Matrix Compression Methods for the
Numerical Solution of Radiative Transfer
in Scattering Media

Peter Schlosser

Vom Fachbereich Mathematik
der Universitat Kaiserslautern
zur Erlangung des akademischen Grades
Doktor der Naturwissenschaften
(Doctor rerum naturalium, Dr. rer. nat.)
genehmigte Dissertation

1. Gutachter: Prof. Dr. H. Neunzert
2. Gutachter: Prof. Dr. S. Sauter

Datum der Disputation: 11. Februar 2003

D 386






First of all, I wish to thank all those who have contributed to the success of this work. Espe-
cially, I thank Prof. Dr. Dr. h.c. Helmut Neunzert for posing the problem and supervising
my studies, and Prof. Dr. Stefan Sauter for his willingness to be co-referee of this work.
For many conversations on various topics concerning this work and for proof reading this the-
sis, I wish to thank Dr. Norbert Siedow. Furthermore, I thank Erik Meink6hn for providing
numerical results which are used for a comparison in this thesis.

I wish to thank Christina and my brother Markus for their friendship and patience, and
Markus also for proof reading parts of this thesis.

Finally, I thank the Fraunhofer-Institut fiir Techno- und Wirtschaftsmathematik (ITWM)
and the ’Stiftung Rheinland-Pfalz fiir Innovation’ (Rheinland-Pfalz, Germany) for the finan-
cial support of this work.






Table of Contents

Introduction

1 Radiative Transfer
1.1 The Mathematical Model . . . . . . . . . . . . . . . . . . . ...

1.2 Approximations and Numerical Methods . . . . . . . . ... ... ... ....

2 The Integral Formulation
2.1 Derivation of the Integral Formulation . . . . . ... .. ... ... ......
2.2 Existence and Uniqueness . . . . . . . . . . ... Lo e
2.3 Regularity of the Solution . . . . . . . .. ... .. L oo Lo
2.4 The Case of Linear Anisotropic Scattering . . . . .. .. ... ... ... ...

3 Numerical Solution
3.1 The Galerkin Method . . . . .. .. .. ... ... .. L.
3.2 Numerical Integration . . . .. ... ... ... ... o oo,
3.3 Solution of the Linear System . . . . . .. ... ... ... ... ... ...
3.4 Comparison With DOM: Accuracy . . . . . . . ... ... oo,

4 Matrix Compression Methods
4.1 Preliminary Considerations . . . . . . . . . .. ... .. oo
4.2 Hierarchical Matrices . . . . . . . . . . . . . e
4.3 Application to Radiative Transfer . . . . . . . . ... .. ... ... ......
4.4 Comparison With DOM: Computational Complexity . . . . . ... ... ...

Conclusions

A Mathematical Means
A.1 Characterization of Surfaces . . . . . . . . . . . ..o
A.2 Spherical Harmonics . . . . . . . . . . ...

A.3 Differentiation of a Parameter Integral . . . . . . ... ... ... .......

A4 The Mapping Fioly - - - - v« v v oo e e e e e e

13

23
23
29
43
45

47
47
51
64
76

93
94
104
118
127

131



vi Table of Contents

A.5 Regularizing Coordinate Transformations . . . ... .. ... ... ... ... 136
A.6 Singular Value Decomposition . . . . . . . ... ... L o Lo, 139
A7 Tmpact of Local Errors . . . . . . . . . .. ... 139
Notations 141

Bibliography 143



Introduction

Radiation plays an important role in many physical processes and technical applications, e.g.
in the investigation of stellar atmospheres, in illumination problems in computer graphics
and in the inverse radiation therapy planing for patients with malignant tumors. Depending
on the situation, radiation has many facets. These facets are reflected in the different models
used for its description.

In case of thermal radiation, one distinguishes mainly two different situations: radiation in
participating and non-participating media. Non-participating media, e.g. vacuum, do not
influence the radiation. Therefore, the radiative transfer can be described by only considering
the surfaces surrounding the medium. On the other hand, a participating medium does have
an influence on the radiation. The radiation may be absorbed and scattered during its passage
through the medium. The physical effects of absorption, emission, scattering and reflection
at the boundary can be described precisely by using the quantum mechanical model for
photons or the wave model respectively. Unfortunately, both models are too complicated to
be handled numerically. Therefore, this dissertation is based on the ray model, which is much
easier to handle. Furthermore, the above effects can nevertheless be included in a simplified
way.

The ray model describes the energy transport in terms of a single scalar quantity, the intensity
1. This quantity fulfills the radiative transfer equation, an integro-differential equation which
can be interpreted as a combination of transport equations along rays coupled by an integral
over all directions, which models the scattering.

Thermal radiation typically has to be combined with other heat transfer mechanisms, such as
conduction and convection, which are very slow compared with the speed of light. Hence, to a
very good approximation, the radiative heat transfer can be regarded as being instantaneous
and can, therefore, be modeled using stationary equations. To simplify the situation further,
we also neglect the dependency on the wavelength leading to the monochromatic radiative
transfer equation. Apart from its own physical relevance, this model also serves as a solution
step for more complex models where the dependency on the wavelength is included.

When the dependency on the time and on the wavelength are omitted, I only depends on the
location inside the medium and on the direction of the ray, i.e. there are five independent
variables: three space coordinates and two coordinates describing the direction of the ray.
Therefore, a discretization still leads to a very large number of unknowns. This implies large
requirements on storage and computing time, which is the major difficulty for the numerical
treatment of radiation.

The radiative transfer equation describes the energy transport in terms of the angular de-
pendent variable I. However, in many applications one is not interested in the exact angular
dependence of the intensity but rather in some angle integrated quantities. Hence, it would
be advantageous if it was possible to compute these quantities without computing the angular
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dependent intensity I in a first step. Indeed, this is possible under some further simplify-
ing assumptions which are readily applicable in many real world problems, e.g. isotropic
scattering. In this case, the radiative transfer equation can be reformulated into a system
of weakly singular integral equations of the second kind, where the position is the only in-
dependent variable. When a discretization method is applied to this equation, the number
of unknowns is reduced tremendously compared with that of a discretization of the original
integro-differential equation. Therefore, in this thesis the integral equation is used as a basis
for the development of efficient and reliable algorithms to solve radiative transfer problems
in participating media.

Besides the reduction of the number of unknowns, the integral equation has some further
advantageous features. First, the operator is coercive, therefore, a standard Galerkin dis-
cretization is guaranteed to be stable. This is opposed to the direct discretization of the
radiative transfer equation. Since the latter involves a transport operator, some kind of
up-winding or artificial diffusion has to be used to obtain a stable discretization.

Second, the operator is self-adjoint. This leads to a symmetric matrix when the Galerkin
method is used for the discretization. Therefore, the amount of storage needed is nearly
reduced by one half.

Third, the resulting system is well conditioned in most cases, i.e. all eigenvalues are positive
and well separated from zero independently of the grid size used. This property implies that
iterative methods can be used for an efficient solution of the linear system; e.g. Krylov sub-
space methods yield very fast convergence. These methods do not need an explicit knowledge
of the entries of the matrix. Only the possibility to perform a matrix-vector multiplication
is required. As shown below, this fact is essential for an efficient implementation of the
discretization of the integral equation.

Removing the angular dependency in the integral equation, leads to a tremendous reduction of
the number of unknowns in the discrete system. On the other hand, the differential operator,
which is local in space, has been replaced by an integral operator, which couples every point
in the domain with every other point. Therefore, a discretization of the equation leads to a
full matrix. For practical applications the number of discretization points must typically be
of an order of magnitude of 10000 or more. Therefore, it is not recommendable to assemble
and store the entire matrix.

The so-called matrix compression methods circumvent the assembly of the whole matrix.
Instead, the matrix-vector multiplication needed by the iterative solver is performed only
approximately. By this, the effort compared with that when the full matrix is used is reduced
tremendously. Since the discrete solution is only an approximation to the solution of the
continuous problem, the additional error introduced by approximating the discrete system
need not diminish the overall accuracy if it is smaller than the discretization error.

As opposed to the fast Fourier transform, the matrix compression methods do not exploit
an algebraic structure of the matrix. Instead, an approximation of the integral operator is
constructed based on geometrical and analytical considerations. The integral kernels have a
singularity for x = y and are very smooth in regions at a sufficient distance from the diagonal.
This corresponds to the physical fact that two points which are near together generally have
a stronger influence on each other than two points further apart. On those parts of the
domain where the kernel is smooth an approximation can be used, which is easier to handle
numerically.

The matrix compression methods have been developed in context of the boundary element
method, where a boundary value problem in a domain is transformed into an integral equation
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on its surface. The kernels of these integral equations are very similar to the kernels of the
integral equation describing the radiative transfer. Therefore, with some modifications, the
matrix compression methods are readily applicable to the latter equation.

This thesis concentrates on the discussion of numerical solution methods for the stationary
radiative transfer in scattering media based on the integral formulation of the problem. To
this end the whole process from the derivation of the equation, and the discretization to
the efficient implementation of the solution of the resulting linear system is considered. The
outline of this thesis is as follows:

Chapter 1 introduces the mathematical model of the problem. Furthermore, some numerical
methods used for the discretization of this model are presented.

Chapter 2 outlines the derivation of the integral formulation in case of isotropic scattering
and diffuse reflecting boundaries. The mapping properties of the involved integral operators
such as compactness and contractivity are examined in detail. Based on these properties, it
is shown that the integral equation has a unique solution under some weak assumptions on
the physical parameters which are readily applicable in real world problems.

The integral formulation in case of isotropic scattering is well known. By employing the
so-called momentum equation, we are able to derive an integral equation which is also valid
in case of linear anisotropic scattering. This equation is very similar to the equation for the
isotropic case. No additional unknowns are introduced and the involved integral operators
have very similar mapping properties. Therefore, the modified integral equation can be
handled numerically with approximately the same effort as the equation for the isotropic
case.

Chapter 3 addresses the numerical treatment of the integral equation. First of all, the
Galerkin method, which is used to discretize the equation, is introduced. The convergence
of the method is easily proven by using the mapping properties of the integral operators
discussed in Chapter 2. The practical realization of the method involves the evaluation of
integrals which cannot be performed analytically, because of the weak singularity of the in-
tegral kernels. Thus, some regularizing coordinate transformations have to be used before
standard cubature formulae can be applied. These coordinate transformations are introduced
in Section 3.2.

Furthermore, the solution of the linear system by Krylov methods is discussed. Since the
integral equation is of the second kind, it is reasonable to expect that the spectrum is well
suited for a Krylov method. This proves to be true for a wide range of parameters describing
the problem, but if the medium is strongly scattering, the system is ill-conditioned. In this
case, applying a suitable preconditioner still leads to fast convergence.

The chapter is concluded with some numerical experiments which compare the solution ob-
tained by a discretization of the integral equation with that of a method which discretizes
the radiative transfer equation directly. For the latter the so-called discrete ordinate method
is used.

In Chapter 4 the concept of hierarchical matrices is introduced. It represents a common basis
for many of the matrix compression methods used for matrices resulting from the discretiza-
tion of integral equations. Thereafter, this concept is applied to the equation describing
radiative transfer. As mentioned above, the matrix compression methods have been orig-
inally applied in context of the boundary element method, therefore, special emphasize is
placed on the differences between the integral equations describing radiative transfer and the
ones occurring in the boundary element method.
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Radiative transfer in participating media changes its character in dependence on the rate
of extinction due to absorption and scattering. For large extinction coefficients, radiative
transfer is an almost local effect due to the short range of the radiation whereas for small
extinction coefficients, radiative transfer is a global effect since the radiation spreads through
the whole medium almost uninfluenced by the medium itself. One can make use of the
different character by choosing the approximation rank of the matrix compression method
in dependence on the rate of extinction, e.g. in case of large extinction coefficients a small
approximation rank can be used on parts of the domain which are sufficiently apart.

The chapter is concluded with the presentation of some results concerning the difference in
the computational complexity between the discretization of the integral equation and the
discrete ordinate method.

As a conclusion the final chapter recapitulates the most important considerations presented
throughout this thesis.

Finally, the appendix contains some definitions and derivations which have been omitted in
the text to improve the readability.



Chapter 1

Radiative Transfer

The starting point for all considerations in this thesis is the stationary radiative transfer
equation. This equation including possible boundary conditions is introduced in Section 1.1.
Special emphasis is placed on the term that models the scattering. In Section 1.2 two well
known methods are presented, which are widely used to handle the problem numerically.
Further details about radiative transfer can be found in the monographs [40], [42], [54] and
[16].

1.1 The Mathematical Model

There are different physical models describing thermal radiation: the quantum mechanical
model for photons, the wave model and the ray model. This thesis is based on the ray model.

According to Planck’s hypothesis radiative energy travels in the form of discrete photons,
and according to Maxwell’s classical electro-magnetic theory it travels in the form of electro-
magnetic waves. Both of these concepts have been successfully applied in the investigation
of radiative heat transfer. For example, the results of the quantum theory have been used
to determine the amount of energy emitted by any kind of matter at any given wavelength
because of its temperature; on the other hand, results obtained from electro-magnetic wave
theory have been used to predict the radiative properties of materials, such as reflexivity and
emissivity.

When radiation is treated as an electro-magnetic wave, its propagation can be described by
the solution of Maxwell’s equations. These equations describe the radiation in terms of the
magnetic and electric field vectors H and E. The simplest solutions of Maxwell’s equations
are so-called plane waves. These plane waves are used to derive boundary conditions for
the ray model. The magnitude and direction of the transfer of electro-magnetic energy is
given by the Poynting vector S = E x H. In case of thermal radiation, i.e. a wavelength
A ~ 0.1 —100pum, a numerical treatment of the wave model is not feasible since the grid size
would need to be chosen smaller than the wavelength to avoid aliasing effects.

In the special case of non-polarized radiation, the ray model can be used. This model describes
the energy transport by a single scalar quantity: the intensity I, where [ is defined as amount
of radiative energy transfered per unit time, solid angle, wavelength and area normal to the
pencil of rays. When polarization effects are to be considered, Chandrasekhar treats the
radiation intensity as a four-component vector in terms of the four Stokes parameters (see
[42] for further details).
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The radiative transfer equation describes the radiative intensity field I within an enclosure as
a function of time ¢, location z, direction Q € §? and electro-magnetic wavelength . Since
photons travel with light speed (in vacuum: ¢g ~ 3 - 10%2), a steady state is reached after a
very short period of time. Hence, it is almost always possible to neglect the time dependence.

In case of thermal radiation the intensities for different wavelengths A\ are in general not
coupled through the scattering phase function (see below). This leads to the monochromatic
radiative transfer equation, in which the wavelength A\ only occurs as a parameter. In the
following, the dependency on X is omitted for notational convenience.

Let D C R3 be an open, bounded domain with a piecewise smooth boundary, i.e. D € C%!
(see Appendix A.1 for a characterization of surfaces). Then the intensity I(z,) is the
solution of an integro-differential equation, the so-called radiative transfer equation (RTE)

Q- Vi I(z,Q) + (k) + o(x)I(z,Q) =
a(z)

- /@(Q, VI (z, VYA + k(z)B(T(z)), =€ D,QeS. (L)

52

Remark 1.1. The dependency on A is omitted for notational convenience, but we should keep
in mind that the coefficients x and o as well as the scattering phase-function ® and the
source term B in the equation depend on A. In order to obtain a finite number of transport
problems in practical applications, the A-domain [0,00) is decomposed into finitely many
spectral bands, and the A-dependent quantities are somehow averaged over these bands. The
resulting equations are then solved for every spectral-band.

The RTE describes the propagation of the intensity along a ray and can be interpreted as
a balance of radiative energy. During the transport through the medium in direction
(described by Q - V) the intensity is attenuated by absorption and scattering into other
directions. These are taken into account for by the absorption coefficient x(z) > 0 and the
scattering coefficient o(x) > 0. The total extinction is denoted by v = k + 0. We assume
that the functions k and o are in L*°.

The two remaining terms describe the gain of the radiative energy in direction 2. On the one
hand, intensity from other directions €' is scattered into the considered direction 2. This
“in-scattering” has contributions from all directions and has to be calculated by integrating
over all possible directions ' € S2. The scattering phase function ®((2,€)) describes the
according probability that a ray from direction ' is scattered into direction Q. This function
is described in more detail below.

On the other hand, due to Planck’s hypothesis every medium continuously emits electro-
magnetic radiation uniformly into all directions at a rate depending on the local temperature
and on the properties of the material. The radiative energy due to this effect can be split
into a material dependent and a material independent part: x(xz,\)B(T, ). It is a thermo-
dynamical constraint that the proportionality constant x(x, \) for emission is the same as for
absorption. The factor which is independent of the material is given by the Planck function

2
2c*hy
chp ?

A3 (e*sT —1)

B(T,\) = (1.2)

where h;, denotes the Planck constant, ¢ = -*> the speed of light in the considered material, co
the speed of light in vacuum, n,, the refractlon index of the material, and kg the Boltzmann
constant. B depends on the considered wavelength X, but is independent of the direction, i.e.
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it is isotropic. In the following, the temperature distribution is assumed to be known, hence,
k(z)B(T(z)) is a given source term.

The total emitted intensity can be computed by integrating over A. This yields Stefan’s law
20k 8
——% = 5.670-10" .
15h3c3 m2K*

This relation shows that radiation becomes an important mode of heat transfer compared with
conduction and convection when the temperature is high since the magnitude of conduction
and convection is linear in the temperature 7.

1 .
Btotal(T) = ;’I’L?HO'B’I'4 Wlth agB — (13)

The RTE describes radiation in terms of the intensity I, but in practical applications the
radiative energy G and the radiative flux ¢ are of higher interest. These quantities are
related to the intensity in the following way

G(z) := [ I(z,N)dQ, (1.4)
/

q(x) ::/QI(JI, Q)dSs2. (1.5)
SZ

For a point € 3D the total incoming heat flux ¢;; and heat loss gou; are defined as

() = / In(z) - QU (z, 2)dL, (1.6)
n(z)-02<0

dout () = / n(z) - Q/I(z, 2)de, (1.7)
n(z)-Q>0

where n(z) denotes the outer normal in the point z € 9D, i.e. in the first equation the
integral is taken over all incoming directions and in the second over all outgoing directions.

Equation (1.1) is a differential equation of first-order. As such, it requires boundary conditions
which prescribe the intensity for all incoming directions

I(z,9Q) = I(z,9Q), (z,9Q)€ (aDaS2)—a (1.8)
where the set (0D, 52?)_ is defined as
(0D, 5% ={(z,Q) |z € 0D, Q € 5%|,(s).0<0}- (1.9)

At the boundary of the domain D the intensity is partially reflected and partially transmit-
ted. The reflection can be modeled by the bidirectional reflection function R(z, 2, Q') which
describes the according probability that a ray from the outgoing direction Q' is reflected into
the incoming direction :

Lea(z,Q) = / [n(z) - Y |R(z,Q, Q) (z,Q)dSY. (1.10)
n(z)-'>0
As a physical constraint, no radiative energy is produced by reflection, i.e.
| i) >
n(z)- Q>0

/ in(z) - Q| / In(z) - Y| R(z,Q, ) I(z, ¥)dVdQ  VI(z,9),

n(z)-02<0 n(x)-Q'>0
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which results in the following condition for R

/ In(z) - QR(z, 2, 2)dQ2 <1 Va € OD, & € 5|niayarso. (1.11)

n(z) Q<0

Furthermore, the reflection kernel has to be non-negative and, due to Kirchoff’s law (refer to
[40]), it should fulfill the following law of reciprocity

R(.’L’, Q, Q,) = R(.’E, —QI, —Q) V.’E € 8D, Q € SQ|7L($)-Q<O’ QI € SQ‘R(w),QI>0. (112)

Since the incident energy is distributed among the reflected and transmitted rays without
loss, the transmissivity i.e. the fraction of transmitted radiation is

@) =1— / in(z) - | B(z, 2, 2)dY > 0. (1.13)

n(z)-'>0

Two cases have to be distinguished in the following: the surrounding material is absorbing
or non-absorbing. If it is strongly absorbing, the thickness of the surface layer over which
absorption of radiation from the inside occurs is very small. The same holds for emission
of within the surrounding material which escapes into the considered domain. Therefore,
it is customary to speak of absorption by and emission from a “surface”, although a thin
surface layer is implied. At local thermodynamical equilibrium the emissivity e of the surface
is again equal to the absorptivity a. Since all the radiation from the inside is absorbed it
holds: € = a@ = 7. Summing up the emitted and reflected radiation, leads to the following
boundary condition for the RTE:

Iy(2, Q) = (2, Q) B(Tyu (z)) + / in(z) - | R(z, @, @) (z, ¥)dsY, (1.14)

n(z)- Q>0

where Ty, denotes the exterior temperature. Note that the speed of light used for the
Planckian B in (1.14) is that inside the surrounding material.

Remark 1.2. The boundary conditions depend on the outer normal n(z). If z lies on an
edge or vertex of @D, n(z) and thus also the boundary conditions are undefined. A weak
formulation of the problem is introduced in Section 2.2, which circumvents this problem.

If the surrounding material is non-absorbing, radiation from the outside is transmitted into
the medium. Due to the reciprocity condition (1.12) the transmissivity in the direction from
the outside to the inside is the same as in the opposite direction. Therefore, assuming that
the radiation from the exterior is a Planckian corresponding to the exterior temperature 7oy,
again leads to the boundary condition (1.14).

If the reflection function is independent of © and ':
1
s
the surface reflects equal amounts of energy into all directions, regardless of the incoming

direction. Such a surface is called a diffuse reflector. Using Equation (1.13) and (1.14) yields
the boundary conditions

() = (1~ p() B Tous(2)) + 22 g (). (1.16)



1.1. The Mathematical Model 9

Note that in case of diffuse reflecting boundaries the prescribed incoming intensity I(z) is
independent of Q. The condition (1.11) leads to

0<p(z) <1 VzedD. (1.17)

In case of p = 0, the surface is called a perfect absorber or a black boundary.

A diffuse reflector is a good approximation for rough surfaces. On the other hand, if the
surface is smooth the reflection function R can be derived from the Maxwell equations. In
the following, we assume for simplicity that both media are non-absorbing. The slightly more
complicated situation of an absorbing medium is handled in [40].

Consider the situation where a plane wave hits a plane surface, i.e. the local radius of
curvature is much greater than the wavelength. This wavefront is partially reflected and
partially transmitted. Let 6; denote the angle between the propagation direction of the
wavefront and the normal of the interface between the medium and the surroundings (see
Figure 1.1).

o)}

02

Surroundungs

Medium
01

Q
Figure 1.1: Specular reflecting boundary conditions

Furthermore, let n,, and ns; denote the refractive indices of the medium and the surroundings
respectively. The speed of light inside the two media is given by ¢; = fls and ¢, = n%on— This
gives a relationship between the directions of the incident and transmitted wave

sinf;  ng,,

= , 1.18
sin 69 Mg ( )
which is known as Snell’s law. Note that, if n,, > ng, 02 reaches a value of 90° for an angle
of incidence 8., called the critical angle

sinf, = — (1.19)

'm
For all 6; > 6. the radiation is totally reflected.
Besides the direction of reflection and transmission also the amount of reflected and trans-

mitted radiative energy is of interest. The boundary conditions for the Maxwell equations
can be used to derive the following expression for the amount of reflected radiation

1 Tym €OS B2 —ng cos @ 2 Tyn €08 01 —ng cos 2
4 m 2 TNsg 1 m 1—TNg 2 1
2 [(nm cos B2+ng cos 01 ) + (nm cos 01 +ng cos 02) ] if 91 S 05’

p(cosby) = (1.20)

1 else.
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This relationship is known as Fresnel law for unpolarized light.

Using the reciprocity condition (1.12) leads to the following boundary condition

A~

Iy(z,Q) = (1 = p(n(z) - Q) B(Toui (z)) + p(n(z) - D1(z, ), (1.21)

where p denotes the reflection index calculated by the Fresnel law and ) denotes the reflection
direction belonging to the incoming direction €2 (see Figure 1.1). In later chapters of this
thesis, we only consider the case of diffuse reflecting boundaries.

For later use, an operator notation is introduced for the case of homogeneous Dirichlet bound-
ary conditions, i.e.

Iy(z,Q) = 0. (1.22)

The operator Hg below is defined on the function space
{I(z,Q) |z € D, Q € 8, I(z,Q) =0 for z € D with n(z)-Q < 0}, (1.23)

i.e. the boundary conditions are included into the definition of the domain of the operator
H, Q,

Ho=Q-Vy+vld, H=()Ho,
Q

1
Yo = — NIy - 1.24
o= [oQ) d, % Q) =, (1.24)
S5 Q
T =H — oX.

With these abbreviations, the RTE (1.1) reads

TI = kB. (1.25)

In the following the scattering phase function ® is examined in more detail. It has to satisfy
the conditions: VQ, Q' € §?

B(Q, ) >0, (1.26)
B(Q, ) = B(—Y, —Q), (1.27)
1 ' _
E/@(Q,Q )0 = 1. (1.28)
52

The non-negativity requirement (1.26) is necessary since the intensity I is a non-negative
quantity. Condition (1.27) ensures that the scattering phase function preserves symmetry of
radiation between forward and backward propagation and Condition (1.28) guarantees that
the total radiative energy is conserved during a scattering event. The intensity which is lost
in direction Q' due to out-scattering is gained in some other direction 2 by in-scattering.

The above properties of the phase function are necessary to derive the important momentum
equation. Recalling the definition of G and ¢, the integration of the RTE (1.1) over all
directions © € S? results in

V- q(2) + (5(z) + 0(2)G(@) = olx) / ﬁ / B, VI (z, V)dVdQ + drr(z) B(T(z)).
S2 S2
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After interchanging the order of integration, I(z, (') is independent of the inner integration
variable ) and can be taken out of the inner integral. Due to condition (1.28), the inner
integral is one, independent of Q'. Hence, the following momentum equation is obtained

V -q(z) + k(z)G(z) = 4nk(x)B(T(z)). (1.29)

In most applications the scattering phase function only depends on the angle 8 between the
direction before and after the scattering event

B(Q, Q) = 3(Q- Q). (1.30)

In this case, the reciprocity condition (1.27) is automatically satisfied. Furthermore, the
kernel is symmetric and rotationally invariant

3(0,Q) = (2, Q), (1.31)
o(Q,0) = o(RQ,RQ) V orthogonal matrices R. (1.32)

The simplest phase function is ® = 1, i.e. equal amounts of energy are scattered into all
directions. This case is called isotropic scattering.

For a given material the phase function can be determined either by theoretical considerations
or by experiments. In both cases, it is useful to expand it as a series of Legendre polynomials
(see Appendix A.2) and truncate this series for k large enough

k-1
(0) =1+ Z A, Py(cos8).
p=1

(Note, the coefficient Ay has to be equal to one to satisfy condition (1.28) since the Legendre
Polynomials are orthogonal.)

It remains to determine the coefficients A,. For the theoretical investigations it is assumed
that the material is adequately modeled as a cloud of spherical particles. The scattering phase
function of a single particle can be computed solely in dependence on the complex index
of refraction of the material and the size of the sphere in comparison with the considered
wavelength. The rather complicated theory behind these computations is based on viewing
radiation as electro-magnetic waves and is called Mie theory (refer to [32]). The calculations
for a given set of particle parameters are rather involved, except for the particles being very
small. In this case, the situation is simplified by taking the appropriate limits in the general
solution to Mie’s equations, resulting in Rayleigh scattering

(0) = 2(1 + cos? 0). (1.33)

If the particle size is very large, geometrical optics can be used instead of the Mie theory,
which also simplifies the problem. To get the scattering phase function of the whole particle
cloud, one has to assume that the scattering occurs independently for the individual particles.
This is the case if the distance between two particles is large compared with their diameter.
Figure 1.2 shows a typical phase function computed by Mie theory. This figure is taken
from [40] (page 396). The considered particles are non-absorbing with a complex index of
refraction m = 2. The particles are either in clouds of constant radius a = 5.0um, or
in clouds with particles of different size (a = 0.0 — 10.0um). The Mie calculations have
been carried out for a typical wavelength of A = 3.1416um, resulting in a size parameter of

T = %T“ = 10 and 0 < z < 20 respectively. Besides the phase functions for these two clouds,
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Figure 1.2: Mie scattering phase function for clouds of dielectric particles

a linear approximation of each is displayed. These approximations are considered later in
this section.

The typical properties of a phase function are a very strong peak in the forward direction
and, for dielectrical particles, a relative strong peak in the backward direction. In the re-
gion between the forward and backward peak the function is highly oscillatory, but if the
cloud consists of particles of different sizes, which is a reasonable assumption in practical
applications, these oscillations are smoothed (see Figure 1.2).

Numerical solution methods for the RTE either cannot handle complicated phase functions at
all, or have to be carried out to unacceptably high orders. It is, therefore, common practice to
approximate oscillatory phase functions by simpler expressions. In [41] the following double
Dirac-delta phase function approximation is proposed

4i BQ - VI (w, V)Y = FI(z, Q) + bl (z, —Q)+
™

52
1
1-f- b)E/Q*(Q O I(z, )4, B (u) =1+ Alp.
52

That is, the forward scattering is treated as transmission and the backward peak is treated as
being scattered into the opposite direction. In between the phase function is approximated
by a linear function.

The coefficients f, b and A* are determined heuristically. One chooses cutoff angles 6; and
0, for forward and backward scattering respectively. Then the slope A* is chosen such that
the linear function is a good approximation of the original function over the midrange of the
phase function. The peak fractions f and b are given by the integrals of the original phase
function over the cutoff intervals. Examples for the choice of phase function approximations
following [41] are included in Figure 1.2. The numerical experiments for a one dimensional
slab geometry in [41] show that the above approximations yield results of adequate accuracy
for nearly all practically important cases in radiative heat transfer.
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1.2 Approximations and Numerical Methods

Roughly speaking there are two kinds of computational models for radiative transfer. The
first ones are based on certain assumptions, under which the physics involved can be simplified
and therefore modeled by an equation which is easier to handle numerically. Some examples
are the Rosseland approximation [48], the modified diffusion approximations [37], [58] and the
diffusion approximation described below. On the other hand, these methods are inaccurate
if the assumptions do not hold.

The second kind of methods handles the radiative transfer Equation (1.1) directly. They are
therefore expensive. In this section, one representative of each kind is presented. The two
selected methods are of interest in later chapters of this thesis.

The Discrete Ordinate Method

The discrete ordinate method (DOM) is a tool to transform the RTE into a set of simultaneous
partial differential equations. It can be carried out to any arbitrary order and accuracy.
The DOM is based on a discrete approximation of the directional variation of the radiative
intensity, i.e. one chooses a finite set of directions instead of considering the whole unit
sphere S2. Like this, spherical integrals, e.g. for the evaluation of the scattering integral or
for computing the energy or the heat flux, are approximated by a quadrature rule

/f(Q)dQ ~ > wif (), (1.34)
&2 i=1

where w; is the quadrature weight associated with the direction ;. Thus, Equation (1.1) is
approximated by a set of m coupled, linear convection equations for the unknown quantities
Ii(z) = I(z,9),i=1,...,m

m
g
Q; - VI ++I; = Ezchp(g,-,szj)fj + kB(T), (1.35)
=Hq,;I; =1

subjected to the boundary conditions
p(z)

Ie) = (1~ )BT + 22 S wlyin(e) -yl (1.36)
n(x)-Q;<0

Once the intensities have been determined, the desired direction-integrated quantities, like
the energy G, are readily calculated using the quadrature formula (1.34).

A straight forward approach for the selection of the ordinate directions is based on the
parameterization of S? over [0,27] x [0,7] and uses a tensor product subdivision of this
parameter space. This so-called longitude-latitude mesh has two distinct directions at the
poles. This causes a non-physical symmetry axis in the solution and deteriorates convergence,
since the cells near the poles have degenerate angles. To avoid such effects, several conditions
which a set of quadrature points and weights should fulfill have been proposed

e rotational invariance under any rotations of 90°,

e exact computation of zeroth, first, and second moments,
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e exact computation of half-space moments in coordinate directions (This might be im-
portant for the approximation of diffuse reflecting boundary conditions.),

e exact integration of spherical harmonics up to a certain degree,

e low discrepancy of the discrete measure defined by the directions and weights and the
surface measure on the sphere,

e nearly equi-distribution of the ordinate directions on S2.

Some of these requirements exclude each other so that one has to restrict oneself to a few
conditions, which are most important for the desired application. A more detailed discussion
of the selection of the directions and weights under the viewpoint of radiative transport can
be found in [18] and [22].

For the numerical calculations presented in later chapters of this thesis, the following ap-
proach, which tries to equi-distribute the quadrature points on S2, is used (see also Kan-
schat [31]). A triangulation of S? is constructed by using a successive subdivision of an
icosahedron. The cell centers projected on S? are the quadrature points and spherical cell
volumes serve as weights. The method can be interpreted as a Galerkin discretization with
piecewise constant elements. Due to a super convergence result the error of the L2-projection
onto the space of piecewise constant elements is of second order in the cell centers (see [31]).
A refined icosahedron with m = 20, 80, 320, 1280 cells can be used.

Several finite difference, finite volume and finite element methods for the discretization of
the transport operators in Equation (1.35) have been proposed. Two of them should be
mentioned here: the diamond difference method and the streamline diffusion finite element
method.

The diamond difference method, developed in [12], uses piecewise trilinear ansatz functions
on a grid consisting of hexahedral cells. The discretized equation is obtained by integrating
Equation (1.35) over a cell. The major drawback of this method is that it requires very small
grid sizes to guaranty that the computed intensities are non-negative, especially if the total
extinction coefficient «y is large.

The second method is the streamline diffusion finite element method. It is applied to the
RTE in [31]. Standard Galerkin discretizations produce spurious oscillations when applied
to a transport operator like Hg; in Equation (1.35). This behavior is due to the fact that
these methods are stable only in L?. The streamline diffusion finite element method is a
Petrov-Galerkin scheme for the transport operator Hg,, where 1+ §Q; - V51 (with a suitable
chosen small parameter §) is used as a test function. This corresponds to adding a small
amount of diffusion in transport direction only. Since this is done in a consistent way, there is
no loss of accuracy. The method is stable and it has been proven that the discretization error
is of order O(h%) if piecewise linear elements on a general grid are used, but there is evidence
for second order convergence on nearly all computationally interesting grids. Unfortunately,
a mathematical proof for second order is available only on Cartesian grids (see [31]).

Since both, the discretization of the integral operator and the discretization of the differential
operator, employ Galerkin methods, the two methods can be combined to yield a Galerkin
discretization of the whole equation. This has two advantages. First, one is not restricted
to meshes based on the standard tensor product splitting into L?(D) ® L?(S?), but can
use different spatial grids for different directions. This might be useful in the transport
dominated case, i.e. for optically thin media. Second, the whole method possesses a property
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called Galerkin orthogonality: let I and I}, denote the solution the radiative transfer equation
on the whole space and on the finite dimensional ansatz space V}, respectively. Then

<T(I — Ih),wh) =0 VYwp € Wy, (1.37)

where W}, denotes the test space. This property is very useful to prove higher order accuracy
and to obtain an a posteriori error estimator. A posteriori error control techniques can be
applied to the whole method. This is done in [31] to adaptively refine the spatial grid such
that a given error tolerance is met.

When modeling 3D radiative transfer problems, stability and accuracy are not the only
criteria for the usage of a particular code. Reasonable memory and CPU requirements are
equally important. These requirements shall be estimated in the following.

Let n denote the degrees of freedom of the spatial grid and m the number of ordinates in S2.
Hence, the total number of unknowns is n - m, which is very high in practical applications,
e.g. n = 50000 and m = 320. The discrete system is of the form

Au=H-X)u=H{, (1.38)

with the vector u containing the discrete intensities and the vector f the values of the source
term. Both vectors are of length n - m and the ordering of the unknowns is as follows:

(:1}1, Ql), ey (.Tn, Ql), ey (.'1:1, Qm), ey (.In, Qm)

The matrices H and X have the following block structure

H, 0 w1181 0 wimSt

0 Hm wmlsm e wmmsm

where w;; = w;®(2;,Q;) (the w;’s are the weights of the quadrature rule (1.34)). The
matrix H; corresponds to the discretization of the operator Hg, and the matrix S; to the
discretization of the identity operator. In case of the streamline diffusion method the used
test functions depend on the considered direction €2; and, hence, the matrix S; depends on 1.
In case of the diamond difference method S; = S is independent of 7. The sparseness of the
matrices H; and S; depends on the used spatial discretization, in case of streamline diffusion
there are up to 27 entries per row (epr), in case of diamond difference, it holds: epr =8 .

Since, in case of the Petrov-Galerkin discretization, the memory requirements for the storage
of the matrices H; and S; are quite high, they are not stored explicitly. Instead, the matrix
entries are only computed for some large reference elements. The matrix entries for the
refined elements are then determined by a scaling argument. To obtain the result of a
matrix-vector multiplication with the entire matrix, each element matrix is multiplied with
the corresponding part of the vector and the results are summed up (for more details refer to
[31]). Therefore, the number of operations needed to perform one matrix-vector multiplication
is approximately twice as high compared with a standard implementation of the matrix, but
the storage requirements are reduced tremendously. For the finite difference method one
simply stores the stencils.

Concerning the CPU time, there are two different tasks which should be considered:

e the costs for assembling the system matrix. They are negligible since the involved
matrices are not stored explicitly.
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e the costs for an iterative solution of the linear system (1.38). They are mainly deter-
mined by the costs for a matrix-vector multiplication. Iterative solution methods are
discussed in Section (3.3).

The costs for a matrix-vector multiplication with the sparse matrices H;, ¢ = 1,...,m, are
easily determined to be m - n - epr. To explain how the multiplication of the matrix 3 with
the vector u is performed, u is decomposed into m vectors u;: u = (uy,... ,um) T where
u; € R™ corresponds to (z1,€;),...,(zs, ;). This decomposition implies
m
Su= (8 (P wywy)) . 1.39
(), (1.39)
———
=v;
Hence, the costs are m? - n for the computation of v;, i = 1,...,m and m - n - epr for the
computation of S;v;, ¢ = 1,...,m. That is, the number of operations grows quadratically

with the number of ordinates.

If the scattering phase function @ has a special structure, these costs can be reduced tremen-
dously. Assume that the scattering is isotropic. Then it holds w;; = w; and, hence, v; = v is
independent of 4 and the computation needs only m - n operations. This is the most simple
case, but the costs can be reduced also for more complicated phase functions: assume that
® can be expanded into a sum of Legendre polynomials

k—1

(0, 0) =D APy(R- Q).
p=0

Using the addition theorem for spherical harmonics (see Appendix A.2) yields

loara, &
o(Q,Q) = z YI(Q)Y, 9
(a ) ;)2p+1qzzp P()p ( )a
and, hence,
k-1 L
=w;®(Q;, Q) = drdy 940NV "IUQ,) =: D 5 _ 1.2
wij = w;®(Q, ) =w; Y o ) 3 YHQ)Y, ARy =) o, L=k
=0 P72, =1
Thus, the computation of v;, 2 = 1,...,m, simplifies to
L m
! l
vi=Y wgu =y o) Y 0w,
] =1 j=1
’ N——

=w®
and the overall costs for the computation of the matrix-vector-product with ¥ reduce to
m-n- (2L + epr).

If the scattering matrices S; = S are independent of ¢ (e.g. in case of the diamond difference
method), the computation can be simplified further:

L
(Xu); =Sv; = Zaz(-l)Sw(l).
=1

In this case the overall costs are m - n 2L+ L - n - epr.

