp^{=}Rh\}_{3}(Rh(CO)_{2})(AsPh)(AsO)$] (14)	75
8.2.4 Röntgenstrukturanalyse von $[{Cp^{=}Rh}_{3}(Rh(CO)_{2})(AsPh)(AsO)]$ (14)	75
 9. Cothermolyse von [{Cp⁻Rh}₃(μ-CO)(AsPh₂)As] (12) mit weißem Phosphor. 	83
9.1 Charakterisierung von $[(Cn^{=}Rh)_{a}(u n^{2:2} P_{a})_{a}]$ (15)	83
$0 \ 1 \ L \ E i = 2 \ h \ h \ h \ h \ h \ h \ h \ h \ h \$	83
9.1.1 Eigenschaften von [{Cp $Rh_{2}(\mu, \eta - P_{2})_{2}$] (15)	81
9.1.2 <i>H</i> - <i>NMR</i> -Spectroskopie von $[\{Cp, Rh\}_2(\mu, \eta - P_2)_2]$ (13)	85
9.1.5 F -Wink-spectroskopie von $[\{Cp, Rn\}_2(\mu, \eta, -F_2)_2]$ (15)	85
$9.1.4$ Strukturtuskussion von [{Cp Kn _f 2(μ , η -1 2)2] (13)	05
10. Cothermolyse von <i>cyclo</i> -(PhAs) ₆ (1) mit	
$[{Cp^{Fe}(CO)_2}_2]$ (5a) in siedendem Dekalin	86
10.1 Charakterisierung von [{Cp ⁼ Fe} ₄ (As ₂) ₂] (16)	87
10.1.1 Eigenschaften von [{ $Cp^{=}Fe$ } ₄ (As ₂) ₂] (16)	87
$10.1.2 \ ^{1}H$ -NMR-Spektroskopie von [{ $Cp^{=}Fe$ }_4(As_2)_2] (16)	87
10.1.3 Röntgenstrukturanalyse von $[{Cp^{=}Fe}_{4}(As_{2})_{2}]$ (16)	87
10.2 Charakterisierung von [Cp ⁻ ₂ Fe] (17)	90

Analysenmethode	n
.1 Elementaranalyse	n
1.2 Infrarotspektrosk	opie
1.3 Kernresonanzspek	ctroskopie
1.4 Massenspektrome	trie
1.5 Kristallstrukturan	alysen
2. Ausgangsverbindu	ingen
3. Versuchsbeschreil	bungen
3.1 Cothermolyse von siedendem Dekali	<i>cyclo</i> -(PhAs) ₆ (1) mit [Cp ⁻ Co(CO) ₂] (2a) in n
3.2 Cothermolyse von siedendem Dekali	<i>cyclo</i> -(PhAs) ₆ (1) mit [Cp ⁼ Co(CO) ₂] (2b) in n
3.3 Cothermolyse von siedendem Dekali	<i>cyclo</i> -(PhAs) ₆ (1) mit [Cp ["] Co(CO) ₂] (2c) in n
3.4 Umsetzung von [(((M = Mo, W))	Cp ⁻ Co) ₃ (µ ₃ -As) ₂] (6a) mit [M(CO) ₅ (thf)]
3.5 Oxidationsversuch [{Cp ⁼ Co}3(u3-As)2	ne an [{Cp [−] Co} ₃ (μ ₃ -As) ₂] (6a) und] (6b)
3.6 Cothermolyse von siedendem Dekali	<i>cyclo</i> -(PhAs) ₆ (1) mit [Cp ⁼ Rh(CO) ₂] (3a) in n
3.7 Cothermolyse von siedendem Dekali	<i>cyclo</i> -(PhAs) ₆ (1) mit [Cp ^{'''} Rh(CO) ₂] (3b) in n
3.8 Umsetzung von [{([W(CO)5(thf)]	Cp ⁼ Rh}₃(µ-CO)As(AsPh₂)] (12) mit
3.9 Cothermolyse von Phosphor	[{Cp ⁼ Rh} ₃ (μ-CO)As(AsPh ₂)] (12) mit weißem
3.10 Cothermolyse vo siedendem Deka	n <i>cyclo</i> -(PhAs) ₆ (1) mit [{Cp ⁼ Fe(CO) ₂ } ₂] (5a) in lin

VII. Anhang	120
1. Strukturdaten von [$\{Cp^{=}Co\}_{3}(\mu_{3}-As)_{2}$] (6b)	120
2. Strukturdaten von [$\{Cp^{=}Co\}_{4}As_{4}$] (7b)	134
3. Strukturdaten von $[(Cp^{-}Co)_3(\mu_4-AsMo(CO)_5)_2]$ (11)	146
4. Strukturdaten von $[(Cp^{=}Rh)_3(\mu-CO)As(AsPh_2)]$ (12)	159
5. Strukturdaten von $[(Cp^{=}Rh)_3(AsO)(AsPh)Rh(CO)_2]$ (14)	174
6. Strukturdaten von [$\{Cp^{"}Rh(\mu-CO)\}_2$] (3c)	188

I. Einleitung

1. Kurze Einführung in die Chemie der Cyclopolyarsane (RAs)_n

Von *West et al.* wurden bereits Ende der sechziger und Anfang der siebziger Jahre erste Untersuchungen von Cycloarsanen (RAs)_n mit Übergangsmetallcarbonylen durchgeführt^[1]. 1969 gelang *Dahl et al.* die Darstellung der röntgenstrukturanalytisch gesicherten, tetraedrischen Einkernverbindung [(OC)₃Co(η^3 -As₃)] A ausgehend von [Co₂(CO)₈] und *cyclo*-(MeAs)₅^[2].

Die bekannteste Umsetzung eines Cycloarsans mit einer Cyclopentadienylverbindung ist sicherlich die von *Rheingold et al.* 1982 beschriebene Bildung des Tripeldeckerkomplexes $[CpMo(As_5)MoCp]$ **B** aus Pentamethylcyclopentaarsan und $[\{CpMo(CO)_3\}_2]^{[3]}$.

In den letzten Jahren gewannen die Verbindungen *cyclo*-(RAs)_n als Arsenquelle zunehmend an Bedeutung, da diese Cyclopolyarsane wie z.B. (${}^{t}BuAs$)₄, (MeAs)₅ und (PhAs)₆ im Gegensatz zum gelbem Arsen leicht zugänglich sind und sowohl unter Erhalt als auch unter Verlust der organischen Substituenten reagieren können.

Aus Reaktionen von Cyclopolyarsanen mit Übergangsmetallcarbonylen ergeben sich Komplexe mit koordinierten Ringen bestehend aus fünf bis zehn RAs-Einheiten^[1,3-8,21,43,49,82], Ketten von zwei bis acht RAs-Einheiten^[6,7,9-13,17,21,46,82] und, durch Verlust des organischen Restes R, Komplexe mit "nackten" As-Atomen^[82]. Diese As_n-Einheiten können von $n=1^{[14,33,49]}$, 2^[15] oder 3^[18] Atomketten sowie aus Ringen bis zu fünf Arsenatomen^[2,3] bestehen.

Eine andere Art des Reaktionsverlaufs ist gekennzeichnet durch den Übergang von organischen Gruppen R zwischen den Arsenatomen des Ringes. Anschauliches Beispiel ist die Reaktion von Hexaphenylcyclohexaarsan mit Übergangsmetallcarbonylkomplexen, welche zu Produkten mit AsPh-^[14,16], AsPh₂-^[17], und As(Ph)AsPh₂-Fragmenten^[17] führt.

2. *Cyclo*-(PhAs)₆ als Edukt für Komplexe mit substituentenfreien Arsenliganden

Stellvertretend für die fortlaufenden Untersuchungen von Cyclopolyarsanen mit Übergangsmetallcarbonylen sei die Umsetzung von *cyclo*-(PhAs)₆ mit $[Co_2(CO)_8]$ unter milden Reaktionsbedingungen^[14] zum Cluster $[{Co_8(\mu_6-As)(\mu_4-As)(\mu_4-AsPh)_2(CO)_{16}}_2]$ erwähnt, welcher sowohl substituentenfreie als auch substituentenhaltige Arsenliganden besitzt.

1982 wird über die Synthese der tetraedrischen Komplexe [{CpMo(CO)₂}₂(μ , $\eta^{2:2}$ -As₂)] **C** und [{CpW(CO)₂}₂(μ , $\eta^{2:2}$ -As₂)] **D** berichtet^[15]. Es handelt sich dabei um isomorphe Verbindungen mit einem unsubstituierten As₂-Baustein.

Durch Cothermolyse von $[Cp^{"}Ta(CO)_4]$ mit *cyclo*-(PhAs)₆ gelang es *Mast* 1999 in unserem Arbeitskreis den, anhand einer Röntgenstrukturanalyse charakterisierten unsymmetrischen Cluster **E** mit acyclischem As₃-Liganden darzustellen^[18].

3. *Cyclo*-(PhAs)₆ als Edukt für Komplexe mit substituentenhaltigen Arsenliganden

Aufgrund der einsamen Elektronenpaaren in den Cyclopolyarsanen besitzen diese Donor-Eigenschaften, was in der Bildung von cyclischen RAs-Verbindungen mit terminalen Übergangsmetallkomplexfragmenten veranschaulicht wird.

So reagiert zum Beispiel *cyclo*-(PhAs)₆ und $[Fe(CO)_5]$ zu der Eisenzweikernverbindung [*cyclo*-(PhAs)₄{Fe(CO)₃}₂] mit einem koordinierten Ring aus vier (PhAs)-Fragmenten^[9].

Bei der Umsetzung von Hexaphenylcyclohexaarsan mit $[Mo(CO)_6]$ werden mehrere Komplexe beobachtet: *Ang* und *West*^[1] formulieren die Bildung von $[cyclo-(PhAs)_6Mo(CO)_4]$ und $[{cyclo-(PhAs)_6Mo(CO)_4}_2]$ wohingegen *Fowles* und *Jenkins*^[19] die Darstellung von $[cyclo-(PhAs)_4Mo(CO)_4]$ und $[cyclo-(PhAs)_4{Mo(CO)_4}_2]$ postulieren^[4].

[MesMo(CO)₆], umgesetzt mit *cyclo*-(PhAs)₆^[7], ergibt unter anderem Komplex **F** mit einem (PhAs)-Neunring als signifikantes Strukturelement. Seine Thermolyse führt zu **G** mit einer Kette aus acht PhAs-Fragmenten.

Weitere Beispiele für Komplexe mit PhAs-Ketten sind die Verbindungen $[{CpFe(CO)_2}_2(PhAs)_2]^{[11]}$ und $[Cp_2Ti(PhAs)_3]^{[20]}$. Erstere wird aus $[{CpFe(CO)_2}_2]$ und *cyclo*-(PhAs)₆ dargestellt, die zweite durch Reduktion von $[Cp_2TiCl_2]$ mittels Mg und anschließender Behandlung mit *cyclo*-(PhAs)₆.

1998 synthetisierten *Davies et al.*^[21] [Co₄(μ_4 -AsPh)₂(CO)₁₀] mit zwei vierfach verbrückenden PhAs-Liganden und [Co₄(μ_3 -AsPh)(μ_4 - η^2 : η^2 : η^1 -As₄Ph₄)(CO)₁₀] mit zwei verschiedenen Strukturelementen.

Tabelle 1 enthält einige Beispiele mit AsPh₂- und As(Ph)AsPh₂-Fragmenten^[7,17], die durch Übergang von Ph-Gruppen zu anderen Arsenatomen des Cyclopolyarsans entstanden sind.

Tabelle 1:Ausgewählte Beispiele für Verbindungen mit AsPh2- und As(Ph)AsPh2-
Liganden, dargestellt aus cyclo-(PhAs)6 und verschiedenen
Übergangsmetallcarbonylkomplexen.

Edukt	Produkt	Lit.
[MesMo(CO) ₆]	[Mo ₂ (CO) ₈ (µ-Ph ₂ As)(µ-PhAsAsPh ₂)]	[7], [17]
[{CpRu(CO) ₂ } ₂]	<i>cis</i> -[{CpRu(CO)(μ-AsPh ₂)} ₂] <i>trans</i> -[{CpRu(CO)(μ-AsPh ₂)} ₂]	[22]
[Re ₂ (CO) ₁₀]	$[\{\text{Re}(\text{CO})_4(\mu\text{-AsPh}_2\}_2]$	[51]

4. Arsiniden-(Arsandiyl)-Komplexe

Arsinidene (IUPAC: Arsandiyle) sind die zu Carbenen (CR₂) isoelektronischen schweren Homologen der Phosphinidene (PR)^[47] und Nitrene (NR). Sie besitzen wie Carbene ein Elektronensextett, liegen im Grundzustand meist als Triplett vor und sind für eine Vielzahl von einbindigen Resten R theoretisch sowie experimentell untersucht. Als ungesättigte Teilchen sind sie unbeständig, durch Komplexierung aber stabilisierbar. Charakteristisch für diesen Bindungstyp sind ein sp²-hybridisiertes As-Atom und ML_n-Komplexfragmente, die zur π -Bindung befähigt sind.

Exemplarisch sei hier der von *Huttner et al.* 1986 untersuchte Arsiniden-Komplex I mit zwei 16 VE- $\{Cr(CO)_5\}$ -Einheiten erwähnt^[24].

Befindet sich eine Metall-Metall-Bindung zwischen zwei 16VE-Fragmenten in zweikernigen "Arsiniden"-Komplexen, erhöht sich die VE-Zahl um zwei. Die Koordination am Arsenatom wird trigonal-pyramidal mit zwei Elektronen am As-Atom. Beide Formen sind strukturell belegt, und analog der Ringschluß-Ringöffnungsisomerisierung bei Bis(ylen)phosphoranen bzw. bei Aziridinen diskutierbar^[25].

Der häufigste synthetische Zugang zu $[L_nM]_2ER$ Verbindungen basiert auf der Eliminierung von reaktiven Substituenten A,B an einer pyramidalen Vorstufe REAB. Dies kann wenig kompliziert für A=B=Hal oder A=B=H entweder direkt oder als Ergebnis einer mehrstufigen Reaktion erfolgen^[24].

1978 glückte *Vahrenkamp et al.* die Synthese von $[{Fe(CO)_3}_4(\mu_3-AsMe)_4]^{[89]}$, einem verzerrten Cuban mit dreifach verbrückenden Arsiniden-Liganden, durch Thermolyse von $[Fe_2(CO)_9]$ mit MeAsH₂ in Benzol. Die Erzeugung des komplex gebundenen μ_3 -Methylarsinidens basiert auf der Thermolabilität der As-H-Bindung^[90].

1990 beschreiben *Rheingold et al.* die Reaktion von $[Cp_2Ru_2(CO)_2(\mu-CO)(PhCCPh)]$ (J) mit *cyclo*-(PhAs)₆. Der anhand eines Austausches von Diphenylacetylen durch eine PhAs-Einheit entstandene, kristallographisch charakterisierte Arsiniden-Komplex $[Cp_2Ru_2(CO)_2(\mu-CO)(\mu-AsPh)](Ru-Ru)$ (K) ist ein seltenes Beispiel für einen "geschlossenen" 16 VE "iniden"-Komplex^[16].

 $Huttner^{[26]}$ und $Herrmann^{[27]}$ entdeckten unabhängig voneinander den bemerkenswerten Mehrkernkomplex [{CpMn(CO)₂}₄As₂], dessen Mn₄As₂-Gerüst ein koordiniertes Diarsiniden mit einer As-As-Einfachbindung enthält.

Die bisher einzigen allylischen Diorganotriarsiniden-Komplexe^[50] $[Cp^*Mo(CO)_2(\eta^3 - PhAsAsAsPh)]$ und $[Cp^*W(CO)_2(\eta^3 - MeAsAsAsMe)]$ erhielten *Rheingold et al.* bei der Reaktion von $[\{Cp^*Mo(CO)_2\}_2]$ mit *cyclo*-(PhAs)_6 bzw. $[\{Cp^*W(CO)_2\}_2]$ mit *cyclo*-(MeAs)_5.

5. Übergangsmetall-Arsen-Sauerstoff-Komplexe

Cyclopolyarsane sind sehr oxidationsempfindlich und wandeln sich leicht in Organoarsanoxide (RAsO)_n um. Übergangsmetall-Arsen-Sauerstoff-Verbindungen sind bekannt, aber unvollständig charakterisiert. Völlig unbekannt sind meines Wissens Komplexe mit dem Fragment As_nO .

II. Problemstellung

Im Rahmen der vorliegenden Arbeit sollte, aufbauend auf erlangten Erkenntnissen aus Reaktionen zwischen der Organoarsenverbindung *cyclo*-(^tBuAs)₄ und ein- und mehrkernigen Carbonylkomplexen, das Reaktionsverhalten dieser Verbindungen gegenüber *cyclo*-(PhAs)₆ studiert werden. Weiterhin soll versucht werden, die Arsen-Verbindungen mit den Phosphorkomplexen in Bezug auf Reaktivität und strukturelle Vielfalt zu vergleichen (möglichst durch Röntgenstrukturanalyse). Von zusätzlichem Interesse ist das Oxidationsverhalten einiger As_n-Komplexe.

III. Eigene Ergebnisse

1. Cothermolyse von *cyclo*-(PhAs)₆ (1) mit [Cp⁻Co(CO)₂] (2a) in siedendem Dekalin

Setzt man einen deutlichen Überschuß an $[Cp^-Co(CO)_2]$ (**2a**) mit *cyclo*-(PhAs)₆ (**1**) in Dekalin bei 190°C um, so wird die anfangs orangebraune Suspension bereits nach wenigen Minuten schwarzbraun. Die Reaktion wird nach zwei Stunden abgebrochen, da die Eduktcarbonylbanden vollständig verschwunden und keine neuen IR-Banden entstanden sind. Anschließende säulenchromatographische Aufarbeitung des Ansatzes an basischem Aluminiumoxid liefert mit reinem Petrolether eine violette Fraktion von $[{Cp^-Co}_3(\mu_3-As)_2]$ (**6a**), direkt gefolgt von einer grünbraunen Fraktion einer bisher nicht vollständig charakterisierten Verbindung der Zusammensetzung $[{Cp^-Co}_4As_4]$ (**7a**).

1.1 Charakterisierung von [{Cp⁻Co}₃(µ₃-As)₂] (6a)

1.1.1 Eigenschaften von $[{Cp^{-}Co}_{3}(\mu_{3}-As)_{2}]$ (6a)

Nach Abziehen des Lösungsmittels bleibt **6a** als ein violetter, öliger Rückstand zurück, welcher sich in unpolaren (n-Heptan, n-Hexan, n-Pentan) als auch aromatischen (Toluol, Deuterobenzol) gut, in polaren Lösungsmitteln (THF, Dichlormethan, Diethylether) sehr gut löst. Bereits geringe Mengen des Komplexes führen selbst bei hohen Verdünnungen zu intensiv violett gefärbten Lösungen. [{Cp⁻Co}₃(μ_3 -As)₂] (**6a**) ist kurzzeitig an Luft handhabbar. Unter Inertgas tritt erst nach längerer Lagerung eine zunehmende Schwerlöslichkeit, bedingt durch Alterung und Zersetzung, auf.

1.1.2 ¹H-NMR-Spektroskopie von $[{Cp}^{-}Co}_{3}(\mu_{3}-As)_{2}]$ (6a)

Im ¹H-NMR-Spektrum von **6a** in Deuterobenzol bei Raumtemperatur findet man für den Cp⁻-Liganden nur einen Signalsatz mit dem Integrationsverhältnis 2:2:9, wie er für eine symmetrische Umgebung typisch ist. Eine Gegenüberstellung der chemischen Verschiebungen zu der phosphoranalogen Verbindung zeigt *Tabelle 1*.

Die chemischen Verschiebungen von $[{Cp^{-}Co}_{3}(\mu_{3}-As)_{2}]$ (6a) sind im Vergleich zu der phosphoranalogen Verbindung $[{Cp^{-}Co}_{3}(\mu_{3}-P)_{2}]^{[29]}$ zu höherem Feld verschoben.

Tabelle 1:	¹ H-NMR-Daten von	6a und [{Cp ⁻ Co} ₃ (μ ₃ .	$-P_{2}$] in C ₆ D ₆ bei R	aumtemperatur
------------	------------------------------	--	---	---------------

Komplex	δ [ppm]	δ [ppm]	δ [ppm]
$[{Cp^{-}Co}_{3}(\mu_{3}-As)_{2}]$ (6a)	0.38 (s, 27H)	4.46 (s, 6H)	4.63 (s, 6H)
$[{Cp^{-}Co}_{3}(\mu_{3}-P)_{2}]$	0.45 (s, 27H)	4.72 (s, 6H)	4.81 (s, 6H)

1.1.3 Massenspektrometrie von [{Cp⁻Co}₃(µ₃-As)₂] (6a)

Man beobachtet das Auftreten des Molekülionenpeaks $[M]^+$ als Basispeak bei m/z = 737 amu und das Molekülion $[M/2]^+$ bei 368 amu. Abgesehen von einigen nicht zuordenbaren Massenpeaks tauchen unerwartet Abbau- bzw. Zersetzungsprodukte von *cyclo*-(PhAs)₆ (1) auf. Dazu gehören die $[Ph]^+$ - und $[AsPh]^+$ -Fragmente bei 77 bzw. 152 amu und der Peak bei 305 amu. Bei diesem könnte es sich um das bei der thermischen Zersetzung von 1 entstehende Triphenylarsan, AsPh₃, handeln oder aber um den $[As_2Ph_2]^+$ -Baustein mit As-As-Doppelbindung, welcher langezeit als "Arsenobenzol" mit irrtümlich dimeren Struktur formuliert wurde. Bis dann in den siebziger Jahren massenspektrometrische Untersuchungen und letzendlich eine Röntgenstrukturanalyse die tatsächliche, homocyclische Gestalt von 1 als Cyclopolyarsan aufklärte. Das $[As_2Ph_2]^+$ -Fragmention wurde auch schon 1976 von *Huttner et al.* im Massenspektrum von Verbindung L identifiziert. *Abbildung 1* zeigt diesen Übergangsmetallkomplex in dem "Arsenobenzol" als brückenbildender µ₃-Ligand fungiert^[30].

Abbildung 1: Übergangsmetallkomplex L mit "Arsenobenzol" als Brückenligand

Bei der Aufnahme eines weiteren Massenspektrums von der (andere Umsetzung) entsprechenden Säulenfraktion erhält man zusätzlich zu den oben erwähnten Signalen einen weiteren Massenpeak bei 458 amu. Dieser könnte entweder dem $[As_2Ph_4]^+$ -Fragment oder dem Molekülion $[M/2]^+$ von 1 zugeordnet werden.

Diese Peaks sind möglicherweise die Folge von, sogar nach mehrfacher säulenchromatographischer Aufarbeitung, nicht abtrennbaren Verunreinigungen, die sich dementsprechend in der öligen Konsistenz von **6a** bemerkbar machen. Das Ergebnis der massenspektrometrischen Untersuchung (EI-POS) von **6a** ist in *Tabelle 2* zusammengefaßt.

<u>Tabelle 2:</u>	Ausgewählte Fragmente aus dem EI-Spektrum von $[{Cp^{-}Co}_{3}(\mu_{3}-As)_{2}]$ (6a)
	(EI-POS, 70 eV, 1mA, AT=200°C)

m/z [amu]	rel. In. [%]	Fragment
737	100.0	$[M]^+$
368	2.1	$[M/2]^+$
333	22.4	$[CoCp_2]^+$
152	96.8	$\left[AsPh \right]^{+}$
77	4.6	$[Ph]^+$

1.1.4 Strukturdiskussion von [{Cp⁻Co}₃(µ₃-As)₂] (6a)

Leider schlugen Versuche fehl, dieser Verbindung einen für die alle von Röntgenstrukturanalyse geeigneten Einkristall zu erhalten. Die Ergebnisse der massenspektrometrischen und NMR-spektroskopischen Untersuchung deuten darauf hin, daß es sich bei 6a um den phosphoranalogen, trigonal-bipyramidalen closo-Cluster mit drei Cobaltatomen in der äquatorialen und zwei Arsenatomen in der axialen Position handelt.

Um die Kristallisationsneigung solcher öligen Substanzen zu beeinflussen und gegebenenfalls zu verbessern, eignet sich oftmals eine Komplexierung mit $[M(CO)_6]$ (M = Cr, Mo, W). Dies gelang bei $[{Cp^-Co}_3(\mu_3-As)_2]$ (6a), welches in Kapitel 4 ausführlich beschrieben wird.

1.2 Charakterisierung von [{Cp⁻Co}₄As₄] (7a)

1.2.1 Eigenschaften von [{Cp⁻Co}₄As₄] (7a)

7a wird nach der säulenchromatographischen Aufarbeitung und Entfernung des Lösungsmittels im Vakuum als grünbrauner, öliger Rückstand gewonnen, der gut löslich in Toluol und n-Hexan, sehr gut löslich in Dichlormethan und THF ist. Die Lösungen von 7a sind nicht besonders luftempfindlich, sie können sogar kurz an Luft gehandhabt werden. Als Feststoff läßt sich die Verbindung unter Argonatmosphäre über einen längeren Zeitraum ohne erkennbaren Zerfall lagern.

1.2.2 ¹H-NMR-Spektroskopie von [{Cp⁻Co}₄As₄] (7a)

Wie das ¹H-NMR-Spektrum in C₆D₆ bei Raumtemperatur zeigt, ist [{Cp⁻Co}₄As₄] (**7a**) mit verschiedenen unabtrennbaren Verbindungen verunreinigt. Die Zuordnung der Signale fällt daher schwer. Ein Signalsatz mit einem Integrationsverhältnis von 2:2:9 für chemisch und magnetisch äquivalente Cp⁻-Liganden kann gefunden werden. Einen Überblick über die chemischen Verschiebungen von **7a** und der phosphoranalogen Verbindung [{Cp⁻Co}₄P₄]^[29] gibt *Tabelle 3*.

<u>*Tabelle 3*</u>: ¹H-NMR-Daten von **7a** und [{ $Cp^{-}Co$ }₄P₄] in C₆D₆ bei Raumtemperatur

Komplex	δ [ppm]	δ [ppm]	δ [ppm]
$[{Cp}Co}_4As_4] (7a)$	0.26 (s, 36H)	4.57 (s, 8H)	5.33 (s, 8H)
[{Cp ⁻ Co} ₄ P ₄]	0.31 (s, 36H)	5.02 (s, 8H)	5.37 (s, 8H)

1.2.3 Strukturdiskussion von [{Cp⁻Co}₄As₄] (7a)

Röntgenstrukturtaugliche Kristalle konnten trotz intensiver Bemühungen nicht erhalten werden. Ein Massenspektrum, welches wichtige Hinweise auf die Zusammensetzung von Verbindung **7a** hätte geben können, konnte wegen der öligen Konsistenz der Substanz leider nicht aufgenommen werden. Aus den oben genannten Gründen muß also eine nähere Charakterisierung ausbleiben. Durch den Vergleich der ¹H-NMR-Daten, Farb- und Laufeigenschaften zu dem bei der Reaktion von **2a** mit $[Cp^*Fe(\eta^5-P_5)]^{[29]}$ resultierenden Komplex $[\{Cp^-Co\}_4P_4]$, liegt die Vermutung nahe, daß es sich bei **7a** um die phosphoranaloge Verbindung handelt. Eine präzise Aussage über die tatsächliche Zusammensetzung oder die exakte Struktur von **7a** kann nicht gemacht werden. Denkbare Möglichkeiten für die Struktur des Co₄As₄-Grundgerüst wären zum Beispiel ein Kubus, Dreiecksdodekaeder, tetragonales Antiprisma oder eine Zwischenform dieser Strukturtypen.

Cothermolyse von *cyclo*-(PhAs)₆ (1) mit [Cp⁼Co(CO)₂] (2b) in siedendem Dekalin

Bei der Cothermolyse von **2b** mit äquimolaren Mengen an **1** in siedendem Dekalin tritt bereits nach fünf Minuten eine Farbänderung der Reaktionslösung von orangebraun nach schwarzbraun ein. Der Raktionsverlauf läßt sich IR-spektroskopisch verfolgen. Nach zwei Stunden Refluxieren sind die Eduktcarbonylbanden nicht mehr detektierbar, daraufhin wird die Reaktion beendet. Bei der säulenchromatographischen Aufarbeitung eluiert man zunächst mit reinem Petrolether in einer violetten Fraktion Verbindung **6b**. Weiteres Eluieren unter Erhöhung der Lösungsmittelpolarität auf Petrolether/Toluol (10:1) liefert eine grünbraune Fraktion an [{Cp⁼Co)₄As₄] (**7b**).

2.1 Charakterisierung von [{Cp⁼Co}₃(µ₃-As)₂] (6b)

2.1.1 Eigenschaften von $[{Cp}^{=}Co}_{3}(\mu_{3}-As)_{2}]$ (6b)

 $[{Cp^{=}Co}_{3}(\mu_{3}-As)_{2}]$ (**6b**) erhält man nach der säulenchromatographischen Reinigung und dem Entfernen des Lösungsmittels im Vakuum als violetten Rückstand, welcher bereits in unpolaren Solventien sehr gut löslich ist. Die intensiv violett gefärbten Lösungen von **6b** sind nicht besonders luftempfindlich, sie können sogar kurz an Luft gehandhabt werden. Als Feststoff läßt sich die Verbindung unter Argonatmosphäre monatelang ohne erkennbare Alterung oder Zersetzung aufbewahren.

2.1.2 ¹H-NMR-Spektroskopie von $[{Cp^{=}Co}_{3}(\mu_{3}-As)_{2}]$ (6b)

Das ¹H-NMR-Spektrum von **6b** in Deuterobenzol bei Raumtemperatur weist nur einen Signalsatz für die drei $Cp^{=}$ -Liganden in symmetrischer Umgebung auf, so daß drei Singuletts im Integralverhältnis 1:2:18 auftreten. *Tabelle 4* enthält die chemischen Verschiebungen von **6b** und der phosphoranalogen, trigonalen Bipyramide^[29]. Die Substitution der Phosphoratome durch Arsen bewirkt, wie ein Vergleich mit den ¹H-NMR-Daten der analogen Phosphorverbindung zeigt, einen geringen Hochfeldshift.

<u>*Tabelle 4*</u>: ¹H-NMR-Daten von **6b** und $[{Cp=Co}_3(\mu_3-P)_2]$ in C₆D₆ bei Raumtemperatur

Komplex	δ [ppm]	δ [ppm]	δ [ppm]
$[{Cp^{=}Co}_{3}(\mu_{3}-As)_{2}]$ (6b)	0.48 (s, 54H)	4.18 (s, 3H)	4.38 (s, 6H)
$[{Cp}^{=}Co}_{3}(\mu_{3}-P)_{2}]$	0.52 (s, 54H)	4.27 (s, 3H)	4.43 (s, 6H)

2.1.3 Massenspektrometrie von $[{Cp^{=}Co}_{3}(\mu_{3}-As)_{2}]$ (6b)

Im EI-Spektrum der Kristalle von **6b** findet man außer dem Molekülionenpeak bei m/z = 952 amu, welcher gleichzeitig Basispeak des Spektrums ist, nur noch das Molekülion $[M/2]^+$ bei 476 amu. Weitere metallhaltige Abbauprodukte und organische Fragmente werden nur mit verschwindend kleinen Intensitäten detektiert.

2.1.4 Röntgenstrukturanalyse von $[{Cp}^{=}Co}_{3}(\mu_{3}-As)_{2}]$ (6b)

Schwarze, rautenförmige, für die Röntgenstrukturanalyse geeignete Einkristalle konnten durch Abkühlen einer gesättigten n-Heptanlösung auf -28°C erhalten werden. **6b** kristallisiert in der monoklinen Raumgruppe Cc. Der Kristall lag als Inversionszwilling vor. *Abbildung 2* zeigt das Ergebnis der Röntgenstrukturanalyse, *Abbildung 3* das Schweratomgerüst.

<u>*Abbildung 2*</u>: Kristallstruktur von $[{Cp^{=}Co}_{3}(\mu_{3}-As)_{2}]$ (6b)

<u>Abbildung 3:</u> Schweratomgerüst von $[{Cp=Co}_3(\mu_3-As)_2]$ (6b) aus verschiedenen Blickwinkeln

Verbindung **6b** verfügt über ein Co₃As₂-Schweratomgerüst mit trigonal-bipyramidaler Struktur. Die drei {Cp⁼Co}-Fragmente bilden die dreieckige Basisfläche, welche durch die beiden Arsenatome in axialer Position, ober- und unterhalb überkappt wird. Da alle Co-Co-Bindungslängen mit 2.56 Å identisch sind, erzeugen die drei 14 VE-Fragmente ein gleichseitiges Dreieck. Dieser Befund wird durch die Co-Co-Bindungswinkel bekräftigt. Die maximale Abweichung vom idealen Dreieckswinkel (60°) beträgt nur 0.066°. Verschiebt man die Arsenatome entlang ihrer Achse auf die trigonale Fläche zu, so fällt diese Projektion nahezu mit dem Flächenmittelpunkt X1 der Cobaltdreiecksfläche zusammen. Die Atome As1 und As2 liegen demnach mit dem Punkt X1 auf einer Geraden. Die Abweichung von der Linearität beträgt lediglich 0.1°. Mit 2 x 2.26 bzw 4 x 2.27 Å sind alle Co-As-Bindungen annähernd gleich lang. Die Ergebnisse aus den ¹H-NMR-spektroskopischen und massenspektrometrischen Untersuchungen werden somit bestätigt. Die wichtigsten Bindungslängen und -winkel, sowie Molekülebenen mit ihren Schnittwinkeln werden in den *Tabellen 5* bis *8* aufgezeigt. Die Auflistung der Lageparameter und Temperaturfaktoren, die Aufnahmebedingungen und Angaben zum vermessenen Kristall sowie die ermittelten Bindungslängen und -winkel können dem Anhang entnommen werden.

Bindung	Bindungslängen [Å]	Bindung	Bindungslängen [Å]
	von 6b		von [{ $Cp^{=}Co$ } ₃ (μ_{3} -P) ₂]
Co1-Co2	2.5604(6)	Co1-Co2	2.5082(6)
Co1-Co3	2.5614(6)	Co1-Co3	2.5130(4)
Co2-Co3	2.5634(7)	Co2-Co3	2.5109(4)
Co1-As1	2.2641(6)	Co1-P1	2.1590(6)
Co2-As1	2.2651(6)	Co2-P1	2.1597(6)
Co3-As1	2.2628(6)	Co3-P1	2.1575(6)
Co1-As2	2.2651(6)	Co1-P2	2.1569(6)
Co2-As2	2.2652(6)	Co2-P2	2.1561(6)
Co3-As2	2.2672(6)	Co3-P2	2.1575(6)
Co-Cp ⁼ _{Zent.}	1.71	Co-Cp ⁼ _{Zent.}	1.71
As1…As2	3.44	P1…P2	3.20

Tabelle 5:Ausgewählte Bindungslängen von 6b im Vergleich zu $[{Cp=Co}_3(\mu_3-P)_2]$ mit Standardabweichungen

Bindung	Bindungswinkel [°]	Bindung	Bindungswinkel [°]
	von 6b		von [{Cp ⁼ Co} ₃ (μ_3 -P) ₂]
Co2-Co1-Co3	60.066(18)	Co2-Co1-Co3	60.006(10)
Co1-Co2-Co3	59.987(18)	Co1-Co2-Co3	60.092(10)
Co1-Co3-Co2	59.947(17)	Co1-Co3-Co2	59.902(10)
As1-X1-As2	179.9	P1-X1-P2	179.9

<u>Tabelle 6:</u>	Ausgewählte Bindungswinkel von 6b im Vergleich zu
	$[{Cp=Co}_3(\mu_3-P)_2]$.mit Standardabweichungen

Auch in der Peripherie setzt sich die Symmetrie fort. Alle Abstände zwischen den Co-Atomen und dem Zentrum des dazu gehörigen Cp⁼-Liganden betragen 1.71 Å. Die Liganden stehen nahezu senkrecht zu der Co1-Co2-Co3-Ebene (E1). Die Tms-Substituenten liegen jeweils ober- und unterhalb der von den Cobaltatomen aufgespannten Ebene.

Tabelle 7: Ebenendefinitionen und maximale Abweichungen aus den besten Ebenen

Ebene	Atome	max. Abweichung [Å]
E1	Co1-Co2-Co3	/
E2	C11-C12-C13-C14-C15	0.0195
E3	C21-C22-C23-C24-C25	0.0182
E4	C31-C32-C33-C34-C35	0.0115

Ebenen	Winkel [°]
E1/E2	90.7
E1/E3	89.4
E1/E4	89.8

<u>Tabelle 8:</u> Winkel zwischen den besten Ebenen

Berechnet man die Anzahl der Gerüsteelektronen nach *Wade*^[31] so ergeben sich 6 Gerüstelektronenpaare (GEP's) bzw. 52 Valenzelektronen nach *Mingos*^[32] für **6b**. Dies entspricht der idealen Zahl eines fünf atomigen *closo*-Clusters mit trigonal-bipyramidaler Gerüststruktur, bestehend aus drei Übergangsmetallfragmenten und zwei Hauptgruppenelementatomen.

Fragment/Atom	nach Mingos	nach Wade
3 x {Cp ⁼ Co}	3 x 14 VE = 42 VE	3 x 2 GE = 6 GE
2 x (µ3-As)	2 x 5 VE = 10 VE	2 x 3 GE = 6 GE
Σ	52 VE	12 GE = 6 GEP's

Bemerkenswert ist die hohe Symmetrie von $[{Cp=Co}_3(\mu_3-As)_2]$ (**6b**). **6b** ist nahezu isostrukturell zu der phosphoranalogen Verbindung, lediglich die Co-Co-Abstände sind infolge Substitution des Phosphors durch Arsen um 0.05 Å länger. Dies ist mit einer Aufweitung des trigonal-bipyramidalen Grundgerüstes im Vergleich zu $[{Cp=Co}_3(\mu_3-P)_2]^{[29]}$ verbunden.

2.1.5 Vergleich von [{Cp⁼Co}₃(µ₃-As)₂] (6b) mit anderen trigonalen Bipyramiden

Trigonal-bipyramidale Trimetall-Cluster mit zwei unkomplexierten, dreifach metallverbrückenden Arsen-Liganden in axialer Position sind selten. Als Beispiele sind die zwei publizierten Exemplare, $[{Cp^*Al}_3(\mu_3-As)_2]^{[33]}$ (**M**) und $[{Fe(CO)_3}_3(\mu_3-As)_2]^{[34a,b]}$ (**N**), nachstehend aufgeführt.

Der Heteropolyeder [{ Cp^*Al }₃(μ_3 -As)₂] (**M**) wird durch Thermolyse von (Cp^*Al)₄ mit *cyclo*-(^tBuAs)₄ in Toluol unter Abspaltung von Isobuten und 2-Methylpropan gebildet. Laut Röntgenstrukturanalyse hat das trigonal-bipyramidale As₂Al₃-Gerüst angenähert D_{3h}-Symmetrie.

Am längsten bekannt ist der Komplex N, der sich sowohl aus AsF₃ und [Fe(CO)₅] als auch aus AsX₃, X=Cl, Br, und Na₂[Fe(CO)₄] synthetisieren läßt. Die Kristallstruktur zeigt eine idealisierte C_{3h}-Molekülstruktur.

2.2 Charakterisierung von [{Cp⁼Co}₄As₄] (7b)

2.2.1 Eigenschaften von $[{Cp}^{-}Co}_{4}As_{4}]$ (7b)

Nach dem Trockenziehen der Säulenfraktion fällt Verbindung [{ $Cp^{=}Co$ }₄As₄] (**7b**) als ein brauner Rückstand an. In unpolaren und aromatischen Lösungsmitteln ist **7b** gut, in polaren sehr gut löslich. Als Feststoff und in Lösung ist der Komplex empfindlicher gegenüber Luft und Feuchtigkeit als **6b**. Deshalb empfielt sich eine Lagerung unter Inertgas bei tiefen Temperaturen, um dem Prozeß der Alterung entgegen zu wirken. Luftkontakt ist zu vermeiden. In kristalliner Form kann **7b** über mehrere Stunden an Luft gehandhabt werden, ohne daß rein optisch eine Zersetzung erkennbar wird.

2.2.2 ¹H-NMR-Spektroskopie von [{Cp⁼Co}₄As₄] (7b)

Im ¹H-NMR-Spektrum von **7b** in C₆D₆ bei Raumtemperatur findet man für die Protonen der vier chemisch und magnetisch äquivalenten Cp⁼-Liganden nur einen Signalsatz mit einem Integrationsverhältnis von 1:2:18. Vergleicht man die chemischen Verschiebungen von **7b** mit der phosphoranalogen Verbindung, so weisen die ¹H-NMR-Daten einen Hochfeldshift auf. In der folgenden *Tabelle* können die chemischen Verschiebungen von [{Cp⁼Co}₄As₄] (**7b**) und [{Cp⁼Co}₄P₄] verglichen werden.

<u>*Tabelle 9*</u>: ¹H-NMR-Daten von **7b** und [{ $Cp^{=}Co$ }₄P₄] in C₆D₆ bei Raumtemperatur

Komplex	δ [ppm]	δ [ppm]	δ [ppm]
$[\{Cp^{=}Co\}_{4}As_{4}](\mathbf{7b})$	0.40 (s, 72H)	4.94(s, 4H)	5.65 (s, 8H)
$[\{Cp^{=}Co\}_4P_4]$	0.39 (s, 72H)	5.07 (s, 4H)	5.76 (s, 8H)

2.2.3 Röntgenstrukturanalyse von [{Cp⁼Co}₄As₄] (7b)

Durch langsames Abdampfen einer gesättigten Diethyletherlösung von **7b** konnten für die Röntgenstrukturanalyse geeignete, schwarze Kristallblätchen erhalten werden. *Abbildung 4* zeigt die Molekülstruktur von [$\{Cp^{=}Co\}_{4}As_{4}$] (**7b**) im Kristall. Das Schweratomgerüst wird in *Abbildung 5* aus verschiedenen Blickwinkeln dargestellt. Ausgewählte Strukturparameter sind in *Tabelle 10* und *11* aufgelistet. Die Kristalldaten und Parameter sowie Temperaturfaktoren und Lageparameter werden im Anhang aufgeführt.

