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CHAPTER 1

Introduction

Fluctuations are a very common feature in a large number of fields ranging
from stock markets to circuit theory. Nearly every system is subjected to
a complicated external or internal influence that are not completely known
and are termed as noise. The Fokker-Planck equation deals with those dis-
turbances which change the variables of a system in a random but small way.
This equation was applied to the Brownian motion problem, first studied by
Robert Brown, who observed the zig-zag motion of a pollen grain in water due
to thermal fluctuations. Due to these fluctuations the position of the parti-
cle cannot be determined precisely and only a probabilistic estimate can be
given. With the help of Fokker-Planck equations such a probability can be
determined.

If u(x,t)dx denotes the probability of finding the particle between positions
x and  + dz at time ¢, then the Fokker-Planck equation for u(z,?) has the
general form

(1.0.1) %(m,t)+v-(vu)(m,t)=v-(Dvu)(m,t), ZER, t>0

where v(z, t) is the velocity field of the solvent and D is the diffusion matrix.
Initial and boundary conditions are to be prescribed, which are dependent on
the physical problem under consideration. Refer [23] for a detailed treatment
on such equations.

In the present work we are interested in studying the dynamics of polymeric
liquids. Polymeric liquids are non-Newtonian liquids possessing special proper-
ties. This is attributed to their chemical composition, which is quite complex.
A microscopic study is therefore necessary to understand the qualitative differ-
ence between Newtonian and polymeric liquids. In fact, evaluation of material
functions like viscosity, normal stresses etc., are important for the classification
of polymeric liquids. This subject has come to be known as polymer kinetic
theory and the material functions as viscometric functions.



We now turn on our attention to describe the qualitative differences between
the behavior of Newtonian and polymeric liquids mentioned above. These
are not to be considered as abnormalities but rather as properties common
of liquids having large molecules in them. We shall now describe two experi-
ments illustrating properties specific to polymeric liquids. Refer [1] for other
experiments characterizing polymeric liquids.

1.0.1. Non-Newtonian viscosity. In this experiment, we consider two iden-
tical tubes, one filled with Newtonian fluid and the other with a polymeric fluid
to the same volume as shown in figure 1.1. The fluids are so chosen such that
they have the same viscosity, meaning that a ball put into both take the same
time to reach a specific position inside the fluids. The tubes are initially cov-
ered at the bottom by a base. In such a situation one would expect that on
removing the base, the two liquids drain out at the same rate. But what is
observed is the contrary, the polymeric liquid drains out faster than the New-
tonian liquid. This effect is related to the fact that the viscosity of a polymeric

> R -—

|
|

=

=

ZH-
. . JIC JIK

- (ST
- (SN

FiGURE 1.1. Tubes containing Newtonian liquid N and poly-
meric liquid P. The polymeric liquid flows faster than Newtonian
liquid.

liquid decreases with increasing shear rate, which is called shear-thinning. This
property of polymeric fluids is made use of in speeding up oil transport over
large distances.

1.0.2. Normal stress effects. Here, we consider two beakers, one filled up
with a Newtonian liquid and the other with a polymeric liquid. We then insert
two identical rotating rods at the center to both these beakers. In the case of
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N P

FiGURE 1.2. Beakers containing Newtonian liquid N and poly-
meric liquid P. On inserting a rotating rod, the Newtonian liquid
develops a dip whereas the polymeric liquid climbs up.

Newtonian liquid, we see a dip in the middle near to the rotating center. What
happens in the case of polymeric liquids is that the liquid climbs up the rod
(figure 1.2), quite opposite to what is observed for Newtonian liquids. This
phenomenon can be interpreted with the notion of an extra tension along the
streamlines, which causes the effect.

It is therefore of interest to compute these material functions, namely normal
stress and viscosity, which serve as a theoretical way of verifying the properties.
It is to be noted that there are several other phenomena exhibited by polymeric
liquids (see [1]), and they correspond to different physical properties, but we
shall not consider them for the present study.

Polymeric liquids, have in them long macromolecules or polymers and these
possess large number of degrees of freedom. Due to the irregular thermal fluc-
tuations between the polymer molecules and the solvent particles, the former
undergoes configurational changes. So we end up with a Fokker-Planck equa-
tion for the configurational distribution function, which is the probability of
finding the polymer in a certain configuration at a prescribed time. Since the
polymer molecule possesses large number of degrees of freedom, the resulting
equation is posed on a high-dimensional space. What we are finally interested
in is to evaluate the steady state values of the material functions, viscosity and
first normal stress difference coefficient, which are integral functionals of the
configurational distribution function. The aim of the thesis is to find out a
fast and accurate method of evaluating the same in high dimension.
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Traditional methods of computing these functionals, like finite differences etc,
are not applicable in high dimension since the number of node points needed
to achieve a prescribed accuracy grows exponentially with the dimension. This
is referred to as the curse of dimension. The next approach would then be
to use a Monte Carlo method. Though this method is applicable, the error
estimate in terms of the number of particles N, goes only like 1/ V'N.

The idea now is to replace Monte Carlo points by well determined sequences
(quasi random points) which are better uniformly distributed than the former.
Though this trick works for plain integration and order close to 1/N can be
achieved, it cannot be simply applied to particle simulations. This is because
of the correlation among the quasi random points. This problem was first
studied by Lécot [13], for the spatially homogeneous Boltzmann equation and
he gave a convergence proof when the quasi random points were used. The
idea of Lécot was to reorder the particle positions at each time step to break
the correlations. Morokoff and Caflisch [17], applied this technique to solve
the heat equation in one and two dimensions and they obtained significant
improvement over the Monte Carlo approach for certain problems. However,
for the high dimensional case, the idea of reordering was not clear.

Lécot [15], introduced a sorting algorithm which was adaptable to higher di-
mensions and also shuffled the particle positions at each time step. The sorting
was done with respect to each coordinate of the particle position and conver-
gence was proved for arbitrary dimension s. For the simple diffusion problem,
there was some improvement achieved over the standard Monte Carlo method.
The method however had a drawback, namely, the particle numbers were dras-
tically increasing. For a problem in s dimension, a Faure generator of base b,
a prime > 2s was taken. The minimal particle number was then b° if sorting
is to be done in each coordinate. To be concrete, for the case s = 10, the base
b is 23 and the minimal particle number is of the order 23'%(~ 10'3).

Lécot and Schmid [16], modified the previous scheme of Lécot and replaced the
2s dimensional sequence by a s+ 1 dimensional sequence. Again, the minimal
particle number is b° if sorting is done with respect to all the coordinates, but
now b is the smallest prime > s. This means that for the example case s = 10,

a minimum of 1110

particles have to be considered and this is still too big.
The method was based on partial discretization and numerical results were

presented only for one and two dimensions.
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In our method, we apply the scheme presented in [15], in a way which is not
justified by the error estimate given in [15]. The idea is to reorder the particle
position only with respect to the first coordinate which allows us to work with
a s+ 1 dimensional sequence instead of a 2s dimensional one and get a low min-
imum particle number. With our method, the possible particle numbers that
can be considered for the case s = 10 are 11,112,113, .... Even for s = 100,
the possible particle numbers are 101,1012,1013, ..., which seems quite rea-
sonable. This makes the scheme more faster compared to the full reordering
done in [15] and the memory requirement is drastically reduced. We prove an
error estimate for this modification of Lécot’s algorithm in [15] which shows
essentially an 1/ v/N behavior but in practice the algorithm outperforms stan-
dard Monte Carlo method for the Fokker-Planck equation describing polymeric
liquids.

The thesis is organized as follows. In Chapter 2, some physical models for
polymers are discussed and we derive the Fokker-Planck equation from force
balance equations. In Chapter 3 we look into the existence and uniqueness of
solutions for the derived Fokker-Planck equation and later the splitting method
is introduced, the method in which we split the convection and diffusion pro-
cesses occurring in our equation, and first order convergence in time is proved.
Chapter 4 is about particle methods in general and we illustrate the superior-
ity of quasi-Monte Carlo over Monte Carlo and conclude with a convergence
proof of the particle method for the diffusion equation. The last chapter shows
the numerical results of our simulations.






CHAPTER 2

Polymeric Liquids: Model and Dynamics

In order to study polymeric liquids at a microscopic level, we first need a
model for polymers. The mechanical model should have in it the high degree
of freedom and should reflect the stretching and elongational flow properties
observed in polymeric liquids. The subject polymer kinetic theory started
around 1930 and various mechanical models have been suggested, (see [2]).
They are, the chain model with fixed bond lengths and fixed angles, the bead-
rod model and the bead-spring model.

It should be evident that the system we are studying is extraordinarily com-
plicated. In modeling such a system it should be kept in mind that the model
is able to account for the physical behavior of polymeric liquids and give rea-
sonable results. The nature of the model actually depends on the final result
in which one is interested. For a fluid dynamist, the flow behavior would be
important whereas for a rheologist, it is interesting to have an accurate de-
scription of material functions. We shall now discuss the above three models
in detail.

2.1. Model for polymer molecules

2.1.1. Chain model with fixed bond lengths and bond angles. It was
observed by Flory [6], that the bond lengths and bond angles between adjacent
bonds are restricted to very narrow ranges. At normal temperatures, the
deflections are about 3% of their equilibrium values. So in this model it is
reasonable to fix the bond length d and the bond angle 3. In case of the
polyethylene molecule, the angle between the successive C-C bonds is restricted
to be § = arccos % = 70.5 (see figure 2.1). In order to specify the configuration
of the N bead chain (N large) at any time, we need approximately N internal
coordinates.

2.1.2. Bead-rod model. We start with a model which is called the bead-
rod chain model where we have N beads freely jointed together with N — 1
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FiGurE 2.1. Fixed bond length and bond angle chain model.
The spherical balls here represent the carbon atoms in polyethy-

lene chain. Taken from [2].

massless rods, called connector vectors, of fixed length a as shown in figure 2.2.
The beads do not represent the polymer atoms but are rather concentration
of 10 or 20 monomer units. Since the model was proposed by Kramers [9], we
call it a Kramers chain.

s

FIGURE 2.2. Kramers bead-rod model of polymer chain.

It is to be observed that the model has a few drawbacks namely, the connector
vectors all have the length a so that the contour length of the chain remains
a constant, being (N — 1)a. But there are also some features which are char-
acteristic of polymer molecules: it has a large number of internal degrees of
freedom (for a large N); it can be oriented, stretched and deformed.
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It can be shown that (see [2]), the average tension in the rod is
3kgT ,
(N —1)a?

where k is the Boltzmann’s constant, 7" is the temperature of the solvent, and

F(r) =

T is the end-to-end vector. This suggests that the rods in the bead-rod chain

behaves like a Hookean spring with the spring constant given by H = ( 13113&2

2.1.3. Bead-spring model. The bead-spring model was introduced by Rouse
in 1950. The bead-spring chain or the Rouse chain is similar to the bead-rod
model except that the rods are now replaced by Hookean springs of same spring
constant H. Figure 2.3 depicts a typical chain with /N beads.

O

FicURE 2.3. Rouse model of bead-spring chain.

The N beads of the chain are connected by N — 1 connector vectors Q,;,
1 =1,...,N — 1. The configuration of the chain can either be described by
specifying all the position vectors r,, v = 1,..., N with respect to a fixed point
in space O or by prescribing the N —1 connector vectors Q, = 7;+1 —7; and the
position of the center of mass C, r. = O? So the configuration depends on
N vectors and since each vector has 3 components, the configurational space
is R3V.

Out of the three models described so far, the bead-spring chain model is advan-
tageous because it is able to capture the basic properties of polymers without
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the need of considering complicated side constraints like fixed rod lengths or
bond angles. So from now on in our discussion, we shall restrict ourselves to
the bead-spring model.

