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Introduction

The earth is a pulsating body with moving tectonic plates, melting ice caps, rising ocean
levels, a variable gravitational field due to the postglacial adjustment processes, varia-
tions in angular velocity due to the exchange in angular momentum between solid earth,
oceans and atmosphere, to make it short, our planet is a complex system for which modern
geodesy tries to set up reliable models. In this context a precise and detailed determination
of the earth’s gravitational potential on the earth’s surface is indispensable, and satellite
techniques provide a globally dense set of well-distributed observations of the gravitational
potential.

This thesis is concerned with the reconstruction of the earth’s gravitational potential from
satellite measurements. In this context, two measurement principles are of major interest:
satellite-to-satellite-tracking (SST) and satellite gravity gradiometry (SGG), and among
the two variants of satellite-to-satellite tracking which are under investigation in the geode-
tic community, we are here interested in the so-called high-low satellite-to-satellite tracking
(SST high-low). In what follows, we will give a simplified explanation of the measurement
principles. Here we assume that the movement of the satellite is a consequence exclusively
of the gravitational potential of the earth.

In high-low satellite-to-satellite tracking, a low flying satellite (low earth orbiter) trav-
els on a nearly circular and nearly polar orbit. The low earth orbiter is equipped with a
GPS-receiver and uses the global positioning system (GPS) to determine its position as
follows: The 24 GPS-satellites fly at an altitude of approximately 20000 km on orbits which
are chosen in such a way that from every point on the earth’s surface at least four of these
GPS-satellites can be simultaneously seen. Due to the high altitude of the GPS-satellites,
the earth’s gravitational potential, which is attenuated exponentially with increasing dis-
tance from the earth’s surface, is known at the orbit altitude of the GPS-satellites with
negligible error, and thus the positions of the GPS-satellites can be determined with high
accuracy. Each GPS-satellite continuously sends a signal which includes the sending time
and its position at sending time, With this information the distances of the low earth or-
biter from the GPS-satellites, and hence its position, can be calculated from the travelling
time of the GPS-signals. By numerical differentiation of the orbit the acceleration of the
satellite can be determined, and thus (according to Newton’s law of motion) the gradient of
the gravitational potential. This yields in particular the radial derivative of the potential,
from which the potential can be uniquely recovered.

In satellite gravity gradiometry, a low earth orbiter, this time equipped with a gradiometer
in addition to the GPS-receiver, travels on a nearly circular and nearly polar orbit. As in
case of SST, the GPS-receiver admits an accurate determination of the satellite’s position.
The gradiometer on board the satellite measures the relative motion of two test masses
inside the satellite, and with the help of these measurement data it is possible to determine
the full gravity tensor (Hesse matrix) of the earth’s gravitational potential in points on
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the orbit. In particular this yields knowledge of the second order radial derivative of the
gravitational potential in the measurement points, which suffices to recover the earth’s
gravitational potential.

The principle of high-low satellite-to-satellite tracking is already realized in the German
satellite mission CHAMP (CHAllenging Minisatellite Payload). The satellite CHAMP was
launched on July 15th, 2000 from the cosmodrome Plesetsk in Russia. It travels on an
orbit with an initial altitude of 454 km, an inclination of approximately ¢ = 87° and an
eccentricity of approximately e = 0.004. During the five years lifetime of CHAMP the
orbit altitude will decrease to 300 km at the end of the mission due to atmospheric drag.

The future ESA satellite mission GOCE (Gravity and steady-state Ocean Circulation Ex-
plorer), which will start in 2005/2006 and will last approximately two years, will realize
the SGG-scenario. The satellite GOCE will fly at the low altitude of approximately 250
km. GOCE will fly on a nearly circluar orbit with eccentricity between e = 0.001 and
e = 0.0045 and an inclination of approximately 7 = 96.5°.

For more precise and detailed information on the satellite missions CHAMP and GOCE,
the reader is referred to the internet addresses

e http://op.gpz-potsdam.de/champ/ (CHAMP)

e http://www.goce-projektbuero.de (GOCE)

e http://www.esa.int/export/esalP/goce.html (GOCE)
e http://goce.tu-graz.at (GOCE)

Both missions are expected to yield an improvement of the present NASA model EGM96,
a (global) model of the earth’s gravitational potential which is presented as a (finite) set of
Fourier coefficients (with respect to outer harmonics), as it is common in the geodetic com-
munity. Due to the non-space-localizing character of the outer harmonics, the calculation
of a model of this type requires global data. The EGM96 model includes outer harmonic
contributions complete up to degree 360, and was computed with the help of various kinds
of data (terrestrial and satellite data), which were collected during the last decades. Due to
the heterogeneity and the varying quality of the data (note that terrestrial measurements
are expensive and currently only available in sufficiently high density for certain regions,
whereas former satellite missions provided no high resolution due to a too large altitude),
the EGM96 model is considered to be not very accurate with respect to the high outer
harmonic degrees. The data material collected during the CHAMP mission is believed
to yield a reliable model up to outer harmonic degree 80, whereas the Hesse tensor data
measured during the GOCE mission are expected to give a further improved model which
is accurate up to an outer harmonic degree of 220.
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In this thesis we model the earth’s gravitational potential in a quite different way. In
contrast to the outer harmonics, which are not space-localizing, we use linear combina-
tions of functions which are strongly space-localizing to model the earth’s gravitational
potential. This has the advantage, that high-frequency structures can be resolved, and
furthermore, it is possible to compute a local model of the gravitational potential also
from only locally given data. This aspect is in particular interesting for the GOCE mis-
sion, since due to the inclination of the orbit of the GOCE satellite so-called ‘polar gaps’,
i.e., regions close to the poles where no measurements can be taken, occur. This problem
cannot be easily handled, if the gravitational potential is represented in terms of functions
which are not space-localizing. However, our approach does not intend to replace models
of the earth’s gravitational potential in terms of outer harmonic expansions completely,
but it can be well combined with those models by taking an outer harmonic model of the
earth’s gravitational potential up to a certain degree as a ‘basic approximation’, which is
subtracted from the data, and then using a linear combination of space-localizing functions
to model the remaining high-frequeny part.

The thesis is organized in three parts. Part I covers the mathematical tools which are
needed for the modelling of the earth’s gravitational potential. Chapter 1 introduces the
basic notation and the relevant background material about special functions which are used
in gravitational potential approximation. After that the potential theoretic foundations
behind the approximation of potentials by harmonic functions are given and the relevant
spaces of harmonic functions are introduced. We conclude the chapter with the presen-
tation of the Runge-Walsh approximation theorem, which is the crucial result behind the
approximation procedures used in the thesis. It states that under certain circumstances
a harmonic function can be approximated in uniform sense by a sequence of harmonic
functions which have a larger domain of harmonicity. This larger domain of harmonicity
can in case of the earth’s gravitational potential in particular be chosen as the outer space
of a sphere which is entirely inscribed in the earth’s interior. Since the mathematical mod-
els of satellite-to-satellite tracking and satellite gravity gradiometry involve the first and
second order radial derivatives of harmonic functions, we define function spaces in which
harmonic functions and their first and second order radial derivatives can be represented
in Chapter 2. Furthermore, we introduce pseudodifferential operators which operate on
these spaces, and we define the SST- and the SGG-operator as pseudodifferential operators
which map a harmonic function onto its first and second order radial derivative at satellite
altitude. In Chapter 3 the SST-problem and the SGG-problem are classified as ill-posed
pseudodifferential operator equations AF' = (G. The operator equations are ill-posed for
the following two reasons: On the one hand, the operator equations cannot be solved for
all right-hand sides G, and on the other hand the inverse of the SST-operator and the
inverse of the SGG-operator are not bounded. The unboundedness means that data errors
can be arbitrarily amplified if the gravitational potential is reconstructed from noisy SST-
or SGG-measurements. In order to cope with the ill-posedness, so-called regularization
techniques have to be applied, and their construction principles are briefly discussed. A
regularization for an ill-posed operator equation AF' = G is a sequence of bounded linear
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operators which approximates the unbounded inverse operator A~! pointwise. The dis-
cretization of these regularization schemes will be performed in Part II with the help of
the spline functions that are introduced in Chapter 4. In Chapter 4 we define interpo-
lating splines and so-called smoothing splines, which are appropriate in the presence of
noisy data. Scaling functions and wavelets are introduced in Chapter 5. After that the
construction of a regularization for the unbounded inverse A~! is explained. If this regu-
larization is realized with a so-called regularization scaling function it leads to a sequence
of approximations of the solution of the ill-posed operator equation AF = G at different
scales of space-frequency resolution.

In Part II we give the details of the numerical realization of the proposed regularization
techniques. Approximation of the right-hand-side G will in our case always be done by
computing either an interpolating or smoothing spline from the SST- or SGG-data. In case
of exact data an interpolating spline is calculated, whereas in case of noisy data a smooth-
ing spline is computed. For the practice this means that large linear equation systems with
a positive definite symmetric matrix have to be solved. In Chapter 6 we propose a domain
decomposition method, namely the Schwarz alternating algorithm, which allows it to split
these large linear equation systems into several smaller linear equation systems, which are
then alternatingly solved in an iterative procedure. The splitting of the large linear equa-
tion system corresponds to a splitting of the pointset (on which the SST- or SGG-data is
given) into a number of smaller, possibly overlapping, pointsets. In our implementation
of the Schwarz alternating procedure these smaller pointsets can be associated to certain
subdomains on a sphere. This is the reason why the Schwarz alternating procedure is
called a domain decomposition algorithm. In Chapter 7 the numerical discretization of
our regularization of the SST- and SGG-problem is explained. In the regularization the
right-hand side G of our operator equation is replaced by the spline which was calculated
with the domain decomposition method of Chapter 6 and which approximates GG. Due to
the properties of the splines this immediately leads to a discretization.

In Part III the results of our numerical experiments are presented. Chapter 8 contains
an extensive study of the performance of the Schwarz alternating algorithm. Here the
question how the number of subdomains (which correspond to the subdivision of the data
pointset) and the overlap of the subdomains influence the convergence, the runtime and
the memory requirement is addressed. The numerical studies show that (even without
the use of fast summation techniques) the Schwarz alternating procedure allows the solu-
tion of much larger linear equation systems than those which can be solved with a direct
solver. In addition the runtime is considerably reduced. In Chapter 9 the results for a
local reconstruction of the gravitational potential from simulated SGG-data are presented.
As mentioned above, an interpolating spline was calculated in case of ‘exact’ data and a
smoothing spline was used in case of noisy data. For a good tuning of the smoothing pa-
rameter the potential reconstructed from noisy data has approximately the same accuracy
as the potential reconstructed from ‘exact’ data.
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Chapter 1

General Notation and Potential
Theoretic Foundations

This chapter starts with the general notation used throughout the thesis and summarizes
the relevant background material on special functions used in gravitational potential ap-
proximation, i.e., Legendre polynomials, spherical and outer harmonics, in Section 1.1.
The presentation there is kept rather concise and omits proofs. For a detailed intro-
duction into the theory of spherical harmonics and Legendre polynomials the reader is
referred to [FrGeSchr1998| and [Mu1966]. After that the potential theoretic foundations of
gravitational potential approximation by harmonic functions are given in Section 1.2 and
the relevant function spaces are introduced. The crucial result behind the approximation
procedures in this work are the Runge-Walsh approximation theorem and an extension
of Helly’s theorem. The Runge-Walsh approximation theorem states that under certain
circumstances a harmonic function can be approximated in uniform sense by harmonic
functions which have a larger domain of harmonicity. In gravitational potential approxi-
mation this domain can in particular be chosen to be the outer space of a sphere which
is entirely inscribed in the earth’s interior. The extension of Helly’s theorem yields the
additional information that it is even possible to choose such a so-called Runge-Walsh
approximation in such a way that it ‘interpolates’ with respect to a finite set of bounded
linear functionals. The presentation of the concepts in Section 1.2 essentially follows the
one given in [Fr1999] and [He2002].

1.1 General Definitions and Notation

The symbols N and R denote the set of positive integers and real numbers, respectively. As
usual, Ny := NU{0}, R" := {s € R|s > 0} and R} := {s € R|s > 0}. R3 denotes the three-
dimensional Euclidean space. For z,y € R®, where z = (21,72, 23)T, y = (y1, y2, y3), the
Euclidean inner product is defined by x -y := Z?:l x;y;, and the Euclidean norm of 7 € R?

is accordingly given by |z| := /z -z = />, z2.
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Let Q, := {z € R® : |z| = r}, r € R", denote the sphere in R* with radius r and centre
in the origin, and let Q := ; denote the unit sphere in R*. Each z € R3*\{0} may be
uniquely represented in the form z = p€, where p := |z|, and € := z/|z| = (&1, &,&)T € Q
is the directional unit vector of z. (Note that we usually denote directional unit vectors in
R? by small Greek letters, e.g. for z,y € R®\{0}, £ := z/|z| and n := y/|y|.)

With respect to the canonical orthonormal basis {e',£2 %} in R3, each £ € Q may be
represented in spherical polar coordinates (¢, t), ¢ € [0,27), t € [—1, 1] according to

£ =V1—1(cos(p)e" +sin(p)e?) + te’. (1.1)

The coordinate transformation ¢t := cos(¢), ¥ € [0, 7| yields the representation of £ in the
usual spherical polar coordinates (¢, ).

The surface element on the sphere €2, is denoted by dw,. Its representation in spherical
polar coordinates (g, t) is given by dw,(x) = r? dyp dt.

In the presentation of numerical results we generally make use of spherical polar coordi-
nates (g4, 9,) € [—m,m) x [-7/2,7/2], as they are common in geodesy. These coordinates
are obtained from the usual spherical polar coordinates (p,9) € [0,27) x [0, 7] via the
transformation ¢, := ¢ — 7 and 9, := 7/2 — 9.

All function spaces in this thesis are spaces of real-valued functions. Let & C R?® be
an open or closed set. F(U) denotes the set of all measurable real-valued functions on
U. The set of all k-times continuously differentiable functions on ¢ is denoted by C*) (),
where k € Ny, furthermore, C(*) (i) := 3>, C® (U) and C(U) := CO(U). As usual, the
space C(U) is endowed with the supremum norm || F|l¢@w) := sup,ey |F'(2)]-

For F € F(U) and 1 < p < o0, define

1/p
1Pl oo = (/M|F(x)\pdx> .

The space LP(U) := {F € F(U)|||F||zr@) < oo} with £P-norm || - ||z»@) is a Banach space.
The space L?(U) of square-integrable functions on U is even a Hilbert space with inner
product

(F,G) 2y = / F(z)G(z) dz,

u
where F,G € L*(U).

We now turn our attention to Legendre polynomials, spherical and outer harmonics and
their interdependence. Spherical harmonics and Legendre polynomials are eigenfunctions
of certain differential operators, which are closely related to each other.

Let 4 C R® be an open set. A function F' € C®(U) is called harmonic in U if it satisfies
the Laplace equation AF = 0 in U, where A denotes the Laplace operator in R?, whose
representation in terms of the spherical polar coordinates introduced in (1.1) is

o\> 20 1
A= (2) +22 4 — Az
" <<9p> T ooy e
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A* denotes the Beltrami operator of the unit sphere, whose representation in terms of
spherical polar coordinates is given by

a\> _. 0 1 9\’
Af=1-t)= | —2t=— — .
e=( t)<8t> t8t+1—t2<8g0>

A well-known result of potential theory (see for example [Mik1970], [Mir1970],) states that
a harmonic function F' € C®(Yf) is even in C(*) (/). A harmonic function defined on an un-
bounded set is called regular at infinity if it satisfies the conditions |F(z)| = O(|z| ') and
|VF(x)| = O(]z|~2) for |x| = oo (uniformly with respect to all directions).

The set of all polynomials in R?® of degree n € Ny is denoted by Pol,(R?). A polyno-
mial H € Pol,(R?) is called homogeneous, if H(Ax) = A"H(zx) for all A € R and all
r € R3. Harm,(R®) denotes the space of all homogeneous harmonic polynomials in R?® of
degree n.

The spherical harmonics Y,, : 2 — R of degree n € Ny are defined as the everywhere
on ) infinitely differentiable eigenfunctions of the Beltrami operator corresponding to the
eigenvalues (A*)"(n) = —n(n + 1), n € Ny. The functions H, : R* — R defined by
H,(z) := p"Y, (), where z = pf and £ € (, are elements of Harm,, (R?). Conversely, for
each homogeneous harmonic polynomial H € Harm,, (R?) the restriction H|q is a spherical
harmonic of degree n and thus the spherical harmonics of degree n can equivalently be in-
troduced as restrictions of homogeneous harmonic polynomials in R® of degree n to the unit
sphere. We denote the space of all spherical harmonics of degree n by Harm,,(€2). It is a
linear space of dimension 2n + 1. Furthermore, spherical harmonics of different degrees are
L£2(Q)-orthogonal, i.e., for Y, € Harm,(Q) and Y;, € Harm,,(Q2) with m,n € Ny, n # m,
we have

(Yn, Ym)ﬁz(ﬂ) = 0. (12)

Let p,q € Ny with p < ¢. The space of all spherical harmonics of degrees n € {p,...,q} is
denoted by Harm, ,(€2). Due to the orthogonality relation (1.2) the relations
Harm,, ,(Q?) = @,_, Harm, (Q2) and Harm(Q2) = P,", Harm, (£2) hold true.

Let {Y, x}i<k<ont1 be an L2(Q2)-orthonormal basis of Harm, (), n € Ny. Then the set
{Yoktnevo, 1<k<ont1 = Upeo{Ynk}i<k<ont1 is a complete £?(2)-orthonormal system for
L2(2). {Yo k}nemo, 1<k<an+1 induces a complete £?(Q2)-orthonormal system for £2(,) via

1
Yo () = ;Yn,k($/|$|), z € Q,.
Every function F' € CQ(QT) can be expanded into its Fourier series with respect to the

complete orthonormal system {YJ,k}neNo, 1<k<2nt1:

oo 2n+1

F=) > F.Yo

n=0 k=1
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where the Fourier coefficients {Fg’k}neNO, 1<k<2n+1 are given by

Fr, o= / F(@)Y] 4(2) do (2).

Furthermore, the span of {Y,; }neny, 1<k<2n+1 is dense in C(€2,) with respect to the supre-
mum norm.

The Legendre polynomials P, : [—1,1] — [—1,1] of degree n € Ny are the only every-
where on [—1, 1] infinitely differentiable eigenfunctions of the Legendre operator

d\?’ d

corresponding to the eigenvalues L"(n) = —n(n + 1), which satisfy P,(1) = 1. Apart from
a multiplicative constant, the function P,(e3- ) : Q — [—1,1],& = P,(e- &), € Q, is the
only spherical harmonic of degree n which is invariant under orthogonal transformations
which leave €3 fixed. Legendre polynomials of different degrees are £2([—1, 1])-orthogonal,
to be more spcific,

1

/ Po(t) Po(t) dit =

-1

2

———bpm 1.3
2n+1 7 ( )

for m,n € Ny, where 6, ,, denotes the Kronecker symbol.
As a well-known consequence of the orthogonality relation (1.3) (see e.g. [DeHo01993]), the
Legendre polynomials satisfy the three-term reconstruction formula

(n+ 1) Payi () = (20 + 1)EP,(t) — nPy_y (1), (1.4)

where n € N, t € [—1,1] and Py(t) = 1, Pi(t) = t, which permits a stable numerical
computation of P,, n € N;.

One outstanding result of the theory of spherical harmonics is the addition theorem, which
relates the spherical harmonics of degree n to the Legendre polynomial of degree n:

Theorem 1.1 (Addition Theorem of Spherical Harmonics) Let n € Ny and let
{Ynrhi<k<ont1 be an L2(Q)-orthonormal basis of Harm, (). Then

s on + 1
k=1

for all &,m € Q.
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Let {Yoxtneno, 1<k<2n+1 C Harm(€2) be a complete £2(£2)-orthonormal system for £2(12).
The outer harmonics for the sphere €, (corresponding to {Y;, x tnen,, 1<k<ont1) are defined
by

r

1 n+1
H, y(r;z) := < ) Vor(@/|z]), z € R®®\{0}, n€e Ny, 1 <k<2n+1.

r\|z|
The function H,x(r;-) is called an outer harmonic of degree n and order k. For all
n €Ny, k€ {l,...,2n+ 1}, the function H, 4(r;-) is an element of C(*)(R3\{0}), which
is harmonic in Q¢ and regular at infinity. Furthermore, H, x(r;-)|o, = Y, and thus
H, x(r;-) is nothing else than the uniquely determined solution of the exterior Dirichlet
boundary value problem for the homogeneous Laplace equation for the sphere €2, with
boundary value Y;7,. As a direct consequence of Theorem 1.1, the outer harmonics satisfy

the addition theorem

2n+1 2 n+1
2n+1 T T Yy —
Hn ; Hn ; = Pn — =, , EQemt.
2, Hnalrs ) Hnalris) = = <|:c||y|) (|:c| |y|> Hy et

1.2 Principles of Constructive Approximation

In this section we formulate the theoretical foundations behind the approximation proce-
dures in this thesis.

We start with the definition of the spaces Pot®) ($¢et) for k € Ny. These are solution spaces
to the exterior Dirichlet problem for the homogeneous Laplace equation with boundary data
given on a C®-regular surface ¥ C R®. We then introduce the Sobolev-like Hilbert spaces
H({A,};Qert), where { A, }nen, C Ry denotes a sequence of non-negative real numbers and
(), is a sphere whose radius r € R" satisfies the condition r < inf,cy || and analyse their
mathematical properties. The Runge-Walsh approximation theorem tells us that in case
that A, > 1 for almost all n € Ny every potential F' € Pot® (3eet) can be approximated
in uniform sense in Y¢* by a sequence of functions in H({A,}; Q¢?), which are harmonic
in Q¢**, and the extension of Helly’s theorem finally ensures that F' € Pot(¥ (X¢#) can be
approximated uniformly by ‘interpolating’ functions in H({A,}; Q¢%%) with respect to a set
of bounded linear functionals on H({A,}; Qet).

We start with the definition of a C(®-regular surface in R®.

Definition 1.2 A surface ¥ C R? is called a C® -reqular surface, if it satisfies the following
properties

(i) ¥ divides the three-dimensional Euclidean space R® into the bounded region X (inner
space) and the unbounded region X (outer space).

(ii) ™ contains the origin.

(iii) ¥ is closed and compact and free of double points.

(iv) ¥ is locally of class C?  ie., to every x € ¥ there exists an open neighbourhood U € R3
such that ¥ N U has a C?-parameterization.
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Note that in our terminology a region is an open and connected set. A sphere €2, C R® with
radius 7 € Rt is always C®-regular. Furthermore, the conditions given in Definition 1.2
imply that on ¥ there exists an outer unit normal field v : ¥ — R®, which is continuously
differentiable.

We introduce function spaces which are related to the exterior Dirichlet problem for the
homogeneous Laplace equation:

Problem 1.3 (Exterior Dirichlet Problem) Let ¥ C R® be a C®-regular surface.
Given F € CO(X). Find a function V : Xeot — R with the properties:

(i) V e ) (xert) N O (Teat),

(ii) AV =0 on 2.

(111) V' is reqular at infinity.

(iv) lim V(z+71v(x)) = F(x) for z € X.

>0

Definition 1.4 Let ¥ C R® be a C? -reqular surface. Define the space Pot(X%) by
Pot(X*) := {U € C? (2| AU = 0 in ¥ and U regular at infinity } ,
and the spaces Pot®) (32e=t), where 0 < k < o0, by

Pot®) (Seet) .= {U € ¢W) (Teat)|U|seat € Pot(E)}.

Pot(¥) (Zee?) is the space of all solutions to the exterior Dirichlet boundary value problem
for the homogeneous Laplace equation with C%*)-smooth boundary data on ¥.

In particular, the outer harmonics {Hy, x(7; -) }nen,, 1<k<2n+1 introduced in Section 1.1 are
elements of Pot(®) (Qewt), since for all n € Ny and 1 < k < 2n + 1 the function H, x(r;")
is the solution of the exterior Dirichlet boundary value problem of potential theory for the
sphere , with boundary value given by Y[, € C*)(1,).

The idea behind the introduction of the spaces H({4,};Q¢?) is to define a mathemat-
ical structure on Pot(*® (Qet) which enables us to treat the approximation of a harmonic
function in Pot(® (Q¢a?) within the framework of the theory of Sobolev spaces. More-
over, we will see in Chapter 2 that a slight generalization of the theory leads us to the
construction of special spaces for the approximation of first and second order radial deriva-
tives of harmonic functions, which are needed for the formulation of the SST- and the
SGG-problem as ill-posed pseudodifferential operator equations in Chapter 3.

.....

bers and define N = N({A,x}) = {(n,k)|A,x # 0}. The elements of the sequence
{A;,}c}neNo, k=1,.2n+1 are defined to be A;}C in case Apx # 0 and zero otherwise. Con-
sequently, N({A,}) = N({Anx}). For two sequences {An}neno, k=1,..2n41 C R and
{Buk}neg, k=1,..2n+1 C R the elements of the sequence {An,kB;i}neNo, k=1,..2n+1 OT€
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analogously defined to be An,kB;,lC whenever Ap i # 0 and B, # 0 and zero otherwise.
Hence, N({An B, 1}) = N({Ank}) N N({Bui}). In case {Any} depends only on n, i.e.
A=Ay forallk=1,...,2n+1 and all n € Ny, we write { A, tnen, and N = N ({A,}).

Since we are later on only interested in pseudodifferential operator equations involving
rotation invariant operators, we may restrict ourselves to the discussion of sequences
{An}nen, C RS. We thus introduce the following spaces:

Definition 1.6 Let {A, }nen, C RS be a sequence of non-negative real numbers and denote
N =N(4,). Let F € Pot™®)(Qet). The Fourier coefficients of F exist and are given by

Frp = (R Hoslri Deray = [ F@Viu(o) di @)

Qr

Define for F' € Pot(eat)

on+1 1/2
T —— (z 5 Azwz,m)

neN k=1

and

Oext [l oot
F € Pot(oo)(intN FT:,]C = 0 for n e NO\N ! H({An};05%t)

Dozt . 2n+1
ARAB ) =9 g v 3 AL (Fp ) < o0
neN k=1

The space H({A,}; Qe=t), endowed with the inner product

2n+1

(F, Gy = F raqanaen G =D D AFrsGrg
neN k=1

for F,G € H({A,}; Q), is a Sobolev-like Hilbert space (Sobolev space). The inner product
of two functions F' and G in H({A,}; Q%) is also called the convolution of F' and G.

Each F € H({A,}; Q¢*t) is uniquely determined by its coefficients {Fg,k}n@v, k=1,...2n+1
which satisfy

2n+1

Z Z A?L(F:z‘,k)z < 00,

neN k=1

and thus the sequence { A, },en, controls the admissible growth behaviour of the coefficients
{Ff;,k}ne/\/, 1<k<2n+1- The set of functions

{A ' Hyp(r; ) IneN, 1<k <2n+1}
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is a complete orthonormal system in H({A,};2¢*), and thus F can be represented by its
orthogonal expansion in terms of the functions A, H, x(r; )

2n+1

F o= ) > (FAMHuk(r39)) gy An Hup(r50)
neN k=1
2n+1

= Z Z AZAPF)  Hyi(rs-).
neN k=1
This shows, that, by construction of the space H ({4, }; Q¢?), a function F' € H({A,}; Qert)
can formally be represented by its series expansion in terms of outer harmonics,
2n—+1
F= Z Z Frz,an,k(r; ')a (15)
neN k=1
which in general has to be understood in distributional sense. In our applications, however,
it makes sense to consider only those spaces H({4,}; 2¢*?), whose elements are harmonic
in Q¢ and regular at infinity, i.e., F € Pot(Q¢*"). Theorem 1.9 will show that this
requirement is fulfilled, if A,, > 1 for almost all n € NV. In this case, F' € H({A,}; Q)
satisfies Flo, € £(9,), and the Fourier coefficients F ., n € N, 1 <k < 2n+1 are given
by the Lebesgue integrals

k= /F(ac) wk(@)dwe(z), neN, 1<k <2n+1.
Qr

As a preparation to Theorem 1.9 we need the following convergence result for sequences of
harmonic functions, which is known from the theory of elliptic partial differential equations
as Harnack’s theorem.

Theorem 1.7 Let U be a finite domain in R®. Suppose that {F,}nen, i a sequence of
harmonic functions F, : U — R. Furthermore, let the functions F,, n € Ny, be continuous
in the closed domain U := U U OU, where OU denotes the boundary of U. If the sequence
{F,}nen, converges uniformly on OU, then the following statement holds true: The sequence
{F,}nen, converges uniformly in the closed domain U, and the limit function is harmonic
in U. Furthermore, the sequence of deriwatives of any order of the functions F,,, n € Ny,

converge uniformly to the corresponding derivatives of the limit function in any closed
subdomain U' of U.

Proof: A proof of this theorem can for example be found in [Mik1970]. O

Corollary 1.8 Let {A,}nen, C Ry be a sequence of mon-negative real numbers. Let
r € R" and let F € H({A,}; Q). Suppose that the series expansion of F in terms
of outer harmonics

2n+1

F=2 > FraHulr

neN k=1
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converges uniformly on every compact subset of a domain U C Q¢=t. Then the function F'
is infinitely differentiable and harmonic in U and for a € N3

2n+1

YOS FL VU H(rs )

neN k=1
converges uniformly to V*F on every compact subset of U.
Theorem 1.9 Let {A,}nen, C RS be a sequence of non-negative real numbers which sat-

isfy A, > 1 for almost alln € N and let r € R* and F € H({A,}; Q). Then the
following statements hold true: The series expansion of F' € H({A,}; Q¢*t), given by

2n+1

F=> Y FryHu(r;), (1.6)

neN k=1

is convergent in L£*(Q,)-sense on Q, and uniformly convergent on every subset W%, with
§ >0, of Q. The space H({An}; Q) is a subspace of Pot(Q*"). Moreover, the series
expansion (1.6) of F € H({An}; Q) may be differentiated in x € Q** term by term (for
partial derivatives of arbitrary order), and the series

2n+1

DD FluV Ha(rso)

neN k=1

where o € N3 denotes a three-dimensional multiindez, converges locally uniformly on Q¢
every compact subset of Q¢ to V*F, i.e., it converges uniformly on every subset Qﬁf(s,

with § > 0, of Q¢et.
Proof: The property A, > 1 for almost all n € N implies that H({A,}; Q¢*?) is a subspace
of H({1}; 2e%) = Pot(®) (Qeat) " Hence, F € H({A,}; Qc%) satisfies

2n+1

1E 1 e = D D (Fni)” = [Pl < oo,

neN k=1

and the series expansion (1.6) of F' converges on Q, in £2(9,)-sense. Let z € Q¢%,, where
0 > 0. Because of the Cauchy Schwarz inequality and the addition theorem

1/2
2n+1 2n+1 2n+1
DD EriHup(rsa)| < | D0 Y ANE) D> AP (Hup(rz)?
neN, k=1 neN, k=1 neEN, k=1
1/2
2n+1 2(n+1)
2n+1 T
< WPhgaiery | 5 3 o (755)
neEN, k=1 n

n>N

1/2
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The sum in the second term is independent of z € ﬁ%, is convergent by the quotient
criterion and becomes arbitrary small, if N is chosen large enough. Hence the series
expansion (1.6) of F converges locally uniformly on Q¢**. The uniform convergence of
(1.6) and Corollary 1.8 imply that F € € (Q¢*) and that F is harmonic on Q. Due
to Corollary 1.8 the series expansion (1.6) of F' may be differentiated term by term for
derivatives of arbitrary order. It remains to show that F is regular at infinity. Let z € Q¢**
with |z| > 2r. Using the series expansion (1.6), the definition of the outer harmonics, and

the addition theorem, we can estimate

@l = LY S, (é)nn,ku/uo

1
‘$| neN k=1

1/2
< Ml (D251 ()
- ‘$| H({An}inﬁwt) v 47TA% 2 ’

The sum in the last term is convergent, which implies |F(z)| = O(||z|™!) for |z| — oc.
The second regularity condition |VF(x)| = O(||z|~?) for |z| — oo follows in a similar way
with the help of the vectorial addition theorem for spherical harmonics. |

Under the stronger assumption that {A,},en, C Ry is a so-called summable sequence,

the series expansion (1.5) of F' € H({A,}; Q2¢*) is even uniformly convergent in Q¢ and
thus F € Pot® (Qest):

Definition 1.10 A sequence { A, }nen, C Ry of non-negative real numbers is called summable

if

2n+1
Az

< 00. (1.7)
neN

Lemma 1.11 Let {A,} C Ry be a sequence of non-negative real numbers which is summable,
and let r € RT. Then the space H({A,}; Q) is a subspace of Pot'® (Qeet) and the trun-
cated series expansion {Fn}nen of F € H({A,}; Q%) in terms of outer harmonics,

2n+1

Fum Y P (19

neN k=1
n<N

is uniformly convergent in Q¢*t. Moreover, the error estimate

1/2
m+1 [\t
[Fn(z) — F(2)] < 1Py, 000 ZN I A2 (m) : (1.9)
n>N

holds true.
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Proof: The statement follows by elementary calculations. a

In gravitational potential approximation we are interested in the approximation of a
harmonic function in Pot(®(Zee?) by functions in H({A,}; Q¢*?), where Q, C L. If
{A, }nen, € RT is a sequence of positive real numbers which satisfy A4, > 1 for almost all
n € Ny, the connection between the spaces Pot¥ (Xe7%) and H({A,}; Q¢*) is given by the
Runge-Walsh approximation theorem, which has its roots in a paper published by Runge
in 1885 [Rul1885]. The formulation here is according to [Fr1980].

