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1 Introduction

In this paper we present the numerical results of some investigations concerning
the modeling of the earth’s gravitational potential with spline smoothing from data
of satellite-to-satellite tracking (SST) missions. In SST a low flying orbiter, like
the satellite CHAMP (launched in July 2000), receives the GPS-signals of the high-
flying GPS/GLONASS-satellites and measures non-gravitational accelerations with
its accelerometer. Roughly speaking, the GPS-signals enable the determination of
the position of the low-flying satellite with high accuracy. Knowledge of its position
in turn enables it to compute (via numerical differentiation and subtraction of the
non-gravitational influences with the help of the accelerometer data) the gradient of
the potential along the orbit. Scalar data, which allows (from a mathematical point
of view) the unique recovery of the potential, is the first order radial derivative on
a closed C®-regular surface at orbit altitude. Knowledge of the gradient of the
potential at the orbit provides knowledge of the first order radial derivative (scalar
SST-data) at the orbit, and that is the data our numerical simulations start with.
The idea to recover the earth’s gravitational potential from such scalar SST-data is
formulated in [19] and is also investigated in [4], [21], and [33]. It is, of course, also
possible to reconstruct the potential from vectorial data (the full gradient), but this
approach is not investigated in this paper (see, for example, [19], [32]). Satellite
gravity gradiometry (SGG) missions, like GOCE (launch planned for 2005/06),
have in addition to a GPS-receiver a gradiometer on board and provide knowledge
of the Hessian of the potential and consequently of its second order radial derivative
(scalar SGG-data) along the orbit. Analogously to the SST-scenario, it is in this
case possible to work with tensorial data, but this is not the objective of this
publication.

Before we give a short outline of this work we want to make a few general comments
concerning the problem under investigation: The determination of the earth’s gravi-
tational potential from (scalar) SST-data or SGG-data is an exponentially ill-posed
problem, due to the ill-posedness of downward-continuation (of harmonic func-
tions). Therefore we do not only deal with an approximation problem (i.e., the
reconstruction of a function from a set of given discrete data), but we actually
have to solve an inverse problem, which demands some means of regularization.
Therefore, the problem and the methods, applied in this work, belong to approx-
imation and regularization theory. We want to stress that the modeling of the
earth’s gravitational potential from data of SST and SGG missions is a research
topic of paramount importance: A highly accurate model of the earth’s gravita-
tional potential helps (i) to establish a unified height system with respect to the
geoid and (ii) to calculate satellite orbits and contributes to (iii) prospecting and
exploration, (iv) solid earth physics, and (v) a better understanding of the geo-
physical system earth. Furthermore, due to the increase in measurement accuracy
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and due to the unprecedented low orbit altitude of the low flying satellites in the
present and future missions CHAMP, GRACE, and GOCE, data from these mis-
sions can be expected to yield potential models with an unprecedented resolution
(see [9], [10], and [11]).

The focus of this paper is on the discussion of the results of the numerical simu-
lations for the reconstruction of the earth’s gravitational potential from SST-data
and SGG-data and not on the intricacies of the theoretical mathematical approach
behind. Therefore, we summarize and explain the mathematical background only
briefly (with hardly any proofs) in Sections 2 and 3 and include only those results
which are of special importance for our approach. The focus in this first two sec-
tions is on understanding the basic ideas of splines and wavelets in Hilbert spaces
of harmonic functions, but not on giving an encompasssing overview of the theory
behind. In Section 4 we explain our approach to the reconstruction of the potential
from SST-data and SGG-data in detail, and in Section 5 we present the results for
our numerical studies. We compute a smoothing spline, which is not an approx-
imation of the measured SST-data but an approximation of the potential on and
outside the earth. Spline smoothing, as applied in this problem, is not an approx-
imation procedure but solves the compact ill-posed operator equation underlying
the SST-problem. The resulting model is a linear combination of strongly space-
localizing functions, which can — in contrast to outer harmonic models — capture
local features of the potential from only locally given data. The numerical studies
are done with simulated SST-data in a simplified geometrical situation, but we want
to stress that this approach is designed to handle SST-data and SGG-data on a
real satellite orbit. The theoretical background and the introduction of splines and
wavelets follow the books [17] and [18]. There are, of course, other approaches to
introduce wavelets on the sphere (see, for instance, [1], [2], [22], [26], [34], [35], and
[36]) which could be used (by harmonic continuation) to define harmonic wavelets.

The results in this paper are part of the theses [24] and [25] to which we refer the
reader for more information about the theory and for some computational aspects
that are not discussed in detail here.

2 Notation

In this section the basic notation and the mathematical background material are
briefly summarized. For more background information, the reader is referred to
the books [17], [18], and [31].

Let RY be the N-dimensional Euclidean space with the Euclidean norm
|z] == (N, (2:)%)"/? and the Euclidean inner product « -y := Y~ | x;y;, where
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z=(z1,...,2n), ¥y = (¥1,...,y~n) € RV. The Lebesgue measure of RV is denoted
by dzx.

A surface ¥ in R3 is called a C'%) -regular surface, where 2 < k < oo, if it satisfies
the following four conditions: (i) ¥ divides R?® into a bounded region, denoted by
¥int the so-called inner space of ¥, and an unbounded region, denoted by £°*t,
the so-called outer space of ¥, (ii) ¥'™ contains the origin, (iii) ¥ is closed and
compact and free of double points, and (iv) ¥ is a C*)-surface (i.e., every point
x € ¥ has an open neighborhood & C R® such that ¥ N/ has a parameterization
which is k-times continuously differentiable).

The sphere Qi := {z € R®||z| = R} of radius R € RT with center at the origin
of R? is a C(°)_regular surface and divides R?® into the bounded inner space Qi}g‘t
(of Qg) and the unbounded outer space Q5 (of Qg). The surface element of the
sphere Qg is denoted by dwg, and for the unit sphere we write briefly 2 := Q; and
dw :=dw;.

If ¥ is a C¥-regular surface and Qg a sphere of radius R € Rt such that Qp C X"t
then Qg is called a Bjerhammar sphere for X.

Throughout this work polar coordinates will sometimes be used: Every vector
r € R*\ {0} can be represented with respect to the canonical standard basis in
R as ¢ =r ¢, where r = |z|, £ = z/|z| € Q, and

¢ = (cos(yp) sin(¥), sin(yp) sin(?), cos(®))” ,
(p,9) € [0,2m) x [0,7].

The set of all k-times continuously differentiable (real valued) functions on an open
or closed set in RN or a C()-regular surface U is denoted by C® (), k € Ny,
and we define C(°)(U) := N, C®) (U), where it is understood that in case of a
CW-regular surface only C*)(1{) with k¥ < I can be defined. In particular, we let
C(U) := COU). The space C(U) is always endowed with the supremum norm

IFllc@) = supzeu | F(2)].

The space L2(U) of all Lebesgue square-integrable (real valued) functions on a mea-
surable set in RM or a C®-regular surface U with the inner product
(F,GQ) 2@y = [, F(z)G(z)dx, F,G € L*(U), (where dz is the Lebesgue mea-
sure and the surface element, respectively) is a Hilbert space with the induced

norm [|F || cay = (F, F) iy,

A function F € C®(U) on an open set U C R® is called harmonic on U if it
2 2
satisfies the Laplace equation AF = 23 98 — 0on U, where A := 23 97 s

=1 9z? =1 9z?

the Laplace operator. A harmonic function F € C?)(U), defined on an unbounded
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set U, is called regular at infinity if it satisfies the conditions |F(z)| = O(|z|™!)
and |VF(z)| = O(|z|7?) for |z| = oo (uniformly in all directions).