In doing so we shall use the following index conventions: u, v,  ...would be

used to number the beads and they run from 1,...,N; i, j, k would be used
to number the connector vectors and they take values 1,..., N —1. With this
terminology
1
Te = N d T,
Qr = Ti1— Tk

Qk = ZBkuru
Ty —T: = ZBquk

where the (N — 1) x (V) matrix B is given by
(2.1.2) Bry = Okt1, — Ok

and the (N) x (N — 1) matrix B are given by

k .
(2.1.3) B,, = N i k<w
— [1 — N] if k>v

We define two (N — 1) x (N — 1) symmetric nonsingular matrices (A;;) and
(C;) as follows

2 if |i—j|=0

(214) Y BuBj = Ay =4 -1 if |i—j|=1
v 0 otherwise
i(N—§)/N if i<j
(2.1.5) > _BuB, = Cy = N —g)/N i<
p JIN—i)/N if j<i

The matrices A and C called the Rouse and Kramers matrix respectively are
inverses of each other and their eigenvalues a; and c; are given by

1 jm
2.1.6 = — =4sin® [ = |, i=1,...,N—1
( ) a; ; sin <2N) J
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A simplification of the last two models is the dumbbell model. As the name
suggests, the dumbbell model (figure 2.4) consists of two beads connected
either by a rigid rod or a Hookean spring. Accordingly it is called as rigid
dumbbell or elastic dumbbell.

(a) (b)

FIGURE 2.4. Dumbbell model. (a) is a rigid dumbbell and (b)
is a Hookean or elastic dumbbell

It is clear that the dumbbell model is too crude since it in no way accounts
for the details in molecular architecture. It also does not have enough number
of degrees of freedom to account for fine structure in the motion of polymers.
On the other hand the elastic dumbbell model is orientable and stretchable.
Also the dynamics can be studied quite easily with little mathematical effort.
The dynamics have been studied in detail [22] and they serve as a benchmark

for our simulations.

2.2. Dynamics of polymeric liquids

To start with, a polymeric liquid is modeled as a Newtonian solvent having
as solute the polymer molecules. The type of flow often used to characterize
polymeric liquids is the shear flow. A shear flow is a one-parameter family of
material surfaces which slide relative to one another without stretching. This
means that two points on a surface which are initially separated by a horizontal
distance [ continue to be so for all future times.

The velocity field which describes a simple shear flow (figure 2.5) is given by
Vp=PBy vy,=0 v,=0

In general the velocity can be written as v(x) = kx where k is the gradient
of the velocity field given by

0 8 0
(2.2.7) k=000
0 00

where (3 is the shear rate. It is to be noted that since ¢r(k) = 0, the flow is
incompressible.
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\Y

Y

FIGURE 2.5. A simple shear flow

Now that we have the model for the polymer and know the nature of the flow,
we can write the equation of motion for the beads. We analyze the different
forces acting on the bead as they move in the flow. In doing so, we assume
that the inertial term is zero owing to the negligible mass and the sluggish
motion they undergo. Each bead experiences the following forces

). This is the force of resistance the bead

(a) Hydrodynamic drag force F{
experiences as it moves through the solution. Under the assumption that the
beads are spherical in shape, an expression for this force can be written using

Stokes’ law.
(2.2.8) FM = —¢- [, —v,]

According to this law, the force on bead v is directly proportional to the
difference between the bead velocity 7, and the velocity of the solution v, at
bead v. The parameter £ is the Stokes’ friction coefficient and the minus sign
appears since the force is repulsive in nature. The solvent velocity v, is taken
as Kkr,, where k is the gradient of the velocity field.

Due to the interaction between the solvent molecules and a bead the flow can
be perturbed and this in turn can affect the motion of the other beads. This
phenomenon is called the hydrodynamic interaction but we shall neglect this
in our study.

(b) Brownian force F". Due to the thermal fluctuations of the solvent

molecules, the bead experiences a random force and this force is modeled by
a Wiener process.
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Definition 2.2.1. A n-dimensional Wiener process on [0,T] is a random pro-
cess W (t) with values in R", which depends continuously on t € [0,T] and
satisfies the following conditions

(2.2.9) W (t) — W(s) ~ Vi—sN(0,1)

where N'(0, I) is the standard normal distribution with mean 0 and covariance
matriz 1.

1
0.5
=
0
-0.5 -
0 0.5 1

FIGURE 2.6. Trajectory of a Wiener process

The random force experienced by a bead is then given by

(2.2.10) FO dt = \/2kpTE AW,

where W, is a three dimensional Wiener process. The factor /2kgT'¢ signifies
the fact that the energy of the solvent molecules is due to the temperature of
the solvent, T', and this energy influences the collision with the beads.

(c) Potential force F"). The potential force results from two contributions.
One is the traditional spring potential, ¢, which is due to the presence of
the springs and prevents the beads from going too far apart. The potential is
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attractive and is quadratic in nature
(2.2.11) b =52 HQi-Q
3

where H is the spring constant.

The other one is the excluded volume potential ¢.,, which prevents the beads
from coming too close to each other. This is a repulsive potential and is
modeled as a narrow Gaussian (see section 4.3.1 of [21]).

7 - H r?
— £ __ T
(2.2.12) Gev = kT P 2 exp ( T 282 )

w#EY
Here, 7, is the magnitude of the vector r,, = r, — r,, connecting the pair of
beads p and v. The parameter d controls the extent of the repulsive potential,
and z describes its strength. Note that as d approaches zero, ¢., behaves like
a delta function (see figure 2.7).

Dev

H

kB—T|7°u — 7y

FiGUre 2.7. Excluded volume potential for various values of

the parameter d.

The total potential is the sum of the spring potential (2.2.11) and the excluded
volume (2.2.12), ¢ = ¢, + ¢, and the potential force is given by

(2.2.13) F(? =_V¢
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(d)External force F{). There could also be external forces like electrical
forces, gravity etc, but we shall not consider them for the present study.

2.3. Diffusion equation for the configurational
distribution function

As the bead-spring system moves in the flow and there are random forces,
the exact configuration of the system cannot be determined, but rather only
a probabilistic estimate can be given. This probability, which describes the
likelihood of finding the chain in a particular configuration is called the con-
figurational distribution function . We shall now derive the Fokker-Planck
equation for the configurational distribution function.

As mentioned earlier in the previous section, we shall neglect the bead inertia.
Writing the force balance with the above assumption leads us to

(2.3.14) FH +FO L FOYdt = 0

Substituting (2.2.8), (2.2.10), (2.2.13) and using 7,dt = dr,, we get

. 1 9¢ 2%k 5T
dr, = [v,, : 8r,,]dt+ ¢ dW,
B ¢ 2kT
(2.3.15) = [n’r,, ¢ ar,,} dt + ¢ dW,

This is nothing but a stochastic differential equation for the bead position. We
now transform the equation to the connector vectors Q. Thus we move from
a system with 3V variables to a system with 3(/NV — 1) variables.

Subtracting (2.3.15) for v = j and v = j + 1, we get
_ 1( 0¢ 0o
drjy —drj = [n(’rHl ;) ¢ (aer 87']-)] dt

2kpT
£

(2.3.16)

|:de_|_1 - dWJ:|

This can be simplified into

(2317) dQ; = [an — %Z Bjyg%}dw %E‘T [ZBJ-V dwy]

v
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where Bj,, is the transformation matrix introduced earlier. We now rewrite
the derivative of ¢ in terms of the @,s. Observe that

0¢ 0Q
(97‘,, Z aQ,, or, ZB’“’an

Hence (2.3.17) can be rewritten as

(23.19)  dQ, = [an— %ZAM%] dt + ngT [ZBjudwu}
k v

(2.3.18)

From the theory of stochastic differential equation, (see [21]) we know that

is related to the partial differential equation

0

(2.3.21) % plt,z) = —- [A(t 2)p(t, w)] +-Z 2 [D(t 2)p(t, w)}

where p(t, ) is the probability density that characterizes the continuous dis-
tribution X;, D(t,z) = B(t,z)B” (¢, x),

(2.3.22) %- [A(t,a: } Z 8ack )p(t, x))
and
(2.3.23) %% : [D(t, 2)p(t, w)] - Zk a%a%Djk(t, 2)p(t, z)

Hence the Fokker-Planck equation for the configurational distribution function
¥ can be written down from (2.3.17) using (2.1.4) as,
(2.3.24)

o _ o_. Iy, 90Ny BTNy O O
o~ 2aq, (=@, g 2 ;) 2.4 50, 7a

For the investigation of the flow behavior of polymeric liquids, the calculation
of the stress tensor 7 is of special interest. The stress tensor consists of two
contributions, one from the solvent 7°, and the other from the polymer 77,

(2.3.25) T=7"+71°

The rheological properties of the polymer solution can be obtained by cal-
culating the polymer contribution to the stress tensor, 77, which is given by
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Kramers expression (see [2]),

(2.3.26) =—Z /RS(N L Qi®ao ‘f) ~0dQ

where 1 is the steady state solution of (2.3.24).

We know for simple shear flow that there are only four distinct components of
the stress tensor, 77, 77, 77, and 77,. Furthermore, we can show that, 7j = 77,
(see [1]). The two important rheological properties of a dilute polymer solution,

undergoing simple shear flow, that can then be calculated are, the viscosity,

pr
2.3.27 n=
( ) 3
and the first normal-stress-difference coefficient,
Tgx A

The problem can be summarized as follows. We need to find the stationary
solution of (2.3.24) and evaluate the stress tensor 7? to calculate the quantities
n and ¥ given by (2.3.27) and (2.3.28) respectively.

2.4. Analytical solutions for special flows

We start by defining certain flow states in terms of the gradient x of the
velocity field.

Definition 2.4.2. The flow field v(x) = kx is called

1. fluid at rest when K =0

2. incompressible when tr(k) =0

3. potential flow when K is symmetric
4. shear flow when

X

I
o o o
o o™
o o o

We first look for a stationary solution of (2.3.24) for the case kK = 0. The
solution so obtained is called the equilibrium distribution 1)e,.

Lemma 2.1. 1), given by
(2.4.29) Yeq = Neg exp [—¢/kpT]
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where Neg is the normalization constant, is a solution of (2.3.24) in the sta-

tionary case of a fluid at rest.

Proof.

a'l/)eq B 1 8¢ 1/)eq a¢
(2.4.30) 2Q, Neg exp [~¢/kpT] (k T) 0Q, kT oQ,

Also in the stationary case 01,/0t = 0 and & = 0, hence the right hand side
of (2.3.24) reduces to

I 0 96 kT D Oy

2431 £2.5g, (A ) v+ & 299, g,

Substituting the expression for 0t,/0Q, from (2.4.30), we get
1 0 ¢ ) 1 0 ( ¢ )

=N A Ve ==Y A .

£ 2 5q; (4, ) o £ 2450, (ag, ) e =

Hence (2.3.24) is satisfied and that proves our lemma. |

The constant V., can be obtained using the condition, f YdQ =1, ¢ being a
probability density. Having obtained the equilibrium distribution, we are now
interested in solving (2.3.24) for incompressible potential flows at steady state.
We have the following lemma.

Lemma 2.2. A solution of (2.3.24) for an incompressible potential flow at
steady state is given by

£ T
¥ =Npexp |52 ;cmn Q5 Qy | eq
where C' is the matriz given by (2.1.5).

Proof. We write,

(2-4.32) V(@Q,1) = ¥eq(Q) 01:(Q 1)

where the first term in the product is the equilibrium distribution and is given
by (2.4.29) and ¢y is the fluid part which needs to be evaluated (as in [2]).