Theorem 1.12 (Runge-Walsh Approximation) Let ¥ C R® be a C? -reqular surface
and let Q, with r € R" be a Bjerhammar sphere for X, i.e., a sphere which is contained in
Yt Let {Hyk(r; ) bneo, 1<k<2nt1 be a complete orthonormal system of outer harmonics

for H({1}; Qeat) = Pot(>) (Qeet) O Then the span of {Hy k(75 ) |5t fneno, 1<k<on41 05
dense in Pot® (Zeet) with respect to the supremum norm || - s, te

Nl 5oz
SPANeny 1<k<on+1{Hn (15 [gzrt <&,

Proof: A proof can be found in [Fr1980)]. 0
Corollary 1.13 Let ¥ C R® be a C®-reqular surface and let Q, with r € Rt be a Bjer-

hammar sphere for X.. Let {Ap}nen, C RY be a sequence of positive real numbers with
A, > 1 for almost alln € Ny. Then

’H({An},@) sent 1= {F : Next _y R| F = G5z for some G € H({An},W)}

satisfies

— I le et =
H{ A} Q) [gar <™ = Pot®) (5.

Proof: From Theorem 1.9 (iii) it is clear that H({A,};Qe?) € Pot®(Zes?). Moreover,
since A, > 0 for all n € Ny, the outer harmonics H, x(r;-) are contained in Pot(®) (¥est) for
allmn € Ny and 1 < k < 2n+ 1, and hence the statement holds true. O

Corollary 1.13 guarantees that a function F' € Pot(o)(Zm) can be approximated with
arbitrary accuracy by functions in H({A,}; ), ie., given ¢ > 0 there exists
G € H({An}; Q™) such that ||[F' — G| ses) < . The extension of Helly’s theorem (Theo-

rem 1.14) tells us that it is even possible to choose this function G € H({A,}; Q2¢*) in such
a way that it also ‘interpolates’ with respect to a finite set of bounded linear functionals

on H({A}; Q).

Theorem 1.14 (Extension of Helly’s Theorem) Let K be a dense and convex subset
in a normed linear space X with norm || - ||x, and let L1,..., Ly be N bounded linear
functionals on X. Then for an element F' € X and given € > 0, there exists an element
G € K with the following properties:

(i) ||F — Gllx <&, and

(i) L;F = L;G foralli=1,...,N.
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Proof: A proof can be found in [Yal950]. O

For our applications we need the following specialization of the extension of Helly’s theo-
rem:

Theorem 1.15 Let ¥ C R® be a CP-regular surface and let Q. be a Bjerhammar sphere
for 3, i.e., Q. C XM Assume that Xy = {zV,...,zN} is a set of points in Yt such that
SUD,ey |2] < ming_y n|2)| and let {A, }nen, C R be a sequence of positive real numbers
which satisfy A, > 1 for almost alln € Ny. Then U € Pot©® (Xe#t) can be approzimated
uniformly on ¢ by ‘interpolating’ functions in H({An}; Q=) with respect to the first and
second order radial derivatives in the points xN,i=1,..., N, i.e., given € > 0, there exists
a function F € H({A,}; Q=) such that

P PEY) _ UG
aph  Oph

sup |U(z) — F(z)| < e and

zezewt

fori=1,... N,

where h = 1 in case of the first order radial derivative and h = 2 in case of the second
order radial derivative.

Proof: A detailed proof of the statement can be found in [He2002]. Due to Corollary
1.13 the space H({A,}; &)= is a dense and convex subspace of Pot®¥(Xest) with

respect to || - ||ower), and it is shown that the linear functionals £7Y,..., LY given by
LY : Pot© (Tewt) — Ro@NG = P9 i =1,..., N, are bounded. 0

An ‘interpolating’ and approximating function F € H({A,};Q¢?) for a potential
U € Pot®(3eat) in the sense of Corollary 1.13 and Theorem 1.15 will in the sequel be
called an ‘interpolating’” Runge-Walsh approximation of U. It should be noted that The-
orem 1.15 only guarantees the existence of an ‘interpolating’” Runge-Walsh approximation
for a potential U € Pot(¥ (X¢#*) and gives no hint on how to construct it. Yet it is the
theoretical motivation for the approximation procedures which are used in this thesis.



Chapter 2

Sobolev Spaces and
Pseudodifferential Operators

In Chapter 1 we introduced the spaces H({A,}; Q%) as reference spaces in which we treat
the approximation of a harmonic function in Pot®(Q¢et). The mathematical model of
SST and SGG assumes that the observational data are given in form of the first and sec-
ond order radial derivatives of the gravitational potential at satellite altitude, respectively.
Hence the theory developed in Section 1.2 has to be slightly generalized to cover also first
and second order radial derivatives of functions of class H({4,};Q¢?), which leads to
the introduction of the Sobolev-like Hilbert spaces H ({4, }; h; Qe?) in Section 2.1, where
{An}nen, C RY is a series of non-negative real numbers and h € {0, 1, 2}.

Section 2.2 introduces pseudodifferential operators between the spaces H({4,}; hi; Q™)
and H({A,}; hg,Qewt), where r1,7o € Rt and hy, hy € {0,1,2}. These operators are de-
fined by the way they act on the Fourier coefficients of F' € H({A,}; h1; W‘ft) in its formal
series expansion ) inﬁl F'' Hy, (15 hy; -) and provide an adequate means to formu-
late the SST- and the SGG- problem respectively, within the framework of the Sobolev

space theory presented here.

2.1 Sobolev Spaces

Let {An}nen, C ]RO+ be a sequence of non-negative real numbers which satisfy A, > 1
for almost all n € N. Let r € R". From Theorem 1.9 we know that any function
F € H({A,};Qeet) is infinitely differentiable and harmonic in 6%, and the partial deriva-
tive of F of order o € N} is given by

2n+1

VOF =Y Fr VH,(r;-),

neN k=1

20
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where the series on the right-hand side converges uniformly on every subset

§ > 0, of Qest to VOF.

Oext
QT+(5’

where

Thus the negative first order radial derivative of F' € H({A,}; Q) in z = p, where

p>rand £ € () is given by

(—é—‘ -Vz> F(z) = —agF(pﬁ)

= _ZZ nka Hi k(75 p§)

neN k=1

2n+1 n+1

= — — Y,n

>3 nkap( () ,k@)
2n+1

- 2> () e

neN k=1

2n+1

=»> nTHF;;kH K1),

where we have introduced the functions

1/r
Hn,k(r;l;x) = ; <|$|

Analogously, we obtain for the second order radial derivative in x = p€

<_|z_| -%) <_|’;_| : vx) F(z) = 88—;F(p§)

2n+1

= ZZ "k(?? nkrpg)

neN k=1

2n+1 r n+1

= n, - Yn, (5))

3 mas ()
2n+1

= ZZF@“ B (1) v

neN k=1

2n+1

= oy DO EY) o 2,

neN k=1

n—+2
—) Yor(@/|z]), z€ Qe ne N, 1 <k<2n+1.

n+3
(L) Yor(z/|z]), z€Qt, ne N, 1 <k<2n+1.
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The introduction of the new function systems {H,i(7;1;)}nen, 1<k<ont1 and
{Hp (7325 *) }nen, 1<k<2nt1 is necessary because the SST-problem and SGG-problem in-
volve first and second order radial derivatives of functions in H ({4, }; h; Q¢*?), which are
not harmonic. Thus, we are led to the following generalization of the theory developed in
Section 1.2:

Definition 2.1 Let h € {0,1,2} and define the functions H, y(r;h;-) : Qe=t — R for
neNy and 1 <k<2n+1 by

1

r n+1+h .
H,, (15 h; ) == - (m> Yor(z/|z]); x € Qe

This definition includes the outer harmonics, since Hy, x(7;0;-) = Hpx(r;+) for n € Ny,
1 <k < 2n+ 1. Moreover, Hy(r; h; )|, = Yy, for h € {0,1,2} and Hy,x(r;h;z) =
(r/|z|)"Hyp(r;2), © € Q. The functions Hy 4 (r;h;-) are in CC)(R3\{0}), and they
satisfy the addition theorem

2n+1 9 n+h+1

2n+1 T T oy —
2 Hus(rs o) Hog(ri i) = =1 (uum) fr (m | m)’ my € O
k=1

Definition 2.2 Let {A,}nen, € Ry be a sequence of non-negative real numbers and let
h € {0,1,2}. Let F € span{H, x(r; h;-)|n € N, 1 <k <2n+1}. The Fourier coefficients
of F with respect to the L?(Q,)-norm exist and are given by

Fr = (F, Hog(r 1)) cogeny = / F(@)Y! () duoy ().
Qp
On span{H, x(r; h;-)|n € N, 1 < k < 2n+ 1} define the inner product

2n+1

(F, @i = F *aqanmarn G =D D AFiuGi

neN k=1

and corresponding norm

2n+1 1/2
||F||H({An};h;@) = (Z Z A?L(FT’:,/C)Q) .

neN k=1

The space

H({A,}; h; Qeot) := span{H, x(r; h;-) | n e N, 1 <k <2n+ 1}H'H”({A"};’“W),

endowed with the inner product (-, -)H({An};h;w), s a Sobolev-like Hilbert space. The inner

product of two functions F and G in H({A,}; h; Q%) is also called the convolution of F
and G.
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The set of functions
{A ' Hy (i b ) [neN, 1<k<2n+1}

is a complete orthonormal system in H({A,}; h; Q¢2?), and thus each F € H({A,}; h; Qezt)
can formally be represented by the series expansion

2n+1

F=Y%"% FrHau(rihso), (2.1)

neN k=1

which in general has to be understood in distributional sense.

Definition 2.3 Let {A,}nen, C Ry be a sequence of non-negative real numbers, and let
h € {0,1,2}. A function F € H({A,}; h; Q) is called bandlimited with bandlimit m € Ny
if the coefficients Fy . in its formal series representation (2.1) satisfy the following two
conditions:

(i) there exists a ko € {1,...,2m + 1} with F}, , # 0 and

(ii) nk—Oforalln>m,n€N, 1<k<2n+1.

The relation between the spaces H({A,}; Q2¢**) and H({An}; h; ") can be characterized
as follows: Obviously, H({Ax};0; Q%) = H({A,}; Q2¢), and in case of h € {1, 2}

p.gen - g et F(z) = (r/]z|)"G(z)

H({An}; h; Qert) = {F :Qert - R for a G € H({A,}; 0 } (2.2)
As we are only interested in function spaces with a certain ‘smoothness’, it suffices to
restrict the discussion of the spaces H({A,}; h; Q) to the case that {A, }nen, C Ry is a
sequence of non-negative real numbers which satisfy A, > 1 for almost all n € M. Relation
(2.2) and the fact that the inner product and norm in H({A,}; h; Q) respectively, is the
same for h € {0,1,2}, are the reasons, why the convergence results and error estimates in
Theorem 1.9 can be easily transferred to H({A4,}; h; Qez?).

Theorem 2.4 Let {A,}nen, C Ry be a sequence of non-negative real numbers which sat-
isfy A, > 1 for almost alln € N and let r € R*. Then the spaces H({A,}; h; Qeet),
h € {0,1,2}, have the following properties: The series expansion of F € H({A,}; h; Qert),
given by

2n+1

F=>"N"Fr Huylrih), (2.3)

neN k=1

is convergent in L%(Q,)-sense on Q, and converges uniformly on every subset Qe with
§ >0, of Qe®t. The function F € H({A,}; h; Q) is in C(*)(Q6*t), and its series expansion
(2.3) may be differentiated on Q¢ term by term (for partial derivatives of arbitrary order).

The series

2n+1

SN Fr VU Hg(rs b ),

neN k=1
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where o € N3 denotes a three-dimensional multiindez, converges locally uniformly on Q¢

to VOF, i.e., it converges uniformly on every subset Q& with § > 0, of gt

Proof: The proof is technical and its details can be found in [He2002]. O

2.2 Pseudodifferential Operators

In this section we introduce pseudodifferential operators between two spaces
H({An}; ha; Q%) and H({Bn}; ha; %), where {A; }nengs {Bntneno, C R{ are sequences
of non-negative real numbers, 71,75 € R™ and hy, hy € {0,1,2}. Pseudodifferential op-
erators are characterized by the way they act on the coefficients of a function of class
H({A,}; h1; Q) in its series expansion in terms of the functions H,(ri;h;-),
n € N({4,}), 1 <k < 2n+ 1. As special examples we will then introduce the SST-
and SGG- operator as pseudodifferential operators between the spaces H({4,}; Q25") and
H({AL}; h; Qeot), where {A, }nen, is a sequence of positive real numbers with A, > 1 for
almost all n € Ny, R,7r € R with R < r, and h = 1 in case of SST and A = 2 in case of
SGG.

Definition 2.5 Let r1,75 € R, hy, hy € {0,1,2} and let {An}nen, C R be a sequence of
non-negative real numbers. Suppose that {A(n)}nen, C R is a sequence of real numbers
which satisfies

(AN )

im ————=C >0 for someteR 2.4

Let {Bn}nen, C RS be a sequence of non-negative real numbers which satisfies
0 < B, < C|AMNn)| A, for all n € N({A,|A"(n))|1}) (2.5)

with some constant C > 0. Then the operator A : H({A}; h1; Q&) — H({B,}; ho; Qe),
F — AF, defined by

2n—+1

AF = > > AN(n) )y Hak(ra; hos ) (2.6)

nEN ({An[AN ()| 1Y) k=1

is called a (linear) pseudodifferential operator (PDO) of order t. {A"(n)}nen,, is called the
symbol of A, and the convergence of the series (2.6) has to be understood in H({B,}; ho; Q) -
sense. Moreover, if

(AN ()]

nooe (n+1/2)0 27)

for allt € R, then A : H({A,}; hi; Q) — H({B,}; ha; Q), defined by (2.6), is called a
PDO of order —oc.
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Remark 2.6 Condition (2.5) guarantees that im(A) C H({B,}; he; Qe*), and thus the
PDO A is well-defined.

Remark 2.7 The order of a pseudodifferential operator A : H({A,}; hy; Q) —

H({Bn}; ho; 2e2%) tells us at which rate the information contained in the Fourier coefficients
{FT neniany), 1<k<znsr of F € H({An}; hi; Q) is either attenuated or amplified under
the impact of A. If the elements of the sequence {A, }nen, are in particular chosen to be
A, = (n+1/2)°, n € Ny, with s € R arbitrary, (2.4) can be interpreted in the following way:
A result given in [Fr1999] states that for the class of Sobolev spaces H({(n + 1/2)°}; Qert)
an analogon to the Sobolev embedding theorem known from classical Sobolev space theory is
valid. To be more specific, whenever F is a function of class H({(n + 1/2)*}; Q) where
s> k+1, then F is an element of Pot™®) (Wft) Thus the parameter s gives information
on the smoothness of the elements of H({(n+1/2)*};Qe™) at the boundary Q. It can be
easily verified that if A : H({(n+ 1/2)*}; Qe?) — H({B,}; Q%) is a PDO of order t € R,
then im(A) = H({(n + 1/2)*|An)|75Qext) € H({(n + 1/2)°7'};Qext). Loosely spoken,
this means that for t < 0 the image of F € H({(n + 1/2)*}; Qet) under the operator A
is [t|-times smoother than F at the boundary, and vice-versa in case that t > 0. From
the definition of the spaces H({An}; h; Qe=t) it is obvious, that this interpretation can be
transferred to the case A : H({(n + 1/2)*}; hi; Q&) — H({Bn}; ha; QeF).  Furthermore,
in case A : H({An}; h1; Q) — H({By}; ho; Q) is a PDO of order —oo, relation (2.7)
tells us that the information contained in the Fourier coefficients {F,f,k}ne/\/, 1<k<on+41 1S
attenuated at a rate which is stronger than polynomial.

For the remainder of this thesis, we will, however, restrict ourselves to the discussion
of pseudodifferential operators A : H({4,}; hl,Qm) —  H({An}; ho; Q) under
the additional assumption that the symbol {A"(n)}nen, satisfies the condition
limpen, nsoo [A*(n)| = 0. This condition ensures that A is well-defined. According to
Remark 2.7, this restriction implies that we are dealing with pseudodifferential operators
with smoothing effect.

Theorem 2.8 Let ri,79 € RY, let hy, hy € {0,1,2} and {An}nen, C R be a sequence of
non-negative real numbers. Suppose that A : H({A b by Q%) — H({An}; ho; QE2%) is a
PDO whose symbol {A"(n)}nen, satisfies the limit relation

. A .
nh_)rgo |A"(n)| = 0. (2.8)

Then the following statements hold true:
(i) The norm of A is given by

1Al = max A% (n)].
REN ({An (AN (1) ~1})

(i) If AM(n) # 0 for all n € N({An}), then the opemtor A is injective and maps
H({An}; ha; Q57) onto H({An|ANn)| 71} hos Q557), .

im(A) = H({Aa|A"(n)| 7'} ha; Q557)
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and

() O = (A s s O,
(11i) A is compact.
Proof: Ad (i): Due to condition (2.8), we can estimate

||AF||’H({An};h2;@)

IA] sup

FeH({An};hy ;061 ||F||%({An}?hl?@)
F#0
1/2
2n+1
> > ARAN ()P (Fr)?
neN (A AN(n)-1) k=1 ’
= sup
FEH({An};hy;Q88Y) ||F||H({An};hl;@)
F#0
[1E ]l Ap}iha;Qeet
< max |AM(n)| sup (tAn Jshe:057)
nEN AR ) TID ren(anymazgt) 1 a0
= max |A™(n)|.
neN ({An(AN(n))~1})
Let A”(nyg) := max |A%(n)|. In order to verify that the above estimate is sharp,
neN ({4, (AN(n))~1})

choose F' := Hy (115 b +). L
Ad (ii): Let G € im(A), i.e., G = AF for some F' € H({An}; h1,Q¢*). Then

2n+1
1Gsgannniy-nmmzy = 2o D (Al A )P (A () FTL)?
neN k=1
2n+1
= DD AER <o,
neN k=1
and thus G €  H{AANn)|[7'}; ho, Qet). Conversely, assume that
G € H({An|A"(n)|'}; ho, Qe2t). Then the function
2n+1
F=Y Y G2 (A (n) " Hyp(ri; ha;-)
neN k=1

is in H({A4,}; h1; Q%) and AF = G. Consequently, G € im(A). The second statement
then follows from the fact that the system {Hpx(72;ho;+)}nen, 1<k<ont1 is complete in
H({An}; b; Q).

Ad (iii): Let K (H({An}; h1; Qe2t), H({An}; ho; Q7)) denote the set of all compact opera-
tors which map H({A,}; h1; Q%) into H({An}; ho; Q¢7t). Define the sequence of operators
with finite dimensional range {An }nen, by

2n+1
Ay = > > ANn) ] Hyk(ra; ho ).

neN({An (AN ()71} k=1
n<N
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For every N € Ny, Ay is compact. Furthermore, (i) and condition (2.8) imply that
A = An|| = max AMn)| =0 for N — oo,

neN ({An (AN (n))=1})
n>N

and due to the completeness of KC (H({A,}; h1; Qe2%), H({An}; ho; Q¢27)), the operator A is
compact, too. a

It is a well-known fact from functional analysis that a compact operator between Hilbert
spaces possesses a singular value decomposition. The formulation in the sequel is quoted
from [Kr1989:

Definition 2.9 Let Hi and Hy be Hilbert spaces. Let A : Hi — Ha be a compact linear
operator and A* : Ho — H, its adjoint. The non-negative square roots of the eigenvalues
of the non-negative self adjoint compact operator A*A : Hi — Hy are called the singular
values of A.

Theorem 2.10 (Singular Value Decomposition) Let H; and Ho be Hilbert spaces.
Let A : Hi — Ha be a compact linear operator and A* : Hy — Hi its adjoint. Let
{on}nen, denote the sequence of the non-zero singular values of A repeated according to
their multzplzczty and ordered accordmg to o9 > o1 > .... Then there exist orthonormal
systems {H }nej C Hi and {H }nej C Ha, where J C Ny can be either finite or
J =Ny, such that

AHW =6, H® K A*H? = onHS)

for alln € J. For each F' € H, there holds the singular value decomposition
F =) (FHD)uHY +QF
neJg
with the orthogonal projection @ : Hy — ker(A) and

= Z Un(F, H7(7.1))'H1H7(12)
neJ

FEach system {(on, HY, Hy(f)), n € J}, with these properties is called a singular system of
A.

If A is additionally injective, then {Hr(ll)}nej is a complete orthonormal system in H;.

Proof: A proof can for instance be found in [Kr1989]. 0.

Theorem 2.11 Let 11,72 € RY, let by, ho € {0,1,2} and {An}nen, C Ry be a sequence
of non-negative real numbers. Suppose that A © H({A,}; hi; Q) — H({An}; he; Q)
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is a PDO whose symbol {A"(n)}nen, C Ry is a sequence of non-negative real num-

bers which satisfies the limit relation limyep, nsoo A™(n) = 0. Then its adjoint operator
H({An}; ho; Qet) — H({An}; ha; Q5L is given by

2n+1

NG = Z Z AA G:szHn k(rla h17 )

neN ({An(AN(n))~1
Furthermore,
1 1
A" —H, shiy-), —
( (n),An ,k(Tlu 1 ),An
<

n e N({A(A )™}, 1< k

H,, (725 ho; )) ;

2n+ 1, is a singular system of A.

Proof: All statements can be verified by straightforward computations. a.

Let R € R™ and let {A,},en, C R{ be a sequence of non-negative real numbers which
additionally satisfy A, > 1 for almost all n € Ny. The SST- and SGG-operator, respec-
tively, maps a function of class H ({4, }; Q%*) onto its negative first and second order radial
derivative on Q%?s, 6 > 0, respectively:

Example 2.12 (SST-Operator) Let {A, }nen, C RS be a sequence of non-negative real
numbers which satisfy A, > 1 for almost all n € Ny and let R,r € Rt with R < r. The
SST-operator A%5T : H({ A, }; Q%) — H({An}; 1;Qe) is defined by

2n+1
1
n (—) ka H, x(r;1;-).

NSRS
It is a pseudodifferential operator of order —oo with symbol { (%) Fnen, -

neNy k=1

Example 2.13 (SGG-Operator) Let {A, }nen, C Ry be a sequence of non-negative real
numbers which satisfy A, > 1 for almost alln € Ny and let R,r € R* with R < r. The
SGG-operator A5CC - H({A,}; Q%) — H({An}; 2;Qe2t) is defined by

2n+1
(n+1)(n+2) (R
weep = 3oy )(_) R, Hoa(r2;).

n€ENyg k=1

It is a pseudodifferential operator of order —oo with symbol {M ( ) Fneng -

Obviously, the SST-operator as well as the SGG-operator are injective and compact, but
not surjective. Furthermore,

n+1 /R\" 1 1
< , (;) ,A—an,k(R,-),A—an,k(r,l,-)>,neNO,
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and

n+1)(n+2) (R\" 1 1
<( ig ) <7) aA_Hn,k(R;')aA_Hn,k:(’r;Q; )); n e NO,

form a singular system of AT and AS%C, respectively.

Due to the calculations on page 21 it is obvious that

assp = 9F and A55Tp = OF
Op |qzer op?

t
Qee



Chapter 3

Inverse Problems and Regularization

Section 3.1 starts with the introduction of the geometric concept on which we base the
formulation of the SST- and SGG-problem. Both problems are then formulated as ill-
posed pseudodifferential operator equations which relate the spaces H({A,};2%*) and
H({A,}; h; Qeet), where h = 1 in case of SST and h = 2 in case of SGG, and R,r € R*,
R < r. We then explain the concept of regularization in terms of a filtered singular value
decomposition in Section 3.2. Since in reality measurements are taken in discrete points on
the satellite orbit, we finally go over to the discrete formulation of the satellite problems
in Section 3.3.

3.1 Inverse Problems in Satellite Geodesy and Regu-
larization

Figure 3.1 illustrates the geometric concept on which the formulation is based. Let ¥g
be the earth’s surface and g be the ‘orbital surface’, which are both supposed to be
C®-regular surfaces. Furthermore, we choose a Bjerhammar sphere Q0 in side the earth,
and a Bjerhammar sphere €2, for the ‘orbital surface’ ¥g, which lies closely under ¥Xg. We
assume that sup,cx . |y| < infzex, [2|, which is of course realistic for satellites flying at an
altitude of more than 200 km. The earth’s gravitational potential V' is assumed to be of
class Pot(® (xet).

As explained in the introduction to this thesis the observations in an SST- and SGG-
satellite mission, respectively, yield knowledge of the first order radial derivative of V' (SST),
and second order radial derivative of V (SGG), respectively, on a point grid

Xy = {zV,...,2¥} C Xs on the satellite orbit. Thus, we have measured data
{(ws, Z38E) i = 1,..., N}, where h = 1 for SST and h = 2 for SGG. Due to Corollary

1.13 of the Runge-Walsh approximation theorem and the extension of Helly’s theorem, the
following holds true:
Let {A,}nen, € RY be a sequence of positive real numbers with A, > 1 for almost all

30
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Figure 3.1: Geometric concept: X and Xg denote the earth’s surface and the satellite
orbit, and Qg and 2, are Bjerhammar spheres for ¥ and Xg, respectively.

n €Ny and h € {1,2}. Given ¢ > 0 there exists U € H({A,}; Q%) with

PUEY) _ 0V (k)

||U - V”c(W) S g and aph aph )

i=1,...,N.

Therefore, it suffices to approximate the Runge-Walsh approximation U of V with the help
of the measured SST-data and SGG-data.

This is the basic idea behind the approach to the SST- and SGG-problem in this work.
We will first present a ‘continuous’ formulation of the SST- and SGG-problem as operator
equations (see Problem 3.1 below), which assumes that %hT[h]lW is known. After investi-
gating the properties of these operator equations with the hélp of the theory of inverse
problems and motivating the need of regularization we present a ‘discrete’ formulation of
the SST-problem and SGG-problem which takes into account that ‘ZLT[,{ is only given on a
point grid Xy on the ‘orbital surface’ Xg5. How these ‘discrete’ problems are solved with a
regularization scheme or, more precisely, how a suitable regularization of the ‘continuous’
operator equation is discretized with the help of the measured data is explained in detail
in Chapter 7, where we present the concrete numerical realization.

It should be noted that the assumption that the satellite data is given on a closed
C?-regular surface is for theoretical reasons; the numerical methods in Chapter 7 work
also for a more ‘realistic’ data distribution.



3. Inverse Problems and Regularization 32

For general literature on the theory of inverse problems we refer the reader to [EnHaNe1996]
and [Kil996]. Our presentation of general concepts, however, roughly follows the presen-
tation in [Kr1989].

Problem 3.1 (SST-/SGG-Problem in Non-Discrete Formulation) Let Yp, Y5 C
R® be CP -reqular surfaces with SUDyex, Y| < infeexg 2] Let furthermore Qg and Q. be
Bjerhammar spheres for X and Xg, respectively, where R < infycx, |y| and sup,cs . |y| <
r < infgesg || Moreover, let {An}nen, C RY denote a sequence of positive real num-
bers which satisfy A, > 1 for almost all n € Ny, and let A € {AS5T A5G} denote
the SST- operator and the SGG-operator in Ezample 2.12 and 2.13, respectively, i.e.,
A H{ALL Q9 — H({ AL} h; Qest), with b = 1 in case of SST and h = 2 in case
of SGG is a PDO with symbol {A"(n)}nen, defined by A(n) = ((n + 1)/r)(R/r)" and
AMn) = ((n+ 1)(n + 2)/r*)(R/r)", respectively. Then the SST- and SGG- problem in
non-discrete formulation reads as follows: L

Given G € H({A,}; h; Qet), find F € H({A,}; Q%) such that

AF =G. (3.1)

Recalling Hadamard’s definition of a well-posed problem, we can classify equation (3.1) as
an ill-posed pseudodifferential operator equation:

Definition 3.2 Let X', Y be normed spaces and let A : X — Y be an operator from X into
Y. The equation

AF =G,

where F' € X and G € Y is called well-posed if A is bijective and the inverse operator
A1 Y — X is continuous. Otherwise the equation is called ill-posed.

Theorem 3.3 Problem 3.1 is ill-posed in the sense of Definition 3.2, since both existence
of a solution for an arbitrary right-hand side and continuity of the inverse are violated.

Proof: For A € {AS5T AS9C} we have A"(n) > 0 for all n € Ny. Thus A is injective, and
according to Theorem 2.8, im(A) = H({A, (A (n))"}; h; 27) and im(A) Hccan #7550 —
H({An}; h; Qeet). Since H({An(AN(n))™1}; by Qert) £ H({An}; h; Qert), A is not surjective.
Moreover, due to lim,_,, A"(n) = 0, A is compact, and since its range is not finite dimen-
sional, its inverse A~ ! : H({A,A"(n) 1} by Q) — H({An}; Q%) cannot be bounded. O

In our applications we wish to approximate the solution F' € H({A,}; Q%) to equation
(3.1) from the knowledge of a perturbed right hand side G° € H({A,}; h; Q) of G = AF

with a known error level

16 =G,z < 0
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For the error-affected right hand side, in general, we cannot expect G° € im(A). Using
the error-affected data G° we want to construct a reasonable approximation F? to the
exact solution F of the unperturbed equation AF = G. This approximation F° should
of course depend continuously on the data G°. Methods for a stable approximate solu-
tion of ill-posed problems are called regularization methods. The basic idea behind these
methods is to construct a pointwise approximation of the unbounded inverse operator
A7t s im(A) = H{ALL Q%) by a family of bounded linear operators {7}}jen,
T; « H{A}; h; Qert) — H({A,};9%%). In a general setting, we introduce the notion
of a regularization as follows:

Definition 3.4 Let X and Y be normed spaces and let A : X — Y be an injective bounded
linear operator. A family {T;};en, of bounded linear operators T; : Y — X s called a
reqularization of A= : im(A) — X with discrete regularization parameter j, if for any
G € im(A) the limit relation

lim ;G — A”'Gllx = 0

]—)OO
is satisfied. F; = T;G is called the j-level regularization of the problem AF = G corre-
sponding to the reqularization {T};}en, -

In Definition 3.4 we restrict ourselves to regularization schemes with a discrete regular-
ization parameter 7 € Ny. This is due to the fact that in numerical calculations only a
discrete variation of the regularization parameter is of interest.

Turning back to Problem 3.1, a j-level regularization F} := T;G° approximates the so-
lution F of (3.1). Thus we have the following error estimate

I} = IT,G° = TG + TIAF = Fly 755
< AT+ ITAF = Fllyga a0y (3.2

= Flloyanyoz)

which shows that there are two conflicting contributions. The first term reflects the influ-
ence of the data error and the second term the approximation error. Due to the ill-posed
nature of equation (3.1), ||7;|| cannot be uniformly bounded with respect to j, and the sec-
ond term cannot be estimated uniformly with respect to F'. Typically, the first term will be
increasing as j — oo, since {7} };en, approximates the unbounded inverse A~' pointwise,
whereas the approximation error will be decreasing as j — oo. The art of treating an
inverse problem is to find a strategy of how to choose the parameter j in dependence of
the error level § such that the error (3.2) is minimized. Obviously, a j-level regularization
of equation (3.1) should converge to the exact solution when the error level tends to zero,
if our strategy to choose the regularization parameter 5 € Ny is reasonable.

Definition 3.5 Let the notation and assumptions be the same as in Definition 3.4. A
parameter choice strategy for a regularization scheme {T}};en,, i.e., the choice of the reg-

ularization parameter j = j(0) depending on the error level §, is called regqular if for all
G € im(A) and all G° € Y with |G — G?||y < § there holds

lim || T 5 G? — A~! = 0.
dlg(l)H i) G Gllx =0
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3.2 Filtered Singular Value Decomposition

Starting from the ill-posed pseudodifferential operator equation (3.1), we use the singular
value decomposition of A : H({A,}; Q) — H({A,}; h; Q&) as a basis for the construction
of a regularization {T}};en, of A™' : H({An(AN(n)) 71} b Qeot) — H({A,}; Q). We first
mention the Picard Theorem (see [Kr1989]) which expresses the solution to an operator
equation of the first kind with a compact operator in terms of the singular system:

Theorem 3.6 (Picard) Let Hi and Hs be Hilbert spaces, let A : Hi — Hy be a compact
linear operator with singular system (o, Hy(Ll), H,(f)), n € Ny, and let A* : Hy — H4 denote
its adjoint operator. The equation

AF =G
is solvable if and only if G € ker(A*)* = m”'ﬂﬂz and

Z o2(G, H?)qy,|* < 0. (3.3)

neNy

Then a solution is given by

F=> 0,Y(G H)u,HD. (3.4)
n€eNp
Proof: A proof can be found in [Kr1989]. O

Since both the SST-operator and the SGG-operator are injective, their range satisfies

im(A)”IHH({AnﬁMW) = H({An}; h;Qe*?). Thus Theorem 3.6 tells us that a solution to
Problem 3.1 exists if and only if G € H({A,}; h; Q) satisfies the regularity condition

2n+1

S A2AN) (G < oo (3.5)

neN k=1

Condition 3.3 shows how the decay of the sequence of singular values {o,}nen, deter-
mines the ill-posed nature of the operator equation AF' = G in Theorem 3.6. Since in
the SST-/SGG-case {A"(n)},en, decreases exponentially, we may classify Problem 3.1 as
exponentially, or severely, ill-posed.