For a C-regular surface ¥, where 2 < I < oo, we define the following function
spaces of ‘potentials The space Pot(X°*%) is the space of functions F' that have
the following properties: (i) F € C)(Zet), (i) F satisfies the Laplace equation
AF = 0on £ and (iii) F is regular at infinity. The space Pot®) (o) 0 < k <,
consists of all functions F' € CF)(Xext) that satisfy in addition F|pex € Pot(ZeXt).

Let Harm,, (Q) denote the space of spherical harmonics of degree n on Q, i.e., the
space of the restrictions to 2 of all homogenous harmonic polynomials on R® of
degree n. The space Harm, (Q) is a finite dimensional vector space with dimen-
sion dim(Harm, (Q2)) = 2n + 1. Let {Y,x}k=1.... 2n+1 be a complete £2(2)-ortho-
normal system in the space Harm, (), n € Ny. Then {Y, i }neng; k=1,...2n+1 18
a complete orthonormal system in £2(Q) which induces a complete orthonormal
system {erk}neNo;k:l,___,gnH in £2(QR), via

1
V(@) = 2 Yas@/le), o €.

Throughout this work, {nyk}TLENmk:l,m,?n-l-l shall always denote such a com-
plete orthonormal system in £2(Qg). Every function F € L£2(Qg) can be ex-
panded into a Fourier series with respect to the complete orthonormal system

R .
{Yaikneng k=1,... 2n41:
oo 2n+1

F=3 > FuYi (1)
n=0 k=1
with Fourier coefficients {Fﬁk}neNo;k:L-..ﬂnH given by

= i F(y) Y (y) dwr(y) -
R

Although the span of {er?k}neNo;kzl,...ﬂnH is dense in C(Q2g) with respect to the
supremum norm, the Fourier series expansion (1) of F' € £2(Qg) N C(2g) does in
general not converge on g uniformly to F'.

Let P, : [-1,1] — R denote the Legendre polynomial of degree n € Ny. The
set {Pp}nen, of all Legendre polynomials is a complete orthogonal system in
£2([-1,1]), and
1
2
P, (t) Py (t)dt =6 —_—
| P Pttt =5, s

where dy, ,, is the Kronecker symbol: 0, ,, = 1if n =m and d,,,, =0 if n # m.

The outer harmonics for the sphere Qg (corresponding to a complete orthonormal
system {Y,  tneNo; k=1,....2n+1 in £2(€2)) are definded by

1 R n+1
Hoslfia) =5 () YasGafleD,
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r € R®\{0}; n € No; k = 1,...,2n + 1. The function H, x(R;z) is called an
outer harmonic of degree n and order k (for the sphere Qg). An outer har-
monic H, ;(R;-) is in C™)(R*\{0}), and H, r(R;")|a, = Y. The function
H, 1(R;-) is the (uniquely determined) solution of Dirichlet’s exterior boundary
value problem for the Laplace equation with boundary Qg and boundary value
Yn’?k which is regular at infinity. The outer harmonics H, ;(R;-) are elements
of the space Pot(m)(QTﬁt). In this work {Hp, k(R;-)}neNo; k=1,...,2n+1 is always a
system of outer harmonics corresponding to some complete orthonormal system
{Yn.k }neNo; k=1,....2n+1 Of spherical harmonics in £2(£2).

The (scalar) addition theorem for spherical harmonics establishes a connection
between the spherical harmonics of degree n and the Legendre polynomial P, of
degree n: Let {Yy k}r=1,. 2n+1 be an L£23(Q)-orthonormal system in Harm,(f2),
n € Ny, then for all £, €

2n+1

D Yok(8) Yar(n) = @rtl)
k=1

- Pn(§-m).

This implies the addition theorem for outer harmonics: For n € Ny and z,y € Q%

2n+1

(2n +1) ( R? )”“ (w y)
Hyk(Ryx) Hy e (Rsy) = P l—-=].
2 Hua(Ri) Ho(Bsy) = =g oy 2l Ty

3 Splines and Wavelets in Hilbert Spaces of Har-
monic Functions

In this section the relevant definitions and theorems from the theory of splines and
wavelets in Hilbert spaces of harmonic functions are briefly recapitulated. For more
details the reader is reader is referred to, for example, [17] and [18]. The type of
splines, introduced in Subsection 3.2, is the key ingredient in the approach and
goes back to the publications [5], [13], [14], [15], and [16].

3.1 Hilbert Spaces of Harmonic Functions

We begin with the introduction of certain classes of Hilbert spaces in which we
will define splines and wavelets later on. The sequence {A,}nen, C RT in the
next definition allows much flexibility in the choice of the Hilbert space and will
be chosen later to satisfy our particular needs. The assumption A, > C for all
n € Ny with some C' > 0 simply guarantees that the functions in the Hilbert space,
restricted to Qg, are in £L2(Qg).
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Definition 3.1 Let {A,}nen, C RY satisfy the condition A, > C for alln € Ny
with some constant C € RY. For F € span{H, ;(R;-)|n € No; k=1,...,2n+1},
we can compute the Fourier coefficients

Frfk = 0 F(y) Yn}?k (y) dwR(y) )
R

n€e€Ny; k+1,...,2n+ 1, and we define

oo 2n+1 1/2
\Fl = (z S <Ff,k>2) .

n=0 k=1

The space H = H({An}; Q5*), defined by

Il- Hu

H:=span{H,  (R;-)|n€No; k=1,...,2n + 1}

with the inner product

oo 2n+1

(F,G)y:=>_ > A.F;

n=0 k=1

for F,G € H, is a (Sobolev-like) Hilbert space.

We denote the inner product of F' € ‘H and G € H also by
F*H G:= (F,G)’H

and call it the convolution of F and G. A function F € H can be (formally)
represented by its series expansion in terms of outer harmonics

oo 2n+l1
Z Z R;-), )
n=0 k=1

and this function F and its series expansion (2) have the following properties:

e the series expansion (2) of FF € H is, restricted to Qg, convergent in
L2(QR)-sense,

the series expansion (2) of F' € H is, restricted to Q¢* with r > R, uniformly

convergent, and F|Q§;t is continuous,

e the series expansion (2) of F' € H may be differentiated term by term in z € Q5"
(for partial derivatives of arbitrary order), and the differentiated series is uni-
formly convergent to the respective derivative of F' on every Q& with r > R,

F € H is harmonic on Q%' and regular at infinity.
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If, in addition, the sequence { A, }nen, satisfies the so-called summability condition

oo

2(2727;’1)@0 3)

n=0
then H is a reproducing kernel Hilbert space with the reproducing kernel

oo 2n+1

Ku(w,y) = 3 5 Hox(Biz) Hos(Biv)

n=0 k=1 n

> (2n+1) ( R? )"“P (my)
“Ar R? A% \ |z [y] NI

z,y € QF*. This means that Ky(z,-) € H for all (fixed) z € Q" and that Ky
satisfies the reproducing property

(F, K3y(x,+))4, = F(x)

for all z € Q% and for all F € H. It should be noted that the reproducing ker-
nel Ky depends only on |z|, |y|, and (z - y)/(Jz| |y|]). A separable Hilbert space
H is a reproducing kernel Hilbert space if and only if all evaluation functionals
Ly:MH =R G L,G:=G(x), v € QF, are continuous. If H, defined as in Def-
inition 3.1, is a reproducing kernel Hilbert space all functions in H are continuous,
ie,HCC (QTﬁt), and their series expansions (2) converge uniformly on QTﬁ‘t. For
more information about reproducing kernel Hilbert spaces the reader is referred to

[3]-

Next, we give some relevant examples of Hilbert spaces H, defined as in Defini-
tion 3.1.