We now substitute the above expression for ¢ in (2.3.24) to get the governing
equation for ¢s. With ¢ given by (2.4.32), we have
o o9 fl

(2.4.33) E - weq
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and
5¢ _ a1/Jeq ad’fl weq ad) 8¢fl
(2.4.34) Tczk = an(bfl‘f‘weank k‘ T¢flan +¢eq8Qk
Substituting (2.4.34) in (2.3.24) we get
d¢ %) 1 9 ¢
7’/,6(1 fl = _; 5—Q] [K,Qj weq¢fl:| + —ZZAjkaQ [an Veq ¢fl]
k‘BT 8¢fl weq a¢
* € 2 AﬂkaQ [%"662 kT laQ;j
N b [y, 20n
(2.4.35) = ZJ: 8Q] |:K'Qj weq¢fl:| ZAJIC 8Q |:1/Jeq an:|
Now
0
TCQJ- . |:(K,Qj)¢fl¢eq:| = (K’Qj) : Q (¢fl¢eq) + qﬁfﬂ/]eq aQ (K’Qj)
= ("‘"Qj)'ag (Pf1beq) + tr(K) D s1%0eq
_ . 8¢fl ( weq> %)
(K',QJ) (weq Q ¢ kpT aQ]
_ (0% P\ O
(2.4.36) = Ye(kQ;) < 2Q, ( kBT> an)

The term 0/0Q); - (kQ,) drops out in the second step since tr(k) = 0 for
incompressible flows.

Again
9 [1/, aqﬂ _ Ve 0000 O <%)
Q, |""9q,] =~ “kToQ,0, T "aq, \aq,
B 0 8d)fl 1 0¢ .(9§Z5fl
(2.4.37) B ”eq[aQ 0Q,  FaT 00, GQJ

Substituting (2.4.36) and (2.4.37) in (2.4.35), we get

5¢fl L |95 dp 09

kT & Oy 1 b ¢ fl:|
4. e Ve A '9Q, '
(2 38) + ¢ weqzk: Jk [aQJ 0Q, kgT 8Q] 0Q,
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Since e # 0, we get

oo _ |99n  dp 09
o ;(an) [an kBTaQ]}

o ¢ 1 0¢ 0oy
(2.4.39) + TZAjk{an‘an_kBTan'an]

gk

We rearrange this equation as

%01 = kBTZAJk{ B(ﬁﬂ} —Z(”Qj) a¢fl
J

ot 0Q, 0Q;
P _INmy 900 09
(2.4.40) + ZJ: KkBT(an) 52}; Ajkan> ) ]
We now try as ansatz the function
(2.4.41) ¢ = Ny exp [a > Con @k Qn]

where C' is the inverse of the Rouse matrix, Ny; is the normalization constant
and « is a constant to be determined. @, is always taken as a column vector
and the superscript 7" on these vectors refer to the transpose. Using the fact
that K is symmetric, we get

0oy
— = 2
0Q, o5

Now, since A is the inverse of C,

‘Z ]k&bﬁ = 20?5 LY 43Chn(xQ,) = 20?5 L(xQ;)
k,n

ZC’kn(FLQn)] :

and using again ¢r(k) = 0, we eventually find

0 00u _ g, O
(2442) a—Q] an = ; BQ]T [Z Ck'n, Rrg Qns:| .

The variables r and s run from 1 to 3 in the rest of the calculation. So,

kT o 9 kT Y
B Z ]kaQ TQZ = 2« 12. ZZZA]kan“rsQns aQJ;lT:|

-5k TS

_ ksT [ . b1
= 2« g ; ;5]7; Rrs Qns anT:|

R S (OE)

- J

n
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So (2.4.40) can now be written as,

P poal ( | 8%)
J

ot
* ¢fl(ﬁ‘2?a>2[ %)

2k 7, (2.3.24) is satisfied at steady
state. Thus the steady state solution can be written as

From the above it is clear that when o =

Y = Ny exp

£ T
T ; Coun Q5 Q| Ve
and the lemma is proved. [ |

To fix Ny, we use the normalization condition [t = 1, ¢) being a probability
density. Thus we get,

Nﬂ<exp %Z%Qﬁncznbz

where, <X > denotes the average of any quantity X,

(X) =/deQ1dQ2...dQN_1

It may be noted that the above solution holds good for any choice of the
potential ¢.

We have thus been able to find analytical stationary solutions for the cases
(a) the fluid at rest and (b) incompressible potential flows. It is now desired
to consider the case of shear flow. But since there is no analytical solution
possible in this case, we must resort to numerical simulations. Before we do
that, we first simplify our equation.

5. Algebraic simplifications

We first non-dimensionalize the various quantities appearing in our equation
(2.3.24). After that the anisotropic diffusion term is transformed into the
Laplacian by a suitable change of variables.
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2.5.1. Non-dimensionalisation. We introduce the following dimensionless
variables

t ! ’ / !
2543 f=l Qo Wk $(Q) =G
H

where Ay = {/4H is the time constant and /"% ksT js the length scale. Our

equation (2.3.24) written in terms of the non- dlmensmnal variables reads as

4HOW' [ H 4H kBT kT o'
£ ot Z kBT ( Z ksT an)

kBT Ay’

* Z Vk TaQ kBT an
L H 8 oY
= - —KQ, — — — > Ap—
ZOQ ( wQ; Z ) e *oQ, 0Q,

3ok

which simplifies to,

oy 0 !
ot -y () iy

2.5.2. Transformation to normal coordinates. In the diffusion equation
(2.3.24), we note that there is coupling among the various connector vectors
because of the Rouse matrix A;;. This coupling can be removed by diago-
nalising the Rouse matrix and we specifically carry out by introducing a new
set of variables Q;. The Cartesian components of Q; are called the normal
coordinates. We now introduce the (N — 1) x (N — 1) orthogonal matrix €2;;
which diagonalises A;;, given by

5
(2.5.45) Qij:,/ﬁsm% ij=1,...,N

and satisfies the relations

Z Qg Qi = djs
k

Z Z Qi Akl = ;0
P

J

(2.5.46)

where a; are the eigenvalues of A;;. If we denote the matrix ¢;0; by D, then
the last relation can be written as

OTAQ =D
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Hence,

(2.5.47) (Q@l)TA <Q\/51> _

since D is a diagonal matrix. Utilizing the above we make the transformation
Z =20/ D . This actually transforms A into

(2.5.48) Z ZiAjeZp = 4 0y
and satisfies 5
> ZkiZi = 42
% @

The advantage of this transformation is that the second derivatives of 1 oc-
curring in (2.5.44) reduces to a Laplacian. The connector vectors transform

as
(2.5.49) Q= ZiQy
k
and the derivatives transform as follows
0 0
(2.5.50) — =) Zkizw
0Q; ; '0Q;

With these, (2.5.44) reduces to

oy’ 0 1y 3¢'> : o oY
2.5.51 =-y . -
(2.5.51) o zj:aQ; (nQ, Q 7/”“27:6@* °Q

The polymer contribution to the stress tensor, 77 can be written down in terms

of the non-dimensional variables as

(2.5.52) Z /va ,Q®5 (%I wdQ

The scaled problem can now be formulated as follows: Solve (2.5.51) for steady
state and then evaluate (2.5.52) to calculate the non-dimensional viscosity 7’

given by
P
(2.5.53) n = ;}’

and the non-dimensional first normal-stress-difference coefficient ' given by,
Tp -0
(2.5.54) v =
NG

where 8 = S)g.
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Since we are interested in calculating the steady state solution, the choice of
the initial condition only matters to that extent that how close we start to the
final solution. We later employ several initial conditions,

1. the position of the connector vectors are independent Gaussian distributed
with mean zero and variance one.

2. all beads are on top of each other at the origin, i.e., ¥(Q,0) = 5 (Q).

3. take ¥(Q,0) = 1y, that is we start with the equilibrium steady state solu-
tion of the flow problem corresponding to fluid at rest.

Numerical simulations using Monte Carlo methods have been carried out for
the special case of dumbbells and the above two viscometric functions have
been calculated by Ravi Prakash and Ottinger [22] in the presence of excluded
volume. It is now desired to compute these material functions for a larger
number of beads.

For the sake of simplicity, we shall drop the dashes and stars appearing in our
equation and shall consider the non-dimensional form in the rest of the thesis.



CHAPTER 3

Existence of Solutions and the Splitting
Method

In this chapter we shall address the issue of existence and uniqueness of solution
of equation (2.5.51), and later outline the splitting approach. The existence
theorem assures the existence of a unique classical solution for our parabolic
equation. In our numerical solution we will split the convection part and the
diffusion part to simulate the Fokker-Plank equation. Therefore in the splitting
method, instead of considering the problem as a whole, we consider two sub-
problems and the approximate solution of the original problem is written as a
composition of the solution operators of the sub-problems. We conclude the
chapter by showing the convergence of the splitting approach.

3.1. Existence and uniqueness of solution

In the previous chapter we derived the Fokker-Planck equation for the con-
figuration distribution function . Written in terms of the non-dimensional
variables Q and ¢,

% _ _ i.(. __%> o %
ot Zj:an #%5q, w+zj:6Qj 0Q,

$(Q,0) = 1(Q)

(3.1.1)

If we denote,

0 0 0 0¢ ) 0
3.1.2 L= — - — . |lk-Q -=—=)-=
12 2.5q, 9q,~ 2-0q, (xa 5a,) " i
then (3.1.1) can be rewritten as

(3.1.3) Ly =0, $(Q,0)=1(Q)

We have the following definition.
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Definition 3.1.1. An operator M associated with the partial differential equa-
tion

S 2

0“u L ou 0

ij=1 i
where a;;,b; and ¢ are defined in Q@ = D x [Ty, T1], D C R® is said to be
parabolic at the point (x,t) if the matriz a;j(x,t) is positive definite. That is,
if for every real vector & = (&1,...,&) # 0, we have

S

(315) Z aij(m,t)&{} >0

ij=1
If the above condition holds good for all points (x,t) € Q, then M is said to be
parabolic in Q). If there exists positive constants, u, and ps such that for any
real vector &,

(3.1.6) €| < Z a;; &€ < 1o €17

=1

for all (z,t) € Q, then M is said to be uniformly parabolic in Q.

Consistent with the definition, we see that the matrix a;; in our case is the
identity matrix. Thus (3.1.5) is trivially satisfied and this proves that L is
parabolic and in fact uniformly parabolic (u; = 1 and py = 1).

Definition 3.1.2 (The Cauchy Problem). Given a function f(x,t) in Q =
R* x [0,T] and a function p(x) in R®, the problem of finding a function u(x,t)
satisfying the parabolic equation

(3.1.7) Mu(z,t) = f(x,1) in Q) =R x (0,T],

where M is as defined in (3.1.4), and the initial condition

(3.1.8) u(z,0) = p(x) on R®

is called a Cauchy problem (in the strip 0 < t < T).

It can be immediately seen from the above definition that (3.1.3) is a Cauchy

problem for 1. Before we go on to prove the existence theorem, we need the
following definition.

Definition 3.1.3. A fundamental solution of Mu =0 in Q=R x (0,7] is a
function T'(x,t;&,7) defined for all (x,t), (&, 7) € Q with t > T which satisfies
the following two conditions
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1. for a fized (€,7) € Q, u(x,t) = T'(x,t;€,7) satisfies Mu = 0;
2. for every continuous function f(x) in D,
(3.1.9) lim [ D(x,:€,7)f(§)d = f(=)
TJD
wherein d§ = d&; - - - d§,.

The procedure of constructing the fundamental solution for the Cauchy prob-
lem is outlined in [7] and is based on the parametrix method of E. E. Levy.
We have the following theorem on the existence of solutions taken from [7].