These costs are of interest in later chapters of this thesis when the discrete ordinate method
is compared with a method for the discretization of the integral formulation of the RTE
introduced in Chapter 2.
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The Diffusion Approximation

The characteristics of radiation strongly depend on the optical parameters. If the optical
thickness (product of the total extinction coefficient v and a typical length scale [) is large,
radiation is an almost local effect since two points which have a sufficiently large optical
distance have nearly no influence on each other due to the large damping. For small optical
thickness, radiation is a global effect since the radiation spreads out over the whole medium
almost uninfluenced by the medium itself.

If the scattering coefficient o is zero, the transport of the radiative energy in the interior takes
place along straight lines, and the intensities in different directions are only coupled through
the boundary conditions. On the other hand, if o is large, the mean free path between two
scattering events is very small, i.e. the direction of the ray changes very rapidly. Therefore,
there is no distinguished direction of transport anymore, and the energy transport can be
modeled as a diffusion process. Indeed, under the above assumptions it is possible to derive
a diffusion equation from the RTE by asymptotic analysis (see [5]).

For simplicity we assume that the coefficients x and ¢ do not depend on z. Furthermore, we
restrict ourselves to homogeneous Dirichlet boundary conditions, i.e. Iy(z,Q) = 0, because
this situation is examined in Section 3.3 when the preconditioning of the discrete system
stemming from the discretization of the integral equation (see Chapter 2) is discussed. For the
treatment of anisotropic and reflecting boundary conditions refer to [4] and [8] respectively.

To be able to apply an asymptotic analysis to the RTE (1.1), it is necessary to bring the
equation in a dimensionless form first. To this end, we introduce the notation

/ T ! K / 4

T =-—, K = , o = ,
Lref Kref Oref
T (B(T)) , 1

I' = B(T)) = th Bres = —n2,0T
Bref’ ( ( )) Bret 3 w1 ref ﬂ_nmo'B ref>

where lef, Kref, Oref and I denote the reference scales and the primed quantities denote the
non-dimensional quantities.

The assumptions about the size of the optical parameters are specified more accurately by
the following definition.

Definition 1.1. The parameters of the problem are in the asymptotic diffusion limit if there
is a small parameter ¢ < 1 such that

1
2=t and Lo = -~ (1.40)

Oref

The first equation says that the scattering is dominant when compared with absorption, and
the second says that the medium is optically thick.

Assuming that the problem parameters are in the asymptotic diffusion limit, yields the follow-

ing dimensionless form of the RTE (To simplify the notation the primes for the dimensionless
quantities are neglected.)

%Q Vo I(z,9Q) + kI(z,Q) + &%[I(m, Q) — (21)(z, Q)] = kB(T(z)). (1.41)

Using an ansatz of the form

I(z,Q) = I(z,Q) + el (z,Q) + 2o (z,Q) + ...



18 1. Radiative Transfer

and collecting terms of the same order in ¢, gives

Ip-XI =0, (1.42)

Q- Voo +o(I—XI) = 0, (1.43)

Q- VoI, + o(I,—X1,) + kI = KB, (1.44)

Q- Volip1 + o(Iipa—XIi9) + kI; =0, for i > 1. (1.45)

Assuming that the phase function is of the form (1.30), yields that X is a self-adjoint operator
w.r.t. the scalar product (-,-) 12(s2)- Furthermore, % is strictly positive, hence, its principal
eigenvalue is simple (Harris-Krein-Rutman theorem, see [30]) . The relation

1
A7
52

3(Q,Q)dY =1, B(Q,Q) >0,

implies that the principal eigenvalue is one, and that the corresponding eigenvector is the
function 1 : © — 1. Therefore, the kernel of the operator Id — X is the one dimensional space
spanned by a constant. Hence, Equation (1.42) implies that Iy(z, Q) = Iy(z) is independent
of Q.

The Fredholm alternative states that the equation
(Id-X)I=g

is solvable if, and only if, g € Ker(Id — £)*, i.e. if g has mean value zero, J52 9(2)d2 = 0.
Since |, g2 2:dQ = 0, there exists a function f; such that

@) -2 =% [ Hee =0 (1.46)

The second equation is a normalizing condition to make the solution unique. Let f denote
the vector valued function with components f; (1 < i < 3). Then the solution of Equation
(1.43) is given by

Q
L(z,Q) = —y - Valo(z) + w(z), (1.47)
where the function w(z), which is independent of €, is to be determined later.

The function I is given by relation (1.44). This equation admits a solution if, and only if,

/ (Q Vol + Iy — fsB)dQ — 0.
52

Inserting the expression for I; and exploiting the fact that Iy, B and w are independent of
Q yields

1 o 0
. SZ
| S ——

=:Qij

The symmetry and rotation-invariance of the phase function @ is transfered to the matrix
A = (aij)zj:l (see [5]). Hence, A = al,a > 0 (where I denotes the identity matrix) and
(1.48) is an isotropic diffusion equation

—%Aly + 4nkly = 4nkB. (1.49)
g
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The homogeneous Dirichlet boundary conditions of the RTE result in homogeneous Dirichlet
conditions for Ij.

The Equation (1.44) can be written as

Q
o(ly — X)) = kB —klj — Q- V(MVIO) +Q-Vu.

ag

N

~ ) =:rhs(®
—=:rhs

Since the equation is linear, the solution can be split into two parts I = I2(1) + I§2). f
is an odd function of Q. Therefore, rhs!) is even. Due to the properties of the scattering
phase function ®, ¥ maps even functions of {2 to even functions, and odd functions to odd
functions. Furthermore, constant functions are the only eigenfunctions corresponding to the

(1)

eigenvalue one. Therefore, I21
that I3 = L&) . vy,

Putting this expression for I» into Equation (1.45) yields

is an even function of 2. From the definition of f it follows

dh—Zkﬁrﬂ( ﬂmvh+w)_gw4é”—#?v@)

S
Since f is an odd and Iél) is an even function of ) this equation is solvable if, and only if,

~ZAw + drrw = 0. (1.50)
ag

Note that up to now, no boundary condition is prescribed for w.

With w satisfying (1.50) a solution of I exists, and an approximate solution of Equation
(1.41) can be defined as

= Q
I=1 —6( A )VI0+w) + 21, + 315.

-
By construction, the error . = I — I satisfies the equation

1

EQ - Vgre + kre + t%(Id — ), = —eX(klo + Q- I3 + exl3) =: €26;(x, Q),

Q) -n)dI

re = E(M—O - w) +26(2,Q),  (2,9) € (8D, S?)_,
o on

where the fact that I is constant on the boundary and, hence, its tangential derivatives are

zero, has been exploited. n denotes the outer normal of D.

Since the RTE is stable, the error r. is bounded from above by the maximum of the consistency
error in the interior (i.e. £26;(x,()) and the error on the boundary. It is easy to see that
the dominant error comes from the boundary. The error of order £ depends on 2. Hence, an
approximation of order €2 cannot be obtained by prescribing a suitable boundary condition
for w since w is independent of Q2. Therefore, a boundary layer term has to be introduced.
This leads to a so-called Milne problem (see [5]). It can be shown that the solution of such
a problem converges exponentially fast to a constant C'. To match the boundary layer term
with the solution in the interior, this constant, which is independent of €2, is used to define a

boundary condition for w
C 0l
= —— € 0D. 1.51
wz) =250 4 (1.51)
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Putting the equations for Iy and w together, shows that the function I, := Iy + ew satisfies
the following diffusion equation with Robin boundary conditions:

—gAfE +4nkl, = 4nkB, z €D, (1.52)
g
. Col
I. +e——==0, =z¢€dD. (1.53)
o On

In [4] the following convergence result is shown

I [ 16,940 - L) < . (1.5
S2

Note that due to the boundary layer a similar estimation as the one above does not hold for
the L°°-norm.

It remains to determine the diffusion constant a and the constant C from the Milne problem.
a is given by a = [ Q; f1(Q)dQ, ie. fi, which depends on the phase function ®, has to be
2

computed first. The case of isotropic and linear anisotropic scattering are considered in the
following.

2 21dQ = 0, yields f1(2) = Q1 in case of isotropic scattering and therefore
S
o= / Q2dQ = 4—7T
3
S2

For linear anisotropic scattering Equation (1.46) is an integral equation of the second kind
with a degenerate kernel. Hence, an ansatz of the following form can be made

f1(Q) = ap + a1 + 222 + a3,

which leads to the solution f;(2) = ﬁﬁl and hence

An analytical computation of C can only be carried out for simple cases, e.g the case of
isotropic scattering in a 1D slab geometry, i.e. a plane-parallel plate, which extends into x
and y direction until infinity, and where neither temperature nor radiative properties vary
across planes parallel to the (z,y)-plane. These assumptions imply that the intensity only
depends on the horizontal position, i.e. the z-coordinate, and the polar angle . Hence, the
RTE simplifies to the following equation, where u = cos 6,

H%(zaﬂ) +vI(z,p) = %/I(z,u')du' +kB(T(2)), z€ (—20,20), p€[-1,1]. (1.55)

As in the 3D case, the following operator notation is useful

0
Hﬂzuavm—i—'ﬂd, L=

N | —

1
/-'d//, (1.56)
1
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where H), is defined on the function space

()| 2 € [~20,70), s € [-L,1], T(—20,) =0} if s >0, (1.57)
and
{I(z,p) |z € [-20,20], pp € [-1,1], I(z0, ) =0} if u < 0. (1.58)

In this case the constant C' from the Milne problem is given by the constant of Chandrasekhar
(see [5])

1
C=Cc= /,u'ZH(u’)du’ ~ 0.7104, (1.59)
0

where H denotes the Chandrasekhar function.

The boundary value problem (1.52), (1.53) plays an important role for the preconditioning
of the discrete system resulting from the discretization of the integral equation discussed in
Chapter 3. Since the integral equation is an equation for the energy G, it is helpful to rewrite
the diffusion equation in terms of G. Note that the approximation I. is independent of .
Hence, the approximation for the energy is given by G = 4Arl,. Undoing the scaling results
in the following diffusion equation in case of isotropic scattering

1
—gAG—I— kG =kB, z€D, (1.60)
6+59% _o seop. (1.61)
o on

Equation (1.60) with o replaced by «y can also be derived by plugging an ansatz of the form

1(2,0) = i(G(m) +3(z) - ) (1.62)

into the RTE. This procedure is called P;-approximation. The fact that ¢ is replaced by 7y in
the Pj-approximation does not mean a big difference since the equation anyway is valid only
in the asymptotic diffusion limit and in this case ¢ and v are almost identical. On the other
hand, the ansatz (1.62) leaves some uncertain choices in the determination of the boundary
conditions, and it does not contain any statement about when the approximation is valid.

For later use the diffusion operator is denoted by T}

1
T =—-——A Id. 1.
1 3 + kld (1.63)
The operator is defined on the function space
_ C 0
{G(z)|z € D, G(z) + ;%G(x) =0 for z € 0D}, (1.64)

i.e. the Robin boundary conditions (1.61) are included into the definition of the domain of
the operator T7.

Furthermore, we define the operator

Ty =T + old. (1.65)

The main advantage of the numerical treatment of the diffusion approximation over treating
the RTE directly, is the fact that the diffusion approximation does not depend on the angular
variable. Therefore, the number of unknowns of the corresponding discrete problem is reduced
tremendously. In the following chapter a formulation of the problem is presented, which is,
like the diffusion approximation, independent of the angular variable, but does not depend
on the validity of certain assumptions about the optical parameters.






Chapter 2

The Integral Formulation

The radiative transfer equation (1.1) describes the propagation of the intensity along the
path of a ray. The intensity depends on five independent variables, three space coordinates
and two coordinates describing the direction of the ray. The discretization of (1.1) e.g. by
the discrete ordinate method or spherical harmonic expansion, therefore, leads to a very large
number of unknowns. This is the major difficulty in the numerical treatment. However, in
many applications one is not interested in the exact angular dependence of the intensity but
rather in some angle integrated quantities like the energy G (see (1.4)). Hence, one might ask
if it is possible to compute G without computing the angular dependent intensity I in a first
step. Indeed, this is possible under certain conditions. In this chapter a reformulation of (1.1)
into an integral equation for the energy is presented. The resulting system of equations is a
well-posed formulation of the problem, i.e. a unique solution exists and depends smoothly on
the input data. The reformulation is well known in case of isotropic scattering. In Section
2.4 the procedure is extended to the case of linear anisotropic scattering.

2.1 Derivation of the Integral Formulation

The radiative transfer equation (1.1) can be interpreted as a combination of ordinary differ-
ential equations along rays, coupled by the scattering integral and the boundary conditions.
On this background, it is possible to integrate the equation formally along the rays with
the coupling terms interpreted as source functions. This is the point of departure for the
derivation of the integral formulation.

The aim is to get to a formulation which is independent of the angular variables. Since
for specular reflecting boundaries, the intensity in an incoming direction depends on the
intensity in one special outgoing direction, it is obvious that it is not possible to find an angle
independent formulation in this case. Therefore, we restrict ourself to diffuse emitting and
reflecting surfaces. Next, we have to consider the source term:

S(z,Q) = % / o(Q, ) I(z, )Y + k(z) B(T(z)).
52

It consists of two parts: the emission term and the scattering integral. In case of thermal
radiation the emission term B is given by the Planck function. It depends on the given

temperature and the considered wavelength but not on the direction. On the other hand,
it is obvious that arbitrary scattering phase functions ® cannot be handled by an angle
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independent formulation. The case of isotropic scattering leads to an isotropic source and
can be handled easily. Since the case of linear anisotropic scattering will be considered in
Section 2.4, the dependence on the angular variable is kept during the derivation of the
integral formulation.

In the following, it is assumed that the boundary is smooth, i.e. 9D € C%*. For non
smooth boundaries, there are problems in the definition of reflecting boundary conditions
(see Chapter 1). In Section 2.2 a weak formulation is introduced which is valid for arbitrary
Lipschitz boundaries, 8D € C%!.

To simplify the notation the following abbreviations are used:

e d(z,Q) :=max{s e RT |z —tQ €D Vtel0,s]},

o z5(z,Q) =z —d(z,Q)Q, i.e. zp(z,Q) denotes the first point on the boundary crossed
when going from z € D into direction —Q (Note: for convex domains there is exactly
one such intersection point.).

In order to integrate Equation (1.1), it is written as a set of linear ordinary differential
equations:

dI
%CB +5Q,9) = —y(z + sQ)I(z + s2,Q) + S(z + s02,9Q),

reD,NeS? seR st. z+sQeD. (2.1)

Assuming that the source term S is given, this system can be solved analytically:

I(z,9) = I(zs(z, Q))e "@H@D) 4 /d(w’m S(x — 50, Q)e T@T ) g
0 reD, Qes? (22
where X
(@9) = o —yll [ (e + (1~ ) (2.3)
0

To get rid of the dependency on the angular variable, we have to integrate over all directions
Q € S?. The first term on the right hand side in Equation (2.2) gives an integral over all
boundary points which are visible from the point . The line integral becomes an integral
over a volume. A substitution of variables y := x — s{2 is used to account for that.

It holds s = ||z — yl|, 2 = % and

[z—y
dy = s%dsd (volume element inside the domain D),
2
do(y) = —ﬁdﬂ (area element on the boundary dD).
n(y) -

This substitution of variables yields

677'(-75:?/) Yy—
G(z =/ v(z,y S(y, dy
@)= J, oV =S gy =)

m)da(y) Vz € D, (2.4)
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where the visibility function v is given by

1 if{tz+ (1 -t)y|te0,1]} C D,

oy~ {1 T ylte 1) .
0 else.

Remark 2.1. The following considerations give a physical interpretation: the square of the
distance between the two points £ and y appears in the dominator because isotropically
emitted energy spreads out on concentric spherical surfaces. The measure of such a sphere
grows quadratically with the radius. Hence, the strength of the influence between two points
decays quadratically with their distance. This decay is the basis for the application of the
matrix compression methods discussed in Chapter 4.

Assumption 2.1. We make the following assumptions.

1. The computational domain is convex. In this case the visibility function is equal to
one: v(xz,y) =1 Vz,y € D. This simplifies the numerical treatment of the equation
since the discontinuous behavior of v for non convex domains leads to the following dif-
ficulties. The numerical approximation of the integrals described in Section 3.2 is much
more difficult since the integrand is discontinuous. The matrix compression methods
described in Chapter 4 are less efficient because they rely on the smoothness of the
integral kernel. Hence, they can only be applied to regions where v is constant. In case
of non convex domains we recommend to use some kind of domain decomposition.

2. In this section we assume further that the scattering is isotropic, i.e.

S(z,Q) = 8(z) = Z2Q(x) + r(z) B(T(z)).

The above assumptions lead to the following equation:
/ (2Y) + mw)BEW))dy
|l — yll

n(y)-(y—w)e,T( ¥ o T
+/ Tt Iy(y)do(y) VzeD. (2.6)

For black boundaries, i.e. the reflection coefficient p is identically zero, I;(y) is a known
quantity. Hence, Equation (2.6) is a closed system for the energy G, the so-called Peierls
integral equation. The derivation of this equation can also be found for example in [56].

In case of homogeneous boundary conditions, i.e. I = 0, and constant coefficients this
equation can be written in the following form

(Id — wK)G = 4n(1 — w)K B, (2.7)
where the scattering albedo w is defined as w = 2. (In case of constant coefficients, we
always assume that v > 0. If this was not the case, the medium would be transparent, and
the problem would reduce to radiative exchange between surfaces.). The integral operator K
is given by
e~ lz—yll

(KG)(2) = 1~ G(y)dy. (2.8)

J e =yl?
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For later use, an operator notation for the derivation of the integral equation is introduced.
The formal solution can be interpreted as inverting the operator Hq (see (1.24)) for fixed Q:

-1 _ d(e,) _ —7(z,x—s0)
[Hqy S|(z,Q) = i S(z — sQ)e ds. (2.9)

The integration over all directions is denoted by the operator L

(LI)(z) = 4i / I(z, Q)d9. (2.10)

v
S2

A right inverse L™ (LL' = Id) of this operator is given by

(LTG)(z,9) = G(z) V. (2.11)

By using these operators, the integral operator K can be decomposed as follows

K=~LH 'L". (2.12)

The integral formulation for the one dimensional form (1.55) of the RTE with homogeneous
Dirichlet boundary conditions is derived analogously to the 3D case: inverting the operator
H,, (see (1.56)) for fixed p and integrating over all directions, i.e. applying the operator L of
(1.56). Interchanging the order of integration, i.e. the integration w.r.t. p becomes the inner
integral, yields the equation

(Id — wK)G = 47(1 —w)KB, (2.13)
for the energy G' = 4w LI, where the integral operator K = yLH 'L is given by

l
(KG)(&) = § [ Birla ~ )Gy (214)

FE denotes the exponential integral of order one. The exponential integral of order n is
defined as

*© 1 ! s
E,(x) :/ e_mt—ndt :/ p"2ekdy, z>0 n=0,1,.... (2.15)
1 0

Differentiating Equation (2.15), a recurrence relationship is found as

dFE
dm” (z) = —E, 1(z), n=12,..., (2.16)
especially
dE; e T
() = —Eo(z) = ——— 2.1
(@) = ~Bo(a) = ——, (217)

i.e. Fj has a logarithmical singularity at the origin, and, hence, Equation (2.13) is a weakly
singular Fredholm integral equation of the second kind.
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Remark 2.2. The DOM of Section 1.2 is a discretization of the RTE. Since the integral
equation (2.7) is derived from the RTE, the DOM can also be interpreted as a discretization
of this equation. The integral operator K is replaced by an operator K,,, defined analogously
to K, whereby the operator Hq is only inverted for a finite set of m ordinate directions
Q;. Respectively, the integration over all directions is replaced by a weighted sum. Let

I=(Ii,...,I,) denote the intensities in the chosen directions ;. The discrete operators are
defined as
1 m
(LrI)(z) = Z; wil;(z), (2.18)
1=
(L} G (2,9) = G(z)  Vie{l,...,m}. (2.19)

By using these operators, the operator K, can be decomposed as follows
-1
Hg,
Ky =L, L} = yL,H,'L. (2.20)

-1
Hg

In Section 3.4 this method is compared with a numerical method which discretizes the integral
equation directly. This method is introduced in Chapter 3.

Remark 2.3. The derivation of Equation (2.6) is valid only for z € D. For z € D the whole
domain D is already covered by integrating over all directions with n - Q > 0. Integration
over the whole unit sphere gives:

Glz) = / ot / ~ I(x) / 1dQ+/...+/... . (2.21)

n-0Q<0 n-Q>0 n-Q<0 D oD
——
=27
That is, for £ on the boundary an additional term appears in the equation. This is consistent
with the following considerations. If the coefficients k¥ and ¢ are constant, it holds that
7(z,y) = 7v||lx — y||- In this case the boundary integral can be written as a double layer
potential: the vector valued function
ezl

E (y — =) (2.22)

kvec(z,y) = R

fulfills the integrability criterion for y € R3\{z}, i.e. 6%2” = 61;,;;]-

simply connected a primitive function kpo, w.r.t. y exists (i.e. Kvec(Z,y) = Vykpot(z,y) Vy €
R*\{z}), e.g-

. Since this domain is

e~ lz—yll
kpot(z,y) = H —vE1(v|lz — yl])- (2:23)

Hence, Equation (2.6) can be written as

0
Gla) = D/ = | gy oo )b w)doly).

Since Fq has a logarithmical singularity at the origin, ko has a singularity of first order.
Hence, the above integral defines a double layer potential V. Let ¢ : 0D — R:

Vo)) =4 [ sishaale,)el)dols), o D.
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The corresponding double layer operator is given by:

1 0

(Dp)(z) = —

Am Jap mkPOt($a9)¢(y)d0(y), z € 0D.

It is well known that a double layer potential has a jump at the boundary (see [24]):

lim (Vip)(z) = —=(z0) + (D) (o).

T—T0 2

By using this jump relation, the limit z — 9D in equation(2.6) is computed as

G(z) = / b ATiLy) - Fpor (2 9) Ty () do(y).

9
2 ap On(y)
D

This is the same relation as (2.21) derived directly from the RTE for z € 9D. The fact that
the boundary integral is a double layer potential is used also in Section 4.3.

If the reflection coefficient p is greater than zero the intensities on the boundary for an
incoming direction depend on the outgoing flux goys.

/||3;_y||2 )G(y) +f<&(y)B(T(y)))dy

N / n(ﬁ:)v : _(yyig}m)ef(w ) (%qout(y) + (1 = p(y)) B(Tout (y)))do(y) Vz € D. (2.24)

Hence, an additional equation is needed to close the system. This equation can be obtained
by multiplying Equation (2.2) by n - and integrating over all directions with n - > 0. For
z on the smooth part of the boundary of a convex domain, integrating over n - ) > 0, covers
exactly the whole domain:

nz) (T —Y) (W)
qout(fv):/ljwe ( w(ﬁG(y)JrﬁB(T(y)))dy

n(z) - (5 —y)n(y) - (y—z) _
+/3D lo—9l?  lls—vlE *

@) (P g ) + (1~ () BT 0)) ) do(y)
Vz € dD. (2.25)

Remark 2.4. If x lies on an edge or vertex of the domain there are two difficulties:

1. The outer normal is not defined in such points.

2. There is no vector 7 such that integrating over 7 - 2 > 0 covers exactly the whole
domain.

Hence, there is no possibility to modify the equation in such a way that it is valid on the non
smooth parts of the boundary.

Remark 2.5. The above derivation shows that, if the intensity I fulfills the RTE (1.1) with
isotropic scattering and diffuse reflecting boundary conditions, then the corresponding energy
G and flux goyt, defined by (1.4) and (1.7) respectively, satisfy the system of integral equations
(2.24) and (2.25). On the other hand, it does not follow that for a solution (G, goys) of the
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integral equation, there exists an intensity I which solves the RTE, and such that G and gout
are given by

G(z) = /I(w,Q)dQ, and  gout(z) = / n(z) - QI(z, N)dQ.
S2 n(z)-0>0

This assertion is only true if the solution of the integral equation is unique, and if the existence
of a solution of the RTE is guaranteed.

2.2 Existence and Uniqueness

The investigation of existence and uniqueness of the solution of the system (2.24) and (2.25)
is based on an analysis of the mapping properties of the involved integral operators. These
operators are defined as follows:

oVx € D o)
(Kqu)(z fku z,y)u(y)dy = f%ﬂziyﬁ‘ u(y)dy,
(Kiou)(z) := f k1o (z, y)u( f WB_T( Du(y)do(y),
8D 8D
oV € 3D
(Ko1u)(z szl u(y)dy := D %‘?)n(ﬁgfznfsy)efT(w’y)U(y)dya
(KZZ’UI = f k‘22 ,y) = f £(y) n i;? ;sz) n(”yz? (Z”:c) e T(@y) ( )do( )

oD
The function k;;(z,y) is called kernel of the integral operator Kj;;. Since D is convex, the
kernels are always non-negative. They are continuous if z # y and have a singularity on the
diagonal z = y. In the following the notation k;;(z,y) is used to denote the kernel without
the factor o(y) in case of the volume integrals and p(y) in case of the surface integrals.

By using the above definitions, the integral equation can be written in the following operator
notation

( G )_(Ku K12)< G )Z k% gl-r ( B ) (2.26)
Gous Ko Kz ) \ gous K K )\ Bow )’ '
S~—_——— N v

where K. i(f ) and KS ~#) means that the factors %?) and @ are replaced by k(y) and (1—p(y))
respectively.

Equation (2.26) is a Fredholm integral equation of the second kind. There are essentially two
possibilities to show existence and uniqueness for this kind of equation. First, if the operator
norm of K is smaller than one, a Neumann series argument can be used. Second, if the
operator K is compact, Fredholm alternative can be used. Since both properties depend on
the underlying function spaces, these spaces have to be defined first.

G is defined in the interior of the domain whereas oyt is defined on the boundary. Hence,
function spaces on D and D have to be defined. LP-spaces can be defined on arbitrary
measure spaces. Since dD has one dimension less than D, it is reasonable to scale the
measure on D by o, which has the unit of a reciprocal length. Furthermore, the surface
measure is scaled by the dimensionless parameter p. This leads to some favorable properties,
as will be shown later on.
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Definition 2.1. Let A; C D and As C 3D be Borel sets. The measures p; and po on these
sets are defined via

i (Ay) = / cdN, A CD,  pa(ds)— / pdo(2), A; C 9D, (2.27)
Al A2

where A" denotes the Lebesgue measure in R”.

The corresponding LP-spaces, p > 1, are denoted by LP(D, u1) and LP(OD, p2). These two
spaces have to be combined to yield one space. This can be done as follows (refer to [57]).

Let U, V be normed spaces, 1 < p < oo. Then

1 .
T {(||u||%+ lolf)>ifp < oo,
max{(lulo, [ollv} i p = oo,

defines a norm on the direct sum U@V. The normed space is denoted by U®, V. Furthermore,
if U and V are complete, the same assertion holds for U @&, V. If U, V are Hilbert spaces

(%), (%2)) := (ur, u2)y + (v1,v2)v

defines a scalar product on U @ V.

In the following the three spaces LP(u) := LP(D, 1) @p LP(0OD, o), p = 1,2,00, are used.
The norms and inner products on these spaces are given by

(G = [ o@)6(a)ids + [ plo)laon(z)ldota), (2:28)
D oD
(1) (2)
(), (G Mo = [ 0@V @)D @)+ [ po)dl (@l (@)dolo),  (229)
D oD
11 (gme Ml ooy = max{ Niglfl wesgl\DNlG(fv)l, Nic%fD, wE%%RNIqout(w)l}- (2.30)
u(N)=0 p(N)=0

LP- spaces have the following properties (for a proof refer to [57]). Let v be a measure on an
arbitrary set A, and let LP(A,v), 1 < p < oo, denote the corresponding LP-spaces. Then:

e LP(A,v), p> 1 is a Banach spaces, and L?(A,v) is a Hilbert space.
e Let % + % = 1. Let f € LP(A,v), g € LY(A,v). Then: fg € L'(A,v) and

Wfgllz: < |Ifllzellgllze (Holder inequality). (2.31)

e If A is bounded, i.e. ¥(A) < oo, there are positive constants c;, c2 such that

£l < ellfllz Vf € L2(4,v), (2.32)
1fllz> < callfllze Vf € L¥(4,v), (2.33)

ie. L®(A,v) C L?(A,v) C LY(4,v).
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o Let % + % = 1. The mapping T': LY(A,v) — (LP(A,v))" defined via
T9(7) = [ fodv (2.34)
A

is an isometrical isomorphism. ((L?(A,v))" denotes the dual space of LP(A,v).)

Due to the definition of the norm on U &, V, the properties above also hold for LP(u),
1 < p < 00. The mapping 7' in (2.34) has to be replaced by

(Tg)(f) = /f191du1 +/f292du2, (2.35)
D oD

with f = (g) € LP(u) and g = (§}) € L(u).

Remark 2.6. Note that a subset Ay C D has measure zero, pi(A;) = 0, if o(z) = 0 on
A1. The same holds for the boundary: a subset As C dD has measure zero, ps(As) = 0, if
p(z) = 0 on Ag. This means that functions which only differ on such sets are indistinguishable
in the LP(u)-spaces. This is in order since the solution on these sets does not influence the
solution on other parts of the domain, hence, the problem decouples in the following sense:
Let Ny C D and Ny C 0D denote the largest set of measure zero, i.e.

M= |J 4, M= | 4.
A1CD, AyCaD,
p1(A1)=0 u2(A2)=0
Then the solution on D U @D\(N; U N2) can be computed in a first step. If the solution on
D UOD\(N1 U Ns3) is known, the solution on N; U N, can be computed by simply evaluating
the integrals in Equation (2.26). Hence, it is sufficient to show existence and uniqueness in
the LP(u)-spaces.

The space of continuous functions C(D) @ C(0D) equipped with the norm || - ||s is also a
Banach space. In the following the two cases C(D) @ C(0D) and L?(D, 1) @2 L?(0D, ps)
are treated since the two most popular methods for treating an integral equation numerically,
namely the collocation method and the Galerkin method (refer to Chapter 3), are based on
these two spaces respectively.

The Space C(D) & C(0D)

To have a well defined equation it is necessary to show that K is a bounded operator from
C(D) @ C(dD) to C(D) @ C(9D). If the boundary is smooth, the operator is even compact.

Theorem 2.1. Let the boundary be smooth, i.e. 0D € CY* and assume that the functions
k(z), o(x) and p are continuous.

e Kji is a compact operator from C(D) to C(D).
e Ko is a compact operator from C(D) to C(0D).
e Ko is a compact operator from C(0D) to C(D).
(

e Koo is a compact operator from C(0D) to C(dD).
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Proof. Consider the volume integrals. First of all, it has to be investigated if the functions
(K11u)(z) and (Kaju)(z) are continuous functions. Since both kernels are weakly singular
and smooth outside the singularity at = = y, it is easy to show that (K;;u)(z) is bounded.
The proof shows even more, namely that the family of functions {Kj1u|||ul|cc < 1} is uni-
formly bounded and equi-continuous. Hence, the lemma of Ascoli-Arzeld shows that the
corresponding integral operator is compact. (For a detailed proof refer to [56] Lemma 2.2.)

For smooth surfaces 9D € C*%, the following estimate is satisfied (see Appendix A.1)
In(y) - (v — )| < Caplle -yl (2.36)

Due to this fact the kernels k12 and koo are integrable and compactness can be shown as in
case of a volume integral. O

If the boundary is smooth, K is a compact operator on C(D)® C(0D) and Fredholm alterna-
tive can be applied. If 9D is only piecewise smooth, the function space needs to be changed
to account for the discontinuity of the outer normal n(z) in non-smooth boundary points.
We use the Banach space L*(u) to allow for discontinuities along edges and corners of 9D.

The integrals [}, k11(z,y)dy and [, k12(z,y)do(y) exist for all z € D. The integrals

Ip k21(z,y)dy and [, kao(z,y)do(y) exist for all z € D for which the surface normal is
defined. Therefore, the mapping properties in case of piecewise smooth boundaries are very
similar to the ones in case of smooth boundaries: the volume integral operators K11 and Koy
are compact and the surface integral operators K15 and Ks9 are bounded in the L (u)-norm.
On the other hand, as shown in [24], the compactness of the boundary integral operators is
lost if the boundary has at least one vertex or edge. Hence, Fredholm alternative does not
hold, instead a Neumann series argument has to be used to show existence and uniqueness.

Theorem 2.2. Let V' be a Banach space and T € L(V) satisfy ||T|| < 1. Then Id — T is
invertible with

(Id—T) ' = f:T“, (2.37)
n=0

especially
IZd —T)7H < (1 =TI~ (2.38)

i.e. the corresponding operator equation of the second kind is uniquely solvable and the solu-
tion operator is bounded.

Proof. refer to [1] i

Remark 2.7. An operator which maps non-negative functions to non-negative functions is
called a positive operator. If T is a positive operator with ||T'|| < 1, then the operator
(Id — T)~! is also positive due to the representation (2.37).

The proof of Theorem 2.3 (see below) shows that || K| o< (,,) is not smaller than one in general,

but a simple scaling of gy by factor four, yields an operator K which satisfies this property.
Define: §out = 4qout- This scaling can be interpreted as a kind of balancing of G and goyt,
since the integrals involved in the definition of this quantities satisfy the following relation

/ldQ:47r:4 / n - QdS).

S2 n-Q>0
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The scaled equation is given by

G K1 1K ) < G ) 5
N — . = f. 2.39
( Gout ) ( 4K Koo Gout ! (2:39)

~ vl
-~

=K

Note that the scaling can also be interpreted as a similarity transformation K = TKT!
with 7= (4 ,9.). This will become important in the next subsection.

Theorem 2.3. Let the optical parameters of the problem fulfill one of the following conditions:

1. There is a subset Ay C D with \*(A1) > 0 such that k(y) > 0Vy € A;. or

2. There is a € > 0 such that for all x € 0D it exist a subset Ay = Ay(z) C 0D with
A2(Ag) > € such that n(z) - (z —y) > € and p(y) <1 —eVy € As.

Then K is a bounded operator from L (i) to L (u) with ||K||Loo(u) < 1. In the special case
of constant coefficients a sharper estimate can be given

2 < max{w,p}, pr 7é w
1 oo o { (2.40)

<p if p=w.
where w = % denotes the scattering albedo.

Proof. The L*-norm of an integral operator T’
(Tu)(@) = [ Kag)ulw)dy (2.41)
by

is estimated as follows:

170 = sup sup| | k(z,y)u(y)dy| < SHP/ |k (z, y)|dy. (2.42)
weL® (D), lulls=1 @EX Jx zen Jx
To show the estimate (2.40), K is split into two parts: K = (? ),

2

1K || poo () 100 (i) = Max{ || K1 || oo (D, ) 100 ()5 12| oo 8D, ) Loo () } - According to (2.42),
the norm of the combined volume and surface integral operators can be estimated as follows

. 1
1 K100 < sug{/ ki1 (z,y)dy + 1 / kia(z,y)do(y)}, (2.43)
e D oD
and
H&MSm%m/mwmw+/@umwwy (2.44)
e
D oD

For constant coeflicients, the values of the volume integrals are easily estimated by embedding
the domain D into a larger standard domain, a sphere in case of K1; and a half sphere in case
of Kj2. On this standard domains the integral is easily computable. Since the kernels are
always non-negative, the value of the integral can only be increased by enlarging the domain.

Estimating the values of the surface integrals directly is not possible because the surface
cannot be embedded into a larger standard domain. The Theorem of Gauss can be used to
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transform the boundary integrals into integrals over the volume. This gives an estimate for
the integrals in (2.43) and (2.44) respectively. The transformation is rather complicated since
the singularity of the kernels for z = y has to be excluded before the Theorem of Gauss can
be applied, i.e. a small ball B.(z) is used and the limit ¢ — 0 is contemplated. For more
details refer to [3], where the case of radiative transfer between diffuse reflecting surfaces is
treated.

A much simpler approach to obtain an estimate for the integrals in (2.43) and (2.44) respec-
tively, reverses the variable transformation used in the derivation of the integral equation.
By this approach, the fact that ||K | zeo(uy < 1, is simply a consequence of the conservation
of energy described by the RTE.

The volume integral in (2.43) is computed as follows

d(z,)
1
Iy = /ku(x,y)dy =1 / o(x — SQ)e_T(x’m_SQ)dsdQ.
0
D 52 0

Using the fact that v = o + < and that

S

iT(.’E,CE —sQ) = " /7(33 — 1) = 7(z — sQ),

ds ds
0
yields
1 x 7
Ill — E/Ie—'r(m,m—sﬂ)]g( ’QidQ—/m(y)ku(:ﬂ,y)dy- (2.45)
§2  _q_g—r(eey(e0) D

(Please, remember k;;(z,y) is used to denote the kernel without the factor o(y) in case of
the volume integrals and p(y) in case of the surface integrals.)

The surface integral in (2.43) is given by
1 -7
T i= [ k@ p)do) = [ plasfa, ) e Dig.
oD S2

Since the scaling of gout gives a factor % in front of the boundary integral, the following

estimate holds

N 1 _
1K1 oe < sup (1= 5 [ plav(o, D))e @0 - [ w(y)hi(z,)dy)-
z€D ™
g2 D

An analog transformation of the integrals in (2.44) yields an estimate for || K|

[Kellow < sup (1= [ L= plan(z. D)ln(o) - Qe
z€HD ™
n(z)-0>0

—4/m(y)/_€21($ay)dy>-
D
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These estimates give the first assertion of the theorem. In case of constant coefficients the
estimates simplify as follows:

N 1
Kiloo < sup [% 4 5 [ Ml agp - 7)), (2.46)
gzep Ly Am | S/ — Y
92 <1
)
and
: o 41 ~llz—as (.| o
1K2]|o0 < sup [— v4- n(z) - Qe Mm@l 4o (p — —)]. (2.47)
z€dD LY ™ D Y
n(z)-0>0 <1
e(afi)
This gives the estimate (2.40). O
Remark 2.8. The optical thickness 7 of the problem is defined as
= ) 2.48
7 = max 7(z,y) (2.48)

For the following considerations it is assumed that the coefficients k, o and p are constant in
space. In this case 7 is given by 7 = - diam(D). To see how the optical thickness influences
the operator norm, two extreme cases are considered: the case of black boundaries, i.e. p =0
and the case of a non-scattering medium, i.e. ¢ = 0. In both cases the system (2.26)
decouples. In the first case one only has to consider the operator Ki; in the equation for G
and in the second case the operator Ko in the equation for Gyyt.

In the first case, the right hand side in (2.46) becomes maximal for z in the center of the
domain. For this x the following estimate holds

1
T(z,2h(2,Q)) < 57 vQ,

and, hence,
k) 1
[Ki1l[Lee < w(1—e27). (2.49)

That is, ||K11[lc gets close to one if the scattering albedo, w = Z, is close to one and 7 is

large, i.e. in the diffusion limit (see Section 1.2). This becomes important in the discussion
of the convergence of iterative solution methods in Section 3.3.

In the second case, o = 0, the right hand side in (2.47) becomes large when e~llz=zs(z:Q)l

is close to one for some directions €2, i.e. for x near non-smooth boundary points or if the
optical thickness of the problem is small.

If p = w, the optical thickness has little influence on the operator norms.

Using the estimates in Theorem 2.3 together with Theorem 2.2 gives

Theorem 2.4. Let the prerequisite of Theorem 2.3 be fulfilled. Then the integral equation
has a unique solution in L*°(u) and the solution operator is continuous. Furthermore, the
solution is non-negative.

Proof. The existence of a unique solution follows from the Theorems 2.3 and 2.2. The integral
operator K is a positive operator since all integral kernels k;; are non-negative. Therefore,
due to Remark 2.7, the operator Id — K is also positive. O

Remark 2.9. The non-negativity of the solution is a desirable result since the energy G and
the flux goy¢ are non-negative physical quantities.