<u>*Abbildung 4*</u>: Kristallstruktur von [{Cp⁼Co}₄As₄] (**7b**)

As2

<u>*Abbildung 5*</u>: Schweratomgerüst von $[{Cp^{=}Co}_{4}As_{4}]$ (7b) aus verschiedenen Blickwinkeln

Bindung	Bindungslängen [Å] von 7b	Bindung	Bindungslängen [Å] von [$\{Cn^{=}Co\}_{4}P_{4}$]
Co1-Co2	2.5627(5)	Col-Co2	2.5019(5)
Co1-Co2a	3.739	Co1-Co2a	3.581
Co2-Co1a	3.739	Co2-Co1a	3.581
Co1-As1	2.3131(5)	Co1-P1	2.2034(8)
Co1-As2	2.3770(5)	Co1-P2	2.2607(9)
Co1-As2a	2.4072(5)	Co1-P2a	2.2683(9)
Co2-As1	2.3766(5)	Co2-P1	2.2629(9)
Co2-As1a	2.3987(5)	Co2-P1a	2.2630(9)
Co2-As2	2.3185(5)	Co2-P2	2.2070(8)
Co-Cp ⁼ _{Zent.}	1.76	Co-Cp ⁼ _{Zent.}	1.77
As1-As1a	2.6148(6)	P1-P1a	2.4047(15)
As1…As2a	2.8679(4)	P1…P2a	2.6751(10)
As2-As2a	2.6074(6)	P2-P2a	2.4004(16)
As2…As1a	2.8679(4)	P2…P1a	2.6751(10)
As1···As2	3.376	P1…P2	3.581

Tabelle 10:Ausgewählte Bindungslängen von 7b und $[{Cp^{=}Co}_4P_4]$ mitStandardabweichungen
Bindung	Bindungswinkel [°]	Bindung	Bindungswinkel [°]
	von 7b		von [{ $Cp^{=}Co$ } ₄ P ₄]
As1-Co1-As2a	74.797(15)	P1-Co1-P2a	73.47(3)
As1-Co1-Co2	58.074(14)	P1-Co1-Co2	57.04(2)
As2a-Co1-As2	66.044(17)	P2a-Co1-P2	64.01(4)
As2-Co1-Co2	55.833(14)	P2-Co1-Co2	54.93(2)
As2-Co2-As1a	74.863(14)	P2-Co2-P1a	73.51(3)
As2-Co2-Co1	58.025(14)	P2-Co2-Co1	56.97(2)
As1a-Co2-As1	66.397(16)	P1a-Co2-P1	64.21(3)
As1-Co2-Co1	55.694(14)	P1-Co2-Co1	54.82(2)
Co1-As1-Co2a	105.035(17)	Co1-P1-Co2a	106.59(3)
Co2-As1-As1a	57.207(15)	Co2-P1-P1a	57.92(3)
Co1-As1-Co2	66.231(15)	Co1-P1-Co2	68.14(2)
Co2a-As1-As1a	56.398(15)	Co2a-P1-P1a	57.88(3)
Co1a-As2-Co2	104.591(17)	Co1a-P2-Co2	106.28(3)
Co1a-As2-As2a	56.422(16)	Co1a-P2-P2a	57.84(4)
Co2-As2-Co1	66.142(15)	Co2-P2-Co1	68.10(2)
Co1-As2-As2a	57.535(15)	Co1-P2-P2a	58.15(3)

<u>*Tabelle 11*</u>: Ausgewählte Bindungswinkel von **7b** im Vergleich zu

 $[{Cp=Co}_4P_4]$ mit Standardabweichungen

 $[{Cp=Co}_{4}As_{4}]$ (7b) kristallisiert in der monoklinen Raumgruppe C2/c und besitzt somit als Symmetrieelement eine C₂-Drehachse.

Das Co_4As_4 -Schweratomgerüst entspricht wie bei der phosphoranalogen Verbindung $[{Cp^=Co}_4P_4]^{[29]}$ einem verzerrten tetragonalen Antiprisma. Die Struktur kann man sich von einem Kubus ableiten, dessen Ecken abwechselnd von Cobalt- und Arsenatomen besetzt sind. Die Verzerrung des ursprünglich symmetrischen Körpers wird durch zwei Co-Co-Bindungen und zwei As-As-Bindungen an den gegenüberliegenden Würfelflächen verursacht. Damit erhalten die Arsenatome und die {Cp⁼Co}-Fragmente in den Ecken des Grundgerüstes jeweils die Konnektivität 4.

Die vier Atome As1-Co1-As2a-Co2a liegen nahezu in einer Ebene (E1). Dies gilt ebenso für die Atome Co2-As1a-Co1a-As2 (E2). Die Abweichung aus der besten Ebene beträgt nur 0.0653 Å. Diese annähernd planaren Vierecksflächen E1 und E2 sind parallel zueinander angeordnet (*Tabelle 12* und *13*). Der Winkel zwischen den beiden Ebenen beträgt lediglich 0.1°. Die Co-As-Bindungen der beiden Co₂As₂-Ebenen werden in zwei kürzere mit 2.31 bzw. 2.32 Å und zwei längere mit 2.40 bzw. 2.41 Å unterteilt. Somit liegen keine quadratischen Flächen wie beim Würfel mehr vor.

<u>Tabelle 12:</u>	Ebenendefinitionen und	l maximale Abweichungen	aus den besten Ebenen
--------------------	------------------------	-------------------------	-----------------------

Ebene	Atome	max. Abweichung [Å]
E 1	As1-Co1-As2a-Co2a	0.0653
E2	Co2-As1a-Co1a-As2	0.0653

Tabelle 13: Winkel zwischen den besten Ebenen

Ebenen	Winkel [°]
E1/E2	0.1

7b besitzt genauso wie $[{Cp=Co}_4P_4]^{[29]}$ keine vollkommen tetragonale antiprismatische Struktur. Vergleicht man die Bindungswinkel in den seitlichen Dreiecksflächen, so wird dies deutlich. Bei einer Verdrehung der beiden Ebenen um 45° müßten die Dreiringe ein nahezu gleichschenkliges Dreieck bilden, bei dem zwei Bindungswinkel übereinstimmen. Wie aus *Tabelle 11* hervorgeht, divergieren die Winkel um mehr als 10°.

Die um 0.06 Å gegenüber der phosphoranalogen Verbindung größeren Co-Co-Abstände befinden sich mit 2.56 Å dennoch in der Reichweite von Co-Co-Einfachbindungen, wie sie in anderen metallorganischen Komplexen gefunden werden^[35,36,37,38]. Die längeren liegen mit 3.74 Å deutlich im nichtbindenden Bereich. Die bindenden As-As-Abstände betragen 2.61 Å. Sie sind um 0.17 Å gegenüber der klassischen Einfachbindung im gelben Arsen (2.44 Å) wesentlich länger. In der Literatur wird allerdings häufiger über ungewöhnlich lange Arsenbindungen berichtet^[3,39,40,41,42]. Die Arsenatome in den Ebenen **E1** und **E2** befinden sich mit 2.87 Å an den Grenzen zum bindenden Bereich.

Komplexe mit substituentenfreien As_n-Liganden besitzen oftmals Bindungen die länger als die klassischen As-As-Einfachbindungen sind, aber noch so kurz, daß sie nicht einfach als nichtbindend angenommen werden können. *Tabelle 14* gibt einen Überblick über As-As-Bindungsabstände.

Komplex	Bindungsabstände [Å]	Lit.
$[\mu-(\eta^2-As)_2Co_2(CO)_5PPh_3]$	2.275	[44a,b]
$[\mu_3-(\eta^2-As_2)\{W(CO)_5\}_3]$	2.279	[45]
$[\mu-(\eta^2-As)_2\{CpMo(CO)_2\}_2]$	2.312	[15]
$[\mu - (\eta^2 - As)_2 \{CpW(CO)_2\}_2]$	2.323	[15]
$[\mu_3-(\eta^2-AsPh)_2\{Cr(CO)_5\}_3]$	2.371	[30]
[(η ³ - <i>cyclo</i> -As ₃)Co(CO) ₃]	2.372	[2]

<u>rubene rr.</u> Oberstent un rusen rusen Dindungsubstand	Tabelle 14:	Übersicht an Arsen-Arsen-Bindungsabstände
--	-------------	---

$\left[\mu-(n^4-cvclo-As_5)\{CnMo\}_2\right]$	2.385	[3]
	2.397	[-]
	2.563	
	2.726	
	2.752	
$[\eta^2 - (AsC_6F_5)_2Fe(CO)_4]$	2.388	[10]
$[\mu-(\eta^2-catena-(AsMe)_4){Fe(CO)_3}_2]$	2.391	[13]
Ba_3As_{14}	2.399	[52]
	2.432	
	2.498	
CH ₃ C(CH ₂ As) ₃	2.405	[53,56]
	2.422	
$[\mu-(\eta^1-AsMe)(\mu-AsMe)\{Mn(CO)_4\}_2]$	2.422	[54]
<i>cyclo</i> -(AsMe) ₅	2.428 (Mittelw.)	[55]
$[\mu-(\eta^4-catena-(AsPr)_8{Mo(CO)_3}_2]$	2.434 (Mittelw.)	[6]
$[\mu-(\eta^2-catena-(AsMe)_5\{CpMo(CO)_3\}_2]$	2.434 (Mittelw.)	[57]
	2.449 (MIttelw.)	
$[{\mu-(\eta^1-AsMe)_2}_2{Cr(CO)_4}_2]$	2.442	[58]
cyclo-(^t BuAs) ₄	2.444 (Mittelw.)	[61a,b]
$[\mu-\eta^6-cyclo-(AsMe)_9{Cr(CO)_3}_2]$	2.445 (Mittelw.)	[6]
$[\mu-\eta^3-cyclo-As_3{triphosCo}_2]^{2+}$	2.450	[59]
cyclo-(CF ₃ As) ₄	2.454	[60]
$[\mu-(\eta^{?}-AsPh)_{2}\{CpFe(CO)_{2}\}_{2}]$	2.456	[11]
cyclo-(AsPh) ₆	2.459 (Mittelw.)	[62]
$[\mu-(\eta^1-AsHPh)_2\{CpMn(CO)_2\}_2]$	2.460	[63]

[64]
[65]
[66]
[67]

3. Cothermolyse von *cyclo*-(PhAs)₆ (1) mit [Cp''Co(CO)₂] (2c) in siedendem Dekalin

Wird das Cyclopentadienylcobaltdicarbonyl 2c mit äquimolaren Mengen an 1 bei 190°C in Dekalin zur Reaktion gebracht, so sind nach einer Reaktionszeit von 1,5 Stunden die IR-Banden von [Cp"Co(CO)₂] (2c) vollständig verschwunden. Die Reaktion wird abgebrochen. Nach der säulenchromatographischen Aufarbeitung an Aluminiumoxid kann zunächst mit reinem Petrolether eine dünne violette Fraktion abgetrennt werden. Die Ausbeute an der violetten Verbindung nach dem Trockenziehen ist so gering, daß eine nähere Charakterisierung ausbleiben muß. Mit ansteigender Polarität des Eluens separiert man mit einem Petrolether/Toluol-Gemisch im Verhältnis 10:1 die Verbindung 8 in einer braunen Fraktion.

3.1 Charakterisierung von [{Cp''Co}₄(AsO)₂As₂] (8)

3.1.1 Eigenschaften von [{Cp''Co}₄(AsO)₂As₂] (8)

8 fältt nach dem Entfernen des Lösungsmittels im Vakuum als brauner Rückstand an. Der Komplex löst sich in unpolaren, aromatischen sowie polaren Solventien gut. Im festen Zustand und in Lösungen ist [$\{Cp''Co\}_4(AsO)_2As_2$] (**8**) vergleichsweise stabil gegenüber Luft und Feuchtigkeit, allerdings ist **8** nach dem vollständigen Entfernen des Lösungsmittels nur noch schwer in Lösung zu bringen.

An **8** konnte eine Röntgenstrukturanalyse durchgeführt werden. Die Struktur konnte allerdings aufgrund der schlechten Kristallqualität nicht vollständig verfeinert werden.

3.1.2 ¹H-NMR-Spektroskopie von [{Cp''Co}₄(AsO)₂As₂] (8)

Die zuvor erwähnte Eigenschaft, daß Verbindung **8** nach völligem Trockenziehen am Hochvakuum kaum noch in Lösung zu bringen ist, wird hier zum Problem. Die in den gängigen deuterierten Lösungsmitteln aufgenommenen ¹H-NMR-Spektren waren allesamt zu schwach konzentriert, um die chemischen Verschiebungen diskutieren zu können.

3.1.3 Röntgenstrukturanalyse von [{Cp''Co}₄(AsO)₂As₂] (8)

Die vermessenen Einkristalle wurden durch langsames Abdampfen des Lösungsmittels aus einer Diethyletherlösung erhalten. Es sind schwarze, sehr dünne und außerordentlich kleine Kristallblätchen. Trotz intensiver Versuche und unter Verwendung verschiedenster Kristallisationstechniken konnte die Qualität der Kristalle leider nicht verbessert werden, so daß man nur einen Strukturvorschlag formulieren kann. Auf die Angabe und Diskussion von detaillierten Strukturparametern muß an dieser Stelle verzichtet werden.

Die nicht vollständig verfeinerte Struktur von **8** zeigt ähnlich Verbindung **7b** ein verzerrtes quadratisches Antiprisma bei dem zwei von vier Arsenatomen oxidiert worden sind.

Die Herkunft des Sauerstoffs bei dieser partiellen Oxidation ist unklar. Denkbar wäre, daß Spuren von Luft während der Thermolyse, bei der säulenchromatographischen Aufarbeitung oder durch die Kristallisationstechnik eingeschleppt wurden. Ebenfalls Im Bereich des Möglichen ist eine unter den drastischen Reaktionsdingungen (siedendes Dekalin) begünstigte Spaltung der Carbonylgruppen.

4. Umsetzung von [{Cp⁻Co}₃(μ₃-As)₂] (6a) mit [M(CO)₅(thf)] (M = Mo, W)

6a reagiert mit einem Überschuß an einer frisch hergestellten Lösung von $[M(CO)_5(thf)]$ (M = Mo, W) in THF bei Raumtemperatur zu den heterobimetallischen Komplexen **11a** und **b**, welche in niedriger bis mäßiger Ausbeute nach säulenchromatographischer Aufarbeitung an basischem Aluminiumoxid als grüne Feststoffe isoliert werden können.

4.1 Charakterisierung von [{Cp⁻Co}₃{(µ₄-As)Mo(CO)₅}₂] (11a)

4.1.1 Eigenschaften von [{Cp⁻Co}₃{(µ₄-As)Mo(CO)₅}₂] (11a)

Verbindung **11a** fällt nach dem Entfernen des Lösungsmittels als grüner, pulvriger Rückstand an, welcher sich in seinen Lösungseigenschaften von der molybdänfreien Ausgangsverbindung **6a** unwesentlich unterscheidet. Als Feststoff oder in Lösung ist der Komplex für kurze Zeit an Luft handhabbar, in Argonatmosphäre kann **11a** monatelang aufbewahrt werden. Mit andauernder Lagerung nimmt jedoch die Löslichkeit, bedingt durch Alterung und Zersetzung, ab; es bleibt ein weißer unlöslicher Niederschlag zurück.

Durch Koordination der beiden $\{Mo(CO)_5\}$ -Einheiten an den Arsenatomen der trigonalen Bipyramide von **6a**, war es möglich, eine Kristallstrukturanalyse an **11a** durchzuführen.

4.1.2 ¹H-NMR-Spektroskopie von [{Cp⁻Co}₃{(µ₄-As)Mo(CO)₅}₂] (11a)

In dem bei Raumtemperatur in Deuterobenzol aufgenommenen ¹H-NMR-Spektrum von **11a** treten nur drei Singuletts im Integrationsverhältnis 2:2:9 auf. Da der Cp⁻-Ligand allein diesen Signalsatz verursacht, müssen die drei {Cp⁻}-Fragmente chemisch und magnetisch äquivalent sein, so daß **11a** zumindest in Lösung eine dreizählige Drehachse senkrecht zur Ebene der drei Metallfragmente besitzt.

Die beiden an den Arsenatomen terminal koordinierten $\{Mo(CO)_5\}$ -Einheiten üben einen hohen Einfluß auf das ¹H-NMR-Spektrum aus. In *Tabelle 15* werden die ¹H-NMR-Daten von **11a** und **6a** gegenübergestellt.

Tabelle 15:	¹ H-NMR-Daten von	11a und 6a in	n C_6D_6 bei	Raumtemperatur
-------------	------------------------------	---------------	----------------	----------------

Komplex	δ [ppm]	δ [ppm]	δ [ppm]
$[{Cp^{-}Co}_{3}{(\mu_{4}-As)Mo(CO)_{5}}_{2}]$ (11a)	-0.08 (s, 27H)	4.29 (s, 6H)	5.62 (s, 6H)
$[{Cp^{-}Co}_{3}(\mu_{3}-As)_{2}]$ (6a)	0.38 (s, 27H)	4.46 (s, 6H)	4.63 (s, 6H)

4.1.3 IR-Spektroskopie von [{Cp⁻Co}₃{(µ₄-As)Mo(CO)₅}₂] (11a)

Die IR-spektroskopischen Daten von **11a** zeigen die jeweiligen CO-Valenzschwingungen von den an die beiden Arsenatomen koordinierten { $Mo(CO)_5$ }-Einheiten in dem zu erwartenen Bereich. Im Gegensatz zu dem in Pentan gemessenen IR-Spektrum von Komplex **O**^[85,86] (siehe weiter unten) erhält man allerdings nur zwei Banden bei $\overline{v} = 2063 \text{ cm}^{-1}$ (m) und 1948 cm⁻¹ (sh). Bei dem in THF aufgenommenen Spektrum könnte sich ein weiteres Signal unter der Schulter bei 1948 cm⁻¹ verbergen. In der anschließenden *Tabelle* sind die IR-Daten der überkappenden Metallcarbonylen für **11a** und Verbindung **O** angegeben.

Tabelle16:	IR-Daten	für 11a in	THF und	Komplex () in Pentan
				1	

\overline{v} [cm ⁻¹] für [Fe ₃ (CO) ₉ {AsCr(CO) ₅ } ₂] (O)	$\overline{v} [\text{cm}^{-1}] \text{für} [\{\text{Cp}^{-}\text{Co}\}_3\{\text{AsMo}(\text{CO})_5\}_2] (11a)$
2064 (m)	2063 (m)
1980 (m)	
1969 (m)	1948 (sh)

4.1.4 Röntgenstrukturanalyse von [${Cp}^{-}Co$ } $_{3}{(\mu_{4}-As)Mo(CO)}_{5}_{2}$] (11a)

Durch langsames Abdiffundieren des Lösungsmittels aus einer gesättigten Diethyletherlösung bei Raumtemperatur lassen sich schwarze, rautenförmige Einkristalle züchten.

 $[{Cp^{-}Co}_{3}{(\mu_{4}-As)Mo(CO)_{5}_{2}}]$ (11a) kristallisiert in der monoklinen Raumgruppe P2₁/n. *Abbildung 6* zeigt die röntgenographisch ermittelte Molekülstruktur, *Abbildung 7* und 8 das Schweratomgerüst von 11a. *Tabelle 17* und *18* enthält ausgewählte Strukturparameter des Heterobimetallclusters. Die Kristalldaten und Parameter zur Kristallstrukturanalyse sowie Lageparameter und Temperaturfaktoren sind dem Anhang zu entnehmen.

<u>*Abbildung 6*</u>: Kristallstruktur von $[{Cp^{-}Co}_{3}{(\mu_{4}-As)Mo(CO)_{5}}_{2}]$ (11a)

<u>Abbildung 8:</u> Schweratomgerüst von $[{Cp^-Co}_3{(\mu_4-As)Mo(CO)_5}_2]$ (11a) mit den beiden ${Mo(CO)_5}$ -Einheiten

Bindung	Bindungslängen [Å]	Bindung	Bindungslängen [Å]
Co1-Co2	2.5856(11)	Co2-As2	2.2662(10)
Co1-Co3	2.5651(10)	Co3-As2	2.2624(9)
Co2-Co3	2.5970(10)	Mo1-As1	2.6180(8)
Col-As1	2.2663(9)	Mo2-As2	2.6243(8)
Co2-As1	2.2562(10)	Co-Cp ⁼ _{Zent.}	1.70
Co3-As1	2.2650(9)	As1…As2	3.41
Col-As2	2.2645(10)		

Tabelle 17: Ausgewählte Bindungslängen von **11a** mit Standardabweichungen

Tabelle 18: Ausgewählte Bindungswinkel von **11a** mit Standardabweichungen

Bindung	Bindungswinkel [°]	Bindung	Bindungswinkel [°]
Co2-Co1-Co3	60.56(3)	Col-Asl-Mol	135.95(3)
Co1-Co2-Co3	59.33(3)	Co2-As1-Mo1	144.23(3)
Co1-Co3-Co2	60.11(3)	Co3-As1-Mo1	135.60(3)
Co1-As1-Co2	69.74(3)	Co1-As2-Mo2	142.65(4)
Co2-As1-Co3	70.12(3)	Co2-As2-Mo2	135.63(4)
Co1-As1-Co3	68.95(3)	Co3-As2-Mo2	138.01(3)
Co1-As2-Co2	69.60(3)	Mo1-X1-Mo2	177.9
Co2-As2-Co3	69.99(3)	As1-X1-As2	179.0
Co1-As2-Co3	69.03(3)		

Komplex **11a** besitzt wie **6b** ein trigonal-bipyramidales Co_3As_2 -Schweratomgerüst mit dem Unterschied, daß an den beiden dreifach cobaltverbrückenden Arsenatomen jeweils eine {Mo(CO)₅}-Einheit koordiniert ist.

Die Co-As-Bindungen sind mit 3 x 2.26 und 3 x 2.27 Å wie bei $[{Cp^{=}Co}_{3}(\mu_{3}-As)_{2}]$ (6b) ähnlich lang. Die beiden As-Mo-Abstände betragen 2.62 Å.

Die Co-Co-Abstände und damit die Seitenlängen der Dreiecksbasis variieren im Gegensatz zu 6b um 0.0319 Å zwischen der kürzesten (2.57 Å) und der längsten (2.60 Å) Metall-Metall-Bindung. Naturgemäß macht sich diese Diskrepanz bei den Bindungswinkeln der Cobaltdreiecksebene bemerkbar. Sie weichen bis zu 0.67° von den idealen Winkeln eines (60°) ab. gleichseitigen Dreiecks Das Resultat ist eine Verzerrung bzw. Symmetrieerniedrigung des Dreirings, so daß die beiden Arsenatome, welche die von den Cobaltatomen aufgespannten Fläche ober- und unterhalb überkappen, nicht mit dem Dreiecksmittelpunkt X1 der Co1-Co2-Co3-Ebene (E1) auf einer Gerade liegen. Die Abweichung von der Linearität beträgt 1°. Die beiden Molybdänatome und X1 schließen einen Winkel von 177.9° ein. Alle Abstände zwischen den Co-Atomen und dem Zentrum des dazu gehörigen Cp⁻-Liganden belaufen sich auf 1.70 Å. Die Liganden stehen beinahe senkrecht zu E1. Die Abweichung vom rechten Winkel ist mit 2.7° allerdings deutlich größer als bei $[{Cp^{\overline{C}}O}_{3}(\mu_{3}-As)_{2}]$ (6b). Der Trimethylsilyl-Substituent an den Cp-Ringen besitzt jeweils eine unterschiedliche Ausrichtung. Eine Tms-Gruppe liegt ober-, eine unterhalb und eine etwa in der Cobaltdreiecksebene.

Ebene	Atome	max. Abweichung [Å]
E1	Co1-Co2-Co3	/
E2	C1-C2-C3-C4-C5	0.0021
E3	C6-C7-C8-C9-C10	0.0022
E4	C11-C12-C13-C14-C15	0.0097

Tabelle 19: Ebenendefinitionen und maximale Abweichungen aus den besten Ebenen

|--|

Ebenen	Winkel [°]
E1/E2	92.1
E1/E3	92.7
E1/E4	90.0

Schaut man sich die Mo-As-Co-Bindungswinkel näher an, so stellt man fest, daß sich der Co2-As1-Mo1-Winkel mit 144.23° und der Co1-As2-Mo2-Winkel mit 142.65° von den anderen abhebt. Die Ursache dafür könnte in sterischen Wechselwirkungen zwischen den CO-Gruppen der zwei {Mo(CO)₅}-Einheiten und den Cp⁻-Liganden liegen. Dafür spricht die Abwinkelung der Carbonylgruppen in der Nähe der Liganden und speziell in der Umgebung der Trimethylsilyl-Gruppe an Si31. Diese Abknickung wird durch die As-Mo-C_{äq.}-Winkel größer 90° und die beiden As-Mo-C_{ax.}-Winkel kleiner 180° belegt.

Vergleicht man **11a** mit Komplex **O** so stellt man einige Gemeinsamkeiten fest. In *Tabelle 19* und *20* sind ausgewählte Bindungsabstände und -winkel gegenübergestellt.

Zur Synthese von $\mathbf{O}^{[85,86]}$ setzt man den Chlorarsiniden-Komplex [{(OC)₃Cr}₂AsCl] mit Na₂[Fe(CO)₄] bei Raumtemperatur oder [(Cl₃As)Cr(CO)₅] mit Fe₂(CO)₉ bei 40-70°C um. Verbindung \mathbf{O} wird dabei nach Chromatographie und Kristallisation als analysenreiner kristalliner Festkörper erhalten.

O weicht durch die Komplexierung der strukturanalytisch gesicherten Verbindung $[Fe_3(CO)_9(\mu_3-As)_2]$ (**N**) mit {Cr(CO)₅}-Gruppen von der ursprünglichen C_{3h}-Symmetrie ab. Diese Deviation von der idealen Symmetrie ist primär auf sterische Wechselwirkungen zwischen den Eisencarbonyl-Liganden und den Arsenatomen überkappenden Chromcarbonyl-Gruppen zurückzuführen.

Die Kristallstruktur von **11a** bestätigt hiermit indirekt die, basierend auf massenspektrometrischen und NMR-spektroskopischen Daten, in Kapitel **1** vorgeschlagene Molekülstruktur von $[{Cp^{-}Co}_{3}(\mu_{3}-As)_{2}]$ (**6a**). Wobei ähnlich wie bei Komplex **O** die sterischen Wechselwirkungen zwischen den Molybdäncarbonyl-Gruppen und den Cp⁻-Liganden zu einer Abweichung von der ursprünglichen C_{3h}-Symmetrie geführt hat.

Bindung	Bindungslängen [Å]	Bindung	Bindungslängen [Å]
Co1-Co2	2.5856(11)	Fe1-Fe2	2.650(2)
Co1-Co3	2.5651(10)	Fe1-Fe3	2.651(2)
Co2-Co3	2.5970(10)	Fe2-Fe3	2.688(2)
Co1-As1	2.2663(9)	Fe1-As1	2.376(2)
Co2-As1	2.2562(10)	Fe2-As1	2.358(2)
Co3-As1	2.2650(9)	Fe3-As1	2.353(2)
Co1-As2	2.2645(10)	Fe1-As2	2.396(2)
Co2-As2	2.2662(10)	Fe2-As2	2.334(2)
Co3-As2	2.2624(9)	Fe3-As2	2.329(2)
Mo1-As1	2.6180(8)	Cr1-As1	2.406(2)
Mo2-As2	2.6243(8)	Cr2-As2	2.392(2)
Co-Cp ⁻ _{Zent.}	1.70		
As1…As2	3.41	As1···As2	3.546

<u>*Tabelle 21*</u>: Ausgewählte Bindungsabstände von **11a** im Vergleich zu Komplex **O** mit Standardabweichungen

Bindung	Bindungswinkel [°]	Bindung	Bindungswinkel [°]
Co2-Co1-Co3	60.56(3)	Fe2-Fe1-Fe3	62.8(1)
Co1-Co2-Co3	59.33(3)	Fe1-Fe2-Fe3	58.6(1)
Co1-Co3-Co2	60.11(3)	Fe1-Fe3-Fe2	58.6(1)
Co1-As1-Co2	69.74(3)	Fe1-As1-Fe2	68.1(1)
Co2-As1-Co3	70.12(3)	Fe2-As1-Fe3	71.8(1)
Co1-As1-Co3	68.95(3)	Fe1-As1-Fe3	68.2(1)
Co1-As2-Co2	69.60(3)	Fe1-As2-Fe2	68.1(1)
Co2-As2-Co3	69.99(3)	Fe2-As2-Fe3	72.6(1)
Co1-As2-Co3	69.03(3)	Fe1-As2-Fe3	68.2(1)
As1-Co1-As2	97.47(4)	As1-Fe1-As2	96.0(1)
As1-Co2-As2	97.71(4)	As1-Fe2-As2	98.2(1)
As1-Co3-As2	97.57(3)	As1-Fe3-As2	98.4(1)

Tabelle 22:Ausgewählte Bindungswinkel von 11a im Vergleich zu Komplex O mitStandardabweichungen

4.2 Charakterisierung von [{Cp⁻Co}₃{(µ₄-As)W(CO)₅}₂] (11b)

4.2.1 Eigenschaften von [{Cp⁻Co}₃{(µ₄-As)W(CO)₅}₂] (11b)

Verbindung **11b** fällt nach dem Entfernen des Lösungsmittels ebenfalls als grüner, pulvriger Rückstand an und zeigt die gleichen Eigenschaften bezüglich Löslichkeit, Haltbarkeit, Verhalten gegenüber Luft und Wasser wie die molybdänanaloge Verbindung **11a**.

4.2.2 ¹H-NMR-Spektroskopie von [{Cp⁻Co}₃{(µ₄-As)W(CO)₅}₂] (11b)

Das bei Raumtemperatur in Deuterobenzol aufgenommene ¹H-NMR-Spektrum von **11b** weist einen Signalsatz mit drei Singuletts im Integrationsverhältnis 2:2:9 auf. Wie bei **11a** müssen die drei {Cp⁻}-Fragmente chemisch und magnetisch äquivalent sein.

Die chemischen Verschiebungen von **11a** und **11b** sind nahezu identisch. Die Substitution von Molybdän durch Wolfram hat nur einen geringen Einfluß auf das NMR-Spektrum. In *Tabelle 23* werden die ¹H-NMR-Daten von **11a**, **11b** und **6a** gegenübergestellt.

<u>Tabelle 23:</u>	¹ H-NMR-Daten von 11a	, 11b und 6a in	C ₆ D ₆ bei Raumtemp	eratur
--------------------	---	-------------------------------	--	--------

Komplex	δ [ppm]	δ [ppm]	δ [ppm]
$[{Cp^{-}Co}_{3}{(\mu_{4}-As)Mo(CO)_{5}}_{2}]$ (11a)	-0.08 (s, 27H)	4.29 (s, 6H)	5.62 (s, 6H)
$[{Cp^{-}Co}_{3}{(\mu_{4}-As)W(CO)_{5}}_{2}]$ (11b)	-0.09 (s, 27H)	4.30 (s, 6H)	5.65 (s, 6H)
$[{Cp^{-}Co}_{3}(\mu_{3}-As)_{2}]$ (6a)	0.38 (s, 27H)	4.46 (s, 6H)	4.63 (s, 6H)

5. Oxidationsversuche an $[{Cp}-Co}_{3}(\mu_{3}-As)_{2}]$ (6a) und $[{Cp}-Co}_{3}(\mu_{3}-As)_{2}]$ (6b)

Die beiden dreifach metallverbrückenden Arsenatomen von **6a** und **6b** besitzen jeweils ein einsames Elektronenpaar, das, wie an der Umsetzung von $[M(CO)_5(thf)]$ (M = Mo, W) mit **6a** gezeigt wurde, koordinativ fixiert werden kann. Analog den phosphorhaltigen trigonalen Bipyramiden sollen Oxidationsversuche an den axial positionierten Arsenatomen durchgeführt werden und je nach Oxidationsreagens sowohl die einfach als auch zweifach oxidierten Komplexe dargestellt werden.

Rührt man eine Lösung von **6a** und **6b** in verschiedenen Solventien über einen längeren Zeitraum an Luft, so zersetzen sich jeweils die Verbindungen und es verbleibt, ähnlich dem Alterungsprozeß, jeweils nur ein unlöslicher Rückstand zurück. Bei der Einleitung von reinem Sauerstoff wird direkte Zersetzung beobachtet.

Bringt man eine Toluollösung von **6a** und **6b** kurz mit Luft in Kontakt und rührt danach 24 Stunden unter Luftausschluß bei Raumtemperatur weiter, so konnte jedesmal nach der säulenchromatographischen Aufarbeitung ausschließlich nichtumgesetztes Edukt zurückgewonnen werden. Es haben also keine Reaktionen stattgefunden. Gleiches beobachtet man bei Umsetzungen von **6a,b** mit S₈. Nach der Aufarbeitung an einer Chromatographiesäule wird mit reinem Petrolether zuerst S₈ und anschließend **6a** beziehungsweise **6b** nahezu vollständig zurückgewonnen.

Durch diese Umsetzungen mit Sauerstoff und gelbem Schwefel konnte gezeigt werden, daß $[{Cp^{R}Co}_{3}(\mu_{3}-As)_{2}]$ (**6a,b**) als Edukte zur Synthese von Komplexen mit koordinativ stabilisierten AsX-Liganden (X = O, S) nicht geeignet ist. Auf weitere Versuche mit anderen Elementen der 16. Gruppe (Selen, Tellur) wird daraufhin verzichtet.

6. Cothermolyse von *cyclo*-(PhAs)₆ (1) mit [Cp⁼Rh(CO)₂] (3a) in siedendem Dekalin

Aufgrund der ungünstigen Eigenschaften von Verbindungen mit Cp⁻-Liganden wird im folgenden auf diesen verzichtet und nur noch der $Cp^{=}$ -Ligand verwendet.

Bei der Reaktion von $[Cp^{=}Rh(CO)_2]$ (**3a**) mit *cyclo*-(PhAs)₆ (**1**) in siedendem Dekalin tritt schon nach kurzer Zeit eine Dunkelfärbung der gelben Reaktionssuspension ein. IRspektroskopisch kann die Intensitätsabnahme der für **3a** charakteristischen Carbonylbanden verfolgt werden. Nach ca. zwei Stunden, wenn die neu auftretende IR-Absorption bei \overline{v} = 1729 cm⁻¹ maximale Intensität erreicht hat, wird die Reaktion beendet. Durch säulenchromatographische Aufarbeitung an basischem Aluminiumoxid läßt sich eine nicht näher charakterisierbare, orangerote Fraktion eluieren, welche nach dem Entfernen des Lösungsmittels ölig bleibt und laut ¹H-NMR- und IR-Spektrum stark verunreinigt ist. Diese unbekannte Verbindung kann weder durch mehrfache säulenchromatographische Aufarbeitung noch durch Verwendung anderer Absorbentien analysenrein isoliert werden. Als Konsequenz muß daher auf eine nähere Charakterisierung leider verzichtet werden. Eine Erhöhung der Polarität des Eluens hat Verbindung **12** in einer braunen, öligen Fraktion zum Ergebnis.

6.1 Charakterisierung von [{Cp⁻Rh}₃(μ-CO)(AsPh₂)As] (12)

6.1.1 Eigenschaften von [{Cp⁼Rh}₃(µ-CO)(AsPh₂)As] (12)

Nach säulenchromatographischer Aufarbeitung und Entfernen des Lösungsmittels liegt **12** als brauner, öliger Rückstand vor, der sich in unpolaren und aromatischen Solventien gut, in THF oder Dichlormethan sehr gut löst. Die geringe Empfindlichkeit gegenüber Luft und Feuchtigkeit erlaubt eine kurzzeitige Handhabung ohne Schutzgasatmosphäre. Kristalle von **12** scheinen inert gegenüber Luft und Feuchtigkeit zu sein. Auch die Lösungen zersetzen sich erst nach längerem Luftkontakt.

6.1.2 ¹H-NMR-Spektroskopie von [{Cp⁼Rh}₃(μ-CO)(AsPh₂)As] (12)

Im ¹H-NMR-Spektrum von **12** in Deuterobenzol bei Raumtemperatur werden nur zwei Signalsätze für die drei Cp⁼-Liganden im Integralverhältnis 1:2 beobachtet, obwohl man für die unsymmetrische Molekülstruktur von **12** eigentlich drei Signalsätze erwarten würde. Pro Signalsatz treten drei Singuletts im Integralverhältnis 1:2:18 auf. Für die beiden Phenyl-Reste am Arsenatom detektiert man zwischen 7.60 und 7.80 ppm zwei Multipletts. *Tabelle 24* enthält die chemischen Verschiebungen von **12**, der trigonalen Bipyramide **6b** und die des Edukts **3a**.

Tabelle 24:Vergleich der ¹H-NMR-Daten von 12 mit [{Cp $^{=}$ Co}₃(µ₃-As)₂] (6b) und[Cp $^{=}$ Rh(CO)₂] (3a) in C₆D₆ bei Raumtemperatur

Komplex	δ [ppm]	δ [ppm]	δ [ppm]
$[{Cp^{Rh}}_{3}(\mu-CO)(AsPh_{2})As](12)$	0.31 (s, 36H) 0.35 (s, 18H)	5.11 (s, 2H) 5.46 (s, 1H)	5.34 (s, 4H) 5.73 (s, 2H)
$[{Cp^{=}Co}_{3}(\mu_{3}-As)_{2}]$ (6b)	0.48 (s, 54H)	4.18 (s, 3H)	4.38 (s, 6H)
$[Cp^{=}Rh(CO)_{2}] (\mathbf{3a})$	0.18 (s, 54H)	5.23 (s, 3H)	5.25 (s, 6H)

6.1.3 IR-Spektroskopie von [{Cp⁼Rh}₃(µ-CO)(AsPh₂)As] (12)

Im IR-Spektrum von 12, aufgenommen in THF, detektiert man im typischen Bereich für verbrückende CO-Valenzschwingungen ein Signal bei $\overline{v} = 1729 \text{ cm}^{-1}$ (w).

6.1.4 Massenspektrometrie von [{Cp⁻Rh}₃(μ-CO)(AsPh₂)As] (12)

Interessant im EI-Spektrum von **12** ist die Zerfallsreihe, welche vom Molekülionenpeak [M]⁺ bei 1269 amu ausgeht, über [M]⁺-CO und [M]⁺-CO-Ph nach [M]⁺-CO-2Ph führt, was letztendlich der Zusammensetzung der cobaltanalogen, trigonalen Bipyramide gleichkommen würde. Diese konnte allerdings bisher weder isoliert noch nachgewiesen werden.

Der Basispeak bei m/z = 1164 amu würde nach Abspaltung eines CO- und Ph-Fragments von $[M]^+$ formal einer Verbindung mit der Zusammensetzung $[{Cp^=Rh}_3(AsPh)As]$ entsprechen. Dies wiederum wäre ein unerwartetes Beispiel für einen Arsiniden-Komplex (IUPAC: Arsandiyle). Wie bereits in der Einleitung erwähnt wurde, ist ein sp²-hybridisiertes As-Atom und ML_n-Komplexfragmente, die zur π -Bindung befähigt sind, charakteristisch für diesen Bindungstyp.

Die beiden an die AsPh-Einheit koordinierten RhCp⁼-Gruppen besäßen unter Berücksichtigung aller Bindungen jeweils 16 VE, müßten also durch Delokalisierung ihrer Elektronen über Arsen eine planare Dreiecksebene bilden, in dieser demzufolge der Phenylrest am sp²-hybridisierten Arsenatom läge.

Solche ungesättigten Verbindungen sind bedingt durch ihr Elektronensextett sehr reaktiv und unbeständig, durch Komplexierung aber stabilisierbar.

Befände sich eine Metall-Metall-Bindung zwischen den beiden 16 VE-Fragmenten in dem zweikernigen "iniden"-Komplex, so würde sich die VE-Zahl um zwei erhöhen. Die Folge wäre, daß die Koordination am Zentralatom trigonal-pyramidal wird und zwei Elektronen am Zentralatom lokalisiert sind.

Weitere Fragmente sind mit ihren Massenzahlen und relativen Intensitäten in *Tabelle 25* wiedergegeben.

m/z [amu]	rel. In. [%]	Fragment
1269	63.0	$[M]^+$
1241	24.1	[M] ⁺ -CO
1164	100.0	[M] ⁺ -CO-Ph
1087	19.5	$[M]^+$ -CO-2Ph
73	76.9	[SiMe ₃] ⁺

<u>Tabelle 25:</u>	Ausgewählte Fragmente aus dem EI-Spektrum von 12
	(EI-POS, 70 eV, 1mA, AT=203°C)

6.1.5 Röntgenstrukturanalyse von [{Cp⁼Rh}₃(μ-CO)(AsPh₂)As] (12)

Von $[{Cp^{=}Rh}_{3}(\mu-CO)(AsPh_{2})As]$ (12) konnte eine Kristallstrukturanalyse angefertigt werden, da durch Abdiffusion des Lösungsmittels aus einer Diethyletherlösung bei Raumtemperatur Einkristalle in Form von schwarzen Rauten erhalten werden konnten. *Abbildung 9* zeigt das Ergebnis der röntgenographischen Strukturbestimmung von 12, die wichtigsten Bindungslängen und -winkel sowie Molekülebenen mit ihren Schnittwinkeln sind in den *Tabellen 26* und 27 aufgelistet. Projektionen des ligandfreien Grundgerüstes werden in *Abbildung 10* illustriert. Detaillierte Angaben zur Strukturlösung, Atomlageparameter und Temperaturfaktoren befinden sich im Anhang. 12 kristallisiert in der triklinen, zentrosymmetrischen Raumgruppe P₁.

<u>Abbildung 10:</u> Das Schweratomgerüst von 12

12 besitzt vier chirale Zentren, drei davon sind an den Rhodiumatomen lokalisiert, ein weiteres befindet sich an As2. In der Elementarzelle liegt neben dem dargestellten nur noch das komplett invertierte Diasteriomer von 12 vor.

Aufgrund der unsymmetrischen Molekülstruktur von [{Cp⁼Rh}₃(μ-CO)(AsPh₂)As] (**12**) fällt es schwer Gemeinsamkeiten zu anderen bekannten Strukturtypen zu finden. Der Komplex kann am ehesten als eine Art Vorstufe zu einem trigonal-bipyramidalen Cluster gesehen werden, denn es müssen nicht mehr als ein CO- und zwei Ph-Fragmente abgespalten und zwei neue Bindungen geknüpft werden, um zur cobaltanalogen trigonalen Bipyramide zu gelangen. Die Abstände von Rh1-Rh2 mit 2.79 Å und Rh2-Rh3 mit 2.77 Å liegen eindeutig innerhalb des Rh-Rh-Einfachbindungsbereichs. Direkte Metall-Metall-Wechselwirkungen zwischen Rh1 und Rh3 sind aufgrund des großen Abstands zwischen den Metallatomen auszuschließen. Auffällig ist, daß die beiden Rh3-As1- und Rh3-As2-Bindungen mit 2.41 bzw. 2.43 Å deutlich länger als die anderen Rhodium-Arsen-Bindungen (2.37 bzw. 2.38 Å) sind. Interessant ist der AsPh₂-Ligand bei dem vier Bindungen von As1 ausgehen. Es handelt sich hierbei um ein Arsanid^[91], einem drei Elektronendonor. Das Auftreten dieses doppelt phenylsubstituierten Arsenligands im Übergangsmetallkomplex 12 erklärt sich durch die Spaltung des Arsensechsrings in kleine PhAs-Fragmente und durch deren, ähnlich der thermischen Zersetzung, folgenden Disproportionierung zu Ph₂As und elementarem Arsen.

Der Kovalenzradius von Rhodium ist mit 1.25 Å um 0.09 Å größer als derjenige des Cobalts. Daher sollte eine allgemeine Aufweitung des Gerüsts beim Übergang von Cobalt zu Rhodium zu verzeichnen sein. Betrachtet man die drei Rhodiumatome als Basis einer trigonalbipyramidalen "Vorstufe" **12** und vergleicht ihre Bindungswinkel mit denen der trigonalen Bipyramide **6b**, so fallen Ähnlichkeiten auf. Die Rh1-As2-Rh2- und Rh2-As2-Rh3-Bindungswinkel betragen 71.93° bzw. 70.38°. Die drei entsprechenden Bindungswinkel zwischen dem dreifach verbrückenden Arsenatom und den Cobaltatomen bei **6b** sind mit 68.79°, 68.91° und 68.92° erwartungsgemäß kleiner. Die Cp⁼-Liganden stehen aber nicht wie bei [{Cp⁼Co}₃(μ_3 -As)₂] (**6b**) senkrecht zur Dreicksfläche. Die größte Abweichung von der Orthogonalität zwischen den Ligandebenen (**E2, E3, E4**) und der Rh1-Rh2-Rh3-Ebene (**E1**) beläuft sich auf 8.4° (*Tabelle 28* und *29*). Die Abstände der Rhodiumatome zu dem Zentrum des dazugehörigen Cp⁼-Liganden variieren zwischen 1.900 und 1.936 Å.