Theorem 3.1.1. Suppose that

A. M is uniformly parabolic in Q@ =R* x [0,T);

B. the coefficients of M are bounded continuous functions in R® and there
erists A € R and a € (0,1] such that for all (z,t), (x°t°) € Q

(3.1.10)  ay(z, 1) —ay(2®,2%)] < A(lle —«°||" + [t — £°%)

(3.1.11) b (x, 1) — b(2°, %) < Az —2°)°

(3.1.12) lc(x,t) — (2, %) < Alz—=x°|"

C. f(z,t) and ¢(x) are continuous functions satisfying

(3.1.13) \f(z,t)] < const.exp[h]| z]|?],
(3.1.14) lo(x)] < const.exp[h]| z]?]
where h is any positive constant satisfying
Ao
3.1.15 h < —
( ) AT

and Xy is a constant depending on jiy, fio, A.
D. f(x,t) is locally Hélder continuous of exponent o in © € R, uniformly
with respect to t;

Then there exists a fundamental solution I'(x,t,&,7) of Mu = 0 and the func-
tion given by

(3.1.16)  u(z, 1) =/ [(x, 1, €,0)(€)dE — / / (@,t,€,7)f (€, 7)dedr
is a solution of the Cauchy problem (3.1.7) with (3.1.8) and satisfies the bound
(3.1.17) lu(x,t)| < const.exp[k| z|’]

where k 1s a constant depending on h, Ay, T'.
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Proof. The proof is exactly as given in [7] taking o = 1. |

To apply the result to our problem, we map the 3N — 3 components of the
N — 1 connector vectors Q,...,Qy_; to the 3N — 3 components of a single
vector x. That is,

T = (Qn, Q12,Qn3, - -, Q3n—1, Q3n—2, Q3N73)
We define
(3118) Qg5 :51'3' Z,_] = 1,...,3N—3.

The 3N — 3-dimensional vector b is defined as,

00
b, = - — i=1,...,3N -3
J HQ] aQ]’ .7 Y I
where,
1 N-1 o N—1 o N—1
== - 7. R et Dmi
=1 r=1 m=1
N-1 N-1 2
s > ((B,m SB% Y ZTkQT)
k=1 r=
+ B zy;l exp 52 ,
g

with B, a;, Z defined in (2.1.3), (2.1.6) and (2.5.48) respectively and z,d are
the excluded volume parameters.

The coefficient ¢ is defined by
c=divb.

The source term f does not exist in our case. So f = 0. Then the equation in
(3.1.3) has exactly the form (3.1.4). Now, we just verify the conditions A, B,
C and D in theorem 3.1.1.

Since the matrix (a;;), in our case is an identity matrix, A is satisfied. Condi-
tion D is also fulfilled since f = 0 for our problem. So it remains to show that
B and C are satisfied.

Regarding C, (3.1.13) is satisfied again since f = 0. Since the initial conditions
we shall consider for our problem are of the form const.exp(—v|z|*), v > 0,
we see that (3.1.14) is fulfilled.

Condition B is verified with the help of the following lemma.
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Lemma 3.1. The function b defined above satisfies

be -%%y<c for [l = oo
02b;
< (: <
wnl<ci 5] <c

and there ezxists A € R such that (3.1.11) is satisfied.

Proof. We observe that the components of b have a linear term and terms
which are first order polynomials times a decaying exponential. Thus b € C*
for it is the sum of two C'* functions. Since the latter component remains
bounded (for the exponential decays faster) we see that (3.1.11) is also satisfied.
The higher order derivatives of b would all have terms involving a polynomial
multiplied with a decaying exponential and as before since the exponential
decays faster than a polynomial, we conclude that they are all bounded. M

Since (a;;) is an identity matrix, A in (3.1.10) can be chosen arbitrarily. By
arguments provided in lemma 3.1, we can conclude that the derivatives of ¢
remain bounded and that we can choose a A such that (3.1.12) is satisfied.

Having established the existence of solutions of the Cauchy problem we now
consider uniqueness. The following theorem taken from [7] states
Theorem 3.1.2. Let M satisfy the assumptions
1. M is uniformly parabolic in Q@ =R°* x [0,T];
2. The functions
0 0? 0

( ) a] 8£l?h U,] Gmhaxk aj al‘h

bi; Cc

are bounded functions on §); they satisfy a uniform Holder condition of expo-
nent o in & € R®, uniformly with respect to t and (3.1.10) holds throughout
Q2. Then there exists at most one solution to the Cauchy problem (3.1.7)
with (3.1.8) satisfying the boundedness condition

T
(3.1.20) ‘/ (e, )] exp| —k || 2 |[2ldedt < o
0 JRs
for some positive number k.

Proof. The proof is as given in [7] with o = 1. |
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For our case the assumptions are satisfied by arguments similar to those given
after theorem 3.1.1. Theorem 3.1.1 assures the existence of a fundamental
solution I'(x,¢,&,7) and in view of theorems 3.1.1 and 3.1.2 we have the fol-
lowing.

Theorem 3.1.3. Problem (3.1.3) admits a unique classical solution given by
(3.1.21) viet) = [ T(@t6 ()it

Proof. Follows from (3.1.16), taking f(x,t) = 0 and ¢(x) = ¥o(x). |

3.2. The splitting method

It can be observed from the Fokker-Planck equation we derived in the last
chapter that the equation has a convective part and a diffusive part. The
convective part of the equation is very easy to handle, by moving the initial
data along the characteristics, that is the integral curves of b. The diffusive
part is again quite easily solved, for the solution is the convolution of the Gauss
kernel with the initial condition. Thus the two subproblems are easier to solve
than the original problem.

Having this background, the main idea of the splitting method is to write
(3.1.1) in the form

Oy + div (byp) = Aq), in R® x (0,7)
¥(y,0) =vo(y), in R
and then to consider the two subproblems

By + div (b)) = 0,

(3.2.22)

(3.2.23)

¥(y,0) = tho(y)
and

oY = Ay

(3.2.24)

¥(y,0) = ho(y)
separately.
If we introduce the operators C = div(b-) and D = —A, then we can write
(3.2.22) as

(3.2.25) oY+ Cp+ Dy =0, Yli=o = tho
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and the two subproblems as

(3.2.26) oY+ Cp =0, Yli=o = tho
and
(3.2.27) o) + Dip =0, Yli=o = tho

We observe that b in our case is independent of ¢. Hence (3.2.25), (3.2.26) and
(3.2.27) are autonomous systems. Denoting the solution operators by S;, 7;
and D, respectively, the approximate solution of (3.2.25) at time At is obtained
by first solving (3.2.26) for a time At, feeding it in (3.2.27) and solving it in
[0, At]. We then obtain

Sato = DarTartho

and recursively for the n™ time step

(3.2.28) Snattho ~ (DatTar) o

The approximate solution 1 of (3.2.22) at time 7 € (nAt, (n+1)At] is written
as

w(ya 7—) - DTantﬁant(DAtnt)nwO(y)-

In the analysis to follow, we shall assume that 7, At < T.

3.2.1. Consistency analysis. To formally assess the consistency of the split-
ting method, we write 7; = ¢ %, D, = ¢ '’ and S, = e {*+DP). Expand the

exponentials, we get
e AMCHD) — T _ At(C + D) + %Aﬁ((]2 + DC + CD + D?) + O(A#?),
e B0 =T — AtC + %At%‘z +0(A%),
e M0 =T - AtD + %At2D2 + O(AP).
Also,
e AP MY — [ _ AHC + D) + %Atz(CQ +2CD + D?) + O(At).
By introducing the commutator [C, D] = DC' — C'D, we have
o~ AHCHD) _ ,—AtD ,—AIC _ %AtQ[C, D]+ O(A#).

Consequently the splitting method introduced by (3.2.28) is first order consis-
tent unless we have [C, D] = 0. In our case,

[C, D]t = —div(bA) + A(divby) # 0
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Having studied the consistency of the splitting method, we now analyze the
convergence of the method, starting with the properties of the operators D;
and 7;.

3.2.2. Properties of D;. It is well known that the solution of (3.2.24) can
be written as the convolution of the initial condition v, with the Gaussian

kernel

1 [E1ls
3.2.29 Gilx)=——exp| —1— | .
(3:2.29) (@)= ( o
Proposition 3.2.1. The operator D, is given by

We shall now estimate D;?) in C? norm which is defined as follows.
Definition 3.2.4. Let Q) be a domain in R®. For h € C*(Q),

|h||c2 = max sup |[D%h(z)|
0<|e/<2 pen

Lemma 3.2. For any function ¢ € C*(R®), we have
(3.2.31) 1Dl < [[9llee

Proof. The result we shall refer to quite often is that the fundamental solution
G} given by (3.2.29) integrates to one, proved later in lemma 4.1. Now,

Dyp(x)| =

Gi(x — y)v(y)dy

Rs

< | [Gla=wlv)ldy

< sup [¢(x)|- 1 = sup [(x)|
zcR? zeR?
using lemma 4.1.
Similarly, for 0 < |a| < 2, on exchanging differentiation and convolution, we

get,

D@ = |0 [ Gila- vy

- ‘Da / Gi(y)p(z — y)dy‘

IN

[ Gitw)l Dot - w)ldy

< sup [D*(x)|- 1 = sup [D*(x)|
rERS rERS
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again using lemma 4.1.
Thus, combining the results we get, || D] c2 < ||9]|c2- [

We conclude this subsection stating a property of G; we shall need later in our
analysis.

Result 3.1. If P : R® — R is a homogeneous polynomial of degree r, that is
P(tx) = t"P(x) then,

(3.2.32) |P(y)Gily)|dy < Cpts, t>0
Rs

where Cp is a constant depending on P.
3.2.3. Properties of 7;. The characteristics of (3.2.23) are got by solving
(3.2.33) z=bz) = =¢

We shall denote the solution of (3.2.33) by X (¢;&,7). Since b is smooth
and grows at most linearly at infinity (see lemma 3.1), X (¢;-,7) is a C*
diffeomorphism, [3]. With this notation we have the following proposition.

Proposition 3.2.2. The operator T; is given by
(3.2.34) Ty = (X (0; 2, t))J(0; x, 1),
where J(t;x,T) is the Jacobian 0, X (t; @, T) given by

¢
J(t;x,7) = exp (/ div b(X(t';a:,T))dt') .
The solution of (3.2.23) can now be written as T;1hy. For the sake of simplicity
we denote T;1)g by v. We now study the regularity of X, J and v.

Remark 1. In order to simplify the notation, we shall henceforth use a generic
constant C' which depends on the given field b and the length of the time interval
[0,T].

Lemma 3.3. The first and second order partial derivatives of X (t;€,7) can
be estimated by

(3.2.35) sup iX(t;.f,T) < 1+C({t—r1),
cers | O
and
0 0
3.2.36 Z XD < o —1).
( ) SUP | 96 7% (t:€,7) (t—1)
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Proof. Observe that X (¢; &, 7) satisfies (3.2.33). So

0 d 0
X _ .
86] dt k(t 57 ) 66] bk( (t7 677—))
Changing the order of differentiation, we get
d (9 3
2. —
with the initial condition,
0
X, (¢ S
agj k( a£77—) — ik

Introducing the matrix,

U(t) = Vb(X (t;:€,7))
and writing (3.2.37) for k = 1,...,s, we get,
d 0 0

aa—gjx(t;ﬁﬁ)Z ()6@ (t;€,7)
along with
O X)) =e
ag] t:T_ ’

Rewriting we get,

0 ¢ 0
ge X(:6,7) = +/U()a§J (¢ €,7)dt
Thus,
! ! a ! !

Hence using Gronwall’s lemma and lemma 3.1 we conclude that,
(3.2.39)

<ex ([ 0@l <@t~ 7) < exp(c),

Ha—@x“*”) .

Now substituting (3.2.39) in (3.2.38), we get (3.2.35) using the boundedness
of U.

The second estimate follows by a similar argument. For a fixed z' and 7, differ-
entiating (3.2.37) once more, yields the following ode for H := ag % 9 X (t;€,7)

dH
(3.2.40) —r =F+UH,
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where,

F(t) = L9 9, 0X,0X,
_rmzl axr 8:Um a& a£j7

with zero initial condition. Observe that from lemma 3.1 and (3.2.39) that
|IF||cc < C. The integral representation of the ode (3.2.40) is,

H = / O

So it follows that,

IIH(t)IIOOS/ IIF(t')Iloodt’+/ 1U () oo H(#) [ oot

where the L, norms are taken with respect to the space variable . Using the
boundedness of F and U and applying Gronwall’s lemma yields,

[H@)]o < Ct—7)exp(C(t— 7)) <Ot —7)exp(CT)
and that completes the proof of the lemma. [ |
Lemma 3.4. The IL*° norm of J satisfies
(3.2.41) [Tt T)|loo <14+ C(t—7)

where C is a generic constant.