36 2. The Integral Formulation

The Space L?(D, uy) @y L*(0D, ps)

The space L2(D, u1) @2 L?(0D, o) is a Hilbert space. The weak formulation of the integral
Equation (2.26) in this space reads as follows:

For given f € L%(p), find u € L?(u1) such that
a(u,v) = <AuaU>L2(u) = <.fav>L2(u) ACAS L2(N)7 (250)

where the operator A is defined as A := Id — K. (Id denotes the identity operator.)

The original Equation (2.26) is only defined for a smooth boundary, but the weak form is
valid for domains with Lipschitz boundary, i.e. 0D € C'°. An additional advantage is that
L?(u) is a Hilbert space. This offers the possibility to exploit such powerful theorems as the
Lax-Milgram lemma.

To have a well defined equation, the image of the integral operator has to be an L?-function,
e.g. for u € L?(D), Ky1u has to belong to L?(D). A rather obvious approach to show this,
is to use Cauchy-Schwarz inequality, but this attempt does not work since k11 ¢ L%(D x D).
A more profound result from functional analysis, namely the Calderon-Zygmund lemma, has
to be employed.

Theorem 2.5 (Calderon-Zygmund inequality). Let 1 < p < oco. Let w: R*"\{0} — R
be measurable on 0B1(0) (B,(z) = ball around x with radius r) and bounded and satisfy the
following two conditions

o [ w(&)do(§) =0,
8B1(0)

o w(z) = w().

Then for 0 < e <1 and f € LP(R")

@nw= | Wz = 9) £y

is a well defined function in LP(R™). Furthermore, the operator T; is a bounded linear operator
from LP(R™) to LP(R™) and the limit Tf := liH(l) T.f exists with
E—r

1T flLe ) < C(nyp)llwllze o, (o)1 12 &)

Proof. refer to [1], Chapter 8.20 o

Since the functions o and p are in L*°(D) and L*(0D) respectively, the mapping properties
of K in L? do not depend on the special choice of the measure. Hence, in the following the
spaces L%(D) := L?(D,\3) and L?(0D) := L?(0D, A\?) equipped with the Lebesgue measure
are used.

For the proofs of the mapping properties of K some additional theorems are needed.

The adjoint of a compact operator is compact.

Theorem 2.6 (Schauder). Let U, V be Hilbert spaces T € L(U,V). Then

T e K(U,V) & T € K(V,U).
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Proof. refer to [1]. o

The embedding of H! in L? is compact.

Theorem 2.7 (Rellich). Let D C R" be open and bounded with Lipschitz boundary, i.e.
0D € C%'. Then the embedding

H?*(D) — L?*(D)

is compact for s > 0.

Proof. refer to [23], Theorem 6.4.8 c) o

These theorems are used to proof the following mapping properties of the integral operators
in the L%-spaces.

Theorem 2.8. Let 0D € C%! and assume that the functions k(zx) and o(zx) are continuous.
Then

1. K1y is a compact operator from L?(D) to L*(D).
2. Kio is a compact operator from L?(0D) to L?(D).
3. Koy is a compact operator from L?(D) to L?(8D).

4. Ky is a bounded operator from L?(D) to L?(8D).
Proof.

1. In order to apply Theorem 2.5 the kernel k11 is split up as follows

aly) 1
kii(z,y) = ar © T@y) z—ol?
N——

Since the function kg contains the singularity, this part is most difficult to handle. By
using the Calderon-Zygmund lemma, it can be shown that the operator Ky defined by

(Kow(a) = [ ho(e.pyuidy = [ ——zu(s)dy
R3

R3
maps L2(R?) to H(R3). To this end an operator K(¢) (¢ > 0 arbitrary, fixed) is defined
by
©) _ 1
(K*u)(z) := Tz u(y)dy.

u
1z =yl
E3\Be (o)

For u € C(R3), it holds (K©)u)(z) € H'(R?) with

-9 Ti—Yi
llz—yll

e _y||3u(y)dy+rf(a:;u). (2.51)

d . B
S (KOu) (@) = /

R3\ Be(x)
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The term 75 (z;u) stems from the fact that the domain of integration depends on z. It
is given by (see Appendix A.3)

. 1 x; —Y; 1 €Yi
o= [ g o) = [ Futet e Zeaol)
BBE(CE) 331(0)
= [ vl endol) S [ uidoty)ute) =0. (252
3B1(0) 631(0)
For u € L2(R?) define
~ —2a
@@= [ L

R3\ Be (x)

Since the requirements of Theorem 2.5 are fulfilled, 7" (u) is well defined in L?(R3),
and the operator T given by

) Ti—Yi

(TOW) = [ o sty
R3

is in L(L?(R?), L?(R3)).
It remains to show that Vu € L?(R3) : TWy = dizi(Kou) in L2(R3), i.e.

(T, 6) = ~(Kou, ~-4) Vo € GG°(B) (2.59)

Let u € CJ(R?). Then

(2.51) 1im<iK(6)u, ¢) — (Lim 7{ (u), ¢)

e—0 " dx; e—0

(T, ) = (lim TOu, ¢)
e—0
(222)0
d d

= —lim(K®u, —¢) = — — ).

61_1)1’(1)<K u, dr; ¢) <K()U, dz; ¢>
Since CJ(R?) is dense in L?(R?), (2.53) holds for all u € L?(R?). Hence, the assertion
that Ko € L(L%(R3), H*(R?)) is shown. Restricting this result to the domain D and
using the fact that the embedding from H'(D) to L?(D) is compact (refer to Theorem

2.7) gives that Ko € K (L*(D), L2(D)).

To show that the kernel k11 (z,y) = %ﬁi)e”(‘”’y)ko (z,y) also yields a compact operator,
a sequence of compact operators is constructed, which converges to K11 in the operator
norm. Then the limit operator, i.e. K11, is also compact (refer to [57]).

Let € > 0 be arbitrary, fixed. Since f(z,y) = e~7(*¥) ig continuous on the com-
pact domain D x D the approximation Theorem of Weierstral gives a polynomial
pe(z,y) = 32, cwuz”y* such that || f — pell o (pxp) < €. Define the kernel k.(z,y) =

%‘Z)Pe ("I"a y)kO (37, y) . Then:

106 = Kulz = ([ [ [ 22 100) ~ pos) ol uto ] o)

<e

ol

<e 1Kol 2 llull 2,
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l.e.

g
1K~ Kellps < 170
7

It remains to show that the operator K, is compact. K. can be written in the following
form: K, = Evu oy Myv o Ky o Myw o M4, where the multiplication operator M, is
’ Tar

{L2 - 12,

defined as follows

g -

f—9f
M, is bounded if g € L*°. Hence, My», My« and M,(,) are bounded and M+ o Kg o

4r
Myu o M, is compact as a concatenation of continuous operators, where one of the
47

operators is compact. Therefore, K, is compact as a sum of compact operators and the
compactness of K1y is proven.

2. To proof that Ko is compact, again a multiplicative splitting of the kernel is used

3
Ply) Yi — T
kia(z,y) = = e Ty i) ﬁ
i=1 Jr Y,
:kl(w’y)
ki(z,y) = _diyim is the derivative of the Newton volume potential. Therefore, the

corresponding operator is a bounded operator from L?(0D) to H 2 (D) (for a proof refer
to [39]). Hence, it is compact from L2(8D) to L?(D) due to Theorem 2.7. Using the
same argument as in case of the operator K1y yields the compactness of Kis.

3. As shown below the operators K19 and Ko; are adjoint except for a constant factor.
Hence, the compactness of Ko follows by Theorem 2.6 from the compactness of Kis.

4. Since p(y) < 1and e 7@ < 1 and n(z)(z—vy) < ||z —y| the kernel koy is bounded by
the kernel of the double layer potential of the Laplace equation. Since the corresponding

operator is a bounded operator from L?(8D) to L?(8D), the same statement holds for
K22.

O

The operator Koo is not compact for general surfaces and, hence, as in case of L*°-functions,
Fredholm alternative cannot be used. The fact that L2(u) is a Hilbert space offers the
opportunity to employ the Lax-Milgram lemma to show existence and uniqueness. To this
end it has to be shown that the bilinear form a(-,-) is coercive.

Theorem 2.9 (Lax-Milgram). Let V' be a Hilbert space and a(-,-) a continuous and coercive
bilinear form, i.e. there exist positive constants Cs and «

la(u,v)| < Csllull||lv]] Vu,v €V, (2.54)
la(u,u)| > allul> YueV. (2.55)
and let F': V — R be a bounded linear functional. Then it exists exactly one u € V' such that
a(u,v) = F(v) YveV.
Or in other words, there exists a unique continuous linear operator A on'V such that
a(u,v) = (Au,v)y Vu,v € V.

Furthermore, A is bijective and the following estimates hold: ||Al| < Cy and ||A71]| < L.
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proof. refer to [1] o

For the following theoretical considerations as well as for the numerical treatment of the weak
formulation, it would be advantageous if the operator K was self-adjoint. Due to the choice
of the scalar products in L?(D, 1) and L?(8D, u2) the integral operators Ki; and Koo are
self-adjoint. Furthermore, it holds

ki2(x,y) = 4ka1 (y, z), (2.56)

and, therefore, Vv € L2(D, u1), Yu € L?(8D, o)

(K 1t1,0) 121 ) = / o(z)v () / p(y)a(z, y)u(y)do(y)de

D oD
= /P(y)u(y)/U($)4k21(y,$)v($)dwd0(y) = 4{u, K210) 120D pp)-  (2.57)
8D D

Hence, a similarity transformation 7' = ( Od ol d) can be used to get a self-adjoint operator

K1 3K )

2.58
2Ky1 Koo (2:58)

Kyym =TKT ! = (

Since K is a bounded operator on L2(p), Ky, is also bounded. The corresponding bilinear
form
asym (4, v) = ((Id — Ksym)u, v) 12y (2.59)

satisfies the estimate

asym () > (1= [ Kgyml|z2(u) ulf2(,) Y € L2 (1) (2.60)

Hence, asym(-,+) is coercive if ||Ksyml|/z2(,) < 1. As mentioned above, an estimate in this
norm cannot be derived directly since the kernels are no L2-functions. On the other hand,
an estimate for the L'(p)-norm is easily derived. Having an estimate in the stronger L (u)-

norm and in the weaker L!(x)-norm, yields an estimate in the required L?(p)-norm by using
interpolation theory on operator spaces. First of all, the estimate in the L'(x) norm has to
be shown.

Theorem 2.10. K is a bounded operator from L'(u) to L'(u). PFurthermore, ||K||f1,

satisfies the same estimates as ||K||Loo(“) in Theorem 2.3.

Proof. The L'-norm of an integral operator T
= /k(w,y)U(y)dy (2.61)
T

is estimated by using the Theorem of Fubini:

T = sup / / z,y)u(y)dy|dz
weL (D), |ulli=1

< sw / / k()| dalu(y)|dy < | / Ik(z, -)|dzllso [full: -
weL(D), ||lull1=1 \/1-’
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This shows that K is a bounded operator from L'(u) to L'(u) since all kernels k;;(z, -) are
in L*®. A more detailed investigation, regarding the fact that the measure y is used instead
of the Lebesgue measure, yields:

1B () g < / o(z) / o (v)F1n (2, 9)| G () |dydz

D D

N / o(z) / () k12 (%, ) |qous ()| do(y) dz

D oD
T / o(e) / o (9)Far (2, ) |G () | dydz
8D D
4 / () / ()2 () dous () o () dz
oD oD
< / [ / o(2)Fir (2, y)dz + / pl) oot (2, ) do(x)] (1) G () |dy
D D oD

~ J

-~

=:c1(y)

+ / [ / o (@) (. y)de + / () Fra 2, )do(2)] p(1)ldous () dy
D

0 oD

~ J
~"

=tea(y)

< max{sup ¢1(y), sup ca(y)H (G )z ()-
yeD yeOD

Since k11 and koy are symmetric in x and y, and since ki2(z,y) = 4k21(y, ), the quantities
c1(y) and co(y) are the same as the expressions in Equation (2.43) and (2.44) respectively.
Hence, || K||f1(,) satisfies the same estimates as || K|[ 1o (,) O

Having an estimate for the L>(u)-norm and the L'(u)-norm the interpolation Theorem of
Riesz-Thorin can be used to get an estimate for the L?(u)-norm.

Theorem 2.11 (Riesz-Thorin interpolation theorem).
Let 1 < po,p1,90,q1 < 00, 0 < 0 <1 and let the indices p and q are given by
1 1-6 6

1
P po P q ) q

1-9 6
= = -

Furthermore, let v1 and vo be measures and assume that

T:LP(v1) — L(vy)  with norm My, (2.62)
T:LP(v1) — L% (vy) with norm M;. (2.63)

Then
ITfllLe < My M|\ fllee  VF € LPO(v1) N LP (1),

with ¢ = 1 in the complex case and ¢ = 2 in the real case. Hence, the operator can be continued
to a continuous linear operator

T : LP(v1) —» LY vg) with norm M < cM&_er.



42 2. The Integral Formulation

Proof. refer to [57] o

The spaces LP(D, p11) @, LP(0D, p2), p = 1,2, 00, are sums of LP spaces, therefore, the theorem
above cannot be applied directly to these spaces. On the other hand, when looking at the
proof of the theorem, it can be seen that the two facts needed about LP-spaces, are the validity
of the Holder inequality (2.31), and the fact that the mapping 7" in (2.34) is an isometrical
isomorphism. Both properties are satisfied for the LP(u)-spaces. Therefore, the theorem is
also valid for these spaces.

To exploit the estimates for || K| oo (u) and || K|[z1(,), Theorem 2.11 is applied with the indices

)
po = qo = oo and p; = q1 = 1. Setting 6 = %, yields p = q = 2.

Remark 2.10. Theorem 2.11 gives an alternative proof of the boundedness of the operator K
in L2(D, u1) @2 L?(8D, pa), but Theorem 2.8 contains stronger assertions, namely that some
parts of the operator are even compact.

Unfortunately Theorem 2.11 cannot be applied directly to yield the estimate [|K||z2(,) < 1
because of two facts

e The L°°(u) estimate only holds for the scaled operator K but not for K itself.

e Because of the constant ¢ = 2 in the real case, only [ K]||;2(,) < 2 could be shown,
which is not enough for a Neumann series argument. For an example that ¢ = 1 does
not hold in general in the real case refer to [57].

Nevertheless Theorem 2.11 is useful when examining the spectrum of K as a bounded operator
in the different spaces. To this end some results from functional analysis are needed. The
proofs can be found in [57].

Definition 2.2. Let V be a Banach space and T' € L(V'). The resolvent set p(T") is defined
as
p(T) = {\ € C|(\Id — T)~" exists in L(V)},

and the spectrum is defined as o(T') = C\p(T).

The spectrum of a bounded operator is bounded by its norm. For normal operators in Hilbert
spaces the converse assertion is also true.

Theorem 2.12. Let V be a Banach space, T € L(V). Then

sup |A < ||| (2.64)
Xeo(T)

If V is a Hilbert space and T a normal operator. Then

sup [\ = |1 (2.65)
Xea(T)

Proof. refer to [57] o

Due to the assertions in Theorem 2.3 and Theorem 2.10, there is a positive constant ¢ < 1
such that ||K||pe(u) < cand [[K|[z1(, < e

Let A € C with [A| > c. Inequality (2.64) implies that (Ad — K)™! and (AId — K)~! exists
in L(L*(u)) and L(L(u)) respectively. Since K can be transformed to K by a similarity
transformation, K and K have the same spectrum, i.e. (Ad — K)~! exists in L(L>®(u)).
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Applying Theorem 2.11 to (A d — K)~!, shows that (AId — K)~! exists in L(L?(u)). Since
|A| > ¢ is arbitrary, it is shown that

sup Al <e. (2.66)
A€o (K L2y L2 ()

Since Kgym can be transformed to K by a similarity transformation, the same statement
holds for the spectrum of Kgyr,. Furthermore, Kyym is self-adjoint. Hence, Equation (2.65)
can be applied to get

| Koyl 2 < e (2.67)

Remark 2.11. The estimate above is in general not sharp. For the 1D integral equation in
case of homogeneous Dirichlet boundaries (see Equation (2.13)). The following estimate for
| K||z2 is derived in [38]

32 4+4 1
12 72’

K]l <1- if 7> 1, (2.68)
where 7 denotes the optical thickness of the slab. For large 7, this is much smaller than the
L*-norm of the operator, which is given by

.
1Kl = 1- Ba(3).

As mentioned above, the estimate for ||K;ym|| 12(u) yields the coercivity of the bilinear form
asym(+,*). Applying the Lax-Milgram lemma(2.9) proofs the following theorem.

Theorem 2.13. Under the same assumptions as in Theorem 2.4 the bilinear form asym(-,-)
is symmetric and coercive in L?(u) with coercivity constant a = (1 — ||K;ym||L2(“)) > 0.
Therefore, the solution of the weak formulation is unique and the solution operator (Id —
Ksym)_1 15 bounded.

Remark 2.12. The article [35] deals with an integral equation which is very similar to Equation
(2.26). Existence and uniqueness is shown under the assumption that x(y) > ko > 0Vy € D
and p(y) < po < 1Vy € 9D. This assumption is much stronger than the prerequisite in
Theorem 2.3.

2.3 Regularity of the Solution

Consider the case of homogeneous Dirichlet boundaries and constant coefficients, then the
integral equation (2.26) simplifies to (2.7)

G - wKG = f, (2.69)

where K is a weakly singular integral operator. The following one dimensional example
should illustrate the behavior of the solution of such an equation.

Ezample 2.1. Since the considered integral equation is of the second kind the regularity of
the solution can be at most as high as the regularity of the function which results when the
integral operator is applied to a C'*°-function. Consider the following weakly singular integral
operator in one dimension

1
(Km@yz/u—yw%mw@h o€ (0,1). (2.70)
0
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Let the function v € C'((0,1)). Splitting the integration domain into the intervals (0,z) and
(z,1) to get rid of the modulus, and integration by parts yields

T 1

(Ku)a) = 3 (") + (L= 0°u(1) + [ (2 =) [Zuldy + [ (- [ uldy).

!
0 T
Hence, the derivative is computed as

TR0 (@) =2 u(0) + (1 =) () + [ o =y - uldy
0

Since the kernel in the last integral is weakly singular, the integral as a function of x is
bounded. On the other hand, the first two terms have a singularity for x = 0 and z = 1
respectively.

The example above shows that the derivatives of a solution of a weakly singular integral
equation might be singular near the boundary. This is indeed true as the investigations in
the article [44] and in the monograph [56] show. The regularity of the solution in the interior
of the domain is determined by the regularity of the right hand side and the singular behavior
of the derivatives at the boundary is determined by the order of the singularity of the kernel.
The main result is the following:

Lemma 2.1. Let the function space C"(D) be defined as the functions which are m times
differentiable in D and whose derivatives satisfy the estimate

1 if a =0,
[D%u(z)| < cq [logp(z)| if || =1,
p(z) 71l if o] > 1,

where p(x) = infycop ||z — y|| denotes the distance to the boundary. Let f € CT*(D). Then
the solution of the integral equation (2.69) is in CT*(D).

Proof. refer to [56], Theorem 3.1 O

A more thorough investigation shows even more, namely, that for a smooth surface only the
normal derivatives are singular. The tangential derivatives are bounded.

Concerning the boundary integral operators in (2.26), the following assertions hold. If the
boundary is smooth, the solution is also smooth. If the solution is only piecewise smooth,
the behavior of the solution when approaching the non-smooth points of 8D is similar to
that of the solution of a volume integral equation when approaching the boundary. This can
be motivated as follows: the boundary integral may be interpreted as a sum over integrals
over parameter domains, where each parameter domain corresponds to a smooth part of the
surface. The non-smooth boundary points correspond to the boundaries of the parameter
domains.

The discretization of (2.26) introduced in Chapter 3 uses a triangulation of the domain. Due
to the above considerations about the regularity of the solution a higher resolution is needed
near the boundaries. Hence, the mesh should be graded towards the boundary. Such a mesh
implies a mesh on the boundary which is anisotropically refined towards edges and vertices.
This is exactly what is needed for a good resolution of the singularities on the surface.
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2.4 The Case of Linear Anisotropic Scattering

In this section we assume that the coefficients ¥ and o are constant in space and that the
domain D is convex. These assumptions are essential for the considerations in this section
since we have to compute a primitive function of an integral kernel, which is only possible
for constant coefficients.

As pointed out in Section 1.1, in many practical applications it is sufficient to handle the case
of linear anisotropic scattering. Therefore, it would be advantageous if an integral formulation
for this case could be derived. The linear anisotropic part of the scattering phase function
gives rise to an additional term in the integral equation for the energy GG, which does not
appear for isotropic scattering:

l‘ _
dr Jp J|$ - i‘/”3

=kvec(z,y)(see(2.22))

o [ eyl
G(z) = / -+ e —v) al)dy. (2.71)
A y

In the above equation the flux ¢ occurs as an additional unknown. Hence, an additional
equation for ¢ is needed to close the system. This can be done by multiplying (2.2) by Q
and integrating over all directions. By this, the system becomes much more complex and a
numerical treatment is much more costly in comparison with the isotropic case. Therefore, we
look for an approach which does not introduce additional equations. To this end we exploit
the fact that a relationship between the energy and the divergence of the flux is known.
Please remember the momentum equation in Section 1.1

V. q(z) + kG(z) = 4rsB(T(z)). (2.72)

Since g and not V - g appears in Equation (2.71), integration by parts has to be used. The
vector valued kernel kyec(z,y) in Equation (2.71) already appeared in Remark 2.3. Hence, a
primitive function is given by

e lz—yll
kpot (2, y) = To ol ~ YE (7]|z — yl))- (2.73)

Applying the Theorem of Gauss yields:

G(z) = i—fggr(l)[— / koot (z,y)V - q(y)dy
D\Be(x)
+ / kpot (z,y)a(y) - n(y)do(y) + / kpot(:v,y)q(y)-n(y))dO(y)] (2.74)
9B:(x) oD
It holds
timy [ Fpor (2, 9)a(0) - nlo)dof) =0, (2.75)
9B.(x)

since the highest singularity is of order one.

The flux at the boundary is split into the incoming and the outgoing part:

g1 = YGout — Gin = (1 - p)QOut - 71'(1 - p)B(Tout)- (276)
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Using the momentum equation to replace V - ¢ in (2.74) yields

0w = [ [0 Aokpaa, )| BIW)

Iz —yl?
e~ lz—yll o
[7||$ —4P + AiKkkpot (z, y)] EG(y)dy
) (Y —2) oy Ao 1
+ /aD [ R p(y) + kpot(z,y) =~ (1 P(y))] —dout(y)
Ao

n [Me—vnw—yn + ko (,1)

EETE 17101 = ply) B(Tow () doly). (2.77)

Remark 2.13. Equation (2.77) is very similar to (2.24). The additional terms of the integral
kernel are weakly singular. Hence, the mapping properties described in Theorem 2.8 remain
valid. When solving this equation numerically the only additional costs in comparison with
the isotropic case are due to the fact that an evaluation of the kernel involves more operations.
Therefore, the assembly of the system matrix is a little more costly, but the number of
unknowns stays the same.

Up to now, we have only considered the integral equation for the energy G but in the equation
for gout, there is also an additional term due to the anisotropic scattering:

Ao n(x) - (x —
dourlz) = ..+ 2 /D ‘ (”i { y||4y) e Ml - ) al)dy. (2.78)

=tkvec(T,y)

Due to the dependence on n(z), the integrability criterion cannot be fulfilled for arbitrary
y # x. Hence, a primitive function w.r.t. ¥ does not exist and the trick with the momentum
equation cannot be applied. Therefore, we propose to approximate the anisotropic scattering
phase function by isotropic scattering plus a peak in forward direction (see also Section 1.1)

1 1
o [ (L A2 @)1 (2, X)d = f1(2, Q) + (1~ f)E/I(x,Q’)dQ’. (2.79)
S2 S2

This time f is not determined heuristically but by the requirement that certain moment
conditions are fulfilled (see [40], page 416). This conditions can be interpreted by looking at
the 1D situation

N | —
N | —

1 1
[ vt oy = 160+ 1= 1) [ 16w
—1 —1

Due to construction, equality holds in (2.4) for arbitrary f if I(z,u) is independent of u.
Requiring that equality holds also for the case that I(z, ) depends linearly on the angular
variable, i.e. I(z,u) = Iy(z) + pli(x), leads to f = %. Thus, the isotropic approximation is

obtained by replacing the scattering cross section o by (1 — %)a (see (2.79)).



Chapter 3

Numerical Solution

There are different methods for the numerical solution of integral equations. The most
popular ones are the collocation method and the Galerkin method. In Section 3.1 these
methods are briefly introduced and their advantages and disadvantages are discussed.

Both methods are only semi-discrete methods because the assembly of the system matrices
involves the evaluation of integrals that cannot be computed analytically. Instead, cubature
formulae are used to get a fully discrete method. Because of the weak singularity of the
kernel, some of the integrals have singular or near-singular behavior. In this case, standard
cubature formulae cannot be applied directly. Very similar integrals occur in context of
the boundary element method (BEM). In [49] regularizing coordinate transformations have
been introduced, which transform the singular integrals such that the integrands are analytic
and standard cubature formulae can be used. The case of surface elements is the only case
that occurs in context of the BEM. The transformations are extended to the case of volume
elements in Section 3.2

The discretization leads to a linear system of algebraic equations with a full matrix. The
matrix compression methods discussed in Chapter 4 make iterative methods an attractive
approach for the solution of such systems. The number of iterations needed to achieve a
certain accuracy strongly depends on the spectrum of the system matrix. Since the equation is
of second kind, it is reasonable to expect that the spectrum is well suited for iterative methods.
This proves to be true for a wide range of parameters describing the physical problem, but for
a certain regime, the diffusion limit of Section 1.2, the matrix is ill-conditioned. In Section 3.3
a preconditioner is introduced which leads to very fast convergence in this case. A comparison
between the solution of the integral equation by the Galerkin method and the solution of the
RTE by the discrete ordinate method is given in Section 3.4.

3.1 The Galerkin Method

In case of the collocation method as well as in case of the Galerkin method an approximate
solution of the integral equation is sought in a finite dimensional ansatz space. Usually, ansatz
functions with local support are used, e.g. piecewise constant or piecewise linear functions
on a triangulation of the domain. The advantage of these ansatz spaces is that they are very
flexible. Usually, the solution requires a higher resolution in some parts of the domain, e.g.
near the boundary because of the possible singularity of the normal derivatives (see Chapter
2). This could be achieved by a local refinement of the grid.
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A triangulation g = {71,..., T } of the volume D consists of disjoint, open subsets of
D. Tt should have the following properties:

@

e G is a partition of D, i.e. D= |J 7
i=1

e For every 7 € G there is an affine mapping x, of the volume reference element
T®) = {(z1,72,23) : 0 <z < 1,0 < zo < 21,0 < 3 < T2} onto 7, i.e. the volume
elements are tetrahedrons.

e The triangulation is admissible, i.e. V7, 79 € G with 7y # 79 holds:

1) or
common vertex or
common edge or
common face.

T1 N T =

The grid size h is defined as

h := max{diam(7) | € g}.

The uniformity of the triangulation G®) is characterized by the smallest constant C,, satisfying
h < C,diam(r) V7 e GW, (3.1)
and the shape regularity of the elements is characterized by the smallest constant C satisfying

diam(7)® < Cy|r| V7€ g, (3.2)

Since G contains only finitely many elements, the constants C,, and C, are always bounded.
For asymptotic results a family of triangulations with an increasing number m(?) of elements
is used. We require that the values of C;, and C; do not depend on m®).

The set of vertices of G() is given by

2 = {¢ € D|¢ is vertex of an element 7 € G} = {¢;,... 2 € }- (3.3)

The triangulation G of the domain D implies in a canonical way a triangulation G(8) =
{T@ 4105 T}y (M = m® 4+ m(%)) of the boundary dD. This triangulation consists of flat
triangles, i.e. for every 7 € G() there is an affine mapping x, of the surface reference element
T® = {(z1,29) : 0 < 1 < 1,0 < 29 < 21} onto 7. The triangulation of the complete
computational domain is given by G = G UG,
@ -

Remark 3.1. The condition D = |J 7; implies that D is a polyhedron. In the general case,

= @) 4m(®)
i.e. 0D is a piecewise smooth surface, the union  |J  7; has to interpolate the nodal points

i=m¥) 41

on 0D. This procedure guarantees that for a convex domain D the approximate domain D
is also convex. This is for example not possible if parallelepiped elements are used instead of
tetrahedrons to approximate the domain. For simplicity, we assume in the following that D
is a polyhedron.



3.1. The Galerkin Method 49

The Ansatz Space

For the energy G we choose the finite element space
Vi = (¢ € C(D) |}, € Pi(r)Vr € GV} (3.4)

as ansatz space. (For £ = 0 we do not assume continuity.). Py denotes the set of polynomials
up to degree k in R3

3
Pr:=A Z Aa Ha:f’, Ao € R}, @ a multi-index. (3.5)

o<k i=1

The ansatz space for the fluxes ¢yt is constructed by lifting a finite element space on a
parameter plane onto the surface 0D via the mapping x:

V) = {y € C(8D) | ¢ o xr € Px(TP) V7 € GO}, (3.6)

(For k = 0 we again do not assume continuity.)

These two spaces together yield the ansatz space for the whole system of equations

V=V o V). (3.7)

For piecewise linear elements, i.e. k = 1 the Lagrange or nodal basis {b1,...,b,w) } of Vh(v) is
defined via the condition b (&;) = ;. Analogously for Vh(s).

The Collocation Method

The collocation and the Galerkin method differ by the fact which equation the approximate
solution has to fulfill. The collocation method requires that the integral equation is fulfilled
in certain points, the so-called collocation points. This only makes sense for functions which
allow the evaluation of point values, e.g. for continuous functions but not for L*°-functions.
The position and number of the collocation points has to be chosen in dependence on the
used ansatz space to get a well defined discrete problem. For continuous piecewise linear
ansatz functions these points are the vertices of the elements. For a non smooth boundary
some of the vertices of the boundary elements lie on edges or vertices of the boundary. As
mentioned in Section 2.4 the integral equation is not defined in non smooth boundary points
because the outer normal is not defined. Furthermore, the volume integral equation is only
valid inside the open domain D (see Remark 2.3). This also makes problems when piececewise
linear elements are used. Hence, piecewise constant elements or discontinuous piecewise linear
elements have to be used (see [3]).

Another drawback of the collocation method is the following. The discrete system is not
symmetric even though the integral operator Ky, is self-adjoint. Therefore, the amount of
storage needed is nearly twice as high as that of the Galerkin method.

Concerning the stability of the collocation method, the following can be said. Since the
compactness of the boundary integral operator is lost for non-smooth surfaces, Fredholm
alternative cannot be applied to prove stability. This is the reason why the collocation method
lacks a proof of stability when applied to the integral equations stemming from the BEM. On
the other hand, in Section 2.2 it is shown that the L°°-norm of the integral operator K is less
than one. Hence, a Neumann series argument can be used to show stability of the collocation
method when applied to the integral equation as derived from the RTE (see Equation (2.39)).
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The Galerkin Method

The Galerkin method is based on the variational formulation (2.50) of the problem, where the
same finite dimensional subspace V;, C V := L?(D, u1) ®2 L%(0D, u3) is used as ansatz and
test space. Due to the considerations in Section 2.2, it is advantageous to use the symmetric
bilinear form agym (-, -) instead of a(-,-). Since the non-symmetric form is not used any further,
the symmetric form is denoted by a(-,-) in this chapter. This leads to the following Galerkin
problem:

For given f € V, find up, € V}, such that
a(un,vn) = (f,vn)v Vo € Vi (3.8)

By choosing a basis {b1, . .., b, } of the subspace V},, the Galerkin Equation (3.8) is transformed
into a linear system of algebraic equations. Let {u;} be the set of coefficients of the Galerkin
solution up, with respect to the chosen basis, i.e.

n
up = Z ulbl.
=1

Then these coefficients have to fulfill the following system of equations
n
a(uh,bk) = Zula(bl,bk) = <f,bk), k= 1,...,’)’L,
=1

or in matrix notation
Au=Tf,

with A = a’(blabk))g,lzla f= (<fa bl)a R <fa bn))T and u = (Ul, .. aun)T'

In Section 2.2 it is shown that, if the prerequisite of Theorem 2.3 is fulfilled, a(-,) is coercive
in V and, hence, also in V}, C V

a(u,u) > a||u||%2(ﬂ) Yu € Vj,. (3.9)

Applying the Lax-Milgram lemma, yields existence and uniqueness of the solution of the
Galerkin Equation (3.8) and that the inverse operator A, is bounded by the constant 1
independent of h. Furthermore, the coercivity condition guarantees that the Galerkin so-
lution is quasi-optimal, i.e. the error is bounded by a constant times the error of the best
approximation in the space Vj,.

Theorem 3.1 (Céa Lemma). Let a(-,-) be a bilinear form, which is continuous with conti-
nuity constant Cs and coercive with constant o > 0. Let u € V' be the solution of (2.50) and
up, € Vi, be the Galerkin solution. Then the following estimate holds:

Cs
Cupl| <L inf fu—wp|
llu — up|| < 5 wiréVhHU wp|

Cs

. . C, : .
If a(-,-) is symmetric the constant ~* in the estimate above can be replaced by 4/

Proof. refer to [23] o

This lemma together with the following approximation property (3.11) of the space V}, gives
the convergence of the Galerkin method.
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Lemma 3.1. Let the Grid G be quasi-uniform and shape regular. Then there is a constant
Coapproz such that Vu € H*(D, u1) @ H*(0D, p12) , s < k+ 1, ezists a function up, € V}, (V}, as
defined in (3.7)) such that

||u - uh||L2 < Cappro:cthu”Hsa (310)

especially
lim inf — = s A1
Jim inf, lu—unlly =0  VuevV (3.11)

Combining the two lemmas gives the following;:

Theorem 3.2. Let the Grid G be quasi-uniform and shape reqular. Then the Galerkin problem
(3.8) has a unique solution up, and the quasi optimal error estimate

C
e = unll > < == Capprosh® |l s, (3.12)

holds if the solution u of the continuous problem is in H%, s < k+ 1.

In Section 2.3 it is mentioned that the solution u of (2.50) is not in H2(D) & H?(8D). For
the interior part the derivatives in normal direction have a logarithmical singularity when
approaching the boundary. The boundary part is non smooth near edges and vertices. To
equi-distribute the approximation error over the whole grid, it is advantageous to use a grid
in the interior which is anisotropically refined near the boundary and a grid on the boundary
which is anisotropically refined towards edges and vertices. This is somehow difficult to obtain
by an adaptive grid refinement based on an error estimator. On the other hand, since it is
known a priori where the refinement has to take place, it could be done in a preprocessing
step.

As has been seen in Section 2.2 the bilinear form agym(:, ) is symmetric. (Remember agym(, )
is denoted by a(-,-) in this chapter.) Therefore, the Galerkin matrix is also symmetric

agr = a(by, by) = a(bg, b)) = ay.

The major drawback of the Galerkin method is the fact that the computation of the matrix
entries is very costly in comparison to the collocation method. This is due to the fact that
e.g. for the volume integrals one has to compute 6D integrals instead of 3D integrals in case
of the collocation method. If one of the matrix compression methods of Chapter 4 is used,
this drawback is relaxed since these methods avoid the assembly of the whole matrix.

3.2 Numerical Integration

To compute the entries of the system matrix A the bilinear form a(-,-) has to be evaluated
for the ansatz functions. An analytic integration of the involved integrals is in general not
possible. Hence, numerical cubature techniques have to be used to get a fully discrete method.
The corresponding bilinear form is denoted by ap(-,-).

An approximation of the double integrals in z and y direction is calculated as a sum of
approximations on pairs of elements. Depending on which part of the matrix is considered
these elements are either volume or surface elements. To treat all cases at once, we use the
following notation

I(wv) = [ v(@)k(a,y)ulw)dyda, (3.13)

TXt
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where the kernel k is one of the kernels k;; described in Chapter 2 and 7 and t is either a
volume or a surface element. With this notation the bilinear form a(-,-) can be written as

a(u,v) = Z I +(u,v), (3.14)

(T,t)EGXG

and the approximation ap(-,-) is given by

ah(u,v) = Z QT,t(uaU)a (315)
(Tt)EGXG
where @, ; denotes some cubature formula used to approximate the integral I, ;.

As usual the elements are first mapped onto the master elements T3 or T via the affine
mappings x and then the cubature techniques are applied to this reference situation. The
integral (3.13) in local coordinates is given as

Lwo) = [ 6()k@,0)a(@)dids (3.16)
T-xTy
where
T T®) if 7 is a volume element,
T T®  if 7 is a surface element,
and

k(#,9) = k(xr&,x:9) grgsy ~ D=vox,,  G=uox.
gr denotes the determinant of the Jacobian D, of x, if 7 is a volume element and

\/ det(D%TDXT) if 7 is a surface element. Since x, is an affine mapping, g, = p|7r| with
p =2 or 6 if 7 is a volume or surface element respectively. By construction of the ansatz
spaces, the functions 4 and ¢ are polynomials of degree zero in case of piecewise constant
elements and of degree one in case of piecewise linear elements.

The major difficulty for the integration is the weak singularity of the kernels: if 7Nt # 0, the
integrand is singular. In this situation, a transformation is applied to remove the singularity,
before standard cubature methods are used. These transformations depend on the kind of
the two involved elements (volume or surface element) and their relative position. Hence, the
following 13 cases have to be distinguished:

1. 7 and ¢ are both volume elements:

(a) ’Identical Elements’ T = t.

(b) ’Common Face’: 7 and ¢ share exactly one face.

(c) ’Common Edge’: 7 and ¢ share exactly one edge.
(d) ’Common Vertex’: 7 and ¢ share exactly one vertex.
(e) 'Regular Case’: 7Nt = 0.

2. 7 is a volume element and ¢ is a surface element:

(a) ’Common Face’: 7 and ¢ share exactly one face.
(b) ’Common Edge’: 7 and ¢ share exactly one edge.

(c) ’Common Vertex’: 7 and ¢ share exactly one vertex.
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(d) 'Regular Case’: 7Nt = 0.
3. 7 and t are both surface elements:

(a) ’Identical Elements’ 7 = t.
(b) ’Common Edge’: 7 and ¢ share exactly one edge.
(c) ’Common Vertex’: 7 and ¢ share exactly one vertex.

(d) 'Regular Case’> 7Nt = 0.

Assumption 3.1. In the singular case 7 Nt # (), we assume that the transformations x,, x;

on the reference elements are chosen such that

=y = x;'(z)=x ")

Furthermore, if 7 and # share exactly one vertex, it should be mapped to the origin. If 7
and ¢ share exactly one edge, this edge should be mapped onto the x; axis. If 7 and ¢ share
exactly one face, this face should be mapped into the (z1,z2) plane. (Refer to Figure 3.1 for

the case of common face.)

X
e T x(0) =x(©)
1 D
) = x:(B)
xr(D) xi(D)
¢ X (4) = xu(4)
B

Xt

Figure 3.1: Mapping onto reference element in case of common face

We use the following notation:
Let S denote the d-dimensional unit-simplex

5@ = {a: eR? : ixi < 1},
i=1
T4 denotes also an open d-dimensional simplex
7(d) — {0<z1<1,0< 22 <21,...,0< 24 <y 1},
and C@ denotes the d-dimensional unit-cube

c@ = (0,1)%

(3.17)

(3.18)

(3.19)

The example below shows the simplest example of a transformation which makes a weakly

singular integrand regular.
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Ezample 3.1. Consider the integral of a function f(z) = ﬁ g(2) over T?) | where g is analytic

in the region of integration. Then the simple transformation F : ¢® — 73 F (w,n) =
(w,wn)T renders the integrand analytic:

1z 11 11
If://fz,z dzdz://wfwwndwd // ——g(w, wn)dwdn
0 0 o 0 0 0 0 Vit )

The above transformation is called Duffy transformation (see [17]).