Example 3.2 The norm of H = H({1}; Q%) is the L2(Qg)-norm, i.e.,
1/2
1Pl = ([ 1F@P don@)
Qr

Example 3.3 Let h € (0,1). Then the space H = H({h ™/2}; Q") is a reproduc-
ing kernel Hilbert space with the reproducing kernel
1 |=*|y|* — K2R

K == '
w(z,y) A (|.7:|2|y|2 + h?R* — 2h R?(x - y))3/2

Example 3.4 Let h € (0,1). Then the space H = H({(n + $)Y/2 h=/2}; Q%) is
a reproducing kernel Hilbert space with the reproducing kernel
1 1

27 (|laf2lyl? + h2Rt ~ 2h R2(z -y))'/*

K’H(.Z',y)
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The representations of the reproducing kernels of the spaces in Examples 3.3 and 3.4
as elementary functions follow easily from the relations

1 =
= P,(t
(1+’72—2’}’t)1/2 7;’7 TL()J
1—~2 =
= 2 1)y" P,(t
A7 2707 = 0T RO

for all t € [-1,1] and all v € (—1,1) which can, for example, be found in [18].

Figure 1 shows the reproducing kernel of the space in Example 3.3, restricted to
the sphere Qp, for various parameters h as a function of ¢ := (z - y)/|z| |y|, where
t is parameterized by ¢t = cos(f), 6 € [—m,7].

The reproducing kernels K4 for the classes of spaces in Examples 3.3 and 3.4 are
space-localizing: The closer h gets to one, the stronger is the space-localization of
the reproducing kernel.

Figure 1: The reproducing kernel Ky of H = H({h™"/2}; Q$Y), restricted to
the sphere Qg, where R = 1 and |z| = 1, z fized, and h = 0.55 (solid), h = 0.7
(dashed), h = 0.8 (dotted).

3.2 Harmonic Splines

Next, we introduce splines in the Hilbert spaces . These splines have to be seen
more in analogy to radial basis functions than in analogy to cubic polynomial splines
(though it should be noted that they are not radial basis functions). Roughly
speaking, in our applications a spline space is spanned by strongly space-localizing
functions which are related to the set of measurements.

Definition 3.5 Let H be a Hilbert space as defined in Definition 3.1, and let
Li,...,LNn be N bounded linear functionals on H. Denote by L; the represen-
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ter of Li, i € {1,...,N}, ie., L;F = (F,L;)yy = F *y L; for all F € H. Then any
function of the form

N
S = Z (671 LZ
i=1

with the coefficient vector a := (ay,...,an)? € RY is called a spline (relative to
L1,...,LnN). The space of all splines relative to L1,...,LnN is denoted by

Sy(Ly,...,Ly) :=span{L;|i=1,...,N}.
The next lemma follows immediately from Definition 3.5.

Lemma 3.6 Let the notation and the assumptions be as in Definition 3.5. Then
for any spline S = Zi\il a; Li in Sy(L1,...,LN)

N
(F,S)yy =F*uS=)Y i Li;F  foral FeN.

i=1

The most simple example is the representer of an evaluation functional £, : H — R,
L, F := F(x), z € Q%" fixed, in a reproducing kernel Hilbert space H with repro-
ducing kernel K4;: the representer is given by L, := K(x, ).

Next, we formulate the spline interpolation problem: Let H be a Hilbert space,
defined as in Definition 3.1, and let £q,...,Ln be N bounded linear functionals
on H with representers L1, ..., Ly. We define the set of interpolating functions of
a function F € H relative to Lq,...,LN by

If,  on ={GE€H |L;G=LiF fori=1,...,N}.

The spline interpolation problem (relative to L1, ..., Ly )is to find an interpolating
spline S, i.e., 8 € Su(Li,...,LN)NIE,  ,o-

Theorem 3.7 Let H be defined as in Definition 3.1, and let L1,...,Ln be N
bounded linear functionals on H with representers Ly,...,Ly. Let F € H be
given. There is one and only one interpolating spline S¥ = Efil a; L; of F in
Su(L1,---,LN) ﬂIfhm,EN. This spline is the orthogonal projection of F' onto the
spline space Sy (L1,.-.,LN). It satisfies the following minimum property:

IS = Gl = 18" = Gli3, + IS = S¥1I3,

for all S € Sy (Ly,...,LN) and all G € ZEI’_WLN. In particular, S = 0 shows that
the interpolating spline ST of F is the interpolating function in H with minimum
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norm. The coefficient vector a = (au,...,an)T of the interpolating spline ST is
the solution of the linear system of equations

N
Zai(LiaLk)HZEkF, k=1,...,N.

i=1

In practice, the values L1 F,...,LnyF will not be known exactly but only be
given approximately in the form of noisy measurements, i.e., we know L;F + €;,
i1=1,...,N, where €1,...,enx represent the measurement errors. In this case, one
has to perform spline smoothing instead of spline interpolation.

Theorem 3.8 Let H be a Hilbert space as defined in Definition 3.1, and let

Li,...,LNn be N bounded linear functionals on H with the representers L1,...,Ln.
Suppose b = (by,...,bx)T € RN is an arbitrarily given vector and X € Rt a pos-
itive real parameter. Then there exists one and only one spline Sy = Zf;l a} L;
in Sy (L1,-..,LN) that minimizes the linear functional
N
2
pa(@) == D (LS —b:)* + AlIS (4)
i=1
where S = Zf;l a; L; with the coefficient vector a = (aq,...,an)T. The co-
efficient vector a* = (a7, ...,aN)T of this minimizing spline Sy is the uniquely

determined solution of the linear system of equations

N
Zai(Li;Lk)H+/\ak=bk; k=1,...,N. (5)

i=1

The proofs of Theorems 3.7 and 3.8 can, for example, be found in [17].

Usually the vector b in Theorem 3.8 will be a vector of noisy measurements
b= (LiF +e€1,...,LNF +enx)T. The most important question concerning Theo-
rem 3.8 is the choice of the smoothing parameter . For A = 0 we would get the
interpolating spline, assuming that (5) is still solvable. The larger A > 0 gets, the
less weight is put on data fitting and the more weight is put on the smoothness
of the solution (in the sense that the norm of the solution is small). Clearly, the
smoothing parameter A has to be chosen depending on the measurement errors.
We remark that spline smoothing as introduced in Theorem 3.8 is done in the usual
way, as it is, for example, introduced in [37].

In order to derive smoothing parameter choice rules, we write the functional (4)
and the linear system of equations (5) in a different way: Using the notation
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A = [(L;s, L) 1)ik=1,....n, Id := [0; k]i,k=1,...5, We see after some easy computa-
tions that

(4) & @ =|Aa-b>+ra"Aa, (6)
6) & (A+AId)a=b,

where | - | is the Euclidean norm in RY. The matrix A is symmetric. If we assume
that £;,...,Ln are linearly independent then A is even invertible and positive
definite, and we can define the A-norm ||z||a := (zTA z)'/? on RV, and (6) is
equivalent to

pa(a) = |Aa—=bf + el - (7)

Functional (7) has a strong similarity to the Tikhonov functional, where our smooth-
ing parameter A corresponds to the regularization parameter in Tikhonov regular-
ization. Applying some methods which are used to derive parameter choice strate-
gies for Tikhonov regularization, we obtain smoothing parameter choice rules. For
more information on Tikhonov regularization see, for example, [8], [27]. The adap-
tation of two such strategies, namely the L-curve method and Morozov’s discrepancy
principle to spline smoothing is discussed in [25] in more detail. In the studies in
this paper the L-curve method is used, and we sketch briefly how it works.