Proof. We have J(t; €, 7) = exp ( [ divb(X (#'; €, T))dt') and so

17t 7)llee < exp ([|divh]lo(t — 7))

on using lemma 3.1. Since ||div b||« can be calculated apriorily as b is known,
we can find a C such that (3.2.41) is satisfied for t — 7 < T. |

Lemma 3.5. The first and second order partial derivatives of J are uniformly
bounded in [0, At] x R® x [0, At]

sup |2 J(t:¢,7)| < C(t - 7),
tere | O&;

9 0

Z Z It g7 <Ot —1).
ssélng 0&; 0¢; (t:¢€ T)‘ =7

Proof. We have J(t;£,7) = exp (f: div b(X (¢ 5,7))dt’) and so

%J(t; £, 7) = exp ( / t(div b(X (t'; S,T))dt'> ( / t(VdiVb) ' NX)Jdt’)

J
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where the subscript j in (VX); denotes the j* h column of the matrix VX.
Using lemma 3.1 and (3.2.39) yields,

J(t;€,7)

Ssu 8
core | OF;

and the result follows. Differentiating once more yields,

<exp(C(t—17)) Ot —7) < exp(CT)C(t — 1)

a%a%J(t &) =1J ( / t(Vdivb)-(VX)jdt’) ( / t(Vdivb)-(VX)idt’)

+J ( / t ( aa& (Vdivb) - (VX), + (Vdivb) - 8‘2 (VX) ) dt)

Using lemmas 3.1, 3.3, 3.4, 3.5 and (3.2.39), we get

< (1+Ct-7n)((Ct-7)’+Ct—1)+C(t—1)%)

o6

o0

< I4+Ct=-m)CEt—T)T+Ct—7)+Ct—1)T)

Recombining generic constants, we find

< 1+CTYCT+CO)(t—1)

o

and the lemma is proved. [ |

o0

In view of lemmas 3.4 and 3.5 we have proved the following.
Result 3.2. The C? norm of J can be estimated by

[Tt - T)llc> < exp(C(t — 7))
We now turn on to study the regularity of v = T;)y,.

Lemma 3.6. If ¢y : R® — R is bounded and has bounded first and second
order deriwatives, then for t < At

(3.2.42) I Dllse < ol 1705 - D)l
0
(3.2.43) sup |=—uv(x,t)| < ||t]|c2 exp (Ct)
0
2. - < 2
(3.2.44) sup| 2P ofa, t)\ lbollcs exp (CF)

Proof. The quantity v is explicitly given by
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Thus,

lo(, Dllse < 1olloollT (05, )lloo < llbollc2[|(0; - D)2
and (3.2.42) is proved.
Again from the solution formula for v,

0

0y 8X,c '
a—g/’ (€1) Za ag, TG40 +U(X(0:4,1) 5.7 (0:4,1)
Thus, using lemmas 3.3, 3.4 and 3.5 it follows that,
vt < (T VIO O+ il -0

IN

[%ollc>((1+ Ct)(1 + Ct) + C1)
< lollez (1 + (3C + C*T))

Recombining generic constants, we get

' 0

20| < ldollo2(1 4+ C) < lebol|c2 exp(Ct)
The estimate for the second order partial derivatives can be verified in a similar

0&;

o

manner. [ |

Finally we have the following result for v.

Result 3.3. If ¢ € C?, then fort < At
(3.2.45) [Tl ez < exp(C)][]]c2

Proof. Follows from lemmas 3.3, 3.4, 3.5 and 3.6. [ |

3.3. Convergence of the splitting method

Recall that if 7; and D; denote the solution operators of (3.2.23) and (3.2.24)
at time ¢ respectively, then the approximate solution v of (3.2.22) at time
7 € (nAt, (n + 1)At] can be written as

DY, T) = Dr_nni Tr—nat(DarTar) "o (y).

The bound for the values of @E at intermediate time steps is given by the
following lemma.

Lemma 3.7. If ¢y € C? then,
(3.3.46) 156, llcr < exp(CT)gllon, 0<t<T
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Proof. We observe that for a given ¢ € [0,7], there exists an n such that
t € (nAt, (n + 1)At] and

7/;(’!/, t) = Dt—nAtﬁ—nAt(DAtTAt)nwo (y)

Repeated use of (3.2.31) and (3.2.45) yields,

D¢ ez = 1Pi—nat (Tr—nae(PacTar)"¥o) llez < | Te—nae (DaiTar)"to) |lc
< exp(C(t — nAL) | Das (Tar(PadTar)™ o) lle2
< exp(C(t — nAt)) || Tae ((DAtTAt)n_l%) llc2
< exp(C(t — (n — 1)A1) [|(DarTar)™ Wollcz
< exp(Ct) [[thollcz < exp(CT) ||thol|c2
and the lemma is proved. [ |

Let 7 = nAt +t, t € (0,At]. If ¥, denotes the approximate solution after n
time steps, then an equation for v, similar to (3.2.22) can be derived as,

O, %, - o, - . . N
3347) 52 = (500) (Tdn) + Do  5(T) ) = Ay~ Dfav (67:6,)
Hence,
O | 1 - T s : -
(3.3.48) py (bn) — Ath, = div (bib,) — Dy(div (bT4by))

If e, = (2, nAt) — 1)y, is the error after n time steps, then the equation for
e can be written down by subtracting (3.3.47) from (3.2.22) as,

(3.3.49) %i; +div (be,) — Aey, = Dy(div (bTphy)) — div (6D, Tih) = g

We shall now find an upper bound for the L*° norm of g. For ease of notation,
as before, we set v = Ty1),,.

Lemma 3.8. There exists a constant C > 0 such that

(3.3.50) 19 )lloe < CAL, 0<t<T

The proof of the lemma is quite lengthy and we split it into several steps.
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Observe that
[9llc = [[De(div (bv)) — div (bDyv)||
= ||Dy((divb)v) + Dy(b- Vv) — (divb)Dyv — b - V(D)|| o
< |IDi((divb)v) — (div b)Dyv||eo + ||Ds(b - Vv) — b - V(D) || o

= B +E
We estimate E; and E, separately.
Lemma 3.9. E; and E, satisfy the bounds,

E. = |Dy((divb)w) — (divb)Dy|e < Ct

Proof. We start with Ej.

E, = ||Dy((divb)v) — (div b)Dv|| o

— sup / Gy — y)o(y){div b(y) — div b(x) }dy

zERS
Rs

By the regularity of v and div b(y) established earlier, both of them can be
expanded in Taylor series. Thus we get,

v(y) =v(@) + (y —z) - Vo(&)

divb(y) =divb(z) + (y — x) - Vdivd(z) + %(’y —z)Ay(&,)(y — =)

where &, € (z,y) and A, is the matrix

82 (div b)
&ciaxj ij

evaluated at some intermediate point €, € (x, y) respectively.

Inserting the expansions, performing term by term integration and using tri-
angle inequality we get four terms E1y, Ei9, E13, E14. We now estimate each
term separately, using result 3.1.

By = H /Gt(w — (@) ((y — @) - Vdiv b(z))dy H — 0

o0
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using the even odd properties of the integrand.

P = |3 [Gila - wu@ - o)) - o ay|

o0

1
< 5 Melelvle [ lIGie =) (- ) - 7] . dy
RS
< Ct

using lemmas 3.1 and 3.4 and the boundedness of 1)y.

P = | [ Gle -l 2) Vo) - o) divela)iy |

o0

= 2t||Vv- Vbl < Ct

again on using lemmas 3.1 and 3.6.

E14 =

B [ G w ) i - e - ")

< CtVt < CtVT
on using lemmas 3.1 and 3.6.

Thus, F1 < Ey + Ei3 + Ei3 + F1y4 < Ct. The estimate for Fy follows by a
similar argument. [ |

We shall now show the continuity of g with respect to t in each of the sub-
intervals. Recall that,

g(z,t) = Dy(div (bTith)) — div (bD; Tyrbo)
= Dy(div (bTitho)) — DiTibo divh — b - VD Tt
= G917 92— 03
The required continuity of g is essentially contained in the following lemma.

Lemma 3.10. If f is a continuous function and satisfies || f(-,t)||cc < C for
0 <t<T, then the function F defined by

(3.3.51) F(z,t) = N Gi(z —y)f(y,t)dy

1 continuous with respect to t and moreover

(3.3.52) lim F(x,t) = f(x,0)

t—0
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Proof. By the substitution z = (x — y)/V/4t, (3.3.51) reduces to

1
(3.3.53) F(zx,t) = /R —~7 exp(—22) f(x — zV/4t, t)dz
Since f is assumed to be bounded, we have
1 2
(3.3.54) 7 exp(— H — exp(—27)C := h(2)

Since h is integrable, we conclude from result 25(a) of appendix in [31] that
F' is continuous with respect to ¢.

On taking the limits as t — 0 in (3.3.53) we get,

(3.3.55) lim F(z,1) = /R s Wsl/g exp(—22) f(z, 0)dz = f(x,0)

and the lemma is proved. [ |
By the smoothness of the involved function, their boundedness (established
earlier) and lemma 3.10 the continuity of g;, g and g3 is established.

Having seen that g is continuous in each of the time intervals , we now estimate
the error at the end of each time step. Applying theorem 3.1.1 to (3.3.49)
yields,

(3.3.56)

At
ola) = [ Tlat&0ei©d - [ [ Toatgrae e

The fundamental solution I'(x,t, &€, 7) can be bounded by (refer (6.12) of [7]),
Al —€|1?
4(t — )
and so the second term in (3.3.56) can be estimated by using (3.3.50) as

/At/S x, At €, 7)g(&, 7)dEdT

In the first time step, we have eq = ¥y — 1&0 =0 and so

At
/0 /s (-, At, &, 7)g(&, 7)d€dT

In the second time step, again from (3.3.56),

/ JCEN O)el(e)ds‘ +

D (e, t,&,7)| < const.(t — 7)*?exp [— } ;A0 < Ao

(3.3.57) < CAt At = C(AL)*.

(3.3.58) ledfloo < < C(At)?

At

[(x,At,&,7)g(§, T)d€dT

8

le2(@)] <

At
< Mot | [ [ 1@ At € e nagar
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On using (3.3.58) we have
lezllos < llerlloo + C(AL)* = 2C(A2)*
Continuing in the same way, we get
lenlloe < RC(AH)? < - C(A1)? = CTAL

At
which shows that the splitting scheme is first order accurate.

In the next chapter, we will present a particle method for the Fokker-Planck
equation we had derived earlier, which uses the splitting idea presented here.
We shall later see that in order to present a complete convergence proof of
that method, we would require the estimates in the L' norm rather than
the C? norm considered here. It may be noted that the C? estimates do not
generalize to estimates in ' because of the unbounded domain. The necessary
L' estimates can be obtained in a similar manner but we shall not pursue the

same.



CHAPTER 4

Particle Methods

Most of the partial differential equations modeling various physical processes
cannot be solved analytically. It is hence important to have good numerical
schemes which are computationally efficient. In connection with our problem,
the numerical scheme should not only be applicable in high dimensions but also
cost effective. In general numerical methods which are based on discretization
do not prove to be efficient in high dimensions and we illustrate this point in
the following section.

4.1. Why not traditional methods?

We are interested in the numerical solution of a partial differential equation
in high dimensions. For a certain class of partial differential equations this is
the same as integrating a function in a high dimensional space. Consider, for

example, the diffusion equation
up = Au in Q=R° x[0,7T]
(4.1.1)
u(x,0) = ug(x) in R°.

It is well known that the solution of (4.1.1) can be written as the convolution of
the Gaussian kernel Gy(x), given by (3.2.29) with the initial condition ug(2).
Thus,

w(z, 1) = /R Gl — y)uo(y)dy.