A similar procedure also works for weak singularities in higher dimensions. It is not restricted
to simplices, but can be applied to more general d-dimensional polyhedrons. Let coly denote
a mapping coly : {2,...,d} = {1,...,d — 1} with coly4(i) < i — 1 (especially: col4(2) = 1,
i.e. there are d — 2 degrees of freedom). The corresponding d-dimensional polyhedron P,
is defined by

P, = {0<21<1,0< 2 < Zeoly (i) i=2,...,d}. (3.20)

P, is a d-dimensional convex polyhedron with the origin as a distinguished vertex, i.e.
the remaining vertices of P, lie in a (d — 1)-dimensional affine subspace. One can say
even more about these vertices: they are of the form (1,V)T where V is a vertex of the
(d — 1)-dimensional unit cube.

To illustrate the abstract definition of Py, the case d = 3 is considered. As mentioned
above there is only one degree of freedom in this case: col3(3) € {1,2}. The corresponding
polyhedrons are the tetrahedron P(0 < z3 < 22) := {0 < 21 < 1,0 < 29 < 21,0 < 23 < 2o}
and the pyramid P(0 < z3 < 21) :=={0 < 21 < 1,0 < 29 < 21,0 < 23 < 21 }.

We are looking for a transformation which removes a weak singularity at the origin. To this
end, we define the non-linear mapping

R? — R,
Fcold :
{ (Wi,m,--5ma-1) = (21,---,24),

by

z21 = wi,

Zi = w1 H ’f];ij’f]ifl, 1=2,...,d,
where the numbers e; ;, 1 = 3,...,d, j = 1,...,% — 2 are recursively defined via

€i,i—2 = Cigi—1,
i—2
€ij = Cij+1+ Z Ck4+1,j+1€ik, J=1—3,...,1. (3.21)

k=j+1

The numbers ¢; j, 4 =2,...,d, 7 =1,...,7 — 1 are given by

1 if 5 =coly(s
Cij = if 7 = cola(d) (3.22)
’ 0 else.
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Fq1, fulfills the prerequisite of the substitution rule as a mapping from S W x cld-1) 1o P, @
i.e. it is bijective and the determinant of its Jacobian is always positive. The rather technical
proof can be found in Appendix A.4.

F¢o1, has the additional properties

| Feotg (W1, m15 -+ yMa—1) 2 > |wil, (3.23)
Feoy (Wi, M1, -+ 3 nd—1) = wiFeo, (1,01, - - - 3 0d—1), (3.24)
(= det(Flo,) =i fm, - man)) (3.25)

Let L : R? — R3 denote a linear mapping with Lz # 0Vz € Py, \{0}. Applying the
transformation Fi,, to a singular integral of the form

1
d 2
/ e z, a>0, (3.26)

Pcold

and exploiting the properties of F,, results in

1 d—1—a

w
- (d-1) ”LFCOld(lanla"'and—l)Ha !
SixCle—

fn, -y na—1)dwrdn. (3.27)

Since LF¢,,(1,m) # 0, the integrand is regular if d > o + 1.

The properties of Fi), are conserved if F, is concatenated with an injective linear mapping.
Hence, a transformation to regularize the integrand exists for every d-dimensional polyhedron
which could be mapped to a polyhedron of the form (3.20) by a linear transformation.

If some of the variables are not involved in the singularity, a Duffy transformation is only
applied to the remaining coordinates. The number of these coordinates is denoted by d;.
Let colqq, denote a mapping colqq, : {d —ds+2,...,d} = {d—ds,+1,...,d — 1} with
colg 4,(7) < —1 (especially: colgq,(d —ds +2) =d —ds + 1, i.e. there are d; — 2 degrees of
freedom). The corresponding d-dimensional polyhedron P, is defined by

Old,ds

PCOld,ds = {0 <z1<1,...,0 < z4—g,+1 < Zd—d,,
0<z< Zcolg a4 (4)> i=d—ds+2,...,d}. (3.28)

The definition of P, is illustrated by some examples for d = 6.

Old,ds
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Ezample 3.2.

e d; = 3: one degree of freedom: cols3(6) € {4, 5}

— P(0 < 2 < z5) := T, simplex,
—P0<z<z1):={0<21 <1,0< 29 < 21,0 < 23 <22,0<24<23,0<25<
74,0 < zg < 24}, union of 2 simplices,

o d; = 4: two degrees of freedom: colg4(5) € {3,4}, colg4(6) € {3,4, 5}

— P(0 < 25 < 24,0 < 25 < z5) := T®), simplex,

- P0< 25 <23,0<26<25):={0<21 <1,0<29<21,0<23<2,0<2<
23,0 < z5 < 23,0 < 26 < 25}, union of 3 simplices.

Define the bijective non-linear mapping

7 . { §ld—ds+1) 5 x(ds—1) N PCOld,ds’
cold,as * (wla"'awd—ds-l-l’nla"'ands—l) — (Zla"'azd)a
by
d—ds+2—1
z; = Z wj, t€{l,...,d—ds+1},
Jj=1
1—2
Z = wi H n;f(d_ds)m—(d—ds)—la i€{d—ds+2,...,d},
j:d*ds‘Fl

where the numbers e; j, i =d—ds+3,...,d, j =d—ds+1,...,i—2 are defined as in (3.21).
The proof of the bijectivity of F¢ is analog to that of F,. This transformation renders
the integrand analytic.

Old,ds

The transformations above cannot be applied to the integral (3.16) directly, since neither the
integration domain nor the integrand satisfy the requirements. First, the singularity has to
be fixed at the origin. This is done by introducing relative coordinates z; = x; — y; for all
coordinate directions 7 for which the integrand is singular on the set {z; = y;}. Let I be the
set of these indices 7. Due to Assumption 3.1, it holds:

e I ={1,2,3} in case of identical volume elements,
e I ={1,2} in case of a common face,
e I = {1} in case of a common edge,

e I = () in case of a common vertex.

From this point on, we can distinguish to kinds of variables: the singular and the regular
variables. The integrand is singular if all the variables z;, 7 € I, and z;,y;, j ¢ I are equal to
zero. These variables are called singular variables in the following. The remaining variables
zi, ¢+ € I have no influence on the singularity. They are called regular variables. For the
applicability of a Duffy transformation, the geometry of the integration domain w.r.t. the
singular variables is important: it has to be a polyhedron of the form F.,,. Therefore, it is
advantageous to interchange the order of integration such that the regular coordinates are the
innermost variables, because then the singular variables can be considered independently of



3.2. Numerical Integration 57

the regular variables. After interchanging the variables the domain has to be subdivided into
parts to which a Duffy transformation can be applied. This could be done by first splitting
the whole domain into simplices containing the origin as a vertex and then merging some of
these simplices. For efficiency reasons it is advantageous to have as few parts as possible.

Remark 3.2. To keep the number of different cases which have to be distinguished as small
as possible, it is advantageous to first of all split up the integration domain into two parts:

I 4 (u,v) = / ... djdi + / o odid = 1) (u,0) + 17 (u, ). (3.29)

J1<21 T1<g1

These two cases can then be treated in an analog way since one of them can be transformed
into the other by interchanging the roles of the variables & and ¢. Since all polyhedrons of the
form (3.20) have the origin as a distinguished vertex, such a splitting has to be done anyway
sooner or later.

After these rather theoretical considerations, the results for some of the cases mentioned
above are presented.

(a) The Case of Identical Volume Elements

Let the affine mapping x, be given by:

xr(X) =x0 + Dy, %, %9 €R* D, €R>® (Jacobi matrix).

Then the integrand in (3.16) has a singularity of the form

=%—§

Ixr (%) = xe(@)II7> = Dy, (X =972 =" Dy, 2]

Since D, is non singular, the integrand is of the required form (3.26). It remains to split
up the integration domain into polyhedrons of the form Py, ;. To this end, we first apply
the splitting into the two parts 91 < &1 and §; > Z1. The first part can be described by the
following system of inequalities (For the second part one just has to interchange the roles of
Z and 9.):

(0< 21 <1) ( 0<z1 <1 )
0< 29 <11 0< 29 <21
0< 23 < 9 2=&—7 0< 23< 29
" . — 4 . .
0<ith < 0< 21 <2y
0<9<in To— 21+ 21 < 29 < T9
L0 <93 < 92 ) \ &3 — &g + 22 < 23 < &3 )

Interchanging the ordering of integration results in:

( 0<z1 <1 )
Z1—1<2<1

) max{21,22,22 — 21} —1<z3<1+ min{0,22,22 — 21}

ma,}({,?:’l,ég,ZA;),,ﬁl — 20,21 — 23,29 — 23,21 — %2 —|—23} <z <1

maX{O,ﬁg, 23,29 — 5’3} <To< a1+ min{O, 29 — 21}

. maX{O, 2:'3} < T3 < To+ min{O, 23 — 2:'2} )
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The min/max conditions can be removed by splitting the integration domain resulting in ten
6d simplices having the origin as a common vertex. These simplices could be mapped on T(6)
by a linear transformation. Since only three of the six variables, namely the z; are involved in
the singularity, a 3D Duffy transformation can be applied to render the integrand analytic,
T®) is mapped onto C? x §®.

As has been seen in Example 3.2, a 3D Dufly transformation can also be applied to P(0 <
26 < z4), which is a union of two simplices. Therefore, the computational complexity could
be reduced if some of the simplices can be merged to build a polyhedron of the form P(0 <
26 < z4). Indeed, this is possible for six out of these ten.

Putting together all the transformations, gives the following result:

7
1 7 PN

18 (w,0) = / / W fD () (@) k(39,55 dwdn, (3.30)
I=loe) g@

where the transformations (w,n) — (2),4()) are given by:

(Iigl) + + + "i?)\ + 4+ +
(1) w1 w9 w3 w4y .(2) w1 w2 w3 w4y
$%1) Now1 + wz + w3 a%) Now1 + w2 + w3

g w2 T3 _ Now1 + wo
gy (1 =m)wr +we +wz+ws |7 | 4? (1 —m)wr +ws +ws+ws |’
ggl) (1 —m)wi + wo + w3 @52) (1 —m)wi +wo + w3
27(1) (1 —n1)w + w2 Q(Q) w9
3 3
i(?’) (i(‘l)
A%3) w1 +wy + w3 + wa A%4) w1 + wg + w3 + wa
x23 w1 + wo + w3 x24 wo + w3
ﬁé ) _ Now1 + wo m;(), ) _ )
g)§3) (1—m)ws +we+w3+wy |’ yAg‘l) Mwi + w2 + w3 + wy
gg"’) wo + w3 :0%4) mwi + wg + w3
g§3) w2 \ggz;) Nnew1 + wo
~(5) ~(6)
! w1 + wo + w3 + wy (wl w1 + wo + w3 + wy
~(5) 46
%5) mMwi + wg + w3 %6) w1 + w2 + w3
Ty — M7New1 + w2 Ty _ w1 + wy
§® wotwstws 7] (1 =mna)wi + wa + w3 + wy
?355) w2 + w3 QéG) (1 - ’171)&)1 + wo + ws
~(5 w ~(6 w
it 2 ol 2
~(7)
:f%n\ w1 + w2 + w3 + wa
) w1 + wo + wsg
.’ig) w2
gg) - (1 -1+ 7]1’/72)0.11 + wo + w3 + Wy
:gg) MMnewt + wo + w3
(7) mnew1 + w2
Y3

and f)(n) is given by
FOm =Pm=m =1, D) =Om =rOm =rm =m.
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The integrand in (3.30) is analytic and can be approximated by standard cubature techniques.

Remark 3.3. The techniques above are fully implicit in the sense that the form of the kernel
function, the trial and the test space, and the order of the singularity of the kernel function
are not used explicitly. This is very useful when testing the implementation. Simple test
kernels, where the integrals can be computed analytically, e.g. polynomials, can be used to
this end.

Remark 3.4. Due to the fact that some of the variables are not involved in the singularity,
the variable w;, ¢ > 2 do not appear in the kernel ]}(j(j),g(j))_ They only come into play
through the functions 4(2#()) and 4(§?). Due to the choice of the ansatz functions, these
functions are polynomials. Hence, the integration w.r.t. the variables w;, 2 > 2 can be carried

out analytically.

(b) The Case of a Common Face

Let the affine mappings x, and x; be given by:
XT(}AC) :XQ—FDXT)AC, X E]Rg, DXr = (t1|t2|t3x),

and
xt(¥) = %0 + Dy, ¥, Dy, = (t1]t2]ts,).
The special form of the affine mappings results from the Assumption 3.1.

The integrand in (3.16) has a singularity of the form

Ix7 (%) = x:(3) 17> = [Dy, % — Dy, ¥~

5= —1;,i=1,2 | . R R . _
HERLS l|2161 + Zot2 + Z3t3, — G3ts, || 2.

The integrand in (3.13) is only singular for x = y. Due to the Assumption 3.1 the integrand
above is only singular for ; = ¢;, ¢ = 1,2, and 23 = 93 = 0, i.e. for 2; = 2o = 23 = g3 = 0.
Hence, the linear mapping L given by the matrix (t1|ta2[ts, | — t3,) fulfills the required
condition (see (3.26)).

The splitting of the integration domain is done analogously to the case (a) and results again
in ten 6D simplices having the origin as a common vertex. This time four variables, namely
21, 29, £3 and y3 are involved in the singularity. Therefore, a 4D Duffy transformation renders
the integrand analytic, T(®) is mapped onto C®) x SG).

As has been seen in Example 3.2, a 4D Dufly transformation can be also applied to P(0 <
z5 < 23,0 < zg < 25), which is a union of three simplices. Therefore, the computational
complexity could be reduced by merging some of the simplices. Indeed, this is possible for
nine out of these ten.

The result of all the transformations is given by

4
1D =Y / / GO (o@D )R ED, §9)a(gD)dwdn, (3.31)
=53y g(3)
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where the transformations (w,n) — (2),§()) are given by:

(1 (2
Lfé;\ w1 + wo + w3 (;13%2; w1 + w2 + w3
Zy mwi + wa Zy (1 =m2(1 —n3))w1 + wo
(1) ~(2)
z37 | _ Niwy z37 | _ (1 —n2)wr
279) Tl (1= mem3)wr +we +ws | Q%Q) - Mwi + w2 + w3 ’
e (1 = mom3)wi + w2 92 mwi + w2
:&gl)} n2(1 — n3)w @§2) MW
.(3) - (4)
(f%?’) w1 + wo + ws %%4) w1 + w2 + w3
:f%g) wi + wo %‘%4) w1 + wy
T3 _ mMwi I3 _ w1
g1 | @ =mm)wr +watws |7 | 5 (1 = mmans)wr + w2 + w3
e (1 —m2)wi + ws e (1 —mm2)wi +wo
Q) (1 = m2)wr \ g0 m(1l = 2w
3 Y3

and f)(n) is given by
FOm) = fOm) = D) =n2,  fD(n) = nina.

The integrand in (3.31) is analytic and can be approximated by standard cubature techniques.

The transformation for the cases 1.(c) and (d) as well as the transformations in case of one
volume and one surface element can be found in Appendix A.5 . The case of pairs of surface
elements occurs also in the BEM and is treated in [51].

Cubature Orders

The accuracy of the cubature methods has to be chosen such that the error resulting from this
further discretization does not increase the asymptotic discretization error of the Galerkin
method. The impact of the cubature error is estimated by the following lemma.

Lemma 3.2 (first Strang lemma). Let the bilinear form ap, be continuous and satisfy the
coercivity condition (3.9) with « independent of h. Then the following error estimate holds
for the solution uy of the fully discrete Galerkin system:

- . C 1 a(vy,wy) — ap(vp, w
lu — iin ) < mf(u+—imu—wm+—-wP|(h n) = an(vn 05
vRESh o

& eV, ||’LUh||
+ 1 sup {, wn) = <fh’wh>. (3.32)
a wpEVY, ||wh||

where Cy denotes the continuity constant and a the coercivity constant.

Proof. refer to [10] o

The coercivity of ap, follows from that of a if the error between a and aj, is small
|a(u,v) — an(u,v)| < ellullllv] Vu,v € Vp,

for a suitable ¢ < . In this case ay, is coercive with coercivity constant & > o —¢.
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As shown in Section 3.1, the Galerkin solution has an error of order O(h**1) in regions where
the solution u of the continuous problem is smooth enough (see Theorem 3.2). To guaranty
the same estimate for the fully discrete method, the following consistency condition has to
be required (due to Lemma 3.2):

CR** Yol 2 ||l ge Yu,v € Vy, (3.33)
Ch* Yol Yo € Vp, (3.34)

|CL(U, U) - ah(uav)|
[(f = frs0)l
where C' = CsCiypprox (see (3.12))

This global condition could be split up into a local condition for the error on pairs of elements:

ET,t = |Qr,t - IT,t'a

<
<

where Q;; denotes the cubature formula used to approximate the integral I ; in (3.16).

Lemma 3.3. Let the Grid G be quasi-uniform and shape regular and the cubature formulae
be chosen such that for all pairs (7,t) of elements in G x G

Erp < ertllvllzrlull e ) (3.35)
with
Ch3tk+1 ifr,te g(v)’
Erg < Ch2a+hk+1 if T € G™ and t € G or vice versa, (3.36)
Ch2tk+l  ifr e GO,
Then the global condition (3.33) is fulfilled.
Proof. It holds
(3.35)

la(u,v) —an(u,0)] < D endllvllnen il me-
(Tt)EGXG

Splitting up the grid into its volume and surface part:
GxG =060 xg®Wug x g yugh x g uglk) x gl
and using the notation u = (Z;), uL € Vh(”) and ug € Vh(s), one obtains for the volume part

G x gl).

S erdllvillzae luall g

(1,£)€G@) xG(¥)
1
O (3 Nnlitagy 22 1) (2 Tl - 1)

(3.36)
<
reg@) teg) teg(®) TegG(®)
= CHF R34 G |vr || 2yl | v oy

N[

Since G is quasi-uniform, it holds §G®) ~ %, where §G(*) denotes the number of nodes in

G when piecewise linear ansatz functions are used and the number of elements in case of
piecewise constant ansatz functions. Analogous considerations for the remaining parts, using
the fact that f G(*) ~ h% yields altogether

la(u,v) — ap(u,v)| < Chk+1(||Ul||L2(D)||u1||Hk(D) + llvillzz(py w2l ax o p)

+ |lvell2(ap) llur || g2 (py + ||’U2||L2(3D)||u2||Hk(aD))

< 20K o) g2 |Jul| e -
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O

In the integral equation stemming from the RTE the right hand side f is computed by
applying an integral operator similar to that on the left hand side. Therefore, the condition
(3.34) can be shown analogously to (3.33). This gives the following theorem.

Theorem 3.3. Let the Grid G be quasi-uniform and shape regular and the cubature formulae
be chosen such that the estimate (3.35) is fulfilled for all pairs of elements. Then for suf-
ficiently small h < hg the fully discrete problem is uniquely solvable and the quasi optimal
error estimate

Cs

s = )l < (14 =) Capprosh (3.37)

holds if the solution u of the continuous problem s in H®, s < k + 1.

In the following the methods for calculating the multiple integrals are presented and the
number of quadrature points necessary to meet the local condition (3.35) is determined. As
shown above, the singular integrals are transformed into integrals over domains of the form
C(d1) x §(@)  The integrals over the simplices S(42) are pulled back onto C{4) by using
simplex coordinates. The same applies to the regular integrals over the product domains
T(d) % T(4)  Hence, all integrals are of the form

/ f(@)ds,
Cc(d)

with d = 6 in case of pairs of volume elements, d = 5 in case of one volume and one surface
element and d = 4 in case of surface elements. For the integrals over C(9) d-dimensional
tensor product versions of Gauss quadrature are used.

Let (&; 4, wiq) denotes the nodes and weights of a g-point Gauss quadrature formula and let
q=1(q,...,q4)T € N then the integral over a function f € C°(C?) could be approximated
by the tensor product Gauss formula

q 44
Qq(f) = Z T Z Wi g1+ Wig,gef (Girars - - Cigaa)-

i1=1  ig=1

The error of such a tensor product quadrature can be estimated by transforming the problem
into a sequence of 1D integrations, e.g. in 2D

(I-Q)f =L[(lz = Q2)f + Qa(I1 — Q1) f].

Hence, the error can be estimated by the sum of the 1D errors times the size of the domain
in the remaining directions. The problem of estimating the error is reduced to estimating the
error of a 1D quadrature formula.

When estimating the error for a given number of Gauss points, again the singularity of the
kernels is the major difficulty. A standard procedure to get an error estimate is using Taylor
expansion of the integrand and exploiting the degree of exactness of the method (2q — 1 for
a g-point Gauss quadrature). Since the variables in the integrand are scaled with the mesh
size h, a factor h?? for the error term is obtained through the chain rule. On the other
hand, the 2¢-th derivative of the integrand is of the order O(6~(¢+®) where § = dist(z,y)
for some = € 7, y € t, and « is the order of the singularity of the kernel. Hence, standard
quadrature formulae with fixed degree to obtain the required accuracy can only be applied if
dist(7,t) > C with C independent of h. This region is called farfield (w.r.t. integration). For
the nearly singular case, dist(7,t) = ch,c¢ > 1, the error is proportional to

R (ch)~(ate) — ~(ata)p—a
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Since ¢ > 1, convergence can be achieved by choosing ¢ ~ |logh|. The minimal number of
Gauss points in z and y direction for every element pair needed to meet the local consistency
requirement (3.36) can be found in [52].

It remains to consider the case where the integrand is singular. In this case some kind of Duffy
transform is used to render the integrand analytic. In the 2D Example 3.1 the integrand is
of the form \/1:_7 g(w,wn) =: g(w,n). A simple scaling yields

:/h/1 (w nalnd(.u—/l/1 (h¢,m)dndC. (3.38)
00 00

To estimate the error of the integration w.r.t. {, Taylor expansion exploiting the degree of
exactness can be used to show that a fixed number of Gauss points is sufficient to obtain
the required accuracy. On the other hand, for n no powers of h are obtained through the
chain-rule since the integrand only depends on 7 rather than on hyn. Hence, another method,
which does not involve derivatives of the integrand, is needed to estimate the error.

Theorem 3.4. Let f be analytic in [—1,1] and admit an analytic continuation into the closed
ellipse £, C C with foci at £1 and semi-azis sum p > 1. Then

|Eqf| = |1f — Qqf| < Cp~ max £ (2)]; (3-39)

where ), denotes the ¢g-point Gauss-Legendre quadrature formula on [—1,1]. Proof. refer to
[15] O

Since the integrand in (3.38) has a singularity for the complex values 7 = % the size of the
ellipse where the integrand is analytic w.r.t. 7 is of size O(1). The estimate in (3.39) meets the
local consistency condition (3.36) if O(|log h|) Gauss points in direction 1 are used. Similar
results hold for the more general Duffy transformations applied to compute the matrix entries
for the integral equation. More details can be found in [51] and [43].

Asymptotic results are only of questionable value for practical applications since the constants
are only known with uncertainty. The numerical results in [51] for the double layer potential
of the Laplace equation show that in this case the following number of quadrature points is
sufficient to preserve the convergence rate of the Galerkin method: when the elements are
close to each other, in each direction, in which asymptotically O(|logh|) quadrature points
are needed, two quadrature points are sufficient, in the other directions only one point is
needed. In the farfield the midpoint rule is sufficient.

The kernels in Equation (2.26) contain the exponential damping factor e~ Mz=vll| The decay
due to this factor is very strong when the optical thickness of the considered elements is large.
This complicates the approximation of the integrals substantially as the following example
shows.

Ezample 3.3. Let the function g in Example 3.1 be given by g(z) = e l#l. Applying Duffy
transformation results in

If = eV I duydy, (3.40)

[

Numerical experiments show that with increasing «y the number ¢, of Gauss points in direction
w, needed to obtain a given relative error tolerance, increases. While the number g;, of Gauss
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points, needed for the direction 7, is nearly independent of . For small v, ¢, is smaller than
gy as predicted by the asymptotic error analysis, but for large y the reverse statement is true.
Table 3.1 shows the number of Gauss points for the variables w and 7 needed to meet the
error tolerance tol = 5- 1074

v [0.01 [0.1]1.0][2.0]5.0]10.0 |
w| 1 |1 | 2]3]4] 6
@l 2 |22 3|3 3

Table 3.1: Number of Gauss points for different optical thicknesses

The integration with respect to w in the integral (3.40) can be carried out analytically

1
If = / ¥(1 - 6_7\/1+772)d77. (3.41)
5o+’

The problem with the exponential decay is relaxed since the exponent in (3.40) varies in the
interval [0,7v/2] whereas the exponent in (3.41) is in [y,7y/2]. Thus, the number of Gauss
points needed for (3.41) is nearly independent of ~y.

The example above shows that the number of Gauss points needed for the variable w; becomes
large for large v. The remedy is to use analytical integration for this variable. Unfortunately,
due to the inner integration w.r.t. w;, ¢ > 2 and due to the use of piecewise linear trial
functions, the integrand resulting from the discretization of the integral equation as derived
from the RTE (see Equation (2.26)) is of the form

1 1
1 Yoy
/ - / pl (wl) e*’le p2(n)dwd77ds—1 - dlrll’
0 0

p2(n)

where p; and ps are polynomials. The integration w.r.t. w; can still be carried out analytically
but the resulting term is rather complicated. Therefore, it is not recommendable to do that
in praxis. Instead, a large number of Gauss points for the variable w; has to be used.
Furthermore, the problem due to the exponential decay occurs also when the integrand is
regular, and in this case it is not possible to carry out the integration analytically with respect
to some of the variables.

3.3 Solution of the Linear System

The discretization of an integral equation leads to a linear system of algebraic equations with
a full matrix. A direct solver, like the Gauss elimination method, needs O(n3) operations and
is therefore not suitable for this kind of problem. The costs could be reduced tremendously
by using an iterative method. The only knowledge about the matrix which is required for an
iterative method is the possibility to perform a matrix-vector multiplication. By applying the
matrix compression methods discussed in Chapter 4, the approximate computation of such
a matrix-vector multiplication is possible with almost linear complexity although the matrix
is fully populated.

Using the collocation method for the integral equation (2.39) leads to a linear system of the
form

Au:=(I-K)u=f, (3.42)
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where K is the discretization of the integral operator K of Chapter 2.

The classical iterative method for such an equation of the second kind is the Picard iteration
based on the Neumann series (Id — K)™! = Y% K*, if |K| < 1

u;+1 = Ku; +f, 1=0,1,...,

with initial guess uy.

The method converges if | K|| < 1 (for some norm). In Chapter 2 it is shown that, except for
the case of total reflection and zero absorption, |K||« < 1. The sum of row 7 of the matrix
K (assuming that the integrals are computed exactly) can be estimated as follows

Skl = >k = (Kb @) = (K 3 b)@) < 1K oo < 1K
J J J J
=1

where it has been exploited that the basis functions form a partition of unity. The above
estimate shows that ||Kl||co < ||K]|lec < 1 and, hence, the Picard iteration converges with
convergence rate || K||so-

Remark 3.5. The above considerations show a further favorable property, namely that the
matrix A in (3.42) is a M-matrix, i.e. it is strictly diagonal dominant and a;; < 0 for i # j.
The inverse A~! of such a matrix is element wise non negative (refer to [23]). This property
guarantees that the solution u of (3.42) is non-negative if the right hand side is non-negative.
That is, the non-negativity of the solution of the continuous problem (see Theorem 2.4) is
inherited by the discrete solution. Note that, when the RTE is discretized directly, e.g. by
the DOM, one often encounters the problem that the computed intensities are negative (see

[12]).

The convergence rate of the Picard iteration can be very slow. Other methods, like the Krylov
subspace methods, yield better convergence rates. They minimize the iteration error over the
affine spaces

X; =ug+K;, K;=span{rg, Arg,..., A rp},

with initial residual rg = f — Aug = Aeg, where eg = A~'f — uy denotes the initial error.
The different methods are distinguished by the fact in which norm the error is minimized.
For symmetric matrices (Please remember that the Galerkin discretization of the self-adjoint
operator Ky, results in a symmetric matrix.) the MINRES method minimizes the Euclidean
norm of the residual r;, the conjugate gradient (CG) method minimizes the energy norm of
the error ;. The energy norm is only defined for positive definite matrices. Hence, the CG
method can only be applied to such matrices.

The discrete Galerkin system for the weak formulation is of the form

Au:=(M-K)u=T, (3.43)

where M is the mass matrix and K is the discretization of the integral operator Kgynm.

Since the operator A and therefore its restriction to the finite dimensional ansatz space is
coercive, the matrix A is positive definite:

uTAu = Zuiuj<bi,Abj)Lz(u) = <’U,,A’U,>L2(N) > a(u,u)Lz(“) > 0.
1,
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Due to the structure of the Krylov spaces the minimization property can be written as follows

Jedl < min . Ol eol (3.49
p(0)=1
where || - || = || - ||a in case of CG. (Remember P; is the space of polynomials up to degree

i.) This minimum is small if the eigenvalues are clustered in a few regions. Using the
approximation property of Chebychev polynomials one can derive an estimate for the case
that only the condition number of the matrix is known

K(A)

— 1\
Ve ) el (3.45)

Jeall < 2( —

where x(A) denotes the condition number of A. A small condition number leads to fast
convergence. The convergence rate is much faster than in case of the Picard iteration. Fur-
thermore, as shown above, the Krylov methods converge even faster if the eigenvalues are
clustered.

According to Chapter 2, the eigenvalues of the symmetric operator Kgym lie in the interval
[—c,c] with ¢ = ||IA{||L00(“) < 1. Since the considered equation is of the second kind the
critical eigenvalues are the ones close to one. Such eigenvalues can only occur if ¢ is close to
one. Due to Remark 2.8 this is the case if the optical parameters satisfy one of the following
conditions

l. wxland 7> 1,

2. p~1 and 7 small.

Since ¢ is only an upper bound for the eigenvalues, ¢ close to one, does not necessarily imply
that there exist eigenvalues close to one. Furthermore, according to Chapter 2, K1, Kis
and Ko are compact operators and Koo is compact if the surface is smooth. Hence, it is
reasonable to assume that the spectrum of K resembles that of a compact operator, i.e. the
eigenvalues Ay tend to zero. If this convergence is fast, most of the eigenvalues are clustered
near zero and Krylov methods yield fast convergence even if the largest eigenvalues are close
to one. These considerations show that the convergence of Krylov methods is not necessarily
slow in the two cases above.

Remark 3.6. Since the Galerkin method is used for the discretization, the eigenvalues of the
discrete operator correspond to generalized eigenvalues of the system matrix. (This relation-
ship is examined in more detail later in this section (see (3.68) below)). The generalized
eigenvalues resemble the eigenvalues of the continuous operator, e.g. the values should lie in
the interval (0,2) and should be clustered near one if the convergence of the eigenvalues of the
continuous integral operator to zero is sufficiently fast. Therefore, the figures in this section
show the generalized eigenvalues instead of the standard eigenvalues to facilitate a better
interpretation of the results. We have to keep in mind that the convergence of the Krylov
methods is determined by the standard eigenvalues rather than the generalized eigenvalues.
Since the mass matrix is diagonal dominant, the qualitative behavior of the distribution of
the standard eigenvalues is rather similar to that of the generalized eigenvalues. That is, if
the distribution of the generalized eigenvalues is well suited for a Krylov method, the same
statement holds for the standard eigenvalues. On the other hand, it has to be said that in
cases where the convergence of the eigenvalues to zero is very fast, e.g. in the optically thin
case. The convergence of Krylov methods is even faster if the collocation method is used since
the eigenvalue distribution of the integral operator is not smeared out by the convolution with
the mass matrix as it is the case if the Galerkin method is used.
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We begin with the investigation of the second of the two critical cases above. Since we have
not managed to derive analytical statements about the spectrum of the integral operator that
are more detailed than the upper bound derived above, we examine one special situation by
computing the eigenvalues of the discretized operator numerically.

Remark 3.7. Before describing the setup of the considered problem, we want to mention at
this point that all numerical experiments presented in this thesis handle situations where the
coefficients p, k¥ and o are constant in space since the numerical methods have only been
implemented for this case.

The computational domain is the unit cube, and the optical parameters are chosen as follows:
p = 1.0, v = 0.1 and w = 0.5. For the discretization piecewise linear ansatz functions on
a regular decomposition of the domain into tetrahedral elements are used. The number of
vertices is 92 = 729, 386 of which lie on the surface of the domain, i.e. the number of
unknowns is 1115. Figure 3.2 shows the distribution of the generalized eigenvalues of the
system matrix A in the complex plane. Since the matrix is symmetric, all eigenvalues lie on
the real axis.

0.1

|
0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2
real(\)

Figure 3.2: Spectrum of the system matrix in the strong reflecting case

The smallest eigenvalue is approximately 0.5. That is, the largest eigenvalue of the discrete
integral operator is much smaller than its || - || norm, which is computed numerically as
0.9651. Furthermore, many of the eigenvalues are clustered in the interval [0.9,1.1]. This
interval contains 1019 of the 1115 eigenvalues. That is, the convergence of the eigenvalues of
the integral operator to zero is fast. The condition number of the system matrix is K(A) = 2.3.
Altogether, it can be said that the eigenvalue distribution is well suited for Krylov methods
and no preconditioning is necessary.

In the first case, the critical eigenvalue distribution is due to the operator Ki;. Hence, it is
reasonable to consider this operator on its own in a first step. This corresponds to the case
of non reflecting boundaries (2.6). In a second step, it is examined, what conclusions can be
drawn from this contemplations, when the whole system is considered.

To accelerate the convergence of an iterative method a preconditioner can be used, i.e. the
system matrix A is multiplied by a matrix P, which has the property that the eigenvalue
distribution of PA is better suited for a Krylov method. That is, the eigenvalues are either
clustered in a small number of small regions or the condition number is small. One way for the
construction of a preconditioner is to find a matrix, which has eigenvalues and eigenfunctions
resembling that of the system matrix and whose inverse is easy to compute.

The critical case corresponds to the diffusion limit considered in Section 1.2. In this case the
diffusion equation (1.60) with Robin boundary conditions (1.61) is a good approximation of
the RTE. Since the diffusion equation is a differential equation, its numerical treatment is
much less costly compared with that of the integral equation. Hence, a discretization of this
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problem seems to yield a reasonable preconditioner. This preconditioning is called diffusion-
synthetic acceleration (DSA). It has been introduced by Larsen [36] in context of the discrete
ordinate method.

In the diffusion limit the solution operator (refer to (1.65))

(Ty — oId)" 'k

corresponding to the diffusion equation is a good approximation to the solution operator
(Id —wK) (1 —w)K
of the integral equation. A simple transformation
(Id —wK) (1 —w)K = [K '(Id — wK)] (1 —w) = [yK ! — ald] 'k,

shows that the integral operator K and the inverse of the diffusion operator 77 should be
alike in the diffusion limit. In the following, the spectral properties of the integral operator
and the diffusion operator are examined in more detail. Since the exact spectrum depends on
the computational domain, it is only possible to investigate a special reference situation. The
general characteristics of the spectrum should be similar in other situations. To be able to
obtain some theoretical results about the spectrum of the integral operator, the 1D problem
(1.55) is considered in an article by Faber and Manteuffel [38].

It is convenient to rewrite the equation in optical coordinates x = yz:

~

1
g%](:v,,u) +I(z, ) = w%/[(g;"u/)du'+(1 —w)B(z), =€ (-a,a),p€[-1,1], (3.46)
-1

=:H,I N— ——
:LI:ﬁG
I(_a'a/j') =0, >0, I(aaﬂ') =0, 4 <0. (347)
where w = % < 1. The asymptotic diffusion limit in this coordinates is characterized by
a > 1 and w = 1. The integral equation in this coordinates reads as

G —wKG =47(1 —w)KB, (3.48)
where 1 ro
(KG)(@) =5 | Eillz —y))G(y)dy. (3.49)

—a

Since F; is weakly singular, K is a self-adjoint, positive definite and compact operator.
Furthermore, it holds ||K|lec = 1 — Ea(a) “=° 1. Hence, the eigenvalues of Id — wK lie
in the interval [e, 1], where ¢ is small if ¢ > 1 and w =~ 1, i.e. in the asymptotic diffusion
limit. The eigenvalues near ¢ are responsible for the slow convergence of the Krylov methods.
Hence, a preconditioner has to consider these eigenvalues. The main part of the eigenvalues
is clustered near one and does not have a bad influence on the convergence rate.

The diffusion operator 1} corresponding to the diffusion Equation (1.60) for the 1D problem
in optical coordinates is given by

1 d?

TG = _§%G($) + G(z), (3.50)
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subjected to the Robin boundary conditions

G(+a) + G (+a) = 0, (3.51)

where 8 =~ 0.7104 in Section 1.2.

Since 7} is a linear self-adjoint differential operator of second order on a 1D interval, its
eigenvectors are sine or cosine functions: sin(*2z) or cos(“.x). The constants 7, have to be
chosen such that the boundary conditions are fulfilled. The eigenfunctions of 7 are given by

e for k odd
ex(z) = { OSCaw) fork odd, (3.52)
sin(2z) for k even,
where 7, (z) is the solution of the equation:
%nk = cot Nk for k£ odd,
B, — 4 for k (3.53)
oMk = —tann, for k even.
The corresponding eigenvalues of Tf ! (the Green’s function of Tl) are given by
A = L (3.54)
T (> '
which yields the following estimate for ﬁa—k <1
1 km
Me~l— ()% 3.55

That is, for ’i—k < 1, Mg is close to one. That is, the frequencies of interest correspond to a
small value of k. For these k, n; can be approximated as follows
km Bk

me= TP o2

o ” )3). (3.56)

Remark 3.8. The eigenfunctions e; are highly oscillatory if k£ is large. Furthermore, the
eigenvalues converge to zero. This is not surprising since Tfl should approximate the com-
pact operator K. The eigenvalues for small k are close to one. These eigenvalues and the
corresponding eigenvectors should resemble that of K to yield a good preconditioner.

An explicit computation of the spectrum of the integral operator K is not possible, even
for this simplified 1D model problem. But some estimates can be derived by considering
the factorization K = LH 'L* (see (2.12)). Since H,, is a linear differential operator of first
order, the eigenvalue decomposition of Hj H), can be computed analytically. This corresponds
to a singular value decomposition of H,, (see Appendix A.6 for more details)

f sin(%’“(:v +a)) sin(%’“(s —a))f(s)ds, un >0,

H'f = ZCOS (2) ] = (3.57)
i1 @0(k) | [ sin(Sk (5 — a)) sin(& (s + a)) f(s)ds, 4 > 0,

—a

o
o
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where ady(&y) is a factor to normalize the singular vectors. The frequencies & are rather
similar to the solutions of (3.53). For ’2‘—2 < 1, it holds

_km kw uk
i(p) = 5 " aa T 0((@)3) for pn >0, (3.58)
§k(p) = &(—p)  for p <0, (3.59)

To find K, L has to be applied to (3.57). Considering a single term of (3.57), using (3.59)
and expanding the sin terms yields

1

0/055025: cos? &, sm(é;:c )sm(glC ) — sin” & COS(%HU) Cos(gk )) Fh- (3.60)

This does not constitute a singular value decomposition of K since the functions of z and
s are not separable (note: & = &(u); but it does yield useful bounds for % small. In
this case one of the terms in (3.60) is very small. To see this, let & = k—’r — O, with
0 <O =0kp < “k” < 1. Hence, cos©f =~ 1. Using the addition theorem for sine and
cosine functions gives

1
cos? &, = 5(1 + (=1)* cos ©) = 0 for k odd,

1
sin? &, = 5(1 — (=1)* cos ©}) = 0 for k even.