Tabelle 26:	Ausgewählte	Bindungslängen von	12 mit	Standardab	weichungen
	•	0 0			•

Bindung	Bindungsabstand [Å]	Bindung	Bindungsabstand [Å]
Rh1-Rh2	2.7915(8)	Rh1…Cp ⁼ _{Zent.}	1.900
Rh2-Rh3	2.7686(8)	Rh2…Cp ⁼ _{Zent.}	1.936
Rh1…Rh3	3.637	Rh3…Cp ⁼ _{Zent.}	1.910
As1-Rh1	2.3688(10)	As1…As2	2.918
As1…Rh2	3.501	As1-C (PhenylC1)	1.965(7)
As1-Rh3	2.4134(9)	As1-C (PhenylC2)	1.958(7)
As2-Rh1	2.3835(8)	Rh2-C (CO)	1.941(7)
As2-Rh2	2.3696(8)	Rh3-C (CO)	2.085(6)
As2-Rh3	2.4337(10)	C1-O1	1.167(7)

Bindung	Bindungswinkel [°]	Bindung	Bindungswinkel [°]
As1-Rh1-As2	75.96(3)	01-C1-Rh2	141.9(5)
As1-Rh1-Rh2	85.02(3)	O1-C1-Rh3	130.0(5)
As2-Rh1-Rh2	53.80(2)	C1-Rh2-As2	100.58(18)
As2-Rh2-Rh3	55.89(2)	C1-Rh2-Rh3	48.75(18)
As2-Rh2-Rh1	54.27(2)	C1-Rh2-Rh1	91.98(19)
Rh3-Rh2-Rh1	81.37(2)	C1-Rh3-As1	78.13(18)
As1-Rh3-As2	74.22(3)	C1-Rh3-As2	94.53(18)
As1-Rh3-Rh2	84.71(3)	C1-Rh3-Rh2	44.42(18)
As2-Rh3-Rh2	53.72(2)	C51-As1-C41	100.2(3)
Rh1-As1-Rh3	98.57(3)	C51-As1-Rh1	113.0(2)
Rh2-As2-Rh1	71.93(3)	C41-As1-Rh1	120.8(2)
Rh2-As2-Rh3	70.38(3)	C51-As1-Rh3	114.7(2)
Rh1-As2-Rh3	97.60(3)	C41-As1-Rh3	110.3(2)

<u>Tabelle 27:</u> Ausgewählte Bindungswinkel von **12** mit Standardabweichungen

Tabelle 28: Ebenendefinitionen und maximale Abweichungen aus den besten Ebenen

Ebene	Atome	max. Abweichung [Å]
E1	Rh1-Rh2-Rh3	/
E2	C11-C12-C13-C14-C15	0.0264
E3	C21-C22-C23-C24-C25	0.0147
E4	C31-C32-C33-C34-C35	0.0367

Ebenen	Winkel [^o]
E1/E2	81.6
E1/E3	82.7
E1/E4	97.0

<u>Tabelle 29:</u>	Winkel	zwischen	den	besten	Ebenen
--------------------	--------	----------	-----	--------	--------

Die Gerüstelektronenzählregeln ergeben nach *Wade*^[3], 8 GEP's und nach *Mingos*^[4], 56 Valenzelektronen. Formal würde **12** einem *arachno*-Cluster (n+3) entsprechen, den man sich aus einer verzerrten kantengeöffneten trigonal-bipyramidalen Gerüststruktur ableiten kann. **12** wäre auch von einem pentagonal-bipyramidalen *closo*-Cluster (n+1) durch Entfernen einer basalen und axialen Ecke ableitbar.

Fragment/Atom	nach Mingos	nach Wade
$3 \ge \{Cp^{=}Rh\}$	3 x 14 VE = 42 VE	3 x 2 GE = 6 GE
1 x (µ3-As)	1 x 5 VE = 5 VE	$1 \times 3 \text{ GE} = 3 \text{ GE}$
1 x (AsPh ₂)	1 x 7 VE = 7 VE	1 x 5 GE = 5 GE
1 x (μ-CO)	$1 \ge 2 = 2 = 2 = 2 = 1 = 1 = 1 = 1 = 1 = 1 =$	$1 \ge 2 = 2 = 2 = 2 = 2 = 2 = 2 = 2 = 2 = 2$
Σ	56 VE	16 GE = 8 GEP's

7. Cothermolyse von *cyclo*-(PhAs)₆ (1) mit [Cp^{'''}Rh(CO)₂] (3b) in siedendem Dekalin

Erhitzt man ein Gemisch aus $[Cp'''Rh(CO)_2]$ (**3b**) und *cyclo*-(PhAs)₆ (**1**) in Dekalin auf 190°C, so wird die anfangs gelbe Suspension innerhalb wenigen Minuten schwarzbraun. IRspektroskopisch kann die Intensitätsabnahme der für **3b** charakteristischen Carbonylbanden verfolgt werden, wobei eine neue IR-Bande bei $\overline{v} = 1754 \text{ cm}^{-1}$ auftritt. Die Reaktion wird nach etwa zwei Stunden abgebrochen, da die Produktbande an Intensität nicht mehr zunimmt. Durch säulenchromatographische Aufarbeitung des vom Lösungsmittel befreiten Rückstandes an basischem Aluminiumoxid eluiert man mit reinem Petrolether nicht umgesetztes Edukt **3b** in einer gelben Fraktion. Erhöht man die Polarität des Eluens auf ein Petrolether/Toluol-Gemisch (3:1) so kann man nur noch eine tiefblaue Fraktion von $[{Cp'''Rh(\mu-CO)}_2]$ (**3c**) isolieren.

Bei allen bisher durchgeführten Reaktionen zwischen $[Cp'''Rh(CO)_2]$ (**3b**) und dem Cyclopolyarsan (**1**) konnte weder die Bildung eines zu **12** analogen Cp'''-Derivats noch die Bildung überhaupt eines As-Rh-haltigen Produktes beobachtet werden.

Allein die Dimerisierung des Cyclopentadienylrhodiumdicarbonyls **3b** zu der Rhodiumzweikernverbindung **3c** konnte generiert werden. Solche Umwandlungen vom Monomer zum Dimer sind nichts Ungewöhnliches, sie können sowohl thermisch als auch photochemisch iniziiert werden und verlaufen zumeist direkt ohne Reaktionspartner, wobei sich ein Gleichgewicht zwischen Monomer und Dimer einstellt.

7.1 Charakterisierung von [{Cp'''Rh(µ-CO)}₂] (3c)

7.1.1 Eigenschaften von [{Cp'''Rh(µ-CO)}₂] (3c)

Der Rhodiumzweikernkomplex **3c** fällt nach der säulenchromatographischen Reinigung und dem Abziehen des Lösungsmittels als dunkelblauer, pulvriger Rückstand an, welcher sich mäßig in unpolaren, gut in Toluol und sehr gut in polaren Lösungsmitteln löst. Die Empfindlichkeit des Feststoffes und der intensiv blauen Lösungen gegenüber Luft und Feuchtigkeit ist eher gering. Unter Inertgasatmosphäre kann [{Cp''Rh(μ -CO)}₂] (**3c**) über einen längeren Zeitraum hinweg ohne erkennbare "Alterung" oder Zersetzung gelagert werden.

7.1.2 ¹H-NMR-Spektroskopie von [{Cp'''Rh(µ-CO)}₂] (3c)

Das ¹H-NMR-Spektrum von **3c** zeigt die für η^5 -gebundenen Cp^{'''}-Liganden zu erwartenden Singuletts, wobei nur ein Signalsatz für die beiden Liganden auftritt. Dies läßt auf eine hohe Symmetrie in dem Molekül schließen. Das Integralverhältnis beträgt 2:9:18. In der nachfolgenden *Tabelle* sind die chemischen Verschiebungen von **3c** neben denen der von *Weigel*^[68, 69, 70] kristallographisch charakterisierten, cobaltanalogen Verbindung aufgelistet. Generell ist beim Übergang vom Cobalt- zum Rhodiumkomplex ein geringer Tieffeldshift zu verzeichnen.

Komplex	δ [ppm]	δ [ppm]	δ [ppm]
$[{Cp'''Rh(\mu-CO)}_2] (3c)$	0.87 (s, 18H)	1.44 (s, 36H)	5.24 (s, 4H)
[{Cp'''Co(µ-CO)} ₂]	0.79 (s, 18H)	1.41 (s, 36H)	5.19 (s, 4H)

<u> Tabelle 30:</u>	¹ H-NMR-Daten von 3c und	$[{Cp'''Co(\mu-CO)}_2]$ in	C ₆ D ₆ bei Raumtemperatur
---------------------	--	----------------------------	--

7.1.3 IR-Spektroskopie von [{Cp'''Rh(µ-CO)}₂] (3c)

Im IR-Spektrum von **3c**, aufgenommen in THF, beobachtet man bei $\overline{v} = 1754 \text{ cm}^{-1}$ (m) eine Bande in dem für verbrückende CO-Liganden typischen Bereich. Diese Wellenzahl korreliert mit der für [{Cp'''Co(μ -CO)}₂] in Pentan gemessenen^[68] bei $\overline{v} = 1769 \text{ cm}^{-1}$.

7.1.4 Massenspektrometrie von [{Cp'''Rh(µ-CO)}₂] (3c)

Im EI-Spektrum von **3c** ist der Molekülionenpeak bei m/z = 728 amu gleichzeitig auch der Basispeak. Das Monomer **3b** konnte nicht beobachtet werden, dafür aber das Cp"-Homologon bei 336 amu. Die Abspaltung von zwei Carbonyl-Gruppen bei $[M]^+$ liefert das Zerfallsprodukt $[M]^+$ -2CO bei 672 amu. Die Peaks bei 569 und 513 amu entsprechen den, zu dem sehr stabilen $[RhCp_2]^+$ -Ion analogen, 18 VE-Ionen $[RhCp"_2]^+$ und $[RhCp""_2]^+$. In der folgenden *Tabelle* sind die erhaltenen Fragmente von **3c** aufgelistet.

m/z [amu]	rel. In. [%]	Fragment
728	100.0	$[M]^+$
672	7.4	[M] ⁺ -2CO
569	40.6	$[RhCp'''_2]^+$
513	65.2	$[RhCp''_2]^+$
336	9.8	[Cp"Rh(CO) ₂]

<u>Tabelle 31:</u>	Ausgewählte Fragmente aus dem EI-Spektrum von 3c
	(EI-POS, 70 eV, 1mA, AT=200°C)

7.1.5 Röntgenstrukturanalyse von [{Cp'''Rh(µ-CO)}₂] (3c)

Dunkelblaue, rechteckige Einkristalle waren für die Durchführung einer Röntgenstrukturanalyse geeignet. **3c** kristallisiert in der monoklinen Raumgruppe $P2_1/m$. Die Kristalle sind ausnahmslos verzwillingt.

Die *Abbildungen 11* und *12* zeigen die Molekülstruktur von **3c** im Kristall. Ausgewählte Strukturparameter sind in den *Tabellen 32* und *33*, die Molekülebenen und Schnittwinkel in den *Tabellen 34* und *35* enthalten. Detaillierte Angaben zur Strukturlösung, Atomlageparameter und Temperaturfaktoren können dem Anhang entnommen werden.

<u>*Abbildung 11*</u>: Struktur von [{Cp'''Rh(μ -CO)}₂] (**3c**) im Kristall

<u>Abbildung 12:</u> Struktur von [{Cp'''Rh(μ -CO)}] (3c) im Kristall entlang der Spiegelebene

3c zeigt strukturelle Gemeinsamkeiten zu dem von *Weigel*^[68] kristallstrukturanalytisch untersuchten Cobaltdimer [{Cp'''Co(μ -CO)}₂] mit dem Unterschied, daß [{Cp'''Rh(μ -CO)}₂] (**3c**) als Symmetrieelement eine Spiegelebene entlang der Metall-Metall-Achse besitzt. Diese liegt senkrecht zu den beiden Liganden und beinhaltet die beiden Cp'''-Ringmittelpunkte, die Atome C4, C12, C14, C7, C19, C20 und die beiden Rhodiumatome.

Die Rh1-Rh2-C1a- (E1) und Rh1-Rh2-C1-Ebene (E2) schließen einen Winkel von 4.2°, E3 und E4 einen Winkel von 4.3° ein. Für die Ursache dieser Abwinkelung der beiden CO-Gruppen sind, ähnlich wie beim Cobalt-Analogon, sterische Wechselwirkungen mit den ^tButyl-Gruppen verantwortlich.

Wie bereits erwähnt stehen die beiden Cp^{III}-Ringe nahezu senkrecht zu der Rh1-Rh2-Achse, so daß der Winkel zwischen E1 und dem ersten Cp-Ring (E5) 88.8° und der Winkel zwischen E2 und dem zweiten Cp-Ring (E6) 90.9° beträgt. Die Betrachtung entlang der Spiegelebene beziehungsweise der Rh-Rh-Achse zeigt im Einklang mit der cobaltanalogen Verbindung die ekliptische Anordnung der beiden Fünfringe.

Mit 2.57 Å spricht der Rhodium-Rhodium-Bindungsabstand für das Vorliegen einer Rh-Rh-Doppelbindung. Der Abstand der beiden Rhodiumatome zur Ringmitte der Cp^{'''}-Liganden faßt 1.88 Å.

Bindung	Bindungsabstand [Å]	Bindung	Bindungsabstand [Å]
	von 3c		von [{Cp'''Co(μ -CO)} ₂]
Rh1-Rh2	2.5676(12)	Co1-Co2	2.3538(6)
Rh1-C1	1.951(9)	Co1-C1	1.907(12)
Rh2-C1	1.943(9)	Co2-C1	1.894(11)
Rh1-C1a	1.951(9)	Co1-C2	1.798(13)
Rh2-C1a	1.944(9)	Co2-C2	1.821(14)
C1-O1	1.209(10)	C1-O1	1.108(14)
Cla-Ola	1.209(10)	C2-O2	1.281(16)
Rh1…Cp''' _{Zent.}	1.880	Co1···Cp''' _{Zent.}	1.717
Rh2…Cp''' _{Zent.}	1.877	Co2····Cp''' _{Zent.}	1.713

Tabelle 32:Ausgewählte Bindungslängen von 3c im Vergleich zu [{Cp''Co(μ -CO)}] mitStandardabweichungen

Bindung	Bindungswinkel [°]	Bindung	Bindungswinkel [°]
	von 3c		von [{Cp'''Co(μ -CO)} ₂]
C1-Rh1-C1a	97.2(5)	C1-Co1-C2	100.8(2)
C1-Rh2-C1a	97.7(5)	C1-Co2-C2	100.5(2)
Rh1-C1-Rh2	82.5(4)	Co1-C1-Co2	76.5(5)
Rh1-C1a-Rh2	82.5(4)	Co1-C2-Co2	81.1(7)
Rh1-C1-O1	137.4(7)	Co1-C1-O1	141.3(9)
Rh2-C1-O1	140.1(7)	Co2-C1-O1	142.1(9)
Rh1-C1a-O1a	137.4(7)	Co1-C2-O2	140.8(9)
Rh2-C1a-O1a	140.1(7)	Co2-C2-O2	138.1(8)

Tabelle 33:Ausgewählte Bindungswinkel von 3c im Vergleich zu [{Cp''Co(μ -CO)}] mitStandardabweichungen

<u>Tabelle 34:</u> Ebenendefinitionen und maximale Abweichungen aus den besten Ebenen

Ebene	Atome	max. Abweichung [Å]
E1	Rh1-Rh2-C1a	/
E2	Rh1-Rh2-C1	/
E3	Rh1-Rh2-C1-O1	0.0004
E4	Rh1-Rh2-C1a-O1a	0.0004
E5	C2-C3-C4-C3a-C2a	0.0071
E6	C5-C6-C7-C6a-C5a	0.0156
E7	Rh1-Rh2-C1-C1a	0.0272

Ebenen	Winkel [°]
E1/E2	90.7
E1/E2	4.2
E1/E3	4.3
E2/E3	0.0
E1/E4	0.0
E2/E4	4.3
E3/E4	4.3
E5/E6	2.1
E5/E3	88.8
E6/E3	90.9

<u>Tabelle 35:</u> Winkel zwischen den besten Ebenen

8. Umsetzung von [{Cp⁼Rh}₃(μ-CO)(AsPh₂)As] (12) mit [W(CO)₅(thf)]

Rührt man [{Cp⁼Rh}₃(μ -CO)(AsPh₂)As] (12) 18 Stunden lang mit einem deutlichen Überschuß an einer frisch hergestellten Lösung von [W(CO)₅(thf)] in THF bei Raumtemperatur, so erhält man nach Entfernen des Lösungsmittels im Vakuum und chromatographischer Aufarbeitung an einer mit neutralem Aluminiumoxid gefüllten Säule drei Fraktionen. Mit reinem Petrolether trennt man zuerst gelbes, überschüßiges [W(CO)₅(thf)] ab. Direkt danach folgt 13 in einer orangebraunen Fraktion. Durch stufenweise Erhöhung der Lösungsmittelpolarität auf ein Petrolether/Diethylether-Gemisch im Verhältnis 1:1 läßt sich eine braune Fraktion von 14 eluieren. Beide Komplexe konnten röntgenstrukturanalytisch charakterisiert werden.

8.1 Charakterisierung von [{Cp⁼Rh(CO)}₂(AsPh)W(CO)₅] (13)

8.1.1 Eigenschaften von [{Cp⁻Rh(CO)}₂(AsPh)W(CO)₅] (13)

Nach Trockenziehen der Säulenfraktion fällt Verbindung **13** als orangebrauner Rückstand an. **13** löst sich mäßig bis gut in unpolaren bzw. aromatischen Lösungsmitteln, in Dichlormethan und THF löst es sich sehr gut. Die höhere Empfindlichkeit gegenüber Luftsauerstoff und Feuchtigkeit im Gegensatz zu **12** läßt eine Handhabung an Luft, welche Zersetzung zur Folge hat, nicht zu. Eine längere Lagerung unter Schutzgas bei -40 °C ist unproblematisch, da eine Abnahme der Löslichkeit infolge "Alterung" nicht erkennbar ist.

Für die Kristallstrukturanalyse brauchbare Einkristalle werden durch langsames Abdampfen des Solvens aus einer Diethyletherlösung bei Raumtemperatur erhalten.

8.1.2 ¹H-NMR-Spektroskopie von [{Cp⁼Rh(CO)}₂(AsPh)W(CO)₅] (13)

Das bei Raumtemperatur in Deuterobenzol aufgenommene ¹H-NMR-Spektrum von **13** weist nur einen Signalsatz für die zwei η^5 -gebundenen Cp⁼-Liganden auf. Das Integralverhältnis bei den drei Singuletts beträgt 1:2:18. Im Bereich 7.78 ppm beobachtet man ein Multiplett, welches der Phenylgruppe am Arsenatom zuzuordnen ist.

In *Tabelle 36* können die chemischen Verschiebungen von **13**, $[{Cp^{=}Rh}_{3}(\mu-CO)(AsPh_{2})As]$ (**12**) und $[Cp^{=}Rh(CO)_{2}]$ (**3a**) entnommen werden.

<u>*Tabelle 36*</u>: ¹H-NMR-Daten von 13, [{Cp⁼Rh}₃(μ -CO)(AsPh₂)As] (12) und [Cp⁼Rh(CO)₂] (3a) in C₆D₆ bei Raumtemperatur

Komplex	δ [ppm]	δ [ppm]	δ [ppm]
13	0.20 (s, 36H)	5.18 (s, 4H)	5.76 (s, 2H)
12	0.31 (s, 36H) 0.35 (s, 18H)	5.11 (s, 2H) 5.46 (s, 1H)	5.34 (s, 4H) 5.73 (s, 2H)
3a	0.18 (s, 54H)	5.23 (s, 3H)	5.25 (s, 6H)

8.1.3 IR-Spektroskopie von [{Cp⁼Rh(CO)}₂(AsPh)W(CO)₅] (13)

Im IR-Spektrum einer THF-Lösung von 13 zeigen die jeweiligen CO-Valenzschwingungen der an das Arsenatom koordinierte {W(CO)₅}-Einheit drei Banden bei $\overline{v} = 2062 \text{ cm}^{-1}$ (m), \overline{v} = 1986 cm⁻¹ (s) und \overline{v} = 1944 cm⁻¹ (m). Eine weitere Bande bei 1973 cm⁻¹ (br) kann den beiden terminalen Carbonylgruppen an den Rhodiumatomen zugeordnet werden. In der nachfolgenden Tabelle werden die IR-spektroskopischen Daten für $[{Cp^{=}Rh(CO)}_{2}(AsPh)W(CO)_{5}]$ $[{Cp^{-}Co}_{3}{(\mu_{4}-As)Mo(CO)_{5}}_{2}]$ (13),(11a)und $[Cp^{-}Rh(CO)_{2}]$ (3a) angegeben.

\overline{v} [cm ⁻¹] für 13	\overline{v} [cm ⁻¹] für 11a	\overline{v} [cm ⁻¹] für 3a
2062 (m)	2063 (m)	
1986 (s)		
1944 (m)	1948 (sh)	
1973 (br)		2042 (s)
		1981 (s)

Tabelle 37: IR-Daten für **13**, **11a** und **3a** in THF

8.1.4 Röntgenstrukturanalyse von [{Cp⁼Rh(CO)}₂(AsPh)W(CO)₅] (13)

Die gezüchteten schwarzen, rautenförmigen Einkristalle waren für die Erstellung einer Röntgenstrukturanalyse verwendbar. Wegen der hohen Restdichte am Phenyl-Ring ist die Kristallstruktur von **13** jedoch nicht sinnvoll auswertbar.

Die *Abbildungen 13* und *14* legen das Ergebnis der strukturanalytischen Untersuchung aus verschiedenen Blickwinkeln dar. Konkrete Bindungsabstände und -winkel können nicht angegeben werden.

Bei 13 handelt es sich um einen "geschlossenen" Arsiniden-Komplex mit einer Metall-Metall-Bindung zwischen den beiden {Cp⁼(CO)Rh}-Fragmenten. Dadurch erhöht sich die Valenzelektronenzahl um zwei und die Koordination am Arsenatom wird trigonal-pyramidal, wobei zwei Elektronen am Arsenatom lokalisiert sind. An diesem einsamen Elektronenpaar ist eine $\{W(CO)_5\}$ -Einheit koordiniert, so daß letztendlich das Arsen in **13** verzerrt tetraedrisch von vier Einheiten umgeben ist.

Abbildung 13: Molekülstruktur von 13 im Kristall.

<u>Abbildung 14:</u> Molekülstruktur ohne Cp⁼-Liganden von **13** im Kristall aus verschiedenen Blickwinkeln

8.2 Charakterisierung von [{Cp⁼Rh}₃(Rh(CO)₂)(AsPh)(AsO)] (14)

8.2.1 Eigenschaften von [{Cp⁼Rh}₃(Rh(CO)₂)(AsPh)(AsO)] (14)

Nach dem Entfernen des Lösungsmittels aus der zweiten Säulenfraktion fällt der Komplex **14** als braunes Pulver an. Er ist sowohl in unpolaren (z.B. Pentan, Hexan) als auch in aromatischen (z.B. Toluol, Deuterobenzol) mäßig, in polaren (z. B. THF, Dichlormethan) Lösungsmitteln gut löslich. Im festen Zustand kann die Verbindung unter Inertgasatmosphäre einige Wochen unzersetzt gelagert werden. Danach nimmt die Löslichkeit stark ab. Zur Röntgenstrukturanalyse taugliche Einkristalle konnten durch langsame Abdiffusion des Solvens aus einer gesättigten Diethyletherlösung erhalten werden.

8.2.2 ¹H-NMR-Spektroskopie von [{Cp⁼Rh}₃(Rh(CO)₂)(AsPh)(AsO)] (14)

Das ¹H-NMR-Spektrum von **14** in Deuterobenzol bei Raumtemperatur zeigt nur zwei Singuletts für die Tms-Gruppen bei 0.45 und 0.51 ppm im Integralverhältnis 1:2. Die Signale für die Ringprotonen sind zu schwach und verschwinden im Grundrauschen des Spektrums. Bei 7.67 ppm (5.71 Hz) beobachtet man ein Multiplett für den Phenyl-Rest am Arsenatom. *Tabelle 38* enthält die chemischen Verschiebungen von **14**, **13** und **12**.

<u>Tabelle 38:</u>	Vergleich der ¹ H	I-NMR-Daten von 14 mit [$\{Cp^{=}Rh(CO)\}_2(AsPh)W(CO)_5$] (13)
	und [{ $Cp^{=}Rh$ } ₃ (µ	μ -CO)(AsPh ₂)As] (12) in C ₆ D ₆ bei Raumtemperatur

Komplex	δ [ppm]	δ [ppm]	δ [ppm]
14	0.45 (s, 18H)	a)	a)
	0.51 (s, 36H)	a)	a)
13	0.20 (s, 36H)	5.18 (s, 4H)	5.76 (s, 2H)
12	0.31 (s, 36H)	5.44 (s, 2H)	5.73 (s, 4H)
	0.35 (s, 18H)	5.11 (s, 1H)	5.34 (s, 2H)

^{a)} nicht auffindbar

8.2.3 IR-Spektroskopie von [{Cp⁻Rh}₃(Rh(CO)₂)(AsPh)(AsO)] (14)

Bei $\overline{v} = 1982 \text{ cm}^{-1}$ (s) erhält man bei dem in THF aufgenommenen IR-Spektrum von **14** eine Bande im signifikanten Bereich für terminale CO-Valenzschwingungen.

8.2.4 Röntgenstrukturanalyse von [{Cp⁼Rh}₃(Rh(CO)₂)(AsPh)(AsO)] (14)

Im Kristall von 14 treten Fehlordnungen am Rh3-Atom und daran koordinierten $Cp^{=}$ -Liganden auf, so daß sich zwei Orientierungen in der Kristallstruktur ergeben. Die Atome mit Fehlordnung werden im folgenden mit # (Rh3 und Rh3#), symmetrische Atome mit a (Rh2 und Rh2a) bezeichnet.

In *Abbildung 15 und 16* ist das Ergebnis der Röntgenstrukturanalyse, in *Abbildung 17* ist das Schweratomgerüst für eine der beiden Orientierungen dargestellt. Ausgewählte Strukturparameter sowie Molekülebenen und Schnittwinkel enthalten die *Tabellen 39* bis *42*. Genaue Angaben zur Strukturlösung, Atomlageparameter und Temperaturfaktoren finden sich im Anhang.

Komplex 14 verfügt über ein Rh₄As₂-Schweratomgerüst mit verzerrt oktaedrischer Struktur, dabei nehmen die beiden Arsenatome die gegenüberliegenden (*trans*) Positionen ein.

14 kristallisiert in der monoklinen Raumgruppe $P2_{1m}$ und besitzt eine Spiegelebene (E1), welche die Atome As1, As2, Rh1, O2 und die Atome des Phenylrings (C2, C3, C4, C5, C6, C7) beinhaltet. Die Spiegelebene steht nahezu senkrecht zu der Rh1-Rh2-Rh2a-Rh3-Ebene (E2). Die Abweichung vom rechten Winkel beträgt lediglich 0.1°. Die Winkel im Viereck E2 weichen bis zu 8.3° vom rechten Winkel ab.

Die Ebenen der beiden symmetrischen Cp⁼-Liganden (E3 und E4) und die Spiegelebene E1 bilden einen Winkel von jeweils 6.9°.

Metall-Metall-Wechselwirkungen zwischen Rh1 und Rh3 bzw. Rh2 und Rh2a sind aufgrund des großen Abstands zwischen den Metallatomen auszuschließen. Die Rh-As-Abstände liegen in einem Bereich zwischen 2.37 und 2.64 Å. Die Rh1-As1- und die Rh1-As2-Bindung sind mit 2.50 bzw. 2.64 Å länger als die anderen Rh-As-Bindungsabstände.

Der Arsen-Sauerstoff-Abstand beträgt 1.79 Å. Die Herkunft des Sauerstoffs am Arsenatom ist unklar. Möglicherweise wurde dieser aus dem Lösungsmittel, der säulenchromatographischen Aufarbeitung oder bei der Kristallisation eingeschleppt. Der Abstand der Rhodiumatome zur jeweiligen Ringmitte der Cp⁼-Liganden ist mit 1.87 bzw. 1.88 genauso lang wie der Rh-Cp[™]_{Zentr.}-Abstand bei **3c**.

Abbildung 15: Molekülstruktur von 14 im Kristall

Abbildung 16: Molekülstruktur von 14 im Kristall entlang der Spiegelebene

Abbildung 17: Das Schweratomgerüst von 14 aus verschiedenen Blickwinkeln

Bindung	Bindungslängen [Å]
Rh1-Rh2	2.7244(5)
Rh1-Rh2a	2.7244(5)
Rh1…Rh3 bzw. Rh3#	4.008
Rh2…Rh2a	3.777
Rh1-As1	2.5033(9)
Rh1-As2	2.6359(8)
Rh2-Rh3 bzw. Rh3#	2.5748(8) bzw. 3.0005(7)
Rh2-As1	2.3972(6)
Rh2-As2	2.3909(6)
Rh2a-Rh3 bzw. Rh3#	2.5748(8) bzw. 3.0005(7)
Rh2a-As1	2.3972(6)
Rh2a-As2	2.3909(6)
Rh3…Rh3#	0.6283(11)
Rh2-Cp ⁼ _{Zent.}	1.868
Rh2a-Cp ⁼ _{Zent.}	1.868
Rh3-Cp ⁼ _{Zent.}	1.883
As1···As2	2.927
As2-O	1.791(5)
As1-C2 (Phenyl)	1.938(7)
Rh1-C1 (CO)	1.866(5)

<u>*Tabelle 39*</u>: Ausgewählte Bindungslängen von **14** mit Standardabweichungen

Bindung	Bindungswinkel [°]	Bindung	Bindungswinkel [°]
As1-Rh1-As2	69.37(2)	Rh3-As1-Rh2a	77.93(2)
As1-Rh1-Rh2a	54.389(16)	Rh3#-As1-Rh2	77.93(2)
As2-Rh1-Rh2a	52.947(14)	Rh3-As1-Rh2	65.31(2)
As1-Rh1-Rh2	54.389(16)	Rh2a-As1-Rh2	103.99(3)
As2-Rh1-Rh2	52.948(14)	Rh3#-As1-Rh1	110.51(3)
Rh2a-Rh1-Rh2	87.79(2)	Rh3-As1-Rh1	110.51(3)
As2-Rh2-As1	75.35(2)	Rh2a-As1-Rh1	67.51(2)
As2-Rh2-Rh3	58.75(2)	Rh2-As1-Rh1	67.51(2)
As1-Rh2-Rh3	56.92(2)	O2-As2-Rh2a	127.36(2)
As2-Rh2-Rh1	61.627(19)	O2-As2-Rh2	127.36(2)
As1-Rh2-Rh1	58.10(2)	Rh2a-As2-Rh2	104.38(3)
Rh3-Rh2-Rh1	98.26(2)	O2-As2-Rh3	130.68(16)
As2-Rh2-Rh3#	52.37(2)	Rh2a-As2-Rh3	76.77(2)
As1-Rh2-Rh3#	50.70(2)	Rh2-As2-Rh3	64.39(2)
Rh3-Rh2-Rh3#	9.536(16)	O2-As2-Rh3#	130.68(16)
Rh1-Rh2-Rh3#	88.749(16)	Rh2a-As2-Rh3#	64.39(2)
Rh3a-Rh3-As1	82.397(13)	Rh2-As2-Rh3#	76.77(2)
Rh3a-Rh3-As2	82.606(13)	Rh3-As2-Rh3#	14.79(3)
As1-Rh3-As2	74.83(3)	O2-As2-Rh1	124.56(16)
Rh3a-Rh3-Rh2	127.705(16)	Rh2a-As2-Rh1	65.425(18)
As1-Rh3-Rh2	57.772(19)	Rh2-As2-Rh1	65.425(18)

<u>*Tabelle 40*</u>: Ausgewählte Bindungswinkel [°] von **14** mit Standardabweichungen

As2-Rh3-Rh2	56.86(2)	Rh3-As2-Rh1	104.22(3)
Rh3a-As1-Rh3	15.21(3)	Rh3a-As2-Rh1	104.22(3)
Rh3a-As1-Rh2a	65.31(2)	Rh2-Rh3-Rh2a	84.9

Tabelle 41: Ebenendefinitionen und maximale Abweichungen aus den besten Ebenen

Ebene	Atome	max. Abweichung [Å]
E 1	As2-As1-Rh1-O2-Ph	0.0000
E2	C8-C9-C10-C11-C12	0.0114
E3	C8a-C9a-C10a-C11a-C12a	0.0113
E4	Rh1-Rh2-Rh2a-Rh3	0.0495
E5	Rh1-As1-As2-Rh3	0.0865
E6	As1-Rh2-As2-Rh2a	0.0757

<u>*Tabelle 42:*</u> Winkel zwischen den besten Ebenen

Ebenen	Winkel [°]
E1/E4	90.1
E1/E2	6.9
E1/E3	6.9
E4/E5	90.4
E4/E6	90.8
E5/E6	85.7

Ermittelt man die Anzahl der Gerüstelektronen für **14**, so resultieren 7 Gerüstelektronenpaare (GEP's) nach *Wade*^[3] bzw. 68 Valenzelektronen nach *Mingos*^[4]. Dies entspricht der Zahl eines sechs atomigen *closo*-Clusters (n+1) mit oktaedrischer Gerüststruktur, bestehend aus vier Übergangsmetallfragmenten und zwei Hauptgruppenelementfragmenten.

Fragment/Atom	nach Mingos	nach Wade	
$3 \ge \{Cp^{=}Rh\}$	3 x 14 VE = 42 VE	3 x 2 GE = 6 GE	
1 x {Rh(CO) ₂ }	1 x 13 VE = 13 VE	1 x 1 GE = 1 GE	
1 x (AsO)	1 x 7 VE = 7 VE	1 x 3 GE = 5 GE	
1 x (AsPh)	1 x 6 VE = 6 VE	1 x 4 GE = 4 GE	
Σ	68 VE	14 GE = 7 GEP's	

9. Cothermolyse von [{Cp⁼Rh}₃(μ-CO)(AsPh₂)As] (12) mit weißem Phosphor

12 wird mit einem großen Überschuß an P₄ in Dekalin zum Sieden gebracht und nach zweistündigem Refluxieren beendet, da im ³¹P-NMR-Spektrum keine wahrnehmbaren Veränderungen verzeichnet werden. Nach dem Abdestillieren des Lösungsmittels gewinnt man bei der säulenchromatographischen Aufarbeitung an basischem Aluminiumoxid neben nicht vollständig umgesetztem Edukt 12, den Rhodium-P₄-Zweikernkomplex 15 als einziges phosphorhaltiges Produkt in einer orangefarbenen Fraktion. Dieses Beispiel zeigt, daß Verbindung 12 Synthesepotential besitzt und als Ausgangsverbindung für die Darstellung weiterer Rhodium-Komplexe Verwendung finden kann.

9.1 Charakterisierung von $[{Cp^{=}Rh}_{2}(\mu,\eta^{2:2}-P_{2})_{2}]$ (15)

9.1.1 Eigenschaften von [{Cp⁼Rh}₂(μ,η^{2:2}-P₂)₂] (15)

 $[{Cp^{=}Rh}_{2}(\mu,\eta^{2:2}-P_{2})_{2}]$ (15) ist in unpolaren Lösungsmittels gut, in aromatischen und polaren Lösungsmitteln sehr gut löslich. Die orangefarbenen Lösungen zersetzen sich bei Luftkontakt unter Abscheiden eines in allen gängigen Lösungsmitteln unlöslichen Niederschlags.

Es empfiehlt sich auf eine längere Lagerung unter Argonatmosphäre, zum Beispiel über mehrere Monate hinweg, zu verzichten, da die Löslichkeit infolge "Alterung" mit zunehmender Dauer deutlich abnimmt.

9.1.2 ¹H-NMR-Spektroskopie von [{Cp⁼Rh}₂(µ,η^{2:2}-P₂)₂] (15)

Im ¹H-NMR-Spektrum von **15** in Deuterobenzol bei Raumtemperatur detektiert man nur einen Signalsatz für die beiden Cp⁼-Liganden im Integrationsverhältnis 1:2:18. Neben dem Signal für die Protonen der Trimethylsilyl-Gruppen bei 0.49 ppm werden zwei dicht beieinanderliegende Singuletts für die Ringprotonen bei 5.02 und 5.06 ppm registriert. Die $\{Cp^{=}\}$ -Fragmente sind chemisch und magnetisch äquivalent, was für eine symmetrische Umgebung spricht.

In der folgenden *Tabelle 43* sind die chemischen Verschiebungen von **15** einigen Rhodium-P₄-Zweikernkomplexen gegenübergestellt.

Komplex	δ [ppm]	δ [ppm]	δ [ppm]
$[\{Cp^{=}Rh\}_{2}(\mu,\eta^{2:2}-P_{2})_{2}] (15)$	0.49 (s, 36H)	5.02 (s, 2H)	5.06 (s, 4H)
$[\{Cp'Rh\}_2(\mu,\eta^{2:2}\text{-}P_2)_2]$	0.79 (t, 6H)	1.70 (s, 24H)	2.27 (q, 4H)
$[\{Cp''Rh\}_2(\mu,\eta^{2:2}-P_2)_2]$	1.27 (s, 36H)	4.80 (br, s, 4H)	5.04 (br, s, 2H)
$[\{Cp'''Rh\}_2(\mu,\eta^{2:2}-P_2)_2]$	1.34 (s, 36H)	1.47 (s, 18H)	5.04 (s, 4H)

Tabelle 43: 1 H-NMR-Daten von 15 im Vergleich zu einigen Rhodium-P4-Zweikernkomplexen in C6D6 bei Raumtemperatur

9.1.3 ³¹P-NMR-Spektroskopie von [{Cp⁼Rh}₂(µ,η^{2:2}-P₂)₂] (15)

Im ³¹P-NMR-Spektrum von **15** wird nur ein Triplett für die vier Phosphoratome bei $\delta = -61.1$ ppm detektiert. Besagtes spiegelt zum Einen die Symmetrie der beiden (μ , $\eta^{2:2}$ -P₂)-Einheiten und zum Anderen das Koppeln der Phosphoratome mit den Rhodiumatomen wider, welches eine Kopplungskonstante von ¹J_{Rh,P} = 27.3 Hz zur Folge hat.

<u>Tabelle 44:</u>	³¹ P-NMR-Daten von 15 im Vergleich zu einigen Rhodium-P ₄ -
	Zweikernkomplexen in C_6D_6 bei Raumtemperatur

Komplex	δ [ppm]	
$[\{Cp^{=}Rh\}_{2}(\mu,\eta^{2:2}-P_{2})_{2}](15)$	-61.1 (t, 4P)	
	${}^{1}J_{Rh,P} = 27.3 \text{ Hz}$	
$[{Cp'Rh}_2(\mu,\eta^{2:2}-P_2)_2]$	-40.4 (t, 4P)	
	${}^{1}J_{Rh,P} = 27 \text{ Hz}$	
$[{Cp''Rh}_2(\mu,\eta^{2:2}-P_2)_2]$	-76.5 (t, 4P)	
	${}^{1}J_{Rh,P} = 26.7 \text{ Hz}$	

9.1.4 Strukturdiskussion von $[{Cp^{=}Rh}_{2}(\mu,\eta^{2:2}-P_{2})_{2}]$ (15)

 $[{Cp^{=}Rh}_{2}(\mu,\eta^{2:2}-P_{2})_{2}]$ (15) ist laut NMR-spektroskopischen Daten isostrukturell und isovalenzelektronisch zu den von *Höbel* 1993 synthetisierten Komplexen mit Cp'-, Cp"-, Cp"-Liganden, bei denen die beiden $(\mu,\eta^{2:2}-P_{2})$ -Einheiten ein planares Rechteck mit zwei Seitenlängen im bindenden und zwei Seitenlängen im nichtbindenden Bereich bilden. Der Rh-Rh-Abstand liegt außerhalb bindender Wechselwirkungen. Alle Rh-As-Abstände sind im Erwartungsbereich.

10. Cothermolyse von *cyclo*-(PhAs)₆ (1) mit [{Cp⁼Fe(CO)₂}₂] (5a) in siedendem Dekalin

Ein dreifach molarer Überschuß an **5a** wird mit **1** in Dekalin am Rückfluß rühren gelassen. Die rotbraune Suspension ändert innerhalb weniger Minuten die Farbe nach schwarzbraun. Zusätzlich kann man an der Gefäßwand einen Metallspiegel erkennen. Das IR-Spektrum zeigt nach etwa zwei Stunden Refluxieren keinerlei CO-Banden mehr. Die Reaktion wird daraufhin abgebrochen, das Lösungsmittel destillativ entfernt und der Rückstand an neutralem Aluminiumoxid säulenchromatographisch aufgearbeitet.

Mit reinem Petrolether erhält man zunächst in einer leuchtend orangenen Fraktion das bereits bekannte Tetrakis(trimethylsilyl)ferrocen **17** als Nebenprodukt in geringer Ausbeute. Darauffolgend läßt sich eine grünbraune Fraktion des Hauptproduktes [$\{Cp^{-}Fe\}_4(As_2)_2$] (**16**) eluieren.

10.1 Charakterisierung von [{Cp⁼Fe}₄(As₂)₂] (16)

10.1.1 Eigenschaften von [{Cp⁼Fe}₄(As₂)₂] (16)

Cluster **16** liegt nach der säulenchromatographischen Aufarbeitung und Trockenziehen als grünbrauner Feststoff vor. Die Löslichkeit in unpolaren Solventien ist gut, in Toluol und Diethylether bzw. Dichlormethan sehr gut. Sowohl im festen Zustand als auch in Lösung ist **16** nur mäßig luft- und feuchtigkeitsempfindlich.

10.1.2 ¹H-NMR-Spektroskopie von [{Cp⁼Fe}₄(As₂)₂] (16)

Das von 16 aufgenommene ¹H-NMR-Spektrum zeigt für die vier Cp⁼-Liganden nur einen Signalsatz. Das Integralverhältnis beträgt 6:1. Es wird also wie bei der phosphoranalogen Verbindung $[{Cp⁼Fe}_4(P_2)_2]^{[29]}$ nur ein Signal für die drei Ringprotonen gefunden. In *Tabelle* 45 werden die chemischen Verschiebungen von beiden Komplexen im Vergleich angegeben.

<u>*Tabelle 45*</u>: ¹H-NMR-Daten von **16** im Vergleich zu [{ $Cp^{=}Fe$ }₄(P₂)₂]

Komplex	δ [ppm]	δ [ppm]	
$[{Cp}^{=}Fe_{4}(As_{2})_{2}]$ (16)	0.56 (s, 72H)	3.70 (s, br, 12H)	
$[\{Cp^{=}Fe\}_4(P_2)_2]$	0.54 (s, 72H)	3.91 (s, br, 12H)	

10.1.3 Röntgenstrukturanalyse von [{Cp⁼Fe}₄(As₂)₂] (16)

Die Züchtung von schwarzen Einkristallen gelang durch langsames Abdiffundieren des Lösungsmittels aus einer stark konzentrierten Diethyletherlösung bei Raumtemperatur. Bei dem vermessenen Kristall handelt es sich allerdings um einen Zwilling, so daß auf eine vollständige Verfeinerung der Struktur verzichtet werden mußte. Auf die detaillierten Strukturdaten von **16** kann deshalb nicht näher eingegangen werden.

In *Abbildung 18* ist die aus der Kristallstrukturanalyse resultierende Molekülstruktur dargestellt. Eine Ansicht des Schweratomgerüsts findet man in *Abbildung 19*.