That is to say that we have an underlying integral which must be evaluated
in high dimensions. So we start our discussion with the problem of numerical
integration in dimension s.

For the one dimensional s = 1, case there are a number of conventional in-
tegration rules such as the trapezoidal rule and Simpson’s rule [11]. These
formulas are of the interpolatory type; that is to say

(4.1.2) / flayde Y wif &)
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where

b
wi:/ pi(x)dx

and p; are the Lagrange interpolation polynomials

T — Ty
Pi = .
im0 T; — l‘j
i
The w;s and x;8, 2 = 0,1, ..., n are called the weights and nodes of the quad-

rature formula (4.1.2).

In the case of trapezoidal rule for the interval [a,b] with uniform spacing h =
(b — a)/n, the approximation reads,

(4.1.3) / Flu)du ~ hZ” fla+ih)

where the double prime denotes that the first term and the last term in the
sum are halved. Consistent with (4.1.2), the weights of the above formula are
given by wy = w, = h/2 and w; = h for 1 <4 < n—1. This rule is exact for all
functions f € Py, that is for all polynomials of degree at most one. Moreover
the error term is
]' 2 et

(b= a2 (e)

where & € (a,b), provided f” exists.

In the multidimensional case s > 2 with an interval [a,b]® = I® as integration
domain, the classical numerical integration methods use tensor product of one
dimensional integration rules. In such multi-dimensional quadrature rules, the
node set is the Cartesian product of one-dimensional node sets and the weights
are appropriate products of weights from the one-dimensional rules.

The total number of nodes used in the case of multidimensional integrals is then
N = (n+1)°, being (n+1) in each dimension. From the error bound for (4.1.2),
it follows that the error is O(n2), provided that 8 f/0?u? is continuous on I*
for 1 < i <'s. In terms of the number N of nodes, the error is O(N~%/%). With
increasing dimension s, the usefulness of the error bound declines drastically.
To be more precise, to guarantee an error which is in absolute value < 1072
one needs to use roughly 10° nodes; hence, the required number of nodes
increases exponentially with d. This phenomenon is often called the ”curse of
dimensionality” and has been studied by Novak [20].
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We next turn to the memory requirements to store the grid points. If we
consider [ points per direction then the total number of points is [* and the total
memory need to store these values is proportional to [*. Since s appears in the
exponent, enormous memory is required to carry on the computation for large
s. So the method of Cartesian product does not prove to be computationally
economical in high dimensions due to the huge node set and enormous memory

requirements.

[ [
fo') () N
—

-b N2
+
/

Iog2 Pts. per direction
(o)

N
+
\
1
/

o

5 10 15 20 25 30
Dimension

FIGURE 4.1. Comparison between finite difference method
(thick line) and sparse grids (dashed line), assuming available
memory is 1GB.

For a special class of functions Smolyak’s construction [27] has been effective
in tackling the problem. Though this method is again based on the tensor
product structure, we do not consider the entire grid but only a few selected
points. Compared to the traditional tensor product rule, this method uses
only n(log, n)s_1 points, being n = 2! in each direction, instead of n® points.
Though this method is promising in low dimensions, it does not apply to high
dimensions as can be seen from figure 4.1.

4.2. The Monte Carlo method

It is important to have good quadrature formulas for evaluating definite inte-
grals occurring in many physical problems numerically. It is evident from the
above discussion that any method which is based on grids will not generalize
to high dimensions. This motivates us to go in for particle methods. Some
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interesting facts in the case of multivariate integration is that the Monte Carlo
method

1. does not require the integrand to be regular.
2. assures that the order of magnitude of the integration errors in terms of the
number of nodes is independent of the dimension.

These make the method readily applicable to high dimensional integration.
We shall now explain the method in detail.

The deterministic quadrature rules discussed in the previous section require
the integrand to be regular. But if the integrand fails to be regular, the
rules become less attractive. In such cases, it is convenient and simple to
apply a Monte Carlo method. Though this method may be less accurate,
the implementation is quite straightforward. The basic idea behind a Monte
Carlo method is the representation of an integral as a sample mean unlike
the traditional methods which interpret it as an area. This suggests that the
method is strongly based on sampling to calculate the mean. Hence, the crucial
task in the application of Monte Carlo method is the generation of random
samples.

Suppose that random variables z1,zo,...,x,,... are all drawn from a proba-
bility distribution f(z). A function G may be defined by

(4.2.4) G=) %g

n=1

where ¢ is a given function. Now g being a function of a random variable z,, is
itself a random variable and also since the sum of random variables is again a
random variable, one can conclude that G is a random variable. The expected
value of G can be defined to be

(425  B(G)=F (Z %gm)) =Y Bg(e) = Blo(x))

since expectation value is a linear operation. In other words GG and ¢ have the
same mean. More generally, G is an estimator of a quantity like [ g(z)f(z)dz.

If the z;s are chosen independent of each other then one can write

(4.2.6) var(G) = E(G?) — (E(G))?
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Now the variance of G in (4.2.4) becomes

1 1

(4.2.7)  var(G) = var (% Zg(x,)) = ﬁvar(g(x)) = Nvar(g(x)).

From the above one can conclude that as the number of samples increases,
the variance of the mean value of G decreases like 1/N. This forms the basis
of the Monte Carlo method; that is that an integral may be estimated by
a sum of the form (4.2.5). To sum up the method, to evaluate the integral
[ f(z)g(z)dz, draw a series of random variables z,, from f(z) and calculate
g(x) for each z,. The arithmetic mean of all the values of g is an estimate
of the integral, wherein the variance of the estimate reduces as the number of
samples increases.

We shall now discuss the accuracy and convergence properties of the Monte
Carlo method. The most general result we need to accomplish is the strong
law of large numbers.

Theorem 4.2.1 (Strong law of large numbers). Let X be a random variable
on (A, A, \) and let f be the density of X. If x1,x9,...,2zn are all drawn
independent of each other from the same distribution f, so that the expectation
of each is 1, then as N — oo, the average value of the x’s

1N
TN = N Z xX;
=1
converges to p almost surely, in the sense
P{lim zy = u} =1.
N—o00

The above result shows that the mean of n sampled variables converges in
probability to its expected value. In order to estimate the speed of convergence,
we need a stronger assumption on the existence of the variance. In this case
we have from the Chebychev’s inequality

(4.2.8) P {|G — B(G)| > [M} 1/2} <e

€

where € is a positive number. This inequality could be called the first fun-
damental theorem of the Monte Carlo method for it gives an estimation of
generating a large deviation in the calculation. For definiteness if we have
e = 1/1000 then from the above inequality we can infer that

1

P{(|G — E(G)|)* > 1000 var(G)} < 000"
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Since var(G) = (1/N)var(g) we have

1000 1
< —.
N a9} < 1500

By making N large enough, one can make the variance of G as small as possible.

P{(IG - E(G)))* 2

In other words the probability of getting a large deviation between the value
of the integral and the estimate becomes very small. A much stronger result
than Chebychev’s inequality is the central limit theorem which describes the
range of values of GG in the course of the Monte Carlo evaluation as N — oc.

Theorem 4.2.2 (Central limit theorem). Let X be a random variable defined
on (A, A, \) with mean p and finite variance o* and let f be the density of X.
Let Ty be the sample mean of a random sample of size N from f(-), that is

1N
Let the random variable Zx be defined by

Ty — E(azN)‘
v/ var(Zy)

Then the distribution of Zy approaches the standard normal distribution as n

ZN:

approaches infinity. That is,

lim P{a < Zy <b} = / exp=#'/2) t2/2]

N—o0

That is, if we set

= %zn:g(xn)

and
Sy = (Gy — E(Gy))/[var(Gw)]"?
then
Jim Pley < Sw < ) = /02 exp[— t2/2]
or

: co(g) 1 & co(g) _ 1 [P g
,&E&,P( VN SN 29— Bl < \/N>_\/%/q o

for any constants ¢; and cs.

To sum up, the results can be interpreted to mean that the absolute value of
the error in a Monte Carlo evaluation is, on the average, o(g)N~'2, where
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o(g) is the standard deviation of g. On the basis of this fact, we can state that
the Monte Carlo method for numerical integration yields a probabilistic error
bound of the form O(N~1/2) in terms of the number N of nodes, independent
of the dimension. This feature of the method makes it readily applicable for
the high dimensions.

We next turn our attention onto the computational time needed for a Monte
Carlo evaluation of an integral in comparison to other deterministic quadrature
rules (DQR). Again assume that we are interested in the numerical integration
of

(4.2.9) G = i f(z)g(z)dz.

The numerical procedure can be written as

(4.2.10) Gr Y wif (z)g(w)

where w;,7 = 1,2,3,..., N are the weights and x;,7 = 1,2,3,..., N are the lat-
tice points that fill the hypercube. The error €, associated with this quadrature
is bounded by

(4.2.11) e < ah”

where h is the size of the interval separating the z;. The constants ¢ and &
are dependent on the numerical scheme and k normally increases with more
sophisticated rules. If we assume that the computational time is proportional
to the total number of points used, then

1 S
(4.2.12) T(DQR) x N = N, (E)
where N is a constant of the order of 1. Equation (4.2.11) can be rewritten
as
1/k
(4.2.13) h> (5)
o
and so (4.2.12) reduces to
s/k
(4.2.14) T(DQR) x N (9) = O(e /%),
€

It is evident that as the accuracy needed becomes greater, the greater is the
computational time. Also to get same accuracy in higher dimension, the
method has to have higher and higher order.
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In the case of Monte Carlo (MC), the total time required for the computation is
the product of the time for an individual sampling, ¢;, times the total number
of points,

(4.2.15) T(MC) o t,N.

Since the error in a Monte Carlo evaluation goes like

o

we get,
(4.2.17) T(MC) =t,0°/€ = O(e™?).

We observe that (4.2.17) is independent of the dimension. Also since it is
very difficult to find a numerical scheme in high dimensions which renders a
k > d/2, we conclude that Monte Carlo calculation is more advantageous than
the numerical integration.

We now present computational results for following the test integral taken from
8].

S
(4.2.18) I= / 1+1/9)° ] (=)"* da.
[0)1]3 =1
For each of the dimensions, various particle numbers, 10°,i = 1,2, ..., 6 were
0 5
*
* 4 *
-0.2}
** @ **ale
¥
* ok * @ 3 K%
o -0.4 * = 5 ¥
* *HKx * E 2 9|6ale9|e
* KK ** 3} ***
-0.6} * X 1 **
¥
*
-0.8 0
0 10 20 0 10 20
Dimension Dimension

FIGURE 4.2. The figure on the left shows the order of conver-
gence for various dimensions in a single run of Monte Carlo al-
gorithm and the one on the right shows the CPU time taken to
carry on the computation with 10° particles.
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considered and the slope of the least square fit of the particle number versus
error plot is taken as the order of convergence for that dimension. Typically,
the order of convergence is the exponent « for which the error is O(N®). It
can be inferred from figure 4.2 that order of convergence close to 1/ VN is
achieved. For some dimensions the result shows worse than o = —0.5. This
is because we considered only one run of the algorithm. Generally in Monte
Carlo algorithms, results are averaged over several runs. The CPU time shows
a linear growth with the dimension.

4.3. Sampling

We have sketched how a Monte Carlo calculation works. The next step consists
in designing and carrying out such a process. In doing so, it is usually required
that random variables be drawn from distribution functions that define the
process. For example, in order to evaluate [ f(z)g(x)dz, values of x must be
drawn from f(z) and the average value of g(x) over such a set of x calculated.
With this background, let us define the term sampling.

Definition 4.3.1. Consider a set )y C R? and x € €y, together with a proba-
bility density function f(x) on Qy. A sampling procedure is an algorithm that
can produce a sequence of values of “c” (random variables) x1,xo,- -+ such that
for any Q C Qy we have

P(zp € Q) = /Qf(x)da:.