Since cos(2¢y) is negative for k odd and positive for £ even, each term in (3.60) includes a
dominant positive part and a small negative part. Separating these parts results in a splitting
of K: K = K; — Ky. Both K; and K are self-adjoint and positive. The odd terms of K;

are given by (see (3.60))

du, (3.61)

/lcos Ok(1 + cos O)d1 (&) cos(fk )cos(%’cs)
/ 260(&x) ad1 (k)

where ad1 (§) is again a normalization factor. Using the mean value theorem yields

1
cos( ) cos( /cos O (1 4 cos O)d1 (&k)

a(51 fk 250 glc)

du, (3.62)
0

where &, € (br — ’Z—Z, kx), (refer to (3.58)). (3.62) shows that the eigenvectors of K; for odd

k are given by cos(%x). Compare this with the eigenvectors of 7} ! given in (3.52) and note
that 7y, for £ small, is very similar to £, (see (3.56)).

An approximation of the eigenvalues of K; given by the integral in (3.62) is computed in [38].
The result is also very similar to the eigenvalues of T} ! given in (3.55). The same holds for
even k.

Since K> is small for a small value of %, the low frequency part of the spectrum of K resembles
that of K; for large a. Hence, the low frequency part of the spectrum of K is very similar
to that of Tfl. Exact upper and lower bounds for the eigenvalues of K can be found in
[38]. The numerical results in this article show that a value of 8 € [0.68,0.76] yields the best
results. This matches the observations of Section 1.2.
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Remark 3.9. As mentioned in Section 2.1, the discrete ordinate method can be interpreted as
a discretization of the integral equation. If % is small, & in Equation (3.58) varies only little as
1 integrates from zero to one. Hence, a quadrature rule with a small number of quadrature
points can be used to approximate the integral in (3.60) in this case. Approximating the
integral by a quadrature rule, is exactly what is done when the DOM is used.

If a is large, the condition, % is small, is satisfied for relatively large k, i.e. only a few
discrete ordinates for the DOM are needed in this case. When the medium becomes optically
thin more and more directions have to be used to yield accurate results. Furthermore, the
eigenvalues corresponding to a small k£ are better approximated than the ones corresponding

to a large k. The numerical results in Section 3.4 confirm these contemplations.

As shown above, the low frequency part of the spectrum is the important part when pre-
conditioning is considered. On the other hand, the fact that this part is well approximated
by Tl_ ! does not automatically say that Tl_ ! is a good preconditioner since it could happen
that the small eigenvalues of the high frequency part are redistributed in an unfavorable way
by the preconditioning. In [38] it is shown that this is not the case if the two parts of the
spectrum are orthogonal. Since K and Tl_l are self-adjoint, this condition is fulfilled.

Since Equation (3.48) is of the second kind, the following operator P = (Id — wa =1 yields
a good preconditioner. This expression can be simplified as follows (see Equation (1.63) and
(1.65) for the definition of 77 and T7)

P=(Id— T ) YT T = (T — wld) YT — wld + wld) = Id + Ty . (3.63)

Remark 3.10. In [2] an alternative way for the construction of a preconditioner in context
of the DOM is described. Remember the definition of the operators in case of isotropic
scattering in a 1D slab geometry using optical coordinates

A=T-wK, K=LH 'L, T=H-wL'L.
By simple algebraic transformations, using the fact that LL™ = Id, it follows

A =Td +wLT ' LT (3.64)

Please note: since the inverse of the operator T' appears in this formula, it is only of interest
when a method for discretizing the RTE is interpreted as a method for discretizing the integral
equation, but not for methods which discretize the integral equation directly.

As shown in Section 1.2, the operator T of the RTE can be approximated by the diffusion
operator 77 if the parameters of the problem are in the asymptotic diffusion limit. Since T3
is defined for functions independent of the direction variable €2, suitable prolongations and
restrictions have to be used: T~ ! ~ L*T, L. Using this approximation in Equation (3.64)
yields

A7l = 1d + WLLYT ' LLT = Id + wTy . (3.65)

This is exactly the same operator as in (3.63). That is, the two methods for constructing the
preconditioner are equivalent.

Up to now, only the continuous operators have been considered. The following investigations
show, what these considerations imply for the discretized operators. Consider the continuous
eigenvalue problem

Ae = e, (3.66)
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where A is a self-adjoint operator. The discretization by a Petrov-Galerkin method yields
the problem: find e;, € V}, such that

a(en,v) = Aplep,v) Yo € Wy (3.67)

Note: the collocation method can be interpreted as a Petrov-Galerkin method, where the test
functions are chosen to be shifted Dirac delta functions 6(- — z;), where z; is a collocation
point.

Choosing a basis of V}, leads to a generalized algebraic eigenvalue problem for the coefficient
vector e, of ey,
Aeh = )\Meh, (3.68)

where A is the matrix corresponding to the discrete operator A, and M is the mass matrix.
In case of the collocation method, the mass matrix is the identity matrix and the eigenvalue
problem is a standard eigenvalue problem.

The following result can be found in [23]: let Ay be an eigenvalue of (3.66) with eigenvector
e. Then there exists a discrete eigenvalue A, with eigenvector e such that

Ao — An| < C dist(e, Vi), (3.69)
lle — enl|lv < Cdist(e, V3). (3.70)

Hence, if two continuous operators R and () with similar eigenvalues and corresponding
eigenfunctions are discretized with two methods using the same ansatz space and basis func-
tions, then the generalized algebraic eigenvalues and corresponding eigenvectors in R” are
also similar.

The convergence rate of the Krylov methods does not depend on the generalized eigenvalues
but on the standard eigenvalues. This has to be regarded when constructing a preconditioner
for the discrete system. To simplify the considerations, we make the following assumptions:

e The function e is an eigenfunction of the two continuous operators R and @), i.e. Re = Xe
and Qe = pe, where yp = X or y = %

e The eigenfunction e lies in the finite dimensional ansatz space V}. The corresponding
coefficient vector in R” is denoted by e.

These assumptions imply that

Re = A\Mje, Qe = uMye,

where M; and My are different if different test functions are used to discretize the two
operators. A good preconditioner P should yield a system matrix which has the eigenvalue
one with eigenvector e. The assumptions above are in general only fulfilled approximately
(see the considerations about K and Tl). In this case the eigenvalues are not exactly one,
but lie in a small neighborhood of the point one.

In case y = A, the operator () resembles the spectrum of R. For py = %, the operator Q!
resembles the spectrum of R. In either case the operator Q and not Q! is discretized to yield
the matrix Q. This becomes very important when considering the spectra of the matrices.
The following cases have to be distinguished:
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1. R and Q™! have a similar spectrum and the equation is of the first kind:
(This situation occurs in the BEM, where R is the hyper-singular operator and @ is
the single layer operator (refer to [55]).)
Using the preconditioner
P =M, QM

yields PRe = M;'Q()\e) = e. Note: the inversion of the two diagonal dominant mass
matrices M; can be approximated by a few steps of a Jacobi iteration. This is much
cheaper than applying the dense matrices R or Q.

2. R and () have a similar spectrum and the equation is of the first kind:
This corresponds to the situation in Remark 3.10, R is the operator A and @ is the
approximation A using the diffusion operator 7 instead of the radiative transfer oper-
ator T'.
In this case
P =Q 'M,M;!

is an optimal preconditioner. Using the same discretization method yields MQMII =
I, i.e. no inversion of a mass matrix is needed. Since the diffusion equation is an
elliptic equation and the RTE is a hyperbolic equation, it is complicated to find a
stable discretization, which works for both. A special transport like discretization of
the diffusion equation is derived in the two articles [2] and [11].

3. R and Q! have a similar spectrum and the equation is of the second kind:
This corresponds to the situation considered in this section. R is the integral operator
K and Q is the diffusion operator 7.
In this case
P=(I-M;'Q ") 'M"

is an optimal preconditioner. This expression can be simplified to avoid the nested
inversion of two matrices:
P=(Q-M,;)~'QM,". (3.71)

That is, the mass matrix M has to be inverted when the Galerkin method is used to
discretize the operator R. When the collocation method is used, it holds M; = I and
no inversion of a mass matrix is needed. The same statement holds when the DOM is
interpreted as a discretization of the integral equation since then the operators Hg; are
inverted explicitly yielding the identity matrix (for more details see (3.82) below). In
this case the preconditioner can be simplified further to yield:

P=1I+(Q-M,) 'M,. (3.72)

Thus, using the collocation method to discretize the integral equation, is advantageous
when preconditioning is concerned.

Remark 3.11. When the DOM is used to discretize the integral equation, there are two
possibilities to construct a preconditioner for the asymptotic diffusion limit. Regarding to
Remark 3.10, these two preconditioners are equivalent for the continuous operators. On
the other hand, in the case of the discrete operators one has to use the same discretization
methods for the diffusion equation and the transport equation when the preconditioner in
the second item of the enumeration above is applied, while an arbitrary discretization of the
diffusion equation can be used when the preconditioner in the third item is applied. The
numerical results below confirm this statement.
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As a first example we consider a 1D slab geometry of optical thickness 7 = 100, with scattering
albedo w = 1 and with black boundaries. For the discretization piecewise linear ansatz
functions on a uniform mesh with n = 100 elements are used. The same ansatz functions are
used for a standard Galerkin discretization of the diffusion operator. Figure 3.3 shows the
generalized eigenvalues of the system matrix and the eigenvalues after DSA-preconditioning.
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Figure 3.3: Spectrum of the system matrix before (top) and after DSA-preconditioning (bot-
tom) in case of black boundaries

The smallest eigenvalue of the system matrix without preconditioning is very close to zero,
i.e. the largest eigenvalue of the integral operator is close to one (numerical value: Amax =
0.9996). Furthermore, the convergence of the eigenvalues of the integral operator to zero
is rather slow. After DSA-preconditioning the eigenvalues are well separated from zero. In
fact approximately 70% percent of the eigenvalues lie in the interval [0.7,0.8]. The condition
numbers are x(A) = 1630 and x(P~!A) = 1.7. That is the preconditioning works very well.

Besides the Galerkin method, two other methods are used for the discretization: the colloca-
tion method and the DOM based on the even parity formulation described in the next section.
All three methods use the same spatial ansatz functions. Since the collocation method as well
as the DOM do not lead to symmetric system matrices, a Krylov method for non-symmetric
matrices, e.g. GMRES, instead of CG has to be used to solve the resulting linear system.
GMRES is applied with and without DSA-preconditioning, where the DSA-preconditioning
is implemented as described above: that is (3.71) is used in case of the Galerkin method
and (3.72) in case of the collocation method and the DOM. Table 3.2 shows the number of
iterations needed by the GMRES-method to obtain an accuracy of 1077.

We observe that the DSA-preconditioning works well in either of the three cases. That
is, there is no need to use a discretization of the diffusion operator which is adapted to
the discretization of the integral operator, except that the ansatz functions have to be the
same. On the other hand, the inversion of the mass matrix in case of the Galerkin method
is essential. Numerical results show that, when (3.72) is applied, the preconditioning fails
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without preconditioning | with preconditioning
Galerkin 25 7
collocation 7 8
DOM 54 6

Table 3.2: Number of GMRES-iteration steps with and without preconditioning

completely, especially on non-uniform grids.

Further numerical experiments show that the number of iterations needed to obtain a certain
accuracy is nearly independent of the grid size used. This is opposed to a matrix resulting
from the discretization of a partial differential equation where the condition number grows
when a smaller grid size is used.

The numerical results for the 3D case with black boundaries look almost the same as in the
1D case. Hence, we consider the case of reflecting boundaries p > 0. In this case the complete
system of integral equations has to be considered. That is, the system matrix is given by

A — [Ml ] B [Kn K12]
M, Ko Koo'
As shown above, in the optically thick and strongly scattering case, i.e. 7> 1 and w = 1,

the matrix Ky, is responsible for the bad condition number of the matrix A. Hence, it seems
to be reasonable to apply the DSA-preconditioning only to the upper part of A, i.e. to use

the matrix
. P
e-[7

as a preconditioner. Let n; and ny denote the number of degrees of freedom in the volume
and on the boundary respectively, and n = nq + no.

If a matrix A1 of dimension ny is extended to a matrix A = (41! 412) of dimension n =

n1 + no all its eigenvalues may be changed. On the other hand, a simple consideration
yields that, if A;; has an eigenspace of dimension 727 > n9, the eigenspace of the matrix A
corresponding to the same eigenvalue has the dimension 727 — no. That is, preconditioning of
only a part of the matrix might yield good results.

After the preconditioning above the system matrix is given by

f)A _ P(M1 — K11) —PK12 ’
—Ko1 M; — Ko

where all the eigenvalues of P(M; — K1) are close to one. Hence, we can hope that n; — ng
eigenvalues of PA are close to one. To investigate this numerically we choose the optical
parameters p = 0.5, v = 100.0 and w = 1.0. The computational domain is again the
unit cube and the grid used is the same as in the optically thin and strong reflecting case
considered above. Figure 3.4 shows the eigenvalues of the system matrix before and after
DSA-preconditioning.

The spectrum of A consists of two clusters: the interval [0,0.12] contains n; = 729 eigenvalues.
They correspond to the volume part of the equation. The interval [1,1.05] contains ny = 386
eigenvalues. They correspond to the surface part of the equation. CG can exploit the fact

(1)
that the eigenvalues are clustered, but for the first cluster it holds ))“‘(“f;" = 127 (This value is

called “local condition number” in the following.), which is already very large.
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Figure 3.4: Spectrum of the system matrix before (top) and after DSA-preconditioning (bot-
tom) in case of reflecting boundaries

The spectrum P A consists of three clusters: The interval [0.73,0.98] contains n; — ny = 343
eigenvalues. This interval is approximately the same as in the 1D case when preconditioning
of the system with black boundaries is considered. The interval [0.22,0.43] contains ny = 386
eigenvalues. These are the eigenvalues that should have been moved to a region close to one
by the DSA-preconditioning, but have been redistributed by the augmentation of the system
matrix by the surface part. The local condition 8:% = 1.95 is slightly larger than that of the
cluster near one, but it is still small. This is maybe due to the fact that the eigenvalues of
the original matrix A corresponding to the surface part are strongly clustered near one. The
interval [1.25,1.42] contains ny = 386 eigenvalues. They correspond to the surface part of the
equation. That is, these eigenvalues are shifted and slightly spread out by the preconditioning,
but the local condition number of this cluster is still small. That is, the preconditioning yields
better results as one might expect from the theoretical considerations above. Furthermore,
the situation should become even better if a larger system is considered. Since n; = O(h™3)
whereas ny = O(h~?2), the influence of the boundary part becomes smaller for a smaller grid
size h. Further numerical experiments show that the situation is very similar for other values

of p, but for larger p the first cluster gets closer to zero.

3.4 Comparison With DOM: Accuracy

In Remark 2.2 it is explained that the DOM can be interpreted as a discretization of the inte-
gral equation. In this section this discretization is compared with the Galerkin discretization
described in the previous sections. For simplicity we restrict ourselves to the case of a 1D
slab geometry with isotropic scattering and homogeneous Dirichlet boundaries I, = 0. In this
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case operator K, of Remark 2.2 is an integral operator, and its kernel can be specified ex-
plicitly. Suppose that the chosen quadrature rule for approximating f_ll f(u)dp is symmetric,
i.e. m =2M and

O<pm <+ <ppm <l B—i = — i, w;=w; >0, fori=1...,M.

Proceeding as in the derivation of the integral equation in the 1D case, using this quadrature
rule instead of the integration over [—1, 1] shows that the operator K, is the integral operator
given by

1 a
(EmGm)(z) = 5 [ km(lz = y|)Gm(y)dy, (3.73)
—a
where
Mo,
km(z) = Zwi—eﬂfi, (3.74)
i1 M

i.e. the integral in the definition of the exponential integral (see (2.15)) is replaced by an
approximation using the quadrature rule above. Note that the kernel k,, does not have a
singularity for z = 0 in contrast to the kernel E;.

Instead of discretizing the RTE (3.46) directly by the DOM, the RTE is transformed into the
so-called even parity formulation. This transformation is possible if the scattering is isotropic.
The even and odd part of the intensity are given by

1
1903, 9) 1= o (I(ac, Q) + I(z, —Q)), (3.75)
1
1°%(2,Q) = (I(ac, Q) - I(z, —Q)). (3.76)
Since I¢V*%(z, —Q) = I*V*%(z, Q) and I1°%(z, —Q) = —1°44(z, Q), it suffices to consider only

half of the directions, e.g. S2 := {Q € §?|Q - ( ) > 0}. Using the splitting above in the
RTE, results in two coupled equations

—OoOO

Q- Vo193, 0) + 91 (2,9) = - / e (o, )Y + kB(T(x)),  (3.77)

2
S+

Q- VI (z,Q) + vI°Y(z, Q) = 0. (3.78)

Solving the second equation for 7°d4 and plugging the result into the first one gives the even
parity equation.

—Q-vx(%g-vwfeven(x, 2)) 491z, 9) = o / een (o )Y + kB(T(x)).  (3.79)

Ve (Q@vaIeven(w,QO

Since this equation is of second order, it requires boundary conditions everywhere on the
boundary. These are obtained from the boundary conditions of the RTE as follows. If
n(z)-Q < 0, the boundary condition for {2 is applied. If n(z) - > 0, the boundary condition
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for —Q is applied. In case of homogeneous Dirichlet boundary conditions for the RTE, this
results in

1
IV (7, Q) — ;Q IV(2,Q) =0, for Q € % with n(z) - Q <0, (3.80)

1
I8 (2, Q) + ;Q T(,Q) =0, for Q € % with n(z) - Q > 0. (3.81)

Applying the DOM to the even parity equation yields a system of second order elliptic
equations and, hence, standard finite elements can be used for the space discretization. This
is advantageous since we want to compare the results with the Galerkin discretization of the
integral equation. Since the space discretization is the same, the error due to the spherical
discretization in the DOM can be measured.

In a 1D setting the discretization of an elliptic operator with piecewise linear elements results
in a tri-diagonal matrix, whose inverse is easily computable. Hence, the matrix corresponding
to the DOM discretization of the integral operator K, can be assembled explicitly. Due to
the inversion of the elliptic operator the system matrix is given by

(Refer to (2.20) for the definition of the discrete operators L,, and H,,, L,, and H denote the
corresponding matrices.), whereas using the Galerkin discretization for the integral equation
gives the following system matrix

M - wK. (3.83)

The fact that the identity operator is mapped to the identity matrix I in the first case and
to the mass matrix M in the second case has to be accounted for when comparing the two
matrices K,,, and K. For example by multiplying the matrix K with M~!. Concerning the
eigenvalues, this means that the generalized eigenvalues w.r.t. the mass matrix are computed
instead of the standard eigenvalues.

As mentioned in Section 3.2, the assembly of the Galerkin matrix for the integral opera-
tor involves the evaluation of integrals which cannot be computed analytically and, hence,
quadrature schemes have to be used. In the following a very high quadrature order is used to
compute a reference matrix. This matrix is assumed to be close to the best approximation
of the integral operator on the considered ansatz space. Then the matrices resulting from
the DOM for different m and the integral equation using a low order quadrature formula are
compared with this matrix.

There are different possibilities to measure the difference between two matrices, e.g. a matrix
norm or a spectral decomposition of the matrices can be used. Due to the considerations in
Remark 3.9, it is reasonable to expect that the large eigenvalues and corresponding eigenvec-
tors are approximated more accurately by the DOM than the small ones. To investigate this
numerically, a spectral decomposition of the matrices is used for the comparison. Please note
that the eigenvalues of M~'K are the generalized eigenvalues of K (see the previous section).
As expected from the considerations in the previous section the eigenvectors corresponding
to the large eigenvalues are smooth, and they become more and more oscillatory for smaller
eigenvalues. In fact the first eigenvector has no zero-crossing, the second-one has exactly one
and so on. The large eigenvalue corresponding to the smoother eigenfunctions are simple but
the smaller ones have multiplicity two.
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Again, due to Remark 3.9, it is expected that the quality of the DOM for the same num-
ber of ordinates is better when the medium is optically thick. Hence, the eigenvalues and
eigenfunctions of the matrices are compared for different optical thicknesses.

We use the following notation: K, .r denotes the reference matrix M~'K. The entries of this
matrix are determined by using a tensor-product Gauss quadrature rule with ¢ = 10 points
in z- and y-direction. Kintegral,q denotes the matrix where only g-quadrature points are
used. Due to the considerations in the previous section, one should use a smaller number of
quadrature points in the farfield than in the nearfield. For simplicity we use a large number in
the whole domain. This is feasible since the effort for computing the integrals in the 1D case
is moderate, even when a large number of quadrature points is used. Kpowm,, denotes the
matrix obtained by the DOM discretization with m ordinate directions. The computational
domain is denoted by [—1,1], and +y is chosen as v = 5 for given 7.

Remark 3.12. The following numerical computations only consider homogeneous Dirichlet
boundaries. Furthermore, the Planck function is replaced by a simple source function B.
We only consider two cases: in the first case B is set equal to one in the whole domain,
in the second case B is set equal to one in a small part of the domain and zero else. The
plots of the numerical solutions show the mean intensity J = % instead of the energy G.
These facts facilitate the comparison of the results with the results obtained by a group at
the Interdisciplinary Center of Scientific Computing (IWR) in Heidelberg.

Optical Thickness 7 = 100.0

We want to measure the angular discretization error. Hence, we have to ensure that the spatial
discretization error is small. For an optical thickness of 7 = 100.0, i.e. an optically thick
medium, the energy distribution may have strong gradients near the boundary, especially if
the scattering albedo w is small. To resolve this strong gradients, we choose a graded mesh
with n = 2k + 1 = 101 grid points

7 —1 . .
Ei:( A )2—1, ’I,Zl,...k‘-l—l, fk—l—l—l—i:_gk—l—l—ia ZZl,...k.

It turns out that the eigenvectors of Kref, Kintegral,g and Kpowm,m for 7 = 100 are very similar.
Hence, solely the eigenvalues can be used for a comparison. Figure 3.5 shows a plot of the
eigenvalues of Kyef, Kintegral,3, Kpom,s and Kpow,12- Please remember that all eigenvalues
of the matrices are real. Not the whole spectrum is shown but only two cutouts: one shows
the 10 smallest eigenvalues and one the 10 largest. The top line shows the spectrum of K.,
the second that of Kintegral,3, the third that of Kpowm,i12 and the fourth that of Kpowm,a.

We make the following observations:

e The eigenvalues of K¢ lie in the interval [Amin, Amax] = [0.0152,0.9996]. Apax is in
good agreement with the estimate ||K||z2 < 0.9997 in (2.68). Since K is a compact
operator, its eigenvalues converge to zero, but this convergence is rather slow in the
optically thick case.

e The difference between m = 4 and m = 12 is very small. That is a very small number
of ordinate directions is sufficient in the optically thick case. This matches the result
of the considerations in Remark 3.9.

e The error in the DOM approximation for the large eigenvalues is very small, about
10~%. Tt becomes larger for the small eigenvalues. In fact the small eigenvalues are
completely wrong. This is again in good agreement with Remark 3.9.
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Figure 3.5: Comparison of the spectrum of the different matrices, the left figure shows the
10 smallest eigenvalues and the right one the 10 largest

e The error for Kiptegral,3 is almost equally distributed over the whole spectrum, except

for the smallest eigenvalues where the error is much smaller. When comparing the error
with that of the DOM, it is observed that the error of Kpowm,i2 compared with that of
Kintegral,3 is much smaller for the large eigenvalues and becomes larger for the smaller
eigenvalues. This gives rise to the fact that the error |Kpowm,2 — Kret||p is larger than
| Kintegral,3 — Kref||p for any matrix norm ||- ||, p = 1,2,00 and || - || (Frobenius norm).

To assess the impact of the errors in the spectrum on the solution of the linear system, two
facts have to be regarded:

1. The eigenfunctions corresponding to the large eigenvalues are smoother than those

corresponding to the small eigenvalues. A decomposition of the right hand side into the
eigenfunctions has in general larger coefficients for the smooth eigenfunctions. Thus,
errors in the eigenvalues, corresponding to these eigenfunctions, have a stronger impact
on the solution than errors in the eigenvalues, corresponding to the highly oscillating
eigenfunctions.

. When the system is strongly scattering, i.e. scattering albedo w = 1, the system matrix
is given by A ~ M(I - M 'K). Thus, the eigenvalues of M 'K which are close to one
become very small eigenvalues of A. Hence, the same absolute error becomes a large
relative error. In other words, the system matrix is ill-conditioned. This is important
when the eigenfunctions corresponding to the largest eigenvalues of M~'K represent a
big portion of the solution of the linear system.

To investigate the considerations above numerically, the solution of the linear system for a
constant source B = 1.0 and two different values of w is computed. Figures 3.6 and 3.7
compare the numerical solutions obtained by the different methods. Please remember: ¢
denotes the number of quadrature points used to compute the matrix entries, when the
Galerkin method is used to discretize the integral equation; m denotes the number of ordinate
directions used in case of the DOM. Since the solution is symmetric, only the solution over

half of the domain is plotted.

For w = 0.5 (see Figure 3.6) the error in the solution is very small, when Kpowm,m (m = 4,12)
instead of K¢ is used. The relative error is smaller than 0.1% over a large portion of the
domain. That is, the errors in the small eigenvalues do not have a big influence on the
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Figure 3.6: Slab Geometry with 7 = 100.0, w = 0.5 and constant source

solution. Only near the boundary, where the solution has a steep gradient, the error becomes
a little larger. In this region the error for m = 12 is much smaller than that for m = 4.

The relative error when Kintegral,3 is used is approximately 1%. That is, the error is much
larger than that of the DOM even though the error in the matrix norm is smaller. This is
due to the considerations about the spectral decomposition of the right hand side (see the
first item in the enumeration above). Note that, the largest error occurs in a region where
the solution is almost constant, whereas the steep gradients near the boundaries are resolved
well. Furthermore, the numerical solution has a local minimum in the middle of the slab
which is physically impossible. For a constant source and homogeneous Dirichlet boundaries
the solution obtains its global maximum in the middle of the slab.

For w = 0.99 (see Figure 3.7) the solution obtained when Kpowm,m (m = 4,12) is used is even
smaller than in the case w = 0.5. This is due to the fact that there are no steep gradients at
the boundary when the medium is strongly scattering.

The solution obtained when Kjytegra,3 is used is completely wrong. This is due to the con-
siderations about the large relative error in the small eigenvalues of the system matrix (see
the second item in the enumeration above).

The large condition number of the system matrix has two effects: first, the convergence of CG
is slow and second, small errors in the matrix entries can cause large errors in the solution.
The first problem can be solved by using DSA-preconditioning, but this does not remove the
second problem.

As shown above, the error in the solution might be smaller for one approximation of the
matrix even though the error in any of the widely used matrix norms is larger than for the
second approximation. That means that it is not easy, to give a criterion when a matrix
is a good approximation of a given matrix. Or in other words, it is hard to estimate the
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Figure 3.7: Slab Geometry with 7 = 100.0, w = 0.99 and constant source

influence of the error in the matrix entries on the solution of the linear system. This problem
also occurs in the next chapter when methods are discussed which use approximations to the
matrix which are easier to handle numerically than the matrix itself.

Optical thickness 7 = 0.1

For an optical thickness of 7 = 0.1, i.e. an optically thin medium, the eigenvectors of
Kpowm,i2 do not resemble the eigenvectors of K. as well as in the optically thick case, but
the qualitative behavior is still in order.

Figure 3.8 shows a cutout of the eigenvalues of K,¢r (first row), Kintegral,3 (second row) and
Kpowm,i2 (third row). The 10 largest eigenvalues are plotted.

The eigenvalues of Ky lie in the interval [1.5 - 107°,0.1635]. That is, for an optically thin
medium the largest eigenvalue is much smaller than in the optically thick case and the con-
vergence of the eigenvalues to zero is much faster.

The spectra of Kref and Kingegral,3 are almost identical, but for Kpowm,12 already the second
largest eigenvalue has an relative error of 5%. The approximation of the other eigenvalues
is even less accurate. This effect can be seen when comparing the solutions obtained by the
DOM for a different number of ordinate directions and by the Galerkin discretization of the
integral equation (see Figure 3.9). The figure shows the numerical solutions obtained for a
constant source B = 1 and w = 0.99. But the situation is similar for other values of w.

The error when Kiytegral,2 i used is very small. This has two reasons: first, as shown in
Section 3.2, the quadrature error, when the same number of quadrature points is used, is
much smaller than in the optically thick case; second, the condition number of the system
matrix is much smaller.
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Figure 3.8: Comparison of the 10 largest eigenvalues of the different matrices
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Figure 3.9: Slab Geometry with 7 = 0.1, w = 0.99 and constant source

The solution obtained by the DOM with m = 12 ordinate directions is completely wrong.
For a higher number of directions the solution converges slowly to the solution obtained by
the discretization of the integral equation.

That is, in the optically thin case the DOM needs a large number of ordinates to yield
good results. In a 1D setting this can be explained by the following considerations. A ray
corresponding to the smallest quadrature point u; leaves the plain parallel plate after a certain
distance. Hence, a circular disc is cut out of the infinitely extended slab. The rest of the
domain is not considered. If the medium is optically thin the radius of the disc is small and,
hence, the error is high. This explanation only works in the 1D setting, hence, it is not clear
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if the statement that in an optically thin medium more ordinates are needed, is true also in
the 3D case. The numerical examples below show that the statement holds also in the 3D
case, but the effect is not as strong as in the 1D case.

The 3D case

Before discussing the results obtained for the 3D case, we want to say the following. The
problem with the ill-conditioned system matrix described above for the 1D case also occurs
in the 3D case. That is, when discretizing the integral equation the matrix entries have
to be computed very accurately. The only difference is, that the costs for the high order
cubature formulae are much higher than in the 1D case. We do not want to investigate
this phenomenon further, therefore, the computations in this subsection always handle sit-
uations with a scattering albedo w = 0.8. Furthermore, we again only consider the case of
homogeneous Dirichlet boundary conditions and constant coefficients x and o.

For the 1D setting three different codes are at our disposal: the DOM code based on the even
parity formulation, the code which discretizes the integral formulation directly and a third
code which combines the DOM with a semi-analytical solution of the transport equation along
the rays. This code has been made available to the author by the ITWM. As shown above,
all three codes yield the same result when the grid size for the spatial mesh is sufficiently
small and when the number of ordinate directions is sufficiently high in case of the DOM and
when the matrix entries are evaluated sufficiently accurate in case of discretizing the integral
equation.

In the 3D case the situation is different. Since the CPU time and storage requirements
grow very fast with decreasing grid size, it is often hard to guarantee that the resolution of
the spatial and angular discretization is high enough. The solution methods based on the
integral formulation have to make use of the matrix compression methods discussed in the
next chapter since it is impossible to store the whole system matrix for a sufficiently fine grid.
These methods introduce an additional error. Furthermore, we do not have a DOM code at
our disposal, but only some benchmark solutions for special reference situations which have
been made available to the author by Erik Meinkéhn from the IWR in Heidelberg. These
results are obtained by the discrete ordinate method using the streamline diffusion Galerkin
discretization described in Section 1.2.

In order to be able to calculate a reference solution, we consider a quasi-1D geometry as
a first test. In this case one of the 1D codes with a very high resolution can be used to
obtain a reference solution. The test case is according to Test II in [46]. It considers a
plane-parallel slab, which can be handled by the 1D code. For the 3D calculations the
infinitely extended layer is approximated by a parallelepiped with a very high aspect ratio
1:100 : 100. The spatial grid consists of 323 hexahedral elements with the same aspect ratio
as the computational domain. Piecewise trilinear elements are used as ansatz functions.

When discretizing the integral equation directly, the anisotropy of the cells has a bad influence
on the quadrature error for the methods used to approximate the matrix entries. Therefore,
we have to choose a lower aspect ratio for the computational domain or we have to use a larger
number of elements in the directions with the large extension. Using a smaller aspect ratio
is in order, when the optical thickness is large, say 7 > 10. In this case the damping of the
radiation very high, therefore, an aspect ratio of 1 : 10 : 10 is sufficient. When the medium
is optically thin, e.g. 7 = 0.1, the aspect ratio 1 : 10 : 10 is not adequate to approximate
the infinitely extended layer. Therefore, we use an aspect ratio of 1 : 100 : 100 and a larger
number of elements in the directions with the large extension.
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The first test case considers an optical thickness of 7 = 20 and a constant source. The dis-
cretization of the integral equation uses 322 hexahedral elements on a computational domain
with aspect ratio 1 : 10 : 10. The ansatz functions are the same as for the DOM i.e. piece-
wise trilinear. The DOM results are obtained on a computational domain with aspect ratio
1:100 : 100 using 323 and 643 elements, i.e. n = 33% and n = 653 vertices respectively. The
elements have the same aspect ratio as the computational domain. The number of ordinates
used, is m = 320 in both cases. To compare the 3D results with the 1D results the mean
intensities J = % are plotted along a straight line parallel to the z; axes through the middle
of the parallelepiped (see Figure 3.10). The solution obtained by the 1D code is denoted by
exact.

1.1
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Figure 3.10: Slab geometry with 7 = 20.0, w = 0.8 and constant source

Both methods yield good results, but the result obtained by the DOM is slightly more accurate
than that of the discretization of the integral equation. The latter is a little too large. The
value in the middle of the domain is 1.001, i.e. greater than the constant source B = 1, which
is physically impossible. The true solution is 0.999, that is, the relative error is smaller than
0.3%. This error becomes bigger near the boundary: about 1.5% at the boundary point. This
is due to the steep gradients at the boundary. A graded mesh should be used to resolve this
gradients more accurately. The solution obtained by the DOM is about 0.5% too small at
the boundary point.

Figure 3.11 shows the results obtained for the case 7 = 0.1. The discretization of the integral
equation uses 16 x 64 x 64 hexahedral elements on a computational domain with aspect
ratio 1 : 100 : 100. The DOM uses a spatial grid with 323 elements and m = 320 ordinate
directions.

The integral equation gives rather good results, whereas the DOM fails completely. This is in
good agreement with the 1D case where a very large number of ordinate directions is needed
to obtain good results in the optically thin case.
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Figure 3.11: Slab geometry with 7 = 0.1, w = 0.8 and constant source

The next test problem should show that the discretization of the integral equation is able
to handle situations where the source function is non smooth. To this end we consider the
following source:

1 if z; € [-0.25,0.25],

3.84
0 else. ( )

B(-’Ela$27$3) = {

Figure 3.12 shows the results obtained for the case 7 = 10.0. The discretization of the integral
equation uses the same grid as in the case 7 = 20.0. The result is very accurate. Results
obtained by the DOM are not available for this case.

This section is concluded with some results for a real 3D problem. We consider a 3D com-
putational domain (z1,z9,73) € [—~1,1]3 with constant source. The optical parameters are
chosen as follows: w = 0.8 and v = 0.05, i.e. 7 = 0.1 if we define the optical thickness along
the coordinate directions. All numerical computations use a uniform spatial grid with 323
cells and piecewise trilinear elements.

To allow some quantitative evaluations, the mean intensity J = % is plotted along a selected
path through the computational domain. The path runs through the midpoint of the domain
parallel to the z;-axis. Figure 3.13 shows the numerical results obtained by the discretization
of the integral equation and by the DOM with m = 80 directions.

The two solutions show relatively large deviations in the middle of the domain and at the
boundary (approximately 2%). In the region in between the solutions are very similar. For
this 3D problem we do not have a reference solution. Hence, it cannot be said with certainty
which solution is more accurate. On the other hand, the following argument indicates that
the error in the solution computed by the discretization of the integral equation is smaller.

It is possible to derive an upper bound for the mean intensity J = ﬁ in terms of the source
term B. The integral equation for J in case of homogeneous Dirichlet boundary conditions
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Figure 3.12: Slab geometry with 7 = 10.0, w = 0.8 and local source
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Figure 3.13: Cube with 7 = 0.1, w = 0.8 and constant source

is given by (see 2.7)

J(z) —w(KJ)(z) = (1 - w) (KB)(z), (3-85)
=:f(z)
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where the integral operator K is defined as

(KJ)(@) v e lz=y)ll

C J(y)dy. 3.86
i) o=l ) (3.86)

Since the integral operator K is positive, the following lower bound for ||J||s holds
[0 2 (1 = w)|floo- (3.87)

The operator norm || K || is given by

—lle—yll
IK|lo = c:= max / 7°
z€[—-1,1]3

[_151]3

Using a Neumann series argument, yields an upper bound for ||J||

1l—w

1[0 <

<5l (3.89)

Using || flloo < I K|lool|Blloc on the right hand side, gives the estimate

(1—-w)e
Jloo € ——||B||so- 3.90
[lloo < = IIBlloo (3.90)
For a constant source this upper bound might be rather accurate. It remains to compute the
value of ¢. The maximum in (3.88) is obtained in the middle of the domain, that is for x = 0.
Due to symmetry considerations, the integral over the eight octants is the same. Thus

" el

c=8— dy.
4 lyl>
[0,1]3

The domain [0, 1]? can be split up into three pyramids. Again due to symmetry considerations,
the value over each pyramid is the same. Hence, we only have to compute the integral over
the pyramid {0 < y1 < 1,0 < y2 < ¥1,0 < y3 < y1}. The integrand is only singular at the
origin. Hence, we can apply a Duffy transformation (see Section 3.2) to render the integrand

analytic
c=3—

™ w?(1+n? +n3)
0,13

w%dwldmdng.

This value is computed by using a tensor product Gauss quadrature formula with ¢ = 10
points in every direction; this yields: ¢ = 0.620086. (Note that the first 7 digits are the same
when g = 5 is used. Therefore, the value is very accurate.) Using this value in (3.87) and
(3.90) regarding the fact that B = 1, yields the estimate:

0.011842 < || J|[oc < 0.012432. (3.91)

The numerical solution obtained by the discretization of the integral equation lies in this
interval: ||J||coc = 0.0123, but the DOM solution is too large: ||J|lcc = 0.0125. Hence, this
solution seems to be less accurate. Unfortunately, we do not have results obtained by the
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DOM with more than m = 80 directions. Maybe the solution lies below the upper bound
when more than 80 directions are used.

The setup for the next problem is the same as for the previous one, except that the emission
region is restricted to a small cube in the middle of the domain:

1 if (z1,72,73) € [-0.25,0.25]3,

3.92
0 else. ( )

B($1,$25$3) = {

This source is denoted by “local source” later.

Figure 3.14 shows the numerical results obtained by the discretization of the integral equation
and by the DOM with m = 20,80, 320 ordinate directions. The solution for m = 20 shows
strong deviations from that for m = 320 especially at the bottom of the slope (maximal
relative error: 4.5%). The difference between m = 80 and m = 320 is very small except near
the boundary (maximal relative error: 1.7%).