In the L-curve method, we plot the two terms in the functional (4) depending on A
(for the minimizing splines Sy) in a double-logarithmic parametric plot:

N 1/2
A | In (Z (LiSx — bi)2> s In([[Salls) | - 8)

i=1

This demands the computation of smoothing splines S, for a certain range of
smoothing parameters A. The resulting curve should be L-shaped, and the
L-curve criterion predicts that a suitable smoothing parameter lies in the corner
point of the L. The L-curve method is an empirical method, and it lacks a sound
mathematical foundation, but, for practical purposes, it has the advantage that it
is numerically not too expensive and that it does not demand any knowledge about
the measurement errors. It should be noted that there are scenarios in which the
L-curve method failed, but it seems to be working satisfactory for the smoothing
parameter choice in spline smoothing. For more information about the L-curve
method, the reader is referred to [8] and the references therein.

Finally, we give a few examples of bounded linear functionals and their representers,
namely first and second order radial derivatives in points z in the outer space Q%,
because these describe SST-data and SGG-data. A proof that first and second
order radial derivatives in points z € Q% are bounded linear functionals on H,
defined as in Definition 3.1, can be found in [25]. Due to the fact that the spaces

‘H in Examples 3.3 and 3.4 are reproducing kernel Hilbert spaces, the representers
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in these spaces can be easily obtained by applying the bounded linear functional to
the reproducing kernel Ky, i.e., the representer of L: H — R, F — LF := %ﬁw),
with k € {1,2} and = € QF", is given by
0" Kwn(y,x) Aext
L(y) ::ng” y € QF,
where the index z at the radius r indicates that we take the derivative with respect
to the second variable x.

Example 3.9 Let H = H({h™"/?}; Q%) with h € (0,1). The first order radial
derivative L: H - R, F — LF := 31;(;”), in the point z € Q%" has the representer
L € H, given by

—[y| (3h3RE (z - y)(|2|[y))~" + |«*|y/?)

4r (h2RY — 2h R¥(z - y) + |a]? [y|2)**

|yl (=5r*R|z||y| + h R? |z||y|(z - y))
Ar (R2R* — 2R R2(z - y) + =2 |y[2)*/*

L(y) :=

Example 3.10 Let H = H({h~™/?}; Q%) with h € (0,1). The second order radial

derivative L : H - R, F — LF := 828119), in the point z € QF* has the representer
L € H, given by

lyl* (5A*R® (1—3(z - y)*(|z]ly)) %) + 4h R?|zly*(= - y))

L =
v ix (PR 20 2z ) 4 [o )77
N ly|* (2|z|* [y|* — h® R* (23 |z|? |y|* + (z - y)?) + 28 B3RS (z - y))
An (RPR* = 2h R2(z - y) + |22 [y[2)7/2 :
1400
0
1200
0 1000
800
-40 600
400
—60 200
0 ~J T
-3 -2 -1 0 1 2 3 -3 -2 -1 0 1 2 3

Figure 2: The representer of a first (left picture) and a second order radial deriva-
tive (right picture) on H = H({h_"/Q};Q‘}%‘t), restricted to the sphere Qg, for
R=1,h=0.9, |z| = 1.06, z fized (see Examples 3.9 and 3.10).
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For the spaces in Example 3.4 we can also obtain elementary representations of
the representers of first and second order radial derivatives, and the pictures of the
representers look similar to the ones in Figure 2 (see [24], [25]). The representers
of first and second order radial derivatives in the classes of spaces in Examples 3.3
and 3.4 are strongly space-localizing functions. As with the reproducing kernel
itself, the space-localization of the representers depends on the parameter h: the
closer h is to one, the stronger is the space-localization. For practical purposes,
this means that an interpolating or smoothing spline with respect to evaluation
functionals or first or second order radial derivatives (in points of a finite grid in
Q%) can only be expected to yield a sensible approximation if the areas where
the representers are not small overlap sufficiently. Due to the space-localizing
nature of the representers, it is also possible to compute a spline which is a local
approximation of a function from only locally given data. In this case, Gibbs’
phenomena will occur at the boundary of the local region, where the data are
given.

3.3 Harmonic Scaling Functions and Wavelets

Harmonic scaling functions and wavelets are defined similarly as introduced in [17].
A scaling function is a family of kernels {®;};cn,, which ‘approximate the Dirac’
in the sense that the convolution z — F %3 ®;(z,-) of a function F' € H with these
kernels gets a better and better approximation of F' as j increases. Wavelets help
to describe the difference between two such subsequent approximations of F'.

Definition 3.11 Let H = H({A,}; Q%) be defined as in Definition 3.1, and let
{®;}jen, be a sequence of kernels

oo 2n+1

2w =3 3 O g (Rw) Hu(Bi) Q

n=0 k=1

z,y € O, where the sequences {(®;)"(n)}neny, j € No, of real numbers have to
satisfy

Jim (®;)(n) = 0 (10)
and -
> @@, ) < oo )
n=0 n

The sequence {®;}jen, is called a (harmonic) scaling function for # if for all F € H
lim F sy ®;(z,-) = F(z), z € Q5 (12)
j—o0

in || - ||2-sense. The family {{(®;)"(n)}nen, }jen, s called the generating symbol
of the scaling function {®;};en,-
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Conditions (10) and (11) guarantee that ®;(z,-) € H for any fixed z € QTﬁt,
that the convolution in (12) is well-defined, and that ®; is a continuous kernel.
It should be noted that condition (10) could have been replaced by two slightly
weaker conditions, but we rather demand (10) because it seems to be a natural
property of a scaling function. Computation of the convolution in (12) yields

oo 2n+1

Fog ®5(z,) =Y Y (®)"(n) By Hoi(R; ),

n=0 k=1

z € Q% which implies that lim;_,, (®;)"(n) = 1 has to be satisfied for all n € Ny.

Lemma 3.12 Let H = H({A,}; QF*) be defined as in Definition 3.1, and assume
that {®;};en, is a sequence of kernels of the form (9) which satisfies (10), (11),
and the conditions

(i) there exists a constant C > 0 such that |(®;)"(n)| < C for alln € Ny and all
j € NO;
(it) limj_ oo (®;)N(n) =1 for alln € Ny.

Then {®;} en, is a scaling function for H.

For a better understanding, we give a sketch of the proof: The error ||F — Fsy ®;|| %
reads

oo 2n+1

1/2
|F' = F *3 @jllp = (Z DAL (FR) (1 (‘I’j)A(n))2> : (13)

n=0 k=1

Condition (i) implies that |1 — (®;)"(n)| < 1+ C uniformly in n € Ny and j € Ny,
so that we are allowed to interchange the limit for j — oo and the summation in
equation (13).