<u>Abbildung 18:</u> Die Molekülstruktur von $[{Cp^{\overline{F}}e}_4(As_2)_2]$ (16) im Kristall

<u>Abbildung 19:</u> Das Schweratomgerüst von $[{Cp}^{=}Fe}_4(As_2)_2]$ (16)

Die {Cp⁼Fe}-Fragmente besetzen die Ecken mit der Konnektivität fünf, die Arsen-Liganden die Positionen mit der Konnektivität vier, so daß **16** wie die phosphoranaloge Verbindung als ein verzerrtes Dreiecksdodekaeder beschrieben werden kann.

Die Anzahl der Elektronen belaufen sich für **16** auf 8 Gerüstelektronenpaare (GEP's) nach $Wade^{[31]}$ bzw. 72 Valenzelektronen nach $Mingos^{[32]}$.

Fragment/Atom	nach Mingos	nach Wade	
$4 x \{Cp=Fe\}$	4 x 13 VE = 52 VE	4 x 1 GE = 4 GE	
4 x {As}	4 x 5 VE = 20 VE	4 x 3 GE = 12 GE	
Σ	72 VE	16 GE = 8 GEP's	

Damit gehört $[{Cp^{=}Fe}_{4}(As_{2})_{2}]$ (16) zu der Klasse der *hyper-closo* Polyeder mit n Gerüstelektronenpaare (GEP's) und reiht sich somit nahtlos in die von *Kemény*^[71,72] synthetisierten und röntgenstrukturanalytisch charakterisierten *hyper-closo* Cluster $[{CpFe}_{4}(As_{2})_{2}]$ und $[{MeCpFe}_{4}(As_{2})_{2}]$ ein.

10.2 Charakterisierung von [Cp⁼₂Fe] (17)

10.2.1 Eigenschaften von $[Cp_2Fe]$ (17)

Nach der säulenchromatographischen Reinigung und dem Entfernen des Lösungsmittels im Vakuum kann man 17 als leuchtend-orangen Rückstand in geringen Ausbeuten isolieren. Der Komplex löst sich in Aliphaten gut, in aromatischen oder halogenierten Lösungsmitteln sehr gut. Auffällig ist die hohe Stabilität gegenüber Luft und Feuchtigkeit. Sogar Lösungen von 17 scheinen inert gegen "Alterung" und Zersetzung zu sein. Die hervorragende Kristallisationsneigung spiegelt sich in der Größe der erhaltenen, luftstabilen Kristallquader wieder. Aus einer Diethyletherlösung konnten somit problemlos für die Röntgenstrukturanalyse geeignete, rote Einkristalle erhalten werden.

Verbindung **17** wurde bereits 1989 von *Okuda*^[73a,b] synthetisiert und röntgenographisch untersucht.

IV Experimenteller Teil

1. Analysenmethoden

1.1 Elementaranalysen

Die Elementaranalysen (C,H,N) wurden von der Analytik-Abteilung des Fachbereichs Chemie der Universität Kaiserslautern mit dem Elementaranalyser 240 bzw. 400 der Firma Perkin-Elmer durchgeführt.

1.2 Infrarotspektroskopie

Die Aufnahme der IR-Spektren erfolgte an einem FT-IR-Spektrometer 16 PC der Firma Perkin-Elmer. Die Substanzen wurden als Lösungen gegen reines Lösungsmittel in Calciumfluorid-Meßküvetten der Schichtdicke 0.2 mm bei Raumtemperatur vermessen. Zur Charakterisierung der Absorptionsbanden und -intensitäten werden folgende Abkürzungen verwendet:

(vs) = sehr stark, (s) = stark, (m) = mittel, (w) = schwach, (br) = breit, (sh) = Schulter.

1.3 Kernresonanzspektroskopie

Die NMR-Spektren wurden an den FT-NMR-Geräten AC 200 bzw. AMX 400 der Firma Bruker von Dipl. Chem. *J. Ertl, T. Sögding, M. Walter* und *F. Zimmer* gemessen. Die Verbindungen wurden als Lösungen deuterierter Lösungsmitteln unter Schutzgasatmosphäre in 5 mm NMR-Röhrchen abgefüllt und, sofern nicht anders angegeben, bei 298 K vermessen. Die Angabe der chemischen Verschiebungen erfolgt nach der δ -Skala in ppm, bei der ein negatives Vorzeichen eine Hochfeldverschiebung und ein positives Vorzeichen eine Tieffeldverschiebung bzgl. des jeweiligen Standards bedeutet. Die Kopplungskonstanten sind in Hertz (Hz) angegeben. Für die unterschiedlichen Kerne gelten folgende Meßfrequenzen und Standards:

³¹P-NMR: 161.97 MHz bzw. 81.02 MHz; 85% Phosphorsäure (extern) ¹³C-NMR: 100.62 MHz bzw. 50.32 MHz; interner Standard (siehe ¹H-NMR) ¹H-NMR: 400.14 MHz bzw. 200.13 MHz; als interner Standard wurden die Signale der in deuterierten Lösungsmittel vorhandenen, nicht vollständig deuterierten Moleküle verwendet; dabei wurde folgende Zuordnung getroffen: $\delta(C_6D_6) = 7.20$ ppm, (CDCl₃) = 7.25 ppm, $\delta(C_6D_5CD_3) = 2.30$ und 7.20 ppm.

Zur Charakterisierung der Spinmultiplizitäten der jeweiligen Signalgruppen wurden folgende Abkürzungen benutzt:

s = Singulett, d = Dublett, t = Triplett, q = Quartett, m = Multiplett, br = breit.

1.4 Massenspektrometrie

Die Massenspektren wurden von Frau Dr. *G. Hornung* am Massenspektrometer MAT 90 der Firma Finnigan aufgenommen. Alle Messungen wurden bei einer Ionisierungsenergie von 70 eV. Die Quellentemperatur ist jedoch je nach zu messender Substanz unterschiedlich.

1.5 Kristallstrukturanalysen

Die Röntgenstrukturanalysen werden von Herrn Dr. *G. Wolmershäuser* mit Hilfe eines Stoe IPDS-Diffraktometers angefertigt.

Zur Lösung der Strukturen kam das Programm SIR 97 und zur Verfeinerung Siemens SHELXL-97 zum Einsatz. Die Strukturplots wurden mit dem Programm SCHAKAL^[74] erstellt.

2. Ausgangsverbindungen

Die folgenden Verbindungen wurden nach den zitierten Vorschriften synthetisiert:

Nummer	Verbindung	Literatur	
	Ср⁻Н	[74]	
	Ср⁼Н	[75]	
	Ср‴Н	wurde von Dipl. Chem. F. Zimmer	
		zur Verfügung gestellt	
1	cyclo-(PhAs) ₆	[62,76,87]	
2a	[Cp ⁻ Co(CO) ₂]	[77]	
2b	[Cp ⁼ Co(CO) ₂]	[77]	
2c	[Cp ["] Co(CO) ₂]	war im Arbeitskreis vorrätig	
	$[Rh_2(CO)_4Cl_2]$	war im Arbeitskreis vorrätig	
3a	[Cp ⁼ Rh(CO) ₂]	[78,79,88]	
3b	[Cp ^{'''} Rh(CO) ₂]	[78,79,88]	
5a	$[{Cp}^{=}Fe(CO)_{2}_{2}]$	[92]	

Alle anderen Ausgangsverbindungen wurden käuflich erworben.

3. Versuchsbeschreibungen

Alle nachfolgend beschriebenen Versuche wurden unter Inertgasatmosphäre (Argon: 99,998 % der Firma Messer Griesheim) in ausgeheizten, mehrfach evakuierten und mit Argon gespülten Glasgefäßen unter Anwendung der Schlenktechnik durchgeführt. Die verwendeten Lösungsmittel wurden wie folgt absolutiert und unter Argon aufbewahrt:

Lösungsmittel	Trockenmittel
Toluol, Xylol, Dekalin, Heptan	Natrium
THF	Kalium
Dichlormethan, CDCl ₃	P ₄ O ₁₀
Deuterobenzol, Deuterotoluol, Acetonitril	Calciumhydrid
Petrolether, Diethylether, Pentan, Hexan	Na/K-Legierung

Das zur Säulenchromatographie verwendete Kieselgel (0,06-0,2 mm, Firma Merck-Schuchardt) und Aluminiumoxid (neutral, basisch: Firma Machery-Nagel) wurde 48 Stunden bei 190°C im Ölpumpenvakuum getrocknet, nach dem Abkühlen mit 2% bzw. 4% destilliertem und entgastem Wasser desaktiviert (je nach Aktivitätsstufe) und unter Argon aufbewahrt. Die säulenchromatographischen Aufarbeitung verwendeten zur Chromatographiesäulen wurden im Ölpumpenvakuum getrocknet, mit Argon gespült und während des gesamten Trennvorgangs mit fließendem Wasser gekühlt. Photochemische Reaktionen wurden einer Quarzglasapperatur wassergekühlten in mit einer Quecksilberhochdrucklampe TQ 150 der Firma Heraeus Quarzlampen GmbH Hanau durchgeführt. Die Emission erfolgt in einem Wellenlängenbereich von ca. 220-500 nm, λ_{max} = 366 nm. Dabei wurde die Reaktionslösung mittels ständigem Durchleiten eines N2-Stromes gut durchmischt.

3.1 Cothermolyse von *cyclo*-(PhAs)₆ (1) mit [Cp⁻Co(CO)₂] (2a) in siedendem Dekalin

430 mg (1.705 mmol) von **2a** werden in 50 ml siedendem Dekalin zusammen mit 220 mg (0.241 mmol) an *cyclo*-(PhAs)₆ (**1**) ca. 2 Stunden gerührt bis die Eduktcarbonylbanden vollständig verschwunden sind. Die Farbe der Reaktionssuspension ändert sich bereits nach wenigen Minuten von orange nach schwarzbraun. Nach Abdestillieren des Lösungsmittels im Vakuum wird der Rückstand in etwa 20 ml THF gelöst, mit ca. 1 g basischem Aluminiumoxid versetzt und bis zur Rieselfähigkeit getrocknet. Die säulenchromatographische Aufarbeitung (Säule: 12×1.5 cm basisches Al₂O₃ · 2% H₂O, Petrolether) liefert mit reinem Petrolether eine violette Fraktion von [{Cp⁻Co}₃(µ₃-As)₂] (**6a**) und eine grünbraune Fraktion einer bislang nicht vollständig charakterisierten Verbindung der Zusammensetzung [{Cp⁻Co}₄As₄] (**7a**).

Ausbeute:

$[{Cp^{-}Co}_{3}(\mu_{3}-As)_{2}]$ (6a)	:	210 mg (0.284 mmol); 50% bez. auf 2a , 39% bez. auf 1
$[{Cp^{-}Co}_{4}As_{4}](7a)$:	150 mg (0.138 mmol); 32% bez. auf 2a , 38% bez. auf 1

3.2 Cothermolyse von *cyclo*-(PhAs)₆ (1) mit [Cp⁼Co(CO)₂] (2b) insiedendem Dekalin

262 mg (0.810 mmol) von **2b** werden mit 740 mg (0.810 mmol) an **1** in 50 ml Dekalin zwei Stunden am Rückfluß erhitzt. Die Carbonylbanden von $[Cp^{=}Co(CO)_{2}]$ (**2b**) sind nach dieser Zeit vollkommen verschwunden. Nach Beendigung der Reaktion wird das Lösungsmittel am Vakuum abdestilliert, der Rückstand in etwa 15 ml THF aufgenommen und ca. 1 g basisches Aluminiumoxid hinzugefügt. Danach trocknet man am Ölpumpenvakuum bis zur Rieselfähigkeit und trägt auf eine chromatographische Säule (Säule: 15 x 3 cm basisches Al₂O₃ · 2% H₂O, Petrolether) auf. Mit Petrolether wird zunächst $[{Cp^{=}Co}_{3}(\mu_{3}-As)_{2}]$ (**6b**) in einer violetten Fraktion eluiert. Bei Erhöhung der Lösungsmittelpolarität erhält man mit einem Petrolether/Toluol-Gemisch von 10:1 eine grünbraune Fraktion an $[{Cp^{=}Co}_{4}As_{4}]$ (**7b**). Von beiden Verbindungen konnte eine Röntgenstrukturanalyse durchgeführt werden.

Ausbeute:

$[{Cp^{=}Co}_{3}(\mu_{3}-As)_{2}]$ (6b)	:	180 mg (0.188 mmol); 70% bez. auf 2b , 7% bez. auf 1
$[{Cp^{=}Co}_{4}As_{4}]$ (7b)	:	70 mg (0.051 mmol); 25% bez. auf 2b , 4% bez. auf 1

Elementaranalysen:

Verbindung	M _{ber.} [g/mol]	C _{ber.} [%]	C _{gef.} [%]	H _{ber.} [%]	H _{gef.} [%]
$[{Cp^{=}Co}_{3}(\mu_{3}-As)_{2}]$ (6b)	955.019	41.50	41.43	6.65	6.59
$[\{Cp^{=}Co\}_{4}As_{4}](\mathbf{7b})$	1373.254	38.48	54.51 ^{b)}	6.17	9.77 ^{b)}

^{b)} Probleme bei der Verbrennung

3.3 Cothermolyse von *cyclo*-(PhAs)₆ (1) mit [Cp["]Co(CO)₂] (2c) in siedendem Dekalin

In einem Dreihalskolben werden 330 mg (0,360 mmol) *cyclo*-(PhAs)₆ (1) mit 105 mg (0,360 mmol) [Cp"Co(CO)₂] (2c) bei 190°C in 50 ml Dekalin gerührt. Nach 1.5 Stunden wird die Reaktion beendet, da keine Carbonylbanden mehr im IR-Spektrum detektiert werden können. Nach dem Erkalten der Lösung wird das Lösungsmittel am Vakuum abdestilliert, der Rückstand in 10 ml THF aufgenommen und ca. 1 g basisches Al₂O₃ · 2% H₂O hinzugefügt. Das durch Trockenziehen am Ölumpenvakuum erhaltene, rieselfähige Gemisch wird auf einer Chromatographiesäule (Säule: 17 x 1.5 cm basisches Al₂O₃ · 2% H₂O, Petrolether) aufgetrennt. Mit purem Petrolether wird eine unbekannte violette Fraktion separiert. Ein Petrolether/Toluol-Gemisch mit einem Verhältnis von 10:1 eluiert Verbindung **8** in einer braunen Fraktion. **8** konnte kristallographisch untersucht werden. Eine Charakterisierung der nach dem Entfernen des Lösungsmittels vorliegenden violetten Substanz war angesichts der verschwindend kleinen Ausbeute (Spuren) nicht möglich.

Ausbeute:

 $[{Cp''Co}_{4}As_{2}(AsO)_{2}]$ (8) : 60 mg (0.047 mmol); 52% bez. auf 2c, 13% bez. auf 1

Elementaranalysen:

Verbindung	M _{ber.} [g/mol]	C _{ber.} [%]	C _{gef.} [%]	H _{ber.} [%]	H _{gef.} [%]
$[{Cp''Co}_4As_2(AsO)_2](8)$	1276.657	48.92	33.84 ^{b)}	6.63	7.83 ^{b)}

^{b)} Probleme bei der Verbrennung

3.4 Umsetzung von $[{Cp^{-}Co}_{3}(\mu_{3}-As)_{2}]$ (6a) mit $[M(CO)_{5}(thf)]$ (M = Mo, W)

Zu 110 mg (0.149 mmol) von **6a** in 20 ml THF wird eine Lösung von 0.894 mmol $[Mo(CO)_5(thf)]$ in 50 ml THF (frisch hergestellt durch 30 minütige Photolyse einer Lösung von 236 mg $[Mo(CO)_6]$) gegeben. Parallel wird zu 160 mg (0.217 mmol) von **6a** in 25 ml THF, 1.085 mmol $[W(CO)_5(thf)]$ in 50 ml THF (ebenfalls frisch hergestellt durch 30 minütige Photolyse von 382 mg $[W(CO)_5]$) hinzugefügt. Nach 18 Stunden Rühren lassen gibt man jeweils ca. 1 g basisches $Al_2O_3 \cdot 2\%$ H₂O zu, engt bis zur Trockne ein, um dann auf einer Chromatographiesäule (Säule: 17 x 1.5 cm basisches $Al_2O_3 \cdot 2\%$ H₂O, Petrolether) mit steigender Eluensstärke aufgetrennt zu werden. Mit reinem Petrolether eluiert man $[{Cp}^- Co}_3(\mu_3-AsM(CO)_5)_2]$ (**11a**: M = Mo, **11b**: M = W) als grüne Fraktion. Von **11a** konnte eine Röntgenstrukturanalyse angefertigt werden.

Ausbeute:

$[{Cp^{-}Co}_{3}(\mu_{4}-AsMo(CO)_{5})_{2}]$ (11a) :	50 mg (0.031 mmol); 28% bez. auf 6a
$[{Cp^{-}Co}_{3}(\mu_{4}-AsW(CO)_{5})_{2}](11b)$:	40 mg (0.029 mmol); 13% bez. auf 6a

Elementaranalysen:

Verbindung	M _{ber.} [g/mol]	C _{ber.} [%]	C _{gef.} [%]	H _{ber.} [%]	H _{gef.} [%]
$[{Cp^{-}Co}_{3}(\mu_{4}-AsMo(CO)_{5})_{2}]$	1210.457	33.74	32.26 ^{c)}	3.25	2.73 ^{c)}
(11a)					

^{c)} Der Fehler bei dieser Elementaranalyse wurde möglicherweise durch eine zu geringe Einwaage (Substanzmenge) herbeigeführt

3.5 Oxidationsversuche an [{Cp⁻Co}₃(μ₃-As)₂] (6a) und [{Cp⁼Co}₃(μ₃-As)₂] (6b)

Lösungen von 310 mg (0.420 mmol) $[{Cp^{-}Co}_{3}(\mu_{3}-As)_{2}]$ (**6a**) beziehungsweise 260 mg (0.272 mmol) $[{Cp^{=}Co}_{3}(\mu_{3}-As)_{2}]$ (**6b**) in 50 ml Toluol werden kurz mit Luft in Kontakt gebracht und danach 24 Stunden unter Luftausschluß bei Raumtemperatur rühren gelassen. Durch Zugabe von ca. 1 g Kieselgel und anschließendem Entfernen des Lösungsmittels am Vakuum erhält man rieselfähige Pulver. Die säulenchromatographische Aufarbeitung (Säule: 5 x 1.5 cm SiO₂ · 2% H₂O, Petrolether) liefert bei den Ansätzen, ¹H-NMR-spektroskopisch belegt, ausnahmslos nicht umgesetztes Edukt.

Rührt man 400 mg (0.542 mmol) von **6a** und analog dazu 380 mg (0.398 mmol) von **6b** mit einem vierfach molaren Überschuß an S₈ bei Raumtemperatur, so hat sich der Schwefel nach 24 Stunden vollständig aufgelöst. Zu der nun orangebraunen Lösung fügt man ca. 1 g Kieselgel hinzu und trocknet bis zur Rieselfähigkeit. Nach der Aufarbeitung an einer Chromatographiesäule (Säule: 7 x 1.5 cm SiO₂ · 2% H₂O, Petrolether) wird mit reinem Petrolether zuerst S₈ und anschließend **6a** beziehungsweise **6b** nahezu vollständig zurückgewonnen.
3.6 Cothermolyse von *cyclo*-(PhAs)₆ (1) mit [Cp⁼Rh(CO)₂] (3a) in siedendem Dekalin

320 mg (0.351 mmol) cyclo-(PhAs)₆ (1) und 123 mg (0.351 mmol) $[Cp^{=}Rh(CO)_2]$ (3a) werden in 50 ml Dekalin unter IR-spektroskopischer Kontrolle zwei Stunden lang am Rückfluß gerührt. Im Verlauf der Reaktion tritt eine Farbänderung von gelb nach braun ein. Das IR-Spektrum zeigt eine neu auftretende IR-Absorption bei 1729 cm⁻¹. Nach dem Abkühlen der Reaktionslösung und dem Abdestillieren des Lösungsmittels am Vakuum gibt man 10 ml THF und ca. 1 g basisches Al₂O₃ · 2% H₂O hinzu und trocknet bis zur Rieselfähigkeit. Anschließend wird der Ansatz auf eine chromatographische Säule (Säule: 22 x 1.5 cm basisches Al₂O₃ · 2% H₂O, Petrolether) gegeben. Reiner Petrolether eluiert eine nicht näher charakterisierbare, orangerote Fraktion. Durch Erhöhung der Lösungsmittelpolarität läßt sich, unter Verwendung eines Petrolether/Toluol-Gemisches im Verhältnis 3:1, die röntgenstrukturanalytisch belegte Verbindung 12 in einer braunen, öligen Fraktion isolieren.

Ausbeute:

 $[\{Cp^{=}Rh\}_{3}(\mu-CO)As(AsPh_{2})] (12) : 110 mg (0.087 mmol); 74\% bez. auf 3a, 8\% bez.$

auf 1

3.7 Cothermolyse von *cyclo*-(PhAs)₆ (1) mit [Cp^{'''}Rh(CO)₂] (3b) in siedendem Dekalin

340 mg (0.373 mmol) *cyclo*-(PhAs)₆ (1) wird mit 146 mg (0.373 mmol) an [Cp["]Rh(CO)₂] (3b) in 50 ml Dekalin ca. 2 Stunden bei 190°C gerührt. IR-spektroskopisch kann die Intensitätsabnahme der für 3b charakteristischen Carbonylbanden verfolgt werden, wobei eine neue IR-Bande bei $\overline{v} = 1754 \text{ cm}^{-1}$ auftritt. Die Farbe der Suspension wechselt von gelb nach schwarzbraun. Da die Produktbande an Intensität nicht weiter zunimmt wird der vom Lösungsmittel befreite Rückstand säulenchromatographisch (Säule: 12 x 1.5 cm basisches Al₂O₃ · 2% H₂O, Petrolether) aufgearbeitet. Mit Petrolether erhält man lediglich nicht umgesetztes Edukt 3b in einer gelben Fraktion. Steigert man die Polarität des Eluens auf ein Petrolether/Toluol-Gemisch (Verhältnis 3:1) so gelingt die Isolation einer violetten Fraktion von [{Cp'''Rh(μ -CO)}] (3c). Stufenweise Erhöhung der Lösungsmittelpolaritäten bis hin zu reinem THF brachte keine weiteren Produkte. Verbindung **3**c wurde röntgenstrukturanalytisch charakterisiert.

Ausbeute:

 $[{Cp'''Rh(\mu-CO)}_2]$ (3c) : 90 mg (0.124 mmol); 66% bez. auf 3b

Elementaranalysen:

Verbindung	M _{ber.} [g/mol]	C _{ber.} [%]	C _{gef.} [%]	H _{ber.} [%]	H _{gef.} [%]
$[{Cp'''Rh(\mu-CO)}_2] (3c)$	728.666	59.34	59.16	8.02	8.02

3.8 Umsetzung von [{Cp⁼Rh}₃(µ-CO)As(AsPh₂)] (12) mit [W(CO)₅(thf)]

Man legt 230 mg (0.181 mmol) von **12** in 20 ml THF vor und rührt nach Zugabe einer durch 30 minütige Photolyse von 320 mg [W(CO)₆] frisch hergestelleten Lösung von 0.909 mmol [W(CO)₅(thf)] in 50 ml THF an Raumtemperatur. Nach 18 Stunden wird ca. 1 g neutrales $Al_2O_3 \cdot 2\% H_2O$ hinzugefügt und bis zur Rieselfähigkeit getrocknet. Nach dem Auftragen auf eine chromatographische Säule (Säule: 6 x 3 cm neutrales $Al_2O_3 \cdot 2\% H_2O$, Petrolether) trennt man zunächst mit reinem Petrolether gelbes, überschüßiges [W(CO)₅(thf)] ab. Darauffolgend wird **13** in einer orangebraunen Fraktion eluiert. Weitere stufenweise Steigerung der Polarität bis hin zu einem Petrolether/Diethylether-Gemisch im Verhältnis 1:1 führt zu einer braunene Fraktion von **14**. Beide Komplexe konnten röntgenstrukturanalytisch charakterisiert werden.

Ausbeute:

$[\{Cp^{=}(CO)Rh\}_2AsPhW(CO)_5] (13)$:	120 mg (0.104 mmol); 38% bez. auf 12,
		57% bez. auf 1
$[{Cp^{=}Rh}_{3}(AsO)(AsPh)Rh(CO)_{2}] (14)$:	80 mg (0.060 mmol); 44% bez. auf 12,
		33% bez. auf 1

Elementaranalysen:

Verbindung	M _{ber.} [g/mol]	C _{ber.} [%]	C _{gef.} [%]	H _{ber.} [%]	H _{gef.} [%]
$[\{Cp^{=}(CO)Rh\}_2AsPhW(CO)_5]$	1156.679	36.34	23.10 ^{b)}	4.18	0.84 ^{b)}
(13)					

^{b)} Probleme bei der Verbrennung

3.9 Cothermolyse von [{Cp⁼Rh}₃(μ-CO)(AsPh₂)As] (12) mit weißem Phosphor

Erhitzt man 180 mg (0.142 mmol) von **12** mit 90 mg (0.726 mmol) weißem Phosphor in 50 ml Dekalin am Rückfluß, so zeigt sich bereits nach wenigen Minuten ein Singulett bei δ = - 61.1 ppm im ³¹P-NMR-Spektrum. Nach zweistündigem Refluxieren wird die Reaktion beendet, da keine weiteren Signale detektiert werden können. Das Lösungsmittel wird im Vakuum abdestilliert, der Rückstand mit ca. 1 g basischem Al₂O₃ · 2% H₂O und 20 ml THF extrahiert und schließlich bis zur Rieselfähigkeit getrocknet. Anschließende säulenchromatographische Aufarbeitung (Säule: basisches Al₂O₃ · 2% H₂O, Petrolether) des Reaktionsrückstandes liefert mit einem Petrolether/Toluol-Gemisch von 5:1 den Rhodium-P₄-Zweikernkomplex **15** in einer orangefarbenen Fraktion, mit einem polareren Petrolether/Toluol-Gemisch (Verhältnis 3:1) eine braune Fraktion an nicht umgesetztem Edukt **12**.

Ausbeute:

 $[{Cp^{=}Rh}_{2}(\mu,\eta^{2:2}-P_{2})_{2}]$ (15) : 120 mg (0.160 mmol); 75% bez. auf 12, 22% bez. auf P₄

3.10 Cothermolyse von *cyclo*-(PhAs)₆ (1) mit [{Cp⁼Fe(CO)₂}₂] (5a) in siedendem Dekalin

510 mg (0.794 mmol) [{ $Cp^{-}Fe(CO)_{2}$ }] (5a) werden in 50 ml Dekalin vorgelegt. Dazu gibt man 240 mg (0.263 mmol) cyclo-(PhAs)₆ (1). Das Reaktionsgemisch wird zwei Stunden am Rückfluß erhitzt. Man beobachtet innerhalb weniger Minuten eine Farbänderung von rotbraun nach schwarzbraun und das Entweichen von Kohlenmonoxid. Zusätzlich zeigt sich an der Gefäßwand ein Metallspiegel. Die Reaktion wird IR-spektroskopisch anhand der IR-aktiven Carbonylbanden von 5a verfolgt. Nachdem die CO-Banden vollständig verschwunden sind wird das Lösungsmittel am Ölpumpenvakuum abdestilliert, der Rückstand in wenig THF aufgenommen und mit ca. 1 g neutralem Aluminiumoxid versetzt. Danach trocknet man am Vakuum bis zur Rieselfähigkeit und trägt auf eine chromatographische Säule (Säule: 11 x 3 cm neutrales Al₂O₃ · 2% H₂O, Petrolether) auf. Mit reinem Petrolether eluiert man zunächst $Cp_{2}^{-}Fe$ (17) in einer leuchtend orangenen Fraktion und weiter darauffolgend eine grünbraune $[{Cp}Fe_4As_4]$ Fraktion von (16). Beide Verbindungen wurden mittels Röntgenstrukturanalyse belegt.

Ausbeute:

$[{Cp^{-}Fe}_{4}As_{4}]$ (16)	•	380 mg (0.279 mmol); 70% bez. auf 5a , 71% bez. auf 1
$[Cp_{2}^{=}Fe]$ (17)	:	60 mg (0.126 mmol); 8% bez. auf 5a

Elementaranalysen:

Verbindung	M _{ber.} [g/mol]	C _{ber.} [%]	C _{gef.} [%]	H _{ber.} [%]	H _{gef.} [%]
$[{Cp}^{=}Fe}_{4}As_{4}]$ (16)	1360.909	38.83	38.73	6.22	5.81

V. Zusammenfassung

Die Cothermolyse von *cyclo*-(PhAs)₆ (1) mit $[Cp^{R}Co(CO)_{2}]$ (2a,b) in siedendem Dekalin führte zu den phosphoranalogen Mehrkernkomplexen $[{Cp^{R}Co}_{3}(\mu_{3}-As)_{2}]$ (6a,b) und $[{Cp^{R}Co}_{4}As_{4}]$ (7a,b) mit unsubstituierten Arsen-Liganden (a: $Cp^{R} = Cp^{-}$, b: $Cp^{R} = Cp^{-}$). Der Arsen-Sechsring von 1 wird unter diesen Bedingungen in As_n-Fragmente zerlegt.

Sowohl Verbindung **6b** als auch **7b** konnte röntgenstrukturanalytisch charakterisiert werden. Bei **6b** handelt es sich um einen trigonal-bipyramidalen *closo*-Cluster mit (n+1) = 6 GEP's. Dabei bilden die drei { $Cp^{=}Co$ }-Fragmente die dreieckige Basisfläche der trigonalen Bipyramide, welche durch die beiden Arsenatome ober- und unterhalb überkappt wird. Die Co₄As₄-Grundgerüststruktur von **7b** entspricht einem verzerrten quadratischen Antiprisma, wobei jeweils die Ecken abwechselnd durch Arsen- bzw. { $Cp^{=}Co$ }-Einheiten besetzt werden. Während die partiell oxidierte Arsenverbindung **8** direkt aus der Umsetzung des Cobalteinkernkomplexes **2c** mit äquimolaren Mengen an *cyclo*-(PhAs)₆ (**1**) hervorgeht, wird unter den gewählten Reaktionsbedingungen die Entstehung der trigonalen Bipyramide nicht beobachtet. **8** wurde durch eine Röntgenstrukturanalyse charakterisiert.

Durch "Clustererweiterung" mit $\{M(CO)_5\}$ -Fragmenten (M = Mo, W) wurde **6a** in die Verbindungen **11a** und **b** übergeführt, wobei **11a** röntgenstrukturanalytisch aufgeklärt werden konnte.

Die Cothermolyse von $[Cp^{-}Rh(CO)_2]$ (**3a**) und *cyclo*-(PhAs)₆ (**1**) liefert die röntgenographisch und massenspektrometrisch charakterisierte, unsymmetrische Verbindung **12** in guten Ausbeuten. Diese kann als Vorstufe zu einem trigonal bipyramidalen *closo*-Cluster betrachtet werden, welche durch eine formale Abspaltung einer CO- und zweier Ph-Einheiten daraus entsteht. Die Besonderheiten an **12** sind zum Einen die vier Chiralitätszentren und zum Anderen der {AsPh₂}-Ligand, ein Arsanid.

Im Gegensatz dazu findet zwischen $[Cp^{''}Rh(CO)_2]$ (**3b**) und **1** keine Reaktion statt. Allein die Dimerisierung des Cyclopentadienylrhodiumdicarbonyls **3b** zu der Zweikernverbindung $[\{Cp^{''}Rh(CO)\}_2]$ (**3c**) konnte beobachtet werden.

Die Komplexierungsreaktion von 12 mit $[W(CO)_5(thf)]$ in THF führt einerseits zu dem Heterobimetalleluster 13, einem Arsandiyl mit einer an das einsame Elektronenpaar des Arsenatoms koordinierte $\{W(CO)_5\}$ -Einheit, andererseits entsteht der stark verzerrte oktaedrische Komplex 14 ohne Wolfram-Fragment. Beide Verbindungen wurden röntgenstrukturanalytisch charakterisiert.

An den Beispielen 13 und 14 wurde gezeigt, daß sich 12 als Ausgangsverbindung für die Darstellung interessanter, neuer Rhodium-Komplexe bewährt. Als weitere Reaktion wurde die Umsetzung von 12 mit weißem Phosphor studiert. Die NMR-spektroskopischen Daten sprechen für das $Cp^=$ -substituierte Analogon 15 zu den *von B. Höbel* 1993 strukturell charakterisierten Rhodium-P₄-Zweikernverbindungen mit Cp⁻, Cp⁻, Cp⁻-, Liganden.

Cobalt- und Rhodiumkomplexe des Typs $[Cp^RM(CO)_2]$ haben sich als geeignete Reaktionspartner für *cyclo*-(PhAs)₆ (1) erwiesen.

Bringt man das Cycloarsan 1 mit der dreifach molaren Menge an $[Cp^{=}Fe(CO)_2]_2$ (5a) unter thermolytischen Bedingungen zur Reaktion, so isoliert man $[\{Cp^{=}Fe\}_4As_4]$ (16). Als Nebenprodukt fällt das bereits bekannte Tetrakis(trimethylsilyl)ferrocen 17 in geringer Ausbeute an. Die Atome in dem Fe₄As₄-Grundgerüst der heterobimetallischen Verbindung 16 sind, wie die Röntgenstruktur zeigt, dreiecksdodekaedrisch angeordnet.

Im Rahmen dieser Untersuchungen konnte gezeigt werden, daß sich die leicht zugängliche Arsenquelle cyclo-(PhAs)₆ (1) als vielseitiges Edukt sowohl für die Darstellung von Übergangsmetallcyclopentadienyl-Komplexen mit substituentenfreien (siehe *Schema I*) als auch substituentenhaltigen Arsenliganden (siehe *Schema II*) eignet.

VI. Literaturverzeichnis

- [1] a) H.G. Ang, B.O. West, *Aust. J. Chem.* 1967, 20, 1133.
 b) P.S. Elmes, B.O. West, *Coord. Chem. Rev.* 1968, 3, 279.
- [2] A.S. Foust, M.S. Foster, L.F. Dahl, J. Am. Chem. Soc. 1969, 91, 5631.
- [3] A.L. Rheingold, M.J. Foley, P.J. Sullivan, J. Am. Chem. Soc. 1982, 104, 4727.
- [4] P.S. Elmes, B.O. West, Aust. J. Chem. 1970, 23, 2247.
- [5] A.L. Rheingold, *Homoatomic Rings, Chains And Macromolecules Of Main-Group Elements*, ed. A.L. Rheingold, Elsevier, Amsterdam 1977, 385.
- [6] P.S. Elmes, B.M. Gatehouse, D.J. Lloyd, B.O. West, *J. Chem. Soc.*, *Chem. Commun.* 1974, 953.
- [7] A.L. Rheingold, M. E. Fountain, A.J. Di Maio, J. Am. Chem. Soc. 1987, 109, 141.
- [8] A.L. Rheingold, M. E. Fountain, *Organometallics*, **1986**, 5, 2410.
- [9] P.S. Elmes, B.O. West, J. Organomet. Chem. 1971, 32, 365.
- [10] P.S. Elmes, P. Laverett, B.O. West, J. Chem. Soc., Chem. Commun., 1971, 747.
- [11] A.L. Rheingold, M.J. Foley, P.J. Sullivan, Organometallics 1982, 1, 1429.
- [12] A.L. Rheingold, M.R. Churchill, J. Organomet. Chem. 1983, 243, 165.
- [13] B.M. Gatehouse, J. Chem. Soc., Chem. Commun. 1969, 948.
- [14] A.L. Rheingold, P.J. Sullivan, J. Chem. Soc., Chem. Commun. 1983, 39.
- [15] A.L. Rheingold, P.J. Sullivan, Organometallics 1982, 1, 1547.
- [16] A.J. Di Maio, T.E. Bitterwolf, A.L. Rheingold, Organometallics 1990, 9, 551.
- [17] A.L. Rheingold, M.E. Fountain, New J. Chem. 1988, 12, 565.
- [18] O.J. Scherer, K. Mast, G. Wolmershäuser, Z. Anorg. Allg. Chem. 1999, 625, 1475.
- [19] G.W. Fowles, D.K. Jenkins, J. Chem. Soc., Chem. Commun. 1965, 61.
- [20] A.J. Di Maio, A.L. Rheingold, *Chem. Rev.* **1990**, 90, 169-190.
- [21] R.M. De Silva, M.J. Mays, J.E. Davies, J. Chem. Soc., Dalton Trans. 1998, 439.
- [22] A.J. Di Maio, A.L. Rheingold, Organometallics 1998, 17, 1169.
- [23] M. Ehses, *Dissertation*, Universität Kaiserslautern 1998.
- [24] G. Huttner, K. Evertz, Acc. Chem. Res. 1986, 19, 406.
- [25] M. Regitz, O.J. Scherer (Hrsg.), Multiple Bonds And Low Coordination In Phosphorus Chemistry, G. Thieme Verlag, Stuttgart, 1990, 367.

- [26] G. Huttner, B. Sigwarth, O. Scheidsteger, L. Zsolnai, O. Orama, *Organometallics* 1985, 4, 326.
- [27] W.A. Herrmann, B. Koumboris, T. Zahn, M.L. Ziegler, *Angew. Chem.* 1984, 96(10), 802; *Angew. Chem., Int. Ed. Engl.* 1984, 23, 812.
- [28] B. Chiswell, R.A. Plowman, K. Verrall, *Inorg. Chim. Acta* 1972, 6, 113.
- [29] F. Fuchs, *Dissertation*, Universität Kaiserslautern 2001.
- [30] G. Huttner, H.-G. Schmid, A. Frank, O. Orama, Angew. Chem. 1976, 88(8), 255;
 Angew. Chem. Int. Ed. Engl. 1976, 15, 234.
- [31] K. Wade, Adv. Inorg. Radiochem. 1976, 18, 1-66.
- [32] D.M.P. Mingos, Acc. Chem. Res. 1984, 17, 311-319.
- [33] C.K.F. von Hänisch, C. Üffing, M.A. Junker, A. Ecker, B.O. Kneisel, H.Schnöckel, *Angew. Chem.* **1996**, 108, 3003-3005; *Angew. Chem.*, *Int. Ed. Engl.* **1996**, 35, 2875.
- [34] a) L.T.J. Delbaere, L.J. Kruczynski, D.W. McBride, J. Chem. Soc., Dalt. Trans. 1973, 307-310.
 - b) L.J. Arnold, K.M. Mackay, B.K. Nicholson, J. Organomet. Chem. 1990, 197.
- [35] G.L. Simon, L.F. Dahl, J. Am. Chem. Soc. 1973, 95, 2175-2183.
- [36] M. Scheer, U. Becker, M.H. Chisholm, J.C. Huffmann, F. Lemoigno, O. Eisenstein, *Inorg. Chem.* 1995, 34, 3117-3119.
- [37] T. Völmecke, *Dissertation*, Universität Kaiserslautern 1998.
- [38] O.J. Scherer, T. Völmecke, G. Wolmershäuser, Eur. J. Inorg. Chem., im Druck.
- [39] O.J. Scherer, K. Pfeiffer, G. Wolmershäuser, J. Organomet. Chem. 1992, 425, 141.
- [40] J. Leimann, *Dissertation*, Universität Kaiserslautern 1990.
- [41] O.J. Scherer, B. Höbel, G. Wolmershäuser, Angew. Chem. 1992, 104(8), 1042; Angew.
 Chem., Int. Ed. Engl. 1992, 31(8), 1027.
- [42] K.H. Neumann, *Diplomarbeit*, Universität Kaiserslautern 1992.
- [43] R.M. De Silva, M.J. Mays, P.R. Raithby, G.A. Solan, J. Organomet. Chem. 2002, 642, 237.
- [44] a) S.A. Foust, C.F. Campana, J.D. Sinclair, L.F. Dahl, *Inorg. Chem.* 1979, 18, 3047.
 b) S.A. Foust, M.S. Foster, L.F. Dahl, *J. Am. Chem. Soc.* 1969, 91, 5633.
- [45] F. Sigwarth, L. Zsolnai, H. Berke, G. Huttner, J. Organomet. Chem. 1982, 226, C5.
- [46] P. Mercando, A.J. Di Maio, A.L. Rheingold, Angew. Chem. 1987, 99, 252; Angew. Chem., Int. Ed. Engl. 1987, 244.

- [48] S.A. Foust, M.S. Foster, L.F. Dahl, J. Am. Chem. Soc. 1976, 91, 5631.
- [49] A.J. Di Maio, A.L. Rheingold, Organometallics 1987, 6, 1138.
- [50] J.R. Harper, M.E. Fountain, A.L. Rheingold, Organometallics 1989, 8, 2316.
- [51] A.J. Di Maio, S.J. Geib, A.L. Rheingold, J. Organomet. Chem. 1987, 335, 97.
- [52] W. Schmettow, H.-G. von Schnering, Angew. Chem. 1977, 89(12), 895; Angew. Chem., Int. Ed. Engl. 1977, 16, 857.
- [53] J. Ellermann, H. Schössner, Angew. Chem. 1974, 86(17), 646; Angew. Chem., Int. Ed. Engl. 1974, 13, 601.
- [54] E. Röttinger, A. Trenkle, R. Müller, H. Vahrenkamp, Chem. Ber. 1980, 113, 1280.
- [55] J.H. Burns, J. Waser, J. Am. Chem. Soc. 1957, 79, 859.
- [56] J. Ellermann, H.A. Lindner, H. Schössner, G. Thiele, G. Zoubek, Z. Naturforsch. 1978, 33b, 1386.
- [57] A.L. Rheingold, M.R. Churchill, J. Organomet. Chem. 1990, 395(1), 85.
- [58] F.A. Cotton, T. R. Webb, *Inorg. Chim. Acta* 1974, 10, 127.
- [59] M. di Vaira, S. Midollini, L. Sacconi, J. Am. Chem. Soc. 1979, 101, 1757.
- [60] N. Mandel, J. Donohue, Acta Crystallogr., Sect. B 1971, B27, 476.
- [61] a) O. Mundt, G. Becker, H.J. Wessely, H.J. Breunig, H. Kischkel, Z. Anorg. Allg. Chem. 1982, 486, 70.
 - b) K. Megges, E.V. Avtomonov, J. Lorberth, Z. Naturforsch. 1997, 52b, 790.
- [62] A.L. Rheingold, P.J. Sullivan, Organometallics 1983, 2, 327.
- [63] G. Huttner, H.-G. Schmid, H. Lorenz, Chem. Ber. 1976, 109, 3741.
- [64] N. Mandel, J. Donohue, Acta Crystallogr., Sect. B. 1971, B27, 2288.
- [65] G. Sennyey, F. Mathey, J. Fischer, A. Mitschler, Organometallics 1983, 2(2), 298.
- [66] D. Schiferl, C.S. Barrett, J. Appl. Cryst. 1969, 2, 30.
- [67] A. Kutoglu, Z. Anorg. Allg. Chem. 1976, 419, 176.
- [68] S. Weigel, *Dissertation*, Universität Kaiserslautern 1999.
- [69] R. Krammer, *Dissertation*, Universität Kaiserslautern 1997.
- [70] F. Baumann, E. Dormann, Y. Ehleiter, W. Kaim, J. Kärcher, M. Kelemen, R. Krammer, D. Saurenz, D. Stalke, C. Wachter, G. Wolmershäuser, H. Sitzmann, J. Organomet. Chem. 1999, 587(2), 267.
- [71] G. Kemény, *Dissertation*, Universität Kaiserslautern **1994**.