It will be possible to do this only by having already a sequence of some basic
random variables. It has become conventional to start with random variables
that are independent and uniformly distributed in [0,1]. We now outline the
method of generating random variates according to a given distribution. There
are standard methods like the inverse transform method, acceptance-rejection
technique etc., for carrying out the process ([25], [10], [4]). We shall now
discuss the methods for the univariate case, restricting ourselves to continuous
distributions. A similar procedure holds for the multidimensional case.

4.3.1. Inversion method. Let X be a random variable with cumulative dis-
tribution function Fx(z). Let Y be uniformly distributed in (0,1). Then its
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cumulative distribution function is given by

0, y<O0
L, y=>1

A random point z distributed according to Fx is generated by solving the
following equation,

(4.3.19) Fx(z) =y
for z. We have the following theorem.

Theorem 4.3.3. x obtained by solving (4.3.19) is distributed according to Fx.

Proof. Since Fx is an increasing function, (4.3.19) has a unique solution.
Consider,

P(z <€) = P(Fx'(y) <€) = Py < Fx(€)) = Fx(9).
Hence the result. [ |

We shall exemplify the above procedure for the case of normal distribution.

Definition 4.3.2. A continuous random variable X has a normal distribution
iof the p.d.f is

fx(z) = 1 (@ —p?

exp | —
oV 2w p[ 202

and is denoted by N'(u, o). Here p is the mean and o® is the variance.

], —o0o < T <0o0.

Since X = pu + oZ, where Z is the standard normal variable denoted by
N(0,1), we consider only generation from N(0,1). The cumulative distribu-
tion function of Z is given by,

B %(1—erf(%)) z2<0
Fz(z) = % (1 +erf(é>> z > 0.

If u is a uniform random variable in (0, 1), then we consider the following cases.
If u < 0.5, then we solve

() -

z=v2erf (1 - 2u)

which yields
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—

z 0

Ficure 4.3. Sampling from standard normal distribution
N(0,1). ¢ is the cumulative distribution function of N(0,1).
u is a uniform random variable in (0,1) and z is the correspond-

ing standard normal variable.

(o) -

z=+V2erf(2u—1).

else we solve,

to get

4.3.2. Acceptance-rejection method. This method is due to von Neu-
mann [18]. The main idea behind this technique is to sample a random vari-
able according to some appropriate distribution and then subject it to a test to
decide whether or not to accept the point. Suppose that X is to be generated
from fx(x). We try to represent

f(z) < Ch(z)

where C' > 1 and h(z) is a distribution which can be sampled easily, for
example, using the inversion technique etc. If Y is sampled according to h(z),
we check if

X < CY.

If so, then Y is accepted, else it is rejected. The main drawbacks of this method
are the determination of a suitable function h and the existence of a C' which
is close to one so that Ch(z) actually approximates the function f. If one
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cannot find good candidates C' and h, this algorithm works quite slow for a
lot of points are rejected before one is selected.

To summarize, what we have observed in this section is that the Monte Carlo
method can be applied to approximate integrals in high dimensions. The
error estimate is of the order of 1/ V/N, where N is the number of particles
considered, independent of the dimension. The question which arises now is
that, is it possible to remain in the setup of particle methods and achieve a
better order of convergence. The answer to this question is yes and we name
the method as quasi-Monte Carlo and describe it in the following section.

4.4. Quasi-Monte Carlo method

The basic idea of a quasi-Monte Carlo method is to replace random samples in
a Monte Carlo method by well-chosen deterministic points. The choice of de-
terministic points depends on the numerical problem we are dealing with. For
the problem of numerical integration, the selection criterion is easy to find and
leads to the concepts of uniformly distributed sequence and discrepancy. In a
weak sense, we say that nodes x1,...,®, € I° are uniformly distributed over
I*, if every subinterval of I° has its share of points. The discrepancy can be
viewed as a quantitative measure for the deviation from uniform distribution.
The significance of the discrepancy for quasi-Monte Carlo integration will be-
come clear from the Koksma-Hlawka inequality, which bounds the integration
error in terms of the discrepancy.

4.4.1. Discrepancy. For the sake of convenience, we normalize the integra-
tion domain to be I* := [0, 1]°, the closed s-dimensional unit cube. For a given
integrand f, the quasi-Monte Carlo approximation yields,

(4.4.20) / £ (u) du ~ %Z F)

with ©,...,zy € I°.

Let P be a point set consisting of &1, ...,xx € I°. For an arbitrary subset B
of I, we define the counting function A(B; P), which indicates the number of
n for which &, € P. Formally,

N

A(B,P) = ZCB(XR)

n=1
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where cp is the characteristic function of B. If B is a nonempty family of
Lebesgue-measurable subsets of I°, then a general notion of the discrepancy
of the point set P is given by

(4.4.21) Dy (B; P) = sup ABP) As(B)

Bes| N
where )\, denotes the s-dimensional Lebesgue measure. It can be seen from the
definition that 0 < Dy (B; P) < 1. By considering suitable specializations of
the family B, we obtain the following two important concepts of discrepancy.

We put I* = [0,1)".

Definition 4.4.3. The star discrepancy Dy (P) = Dx(xi,...,xN) of the
point set P is defined by D3 (P) = D3 (J*; P), where J* is the family of all
subintervals of I* of the form [[;_,[0,u;), u € I°.

Definition 4.4.4. The extreme discrepancy Dy(P) = Dy(X1,-..,Xn) of the
point set P is defined by Dy(P) = Dy(TJ; P), where J is the family of all
subintervals of I® of the form [[;—,[ui, vi), u,v € I* .

The following propositions follow directly from the definition. Refer [19] for
proofs.

Proposition 4.4.1. For any P consisting of points in I°, we have
Di(P) < Dx(P) < 2°Di(P).

Proposition 4.4.2. If 0 < z; < 25 ... < zy < 1 then,

_ 1 on — 1
ToN TBE T o |

D}kv($1, . .,$N)

We now turn our attention on to some important error estimates for the quasi-
Monte Carlo approximation. For the sake of simplicity we start with the one
dimensional case due to Koksma. Refer [19] for proofs.

Theorem 4.4.4. If f is a function of bounded variation and has variation V(f)

on [0,1], then for any point set x1,xs,...,xNx € [0,1], we have
1 N
(4.4.22) /f(u)du-izf(x.) <V(HD% (1, .. an)
4. N 1 i)l = N\ Z1,...,TN)-
0 =

For the multidimensional case, we first need to extend the notion of variation
for functions of several variables. For a function f on I® and a subinterval J
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of I*, let A(f;J) be an alternating sum of the values of f at the vertices of .J.
Then the variation of f in the sense of Vitali is defined by,

(4.4.23) V() = sup D IA(f )

A more handy formula is given by

(4.4.24) VO (f) = /01 e /01

whenever the partial derivatives occurring are continuous on I°. For 1 <
E<sand 1 < i < dg < -+ < 4 < 5, let V®(f;4y,...,4) be the
variation of f in the sense of Vitali, restricted to the k-dimensional face
{(ur,...,us) €I* :uj =1 for j#iy,...,ik}. Then

duq - - - dug.

_oF
Oouq - - Oug

(4.4.25) V(=) Sy VO (friy, ... i)

k=1 1< <ia<-<ip<s

is called the variation of f in the sense of Hardy and Krause. Now we can
state the Koksma-Hlawka inequality.

Theorem 4.4.5. If f has bounded variation V(f) in the sense of Hardy and
Krause, then, for any point set &1, ..., xn € I°, we have

(4.4.26) < V(f)D%(z1,..., 2x).

1 N
| Fwdu= 53 (@)

The above inequality is not a crude estimate as it can be seen from the following
theorem.

Theorem 4.4.6. For any x1,...,xy € I° and any ¢ > 0, there exists a
function f € C®(I*) with V(f) =1, and

(4427) > D}"V(wl,...,wN) — €.

1 N
T Wi 3 (@)

A comprehensive list of discrepancy estimates of some QMC sequences can be

found in [19]. In general the star discrepancy in s dimensions satisfies,
log N)*
(4.4.28) Dy =0 (%)

and one cannot expect anything better than this. Since QMC sequences have
small discrepancy, they are sometimes called low discrepancy sequences. Some
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of the commonly used low discrepancy sequences are the Sobol sequence, Ham-
mersley sequence, Halton sequence and the Faure sequence. The following fig-
ure 4.4 shows the uniformity of a low discrepancy sequence in comparison to
random points.
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FIGURE 4.4. The figure on the left shows 625 random points
and the figure on the right shows 625 Faure points.

We now evaluate the same integral, (4.2.18), we took for the Monte Carlo case
and compare the results.
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FIGURE 4.5. The figure on the left shows the order of conver-
gence for dimensions 2 to 20. The figure on the right shows the
computational time with 10° Faure particles.

It can be inferred from figure 4.5 in comparison with figure 4.2, that QMC
beats Monte Carlo both in accuracy and computational time.
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Remark 2. To get QMC points with respect to other measures, one can use
the same methods as described in section 4.3.

Though QMC is promising for plain integration, it cannot be applied directly
for particle simulations as will see in section 4.6 of partial differential equations.

The original problem we are concerned with is the Fokker-Planck equation.
As we saw in the last chapter, the idea of the splitting method is to solve the
advection part and diffusion part separately. We now consider the particle
approximation of the two subproblems.

4.5. The advection equation

The advection equation can be written as

du
— + div(bu) = 0, T e R, t>0
(4.5.29) gr divibw) =

u(x,0) = ug(x) zeR.

The operator I : % + div(b- ) is called the advection operator and physically
it signifies the movement of a conserved quantity. Geometrically it can be
interpreted as the transfer of information along the curves given by & = b(x, t),
which are called the characteristics. The first step in applying the particle
method would be to sample the initial value uo(x) using either MC or QMC.

(4.5.30) uo(z) = [N = Zw,5o

where w;, i = 1,..., N are the weights and «?, i =1,..., N are the positions
of the sampled particles. Particles now move along the characteristics given
by & = b(x, 1), so that, with the simple Euler discretization

(4.5.31) 't =2 + At b(x]).

In terms of the particle distribution we now define the iteration as follows,

N
(4.5.32) uttt = w !
=1
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Now for any test function ¢ € C1(R?) we have

Ll L TRl
At ’GO - P At (p
1 N
= 5 2w (e + bla]) At) - o(})]
=1
1 N
v D wn [Velal) - blap)] At
=1
N

= Y w V) - blat)
= (u",b-Vyp)
= —(div(bu"), ¢)

So it is clear that
un—|—1 —un

At

So the particle approximation u™ approximates (4.5.29) in a weak sense.

(4.5.33) ~ —div(bu")

We again consider the system (4.5.29). We have already seen in section 2
of chapter 3, that the solution of the transport problem can be written as
uo(X (0; 2,t))J(0; 2,t). Sampling the initial value gives,

N

1
4.5.34 i =) —d.
(4.5.34) i 2_; ~7 0t
The position of the particles at time ¢ is given by,
(4.5.35) z;(t) = X (t;z),0)

and the approximate solution is

N
1
4.5.36 u(t) = — g (1) -
(4.5.36) u(t) ; 0=
To compute the star discrepancy, we consider the family

(4.5.37) F={Q|Q=1[_,(—o0,w;), w e R°}.

Now,

(4.5.38) Dy = sup
QeF

/Quo(X(O;:c,t))J(O;cc,t)dm—/

Q

dﬂ(t)‘ .
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We consider the two terms in (4.5.38) separately. On using the transformation
y = X (0;x,t), the first integral reduces to,

/uo(X(O;a:,t))J(O;:c,t)dw:/ uo(y)dy.
Q

X(0;Q,1)

The second term can be written as,

/Q dii(t) = /Q d(é %5%(,:)(@) _ /Q d(ﬁ; %5,((,5;359,0)(@).