Definition 3.13 Let {®,}jcn, be a scaling function for H = H({A,}; Q) with
the generating symbol {{(®;)"(n)}nen, }jen,- The sequence of kernels {¥;} en,,
defined by

0o 2n+1
n=0 k=1 n
z,y € Qe"t, where the sequences {(¥;)"(n)}nen,, j € No, are given by
(T;)"(n) = (®j+1)"(n) — (2;)"(n),

is called the (harmonic) wavelet corresponding to the scaling function {®;};en,-
The family {{(¥;)"(n)}nen, }jen, is called the generating symbol of {¥;} en, -
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The definition of the wavelet {¥;};en, implies that
lIlj:(I)j-f-l_(I)jJ jGNOJ
J
‘I)J+1 :(I)J0+Zq;j7 J,J()EN(),JZJ().
Jj=Jo
This leads to the decomposition and reconstruction theorem.
Theorem 3.14 Let {®;}jen, be a scaling function for H = H({An}; Q%) with

the corresponding wavelet {¥;};en,. Define the sequences {P;j}jen, and {T}}jen,
of bounded linear operators on H, by

Pj:H—)H, P]F(:L') :ZF*Hq)j(.’L',-),
Tj:H—H, TiF(x):=Fxy¥z,).
Then

J
PJ+1:PJO+ZT]', J,Jo €No, J > Jp,
j=Jo
and any F' € H can be reconstructed in H by

J
F=P; F li T.F . 1
Jo +JLIEOJZJ: ’ (15)

=Jo

Theorem 3.14 is a direct consequence of (14) and the definition of a scaling function.

The idea behind (15) in the last theorem is that Py F' is a low-pass filtered basic
approximation of the function F'. By adding successively the T} F, j = Jy,...,J,
we add more and more details (band-pass filtered versions) of F to improve this ap-
proximation. This allows it to reconstruct the function F’ with different resolutions
and also to see how it changes from one approximation to the next.

Lastly, we give some examples of scaling functions and wavelets. The most sim-
ple example is the bandlimited Shannon scaling function and the corresponding
wavelet. Bandlimited means that the series expansions of almost all the kernels
(9) are finite sums or, in other words, that for almost all j € Ny only finitely
many members of the sequence {(®;)"(n)}nen, are different from zero. A scaling
function that is not bandlimited is called non-bandlimited.

Example 3.15 Let {v;};jen, C (0,1] be a strict monotonically decreasing sequence
with limj .o v; = 0. Then the generating symbol {{(®;)"(n)}nen, }jen, of the
Shannon scaling function {®;};en, for the space H = H({An}; QF?) is defined by

1 if 0<n<~;!
0 if 'yj_lgn<oo.

(®;)"(n) = {
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Hence, the Shannon scaling function {®;}jen, for H = H({An}; Q") is given by

_ (2n+1) Rz \"! T-y
BN = 2 ez i) P \ell)

f

Unfortunately, the Shannon scaling function and its wavelet oscillate rather strongly.
The next examples are non-bandlimited scaling functions.

7 3
6 2.5
5 2
4 1.5
3 1

2
0.5

1
0

0

-3 -2 -1 0 1 2 3 -3 -2 -1 0 1 2 3

Figure 3: Kernels ®; of the Abel-Poisson scaling function (left picture) for
H = H{h™?};Q%Y) (Ezample 3.16 (a)) for j = 2 (solid), j = 3 (dashed),
J =4 (dotted), and the kernels ¥; of the corresponding Abel-Poisson wavelet (right
picture) for j =2 (solid), j = 3 (dotted), where v; =277, a =1, y € Qg, = fized,
|zl =R, R=1, and h =0.9.

Example 3.16 Let {v;}jen, C R" be a strict monotonically decreasing sequence
of positive real numbers with lim;_,.,v; = 0, and define Q : [0,00) — [0,00),
Q(t) := at, where a € R". The generating symbol {{(®;)"(n)}nen, }jen, of the
(exponential) Abel-Poisson scaling function {®;}jen, for H = H({A,}; QF) is
defined by
(®,)"\(n) := e iR = g=van

and the corresponding (exponential) Abel-Poisson wavelet {¥;};en, has the gen-
erating symbol {{(¥;)"(n)}nen, }jen, given by

(@) (n) := e Vi+1QM) _ —7Q(n)
For the following classes of spaces, the kernels ®; of the Abel-Poisson scaling func-
tion {®;}jen, are available as elementary functions:

(a) Let h € (0,1). Then the Abel-Poisson scaling function {®;}jen, for the Hilbert
space H({h~"/?}; Q%) is given by

(I)(m ) B i |$|2|y|2 _ h2R4e—2'yja
PP T I (aPlyP + R e —2h R ()
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(b) Let h € (0,1). Then the Abel-Poisson scaling function {®;};en, for the Hilbert
space H({(n + )72 h~"/2}; Q%) is given by

1
(|z[2|y|2 + h2Rie~27i* — 2 h R2e~vi(z - y))/*

1

4 Reconstruction of the Gravitational Potential
from SST-Data or SGG-Data

In this section the approximation of the potential with a smoothing spline, com-
puted from given noisy SST-data or SGG-data, is explained. It should be noted
that spline smoothing and spline interpolation, as defined in Subsection 3.2, are
not only means of approximation in the sense that they allow us to reconstruct an
observable from given data. They even enable the solution of integral equations,
in our case the SST-problem and the SGG-problem. The numerical results for the
described approach will be presented in Section 5.

4.1 Formulation of the SST-Problem and the SGG-Problem

Let the earth’s surface g be a CP-regular surface, and choose a Bjerhammar
sphere Qg for ¥g (usually close below X, see Figure 4). We assume that the
earth’s gravitational potential V is in Pot(®) (Zet) and that we are given noisy
SST-data (k = 1) or noisy SGG-data (k = 2)

on a pointset Xy = {z1,...,2n} on the satellite orbit. The values €;,...,exy € R
are the measurement errors. As the given data (16) is satellite data, we may assume
that

i:l,...,N} (16)

zngpE || < min |z .
The task (SST-problem and SGG-problem) is to reconstruct the earth’s gravita-
tional potential on and outside the earth’s surface ¥g with the help of the given
SST-data and SGG-data (16), respectively. This is clearly an ill-posed problem,
due to the ill-posedness of downward-continuation.

We remark that it is also possible to model, instead of the earth’s gravitational
potential V', the potential V — W, where W € Pot(® (2¢x%) is a known model which
captures the global trends of the earth’s gravitational potential. Such a model W
could, for example, be an outer harmonic model which includes only outer harmonic
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contributions of a low degree. To start with ‘residual data’ of V. — W is also a very
sensible approach because the spline method, investigated here, works with space-
localizing functions and is particularly suited for the description of the finer local
structures of the gravitational potential.

Figure 4: Xg is the earth’s surface, and Qg is a Bjerhammar sphere for Yg.

4.2 Solution of the SST-Problem and the SGG-Problem

A motivation of our approach is given by the following theorem which follows from
the Runge-Walsh approximation theorem (see [12]) and an extension of Helly’s
theorem (see [39]). For a proof of Theorem 4.1 see [25].

Theorem 4.1 Let ¥ be a C? -reqular surface and let Qg be a Bjerhammar sphere
for . Assume that Xy = {z1,...,zn} C % is a pointset in X% such that
Sup, ey 7| < mini—1, n|zi|. Let G € Pot®(TY). Given ¢ > 0, there exists a
function F € H = H({An}; Q%) such that

sup |G(a) — F(2)| <
TEXext

and
6”F(."L'z) _ 8”G(£Bz)
ars  9re

fori=1,...,N,

where k € {1,2}.
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Application of Theorem 4.1 to the SST-problem and the SGG-problem, respec-
tively, yields that, given ¢ > 0, in a space H = H({An}; Q%") there exists a
function U € H such that

sup [V(e) - U(a)| <e

zeTg™

and

orc  Ork

This function U can now be approximated by a smoothing spline Sy in H com-
puted from the data (16) of V', where the smoothing parameter A has to be chosen
depending on the errors €1, ..., en. If the SST-data and SGG-data, respectively, is
‘dense enough’ and has sufficient accuracy, this smoothing spline can be expected
to be a good approximation of U, and consequently V', at the satellite orbit. As the
SST-problem and the SGG-problem are ezponentially ill-posed problems, it seems
(from the theoretical point of view) not predictable whether spline smoothing yields
sufficient regularization to guarantee that Sy is also a good approximation of U and
V with respect to || ||, (T Our numerical experiments, however, have shown that
the smoothing spline S is a good approximation of the potential V' everywhere on
@. If this were not the case, we could compensate the ‘remaining ill-posedness’
by convolving the spline Sy with a suitable scaling function. For a more detailed
discussion of these points the reader is referred to [25].

fori=1,...,N.