The deviation between the DOM solution and the one obtained by the integral formulation
is even larger than in the previous example (approximately 7%). The solution obtained by
the DOM is always smaller than that of the integral formulation.
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Figure 3.14: Cube with 7 = 0.1, w = 0.8 and local source

Again some estimates for the maximum of the solution can be given. The function f = KB
on the right hand side of (3.87) and (3.90) obtains its maximum in the middle of the emission
region, i.e. for x =0

Il =10 = L [ & By (395)
= = — y)dy. .
> 4m lylI>

[71:1]3
Since the source (3.92) is symmetric, the same splittings of the domain as in the previous
case and a Duffy transformation can be used to render the integrand analytic. Due to the
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simple structure of the source term the integral can be evaluated very accurately by using a
high order quadrature scheme. One has to regard the fact that the numerical methods use
piecewise trilinear ansatz functions. Therefore, the source is approximated by a piecewise
trilinear function B, i.e. the jump is approximated by a steep gradient. This modified source
B has to be used in Equation (3.93). This complicates the evaluation a little, but it is still
possible to compute f(0) very accurately. Using this value in (3.87) and (3.89), yields

0.0033958 < || J]loo < 0.0035646. (3.94)

The numerical solution obtained by the discretization of the integral equation lies in this
interval: ||J|loc = 0.00347, but the DOM solution (for m = 20, 80 and 320) is too small:
|/]lcc = 0.00321 for m = 320. Hence, the solution obtained by the DOM seems to be less
accurate again.
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Figure 3.15: Cube with 7 = 10.0, w = 0.8 and local source

Figure 3.15 shows the numerical results obtained for an optical thickness 7 = 10.0. The
deviations between the solutions obtained for a different number of ordinates is much smaller
than in the optically thin case (maximal relative error: 1.0% for m = 20 and 0.06% for
m = 80). This is in good agreement with the considerations of the previous section. That
is m = 80 directions are sufficient for the given spatial resolution. On the other hand, the
difference compared with the solution obtained by the integral formulation is about as big as
in the optically thin case (approximately 6%). We do not have an explanation for that. The
interval between the lower and upper bound for ||J||c is much larger than in the optically
thin case. Both solutions lie in this interval. Therefore, we cannot assess which solution is
more accurate.

To indicate that the solution obtained by the integral equation is reliable, we consider the
same test as above, but with w = 0, i.e. the purely absorbing case. Figure 3.16 shows the
numerical result obtained by the discretization of the integral equation.
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Figure 3.16: Cube with 7 = 10.0, w = 0.0 and local source

In this case the solution of the integral equation reduces to the evaluation of the parameter
integral:
K e—’Y”x—yH ~
. o By)dy, «el-1,1, (3.95)
A / lz = yl?

k]

where B is the piecewise trilinear approximation of B. This integral can be evaluated for
given x by using a high order quadrature scheme. Evaluating the integral in the point x = 0.0,
gives 0.8148, whereas the Galerkin discretization yields 0.8178. That is the relative error in
the numerical solution is 0.0036.

Subsuming our observations, we can say the following. In all the considered cases we could not
find any indication that the solutions obtained by our implementation of the discretization
of the integral formulation are less accurate than that obtained by the implementation of the
DOM. On the other hand, we do not have an explanation for the difference compared with
the solution of the DOM in case of a local source. Especially in the optically thick case where
there is almost no difference between m = 80 and m = 320 directions.

Remark 3.13. Unfortunately, there is only a small number of results obtained by the DOM
at our disposal. It would be nice to have results for the optically thin case using more than
80 directions, or results on a finer spatial grid for the case of a local source. In the case of
the integral formulation we cannot use a finer grid, say 643 elements, due to the enormous
storage requirements. When piecewise constant elements are used instead of piecewise linear
elements, the resulting matrix has a Toeplitz-type structure (see Section 4.1) which can be
handled with very low storage requirements. Numerical results using 323 and 642 elements
show almost no difference for the test cases with the local source. Hence, 323 elements seem
to be sufficient in case of the discretization of the integral equation.



92 3. Numerical Solution

Based on the numerical results in this section, we draw the following conclusions.

e The discretization of the integral equation may yield completely wrong results in the
case 7 > 1 and w = 1 when the matrix entries are evaluated not accurately enough.
This is due to the high condition number of the system matrix in this case. In all other
cases, the solutions obtained by the discretization of the integral formulation are at
least as accurate as that obtained by the DOM.

e The DOM needs many directions to obtain accurate results in the optically thin case;
m = 80 directions are not enough. The situation is even worse if the computational
domain is highly anisotropic. In this case the solution is completely wrong even for
m = 320 directions.

e The implementation of the DOM gives bad results when problems with local sources
are considered, even in the optically thick case.



Chapter 4

Matrix Compression Methods

In the previous chapter the Galerkin method is applied to the integral equation as derived
from the RTE. Furthermore, the stability and convergence properties of the method are
examined. In this chapter we address ourselves to an efficient implementation of the method.

The discretization of an integral equation leads to a full matrix even if basis functions with
local support are used. This is due to the integral kernel k(-, -) not being local. Therefore, the
size of memory needed to store the entries of the matrix is of order O(n?) and a multiplication
of the matrix with a vector requires O(n?) operations. If n is large, this effort is not feasible.

When iterative methods are used for the solution of the discrete system, the explicit knowl-
edge of the entries of the matrix is not needed. Instead, matrix-vector multiplications appear
as elementary operations. Furthermore, the discrete solution is only an approximation to
the solution of the continuous problem. Hence, an additional error introduced by approxi-
mating the discrete system need not diminish the overall accuracy if it is smaller than the
discretization error.

There are different approaches for reducing the complexity of a matrix-vector multiplica-
tion: the first ones exploit the algebraic structure of the matrix, the second ones use an
approximation of the operator based on geometrical and analytical considerations.

First, if the domain is very regular and the kernel is translation invariant, i.e. k(z,y) =
k(z — y), the resulting matrix has a Toeplitz-type structure. Therefore, a matrix-vector
multiplication can be evaluated efficiently by performing fast Fourier transformations (see
Section 4.1). This method does not introduce an additional error.

Second, the so-called matrix compression methods exploit another property of the kernel,
namely, that it has a singularity for £ = y and that it is very smooth outside the diagonal.
This corresponds to the physical fact that two points which are near together have a stronger
influence on each other than two points further apart. On parts of the domain where the
kernel is smooth, i.e. away from the diagonal, an approximation of the kernel can be used.
To this end, the elements are gathered together to form clusters. If the distance between two
clusters is large a suitable approximation of the kernel is used which makes the corresponding
sub-matrix a low-rank matrix. This kind of matrix allows a fast matrix-vector multiplication
(see Section 4.1). The exact requirements for the applicability of these methods and the
involved procedures are explained in more detail in the following sections.

There are different possibilities to construct the approximation. The first one is the fast
multipole method which was originally introduced to enable a fast simultaneous evaluation
of the potentials of n point charges. The approximation is obtained by expanding the kernel
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into spherical harmonics. The first article on this topic was published by Rokhlin in 1985
[47]. Since then the method has been improved substantially (see e.g. [13]).

The second method is the panel clustering method by Hackbusch and Nowak [28]. In this
article Taylor expansion is used to approximate the kernel. The computational complexity of
the method is reduced further in [34] and [50]. In more recent papers polynomial interpolation
is used instead of Taylor expansion [26], which has the advantage that no explicit knowledge
of an expansion of the kernel is required. Hence, the implementation does not depend on the
considered kernel.

The third method is the adaptive cross approximation (ACA) [7]. It tries to find a pseudo-
skeleton approximation of the matrix (see [21]), i.e. only a few of its columns and rows are
used. This method also does not need any explicit knowledge of the kernel. Furthermore, it
is applied to approximate the matrix entries directly instead of the kernel.

In a series of papers Hackbusch et. al. look at the problem from a more algebraic point
of view. This provides a common basis for the above approaches, and thus facilitates the
comparison of the methods. Furthermore, it enables the extension of the ideas to new fields
of application e.g. the inversion of sparse matrices [9].

A method which implicitly exploits the smoothness of the kernel outside the diagonal is the
matrix compression based on multiple scales. Instead of the usual nodal basis, a wavelet basis
is used. The wavelets are orthogonal to low-order polynomials. Hence, the smoothness of the
kernel with sufficient distance from the diagonal causes most entries of the matrix with respect
to the wavelet basis to be very small. These entries can be neglected without introducing a
significant error. Since it can be determined a priori, which entries are negligible, only the
remaining entries need to be computed. For more details refer to [14], [53] or [43].

The matrix compression methods have been developed in context of the boundary element
method (BEM), where a boundary value problem in a domain is transformed into an equiva-
lent integral equation on its surface. The kernels of these integral equations are very similar
to the kernels of the integral equation describing the radiative transfer. Therefore, with some
modifications, the matrix compression methods are readily applicable to the latter equation.

After the introduction of the methods in Section 4.2, they are applied to the integral equation
(2.26) being derived from the RTE in Section 4.3. It is demonstrated what is different from the
integral equations arising from the BEM and how to cope with this. Section 4.4 concludes
with a comparison of the computational complexity of the matrix compression algorithms
with that of the DOM.

4.1 Preliminary Considerations

In this section it is shown that in some cases a fast matrix-vector multiplication is possible even
if the matrix is fully populated. Two simple examples are the Toeplitz-type matrices and the
low-rank matrices. As mentioned above low-rank matrices can only be used to approximate
sub-matrices of the whole matrix arising from the discretization of integral equations. In order
to keep the selection of this sub-blocks algorithmically manageable, a hierarchical structure,
called cluster tree, is introduced.

Toeplitz-type matrices

A standard Toeplitz matrix is a matrix T = (¢;;);; € C**" with ¢;; = t;_;, i.e. the matrix
entries are constant along the diagonals. The following example shows, how such matrices
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can arise in radiative transfer.

Ezample 4.1. Consider the integral equation resulting from the RTE for a 1D slab geometry
with constant coefficients, isotropic scattering and homogeneous Dirichlet boundaries (see
(2.13)). Let the Galerkin method with piecewise constant elements be applied to discretize
the equation. Furthermore, let an equidistant grid consisting of n intervals, where n = 2P is
a power of 2, be used. Then the entries of the resulting matrix are of the form

ir L L =y
y ¥
kij = 5 / / Ei(v|lz — y|)dydz = 5/ / Ey(v|lz — y|)dydz.
%Jil 0 i=1

Hence, the matrix K is a Toeplitz matrix. Note that this property is lost if we use piecewise
linear ansatz functions because the support of the basis functions corresponding to the points
on the left and the right boundary is only half as big as the support of the other basis
functions.

Besides the low storage requirements, 2n — 1 in the non-symmetric and n in the symmetric
case, a Toeplitz matrix allows a fast matrix-vector multiplication. To show this, the definition
of circulant matrices is recalled.

Definition 4.1. A circulant matrix is a Toeplitz matrix C = (¢j—;);; € C**" with the
property

Ck = Cn+k 1-n<k<O0,
i.e.
Co C1 tt G-l
Ch—1 Qo T Cp—2
C= .
4] Cp—1 Co

Circulant matrices have the favorable feature that they are easily diagonalizable: any circulant
matrix is associated with the polynomial p.(z) := ¢y + c1z + ...+ c,_12""! (2 € C) and has
a diagonal representation in a Fourier basis

C=F,AF, with A, = diag{p.(1),... ,pc(wnfl)}, w=e n.
The eigenvector corresponding to the eigenvalue p.(w’~!) is given by the j-th column of F,,

v Wt DO

_ 1 1
=l
i.e. v; is the j-th Fourier vector. For a proof refer to [29].

The eigenvalues can be rewritten in vector notation

A1 cl
)\2 C2
. = \/ﬁFn .
An Cn

Hence, Fast-Fourier-Transform (FFT) can be used for a fast computation of the eigenvalues,
3nlog, n (real) additions and 2nlog, n (real) multiplications are needed if n = 2P is a power
of 2. Since the eigenvectors are Fourier vectors, a transformation into diagonal form can also
be obtained via FFT. Hence, a fast matrix-vector multiplication v = Cu looks as follows:
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1. computation of eigenvalues: [A1,...,A\y] = FFT([co,...,cn-1]),
2. transformation into diagonal form: x = FFT(u),
3. multiplication with eigenvalues: y; = \jz;, j = 1,...,n (complex multiplication),

4. backward transformation: v = IFFT(y).

Hence, 3 FFTs are needed for the computation of v = Cu, i.e. O(3nlog,n) operations. The
first step of the algorithm has to be performed only once, when several products of the same
matrix with different vectors are computed.

An arbitrary Toeplitz matrix can be embedded into a circulant matrix of twice the dimension:

0 tl—n t—l
_|T FE | th1 0
C = [E T]’ where E = N
- Cl-np

By using C, Tu can be computed as follows:
Tu u
5] =fi]

Thus, the multiplication needs O(4nlogy n) operations. If the Toeplitz matrix is symmetric
like in Example 4.1, this property is transfered to the circulant matrix. Hence, its eigenvalues
are real and the complex multiplication in the third step of the algorithm can be replaced by
a real multiplication.

We are not interested in solving the RTE in 1D but in 3D. Assuming homogeneous Dirichlet
boundary conditions and constant coefficients, leads to a volume integral equation with a
translation invariant kernel. Furthermore, assume that the computational domain is a paral-
lelepiped and a uniform tensor product grid together with piecewise constant finite elements
is used for the discretization. Let n,, n, and n, denote the number of elements in z-, y- and
z-direction respectively. Each element can be characterized by a 3D index vector (i, j,k),
denoting the number of the cell in z-, y- and z-direction respectively. The 3D index vector
is transformed into a scalar number via

index(i, 7, k) = i + jng + k(ngny).

This gives a linear ordering of the indices, and leads to a recursive block structure of the
system matrix. The translation invariance of the kernel implies that the small blocks of size
ng X ng are Toeplitz matrices. A translation of j indices in y direction corresponds to a shift
by jng in the matrix. Thus, the translation invariance in y-direction implies that the small
blocks themselves are sub-blocks of a block-Toeplitz matrix.

Definition 4.2. A nino X nine matrix M = (Tij);-t;-:l with n; X n; Toeplitz matrices T;;
has a two-level ng x no block-Toeplitz structure if T;; = T, ; depends on j — 7 only.

This formal definition is illustrated by the following example.



4.1. Preliminary Considerations 97

Ezample 4.2. Let nqy = 3, no = 2. Then a two-level block-Toeplitz matrix looks as follows.

(0) (1)
T— [T T

T(-1) T(o):| ,  where T = tg

Proceeding as in the above definition a g-level block-Toeplitz matrix can be recursively defined
as a block matrix with Toeplitz structure, where the single blocks are (g-1)-level block-
Toeplitz matrices. The matrix resulting from the 3D RTE is a three-level block-Toeplitz
matrix. Like in the standard case, a g-level block-Toeplitz matrix can be embedded into a
g-level block-circulant matrix, which is defined analogous to a block-Toeplitz matrix. Since
the embedding has to be done at every level, the dimension is increased by a factor 2¢. The
fast diagonalization of a block-circulant matrix proceeds as follows (example for ¢ = 2)

1. Use FFT to transform the ny different circulant matrices of size n; into diagonal form
in n90(n logy n1) operations. This results in a matrix with circulant block structure,
where the single blocks have diagonal form.

2. Use a permutation to transform the matrix into a block diagonal form with n; blocks,
which are circulant matrices of size ng .

3. Use FFT to transform the m; circulant matrices of size my into diagonal form in
n10(ng log, no) operations. This results in a diagonal matrix.

By using this procedure, a matrix-vector multiplication with the three-level block-Toeplitz
matrix resulting from the 3D RTE can be performed in O(16nlog, n) operations provided
that the eigenvalues have been computed beforehand.

Remark 4.1. Due to the restriction on parallel piped domains and uniform grids this method
is not very useful for the solution of practical problems. The matrix compression methods,
described later in this chapter, are applicable to more general situations but they introduce
an additional error. In order to measure this error for special test cases, the algorithms for
Toeplitz-type matrices can be used.

Remark 4.2. If the assumption of homogeneous Dirichlet boundary conditions is dropped,
the system matrix is given by K = (E; E;g ) The matrix K1; is a three-level block-Toeplitz
matrix and K15 is a union of two-level block-Toeplitz matrices. Koo can be split into blocks
corresponding to pairs of the six rectangular facets of the parallelepiped. If two of the
facets are parallel, the corresponding block is a two-level block-Toeplitz matrix. In case of
neighboring facets, translation invariance only holds in direction of the common edge. The
corresponding matrix is a tensor product of a Toeplitz matrix with a matrix, which could be
approximated by the methods described below. Algorithms for these kind of blended matrices

are introduced in [27].

Low-rank matrices

A matrix A € R"*™ s called low-rank matrix if rank(A) < k where k < min(n, m). Matrices
of this kind can be represented in the following form: there are x, € R",y, € R" (v =
1,...,k) such that

k
A=>"xyl =XYT,  X=[x1,...,x] ER* Y =[y1,...,yx] e R™F.  (41)
v=1
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The amount of storage for a low-rank matrix is k(n + m) and the amount of work for a
matrix-vector multiplication is k(n + m) multiplications plus k(m + n) — (k + n) additions,
i.e. approximately 2k(n + m) operations. Hence, the computational load is reduced to linear
complexity even though the matrix is fully populated.

As mentioned in the introduction, we are going to use low-rank matrices to approximate sub-
matrices of a bigger matrix, i.e. more than one low-rank matrix is considered. In this case the
following representation might be advantageous. Fix to spaces V = span{xi,...,x;x} C R",
W =span{y1,...,yx} C R" with dimV = dim W = k and define the tensor product space

Vew= span{x,,yg |1 <v,pu <k} (4.2)

Then A € V @ W has a representation of the form

k
A= Gyl =XZYT, X=[x1,....x], Y = [y1,...,y), Z € RF*F. (4.3)
v,u=1

Note that X, Y have to be stored only once if more than one matrix A € V®W is considered.
The amount of storage needed is k(n + m) for X, Y and k? for every Z. A matrix-vector
multiplication needs 2k(n + m + k) operations.

The following example shows how low-rank matrices could arise when considering the dis-
cretization of integral equations.

Ezample 4.3. Assume that the kernel of the integral equation is separable, i.e.

k

k(z,y) = 8 (@) T(y).

v=1

Kernels of this type are also called degenerate. Let {b1,...,b,} be the basis of the ansatz
space. Then the entries of the Galerkin matrix K are given by

k
big = G Kty) = [ [ 5(a) > @) 8 )b )y

=1\

k
= Z/@V(w)bi(x)dzv/\Ifu(y)bj(y)dy-

Hence,

k
K=> xy, =XY", X, YR

v=1

Unfortunately the kernels in the integral equation arising from the RTE are not degenerate.
Furthermore, because of the singularity for z = y, it is impossible to find a separable kernel,
which is a good global approximation. On the other hand, the kernel is very smooth if z and
y are sufficiently separate. Hence, it is possible to find a local approximation in this case.
This is demonstrated in the next example.

Ezample 4.4. Consider the integral equation (2.13) resulting from the RTE for a 1D slab
geometry with isotropic scattering and homogeneous Dirichlet boundary conditions. Consider
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two intervals I, = [zg — 13, To + 7¢), Iy = [Yo — Ty, Yo + 7). The size of the intervals should
be smaller than their distance:

1
max{rg,ry} < ndist(ly, I;), 7n< 3’
where dist(I;, I,) denotes the distance between the two intervals (see Definition 4.4 below).
Define the difference variable z := x — y and the center of the difference domain zg = ¢ — yo
(we assume w.l.o.g. that zp > 0). Expanding the kernel into a Taylor series around zy results

m

(4.4)

E1(yz) = TP (25 20) + RP)(2; 2),
where the approximation is given by
dvrr (z — 20)” (yo —y)*
T(P)(z; 20) = dz'/—+NE1 (v20) ” p
v+u<p

bl

and the remainder satisfies the following estimate where { = zp + t(z — 29), t € [0, 1]

p
(VO v 1 (=2t 1
) = (3 O G < e

<1
since |z — 29| < |z — zo| + |y — wo| < 142-—27)’20 by (4.4).

This estimate for the remainder R®) decays exponentially fast to zero, when n < % This
is due to the smoothness of the kernel away from the diagonal: the derivatives decay faster
than the polynomial terms in the Taylor expansion grow. Note that the estimate is a worst
case estimate, in practice exponential convergence occurs for arbitrary n < 1.

The approximation 7'(?) (+; 20) is a separable kernel, which depends on the considered intervals
I, and I,,. The condition (4.4) shows that the size of the domain, where the approximation is
valid, grows with growing distance between the two domains. Hence, a non-tensor partition
of the 2D domain in (z, y)-direction is needed, where the size of the sub-domains grows with
the distance to the diagonal. An example of such a partition is given in Figure 4.1. On the
small blocks near the diagonal, there is no suitable approximation. Hence, the entries of the
Galerkin matrix are computed in the usual way. On each farfield block an appropriate local
approximation can be used to get a low-rank matrix.

The non-tensor partition of the (z,y)-domain is the basis for the approximation of the kernel
in Example 4.4. Approximating the kernel is only a means to find an approximation of the
matrix. To this end, it is more efficient to look at the problem from an algebraic point of view
by using a decomposition of the matrix instead of the (z,y)-domain. For piecewise constant
ansatz functions the two approaches are equivalent, but for piecewise linear ansatz functions
the support of the basis functions intersect. When simplex elements are used, the number
of elements is much higher than the number of basis functions (= number of nodes): factor
two in 2D and factor six in 3D. Hence, the basis oriented approach is much more efficient.
To construct a non-tensor partition, it is useful to equip the index set with a hierarchical
structure. As shown later, this hierarchy can also be used to save further operations.

Cluster Tree and Block Partitioning

Let I = {1,...,n} denote the index set corresponding to the basis functions. A subset
¢ € P(I) (P(I) denotes the power set of I.) is called a cluster. A tree structure T7'(I) is
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Figure 4.1: Non-Tensor Partition

obtained by associating a set of sons o(c) with each cluster c. c is called a leaf of the tree if
o(c) = 0. The set of leaves is denoted by L(T'(I)).

Definition 4.3. A set T'(I) of clusters is called a cluster tree if the following conditions are
satisfied:

1. T(I) C P(I),

2. I €T(I), (I is the root of T'(I)),

3. for c € T(I) with o(c) # 0 it holds: c= |J ¢
é€o(c)
i.e. every cluster is the disjoint union of its sons.

4. There is a constant deg independent of I s. t. fo(c) < degVc € T(I),
i.e. the number of sons of each cluster is bounded.

5. There is a constant C7, independent of I s. t. f¢ < Cf, for every ¢ € L(T(I)), i.e. the
size of each leaf is bounded.

By the above properties, £(T'(I)) is a partition of 1.
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The support of a cluster ¢ € T'(I) is given by the union of the supports of the basis functions
corresponding to its elements, i.e.

suppc := U supp b;.

ice
The level of a cluster is given by the function level : T'(I) — Ny recursively defined via
level(I) :=0 and level(¢) := level(c) + 1, for ¢ € o(c).
The depth of T'(I) is given by lmax = max{level(c)|c € T'(I)}. T(I) can be partitioned into

lmax

T(I) = | J T(T), where Ty(I) = {c € T(I)|level(c) = I}.
=0

Remark 4.3. The independent variables in the integral equation (2.26) stemming from the
RTE are the energy G and the outgoing heat flux goyt. G is defined in the interior of the
domain, whereas ¢yt is only defined on the boundary. Hence, we need to define one cluster
tree for the index set I; corresponding to the basis functions for G and one for I corresponding
to qout-

The definition of the cluster tree is independent of the corresponding basis functions, but
having in mind Condition (4.4) for the 1D example, it makes sense to look for clusters, such
that the support is contained in a ball with a small diameter. For the construction of the
cluster tree, it is useful to associate each index i € I with a reference point P; in R?. In case
of piecewise linear ansatz functions, each basis function and, hence, each index corresponds
to a node of the triangulation. This point can be chosen as reference point. For piecewise
constant ansatz functions, each basis function and, hence, each index corresponds to a volume
or surface element of the triangulation. The center of this cell can be chosen as reference
point. There are basically two possibilities for the construction of the cluster tree:

e top-down: This algorithm starts with a cluster ¢ representing the whole index set. c is
split into two sons by the following procedure: the coordinate direction in which the
cluster has the largest extension is determined and a hyper-plane through the middle
of the cluster with normal pointing into the chosen direction is defined. The indices
i € ¢ whose reference point P; lies on one side of the hyper plane form one son of c.
The remaining indices form the other son. This algorithm is recursively applied to each
cluster until the size of the cluster is smaller than a prescribed value. This gives a
binary tree which has O(log, n) levels. Since each index is regarded exactly once at
each level, the complexity of the whole algorithm is O(nlogs, n).

e bottom-up: Let @) denote the smallest parallelepiped with edges parallel to the coor-
dinate axes, containing the computational domain D. An auxiliary Cartesian grid is
defined on (), where the number of grid cells in each coordinate direction is a power
of two. A binary cluster tree for this auxiliary grid is easily obtained by in every step
selecting the coordinate direction with the smallest grid size and merging each cluster
with one of its neighbors along this direction. This is possible since the number of
clusters in each direction at one level of the auxiliary tree is a power of two, a property
which is maintained during the construction algorithm. Each index ¢ € I is associated
with a cell of the auxiliary grid, e.g. by choosing the cell which contains the reference
point F;. Indices associated with the same cell are put together to form a cluster. These
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clusters form the leaves of a cluster tree of the index set I and each of these clusters is
associated with exactly one cell of the auxiliary grid, i.e. with a leaf of the auxiliary
tree. By these assignments, the auxiliary tree defines in a canonical way a cluster tree
for the index set I. Since a binary tree has 2n — 1 clusters and every cluster is regarded
only once, the complexity of the algorithm is O(n).

Since the axis of splitting in the top-down algorithm is chosen individually for each cluster,
whereas the axis of merging in the bottom-up algorithm is chosen for the whole level, the
top-down algorithm might yield a better balanced cluster tree, i.e. one, where clusters at the
same level have approximately the same size. This is especially true for surfaces.

The energy G is defined in an open set D C R3, therefore, the bottom-up algorithm yields
quite good results for the construction of T'(I1). The cluster tree T'(I2) for the boundary
indices can be constructed as follows. An index iy € Iy corresponds to a basis function on
the boundary. In case of piecewise linear basis functions, is is associated with the index
i1 € I; corresponding to the same node of the triangulation. In case of piecewise constant
basis functions, iy corresponds to a surface element 7(5). There is exactly one volume element
7(®) such that 7(9) is a facet of 7). The corresponding index 21 € Iy is associated with is.
By using this assignment, the cluster tree T'(I1) for the volume indices implies in a canonical
way a cluster tree T'(I) for the boundary indices.

Next, an admissibility condition is needed, that can be used to partition the product index
sets I; x I, 1,5 € {1,2}, into pairs b = (c1,¢2) € T(I;) x T(I;) such that the kernel &;;(, )
is smooth enough on the associated domain suppec; X suppce. A pair b = (c1,¢2) is called a
block.

Definition 4.4. Let n € (0,1). A block b € T'(I;) x T'(I;) is called n-admissible if

1
3 max{diam(c;),diam(c2)} < 7 dist(cy, c2), (4.5)

where the diameter and distance for two clusters are given by

diam(c) = max |z —y| and dist(ci,c2) = min ||z —y|.
T,yESsupp ¢ TESUpp c1
yEsupp c2

For unstructured grids, the computation of the diameter of a cluster and especially of the
distance between two clusters is too complicated and time-consuming. Therefore, the con-
dition (4.5) is replaced by a stronger variant which is easier to handle numerically, e.g. by
using super-sets of supp c.

By construction of the cluster tree the support of the volume clusters, at least of the big ones,
has nearly the shape of a parallelepiped with axes parallel to the coordinate system. Such a
parallelepiped is called a box. For a cluster c it is quite simple to determine the minimal box
Q(c) containing c. Such a bounding box can be characterized by only six real values, and its
diameter and the distance between two boxes are easily computable. Hence, the complicated
admissibility condition can be replaced by an easy-to-handle condition which yields nearly
the same results.

For the surface clusters the use of bounding boxes may result in large over estimations when
computing the distance between two clusters. A two dimensional example is given by a
discretization of the unit circle using a uniform grid with 16 piecewise constant elements
(see left side of Figure 4.2). In this figure some of the boxes representing the clusters are
illustrated: the boxes on the finest level are depicted by solid lines, the ones on the next level
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by dashed lines and the ones on the third level by dotted lines. The box, representing the
cluster containing all elements in the right top quarter, and the one, representing the cluster
containing the left bottom quarter, intersect, whereas the clusters themselves have a large
distance.

Figure 4.2: Approximation of surface clusters in 2D using boxes (left) and using line segments
(right).

The following approach exploits the fact that we deal with convex domains only. The example
above shows that it would be advantageous to represent a cluster by a line segment. In the
right picture of Figure 4.2 some of the line segments representing the clusters are illustrated:
the line segments on the finest level are depicted by solid lines, the ones on the next level by
dashed lines and the ones on the third level by dotted lines. Since we are only considering
convex domains, the area on one side of the line segment represents the cluster. The arrows
in the figure illustrate this side. The distance between two such line segments can be easily
computed, we only have to take care that the two clusters are on the correct side of each
other. In the above example the distance between the two dotted lines, depicted by the
dash-dotted arrow, is exactly two times the radius of the two line segments. Hence, when the
line segments are used to represent the clusters, the two clusters are np-admissible if n > %
Furthermore, when the bottom-up algorithm is used to construct the cluster tree, the line
segment for a cluster resulting from merging two smaller clusters can be determined by only
considering the line segments of the two sons, i.e. without considering the individual elements
contained in the cluster.

Unfortunately the situation gets more complicated in the 3D case. The line is replaced by
a plane. The segment may be replaced by a rectangle, but the orientation inside the plane
of this rectangle is somewhat arbitrary. There are much more possibilities for the position of
two such rectangles with respect to each other in 3D compared with the case of line segments
in 2D. Therefore, we have to distinguish several cases when we want to find a representation
of a cluster by using the representation of its sons only. The same holds for the computation
of the distance between two clusters. Therefore, it seems to be advantageous to use simply
the admissibility for bounding boxes.

The index set I; x I; is partitioned into blocks (ci,c2) by the following recursive algorithm
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procedure BuildBlockPartitioning(cy,co, N, F)
begin
if (1, ¢2) is admissible then
F:=FU{(a,c)}
else
if o(cl) # 0 and o(c2) # () then
for ¢, € U(Cl), Co € O'(CQ) do
BuildBlockPartitioning(¢;,é2, N, F)
else
N:=NU {(61,62)}
end

Calling this procedure with ¢; = I;, ¢co = I, i,j € {1,2} and N = F = () creates a block
partitioning P;; = N U F of I; x I; consisting of non-admissible blocks corresponding to the
leaves of T'(I) (nearfield N) and admissible blocks (farfield F'). By construction the clusters
c1 and ¢y of a block b = (¢1,c2) belong to the same level. For 0 <1 < l;4, the farfield levels
F(l) are defined by

F(l) ={(c1,c2) € F|level(ci) = level(ca) = l}.

Since the admissibility condition (4.5) is symmetric in ¢; and ¢y, the cases i = 1,5 = 2 and
1 = 2,7 = 1 are equivalent. For the same reason the partitioning Pj;, ¢ = 1,2 is symmetric,
ie. (c1,¢2) € Py implies (cg,c1) € Py;. Hence, it is sufficient to compute and store only half
of the partitioning.

Assumption 4.1. We assume that the resulting partitionings are sparse, i.e. that there exists
a constant Cgp, satisfying

max ﬂ{CQ € T(Ij) | (61,62) € ]DZ]} < Cs ) (46)
C1ET(I¢)
; L < . 4.
max Hor €7(0)|(e1.c2) € Py} < Cay (4.7)

For standard situations with quasi-uniform meshes, this estimate has been established in [50].

4.2 Hierarchical Matrices

In this section we restrict ourselves to one integral operator i.e. one index set I = {1,...,n}.
The system of integral equations is considered in Section 4.3.

The following definition is due to Hackbusch [26]. It introduces different kinds of data-sparse
matrices, all of which are based on a block partitioning into sub-matrices, where each sub-
matrix is a low-rank matrix. For a #{-matrix the sub-matrices are completely independent of
each other. Hence, Representation (4.1) is used. For a uniform ?{-matrix the sub-matrices
are restricted to certain subspaces of the form (4.2). Hence, Representation (4.3) is used.

Remark 4.4. The article [26] does not distinguish between nearfield and farfield blocks: a sub-
matrix corresponding to a nearfield block is a low-rank matrix because of its small size. On the
other hand, for these matrices the representation as a full matrix is much more efficient than
the Representations (4.1) and (4.3). Hence, it is advantageous to handle the nearfield and
the farfield separately as it is done e.g. in [50]. Therefore, we decided to use matrices which
are equal to zero on all nearfield blocks in the following definition of hierarchical matrices.
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Definition 4.5. Let A € R™*" be a matrix and P = N U F' be a block partitioning of I x I
consisting of admissible blocks and leaf blocks.

1. Let kK € N. A is called H-matrix of rank k if for all blocks b = (c1,¢2) € F, there are
matrices X, Yy € R*™k0 k< k such that

A= Z XbY;;F’ (4.8)
(c1,c2)EF

where only the rows i of X, with ¢ € ¢; contain non-zero entries, analog for Y. That is
the sum in (4.8) constitutes a decomposition of the matrix into blocks b = (c1,¢2) € F.

2. A family V = (V¢).er(r) is called a cluster basis if there is a k. € N for each ¢ € T'(1)
such that V, € R**k¢ where again only the rows i of V. with i € ¢ contain non-zero
entries.

Let X and Y be cluster bases. A is called a uniform H-matrix with respect to X and
Y if for each (c1,c2) € F, there is a matrix Z, .,) € Rke1 Xkea gatisfying

A= > XoZ Y, (4.9)
(c1,c2)EF

In this context, X is called column basis and Y is called row basis.

3. A cluster basis V' = (V¢).er(r) is called nested if there are transfer matrices Sz, €
Rkexke for all ¢ € T(I) and & € o(c) satisfying

Vilexk. = (VESE,C) ke (4.10)

where -|zxk, denotes the restriction of the matrix to the rows corresponding to the son
¢. Especially it holds
V.= Z VeSee. (4.11)
é€o(c)

A is called H2-matrix w.r.t. X and Y if it is a uniform H-matrix w.r.t. to these cluster
bases and if both bases are nested.

Remark 4.5. Most of the matrices in the above definition are never formed explicitly. Only
the non zero entries have to be stored. The matrices are a means for a compact representation,
which is useful for an illustrative description of the algorithm used to perform a multiplication
of a hierarchical matrix by a vector (see below).

Remark 4.6. If A is a symmetric maftrix the cluster bases X and Y are identical and Z(, () =
Z%;l ¢5) for all blocks (c1,¢2) € F. (Remember: F is symmetric, i.e. (¢1,c2) € F = (co,¢1) €
F.) Hence, the amount of storage for the matrices Z(,, ., is reduced by a factor two.

By using one of the above representations of the matrix A, the entries of A are not known
explicitly, i.e. direct solvers cannot be applied to solve the corresponding linear system of
equations. For iterative solvers, only the computation of matrix-vector multiplications is
needed. These can be performed efficiently by using one of the above representations of the
matrix.

The restriction of a H-matrix to a block b € F' is a low-rank matrix. Hence, performing the
multiplication of such a block with a vector restricted to ¢y is cheap as shown in Section 4.1.
The result for the whole matrix is obtained by adding up the results for the individual blocks.
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For a H-matrix both matrices in the low-rank representation XbeT depend on the block
b = (c1,c2). Hence, the multiplication for one sub-matrix is completely independent of the
other blocks. Since a certain ¢ € T'(I) usually occurs in more than one block b € F, it is
desirable to do as much work on the “cluster level” and as little as possible on the “block
level” in order to reduce the total amount of work. This is done in case of uniform H-
matrices by choosing the cluster bases X and Y, i.e. fixing the approximation space for the
block b = (1, ¢c2) to range X, ®range Y, (see (4.2)). A matrix-vector multiplication v = Au
in this case is performed in three steps:

1. forward transformation: for all ¢; € T(I): uc, = YX u,

2. block multiplication: for all ¢; € T(I): v, = Yo Zy o) U
ca:(c1,62)EF
3. backward transformation: v= > X, v.
c1€T(I)

Only the second step has to be performed on the block partitioning P. The first and third
step can be performed on the cluster tree.

In case of H2-matrices the computational complexity is reduced further by exploiting the hi-
erarchical structure of the nested bases. By using Equation (4.11) the forward transformation
can be performed as follows

Y u if co € L(T' (1)),
U, = > Sg; Uz, else,
&2€0(ca) ’

where it is assumed that ug, is computed before it is used on the right hand side. That is,
the computation starts at the leaves and proceeds bottom-up. The coefficient vectors u,,
at higher levels can be computed by using the coefficient vectors of its immediate sons only.
Hence, the matrices Y., have only to be assembled for co € L(T(I)). At higher levels the
transfer matrices Sg, ., are used.

The approach to reduce the complexity in step three is adjoint to the algorithm for step one.
Consider an index 7 € I. There is a sequence of clusters ¢) ... ¢(® at different levels of the
cluster tree with

{tccPc...cd=1.

All these clusters contribute to the ¢-th entry v; of v in the sum in step three. Adding up
these contributions separately for all indices needs O(n log, n) operations because the index
set has the size n and the cluster tree has O(log,n) levels. To reduce the computational
complexity, as much operations as possible have to be performed simultaneously for more
than one index, i.e. for all indices belonging to one cluster. This can again be done by
exploiting the property (4.11) of nested bases. To this end, the sum in step three is split up
according to the levels of the cluster tree:

lmax lmax
4.11
v = Z Z Xclvcl ( = ) Z Z X51 Sé1,C1VC1 + Z Z XC1v01'
1=0 c1€Ty(I) c1€To(I) é1€0(c1) =1 c1€T;(I)

For ¢; € Ty(I) the sons ¢ € o(cq) belong to T1(I). Hence, the terms of the first sum can be
combined with the terms of the first level in the second sum:

lmax
V= Z XC1 (VC1 + Scl,é1vé1) + Z Z XC1VC1>
aeTi(I) g =2 c1€T;(I)

::\_/c1
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where ¢; denotes the father of c;.

Proceeding further until reaching the leaf level leads, to the following algorithm

_ Ve, ifcp =1,
Ve, = _ A
Ve, + Sei,e.Ve, Wwhere ¢; is the father of ¢,

where it is assumed that v¢, is computed before it is used on the right hand side. That is,
the computation starts at the root of the tree and proceeds top-down by shift operations. It

follows that
v = Z X Ve, = Z Xe Ve -
c1€T(I) c1 a leaf

Note that the matrices X., again have only to be assembled if ¢; € L(I).

Complexity of the Algorithm

Let ke = keonst Ve € T(I). Furthermore, we assume that keonst < fc Ve € T(I), i.e. the leaf
clusters have a certain size. Beneath this size it is more efficient to use the representation as
a full matrix instead of a low-rank representation. Due to this assumption, there are no more
than kcfmt leaves in the binary tree T'(I) and, hence, no more than kfoﬁst clusters. Each matrix
Sz requires kgonst storage, so that all transformation matrices together need O(nkconst)
storage. The storage requirements for X, for c a leaf is given by > L(T(D)) kconst } ¢ = nkconst -
Analog for Y.. Since the block partitioning P is sparse (see Assumption 4.1), the farfield
F' contains less than ﬁ sp elements. Hence, the matrices Z; for all blocks in F' need

O(nkeonst) storage.

In the algorithm for the multiplication of a vector by a H?-matrix every entry of the above
matrices is used exactly once, therefore, the complexity of the algorithm is also O(nkconst)-

Approximation of the Kernel

After the considerations about the fast multiplication of a hierarchical matrix by a vector,
we want to show how to construct a #2-matrix to approximate a matrix stemming from the
Galerkin discretization of an integral equation. The matrix is decomposed as follows

K=N+F~K=N+F. (4.12)

The nearfield matrix N corresponds to the nearfield N. Due to the small size of the blocks
b € N, it is not efficient to use a low-rank representation on these blocks. Hence, the entries
are computed in the usual way and no approximation is used. Due to the sparseness of the
partitioning P (see Assumption 4.1), N contains only O(1) entries per row, i.e. N is a sparse
matrix. The part of the matrix K corresponding to the farfield F' is approximated by the
hierarchical matrix F.

Motivated by Example 4.3, we make the following assumption about the integral kernel.