- [72] G. Kemény, *Diplomarbeit*, Universität Kaiserslautern 1992.
- [73] a) J. Okuda, *Top. Curr. Chem.* 1991, 160, 97-145.
 b) J. Okuda, E. Herdtweck, *J. Organomet. Chem.* 1989, 373, 99.
- [74] C.S. Kraihanzel, M.L. Losee, J. Am. Chem. Soc. 1968, 90(17), 4701.
- [75] I.M. Pribytkova, A.V. Kisin, Yu.N. Luzikov, N.P. Makoveyeva, V.N. Torocheshinikov, Yu.A. Ustynyuk, J. Organomet. Chem. 1971, 30, C57.
- [76] P.S. Elmes, S. Middleton, B.O. West, Aust. J. Chem. 1970, 23, 1559.
- [77] a) S.A. Frith, J.L. Spencer, W.E. Geiger, J. Edwin, *Inorg. Synth.* 1990, 28, 273.
 b) S.A. Frith, J.L. Spencer, W.E. Geiger, J. Edwin, *Inorg. Synth.* 1985, 23, 15.
 c) C. White, *Organometallic Compounds of Cobalt, Rhodium and Iridium*, Chemistry Sourcebooks, Chapman and Hall Ltd, 1985.
- [78] D.L. Lichtenberger, C.H. Blevins, R.B. Ortega, Organometallics 1984, 3, 1614.
- [79] J.W. Kang, P.M. Maitlis, J. Organomet. Chem. 1971, 26, 393.
- [80] J.W. Kang, K. Moseley, P.M. Maitlis, J. Am. Chem. Soc. 1969, 91(22), 5970.
- [81] O.J. Scherer, K. Mast, J. Meiers, G. Wolmershäuser, Z. Anorg. Allg. Chem. 1999, 625, 70.
- [82] K.H. Whitmire, Main Group-Transition Metal Cluster Compounds of the Group 15 Elements, *Advances in Organometallic Chemistry* **1998**, 42, 1-145.
- [83] O.J. Scherer, P_n and As_n Ligands: A Novel Chapter in the Chemistry of Phosphorus and Arsenic, Acc. Chem. Res. 1999, 32(9), 752.
- [84] O.J. Scherer, Komplexe mit substituentenfreien acyclischen und cyclischen Phosphor-,
 Arsen-, Antimon- und Bismutliganden, *Angew. Chem.* 1990, 102, 1137-1155; *Angew. Chem.*, *Int. Ed. Engl.* 1990, 29, 1104.
- [85] B.E. Collins, Y. Koide, C.K. Schauer, P.S. White, *Inor. Chem.* 1997, 36, 6172.
- [86] H. Lang, G. Huttner, L. Zsolnai, G. Mohr, B. Sigwarth, U. Weber, O. Orama, I. Jibril, J. Organomet. Chem. 1986, 304, 157.
- [87] V.K. Gupta, L.K. Krannich, C.L. Watkins, *Inorg. Chem.* **1987**, 26, 1638.
- [88] N. Dunwoody, S.-S. Sun, A.J. Lees, *Inorg. Chem.* **2000**, 39, 4442.
- [89] E. Röttinger, H. Vahrenkamp, Angew. Chem. 1978, 90(12), 294; Angew. Chem., Int. Ed. Engl. 1978, 273.
- [90] P. Umland, H. Vahrenkamp, Chem. Ber. 1977, 110, 2809.
- [91] O.J. Scherer, *Chemie in unserer Zeit* **2000**, 34(6), 374.

VII. Anhang

1. Strukturdaten von $[{Cp^{=}Co}_{3}(\mu_{3}-As)_{2}]$ (6b)

<u>*Tabelle 1*</u>: Kristalldaten und Strukturverfeinerung für $[{Cp^{=}Co}_{3}(\mu_{3}-As)_{2}]$ (6b)

Summenformel	$C_{33}H_{63}As_2Co_3Si_6$	
Molmasse	955.00	
Temperatur	293(2) K	
Strahlung	ΜοΚα	
Wellenlänge	0.71073 Å	
Scanmodus	Phi-Oszillation	
Kristallsystem	Monoklin	
Raumgruppe	Cc	
Zelldimensionen	a = 25.6525(16) Å	$\alpha = 90^{\circ}$
	<i>b</i> = 11.8529(8) Å	$\beta = 120.429(6)^{\circ}$
	c = 18.0776(10) Å	$\gamma = 90^{\circ}$
Zellvolumen	4739.5(5) Å ³	
Formeleinheiten pro Zelle Z	4	
Berechnete Dichte	1.338 Mg/m ³	
Absorptionskoeffizient	2.595 mm ⁻¹	
Kristallgröße	0.51 x 0.32 x 0.16 mm	
Gemessener θ-Bereich	2.94 bis 25.68°	
Anzahl der gemessenen Reflexe	20367	
Unabhängige Reflexe	8451 (Rint = 0.0410)	
Absorptionskorrektur	Analytical (ABST/PLAT	ON 98)
Max. und min. Transmission	0.67549 und 0.44259	
Diffraktometer	Stoe IPDS	
Strukturlösung	Direkte Methoden	
Strukturlösungsprogramm	SHELXS-97 (Sheldrick, 1	990)
Strukturverfeinerung	Vollmatrix Least-Squares	gegen F ²

Strukturverfeinerungsprogramm	SHELXL-97 (Sheldrick, 1997)
Daten / Restraints / Parameter	8451 / 2 / 416
Endgültige R-Werte [I>2σ(I)]	R1 = 0.0264, wR2 = 0.0581
R-Werte (alle Daten)	R1 = 0.0332, wR2 = 0.0598
Absolutstrukturparameter	0.495(7)
Wichtungsschema	w=1/[$\sigma^2(Fo^2)$ +(0.0321P) ² +0.0000P] mit P=(Fo ² +2Fc ²)/3
GooF (alle Daten)	0.946
Größtes Maximum und Minimum	0.272 und -0.282 eÅ ⁻³

Verfeinerung nach F^2 mit ALLEN Reflexen. Die gewichteten R-Werte wR2 und alle GooF's basieren auf F^2 . Die konventionellen R-Werte R1 basieren auf F, wobei F für negative F^2 gleich Null gesetzt wird. Das Ablehnungskriterium $F^2 > 2\sigma$ (F^2) wird nur zum Berechnen von R(obs) etc. verwendet. Zur Verfeinerung werden alle Reflexe herangezogen. Grundsätzlich gilt: Auf F^2 bezogene R-Werte sind statistisch etwa doppelt so groß wie die auf F basierenden. Auf ALLE Reflexe bezogene R-Werte sind noch größer.

Der Kristall lag als Inversionszwilling vor. Der Absolutstrukturparameter wurde in die Verfeinerung mit einbezogen

Die Wasserstoffatome wurden geometrisch lokalisiert. Für die Verfeinerung wurde ein Reitermodell angenommen. Als Temperaturfaktor wurde der 1.5-fache Wert (CH₃-Gruppen) bzw. der 1.2-fache Wert (Cp-H) des äquivalenten isotropen Temperaturfaktors desjenigen C-Atoms eingesetzt, an welches das jeweilige H-Atom gebunden ist.

Einzelheiten können dem Handbuch für das Verfeinerungsprogramm SHELXL entnommen werden.

$$GooF = \sqrt{\frac{\sum \left[w\left(F_o^2 - F_c^2\right)\right]}{(n-p)}}$$
 n = Zahl der Reflexe; p = Zahl der verfeinerten Parameter

<u>Tabelle 2:</u>	Atomkoordinaten [x 10 ⁴] und äquivalente isotrope Auslenkungsparameter
	$[Å^2 \times 10^3]$ für $[{Cp=Co}_3(\mu_3-As)_2]$ (6b)

U(eq) wird berechnet als ein Drittel der Spur des orthogonalisierten U_{ij} -Tensors.

	x	У	Z	U(eq)	
As(1)	4098(1)	3544(1)	239(1)	39(1)	
As(2)	5544(1)	3572(1)	1964(1)	40(1)	
Co(1)	4745(1)	4751(1)	1264(1)	37(1)	
Co(2)	5059(1)	3276(1)	529(1)	35(1)	
Co(3)	4659(1)	2647(1)	1508(1)	37(1)	
Si(11)	3537(1)	6610(1)	-313(1)	64(1)	
Si(12)	6002(1)	6708(1)	2577(1)	61(1)	
Si(21)	4109(1)	2047(1)	-1600(1)	50(1)	
Si(22)	6593(1)	2190(1)	1289(1)	65(1)	
Si(31)	3099(1)	1954(1)	935(1)	68(1)	
Si(32)	5589(1)	1923(1)	3790(1)	64(1)	
C(11)	4201(2)	5807(3)	1496(3)	51(1)	
C(12)	4198(2)	6208(3)	745(3)	48(1)	
C(13)	4808(2)	6455(3)	1019(3)	49(1)	
C(14)	5200(2)	6248(3)	1918(3)	49(1)	
C(15)	4808(2)	5829(3)	2205(3)	51(1)	
C(21)	5304(2)	2001(3)	-23(3)	46(1)	
C(22)	4827(2)	2634(3)	-689(2)	42(1)	
C(23)	5043(2)	3762(3)	-578(3)	44(1)	
C(24)	5649(2)	3801(3)	130(3)	47(1)	
C(25)	5822(2)	2696(3)	482(3)	49(1)	
C(31)	4900(2)	1038(3)	2012(3)	48(1)	
C(32)	4944(2)	1767(3)	2678(3)	49(1)	

C(33)	4353(2)	2222(4)	2342(3)	51(1)
C(34)	3936(2)	1778(3)	1514(3)	50(1)
C(35)	4289(2)	1037(3)	1312(3)	52(1)
C(111)	3378(3)	8100(5)	-221(5)	126(3)
C(112)	3746(3)	6451(6)	-1147(4)	111(2)
C(113)	2854(2)	5763(6)	-598(4)	106(2)
C(121)	5978(3)	8214(5)	2833(6)	132(3)
C(122)	6380(3)	6535(7)	1936(5)	114(2)
C(123)	6415(3)	5913(6)	3591(4)	106(2)
C(211)	4291(3)	1421(4)	-2391(3)	67(1)
C(212)	3553(2)	3212(4)	-2123(3)	70(1)
C(213)	3815(2)	918(4)	-1195(3)	73(1)
C(221)	6960(3)	1740(7)	669(5)	119(3)
C(222)	6528(3)	954(6)	1848(5)	116(2)
C(223)	7036(2)	3334(6)	2056(4)	100(2)
C(311)	2927(2)	3420(5)	1117(4)	92(2)
C(312)	2805(3)	930(8)	1423(6)	147(4)
C(313)	2759(2)	1631(5)	-221(4)	96(2)
C(321)	6303(3)	1413(6)	3842(4)	113(3)
C(322)	5409(4)	1032(6)	4486(4)	139(3)
C(323)	5664(3)	3394(4)	4155(4)	101(2)

<u>Tabelle 3:</u>	Bindungslängen [Å] und -winkel [°] für [{ $Cp^{=}Co$ } ₃ (µ ₃ -As) ₂] (6b)					
	As(1)-Co(3)	2.2628(6)	Si(21)-C(212)	1.863(5)		
	As(1)-Co(1)	2.2641(6)	Si(21)-C(213)	1.858(5)		
	As(1)-Co(2)	2.2681(6)	Si(21)-C(211)	1.867(5)		
	As(2)-Co(2)	2.2652(6)	Si(21)-C(22)	1.874(4)		
	As(2)-Co(1)	2.2651(6)	Si(22)-C(222)	1.836(7)		
	As(2)-Co(3)	2.2672(6)	Si(22)-C(25)	1.866(4)		
	Co(1)-C(15)	2.067(4)	Si(22)-C(223)	1.859(6)		
	Co(1)-C(11)	2.069(4)	Si(22)-C(221)	1.868(6)		
	Co(1)-C(13)	2.091(3)	Si(31)-C(313)	1.852(6)		
	Co(1)-C(12)	2.120(3)	Si(31)-C(34)	1.862(4)		
	Co(1)-C(14)	2.123(4)	Si(31)-C(311)	1.863(6)		
	Co(1)-Co(2)	2.5604(6)	Si(31)-C(312)	1.870(6)		
	Co(1)-Co(3)	2.5614(6)	Si(32)-C(323)	1.841(5)		
	Co(2)-C(23)	2.063(4)	Si(32)-C(32)	1.856(4)		
	Co(2)-C(24)	2.075(4)	Si(32)-C(322)	1.871(6)		
	Co(2)-C(21)	2.078(4)	Si(32)-C(321)	1.883(7)		
	Co(2)-C(22)	2.111(4)	C(11)-C(12)	1.435(6)		
	Co(2)-C(25)	2.117(4)	C(11)-C(15)	1.430(6)		
	Co(2)-Co(3)	2.5634(7)	C(12)-C(13)	1.412(6)		
	Co(3)-C(31)	2.069(3)	C(13)-C(14)	1.434(6)		
	Co(3)-C(33)	2.085(4)	C(14)-C(15)	1.436(6)		
	Co(3)-C(35)	2.081(4)	C(21)-C(22)	1.421(6)		
	Co(3)-C(32)	2.129(4)	C(21)-C(25)	1.431(5)		
	Co(3)-C(34)	2.127(4)	C(22)-C(23)	1.423(5)		
	Si(11)-C(111)	1.839(6)	C(23)-C(24)	1.427(5)		
	Si(11)-C(112)	1.849(7)	C(24)-C(25)	1.425(6)		
	Si(11)-C(113)	1.851(6)	C(31)-C(32)	1.439(6)		
	Si(11)-C(12)	1.864(4)	C(31)-C(35)	1.432(5)		

Si(12)-C(123)	1.844(6)	C(32)-C(33)	1.425(6)
Si(12)-C(121)	1.853(5)	C(33)-C(34)	1.428(6)
Si(12)-C(14)	1.862(4)	C(34)-C(35)	1.435(6)
Si(12)-C(122)	1.860(7)		
Co(3)-As(1)-Co(1)	68.92(2)	C(33)-Co(3)-Co(2)	176.74(12)
Co(3)-As(1)-Co(2)	68.91(2)	C(35)-Co(3)-Co(2)	117.19(13)
Co(1)-As(1)-Co(2)	68.794(19)	C(32)-Co(3)-Co(2)	140.52(12)
Co(2)-As(2)-Co(1)	68.83(2)	C(34)-Co(3)-Co(2)	143.04(12)
Co(2)-As(2)-Co(3)	68.88(2)	As(1)-Co(3)-Co(2)	55.642(18)
Co(1)-As(2)-Co(3)	68.825(19)	As(2)-Co(3)-Co(2)	55.522(18)
C(15)-Co(1)-C(11)	40.46(15)	Co(1)-Co(3)-Co(2)	59.947(17)
C(15)-Co(1)-C(13)	66.15(19)	C(111)-Si(11)-C(112)	109.9(4)
C(11)-Co(1)-C(13)	65.87(18)	C(111)-Si(11)-C(113)	109.0(3)
C(15)-Co(1)-C(12)	67.63(16)	C(112)-Si(11)-C(113)	110.0(3)
C(11)-Co(1)-C(12)	40.03(16)	C(111)-Si(11)-C(12)	106.3(3)
C(13)-Co(1)-C(12)	39.16(17)	C(112)-Si(11)-C(12)	108.7(3)
C(15)-Co(1)-C(14)	40.04(17)	C(113)-Si(11)-C(12)	112.9(2)
C(11)-Co(1)-C(14)	67.64(16)	C(123)-Si(12)-C(121)	108.6(4)
C(13)-Co(1)-C(14)	39.79(18)	C(123)-Si(12)-C(14)	112.3(2)
C(12)-Co(1)-C(14)	67.69(15)	C(121)-Si(12)-C(14)	106.0(2)
C(15)-Co(1)-As(1)	141.57(12)	C(123)-Si(12)-C(122)	110.2(4)
C(11)-Co(1)-As(1)	104.92(12)	C(121)-Si(12)-C(122)	110.8(4)
C(13)-Co(1)-As(1)	122.69(15)	C(14)-Si(12)-C(122)	108.9(3)
C(12)-Co(1)-As(1)	96.05(12)	C(212)-Si(21)-C(213)	112.0(2)
C(14)-Co(1)-As(1)	162.25(12)	C(212)-Si(21)-C(211)	109.2(2)
C(15)-Co(1)-As(2)	104.53(12)	C(213)-Si(21)-C(211)	108.9(2)
C(11)-Co(1)-As(2)	140.61(12)	C(212)-Si(21)-C(22)	109.3(2)
C(13)-Co(1)-As(2)	124.71(14)	C(213)-Si(21)-C(22)	109.6(2)
C(12)-Co(1)-As(2)	163.45(12)	C(211)-Si(21)-C(22)	107.8(2)
C(14)-Co(1)-As(2)	96.76(11)	C(222)-Si(22)-C(25)	109.3(3)
As(1)-Co(1)-As(2)	98.53(2)	C(222)-Si(22)-C(223)	111.3(3)
C(15)-Co(1)-Co(2)	159.28(12)	C(25)-Si(22)-C(223)	110.8(2)
C(11)-Co(1)-Co(2)	159.98(12)	(222)-Si(22)-C(221)	108.5(4)

C(13)-Co(1)-Co(2)	118.12(14)	C(25)-Si(22)-C(221)	106.3(3)
C(12)-Co(1)-Co(2)	129.61(12)	C(223)-Si(22)-C(221)	110.6(3)
C(14)-Co(1)-Co(2)	129.10(12)	C(313)-Si(31)-C(34)	111.2(2)
As(1)-Co(1)-Co(2)	55.676(17)	C(313)-Si(31)-C(311)	111.9(3)
As(2)-Co(1)-Co(2)	55.589(18)	C(34)-Si(31)-C(311)	108.4(2)
C(15)-Co(1)-Co(3)	115.97(12)	C(313)-Si(31)-C(312)	109.0(4)
C(11)-Co(1)-Co(3)	115.38(12)	C(34)-Si(31)-C(312)	106.7(3)
C(13)-Co(1)-Co(3)	177.85(14)	C(311)-Si(31)-C(312)	109.5(4)
C(12)-Co(1)-Co(3)	140.68(11)	C(323)-Si(32)-C(32)	110.9(2)
C(14)-Co(1)-Co(3)	142.08(12)	C(323)-Si(32)-C(322)	108.0(3)
As(1)-Co(1)-Co(3)	55.517(17)	C(32)-Si(32)-C(322)	106.5(3)
As(2)-Co(1)-Co(3)	55.627(17)	C(323)-Si(32)-C(321)	111.4(3)
Co(2)-Co(1)-Co(3)	60.066(18)	C(32)-Si(32)-C(321)	109.5(2)
C(23)-Co(2)-C(24)	40.35(15)	C(322)-Si(32)-C(321)	110.5(4)
C(23)-Co(2)-C(21)	66.33(16)	C(12)-C(11)-C(15)	108.9(4)
C(24)-Co(2)-C(21)	66.34(16)	C(12)-C(11)-Co(1)	71.9(2)
C(23)-Co(2)-C(22)	39.83(15)	C(15)-C(11)-Co(1)	69.7(2)
C(24)-Co(2)-C(22)	67.35(15)	C(13)-C(12)-C(11)	105.3(4)
C(21)-Co(2)-C(22)	39.66(15)	C(13)-C(12)-Si(11)	125.3(3)
C(23)-Co(2)-C(25)	67.39(15)	C(11)-C(12)-Si(11)	128.3(3)
C(24)-Co(2)-C(25)	39.74(16)	C(13)-C(12)-Co(1)	69.3(2)
C(21)-Co(2)-C(25)	39.87(15)	C(11)-C(12)-Co(1)	68.1(2)
C(22)-Co(2)-C(25)	67.58(14)	Si(11)-C(12)-Co(1)	135.8(2)
C(23)-Co(2)-As(2)	142.81(11)	C(12)-C(13)-C(14)	112.3(4)
C(24)-Co(2)-As(2)	106.08(11)	C(12)-C(13)-Co(1)	71.5(2)
C(21)-Co(2)-As(2)	122.57(12)	C(14)-C(13)-Co(1)	71.3(2)
C(22)-Co(2)-As(2)	162.10(10)	C(15)-C(14)-C(13)	104.5(4)
C(25)-Co(2)-As(2)	96.49(11)	C(15)-C(14)-Si(12)	128.3(3)
C(23)-Co(2)-As(1)	104.58(11)	C(13)-C(14)-Si(12)	126.1(3)
C(24)-Co(2)-As(1)	140.92(11)	C(15)-C(14)-Co(1)	67.9(2)
C(21)-Co(2)-As(1)	123.33(11)	C(13)-C(14)-Co(1)	68.9(2)
C(22)-Co(2)-As(1)	96.32(10)	Si(12)-C(14)-Co(1)	136.0(2)
C(25)-Co(2)-As(1)	162.78(11)	C(14)-C(15)-C(11)	109.0(4)
As(2)-Co(2)-As(1)	98.41(2)	C(14)-C(15)-Co(1)	72.1(2)

C(23)-Co(2)-Co(1)	117.12(10)	C(11)-C(15)-Co(1)	69.8(2)
C(24)-Co(2)-Co(1)	116.87(11)	C(22)-C(21)-C(25)	111.1(3)
C(21)-Co(2)-Co(1)	176.38(12)	C(22)-C(21)-Co(2)	71.4(2)
C(22)-Co(2)-Co(1)	142.30(10)	C(25)-C(21)-Co(2)	71.5(2)
C(25)-Co(2)-Co(1)	141.52(11)	C(21)-C(22)-C(23)	105.6(3)
As(2)-Co(2)-Co(1)	55.583(17)	C(21)-C(22)-Si(21)	126.1(3)
As(1)-Co(2)-Co(1)	55.530(17)	C(23)-C(22)-Si(21)	127.8(3)
C(23)-Co(2)-Co(3)	158.81(11)	C(21)-C(22)-Co(2)	68.9(2)
C(24)-Co(2)-Co(3)	160.78(12)	C(23)-C(22)-Co(2)	68.3(2)
C(21)-Co(2)-Co(3)	116.42(12)	Si(21)-C(22)-Co(2)	133.06(19)
C(22)-Co(2)-Co(3)	127.97(10)	C(24)-C(23)-C(22)	109.1(3)
C(25)-Co(2)-Co(3)	129.39(12)	C(24)-C(23)-Co(2)	70.3(2)
As(2)-Co(2)-Co(3)	55.594(18)	C(22)-C(23)-Co(2)	71.9(2)
As(1)-Co(2)-Co(3)	55.447(18)	C(23)-C(24)-C(25)	108.8(3)
Co(1)-Co(2)-Co(3)	59.987(18)	C(23)-C(24)-Co(2)	69.4(2)
C(31)-Co(3)-C(33)	66.19(17)	C(25)-C(24)-Co(2)	71.7(2)
C(31)-Co(3)-C(35)	40.36(15)	C(21)-C(25)-C(24)	105.4(3)
C(33)-Co(3)-C(35)	66.05(18)	C(21)-C(25)-Si(22)	126.0(3)
C(31)-Co(3)-C(32)	40.06(16)	C(24)-C(25)-Si(22)	127.7(3)
C(33)-Co(3)-C(32)	39.50(16)	C(21)-C(25)-Co(2)	68.6(2)
C(35)-Co(3)-C(32)	67.47(16)	C(24)-C(25)-Co(2)	68.6(2)
C(31)-Co(3)-C(34)	67.54(16)	Si(22)-C(25)-Co(2)	135.2(2)
C(33)-Co(3)-C(34)	39.62(16)	C(32)-C(31)-C(35)	109.1(4)
C(35)-Co(3)-C(34)	39.86(17)	C(32)-C(31)-Co(3)	72.2(2)
C(32)-Co(3)-C(34)	67.61(16)	C(35)-C(31)-Co(3)	70.3(2)
C(31)-Co(3)-As(1)	140.76(11)	C(33)-C(32)-C(31)	104.8(4)
C(33)-Co(3)-As(1)	124.56(12)	C(33)-C(32)-Si(32)	126.7(3)
C(35)-Co(3)-As(1)	104.91(12)	C(31)-C(32)-Si(32)	128.0(3)
C(32)-Co(3)-As(1)	163.67(12)	C(33)-C(32)-Co(3)	68.6(2)
C(34)-Co(3)-As(1)	97.11(12)	C(31)-C(32)-Co(3)	67.7(2)
C(31)-Co(3)-As(2)	105.34(11)	Si(32)-C(32)-Co(3)	134.2(2)
C(33)-Co(3)-As(2)	121.91(12)	C(34)-C(33)-C(32)	112.2(4)
C(35)-Co(3)-As(2)	142.37(12)	C(34)-C(33)-Co(3)	71.8(2)
C(32)-Co(3)-As(2)	95.64(11)	C(32)-C(33)-Co(3)	71.9(2)

C(34)-Co(3)-As(2)	161.38(12)	C(33)-C(34)-C(35)	105.0(4)
As(1)-Co(3)-As(2)	98.51(2)	C(33)-C(34)-Si(31)	125.8(3)
C(31)-Co(3)-Co(1)	160.18(11)	C(35)-C(34)-Si(31)	128.4(3)
C(33)-Co(3)-Co(1)	117.16(12)	C(33)-C(34)-Co(3)	68.6(2)
C(35)-Co(3)-Co(1)	159.33(11)	C(35)-C(34)-Co(3)	68.3(2)
C(32)-Co(3)-Co(1)	129.18(11)	Si(31)-C(34)-Co(3)	134.6(2)
C(34)-Co(3)-Co(1)	128.60(12)	C(34)-C(35)-C(31)	108.9(4)
As(1)-Co(3)-Co(1)	55.565(17)	C(34)-C(35)-Co(3)	71.8(2)
As(2)-Co(3)-Co(1)	55.548(17)	C(31)-C(35)-Co(3)	69.3(2)
C(31)-Co(3)-Co(2)	115.93(12)		

<u>*Tabelle 4:*</u> Anisotrope Auslenkungsparameter [Å² x 10³] für [{Cp⁼Co}₃(μ_3 -As)₂] (**6b**) Der Exponent des anisotropen Auslenkungsfaktors hat die Form: $-2\pi^2$ [(ha^{*})²U₁₁ + ... + 2hka^{*}b^{*}U₁₂].

Х	U ₁₁	U ₂₂	U ₃₃	U ₂₃	U ₁₃	U ₁₂
As(1)	35(1)	40(1)	37(1)	1(1)	16(1)	2(1)
As(2)	37(1)	40(1)	36(1)	-1(1)	15(1)	0(1)
Co(1)	44(1)	32(1)	38(1)	-1(1)	23(1)	1(1)
Co(2)	37(1)	34(1)	36(1)	-2(1)	19(1)	0(1)
Co(3)	40(1)	34(1)	37(1)	3(1)	20(1)	0(1)
Si(11)	63(1)	62(1)	58(1)	12(1)	24(1)	22(1)
Si(12)	54(1)	46(1)	72(1)	-10(1)	24(1)	-6(1)
Si(21)	49(1)	58(1)	38(1)	-9(1)	19(1)	-9(1)
Si(22)	41(1)	84(1)	60(1)	-9(1)	19(1)	14(1)
Si(31)	44(1)	84(1)	75(1)	17(1)	29(1)	-4(1)
Si(32)	76(1)	48(1)	44(1)	8(1)	13(1)	-7(1)
C(11)	55(2)	53(2)	54(3)	-4(2)	35(2)	5(2)
C(12)	55(2)	36(2)	57(3)	3(2)	31(2)	13(2)
C(13)	64(2)	33(2)	56(3)	4(2)	34(2)	2(2)
C(14)	61(2)	30(2)	51(3)	-9(2)	25(2)	-2(2)
C(15)	62(3)	52(2)	42(3)	-7(2)	28(2)	5(2)
C(21)	44(2)	40(2)	50(3)	-9(2)	21(2)	2(2)
C(22)	39(2)	51(2)	39(2)	-9(2)	23(2)	-1(2)
C(23)	46(2)	50(2)	42(2)	2(2)	27(2)	0(2)
C(24)	43(2)	57(2)	48(3)	-6(2)	28(2)	-11(2)
C(25)	40(2)	57(2)	49(3)	-9(2)	24(2)	4(2)
C(31)	55(2)	32(2)	55(3)	7(2)	27(2)	1(2)
C(32)	59(2)	44(2)	41(2)	11(2)	23(2)	-1(2)

C(33)	52(3)	55(2)	51(3)	7(2)	31(2)	-1(2)
C(34)	48(2)	56(2)	49(3)	9(2)	26(2)	-10(2)
C(35)	59(3)	35(2)	56(3)	2(2)	25(2)	-12(2)
C(111)	131(6)	81(4)	125(6)	18(4)	35(5)	45(4)
C(112)	120(6)	148(6)	65(4)	28(4)	46(4)	21(5)
C(113)	62(4)	127(5)	101(5)	17(4)	19(3)	15(3)
C(121)	83(4)	61(3)	204(9)	-51(4)	37(5)	-20(3)
C(122)	89(4)	152(7)	110(6)	-14(4)	58(4)	-19(4)
C(123)	87(4)	113(5)	75(4)	-6(3)	9(3)	-28(4)
C(211)	83(3)	71(3)	52(3)	-14(2)	37(3)	-10(3)
C(212)	59(3)	87(3)	50(3)	4(2)	18(2)	3(2)
C(213)	75(3)	77(3)	69(4)	-13(3)	39(3)	-22(3)
C(221)	61(3)	198(7)	97(5)	-23(5)	38(3)	39(4)
C(222)	104(5)	109(5)	103(5)	18(4)	30(4)	34(4)
C(223)	46(3)	124(5)	103(5)	-32(4)	18(3)	-7(3)
C(311)	60(3)	128(5)	75(4)	1(3)	25(3)	19(3)
C(312)	70(4)	199(8)	179(8)	85(7)	68(5)	-4(5)
C(313)	51(3)	125(5)	91(5)	-26(4)	20(3)	-17(3)
C(321)	78(4)	115(5)	85(5)	-15(4)	-3(3)	16(3)
C(322)	184(8)	129(6)	62(4)	33(4)	30(5)	-59(6)
C(323)	155(6)	76(4)	53(4)	-6(3)	38(4)	-19(4)

	Х	у	Z	U(eq)	
H(11)	3863	5572	1517	61	
H(13)	4940	6722	658	59	
H(15)	4928	5608	2763	61	
H(21)	5283	1235	72	55	
H(23)	4825	4376	-912	53	
H(24)	5890	4442	328	57	
H(31)	5218	633	2033	58	
H(33)	4250	2747	2629	61	
H(35)	4144	622	809	62	
H(11A)	3743	8532	-8	189	
H(11B)	3228	8167	168	189	
H(11C)	3081	8380	-775	189	
H(11D)	3398	6587	-1701	167	
H(11E)	3892	5699	-1127	167	
H(11F)	4058	6983	-1044	167	
H(11G)	2753	5839	-156	160	
H(11H)	2932	4984	-653	160	
H(11I)	2523	6027	-1132	160	
H(12A)	5768	8287	3145	198	
H(12B)	5770	8640	2310	198	
H(12C)	6383	8495	3176	198	
H(12D)	6805	6681	2293	171	
H(12E)	6209	7056	1465	171	
H(12F)	6321	5778	1720	171	

Tabelle 5:H-Atomkoordinaten [x 10⁴] und äquivalente isotrope Auslenkungsparameter $[Å^2 x 10^3]$ für [{Cp=Co}₃(μ_3 -As)₂] (6b)

H(12G)	6825	6176	3909	159
H(12H)	6412	5125	3468	159
H(12I)	6224	6026	3924	159
H(21A)	3932	1095	-2858	101
H(21B)	4593	846	-2115	101
H(21C)	4441	2000	-2606	101
H(21D)	3223	2953	-2661	104
H(21E)	3747	3839	-2221	104
H(21F)	3403	3442	-1757	104
H(21G)	3676	1247	-842	109
H(21H)	4132	388	-863	109
H(21I)	3487	537	-1672	109
H(22A)	7335	1366	1046	179
H(22B)	7038	2391	423	179
H(22C)	6697	1233	220	179
H(22D)	6217	1085	1985	174
H(22E)	6906	829	2368	174
H(22F)	6427	303	1485	174
H(22G)	6812	3631	2306	150
H(22H)	7111	3925	1758	150
H(22I)	7415	3037	2500	150
H(31A)	3053	3943	832	138
H(31B)	3139	3578	1721	138
H(31C)	2500	3495	890	138
H(31D)	2372	958	1118	221
H(31E)	2958	1125	2014	221
H(31F)	2935	182	1390	221
H(31G)	2857	2220	-494	144
H(31H)	2328	1578	-480	144
H(31I)	2915	926	-287	144
H(32A)	6445	1977	3606	170
H(32B)	6220	727	3519	170
H(32C)	6606	1274	4429	170
H(32D)	5708	1154	5077	209

H(32E)	5409	251	4345	209
H(32F)	5018	1234	4392	209
H(32G)	5722	3876	3776	151
H(32H)	6004	3459	4726	151
H(32I)	5303	3616	4153	151

2. Strukturdaten von [{Cp⁼Co}₄As₄] (7b)

<u>*Tabelle 1:*</u> Kristalldaten und Strukturverfeinerung für $[{Cp}^{=}Co}_{4}As_{4}]$ (7b)

Summenformel	$C_{22}H_{42}As_2Co_2Si_4$	
Molmasse	686.62	
Temperatur	293(2) K	
Strahlung	ΜοΚα	
Wellenlänge	0.71073 Å	
Scanmodus	Phi-Oszillation	
Kristallsystem	Monoklin	
Raumgruppe	C2/c	
Zelldimensionen	<i>a</i> = 21.4207(16) Å	$\alpha = 90^{\circ}$
	<i>b</i> = 13.7645(6) Å	$\beta = 94.535(9)^{\circ}$
	c = 21.0223(16) Å	$\gamma = 90^{\circ}$
Zellvolumen	6178.9(7) Å ³	
Formeleinheiten pro Zelle Z	8	
Berechnete Dichte	1.476 Mg/m ³	
Absorptionskoeffizient	3.364 mm ⁻¹	
Kristallgröße	0.37 x 0.32 x 0.12 mm	
Gemessener θ-Bereich	2.96 bis 25.35°	
Anzahl der gemessenen Reflexe	41100	
Unabhängige Reflexe	5652 (Rint = 0.0593)	
Absorptionskorrektur	Numerisch (ABST/PLATO	N 98)
Max. und min. Transmission	0.68862 und 0.30785	
Diffraktometer	Stoe IPDS	
Strukturlösung	Direkte Methoden	
Strukturlösungsprogramm	SHELXS-97 (Sheldrick, 19	90)
Strukturverfeinerung	Vollmatrix Least-Squares g	gegen F ²
Strukturverfeinerungsprogramm	SHELXL-97 (Sheldrick, 19	997)
Daten / Restraints / Parameter	5652 / 0 / 283	
Endgültige R-Werte [I>2 σ (I)]	R1 = 0.0274, wR2 = 0.0632	2

R-Werte (alle Daten)R1 = 0.0397, wR2 = 0.0660Wichtungsschema $w=1/[\sigma^2(Fo^2)+(0.0390P)^2+0.0000P]$ mit $P=(Fo^2+2Fc^2)/3$ GooF (alle Daten)0.989Größtes Maximum und Minimum0.312 und -0.442 eÅ⁻³

Verfeinerung nach F^2 mit ALLEN Reflexen. Die gewichteten R-Werte wR2 und alle GooF's basieren auf F^2 . Die konventionellen R-Werte R1 basieren auf F, wobei F für negative F^2 gleich Null gesetzt wird. Das Ablehnungskriterium $F^2 > 2\sigma$ (F^2) wird nur zum Berechnen von R(obs) etc. verwendet. Zur Verfeinerung wurden alle Reflexe herangezogen. Grundsätzlich gilt: Auf F^2 bezogene R-Werte sind statistisch etwa doppelt so groß wie die auf F basierenden. Auf ALLE Reflexe bezogene R-Werte sind noch größer.

Die Wasserstoffatome wurden geometrisch lokalisiert. Für die Verfeinerung wurde ein Reitermodell angenommen. Als Temperaturfaktor wurde der 1.5-fache Wert (CH₃-Gruppen) bzw. der 1.2-fache Wert (Cp-H) des äquivalenten isotropen Temperaturfaktors desjenigen C-Atoms eingesetzt, an welches das jeweilige H-Atom gebunden ist.

Einzelheiten können dem Handbuch für das Verfeinerungsprogramm SHELXL entnommen werden.

 $GooF = \sqrt{\frac{\sum \left[w\left(F_o^2 - F_c^2\right)\right]}{(n-p)}}$ n = Zahl der Reflexe; p = Zahl der verfeinerten Parameter
<u>Tabelle 2:</u>	Atomkoordinaten [x 10 ⁴] und äquivalente isotrope Auslenkungsparameter
	$[Å^2 \times 10^3]$ für $[{Cp=Co}_4As_4]$ (7b)

U(eq) wird berechnet als ein Drittel der Spur des orthogonalisierten U_{ij} -Tensors.

	х	У	Z	U(eq)	
 A (1)	5517(1)	5411(1)	2074(1)	27(1)	
As(1)	5517(1)	5411(1)	28/4(1)	$\frac{3}{(1)}$	
As(2)	44/1(1)	/249(1)	2/6/(1)	38(1)	
Co(1)	5445(1)	6919(1)	3348(1)	37(1)	
Co(2)	4520(1)	5734(1)	3249(1)	37(1)	
Si(11)	6829(1)	5650(1)	4120(1)	50(1)	
Si(13)	5722(1)	9527(1)	3665(1)	65(1)	
Si(21)	4221(1)	3117(1)	3511(1)	57(1)	
Si(23)	3122(1)	7020(1)	3755(1)	53(1)	
C(11)	6240(1)	6656(2)	4020(1)	45(1)	
C(12)	6294(1)	7565(2)	3703(1)	46(1)	
C(13)	5793(2)	8200(2)	3836(2)	48(1)	
C(14)	5414(2)	7655(2)	4232(1)	48(1)	
C(15)	5682(2)	6731(2)	4341(1)	46(1)	
C(21)	4147(1)	4451(2)	3659(1)	46(1)	
C(22)	3657(1)	5092(2)	3429(1)	45(1)	
C(23)	3698(1)	6000(2)	3755(1)	45(1)	
C(24)	4246(1)	5916(2)	4191(1)	46(1)	
C(25)	4510(2)	4981(2)	4132(1)	46(1)	
C(111)	6438(2)	4484(3)	4285(2)	70(1)	
C(112)	7378(2)	5968(3)	4822(2)	83(1)	
C(113)	7276(2)	5515(3)	3403(2)	76(1)	
C(131)	5922(2)	10170(3)	4434(2)	87(1)	
C(132)	4904(2)	9847(3)	3383(3)	102(2)	
C(133)	6292(3)	9846(3)	3073(2)	100(2)	

C(211)	3610(2)	2486(3)	3938(3)	99(2)
C(213)	5005(2)	2712(3)	3863(2)	84(1)
C(231)	2779(2)	7345(4)	2941(2)	86(1)
C(232)	3514(2)	8091(3)	4153(2)	82(1)
C(233)	2469(2)	6605(3)	4223(2)	79(1)

As(1)-Co(1)	23131(5)	Si(11)-C(112)	1863(4)
$A_{S}(1)C_{O}(2)$	23766(5)	Si(11) C(112)	1.875(3)
As(1)Co(2)#1	2 3987(5)	Si(13)-C(133)	1.864(5)
As(1)-As(1)#1	26148(6)	Si(13)-C(13)	1.865(3)
As(1)-As(2)#1	2.8679(4)	Si(13)C(131)	1.862(4)
As(2)-Co(2)	2.3185(5)	Si(13)-C(132)	1.857(4)
As(2)-Co(1)	2.3770(5)	Si(21)-C(212)	1.861(4)
As(2)-Co(1)#1	24073(5)	Si(21)-C(211)	1.860(4)
As(2)-As(2)#1	2,6074(6)	Si(21)-C(213)	1.865(4)
As(2)-As(1)#1	2.8679(4)	Si(21)-C(21)	1.871(3)
Co(1) C(12)	2.108(3)	Si(23)-C(231)	1.861(4)
$Co(1) \cdot C(15)$	2.126(3)	Si(23)-C(232)	1.861(4)
Co(1)-C(14)	2.122(3)	Si(23)-C(23)	1.869(3)
Co(1)-C(13)	2.144(3)	Si(23)-C(233)	1.864(4)
Co(1)-C(11)	2.155(3)	C(11)-C(12)	1.427(4)
Co(1)-As(2)#1	2.4072(5)	C(11)-C(15)	1,423(4)
Co(1)-Co(2)	2.5627(5)	C(12)-C(13)	1.430(4)
Co(2)-C(22)	2.110(3)	C(13)-C(14)	1.421(5)
Co(2)-C(24)	2.123(3)	C(14)-C(15)	1.406(4)
Co(2)-C(25)	2.127(3)	C(21)-C(25)	1.415(4)
Co(2)-C(21)	2.146(3)	C(21)-C(22)	1.427(4)
Co(2)-C(23)	2.159(3)	C(22)-C(23)	1.426(4)
Co(2)-As(1)#1	2.3987(5)	C(23)-C(24)	1.435(4)
Si(11)-C(113)	1.856(4)	C(24)-C(25)	1.414(4)
Si(11)-C(111)	1.858(4)		
Co(1)-As(1)-Co(2)	66.231(15)	C(25)-Co(2)-As(1)#1	140.11(8)
Co(1)-As(1)-Co(2)#1	105.035(17)	C(21)-Co(2)-As(1)#1	104.97(8)
Co(2)-As(1)-Co(2)#1	109.341(17)	C(23)-Co(2)-As(1)#1	123.45(8)

<u>*Tabelle 3*</u>: Bindungslängen [Å] und -winkel [°] für [{ $Cp^{=}Co$ }₄As₄] (7b)