One way to obtain a regularization of A~! in Theorem 3.6 is to construct a pointwise
approximation to (3.4) by applying a so-called regularizing filter to the sequence of singu-
lar values {0y, }nen, -

Theorem 3.7 (Filtered Singular Value Decomposition) Let H; and Hy be Hilbert
spaces, and let A : Hi — Ho be an injective compact linear operator with singular system
(On, H, H,(LZ)), n€Ny. Let f: Ny x (0, ]|A4]]] = R be a function which satisfies the condi-
tions
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(i) 1f(4,0)] <1 for all j € Ny and o € (0, ||A]|].

(11) For each j € Ny there exists a positive constant C(j) such that
£ (G, 0)| <oC(j) for all 0 <o < [A]

and

(iii) lim f(j,0) =1 for all 0 < o < ||A]|.

Therz—t}; bounded linear operators T; : Hy — H1, j € Ny, defined by
TG = 0, f(G,00)(G, HP ), HY

neNy

for all G € Hy, describe a regularization scheme with
1751 < C(j)-

The function f s called a regularizing filter to the ill-posed operator equation AF = G,
F e Hl, G e H,.

Moreover, the parameter choice strategy j = j(6) for {T}}jen, is regular, if 6C(j(6)) — 0
for j — oc.

Proof: In order to verify ||T}|| < C(j), note that due to condition (ii),

IG5, = > 0?1, 0n) PG, HP )|

n€eNy

< COI Y NG HP |

neNy

< |CH)PIGIZ, for all G € H,.

It remains to show that lim;_,, |7;G — A™'G||3, = 0 for G € im(A), i.e., to G € Hy there
exists an F' € H; such that AF = G:

(TJG’ H7(L1))H1 = Oglf(j’ Un)(AF’ HTS,2))H2
= U;If(j’ On)(Fﬂ A*H7(z2))7'l1
= f(]a Un)(F’ Hr(zl))%l'

Moreover, since A is injective, we have

|ITjG — A7'Glly, = |TjAF — Fl3,
= Y |(TjAF — F,H")y,|”
n€eNy

= 3 1fl.on) = 1PI(F HO )

n€Ng



3. Inverse Problems and Regularization 36

Due to condition (i),
Y 1fG o) = 1PIE HD)u > <4 [(FHP)w P = 41 FIi3,.
n€Ny n€Np

and hence for all € > 0 there exists an N = N(¢) € Ny such that
> IF H D) < .
n€Ng

n>N

Moreover, condition (iii) implies that to ¢ there exists a jo = jo(¢) € Ny such that

£ (Gyon) — 1 < 2”;,”2 for all n € {0,..., N} and all j > jo.
Ha
Hence,
€ € . .
TG = Fli3, < s > |(F H g, | + 45 < e for all j > jo.
2P, 2= §
n<N

In order to verify the regularity condition for the parameter choice strategy, let G € im(A)
and G° € Hy with ||G — G|, < 6. Then the estimate

IT;G* — A7 G|, ITH(G° = @), + TG — A7 Gl

<
< 0C3H) +IT;G — A7 Gl

together with the fact that {T}};en, is a regularization for A~! implies that j = j() is
regular if 6C'(j(9)) — 0 for j — oo. O

3.3 Discrete Formulation of the SST-Problem and the
SGG-Problem

Finally, we have to be aware of the fact that in our applications the function
G € H({A.}; h;Qe*t) is only known in a set of N € N points X = {z1,...,zx} on
the satellite orbit ¥g. Hence we have to reformulate Problem 3.1 in the following way:

Problem 3.8 (SST-/SGG-Problem in Discrete Formulation) Let Xg,%g C R? be
C? _regular surfaces with SUDyex, [Y| < infeesg |z[.  Let furthermore Qg and €, be
Bjerhammar spheres for X and Xg, respectively, where R < infycx, |y| and supyes, |y| <
r < infgesg ||. Moreover, let {An}nen, C RT denote a sequence of positive real num-
bers which satisfy A, > 1 for almost all n € Ny, and let A € {A®5T, ASPC} denote the
SST- and SGG-operator in Example 2.12 and 2.13, respectively, i.e., A : H({A,}; QE') —
H({AL}; h; Qeet), with h = 1 in case of SST and h = 2 in case of SGG is a pseudod-
ifferential operator with symbol {A™(n)}nen, defined by A™(n) = ((n+ 1)/r)(R/r)" and
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AMNn) = ((n+1)(n+2)/r%)(R/r)", respectively. Suppose that Xy = {x1,..., TN} 15 a set
of N € N points on Xg. Then the SST- and SGG- problem in discrete formulation reads

as follows:
Reconstruct an approximation to the solution of AF = G with the help of the given discrete

values {(z;, G(z;)|i=1,...,N} of G € H({A,}; h; Qest).

The discrete SST-/SGG-problem can be treated by replacing the function
G € H({A,}; h; Q&) by a spline function which either interpolates or approximates the
data. The necessary background material on spline functions in H({4,}; h; Qt) is pre-
sented in Chapter 4.



Chapter 4

Splines and Approximation of
Bounded Linear Functionals

In Section 4.1 we introduce splines in Sobolev-like Hilbert spaces H({ A, }; h; Q¢zt). We start,
with the spline interpolation problem relative to a set of linearly independent bounded lin-
ear functionals on H({A,}; h; Qezt).

The H({A,}; h; Qezt)-spline interpolation problem is uniquely solvable, and the interpo-
lating spline of a function G € H({A,}; h; Qe=?) relative to a set of linearly independent
bounded linear functionals is characterized as the orthogonal projection of G onto the
finite dimensional spline space spanned by the representers of the respective functionals.
The bounded linear functionals will usually be measurement functionals and the interpo-
lating spline of a function G € H({A,}; h; 2e*?) assumes the same values with respect
to these measurements. The fact that spline interpolation is nothing else but an orthog-
onal projection is the basis for the construction of the domain decomposition algorithm
presented in Chapter 6, which can be exploited for an efficient numerical solution of the
H({A,}; h; Qe=t)-spline interpolation problem for a high number of measurements.

In the presence of error-affected data it is advisable to work with smoothing splines which
approximate the data instead of interpolating them. Hence the H({A,}; h; Q¢=)-spline
smoothing problem is discussed in Section 4.2.

As a consequence of the Riesz representation theorem, spline interpolation in
H({A,}; h; Qo) and best approximation in its dual space H({A,};h; Q&) are equiva-
lent problems. The significance of this equivalence for our applications lies in the fact that
it leads to a simple way of how to discretize convolutions F' *34({ An }:h;0085T) G of two functions

F, G € H({A,};h; Q). In our applications we are only concerned with bounded
evaluation functionals on H({A,};h; Q). Given N € N samples of (without loss of
generality) G € H({A,}; h; Qet) in a set of points {z,...,zN} C Qeet, the idea is to
view G as the representer of the bounded linear functional £ : H({A,}; h; Q) — R,
L(F):=F a1({ A }sh:055%) G, and to replace it by its interpolating H ({4, }; h; Q¢e?)-spline

38
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with respect to the data {(x;, G(z;)}1<i<n. Section 4.3 deals with this aspect. In the
presence of error-affected data we can still do the approximation of F' £34({ An }s1:0557) G by
replacing G' by a smoothing spline.

In the special case that we are working in a reproducing kernel Hilbert space, bounded
evaluation functionals have a simple representation by means of the reproducing kernel
which also leads to a simple representation of the interpolating spline. Hence reproducing
kernel Hilbert spaces are discussed in Section 4.4.

In this thesis we focus on evaluation functionals on H({A,}; h; Q¢%?), which are bounded
if the evaluation point lies in Q¢**. The representers of such bounded evaluation function-
als in H({A,}; h; Qezt) are strongly space localizing and the theory of reproducing kernel
Hilbert spaces yields an idea how they can be easily represented. This will be investi-
gated in Section 4.5. For applicability in numerical computations we are here particularly
interested in choosing the spaces H({A,}; h; Q¢%%) in such a way that the representers of
bounded evaluation functionals have a representation as elementary functions. We present
three classes of spaces with this property and write down the representers of (bounded)
evaluation functionals in these spaces.

Section 4.6 contains the convergence result for H ({4, }; h; Q¢=?)-spline interpolation in the
case that the samples of the function which has to be approximated are taken exclusively
on a C@-regular surface which is contained in Q¢**. This is of course one of the crucial
points for the construction of an approximate solution to the discrete SST-problem and
SGG-problem posed as Problem 3.8 in Chapter 3.

The material presented in the first four Sections is a generalization of the results given
in [Fr1999] for the spaces H({A,};Q¢?) to the spaces H({A,}; h; Qe?). The parameter
choice strategy in Section 4.2, as well as the variant of the convergence proofs in Section
4.6 are quoted from [He2002].

4.1 Spline Interpolation

Definition 4.1 Let {A,}nen, C RY be a sequence of non-negative real numbers, let r € R*
and h € {0,1,2} and suppose that {LY, ..., LN} C H({A.}; h; Qert)* is a set of N linearly
independent bounded linear functionals on H({An}; h; Qeet). Denote the representer of LY

according to the Riesz representation theorem by LY, i=1,... N, i.e.,

LYF = (F L) uanmozn = F ouganmog L for all F € H({An}; b; Q5).

Then any function of the form

N
S = Z ay LY
i=1
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is called an H({An}; h; Q¢™)-spline function relative to LY, ..., LY. The scalars al, ..., ay
are called the coefficients of the H({An}; h; Qe*t)-spline. The space of all H({An}; h; Qert)-
splines relative to LY ... LN is denoted by

SH({AH};h;@) (ﬁiva cee E%) = spani:l,...,N{LZN}'

Lemma 4.2 Let {An}nen, C RY be a sequence of non-negative real numbers, let r € R*

and h € {0,1,2}. Assume that {LY,..., LN} C H({A.}; h; Q=) is a set of N linearly

independent bounded linear functionals on H({A,}; h; W) and denote their representers

according to the Riesz representation theorem by LY ... LN € H({A,}; h; Qet). Then,
N

for every H({An}; h; Qe=t)-spline S € Sy a ypiazery (L1 LN), S = Yo' LT,
" i=1
to LN, ..., LN and for every G € H({A,}; h; Qeat)

relative

N
(@, uanyatim = G Fagagagm S = D al LG

=1

N

Proof: The assertion follows immediately from the fact that S = Y. aNLY and that
i=1

LY, 1 <4< N, are the representers of LN, 1 <i < N in H({A,}; h; Qezt). a

The H({A,}; h; Q¢=t)-Spline Interpolation Problem Relative to a Set of Linearly

Independent Bounded Linear Functionals £Y,... LY

We now turn our attention to the mathematical properties of H({A,}; h; Q¢?t)-spline in-
terpolation. Using the same notations and assumptions as in Definition 4.1, we let

Ifiv,___"c% = {G e H{{A.}; Q)| LYG =L F foralli=1,...,N}

denote the space of all interpolating functions in H ({4, }; h; Qe=?) for F € H({A,}; h; Qezt)
with respect to £V, ..., L%, and start with

Theorem 4.3 Let {A,}nen, C Ry be a sequence of non-negative real numbers, let r € R*
and h € {0,1,2}. Assume that {LY,... LN} € H({A.}; h; Q)" is a set of N linearly
independent bounded linear functionals on H({An}; h; Q%) and denote their representers
according to the Riesz representation theorem by LY ... LN € H({An}; h; Qeat).

Then, for each F € H({An};h;0et) there erists one and only one interpolating

..... e JEAV S\
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where the coefficients al, ..., a¥ are uniquely determined by the linear system of equations
Za (LY, LY )y = LA F for k=1,...,N. (4.1)

Furthermore, the interpolating H({An}; h; Qext)-spline SﬁFiva---,ﬁﬁ has the following proper-
ties:
(i) SEN o 18 the H({An}; h; Qeot)-orthogonal projection of F' onto the space
Nl
Sty s £

(i1) Sfjlv’“_’ﬁ% is the interpolant in H({An}; h; Q=) with minimum norm, i.e.

IGII; +11G -

2
H({An };h;Qeet) ||S[,{V, LN ||’H({An};h;nezt [,{V, SLN ”H({An} hieat)

for all G € IE{\,,_..’L% (first minimum property).
(ZZZ) If S E SH({An},h,W)(E{V’ ey E%) and G E IE{V,,;C%’ th@n
IS - GlI; = ISy .

%({An};h;ﬂewt 10 7['N

Gl

H({An};h;Q50)

+ IS —

2
Se e ua v
(second minimum property).

Proof: Let F € H({A,};h;Qeet). Its interpolating H({A,}; h; Q¢st)-spline ST

£Nh has

to satisfy the conditions

Ly Sex, oy = Z“Nﬁljcv L = Z“ (LY LY )sa nysnstien = L8 F

=1
for k =1,..., N, which leads to the linear system of equations (4.1). (L;, Lg)1<ij<n is the
Gram matrix of the basis {LN} of the spline space S, H({An ):hi ) (L{V, .., LX) and thus

the linear equation system (4.1) is uniquely solvable. The H({A,};h; Q¢*?)-orthogonal
projector P H({An}; h; Q') — S04 ypaer) (L1 -+, L) is the projection operator
onto Sy 14 1n, Qm)(ﬁ ..., LY) which additionally satisfies for every F' € H({A,}; h; Qeet)

(PFS) {A}hﬂewt)_(FS) {A}hﬂewt)fOFaHSES {A}hﬂe“’t (E ...,E%),
and in particular
(PF7 Liv)ﬂ({An}’h’@) = (F, LfV)H({An},h,@) fOI" Z == 1, ey N,

, LN(PF) = LN(F) for i = 1,...,N. But these are just the interpolation equations

stated above, which are unlquely solvable and therefore PF = z:N LN which proves

1o N
assertion (i).
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(ii) is a special case of (iii), which is obtained if we let in (iii) S = 0. In order to prove
(iii), let S E SH({An},h,W) (L:]LV, ey E%) and G E Ig‘{v”ﬂx Then
2 _ P F 2
1S - G”H({An};h;@) = |I5- S,cf’ ..... cy + SL{V ..... cy G”H({An};h;@)

— 185y Gl 1S~ Sy

2 2
H({An};hsQget H({An};h;05%)

F
+ 2SSy, en — Gy S = Sov o)y

Since G, Sty .y €IF it holds that
LN

cy,..cio
ﬁzN(SfN ey —G) = (SEN oy — G L;V)H Ay = 0
1rkN 1 kN ({An}shs25=")

fors =1,...,N. But since S — Sf{va---ﬁ% € SH({An};h;W)(E{V, ..., L%), this implies that

(Sew,ex = G = Sox e uqanymmen = 0 -

It should be noted that the demand of linear independence of the bounded linear functionals
guarantees that the matrix in (4.1) is invertible. In case that £} ,..., L} are not linearly
independent there exists more than one set of spline coefficients which solve (4.1), but
the interpolating spline is still uniquely determined because it is the orthogonal projection
onto the spline space.

Theorem 4.4 Let {A,}nen, C R{ be a sequence of non-negative real numbers,
h € {0,1,2} and F € H({A.}; h;Qe=t). Suppose that {LY,..., LN nen is a hierarchi-
cal sequence of sets of linearly independent bounded linear functionals on H({A,}; h; Qgat),
ie. LN = LM fori=1,...,N and for all N < M, such that span{L}, L3 L2 L3 ...} is
dense in the dual space H({An}; h; Q=) of H({A,}; h; Qest). Then

.....

Proof: For Ne Nandi=1,...,N, let LY be the representer of LY in H({A,};h; Qezt)
according to the Riesz representation theorem. Let L € H({A,}; h; Q2¢%!). Due to the Riesz
representation theorem there exists one and only one £ € H({A,}; h;Q2%)* such that
LF = (F, L)y aymaen for all F € H({Au};h;Qeet). Since span{L}, L7, L5, L], ...}
is dense in H({A,};h;Qet)*  given & > 0, there exists an element
J € span{Ly, £, L3, L], ...} such that || — Lllya,ym0m0- < €

Let J € H({A.};h;Qe) be the representer of J in H({A,};h; Q).  Then
|J — L“%({An};h;W)i”J — Lllygaymazr < € and thus span{Ls, L}, L3, L}, ...} is
dense in H({A,}; h; Qeet).

Using the Gram-Schmidt orthonormalization procedure, we may successively construct an
orthonormal  system  {L;,L,,...}  in  span{L{,...,LY,...}  such  that
span{Ly,...,Ly} = span{L}),..., LN} for all N € N. Let F € H({A,};h;Qct) be
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such that (F, Li)?—[({An};h;Qe“) =0 for all s € N. Then F = 0, because span{fl,ig, ..} s
dense in H({A,}; h; Qeet). But this implies that {L, Ly,...} is a complete orthonormal

system for H({A,}; h; Qe2t). Since the H({A,}; h; Q¢t)-spline interpolant SLy .y is the
) ! Nl
orthogonal projection onto span{L¥ ... LN} =span{Ly,..., Ly}, it may be represented

by the truncated Fourier series of F' with respect to the complete orthonormal system
{Ll, LQ, .- .}, i.e.,
N

. .
St on = > (F Li)ya,y oz Lo

i=1

and hence lim SfN
Nooo L1

o= F in H({A,}; h; Qest)-sense. O

4.2 Spline Smoothing

In the presence of error-affected data it is advisable to perform an H({A,}; h; Q¢#t)-spline
smoothing (H({An}; h; Q¢=?)-spline approximation) for F' € H({A,}; h; Q¢=?) instead of an
interpolation. More precisely, let £V : H({A,}; ;Qe?) - R, i =1,..., N, be N linearly
independent bounded linear functionals, and assume that the data LN F +¢;,i=1,..., N,
of F € H({A,}; h;Q¢?) is known, where €;,...,6y are measurement errors. Then we
compute an H({A,}; h; Q¢=t)-spline S € Suanymazty (L1 s - -, L), which satisfies

LYS~LNF+¢ forall i=1,...,N,

instead of LYS = LNF +¢;,7i=1,..., N, but is smoother than the interpolating spline.
This situation is considered in the next theorem.

Theorem 4.5 Let {A,}nen, C R be a sequence of non-negative real numbers, let
h € {0,1,2}, and assume that LV, ... LY € H({A,}; h;Qe*t)* are N linearly indepen-
dent bounded linear functionals. Denote the uniquely determined representer of LY in
H{ AL} h; Qezt) by LY. Let F € H({An}; h; Q&) and let 7,..., 7§ € RT and A € RT
be positive real numbers. Then there exists one and only one H({A,}; h; Qe*t)-spline

N
S = ZaZNLZN
i=1

relative to LV, ... LN with coefficient vector a™ = (aV,...,aN)" which minimizes the
functional
N 2
LNS — LNF
pa®) = et ) = 3 (B2 S ) ISy iy 1.2
3

=1
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The coefficient vector a™ of this minimizing H({An}; h; Qext)-spline is the uniquely deter-
mined solution of the linear equation system

N
N(fN [N N\2 N N
Zaz (LZ ,Lk )H({An},h,@) +)\(Tk )Q(Zk = Lk fOT k = 1,...,N. (4.3)
i=1
Proof: The proof is technical and can for instance be found in [He2002]. O.
The parameters 7{",..., 7% are weight factors for the measurements LNF, i = 1,..., N.
If we want to treat all measurements in an equal way, we choose 7 = ... = 7y =: 7 with

some 7 > 0, and multiplication of the functional (4.2) with 72 yields

N
Tu(a) =Y (L)S = LYF)? +TAlS;,

=1

{An}h;Qcet) (4.4)

As the minimization of (4.4) for 7 := 7 € R* and A :== X\ € R" yields the same spline as

the minimization of (4.4) for 7 := 1 and \ := 72)\, we may simply assume 7 = 1 in case
N N

N=...=1§.
The smoothing parameter A in the functional (where we set 7 = ... =7y =7:=1)
N
N N N N N 1\ 2 2
,u(a ) = :u(al (A 70'N) = Z ([’z S— [’z F) + A”S”’H({An};h;ﬂimt)' (45)
i=1

(and more general in the functional (4.2)) determines the weighting between interpolation
and smoothness of the H({A,}; h; Q¢%)-spline which minimizes the functional. For A = 0
this minimizing H ({4, }; h; Qet)-spline S is just the interpolating H({A,}; h; Qe#t)-spline
of F with respect to LY, ..., LY. The larger the smoothing parameter \, the more weight
is put on the norm ||S||3 4, yn0e7 of S, ie., the smoother is the spline S.

If we drop the demand that the N bounded linear functionals are linearly independent,
the linear equation system (4.3) is still uniquely solvable in case of A > 0. Note that the
condition of the matrix in the linear equation system (4.3) becomes the better the larger
we choose A > 0. Therefore, spline smoothing can be used to stabilize the linear equation
system in the case that the matrix of the corresponding H({A,}; h; Q2¢2%)-spline interpola-
tion problem is extremely ill-conditioned.

We now turn to the question of the choice of the smoothing parameter A (and the pa-
rameters 71, ..., 7y) if H({A,};h; Q¢e?)-spline smoothing is used in the presence of noisy
data LNF+¢;,i=1,..., N. Here we restrict ourselves to the case 7y = ... =7y =7 := 1.
We assume that we have some a priori information on the variance o2 of the noise. The
next theorem gives a criterion of how to choose a suitable smoothing parameter A\ = \(5)
in dependence of the empirical standard deviation &.
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Theorem 4.6 Let {A,}nen, C R be a sequence of non-negative real numbers, let
h € {0.1.2}, and assume that LV,..., LN C H({A.}; h; Q)" are N linearly indepen-
dent bounded linear functionals. Denote the uniquely determined representer of LY by LY,
i=1,...,N. Suppose F € H({A,}; h; Qeat), and let

N
F NN ._ QF
Sy = E :ao L = S[,{V,...,L%

i=1

be the uniquely determined interpolating spline of F relative to the bounded linear func-

tionals LY, ... LY. Let &,...,En be continuous random variables with expectation value
E[&] =0 for alli=1,...,N and identical variance E[e?] = 2 for alli =1,...,N. Sup-
pose €; € R s a value of the random variable &, 1 =1,...,N. If N is large, the variance

o? is approzimately equal to the empirical variance 6%, defined by

1
~2 2
0" =N ;_1 €7,

with the empirical standard deviation &, given by & := V2. Let

N

Sf,& = Z(ai\:&)ilé\r
i=1
denote the spline in SH( (An }shieT) (LN, ..., L) which minimizes the linear functional
N ) N
pag(a) == Z (EZNS —(LYF+&)) + )‘”SHi({An};h;@)’ where S = Z%NLZN-
i=1 i=1

If (LNF +e1,...,LYF +en) #0 and VN — 16 < |(LYF + e1,...,LYF + en)|, there
exists one and only one A = \(G) € R" such that
1 al 2
N gF -
N-1 D (LN SKsye — (LYF +e))" =67,

i=1

and the following estimate is valid:
”S(I)? - S){?(&)’&”;({An};h;W) <4 |aé\f‘ VN —10. (46)

Proof: This theorem is proved in [He2002]. O

The estimate (4.6) implies convergence in the sense that if the empirical variance 62 tends
to zero, then lims_,q Sf(&),& =57



4. Splines and Approximation of Bounded Linear Functionals 46

In practical applications the empirical variance 62 will not be available, but if a reason-
able estimate 62 of the variance o2 is known, then we try to find a smoothing parameter
A = \(&) such that
;X
2 .
N_1 Y (LY Ses — (LVF +&)" = 6%
i=1
The calculations in the proof of Theorem 4.6 in [He2002] show that the function
2
A= 3N (EZNSf(&),& - (EZNF—i-Ei)) is strict monotonically increasing in A € RT if

(LNF+ey,...,LYF+¢ey) # 0. Therefore, the value of A = A\(5) can numerically be easily
searched.

As another method for the choice of the smoothing parameter we mention cross vali-
dation (CV) and generalized cross validation (GCV). For more details on scattered data
interpolation and approximation, and parameter choice by cross validation and generalized
cross validation, the reader is referred to [Wa1990].

4.3 Approximation of Bounded Linear Functionals

Theorem 4.7 Let {Ay}nen, C Ry be a sequence of non-negative real numbers and let
h € {0,1,2}. Suppose that L € H({An}; h; Q)" is a bounded linear functional on
H({ A} h; Qo) and LV, ... LN € H({A.}; Q)" are N € N linearly independent
bounded linear functionals on H({A,}; h; Qe*t). Denote the representers (according to the

Riesz representation theorem) of £ and LVN,... LN by L and LY, ... LY, respectively.
The H({An}; h; Qezt) - best approzimation jf{\, _____ o of L in the space span{LY ... LY},
i.e., fN .cy Satisfies Jf{\, oy € span{LY ..., LN} and

0TE ey = Llaanmazne <IT = Llaa,ynaz-

1 90

for all J € span{LY,... LN}, is uniquely determined. JfN ¢~ has the representation
N.LN

jﬁN LY = Z G«NEN
where the coeﬁczents are the uniquely determined solution of the linear system of equations
(L L ) auq g yshisizeey Za (LY, L) st ymscigeny for k=1, N. (4.7)

Proof: Compute [|J — L3 4,y,p:a:7 for some J = SV aNLl in span{L),..., LY}
Due to the Riesz representation theorem,

ZGNLN

||t7 E“’H {An}thmt

H({An };h;Qe7F)
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Since span{LY, ... LY} is a finite-dimensional subspace of H({4,};h; Qet), L can be
uniquely decomposed into L = PL+ (Id— P)L, where P is the orthogonal projection oper-
ator onto span{LY ... LY}. Therefore ||J — Ll 3414, }n:5027%- becomes minimal if and only

if J is the unique element in span{L¥, ... LY}, which is represented by PL. As an orthog-
onal projection operator P satisfies the condition (PL, S)%({An};h;@) = (L, S)%({An};h;W)
for all functions S € span{L¥, ..., LYV}, which is the case if and only if

(.P.[J7 LfV)H({An},h,@) - (L, LfV)H({An},h,W) fOI‘ Z - 1, ey N.

But this leads to the linear equation system (4.7). O

The linear equation system (4.7) coincides with the linear equation system (4.1) deter-
mining the coefficients of the interpolating H ({4, }; h; Q¢et)-spline of L with respect to the
bounded linear functionals £V, ..., LY. Thus H({A,}; h; Q¢=?)-spline interpolation and
H({A,}; h; Qeet)*_best approximation are equivalent problems.

Discretization of Convolutions

A special application of H({A,}; h; Qe*t)-spline interpolation (or, equivalently, best ap-
proximation in H({A4,}; h; Q2e#t)*) is the discretization of convolutions

Fxy i anymazn G = (F, G) H({ Ay for FLG € H({An}; h; Qezt).

Let, without loss of generality, F' be explictly known and assume that G is known via
the discrete values LG, ..., LNG, where LY, ..., LY are linearly independent bounded
linear functionals on H({A,};h; Q). We regard G as the representer of the bounded
linear functional £ : H({A,}; h; Q¢*') > R, F — F *31({An};hi0eery G (according to the Riesz
representation theorem) and approximate G by its spline interpolant Sfiv,_._, N relative to

N N
£1’---’LN,

N N
= a; L;
ﬁ{V, SLN E:

where the coefficients are uniquely determined by the linear equation system

(G’Lk) {An}hﬂemt Za Lk‘ 'H({An}hﬂemt) kzl,...,N.
Substitution of G by S¢ LN, LN then yields the approximation formula
N
~ _ N pN
F toygagmsnz G~ F ryyayaze Sey oy = D0 LYF. (4.8)
i=1

We now turn to the question of convergence of the numerical discretization rule (4.8).
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Theorem 4.8 Let {An}nen, C R be a sequence of non-negative real numbers, let
r € RT, h € {0,1,2} and let F,G € H({A,}; h; Qext). Assume that {LV,... LN}nen C
H({A}; h; Q)" is a sequence of sets of N linearly independent bounded linear function-
als on H({An}; h; Qe=t) | which is hierarchical, i.e., LN = LM fori=1,...,N and for all
N < M. Furthermore, assume that span{L}, £?, E%, £§’,. } is dense in H({An}; h; Qeat)*,
Denote the representer of LN by LN, i=1,...,N, and the H({A,}; h; Qe=t)-spline inter-

polant of G relative to LY, ..., LN by SEN N
N LX

NN
= a; L;
ﬁ{V, LY Z

Then the numerical rule (4.8) is exact in the limit N — oo, i.e.

N
llm ‘(F G) {An}hneact ZG’ZIV‘CZIVF| =0.

N—00 -
=1

Proof:

N
(B Gy — D08 (B L )aggga, g

=1

|
B
Q
hC/J

S

G
..... ) ({An}hWﬂ
< ||FIIH{An}mm IG = SEx e llaeanmmz-

Theorem 4.4 implies that
w6 = Sy

1 90y

ey luanynazn =0,
which yields the desired result. a

Theorem 4.7 and Theorem 4.8 are rather abstract in so far, as they do not yield any
information what kind of hierarchical systems {L¥,... LV }yen satisfy the property

span{Li, L3, L3, .. .}"'””({An};’“"?”) = H({An}; h; Qe=t). In Section 4.6 we will meet con-
crete sets of evaluation functionals which have exactly this property.

4.4 Reproducing Kernel Hilbert Spaces

We will now turn our attention to the special case of H({A,}; h; Qet)-spline interpolation
when H({A,}; h; Q¢*t) is a reproducing kernel Hilbert space. In this case all evaluation
functionals are bounded, and what is even more important, their representers (according
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to the Riesz representation theorem) have a simple representation in terms of the repro-
ducing kernel. We give a summary of the well-known properties of reproducing kernel
Hilbert spaces (for a general treatment of reproducing kernel Hilbert spaces, see e.g. the
fundamental article by Aronszajn [Ar1950]):

Definition 4.9 Let r € RY. A separable Hilbert space H of real-valued functions on Qest
with inner product (-, )y is called a reproducing kernel Hilbert space if there exists a kernel-
function Ky : Qeot x Qevt — R with the properties:

(i) Ky(x,-) € H for every fived x € Qe and all F € H,

(ii) Ky satisfies the reproducing property (F, Ky(z,))y = F(z) for all 2 € Qet.

The next lemma gives a necessary and sufficient condition under which H is a reproducing
kernel Hilbert space.

Lemma 4.10 Let r € RT. A separable Hilbert space H of functions on Q& with inner

product (-,-)y is a reproducing kernel Hilbert space if and only if the evaluation functionals
Ly,:H—R F — F(x), are bounded for all x € Q&*t,

Proof: =: Assume that (, (-, -)#) is a reproducing kernel Hilbert space with reproducing
kernel K. Let x € Q¢*t and £, : F — F(x). Then Ky(z,-) € H and (F, Ky(z,-))y =
F(z). Consequently,

[LoF| = |(F, Kn(2, )| < N Fllacl| Ko (2, )l

and thus £, is bounded.

<: Assume that for all x € Q¢* the evaluation functional £, is bounded. According
to the Riesz representation theorem there exists one and only one L, € H such that
L,F = (F,L,)y for all F € H. Define Ky(z,") := L, for € Q¢#*. Then Ky fulfills the
properties of a reproducing kernel, and thus H is a reproducing kernel Hilbert space. O

Lemma 4.11 Let (H, (-, -)) be a reproducing kernel Hilbert space of real-valued functions
defined on Q¢%t. Then the reproducing kernel is uniquely determined and has the represen-
tation

n€ENg

for each complete orthonormal system {H,}nen, in H.

Proof: Uniqueness: Assume that Ky, and Ky are two reproducing kernels for H. By the
reproducing property,
(Kn(x,-), F)y = (Kn(x,-), F)y for all F € H
& (Ky(z,-) — Ky(z,-),F)y =0forall F € H.
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Hence, Ky(z,-) = f(%(x, \) in ‘H-sense for all z € Q¢ and therefore Ky = Ky

In order to prove the representation of Ky, we let x € Q¢ be fixed and calculate the
coefficients of Ky /(z,-) with respect to the complete orthonormal system {H,},en,- By
definition of the reproducing kernel,

(Kn(, ), Hn)u = Hn(z)
for n € Ny. Hence, the representation (4.9) is valid. O

Lemma 4.12 Let r € RY, let h € {0,1,2} and let {A,}nen, C Ry be a sequence of non-
negative real numbers. H({An}; h; Q&) is a reproducing kernel Hilbert space if and only if
{Ap}nen, is summable. The corresponding reproducing kernel is given by

2n+1
1
Ky an iy (@ 9) = D Z an rshy @) = Ha (13 b y), (4.10)

neN k=1 n

where x, y € &t

Proof: «<: Due to the addition theorem and the summability of { A, },en,, we have

2n+1 2
2 2
”K'H({An};h;W)(x, )”H({An},h,W) = Z Z A ( n k: T h; .Z'))

neN k=1

B 1 om+ 1 ( r > 2(n+h+1)
4mrr? — A2 |z|
1 n+1

2 2
4y = A?

< o0

for all € Q#t and thus, Kyt anymazn (@, ) € H({An }; h; Qeet) for all z € Qeat. Hence,
(F, Ky anyna5) (T *)) g4, )ns00ze) 1s well-defined for F' € H({A.}; b; Qeat) | and a straight-
forward calculation yields F'(x).