The computation of the smoothing spline Sy = Eil a} L; from the given data
(16) demands the solution of the following linear system:

0"V (1)

N
i (Li, L Aoy = ———
> i (Li, L)a + Ay o

i=1

+¢, 1=1,...,N, (17)

where the bounded linear functionals £, ..., Ly on the Hilbert space H with the
representers Ly, ..., Ly are given by

6”F(.’E,)

ﬁi:H%R, F’_);C@F:
ore

In case N is large (i.e., N > 10,000), this becomes a time-consuming task. In
order to save time and memory, (17) can be solved efficiently with a domain de-
composition method, the Schwarz alternating algorithm. We have implemented
a multiplicative variant of this algorithm, which splits the large matrix in (17)
in a number of smaller submatrices of the same type and solves smaller systems,
corresponding to these submatrices, subsequently in each iterative step. This mul-
tiplicative variant has still the ‘standard structure’ of an iterative algorithm and
can be used for the solution of any linear system with a positive definite symmetric
matriz. As the main focus of this publication is on the presentation of the numerical
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results, we do not discuss here the solution of the linear systems in detail, but give
only a pseudocode of the algorithm in Section 5 and refer the reader to [6], [20],
[24], and [25], where the multiplicative variant of the Schwarz alternating algorithm
and its application to the computation of (harmonic) splines are discussed in great
detail. For more general information about the Schwarz alternating algorithm we
refer to, for instance, [7], [23], [29], [30], [38].

Concerning the smoothing spline Sy, it should be noted that the given data are
values of the first or second order radial derivative of the potential at the satellite
orbit, whereas the computed spline Sy is not an approximation of this data but
an approzimation of the potential on LE*. This means that the computation of
the spline actually solves the SST-problem and the SGG-problem, respectively:
the spline is not an approximation of the given data but a solution of the ill-
posed SST-problem or SGG-problem, both of which can be formulated as compact
pseudodifferential operator equations (see, for example, [17] or [25]).

Finally, we discuss the important question of the choice of the Hilbert space
H=H{A}; QTI%“) The spaces discussed in Examples 3.3 and 3.4 are reproducing
kernel Hilbert spaces with strongly space-localizing reproducing kernels K4, and
the representers L; := -2 Ky(-, z;) of the bounded linear functionals £; : H — R,

Br;i

LiF = Bmg; (f "), i =1,..., N, are also strongly space-localizing. It is clear that the
areas where these functions are not small have to overlap sufficiently; otherwise the
computed spline will be a ‘collection of peaks’ at the measurement points. On the
other hand, the stronger the space-localization of the representers L;, i = 1,..., N,
the better is the condition of the matrix. We have to balance these two contrary
demands. Clearly, the right amount of space-localization depends on the density of
the pointset. For the classes of spaces given in Examples 3.3 and 3.4, we can tune
the space localization with the parameter h. Furthermore, the space H should be
chosen such that the representers L; and the matrix entries in the linear system (17)
have representations as elementary functions, because this will simplify the numeri-
cal computations. This is satisfied for the spaces H in Examples 3.3 and 3.4. (If the
L; and the matrix entries are not available as elementary functions then we have
to truncate their series expansions, which causes numerical errors. Furthermore,
the computation of the truncated series expansion is rather time-consuming.)

5 Numerical Results

In Subsection 5.1, we describe the setup for our numerical simulations for an SST
scenario, and in Subsections 5.2 and 5.3 we present and discuss the numerical
results.
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5.1 Recovery of the Potential from SST-Data

For the numerical simulations of the reconstruction of the earth’s gravitational po-
tential from noisy SST-data, we use the NASA model EGM96 (Earth Gravitational
Model 96, see [28] and http://cddisa.gfsc.nasa.gov/926/egm96.html), which
provides a model of the earth’s gravitational potential in form of a set of (real fully
normalized) spherical harmonic coefficients {Vrﬁk}n:o““,360; —n<k<n related to a
sphere Q g, whose radius R = 6378136.3 m coincides with the equatorial radius
of the earth, and to the £2(2)-orthonormal system of fully normalized spherical
harmonics {Y},  }neno; —n<k<n, commonly used in geosciences. The corresponding
outer harmonics for the sphere Q0 are denoted by {Hp, x(R; ) }neNg; —n<k<n, and
we regard outer harmonic contributions to EGM96 from degrees n € {5,...,80},
i.e., the test gravitational potential used for our simulation is

80 n
‘7(32) =I'M Z Z Vyﬁan,k(R;x)a ‘IEEQ%“’

n=>5k=—n

where I' M = 3986004.415 - 108 m3s~2 is the product of the gravitational constant
I" and the mass of the earth M. The SST-signal is then given by the function

ov(z) _
or

80 n
—-(n+1 y
TM ), 2. %Vrfﬂc H,i(R;z), zeQf'. (18

n=>5k=—n

The simulated SST-data are generated on an ellipsoid of revolution Es (with
semiminor axis by = 6825674.24 m and the semimajor axis by = 6853093.49 m)
whose rotational axis is the semiminor axis pointing in the direction of the North
Pole. The center of the ellipsoid Es is the origin of the Euclidean space R® (see
Figure 6). The simulated noisy SST-data

()

are generated in the points of a Reuter grid (or a local subset of a Reuter grid)
with grid parameter 7, which are projected from the sphere Qg along the radial
direction onto the ellipsoid of revolution Es.

i:l,...,N} (19)

Definition 5.1 For 7 € N the Reuter grid Xn = {(r,¢;,;,9:)} on Q. is defined
as follows:

(a) Yo :=0, ¢o,1 := 0 (North Pole),
(b) AY =x/T,
(c) ¥ :=iA3, 1<i<7T-—1,
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cos(AY) —cos?(9; -1
(d) 7;:= {2# (arccos (W)) J,
(e) pij:=(—3)2r/m), 1<j<m,
(f) ¥ :==m, ¢r1 := 0 (South Pole),

where |z| ;= sup{n € Z|n < z}. The number of points N = N(r) in the Reuter
grid depends on the grid parameter T and can be estimated by N(1) <2+ %7’2.

Latitude

Longitude

Figure 5: Reuter grid with grid parameter T = 35 and N = 1542 points.