Co(1)-As(1)-As(1)#1	100.175(13)	As(2)-Co(2)-As(1)#1	74.863(14)
Co(2)-As(1)-As(1)#1	57.207(15)	As(1)-Co(2)-As(1)#1	66.397(16)
Co(2)#1-As(1)-As(1)#1	56.398(15)	C(22)-Co(2)-Co(1)	159.25(8)
Co(1)-As(1)-As(2)#1	54.096(13)	C(24)-Co(2)-Co(1)	96.82(9)
Co(2)-As(1)-As(2)#1	91.863(14)	C(25)-Co(2)-Co(1)	107.52(9)
Co(2)#1-As(1)-As(2)#1	51.299(12)	C(21)-Co(2)-Co(1)	143.26(9)
As(1)#1-As(1)-As(2)#1	75.864(9)	C(23)-Co(2)-Co(1)	120.49(8)
Co(2)-As(2)-Co(1)	66.142(15)	As(2)-Co(2)-Co(1)	58.025(14)
Co(2)-As(2)-Co(1)#1	104.591(17)	As(1)-Co(2)-Co(1)	55.694(14)
Co(1)-As(2)-Co(1)#1	109.511(17)	As(1)#1-Co(2)-Co(1)	99.377(18)
Co(2)-As(2)-As(2)#1	100.207(13)	C(113)-Si(11)-C(111)	109.5(2)
Co(1)-As(2)-As(2)#1	57.535(15)	C(113)-Si(11)-C(112)	109.5(2)
Co(1)#1-As(2)-As(2)#1	56.422(16)	C(111)-Si(11)-C(112)	108.70(19)
Co(2)-As(2)-As(1)#1	53.842(12)	C(113)-Si(11)-C(11)	111.63(16)
Co(1)-As(2)-As(1)#1	91.889(14)	C(111)-Si(11)-C(11)	110.42(16)
Co(1)#1-As(2)-As(1)#1	51.107(12)	C(112)-Si(11)-C(11)	106.99(17)
As(2)#1-As(2)-As(1)#1	75.975(10)	C(133)-Si(13)-C(13)	108.16(19)
C(12)-Co(1)-C(15)	64.62(12)	C(133)-Si(13)-C(131)	110.4(2)
C(12)-Co(1)-C(14)	64.80(12)	C(13)-Si(13)-C(131)	106.76(18)
C(15)-Co(1)-C(14)	38.65(12)	C(133)-Si(13)-C(132)	112.4(3)
C(12)-Co(1)-C(13)	39.30(12)	C(13)-Si(13)-C(132)	110.77(18)
C(15)-Co(1)-C(13)	65.35(12)	C(131)-Si(13)-C(132)	108.2(2)
C(14)-Co(1)-C(13)	38.90(12)	C(212)-Si(21)-C(211)	109.0(2)
C(12)-Co(1)-C(11)	39.09(11)	C(212)-Si(21)-C(213)	108.3(2)
C(15)-Co(1)-C(11)	38.82(12)	C(211)-Si(21)-C(213)	112.5(2)
C(14)-Co(1)-C(11)	65.40(12)	C(212)-Si(21)-C(21)	107.73(19)
C(13)-Co(1)-C(11)	66.30(11)	C(211)-Si(21)-C(21)	110.92(17)
C(12)-Co(1)-As(1)	116.48(9)	C(213)-Si(21)-C(21)	108.18(17)
C(15)-Co(1)-As(1)	107.14(9)	C(231)-Si(23)-C(232)	110.7(2)
C(14)-Co(1)-As(1)	144.39(9)	C(231)-Si(23)-C(23)	113.12(17)
C(13)-Co(1)-As(1)	155.76(9)	C(232)-Si(23)-C(23)	108.75(17)
C(11)-Co(1)-As(1)	93.15(8)	C(231)-Si(23)-C(233)	107.5(2)
C(12)-Co(1)-As(2)	143.09(8)	C(232)-Si(23)-C(233)	109.6(2)
C(15)-Co(1)-As(2)	131.26(9)	C(23)-Si(23)-C(233)	107.05(17)

C(14)-Co(1)-As(2)	105.79(9)	C(12)-C(11)-C(15)	105.1(3)
C(13)-Co(1)-As(2)	110.27(8)	C(12)-C(11)-Si(11)	128.4(2)
C(11)-Co(1)-As(2)	170.01(8)	C(15)-C(11)-Si(11)	125.8(2)
As(1)-Co(1)-As(2)	92.073(16)	C(12)-C(11)-Co(1)	68.66(16)
C(12)-Co(1)-As(2)#1	97.83(9)	C(15)-C(11)-Co(1)	69.47(16)
C(15)-Co(1)-As(2)#1	161.61(9)	Si(11)-C(11)-Co(1)	133.48(16)
C(14)-Co(1)-As(2)#1	140.56(9)	C(11)-C(12)-C(13)	110.7(3)
C(13)-Co(1)-As(2)#1	105.13(9)	C(11)-C(12)-Co(1)	72.25(17)
C(11)-Co(1)-As(2)#1	123.62(8)	C(13)-C(12)-Co(1)	71.71(17)
As(1)-Co(1)-As(2)#1	74.797(15)	C(14)-C(13)-C(12)	105.3(3)
As(2)-Co(1)-As(2)#1	66.044(17)	C(14)-C(13)-Si(13)	126.1(2)
C(12)-Co(1)-Co(2)	159.62(8)	C(12)-C(13)-Si(13)	127.7(2)
C(15)-Co(1)-Co(2)	97.15(9)	C(14)-C(13)-Co(1)	69.72(17)
C(14)-Co(1)-Co(2)	107.30(9)	C(12)-C(13)-Co(1)	68.99(16)
C(13)-Co(1)-Co(2)	143.08(9)	Si(13)-C(13)-Co(1)	133.88(16)
C(11)-Co(1)-Co(2)	120.76(8)	C(15)-C(14)-C(13)	109.3(3)
As(1)-Co(1)-Co(2)	58.074(14)	C(15)-C(14)-Co(1)	70.81(17)
As(2)-Co(1)-Co(2)	55.833(14)	C(13)-C(14)-Co(1)	71.38(17)
As(2)#1-Co(1)-Co(2)	99.113(18)	C(14)-C(15)-C(11)	109.6(3)
C(22)-Co(2)-C(24)	64.65(12)	C(14)-C(15)-Co(1)	70.54(17)
C(22)-Co(2)-C(25)	64.56(12)	C(11)-C(15)-Co(1)	71.71(17)
C(24)-Co(2)-C(25)	38.87(12)	C(25)-C(21)-C(22)	105.5(3)
C(22)-Co(2)-C(21)	39.16(12)	C(25)-C(21)-Si(21)	125.1(2)
C(24)-Co(2)-C(21)	65.41(11)	C(22)-C(21)-Si(21)	128.3(2)
C(25)-Co(2)-C(21)	38.68(11)	C(25)-C(21)-Co(2)	69.90(16)
C(22)-Co(2)-C(23)	39.00(11)	C(22)-C(21)-Co(2)	69.06(16)
C(24)-Co(2)-C(23)	39.15(12)	Si(21)-C(21)-Co(2)	134.50(16)
C(25)-Co(2)-C(23)	65.67(12)	C(23)-C(22)-C(21)	111.3(3)
C(21)-Co(2)-C(23)	66.33(12)	C(23)-C(22)-Co(2)	72.33(17)
C(22)-Co(2)-As(2)	116.41(9)	C(21)-C(22)-Co(2)	71.78(17)
C(24)-Co(2)-As(2)	107.17(8)	C(22)-C(23)-C(24)	104.6(3)
C(25)-Co(2)-As(2)	144.75(8)	C(22)-C(23)-Si(23)	130.0(2)
C(21)-Co(2)-As(2)	155.56(9)	C(24)-C(23)-Si(23)	124.6(2)
C(23)-Co(2)-As(2)	92.96(8)	C(22)-C(23)-Co(2)	68.67(16)

C(22)-Co(2)-As(1)	143.55(8)	C(24)-C(23)-Co(2)	69.09(16)
C(24)-Co(2)-As(1)	130.81(9)	Si(23)-C(23)-Co(2)	133.78(16)
C(25)-Co(2)-As(1)	105.68(9)	C(25)-C(24)-C(23)	109.3(3)
C(21)-Co(2)-As(1)	110.62(8)	C(25)-C(24)-Co(2)	70.69(16)
C(23)-Co(2)-As(1)	169.93(8)	C(23)-C(24)-Co(2)	71.76(16)
As(2)-Co(2)-As(1)	91.948(16)	C(24)-C(25)-C(21)	109.3(3)
C(22)-Co(2)-As(1)#1	97.87(8)	C(24)-C(25)-Co(2)	70.44(16)
C(24)-Co(2)-As(1)#1	161.72(9)		

Symmetrietransformationen für die äquivalenten Atome:

#1 -x+1,y,-z+1/2

<u>*Tabelle 4:*</u> Anisotrope Auslenkungsparameter $[Å^2 \ge 10^3]$ für $[\{Cp^{=}Co\}_4As_4]$ (7b) Der Exponent des anisotropen Auslenkungsfaktors hat die Form: $-2\pi^2 [(ha^*)^2 U_{11} + ... + 2hka^*b^*U_{12}].$

	U11	U ₂₂	U ₃₃	U ₂₃	U ₁₃	U ₁₂
A (1)	40(1)	22(1)	2((1)	1(1)	0(1)	2(1)
As(1)	42(1)	33(1)	36(1)	I(I)	0(1)	3(1)
As(2)	42(1)	33(1)	39(1)	-2(1)	1(1)	3(1)
Co(1)	41(1)	33(1)	36(1)	-1(1)	-3(1)	-2(1)
Co(2)	41(1)	33(1)	36(1)	-1(1)	4(1)	-2(1)
Si(11)	48(1)	49(1)	53(1)	8(1)	-5(1)	3(1)
Si(13)	76(1)	36(1)	78(1)	-4(1)	-25(1)	-5(1)
Si(21)	67(1)	39(1)	67(1)	-2(1)	12(1)	-11(1)
Si(23)	50(1)	55(1)	55(1)	-8(1)	10(1)	6(1)
C(11)	50(2)	43(2)	42(2)	3(1)	-7(1)	-1(1)
C(12)	45(2)	45(2)	46(2)	-1(1)	-5(1)	-9(1)
C(13)	55(2)	39(2)	48(2)	-8(1)	-12(1)	-3(1)
C(14)	50(2)	50(2)	43(2)	-10(1)	-5(1)	2(2)
C(15)	55(2)	48(2)	34(2)	2(1)	-5(1)	-6(2)
C(21)	50(2)	40(2)	49(2)	1(1)	10(1)	-9(1)
C(22)	44(2)	46(2)	45(2)	-3(1)	6(1)	-7(1)
C(23)	46(2)	48(2)	44(2)	-1(1)	12(1)	-4(1)
C(24)	54(2)	47(2)	39(2)	-4(1)	9(1)	-3(1)
C(25)	54(2)	45(2)	40(2)	7(1)	5(1)	-2(1)
C(111)	72(2)	61(2)	76(3)	22(2)	-4(2)	1(2)
C(112)	76(3)	84(3)	82(3)	4(2)	-28(2)	10(2)
C(113)	64(2)	84(3)	81(3)	10(2)	13(2)	11(2)
C(131)	89(3)	64(2)	102(3)	-33(2)	-24(2)	-1(2)
C(132)	99(3)	56(2)	139(4)	-7(3)	-57(3)	7(2)
C(133)	129(4)	63(3)	102(4)	18(2)	-14(3)	-30(3)

VII. Anhang	5					Seite 143
C(211)	112(4)	67(3)	76(3)	-18(2)	3(2)	-10(3)
C(212)	106(4)	75(3)	120(4)	-3(3)	36(3)	-38(3)
C(213)	101(3)	53(2)	95(3)	1(2)	-5(3)	5(2)
C(231)	79(3)	107(3)	71(3)	0(2)	1(2)	25(3)
C(232)	75(3)	69(3)	104(3)	-29(2)	15(2)	1(2)
C(233)	60(2)	92(3)	86(3)	-2(2)	20(2)	8(2)

	х	У	Z	U(eq)
U(12)	((12	7700	2445	5.5
H(12)	5049	7974	3443	55
H(14)	5048	/8/4	4393	58
H(15)	5519	6244	4586	56
H(22)	3350	4936	3107	54
H(24)	4402	6399	4468	56
H(25)	4865	4752	4367	55
H(11A)	6110	4361	3957	105
H(11B)	6263	4522	4691	105
H(11C)	6738	3965	4293	105
H(11D)	7714	5506	4860	124
H(11E)	7157	5956	5202	124
H(11F)	7544	6607	4765	124
H(11G)	7588	5020	3479	114
H(11H)	7475	6120	3316	114
H(11I)	6995	5335	3044	114
H(13A)	6334	9979	4603	130
H(13B)	5623	10003	4732	130
H(13C)	5914	10859	4362	130
H(13D)	4891	10505	3231	152
H(13E)	4640	9785	3729	152
H(13F)	4759	9418	3043	152
H(13G)	6708	9691	3246	149
H(13H)	6265	10528	2981	149
H(13I)	6196	9483	2688	149
H(21A)	4159	2158	2577	128

Tabelle 5:H-Atomkoordinaten [x 10^4] und äquivalente isotrope Auslenkungsparameter[Å² x 10^3] für [{Cp=Co}₄As₄] (7b)

H(21B)	4390	3204	2416	128
H(21C)	3678	3015	2491	128
H(21D)	3203	2688	3764	149
H(21E)	3660	2649	4383	149
H(21F)	3652	1797	3888	149
H(21G)	5044	2859	4311	126
H(21H)	5327	3045	3657	126
H(21I)	5047	2024	3804	126
H(23A)	2520	7910	2966	129
H(23B)	2532	6812	2767	129
H(23C)	3110	7479	2671	129
H(23D)	3848	8306	3909	124
H(23E)	3679	7914	4574	124
H(23F)	3215	8607	4180	124
H(23G)	2148	7094	4208	118
H(23H)	2624	6496	4658	118
H(23I)	2297	6012	4044	118

3. Strukturdaten von [{Cp⁻Co}₃(µ₄-AsMo(CO)₅)₂] (11a)

<u>*Tabelle 1:*</u> Kristalldaten und Strukturverfeinerung für [$\{Cp^-Co\}_3(\mu_4-AsMo(CO)_5)_2$] (11a)

Summenformel	$C_{34}H_{39}As_2Co_3Mo_2O_{10}Si_3\\$		
Molmasse	1210.43		
Temperatur	293(2) K		
Strahlung	ΜοΚα		
Wellenlänge	0.71073 Å		
Scanmodus	Phi-Oszillation		
Kristallsystem	Monoklin		
Raumgruppe	$P2_1/n$		
Zelldimensionen	<i>a</i> = 17.2625(19) Å	$\alpha = 90^{\circ}$	
	b = 14.3071(11) Å	$\beta = 91.147(13)^{\circ}$	
	c = 18.439(2) Å	$\gamma = 90^{\circ}$	
Zellvolumen	4553.1(8) Å ³		
Formeleinheiten pro Zelle Z	4		
Berechnete Dichte	1.766 Mg/m ³		
Absorptionskoeffizient	3.175 mm ⁻¹		
Kristallgröße	0.32 x 0.28 x 0.20 mm		
Gemessener θ-Bereich	2.76 bis 25.68°		
Anzahl der gemessenen Reflexe	62655		
Unabhängige Reflexe	8642 (Rint = 0.1414)		
Absorptionskorrektur	Empirisch (MULABS/PLA	ATON 98)	
Max. und min. Transmission	0.57784 und 0.38859		
Diffraktometer	Stoe IPDS		
Strukturlösung	Direkte Methoden		
Strukturlösungsprogramm	SHELXS-97 (Sheldrick, 19	990)	
Strukturverfeinerung	Vollmatrix Least-Squares	gegen F ²	
Strukturverfeinerungsprogramm	SHELXL-97 (Sheldrick, 1997)		
Daten / Restraints / Parameter	8642 / 0 / 496		
Endgültige R-Werte [I>2o(I)]	R1 = 0.0428, $wR2 = 0.0946$		

R-Werte (alle Daten)	R1 = 0.0812, WR2 = 0.1076
Wichtungsschema	w=1/[$\sigma^2(Fo^2)$ +(0.0566P) ² +0.0000P] mit P=(Fo ² +2Fc ²)/3
GooF (alle Daten)	0.874
Größtes Maximum und Minimum	0.743 und -0.835 eÅ ⁻³

Verfeinerung nach F^2 mit ALLEN Reflexen. Die gewichteten R-Werte wR2 und alle GooF's basieren auf F^2 . Die konventionellen R-Werte R1 basieren auf F, wobei F für negative F^2 gleich Null gesetzt wird. Das Ablehnungskriterium $F^2 > 2\sigma$ (F^2) wird nur zum Berechnen von R(obs) etc. verwendet. Zur Verfeinerung wurden alle Reflexe herangezogen. Grundsätzlich gilt: Auf F^2 bezogene R-Werte sind statistisch etwa doppelt so groß wie die auf F basierenden. Auf ALLE Reflexe bezogene R-Werte sind noch größer.

Die Wasserstoffatome wurden geometrisch lokalisiert. Für die Verfeinerung wurde ein Reitermodell angenommen. Als Temperaturfaktor wurde der 1.5-fache Wert (CH₃-Gruppen) bzw. der 1.2-fache Wert (Cp-H) des äquivalenten isotropen Temperaturfaktors desjenigen C-Atoms eingesetzt, an welches das jeweilige H-Atom gebunden ist.

Einzelheiten können dem Handbuch für das Verfeinerungsprogramm SHELXL entnommen werden.

 $GooF = \sqrt{\frac{\sum \left[w\left(F_o^2 - F_c^2\right)\right]}{(n-p)}}$ n = Zahl der Reflexe; p = Zahl der verfeinerten Parameter

<u>Tabelle 2:</u>	Atomkoordinaten [x 10 ⁴] und äquivalente isotrope Auslenkungsparameter
	$[Å^2 \times 10^3]$ für $[{Cp^-Co}_3(\mu_4 - AsMo(CO)_5)_2]$ (11a)

U(eq) wird berechnet als ein Drittel der Spur des orthogonalisierten U_{ij} -Tensors.

	x	У	Z	U(eq)
Mo(1)	6255(1)	7384(1)	11713(1)	44(1)
Mo(2)	8097(1)	8090(1)	7426(1)	49(1)
As(1)	6872(1)	7539(1)	10433(1)	36(1)
As(2)	7509(1)	7825(1)	8711(1)	39(1)
Co(1)	6588(1)	7013(1)	9300(1)	36(1)
Co(2)	7969(1)	7336(1)	9807(1)	36(1)
Co(3)	6991(1)	8695(1)	9604(1)	37(1)
Si(11)	4855(1)	7529(2)	8148(1)	68(1)
Si(21)	8488(1)	4936(1)	10413(1)	59(1)
Si(31)	8194(1)	10601(1)	10363(1)	61(1)
O(1)	7760(4)	6365(5)	12357(3)	96(2)
O(2)	6952(6)	9297(5)	12295(4)	144(4)
O(3)	4836(4)	8491(5)	11006(4)	104(2)
O(4)	5433(4)	5444(4)	11384(3)	95(2)
O(5)	5494(3)	7233(4)	13229(3)	76(2)
O(6)	9197(3)	6301(4)	7628(3)	75(2)
O(7)	9383(4)	9504(5)	8030(4)	104(2)
O(8)	7060(4)	9903(4)	7229(3)	105(2)
O(9)	6844(4)	6799(5)	6651(4)	107(2)
O(10)	8760(4)	8342(4)	5869(3)	95(2)
C(1)	5542(4)	6798(5)	8692(3)	52(2)
C(2)	6164(4)	6235(4)	8420(3)	53(2)
C(3)	6456(4)	5633(4)	8971(4)	58(2)
C(4)	6008(4)	5806(4)	9594(4)	54(2)

C(5)	5470(4)	6503(5)	9423(4)	53(2)
C(6)	8646(4)	6197(4)	10182(3)	48(2)
C(7)	8707(4)	6978(5)	10670(3)	50(2)
C(8)	8995(4)	7753(5)	10304(4)	61(2)
C(9)	9136(4)	7487(5)	9575(4)	63(2)
C(10)	8924(4)	6546(5)	9497(4)	54(2)
C(11)	7324(4)	10066(4)	9921(3)	46(2)
C(12)	6621(4)	9790(4)	10266(4)	54(2)
C(13)	6045(4)	9572(4)	9734(4)	54(2)
C(14)	6381(4)	9712(4)	9045(4)	59(2)
C(15)	7156(4)	10024(4)	9157(4)	53(2)
C(16)	7226(5)	6717(6)	12120(4)	64(2)
C(17)	6700(6)	8614(6)	12056(4)	85(3)
C(18)	5340(5)	8098(5)	11269(4)	65(2)
C(19)	5732(4)	6134(5)	11475(4)	60(2)
C(20)	5761(4)	7284(5)	12675(4)	54(2)
C(21)	8806(4)	6936(5)	7572(3)	58(2)
C(22)	8922(5)	8984(5)	7835(4)	63(2)
C(23)	7415(5)	9233(5)	7304(4)	66(2)
C(24)	7284(5)	7266(6)	6939(4)	67(2)
C(25)	8538(5)	8262(5)	6444(4)	68(2)
C(111)	4344(6)	8355(9)	8750(6)	123(4)
C(112)	4149(7)	6707(7)	7730(6)	127(5)
C(113)	5365(7)	8190(8)	7425(6)	124(4)
C(211)	7529(5)	4690(6)	10771(5)	83(2)
C(212)	9224(6)	4663(7)	11130(6)	121(4)
C(213)	8633(9)	4222(7)	9581(6)	145(5)
C(311)	9029(5)	10499(8)	9753(5)	104(3)
C(312)	8408(6)	10047(6)	11262(4)	91(3)
C(313)	7928(6)	11860(5)	10506(6)	107(4)

Mo(1)-C(20)	1.988(7)	Si(11)-C(111)	1.855(9)
Mo(1)-C(17)	2.018(9)	Si(11)-C(1)	1.861(7)
Mo(1)-C(18)	2.039(9)	Si(11)-C(113)	1.869(11)
Mo(1)-C(19)	2.046(8)	Si(21)-C(211)	1.827(8)
Mo(1)-C(16)	2.057(9)	Si(21)-C(212)	1.856(9)
Mo(1)-As(1)	2.6180(8)	Si(21)-C(213)	1.864(10)
Mo(2)-C(25)	1.993(7)	Si(21)-C(6)	1.875(6)
Mo(2)-C(23)	2.025(8)	Si(31)-C(11)	1.859(7)
Mo(2)-C(24)	2.029(9)	Si(31)-C(311)	1.853(10)
Mo(2)-C(22)	2.047(9)	Si(31)-C(312)	1.866(8)
Mo(2)-C(21)	2.070(8)	Si(31)-C(313)	1.879(8)
Mo(2)-As(2)	2.6243(8)	O(1)-C(16)	1.131(9)
As(1)-Co(2)	2.2562(10)	O(2)-C(17)	1.153(10)
As(1)-Co(3)	2.2650(9)	O(3)-C(18)	1.137(9)
As(1)-Co(1)	2.2663(9)	O(4)-C(19)	1.126(8)
As(2)-Co(3)	2.2624(9)	O(5)-C(20)	1.131(7)
As(2)-Co(1)	2.2645(10)	O(6)-C(21)	1.135(8)
As(2)-Co(2)	2.2662(10)	O(7)-C(22)	1.141(9)
Co(1)-C(4)	2.073(6)	O(8)-C(23)	1.145(9)
Co(1)-C(3)	2.076(6)	O(9)-C(24)	1.135(10)
Co(1)-C(5)	2.079(7)	O(10)-C(25)	1.141(8)
Co(1)-C(2)	2.087(6)	C(1)-C(5)	1.421(9)
Co(1)-C(1)	2.127(6)	C(1)-C(2)	1.439(9)
Co(1)-Co(3)	2.5651(10)	C(2)-C(3)	1.418(9)
Co(1)-Co(2)	2.5856(11)	C(3)-C(4)	1.418(10)
Co(2)-C(8)	2.065(7)	C(4)-C(5)	1.395(9)
Co(2)-C(9)	2.079(7)	C(6)-C(7)	1.438(9)
Co(2)-C(10)	2.088(6)	C(6)-C(10)	1.449(8)
Co(2)-C(7)	2.083(6)	C(7)-C(8)	1.395(9)
Co(2)-C(6)	2.114(6)	C(8)-C(9)	1.422(10)

<u>*Tabelle 3*</u>: Bindungslängen [Å] und -winkel [°] für $[{Cp}^{-}Co}_{3}(\mu_{4}-AsMo(CO)_{5})_{2}]$ (11a)

Co(2)-Co(3)	2.5970(10)	C(9)-C(10)	1.401(10)
Co(3)-C(14)	2.061(6)	C(11)-C(15)	1.434(9)
Co(3)-C(13)	2.077(6)	C(11)-C(12)	1.438(9)
Co(3)-C(15)	2.093(6)	C(12)-C(13)	1.418(9)
Co(3)-C(12)	2.094(6)	C(13)-C(14)	1.420(10)
Co(3)-C(11)	2.122(5)	C(14)-C(15)	1.421(10)
Si(11)-C(112)	1.851(9)		
C(20)-Mo(1)-C(17)	87.1(3)	C(13)-Co(3)-C(15)	67.0(3)
C(20)-Mo(1)-C(18)	93.0(3)	C(14)-Co(3)-C(12)	66.7(3)
C(17)-Mo(1)-C(18)	88.6(4)	C(13)-Co(3)-C(12)	39.7(3)
C(20)-Mo(1)-C(19)	86.2(3)	C(15)-Co(3)-C(12)	66.2(2)
C(17)-Mo(1)-C(19)	173.3(3)	C(14)-Co(3)-C(11)	67.5(3)
C(18)-Mo(1)-C(19)	90.9(3)	C(13)-Co(3)-C(11)	67.6(3)
C(20)-Mo(1)-C(16)	90.1(3)	C(15)-Co(3)-C(11)	39.8(2)
C(17)-Mo(1)-C(16)	89.3(4)	C(12)-Co(3)-C(11)	39.9(2)
C(18)-Mo(1)-C(16)	176.2(3)	C(14)-Co(3)-As(2)	103.3(2)
C(19)-Mo(1)-C(16)	91.5(3)	C(13)-Co(3)-As(2)	137.7(2)
C(20)-Mo(1)-As(1)	178.4(2)	C(15)-Co(3)-As(2)	98.88(18)
C(17)-Mo(1)-As(1)	92.8(2)	C(12)-Co(3)-As(2)	164.96(18)
C(18)-Mo(1)-As(1)	85.47(19)	C(11)-Co(3)-As(2)	126.88(18)
C(19)-Mo(1)-As(1)	93.79(18)	C(14)-Co(3)-As(1)	143.2(2)
C(16)-Mo(1)-As(1)	91.4(2)	C(13)-Co(3)-As(1)	106.3(2)
C(25)-Mo(2)-C(23)	91.8(3)	C(15)-Co(3)-As(1)	160.74(18)
C(25)-Mo(2)-C(24)	86.7(3)	C(12)-Co(3)-As(1)	96.88(18)
C(23)-Mo(2)-C(24)	91.4(3)	C(11)-Co(3)-As(1)	121.14(17)
C(25)-Mo(2)-C(22)	89.0(3)	As(2)-Co(3)-As(1)	97.57(3)
C(23)-Mo(2)-C(22)	86.3(3)	C(14)-Co(3)-Co(1)	114.8(2)
C(24)-Mo(2)-C(22)	175.1(3)	C(13)-Co(3)-Co(1)	112.40(19)
C(25)-Mo(2)-C(21)	88.9(3)	C(15)-Co(3)-Co(1)	143.53(18)
C(23)-Mo(2)-C(21)	178.7(3)	C(12)-Co(3)-Co(1)	138.13(19)
C(24)-Mo(2)-C(21)	89.8(3)	C(11)-Co(3)-Co(1)	176.67(17)
C(22)-Mo(2)-C(21)	92.6(3)	As(2)-Co(3)-Co(1)	55.52(3)
C(25)-Mo(2)-As(2)	178.7(2)	As(1)-Co(3)-Co(1)	55.54(3)

C(23)-Mo(2)-As(2)	89.01(19)	C(14)-Co(3)-Co(2)	157.7(2)
C(24)-Mo(2)-As(2)	92.3(2)	C(13)-Co(3)-Co(2)	161.1(2)
C(22)-Mo(2)-As(2)	92.1(2)	C(15)-Co(3)-Co(2)	130.1(2)
C(21)-Mo(2)-As(2)	90.32(17)	C(12)-Co(3)-Co(2)	133.0(2)
Co(2)-As(1)-Co(3)	70.12(3)	C(11)-Co(3)-Co(2)	118.74(18)
Co(2)-As(1)-Co(1)	69.74(3)	As(2)-Co(3)-Co(2)	55.08(3)
Co(3)-As(1)-Co(1)	68.95(3)	As(1)-Co(3)-Co(2)	54.78(3)
Co(2)-As(1)-Mo(1)	144.23(3)	Co(1)-Co(3)-Co(2)	60.11(3)
Co(3)-As(1)-Mo(1)	135.60(3)	C(112)-Si(11)-C(111)	109.7(6)
Co(1)-As(1)-Mo(1)	135.95(3)	C(112)-Si(11)-C(1)	105.9(4)
Co(3)-As(2)-Co(1)	69.03(3)	C(111)-Si(11)-C(1)	110.0(4)
Co(3)-As(2)-Co(2)	69.99(3)	C(112)-Si(11)-C(113)	109.9(6)
Co(1)-As(2)-Co(2)	69.60(3)	C(111)-Si(11)-C(113)	109.9(6)
Co(3)-As(2)-Mo(2)	138.01(3)	C(1)-Si(11)-C(113)	111.3(4)
Co(1)-As(2)-Mo(2)	142.65(4)	C(211)-Si(21)-C(212)	108.4(5)
Co(2)-As(2)-Mo(2)	135.63(4)	C(211)-Si(21)-C(213)	109.3(5)
C(4)-Co(1)-C(3)	40.0(3)	C(212)-Si(21)-C(213)	111.7(6)
C(4)-Co(1)-C(5)	39.2(3)	C(211)-Si(21)-C(6)	113.9(3)
C(3)-Co(1)-C(5)	66.5(3)	C(212)-Si(21)-C(6)	105.2(4)
C(4)-Co(1)-C(2)	66.2(3)	C(213)-Si(21)-C(6)	108.5(4)
C(3)-Co(1)-C(2)	39.8(3)	C(11)-Si(31)-C(311)	109.5(4)
C(5)-Co(1)-C(2)	65.6(3)	C(11)-Si(31)-C(312)	111.0(4)
C(4)-Co(1)-C(1)	67.0(3)	C(311)-Si(31)-C(312)	111.3(5)
C(3)-Co(1)-C(1)	67.8(3)	C(11)-Si(31)-C(313)	105.0(4)
C(5)-Co(1)-C(1)	39.5(3)	C(311)-Si(31)-C(313)	110.8(5)
C(2)-Co(1)-C(1)	39.9(3)	C(312)-Si(31)-C(313)	109.1(4)
C(4)-Co(1)-As(2)	154.2(2)	C(5)-C(1)-C(2)	104.2(6)
C(3)-Co(1)-As(2)	115.0(2)	C(5)-C(1)-Si(11)	127.6(5)
C(5)-Co(1)-As(2)	153.48(19)	C(2)-C(1)-Si(11)	126.8(5)
C(2)-Co(1)-As(2)	98.03(19)	C(5)-C(1)-Co(1)	68.4(4)
C(1)-Co(1)-As(2)	114.73(19)	C(2)-C(1)-Co(1)	68.5(4)
C(4)-Co(1)-As(1)	97.60(19)	Si(11)-C(1)-Co(1)	136.7(4)
C(3)-Co(1)-As(1)	127.2(2)	C(3)-C(2)-C(1)	110.3(6)
C(5)-Co(1)-As(1)	101.54(18)	C(3)-C(2)-Co(1)	69.7(3)

C(2)-Co(1)-As(1)	163.74(19)	C(1)-C(2)-Co(1)	71.6(4)
C(1)-Co(1)-As(1)	134.42(18)	C(2)-C(3)-C(4)	106.4(6)
As(2)-Co(1)-As(1)	97.47(4)	C(2)-C(3)-Co(1)	70.5(3)
C(4)-Co(1)-Co(3)	148.7(2)	C(4)-C(3)-Co(1)	69.9(3)
C(3)-Co(1)-Co(3)	169.7(2)	C(5)-C(4)-C(3)	108.3(6)
C(5)-Co(1)-Co(3)	123.64(18)	C(5)-C(4)-Co(1)	70.6(4)
C(2)-Co(1)-Co(3)	139.43(19)	C(3)-C(4)-Co(1)	70.1(4)
C(1)-Co(1)-Co(3)	118.35(18)	C(4)-C(5)-C(1)	110.8(6)
As(2)-Co(1)-Co(3)	55.45(3)	C(4)-C(5)-Co(1)	70.1(4)
As(1)-Co(1)-Co(3)	55.50(3)	C(1)-C(5)-Co(1)	72.1(4)
C(4)-Co(1)-Co(2)	120.0(2)	C(7)-C(6)-C(10)	104.8(5)
C(3)-Co(1)-Co(2)	111.7(2)	C(7)-C(6)-Si(21)	127.9(5)
C(5)-Co(1)-Co(2)	150.95(19)	C(10)-C(6)-Si(21)	125.7(5)
C(2)-Co(1)-Co(2)	133.06(19)	C(7)-C(6)-Co(2)	68.8(3)
C(1)-Co(1)-Co(2)	169.35(19)	C(10)-C(6)-Co(2)	68.9(3)
As(2)-Co(1)-Co(2)	55.23(3)	Si(21)-C(6)-Co(2)	137.2(4)
As(1)-Co(1)-Co(2)	54.95(3)	C(8)-C(7)-C(6)	109.7(6)
Co(3)-Co(1)-Co(2)	60.56(3)	C(8)-C(7)-Co(2)	69.7(4)
C(8)-Co(2)-C(9)	40.1(3)	C(6)-C(7)-Co(2)	71.2(3)
C(8)-Co(2)-C(10)	66.6(3)	C(7)-C(8)-C(9)	108.3(6)
C(9)-Co(2)-C(10)	39.3(3)	C(7)-C(8)-Co(2)	71.0(4)
C(8)-Co(2)-C(7)	39.3(3)	C(9)-C(8)-Co(2)	70.5(4)
C(9)-Co(2)-C(7)	66.6(3)	C(10)-C(9)-C(8)	107.7(6)
C(10)-Co(2)-C(7)	66.5(3)	C(10)-C(9)-Co(2)	70.7(4)
C(8)-Co(2)-C(6)	67.3(3)	C(8)-C(9)-Co(2)	69.4(4)
C(9)-Co(2)-C(6)	67.4(3)	C(9)-C(10)-C(6)	109.4(6)
C(10)-Co(2)-C(6)	40.3(2)	C(9)-C(10)-Co(2)	70.0(4)
C(7)-Co(2)-C(6)	40.1(2)	C(6)-C(10)-Co(2)	70.8(3)
C(8)-Co(2)-As(1)	117.2(2)	C(15)-C(11)-C(12)	105.5(6)
C(9)-Co(2)-As(1)	156.7(2)	C(15)-C(11)-Si(31)	126.5(5)
C(10)-Co(2)-As(1)	152.27(18)	C(12)-C(11)-Si(31)	126.9(5)
C(7)-Co(2)-As(1)	98.47(18)	C(15)-C(11)-Co(3)	69.0(3)
C(6)-Co(2)-As(1)	113.34(17)	C(12)-C(11)-Co(3)	69.0(3)
C(8)-Co(2)-As(2)	126.0(2)	Si(31)-C(11)-Co(3)	135.5(3)

C(9)-Co(2)-As(2)	96.2(2)	C(13)-C(12)-C(11)	109.9(6)
C(10)-Co(2)-As(2)	100.80(18)	C(13)-C(12)-Co(3)	69.5(4)
C(7)-Co(2)-As(2)	162.75(18)	C(11)-C(12)-Co(3)	71.1(3)
C(6)-Co(2)-As(2)	135.31(18)	C(12)-C(13)-C(14)	107.2(6)
As(1)-Co(2)-As(2)	97.71(4)	C(12)-C(13)-Co(3)	70.8(4)
C(8)-Co(2)-Co(1)	171.3(2)	C(14)-C(13)-Co(3)	69.3(4)
C(9)-Co(2)-Co(1)	146.6(2)	C(15)-C(14)-C(13)	108.3(6)
C(10)-Co(2)-Co(1)	122.1(2)	C(15)-C(14)-Co(3)	71.2(4)
C(7)-Co(2)-Co(1)	141.09(18)	C(13)-C(14)-Co(3)	70.5(4)
C(6)-Co(2)-Co(1)	118.71(18)	C(14)-C(15)-C(11)	109.1(6)
As(1)-Co(2)-Co(1)	55.31(3)	C(14)-C(15)-Co(3)	68.8(3)
As(2)-Co(2)-Co(1)	55.17(3)	C(11)-C(15)-Co(3)	71.2(3)
C(8)-Co(2)-Co(3)	113.4(2)	O(1)-C(16)-Mo(1)	178.4(7)
C(9)-Co(2)-Co(3)	121.46(19)	O(2)-C(17)-Mo(1)	175.8(7)
C(10)-Co(2)-Co(3)	151.67(18)	O(3)-C(18)-Mo(1)	178.5(7)
C(7)-Co(2)-Co(3)	132.85(18)	O(4)-C(19)-Mo(1)	176.0(6)
C(6)-Co(2)-Co(3)	167.96(17)	O(5)-C(20)-Mo(1)	178.6(6)
As(1)-Co(2)-Co(3)	55.10(3)	O(6)-C(21)-Mo(2)	177.7(6)
As(2)-Co(2)-Co(3)	54.94(3)	O(7)-C(22)-Mo(2)	176.5(7)
Co(1)-Co(2)-Co(3)	59.33(3)	O(8)-C(23)-Mo(2)	176.8(8)
C(14)-Co(3)-C(13)	402(3)	O(9)-C(24)-Mo(2)	178.1(7)
C(14)-Co(3)-C(15)	40.0(3)	O(10)-C(25)-Mo(2)	176.8(8)

Tabelle 4:Anisotrope Auslenkungsparameter $[Å^2 x 10^3]$ für $[{Cp^-Co}_3(\mu_4-AsMo(CO)_5)_2]$ (11a)

Der Exponent des anisotropen Auslenkungsfaktors hat die Form: $-2\pi^2$ [$(ha^*)^2U_{11} + ... + 2hka^*b^*U_{12}$].

	U ₁₁	U ₂₂	U ₃₃	U ₂₃	U ₁₃	U ₁₂
Mo(1)	52(1)	42(1)	39(1)	1(1)	8(1)	-2(1)
Mo(2)	64(1)	43(1)	41(1)	4(1)	12(1)	7(1)
As(1)	42(1)	33(1)	34(1)	0(1)	4(1)	0(1)
As(2)	47(1)	35(1)	35(1)	2(1)	5(1)	5(1)
Co(1)	42(1)	30(1)	37(1)	-3(1)	0(1)	1(1)
Co(2)	38(1)	32(1)	39(1)	4(1)	2(1)	2(1)
Co(3)	44(1)	26(1)	39(1)	0(1)	2(1)	3(1)
Si(11)	65(1)	64(1)	75(1)	-9(1)	-27(1)	8(1)
Si(21)	66(1)	42(1)	69(1)	13(1)	4(1)	9(1)
Si(31)	74(1)	40(1)	70(1)	4(1)	-14(1)	-9(1)
O(1)	81(4)	106(5)	98(5)	26(4)	-25(4)	2(4)
O(2)	240(10)	93(5)	100(5)	-39(4)	37(6)	-80(6)
O(3)	71(4)	118(5)	123(5)	48(4)	22(4)	39(4)
O(4)	113(5)	60(3)	111(5)	-5(3)	8(4)	-39(4)
O(5)	91(4)	91(4)	47(3)	5(3)	24(3)	-3(3)
O(6)	73(4)	55(3)	98(4)	7(3)	17(3)	16(3)
O(7)	108(5)	75(4)	128(6)	-13(4)	0(4)	-23(4)
O(8)	137(6)	77(4)	101(5)	22(3)	21(4)	56(4)
O(9)	104(5)	122(6)	95(5)	-50(4)	-15(4)	-12(4)
O(10)	138(6)	86(4)	64(3)	16(3)	43(4)	20(4)
C(1)	53(4)	48(4)	55(4)	-6(3)	-8(3)	-1(3)
C(2)	63(4)	45(3)	50(4)	-10(3)	-5(3)	-4(3)

C(3)	69(5)	30(3)	74(5)	-10(3)	-7(4)	4(3)
C(4)	60(4)	43(3)	59(4)	5(3)	-6(3)	-12(3)
C(5)	47(4)	53(4)	60(4)	-13(3)	-1(3)	-5(3)
C(6)	52(4)	42(3)	51(4)	10(3)	0(3)	10(3)
C(7)	42(3)	56(4)	51(4)	2(3)	-3(3)	-1(3)
C(8)	50(4)	51(4)	82(5)	6(3)	-20(4)	-11(3)
C(9)	44(4)	63(4)	83(5)	29(4)	14(3)	2(3)
C(10)	44(4)	60(4)	58(4)	10(3)	13(3)	20(3)
C(11)	62(4)	23(3)	54(4)	0(2)	-1(3)	-1(3)
C(12)	69(5)	36(3)	56(4)	-1(3)	6(3)	7(3)
C(13)	48(4)	40(3)	73(5)	-2(3)	0(3)	11(3)
C(14)	80(5)	37(3)	60(4)	0(3)	-18(4)	17(3)
C(15)	75(5)	32(3)	51(4)	4(3)	3(3)	-2(3)
C(16)	70(5)	68(5)	55(4)	6(4)	5(4)	-4(4)
C(17)	128(8)	74(5)	53(4)	-4(4)	18(5)	-29(6)
C(18)	66(5)	66(5)	64(4)	13(4)	19(4)	6(4)
C(19)	66(5)	57(4)	56(4)	6(3)	11(3)	-4(4)
C(20)	60(4)	56(4)	46(4)	2(3)	7(3)	-4(3)
C(21)	68(5)	55(4)	50(4)	5(3)	16(3)	-1(4)
C(22)	63(5)	56(4)	70(5)	4(4)	8(4)	5(4)
C(23)	84(6)	63(5)	53(4)	7(3)	18(4)	11(4)
C(24)	79(6)	71(5)	52(4)	-3(4)	11(4)	14(4)
C(25)	100(6)	46(4)	57(4)	11(3)	24(4)	16(4)
C(111)	74(6)	159(11)	136(9)	-56(8)	-33(6)	54(7)
C(112)	128(9)	94(7)	156(10)	-10(7)	-94(8)	-8(7)
C(113)	122(9)	128(9)	121(9)	48(7)	-23(7)	11(8)
C(211)	76(6)	72(5)	101(7)	19(5)	5(5)	-2(5)
C(212)	96(7)	97(7)	168(10)	77(7)	-29(7)	9(6)
C(213)	256(16)	57(6)	124(9)	-20(6)	68(10)	-22(8)
C(311)	77(6)	138(9)	97(7)	26(6)	-14(5)	-6(6)
C(312)	139(9)	77(6)	57(5)	3(4)	-21(5)	-13(6)
C(313)	124(8)	42(4)	153(9)	-8(5)	-43(7)	-20(5)

	Х	у	Z	U(eq)
H(2)	6348	6263	7950	63
H(3)	6861	5208	8933	70
H(4)	6064	5506	10039	65
H(5)	5112	6742	9744	64
H(7)	8575	6968	11156	59
H(8)	9079	8342	10502	73
H(9)	9333	7869	9215	76
H(10)	8957	6200	9072	64
H(12)	6553	9759	10765	65
H(13)	5542	9374	9819	64
H(14)	6136	9617	8598	71
H(15)	7499	10176	8793	63
H(11A)	3973	8709	8469	185
H(11B)	4713	8772	8973	185
H(11C)	4082	8011	9118	185
H(11D)	3800	6490	8092	191
H(11E)	4420	6185	7529	191
H(11F)	3860	7021	7352	191
H(11G)	5412	7801	7004	186
H(11H)	5871	8367	7600	186
H(11I)	5073	8740	7300	186
H(21A)	7530	4083	10992	125
H(21B)	7151	4706	10382	125
H(21C)	7403	5153	11126	125
H(21D)	9113	5013	11560	181

Tabelle 5:H-Atomkoordinaten [x 10⁴] und äquivalente isotrope Auslenkungsparameter $[Å^2 x 10^3]$ für [{Cp⁻Co}₃(µ₄-AsMo(CO)₅)₂] (11a)

H(21E)	9729	4830	10963	181
H(21F)	9211	4007	11237	181
H(21G)	8650	3572	9709	218
H(21H)	9113	4397	9363	218
H(21I)	8213	4330	9243	218
H(31A)	9090	9859	9609	156
H(31B)	9491	10705	10004	156
H(31C)	8940	10880	9331	156
H(31D)	8068	10300	11617	137
H(31E)	8936	10172	11404	137
H(31F)	8330	9384	11226	137
H(31G)	7727	12118	10060	160
H(31H)	8380	12203	10660	160
H(31I)	7541	11901	10871	160

4. Strukturdaten von [{Cp⁼Rh}₃(μ-CO)As(AsPh₂)] (12)

<u>*Tabelle 1:*</u> Kristalldaten und Strukturverfeinerung für $[{Cp^{=}Rh}_{3}(\mu-CO)As(AsPh_{2})]$ (12)

Summenformel	$C_{46}H_{73}As_2ORh_3Si_6$	
Molmasse	1269.15	
Temperatur	293(2) K	
Strahlung	ΜοΚα	
Wellenlänge	0.71073 Å	
Scanmodus	Phi-Oszillation	
Kristallsystem	Triklin	
Raumgruppe	$P_{\overline{1}}$	
Zelldimensionen	a = 11.7024(10) Å	$\alpha = 95.746(10)^{\circ}$
	b = 15.7603(14) Å	$\beta = 97.384(11)^{\circ}$
	c = 16.4038(15) Å	$\gamma = 106.481(10)^{\circ}$
Zellvolumen	2847.2(4) Å ³	
Formeleinheiten pro Zelle Z	2	
Berechnete Dichte	1.480 Mg/m^3	
Absorptionskoeffizient	2.169 mm ⁻¹	
Kristallgröße	0.52 x 0.48 x 0.05 mm	
Gemessener θ-Bereich	2.72 bis 25.81°	
Anzahl der gemessenen Reflexe	38689	
Unabhängige Reflexe	10105 (Rint = 0.0797)	
Absorptionskorrektur	Analytisch (ABST/PLAT	ON 98)
Max. und min. Transmission	0.892 und 0.372	
Diffraktometer	Stoe IPDS	
Strukturlösung	Direkte Methoden	
Strukturlösungsprogramm	SIR97 (Giacovazzo et al.,	1997)
Strukturverfeinerung	Vollmatrix Least-Squares	gegen F ²
Strukturverfeinerungsprogramm	SHELXL-97 (Sheldrick, 1	997)
Daten / Restraints / Parameter	10105 / 0 / 541	
Endgültige R-Werte [I>2 σ (I)]	R1 = 0.0469, wR2 = 0.106	58

R-Werte (alle Daten)	R1 = 0.0862, WR2 = 0.1234
Wichtungsschema	w=1/[$\sigma^2(Fo^2)$ +(0.0720P) ² +0.0000P] mit P=(Fo ² +2Fc ²)/3
GooF (alle Daten)	0.936
Größtes Maximum und Minimum	1.813 und -1.121 eÅ ⁻³

Verfeinerung nach F^2 mit ALLEN Reflexen. Die gewichteten R-Werte wR2 und alle GooF's basieren auf F^2 . Die konventionellen R-Werte R1 basieren auf F, wobei F für negative F^2 gleich Null gesetzt wird. Das Ablehnungskriterium $F^2 > 2\sigma$ (F^2) wird nur zum Berechnen von R(obs) etc. verwendet. Zur Verfeinerung wurden alle Reflexe herangezogen. Grundsätzlich gilt: Auf F^2 bezogene R-Werte sind statistisch etwa doppelt so groß wie die auf F basierenden. Auf ALLE Reflexe bezogene R-Werte sind noch größer.