=: Let H({An}; h; Q") be a reproducing kernel Hilbert space with reproducing kernel

Kyyganymazn- Then Ky v geam (2, 0) € H({An}s b Qeat) for all 2 € Qert, and according
to Lemma 4.11,

2n+1

1
Koyt anynsoz (2, 9) Z Z an r; h; JJ)A H,, (s h; y),
neN k=1 n n

where z, y € Q¢*t. Hence, for z € Q,

2n+1 2
| Kuctamaz @ Waman = 2 204 ( Hin (7 1 ‘E)>

neN k=1
1 2n+1 <
= 0
Admr? A? ’

neN
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i.e., {4, }nen, is summable. O

Lemma 4.13 Let (H, (-, -)u) be a reproducing kernel Hilbert space with reproducing kernel
Ky. Furthermore, let £ be a bounded linear functional on H. Assume that {H,}nen, s
a complete orthonormal system in H. The unique representer of L in H according to the
Riesz representation theorem is given by

L=LKy=> (LH,)H,. (4.11)
neNg

Proof: It suffices to compute the Fourier coefficients of L:
(L,H,)y = LH,.

Hence, the representation (4.11) is valid. O

4.5 Representation of Bounded Evaluation Function-
als

In our applications we are interested in a simple representation (that can numerically
easily be calculated) of bounded evaluation functionals in the Sobolev-like Hilbert spaces
H({An}; h; Qeet), where h € {1,2} and where {A, },en, C RY is a sequence of non-negative
real numbers with A4, > 1 for almost all n € N(A4,).

From Lemma 4.12 we know that whenever the sequence {A,}nen, IS summable,
H({A,}; h;Qeet) is a reproducing kernel Hilbert space and, by Lemma 4.10, the evalu-
ation functional £, : H({A4,}; h; Q%) — R, L, F := F(x), is bounded for each z € Qevt,
By Lemma 4.13, its representer L, € H({A,}; h; Q¢e?) is given by

Ly = Lo Koy a,yninen () = Koyypa,yninzn (), (4.12)

where Koy e () ¢ Q% x Qe — R denotes the reproducing kernel of
H({An}; b; Qert).

We will see, that under the first mentioned weaker assumptions on { A, },en, all evaluation
functionals in points z € Q" are still bounded. Furthermore, there are special choices
for {An}nen, such that the representers of bounded evaluation functionals are available as
elementary functions and can be easily implemented.

Theorem 4.14 Let {A,}nen, € RS be a sequence of non-negative real numbers with
A, > 1 for almost all n € N := N(A,). Then the evaluation functional
Lo H{A}; h;Qet) — R, L,F := F(x), is bounded for each x € Q*, and its rep-
resenter L, € H({An}; h; Q%) is given by

2n+1

1 1
Le=) )Y - Hn k(5 1y )~ Ho g (s s ). (4.13)
neN k=0 " n
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Proof: Let z € Q¢ and L, be given according to (4.13).

2n+1

2 —
”Lw”’?{({An},h,@) - Z Z an T h 37)

neN k=0 n

1 om+1 [ r 2D
42 A2 ||
n

< o0

due to the quotient criterion, and thus L, € H({A,}; h; Qet). Consequently, the convolu-
tion (Ly, F)3y (4, }n0er is well-defined for all F' € H({A,}; h; Q5*'), and

2n+1

(Las F)gyqanymazn = O O, FagHuk(r; b z) = F(z) = L,F.
neN k=0

Due to the Riesz representation theorem

1Eallanyinsazm = [1Lallagpanmazm < o0
which completes the proof. O
Remark 4.15 Under the assumptions of Theorem 4.14 we can furthermore show that the

series (4.13) is uniformly convergent in Q¢ where we may use arguments analogous to
those which lead to the conclusion that || Ly|lyq 4, yp.aee0 < 00 for z € Qe Hence Ly is a

continuous function on Q¢*t.

We now turn our attention to special choices of { A, }nen, C RY with A, > 1 for almost all
n € N(A,) which are of major importance for the numerical treatment of H ({4, }; h; Qee?)-
spline interpolation and H({A,}; h; Q¢**)*-best approximation, respectively. As already
mentioned, these are those cases in which the representers of bounded evaluation function-
als on H({A,}; h; Q=) have a representation as an elementary function.

For s € (0,1) we introduce the families of univariate functions:
Ly :[-1,1] = R, t+ 1+ 5% —2st

and

1 1-¢2

Qs :[-1,1] > R", t 47TW-
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Spaces H({A,}; h; Qe?) with Representers of ‘Abel-Poisson-Kernel Type’

Let ¢ € (0,1] and A, = ¢ ™? forn € Ny. Let z € Q° in case ¢ = 1 and z € Qeat if
g € (0,1). Then the evaluation functional £, : H({g™"/?};h; W) - R,
F ~ L,(F) := F(z), is bounded and its representer L, € H({q ™?};h; Qeet) is given
by Ly = Ky 14-nr2y 000 (%, -), Where

Kyygqrroyniagm (2, )
2n—+1
= Y > q"Hup(r;hs ) Hog(rs by y)
neNy k=1
1 2 )hH 1 r2 \" Ty
(Y s () (20)
r? <|$||y| 47T,;N0 ||y lz| [y
1 TQ h+1 z y -
= — . — .= for € Qert, 4.14
Fam) Qs (F0d) o “14

Spaces H({A,}; h; Q2¢*t) with Representers of ‘Singularity-Kernel Type’

Let g € (0,1] and A, = ¢g~"/? (n—i— %)1/2 forn € Ny. Let z € Q¢ in case ¢ = 1 and x € Qevt
if ¢ € (0,1). Then the evaluation functional £, : H({g "/* (n+ )1/2} h; Qest) — R,
F — L,(F) := F(z) is bounded and its representer L, € H({g/* (n + )1/2} h; Qet) is

given by L, = KH({q—n/2(n+§)l/2};h;W)(x’ -), where

KH({q—n/z(ml)l/‘z};h;W) (z,9)

2n+1

= Hy (75 by 2) Hyy (75 s y)

neENy k=1

- ’”2 )WZ( ) ()

— q— - .=

2rr? \|zllyl ) Sz \Clzllyl) " \lzl |yl
= for y e Qest,

22 (\xHyl . . o)) '

(s (- 15)

Spaces H({A,}; h; Q¢#t) with Representers of ‘Logarithmic Kernel Type’

Let ¢ € (0,1] and 4, = ¢"2((2n+1)(n+1))"? for n € Ny. Let z € Qe in case
g = 1 and z € Q&t if ¢ € (0,1). Then the evaluation functional
Lo HET"2 (2n+1)(n+1))"?}; h; Q%) — R, F — L,(F) := F(z), is bounded and
its representer L, € H{g "2 (2n+ 1) (n+1))*}; ;Qet)  is  given by
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La = Kyy(qgrr2(amsr)any /2ymiagen) (7 ), Where

Koytqr2(@ns)(me1)) 2 ysnsagey (T Y)
2n+1

q" . . h.
= > > 2n+1)(n+ 1)H””“(7" s 0} Ho (7 i y)

n€ENy k=1

) B )
drr? \ |z||y| n+1\"|z||y| | [yl

n€eNy

h
7.2
() N
y zwln 1+ Hml/2 for y € O
wr q i
z Y PV
<L(q£ﬁy) ¢ yl)) 1= agy

In all three cases {4y }nen, is summable if ¢ € (0,1), and Ky (4 .5.0e0) (", *) then coincides
with the reproducing kernel of H({A,}; h; Qf**). Moreover, Ky (4 1..qe) (2, y) > 0 for all
y € Qert and all x € Q¢ in case ¢ = 1 and z € Qet if ¢ € (0, 1), respectively.

The parameter g € (0, 1] is a shape parameter and determines the decay behaviour and thus
the spatial localization of the representer of the evaluation functional
Ly = Ky, nom0 (@) inz € Q (or z € Qet vespecitively, if { Ay }nen, is summable).
Figure 4.1 shows the Abel-Posson-kernel, the Singularity kernel and the Logarithmic ker-
nel on the unit sphere for ¢ = 0.95. These functions are nothing else but the representers
of the evaluation functionals in z = (1,0,0) in the spaces H({A4,};0; Q") for the above
choices of the sequence {A,}nen,. It is clearly visible that their decay behaviour is quite
different.
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Figure 4.1: a) Abel-Poisson kernel, b) Singularity kernel, and ¢) Logarithmic kernel on the
unit sphere in case ¢ = 0.95.

Note that we may exploit the space-localizing properties of the representers of bounded
evaluation functionals in order to treat the H({A,}; h; Q¢%%)-spline interpolation problem
and the H ({4, }; h; Qezt)-spline approximation problem ‘locally’. This has to be understood
in the following sense: Assume that we want to compute a spline reconstruction of a
function of class H({A,}; h; Q%) only on a subdomain M of a C?-regular surface 3 in
Qe*t (e.g., the orbit of the satellite in the SST-problem and SGG-problem in Problem
3.1) and that the bounded evaluation functionals are evaluation functionals in points on
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Y. Then it suffices to solve the H({A,}; h; Q¢zt)-spline interpolation or spline smoothing
problem only with respect to evaluation functionals in points in some subdomain McC 3,
which is a suitable neighbourhood for M, for the following reasons: The representer of a
point evaluation in x is a function with a strong space-localization around x. As a spline S
is a linear combination of such representers, a representer of a point evaluation in a point
far away from M yields only a negligible contribution to S|y. The subdomain M has to
be chosen somewhat larger than M, because we have to take into account that errors due
to Gibbs phenomena close to the boundaries of M are likely to occur. (However, due to
the spatial localization of the representers of the evaluation functionals these errors should
be localized in space, too.)

4.6 Spline Interpolation with Data Given on a
C®-regular Surface

In order to solve the SST-problem and the SGG-problem in its discrete formulation (see
Problem 3.8) we want to approximate the right-hand side G € H({A,}; h; Q¢e?) of the
operator equation AF = G, where h = 1 for A = A®5T and h = 2 for A = ASYC with
the help of the known data {(z¥,G(zN))|i =1,..., N} on the ‘orbital surface’ ¥g. One
approach to do this is to compute the interpolating H ({A,}; h; Q¢*?)-spline of G from the
measured data, and this is justified if we can show that the interpolating spline S v (of

G with respect to the evaluation functionals £; : G — G(z),i=1,...,N) converges to G,
when X := {z,z,,...} is a dense subset of g and when N — oo. Therefore, we present
convergence theorems for interpolating H({A,}; h; Q¢t)-splines in this section. However,
it should be noted that these convergence results yield no quantitative information about
the quality of SLG{V,..., £y as an approximation of G. But for a large number of measurements

this spline can be expected to be also a suitable approximation.

Theorem 4.16 Let {A,}nen, € RY be a sequence of positive real numbers which sat-
isfy A, > 1 for almost all n € Ny and let h € {0,1,2}. Suppose furthermore, that
Y C Qs a C®-regular surface. Let X := {x1,25,...} C ¥ be a dense pointset
in ¥ with corresponding evaluation functionals {L1, Ly, ...} on H({A,}; h; Qemt) given by
L H{A b Qet) - R, F = F(x;), i = 1,2,.... The evaluation functionals L;,
i =1,2,..., are bounded, and their representers L; € H({A,}; h;Qert), i = 1,2,..., are
given by

(r; hy i) Hy g (75 By ).

Then, span{L;|i = 1,2,...} is dense in H({A,}; h; Qe*t), i.e.,

TTM+

span{Lili = 1,2, ..} canynof® — 3(({A,}; h; Qo). (4.15)
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If the sequence {A,}nen, is additionally summable the statement even holds true for a
C® -regular surface ¥ C Qewt,

Proof: The boundedness of the evaluation functionals £; and the representation of their
representers L; € H({An}; h; Q¢et) are a consequence of Theorem 4.14. In order to show
(4.15), we have to verify that span{L;|i = 1,2,...} contains a complete orthonormal
system in H({A,}; h; Qe*t). Using the Gram-Schmidt orthonormalization procedure, we
may construct successively an orthonormal system {Ej\ j=1,2,...,N} in span{L;|i =
1,2,..., N}, where N < N, such that span{ij\j =1,2,...} =span{L;|i =1,2,...}. The
system {L;|j = 1,2,...} is a complete orthonormal system in H({A,}; k; Qe=) if we can
show that whenever F' € H({A,};h; Qe?) is orthogonal to all ij, j=1,2,..., it follows
that F' = 0.

Let therefore F' € H({A,}; h; Q) be given such that (F, Ej)H({An};h;@) = 0 for all

j=1,2,.... Since span{L;| j = 1,2,...} =span{L;|i=1,2,...}, we have that
F(LEZ) = EZF = (F, Li)H({An};h;W) =0 fori= 1, 2, e (416)

Since F'|y, is continuous and the pointset X is dense in 3, (4.16) implies that F'|y = 0.
The function

|.’E| h oo 2n+1
F(z) (7> => ") Fl Hyu(r;z) (4.17)

n=0 k=1
is harmonic in Q¢ and vanishes on ¥. Due to the uniqueness of the solution of the
exterior Dirichlet boundary value problem for the Laplace equation with boundary data
given on ¥, F(z)(|z|/r)* = 0 for all z € Y. By harmonic continuation, the function
x — F(z)(|z|/r)" vanishes everywhere in Q¢%*. This means, however, that its series expan-
sion (4.17) vanishes in Q¢! and the Fourier coefficients F/ ,, n € Ny, 1 < k < 2n+1 all

n,k?
have to be zero. Hence F' = 0 and {L;|j = 1,2,...} is a complete orthonormal system in
H({An}s h; Q).

If {A,, }nen, is additionally summable, all evaluation functionals are bounded and the proof
is analogous for the case ¥ C (¢t O

Theorem 4.17 Let the assumptions and notation be the same as in Theorem 4.16. Let
F € H({A,}; h; Q) and denote its interpolating H({An}; h; Qezt)-spline with respect to
the evaluation functionals {L1,..., Ly}, N € N, by th___,LN. Then the following conver-
gence results hold true:

(i) A}E};OHF - Sfl,...,,cN”H({An};h;W) =0,
(i) Jim ||F = SE, ||y =0 for all 6 >,
(i41) A}H};O”F - 551 ..... £N||C(W) = 0.

If the sequence {Ay}nen, @S additionally summable, the statements (i), (ii) and (iii) are
even valid for a C® -reqular surface ¥ C Qevt,
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Proof: The spline interpolation operator which maps F' € H({4,}; h; Q¢*t) onto its inter-
polating  H({An}; h; Qg¥)-spline  Sf .~ is an orthogonal projection onto
span{Ly,...,Ly}. According to Theorem 4.16 we may use the Gram-Schmidt orthonor-
malization procedure to successively construct a complete orthonormal system_ {L }jen of

H({A,}; h; Qe7t) such that for all N € N, span{Ls,...,Ly} = span{Ls,..., Ly}, where
N = N(N) < N. Then

N

Sfl,___,ﬁN = Z(Fa L]')’H({An};h;W)Lj’

i=1

which is nothing else but the truncated Fourier series of F' with respect to the com-
plete orthonormal system {L;} ey, and which converges to F in H({A,}; h; Q¢t)-sense for
N — o0o. Thus, statement (i) follows.

Assertions (ii) and (iii) are a consequence of the estimate

[F(2) = Sz,,...cx ()]

oo 2n+1
(s £ gt
H({ An}ih;Q570)

n=0 k=1

o 2(n+ht1)\ /2
< IF_st | - ZM T
< L1, 1H({ A, }ih5085T) 4rr2 A2\ |z|

n=0 n

for x with || > r + 7, where T is an arbitary C®-regular surface in Q¢ and

v = infyer|z] —r > 0, and for x € Q¢ in case {A,}nen, is summable. Due to
the quotient criterion the sum is in both cases finite and it is uniformly bounded in
x. As a consequence of (i), there exists for each ¢ > 0 an Ny = Ng(¢) such that

SUp, cear [F(2) — Sf, (@) < e for all N, M > Ny. Hence {Sf, . }wven converges
uniformly to F in I'*** (and Q¢** in case {A,}nen, is summable), which implies (ii) and
(i). O




Chapter 5

Scaling Functions, Wavelets and
Regularization by Multiresolution

Let {A,}nen, € RS be a sequence of non-negative real numbers, let 7,79 € RY and
hi,hs € {0,1,2}. Suppose that A : H({An}; hi; Q) — H({An}; he; Q¢21) is a pseudod-
ifferential operator whose symbol {A"(n)},en, satisfies lim,,_, |A*(n)| = 0 and which is
therefore compact. The main objective of this chapter is to construct a regularization to
the unbounded inverse A= : H({A4,(A"(n))™'}; ho; Q%) — H({An}; hi; Q%) which leads
to a multiresolution analysis of the space H({4,}; hl;@), i.e. to a nested sequence of
approximation subspaces {V*(h; Q) }jen, € H({An}; hi; Qgt) which admits a represen-
tation of the approximate solution to the ill-posed pseudodifferential operator equation
AF = G, F € H({Au}; h1; Q) G € H({An}; ho; Q) at different scales j of space-

momentum resolution.

Section 5.1 introduces the (technical) notion of H({Ay}; hy; Q%)-H({An}; ho; Q%) prod-
uct kernels. These are functions on Q&** x (¢t which are characterized by a sequence of
real numbers called the symbol of the product kernel.

First we explain the construction principles of a multiresolution analysis of H({ A, }; h; Q¢at),
where r € Rt and h € {0,1,2}, because after these preparations the construction of
a regularization multiresolution analysis is straightforward. In Section 5.2 we therefore
introduce scaling functions for H({A,}; h; Q¢#?). These are families of H ({4, }; h; Qeet)-
H({A,}; h; Qeet) product kernels {®;}cn, which depend on a so-called scale parameter
j € Ny, and which may be generated as dilated versions of the mother scaling function ®,
at scale j = 0. The scale parameter j is a measure for increasing space localization of the
product kernel ®;. The construction of an approximate identity in H({A,}; h; Q&?), i.e.,
a family {P;}en, of bounded linear operators P; : H({A,}; h; Qe=t) — H({A,}; h; Q)
which approximates the identity operator Id : H({A,}; h; Qe#t) — H({A,}; h; Q&) on the
basis of a scaling function for H({A,}; h; Q¢#?) then leads to a nested sequence of approx-
imation subspaces (scale spaces) {V;(h; Q&) }en, C H({An}; h; Qert).

99
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The wavelet which corresponds to a scaling function for H({A,};h;Q¢?) is defined in
Section 5.3 as the family of H({A,}; h; Qe)-H({A,}; h; Q&) product kernels {¥;}ien,
whose symbols are related to the symbols of the kernels ®;, j € Ny, via a so-called re-
finement equation. This equation reflects the difference between two members of the
family {®,};en, at consecutive scales. With the help of the wavelet corresponding to
{®,};en, We may then introduce a second family of bounded linear operators {S;};en,,
S; + H({An}; b; Qeot) — H({An}; b; Qeat) with the property Pj + S; = Py, j € Ny. This
construction leads to a further decomposition of the scale spaces according to V;(h; Qe=t) +
W;(h; Qemt) = V;, 4 (h; Qext), where {W;(h; Q¢) }ien, C H({An}; h; Qe2%) denotes a family
of so- called detail spaces which contain the detail information which has to be added to
the approximation of a function of class H({A,}; h; Q¢%) at scale j in order to obtain its
approximation at scale j + 1.

Section 5.4 finally transfers the results of Sections 5.2 and 5.3 to the case of a regular-

ization multiresolution analysis corresponding to the ill-posed pseudodifferential operator
equation AF = G, F € H({A4,}; hi; Q&), G € H({A,}; hy; Q).

The presentation of the concepts is oriented on [Fr1999].

5.1 Product Kernels

Definition 5.1 Let {A,}en, C R be a sequence of mon-negative real numbers, let
N = N({A,}) and let ri,75 € Rt and hy,hy € {0,1,2}. Suppose furthermore that
{K"(n)}nen C R is a sequence of real numbers which satisfies

S @n+1) (K () % < (5.1)

neN

and

Z (2n +1)(K"(n))? < . (5.2)

neN

Then the function K : Qewt X Qe” — R, defined by

oo 2n+1
1

1
K(z,y) == Z Z KA(n)A_Hn,k(Tl; ha; x)A_Hn,k(TZ; ha;y), (5.3)
n=0 k=1 " "

where x € Q¢ and y € Qt, s called an H({An}; hi; Qet)-H({An}; ha; Q%) product

T2 7

kernel with s.y_mbol {K"(n)}nen- In case that r1 = 19 and hy = he, K is simply called an
H({An}; ha; Qe2t)-product kernel.
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Lemma 5.2 Let {A,}nen, C Ry be a sequence of mon-negative real numbers, let

r1,79 € RT and hy, hy € {0,1,2}. Suppose that K : QetiQ”t — Ris an H({An}; hi; Qe“)
H({A}; ho; Q) product kernel with symbol {K"(n )}nEN- Then

(i) K(z,-) € H({An}; ho; Qe2t) for all x € Qe

(it) K(-,y) € H({An}; h1; Q) for all y € Q& and

(iii) K(-,) M An}ihoi0550) F € H({A}; h1; Q%) for all F € H({A,}; ho; Q%) and

(iv)

2n+1

K(.T,) 'H({An}hﬂewt F= Z ZKA F:Lk nk(’rlahla ) (54)
neN k=1

Proof: Assertions (i) and (ii) are a consequence of condition (5.1), since

2n+1

”K( )”’H({An}hzgewt) = ZZ K/\ (Hn,k(rl;hl;x))2

neN k=1 ”

2n+1 1
< YR o <o

= 4dmry

and

€ Co ) llagganysnsmzary < 0

by analogous arguments.
Condition (5.2) implies that {(K"(n))*}nen, is bounded. Thus

2n+1
2 2
||K(7 ) ’H({An} hz,Q”t F“ H{Ar}; hl’Qext) = Z Z A KA Fn1:2k)
neN k=1
2
= sup (K7 (n) ”F”'QH({An};m;Wgt) < 00
which proves (iii).
Property (iv) can be verified by elementary calculations. a

Equation (5.4) reveals that the convolution between a product kernel and a function is
nothing else but a multiplication of the Fourier coefficients of the function with the the
symbol of the kernel.

Remark 5.3 Let the assumptions be the same as in Definition 5.1 and suppose that
{A, }nen, additionally satisfies A, > 1 for almost all n € Ny. Then (5.2) implies (5.1).

Definition 5.4 Let the assumptions be the same as in Definition 5.1. An H({A,}; hi; Qet)-

H({An}; ho; Qe2t) product kernel K with symbol { K" (n)}nen is called bandlimited if there
exists an N € N such that K"(N) # 0 and K"(n) =0 for alln > N, n € N'. N is called
the band limit of K.
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Finally, we show that the convolution of two product kernels (supposed it is well-defined)
is again a product kernel.

Lemma 5.5 Let {A,}nen, C Ry be a sequence of non-negative real numbers, and let
r1,72,73 € RY and hy,he,hs € {0,1,2}. Suppose that K : Qe*t x Qert — R is an
H({An}; hi; Q) -H({ A }; hao; Q) product kernel with symbol {K™(n)}nen and that
L :Qert x Qezt — R is an H({A,}; ho; Q) -H({A,}; hs; QF) product kernel with symbol
{LM(n)}nen- Then the convolution K(z,-) *H({An} o 5T L(-,y), (z,y) € Qo x Qest s
well-defined, yields

2n+1

1
K(z,-) *H({An};hz;@) L(-y) = Z Z KA(”)LA(”)ﬁHn,k(ﬁ; hy; 2) Hy k(35 has y)

neN k=1 n

and defines an  H({An}; hi; Q) -H({An}; ha; Qe2t)  product  kernel  denoted by

Kty anyinasign) L

5.2 Scaling Functions

Definition 5.6 Let {A,}nen, C Ry be a sequence of non-negative real numbers, T € Rt
and h € {0,1,2}. Let {®;}jen, be a family of H({An};h; Qet)-product kernels
;- Qert x Qert — R with symbol {(®;)"(n) }nen, i.e., for j € Ny, ®; is defined by

2n+1
@j(m, y) = Z Z ((I)j)/\(n)%Hn,k(T; h; x)Hn,k(r; h; y)’ x,Y, € ngt’
neN k=1 n

and for all j € Ny the symbol {(®;)"(n)}nen satisfies conditions (5.1) and (5.2) in Def-
inition 5.1. Suppose that the family of sequences {{(®;)"(n)}nen}jen, has the following
additional properties:
(i) (®;)"(n) >0 for alln € N and j € Ny,
(ii) (®;/)"(n) > (;)"(n) for alln € N and all j,j' € Ny with j' > j, and
(1ii) jli_)rgo(@j)/\(n) =1 forallneN.
Then {®,};en, is called a (scale discrete) linear scaling function for the Hilbert space
H({An}; h; Qe=t). The family of sequences {{(®;)"(n)}nen}jen, is called the generating
symbol of the linear scaling function.

Definition 5.7 Let {A, }nen, C Ry be a sequence of non-negative real numbers, let r € Rt
and h € {0,1,2}. Suppose that {®;},cn, is a linear scaling function for H({An}; h; Qgot)
with generating symbol {{(®;)"(n)}nen}jen,- Then the iterated product kernel {@52) }ieno s
defined by

2
(I)g. )(33, y) = (Dj(ma ) *H({An};h;W) (I)j("y): T,Y, € ngta

is called a (scale discrete) bilinear scaling function for H({An}; h; Qeet) with generating
symbol {{(®;)"(n) }nen}jen -
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Lemma 5.8 Let the assumptions be the same as in Definition 5.6. Then the iterated kernel
{<I>§-2) }ien, introduced in Definition 5.7 is a linear scaling function for H({An}; h; Q) with

generating symbol {{(@5-2))/\(71)}”@\[}]-61\;0 given by ((DS-Q))A(TL) = ((@,)"(n))?.

Proof: We have to verify that {{((®,)"(n))*}nen, }ien, satisfies properties (i) to (iii) in
Definition 5.6.

(i) is clear and (ii) follows from the fact that (®;)"(n) > (®;)"(n) for all n € N and all
7,7 € Ny with j > j. (iii) is a consequence of the fact that lim;_,.(®;)"(n) = 1 for all
neN. O

In the next definition we introduce a special type of a linear scaling function for
H({A,}; h; Qeet) which shows a certain ‘reproducing property’. This property can be
exploited to construct a recursive scheme for the fast evaluation of the multiscale ap-
proximation of the solution to an ill-posed pseudodifferential operator equation.

Definition 5.9 Let {A, }nen, C Ry be a sequence of non-negative real numbers, let r € R*
and h € {0,1,2}. Assume that {{(®5)"(n)}nen}jen, C R is a family of sequences of non-
negative real numbers, which satisfies the conditions ((5.1) and (5.2) in Definition 5.1 and
in addition

(i) (F)(n) > 0 for alln € N and j € Ny,

(it) (25)"(n) > (@) (n) for alln € N and all j,j' € Ny with j' > j,

(iii) JILIEO((I);B)A(n) =1 for alln e N, and

(iv) (@E)N(n) = (®F.)"(n))* for alln € N and j € Ny.
Then the family of H({An}; b; Qe=t)-product kernels {®F}jen,, defined by

2n+1
1 R
(I);Z(xa y) = E E (q);z)/\(n)ﬁHn,k(ra h’ l‘)Hn,k('l", ha y)’ x,Y, € ngt
neN k=1 n

is called a reproducing (R-scale) scaling function for H({An}; h; Qeet) with generating sym-
bol {{(2F)"(n) }nen }jens-

Remark 5.10 Note that in Definition 5.9 we need the generating symbol of a reproducing
scaling function to satisfy ()" (n) > 0 for alln € N and j € Ny in contrast to Definition
5.6 of a linear scaling function, where we allowed that (®;)"(n) > 0 for alln € N and
j € Ny. This is due to the fact that whenever there exists a jo € Ny and an ng € N such that
(®;,)"(no) = 0, the reproducing property (iv) in Definition 5.9 implies that (®;)"(ng) =0
for all j € Ny, and thus condition (iii) cannot be satisfied.

Lemma 5.11 Let {A,}nen, C RS be a sequence of non-negative real numbers, r € R* and
h € {0,1,2}. Let {®F}jen, be a reproducing scaling function for H({An}; h; Q¢2t). Then

(I)]R = (Df-l-l *H({An};h;W) (I)f—l—l fO’I" all j € Ny.
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Proof: This follows from property (iv) in Definition 5.9. O

Definition 5.12 Let {Ap}nen, € RS be a sequence of real numbers, let r € R and
h € {0,1,2}, and assume that {®;}jen, is either a linear, bilinear or reproducing
scaling function for H({An}; h; Qe=t). Define the family {P;}jen, of operators by

Py H({An}; h; Qemt) — H({An}; h; Qe2t), F Pi(F) == ; *H{ An)ihi0geT) F
and the family of scale spaces {V;(h; Q¢ }en, by
Vj(h; Qgt) := im(P;) = Pj(H({An}; b; Q¢™)).

Note that due to Lemma 5.2

2n+1

(B F)(z) = @;(z, ") *y H({An };h;Qeet) F= Z Z Fnank(T h, z).

neN k=1

The fact that a scaling function {®;}cn, has the property that lim;_,(®;)"(n) = 1 for all
n € N implies that P, F should in some sense converge to F'if j — co. This is investigated
in the next theorem.

Theorem 5.13 Let {A,}nen, be a sequence of non-negative real numbers, r € Rt and
h € {0,1,2}, and assume that {®;};en, is either a linear, bilinear or reproducing scaling
function for H({An}; h; Qezt). The family of operators {P;};en, introduced in Definition
5.12 generates an approzimate identity in H({An}; h; QE), i.e.,

jli_glo |1F = PjF”%({An};h;W) =0

for all F € H({A,}; h; Qest),

Proof:
S (|F = Py Fllyya,ymgery = B F = @505 ) #aypa,yiniange) Fllauganymsog
2n+1 1/2
= lim (Z ZA2 (1— (9, (n))z(Fg,k)Q)
J=re0 neN k=1
21 1/2
= (Z >4 (hm (1= (&) (n >>2) (F,:,m)
neN k=1 Jmree

= O’

where we may interchange sum and limit due to the fact that F' € H({A,}; h; Q¢*) and
11— (®;)"(n)| <2 for all j € Ny and for all n € N, O
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Theorem 5.14 (Muliresolution Analysis) Let {A,}nen, C RS be a sequence of non-
negative real numbers, r € Rt and h € {0,1,2}, and let {®,};en, either be a linear, bilin-
ear or reproducing scaling function for H({An}; h; :Qeat). Then the family of scale spaces
{V;(h; Qe=t)} jen, corresponding to the family of operators {P }ien, introduced in Definition
5.12, is a multiresolution analysis of H({A,}; h; Qezt), 4.

(i) V(b TT) C .. C V(b T) C V(s T) C .. C H({ A kO for > )
]E NO;

and

(i) U V,s0g) O (4, 5T,

J€ENg
Proof: As ®; is a product kernel we know by Lemma 5.2 that ®; %, 4 5000 £ is
a function in H({A,}; h;Qe=t). Thus, V;(h; Q) C H({A,}; h; Q) for all j € N,.
In order to verify V;(h;Qet) C Vi(h; Qest) for j° > j, we have to show that for ev-
ery ' € H({A,}; h;Qest), P,F € Vj(h;Qet). But this means that there exists an
G € H({A,}; h; Q) such that PG = P;F.

2n+1

neN k=1
2n+1

= 33 (@)(n) Gy Hoplr b ) = PG

neN k=1
Ang (fbj)A(n)F,’{,k < (‘ij)/\(n) ;,k forall neN.
Define G € H({A,}; h; Q¢*t) by
G = (@ LWy, i (@) (n) #0
o it (®,)(n) = 0.

Because of 0 < (®;)"(n) < (®;:)"(n) and F € H({Ay}; h; Q) the function G is obvi-
ously in H({A,}; h;Q¢=t), and by construction PyG = P;F. Statement (ii) is a direct
consequence of Theorem 5.13. O

5.3 Wavelets

Definition 5.15 Let {A,}nen, C RS be a sequence of non-negative real numbers, let
r € RY andh € {0,1,2}. Let {®;};en, be a linear scaling function for H({A,}; h; Q&t) with
generating symbol {{(®;)"(n) }nen}jen, - Define the family of sequences of non-negative real
numbers {{(¥;)"(n)}nen}tjeny C RY by

() (n) := (®j41)"(n) — (®;)"(n) forall neN andadll jeN,.
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Then the family {9} en, of H({An}; h; Qeot)-product kernels W, : Qevt x Qert — R, defined
by

2n+1

ZZ — H,, (75 h; ) Hy i (15 B3 y), xyEQemt j €N,

neN k=1 ”

is called the (scale discrete) linear wavelet corresponding to the linear scaling function
{®;}jenvo- The family {{(¥;)"(n)}nen}jen, is called the generating symbol of the linear
wavelet corresponding to {®;}en, -

Definition 5.16 Let {A,}nen, C RS be a sequence of non-negative real numbers, let
r € Rt and h € {0,1,2}. Let {(P?) }ieno be a bilinear scaling function for H({A,}; h; Qet)
with  generating  symbol {{(@)"(n) }nen}iens - Let  {{(¥;)"(n)}nen}tjen, and
{{(¥)"(n) }nen}jen, be families of sequences of non-negative real numbers which satisfy
the refinement equation

(T)" (m)(¥)" (n) = ((@511)" ()" — ((2,)" (n))? (55)

for alln € N and j € Ny, where we set (¥;)"(n) = (¥;)"(n) =0 whenever the right-hand-
side of (5.5) is equal to zero. Then the family {VU;}jen, of H({An}; h; Q) -product kernels
U, Qert x Qert R, defined by

2n+1

= ()N (n) 5 Hop(r; b @) Hyi(r; s y), 2,y € O, j € Ny,
neN k=1 n

s called a primal wavelet corresponding to the bilinear scaling function {@;2) }ieno- The
family {U;}ien, of H({An}; h; Qeat)-product kernels U : Qet x Qevt — R, defined by

2n+1

Z Z \i nk(r h; x)Hn,k(T; ha y) z,y € Qewta ]G N()a
neN k=1

is called the dual wavelet accompanying {¥;};en, -

The families {{(¥;)"(n)}nentieno and {{(¥;)"(n)}nen tien,, respectively, are called the
generating symbol of the primal and the dual wavelet, respectively.