North Pole

ES = orbit
ellipsoid

South Pole

Figure 6: The geometrical situation in the numerical study.
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The noise €1, ..., en is generated with a random number generator which is based
on the standard Gauss normal distribution with a noise level of 2% of the the mean
absolute value of the SST-signal in the domain where the SST-data are given. We
compute a smoothing spline Sy = Zfil a? L; in the reproducing kernel Hilbert
space H = H({h~™/?}; Q%) from the given data (19), i.e., the smoothing spline
Sy is in Sy (L1,. .., Ln), where £; : H — R is defined by £;F := 2E&) and has
the representer L;, given in Example 3.9. If we denote the reproducing kernel of
H by Ky - Q% x QTR’,“ — R the linear system (17) for the determination of the
coefficient vector of the smoothing spline S) takes the form

N ~
Zai 9 9 Ky(zr, x:) + Aoy, = OV (zi) + €k k=1,...,N. (20)
i=1

Org, Ora, or ’

The entries of its matrix are available as elementary functions because the reproduc-
ing kernel K4, has a representation as an elementary function (see Example 3.3).
The linear system (20) is solved with the following multiplicative variant of the
Schwarz alternating algorithm:

Let Xny,.-., XNy, where Xy, := {27,...,2 }, r € {1,..., M}, be M possibly

overlapping subsets of the measurement pointset Xy = {z1,...,2nx} C Es such
that

M

U X~ = Xn.

r=1

Forr € {1,..., M}, we define the restriction operator R, : RN — RN w — R.(w),
Ry (w) = (Re(w))1,- -, (R (w))n,)", by

(Rr(w)); == w; for the index j € {1,..., N} with zj = z;,

and the embedding operator I : RN — RN | 2z = I,(2) = (I ()1, ..., (I (2))N)7,
by
Zj if there exists j € {1,...,N,} with z; = 27

T . 7 ) s 4Vr i j

(I (2))s { 0 else.
Then the multiplicative variant of the Schwarz alternating algorithm for the solu-
tion of the spline smoothing problem (20) in the space H = H({h~™/?}; Q%) with
the smoothing parameter A € RT reads as follows:

Agorithm 5.2

define forr = 1,..., M the matrices A, := [(%Lr %KH(:E;,:E{)—F)\&J]
z3 L] %,j=1,...,N»

= = T
set fo 1= (%4—61,...,%—{—61\7) and ap := (0,...,0)T € RN
forn=0,1,2,... do

forr=1,...,M do
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solve Ay b= Ro(fnpt(r—1)), where b= (by,...,bn, )T € RN
update anrryr = Gpprg(r—1) + Ir (D)

update fnorrir = famype—1) — A (b) — ((Z 1 bi %g:;:))k 1 N)T

=1,...,

until 7|f("‘;1l)m <e

compute SC = Zﬁil(a(nH)M)i 8;9“ K-, z;)

The subdivision of the sphere (or a subset of the sphere, which is a rectangle in
the (p,¥)-plane) is based one a subdivision of the (p,)-plane in (overlapping)
rectangles which are of the same surface area on the sphere. In our implementa-
tion of Algorithm 5.2, the QR factorization of the matrices A, of the subproblems
is computed in advance in a preprocessing step (with the FORTRAN software
package LAPACK) and is kept in memory, so that the subproblems can be ef-
ficiently solved with the associated LAPACK QR backward substitution routine
in the iterative steps of the algorithm. The accuracy tolerance € in the stopping
criterion of Algorithm 5.2 is chosen, for all computations as either & := 10710

€ := 1078, The implementation was done in C++, using the Prama 2001 C++
library of M. Fengler. For the details the reader is referred to [24] and [25]. After
the smoothing spline S with the smoothing parameter A has been calculated with
the multiplicative Schwarz alternating algorithm from the noisy SST-data (19), it
is evaluated on a (¢,¥)-grid {y1,...,yr2} of L x L points (equiangular in ¢ and
equiangular in 1, i.e., the angles of the grid points are all of the form ¢ = po+k Ay,
¥ =99+ kAY, where 0 < k < (L —1), k € Ny, but in general Ap # AY) on the
ellipsoid of revolution Eg with semiminor axis a; = 6384520.82 m and semimajor
axis ag = 6405998.92 m. The semiminor axis of Ef is parallel to the semiminor axis
of Eg, and the ellipsoid Eg rotates around its semiminor axis and has its center
in the origin of R® (see Figure 6). The mean absolute error (mean error) and the
rooted mean square error (rms error) of the smoothing spline S,

mean error := Z |V yi) — Sx(yi)l,

1/2

rms error := | 5 Z |V i) — Sa(yi)]? )

as a model for the gravitational potential V on Ey are computed. For a suitably
chosen smoothing parameter A, the smoothing spline Sy shows sufficient accuracy
as an approximation of 17, and no further smoothing (via convolution with a scaling
function) is required.

A reconstruction of the potential V in form of a multiresolution is derived by
convolving the smoothing spline S, with the kernels of the Abel-Poisson scaling
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function {®;};en, for H, with generating symbol {{(®;)"(n)}nen, }jen,, defined
by (®;)"(n) := e"27’" (i.e,, @ = 1 and y; = 277 in Example 3.16), and of the
corresponding wavelet {¥;} en,. The resolution of the model Sy = Eil a} L; of
V at scale J € Ny is then given by

BiS\@) = 53 tyygnnrayioge (@)

N
d - (21)
= Zag\ 6—@]-(:1:,:1:,-), x € XE,
i=1 Tz

where %@j (z, ;) can be easily computed as an elementary function, due to the
elementary representation of ®;. The detail T;S of the model Sy at scale j is
given by

TiSa(e) = Sx*yyp-nrepane) Lil®:)

- (22)
= Pj1Si(x) — P;Sa(z), z € XL,

Clearly, P;Sy and T;Sy can be easily evaluated, due to the representations of ®;
and ¥; as elementary functions.

In this study, the sphere Q0 as well as the two ellipsoids of revolution Eg and
Es are parameterized in polar coordinates (r,p,d) with (p,9) € [0,27) x [0, 7],
and a local domain on any of these surfaces will be described by specification of
the restrictions on the angles ¢ and ¥. Furthermore, two remarks concerning the
implementation should be made:

Firstly, it should be noted that, although we do not evaluate our model V on Q R
but on the ellipsoid Eg which lies in Q5" and whose semiminor axis is slightly larger
than R, this does not reduce the quality and relevance of this study. The ‘distance’
between Eg and the ‘orbit ellipsoid’ Eg is still approximately 443 km which was
approximately the initial orbit altitude of the satellite in the SST mission CHAMP.

In the implementation, the surfaces 0, Eg, and Eg are scaled with the multi-
plicative factor 0.999/6378136.3. This scaling maps g, Eg, and Eg on a sphere
with radius 0.999, on an ellipsoid of revolution with axes @; = 1, @ = 1.00336409,
and on an ellipsoid of revolution with axes 31 = 1.069097342, 52 = 1.073391987,
respectively. While the values of the potential and the smoothing spline and the
errors of this approximation are invariant under the scaling, the matrices in (20)
and, consequently, the smoothing parameters are scaled with some multiplicative
factor. This means that, apart from the mean absolute error and the rooted mean
square error, the data listed in this section refer directly to the implementation for
the scaled surfaces.
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5.2 Local Reconstruction of the Gravitational Potential from

Local Noisy SST-Data

The box below lists the data for the numerical simulation:

e A Reuter grid with grid parameter 7 = 300 on Qg is projected on Eg, and

we select those grid points in the local domain I's (a domain on Eg over
Malaysia), given by

1.396263402, 2.967059728
Tg:= {.’L‘:(’l‘,(p,’ﬂ)EEs SOG[ ’ ]’} (23)

¥ € [1.047197551, 2.094395102]

Is contains N = 14306 points of the projected Reuter grid. (The complete
Reuter grid with grid parameter 7 = 300 consists of 114444 points.)

The SST-signal (18) of the potential V is computed in the N = 14306 points
in T's, and noise of a noise level of 2% of the mean absolute value of the
SST-signal is added. The (numerically computed) variance of this noise is
02 =71.1938 ms 2.

Smoothing splines Sy are computed in H = ”H({h_"ﬂ};ﬂTé‘t) with A = 0.93
from the noisy SST-data (19) for a range of smoothing parameters \.