Die Wasserstoffatome wurden geometrisch lokalisiert. Für die Verfeinerung wurde ein Reitermodell angenommen. Als Temperaturfaktor wurde der 1.5-fache Wert (CH₃-Gruppen) bzw. der 1.2-fache Wert (Cp-H und Ar-H) des äquivalenten isotropen Temperaturfaktors desjenigen C- Atoms eingesetzt, an welches das jeweilige H-Atom gebunden ist.

Einzelheiten können dem Handbuch für das Verfeinerungsprogramm SHELXL entnommen werden.

 $GooF = \sqrt{\frac{\sum \left[w\left(F_o^2 - F_c^2\right)\right]}{(n-p)}}$ n = Zahl der Reflexe; p = Zahl der verfeinerten Parameter

<u>Tabelle 2:</u>	Atomkoordinaten [x 10 ⁴] und äquivalente isotrope Auslenkungsparameter
	$[Å^2 x 10^3]$ für $[{Cp=Rh}_3(\mu-CO)As(AsPh_2)]$ (12)

U(eq) wird berechnet als ein Drittel der Spur des orthogonalisierten U_{ij} -Tensors.

	х	у	Z	U(eq)
Dh (1)	8000(1)	2951(1)	7507(1)	22(1)
$\operatorname{Rh}(1)$	3090(1)	3631(1)	7397(1) 9564(1)	33(1)
$\operatorname{Rl}(2)$	7234(1)	2321(1)	8304(1) 7114(1)	34(1)
$\operatorname{Kn}(3)$	7173(1)	1435(1)	/114(1)	33(1)
As(1)	/116(1)	2725(1)	6452(1)	34(1)
As(2)	8896(1)	2654(1)	7848(1)	36(1)
Si(11)	6843(2)	5719(2)	6743(2)	60(1)
Si(12)	11343(2)	4961(2)	7972(1)	46(1)
Si(21)	4578(2)	2856(2)	9457(2)	63(1)
Si(22)	8952(2)	1750(2)	10366(1)	58(1)
Si(31)	9757(2)	399(2)	6927(2)	56(1)
Si(32)	4702(2)	-697(2)	7357(2)	59(1)
O(1)	4855(4)	1635(4)	7529(3)	52(1)
C(1)	5907(5)	1872(4)	7684(4)	34(2)
C(11)	7877(6)	5237(5)	7367(5)	44(2)
C(12)	8996(6)	5109(5)	7166(4)	43(2)
C(13)	9765(6)	5025(5)	7883(5)	40(2)
C(14)	9074(6)	5035(5)	8545(5)	44(2)
C(15)	7962(7)	5181(5)	8227(5)	52(2)
C(21)	6175(7)	2807(5)	9584(4)	45(2)
C(22)	7909(6)	2363(6)	9930(4)	49(2)
C(23)	8272(6)	3271(5)	9785(4)	45(2)
C(24)	7199(7)	3545(5)	9591(4)	45(2)
C(25)	6634(6)	2082(5)	9782(4)	45(2)
C(31)	8139(6)	375(5)	6796(5)	43(2)

C(32)	7298(7)	28(5)	7311(5)	46(2)
C(33)	6093(6)	-67(5)	6947(4)	40(2)
C(34)	6151(6)	250(5)	6182(5)	43(2)
C(35)	7395(6)	543(5)	6084(5)	45(2)
C(41)	5460(6)	2593(5)	5919(4)	40(2)
C(42)	4817(7)	3083(5)	6271(5)	49(2)
C(43)	3628(7)	2956(7)	5937(6)	66(2)
C(44)	3093(7)	2343(7)	5245(6)	70(3)
C(45)	3733(7)	1847(6)	4885(6)	62(2)
C(46)	4917(6)	1969(5)	5219(5)	48(2)
C(51)	7950(6)	2855(5)	5489(4)	43(2)
C(52)	9018(7)	2646(6)	5499(6)	64(2)
C(53)	9667(9)	2790(7)	4855(7)	83(3)
C(54)	9250(10)	3160(8)	4192(7)	86(3)
C(55)	8227(10)	3396(8)	4197(6)	88(3)
C(56)	7557(9)	3237(7)	4836(5)	70(3)
C(111)	5345(8)	5491(7)	7093(8)	89(3)
C(112)	6674(10)	5303(8)	5635(6)	87(3)
C(113)	7591(9)	6955(7)	6933(8)	91(3)
C(121)	11537(8)	4315(7)	7016(6)	78(3)
C(122)	12389(7)	6119(6)	8105(5)	59(2)
C(123)	11653(7)	4429(6)	8913(6)	65(2)
C(211)	4405(9)	3520(9)	10415(7)	106(4)
C(212)	4286(11)	3430(10)	8559(7)	107(4)
C(213)	3528(9)	1715(9)	9317(9)	120(5)
C(221)	8341(10)	552(7)	9937(8)	93(3)
C(222)	10477(8)	2247(8)	10115(8)	96(4)
C(223)	9035(11)	1917(10)	11514(6)	105(4)
C(311)	9750(10)	-676(8)	6348(9)	118(5)
C(312)	10267(11)	420(11)	8049(8)	122(5)
C(313)	10764(9)	1351(9)	6557(11)	128(6)
C(321)	4805(9)	-290(7)	8487(6)	87(3)
C(322)	3333(8)	-599(9)	6706(8)	102(4)
C(323)	4703(10)	-1883(7)	7259(8)	94(4)

Rh(1)-C(12)	2.199(7)	Si(22)-C(222)	1.851(10)
Rh(1)-C(13)	2.240(7)	Si(22)-C(22)	1.877(7)
Rh(1)-C(14)	2.228(8)	Si(22)-C(223)	1.861(10)
Rh(1)-C(15)	2.295(8)	Si(31)-C(313)	1.835(11)
Rh(1)-C(11)	2.330(7)	Si(31)-C(311)	1.855(11)
Rh(1)-As(1)	2.3688(10)	Si(31)-C(31)	1.867(7)
Rh(1)-As(2)	2.3835(8)	Si(31)-C(312)	1.854(12)
Rh(1)-Rh(2)	2.7915(8)	Si(32)-C(323)	1.861(11)
Rh(2)-C(1)	1.941(7)	Si(32)-C(322)	1.861(10)
Rh(2)-C(23)	2.229(7)	Si(32)-C(33)	1.894(7)
Rh(2)-C(24)	2.225(7)	Si(32)-C(321)	1.877(10)
Rh(2)-C(21)	2.288(6)	O(1)-C(1)	1.167(7)
Rh(2)-C(25)	2.308(6)	C(11)-C(15)	1.414(11)
Rh(2)-C(22)	2.340(7)	C(11)-C(12)	1.453(9)
Rh(2)-As(2)	2.3696(8)	C(12)-C(13)	1.427(10)
Rh(2)-Rh(3)	2.7686(8)	C(13)-C(14)	1.436(10)
Rh(3)-C(1)	2.085(6)	C(14)-C(15)	1.427(10)
Rh(3)-C(35)	2.178(7)	C(21)-C(24)	1.411(11)
Rh(3)-C(34)	2.224(7)	C(21)-C(25)	1.441(10)
Rh(3)-C(33)	2.315(7)	C(22)-C(25)	1.411(10)
Rh(3)-C(31)	2.322(6)	C(22)-C(23)	1.426(11)
Rh(3)-C(32)	2.314(7)	C(23)-C(24)	1.447(10)
Rh(3)-As(1)	2.4134(9)	C(31)-C(32)	1.408(10)
Rh(3)-As(2)	2.4337(10)	C(31)-C(35)	1.458(10)
As(1)-C(51)	1.958(7)	C(32)-C(33)	1.418(10)
As(1)-C(41)	1.965(7)	C(33)-C(34)	1.399(10)
Si(11)-C(112)	1.835(11)	C(34)-C(35)	1.433(10)
Si(11)-C(11)	1.857(7)	C(41)-C(42)	1.359(9)
Si(11)-C(111)	1.865(10)	C(41)-C(46)	1.387(10)

<u>Tabelle 3:</u>	Bindungslängen [Å] und -winkel [°] für [$\{Cp=Rh\}_3(\mu-CO)As(AsPh_2)$] (12)
-------------------	---

Si(11)-C(113)	1.871(10)	C(42)-C(43)	1.379(10)
Si(12)-C(13)	1.865(7)	C(43)-C(44)	1.367(13)
Si(12)-C(122)	1.861(9)	C(44)-C(45)	1.369(12)
Si(12)-C(121)	1.856(9)	C(45)-C(46)	1.375(10)
Si(12)-C(123)	1.873(9)	C(51)-C(52)	1.379(10)
Si(21)-C(213)	1.840(13)	C(51)-C(56)	1.372(10)
Si(21)-C(21)	1.878(7)	C(52)-C(53)	1.378(11)
Si(21)-C(212)	1.849(11)	C(53)-C(54)	1.383(14)
Si(21)-C(211)	1.865(10)	C(54)-C(55)	1.351(14)
Si(22)-C(221)	1.847(11)	C(55)-C(56)	1.388(12)
C(12)-Rh(1)-C(13)	37.5(3)	C(111)-Si(11)-C(113)	108.2(5)
C(12)-Rh(1)-C(14)	61.6(3)	C(13)-Si(12)-C(122)	108.3(3)
C(13)-Rh(1)-C(14)	37.5(2)	C(13)-Si(12)-C(121)	110.3(4)
C(12)-Rh(1)-C(15)	60.2(3)	C(122)-Si(12)-C(121)	109.2(4)
C(13)-Rh(1)-C(15)	61.7(3)	C(13)-Si(12)-C(123)	108.1(3)
C(14)-Rh(1)-C(15)	36.7(3)	C(122)-Si(12)-C(123)	109.5(4)
C(12)-Rh(1)-C(11)	37.3(2)	C(121)-Si(12)-C(123)	111.4(5)
C(13)-Rh(1)-C(11)	63.0(2)	C(213)-Si(21)-C(21)	109.6(5)
C(14)-Rh(1)-C(11)	61.7(3)	C(213)-Si(21)-C(212)	110.9(7)
C(15)-Rh(1)-C(11)	35.6(3)	C(21)-Si(21)-C(212)	109.7(4)
C(12)-Rh(1)-As(1)	110.5(2)	C(213)-Si(21)-C(211)	110.2(6)
C(13)-Rh(1)-As(1)	136.31(18)	C(21)-Si(21)-C(211)	107.8(4)
C(14)-Rh(1)-As(1)	172.06(19)	C(212)-Si(21)-C(211)	108.7(6)
C(15)-Rh(1)-As(1)	140.5(2)	C(221)-Si(22)-C(222)	111.4(6)
C(11)-Rh(1)-As(1)	112.1(2)	C(221)-Si(22)-C(22)	109.4(4)
C(12)-Rh(1)-As(2)	127.31(18)	C(222)-Si(22)-C(22)	109.3(4)
C(13)-Rh(1)-As(2)	101.24(17)	C(221)-Si(22)-C(223)	111.0(6)
C(14)-Rh(1)-As(2)	108.79(19)	C(222)-Si(22)-C(223)	108.9(6)
C(15)-Rh(1)-As(2)	142.2(2)	C(22)-Si(22)-C(223)	106.7(4)
C(11)-Rh(1)-As(2)	163.73(17)	C(313)-Si(31)-C(311)	111.0(7)
As(1)-Rh(1)-As(2)	75.96(3)	C(313)-Si(31)-C(31)	114.6(4)
C(12)-Rh(1)-Rh(2)	164.5(2)	C(311)-Si(31)-C(31)	105.0(4)
C(13)-Rh(1)-Rh(2)	129.06(18)	C(313)-Si(31)-C(312)	109.5(8)

C(14)-Rh(1)-Rh(2)	102.91(19)	C(311)-Si(31)-C(312)	109.2(7)
C(15)-Rh(1)-Rh(2)	108.7(2)	C(31)-Si(31)-C(312)	107.3(5)
C(11)-Rh(1)-Rh(2)	138.60(18)	C(323)-Si(32)-C(322)	110.2(6)
As(1)-Rh(1)-Rh(2)	85.02(3)	C(323)-Si(32)-C(33)	105.8(4)
As(2)-Rh(1)-Rh(2)	53.80(2)	C(322)-Si(32)-C(33)	109.2(4)
C(1)-Rh(2)-C(23)	161.9(2)	C(323)-Si(32)-C(321)	107.9(5)
C(1)-Rh(2)-C(24)	126.8(3)	C(322)-Si(32)-C(321)	112.7(5)
C(23)-Rh(2)-C(24)	37.9(3)	C(33)-Si(32)-C(321)	110.8(4)
C(1)-Rh(2)-C(21)	100.0(3)	O(1)-C(1)-Rh(2)	141.9(5)
C(23)-Rh(2)-C(21)	61.8(3)	O(1)-C(1)-Rh(3)	130.0(5)
C(24)-Rh(2)-C(21)	36.4(3)	Rh(2)-C(1)-Rh(3)	86.8(2)
C(1)-Rh(2)-C(25)	105.8(3)	C(15)-C(11)-C(12)	103.7(6)
C(23)-Rh(2)-C(25)	59.9(3)	C(15)-C(11)-Si(11)	126.7(5)
C(24)-Rh(2)-C(25)	60.3(3)	C(12)-C(11)-Si(11)	127.0(6)
C(21)-Rh(2)-C(25)	36.5(3)	C(15)-C(11)-Rh(1)	70.9(4)
C(1)-Rh(2)-C(22)	136.6(3)	C(12)-C(11)-Rh(1)	66.5(4)
C(23)-Rh(2)-C(22)	36.3(3)	Si(11)-C(11)-Rh(1)	140.0(4)
C(24)-Rh(2)-C(22)	61.3(3)	C(13)-C(12)-C(11)	112.0(6)
C(21)-Rh(2)-C(22)	61.0(2)	C(13)-C(12)-Rh(1)	72.8(4)
C(25)-Rh(2)-C(22)	35.3(2)	C(11)-C(12)-Rh(1)	76.2(4)
C(1)-Rh(2)-As(2)	100.58(18)	C(12)-C(13)-C(14)	104.7(6)
C(23)-Rh(2)-As(2)	97.50(17)	C(12)-C(13)-Si(12)	128.6(5)
C(24)-Rh(2)-As(2)	123.1(2)	C(14)-C(13)-Si(12)	126.7(6)
C(21)-Rh(2)-As(2)	158.5(2)	C(12)-C(13)-Rh(1)	69.7(4)
C(25)-Rh(2)-As(2)	139.61(17)	C(14)-C(13)-Rh(1)	70.8(4)
C(22)-Rh(2)-As(2)	106.53(16)	Si(12)-C(13)-Rh(1)	125.4(3)
C(1)-Rh(2)-Rh(3)	48.75(18)	C(13)-C(14)-C(15)	108.6(6)
C(23)-Rh(2)-Rh(3)	148.21(18)	C(13)-C(14)-Rh(1)	71.7(4)
C(24)-Rh(2)-Rh(3)	170.50(19)	C(15)-C(14)-Rh(1)	74.2(4)
C(21)-Rh(2)-Rh(3)	145.5(2)	C(11)-C(15)-C(14)	110.8(6)
C(25)-Rh(2)-Rh(3)	127.5(2)	C(11)-C(15)-Rh(1)	73.5(4)
C(22)-Rh(2)-Rh(3)	128.1(2)	C(14)-C(15)-Rh(1)	69.1(4)
As(2)-Rh(2)-Rh(3)	55.89(2)	C(24)-C(21)-C(25)	105.9(6)
C(1)-Rh(2)-Rh(1)	91.98(19)	C(24)-C(21)-Si(21)	124.6(6)

C(22) Pb(2) Pb(1)	072(2)	C(25) C(21) S(21)	120.26
C(23)-RII(2)-RII(1)	97.2(2)	C(23)+C(21)+Si(21)	129.2(0)
C(24)-Rh(2)-Rh(1)	90.8(2)	C(24)-C(21)-Rh(2)	69.4(4)
C(21)-Rh(2)-Rh(1)	118.9(2)	C(25)-C(21)-Rh(2)	72.5(4)
C(25)-Rh(2)-Rh(1)	151.1(2)	Si(21)-C(21)-Rh(2)	127.8(4)
C(22)-Rh(2)-Rh(1)	131.4(2)	C(25)-C(22)-C(23)	106.1(6)
As(2)-Rh(2)-Rh(1)	54.27(2)	C(25)-C(22)-Si(22)	128.3(6)
Rh(3)-Rh(2)-Rh(1)	81.37(2)	C(23)-C(22)-Si(22)	125.2(5)
C(1)-Rh(3)-C(35)	144.1(3)	C(25)-C(22)-Rh(2)	71.1(4)
C(1)-Rh(3)-C(34)	107.1(3)	C(23)-C(22)-Rh(2)	67.7(4)
C(35)-Rh(3)-C(34)	38.0(3)	Si(22)-C(22)-Rh(2)	131.7(4)
C(1)-Rh(3)-C(33)	95.1(2)	C(22)-C(23)-C(24)	108.4(6)
C(35)-Rh(3)-C(33)	61.2(3)	C(22)-C(23)-Rh(2)	76.1(4)
C(34)-Rh(3)-C(33)	35.8(2)	C(24)-C(23)-Rh(2)	70.9(4)
C(1)-Rh(3)-C(31)	152.1(3)	C(21)-C(24)-C(23)	108.6(7)
C(35)-Rh(3)-C(31)	37.6(3)	C(21)-C(24)-Rh(2)	74.2(4)
C(34)-Rh(3)-C(31)	62.5(3)	C(23)-C(24)-Rh(2)	71.2(4)
C(33)-Rh(3)-C(31)	60.9(2)	C(22)-C(25)-C(21)	110.9(7)
C(1)-Rh(3)-C(32)	116.8(3)	C(22)-C(25)-Rh(2)	73.6(4)
C(35)-Rh(3)-C(32)	60.0(3)	C(21)-C(25)-Rh(2)	71.0(4)
C(34)-Rh(3)-C(32)	59.7(3)	C(32)-C(31)-C(35)	103.4(6)
C(33)-Rh(3)-C(32)	35.7(2)	C(32)-C(31)-Si(31)	126.7(6)
C(31)-Rh(3)-C(32)	35.4(2)	C(35)-C(31)-Si(31)	129.1(5)
C(1)-Rh(3)-As(1)	78.13(18)	C(32)-C(31)-Rh(3)	72.0(4)
C(35)-Rh(3)-As(1)	101.0(2)	C(35)-C(31)-Rh(3)	65.8(4)
C(34)-Rh(3)-As(1)	105.92(18)	Si(31)-C(31)-Rh(3)	133.5(4)
C(33)-Rh(3)-As(1)	137.66(18)	C(31)-C(32)-C(33)	112.5(7)
C(31)-Rh(3)-As(1)	128.79(18)	C(31)-C(32)-Rh(3)	72.6(4)
C(32)-Rh(3)-As(1)	160.97(19)	C(33)-C(32)-Rh(3)	72.2(4)
C(1)-Rh(3)-As(2)	94.53(18)	C(34)-C(33)-C(32)	106.7(6)
C(35)-Rh(3)-As(2)	120.04(19)	C(34)-C(33)-Si(32)	127.9(5)
C(34)-Rh(3)-As(2)	158.03(18)	C(32)-C(33)-Si(32)	124.6(6)
C(33)-Rh(3)-As(2)	148.04(18)	C(34)-C(33)-Rh(3)	68.5(4)
C(31)-Rh(3)-As(2)	99.75(19)	C(32)-C(33)-Rh(3)	72.1(4)
C(32)-Rh(3)-As(2)	114.0(2)	Si(32)-C(33)-Rh(3)	132.4(3)

As(1)-Rh(3)-As(2)	74.22(3)	C(33)-C(34)-C(35)	107.9(6)
C(1)-Rh(3)-Rh(2)	44.42(18)	C(33)-C(34)-Rh(3)	75.6(4)
C(35)-Rh(3)-Rh(2)	170.35(19)	C(35)-C(34)-Rh(3)	69.3(4)
C(34)-Rh(3)-Rh(2)	147.88(18)	C(34)-C(35)-C(31)	109.4(6)
C(33)-Rh(3)-Rh(2)	119.30(17)	C(34)-C(35)-Rh(3)	72.7(4)
C(31)-Rh(3)-Rh(2)	133.08(19)	C(31)-C(35)-Rh(3)	76.5(4)
C(32)-Rh(3)-Rh(2)	114.14(19)	C(42)-C(41)-C(46)	119.7(7)
As(1)-Rh(3)-Rh(2)	84.71(3)	C(42)-C(41)-As(1)	119.4(6)
As(2)-Rh(3)-Rh(2)	53.72(2)	C(46)-C(41)-As(1)	120.7(5)
C(51)-As(1)-C(41)	100.2(3)	C(41)-C(42)-C(43)	120.2(8)
C(51)-As(1)-Rh(1)	113.0(2)	C(44)-C(43)-C(42)	120.1(8)
C(41)-As(1)-Rh(1)	120.8(2)	C(43)-C(44)-C(45)	120.1(8)
C(51)-As(1)-Rh(3)	114.7(2)	C(46)-C(45)-C(44)	119.9(9)
C(41)-As(1)-Rh(3)	110.3(2)	C(41)-C(46)-C(45)	119.9(7)
Rh(1)-As(1)-Rh(3)	98.57(3)	C(52)-C(51)-C(56)	118.8(7)
Rh(2)-As(2)-Rh(1)	71.93(3)	C(52)-C(51)-As(1)	119.9(6)
Rh(2)-As(2)-Rh(3)	70.38(3)	C(56)-C(51)-As(1)	121.0(6)
Rh(1)-As(2)-Rh(3)	97.60(3)	C(51)-C(52)-C(53)	121.1(9)
C(112)-Si(11)-C(11)	110.3(4)	C(52)-C(53)-C(54)	119.6(9)
C(112)-Si(11)-C(111)	111.1(5)	C(55)-C(54)-C(53)	119.3(8)
C(11)-Si(11)-C(111)	111.9(4)	C(54)-C(55)-C(56)	121.3(10)
C(112)-Si(11)-C(113)	109.8(5)	C(51)-C(56)-C(55)	119.9(9)
C(11)-Si(11)-C(113)	105.4(4)		

<u>*Tabelle 4:*</u> Anisotrope Auslenkungsparameter [$Å^2 \ge 10^3$] für

 $[{Cp^{=}Rh}_{3}(\mu-CO)As(AsPh_{2})]$ (12)

Der Exponent des anisotropen Auslenkungsfaktors hat die Form: $-2\pi^2$ [$(ha^*)^2U_{11} + ... + 2hka^*b^*U_{12}$].

	U ₁₁	U ₂₂	U ₃₃	U ₂₃	U ₁₃	U ₁₂
Rh(1)	34(1)	31(1)	34(1)	2(1)	6(1)	9(1)
Rh(2)	36(1)	35(1)	30(1)	2(1)	7(1)	10(1)
Rh(3)	33(1)	30(1)	34(1)	1(1)	6(1)	7(1)
As(1)	36(1)	35(1)	30(1)	2(1)	6(1)	10(1)
As(2)	32(1)	33(1)	40(1)	0(1)	5(1)	9(1)
Si(11)	58(1)	47(2)	76(2)	11(1)	1(1)	22(1)
Si(12)	37(1)	42(1)	53(1)	-2(1)	9(1)	6(1)
Si(21)	51(1)	85(2)	56(1)	-5(1)	14(1)	30(1)
Si(22)	60(1)	69(2)	48(1)	14(1)	4(1)	26(1)
Si(31)	43(1)	49(2)	77(2)	-1(1)	9(1)	18(1)
Si(32)	47(1)	48(2)	72(2)	5(1)	14(1)	-1(1)
O(1)	45(3)	59(4)	51(3)	-4(3)	13(2)	14(3)
C(1)	24(3)	25(4)	48(4)	-6(3)	8(3)	3(3)
C(11)	47(4)	25(4)	61(5)	4(4)	8(3)	14(3)
C(12)	51(4)	33(4)	40(4)	3(4)	8(3)	6(3)
C(13)	42(4)	22(4)	49(4)	1(3)	7(3)	0(3)
C(14)	43(4)	40(5)	45(4)	-1(4)	9(3)	8(3)
C(15)	46(4)	45(5)	62(5)	-3(4)	12(4)	13(4)
C(21)	55(4)	50(5)	34(4)	-1(4)	16(3)	20(4)
C(22)	43(4)	72(6)	35(4)	14(4)	9(3)	21(4)
C(23)	40(4)	56(5)	33(4)	0(4)	6(3)	7(3)
C(24)	59(4)	42(5)	37(4)	-6(4)	13(3)	19(4)
C(25)	50(4)	52(5)	32(4)	9(4)	17(3)	10(4)

C(31)	45(4)	28(4)	56(5)	-3(4)	11(3)	14(3)
C(32)	61(4)	31(4)	50(4)	4(4)	8(4)	20(4)
C(33)	36(3)	29(4)	51(4)	-8(4)	8(3)	9(3)
C(34)	49(4)	32(4)	45(4)	-4(4)	0(3)	16(3)
C(35)	51(4)	36(5)	44(4)	-8(4)	6(3)	10(3)
C(41)	43(4)	44(5)	38(4)	9(4)	11(3)	18(3)
C(42)	54(4)	48(5)	45(4)	-5(4)	6(3)	21(4)
C(43)	51(5)	76(7)	71(6)	-7(5)	7(4)	29(5)
C(44)	46(5)	76(7)	86(7)	5(6)	-5(4)	25(5)
C(45)	55(5)	51(6)	69(6)	-8(5)	-4(4)	12(4)
C(46)	45(4)	42(5)	53(5)	-11(4)	1(3)	14(4)
C(51)	50(4)	39(5)	36(4)	-1(4)	9(3)	8(3)
C(52)	59(5)	80(7)	67(6)	20(5)	24(4)	35(5)
C(53)	74(6)	99(9)	97(8)	30(7)	53(6)	35(6)
C(54)	95(7)	99(9)	75(7)	28(7)	57(6)	20(7)
C(55)	113(9)	102(9)	54(6)	36(6)	34(6)	23(7)
C(56)	79(6)	91(8)	53(5)	27(5)	15(5)	38(6)
C(111)	72(6)	79(8)	122(9)	8(7)	10(6)	35(6)
C(112)	99(7)	93(9)	73(7)	22(7)	-3(6)	40(7)
C(113)	94(7)	54(7)	125(10)	23(7)	2(7)	25(6)
C(121)	67(6)	77(7)	82(7)	-21(6)	22(5)	17(5)
C(122)	55(5)	59(6)	57(5)	3(5)	15(4)	6(4)
C(123)	51(5)	60(6)	78(6)	8(5)	2(4)	14(4)
C(211)	75(7)	153(13)	94(8)	-33(8)	15(6)	58(8)
C(212)	112(9)	155(13)	92(8)	22(8)	23(7)	97(9)
C(213)	59(6)	136(12)	158(13)	-12(10)	31(7)	24(7)
C(221)	107(8)	68(8)	103(9)	8(7)	-3(7)	32(6)
C(222)	53(5)	125(10)	120(9)	29(8)	12(6)	41(6)
C(223)	137(10)	148(12)	47(6)	29(7)	4(6)	69(9)
C(311)	68(7)	94(9)	180(13)	-51(9)	3(8)	39(7)
C(312)	89(8)	173(15)	101(9)	-4(10)	-25(7)	61(9)
C(313)	60(6)	104(10)	246(18)	65(11)	65(9)	33(7)
C(321)	92(7)	79(8)	74(7)	12(6)	32(6)	-8(6)
C(322)	44(5)	124(11)	126(10)	16(9)	11(6)	7(6)

VII. Anhang	5					Seite 170
C(323)	100(8)	50(7)	116(10)	11(7)	25(7)	-7(6)

	Х	У	Z	U(eq)
H(12)	9188	5084	6633	51
H(14)	9312	4960	9089	53
H(15)	7373	5232	8543	62
H(13)	9063	3627	9811	54
H(24)	7187	4112	9487	54
H(25)	6155	1507	9809	54
H(32)	7508	-121	7832	56
H(34)	5496	268	5804	51
H(35)	7683	801	5635	54
H(42)	5180	3504	6739	58
H(43)	3189	3289	6182	79
H(44)	2293	2262	5019	84
H(45)	3368	1429	4415	74
H(46)	5354	1633	4976	58
H(52)	9305	2404	5947	76
H(53)	10381	2639	4866	100
H(54)	9669	3246	3748	104
H(55)	7967	3671	3764	106
H(56)	6843	3388	4820	84
H(11A)	4728	5432	6626	134
H(11B)	5356	5977	7500	134
H(11C)	5178	4947	7333	134
H(11D)	7457	5410	5474	130
H(11E)	6214	5608	5314	130
H(11F)	6261	4672	5537	130

Tabelle 5:H-Atomkoordinaten [x 10^4] und äquivalente isotrope Auslenkungsparameter[Å² x 10^3] für [{Cp⁼Rh}₃(µ-CO)As(AsPh₂)] (12)
H(11G)	8400	7082	6815	136
H(11H)	7613	7179	7503	136
H(11I)	7143	7240	6578	136
H(12A)	11075	3699	6983	117
H(12B)	12376	4360	7035	117
H(12C)	11260	4552	6538	117
H(12D)	12158	6420	7660	89
H(12E)	13200	6097	8097	89
H(12F)	12350	6437	8626	89
H(12G)	11333	4669	9362	97
H(12H)	12509	4550	9069	97
H(12I)	11275	3794	8790	97
H(21A)	3625	3613	10340	159
H(21B)	5022	4088	10520	159
H(21C)	4479	3201	10878	159
H(21D)	4103	3015	8055	160
H(21E)	4990	3918	8541	160
H(21F)	3614	3654	8613	160
H(21G)	3570	1397	8797	180
H(21H)	2720	1743	9320	180
H(21I)	3747	1410	9762	180
H(22A)	8231	486	9342	140
H(22B)	7579	303	10112	140
H(22C)	8897	243	10135	140
H(22D)	11001	1913	10310	144
H(22E)	10794	2856	10380	144
H(22F)	10425	2229	9524	144
H(22G)	8251	1652	11651	157
H(22H)	9301	2546	11718	157
H(22I)	9597	1640	11766	157
H(31A)	9033	-1136	6399	176
H(31B)	10449	-833	6572	176
H(31C)	9764	-615	5772	176
H(31D)	11100	433	8138	183

H(31E)	9784	-106	8231	183
H(31F)	10182	942	8358	183
H(31G)	11577	1320	6654	192
H(31H)	10729	1899	6851	192
H(31I)	10512	1331	5973	192
H(32A)	4045	-548	8661	130
H(32B)	4998	350	8571	130
H(32C)	5425	-464	8808	130
H(32D)	3408	-689	6130	153
H(32E)	3254	-15	6847	153
H(32F)	2632	-1044	6805	153
H(32G)	4079	-2221	7529	141
H(32H)	5473	-1913	7517	141
H(32I)	4558	-2128	6682	141

5. Strukturdaten von [{Cp⁼Rh}₃(AsO)(AsPh)Rh(CO)₂] (14)

Tabelle 1:Kristalldaten und Strukturverfeinerung für $[{Cp^{=}Rh}_{3}(AsO)(AsPh)Rh(CO)_{2}]$ (14)

Summenformel	$C_{41}H_{68}As_2O_3Rh_4Si_6$	
Molmasse	1338.97	
Temperatur	293(2) K	
Strahlung	ΜοΚα	
Wellenlänge	0.71073 Å	
Scanmodus	Phi-Oszillation	
Kristallsystem	Monoklin	
Raumgruppe	$P2_1/m$	
Zelldimensionen	a = 11.6701(7) Å	$\alpha = 90^{\circ}$
	b = 17.3608(16) Å	$\beta = 92.224(7)^{\circ}$
	c = 13.5415(8) Å	$\gamma = 90^{\circ}$
Zellvolumen	2741.5(3) Å ³	
Formeleinheiten pro Zelle Z	2	
Berechnete Dichte	1.622 Mg/m^3	
Absorptionskoeffizient	2.544 mm ⁻¹	
Kristallgröße	0.60 x 0.32 x 0.12 mm	
Gemessener θ-Bereich	2.79 bis 25.68°	
Anzahl der gemessenen Reflexe	38502	
Unabhängige Reflexe	5137 (Rint = 0.0803)	
Absorptionskorrektur	Numerisch	
Max. und min. Transmission	0.76570 und 0.42374	
Diffraktometer	Stoe IPDS	
Strukturlösung	Direkte Methoden	
Strukturlösungsprogramm	SIR97 (Giacovazzo et al.,	1997)
Strukturverfeinerung	Vollmatrix Least-Squares	gegen F ²
Strukturverfeinerungsprogramm	SHELXL-97 (Sheldrick, 1	997)
Daten / Restraints / Parameter	5137 / 12 / 330	

Endgültige R-Werte [I>2σ (I)]	R1 = 0.0375, WR2 = 0.0790
R-Werte (alle Daten)	R1 = 0.0622, wR2 = 0.0849
Wichtungsschema	w=1/[$\sigma^2(Fo^2)$ +(0.0430P) ² +0.0000P] mit P=(Fo ² +2Fc ²)/3
GooF (alle Daten)	0.964
Größtes Maximum und Minimum	0.589 und -0.797 eÅ ⁻³

Verfeinerung nach F^2 mit ALLEN Reflexen. Die gewichteten R-Werte wR2 und alle GooF's basieren auf F^2 . Die konventionellen R-Werte R1 basieren auf F, wobei F für negative F^2 gleich Null gesetzt wird. Das Ablehnungskriterium $F^2 > 2\sigma$ (F^2) wird nur zum Berechnen von R(obs) etc. verwendet. Zur Verfeinerung wurden alle Reflexe herangezogen. Grundsätzlich gilt: Auf F^2 bezogene R-Werte sind statistisch etwa doppelt so groß wie die auf F basierenden. Auf ALLE Reflexe bezogene R-Werte sind noch größer.

Die Wasserstoffatome wurden geometrisch lokalisiert. Für die Verfeinerung wurde ein Reitermodell angenommen. Als Temperaturfaktor wurde der 1.5-fache Wert (CH₃-Gruppen) bzw. der 1.2-fache Wert (Cp-H) des äquivalenten isotropen Temperaturfaktors desjenigen C-Atoms eingesetzt, an welches das jeweilige H-Atom gebunden ist. Das Molekül ist im Bereich Rh(3) fehlgeordnet.

Einzelheiten können dem Handbuch für das Verfeinerungsprogramm SHELXL entnommen werden.

 $GooF = \sqrt{\frac{\sum \left[w\left(F_o^2 - F_c^2\right)\right]}{(n-p)}}$ n = Zahl der Reflexe; p = Zahl der verfeinerten Parameter

<u>Tabelle 2:</u>	Atomkoordinaten [x 10 ⁴] und äquivalente isotrope Auslenkungsparameter
	[Å ² x 10 ³] für [{Cp ⁼ Rh} ₃ (AsO)(AsPh)Rh(CO) ₂] (14)

U(eq) wird berechnet als ein Drittel der Spur des orthogonalisierten U_{ij} -Tensors.