The next definition gives two methods of how to construct a primal wavelet corresponding
to a bilinear scaling function {CD }]ENO and its accompanying dual wavelet.

Definition 5.17 Let {®;};cn, be a linear scaling function for H({A,}; h; Qe*t) and let
{(I> (2) }]ENO be the bilinear scaling function for H({An};h; Q) defined wia

CIJJ = D314, }:n:000) B with generating symbol {{(®)"(n) }nen}jen, - Let the generating
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symbols {{(¥F)"(n) }nen}jen, and {{(\iff)A(n)}neN}jeNo of a primal wavelet corresponding
to {@gQ)}jeNo and its accompanying dual wavelet be defined by

(@) (n) = (F))"(n) := ((@551) (M) = (2, (n))"* for all neN, jeN,

Then {UF}jen,, is called the P-scale (packet-scale) wavelet corresponding to the bilinear
scaling function {@5-2) }ien, -

Let the generating symbol {{(¥}")"(n)}nen}jen, of a primal wavelet corresponding to
{29} en, be defined by

(UiNN(n) = (®j11)"(n) — (2;)"(n) forall neN, jeN.
The generating symbol {{(\iléw)/\(n) tnentjen, Of its accompanying dual wavelet is given by
(\TI;VI)A(n) = (®;11)"(n) + (®;)"(n) forall neNy, jeN.

Then {9} };en, is called the M-scale (modified-packet-scale) primal and {‘jy}jeNo the ac-

companying M-scale dual wavelet corresponding to the bilinear scaling function {<I>§-2) }ien -

Definition 5.18 Let {‘I)f}jeNo be a reproducing scaling function for H({A,};h;Qest)
wz’th~ generating  symbol {{(®F)"(n)}nen}jen,- Let  {{(Y")"(n)}nen}jen, and
{H{@PNn) Ynen}jen, be the families of sequences of non-negative real numbers given
by

(T (n) = (©71)"(n) = (@) (n) for neN, jeN
and

(T)Nn) = (@F0)" (n) + (@) (n) for neN, j €N,

J

respectively. 5 L
Then the familes {35 }icn, and {5} o, of H({An}; hs; Qe=t)-product kernels, defined
by
2n+1
M (z,y) =) Y (TP Hn,k(r;h; ) (s hsy), 2,y € O, 5 € Ny,
neN k=1 "
and

2n+1
M (z,y) =) Y (TP an(r hy @) Ho (s b y), o,y € 0, j € Ny,

neN k=1 "

are called the primal M-scale wavelet corresponding to {@f}jeNo and its accompanying dual
M-scale wavelet.
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Lemma 5.19 Let {®}};en, be a reproducing scaling function for H({An}; h; Qest). Let
{UEM} i en, and {TFMY} oy, denote the primal M-scale wavelet corresponding to {®F};en,
and its accompanying dual M-scale wavelet. Then

\I,;RM — \ijﬁj_‘/{ £34({ An }sh:5255%) \Ilﬁj_‘/{ for all j € Ny.

Proof: By construction, {{(¥FM)"(n)}nen}tien, and {{(ZFM)"(n)}bnen}jen, satisfy the
refinement equation

(TEDMW)(EED ) = (@f)" ()" = (2F4)" ()

which implies the statement. O

Definition 5.20 Let {A,}nen, C Ry be a sequence of non-negative real numbers, let
r € Rt and h € {0,1,2}. Suppose that {®;}jen, is a linear scaling function for
H({An}; h; Q) and let {U;}jen, be the corresponding linear wavelet. Define the fam-
ily of operators {S;}jen, by

Sj+ H({An}; b Qe=t) — H({An}; b Qe), F = Sj(F) i= W k04 gy F-

If {<I>§-2) }ieno @8 a bilinear scaling function for H({An}; b; Qe2t) and {¥;}jen, and {¥;}jen,
are a primal wavelet corresponding to {@5-2) }ieno and its accompanying dual wavelet, define
the family of operators{S;} en, by

i+ H({An}; h; Qt) — H({An}; h; o),

F s S;(F):= 9, * T, *

T T H({An i) T TH({An R 055

F.

In case that {®F} en, is a reproducing scaling function for H({An}; h; Qe#t) and {UEM} o,
and {\ilfM}jENo are the primal M-scale wavelet corresponding to {(I)f'}jeNo and its accom-
panying dual M-scale wavelet, the family of operators {S;}jen, is defined by

Sit H{An}; h; Q™) — H({An}s b @)7

RM
((Andnizt) ikt *((anymagn) I

The family of detail spaces {W;(h; Q%) }jen, i in all three cases defined by
W (h: 57 = im(S;) = S;(H({An}; s ).

Theorem 5.21 Let {An}nen, C Ry be a sequence of non-negative real numbers, let r € R
and h € {0,1,2}. Suppose that {®;}jen, is a linear scaling function for H({A,}; h; Qe=t)
(and {@5-2)}3-61\;0 and {®}jen, a bilinear and a reproducing scaling function for
H({An}; h; Qe=t), respectively). Let the linear wavelet {¥;},cn, corresponding to {®;}jen,
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(and a primal wavelet and its accompanying dual wavelet {V;},en, and {¥;};en, corre-
sponding to {(I>§-2) }ien, and the M-scale primal wavelet and its accompanying dual M-scale
wavelet {WFM} ey, and {\ilfM}jeNo corresponding to {®F};cn,, respectively). Then the
families of operators {P;j}jen, and {S;}jen, defined according to Definitions 5.12 and 5.20,
respectively, satisfy the relations

f)j—kl = Pj + Sj fOT all j € No (56)
and
J J
Proa=Pu+ Y Si=P+> S, JJh€Ny, J> i, (5.7)
Jj=Jo Jj=0

and each function F € H({A,}; h; Qe=t) can be reconstructed in H({An}; h; Qet)-sense by

J J
F=PpF + lim Y SiF=RF+ lim ZE S,F. (5.8)
J:

j=Jo

Proof: Relations (5.6) and (5.7) can be easily verified by just inserting the definitions
of the respective scaling functions and their corresponding wavelets into the definition of
{P;};en, and {S;};en,, respectively. The limit relation (5.8) then follows by Theorem 5.13.
O

An immediate consequence of Theorem 5.21 is a further decomposition of the scale spaces

{Vi(h; Q) }ewy

Corollary 5.22 Let the assumptions be the same as in Theorem 5.21. Let the families of
scale and detail spaces {V;(h; Q") }jen, and {W;(h; Q%) }ien, in H({An}; h; Q) be
given according to Definition 5.12 and 5.20, respectively. Then

Vi1 (h; Qe7t) = Vi (h; Q%) + W (h; Qe*) for all j € Ny

and
L L J L L J
Vi1 (b Q) = Vi, (b Q) + )~ W (hs Q) = Vo(hs Q) + Y Wy (s Q)
Jj=Jo j=0

fOT all Jo,JEN(), Jo < J.

Proof: The statement can be verified by calculations analogous to those in the proof of
Theorem 5.14. 0

Relation (5.8) in Theorem 5.21 can be interpreted in the following way: P, F is a ‘basic ap-
proximation’ or a low-pass-filtered version of the function F, whereas S;F,
j € {Jo,Jo+ 1,...,J}, are band-pass-filtered versions or details of F. Thus the oper-
ators P; can be interpreted as low-pass filters and the operators S; as band-pass filters,
and S; describes the difference between the two low-pass filters P; and Pj.;.
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5.4 Regularization by Multiresolution

In this section we will use the concepts of multiresolution analysis to construct a reg-
ularizing filter to an ill-posed pseudodifferential operator equation AF = G, where we
assume that {A,}n.en, € RY is a sequence of non-negative real numbers, ri,7o € RT,
hi,hs € {0,1,2} and A : H({A,}; ha; Q%) — H({An}; ho; Q) is an injective (and com-
pact) pseudodifferential operator, whose symbol {A"(n)},en, satisfies the limit relation
limy, 00 [A(R)] = 0, and F € H({An}; hi; Qe), G € H({A,}; ho; Q¢2?) . For the simplic-
ity of the notation of the singular system we will always assume that A™(n) > 0 for all
n € N. This means no loss of generality for the discussion of the SST-/SGG-problem.
The notion of a regularization multiresolution analysis itself traces back to [Schn1997] and
[FrSchn1998|.

Definition 5.23 Let {A,}nen, C RS be a sequence of non-negative real numbers, let
r1,r2 € R and hi, hy € {0,1,2}. Suppose that A : H({An}; h1; Q) — H({A,}; ho; Q)
is an injective pseudodifferential operator whose symbol {AM(n)}nen, satisfies
AMn) > 0 for all n € N and limyen, nsoo AN(n) = 0, with singular system
(A/\( ) A_lan(T'l;hl; ),A_lan(TQ,hQ, )), n c N 1 < k < 2n + 1. Let {CI) }jENo be
a family of H({A F5 has Q) -H({ An}; ha; Q) product kernels @2 : Qg7 x Qert — R with
symbols {(® ) (n) bneng, i-€., for j € Ny, @A is defined by

2n+1
q)A (z,9) Z Z (I)A —5 Hu k(11 has €) Hy k(725 hos y), @ € Qet, y € Qert
neN k=1
and for all j € Ny and {(®})"(n)}nen, satisfies conditions (5.1) and (5.2) in Definition
5.1. Suppose that the famzly of sequences {{(@A) (n) bnen}jen, has the additional proper-
ties
(i) (25)"(n) >0 for alln € N and j € Ny,
(1) (@A)A(n) > (P ) (n) for alln € N and all j,j' € Ny with j' > j, and
(1ii) _]1m( MM n) = (AN(n))~" for alln € N.
j—oo

Then {®}}jen, is called a (scale discrete) linear regularization scaling function for
ATV s H{AL(AN(n) T s e Q1) — H({An} hi; Q). The family of sequences
{{(@})M(n) }nen}jeno is called the generating symbol of the linear regularization scaling
function.

In order to construct a linear regularization scaling function {CID;-\}jeNO for
A7V H({AL (AN ()71} hos Q) — H({An}; ha; Q€3T) we start from a linear scaling func-
tion {®;};en, for H({An}; ho; Q2e%%). Under the assumption that its generating symbol
{{(®;)"(n) }nen}jen, satisfies certain summability conditions with respect to {A"(n) }nen,
and {A,}nen,, Wwe may define <I>§-\ = A7'®;, j € Ny. Alternatively, we may choose a
regularization {7T}};en, for A7 : H({An(AN(n))~1}; ho; Qe2t) — H({A,}; he; QEF) which is
based on a regularizing filter, and apply it to {®;},cn,. In this case we define @f = chbj,
JjeN.
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Theorem 5.24 Let {A,}nen, C Ry be a sequence of non-negative real numbers, let ry,m9 €
R* and hi,he € {0,1,2}. Suppose that A : H({An}; hi; Q%) — H({An}; ho; Q27) is an
injective pseudodifferential operator whose symbol {A(n)}nen, satisfies AM(n) > 0 for
alln € N and limyen, oo AN (n) = 0. Suppose that {®,}jen, is a linear scaling function
for H({An}; ho; Q) with generating symbol {{(®;)"(1n)}nen}jeno-

(i) Let {{(®;)"(n)}nen}jen, satisfy the summability conditions

ey (B20) L o

neN

and

D (@2n+1) (%)2 < oo0.

neN

Then {{(®$)"(n) }nen}jen,» defined by
(@7)"(n) = (A"(n) " (®;)"(n), for neN, jeN,

is  the generating symbol of a linear regularization scaling function  for
AL H({ A (A ()1 s Q) — H({An}s hus Q).

(i1) Let q : Ny x (0,]|A]]] = R, (4,A%n)) — q(4,A(n)), n € N, be a reqularizing filter
for AF = G, F € H({An}; h1;Qe2t), G € H({An}; ho; Qert) with the following additional
properties:

0<q(j,0) <1 forall jeN, o€(0,[All
and

q(j,0) <q(j'yo) forall j,j'eNy with j<j' andall o€ (0,]All
Then {{(@2)(n)}ne}scre, defined by

(@) (n) := (A" (n)) (5, AN(n))(@))"(n), n,j € N,

is the generating symbol of a linear regularization scaling function  for
AT H{ A (A (n) s o Q) — H({An}s ha; Q).

Proof: In both cases we have to verify that {{(®})"(n)}nen}jen, satisfies conditions (5.1)
and (5.2). In (i) we simply demand that those two conditions are satisfied. For (ii), note
that due to the fact that ¢ is a regularizing filter, there exists a constant C(j) > 0 such
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that for all j € Ny, ¢(j, A"(n)) < C(j)A"(n) for n € N. This estimate and the fact that
{®;}jen, is a linear scaling function for H({A,}; he; 2¢2%) imply that for all j € Ny,

7126./\:[(2”4_1)(((1)?)/\(”))2%% — HEZN(QTL-FD <(¢])A(T/L\)/(\]((7]z’)AA(n))> Ai%

< o) (BLWOON )

A2
neN A" (n) An

1
= (C(1)* Y_2n+1)((2))"(n))* 5 < oo
neN n
Condition (5.2) follows by analogous arguments. Properties (i) to (iii) in Definition 5.23
are satisfied in case (i) as well as in case (ii), since on the one hand the generating symbol
{{(®))"(n) }nen}jen, Of {®;}jen, fulfills conditions (i) to (iii) in Definition 5.6 and on the
other hand ¢(j,A"(n)) > 0 for all j € Ny and all n € N and lim;_, ¢(j, A"(n)) = 1 for all
nenN. 0

The  construction of a  bilinear  regularization  scaling  function  for
A1 H({ AR (AN ()71 he; Qezt) — H({ AL }; ha; Q22) is a little bit more complicated as in
the case of a bilinear scaling function, since we now have to use the convolution of two dif-
ferent product kernels. Here different combinations are imaginable. One choice is to convo-
lute an M ({An}; hy; Q¢ot) product kernel % against an H({An}; hi; Q7)-H ({An}; ha; Qeot)
product kernel CI>§-X. We omit the discussion of bilinear regularization scaling functions here,
since they are not used in our numerical computations.

In analogy to Section 5.2, we are, however, interested in regularization scaling functions
which show a certain reproducing property. The construction of a reproducing regulariza-
tion scaling function for A=! : H({An(A"(n))7'}; he; Q) — H({An}; hy; Qe2t) is based on
a reproducing scaling function for H({A,}; h1;Q2¢) and is analogous to the construction
in Theorem 5.24:

Definition 5.25 Let {A,}nen, C RS be a sequence of non-negative real numbers, let
1,72 € RT and hi, he € {0,1,2}. Suppose that A : H({An}; hi; Q%) — H({An}; ho; Q22F)
is an injective pseudodifferential operator whose symbol {A™(n)}nen, satisfies A(n) > 0
for alln € N and lim,ep, 0o A(n) = 0. Suppose that {@f}jeNo is a reproducing scaling

function for H({An}; hy; Q%) with generating symbol {{(®F)"(n)}nen}jen, which satisfies

%(271 +1) (%) AL% < 0o (5.9)

and

> (2n+1) (%) < 00. (5.10)

neN
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Define the sequence of non-negative real numbers {{((2}))"(n)}nen}jen, € RT by
(((I’;\)R)A(n) = (A"(n)) "q(4, AA(n))(q’f)/\(n) forall neN, jeN.

The family of H({An}; ha; Q%) -H({An}; ho; QZF) product kernels {(®4)%}jen,, defined by

2n+1

( Z Z <I>A A2 Hn,k(ﬁ;hﬁx)Hn,k(M;h2;y),

neN k=1

where x € Qewt and y € Qﬁ”, s called the reproducing reqularization scaling function

for A71: ({A (AN(n) ™'} ho; Qeat) — H({An}; ha; Q22t) corresponding to {®F}jen, with
genemtmg symbol {{((®})™)"(n)}nen}jen, -

The reproducing property of a reproducing regularization scaling function is specified in
the next lemma.

Lemma 5.26 Let {A,}nen, C R be a sequence of non-negative real numbers, let
r1,m9 € RY, and let by, hy € {0,1,2}. Suppose A : H({A,}; hi; Q) — H({An}; ho; Q)
is an injective pseudodifferential operator whose symbol {A"(n)}nen, satisfies A™(n) > 0
for alln € N and limpepr, nsoo AN(n) = 0. Let {(®4)*}jen, be a reproducing reqularization

scaling function for A=" : H({An(AN(n))™'}; ho; Qet) — H({An}; hi; Q%) corresponding
to a reproducing scaling function {®F};en, for H({An}; ha; Qeat). Then

(@7)" = 1 *5y0a, Jinsiazer) (P )" for j € Ny,

Proof: According to Definition 5.25, {{((®})®)"(n)}nen}jen, satisfies the relation
(@5 (n) = (AN 0))™ (@) () = (AN(m) ™ (8,)" ())?

for all j € Ny, n € N, and the statement then follows by simple computations. O

After these preparations, we define a family of linear operators as follows:

Definition 5.27 Let {A,}nen, C Ry be a sequence of non-negative real numbers, let

1,72 € RY and hi, hy € {0,1,2}. Suppose that A : H({An}; hi; Q) — H({An}; ho; Qeot)

is an injective pseudodifferential operator whose symbol {A"(n)}nen, satisfies A™(n) > 0

for all n € N and limuep, nsoo A(n) = 0. Suppose that {@f}jeNo is either a linear

or a reproducing regqularization scaling function for A=' : H({A,(A"(n))™'}; hg,Qeﬂ)
H({An}; hi; Qe‘”t) Define the family of linear operators {T}}jen, by

T e H({An}s ho; Q1) = H{Au}s his 577), G TG = 95 sty 1y G
and the family of scale spaces {VA(hl, Qe t)}jeNO by

Vi (h; Q) = im(T)) = Tj(H({An}; ha; Q2)), j € No.
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Theorem 5.28 Let {A,}nen, C RS be a sequence of non-negative real numbers, let
1,72 € RT and hi, he € {0,1,2}. Suppose that A : H({An}; hi; Qe%t) — H({An}; ho; Q)
is an injective pseudodifferential operator whose symbol {A"(n)}nen, satisfies A™(n) > 0
Jor all n € N and limpen, nosoo AN(n) = 0. Suppose that {®}}jen, is either a linear
or reproducing regularization scaling function for A1+ H({A,(AN(n)) 1} he; Qet) —
H({An}; h1; Q™) with generating symbol {{(®})"(n)}nen}jeno- The family of linear op-
erators {T}}jen, introduced in Definition 5.27 is a regularization of the inverse operator
A7V H{ AL (ANR) 7 s e Qe2t) — H({AL}; ha; Q€3t) with discrete regularization param-
eter j € Ny.

Proof: We show that a suitably defined function f : Ny x (0, ||A]|]] = R, which assumes
the values

f(,An)) = A’\(n)(@f)/\(n) for €Ny, neN,

is a regularizing filter to the ill-posed pseudodifferential operator equation AF = G,
F € H({Au}; m;Q%), G € H({An}; he; Qe%%). Thus we have to verify conditions (i)
to (iii) in Theorem 3.7. In order to verify (i), note that conditions (i) to (iii) in Definition
5.23 imply that 0 < (®4)"(n) < (A™(n)) ' for all j € Ny, n € N. This estimate in
combination with A*(n) > 0 for all n € N implies that f(j,A"(n)) < 1 for all n € N
and j € Ny. Condition (ii) in Theorem 3.7 is satisfied, because {®,},en, is a sequence of
product kernels and satisfies for every fixed j € Ny the condition Y, .\ ((®})"(n))? < co.
This implies that limpen, nooo(®})"(n) = 0 and there exists a constant C(j) > 0 such
that [(®4)"(n)] < C(j) for all n € N. Thus, [f(j,A"(n))| < C(j)A"(n) for all n € N.
Condition (iii) in Definition 5.23 finally ensures that lim;_, f(j, A"(n)) = 1 for all n € N,
which completes the proof. O

The next theorem shows that due to our construction we obtain a hierarchical sequence of
approximation spaces in the sense of a multiresolution analysis of H({A,}; h1; 2¢2?).

Theorem 5.29 (Regularization Multiresolution Analysis) Let {A,}.en, C Ry be a
sequence of non-negative real numbers, let 11,79 € Rt and hi,hy € {0,1,2}. Suppose
that A : H({An}; hi; Qe2t) — H({An}; ho; Q€2t) is an injective pseudodifferential operator
whose symbol {A"(n)}nen, satisfies A™(n) > 0 for alln € N and lim,en, nsoo A*(n) = 0.
Suppose that {(I)?}jeNo 1s either a linear or a reproducing reqularization scaling func-
tion for A7+ H({An(ANn)) 7'} ho; Qet) — H({An}; hi; Q) with generating symbol
{{(@)N(n) }nentjeno- Then the family of scale spaces {V}(h1; Q&) }jen, corresponding to
the family of linear operators {T};}jen, introduced in Definition 5.27, is a multiresolution
analsysis of H({An}; h1; Qe%), i.e.,

(i) Vé‘(hl;@) C ... C Vf(hl;@) C Vﬁ(hl;@) C ... C ’H({An};hl;@) for
J7'>73.J€N

and
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(”) U VA(hl, Qewt)l‘ HH({An} ihs 95”) ({A } hl, Qewt).

JENo

Proof: The proof can be carried out in analogy to the proof of Theorem 5.14. a

In analogy to Section 5.3, we wish to decompose the approximation spaces VA(hl, Qewt)

j € Ny into detail spaces, such that we can analyse the difference between two subsequent

j-level regularizations Tj;1G and T;G of the problem AF = G, F € H({A,}; hi; Qct),

G € ”H({An};hg;Qggt). We thus introduce the notion of regularization wavelets cor-

responding to a regularization scaling function for A=' : H({A,(A"(n))~'}; ho; Qe2t) —
H({An}; ha; Q).

Definition 5.30 Let {A,}n.en, C RI be a sequence of non-negative real numbers, let
r1,m9 € RT and hi, he € {0,1,2}. Suppose that A : H({An}; hi; Q1) — H({An}; ho; Q1)
is an injective pseudodifferential operator whose symbol {A"(n)}nen, satisfies A™(n) > 0
for alln € N and limpepr, nsoo A(n) = 0. Suppose that {@?}jeNO is a linear reqularization
scaling function for A=" : H({An(A(n))~'}; ho; Qe2t) — H({An}; hu; Q) with generating
symbol {{(<I>A) (n) bnen }jeno- Define the family of sequences of non-negative real numbers

{TH)" (n )}neN}jeNo CRy by
(THN(n) == (@) (n) — (@D (n) forall neN andall jeN,.

Then the family {\Ilé-\}jeNo of H({An}; hi; Q) -H({A}; ho; Q) product  kernels
T4 - Qb x Qeat — R, defined by

2n+1

\I’A (z,y) Z Z \I’A nk(ﬁ,hl, z)Hy s (ra; hoy y), @ € Qet, y € Qeot,
neN k=1

is called the (scale discrete) linear reqularization wavelet corresponding to the linear reqular-
ization scaling function {®} }jen,- The family {{(¥})"(n)}nen}jen, is called the generating
symbol of {\IJ }iene -

Definition 5.31 Let {A,}nen, C RS be a sequence of non-negative real numbers, let
1,72 € RT and hi, he € {0,1,2}. Suppose that A : H({An}; hi; Qeot) — H({An}; ho; Q2t)
is an injective pseudodifferential operator whose symbol {A"(n) }bnen, satisfies A*(n) > 0 for
all n € N and limpep nsoo A (n) = 0. Let {®F}jen, be a reproducing scaling function for

H({A,}; hai; Q) whose generating symbol {{(@R) () bnen tieny» Satisfies conditions (5.9)
and (5.10) in Definition 5.25, and let {(®})* }]ENO denote the reproducing reqularization
scaling function for A=1 1 H({An(AN(n))~ 1} ho; Qeat) — H({A,}; hi; QP) corresponding
to { @5 }jen, with generating symbol {{((®2)) (1) bnejeno - Let L{((TD™)N (1) buew}jens
and {{(\iffM)/\(n)}neN}jeNo be the families of sequences of non-negative real numbers given
by

(7)™ n) = ((2511)%)" (n) = (7)) (n) for neN, jeNy
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and
(TN (1) = (@) () + (@) (n) for neN, jeN,
respectively.
Define the family {(¥3)"M}jen, of H({An}; ha; Q&) -H({An}; ho; Q&) product kernels by
2n+1
UM (z,y) =Y > (BN an(n,hl, 2)Hy i (ra; hos ), © € Q2 y € Qg
neN k=1

and the family {UFM}icn, of H({An}; hi; Q) product kernels by

2n+1

=) (Y an(ﬁ,hl, @) Hp i (115 ha3 ), 2,y € Qeat.
neN k=1

{(NEMYien,  is  called  the  primal  M-scale  regularization — wavelet  for
A7t s H{AR(AM(n) 1Y ha; Qe2t) — H({An}; ha; Q) corresponding to {®F}jen,, and
{\iffM }ien, is called its accompanying dual M-scale wavelet.

Lemma 5.32 Let {A, }nen, C Ry be a sequence of non-negative real numbers, let r1,ry €
R* and hy,hy € {0,1,2}. Suppose that A : H({An}; hi; Q%) — H({An}; ho; Qe2t) is an
injective pseudodifferential operator whose symbol {A"(n)}nen, satisfies A™(n) > 0 for all
n € N and lim,ep, nsoo AN(n) = 0. Let {‘I’f}jeNo be a reproducing scaling function for

H({A,}; ha; Q) whose symbol {H{(@5)"(n)}nen}jeno satisfies conditions (5.9) and (5.10)
in Definition 5.25. Let {(U2)®M} ey, and {UfM} ey, denote the primal M-scale regular-
ization wavelet for A71 1 H({An(A™N(n)) 71} ho; Qe7t) — H({An}; ha; Q) corresponding to
{@f}jeNo and its accompanying dual M-scale wavelet. Then

(‘Ilé‘)R ‘II]H FH({ An)iha 0557) (\Il;\H)RM for all j € Ny.

Proof: By construction, {{((¥4)®*)"(n)}nen}jen, and {{(FFM)"(n)}nen}sen, satisty
the refinement equation

(TED ) () () = (ANn)

= (A"n)™' (

(27%2)"(n))* = ((2741)"(n))?)

(
(@51)"(n) — (25)"(n))

which implies the statement. O

Definition 5.33 Let {A,}nen, C RS be a sequence of non-negative real numbers, let
r1,72 € RY and hi, ho € {0,1,2}. Suppose that A : H({An}; hi; Q&) — H({A,}; ho; Q)
is an injective pseudodifferential operator whose symbol {A™(n)}nen, satisfies A(n) > 0
Jor all n € N and limpen, noyoo |[A(n)| = 0. Suppose that {®4}jen, is a linear regular-
ization scaling function for A=1 : H({An(AN(n)) 1} ho; Q) — H({An}; hi; Q%) and let
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{\Ij‘;'\}jeNO be the corresponding linear reqularization wavelet. Define the family of operators
{R;}jen, by

Ry H({An}; ho; Q2Y) — H({An}; b1 Q1), G = R;(G) = ‘I’j FH({AnYshaiat G.

In case that {<I> }ieny @8 a reproducing scaling function for H({An}; hi; Qe”), whose gen-
erating symbol satzsﬁes conditions (5.9) and (5.10) in Definition 5.25, and {(U3)*M};cn,

and {\IlJ M}ien, are the primal M-scale regularization wavelet corresponding to {®F}jen,
and its accompanying dual M-scale wavelet, the family of operators {R;} en, is defined by

R; : H({An}; hg,Qm) — H{ A} hl,Qm)

G Ri(G) = (TH)EM

( FH({An)}iha; 050 G
A \RM
= ‘I’gﬂ FH{ An}sha;052F) (U51)

FH({An}iha;0520) G.
The detail spaces {)/V]/-\(hl;Wf’f)}j@\:0 are in both cases defined by
Wi (hy; Q") o= im(R;) = R;(H({An}; ha; Q3Y)).

Theorem 5.34 Let the assumptions be the same as in Definition 5.27 and Definition 5.33.
Then the families of operators {T};}jen, and {R;};en, defined according to Definitions 5.27
and 5.33, respectively, satisfy the relations

Tj_|_1 = T] + Rj fO’f‘ all j S No, (5.11)
J J

Tra=Tn+ Y Ri=To+> R;, J €Ny, J>J, (5.12)
Jj=Jo J=0

and for G € im(A) the solution F to the operator equation AF = G can be reconstructed
in H({An}; h1; Q¢2t)-sense according to

F=T5,G + lim ZR G =ThG + lim ZR G. (5.13)

JJO

Proof: Relations (5.11) and (5.12) can be easily verified by just inserting the definitions
of the respective regularization scaling functions and their corresponding regularization
wavelets into the definition of {7}};en, and {R;};en,, respectively.

The limit relation (5.13) then follows by Theorem 5.28. O

The desired decomposition of the scale spaces {VA(hl,Qe”)}JeNO is an immediate con-
sequence of Theorem 5.34:
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Corollary 5.35 Let the assumptions be the same as in Theorem 5.34 and let the families of
scale and detail spaces {V*(h1; Q) }ien, and {WH(hi; Q) }jen, be given according to
Definition 5.27 and 5.33, respectively. Then

VAL (hy; Q%) = VA (hy; Q) + W (he; Q) for all j € Ny

J

and

J
VA (hy; Qest) = VA (hy; Qest) +ZWA (hy; Q) = Vit (hy; Q) + ) W (hy; Qe
7=0

j=Jo

for all Jy,J € Ny, Jy < J.

The sequence of regularized solutions {T;G},en, can be interpreted as a sequence of low-
pass filtered versions of the ‘true’ solution F = A~!G, and the sequence of ‘details’
{R;G}jen, can be thought of as a sequence of band-pass filtered versions of F' = A™'G.
According to Definition 3.4 the regularized solution is also called the j-level regularization
of the problem AF = G corresponding to the regularization {7} };en, -

5.5 Examples

In this section we go back to the ‘continuous’ formulation of the SST-problem and the SGG-
problem in Problem 3.1 and present some examples of regularization scaling functions and
wavelets which can be used to construct a j-level regularization F; = T;G' to Problem
3.1. Tt should be noted that most regularization schemes in the mathematical literature
are applicable for a huge class of operators, but not every regularization scheme leads to
a regularization scaling function for an inverse A~! to a given injective compact operator
A, and whether it leads to such a regularization scaling function for A~ or not is highly
dependent on the operator A (or more precisely on its singular values). Therefore we
restrict the discussion for the remainder of this chapter to the SST-operator and the SGG-
operator as defined in Chapter 2. For this chapter we thus assume that {A,},en, € RT
is a sequence of positive real numbers which satisfies A4,, > 1 for almost all n € Ny. The
mathematical formulation of the SST-problem and the SGG-problem in Problem 3.1 yields
an operator equation AF' = G, where the pseudodifferential operator A : H({A,}; Q%) —
H({A,}; h; Qeet) is either the SST-operator AT with symbol {(AS57)"(n)}nen, given by

(ASST)A () = "] (E)n

r T

or the SGG-operator A“¢ with symbol {(A9%)"(n)}en, given by

(ASGGY () = (B DR +2) <R>"_

r2 r
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For the remainder of this section we assume that A is always either A5 or ASCC,

Two  important examples of linear regularization scaling functions for
A7 H{AL (AN ()Y by Qert) — H({AL}; Q%) are the Tikhonov and the Tikhonov-
Philips regularization scaling function:

Example 5.36 (Tikhonov Regularization Scaling Function) Let {v;};en, C RT be
a monotonically decreasing sequence of positive real numbers with lim;_,y; = 0. The
sequence of non-negative real numbers {{(®})"(n) }nen, }ieny C Ry, defined by

A"(n)
(AN (1)) +;

is the generating symbol of the linear Tikhonov reqularization scaling function for

T H{AR(AN ()T s Q) — H({ A} Q).

(@7)"(n) =

for neNy, jeN,

Example 5.37 (Tikhonov-Philips Regularization Scaling Function) Let

{7i}jeny € RY be a monotonically decreasing sequence of positive real numbers with
lim;_,oy; = 0. The sequence of non-negative real numbers {{(®})"(n)}nen, }jen, C RY,
defined by

Ao
(M@ + Frlnn+ 1)+ ]

(@7)"(n) =

for neNy, j€eN,

is the generating symbol of the linear Tikhonov-Philips regularization scaling function for
A H({An (AN () h by Qo) — H({An}; Q).

In order to see that the Tikhonov and the Tikhonov—Philips regularization scaling function
are well-defined we have to make sure that the kernels <I> , 7 € Ny, are well-defined product
kernels. The regularization quality of {<I> }ienis clear from the well-known properties of
the Tikhonov and Tikhonov-Philips regularlzatlon see for example [EnHaNe1996]. First,
note that

N0 ()
0< — <—
(A )2 + 73 (n(n+1) + 1) = (A(n))* +7,C
with the constant C' := 1/(4R?). Therefore it suffices to show that {®}},cn, is well-defined

in the Tikhonov case. We have to show that

D (@n+1)((@))"(n))’ < oo forall jeN.

neNy

But

\_/

Z(?n—i—l)(AA

neNy + ")/]

i

nENo
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because for A € {AS5T ASGPY} the symbol of A is dominated by the factor (£)" and
(B < 1.