Due to Gibbs’ phenomena at the boundary of the local domain

¢ € [1.396263402, 2.967059728],

Te = {m =0, 9) € Be |y 1 047197551, 2.094395102] } (24

which is just the projection of I's onto Ex along the radial direction, we
evaluate the smoothing splines S and the potential V on the subset

Ig:= {:c =(r,p,¥) € Eg (25)

¢ € [1.625173419, 2.738149711],
9 € [1.199804229, 1.941788424]

on a (p,9)-grid of 140 x 140 points, which is equiangular in ¢ and equiangular
in 9.

e The potential V assumes on 'y, values between —180 m? s=2 and 360 m2 s~2.

Table 1 lists the mean absolute error and the rooted mean square error for the
computed smoothing splines Sy = Zil a L; with smoothing parameters ), that
range from 10~° to 100. The errors are computed from the values of the splines at
the (¢, 9)-evaluation grid of 140 x 140 points on I'g. The smoothing spline with
smoothing parameter A = 1 has the smallest mean absolute error and the smallest

rooted mean square error.
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Figure 7: The potential Y7|i:E (left picture) and the error (V — S\, (right

picture) of the smoothing spline Sx, A = 1, in m?s—2.

11

10 .

5
6.5 6.6 6.7 6.8 6.9 7 71 7.2 7.3 7.4 7.5

Figure 8: The L-curve A\ — (In(|£Sx — (LV + €))), (1Sl -ns2y,935)) for
the data given in Table 1, where the smoothing parameters A € {0.7,0.85,2,3,4}
are omitted for a better transparency of the plot: In(|LS\ — (£Y~/ + €)| is plotted
on the x-axis and ln(”S)\”H({h—n/?};QTﬁzﬂ)) is plotted on the y-axis. The smoothing
parameter declines if we follow the L-curve from the right to the left.

Figure 7 shows the potential 1~/|fE and the error (V — Sx)|g, of the smoothing
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spline Sy with smoothing parameter A = 1.

In order to compare this ‘best’ smoothing parameter A = 1 with the one pre-
dicted by the L-curve criterion, Table 1 also lists the quantities |£Sy — (LV + €)]
and ”S/\”H({h—"/z};QTgt)’ where S, = Zf;l a} Li, LSy = (L1Sy,...,LnS))T,

LV = (LyV,...,LxV)T, € = (€1, ..., en)T, for various smoothing parameters .
Figure 8 shows the L-curve for most of the parameters A listed in Table 1. For this
scenario the L-curve criterion works satisfactory because the ‘corner’ of the L-curve
corresponds to our experimentally determined ‘best’ smoothing parameter A = 1.

Table 1: The quantities |LSx — (LV + €)|, ||SA||H({’I—"/2}‘W)’ and the mean
WER

absolute error (mean error), and the rooted mean square error (rms error) of the

smoothing splines Sx in H({h~™/?}; %), where h = 0.93, with the smoothing

parameters X (on the 140 x 140 (p,9)-evaluation grid on Tg).

A |LS) — (LV +€)| ||S>\||7-L({h—n/2};9e_;°) mean error | rms error
in m2s2 in m2s2

1075 | 904.071 36470.8 115.5329 143.347
10—% | 920.715 10841.1 50.0656 62.7500
0.001 | 935.131 3359.14 21.4827 27.1124
0.01 948.848 1069.24 9.8564 12.2821
0.03 954.991 655.133 7.0270 8.7270
0.05 957.667 543.441 6.0615 7.5408
0.1 961.118 446.701 5.0041 6.2605
0.5 969.261 350.697 3.3549 4.2707
0.7 971.321 340.912 3.1626 4.0318
0.85 | 972.645 335.982 3.0868 3.9317

1 973.853 332.166 3.0452 3.8718

2 980.494 318.124 3.0966 3.8914

3 986.066 311.037 3.2869 4.1137

4 991.144 306.35 3.4842 4.3540

5 995.917 302.874 3.6654 4.5791
10 1017.31 292.778 4.3361 5.4331
50 1147.21 272.153 6.1439 7.8669
100 1275.66 264.074 6.9487 9.0265

In order to illustrate the Gibbs’ phenomena at the boundary of I'g, we evaluate Sy,
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with A = 1, and V on a (g, 9)-grid of 200 x 200 points on I'y, (which is equiangular
in ¢ and equiangular in ¥). After that, we remove cutoff € {0, 10, 20,30, 40,50}
points in @-direction and in ¢-direction of this grid at the respective sides of the
domain I'e and compute the mean absolute error and the rooted mean square
error of Sy as an approximation of V for the remaining grid points. These errors
are listed in Table 2. The evaluation grid of 140 x 140 points on our domain T'e
corresponds to cutoff = 30.

Table 2: The mean absolute error (mean error) and the rooted mean square error
(rms error) of the smoothing spline Sy in H({h~"/?}; QS¥Y), where A\ =1, h = 0.93,
on subdomains of Tg which are obtained by removing cutoff points in p-direction
and in ¥-direction of the 200 x 200 (p,?)-evaluation grid at the respective sides of
the domain I's.

cutoff | mean error | rms error
in m2s~2 in m%2s~2
0 5.2649 7.3952
10 4.1225 5.4831
20 3.4430 4.4601
30 3.0452 3.8718
40 2.7467 3.4540
50 2.6093 3.3106

Figure 9 shows a multiresolution analysis of the potential V|1:E which has been
computed by convolving the ‘best’ smoothing spline Sy in H({h~"/?}; QTé‘t), where
A =1, h = 0.93, with kernels of the Abel-Poisson scaling function {®;};en, for
H({h™/?};Q5*) (where (®;)"(n) := e 2'") and of the corresponding wavelet.
In formulas, the potential I~/|1:E is reconstructed by

8
Vg, = PaSilg, = B5Sig, + ZTjS/\|fE ; (26)
j=5
where A = 1, and we have the relation

Pj+1S,\ = PjSA + TjS,\ .

(For the definitions of P;Sy and T;Sy see Theorem 3.14 and (21) and (22).)
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Figure 9: Multiresolution (26) of 17|1:E: in the j-th row on the left PjiaS)|g_
and on the right Tj14Sx|5_, where j € {1,2,3,4}, and in the last row PySi|z_ .
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5.3 A Global Model of the Gravitational Potential from
Global Noisy SST-Data

The box below lists the data for the numerical simulation:

e Global noisy SST-data of the potential V is generated in the points on Eg,
obtained by projecting a Reuter grid with grid parameter 7 = 150 along the
radial direction from Qg onto Es. The total number of grid points on Eg
is N = 28568, and the noise has a noise level of 2% of the mean absolute
value of the SST-signal. The (numerically computed) variance of this noise
is & = 61.6225 ms—2.

e Smoothing splines S, in H({h‘"ﬂ};ﬂ‘};‘t), where h = 0.93, are computed
from this global noisy SST-data for several smoothing parameters A .

e These smoothing splines S, and the potential V are evaluated on a global
(¢, 9)-grid which consists of 200 x 200 points, equiangular in ¢ and equian-
gular in 4.

e The potential V assumes on FEg values between —370m2s=2 and
+350m2s~2.

Figure 10 shows the potential V on the ellipsoid Eg in the left picture and the error
V — Sy of the empirically determined ‘best’ smoothing spline Sy with A = 2 on Eg
in the right picture. The mean absolute error of this spline Sy as an approximation
of V on Eg is 3.0763m2s~2, and its rooted mean square is 3.9472 m?s~2.

-300 -200 -100 0 100

Figure 10: The potential V on Eg (left picture) and the error V. — Sy of the

smoothing spline Sx, A = 2, on Eg (right picture) in m2s=2.
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