	х	у	Z	U(eq)
Rh(1)	4461(1)	2500	6306(1)	41(1)
Rh(2)	4048(1)	1412(1)	7698(1)	46(1)
Rh(3)	3466(1)	2319(1)	9097(1)	34(1)
As(1)	2809(1)	2500	7431(1)	46(1)
As(2)	5199(1)	2500	8171(1)	41(1)
Si(1)	6761(1)	309(1)	7558(1)	67(1)
Si(2)	1822(1)	5(1)	6682(1)	65(1)
Si(3)	5540(2)	2500	11312(1)	48(1)
Si(4)	636(3)	2735(2)	10476(2)	72(1)
O(1)	4831(5)	1250(2)	4836(3)	89(1)
O(2)	6679(5)	2500	8574(4)	59(1)
C(1)	4697(5)	1704(3)	5410(4)	58(1)
C(2)	1278(7)	2500	6822(6)	54(2)
C(3)	1154(7)	2500	5831(6)	69(2)
C(4)	66(9)	2500	5384(8)	82(3)
C(5)	-860(9)	2500	5951(10)	90(3)
C(6)	-736(8)	2500	6939(10)	96(3)
C(7)	344(7)	2500	7399(7)	66(2)
C(8)	5184(5)	371(3)	7700(5)	63(2)
C(9)	4302(4)	287(3)	6948(4)	55(1)
C(10)	3201(4)	258(3)	7345(4)	54(1)
C(11)	3393(5)	363(3)	8388(4)	68(2)
C(12)	4590(5)	424(3)	8595(5)	69(2)
C(13)	4078(7)	2299(3)	10674(5)	44(3)

C(14)	3144(7)	2818(4)	10602(5)	51(3)
C(15)	2160(6)	2402(5)	10272(5)	52(3)
C(16)	2486(6)	1625(4)	10139(5)	48(2)
C(17)	3671(6)	1561(3)	10387(5)	43(2)
C(18)	7500(6)	558(5)	8739(6)	104(3)
C(19)	7187(6)	949(4)	6550(6)	95(2)
C(20)	7092(6)	-702(3)	7238(5)	85(2)
C(21)	1721(7)	497(4)	5477(5)	100(2)
C(22)	1837(7)	-1056(3)	6481(6)	99(3)
C(23)	606(6)	271(5)	7424(7)	123(3)
C(24)	5339(9)	2500	12665(5)	99(3)
C(25)	6079(13)	1546(7)	10958(12)	84(7)
C(26)	6551(14)	3253(9)	11000(12)	95(7)
C(27)	-398(14)	2020(9)	9965(11)	133(8)
C(28)	497(13)	2760(10)	11844(8)	112(9)
C(29)	381(15)	3687(8)	9951(14)	143(9)

<u>Tabelle 3:</u>

Rh(1)-C(1)	1.866(5)	Si(2)-C(21)	1.842(7)
Rh(1)-C(1)#1	1.866(5)	Si(3)-C(26)	1.821(12)
Rh(1)-As(1)	2.5033(9)	Si(3)-C(26)#1	1.821(12)
Rh(1)-As(2)	2.6359(8)	Si(3)-C(25)#1	1.842(10)
Rh(1)-Rh(2)#1	2.7244(5)	Si(3)-C(25)	1.842(10)
Rh(1)-Rh(2)	2.7244(5)	Si(3)-C(24)	1.856(8)
Rh(2)-C(12)	2.182(5)	Si(3)-C(13)	1.914(7)
Rh(2)-C(11)	2.198(5)	Si(3)-C(13)#1	1.914(7)
Rh(2)-C(8)	2241(5)	Si(4)-Si(4)#1	0.815(7)
Rh(2)-C(9)	2.226(5)	Si(4)-C(27)#1	1.432(13)
Rh(2)-C(10)	2276(5)	Si(4)-C(15)#1	1.826(8)
Rh(2)-As(2)	2.3909(6)	Si(4)-C(29)	1.820(12)
Rh(2)-As(1)	2.3972(6)	Si(4)-C(27)	1.846(12)
Rh(2)-Rh(3)	2.5748(8)	Si(4)-C(15)	1.901(7)
Rh(2)-Rh(3)#1	3.0005(7)	Si(4)-C(28)	1.866(10)
Rh(3)-Rh(3)#1	0.6283(11)	Si(4)-C(28)#1	2.053(12)
Rh(3)-C(14)#1	2.101(4)	O(1)-C(1)	1.122(6)
Rh(3)-C(17)	2.193(6)	C(2)-C(3)	1.344(11)
Rh(3)-C(16)	2.209(7)	C(2)-C(7)	1.366(12)
Rh(3)-C(13)	2.226(6)	C(3)-C(4)	1.385(11)
Rh(3)-C(15)	2.250(7)	C(4)-C(5)	1.349(15)
Rh(3)-C(14)	2.261(6)	C(5)-C(6)	1.340(15)
Rh(3)-C(15)#1	2.298(8)	C(6)-C(7)	1.384(12)
Rh(3)-C(13)#1	2.322(6)	C(8)-C(12)	1.422(9)
Rh(3)-As(1)	2.3744(9)	C(8)-C(9)	1.427(7)
Rh(3)-As(2)	2.4411(10)	C(9)-C(10)	1.413(8)
As(1)-C(2)	1.938(7)	C(10)-C(11)	1.434(8)
As(1)-Rh(3)#1	2.3744(9)	C(11)-C(12)	1.418(8)
As(1)-Rh(2)#1	2.3972(6)	C(13)-C(13)#1	0.698(11)
As(2)-O(2)	1.791(5)	C(13)-C(14)#1	1.109(5)
As(2)-Rh(2)#1	2.3909(6)	C(13)-C(14)	1.415(5)

As(2)-Rh(3)#1	2.4411(10)	C(13)-C(17)	1.415(5)
Si(1)-C(8)	1.860(6)	C(13)-Rh(3)#1	2.322(6)
Si(1)-C(19)	1.845(7)	C(14)-C(15)	1.415(5)
Si(1)-C(20)	1.851(6)	C(15)-C(16)	1.415(5)
Si(1)-C(18)	1.838(7)	C(16)-C(17)	1.415(5)
Si(2)-C(23)	1.828(8)	C(16)-Rh(3)#1	2.605(7)
Si(2)-C(10)	1.865(5)	C(17)-Rh(3)#1	2.619(6)
Si(2)-C(22)	1.862(6)		
C(1)-Rh(1)-C(1)#1	95.6(3)	Rh(2)#1-As(2)-Rh(3)	76.77(2)
C(1)-Rh(1)-As(1)	122.14(18)	Rh(2)-As(2)-Rh(3)	64.39(2)
C(1)#1-Rh(1)-As(1)	122.14(18)	O(2)-As(2)-Rh(3)#1	130.68(16)
C(1)-Rh(1)-As(2)	124.87(16)	Rh(2)#1-As(2)-Rh(3)#1	64.39(2)
C(1)#1-Rh(1)-As(2)	124.86(16)	Rh(2)-As(2)-Rh(3)#1	76.77(2)
As(1)-Rh(1)-As(2)	69.37(2)	Rh(3)-As(2)-Rh(3)#1	14.79(3)
C(1)-Rh(1)-Rh(2)#1	175.96(16)	O(2)-As(2)-Rh(1)	124.56(16)
C(1)#1-Rh(1)-Rh(2)#1	88.31(15)	Rh(2)#1-As(2)-Rh(1)	65.425(18)
As(1)-Rh(1)-Rh(2)#1	54.389(16)	Rh(2)-As(2)-Rh(1)	65.425(18)
As(2)-Rh(1)-Rh(2)#1	52.947(14)	Rh(3)-As(2)-Rh(1)	104.22(3)
C(1)-Rh(1)-Rh(2)	88.31(15)	Rh(3)#1-As(2)-Rh(1)	104.22(3)
C(1)#1-Rh(1)-Rh(2)	175.96(16)	C(8)-Si(1)-C(19)	109.7(3)
As(1)-Rh(1)-Rh(2)	54.389(16)	C(8)-Si(1)-C(20)	107.2(3)
As(2)-Rh(1)-Rh(2)	52.948(14)	C(19)-Si(1)-C(20)	109.5(3)
Rh(2)#1-Rh(1)-Rh(2)	87.79(2)	C(8)-Si(1)-C(18)	109.2(3)
C(12)-Rh(2)-C(11)	37.8(2)	C(19)-Si(1)-C(18)	111.8(4)
C(12)-Rh(2)-C(8)	37.5(2)	C(20)-Si(1)-C(18)	109.4(3)
C(11)-Rh(2)-C(8)	63.0(2)	C(23)-Si(2)-C(10)	110.5(3)
C(12)-Rh(2)-C(9)	61.5(2)	C(23)-Si(2)-C(22)	110.0(4)
C(11)-Rh(2)-C(9)	61.4(2)	C(10)-Si(2)-C(22)	106.8(3)
C(8)-Rh(2)-C(9)	37.26(18)	C(23)-Si(2)-C(21)	110.2(4)
C(12)-Rh(2)-C(10)	62.55(19)	C(10)-Si(2)-C(21)	110.0(3)
C(11)-Rh(2)-C(10)	37.32(19)	C(22)-Si(2)-C(21)	109.3(3)
C(8)-Rh(2)-C(10)	62.81(19)	C(26)-Si(3)-C(26)#1	91.7(12)
C(9)-Rh(2)-C(10)	36.56(19)	C(26)-Si(3)-C(25)#1	20.5(8)

C(12)-Rh(2)-As(2)	108.92(15)	C(26)#1-Si(3)-C(25)#1	110.7(6)
C(11)-Rh(2)-As(2)	137.89(15)	C(26)-Si(3)-C(25)	110.7(6)
C(8)-Rh(2)-As(2)	108.06(14)	C(26)#1-Si(3)-C(25)	20.5(8)
C(9)-Rh(2)-As(2)	137.02(14)	C(25)#1-Si(3)-C(25)	128.1(11)
C(10)-Rh(2)-As(2)	170.54(13)	C(26)-Si(3)-C(24)	109.7(6)
C(12)-Rh(2)-As(1)	149.72(19)	C(26)#1-Si(3)-C(24)	109.7(6)
C(11)-Rh(2)-As(1)	119.97(18)	C(25)#1-Si(3)-C(24)	108.3(6)
C(8)-Rh(2)-As(1)	171.40(16)	C(25)-Si(3)-C(24)	108.3(6)
C(9)-Rh(2)-As(1)	135.48(13)	C(26)-Si(3)-C(13)	126.9(6)
C(10)-Rh(2)-As(1)	114.05(14)	C(26)#1-Si(3)-C(13)	109.8(6)
As(2)-Rh(2)-As(1)	75.35(2)	C(25)#1-Si(3)-C(13)	110.7(5)
C(12)-Rh(2)-Rh(3)	98.65(18)	C(25)-Si(3)-C(13)	91.5(5)
C(11)-Rh(2)-Rh(3)	95.05(18)	C(24)-Si(3)-C(13)	107.5(4)
C(8)-Rh(2)-Rh(3)	131.67(16)	C(26)-Si(3)-C(13)#1	109.8(6)
C(9)-Rh(2)-Rh(3)	156.31(14)	C(26)#1-Si(3)-C(13)#1	126.9(6)
C(10)-Rh(2)-Rh(3)	124.61(15)	C(25)#1-Si(3)-C(13)#1	91.5(5)
As(2)-Rh(2)-Rh(3)	58.75(2)	C(25)-Si(3)-C(13)#1	110.7(5)
As(1)-Rh(2)-Rh(3)	56.92(2)	C(24)-Si(3)-C(13)#1	107.5(4)
C(12)-Rh(2)-Rh(1)	151.05(18)	C(13)-Si(3)-C(13)#1	21.0(3)
C(11)-Rh(2)-Rh(1)	160.49(15)	Si(4)#1-Si(4)-C(27)#1	107.3(7)
C(8)-Rh(2)-Rh(1)	116.06(16)	Si(4)#1-Si(4)-C(15)#1	82.6(3)
C(9)-Rh(2)-Rh(1)	105.21(14)	C(27)#1-Si(4)-C(15)#1	140.6(7)
C(10)-Rh(2)-Rh(1)	123.50(13)	Si(4)#1-Si(4)-C(29)	155.3(6)
As(2)-Rh(2)-Rh(1)	61.627(19)	C(27)#1-Si(4)-C(29)	54.5(9)
As(1)-Rh(2)-Rh(1)	58.10(2)	C(15)#1-Si(4)-C(29)	101.8(6)
Rh(3)-Rh(2)-Rh(1)	98.26(2)	Si(4)#1-Si(4)-C(27)	47.8(6)
C(12)-Rh(2)-Rh(3)#1	107.08(18)	C(27)#1-Si(4)-C(27)	59.5(13)
C(11)-Rh(2)-Rh(3)#1	104.42(18)	C(15)#1-Si(4)-C(27)	118.8(7)
C(8)-Rh(2)-Rh(3)#1	137.67(16)	C(29)-Si(4)-C(27)	111.7(7)
C(9)-Rh(2)-Rh(3)#1	165.81(14)	Si(4)#1-Si(4)-C(15)	72.3(3)
C(10)-Rh(2)-Rh(3)#1	132.20(15)	C(27)#1-Si(4)-C(15)	142.7(7)
As(2)-Rh(2)-Rh(3)#1	52.37(2)	C(15)#1-Si(4)-C(15)	10.3(5)
As(1)-Rh(2)-Rh(3)#1	50.70(2)	C(29)-Si(4)-C(15)	111.0(6)
Rh(3)-Rh(2)-Rh(3)#1	9.536(16)	C(27)-Si(4)-C(15)	110.0(6)

Rh(1)-Rh(2)-Rh(3)#1	88.749(18)	Si(4)#1-Si(4)-C(28)	91.3(5)
Rh(3)#1-Rh(3)-C(14)#1	96.52(13)	C(27)#1-Si(4)-C(28)	111.6(8)
Rh(3)#1-Rh(3)-C(17)	126.86(16)	C(15)#1-Si(4)-C(28)	106.0(6)
C(14)#1-Rh(3)-C(17)	34.6(2)	C(29)-Si(4)-C(28)	110.4(7)
Rh(3)#1-Rh(3)-C(16)	123.08(18)	C(27)-Si(4)-C(28)	107.9(6)
C(14)#1-Rh(3)-C(16)	37.0(2)	C(15)-Si(4)-C(28)	105.6(5)
C(17)-Rh(3)-C(16)	37.50(14)	Si(4)#1-Si(4)-C(28)#1	65.3(5)
Rh(3)#1-Rh(3)-C(13)	90.90(14)	C(27)#1-Si(4)-C(28)#1	117.8(8)
C(14)#1-Rh(3)-C(13)	29.53(13)	C(15)#1-Si(4)-C(28)#1	101.2(5)
C(17)-Rh(3)-C(13)	37.34(14)	C(29)-Si(4)-C(28)#1	135.6(9)
C(16)-Rh(3)-C(13)	62.2(2)	C(27)-Si(4)-C(28)#1	89.1(7)
Rh(3)#1-Rh(3)-C(15)	86.3(2)	C(15)-Si(4)-C(28)#1	96.4(5)
C(14)#1-Rh(3)-C(15)	33.84(17)	C(28)-Si(4)-C(28)#1	26.0(10)
C(17)-Rh(3)-C(15)	62.0(2)	O(1)-C(1)-Rh(1)	176.7(5)
C(16)-Rh(3)-C(15)	36.99(15)	C(3)-C(2)-C(7)	120.9(7)
C(13)-Rh(3)-C(15)	61.5(2)	C(3)-C(2)-As(1)	119.2(7)
Rh(3)#1-Rh(3)-C(14)	67.45(18)	C(7)-C(2)-As(1)	120.0(6)
C(14)#1-Rh(3)-C(14)	29.1(3)	C(2)-C(3)-C(4)	119.9(10)
C(17)-Rh(3)-C(14)	61.8(2)	C(5)-C(4)-C(3)	119.5(10)
C(16)-Rh(3)-C(14)	61.6(2)	C(4)-C(5)-C(6)	120.6(9)
C(13)-Rh(3)-C(14)	36.76(14)	C(5)-C(6)-C(7)	120.8(11)
C(15)-Rh(3)-C(14)	36.56(14)	C(2)-C(7)-C(6)	118.4(9)
Rh(3)#1-Rh(3)-C(15)#1	77.8(2)	C(12)-C(8)-C(9)	104.6(5)
C(14)#1-Rh(3)-C(15)#1	37.19(15)	C(12)-C(8)-Si(1)	127.5(4)
C(17)-Rh(3)-C(15)#1	68.3(3)	C(9)-C(8)-Si(1)	127.5(5)
C(16)-Rh(3)-C(15)#1	45.5(4)	C(12)-C(8)-Rh(2)	69.0(3)
C(13)-Rh(3)-C(15)#1	62.3(2)	C(9)-C(8)-Rh(2)	70.8(3)
C(15)-Rh(3)-C(15)#1	8.5(4)	Si(1)-C(8)-Rh(2)	129.4(2)
C(14)-Rh(3)-C(15)#1	32.5(2)	C(10)-C(9)-C(8)	111.9(5)
Rh(3)#1-Rh(3)-C(13)#1	73.41(14)	C(10)-C(9)-Rh(2)	73.7(3)
C(14)#1-Rh(3)-C(13)#1	36.88(14)	C(8)-C(9)-Rh(2)	71.9(3)
C(17)-Rh(3)-C(13)#1	54.4(3)	C(9)-C(10)-C(11)	105.1(4)
C(16)-Rh(3)-C(13)#1	73.5(2)	C(9)-C(10)-Si(2)	127.3(4)
C(13)-Rh(3)-C(13)#1	17.5(3)	C(11)-C(10)-Si(2)	127.1(4)

C(15) D1 (0) C(10) //1			(0,0/2)
C(15)-Rh(3)-C(13)#1	61.6(2)	C(9)-C(10)-Rh(2)	69.8(3)
C(14)-Rh(3)-C(13)#1	27.97(17)	C(11)-C(10)-Rh(2)	68.4(3)
C(15)#1-Rh(3)-C(13)#1	59.4(2)	Si(2)-C(10)-Rh(2)	131.9(3)
Rh(3)#1-Rh(3)-As(1)	82.397(13)	C(10)-C(11)-C(12)	108.6(5)
C(14)#1-Rh(3)-As(1)	150.85(16)	C(10)-C(11)-Rh(2)	74.3(3)
C(17)-Rh(3)-As(1)	149.03(15)	C(12)-C(11)-Rh(2)	70.5(3)
C(16)-Rh(3)-As(1)	121.54(17)	C(8)-C(12)-C(11)	109.6(5)
C(13)-Rh(3)-As(1)	173.29(14)	C(8)-C(12)-Rh(2)	73.5(3)
C(15)-Rh(3)-As(1)	117.44(18)	C(11)-C(12)-Rh(2)	71.7(3)
C(14)-Rh(3)-As(1)	138.34(17)	C(13)#1-C(13)-C(14)#1	100.6(4)
C(15)#1-Rh(3)-As(1)	115.6(2)	C(13)#1-C(13)-C(14)	50.4(2)
C(13)#1-Rh(3)-As(1)	155.80(14)	C(14)#1-C(13)-C(14)	50.2(5)
Rh(3)#1-Rh(3)-As(2)	82.606(13)	C(13)#1-C(13)-C(17)	154.9(2)
C(14)#1-Rh(3)-As(2)	134.11(16)	C(14)#1-C(13)-C(17)	59.5(4)
C(17)-Rh(3)-As(2)	114.81(18)	C(14)-C(13)-C(17)	108.0
C(16)-Rh(3)-As(2)	149.1(2)	C(13)#1-C(13)-Si(3)	79.50(17)
C(13)-Rh(3)-As(2)	104.7(2)	C(14)#1-C(13)-Si(3)	158.1(5)
C(15)-Rh(3)-As(2)	162.3(2)	C(14)-C(13)-Si(3)	125.8(4)
C(14)-Rh(3)-As(2)	125.7(2)	C(17)-C(13)-Si(3)	124.9(4)
C(15)#1-Rh(3)-As(2)	156.03(19)	C(13)#1-C(13)-Rh(3)	89.10(14)
C(13)#1-Rh(3)-As(2)	101.8(2)	C(14)#1-C(13)-Rh(3)	69.0(2)
As(1)-Rh(3)-As(2)	74.83(3)	C(14)-C(13)-Rh(3)	73.0(2)
Rh(3)#1-Rh(3)-Rh(2)	127.705(16)	C(17)-C(13)-Rh(3)	70.1(2)
C(14)#1-Rh(3)-Rh(2)	134.97(13)	Si(3)-C(13)-Rh(3)	132.6(4)
C(17)-Rh(3)-Rh(2)	101.28(17)	C(13)#1-C(13)-Rh(3)#1	73.41(13)
C(16)-Rh(3)-Rh(2)	107.11(18)	C(14)#1-C(13)-Rh(3)#1	72.9(3)
C(13)-Rh(3)-Rh(2)	127.77(18)	C(14)-C(13)-Rh(3)#1	63.1(3)
C(15)-Rh(3)-Rh(2)	139.9(2)	C(17)-C(13)-Rh(3)#1	85.3(3)
C(14)-Rh(3)-Rh(2)	162.95(16)	Si(3)-C(13)-Rh(3)#1	126.9(3)
C(15)#1-Rh(3)-Rh(2)	147.11(19)	Rh(3)-C(13)-Rh(3)#1	15.70(5)
C(13)#1-Rh(3)-Rh(2)	140.44(17)	C(13)-C(14)-C(15)	108.0
As(1)-Rh(3)-Rh(2)	57.772(19)	C(13)-C(14)-Rh(3)	70.3(2)
As(2)-Rh(3)-Rh(2)	56.86(2)	C(15)-C(14)-Rh(3)	71.3(3)
C(2)-As(1)-Rh(3)#1	131.5(3)	C(14)-C(15)-C(16)	108.0

C(2)-As(1)-Rh(3)	131.5(3)	C(14)-C(15)-Si(4)	123.4(5)
Rh(3)#1-As(1)-Rh(3)	15.21(3)	C(16)-C(15)-Si(4)	124.5(5)
C(2)-As(1)-Rh(2)#1	127.18(4)	C(14)-C(15)-Rh(3)	72.1(2)
Rh(3)#1-As(1)-Rh(2)#1	65.31(2)	C(16)-C(15)-Rh(3)	69.9(2)
Rh(3)-As(1)-Rh(2)#1	77.93(2)	Si(4)-C(15)-Rh(3)	141.8(4)
C(2)-As(1)-Rh(2)	127.18(4)	C(15)-C(16)-C(17)	108.0
Rh(3)#1-As(1)-Rh(2)	77.93(2)	C(15)-C(16)-Rh(3)	73.1(2)
Rh(3)-As(1)-Rh(2)	65.31(2)	C(17)-C(16)-Rh(3)	70.7(3)
Rh(2)#1-As(1)-Rh(2)	103.99(3)	C(15)-C(16)-Rh(3)#1	61.6(2)
C(2)-As(1)-Rh(1)	117.4(3)	C(17)-C(16)-Rh(3)#1	74.8(2)
Rh(3)#1-As(1)-Rh(1)	110.51(3)	Rh(3)-C(16)-Rh(3)#1	11.66(5)
Rh(3)-As(1)-Rh(1)	110.51(3)	C(16)-C(17)-C(13)	108.0
Rh(2)#1-As(1)-Rh(1)	67.51(2)	C(16)-C(17)-Rh(3)	71.8(3)
Rh(2)-As(1)-Rh(1)	67.51(2)	C(13)-C(17)-Rh(3)	72.6(2)
O(2)-As(2)-Rh(2)#1	127.36(2)	C(16)-C(17)-Rh(3)#1	73.8(2)
O(2)-As(2)-Rh(2)	127.36(2)	C(13)-C(17)-Rh(3)#1	62.1(2)
Rh(2)#1-As(2)-Rh(2)	104.38(3)	Rh(3)-C(17)-Rh(3)#1	11.07(4)
O(2)-As(2)-Rh(3)	130.68(16)		

Symmetrietransformationen für die äquivalenten Atome:

#1 x,-y+1/2,z

Tabelle 4 :Anisotrope Auslenkungsparameter $[Å^2 x 10^3]$ für $[{Cp}^{=}Rh}_{3}(AsO)(AsPh)Rh(CO)_2]$ (14)

Der Exponent des anisotropen Auslenkungsfaktors hat die Form: $-2\pi^2$ [$(ha^*)^2U_{11} + ... + 2hka^*b^*U_{12}$].

	U ₁₁	U ₂₂	U ₃₃	U ₂₃	U ₁₃	U ₁₂
$\mathbf{Rh}(1)$	45(1)	47(1)	32(1)	0	2(1)	0
Rh(2)	+3(1) 35(1)	$\frac{4}{(1)}$	32(1) 42(1)	13(1)	-4(1)	-9(1)
Rh(2)	33(1)	35(1)	33(1)	-4(1)		-9(1)
$A_{s}(1)$	32(1)	67(1)	40(1)	-(1) 0	-5(1)	2(1)
As(2)	29(1)	55(1)	38(1)	0	0(1)	0
Si(1)	43(1)	65(1)	92(1)	11(1)	-11(1)	-5(1)
Si(2)	43(1)	66(1)	84(1)	-10(1)	-9(1)	-10(1)
Si(3)	54(1)	51(1)	38(1)	0	-5(1)	0
Si(4)	42(2)	110(4)	67(2)	-19(2)	17(1)	-6(2)
O(1)	131(5)	79(3)	57(3)	-23(2)	15(3)	10(3)
O(2)	64(4)	57(3)	58(3)	0	14(3)	0
C(1)	76(4)	58(3)	41(3)	0(2)	7(3)	-1(3)
C(2)	47(5)	55(4)	58(5)	0	-27(4)	0
C(3)	52(5)	80(5)	73(6)	0	-26(4)	0
C(4)	77(8)	73(6)	93(7)	0	-46(6)	0
C(5)	53(7)	76(6)	138(10)	0	-40(7)	0
C(6)	38(6)	110(8)	140(11)	0	-9(6)	0
C(7)	39(5)	83(5)	76(6)	0	-6(4)	0
C(8)	54(4)	52(3)	81(4)	26(3)	-15(3)	-8(2)
C(9)	45(3)	50(3)	69(3)	14(2)	-5(3)	-11(2)
C(10)	39(3)	60(3)	64(3)	6(2)	-4(3)	-16(2)
C(11)	59(4)	77(4)	67(4)	23(3)	-2(3)	-24(3)
C(12)	71(4)	66(3)	69(4)	28(3)	-25(3)	-20(3)

C(13)	54(7)	39(8)	40(5)	4(3)	14(4)	3(4)
C(14)	61(8)	59(6)	33(5)	-16(4)	7(5)	-6(5)
C(15)	55(6)	62(7)	38(4)	8(6)	8(4)	-20(7)
C(16)	51(7)	48(5)	48(6)	-8(4)	22(5)	-17(4)
C(17)	50(7)	46(5)	35(5)	6(4)	9(4)	-8(4)
C(18)	53(5)	135(6)	122(6)	-34(5)	-18(4)	10(4)
C(19)	60(5)	85(4)	141(7)	37(4)	21(4)	0(3)
C(20)	85(5)	82(4)	88(5)	18(4)	-4(4)	-4(4)
C(21)	114(6)	88(5)	94(5)	-3(4)	-39(5)	3(4)
C(22)	96(6)	66(4)	134(7)	-4(4)	-27(5)	-16(4)
C(23)	49(5)	145(7)	178(9)	-41(6)	22(5)	-21(4)
C(24)	100(9)	152(9)	43(5)	0	-9(5)	0
C(25)	96(13)	41(7)	111(13)	-13(7)	-56(11)	26(9)
C(26)	113(17)	87(13)	81(12)	11(9)	-30(11)	-4(11)
C(27)	79(14)	220(2)	100(12)	-49(12)	35(9)	-64(12)
C(28)	85(12)	180(3)	72(8)	-30(10)	41(7)	-7(10)
C(29)	78(14)	140(16)	210(2)	45(15)	36(14)	53(11)

	Х	У	Z	U(eq)
H(3)	1797	2500	5446	83
H(4)	-26	2500	4699	99
H(5)	-1592	2500	5653	108
H(6)	-1382	2500	7319	116
H(7)	431	2500	8085	79
H(9)	4437	255	6277	66
H(11)	2827	386	8852	81
H(12)	4934	488	9220	83
H(14)	3172	3342	10747	61
H(16)	2006	1226	9926	58
H(17)	4106	1113	10366	52
H(18A)	7409	1098	8865	156
H(18B)	8301	439	8706	156
H(18C)	7176	267	9262	156
H(19A)	6774	810	5950	142
H(19B)	7995	899	6460	142
H(19C)	7013	1473	6715	142
H(20A)	6869	-1035	7762	128
H(20B)	7900	-753	7148	128
H(20C)	6678	-840	6638	128
H(21A)	1138	256	5063	149
H(21B)	2444	464	5166	149
H(21C)	1526	1029	5572	149
H(22A)	1754	-1314	7101	149
H(22B)	2551	-1203	6206	149

Tabelle 5:H-Atomkoordinaten [x 10^4] und äquivalente isotrope Auslenkungsparameter[Ų x 10^3] für [{Cp=Rh}3(AsO)(AsPh)Rh(CO)2] (14)

]	H(22C)	1215	-1197	6033	149
]	H(23A)	645	-11	8034	185
]	H(23B)	-97	149	7066	185
]	H(23C)	633	813	7561	185
]	H(24A)	6035	2664	13003	148
]	H(24B)	5148	1990	12876	148
]	H(24C)	4729	2847	12816	148
]	H(25A)	6247	1548	10269	127
]	H(25B)	5507	1162	11076	127
]	H(25C)	6764	1429	11344	127
]	H(26A)	7266	3170	11360	142
]	H(26B)	6246	3746	11173	142
]	H(26C)	6675	3239	10304	142
]	H(27A)	-262	1531	10280	199
]	H(27B)	-305	1969	9267	199
]	H(27C)	-1165	2188	10083	199
]	H(28A)	-300	2757	11995	167
]	H(28B)	853	3219	12106	167
]	H(28C)	868	2316	12134	167
]	H(29A)	578	3686	9269	214
]	H(29B)	844	4058	10307	214
]	H(29C)	-414	3818	9998	214

6. Strukturdaten von [{Cp^{"'}Rh(CO)}₂] (3c)

<u>*Tabelle 1:*</u> Kristalldaten und Strukturverfeinerung für $[{Cp''Rh(CO)}_2]$ (3c)

Summenformel	$C_{36}H_{58}O_2Rh_2$		
Molmasse	728.64		
Temperatur	293(2) K		
Strahlung	ΜοΚα		
Wellenlänge	0.71073 Å		
Scanmodus	Phi-Oszillation		
Kristallsystem	Monoklin		
Raumgruppe	$P2_1/m$		
Zelldimensionen	a = 10.4171(17) Å	$\alpha = 90^{\circ}$	
	b = 14.3123(17) Å	$\beta = 90.529(18)^{\circ}$	
	c = 11.9372(15) Å	$\gamma = 90^{\circ}$	
Zellvolumen	1779.7(4) Å ³		
Formeleinheiten pro Zelle Z	2		
Berechnete Dichte	1.360 Mg/m^3		
Absorptionskoeffizient	0.955 mm ⁻¹		
Kristallgröße	0.60 x 0.28 x 0.08 mm		
Gemessener θ-Bereich	2.95 bis 25.67°		
Anzahl der gemessenen Reflexe	13538		
Unabhängige Reflexe	3425 (Rint = 0.1180)		
Absorptionskorrektur	Analytisch (ABST/PLATON	V 98)	
Max. und min. Transmission	0.92684 und 0.74318		
Diffraktometer	Stoe IPDS		
Strukturlösung	Direkte Methoden		
Strukturlösungsprogramm	SIR97 (Giacovazzo et al., 19	997)	
Strukturverfeinerung	Vollmatrix Least-Squares ge	egen F ²	
Strukturverfeinerungsprogramm	SHELXL-97 (Sheldrick, 1997)		
Daten / Restraints / Parameter	3425 / 36 / 203		
Endgültige R-Werte [I>2o (I)]	R1 = 0.0545, wR2 = 0.1239		

R-Werte (alle Daten)	R1 = 0.1090, WR2 = 0.1414
Wichtungsschema	w=1/[$\sigma^2(Fo^2)$ +(0.0798P) ² +0.0000P] mit P=(Fo ² +2Fc ²)/3
GooF (alle Daten)	0.824
Größtes Maximum und Minimum	1.134 und -0.596 eÅ ⁻³

Verfeinerung nach F^2 mit ALLEN Reflexen. Die gewichteten R-Werte wR2 und alle GooF's basieren auf F^2 . Die konventionellen R-Werte R1 basieren auf F, wobei F für negative F^2 gleich Null gesetzt wird. Das Ablehnungskriterium $F^2 > 2\sigma$ (F^2) wird nur zum Berechnen von R(obs) etc. verwendet. Zur Verfeinerung wurden alle Reflexe herangezogen. Grundsätzlich gilt: Auf F^2 bezogene R-Werte sind statistisch etwa doppelt so groß wie die auf F basierenden. Auf ALLE Reflexe bezogene R-Werte sind noch größer.

Die Kristalle sind ausnahmslos verzwillingt. Die Wasserstoffatome wurden geometrisch lokalisiert. Für die Verfeinerung wurde ein Reitermodell angenommen. Als Temperaturfaktor wurde der 1.5-fache Wert (CH₃-Gruppen) bzw. der 1.2-fache Wert (Cp-H) des äquivalenten isotropen Temperaturfaktors desjenigen C-Atoms eingesetzt, an welches das jeweilige H-Atom gebunden ist.

Einzelheiten können dem Handbuch für das Verfeinerungsprogramm SHELXL entnommen werden.

 $GooF = \sqrt{\frac{\sum \left[w\left(F_o^2 - F_c^2\right)\right]}{(n-p)}}$ n = Zahl der Reflexe; p = Zahl der verfeinerten Parameter

Tabelle 2:	Atomkoordinaten [x 10^4] und äquivalente isotrope Auslenkungsparameter
	$[Å^2 x 10^3]$ für $[{Cp'''Rh(CO)}_2]$ (3c)

U(eq) wird berechnet als ein Drittel der Spur des orthogonalisierten U_{ij} -Tensors.

	х	у	Z	U(eq)
Rh(1)	6470(1)	2500	2157(1)	38(1)
Rh(2)	5826(1)	2500	76(1)	37(1)
O(1)	6060(7)	634(5)	1154(5)	71(2)
C(1)	6096(7)	1478(6)	1124(7)	46(2)
C(2)	7880(7)	1986(7)	3446(6)	55(2)
C(3)	6630(7)	1708(7)	3764(7)	50(2)
C(4)	5853(9)	2500	3946(9)	45(3)
C(5)	6308(6)	1992(6)	-1646(6)	42(2)
C(6)	5028(6)	1716(6)	-1387(6)	40(2)
C(7)	4249(9)	2500	-1195(8)	39(3)
C(8)	8925(8)	1253(9)	3277(8)	72(3)
C(9)	8363(14)	258(11)	3323(14)	133(6)
C(10)	9562(15)	1297(13)	2155(13)	152(6)
C(11)	9897(10)	1282(10)	4218(12)	110(5)
C(12)	4464(10)	2500	4318(10)	65(4)
C(13)	3780(14)	1716(17)	3820(2)	225(11)
C(14)	4430(2)	2500	5510(2)	209(12)
C(15)	7317(7)	1259(6)	-1947(7)	52(2)
C(16)	7599(17)	1287(12)	-3165(12)	152(6)
C(17)	8523(11)	1317(11)	-1278(14)	138(6)
C(18)	6844(12)	290(9)	-1698(14)	124(5)
C(19)	2852(10)	2500	-965(10)	48(3)
C(20)	2076(11)	2500	-2143(11)	74(5)
C(21)	2459(9)	1640(8)	-305(11)	87(4)

-			, 	
				-
Rh(1)-C(1)#1	1.951(9)	C(4)-C(3)#1	1.411(10)	
Rh(1)-C(1)	1.951(9)	C(4)-C(12)	1.518(13)	
Rh(1)-C(3)#1	2.233(8)	C(5)-C(6)	1.427(10)	
Rh(1)-C(3)	2.233(8)	C(5)-C(5)#1	1.453(16)	
Rh(1)-C(4)	2.236(10)	C(5)-C(15)	1.530(10)	
Rh(1)-C(2)#1	2.241(7)	C(6)-C(7)	1.405(9)	
Rh(1)-C(2)	2.241(7)	C(7)-C(6)#1	1.405(9)	
Rh(1)-Rh(2)	2.5676(12)	C(7)-C(19)	1.483(14)	
Rh(2)-C(1)	1.943(9)	C(8)-C(10)	1.502(16)	
Rh(2)-C(1)#1	1.944(9)	C(8)-C(11)	1.506(14)	
Rh(2)-C(7)	2.226(10)	C(8)-C(9)	1.540(19)	
Rh(2)-C(6)#1	2.229(7)	C(12)-C(14)	1.42(3)	
Rh(2)-C(6)	2.229(7)	C(12)-C(13)#1	1.45(2)	
Rh(2)-C(5)#1	2.242(7)	C(12)-C(13)	1.45(2)	
Rh(2)-C(5)	2.242(7)	C(15)-C(17)	1.484(14)	
O(1)-C(1)	1.209(10)	C(15)-C(16)	1.487(16)	
C(2)-C(3)	1.417(10)	C(15)-C(18)	1.503(16)	
C(2)-C(2)#1	1.471(19)	C(19)-C(21)	1.520(11)	
C(2)-C(8)	1.527(12)	C(19)-C(21)#1	1.520(11)	
C(3)-C(4)	1.411(10)	C(19)-C(20)	1.616(17)	
C(1)#1-Rh(1)-C(1)	97.2(5)	O(1)-C(1)-Rh(1)	137.4(7)	
C(1)#1-Rh(1)-C(3)#1	100.1(3)	Rh(2)-C(1)-Rh(1)	82.5(4)	
C(1)-Rh(1)-C(3)#1	159.5(4)	C(3)-C(2)-C(2)#1	106.3(5)	
C(1)#1-Rh(1)-C(3)	159.5(4)	C(3)-C(2)-C(8)	120.0(9)	
C(1)-Rh(1)-C(3)	100.1(3)	C(2)#1-C(2)-C(8)	133.4(6)	
C(3)#1-Rh(1)-C(3)	61.0(5)	C(3)-C(2)-Rh(1)	71.2(4)	
C(1)#1-Rh(1)-C(4)	123.1(3)	C(2)#1-C(2)-Rh(1)	70.8(2)	
C(1)-Rh(1)-C(4)	123.1(3)	C(8)-C(2)-Rh(1)	126.7(6)	

<u>*Tabelle 3:*</u> Bindungslängen [Å] und -winkel [°] für $[{Cp^{"}Rh(CO)}_2]$ (3c)

368(3)	C(4)C(3)C(2)	110.2(8)
36.8(3)	C(4) $C(3)$ $Pb(1)$	71.7(5)
108 2(2)	C(4) - C(3) - C(1)	71.7(3)
100.5(5)	$C(2) \neq C(3) + C(4) + C(2)$	106.0(0)
143.7(3)	C(3) # I + C(4) + C(3)	106.9(9)
36.9(3)	C(3)#I-C(4)-C(12)	126.5(4)
62.2(3)	C(3)-C(4)-C(12)	126.5(4)
62.4(3)	C(3)#1-C(4)-Rh(1)	71.5(5)
143.7(3)	C(3)-C(4)-Rh(1)	71.5(5)
108.3(3)	C(12)-C(4)-Rh(1)	124.2(8)
62.2(3)	C(6)-C(5)-C(5)#1	106.1(5)
36.9(3)	C(6)-C(5)-C(15)	120.4(7)
62.4(3)	C(5)#1-C(5)-C(15)	133.3(5)
38.3(5)	C(6)-C(5)-Rh(2)	70.9(4)
48.6(3)	C(5)#1-C(5)-Rh(2)	71.1(2)
48.6(3)	C(15)-C(5)-Rh(2)	126.7(5)
148.0(2)	C(7)-C(6)-C(5)	110.9(7)
148.0(2)	C(7)-C(6)-Rh(2)	71.5(5)
148.1(3)	C(5)-C(6)-Rh(2)	71.9(4)
145.9(2)	C(6)-C(7)-C(6)#1	105.9(9)
145.9(2)	C(6)-C(7)-C(19)	126.9(4)
97.7(5)	C(6)#1-C(7)-C(19)	126.9(4)
122.7(3)	C(6)-C(7)-Rh(2)	71.7(5)
122.7(3)	C(6)#1-C(7)-Rh(2)	71.7(5)
159.0(3)	C(19)-C(7)-Rh(2)	126.4(7)
100.1(3)	C(10)-C(8)-C(11)	111.3(10)
36.8(2)	C(10)-C(8)-C(2)	114.3(9)
100.1(3)	C(11)-C(8)-C(2)	111.0(9)
159.0(3)	C(10)-C(8)-C(9)	104.0(12)
36.8(2)	C(11)-C(8)-C(9)	104.6(10)
60.4(4)	C(2)-C(8)-C(9)	111.0(9)
143.3(3)	C(14)-C(12)-C(13)#1	113.1(12)
108.3(3)	C(14)-C(12)-C(13)	113.1(12)
63.0(3)	C(13)#1-C(12)-C(13)	101(2)
37.2(3)	C(14)-C(12)-C(4)	109.1(14)
	36.8(3) 36.8(3) 108.3(3) 143.7(3) 62.2(3) 62.4(3) 143.7(3) 108.3(3) 62.2(3) 36.9(3) 62.4(3) 38.3(5) 48.6(3) 48.6(3) 148.0(2) 148.0(2) 148.0(2) 148.0(2) 148.0(2) 148.0(2) 148.0(2) 148.0(2) 148.0(2) 148.1(3) 145.9(2) 97.7(5) 122.7(3) 122.7(3) 159.0(3) 36.8(2) 100.1(3) 36.8(2) 100.1(3) 36.8(2) 100.1(3) 36.8(2) 100.1(3) 36.8(2)	36.8(3) C(4)-C(3)-C(2) 36.8(3) C(4)-C(3)-Rh(1) 108.3(3) C(2)-C(3)-Rh(1) 143.7(3) C(3)#1-C(4)-C(12) 62.2(3) C(3)#1-C(4)-C(12) 62.2(3) C(3)#1-C(4)-Rh(1) 143.7(3) C(3)#1-C(4)-Rh(1) 143.7(3) C(3)-C(4)-Rh(1) 143.7(3) C(3)-C(4)-Rh(1) 162.2(3) C(6)-C(5)-C(5)#1 36.9(3) C(6)-C(5)-C(5)#1 36.9(3) C(6)-C(5)-C(5)#1 36.9(3) C(6)-C(5)-C(15) 62.4(3) C(5)#1-C(5)-Rh(2) 48.6(3) C(5)#1-C(5)-Rh(2) 48.6(3) C(5)#1-C(5)-Rh(2) 48.6(3) C(5)-C(6)-Rh(2) 148.0(2) C(7)-C(6)-Rh(2) 148.0(2) C(7)-C(6)-Rh(2) 148.0(2) C(6)-C(7)-C(6)#1 145.9(2) C(6)-C(7)-C(19) 97.7(5) C(6)-C(7)-C(19) 97.7(5) C(6)-C(7)-Rh(2) 122.7(3) C(6)-C(7)-Rh(2) 159.0(3) C(10)-C(8)-C(2) 100.1(3) C(11)-C(8)-C(2) 159.0(3) C(10)-C(8)-C(2) 159.0(3)

C(6)-Rh(2)-C(5)#1	62.0(3)	C(13)#1-C(12)-C(4)	110.2(9)
C(1)-Rh(2)-C(5)	108.3(3)	C(13)-C(12)-C(4)	110.2(8)
C(1)#1-Rh(2)-C(5)	143.3(3)	C(17)-C(15)-C(16)	110.5(11)
C(7)-Rh(2)-C(5)	63.0(3)	C(17)-C(15)-C(18)	102.9(10)
C(6)#1-Rh(2)-C(5)	62.0(3)	C(16)-C(15)-C(18)	106.6(11)
C(6)-Rh(2)-C(5)	37.2(3)	C(17)-C(15)-C(5)	114.5(8)
C(5)#1-Rh(2)-C(5)	37.8(4)	C(16)-C(15)-C(5)	110.7(9)
C(1)-Rh(2)-Rh(1)	48.9(3)	C(18)-C(15)-C(5)	111.1(7)
C(1)#1-Rh(2)-Rh(1)	48.9(3)	C(7)-C(19)-C(21)	111.5(6)
C(7)-Rh(2)-Rh(1)	147.6(2)	C(7)-C(19)-C(21)#1	111.5(6)
C(6)#1-Rh(2)-Rh(1)	148.2(2)	C(21)-C(19)-C(21)#1	108.1(12)
C(6)-Rh(2)-Rh(1)	148.2(2)	C(7)-C(19)-C(20)	108.8(9)
C(5)#1-Rh(2)-Rh(1)	145.94(18)	C(21)-C(19)-C(20)	108.4(7)
C(5)-Rh(2)-Rh(1)	145.94(18)	C(21)#1-C(19)-C(20)	108.4(7)
O(1)-C(1)-Rh(2)	140.1(7)		

Symmetrietransformationen für die äquivalenten Atome:

#1 x,-y+1/2,z

<u>*Tabelle 4*</u>: Anisotrope Auslenkungsparameter $[Å^2 \ge 10^3]$ für $[\{Cp''Rh(CO)\}_2]$ (3c) Der Exponent des anisotropen Auslenkungsfaktors hat die Form: $-2\pi^2 [(ha^*)^2 U_{11} + ... + 2hka^*b^*U_{12}]$.

	U ₁₁	U ₂₂	U ₃₃	U ₂₃	U ₁₃	U ₁₂
Rh(1)	32(1)	43(1)	38(1)	0	4(1)	0
Rh(2)	32(1)	41(1)	39(1)	0	4(1)	0
O(1)	108(5)	42(4)	64(4)	1(4)	-16(3)	-16(4)
C(1)	41(4)	55(6)	41(4)	1(5)	0(3)	-2(4)
C(2)	38(4)	91(7)	36(4)	5(4)	-2(3)	10(4)
C(3)	51(4)	52(6)	47(5)	16(4)	1(4)	-6(4)
C(4)	29(5)	65(9)	41(6)	0	6(4)	0
C(5)	36(4)	52(5)	37(4)	-2(3)	3(3)	4(3)
C(6)	37(4)	48(6)	34(4)	-5(3)	1(3)	-9(3)
C(7)	36(5)	48(8)	32(5)	0	2(4)	0
C(8)	53(5)	101(10)	63(6)	8(6)	-1(4)	34(6)
C(9)	116(10)	101(12)	180(13)	-54(10)	-47(9)	53(9)
C(10)	152(9)	166(10)	140(9)	24(8)	54(7)	83(8)
C(11)	63(7)	108(11)	160(13)	47(9)	-36(7)	5(6)
C(12)	24(5)	115(13)	56(8)	0	6(5)	0
C(13)	89(10)	270(2)	310(2)	-115(18)	77(12)	-65(12)
C(14)	136(17)	390(3)	105(15)	0	70(13)	0
C(15)	50(4)	52(6)	55(5)	-6(4)	16(4)	11(4)
C(16)	190(10)	152(10)	114(8)	-15(8)	50(8)	60(8)
C(17)	67(7)	113(11)	231(17)	-51(11)	-42(9)	54(7)
C(18)	92(9)	75(11)	207(16)	-23(9)	52(9)	23(7)
C(19)	37(5)	53(9)	54(7)	0	3(5)	0
C(20)	34(6)	126(14)	63(9)	0	9(6)	0
C(21)	50(5)	70(8)	141(11)	31(7)	33(6)	-2(5)

	Х	У	Z	U(eq)
H(3)	6360	1092	3842	60
H(6)	4748	1100	-1350	47
H(9A)	7695	197	2768	199
H(9B)	8015	146	4052	199
H(9C)	9028	-188	3176	199
H(10A)	9974	1893	2070	228
H(10B)	8929	1217	1574	228
H(10C)	10192	809	2105	228
H(11A)	10512	789	4119	166
H(11B)	9470	1200	4920	166
H(11C)	10331	1874	4213	166
H(13A)	4034	1149	4188	337
H(13B)	3982	1677	3037	337
H(13C)	2873	1806	3902	337
H(14A)	5158	2168	5802	314
H(14B)	3654	2199	5755	314
H(14C)	4443	3132	5779	314
H(16A)	7982	1877	-3349	228
H(16B)	6816	1211	-3585	228
H(16C)	8181	791	-3348	228
H(17A)	9135	1695	-1667	206
H(17B)	8867	701	-1171	206
H(17C)	8346	1592	-562	206
H(18A)	7535	-148	-1784	187
H(18B)	6159	133	-2208	187

<u>Tabelle 5:</u>	H-Atomkoordinaten [x 10^4] und äquivalente isotrope Auslenkungsparameter
	$[Å^2 \times 10^3]$ für $[{Cp'''Rh(CO)}_2]$ (3c)

VII. Anhang				Seite 196
H(18C)	6536	264	-943	187
H(20A)	2527	2875	-2677	111
H(20B)	1233	2753	-2034	111
H(20C)	2005	1872	-2418	111
H(21A)	2806	1092	-652	131
H(21B)	1540	1597	-293	131
H(21C)	2783	1689	449	131