16—
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a) b)

Figure 5.1: a) Symbol of the Tikhonov regularization scaling function for v; = 2-0+D) with
j € {65,68,71,74,77,80,83,86}. b) Tikhonov regqularization scaling function for j = 68.

Finally we will discuss the space-localizing properties of the Tikhonov regularization scaling
function. To do this, one variable of the kernel is kept fixed and we regard the function
Y > CD?(JJ, y). Figure 5.1 b) clearly shows that the Tikhonov regularization scaling function
is highly space-localizing in a neighbourhood of the point z. Therefore, the Tikhonov
regularization scaling function is well suited for the a local solution of a regularization
problem from locally given data. More precisely, suppose the discretization of a convolution
D2 (n) *3 ({An}; h; Qe*')G between a right-hand side G of our operator equation AF = G
and the Tikhonov scaling function leads to a formula

(@ (n) x3 ({An}; h; Q&) G) (y) ~ Zafv oMy, zl) (5.14)

N i=1,...,N, that depend on G, and a global pointgrid z%', ..., 2%
on the sphere in Q¢ close to ,. If we are only interested in a local model for points y in
some subdomain M of Qg, then only those terms a ®2(y,z}V) in the sum (5.14) with the
point z}¥ in some neighbourhood of M yield an essential contribution to the sum. Thus

all terms a}Y ®3(y,z¥) with z}¥ outside this neighbourhood may be omitted.

with coefficients a®Y N
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According to Theorem 5.24, we may construct further examples of a regularization scaling
function for A=1 : H({A, (A (n)) "1} h; Qert) — H({An}; Q%) with the help of a suitable
linear scaling function for H({A,}; h; Qee?). The most simple construction starts from a
band-limited scaling function {®,};en, for H({4,}; h; Q&) and applies the inverse opera-
tor A~ to @, j € Ny. Due to the bandlimited nature of the scaling function the two sums
in Theorem 5.24 are always finite in this case.

Example 5.38 (Bandlimited Regularization Scaling Functions) Let ¢ : [0,00) —
R denote a function with the following properties:

(1) 9(0) =1,

(i1) ¢(z) = 0 for x € [1,00) and

(iii) ¢ is monotonically decreasing.

Let {m;}jen, C Ny be a monotonically increasing sequence of non-negative integers. Define
the generating symbol {{(®;)"(n)}nen, }jeny of @ scaling function {®;}ien, for
H({An}; b; Q) by

(®;)"(n) == ¢(n/(m; + 1)), n € Ny, j € No.

For all j € Ny ®; is a bandlimited H({A,}; h; Q) product kernel with band limit m;.
Then {{((I);'\)A(n)}nENo }jENm deﬁned by

((D;\)A(n) = (A(n)) (@) (n) for neN,, jEN,

is the generalting symbol of a bandlimited regularization scaling function for
A H{AR(ANR)) Y by Qemt) — H({AR}; QFY). Two popular choices of ¢ are

1 for z€]0,1)
g0($)_{0 for x €[1,00),

which leads to the so-called Shannon scaling function for H({An}; h; Qet), and

(1—2z)*(1+2z) for z€][0,1)
plz) = { 0 for ze€][l, o00),

which leads to the so-called Cubic Polynomial (CP) scaling function for H({A,}; h; Qet),

Finally, we also give an example of a reproducing regularization scaling function for
A7t H{AL(ANn) ) b Qert) — H({A,}; Q). The construction uses the so-called
exponential Gauss-Weierstrass scaling function for H({4,}; Q%) in combination with the
inverse operator A1,

Example 5.39 (Exponential Gauss-Weierstrass Regularization Scaling Function)
Let the sequence {{(®})"(n)}nen, }jeny C Ry be given by

(DR (n) = 20D € Ny, j € Ny,



5. Scaling Functions, Wavelets and Regularization by Multiresolution 82

The exponential Gauss-Weierstrass scaling function {®F}jen, for H({An}; QF) is given
by

2n+1
1 —
be('xay) = Z Z(q)f)/\(n)EHn,k(Rﬁ )Hn,k(R’ ')7 xz,y € Q?t’ J € Np.
neN k=1 n

The Gauss-Weierstrass scaling function is a reproducing scaling function for H({A,}; Q&1).
The exponential Gauss-Weierstrass reqularization scaling function {(@;-\)R}jeNo for the

A~V H{AL(AN )Y by Qest) — H({A,}; Q%) then is the reproducing regularization
scaling function for A=' : H({A,(AN(n))"1}; by Qest) — H({An}; QL) corresponding to
{@f}jeNo. Its generating symbol {{((@;\)R)’\(n)}neNo }ien, s given by

(27)%)"(n) = (A" (n)"H(@F)"(n) for ne€No, j €N

In order to see that the exponential Gauss-Weierstrass regularization scaling function is
well-defined, we have to verify that

D @n+1)(ANn) (@) (n))? < oo forall j € N.

neNy

Since we regard A € {ASST ASYC} the operator symbol {A"(n)}nen, is given by
AMn) = p(n)(£)", where p(z) = (x4 1)/r in case of SST and p(z) = (z + 1)(z +2)/r? in
case of SGG.

> (2n+ 1) (AN () (@) (n)?

n€eNy

= Sy (F) et e

neNy
_ z 2n + 1262n1n(%)—2_j+1an(n+1)
2 ()

S ntl1 (ez(ln(%)—ria(nﬂn)".
(p(n))?

Due to the quotient criterion the sum is finite, if the term in the brackets satisfies

n€Np

()2 alnt) 0 <1 forall n> N (5.15)

for some consant C, 0 < C < 1, and some Ny € N. As In(f) is a constant and
lim, o 277a(n + 1) = oo condition (5.15) is satisfied.
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Chapter 6

The Schwarz Alternating Algorithm

After the theoretical preparations in Part I we now turn our attention to the numerical
computation of the multiscale approximation of the regularized solution to the SST-/SGG-
Problem 3.8 in its discrete formulation. Thus the general assumptions throughout Part 11
are as follows:

Let {A,}nen, € RT be a sequence of positive real numbers which satisfy A, > 1 for al-
most all n € Ny. According to our geometrical concept, we assume that Yz, Xg C R3
are C®-regular surfaces with sup,cy, [y| < infzesg|z| and R,7 € R' are real num-
bers with R < infyes, |y[, sup,es, [yl < r < infyesg |r|. Furthermore, the operator
A H({ AR} Q) — H({An}; b; Qg2t) with singular system (A" (n), Hyx(R; ), Ha k(73 15 ),
n €Ny, 1 < k < 2n+ 1, shall be either the SST-operator AT, where h = 1, or the SGG-
operator AS¢C where h = 2. Note that for the brevity of the notation we will in the sequel
always refer to the above assumptions as the general assumptions of the numerical part
without explicitly repeating them.

In order to obtain an approximate solution to the non-discrete SST/SGG-problem AF = G,
F e H({A.};9%Y), G € H({A,}; h; Qeet), we first construct an H ({4, }; h; Q¢=?)-spline SC,
which is a sensible approximation of the right-hand side G. This spline has to be computed
with the help of the given data {(z),G(z}N)|i=1,..., N}, where XV := {zV ... 2} C
Ys is a set of mutually distinct points on the ‘orbital surface’. In the case of exact data
(no measurement noise) this can be done by solving the H({A4,}; h; Q¢t)-spline interpo-
lation problem with respect to the bounded linear measurement functionals £V, ..., LY
given by L; : H({A,}; ;Qet) - R, H — LN(H) := H(x)), for the right-hand side G.
In case of noisy data we have to solve an H({A,}; h; Q¢?)-spline approximation problem
(with respect to the same bounded linear functionals) for the given error-affected data of
G as explained in Section 4.2. The H({A4,}; h; Q¢=t)-spline S¢ obtained as the solution to
the H({A,}; h; Qeat) spline interplation problem or the H({A,}; h; Q) spline smoothing
problem (dependent on the data situation) is an approximation of the right-hand-side G
of AF = G. An approximation to the solution F' = A~'G can then be calculated by con-
volving S¢ with a suitable regularization scaling function {<I>§\}jeN0 for A=1. This aspect

84
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is discussed in Chapter 7.

In this chapter we will be only concerned with the calculation of an interpolating or
approximating H({A,}; h; Q¢et)-spline for the right-hand side G € H({A,}; h; Q). In
order to solve the linear equation system of the H({A4,}; h;@)-spline interpolation or
approximation problem in a fast, efficient and easily implementable way with modest stor-
age requirement, a domain decomposition method, namely a variant of the multiplicative
Schwarz algorithm (or Schwarz alternating procedure (SAP)), is applied. The Schwarz
alternating procedure is first formulated for the H({A,}; h; Q¢*!)-spline interplation prob-
lem in Section 6.1 and its convergence is investigated. At the end of this section we
explain how the Schwarz alternating procedure can also be applied to the solution of the
H({A,}; h; Qeet)-spline smoothing problem and even more to the solution of any linear
equation system with a symmetric positive definite matrix. In Section 6.2 the numerical
implementation of the SAP algorithm is presented. As the idea behind the multiplicative
Schwarz algorithm is more simple to understand for the H ({4, }; h; Q¢#?)-spline interpola-
tion problem, the motivation below is given for the H({A,}; h; 2¢*!)-spline interpolation
scenario.

We want to solve the H({A,};h;Qet)-spline interplation problem with respect to N
samples of G € H({A,}; h;Qet) taken in the points {zV,...,zY¥} on the satellite or-
bit Xg. Under our assumptions the evaluation functionals £ : H({A,}; h; Qe?) — R,
G — LN(G) :==G(z)), 1 <1< N are bounded and we demand in addition that they are
linearly independent. Let LY € H({A,}; h; Q%) denote the representers of LY, 1 < i < N.
According to Chapter 4 we have to solve the linear equation system

N
ZafV(LfvalN)H({An};h;@) = (G, L)y anymiazeny = G(@l'), 1 <i <N, (6.1)
=1

in order to obtain the coefficients al, ..., a% of the H({A,}; h; Q¢*t)-spline interpolant

N
nglv,...,c% = Z“zNLfv-
i=1
of G relative to {LY, ..., L¥}. The numerical solution of the linear equation system (6.1)
for large data sets comprising more than N = 10000 samples of G on the satellite orbit is
the crucial point and the big challenge in our approach to the SST-/SGG problem with
respect to stability, storage requirement and computation time.

In our numerical computations we always choose the sequence { A, },cn,, and consequently
the space H ({4, }; h; Q¢zt), in such a way that the Riesz representers LY, 1 < i < N, can be
represented according to LY = Ky 4 150 (27, -), where Koy 1 oo Qeat x Qert — R
is a kernel function which has a representation as an elementary function. Examples of
spaces with this property are given in Section 4.5. Apart from the demand that the rep-
resenters LY i =1,..., N, are available as elementary functions, it is necessary to choose
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{A; }nen, in such a way that the space localization of LY, ... LY is adapted to the density
of the point grid XV C ¥g in which the samples of G are taken. This will be investigated
in Chapter 8.

One strategy to solve large linear systems of type (6.1) is to start from an iterative
solution method like the Conjugate Gradient (CG) method or the Generalized Mini-
mal Residual (GMRES) method. In this type of equation solver a matrix-vector mul-
tiplication has to be performed in each iterative step, i.e., N summations of the form
>y G Ky a,ymn (€7, 2 ), where @V € RY, have to be carried out. The idea then
is to accelerate the above summations with the help of a Fast Multipole Method (FMM),
which exploits the spatial localization of the kernel KH( {An}shs52E5E) in order to compute

an approximation of the sum Y @V Koy (anymazn (27, 27). This method has recently
been successfully applied in the Geomathematics Group in Kaiserslautern for the case that

Kyy((a,ynae is the singularity kernel (see [G12001], [Mi2001] and the references therein).

A second approach to solve the H({A,}; h; Q¢t)-spline interpolation problem for a large
number of samples is to apply a domain decomposition method, which ‘splits’ the large
linear equation system into a number of smaller ones which are alternatingly solved in
an iterative algorithm. The Schwarz alternating procedure is such an iterative solution

method in which the original set of bounded linear functionals =V := {LV, ... LN} C
H({A,}; h; Qeat)* is partitioned into M € N possibly overlapping subsets ZV, ..., ZN_ The
smaller H({A,};h;Qe*?)-spline interpolation problems relative to the sets =N,
i€ {l,..., M}, are then alternatingly solved in an iterative procedure, and the sequence of

iterates converges to the solution of the large H({A,}; h; Q¢*?)-spline interpolation problem
relative to ZV.

6.1 The Schwarz Alternating Algorithm for the Spline
Interpolation Problem

The so-called Schwarz alternating procedure (SAP) (or multiplicative Schwarz algorithm)
was introduced by H. Schwarz in [Schw1890], and is, together with its additive variant, one
of the best known and most widely used domain decomposition principles which is applied
in many methods for the fast solution of partial differential equations. The idea that the
Schwarz alternating procedure could be applied to the H({A4,}; h; Q¢*t)-spline interpola-
tion problem was inspired by the publication [BeLiBi2000] by R. K. Beatson, W. A. Light
and S. Billings, in which the radial basis function interpolation problem was solved in a
fast and efficient way with the help of the Schwarz algorithm. The analogy between the
radial basis function interpolation problem and the H({A,};h; Q¢)-spline interpolation
problem is based on the fact that both problems can be formulated in terms of orthog-
onal projections in exactly the same way. Since in [BeLiBi2000] the applicability of the
multiplicative Schwarz algorithm is based on its formulation as a sequence of orthogonal
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projections onto overlapping subspaces, the method can be completely transferred to the
H({A,}; h; Qeot)-spline interpolation problem. Moreover, the Schwarz alternating proce-
dure can be applied to the solution of the spline smoothing problem and even more to the
solution of any linear equation system with a symmetric positive definite matrix. This will
be briefly scetched at the and of this section.

Due to Theorem 4.3 the H({A,}; h; Q¢*?)-spline interpolation problem can be formulated
in the following two equivalent ways:

H({A,}; h; Qeet)-Spline Interpolation Problem: Formulation 1

Let 2N = {LY, ..., LN} C H({An}; h; Q)" be a set of N € N linearly independent
bounded linear functionals on H({An}; h; Qet) and let LY € H({A,}; h; Qet) denote the
representers of LY, i € {l1,...,N} according to the Riesz representation theorem. Find
SL{V, oy = SV eI} € S (A ysmazn) (L5 -, L&) = span(LY, ..., LY) such that

LSS ﬁN_Za (LY LY ) s yipiizy = LA G for k=1, N.

1 30

H({A,}; h; Qe=t)-Spline Interpolation Problem: Formulation 2

Let Pev @ H({An}; h; Qeot) — S, (A }hnemt)(L ..., L) denote the orthogonal projector
onto the N-dimensional spline space SH({An};h;stt)(£1 .-, LN). Find the orthogonal pro-
jection PenG of a given function G € H({A,}; h; Q=) which is only known indirectly in
form of the values LY G, k € {1,...,N}.

The orthogonal projector Pz~ is just the interpolation operator which maps the func-
tion G € H({A,}; h; Qee?) onto its interpolating spline S e
The multiplicative Schwarz method allows it to partition the set of bounded linear function-
als 2V into M € N possibly overlapping subsets ¥ € 2V, j € {1,..., M} and successively
solve the smaller H({A,}; h; Qe#t)-spline interpolation problems with respect to the sub-
sets E;V , j €{1,...,M} in an iterative algorithm. This procedure yields a sequence of
iterates which converge to the solution P=nG of the large interpolatlon problem. To be
more specific, we consider a partition {EV,... EV} c 2V, :N = {[,1 ,...,[,%j}, such
that

— N
—
—

[I]

Usr-

In general, the subsets =V, ... 2 need not be pairwise disjoint, i.e., there exist indices
i,j€{1,...,M}, i # j, such that

ENNEY £0.
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In this case we will speak of two overlapping subsets Z} and ZJ.

For each subset ZY, j € {1,...,M} we may formulate the H({A,};h; Q¢=!)-spline in-

terpolation problem as follows: Let L7 € H({A,}; h; Q¢%) denote the representer of Efvj ,

i €1,...,Nj, according to the Riesz representation theorem. Given G € H({A,}; h; Qe=t),
. N; N; N; N;

17 9 N]

ﬁjvjsf,vj v, = LG fori=1,...,Nj.

1Ly
The corresponding interpolation operator is the orthogonal projector onto the space

S’H({Anhh;W) (‘El J’ R EN;)’ 1.€e.,

L
1™ N

Poy : H({Au}; B ) = Syypa, s (L7, L3, G PaxG = 5%, .
With the help of the orthogonal projectors ng,v the multiplicative Schwarz algorithm reads
as follows:

Algorithm 6.1 (Multiplicative Schwarz Algorithm)
Given € > 0, G € H({A,}; h; Qert),

R()Z:G
S8 =0
n:=0

(LN Ryngsees LY Ryr) T |
(LY G, LN G)T|
forj=1:M

SSM—l—j = SSM—}-(jfl) + PE?’RnM‘F(j_l)

while >

RnM+j = RnM—|—(j71) - PEj\’RnM—k(jfl)
end
n:= n+1
end

The functions S5y, ,; are called the iterates (of G), and the functions Ryp4; are called

the residuals. The sequence {S5y }tnen, converges to the spline PanG = Sy .. As we
N...LN

will see below, the formulation of the SAP algorithm in terms of orthogonal projections is
essential for the analysis of its convergence. For the practical implementation we have to
rewrite Algorithm 6.1 in matrix formulation. This is done in Section 6.2.

The next lemma is meant to give some further insight into the construction of Algorithm
6.1.

Lemma 6.2 Let the notation and assumptions be the same as in Algorithm 6.1 and de-

note the orthogonal projector onto (SH({An};h;W)(Lf’,...,E%)) ,j€A{l,...,M}, by
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1
N; N; )
Q; : H({An}; b; Q) — (SH({An};h;@)(ﬁlf,...,EN;)) .. Qji=1Id— Poy. Then the

following idem_fz'ties hold true:

J -1 M
(i) Sgars; = 2 Pan (Rumri-ny) + Z ZP~ (Rinri(io1y) for n € No, j € {1,..., M}.
=1 =0 =

(it) Rupryj = G — Sy forn e No, j € {1,..., M}.

(iii) Syars = SSMijl)—f-PE;v (G S 1)forn€N0,j€{1,...,M}.
() Ropryj = (Qj ... Q1) (Qum-..Q1)"G forne Ny, je{l,...,M}.

(v) SGy ;=G —(Q...Q1)(Qum-..Q)"G forne Ny, je{l,...,M}.

(vi) If Algorithm 6.1 is executed for PznG instead of G, then the calculated iterates are
tdentical, i.e.

Pon G

S M+J_SnJT/[+] for all n € Ny and all j € {1,...,M}.

n

Proof: All identities can be verified by induction over nM + j. For the details we refer
the reader to [He2002]. O

Identity (iii) in Lemma 6.2 shows that each step in the multiplicative Schwarz algorithm
is of the form

STCL;M+] SnM+(_7 )+ PE;.V (G- SSMH]A)) )

which means that within each iteration step n a new iterate S%, +; with respect to j is
calculated from the old iterate SnM+(j 1y by solving the H({A,}; &; Qeat)-spline interpola-
tion problem relative to the subset HN for the old residual R,pr4(j-1) = G — S%, +G-1) and
adding this ‘correction term’ to the old iterate. In the multlphcatlve Schwarz algorithm
the approximate solution of the large linear system for the residual R, = G —S¢, is com-
puted alternatingly with the help of the projectors Per,...y PE% . It should be noted that
there also exists a so-called additive Schwarz algorithm in which the approximate solution
of the large linear system for the residual R,y = G — S%,, is computed simultaneously
with the help of the projectors PE{V, cen PE% in each iteration. Obviously, that variant is
very well suited for parallelization.

While it is quite obvious that identities (i) to (iii) illustrate the construction principle
of Algorithm 6.1, identities (iv) to (vi) are needed to prove its convergence.

Due to identities (ii) and (iv) in Lemma 6.2, the approximation error with respect to
the iterate S2,, in Algorithm 6.1 can be represented according to
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The convergence of {S%,}nen, to G in H({A,}; h; Qer?)-sense then follows from Theorem
6.3, which is a special case of the results published by I. Halperin in [Hal962]. In our
special case the Schwarz alternating procedure can be viewed as an algorithm operating
on a finite dimensional space according to Lemma 6.2 (vi). Therefore it is also possible to
give an estimate of the convergence rate of Algorithm 6.1. This result is stated in Theorem
6.6 below.

Theorem 6.3 Let H be a Hilbert space with inner product (-, )y, let Hq, ..., Hy, M € N,
be closed subspaces of H, and let P;: H — H;, i € {1,..., M} be the orthogonal projector
onto H;. Denote by Q : H — ﬂf\il’}{, the orthogonal projector onto ﬂfil H;, and define
P:H —HbyP:=Py...P. Then {P"},en, converges pointwise to @, i.e.,

lim ||P"F — QF||% =0 for all F € H.
n—oo
Proof: The proof can be found for a more general case in [Hal962]. O

In order to prove the convergence of {S%}nen, to Sy v = PanG in H({An}; h; Qeot)-
Nl
sense, we make use of the following technical lemma:

Lemma 6.4 Let H be a Hilbert space with inner product (-,-)3, and let Hy,..., Hu,
M €N, be closed subspaces of H. Then

M
('7'[1+...+HM)J'=ﬂ’H;‘,
i=1

Proof: The statement follows by elementary calculations. a

Theorem 6.5 Let the notation and assumptions be the same as in Algorithm 6.1. Then
the sequence of iterates { S5y tneny 0f G € H({An}; h; Q) converges to S¢y v = PanG.
N,

SLY
Proof: Due to Lemma 6.2 (v) it holds that
PenG — S8, = (Pev — Id)G + (G — S%,) = (Pz — Id)G + (Qar - .- Q1)"G.

Theorem 6.3 tells us that the sequence of operators {(Qas - . - Q1)" }nen converges pointwise
to the orthogonal projector @ : H({An};h; Q%)  — ﬂ;vil im(Q;) onto

im(Q) := M2, im(Qy). But

. i N; N\t
According to Lemma 6.4,
i N N\t
m(©Q) = () (Suanma (L7 £3)

Jj=1
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M 1
= (Z Sh({An}ihiz) i LN;)>
j=1
N N\
(SH({An};h;W) (‘Cl yonn "CN))

Consequently, Q = Id — P=~, since the orthogonal projector onto im(Id — Pz~ ) is uniquely
determined. Hence,

lim PovG — S8, = (Pav — Id)G + lim (Qpr...Q1)"G = 0.

n—oo n—oo

|

Since due to Lemma 6.2 (vi), Algorithm 6.1 can be viewed as an algorithm operating
on the finite dimensional spline space Sy, 4 1.n.q57) (LN, ..., LY), we can get the following
estimate of its convergence rate:

Theorem 6.6 Let the notation and the assumptions be the same as in Algorithm 6.1. Then
the sequence {SSy tnen, of iterates of G € H({An}; h; Qe2t) converges to SSy .y = PanG
N

Ly,
in H({An}; h; Qert)-sense, and the error estimate
G
1P=vG = Sphullacamazny < O 1P Gllayqa, ynmen
holds true with some positive constant C' < 1, which is independent of G.

Proof: For a detailed proof of the statement the reader is referred to [He2002]. It uses the

fact that due to Lemma 6.2 (vi) S, = :f,ING, and thus it is sufficient to prove the con-

vergence of Algorithm 6.1 for input functions from im(Pev) = Sy 4.ypa0 (L1 - - - L)-

Due to Lemma 6.2 (v) the approximation error for G' € 8y (4, .n.ae0) (LN, ..., L%) can
then be written as

||G - SEM”H({An};h;@) = ||Q”G”H({An};h;@)’
where Q = QM .. -Qh Qj = Qj‘s

oy ety (EN ) and Q; :=Id— Paj.v- Using the fact
H{ An};h; Q57 e

that Sy 4, ynmmn (L1 -+, L}) is a finite dimensional space with a compact unit sphere
it is now rather easy to show that ||Q|| < 1. O

Note that Theorem 6.3 gives convergence of the sequence of operators {(Qus - .. Q1)" bnen
in pointwise sense, whereas Theorem 6.6 shows that in case that the multiplicative Schwarz
algorithm can be viewed as an algorithm which operates on a finite-dimensional space, we
even obtain convergence in the operator norm (|| Pevy G|lyy 4,y < 1Gllagra,ynazs, s
Pzn is an orthogonal projector).
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It is also possible to solve the linear equation system of an H({A,}; h; Q¢#?)-spline smooth-
ing problem with the multiplicative Schwarz alternating procedure. We sketch the basic
idea behind the application of the Schwarz alternating procedure to the smoothing spline
problem only briefly and refer for a detailed explanation and analysis to [He2002]. But
the implementation of the algorithm and its formulation in MATLAB pseudocode in Sec-
tion 6.2 includes the situation of spline interpolation as well as spline smoothing, and the
Schwarz alternating procedure is used in our numerical studies for the solution of spline
problems.

The crucial point in the application of the Schwarz alternating procedure to the spline
interpolation problem is that the spline interpolation problem can be formulated in terms
of orthogonal projectors, and the convergence analysis of the algorithm is based on this
formulation. This leads to the question whether the spline smoothing problem or more pre-
cisely, the linear equation system that has to be solved for the calculation of the smoothing
spline, can be interpreted as some kind of orthogonal projection problem.

The matrix of the spline smoothing problem is a symmetric positive definite N x N-matrix
A and has a Cholesky factorization A = L LT, where L is a uniquely determined lower
triangular matrix with positive diagonal entries. Denoting the row vectors of the matrix L
by vi,...,vy, we see that the matrix is actually the Gram matrix of the basis vy, ..., vy.
The determination of the representation f = Zfil z; v; of a vector f € RV with respect to
the basis vy, ..., vy from the knowledge of the inner products (f,v;), i = 1,..., N, leads
to the linear equation system

N
in (vi,vg) = (fivk), k=1,...,N — Az = (f,v6)k=1,.,N; - (6.2)
i=1

This equation system has the same matrix as the linear equation system of the spline
smoothing problem, and a suitable choice of the vector f yields exactly the linear equation
system of the spline smoothing problem. The idea for the solution of the spline smoothing
problem with the Schwarz alternating procedure is to regard the linear equation system
(6.2) as the linear equation system that belongs to the representation problem of f € RY
mentioned above. This representation problem can be interpreted as the trivial orthogonal
projection problem find w € RY such that Idw = f, where Id is the identity operator.
This trivial orthogonal projection problem can be solved with the Schwarz alternating
procedure and its numerical realization as the representation problem (6.2) leads to a
Schwarz alternating procedure that solves the linear equatin system of the spline smoothing
problem. As this approach to the spline smoothing problem uses only the fact that it has
a symmetric positive definite matrix, the same idea allows the application of the Schwarz
alternating procedure for the solution of any linear equation system with a symmetric
positive definite matrix.
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6.2 Implementation of an SAP Equation Solver

The Schwarz algorithm has not been applied in the Geomathematics Group before and is in-
vestigated within the Geomathematics Group for the solution of the H({ A, }; h; Q¢#)-spline
interpolation problem and the H({A4,};h;Qe)-spline smoothing problem in [Gu2002],
[He2002], and this thesis for the first time. In this section the details of the implemen-
tation are discussed in the next three subsections. The code itself is written in C, and
a formulation of the algorithm in MATLAB-pseudo-code can be found at the end of this
section on page 98. The subdivision of the original pointset into overlapping subsets which
corresponds to the partitioning of the evaluation functionals into subsets is based on a
geometrical subdivision of the sphere into subdomains of identical surface areas. The sub-
problems are solved with a direct solver, and we explain how the update can be calculated
without storage of the complete matrix of the initial large spline interpolation or spline
smoothing problem.

Subdivision of the Pointset into Overlapping Subsets

Our implementation of the SAP algorithm makes use of the fact that the only informa-
tion on the subdivision we need to store in order to perform the SAP iterations are the
indices of the points which belong to a certain subset. Apart from that we are free to
apply any criterion we consider to be appropriate to perform the subdivision. Since in our
numerical tests of the SAP algorithm we solve the H({A,}; h; Q¢*’)-spline interpolation
and H({A,}; h; Qezt)-spline smoothing problem with test data given on a sphere or an el-
lipsoid of revolution with an eccentricity close to zero, we have implemented a subdivision
scheme which assumes that the points are given in geographical spherical polar coordinates
(p, g,9g), p >, g € [—m,m) and ¥, € [-7/2,7/2] and that the ¢y~ and ¥,-coordinates
lie in a certain subdomain [ ,wgmaw] x [0y 00 1y <o ﬂgmm o9 ., of
the ¢,-U,-plane [—m,m) x [—7/ 2, ,m/2]. Note that this assumption means no loss of gener-
ality, since it can always be fulfilled by simply shifting the ¢,-coordinates of the points in
@g-direction, and we are only interested in determining the point indices. We will simply
call this domain the ¢4-1,-box in which the data points are given.

In the sequel we briefly explain the geometrical idea behind the angular test which is
performed to obtain the indices of the points in the overlapping subdomains:

The ¢4-1U,-box defines a domain on the unit sphere, and we first consider a subdivision of
this domain into disjoint subdomains of equal surface areas, i.e., we choose a subdivision
of the g -¥4-box into M € N subdomains such that

(szgmam - szgmv.n) (t.zgmam - t;mzn) = (SO‘;mam - S0‘;71",7.71,) (t‘;mam - t‘;mzn) (6'3)
for IL '] € {1 M} Where gog > gozgmln ’ ,ﬂzgmaw > 192 in and tl az = Sln(llg:} aac)
b = sm(ﬁlm ) for 1 € {1,. M} Special care has to "be taken 1f one of the poles

(7r 7r/2) or (—, —7r/2) is contamed in the ¢ -Y,-box, which leads to the following case
analysis:
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Figure 6.1: Illustration of the subdivision scheme.

Case 1: The ¢g-1,-box contains both poles.

As illustrated in Figure 6.1, we subdivide the ¢g4-94-box into two polar segments and a ring
segment consisting of M, My subdomains. Thus the total number of subdomains is given
by M = M,My + 2. In the ring segment the subdivision is equidistant with respect to ¢,
and ¢, := sin(Jy). Denote At :=tg,, —t,, i=0,..., My — 1. We have to compute {,,,
and At. The surface area of a subdomain in the ring segment is equal to ApAt, where

0 0
¥ = Pgmi
A(p = gmaz Imin .
M(P

Condition (6.3) then reads

(MpA@)(1 = tgy,) = (MpAp)(tger1) = ApAt

IMy
& My(1—ty,, ) = My(ty, + 1) = At. (6.4)

The first equality in (6.4) yields tg, = —tg- As the pg-J5-box cointains both poles,
ty... =land t) = —1. Thus

Mg—1
D gy = tg) + (1= tgy,,) + (tg +1) = 2,
i=0
and a simple calculation yields

M, M 2M
e and A= e
2+ M, M, 2+ MyM,

tgo
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Case 2: The ¢g-9,-box contains exactly one pole.

Assume that the ¢g-94-box contains only the North pole. In analogy to case 1 we sub-
divide the ¢g-v4-plane into one polar segment and a ring segment consisting of M,My
subdomains such that the total number of subdomains is given by M = M,My+1. Again,
the subdivision is equidistant with respect to ¢, and t, := sin(¢J,) in the ring segment.
tg = sin(¥) ), and we have to compute tgw, and At. Observing that

0 _ A0
_ gogmam (pgmin

M

©

and At = M

A
(p M,& Y

condition (6.3) now reads

(MpAQ) (1 — g, ) = ApAt & M,(1 —t,, ) = At

9My

and an easy computation gives

1—t
At=M,—%—
71+ M,My

and consequently,
tyns, = tgy + My AL,

In case that only the South pole is contained in the ¢,-94-box, analogous considerations
yield

1+ g,
At = Mipm and tgo = tgj\/[19 — MﬂAt
Case 3: The ¢4-1,-box contains no poles.
In this case the ¢4,-¥,-box is subdivided into M = M,My subdomains, where
tgo = sin(dy . ); tgy, =sin(¥y, ), and
0 0
¥ = Pomi th _tgo
A — 9mazx Imin d At = 9 .
% —M(p an M,

Based on the initial subdivision of the ¢g4-9,-box into M subdomains [gazmm,gozmm) X
[0¢ 9 ), i€ {l,...,M}, the limiting angles of the overlapping subdomains are ob-

9Imin
tained as follows: We specify numbers p,, py € (0,1). For each segment i which has a
neighbouring segment in (+¢,)-direction, we assign

and for each segment i which has an adjacent segment in (—¢,)-direction, we assign

gozmin — SO.Z‘]mzn - p‘pAgD



6. The Schwarz Alternating Algorithm 96

Here we observe the overlap due to the topology of the sphere in case that gogmm = —7 and

0
Sogmam = 7T'
For each segment i which has an adjacent segment j in (+¢,)-direction, we assign

9 arcsin(sin(d], ) +pi(1 = tg,,)), if segment j is the North Pole
Ymasz arcsin(sin(0% ) + pAt) else,

and for each segment i which has a neighbouring segment j in (—¢,)-direction, we assign

; arcsin(sin(9 ) — py(1 + t4,)), if segment j is the South Pole
v, . gmin’
gmin arcsin(sin(d, . ) — pAt) else.

mn

Numerical Solution of the Spline Problem for the Subsets

In order to solve the spline interpolation or spline smoothing equations related to the sub-
sets, we use two solution algorithms which are designed for the direct solution of linear
systems with symmetric coefficient matrices, namely the well-known (and stable) Cholesky
decomposition for positive definite symmetric systems and the Parlett-Reid algorithm for
symmetric indefinite systems with Bunch-Kaufman pivoting. Both algorithms are imple-
mented in the FORTRAN software package LAPACK, which is electronically available via
Netlib (see http://www.netlib.org/index.html for an overview of the available routines
and the LAPACK user manual [AnBaBi1995]) and expect the coefficient matrix of the
linear system which has to be solved to be given in packed store-by-column format. This
means a storage requirement for a matrix K; € RY*"i of order O(N;/2), j =1,..., M.
In our implementation of the SAP method we either use the LAPACK double precision
routine dpptrf to compute the Cholesky factorizations of the coefficient matrices corre-
sponding to the subproblems in the setup step or the LAPACK routine dpttrf to compute
their LDL"-factorizations by means of the Parlett-Reid algorithm with Bunch-Kaufman
pivoting. Here L denotes a lower triangular and D a diagonal matrix. The factorized
coefficient matrices K are kept in the store, which leads to a total memory requirement of
O(N?/(2M)) for the storage of the M submatrices, which means a reduction of the storage
requirement by a factor M in comparison to the one of the large matrix, provided that
the overlap of the subsystems is not too large. Within the SAP iterations the solution of
the linear systems is computed with the routines dpptrs and dpttrs, respectively, which
perform the back (or forward) substitution.