Assumption 4.2. Let 1 < n < 7 < 1, and let P be a n-admissible block partitioning.There
exist positive constants C7 < oo and Cy < %, only depending on 7, such that for every
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)

p € Ny and every b = (c1,¢2) € F, there exists an approximation kép of the kernel function

k satisfying

b@y) = B ()] < CuOmP*! max |la — y|[~*Va € supper,y € suppes, (413)
YESsupp c2
where o denotes the order of the singularity of the kernel. The approximation k; is of the
form
K@) = > e ) @0 (@)U (y), (4.14)
(V) EJp X Jp

with index sets J, satisfying k(p) :=fJ, < (p +1)3.

The exponential convergence of the approximation error in (4.13) is crucial for the efficiency
of the approximation method.

The coefficients K,,(},J I)L(Cl,CQ) depend on the block (c1,c2), but the expansion functions ;'

in z-direction only depend on the cluster ¢; in z-direction but not on ¢;. An analogous
statement holds for the y-direction. This is crucial for obtaining a uniform #-matrix.

The approximation of the kernel leads to the following approximation of the integral operator

(Ku,v) =~ (Ku,v) = Z / / v(z)k(z,y)u(y)dzdy

(e1,¢2)€ Ngyupp ¢1 supp c2

Y Y o) / SR ()0 (x)da / TP (y)u(y)dy. (4.15)

(c1,c2)€F (v,p)ETp X Jp supp c1 supp c2

The expansion order p might be different on different clusters, i.e. p = p., but it should be
the same on clusters belonging to the same block. The dependency of p on the cluster c is
omitted for notational convenience.

The Galerkin discretization of the operator K leads to a uniform #-matrix in the farfield:
let (c¢1,c2) be admissible, then the matrix entry f;; for (z,7) € (c1,¢2) is given by

fim Y o) / BE1P ()b () d / TP ()b, (y) dy. (4.16)
(v,u)€Jdp X Jp supp b; supp b,

Introducing matrices X, € R <k(@) | Y, € R*k(®) and Zic,cr) € RF(P)xE@) (j.e. ke, = key, =

k(p) ) with

xz(f,,l) = / VP (z)b;(z)dz, if i € ¢1 and zero else, (4.17)

supp b;
yj(-,cj) = / WezP (y)b;(y)dy, if j € co and zero else, (4.18)

supp b;
2% = k) (1, ¢2), (4.19)

yields
; T

fij = (XCIZ(CI’C2)Y02>z’j€(61,cz)’ (4'20)

i.e. a representation of a uniform H-matrix.
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In order to get a HQ-matrix, the expansion functions ®;* and \I/,cjp for clusters ¢ at different
levels in the cluster tree must be organized hierarchically. This is discussed below in more
detail when some examples of expansion systems are introduced.

In the literature two different families of functions are used to approximate the kernel: poly-
nomials and spherical harmonics. Expansions into spherical harmonics are used in the fast
multipole method and also in the panel clustering method. An expansion of the kind (4.14)
for the kernel k(z,y) = ||z — y|| ! corresponding to the single layer potential of the Laplace
equation in 3D can be found in [34]. Using spherical harmonics has the advantage that only
O(p?) terms in the expansion are needed to obtain the requirement (4.13) instead of O(p?) in
case of polynomials. An additional advantage is that an expansion into spherical harmonics
is well suited for the approximation of oscillating kernels which appear for example when the
BEM is used for the Helmholtz equation. In this case expansion functions are used which
depend on the wave number [20]. According to our knowledge, an expansion of the kernels
in Chapter 2 into spherical harmonics is not known, therefore, we use polynomials.

The polynomial approximations used in the literature are obtained by interpolation or Tay-
lor expansion. Regarding interpolation, a family {z{},cs, of interpolation points in Q(c)
(minimal box containing c) is fixed for each cluster ¢ € T'(I) (e.g. tensor products of the
zeros of Chebychev polynomials). {p{},cs, denotes the family of corresponding Lagrange
polynomials. (Each polynomial pS, v € J,,, depends on the polynomial degree p: pS = p;*,
but this dependency is omitted for notational convenience.) {p{}.cs, is a basis of the space
Q, of tensor product polynomials of a degree up to p

Qp = {p(z) = Z AaZ% Aq € R}, @ a multi-index. (4.21)

0<ar,a2,a3<p

When the family {p{},c, is used as expansion functions, the kernel k(-,-) on a given admis-
sible block (c1,c2) € F' is approximated by its interpolant

K (z,y) = 33 k@, ye)pd (@)pi2 (y). (4.22)

VeSS ued g

where JpQ ={veN |y <p,i=1,...,3}, ie k9 p) = (p+1)>.

The above expansion is of the required form (4.14). Furthermore, if the kernel k(:,-) is
asymptotically smooth, i.e. if there are constants Cps(n, m) such that

10205 k(,y)| < Cas(|a, 18|z — yl| 18D k(z, )] (4.23)

for all multi-indices o, 8 € Nd and all z, y € R? with = # y, then Estimate (4.13) is satisfied
for the Expansion (4.22) (for a proof refer [26]).

Since the same expansion functions are used in x and y-direction, the column basis X and the
row basis Y are identical, which reduces the amount of storage. It remains to compute the
transformation matrices Sz in (4.10) to obtain a H2-matrix. Let interpolation polynomials
up to the same degree p be used on all clusters. Then the polynomials corresponding to father
clusters can be expressed in terms of polynomials corresponding to son clusters without loss.
Due to the properties of Lagrange polynomials (i.e. p,(z,) = d,,,) and the uniqueness of the
interpolation polynomial, the following equality holds for a cluster ¢ € T'(I) with son ¢ € T'(I)

pi(z) = i (a5)pG (x). (4.24)
i€J;s
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Hence, the matrix Sz is given by

5800 = pt (2. (4.25)
As shown below, it might be useful to use a higher polynomial degree on larger clusters.
If the polynomial order corresponding to the cluster ¢ is lower than that of its father c,
Equation (4.24) yields only an approximation of the higher-order polynomial py, by lower-
order polynomials pf;. The right hand side of Equation (4.24) can be used to define a modified
expansion system pj. Under the condition that the growth of the polynomial order is slow
enough, Estimate (4.13) is satisfied also for the modified expansion system.

For the derivation of the Taylor expansion, we assume that the kernel is translation invariant,
ie. k(z,y) = k(z — y). Not all kernels in Chapter 2 are of this form, but in Section 4.3 it
is shown, how to cope with this situation. Define the difference variable z := z — y and
the center of the difference domain 2z, = M., — M., where M, is the center of cluster c;.
Expanding the kernel into a Taylor series around z; results in

dv+H (x — M.,)" (M, —y)*
K (z,y) = T w < 02u! : (4.26)
lv+ul<p _Cf—’—,—/
::q)t/l (Z‘) ::11122 (y)

Under the assumption that the kernel &(-,-) is asymptotically smooth, it can again be shown
that the Taylor expansion (4.26) satisfies the estimate (4.13) (see [50]).

The Taylor expansion is of the required form (4.14), but it has some additional properties.
First, the expansion functions ®;, and ¥}, do not depend on the used approximation order
p. This is advantageous when a different polynomial degree p is used on different blocks. In
this case, the degree p. can be defined as

pe = max{p(b) | b= (c1,c2) € F A ¢ € {c1,c2}}-

That is, the polynomial degree p on a block is determined to meet a certain accuracy re-
quirement and this defines the degree on the clusters. This is opposed to the definition of
H2-matrices where the rank on the clusters defines the rank on the block.

Second, the index set J7 is given by J” = {u € N} | |u| < p}, i.e. kP (p) =4J7 = (p?,;?’), but

the coefficients /ﬁ,(,{),l(cl,cQ) are non zero only if (v,u) € Jp :={|p+v| <p} C I x J7,

dlv+ul if
HI(/p,L)L(CI;C2) _ ) k(=) i (v,n) € Tp, (4.27)
’ 0 else,

(p)

i.e. the matrix Z, .,y is not fully populated and the coefficients ki(c1, c2) only depend on
the sum v + p and not on the pair (v, u).

As in case of Lagrange polynomials, the expansion system is organized hierarchical

— )k M. — MEE (M — 4B
M i<n B ) e
i.e. the shift matrix Sz . is given by
(Mo—Mp) o~
3((:,;) . (u—i)! if <, (4_29)
' 0 else.
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That is, the shift matrix Sg . is not fully populated and the entries only depend on p — ji.

If the polynomial order p; corresponding to the cluster ¢ is lower than that of its father c,
the indices ji on the right hand side of Equation (4.28) must fulfill the additional condition

(Mc—y)*
u!

|| < pe. That is the higher-order polynomials , pé < |u| < pe, are approximated

by lower-order polynomials M, |fi| < pe. Restricting the sum on the right hand side of
Equation (4.28) to the index set {/i|fi < p A |fi| < pz} defines a modified expansion system
7. Under the condition that the growth of the polynomial order is slow enough, Estimate

(4.13) is satisfied also for the modified expansion system (for a proof refer to [50]).

The main advantage of using polynomial interpolation, compared with using Taylor expan-
sion, is its simplicity: only pointwise evaluations of the kernel and of simple polynomials
have to be implemented. On the other hand, if we only consider one integral equation the
computation of the Taylor expansion has to be done only once, e.g. by using a computer alge-
bra system like Maple. Furthermore, Taylor expansion has some advantages over polynomial
interpolation:

First, as mentioned above the asymptotical approximation properties of Taylor expansion
and tensor product Lagrangian interpolation of the same polynomial degree are the same.
The Taylor polynomial lies in the space Pp, i.e. the number k of terms in the expansion is
given by k7 (p) = (pj;?’) whereas the tensor product polynomials used for interpolation lie in
the space Qp, k<(p) = (p+1)3. Table 4.1 shows that Taylor expansion needs much less terms
to obtain the same asymptotic convergence rate.

pllo]1] 23] 415
ES(p) || 1|8 27|64 125 | 216
EP(p) || 14|10 |20 | 35 | 56

Table 4.1: Size of index sets for @, and P,

Second, when Taylor expansion is used, many of the coefficients in the matrix Z, .,) are
equal to zero (see (4.27)). The number of non-zero entries is given by f 7, = (* 46'6) whereas
in case of polynomial interpolation, Z, ., is a full matrix of dimension k9(p), i.e. it has
k2(p)? non-zero entries. This leads to a further reduction in the number of operations for
the block multiplication (see first two lines in Table 4.2).

Third, assuming that the kernel is of the form k(z,y) = k(z — y) the coefficients m&’f&(cl, c2)

only depend on the sum v+ p and not on the pair (v, ), which reduces the amount of storage
to k7 (p) = ("+?) (see third line in Table 4.2).

3
pllo] 1] 2 3 4
kEC(p)? | 1|64 | 729 | 4096 | 15625
8T, || 1] 7| 28 | 8 | 210
EP(p) || 1] 4| 10 | 20 35

Table 4.2: Number of non-zero entries in Z

Fourth, the shift matrices Sz . are not fully populated and the entries only depend on the
difference p — i (see (4.28).

The above reasons lead to large savings in memory and CPU requirements when Taylor
expansion is used in comparison with tensor product polynomial interpolation. Therefore,
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we have decided to use Taylor expansion. For an efficient implementation which exploits that
the matrices Z; and Sg, ., are not fully populated and that many of the entries are identical,
it is useful to introduce an one-dimensional ordering for the multi-indices (see [33])

p<v & <|,u| <|v| v [|u| =|V|A(Fistp=vVj <iAp; < I/Z)]) (4.30)

When this ordering is used, only the non-zero coefficients of the matrices have to be stored
in one-dimensional arrays. During the algorithms one has to iterate through the indices, e.g.
for the block multiplication in step two of the matrix-vector multiplication, the position of
g + v in the linear ordering (4.30) has to be computed for given p and v. This makes the
implementation of the algorithms rather complicated in comparison with the standard matrix
form.

On the other hand, the testing of the implementation is simple. Only the entries z,(f,i’cz),

(v,p) € Jp of the matrix Z(.,,) depend on the kernel. The entries of the matrices X,
Y., and S;. are independent of the kernel. When polynomials of degree p are used as test
kernels, Taylor expansion of order p is exact. Therefore, the H?-approximation is an exact
representation of the matrix. Hence, the result for a matrix-vector multiplication obtained by
using the algorithm for 7{?-matrices for the fast computation of a matrix-vector multiplication
has to be the same as when the full representation of the matrix is used.

Error Analysis

Using the #2-approximation in the farfield in (4.15) introduces an additional error. This
error should not increase the discretization error of the Galerkin method. As in case of the
cubature error in Section 3.2, the impact of this error can be estimated by the first Strang
lemma (Lemma 3.2). This leads to the requirement

{(K ~ Kyu,v)| < TOL|o| 2oy iz Va0 € Vi, (431)

with TOL = CsO(h¥*1) (k = polynomial degree of the ansatz functions used for the Galerkin
discretization). This global error can be split up into local errors on individual blocks. To
this end, it is useful to define the restriction of the operator K onto a cluster ¢ € T'(I)

(Kou)(z) = / (e, y)u(y)dy. (4.32)

supp ¢
For (c1,c2) € F, let g(c, .,) denote the smallest value such that

‘<(K02 - K02)uav>L2(suppcl)| < 5(01,02)||v||L2(suppc1)“uHLZ(suppcz)
Vv € L%(suppey), u € L (suppcy). (4.33)

This local error can be estimated by using the Estimate (4.13) for the error of the kernel
approximation

((Kes = Kou0izuppenl < [ [ 0@ (ko) = B (@,9)] Ju(w)ldady

Supp €1 Supp €2 SCI (0277)17+1 diSt(Cl 702) [+

<G (02,,7)11+1 \/| supp €1 || supp CQ' diSt(cla CZ)_OLHIU”L2 (suppe1) ||u||L2(supp c2)" (4'34)
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That is

E(er,en) S C1 (Cyn)P+1/| supp c1 || supp co| dist(c1, c2) 4. (4.35)

Assuming w.l.o.g. that diam(c;) = max{diam(c;),diam(cs)}, gives y/|suppec;||suppes| <
C diam(c; )¢, where d denotes the dimension of the domain. Exploiting the admissibility
condition (4.5) yields:

€(c1,e2) < Cq (Czn)p+10(27})a diam(cl)d_a. (4.36)

The kernels considered in this thesis have the property that @« = d—1. Therefore, the estimate
(4.36) of the error on a single block grows linearly with diam(c;) when the same p is used on
all blocks.

Remark 4.7. The estimate in (4.36) is only a worst case estimate based on the assumption
about the approximation of the kernel (see (4.13)). It does not regard the actual form of the
kernel and the separable approximation, e.g. the exponential damping term in the kernels of
the integral equations in Chapter 2 does not influence the estimate (4.13). A sharper upper
bound can be computed by using Cauchy-Schwarz inequality

%
e <( [ W) K@y Pdsay)” (4.37)

supp c1 supp c2

Applying Cauchy-Schwarz inequality might still result in large over estimation. Assuming
that v and u are constant an estimate for the error can be computed which might yield better
approximations in praxis:

1
19 ~
(2 ™ /Tsupp c1|| supp ca|

/ / |k(z,y) — klgp)(a:,yﬂdw dy. (4.38)

Supp c1 supp ¢2

The values for the estimates above can be approximated by a quadrature rule. By this, the
polynomial degree on every block can be chosen adaptively to meet a certain requirement.

There are different strategies of how to prescribe tolerances for the local errors such that the
global error fulfills the condition (4.31). In the following we require that the error on blocks
belonging to the same level satisfies the same estimate:

€(c1,c2) <g V(Cl,CQ) € F(l) (4.39)

This local estimate leads to the following global estimate

L
(K = K)u,) < CCy (D2 1) lollzz(o) lull 2oy, (4.40)
=0

=err
where Cyp, is defined in (4.6). (The proof is deferred to Appendix A.7.)
In [50] the polynomial degree on a block is chosen as
Per,c2) = @lmax — 1) + po, for (c1,c2) € F(1), (4.41)

with suitable constants a, pgp € N. That is, the polynomial degree only depends on the level
of the block and is larger on larger blocks. In [50] it is shown that using a polynomial degree
according to (4.41) in Estimate (4.36) for the block error, gives

Elere) < €1 = hC1CE>t for (c1,¢) € F(I). (4.42)
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Using this estimate in (4.40), yields

o !
Clé h < TOL = CsO(h**). (4.43)
— L2

err < Cgp .

That is, the constants a and py can be chosen independently of the number of unknowns
to yield an asymptotic error of O(h). Furthermore, it is shown in [50] that this choice for
the polynomial degree leads to a complexity of O(n) for the storage requirement and for the
number of operations needed for a matrix-vector multiplication, i.e. to optimal complexity.

In case of piecewise linear ansatz functions an asymptotic error rate of O(h?) has to be
required. Therefore, the value of py in (4.41) has to be chosen in dependency on n, due to
the exponential convergence in Estimate (4.13), it holds pg ~ log(n). In this case the overall
complexity is O(n(logn)?).

Adaptive cross approximation (ACA)

In the previous subsection a function g(-,-) of two variables is approximated by a sum of
products of functions out of a given family of functions of one variable. Instead of this
approximation, Bebendorf and Rjasanow [6] suggest to use the values of the function itself.
A separable approximation is generated by fixing one of the two variables, i.e. by using
functional skeletons.

Let X = {z1,...,z,}and Y = {y1,...,ym} denote two sets of pairwise distinct points in R?,
Dx and Dy their convex hulls and g a function g : Dx x Dy — R. For brevity of notation
let

9(; Yuy) 9(zuy,y)

9(z, [yl) = : eRF, g([zlk,y) = : € Rk,
g(way#k) g(xukay)

Then, we are looking for a separable approximation of the form

9(z.y) = g(z, [ylx)" Myg([z]k, y) +rr(z,y)- (4.44)

::hk(may)

A sequence of such approximations can be constructed by the following rule:

h(](fl?, y) = Oa 7‘0(-’13, y) = g(l‘,y), (445)

and for k=0, 1,...
hiy1(z,y) == hi(z,y) + Yer1rk (2, yuk+1)7"k($uk+1,y)a (4.46)
’I"k+1(l‘, y) =Tk (',Ba y) — Vk+1Tk (.’L’, Yuks1 )’l"k (wl/k+1 ) y) (447)

where vgy1, pigq1 are chosen such that ri (7, ,,Yu.,,) 7 0 and yxy1 is defined by yxq1 :=
Tk(ka+1,yuk+1)_l- The indices vg+1 and pg41 are called pivot indices.

By construction, hy is of the required form (4.44). Furthermore, it is easy to see that

hk(x,y)-i-?"k(w,y) :g(xay) Vka

4.48
re(@ ) = e (@usy) =0 VI<k, (4.48)
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that is, hy gradually interpolates g. If g is asymptotically smooth and z,, is chosen such that

Te—1(Zugs Y )| > |re-1(2,yw)| Vo € D, (4.49)

it is proven in [6] that hj fulfills an error estimate similar to (4.13), where the constant
C: grows with growing p. Therefore, the estimate for the asymptotical convergence rate is
worse compared with that of polynomial approximations, but in practical applications the
ACA yields much better results than polynomial approximations of the same rank. This is
illustrated by the following 1D Example.

Ezample 4.5. Let v = 0.001 and let the intervals I, and I, be given by I, = [2,3] and
I, = [0,1]. Figure 4.3 shows the error k(z,y) — k(z,v) when approximating the kernel on the
2D domain I x I, using Taylor expansion and using the ACA to construct the separable
kernel k(z,y). The approximation rank is k = 2. In every direction 21 equidistant points
are used. For the Taylor expansion this is only of interest for plotting the graph, but for the
ACA, the chosen points are used in the algorithm, since the ACA can only be used to obtain

an approximation in a finite number of points (see considerations below).

Taylor expansion ACA approximation
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Figure 4.3: Error when approximating the 1D RTE-kernel using Taylor expansion (left) and
the ACA (right)

It is easily observable which indices have been used as pivot indices in the ACA construction
algorithm: v; = 1, »» = 21, 1 = 11 and pg = 21. The error in the rows and columns
corresponding to these indices is zero. The error for the Taylor expansion is zero for all (z,y)
with z — y = 29 and gets larger for z — y # 2.

Looking at the scale of the error axis, it stands out that the maximal error when the ACA
is used is about two orders of magnitude smaller than when Taylor expansion is used. The
L?-norm of the relative error on the domain I, x I, is given by 0.0070 in case of Taylor
expansion and 0.00018 in case of the ACA (about factor 40).
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Further numerical results show that Taylor expansion with approximation rank k = 4 yields
approximately the same error in the L?-norm as the ACA for £k = 2. On the other hand,
using Taylor expansion of the same rank gives faster algorithms than the ACA because the
ACA only leads to a H-matrix instead of a H2-matrix (see considerations below).

The results strongly depend on the extinction coefficient . In case of Taylor expansion the
relative error becomes larger for larger y. The exponential damping leads to strong gradients,
which are difficult to approximate by polynomials. Therefore, the ACA has to be used in
case of large v when a high accuracy is required. The dependency of the error on -, will be
examined in more detail in the next section.

In 3D the difference between the two methods is not as big as in 1D. For a similar situation as
above the L?-norm of the relative error for the ACA is about factor 3 smaller than for Taylor
expansion. We have chosen to display the error in the 1D case, since then the (z,y)-domain
is two dimensional and, therefore, well suited for a graphical illustration.

An expansion into polynomials or spherical harmonics leads to a parameterized representa-
tion, i.e. once the coeflicients in the expansion have been determined, it can be evaluated for
arbitrary z and y € R3. This is not true for the approximation hy(z,y). The construction
rule (4.46) has to be used for a pointwise evaluation of hy(x,y). Hence, hx(x,y) cannot be
used to approximate the integral kernel k(z,y). Instead, the algorithm above is applied to

construct an approximation Hgk) of the matrix A directly. (Aj denotes the restriction of the
matrix A to the block b € F.) Assuming that the matrix entries are generated by a function
g: aij = g(x;,v;), we are looking for an approximation of g in the points (z;,;) only. Hence,
the matrix Hgk) = (hg-c))ij, given by hg-c) = hg(zi,y;), can be computed by using only a small
number of rows and columns of Aj, namely, the rows corresponding to the indices v; and the
columns corresponding to the indices u;, I = 1,...,k. The algorithm can be reformulated
such that it returns a low-rank representation (4.1) of the matrix H,()k). The fact that the
ACA is used to approximate the matrix itself instead of approximating the kernel can be

advantageous in some applications (see next section).

Remark 4.8. In [7] a new algorithm for the partitioning of the matrix is introduced. It is
based on a modified admissibility condition:

1
2 diam(ce) < 7 dist(cy, ¢2)- (4.50)

This admissibility condition can be used instead of (4.5) since the ACA error can be estimated
by that of polynomial interpolation in y direction only (see [7]). The modified admissibility
condition reduces the number of blocks in the farfield dramatically. The disadvantage of
this new method is, that it destroys the symmetry of the matrix. Therefore, we use the
admissibility condition (4.5) when handling matrices resulting from a Galerkin discretization
of an integral equation with a symmetric kernel.

The functional skeleton g(z, [y]x) in z-direction in the separable approximation (4.44) depends
on the points y,,, ..., ¥y, chosen in y-direction. Hence, this kind of approximation does not
lead to a uniform H-matrix but to a H-matrix only. That is, on the one hand, the ACA yields
a better approximation compared with polynomial expansion when the same approximation
order is used. On the other hand, it only leads to a H-matrix, which does not allow as much
savings of operations as a H?-matrix obtained when Taylor expansion is used. Therefore, it
is a priori not clear which method yields the better compression factors.

Remark 4.9. Tn a recent paper [25] a method for computing an optimal #2-approximation
of a given H-matrix in O(n) operations is introduced. Maybe using the ACA to compute a
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H-matrix and transforming this matrix into a H2-matrix yields the best compression rates.
We are not aware if numerical tests have been performed in this direction.

This subsection is concluded with some remarks about error estimation and error balancing
strategies when the ACA is used. As described above, the method is applied to yield an
approximation of the matrix directly instead of the kernel. Hence, the methods for deriving a
local error estimate, described in Remark 4.7, cannot be used. The ACA yields a ‘H-matrix,
i.e. every block is a low-rank matrix of the form

k
Hgk) = quy?j, xeR", y e R".

v=1

This representation allows to compute the Frobenius norm of the matrix by using only (m +
n)k? operations:

RIS (360 itxus) (S5l ):
vu=1  i=1 j=1

(k) _

Therefore, it is rather natural to use the Frobenius norm to measure the error: R, =
Ay — H,Sk). The following criterion may be used to determine the required rank k£ on each
block:

IRV ||r < ellAyflr Wb EF. (451)

The Frobenius norm has the nice property that if the local estimate (4.51) is fulfilled, the
same estimate holds for the total matrix without using a further approximation:

IRIE =Y IRl <€) I Aslh = | Ap|E < €Al (4.52)
beF beF

Please note that due to the fact that no approximation is used in the nearfield (except for
using cubature formulae), the relative error in the total matrix is in general smaller than the
local errors.

The stopping criterion (4.51) for determining the approximation rank cannot be used in
practical applications since the matrix A, and, hence, also Ry is not available. The error can

be estimated by using two approximations of different rank: Hgk) and H,()k) with k& > k. If
the error ||Ap — H,()k) ||F is much smaller than ||A, — H,()k)HF, then ||Hl()k) - Hgk)HF is a good

estimate for the error ||A, — H,()k)H r- Since the difference H,()k) - Hgk) is a low rank matrix,
its Frobenius norm is easily computable. Furthermore, the norm ||A||r can be estimated

by ||H,(,k)|| r- Hence, the non practicable stopping criterion (4.51) might be replaced by the
following

IHP —HP|r < e|HP | . (4.53)

In practical applications the error estimator described above works much better than the
ones described in Remark 4.7. For uniform #H-matrices the Representation (4.3) is used
instead of (4.1). Therefore, the Frobenius norm of a sub-matrix cannot be computed as
efficiently as in case of a H-matrix. For H?-matrices even the Representation (4.3) is not
known explicitly. Therefore, the above approach to estimate the block error in a matrix norm
can only be applied if a matrix norm based on matrix-vector multiplications is used. Since
computing a matrix norm in this way is costly, the above approach seems to be applicable
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only to H-matrices. That is, the fact that the individual sub-matrices of a H2-matrices share
information, complicates the error estimation.

Using the Frobenius norm of the error has two advantages: first, when the low-rank Repre-
sentation (4.1) is used, the relative error is easy to estimate; second, when computing the
impact of the local error on the global error, no additional estimates are needed as opposed to
the case when the L2-norm of the error in the continuous operator is used. (See the procedure
used to proof (4.40) in Appendix A.7) . That is, the estimate is more accurate.

On the other hand, one is not really interested in the error measured in the Frobenius norm
but in the Euclid norm. These two norms fulfill the estimate:

M2 < IM|lr < +vn|M[z VM € R**" (4.54)

Hence, using the Frobenius norm may lead to a large over estimation of the error.

In this section two different methods to prescribe a tolerance for the local error have been
introduced. In the first case, the absolute error on the block is related to the norm of the global
operator. (Please note that the constant Cy occurring in the first Strang lemma corresponds
to the L?-norm of the operator.) In the second case, the requirement (4.51) is used. This
error tolerance is relative to the norm of the matrix restricted to the considered block. If this
norm is small, the required error tolerance is unnecessarily restrictive. These considerations
will be resumed in the next section when the application to radiative transfer is discussed.

4.3 Application to Radiative Transfer

First of all, we note that all kernels in Chapter 2 are asymptotically smooth, i.e. they satisfy
the condition (4.23). Hence, one of the methods discussed in the previous section can be used
to obtain a data sparse approximation of the system matrix.

In the following, we assume that the coefficients «, ¢ and p are constant in space. This is
essential, because we want to use Taylor expansion to approximate the kernel. In case of
variable coefficients the kernels involve the integrals

1
r(e,y) = llz -yl / Atz + (1 — t)y)dt. (4.55)
0

Taylor expansion of the kernels (assuming that « is smooth enough) would depend on +.
Hence, the implementation would have to be changed when another 7 is considered. This
is not acceptable. Hence, polynomial interpolation or the ACA should be used in case of
variable coefficients.

Since ¢ is assumed to be constant, the kernel ki1 is translation invariant, i.e. kii(z,y) =
k11(z — y). Hence, when Taylor expansion is used, the methods discussed in the previous
section can be applied directly to this kernel. The situation for the kernel

ko (2, y) = f%ewnwyn
T |lz—vy

is slightly more complicated. A Taylor expansion for a given function has to be computed
explicitly. This is acceptable when the function depends on the underlying equation. On the
other hand, the function must not depend on the computational domain, because then the
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algorithm would have to be changed when another domain is considered. Since the outer
normal n(y) depends on the surface, it cannot be included into a Taylor expansion. The
situation is very similar when tensor product polynomial interpolation is used. In this case
an approximation of a function on a 3D parallelepiped is constructed. Since n(y) is only
defined on the surface, it cannot be included into the approximation. On the other hand,
n(y) only depends on y. Hence, this part of the kernel is already separable
p 3
ki2(z,y) =1 Z

y —)je =llz—yll

Iz —yl®

Using a separable approximation for each of the three terms in this sum, gives a separable
approximation of the whole kernel, but the number of terms in the expansion is increased by
a factor three. This expansion is called direct expansion, as opposed to the indirect expansion
derived below.

According to Remark 2.3, the integral operator K15 can be written as a double layer potential

p 0

( )kpot(xay)'

kio(z,y) = I Only)

Hence, a separable approximation of ki2(x,y) can be obtained by applying the differential
operator %(y) to an approximation of kpe:

JFz'j: Z "'31(/],);)1(01,02) / O (z)b;(x)dx / Bn \DC2 (y) b; (y)dy, (4.56)

(Vo) EJp X Jp supp b; supp b;
= \1'62 ()

where the coefficients ,)1(01, c2) are given according to kpet-

Due to the differentiation of the expansion, one order of accuracy is lost in the asymptotically
convergence rate: exponent p instead of p + 1 in (4.13). In [33] the error for the indirect
expansion and the direct expansion for the double layer potential of the Laplace operator are
computed numerically. These computations show that the indirect expansion yields better
results for n > 0.3 and p > 1. These constraints on the parameters 1 and p are usually
fulfilled when hierarchical approximations are used. Hence, the indirect expansion seems to
be preferable. A further advantage of the indirect expansion is that, when Taylor expansion
is used, the coefficients /ﬁ,(f,)‘(cl,@) in (4.56) only depend on the sum p + v since kpot is
translation invariant.

It remains to show that the new expansion functions ‘ifff (y) allow a shifting over the cluster
tree. The entries of the row basis ¥ corresponding to this expansion function are given by

(o) _ O el ,
Ui = an(y) \I!“(y)bj (y)dy, for j € c.

supp b;

In case of Taylor expansion, it holds

d d (Mc - y)u (Mc - y)“_ei
L g (y) = = = - = —T°_, (y), for pu > e
dyz u(y) dyz u| (H _ ez)' u—e; (y)7 or /“L - 61’
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where e; denotes the multi-index in N® which has a one at the i-th position and zeros else.
Let ¢ denote the son of ¢ that contains the index j. Then it holds

i9=3 / ns() =TS, ()15 (9)dy
1<i<3

ei<p; SUPPbi

SD DI S RO Ao

1<i<3 ei<fisp

ei<p supp bj
. éc __ G é,c G e s .
According to (4.29), Spu = Su—p and, hence, S e i—e; = Spy 18 independent of i. Therefore
YRR DY ma0) W, ()b )dy = — 3 55
Js y iy i\Y) ¥ fi—e;\Y)95\Y)0Y Yy Y,
a<up 1<i<3 gipp b; a<p

That is, Y is a nested basis and the transfer matrices are except for the sign the same as for
Y.

Since the operator Ko is, except for a constant factor, the adjoint of K2, the corresponding
matrices are transposed. The approximation of the matrix Kio is given by

RIQ =N+ Z X01 Z(cl,CQ)YZ;-
(c1,e2)EF 2

Hence,
RL,=NT+ Y Y,z X
(c1,c2)EF 12
is an H2-approximation of Ko;. That is, no additional storage for the operator Ky; is needed.
By using a direct expansion of the kernel
e~ lz—yll

[+

k(@ y) = 2nlo) - (@ =) (= 2) o
A,y_/

=k(z,y)
ie. expanding k and multiplying with n;(z)(z — y)in;(y)(y — z)j, (i,5) € {1,2,3}2, the

number of terms in the expansion is increased by a factor nine. To apply a similar trick as
for the kernel k12, we need a scalar function ke such that

0? .
S hyor(3,9) = (& = Yl — 2)b(,), (4.57)
T YYj ~ _'hir(ﬂ: Y -~
=i\ T,
which would imply that
p &
k =-——“k .
22(!1),?/) wan(x)an(y) pOt("I"ay)

Then the differential operators in z and y direction could be applied to an expansion of kps.
The Equation (4.57) states that H = (hj;);; is a Hesse matrix. Due to the Theorem of
Schwarz, it has to fulfill the condition

ajhii = Bihij.
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Since this equation does not hold, a function kpo; with the required property cannot exist.
Therefore, it is only possible to use a primitive function of (y — z)k(z,y) w.r.t. y to get rid
of one of the scalar products, i.e. a function k,; such that

ban(2,9) = £n(o) - (0~ ) 5o (0,0) (4.59

This reduces the number of terms from nine to three, but the symmetry of the kernel
koo (x,y) = koa(y, x) is destroyed.

The ACA introduced in Section 4.2 is applied directly to the matrix entries instead of the
kernel. Hence, the number of expansion terms does not depend on the structure of the kernel.
Therefore, it seems to be preferable to use this method for the approximation of the matrix
K. Since both methods, the #2-approximation based on Taylor expansion and the ACA,
use a partitioning of the index set, it is no problem to use one method on some part of
the matrix and the other on some other part. This is not the case, when piecewise linear
ansatz functions and “classical” panel clustering is used. This method is based on clusters of
elements instead of clusters of basis indices. Therefore, two kinds of clusters would have to
be used, which would increase the computational complexity.

The main difference between the integral equations stemming from the RTE and from the
BEM is the fact that the first one is a volume integral equation whereas the second one is
posed on a 2D manifold. In case of a 3D computational domain a vertex of the grid has
much more neighboring vertices than in the 2D case. The same holds for the elements of the
grid when piecewise constant ansatz functions are used. Therefore, the number of entries per
row in the nearfield matrix is much higher than in the 2D case. This gives rise to smaller
compression factors. Indeed, the storage needed for the nearfield matrix is often larger than
that for the hierarchical approximation of the farfield part.

Error Analysis

When the error analysis is considered, the main difference between the kernels in the inte-

gral equation stemming from the RTE and from the BEM is the exponential damping term
e lz—yll,

To get a first impression of the dependence of the approximation error on -, Taylor expansion

in the 1D case is considered. The formula for the error k(z,y) — k(z,y) derived in Example

4.4 contains the term
(zp: 00"y .
V!
v=0

This term is bounded from above by one. This estimate is used in Example 4.4 to obtain the
exponential convergence of the separable expansion. For large 7y, the term is much smaller
than one, resulting in a large over-estimation of the error. Assuming that ( = 2y, an upper
bound &, ., for the block error g(, ) (see (4.33)) can be computed. Assuming further that
diam(c;) = diam(cp) = dist(c1, c2), €, c,) can be plotted as a function of diam(c;). Figure
(4.4) shows this functions for different values of . The approximation rank k£ = 2 has been
used to obtain the plots but the qualitative behavior is similar for other values of k.

For comparison the figure contains also the error for the log-kernel: k(z,y) = log(|z — y|).
This kernel occurs in the BEM for surfaces of 2D domains. The error for this kernel grows
linearly with the diameter of the cluster. This matches the considerations above and leads
to the choice of the expansion order p in [50], i.e. p is larger on larger blocks.
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Figure 4.4: Block error as a function of the block size for different values of ~

All curves for v > 0 look very similar. For a small size of the cluster, the error grows with
growing diameter of the cluster until a maximum is reached. After that the error decays very
fast. The size of the maximum is independent of the value of 7, but its location is shifted
to smaller values of diam(c;) for larger . That is, for large 7, there is no need to choose a
larger p on larger blocks.

Figure 4.4 shows the absolute error of the kernel approximation. This absolute value has to
be somehow related to the norm of the operator to get a meaningful relative quantity. As
shown in the last section, there are two different possibilities to do that. First, the absolute
error can be related to the operator norm || K || > of the global operator. This is done when
the first Strang lemma is used. ||K||z2 depends on 7, it grows with growing 7, but it lies in
the interval [0, 1] for all v and the dependence on -y is not too strong, e.g. for v € [1,10] as
in Figure 4.4, ||K||z2 is in (0.84,1.0). Therefore, the situation does not change much when
the absolute value is related to the global operator norm instead of considering the absolute
error itself. That is, the statement that, for large y, there is no need to choose a larger p on
larger blocks, remains valid.

The second possibility to obtain a relative error, is to relate the error to the norm of the
operator restricted to the considered block (see error estimation in case of the ACA). Due
to the exponential damping for large 7, the value k(x,y) decays very fast when the distance
|z — y| becomes large. It can be shown that this decay is faster than the decay of the error
when Taylor expansion is used. Therefore, the relative error grows for larger . This is
due to the fact that the strong gradients occurring for large v are difficult to approximate
by polynomials. For quantitative results, see the numerical results obtained in the 3D case
below. Hence, using the local error balancing strategy (4.51) would require that a very large
approximation rank is used on large blocks which is unnecessary since the farfield has a very
small influence on the behavior of the total operator.



4.3. Application to Radiative Transfer 123

Concluding, it can be said that the exponential damping in case of large v has two contrary
effects on the approximation error when Taylor expansion is used. On the one hand, the
strong gradients are difficult to approximate by polynomials. Therefore, the relative error is
large. On the other hand, the kernel decays very fast such that the farfield plays only a minor
role in comparison with the whole matrix. Therefore, we expect the following. For small -,
the approximation error is large if a small approximation rank k is used, but it decays very
fast when k is increased. For large -y, the approximation error is small already for small &,
but it cannot be improved significantly by enlarging k. The numerical results below confirm
this statement.

The situation is a little different if the ACA is used to approximate the kernel. The ACA
yields small relative errors even for large v (see numerical results below). That is, the fact
that the local error balancing strategy (4.51) is too restrictive on large blocks, does not have
such a bad influence on the efficiency in case of the ACA.

As mentioned in the previous section, for the ACA as well as for H2-matrices using Taylor
expansion, it is possible to use different approximation ranks on different farfield blocks. Due
to the considerations above and in the previous section, the following holds. In the optically
thin case, a small approximation rank can be used on small farfield blocks, while larger blocks
require a higher order. On the other hand, for an optically thick medium, the approximation
rank on the large blocks can be very small on the large farfield blocks whereas for the small
blocks a larger approximation rank is required. Due to the small size of these blocks, it is
sometimes more efficient to put them into the nearfield, i.e. to compute the corresponding
matrix entries exactly. By the different choice of the expansion order in dependence on the
optical thickness, one can make use of the different regimes occurring in the radiative heat
transfer to construct an effective method.

After these qualitative considerations, some quantitative results obtained for the 3D case,
with homogeneous Dirichlet boundaries and constant coefficients, are shown. The setting
is as follows: the computational domain is the unit cube in R®. The discretization uses
an equidistant Cartesian grid consisting of 32% hexahedral elements with piecewise constant
ansatz functions. This implies that the system matrix is a block-Toeplitz matrix (see Section
4.1), and the algorithms based of fast Fourier transformation can be used for the exact
evaluation of a matrix-vector multiplication.