For general literature on the solution of symmetric systems and on the error analysis
of the selected algorithms we refer the reader to [GoVL01996] and the references therein.
The computation of the Cholesky factorization of a matrix K; € RYi*"i requires N} /3
floating point operations (flops). The Parlett-Reid algorithm computes the LDLT-
factorization of a symmetric indefinite matrix K; € R *"i using Gauss transforms and
requires QN;' /3 flops. The diagonal pivoting method of Bunch and Kaufman additionally
involves N?/3 flops and O(N}) comparisons.
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Residual Update

In each iterative step n an update of the residual has to be performed after the solution of
each of the M subproblems. Having computed the solution o™i = (aivj Yoy a%j: )T to the

linear equation system

N

Nj N
E:al (KH({An};h;ngt)(% ’
=1

xlN]) + A(Si,l) = RnM+(j,1)(x£Vj), 1 <3 <N;,

where A = 0 incase of spline interpolation and A > 0 in case of spline smoothing, we have
to evaluate the sum

Nj

N; N;
D0 Ky, ypinzn (@7, 50) + M)
=1

for [ = 1,...,N, where we use the notation vaj = xf\(’j),

1 <3 < M,1 <4 < N;. This means that we have to multiply the submatrix
((Ksyq, )00 (z;7, 2N) + Ad1i(j))1<i<n;, 1<i<n of the coefficient matrix of the initial large

system with the coefficient vector afv’. Here the submatrix entries are generated dynami-
cally by calls of the kernel function KH( (An }shi050) while the point coordinates of the large
system are read once in the setup step and kept in the memory. Obviously, the time re-
quirement for the residual updates makes our algorithm less and less efficient the finer we
subdivide.

This drawback can be overcome with the help of the Fast Multipole Method mentioned in
the introduction to this chapter. Moreover, in an additive variant of the Schwarz algorithm
the subproblems can be solved simultaneously on parallel computers and the residual up-
date must only be computed once per iterative step. The design of an efficient solver which
combines the (additive) Schwarz algorithm and fast mutipole techniques is a challenging
task for future investigations.
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SAP-Algorithm Including a Subdivision of the Initial Pointset in the ¢/-9,-
Plane (and the Solution of the Linear Subsystems via Cholesky Decomposition)

INPUT

SETUP

ITERATIVE
SOLUTION

Limiting angles @y @) 00 95 of p-04-box,

overlap p, py,

number of subdomains in ¢,-direction M, and

number of subdomains in ¥,-direction My, excluding polar caps,
variable POLFES indicating the presence of poles,

flag PHI_PERIODIC signalizing if overlap of subdomains

in pg-direction at ¢, = —m

has to be taken into account, smoothing parameter A,
accurracy tolerance TOL,

maximal number of iterations MAXIT,

spherical polar coordinates of interpolation points {zV,..., 2}
and data b = (G(z)),...,G(zN¥)".

1:=0,rY :=b", a" :=0.

Compute the limiting angles of the overlapping subdomains
XN, ..., X} in the ¢ ,-U,-plane,

determine the numbers of points Ny, ..., Ny in X ... X
and store their indices in an index array ind, such that

N; N . .
T;" = Ting,, forj=1,...,Mandi=1,...,N;.

Set up a 2D array K containing the matrices
((KH({An};h;W) (vajafﬂzzjj) + )\5i,k)1gz’,k§vj in symmetric
store-by-column format as row vectors.
for j=1: M
Compute the Cholesky factorization of K. using the
LAPACK routine dpptrf.

end
while |r|/|b| > TOL and | < MAXIT
forj=1: M
fori=1:N;
T;Vj = T%dﬂ
end
Solve K;.a™i = r"i using the LAPACK routine
dpptrs.
fori=1: N]
N N o Nj N .Nj
g =T I_Z;az (K%({An};h;W)(xi ;@) + Adijind;, )
end
fori=1:N;
a%dﬂ = a%dﬂ +a)
end
end
l:=1+1

end




Chapter 7

Multiscale Reconstruction of the
Gravitational Potential

In this chapter we explain how the regularization schemes which were introduced in Section
5.4 can be discretized with the help of H({A,}; h; Q¢*?)-splines. Throughout the chapter
we assume that the general assumptions of the numerical part, which are given on page
84, are satisfied. In particular, A € {A%5T ASGG} either denotes the SST- or the SGG-

operator.

Let {CIJ;-‘}jeNO be a linear regularization scaling function for the inverse operator A~!
with generating symbol {{(®%)"(n) }nen, }jeng, and let {2} ey, denote the regularization
wavelet corresponding to {®4},en, with generating symbol {{(¥})"(n)}nen, }jen,- Let
{T};}jen, and {R;};en, be the bounded linear operators introduced in Definition 5.27 and
Definition 5.33. In order to compute the j-level regularization T;G, j € Ny of the problem
AF =G, F € H{A.}; Q%"), G € H({An}; h; o), and the detail R;_1G, j € Ny, we have
to discretize the convolutions

TG = ®} *pya gz Go § € No, (7.1)
and
Rj G = W) %y ymiazn G 1 EN, (7.2)

with the help of the measurements {(z), G(z)¥)}1<i<n, taken in a set of N mutually distinct
points XV := {zV ... 2¥} on the satellite orbit. Assume that the bounded evaluation
functionals £V : H({A,}; h; Qeet) - R, H > H(z)),i=1,..., N are linearly independent
and denote their representers in H({A,}; h; Qe#?) by LY, i =1,..., N. As explained in the
last chapter we calculate an interpolating or smoothing H ({4, }; h; Q¢#?)-spline

N
S¢ = E avafv
i=1

99
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relative to LY, ..., LY of the right-hand side G and replace G in the convolutions (7.1)
and (7.2) by this spline. This leads to the discretization rules

N
TG~ o} (-a)), j €N, (7.3)
=1
and
R; G~ ZaN\I’A , jEN. (7.4)

Note that the H({An}; QE")-H({An}; h; Qg)-product kernels @, j € Ny, and U} |,
j € N, are (at least for the examples we consider in this thesis and to our knowledge)
not available as elementary functions. Thus, in practical computations we have to evaluate
their truncated series expansions

(@)"(,y) = f
- (5) Seeve () (G5

and

()™ (z,y) = Y (P53_1)" () Hy o (R; y) Hy o (5 s )

=0
1 r\"IN 1 Rr \"™ Yy X
= - — (A A P .=
4err<|x\> 2 (Vi) (”)(|y||m\> <|y| \x\)’

where m € Ny, in y € Q%' and = € Q¢*". This leads to an additional numerical error.

It is also possible to discretize the convolutions in a multiscale reconstruction

J—1
7,G =T5,G+ Y RG

Jj=Jo

in a more efficient way than it is done in (7.1) and (7.2). This can be done with a so-called
‘pyramid scheme’. In our situation the use of a pyramid scheme would mean that only the
detail Ry G at the highest scale J is discretized according to formula (7.4) and that the
coefficients al¥, ... a in (7.4) are used for the recursive calculation of coefficients for the
discretization of R Jj—2,---,R5,G,T;,G. For more information about pyramid schemes the
reader is referred to [Fr1999] and [FrSchn1997].
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Chapter 8

Numerical Test of the Schwarz
Alternating Algorithm

In this chapter we apply the Schwarz alternating procedure to the #({A,}; h; Q¢#t)-spline
interpolation problem. In Section 8.1 we test the implemented algorithm with respect to
convergence, runtime and memory requirement, whereas an accuracy analysis of the com-
puted interpolating splines is presented in Section 8.2.

All test computations are performed for an SGG-scenario (h=2) with simulated satel-
lite data. We start with the most simple case of a spherical orbit with radius rs and
use a set of interpolation points which forms an approximate equidistribution on the
orbital sphere. The notion of an equidistribution on the sphere is introduced in Sec-
tion 8.3, where we present the point distributions which we use in our numerical tests.
We then leave the sphere and consider an orbit in the shape of an ellipsoid of revolu-
tion with eccentricity e and ellipse parameter p, which approximates the orbit of the
GOCE satellite. Pointsets on this ellipsoid are generated by projection of the spherical
pointsets along the radial direction. We use the NASA model EGM96 (see [LeKeFal1998]
and http://cddisa.gsfc.nasa.gov/926/egm96/egm96.html) to generate the SGG data.
The EGM96 model provides a set of (real, fully normalized) spherical harmonic coeffi-
cients {V/ k}0<n<360 _n<k<n related to a spherical earth model with radius R = 6378136.3
m. The coeﬂi(:lents {V, k}0<n<360 _n<k<n Were obtained from a combination of satellite and
terrestrial data materlal The system of fully normalized spherical harmonics in terms of
Legendre functions is an £?(Q)-orthonormal system commonly used in geosciences, and
we refer the reader to [HeMo1967] for more details. In our test example we use the
EGM96 model to compute the second order radial derivative G of the gravitational poten-
tial V € Pot(? (Q%?), in a set of N points XV := {z¥,..., 2N} on the ‘orbital surface’ Xg,
including contributions of outer harmonic degrees 3 up to 255, i.e.,

255

FMZ "HNTZ” Z R;zY), i=1,...,N,

k=—n
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where I'M = 3986004.415 - 10® m3s~2 is the product of the gravitational constant and the
mass of the earth. Note that {H, x(R;-)}nen,, —n<k<n here denotes the system of outer
harmonics related to the system of fully normalized spherical harmonics.

The parameters of the orbital test geometries are as follows:

rs = 6628059 m,
e = 0.0045
p = 6628002.78 m,

and the radius of the Bjerhammar sphere for the satellit orbit is given by
r = 6588310 m.

We compute a local spline reconstruction of the simulated SGG data, where the longitudes

¢, and latitudes ¥, of the interpolation points z¥', ..., z} are taken within the ¢ -9 ,-box

defined by
(g, Yy) € [—2.394,0.052] x [—0.944, 0.224].

Figure 8.1 shows the gravitational potential on the spherical earth’s surface and the SGG
signal at satellite height in the selected ¢4-1,-box.

-400 -300 -200 -100 0 100 200 300 400 500 600 x10

Figure 8.1: a) Gravitational potential in @4-94-box on the earth’s surface and b) SGG-signal
on the spherical test orbit, computed with the EGM96 model.
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As the simulated SGG-data which is regarded in this chapter is exact (i.e. without noise)
the reconstruction of the second radial derivative on the ‘orbital surface’ ¥g can be per-
formed with an interpolating H({A,}; h; Q¢**)-spline.

We restrict ourselves to the case that the sequence {A,},en, Which defines the space
H({An};2; Qe is given by A, = ¢™? for n € Ny, where ¢ € (0,1]. Let z € Q¢ if
g=1and z € Q¢ if ¢ € (0,1). According to the results in Chapter 4, the evaluation
functional £, : H({A,}; h; Q) - R, G — L,(G) := G(z) is bounded and its represen-
ter L, € H({A,}; h;Qe?) is of ‘Abel-Poisson-kernel type’ (4.14). As already mentioned
there, the parameter ¢ € (0, 1] can be interpreted as a ‘shape parameter’, which determines
the decay behaviour and the space-localization of the Abel-Poisson kernel. Our numerical
studies show that the accuracy of the interpolating H ({4, }; h; Q¢=?)-spline is very sensitive
to the variation of ¢ and to the density of the interpolation points. The analysis of the
dependence of the accuracy of the interpolating spline on these two parameters is investi-
gated in Section 8.2.

8.1 Performance of the Multiplicative Schwarz
Algorithm

We investigate the performance of the Schwarz alternating algorithm with respect to
e subdomain overlap,

e subdivision depth,

total number of interpolation points,

point distribution,

orbit geometry and
e choice of the parameter ¢ € (0, 1].

The numerical test is carried out with our first implementation of the Schwarz alternating
algorithm which was designed for solving the H({A,}; h; Q¢=t)-spline interpolation prob-
lem on a ¢g-1,-box containing no poles. This solver uses a simpler subdivision scheme
than the one described in Section 6.2, i.e., we perform a subdivision of the ¢,-9,-box
into M = MM, subdomains which have equal surface areas in the ¢g4-9,-plane and then
enlarge these subdomains by a certain overlap dy and dv in ¢,- and ¥,-direction. This
subdivision procedure leads to some variation in the surface areas covered by the subdo-
mains on the sphere and thus to considerable variation in the numbers of points contained
in the subsets XJN, j € {1,...,M} of X¥. Although one would intuitively expect that
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subdomains of varying surface area might slow down the algorithm we get rather good
results with this simple subdivision scheme. Since this subdivision procedure cannot be
applied if a pole is contained in the ¢,-4-box and as we wished to avoid large variations of
the point numbers in the subsets we later implemented the subdivision scheme described
in Section 6.2 in the more general version of the SAP equation solver.

In the presentation of the results we always give the range of the point numbers N; in the
subsets XJJ-V, j €{1,..., M}, and the total number of points in the overlap N, (counted
without multiplicities).

The study is carried out with the Cholesky variant of the SAP solver. We always work
with an accuracy tolerance for the relative residual given by TOL = 107!¢. All time mea-
surements are performed on a Pentium III (Coppermine) with cpu-speed 868.664 MHz, 1.4
GByte RAM, and operating system Red Hat Linux 7.1 with kernel 2.4.7. The C-code is
compiled with the gce 2.96 compiler using the optimization option -O3, and the installed
C-library is glibc 2.2.2.

For comparison of the efficiency of the SAP solver, note that if we apply the LAPACK
Cholesky routine dppsv to solve the H({A,};h; Qe)-spline interpolation equations for
10295 unknowns directly (without SAP), the total computation time amounts to 2.5 h,
and the storage requirement is 405 MByte.

Performance of the SAP Algorithm for Varying Subdomain Overlap and Sub-
division Depth

All numerical tests here are performed with data given on the spherical test orbit €2, in
the points of a Reuter grid with grid parameter v = 200 and a total number of N = 10295
points in the ¢g-9,-box. The parameter ¢ which determines the sequence {4, }nen, is cho-
sen as q¢ = 0.95.

We start with M, = My = 4 (i.e. M=16 subdomains) and determine the number of
SAP iterations, the CPU time per iteration, the total computing time and the memory
requirement for varying values of the overlap dy and di. The results are listed in Table
8.1. Figure 8.2 shows these quantities in dependence of the oberlap dy in ¢4 -direction for
varying values of d¥. In Figure 8.2 a) we see that for our test case the convergence of the
method does not further improve if we choose an overlap dp > 0.2 and dv¥ > 0.1. Figure
8.2 ¢) shows that the total computation time seems to become minimal for a longitudinal
overlap of 0.05 < dy < 0.2.
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Table 8.1: Test of the SAP method for a local ¢,-,-box with N=10295 points. The ¢ -
Yg-box was subdivided in M, = My = 4 subdomains in ¢g- and 9J4-direction, with varying
overlap dy and dv. N; gives the smallest and the largest number of points in a subdomain,
N, is the number of points (counted without multiplicity) which belong to more than one

subdomain and It. is the number of iterations.

dy |dy | N; N, It. | t/It. |ty Mem. in
in s in min | MByte
0.05 | 0.05 | 653-1096 | 3610 | 22 | 76.05 | 30.95 | 53
0.1 | 706-1250 | 4555 | 13 | 86.14 | 21.25 | 77
0.2 | 802-1560 | 6426 | 13 | 103.33 | 26.8 94
0.3 | 900-1867 | 8288 | 13 | 120.49 | 33.13 | 127
0.1 |0.05| 759-1398 | 5985 | 22 | 91.92 | 38.0 7
0.1 | 820-1594 |6592 |8 |99.64 | 18.0 95
0.2 |932-1994 | 7799 | 6 | 124.3 | 24.0 137
0.3 | 1045-2385 | 9001 | 6 | 143.29 | 27.0 187
0.15 | 0.05 | 903-1653 | 8419 | 22 | 110.56 | 46.37 | 107
0.1 |976-1885 | 8683 | 8 | 122.78 | 23.73 | 132
0.2 | 1110-2359 | 9206 | 6 | 147.53 | 27.55 | 190
0.3 | 1245-2820 | 9732 | 6 | 172.0 | 35.82 | 259
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Figure 8.2: SAP test performed on a Reuter grid with N = 10295 points in the se-

lected parameter region on a spherical orbit with radius rs =

g = 095 and M, = My

6628059 m, parameter

= 4 subdomains in @g4- and U4-direction, respectively, for
dy € {0.05,0.1,0.2,0.3} and d¥ = 0.05 (o), d¥ = 0.1 (O) and d¥ = 0.15 (7). a) Number
of iterations, b) time per iteration in s, ¢) total runtime in min and d) memory requirement
in MByte in dependence of the longitudinal and latitudinal subdomain overlap.
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In a second test we additionally vary the subdivision depth M = M,My, where M, =
My =mnand n € {5,...,10}. Here we relate the overlap of the subdomains to the overlap
specified for the study with M, = My = 4 with overlap d¥ = 0.1 and dy € {0.1,0.2,0.3} in
such a way that in ¢,- and in 9,-direction the overlap is a fixed multiple of the subdomain
length. Thus we take d = 0.1-4/M, and vary dy € {0.1-4/M,,0.2-4/M,,0.3-4/M,}.
The results of this study are listed in Table 8.2.

Table 8.2: Test of the SAP method for a local ¢,-1,-box with N=10295 points. The ¢g-
Jg-box was subdivided in M = n? n € {5,...,10}, subdomains with varying overlap dyp,
and dv,. N; gives the smallest and the largest number of points in a subdomain, N, is the
number of points (counted without multiplicity) which belong to more than one subdomain
and It. is the number of iterations.

M | di, |dyp, | N, N, It. | t/It. | tior Mem. in
ins in min | MByte
25 1 0.08 | 0.08 |502-1024 | 6838 | 10 | 119.5 | 22.97 | 65
0.16 | 577-1273 | 7960 | 7 144.16 | 21.75 | 95
0.24 | 644-1525 | 9295 | 7 169.91 | 27.58 | 131
36 |0.2/3|0.2/3|349-718 | 7099 | 13 | 121.42 | 27.8 48
0.4/3 | 398-894 | 8297 | 9 147.44 | 24.45 | 70
0.2 448-1076 | 9496 | 9 173.69 | 30.25 | 98
49 |0.4/7|0.4/7 | 259-535 | 7415 | 18 | 124.92 | 38.43 | 37
0.8/7 | 296-663 | 8530 | 11 | 152.40 | 28.27 | 55
1.2/7 | 331-790 | 9657 | 11 | 179.74 | 35.18 | 77
64 | 0.060 | 0.05 |193-415 | 7339 | 21 | 124.19 | 46.73 | 28
0.1 221-516 | 8534 | 14 | 152.1 | 36.72 | 43
0.15 | 248-621 | 9709 | 14 | 179.92 | 43.19 | 59
81 |0.4/9|0.4/9 | 144-322 | 7446 | 27 | 125.65 | 57.88 | 23
0.8/9 | 163-404 | 8614 | 17 | 154.12 | 44.87 | 35
1.2/9 | 184-479 | 9777 | 17 | 182.32 | 53.12 | 48
100 | 0.04 | 0.04 | 116-270 | 7543 | 40 | 126.71 | 87.65 | 19
0.08 | 132-336 | 8686 | 19 | 156.24 | 50.98 | 29
0.12 | 149-403 | 9833 | 19 | 185.2 | 60.33 | 40

Figure 8.3 shows that for our test example the memory requirement is dramatically lowered
with increasing subdivision depth. For fixed values of dy and d¥ the number of necessary
iterations increases with increasing number of subdomains. Considering the total runtime
it therefore seems not advisable to increase the subdivision depth further than M = 49.
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Figure 8.3: SAP test performed on a Reuter grid with N = 10295 points in the selected o,-
Vg-box on the spherical test orbit Qg and parameter ¢ = 0.95 for varying subdivision depth
M= M3, Mg € {4,...,10} and d¥ = 0.1-4/My, dp € {0.1-4/My,0.2-4/My,0.3-4/My}.
a) Number of iterations, b) time per iteration in s, c) total runtime in min and d) memory
requirement in MByte in dependence of the longitudinal overlap in multiples of 4/ My where
My =4 (O), My =5 (D), My =6 (V), My =17, (A), My =8 (<]), My =9 (D) and
My =10 ().
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Performance of the SAP Algorithm for Increasing Total Number of Interpola-
tion Points

The increase of the total runtime is the reason why the convergence study for an increasing
total number of interpolation points is only carried out for M = M3, (i.e., M, = My),
where My € {4,...,7} for a latitudinal and longitudinal overlap d9 = 0.1 - 4/My and
dp = 0.2 - 4/My, respectively. The results of this study are listed in Table 8.3 and plotted
in Figure 8.4.

Table 8.3: Test of the SAP method on a ¢g-94-box on the spherical test orbit €2, on a
Reuter grid with grid parameter v and N points in the ¢g-1,-box. The parameter ¢ is
chosen as ¢ = 0.95 and the overlap is given by d = 0.1 - 4/M,, and dy = 0.2 - 4/My for
varying subdivision depth M = M3. N, gives the smallest and the largest number of points
in a subdomain, N, is the number of points (counted without multiplicity) which belong
to more than one subdomain and It. is the number of iterations.

M|~ N N; N, It. | t/It. tiot Mem. in
in s in min | MByte
338.68 | 59.87 | 331
720.54 | 149.33 | 693

16 | 250 | 159538 | 1502-3032 | 12149
300 | 23070 | 2142-4389 | 17592
25 | 250 | 15958 | 901-1972 | 12636 347.79 | 53.43 | 232
300 | 23070 | 1300-2818 | 17195 735.24 | 134.16 | 478
350 | 31235 | 1767-3906 | 24647 | 8 | 1356.32 | 286.1 | 878
36 | 250 | 15958 | 614-1387 | 12835 | 10 | 353.74 | 65.88 | 167
300 | 23070 | 878-2052 | 18620 | 10 | 742.18 | 145.35 | 351
350 | 31235 | 1188-2686 | 25286 | 10 | 1368.22 | 278.21 | 646
49 | 250 | 15958 | 441-1055 | 13083 | 12 | 361.23 | 76.48 | 129
300 | 23070 | 655-1430 | 18808 | 14 | 750.24 | 189.03 | 262
350 | 31235 | 861-2016 | 25588 | 14 | 1392.21 | 381.02 | 489
400 | 40949 | 1148-2645 | 33758 | 15 | 2400.02 | 668.1 | 850
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Figure 8.4: Test of the SAP method performed on a Reuter grid with varying total number
of points N € {10295,15958,23070, 31235} in the selected p4-U4-box. The parameter q is
given by g = 0.95 and the latitudinal and longitudinal overlap by d¥ = 0.1 - 4/My and
de = 0.2 4/My, respectively, where M, = My =4 (o), M, = My =5 (0), M, = My =6
(v) and M, = My =7 (A). a) Number of iterations, b) time per iteration in s, c) total
runtime in min and d) memory requirement in MByte.
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Performance of the SAP Algorithm for Varying Point Distribution

The dependence of the convergence of the SAP method on the point distribution is tested
in a comparative study for four grid types (on the spherical test orbit €,.) which are
listed in Section 8.3 and a subdivision into M = M} subdomains, (i.e., M, = My), where
My € {4,5,6}. The total number of points is equal to N = 10224 in case of the Brand
grid and N = 10295 otherwise, and we choose ¢ = 0.95, d = 0.1 - 4/My and vary the
longitudinal overlap dy € {0.1-4/My,0.2-4/My,0.3 - 4/My}. The results obtained for
the Brand grid and the grids based on the Hammersley and Corput-Halton sequence,
respectively, are listed in Tables 8.4 to 8.6.

Table 8.4: Test of the SAP method for a Brand grid on the spherical test orbit €2, and
N = 10224 points in the ¢4-1,-box.

M | dv, dpg N; N, It. | t/It. tiot Mem. in
ins in min | MByte
16 | 0.1 0.1 696-1659 | 6546 | 7 113.87 | 17.63 | 97
0.2 794-2067 | 7744 | 6 136.65 | 21.25 | 139
0.3 892-2473 | 8931 | 6 159.31 | 27.8 189
25 1 0.08 | 0.08 |434-1108 | 6900 | 10 | 117.92 | 22.03 | 67
0.16 | 494-1387 | 8093 | 7 142.83 | 20.45 | 98
0.24 | 555-1653 | 9254 | 7 167.15 | 25.93 | 134
36 | 0.2/3|0.2/3 | 282-810 | 7202 | 11 | 121.49 | 23.65 | 50
0.4/3 | 322-1010 | 8336 | 9 147.57 | 25.08 | 73
0.2 362-1209 | 9464 | 9 173.81 | 34.35 | 102
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Table 8.5: Test of the SAP method for a grid based on the Hammersley sequence on the
spherical test orbit €2,, and N = 10295 points in the ¢g-1,-box.

M | dv, deg | N; N, It. | t/1t. | tin Mem. in
ins in min | MByte
16 | 0.1 0.1 828-1574 | 6622 | 7 | 115.71 | 17.62 | 96
0.2 944-1962 | 7822 | 6 | 142.56 | 21.35 | 138
0.3 1061-2352 | 9011 | 6 | 162.49 | 27.53 | 188
25 1 0.08 |0.08 |511-1027 | 6951 | 8 | 119.49 | 17.95 | 66
0.16 | 583-1281 | 8137 | 7 | 144.36 | 20.02 | 96
0.24 | 655-1534 | 9326 | 6 | 169.58 | 22.42 | 133
36 | 0.2/3 | 0.2/3 | 346-721 7154 | 11 | 122.06 | 23.63 | 48
0.4/3 | 395-898 8332 | 7 | 148.02 | 19.27 | 71
0.2 443-1074 | 9510 | 7 | 174.54 | 23.4 98

Table 8.6: Test of the SAP method for a grid based on the Corput-Halton sequence on the
spherical test orbit €2, and N = 10295 points in the ¢g4-1,-box.

M | dv, dpg N; N, It. | t/It. tiot Mem. in
ins in min | MByte
16 | 0.1 0.1 828-1578 | 6629 | 7 116.84 | 17.75 | 96
0.2 946-1965 | 7827 | 6 139.51 | 20.97 | 138
0.3 1062-2355 | 9013 | 6 163.71 | 27.67 | 188
251 0.08 | 0.08 | 512-1029 | 6955 | 8 119.49 | 18.0 66
0.16 | 584-1282 | 8142 | 7 144.6 | 20.32 | 96
0.24 | 654-1536 | 9312 | 6 169.82 | 22.47 | 133
36 | 0.2/3|0.2/3 | 348-726 7167 | 11 | 122.09 | 23.67 | 48
0.4/3 | 396-897 8342 | 7 148.27 | 19.25 | 71
0.2 445-1074 | 9515 | 7 174.39 | 23.3 98

Figure 8.5 shows the number of iterations in dependence of the longitudinal overlap and
the subdivision depth for the four different grid types. We see that the dependence of the
convergence of the method on the subdivision depth is the same for each pair of grid types
with similar law of generation, and we obtain a faster convergence of the SAP method for
the Hammersley and the Corput-Halton grid for a subdivision into 36 subdomains than in
the case of the Reuter and the Brand grid.
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Figure 8.5: Number of iterations in the SAP method performed a) on a Reuter grid with
N = 10295, b) on a Brand grid with N = 10224, ¢) on a grid based on the Hammersley
sequence with N = 10295 and d) on a grid based on the Corput-Halton sequence with N =
10295 grid points on the spherical test orbit Q. for varying subdivision depth M = M3,
where My =4 (o), My =5 (0) and My =6 (), and latitudinal and longitudinal overlap
given by dd = 0.1-4/My and dp € {0.1-4/My,0.2-4/My,0.3 - 4/My}, respectively, and
parameter g = 0.95.
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Performance of the SAP Method for Varying Orbit Geometry

The results in Table 8.7 show that for the choice of ¢ = 0.95 the convergence behaviour of
the Schwarz alternating algorithm does not significantly change when we go over from an
orbital sphere with radius r¢ = 6628059 m to an ellipsoid of revolution with eccentricity
e = 0.0045 and ellipse parameter p = 6628002.78 m.

Table 8.7: Test of the SAP method for ¢ = 0.95 and data given on a Reuter grid with NV =
10295 points projected on an orbital ellipsoid of revolution with eccentricity e = 0.0045
and ellipse parameter p = 6628002.78 m for varying overlap and subdivision depth.

M | dv, deg It. | t/It. tiot
ins in min

16 | 0.1 0.1 7 115.49 | 18.02
0.2 6 138.31 | 21.3

0.3 6 161.27 | 27.92

25 10.08 [0.08 |9 118.53 | 20.43
016 |7 143.19 | 20.35

024 |7 168.03 | 25.32

36 10.2/3]0.2/3 |11 | 121.58 | 23.9
0.4/3 |8 147.6 | 21.77

0.2 8 173.82 | 26.48

Performance of the SAP Algorithm for Varying Parameter ¢ € (0, 1]

Finally, we study the dependence of the performance of the SAP method on the parameter
g € (0,1], which determines the decay behaviour of the Abel-Poisson-kernel. Table 8.1
contains the convergence results of a comparative test of the SAP method for ¢ = 0.92
and ¢ = 0.95, performed for the spherical test orbit €2, for a Reuter grid with NV = 10295
points in the ¢g-Y,-box and a subdivision into M, = My = 4 subdomains in ¢, and
¥4-direction.
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Table 8.8: Test of the SAP method for ¢ = 0.92 and ¢ = 0.95 and data given on the
spherical test orbit €., in N = 10295 points of a Reuter grid in the ¢g-94-box, where
M, = My = 4.

‘q ‘dﬁ ‘dgo‘]t.‘q ‘d19 ‘d(p‘lt.‘

09201 |0122 09501 |0.1|8
0.2 11 026
0.3 |11 036
0920150122 095 0.15]0.1|8
027 026
037 036

Note that in case that di = 0.05 the method did not converge within 30 iterations for
dp € {0.1,0.2,0.3}. In Section 8.2, where we investigate the accuracy of the interpolating
H({A,}; h; Qeet)-spline in dependence of the parameter ¢ for a larger number of interpola-
tion points, we give supplementary results concerning the convergence of the SAP solver
for varying values of q.

Convergence Rate

We conclude the numerical investigation of the SAP method with a closer examination
of its convergence rate. Theorem 6.3 in Section 6.1 predicts an exponential decay of the
residual of the n-th iterate S, (measured in the H({4,}; h; Q¢*)-norm) with increasing
number of iterations n according to

||S§{v,_,_,5% - SSM“H({A,L};h;W)

156 — <C", where C<1. (8.1)
oy, “H({An};h;Q?“)

Since in our implementation of the SAP algorithm the coefficients of the iterates S&,, are
not stored, we cannot evaluate the quantity on the left-hand side of (8.1). Our numerical
experiments, however, confirm an exponential decay of the relative residual

T
‘(Sfiv,---,zx @) = SEh),__,
(G(%N)){gigN‘

which is computed after each iterative step. This is shown in in Figure 8.6, where the
logarithm of the relative residual is plotted versus the number of SAP iterations. There
we use the results we obtained in the study of the performance of the SAP algorithm for

Y
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varying total number of interpolation points and a subdivision into M = 49 subdomains
(see Table 8.3).
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Figure 8.6: Relative residual of the SAP iterates in dependence of the number of SAP
iterations n for the numerical test with N = 15958 (0), N = 23070 (0), N = 81235 (v7)

and N = 40949 (A) points of a Reuter grid in the @4-9,4-box.

8.2 Accuracy of the Approximation of the Signal

In this section we analyse the accuracy of the interpolating spline as an approximation of
the SGG signal with respect to the parameter ¢ € (0,1] and the number of interpolation
points in the ¢g-9,-box. As already mentioned in Section 4.5, we have to expect that Gibbs
phenomena occur close to the boundaries of the ¢g-9,-box. Figure 8.7 shows the influence
of this truncation effects for the interpolating spline which was computed for ¢ = 0.95 and
N = 40949 interpolation points on the spherical test orbit €2, . Here absolute errors larger
than 8 - 107'7s72 and smaller than —9 - 107'"s~2 are set to 8 - 10717s72 and —9- 10717572,
respectively. Note that the signal itself varies between —8 - 1071 572 and 18 - 10710 52
(see Figure 8.1 b)).
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Figure 8.7: Error S¢ — G ins7? for N = 40949 and q¢ = 0.95 in the p,-0,-box.

YA\
Absolute errors larger than 8-107"s~2 and smaller than —9-10""s~2 are set to 8-10" 752
and —9-107Ys72, respectively. Note that the signal itself varies between —8-10710 572 and
1810719 572 (see Figure 8.1b)).

In our discussion of the quality of the interpolating spline as an approximation to the
signal we evaluate the interpolating spline in 60830 points of an equiangular -9-grid in a
reconstruction window on the orbital surface, which is defined by

(pg,0,) € [—2.203, —0.14] x [—0.754, 0.047].

We always compute the maximal absolute error, the mean absolute error and the absolute
rooted mean square error of the interpolating spline in the reconstruction window.

In our first study we analyse the influence of the number of interpolation points on the
accuracy of the H({A,};h; Qe*?)-spline interpolant. Here we refer to the study we per-
formed in Section 8.1 for a Reuter grid on the spherical test orbit €2, for ¢ = 0.95 and a
subdivision of the ¢g-Jg-box into M, = My = 7 subdomains in ¢4~ and ¥ -direction with
overlap dp = 0.2-4/7 and d = 0.1 - 4/7. The results are given in Table 8.9.
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Table 8.9: Test of the accuracy of the H({A,}; h; Qe=t)-spline interpolant computed with
the Cholesky-SAP solver for ¢ = 0.95 and data given on a Reuter grid with varying number
of grid points on the spherical test orbit €2, which is subdivided into M = 7-7 subdomains
with overlap dp = 0.2-4/7 and d¥ = 0.1 -4/7 (for further information see also Table 8.3).

N max error mean error rms error

in s72 in s72 in s72

10295 | 2.118-10~1 | 1.550- 10~™ | 3.755 - 10~ '*
15958 | 2.21-10"*% | 1.498-10'4 | 2.501-10 4
23070 | 2.865-10"13 | 6.401-10"'7 | 2.101-10 6
31235 | 5.112-10716 | 4.585-107'8 | 3.088 - 107
40949 | 9.37-10~'7 | 7.041-107"% | 5.174-10"'8

Figure 8.8 and Figure 8.9 show the error S£GN o~ —G of the interpolating splines, computed
NN

for N = 23070, N = 31235 and N = 40949, in the reconstruction window.

Figure 8.8: Error SSN o~ —Gin s 2 for a) N = 23070, and b) N = 31235.
Nl
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Figure 8.9: Error S¢ — G ins? for N = 40949.

cl,.cX

In order to study the influence of the parameter g on the accuracy of the #({A,}; h; Qet)-
spline we make two test series for different numbers of interpolation points. In order
to keep the total computation time low, we select a Reuter grid with grid parameter
v = 250 and v = 300, respectively, which corresponds to N = 15958 and N = 23070,
respectively, interpolation points in the ¢4,-1,-box and choose a subdivision into M, =
My = 5 subdomains in ¢4 and ¥,-direction, with overlap dy = 0.16 and dv = 0.08.
Again, the test is performed for the spherical orbit €2,,. The results are listed in Table
8.10, and we additionally give the number of SAP iterations to illustrate the influence of
the parameter ¢ on the convergence of the Schwarz alternating algorithm.
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Table 8.10: Test of the accuracy of the H ({4, }; h; Q¢zt)-spline interpolant computed with
the SAP method for varying value of ¢ and data given on a Reuter grid with N = 15958
and N = 23070 grid points in the ¢4-9,-box on the spherical test orbit which is subdivided
into M =5 -5 subdomains with overlap dp = 0.16 and dv = 0.08.

‘ N ‘ q ‘ It. ‘ max error ‘ mean error ‘ rms error ‘
15958 [ 0.92 | 19 | 1.150- 107" | 1.269-107'* | 1.951-10~'4
23070 21 | 2.398-10"1 | 2.028-10"'7 | 1.266- 106
15958 | 0.94 | 9 | 1.566-10713 | 1.422-10"* | 2.215-10714
23070 10 | 2.887-1071% | 3.405-10~'" | 1.617-1071¢

15958 | 0.95 | 7 [ 2.118-10" ' | 1.559-10 '* | 2.478-10 '

23070 8 |2.873-1071% |6.347-10717 | 2.077-10°1¢
15958 [ 0.96 | 7 [2.901-10 1% | 1.775-10 '* | 2.924-10
23070 7 |3.0972-1071° | 1.581-1071¢ | 4.247-10716
15958 | 0.97 | 7 | 4.216-10 13 |2.147-10 * | 3.74-10 ™

23070 7 14749-1071 | 7.491-10716 | 2.314-10

The results clearly show the limitations of the method. The convergence of the SAP
algorithm is very good and independent of ¢ for ¢ > 0.95 in case N = 15958 and for
q > 0.96 in case N = 23070. This behaviour is not astonishing, since the coefficient matrices
corresponding to the subproblems are better conditioned if the Abel-Poisson kernel is
strongly space-localizing. For smaller values of ¢ we observe a rapid deterioration of the
convergence if we choose ¢ smaller than 0.94. Note that for ¢ = 0.91 the Cholesky routine
dpptrf already detects a singular matrix for one of the subproblems in case N = 23070 and
the SAP algorithm does not converge within 30 iterations if N = 15958. Test computations
using the Parlett-Reid algorithm to solve the interpolation equations for the subsets of XV
instead of the Cholesky algorithm were performed for ¢ = 0.92 and N = 23070 and gave
the same rate of convergence as the Cholesky variant of the SAP solver. An interpolating
spline which is a good approximation of our signal is achieved if ¢ is chosen small. Figure
8.8 shows the error S — G for N = 20370 and ¢ = 0.92, ¢ = 0.95 and ¢ = 0.97.

.....

For ¢ = 0.97 we clearly see the effect of a too strong space localization of the Abel-Poisson
kernel on the error.



8. Numerical Test of the Schwarz Alternating Algorithm 122

Figure 8.10: Error SSN

v — G ins™? for N = 20370 and a) ¢ = 0.92, b) ¢ = 0.95 and
N,.LLN
c) ¢ =10.97.

8.3 Choice of Pointsets

In this section we introduce the notion of an equidistribution on the sphere in the sense of
[FrGeSchr1998] and give some examples of equidistributions which can be easily computed.
It should be noted that even in the case of an orbital sphere such an equidistribution
need not lead to a well-conditioned coefficient matrix in the linear equation system of
the spline interpolation problem (6.1). Research on equidistributions on the sphere which
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lead to well-conditioned coefficient matrices in connection with the spline interpolation
problem in £2() is, for example, currently done by I. H. Sloan and R. S. Womersley.
The equidistributions computed by Sloan and Womersley require the numerical solution of
large-scale optimization problems, which are far beyond the scope of this thesis. For more
details, the reader is referred to [SIW01999] and [SIW02001] and the references therein.

Definition 8.1 Let {A,}nen, C RT be a summable sequence of non-negative real numbers,
let + € Rt and h € {0,1,2}. A (hierarchical) sequence of point systems

{Xn}nen := {2V, ..., 2N }ven on the sphere Q, is called a (hierarchical) equidistribution
on ., if

/ F(z) dw(z 1520 ~ Z Fl(z

Qr

for all F € H({A,}; h; Qezt).
The subsequent list of examples of equidistributions on the unit sphere is taken from

[FrGeSchr1998], and the corresponding point distributions in the @-9-plane are illustrated
in Figure 8.11.

Example 8.2 (Reuter Grid) For v € N and N = N(y) € N, define
Xn = {(gi;, %)} CQ as follows:

(i) Yo :=0, po1 :=0 (North Pole)

(i) AV :=m/y

(iii) 0; = iA9, 1<i<y—1

(iv) ;= |2m/arccos ((cos AY — cos® 9;)/ sin® 0;) |
(v)  eii=0—=1/2)2r/%), 1<5 <

(vi) Yy :=m, ¢;i; =0 (South Pole)

The number of points N(7y) for a given v € N can be estimated by

4
N(7) <2+ =9
m
Example 8.3 (Brand Grid) For v € N and N = N(y) € N, define

Xn = {(gi;, %)} C Q as follows:
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(i) Y :=0, @o1 :=0 (North Pole)
(i) A9 :=mx/y
(iii) 9 =iAd,1<i<~y—1

P <y/2 1 oyi=40

(v) i>9/2 1 = 4(y i)

(v) i =3C2n/v), 1<j <
(vi) Uy :=m, ¢ j =0 (South Pole)

The number of points N(7y) for a given v € N is given by

Y+l
Ny =2+ 212
A hierarchical equidistribution is obtained by successively doubling the grid parameter .

For the last two examples we introduce the so-called Van-der-Corput sequence {®,(n) }nen,
where p € {2,3,...}. For a given p consider the unique expansion of n — 1, n € N, of the
form

n—lzZajpj, a;j €{0,...,p—1}, seNy

J=0

and define

®,(n) = Z a;p~? .
=0

Example 8.4 (Equidistribution Based on the Hammersley Sequence) Given
N e N, define the system Xy := {(¢n, n) } 1<n<n C Q by

-1
(On,Vp) == (27r nT’ arccos(2®y(n) — 1)) , 1<n<N.

The equidistribution obtained by this so-called Hammersley sequence is not hierarchical.

Example 8.5 (Equidistribution Based on the Corput-Halton Sequence) Given
N €N, define the system Xy := {(¢n,Un) }1<n<y C Q by

(on, V) := (27 Py(n), arccos(2®3(n) — 1)), 1 <n < N.

The equidistribution based on this so-called Corput-Halton sequence is hierarchical.
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Figure 8.11: a) Pointset of Example 8.2 (Reuter Grid) with grid parameter v = 35 and
N = 1542 points. b)Pointset of Example 8.3 (Brand Grid) with grid parameter v = 39
and N = 1522 points. c) Pointset of Example 8.4 with N = 1542 points. d) Pointset of

Ezxample 8.5 with N = 1542 points.



Chapter 9

Multiscale Reconstruction of the

Gravitational Potential from
Simulated SGG Data

In this chapter we present a numerical study of the discretization schemes proposed in
Chapter 7 for the numerical computation of a regularized solution to the SGG-problem.

In our test example we use the EGM96 model to compute a local model of the second
order radial derivative G of the gravitational potential V € Pot®(Z%%) in a set of N
points XV := {z},...,z¥} of a Reuter grid on a spherical satellite orbit with radius rg,
which approximates the GOCE orbit. Here we include contributions of outer harmonic
degrees 36 up to 200, i.e., using the same notation as on page 102, our test data are given
by

200
1)(n +2)
S8y (n+ ”+ Z Hop(R;zM), i=1,...,N, 9.1)

n=36 k=—n

where R denotes the radius of the Bjerhammar sphere for the earth and r the radius of
the Bjerhammar sphere for the satellite orbit. The model parameters are given by

rs = 6628059 m,
r = 6588310 m,

R = 6378136.4 m,
I'M = 3986004.415 - 10% m3s72,

and the test data are generated within the longitude-latitude- (¢,,79,)- box
(0g,3,) € [~1.833,—0.61] x [—1.15,0.524],

which comprises the complete South American continent. Figure 9.1 shows the simulated
SGG-signal at satellite height and the corresponding band of the gravitational potential

126
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on {2z which we want to reconstruct.

100

a) b)

Figure 9.1: a) Second order radial derivative of the earth’s gravitational potential on Q,
in s72, computed with the EGM96 model including all outer harmonic contributions from
degrees 86 up to 200, and b) corresponding gravitational potential on the earth’s surface

Qgr in m2s~2.

As in Chapter 8, we let ¢ € (0,1] and define the sequence A, by A, := ¢~™/2. Since
rs > r, the evaluation functionals £ : H({A4,};2;Q¢) — R, H — LN(H) := H(zl)
are bounded for all choices of ¢ € (0,1] and their representers LY € H({A,};2; Qet),
1 <i < N are given by LY = H({An};h;w)(-,mf\’), where K, (4 1.0z is the kernel of
‘Abel-Poisson type’ given in (4.14).

In Section 9.1 we compute the ‘exact’ data {(z),G(z))}i<i<n, according to (9.1), and
calculate the interpolating H({ A, }; 2; Q¢e?)-spline SgZN’___, N which is a sensible approxima-

tion to GG, supposed that the parameter ¢ was appropriately chosen. SEGN

volved with the Tikhonov regularization scaling function for the inverse operator (AS¢%)~1
in order to obtain a regularized solution to the SGG-problem.

N is then con-

After that the case of error-affected data is simulated by adding white noise to the function
values G(z), 1 < i < N. In this case we first compute an approximating H ({4,}; 2; Qet)-
spline for different values of the smoothing parameter A\. Then these H({A,};2; Qevt)-
splines are convolved with the Tikhonov-regularization scaling function for (AS¢%)~! in
order to obtain a reconstruction of the potential. The comparison of the reconstruction of
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the potential for different smoothing parameters A allows it to determine which parameter
A yielded the best reconstruction. This ‘best’ smoothing parameter is quite close to the one
which is predicted in Theorem 4.6 in Section 4.2. The results of this study are presented
in Section 9.2.

Let {®}}en, denote the Tikhonov regularization scaling function for (AS““)~!. In order
to obtain the j-level regularization 7;G corresponding to the family of operators {7} },en,,
Tj - H({AL(A ()71} 2,9200) — H({An}; QFY), H = TiH := ®} %504 1000 H, replace
the function G in T;G by its interpolating (‘exact data’) or smoothing H({A,}; h; Qet)-
spline (noisy data) S = SN o Koy (anysnazen (5 27 ). This yields the dicretization

i=1 """

N
A ~ N A(. N
TiG = Oty gy G & D 01 B3 (),
i=1
which we evaluate in M points {yM,...,y}} of an equiangular ¢ — ¥-grid on Q. The
kernel functions <I>§‘, Jj € Ny, are (to our knowledge) not available as elementary functions.
Thus we have to evaluate a truncated series expansions

N
=

n+

A" (n) 1
WMA_%H"’k(R; Y)Hy (525 7)

A
W()Z)Jrv'qn}["”“(m Y) o (75 2; )
=1 J

= () Sewtar e () (5 o

=0

NE
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n 1
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forally € {yM,...,y¥} and all z € {a, ..., z¥}, where a, i = 1,..., N. This can be
done in a numerically stable way via adjoint summation of the Legendre polynomials, using
the reconstruction formula (1.4). The algorithm can for example be found in [DeHo1993].
Note that in case of a spherical geometry <I>§-x is a univariate function depending only
on the spherical distance t = (y/R) - (z/rs) of the points y/R and z/rs. In spherical
computations we can reduce the computational costs if we evaluate the series (9.2) in a
suitably high number of nodes ¢ € [—1,1] in a preprocessing step and obtain the values of
(®4)™ in the subintervals by linear interpolation of the a priori calculated nodal values.
Our numerical computations for a spherical geometry are performed with a truncated
Tikhonov regularization scaling function for (AS¢¢)~! with bandlimit m = 800, which has

been calculated in advance in 500000 nodes in the interval [—1, 1].

9.1 Reconstruction of the Potential from ‘Exact’ Data

All numerical tests are made for ¢ = 0.92. The H({A,}; 2; Q¢**)-spline interpolation is
performed with respect to N = 15768 samples of G, taken in the points of a Reuter
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grid with grid-parameter 300 in the ¢,-9,-box on €2,,. The linear equation system of
the H({A,}; h; Qeat)-spline interpolation problem is solved with the SAP algorithm based
on Cholesky decomposition of the coefficient matrices for the subproblems. Note that
our numerical studies in Section 8.2 showed that for a Reuter grid on (2, with grid
parameter 300 the Cholesky routine failed if the parameter ¢ was chosen smaller than
q = 0.92, thus we work here with the smallest possible value of ¢ = 0.92 for a Reuter grid
with grid parameter 300. Furthermore, the ¢4-1,-box is subdivided into 20 subdomains
(M, =5 and My, = 4 subdivisions in ¢, and ,-direction, respectively) with an overlap
Py, = py = 0.6 (here we use the subdivision scheme described in Section 6.2). The accuracy
tolerance for the relative residual is 10716. Figure 9.2 a) shows the error of the interpolating
spline, evaluated in 74880 points of an equiangular ¢-¥-grid in the ¢4-Y,-box on €2,¢. In
order to illustrate the influence of truncation errors close to the boundary, errors larger than
6-107'7 s72 and smaller than —5-10717 s72 are set to 6-107'7 s72 and —5-10"7 s~2, respec-
tively. Taking 1077 s=2 as an acceptable error-level for the interpolating H ({4, }; 2; Qeet)-
spline, we select a parameter region, defined by

(0g,9y) € [—1.559, —0.883] x [—0.874,0.251],

as the window on €2z on which the gravitational potential shall be reconstructed.

40

/£

a) b)
Figure 9.2: a) Error S,?N v — G in the data window in 572, Values larger than 6 - 10717
N _.cN
s~2 and smaller than —5-107'7 s72 are set to 6-107'7 s72 and —5-107' s72, respectively.
b) Error SEN N G in the reconstruction window.
N LN

The j-level regularization T;G is evaluated in M = 28080 points of an equiangular ¢-19J-grid
in the reconstruction window on {2 for different values of the regularization parameter j.
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In Table 9.1 we list the value of the parameter 7, in the generating symbol of the Tikhonov
regularization scaling function, the maximal and the mean absolute error and the rooted
mean square (rms) error of the reconstructed gravitational potential.

Table 9.1: Reconstruction error in dependence of the parameter v in the Tikhonov regu-

larization.

j Y max error | mean error | rms error
in m?s™2 | in m?%s72 in m2s—2

1 |1.6941-1072! | 114.74 13.02 19.52
2 | 8.4703-10"%2 | 111.06 12.21 18.39
3 | 4.2352-10722 | 104.729 10.8969 16.56
4 121176-10%2 | 94.86 9.07 13.99
5 | 1.0588-10722 | 81.58 7.00 11.01
6 |5.294-10"% | 66.16 5.11 8.18
7 |2.647-1072% | 50.60 3.65 5.89
8 |1.3235-1072% | 36.5 2.63 5.89

9 |6.6174-1072* | 24.93 1.9 2.92
10 | 3.3087-107%* | 16.57 1.5 2.13
11 | 1.6544 - 10724 | 11.57 1.66 2.1

12 | 8.2718-107?° | 9.19 2.48 2.86
13 | 4.1359-10"% | 8.04 3.79 3.94
14 | 2.068-10"2° | 6.93 4.8 4.93
15[ 1.034-10"% | 7.56 4.86 5.22
16 | 5.1699 - 10726 | 12.79 3.94 4.66
17 | 2.5849 - 10726 | 20.5 4.76 6.11

18 | 1.2925-10726 | 30.0 10.35 12.21

Figure 9.3 shows that the mean absolute error of the reconstructed gravitational potential
becomes minimal for the choice j = 10, i.e., v = 1.6544 - 10 2*, but we also observe a
second local minimum for j = 16, i.e., v = 5.1699 - 10~26.
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Figure 9.3: Mean absolute error of the reconstructed gravitational potential in dependence
of the parameter v in the Tikhonov regularization.

We do not plot all the partial reconstructions 7;G and details R;G of the gravitational
potential which were computed but only show those which are interesting. In order to be
consistent with the notation in Chapter 5 we select a subsequence {7;}1<j/(j)<6 of {7j}1<j<18
by setting j'(3) :== 1, j(7) := 2, j'(9) := 3, j'(10) := 4, j'(11) := 5 and j'(13) := 6 for
which we plot T;G' and R;yG. Figure 9.4 shows the j'-level regularization at scales j' =1,
j' =2 and j' = 3, together with the details R;G, i.e., we show the reconstructions 7 G of
the gravitational potential at level j' and the detail R;;G which has to be added to obtain
Tj4+1G until we reach the parameter j' = 3 for which an ‘optimal’ approximation of the
gravitational potential was obtained. After that, we show the partial reconstructions 7} G
together with the error 7;;G — F'. Thus Figure 9.5 shows the j'-level regularization at scales
j'=4, 7/ =5 and j' = 6, together with the error 7;,G — F', 4 < j' < 6.
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e) f)
Figure 9.4: a) T\G, b) R,G, ¢) TG, d) R.G, e) TzG, and f) R3G in m?s2.
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e) f)
Figure 9.5: a) T4G, b) T,G — F, ¢) TsG, d) TsG — F, e) TeG, and f) TeG — F in m?s™2.
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9.2 Reconstruction of the Potential from Noisy Data

In order to investigate the multiscale reconstruction of the gravitational potential on the
earth’s surface (again using the Tikhonov regularization scaling function for (AS¢%)~!) in
the presence of noisy data, we add to the simulated ‘exact’ data {(z¥,G(zN))|1 <i < N}
of Section 9.1 white noise with mean value € = 6.9787 - 10~'* and standard deviation
& = 8.0572- 1073, which yields the error-affected data {(zN,G(zN))|1 < i < N}, where
G(zN) == G(zN) 4+ &, 1 <i < N. First the H({A,};2; Qeet)-spline smoothing problem
with respect to the noisy data {(z¥, G(zN))|1 < i < N} for a set of different values of the

smoothing parameter A is solved.

Like in Section 9.1, we perform the numerical experiments for ¢ = 0.92 and a Reuter
grid with grid parameter v = 300 and N = 15768 points in the ¢g-04-box on the satellite
orbit €,,. The j-level regularization T;G' is again evaluated in M = 28080 points of an
equiangular ¢-1-grid in the reconstruction window on .

Due to the spherical orbit, all entries on the diagonal of (K (4. 1.0 (€0, 2 )i<ii<n
are equal. Furthermore, the maximal entry in (Ky 4, .00 (2N, 2)))1<ii<n is on the
diagonal, and assumes the value

K

w2z (@) 77 ) ~ 4.07630-107* (m™) for i=1,...,N.

which can be calculated easily by inserting the values of R, r, rs and ¢ into equation (4.14).
We solve the H({A,};2;Qe)-spline smoothing problem for the smoothing parameters
Mo :=107F k =15,...,19, and evaluate T;G = T}S,,. The results of this study are listed
in Table 9.2 and Table 9.3. Like in Section 9.1, we always list the value of the parameter ~y
in the Tikhonov regularization, and the maximal absolute error, the mean absolute error
and the absolute rooted mean square (rms) error in the reconstruction window.
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Table 9.2: Reconstruction error in dependence of the parameter ~ in the Tikhonov regu-
larization and the smoothing parameter Ay, k = 15,16, 17, in the H({A,};2; Q¢*)-spline

smoothing problem.

A i | max error | mean error | rms error
in m?s™2 | in m?%s—? in m?s—2
1079 |1 2.647 - 10723 68.29 4.79 7.9
2 | 6.6174-107%* | 56.81 4.05 6.6
3 1.6544 - 10724 | 54.42 4.07 6.37
4 14.1359-10"% | 55.71 4.72 6.76
5 1.034-102 55.72 4.91 6.9
6 | 2.5849-10726 | 54.03 5.67 7.69
7 |6.4623-107%" | 66.06 15.49 16.95
1071 [ 1 |2.647-1072 | 58.51 4.12 6.7
2 | 6.6174-107%* | 41.53 3.09 4.87
3 1.6544 - 10724 | 34.11 3.25 4.65
4 14.1359-107% | 35.48 4.51 5.63
5 1.034-107% | 36.13 4.45 5.72
6 | 2.5849-107%6 | 35.39 6.11 7.93
7 16.4623-10727 | 50.12 20.37 21.85
1077 |1 |4.2352-10%2 | 104.93 10.90 16.57
2 1.0588 - 10722 | 82.36 7.03 11.06
3 12647-1072% 53.19 3.81 6.15
4 |6.6174-10"2%* | 31.11 2.42 3.73
5 1.6544 - 10724 | 21.15 2.16 3.0
6 |4.1359-107%° | 17.43 2.78 3.4
7 | 2.068-107% 18.45 3.01 3.67
8 11.034-1072% 19.36 2.76 3.52
9 |5.1699-10726 | 19.34 2.46 3.26
10 | 2.5849 - 1026 | 17.95 3.77 4.64
111 1.2925-107%6 | 19.73 7.32 8.24
12 | 6.4623 - 10727 | 25.41 12.21 13.06




9. Multiscale Reconstruction of the Gravitational Potential from SGG Data 136

Table 9.3: Reconstruction error in dependence of the parameter v in the Tikhonov reg-
ularization and the smoothing parameter Ay, k& = 18,19, in the H({A,};2; Q¢*)-spline
smoothing problem.

A _] Y max error | mean error | rms error
in m?s™2 | in m%s™2 in m%s—?

10718 [ 1 | 4.2352-107%2 | 104.76 10.9 16.56
2 |1.0588-10722 | 81.71 7.01 11.02
3 |2647-1072 | 51.11 3.69 5.94
4 |1.3235-10723 | 27.99 2.13 3.28
5 |6.6174-1072* | 26.18 2.03 3.10
6 |3.3087-107* | 17.91 1.63 2.33
7 | 1.6544-1072* | 12.45 1.53 1.98
8 [82718-10%° |95 1.57 1.92
9 [4.1359-10"%° | 7.98 1.53 1.87
10 | 2.068-10"% | 6.87 1.60 1.88
11 |1.034-107% | 7.53 1.92 2.37
12 | 5.1699 - 10726 | 11.98 2.67 3.44
13 | 2.5849-10~%6 | 16.58 4.03 5.00
14 | 1.2925- 10726 | 21.04 5.7 7.0
15 | 6.4623- 10727 | 25.17 7.66 9.24

100191 [4.2352-10 2| 104.72 10.9 16.56
2 |1.0588-10722 | 81.59 7.00 11.01
4 |2.647-1072 | 50.7 3.66 5.9
5 |6.6174-10724 | 25.21 2.16 3.09
6 | 1.6544-1072* | 12.12 3.32 4.0
7 14.1359-10°25 | 14.26 5.08 6.08
8 [1.034-107% | 21.84 6.5 7.69
9 |2.5849-10726 | 50.07 14.63 17.75
10 | 6.4623 - 1027 | 84.81 30.07 36.23

Figure 9.6 shows the mean absolute error in dependence of the parameter «y of the Tikhonov
regularization. The best results are obtained with the smoothing spline corresponding to
the smoothing parameter A = 1078, The minimal mean error obtained in this case is
comparable to the one obtained in Section 9.1 for ‘exact’ data and the convolution of the
Tikhonov regularization scaling function with an interpolating spline.
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Figure 9.6: Mean absolute error of the reconstructed gravitational potential in dependence
of the parameter v in the Tikhonov reqularization, discretized with smoothing splines for
smoothing parameters A = 107'° (green), A = 107 (yellow), A = 1077 (black), A = 107'®
(red) and X = 107 (blue).

Before we present the numerical results obtained with the smoothing spline for A = 10718
in more detail, we present the result we obtain at level j = 1 if we convolve the Tikhonov
regularization scaling function with the interpolating H({A,}; 2; Q¢e?)-spline: Figure 9.7
a) shows the j-level regularization T;G we obtain with the interpolating H({A,}; 2; Qg?)-
spline which has been calculated from the noisy data {(z, G(zN))|1 < i < N}. Clearly,
no reasonable result can be expected if we further decrease the parameter v in the Tikhonov
regularization. In Figure 9.7 b) we plot the deviation of the interpolating #({ A, }; h; Qezt)-
spline from the ‘exact’ SGG-data, and in Figure 9.7 ¢) we present the deviation of the ap-
proximating H ({4, };2; Q¢*t)-spline Sy corresponding to A = 1078 from the ‘exact’ SGG
data.

Finally, Figure 9.8 and Figure 9.9 illustrate the multiscale reconstruction of the gravi-
tational potential based on the smoothing H ({4, }; h; Q¢2t)-spline with smoothing param-
eter A = 107!8. We present the results in analogy to Section 9.1, i.e., we choose a subset
{7 h<ir<s of {v5}1<ji<is, by setting j'(1) == 1, §'(3) := 2, j'(7) := 3, 5'(9) == 4, j'(11) := 5,
and j'(13) := 6, and plot TG, RyG and TjG — F.
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A - 1

. 3
1)

Figure 9.7: a) T\G in m*s™>, computed with the interpolating H({A,};2; Qgxt)-spline
SG

o2 G _ ; _ o2
N, ey s b) Sﬁjlv,___’ﬁﬁ G, and in ¢) Sy — G in s~°.

Finally, we want to see whether the rule for the choice of the smoothing parameter A\ which
is given in Theorem 4.6 in Section 4.2 can be verified by our numerical experiments. Given

the empirical variance 62 of the data, we suggest to choose choose \ according to the
‘discrepancy principle’

N 2
1 .
Oﬂ = 7N — 1 Z Z(a/)IY(O'),O')lK’]-[({An},Q,ngt) (.TlN, fo) - (G(va) + 61) = 0'2_ (9.3)

=1 =1
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Figure 9.8: a) T:G b) R,\G, ¢) TG, d) ReG, e) TzG, and f) R3G in m?s™2.
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e) f)
Figure 9.9: o) T4G, b) T,G — F, ¢) TsG, d) TsG — F, ¢) T¢G, and e) TG — F in m?s™2.
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Thus we compute the quantity o with the help of the spline coefficients of the smoothing
splines for A\, := 107% k = 15,...,19. The results of this study are listed in Table 9.2 and
are plotted in Figure 9.10. Figure 9.10 shows that for A = 107!8 the value of « is very
close to the ‘optimal’ value ayp = 0 = 8.0572 - 10713,

Table 9.4: Discrepancy « in dependence of the smoothing parameter .

(A |a |
107 [ 9.09-107'2
1016 | 3.78 - 1012
1077 | 1.53-10 12
10718 | 7.15-10713
107" | 5.69-107'3

A

Figure 9.10: Discrepancy « in dependence of the smoothing parameter A\. The horizontal
line marks the value of the noise standard deviation o = 8.0572 - 1013,



Conclusion and Recommendations
for Future Investigations

The aim of this thesis is the study of certain methods for the modelling of the gravitational
potential. Therefore, the methods were investigated with simulated SGG-data on a sim-
plified spherical geometry on an (approximately) equidistributed point grid. However, the
methods of spline interpolation and spline smoothing for the approximation of the signal
G (second order radial derivative of the potential at the orbit) are not restricted to data
on a sphere or any other regular surface but can cope with scattered data (i.e., data on
a realistic orbit). The regularization with a Tikhonov scaling function is discretized by
replacement of the right-hand side G (of the SGG-operator equation AF = G) by the
spline, which immediately leads to a discretzation, which can be numerically calculated.
The evaluation of this model of the potential demands more time when the points on the
orbit or the points on the evaluation grid on the reference surface of the earth do not
lie on a sphere, but this is also no real restriction of the advocated method to spherical
geometries. Our numerical studies for spherical geometries yielded good numerical results,
and the methods seem to be suitable for satellite-data on a realistic orbit.

The application of the methods in this thesis to the processing of satellite data on a real-
istic orbit seems especially interesting and promising for the following reasons: As already
mentioned above the approximation of the satellite data, i.e., the first or second radial
derivative of the potential at orbit height, was perfomed with the help of a spline, which
can be calculated from scattered data. So there is no restriction to any special geometrical
ordering of the data. It should be noted that the matrices that have to be solved for
the calculation of the spline coefficients will probably be rather ill-conditioned if the data
distribution is rather irregular. But even in this case there is always the possibility to sta-
bilize the equation system by calculating a smoothing spline with a smoothing parameter
chosen slightly greater than it is necessary due to the measurement noise. The other great
advantage of the approximation of the signal by a spline is that the spline coefficients can
be calculated with the Schwarz alternating procedure. The Schwarz alternating procedure
splits the large equation system (for the calculation of the spline coefficients) into a number
of smaller ones which are solved sucsessively in an iterative algorithm. Thus, a reduction
of the runtime and of the memory requirement is achieved. This was confirmed by the nu-
merical studies in this thesis. The implementation of the Schwarz alternating procedure for

142
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this thesis show how well it performs, but also how the implementation can be improved.
A more sophisticated and much faster realization of the Schwarz alternating procedure
will require a fast summation method for accelerated matrix vector multiplications. More
precisely, the update is rather time consuming and this can be prevented if a so-called
fast multipole method is used. Such methods are available for the singularity kernel (see
[G12001]) and the spline interpolation can also be performed in the same way (with the
Schwarz alternating procedure) using the singularity kernel. A sophisticated combination
of the Schwarz alternating procedure with fast summation techniques can be expected to
enable spline approximation and interpolation for huge data sets.

Finally, it should be noted that the discretization of the Tikhonov regularization as per-
formed in this thesis, is only one possible way. Another variant of discretiztion is as follows:
A Tikhonov regularization scaling function for #({1}; h; Qert) is used for the regulariza-
tion, where €, is a sphere at mean orbit altitude. The convolutions are in this case simply
L?(Q,)-integrals and can be discretized with the help of a spherical integration formulas.
The data of the signal G in this discretization is replaced by data of the spline which
approximates G' and which can easily be evaluated at the integration grid on the sphere
Q,.
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