Taylor expansion and the ACA are used to obtain a hierarchical approximation of the system
matrix for different values of v. The value of the admissibility constant 7 is chosen to be
n= @ and the minimal size of a farfield block is 64. Different values for the approximation
rank k are used. Using Taylor expansion results in a rank of the form k& = (pf’) for some
p € Ny. For the ACA the rank can be an arbitrary natural number, but since we want to
compare the two methods, only k of the above form is used here.

The quality of the approximation is measured by two quantities

F-F F-F
[I( Jull2 local error — II( Jul|2

, —_— (4.59)
| Kulla [Fulls

global error =
where F denotes the part of the matrix K corresponding to the farfield F. The first quantity
is denoted by global error because it relates the approximation error to the entire matrix.
This quantity gives the impact of the approximation on the solution of the discrete system
by using the first Strang lemma. The second quantity is denoted by local error because it
relates the approximation error to the part of the matrix corresponding to the farfield, i.e. to
the part where the approximation is used. Due to the considerations above, we expect that
this quantity becomes large for large v in case of Taylor expansion.
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The Euclid norm is chosen since this norm is equivalent to the L?-norm of the error of the
continuous operator. This is the norm in which the discretization error of the Galerkin
method is measured. The numerical results listed in the Tables 4.3 and 4.4 below always use
u=(1,...,1)7, but the results are similar for other values of u.

Taylor expansion
v=0.1 v=1.0 v =10.0 v =100.0
local | global local | global local | global || local | global
0.085 0.067 0.095 0.070 0.17 | 0.051 || 0.95 | 8.6e-05
0.023 0.017 0.033 0.024 0.14 0.043 | 0.95 | 8.6e-05
10 || 3.2e-03 | 2.5e-03 || 4.8e-03 | 3.5e-03 0.024 | 7.0e-03 || 0.76 | 6.8e-05
20 || 1.9e-03 | 1.5e-03 || 2.6e-03 | 1.9e-03 0.018 | 5.1e-03 | 0.75 | 6.7e-05
35 || 4.3e-04 | 3.3e-04 || 5.7e-04 | 4.1e-04 || 3.6e-03 | 1.0e-03 | 0.46 | 4.2e-05

== R

Table 4.3: Approximation error when using Taylor expansion

ACA
v=0.1 v=1.0 v =10.0 v = 100.0
local | global local | global local | global local | global
0.040 0.031 0.042 0.031 0.067 0.020 0.30 | 2.7e-05
4.4e-03 | 3.4e-03 || 3.7e-03 | 2.6e-03 || 9.4e-03 | 2.7e-03 || 3.5e-04 | 3.2e-08
10 || 3.3e-04 | 2.5e-04 || 6.0e-04 | 4.2e-04 || 2.9e-04 | 8.5e-05 || 9.8e-06 | 8.8e-10

NN

Table 4.4: Approximation error when using ACA

In case of Taylor expansion the convergence is partly not as smooth as expected (e.g. for
v = 10.0), but the convergence is nevertheless exponential in the polynomial degree p. As
expected from the theoretical considerations, the local error for fixed approximation rank is
monotonously increasing in . Especially for large v, i.e. v = 100.0, the local error is very
large, and the convergence rate when increasing the polynomial order is also much smaller
than in the optically thin case. That is, Taylor expansion cannot be used when a high
accuracy is required in the optically thick case.

On the other hand, due to the exponential damping, the farfield part of the matrix becomes
less important in the optically thick case. For v = 100.0 the global error for k = 1 is smaller
than 10~* even though the approximation in the farfield is completely wrong (local error
= 0.95). Even if the farfield is approximated by zero, the error will be smaller than 10~%. An
accuracy of 10~* seems to be good enough, but we will see below that this is not the case in
certain situations.

For small v the difference between the local and the global error becomes smaller. This is
due to the fact that the farfield part of the matrix becomes more important. This can be
measured e.g. by the Frobenius norm. For this norm, the norm of the global matrix can
be obtained by summing up the norms of the different parts of the matrix. For smaller
the Frobenius norm of the farfield part becomes larger compared with the that of the whole
matrix.

When the ACA is used, the error is much smaller than when Taylor expansion of the same
rank is used, and the convergence rates are also much smaller. This is especially true for
large 7. Even for v = 100.0 good approximations measured by the local error are obtained.
The error for £ = 1 is much larger than in the optically thin cases, but the convergence rate
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is even smaller. Concluding it can be said that an approximation rank of k£ = 10 is sufficient
for arbitrary v when the ACA is used. Therefore, the Table 4.4 does not contain any results
for larger k.

Remark 4.10. For the construction of the hierarchical approximation in the farfield in case
of the ACA, certain entries of the Galerkin matrix have to be computed. To this end a
quadrature rule is used. Due to the exponential damping, the number of quadrature points
has to be sufficiently large in the optically thick case. Therefore, the time for the construction
of the approximation is high in this case. If the number of quadrature points is to small, the
approximation error becomes larger, but it is still smaller than in case of Taylor expansion.

Before we consider the storage and CPU time requirements of the two methods, we want
to examine the impact of the approximation error on the solution of the discrete system
more deeply. Remember the integral equation in case of homogeneous Dirichlet boundary
conditions and constant coefficients (see (2.7)):

(Id — wK)G = 47(1 — w)KB. (4.60)

The operator K occurs on the left and and on the right hand side. The situation for the
right hand side is covered by the above consideration but for the left hand side, the following
relative error should have been used

lw(® — F)ul
1M — wK)ullz

(4.61)

For small optical thickness or small w this error is smaller than the error for evaluating the
operator. On the other hand, as shown in Section 3.3, for large optical thickness and w = 1
the system matrix A = M — wK is ill-conditioned and therefore small errors in the matrix
have a big influence on the result of the matrix-vector multiplication. This effect has already
occurred when the impact of errors due to the used cubature formulae has been discussed
(see Section 3.4).

Table 4.5 shows the error for a matrix-vector multiplication in case of v = 100.0 and w = 0.99.
It follows that Taylor expansion should not be used in this case when an accuracy of less than
103 is required.

k Taylor ACA
1]21-107%|6.4-10"%
4121-1073|76-107"7
10 || 1.6-1073 | 2.1-1078
20 || 1.6-1073 -
35 1.0-1073 -

Table 4.5: Relative error for a matrix-vector multiplication in case of y = 100.0 and w = 0.99

As mentioned in the last section, the ACA only leads to a H-matrix whereas Taylor expansion
leads to a H?-matrix. Therefore, it is not correct to compare the accuracy obtained for the
same approximation rank. We have to compare the results obtained when the same amount
of resources is used. Table 4.6 shows the storage and CPU time requirements for the ACA
and Taylor expansion for different approximation ranks.

Concerning the storage, the amount of memory needed to store all the data for the nearfield
matrix and the hierarchical approximation of the farfield matrix is listed in row one, the
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second row contains the compression factor achieved in comparison with storing the full
matrix.

Concerning the CPU time, the following can be said. The time for constructing the hier-
archical approximation of the farfield part of the matrix is much larger in case of the ACA
since for the computation of the matrix entries which are used for the approximation 6D
integrals have to be approximated when the Galerkin method is used for the discretization.
As described in the next section, the time for the construction of the approximation is not
of big importance if the RTE is coupled with a time dependent process. In this case, the
time for the repeated solution of the linear system is much larger. Since iterative solvers are
used, performing matrix-vector multiplications is the most time consuming part. To have a
meaningful quantity, the time needed for one matrix-vector multiplication by using one of the
hierarchical approximations should be compared with the one when the full matrix is used.
Since the full matrix needs too much memory to be stored on a computer being available to
us, we are not able to perform a matrix-vector multiplication with the full matrix. Therefore,
we decided to simply count the number of multiplications necessary to perform one matrix-
vector multiplication when one of the approximations is applied and compare this with the
one when the full matrix is used.

Taylor ACA
k Storage CPU time k Storage CPU time
1] 54 MB | 1.3% 0.7% 11 105 MB | 2.5% 1.8%
4| 63 MB | 1.5% 1.0% 41262 MB | 6.4% 5.7%
10 || 79 MB | 1.9% 1.9% 10 || 507 MB | 12.4% 10.7%
20 || 103 MB | 2.5% 4.1%
35 || 140 MB | 3.4% 9.1%

Table 4.6: Storage and CPU time requirements when Taylor expansion and the ACA are
used

Since using Taylor expansion results in a H2-matrix, the storage and CPU requirements are
much smaller compared with that of the ACA when the same approximation rank is used. In
case of Taylor expansion with large k, the compression factor for the storage is much smaller
than that for the number of multiplications needed for a matrix-vector multiplication. This
is due to the fact that the expansion coefficients that have to be stored only depend on v+
instead on the pair (v, 1) (see Section 4.2).

Using the Tables 4.3, 4.4 and 4.6 shows that Taylor expansion seems to be preferable in the
optically thin case, say v < 5.0, especially if the storage requirement is of more importance
than the CPU time and if the accuracy requirement is small. In this case, the savings,
due to the fact that a #2-matrix is obtained, compensate the worse accuracy when Taylor
expansion is used. For an optically thick medium, say v > 5.0, the ACA seems to be
preferable, especially if a high accuracy is required.

The comparison above uses a constant approximation rank on all farfield blocks. The reason
for this is, that only then, the accuracy of the two methods using the same approximation
rank can be compared. Furthermore, the convergence rate of the two methods when different
ranks are used can be shown. On the other hand, the considerations above imply that it is
advantageous to use variable approximation orders. The following numerical results obtained
for the case v = 10.0 confirm this.
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Using the ACA with the stopping criterion (4.53) and a local error tolerance ¢ = 0.02 yields
a global error 6.6-10~* with a storage requirement of 301 MB. That is, the achieved accuracy
is nearly as good as in the case k = 10 = const, but the storage requirement is reduced by
40%.

By using Taylor expansion with variable approximation order , a global error 1.2 - 1072 is
achieved with a storage requirement of 96 MB memory. That is, the achieved accuracy is
smaller than for £ = 20 = const, using a little less storage. The improvement is not as good
as in case of the ACA. This is due to the fact that the storage requirements for a #2-matrix
is very low, such that a reduction of the rank does not lead to such big savings of memory as
in case of a H-matrix.

4.4 Comparison With DOM: Computational Complexity

As mentioned above, memory and CPU requirements are very large when modeling 3D
radiative transfer problems. This holds for the DOM which discretizes the RTE directly
and also for the discretization of the integral formulation, even when one of the matrix
compression methods described in this chapter is used. The effort for the two methods
should be compared in this section. Regarding the DOM, the streamline diffusion Galerkin
discretization described in Section 1.2 is used. Furthermore, only the case of homogeneous
Dirichlet boundary conditions and constant coefficients is considered.

Concerning the CPU time, there are two different tasks which have to be considered:

e the time for assembling the system matrix,

e the time for the iterative solution of the linear system. This time is given by the time
needed for one iteration step times the number of iterations. The costs for one iteration
step are mainly determined by the costs for a matrix-vector multiplication.

As mentioned in Section 1.2, the system matrix is not stored explicitly in case of the DOM.
Therefore, the costs for the “assembly” of the system matrix are small. This is not true for
the discretization of the integral equation even when matrix compression methods are used.
The computation and storage of the entries in the nearfield matrix is rather time consuming
when the Galerkin method is used (evaluation of 6D integrals). This is especially true, when
the medium is optically thick since then a high quadrature order has to be used (see Section
3.2).

When the radiative heat transfer is coupled with an underlying time dependent process, the
same radiative transfer equation has to be solved several times with different sources. In this
case the assembly of the system matrix has to be done only once, whereas the iterative solution
of the linear system has to be performed several times. Hence, the time for assembling the
system matrix becomes less important.

This means that discretizing the integral equation is more suitable when a time dependent
process is considered. This is the case, when a heat transfer problem with coupled conduction
and radiation is considered. Since radiation changes instantaneously with the underlying
temperature distribution, the two processes can be decoupled. In every time step for the
solution of the heat equation, the RTE is solved for the given temperature distribution and
the computed radiative heat flux is used in the modified heat equation.

For the comparison the same problem as in Section 3.4 is considered. That is, the computa-
tional domain is the cube [—1,1]3, and a uniform grid consisting of 323 hexahedral elements
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with piecewise trilinear ansatz functions is used for the discretization. In case of the discretiza-
tion of the integral equation, Taylor expansion is used to obtain a hierarchical approximation
of the system matrix since the ACA has not been implemented for piecewise trilinear ansatz
functions.

Before the numerical results are presented, we want to make the following remarks:

e The integral formulation is valid only in case of isotropic or linear anisotropic scattering.
As mentioned in Section 1.2, an efficient implementation of the DOM can exploit the
fact that a simple scattering phase function is used to reduce the number of operations
needed for a matrix-vector multiplication with the scattering matrix tremendously. The
implementation used for the comparison can handle arbitrary scattering and therefore,
does not use the tricks for the reduction of CPU time.

e The implementation of the DOM avoids the explicit computation and storage of the
entire system matrix. Instead, the matrix entries are computed only for some large
reference elements (see Section 1.2). This leads to a large reduction of the storage
requirements. On the other hand, the result of a matrix-vector multiplication has to be
computed by summing up the results for all element matrices. Therefore, the time for
performing a matrix-vector multiplication is approximately increased by a factor two
(see Section 1.2).

e The implementation of the discretization of the integral equation makes use of the fact
that a Cartesian grid is used, e.g. there is no need to store the elements of the grid and
the corresponding grid points explicitly. The implementation of the DOM works for
arbitrary grids consisting of hexahedral elements. That is, hanging nodes are allowed.
This is necessary to handle locally refined grids. The implementation of such a grid
needs more storage than a simple Cartesian grid.

e Due to Section 3.4 the numerical results obtained by the two methods on the same grid
are rather different. The results obtained by the integral formulation seem to be more
accurate but this cannot be said with certainty.

e The numerical experiments were performed on different computers. The computations
using the integral formulation were performed on a Dual Pentium IIT 850 MHz. The
computations using the DOM were performed on the Pentium IIT 650 MHz cluster of
the Interdisciplinary Center of Scientific Computing (IWR) in Heidelberg. The cluster
consists of 16 single nodes with 1 GB memory for each processor. The results were
obtained using 10 of these processors. Due to Erik Meinkohn the efficiency of the
parallelization is almost 100% for the considered problem, i.e. the time needed when
10 processors are used can be multiplied by 10 to get a feeling what time would have
been needed on a single processor.

For all that reasons, the following comparison only gives a rough indicator which method
might be preferable in which situation.

Before we compare the resources needed by the DOM and by the discretization of the integral
equation using matrix compression, we have to determine the parameters which are needed
to obtain a sufficient accuracy. That is, the number of ordinates in case of the DOM and the
approximation rank in case of matrix compression. As shown in Section 3.4 and the previous
section the choice of the parameters depends on the optical thickness.

We start with the DOM. Table 4.7 depicts the difference between the solutions obtained by
using a different number of ordinates. The relative difference in the maximum norm between
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the solutions obtained by using m = 20 and m = 80 ordinates compared with that for
m = 320 ordinates is displayed.

m=20| m=280
7=0.1 0.045 0.014
7 =10.0 0.010 6.4e-04

Table 4.7: Difference between the solutions obtained by using m = 20 and m = 80 ordinates
compared with that for m = 320 ordinates.

This table shows that it is sufficient to use m = 80 directions in the optically thick case, but
in the optically thin case at least m = 320 directions are needed. (Remember that the choice
of the angular discretization described in Section 1.2 implies that m is equal to 20, 80, 320
or 1280.) By using the data for 10 processors, the time for one iteration step on a single
processor can be estimated. This results in approximately 40 seconds for m = 80 and 200
seconds for m = 320.

Concerning the storage, the following can be said. The number of unknowns is very large,
namely n - m, where n is the number of vertices of the spatial grid and m is the number of
ordinate directions. The BiICGSTAB method, which is used to solve the linear system, needs
to store six auxiliary vectors of this size, leading to a storage requirement of 132 MB and 526
MB in case of m = 80 and m = 320 directions respectively. That is, even though the system
matrix is not stored explicitly, the needed amount of storage is rather high. Unfortunately,
no data concerning the needed overall storage is available to us.

In case of the discretization of the integral equation, the assembly of the system matrix
involves two different parts: the computation of the nearfield matrix and the construction of
the hierarchical approximation in the farfield. For the first task a quadrature formula has
to be used. This involves much more operations than the construction of the approximation
in the farfield. Due to the considerations in Section 3.2 the required number of quadrature
points depends on the optical thickness. The numerical experiments in Section 3.4 show that
the discretization error when 323 grid cells are used is approximately 5. 1073. That is, it
is sufficient to compute the nearfield entries such that the error when solving the modified
system is less than 1073. Numerical experiments show that to this end ¢ = 2 quadrature
points in every coordinate direction are sufficient in the optically thin case, 7 = 0.1, resulting
in a relative error 9.3 - 10~#, whereas ¢ = 3 points are necessary for 7 = 10.0 (relative error:
2.8 -107%). The used quadrature order strongly influences the time for the assembly of the
matrix: 2950 seconds in case of ¢ = 2 and 7320 seconds in case of ¢ = 3.

The results in Section 3.4 have been obtained by using the following parameters: admissibility
constant 7 = 1.0, minimal size of farfield blocks 64 and approximation rank k = 35. It cannot
be said with certainty how large the approximation error due to this choice of parameters is,
but the numerical experiments for the case of piecewise constant elements in the last section
and a comparison with the full matrix in case of 162 elements indicate that the approximation
error is less than 10~3 which is smaller than the discretization error.

Using the above parameters leads to a storage requirement of 380 MB, and performing a
CG-iteration step needs approximately 3.8 seconds. That is, the storage requirements are
much larger compared with the results for piecewise constant elements in the last section
(even if we regard the fact that the number of unknowns is increased by 10%). This can be
explained as follows. In case of piecewise linear elements the number of entries per row in
the nearfield matrix is approximately 870, which is much larger than the approximately 190
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entries in case of piecewise constant elements. This is due to the fact that the supports of the
basis functions are larger and that they intersect. Therefore, the amount of storage needed
for the nearfield matrix is larger than that for the #{2-approximation in the farfield. The
ratio between the storage needed for the nearfield and the farfield is approximately 60 : 40.
Thus, the needed storage is much larger than in case of piecewise constant elements. The
same holds for the time needed for a matrix-vector multiplication.

Remark 4.11. The nearfield matrix is also the reason for the large memory requirements
compared with hierarchical approximations in context of the BEM. Since the computational
domain is three dimensional, a vertex of the grid has much more neighboring vertices than
in case of a two dimensional manifold, resulting in a large number of entries in the nearfield.

The number of entries in the nearfield matrix can be reduced by enlarging the admissibility
constant 7. Furthermore, the effort for the farfield approximation can be reduced by using
a variable approximation rank. Using n = 2.0 and a variable approximation rank reduces
the storage requirements to 250 MB and the time for one iteration step to 2.1 seconds. The
approximation error compared with the solution, obtained for » = 1.0 and k = 35, is 3.6-1073
in case of 7 = 0.1 and 8.5-102 in case of 7 = 10.0. That is, if the accuracy requirements are
not too restrictive, say relative error < 5-1073, the storage requirements and CPU time can
be reduced by a factor one and a half, at least in the optically thin case.

To get the overall time for the solution of the linear system. The time for one iteration step
has to be multiplied with the number of iterations. Table 4.8 displays the number of iterations
needed to obtain a relative residual of 107%. (Please remember that the unknowns are the
energies G(z;) in case of the integral equation and the intensities I(z;, §2;) in case of the DOM.
Therefore, the same relative residual does not mean that the same accuracy is achieved, but
it should be almost the same.) When the integral equation is used, much less iterations
are needed, especially when the medium is optically thin. In this case, preconditioning the
system by solving the transport equation without scattering, should improve the speed of
convergence in case of the DOM.

integral | DOM
T=01 9 59
T =10.0 7 26

Table 4.8: Number of iterations needed to obtain a relative residual of 10~* for different
optical thicknesses

Concluding, the following can be said about the storage and CPU time requirements of the
two methods. Even though the system matrix is not stored explicitly in case of the DOM (see
Section 1.2), the storage requirements are comparable with that of the matrix compression
methods.

Having in mind the remarks at the beginning of this section about the difficulties of the
comparison of the computing time, especially, regarding the fact that a faster computer
is used in case of the discretization of the integral equation, we can nevertheless say the
following. The assembly of the system matrix needs more time in case of the integral equation,
especially in the optically thick case where a high order quadrature rule has to be used for
the computation of the nearfield entries. On the other hand, the time for performing one
iteration step of a Krylov method is about one order of magnitude smaller in case of the
integral equation, at least if m = 320 directions are used for the DOM. Furthermore, the
number of iteration steps needed to obtain the same accuracy is considerably smaller.
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In this work radiative transfer in scattering media is described by a system of weakly singular
integral equations of the second kind. The unknowns are the energy G, which is defined on
the whole domain, and the outgoing radiative heat flux goyt, which is only defined on the
boundary. It is shown that the integral formulation constitutes a well posed problem. That
is, it has a unique solution which continuously depends on the input data. Furthermore, the
Galerkin as well as the collocation method lead to a stable discretization of the equation.

Since the assembly of the corresponding system matrix involves the evaluation of integrals
that cannot be computed analytically, cubature formulae have to be used to approximate the
matrix entries. By this, an additional error besides the discretization error of the method is
introduced. Furthermore, to yield reasonable requirements of storage and computing time, it
is necessary to use matrix compression methods which perform a matrix-vector multiplication
only approximately. This also leads to additional errors. Although these errors are small, they
can cause large errors in the solution of the linear system when the condition number of the
matrix is large. This is the case when the medium is optically thick and strongly scattering.
Therefore, it is not recommendable to use the discretization of the integral equation in this
case.

The DOM which discretizes the RTE directly, does not have this problem. If the DOM is
interpreted as a discretization of the integral equation, it can be seen that the critical eigen-
values of the matrix are approximated much better than in case of discretizing the integral
equation using low order quadrature formulae or matrix compression methods. Furthermore,
only a small number of ordinate directions is needed to yield accurate results in the optically
thick case.

On the other hand, in the optically thin case, small errors in the entries of the matrix do not
have a big influence on the solution. Therefore, discretizing the integral equation and using a
matrix compression method yields good results. On the other hand, when the DOM is used,
a large number of ordinates is needed to obtain accurate results in the optically thin case,
especially if the geometry is anisotropic. Furthermore, the numerical results in Section 3.4
indicate that the DOM does not yield accurate results if there are local heat sources, even
if the medium is optically thick. Subsuming our observations, it can be said that using the
DOM is preferable in the optically thick case, especially if the medium is strongly scattering
and if there are no local heat sources, whereas using the discretization of the integral equation
is preferable in the optically thin case or if there are local sources.

The discretization of an integral equation leads to a full matrix even if basis functions with
local support are used. Since the dimension of the matrix is large, it is not recommendable
to assemble and store the entire matrix. Instead, matrix compression methods have to be
used. In case of the integral equation being derived from the RTE, the efficiency of these
methods strongly depends on the optical thickness. The exponential damping term in the
integral kernels has two contrary effects on the approximation error when Taylor expansion
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is used to obtain a separable approximation. On the one hand, the strong gradients in the
optically thick case are difficult to approximate by polynomials. Therefore, the relative error
is large. On the other hand, the kernels decay very fast such that the farfield plays only a
minor role in comparison with the whole matrix, i.e. in extreme cases the farfield can be
neglected completely.

In the optically thin case, the exponential damping has only a minor effect. Therefore,
the expansion order should be chosen as follows: for small farfield blocks, a lower order is
sufficient, while larger blocks require a higher order. By the different choice of the expansion
order in dependence on the optical thickness, one can make use of the different regimes
occurring in the radiative heat transfer to construct an effective method.

When the CPU time requirements are compared with that of the DOM, the following can be
said. The assembly of the system matrix for the integral equation needs more time than for
the DOM even if matrix compression methods are used. This is worthwhile if the radiative
transfer for the same problem has to be calculated several times, like it is the case if the
sources change due to an underlying time dependent process.

When iterative methods are used for the solution of the linear system, the number of steps
needed to obtain a certain accuracy is considerably smaller in case of the integral equation
than in case of the DOM. This is already true for the optically thick case but the difference
is even more important for the optically thin one.

The time needed for one iteration step is mainly determined by the time needed to perform
a matrix-vector multiplication. This time depends on the parameters used. That is, on the
number of ordinates in case of the DOM and on the approximation rank in case of the matrix
compression methods. In the optically thin case the DOM needs many directions to yield
accurate results leading to large requirements in computing time. Hence, matrix compression
methods are much faster in this case. Furthermore, even in the optically thick case, where less
directions are needed for the DOM, a matrix-vector multiplication still needs considerably
less time when matrix compression methods are used. On the other hand, the time for a
matrix-vector multiplication in case of the implementation of the DOM could be reduced by
optimizing the code for isotropic scattering.

Concluding, it can be said that the discretization of the integral equation using matrix com-
pression methods may lead to improvements in accuracy and computing time as compared
with the DOM, especially in the optically thin case and if there are local heat sources.



Appendix A

Mathematical Means

For the sake of completeness, this chapter contains some important definitions and assertions

which have been used in the previous chapters.

A.1 Characterization of Surfaces

Definition A.1. Let D C R? be a bounded domain and let I' = D denote its boundary. T
is said to be in C*@ if there exists a neighborhood U, C T of x such that U, is the image of

an injective mapping ¥ : R¥~! 5 B(0) — U, with ¥ € C**(B(0)).

An important property of smooth surfaces is the following.
Lemma A.1. Let T € CY*. Then there ezits a constant Cr such that
(y — 2) - n(y)| < Crlle —y||"** Va,y €T.

Proof. refer to [24]
A.2 Spherical Harmonics
Let n € Ny and |m| < n. The Legendre polynomials are defined by

1 /d\n .
Pn(t)zznn!(%> @ -1)", teR

the associated Legendre functions by

Py = -3 (D) "B, tel-11)

and the spherical harmonics by

1Tn
A (n+ |m|)! 03 O

The following addition theorem holds:

2n+1
47

n
Pp(-0) = ) Y MQY, ™), 2,0 €S8

m=—n

Proof. refer to [19]

_ ' ' sin © cos @
Y(Q) = \/2n +1ln |m|).P|m|(COS 0)e™?, Q= |sinOsing | € $2.

(A.1)
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A.3 Differentiation of a Parameter Integral

Lemma A.2. Let f(z,y) € C(D x D)\{(z,v) | ||z — y|| < ro}, then it holds for r > rg

a%- / fz,y)dy = / afé()zyd+ / fley)=—Fdoly)  (A6)

D\B(x) D\B,(z) 0By ()

Proof. refer to [56] ]

A.4 The Mapping Fi,

Let d € N. Let colg : {2,...,d} — {1,.. — 1} be a mapping with col4q(7) <4 — 1. Let the
numbers ¢; j, 1= 2,...,d, j=1,...,% — 1 be defined via
1 if j = colq(4),
Cij = (A7)
0 else.
and e; j,1=3,...,d, j =1,...,9 — 2 be recursively defined via
€ii—2 = Cii—1, (A.8)
i—2
€ij = Cij+1 + Z Ck+1,j+1€4.k) j =1 — 3, ey 1, (Ag)
k=j+1

We are going to proof that the mapping F, defined in Section 3.2 fulfills the prerequisite
of the substitution rule. To this end, some preliminary results are needed.

From (A.7) follows

i—1
Y e=1 (A.10)
j=1
The definition of the e;; implies the following relationship for ¢; 1:
1—2
Z Ck+1,1€ik = 1-— Ci1, 1 € {2, . ,d} (A.ll)
k=1

Proof. Using the equality (see (A.10))

k

Cky11 =1— ch+1,j
Jj=2
yields

1—2 1—2 k
S cerrens z 53 e
k=1 k=1 j=2

i—2 1—2 12

(A.10) (A.8)
= €ik — Ck+1,j€ik = €5i—2 1 1- —Cii-1 = 1- Gl
k=1 =2 k—j
—_——
a9
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O
The assertion above is needed to prove the following lemma.
Lemma A.3. Let
o { R¢ — R¢
cola * (wlanl""alrld—l) — (Zl,-..,Zd) ’
be defined by
21 = wi,
Zi = wi Hn;”ni,l, 1=2,...,d.
Then the following equality holds for z = Fio, (w1,m):
2 = Ti—1 H Z]C-i’j = Ti—1Zcoly (i) 1 = 2, - ,d, (A.12)
or equivalently, if z; # 0Vi
J . 2
ni=zi [ =L, j=1,...,d-1 (A.13)
k=1 ZCOld(j"'l)

Proof by induction. i =2 :
Zo =win = z1m (note: co1 = 1).

1—1—1:

% wini 1H s 2V 1H <z3+1 Hz%”““) o
— 2 1<H J+1> (HH kcy+1keu)

i—2 i—2
1— Z Cj1,1€4,5 =2 €5 p_1— D, Cjy1,k€i,j
I Jj= j=k €i,i—2
- 771_121 zk Zz—l

k=2
The last equality holds due to (A.11), (A.8) and (A.9).

Lemma A.4. F, : S x old=1) Peoly is injective, det(F
C(d 1)) Pcold

colg

= M- Isz

O

) # 0, and Fe,(SM x

Proof. Feq, is injective due to its triangular structure: the first component depends only on
w1, the second on w; and 7; and so on. Concerning the determinant of the Jacobian, it holds

det(F, cold H > 0, since n; > 0.
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It holds Fcold(S(l) X C(d_l)) C Peoly, since:

for (Q1,1) € Feoly (SM x 1) and 7 := Feol, (w1,m) the Equality (A.12) implies
0< 21 =wi <1,
0<z= Zcolg (i) Thi—1 < Zcolg() i=2,...,d,

ie z € Pcold-

It holds Fcold(S(l) x Cd=1)) 5 P14, since:
for z € Py, define 0 < w1 :=2; < 1and 0 < n; := z—?% <1,7=1,...,d —1. Then
coly (j

z = Feoly (w1, n) due to (A.12). O

A.5 Regularizing Coordinate Transformations

In this section the regularizing coordinate transformations for the remaining cases are speci-
fied.

1. (c¢) The Case of a Common Edge

After introducing the relative coordinate 2; = Z; — §j; and interchanging the order of integra-
tion, the resulting domain can be split into two parts to which a 5D Duffy transformation
can be applied. The transformations result in the following integral with analytic integrand:

2
1) =Y / / GO ()0 (@D )R ED, §9))a(gD ) duwds, (A.14)
=) g(2)

where the transformations (w,n) — (2(),4()) are given by:

(1) ~(2)
(J;h) w1 + wo (QU%Q) w1 + woy
"22 w1 5%2 mwi
5”:(31) — mwi 55:(’,2) — M72w1
e (1 —mwr +ws || 5 (1—m3)wi +wy |’
gél) n3(1 — n2)wi géZ) (1 —=m3)wi
\A(l) a3 (1 —m2)wr \ s (1 — m3)nawr
Ys Ys

and f)(n) is given by
fOm =0 —m)nm, O =0-ns)m

1. (d) The Case of a Common Vertex

In this case only the splitting in §; < Z; and §; > #; is needed. A 6D Duffy transformation
yields:
T,t

19 (u,0) = / / P nmsd (@)D, 1) a(gO) durdr, (A.15)
c(2) g(4)
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where the transformation (w1,n) — (2, §(") is given by:

(1
BN\
4
2 Tow1
2
3 _ N2MN4wW1
g@ Mwi
(1
yé ) MN3wW1
\A(l) MnN3N5W1
Y3

2. The case of one volume and one surface element

In the following we consider the case that 7 is a volume element and ¢ is a surface element.
In this case the situation is not symmetric in x and y. Hence, the splitting of the integral
I into the two parts §; < Z; and g1 > #; (see Remark 3.2) does not yield two cases which
can be handled by simply interchanging the roles of x and y. Instead, both cases have to be
handled separately.

2. (a) The Case of a Common Face

After introducing the relative coordinates 2; = Z; — 9;, ¢ = 1,2, and interchanging the
order of integration, the resulting domain can be split into seven parts to which a 3D Duffy
transformation can be applied. The transformations result in the following integral with
analytic integrand:

7
Ly(wo) =3 / / 1D ()5 (@D ED, §9)a(g ) dwds, (A.16)

jgl)\ 4+
RO w1 + w2 + w3 A%Z) w1 + w2 + w3
) Mmwi + wa Tg w1 + wa
:%:(),1) = nwi 5 ﬁch) = nwi :
Q%l) (1 —n2)wi + wo + w3 @%2) (1 —n2)wi + wo + w3
\g)él) (1 —m)wi + wy @§2) w2
(3 (4
($§3; (1 — 7)1)(.01 + w2 + w3 LE§4§ nwi + ws + w3
2 (1 —m)wr + wo Ty Mwi + wo
:f:?’ = (1 —m)wn . i;(f) = Mn2w1 ;
,gg?’) w1 + we + w3 ,gg‘l) w1 + w2 + w3
\Q§3) MN2w1 + wo :gg4) w2
a::g\ w1 + w2 + w3 ‘?%Z; w1 + wo + w3
) w1 + wa ) Mmwi + wa+
.7“7;(35) = w1 . ﬁ::(f) = 72wl ;
@f) (1 —mn2)wi + we + ws Q@ wy + w3
~(5) (1 —m)wi + wy (6) wo
Yo Yo
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(7

x§7; (1 —mmn2)wi + we + w3

Ty (1 —m)wi + wo

55:(;7) = (1 =n1)wr )
g§7) w1 + wy + ws

.(7) w1 + wy

Ya

and f)(n) is given by
O =2m=1Om =1, D) =rOm = = rm =m.

2. (b) The Case of a Common Edge

After introducing the relative coordinate 2, = 1 — ; and interchanging the order of integra-
tion, the resulting domain can be split into four parts to which a 4D Duffy transformation
can be applied. The transformations result in the following integral with analytic integrand:

4
Lrp(u,v) =) / / Wi fO (o (@)@, §9)a(g")dwdn, (A.17)
=loe g

where the transformations (w,n) — (2(9),4()) are given by:

41 A(2)
1 w1 + wa w1 + wo
4+ w A(2)
2 1 w1
56;(),1) = Nwi 5 "(2) = MW ,
gg) (1 — 772)(,01 + w2 A(Q) (1 — 7]3)(01 + w2
e (1 —m2)n3wi \y (1 —m3)wr
43 (A(4)
A%3) (1 —m)wi +ws A(4) (1 —n2)wi + wy
Ty (L —m)new (1 —m2)wr
s =1 @ =n)mnswr |, “(4) = Q-m)nwr |,
gf’) w1 + wo :0%4) w1 + wo + ws
Qés) w1 ,ggl) nwi

and fU)(n) is given by
M =Am=1-m O =m fPn=>0-m)n

2. (c) The Case of a Common Vertex

In this case again only the splitting in §; < 1 and §; > %1 is needed. A 5D Duffy transfor-
mation yields:

2
I (u,v) Z / / wi fOm)o(ED)k(@Y, 99)a@Y) dwdn, (A.18)

e s
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where the transformations (w1,7) — (), §1)) are given by:

N

I T

A%1) w1 A%z) N2w1

) w1 Ty N2n3wi
ig) = | m2nawt |, 55:(,,2) = | men3mawr |,
(1 ~(2

gtV nw g w1

(1 w ~(2 w

yé) NiN3wi1 yg) niwi

and fU)(n) is given by
FOm) =mne P (n) = n3ns.

A.6 Singular Value Decomposition

Let (0%, Tk, Yr)pey, denote the singular value decomposition of a bijective compact operator
H,ie.

Hzy = opyy, H'yg = opzy, (Uk>y5) = 65

then

HU = (fud H e = —(f uk) e (A.19)

1
ok
A.7 TImpact of Local Errors

This section is devoted to the proof of estimate (4.40). The impact of the local error on

the global error is also estimated in [50]. In this article a partition of the integration do-

main, instead of a partition of the index set is used. Therefore, the proof requires a slight

modification.

Let v = 3 v;b; € V}, and let v = (vy,...,v,)T denote the vector of coefficients. If the grid is
el

quasi-uniform and shape regular, there exist constants C; and C5 independent of h such that

Cillvl2 < BIVIE < CalloliZe Vo € Vi (A.20)

(For a proof refer to [10].) In the following, we use the abbreviation v, := >_ v;b; for a cluster
i€c

¢ € T(I). The corresponding index vector is given by v, = (v;)jec. By construction the
clusters at the same level of the cluster tree are disjoint. Therefore, it holds:

S WB<IVIE V=0, e (A.21)
ceT(1)

Combining the two estimates above yields

C
S lvellz < Z2lwll?: Vi=0,..., lmax. (A.22)
ceT(l) Cy
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After these preliminary considerations, we are able to proof the estimate (4.40).

(K = K)u,v) = Y v (K — K)bj, b;)

ijel
L . L )
:Z Z ZZ’WUj((K—K)bj,bi) :Z <(K_K)ucza’ucl>
{=0 (c1,c2)€F(l) i€c1 jEC2 =0 (c1,e2)€F(l)
(4.33),(4.39) L L 1 1
ST a Y vl <> leal?) (2 Nuel?:)
=0 (cl,cz)EF(l) = (61,02)€F(l) (Cl,cz)EF(l)
L % %
=Sa( X Ml Y 1) (X el Y 1)
=0 c1 ET(l) CQ:(Cl,CQ)EF(l) CQET(I) 01:(61,02)EF(l)
—_———
(4.6) (4.7)
S C'sp S CSP

(4.22) (o L
< G0 (X)Wl ulm) (A-23)

=0



Notations

Sets

D, D

oD

52

B, (z)
conv{zy,...
s(d)

7(d)

[0l

g

N

F

7$l}

open bounded domain in R?® and topological closure
surface of D

= {Q € R?| Q]2 = 1}, unit sphere in R3
={yeR |y —z|| <r}

convex hull of z1,...,z; € R¢
d-dimensional simplex (see (3.17))
d-dimensional simplex (see (3.18))
d-dimensional unit-cube (see (3.19))
triangulation of D U 9D

nearfield

farfield

Optical Parameters

T €< Q=

absorption coefficient

scattering coefficient

= k + o, total extinction coefficient
= %, scattering albedo

diffuse reflection coefficient

Variables and Functions

B(T, )
(0, Q)
Py,

Y

Xt
Kij, kij

Operators

Id

Planck’s function (see (1.2))

scattering phase function

Legendre polynomials (see Appendix A.2)
spherical harmonics (see Appendix A.2)
local parameterization of 7 € G

integral kernels (see page 29)

‘ identity operator
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Notations

A, V, V- | Laplace operator, gradient, divergence

Hq transport operator in direction 2 (see (1.24))

Yq, 2 scattering operators (see (1.24))

T radiative transfer operator (see (1.24))

11, Th diffusion operators (see (1.63) and (1.65))

K integral operator

L(U,V) | space of linear operators from U to V

L(V) =L(V,V)

K(U,V) | space of compact operators from U to V'

K(V) | =KWV

T* adjoint operator of T' € L(U,V), U, V Hilbert spaces
Matrices corresponding to the operators are denoted by bold face
symbols.

Function Spaces

P polynomials up to degree k (see (3.5))
Ok tensor product polynomials up to degree k (see (4.21))
Cke(u) | space of k times differentiable functions whose k-th derivative is
Holder continuous with coefficient «
LP(u) =LP(D, ) ®p LP(0D, p12) (see Definition 2.1)
H? Sobolev space for s € R
Miscellaneous
| 7] = volume of 7
fc = cardinality of the set ¢
Uci | = disjoint union, ie. ¢;Nej =0,if 1 # j
i
Q@+ | quadrature formula
diam | diameter of a set in R? (see Definition 4.4)
dist | distance between to sets in R® (see Definition 4.4)
0ij Kronecker symbol
(0] Landau symbol
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