Again using the transformation X (0;x,t), we get,

/ dii(t) = / diig.
Q X(0:Q:1)

Combining the results, we get

/ uo(y)dy — / dily
X(0;Q,1) X (0;Qt)

The above expression is actually a discrepancy, though in the transformed sets
X (0;Q,t). So what we actually require is the relation between X (0;Q,t)
discrepancy and @ discrepancy. Niederreiter [19], shows a similar result for

D}, = sup
QceF

the case of Jordan measurable subsets of I, but further investigation needs to
be done to generalize the same to the family F considered above.

4.6. The diffusion equation

The diffusion equation also known as the heat equation describes the evolution
in time of the density of some quantity such as heat, chemical concentration
etc. The heat equation appears as well in the study of Brownian motion.

We are interested in the solution of the following

O _ Ay meR, t>0
(4.6.39) ot
u(x,0) = ug(x) relR

subject to the extra conditions that ug(2) remains bounded and

(4.6.40) / up(x)de =1

In this case we know that the solution for any time ¢ can be written down as

(4.6.41) u(x,t) = Gy xup = / Gi(x — y)uo(y)de

S
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where Gy(x,t) is the fundamental solution of the heat equation and is given
by

(4.6.42) Gy(z) = { (4mt) * exp [~|||*/4t] ¢ >0
0 t < 0.

Note that G is singular at (0, 0).

Consequent from the definition, we have the following.

Lemma 4.1. For eacht > 0,
/ Gi(x)dx = 1.

Proof. Observe that the integrand is separable and can be written as

° 1 x;?
4.6.4 11/ — I
(4.6.43) 5 Gi(x)dx i_I/R i exp [ 1 ] dz;

Each of the integral appearing in the product is equal to one as it can be seen
as a Gaussian density with mean 0 and variance 2t. Hence the result. [ |

If one assumes that the initial condition is a Gaussian distribution, then it
follows from the solution formula that u(x,¢) > 0 for all ¢ > 0. This can
be easily seen from the solution formula as the convolution of two Gaussians
is again a Gaussian and Gaussian is always positive. Typically for the heat
equation, the temperature at any point & is positive meaning that the velocity
of propagation of heat is infinite.

With (4.6.40) it can be further shown that

Result 4.1. For allt > 0,
/ u(z, t)de = 1.
Proof. By 4.6.41,

/s u(z,t)de = /S 5 Gi(x — y)uo(y)dyde.

Letting z = & — y, the integral reduces to
/ / Gi(2)up(y)dydz = / Gt(z)dz/ uo(y)dy =1
)

on using lemma 4.6.43 and (4.6.40). |

(4.6.44
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As far as the particle approximation of advection is concerned, it is clear from
the previous section that the operator 9; + div(b-) is taken care of by moving
the particles along the integral curves of b. However, in the case of diffusion
the dynamics of the particle is not so straightforward. This was overcome
by a method proposed by A. Chorin. He used a random process to simulate
diffusion. The random process, however, should be chosen in a suitable manner
to approximate diffusion.

Although, the algorithm works for Monte Carlo points, it is not straightfor-
ward to replace MC by QMC and expect better accuracy as illustrated in the
following example.

Example 1. Suppose, we would like to solve Cauchy problem for diffusion,

ou 1 °L 0%

(4.6.45) o 24 P
u(0, @) = Gi(w)

where Gy is the fundamental solution of (4.6.45) given by

(4.6.46) Gy(x) = (2mt) " /* exp (—%) :

A particle method algorithm would typically be to sample a set of N particles
according to the initial condition and increment the particle position at each
time step by AN (0, AtI) distributed random numbers. Figure 4.6 (left) shows
the result of the simulation using Monte Carlo points. A similar computation

0.4 0.4
0.3 0.3 /\
0.2 0.2
0.1 0.1
" 10 0 10 10 0 - 10

FIGURE 4.6. Monte Carlo simulation of diffusion (left). QMC
simulation of diffusion (right).
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replacing MC points by QMC points, does not yield the expected result. This is
because of the correlation among the QMC points which spoils the convergence
and can be explained with the following 1-d argument, [17]. Assume we had
taken N as a power of two and used the van der Corput sequence,

11315371 9 5 13
(Tn) =15 11 0 2 T8 TR TR

then all the odd particles would always get a positive increment and all the even
particles would get a negative increment, thereby the particles get drifted away.
The problem of correlation was first studied by Lécot and he proposed to sort

0.75 3 .

0.5

'_A

025 2 .

FIGURE 4.7. The van der Corput sequence. All even numbered
points are less than 0.5 and all odd numbered points are greater
than 0.5

the particles and give increments in a quasi random way. A convergence proof
was also given for the spatially homogeneous Boltzmann problem. Morokoff
and Caflisch [17], applied the idea of Lécot to simulate diffusion in one and
two dimensions and obtained significant improvement over Monte Carlo. The
results for the 1d case is as depicted in figure 4.8. However the idea of sorting

was not clear in high dimensions.

Lécot [15], introduced a sorting algorithm which was adaptable to higher di-
mensions and also shuffled the particle positions at each time step. The sorting
is done with respect to each coordinate of the particle position and convergence
is proved for any dimension s. For the simple diffusion problem, there is some
improvement achieved over the standard Monte Carlo method. However, in
order to beat MC in terms of order of convergence the required particle num-
bers are very large in high dimensions. For a problem in s dimension, a Faure
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0.4 0.4
0.3 | 1 0.3
0.2 | 1 0.2
0.1 | 1 0.1
0 0
-10 0 10 -10 0 10

FIGURE 4.8. (left)Monte Carlo simulation of diffusion. (right)
QMC simulation of diffusion with sorting.

generator of base b, a prime > 2s has to be taken. The minimal particle num-
ber is then b°. To be concrete, for the case s = 10, the base b is 23 and the
minimal particle number is of the order 23'9(x 10'3).

Lécot and Schmid [16], improved the previous scheme of Lécot and replaced
the 2s dimensional sequence by a s + 1 dimensional sequence. The method
was based on partial discretization and numerical results were presented only
for the two dimensional case.

We consider now the convergence of the method developed in [15]. To do so,
we need the following definition.

Definition 4.6.5. Let X be a point set consisting of ©1,...,x,. If p is a non-
negative Riemann integrable function on R® with the property fRs plx)de =1,
then the star p-discrepancy of X s defined as

Dy (X;p) = sup
weERS

7

%;%(ay) - [ culwptw)iy

Rs

where o,, denotes the characteristic function of the interval [];_, (—oo, w;).

With this definition, the result in [15] can be stated as follows. Let X™ be
the point set consisting of :cg"), .. .,ccs\?) , then the star c-discrepancy of X"
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satisfies
n—1

(4.6.47) Dy (X™;c,) < Dy (XD o) + phtrtdettlde/2IN " Dy (ym)
m=0

1 R S
ol gt T

where b is the smallest prime > 2s + 1, N = phttds—1tds with d; > 0,
i=1,...,s, is the total particle number considered, Y is the (¢, m, s)-net used
and ¢, is the exact solution of the diffusion equation at the n** time step. The
estimate shows that the method is better than MC for d; > 1. This actually
leads to large particle numbers and also the order of convergence is close to
0.5. However, the estimate fails on setting one or more of the d;s to zero. To
be concrete, if we set d; = 0, then from (4.6.47), it is evident that the last term
on the right has a leading term n, and this does not go to zero as N — oo.

We pick up the idea of Lécot in [15]. In our method, we consider a s + 1
dimensional QMC sequence and choose d; = 0,7 > 2, so that we can work
with less number of particles. For example, in the case s = 10 we can start
with 11 particles and continue further with multiples of 11. Though estimate
(4.6.47) fails to show convergence in this case, the method works as we shall
see later in the chapter on numerical results.

We now focus on the particle approximation. As before,

N
1
(4.6.48) @ =1 = ~ D Gg0.
=1

Using the solution formula, the solution after one time step (At) can be written
as

@oa) @)= [ Gule—wdlllw) =y Y Cale—al)

Observe that (4.6.49) is no longer a particle approximation but a smooth func-
tion of . In order to get back to particles, we need to do another step namely,

M
(4.6.50) it =ln = wiby.
=1
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Observing that two measures are close to each other if they integrate general
test functions to approximately the same value, we consider

/s o(x)i' (z)de = N Z/s z)Gay(x — x))dz

= %Z/ (y + 0)G ar(y)dy.

We now use the transformation z; = H;(y;) where

Hi(z) = % <1 + erf <\/4L—At>) :

Thus, H: R* — [0,1]* and the above integral transforms as

/sgp(:c) E/Is 2) + 20)dz.

Evaluating the z integral with N' QMC points yields

1 X
(4.6.51) / P(H () +a)dz = 7 > o(H ' (2)) +27)
S ]:1
so that
11 X N
~1 _ -1 . 0
[ @i @io =33 > olH () + )

We observe that in the above process we use M = NN  particles. Since we
need a large N for good accuracy, the particle number increases drastically at
each step. In fact

(4.6.52) ug — [[) — @t — HﬁNl 2 — HNN N

So after k steps the particle number is N(N')¥, which is enormously large even
for reasonable values of k. Also the memory required to store these values is
huge and this makes the scheme expensive.

In order to stay with a fixed number of particles, we do the following. We
start with partitioning the unit interval [0, 1] into disjoint subintervals I}, j =
1,2,..., N with the property that |I;| = 1/N,j=1,2,...,N and set x; = 1,

that is
1 ifxEIj
xi(@) = { 0 ifx¢l
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Then, we have

. 1
/o Xi(s)ds = N

This is a result we need presently for simplification.

/S o(z)ut (z)de = % é/s o(H (2) + x?)dz

B /01 / gxi(S)w(Hl(Z) + x0)dzds

= / Fn(z,s)dzds
Js+1
with
N
Fn(z,s)dzds = Z/ o(H '(z) + ).
=1 v I*

We now approximate the above integral with N QM C' points,

N
1
F dzds ~ — F
/1s+1 N(2,s)dzds N; N (2, Sk)

= % DY xilse)eE ™ (25) + ).

k=1 i=1
Observe that for each £ € {1,2,..., N}, there exists some i = o(k) such that
Since U, I; = [0, 1],

N N
1 1 )
N ZFN(Zka k) = N Z‘P(}'I Hzk) + "Bg(/c))
k=1 k=1 CE’}C
— [ @ dllie@)
where,
N
1
N
(4.6.53) [T =+ D_da-
k=1

Result 4.2. If each of the intervals I; contains exactly one point sy, then

the map o is invertible, i.e, given k € {1,..., N} there exists a unique i €
{1,...,N} such that k = 07 (1), and

(4.6.54) {z |k=1,2,..., N} ={zp + H '(2,-1)) | k=1,2,...,N}.
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According to the above result, the particle position after one time step is
obtained by incrementing each component of the present position by an amount
sampled from normal distribution with mean zero and variance 2At.

In order to ensure that each of the intervals /; contains exactly one point, we
use the concept of (¢, m, s)-nets.

Definition 4.6.6. An elementary interval in base b > 2 in dimension s > 1
is a subinterval E of I* of the form

E=]]lab™%, (a; +1)b~%)

=1

with a;,d; € Z,d; > 0,0 < a; < b% for1 <i<s.

With this notion, we define:

Definition 4.6.7. Let 0 < t < m be integers. A (t,m,s)-net in base b is a
point set P consisting of b™ points in I° such that every elementary interval
E of volume b*™™ contains exactly b* points.

In our analysis, since we require that each interval I; should just contain a
point, we choose ¢ = 0.

Now it remains to see how good we have approximated

N
1
~— E F
/Ierl Fn(z,s)dzds N 2 N (Zk, Sk)

using N QMC points. The answer is provided by the Koksma-Hlawka inequal-
ity. Accordingly, the error is V(Fy) - Dy, where V(Fy) is the variation of
the function Fy and Dy is the discrepancy of the s + 1 dimensional QMC
sequence. In order to keep this error small, we wish to have the variation and
the discrepancy as small as possible. It may be noted that V(Fy) depends on
N and can be as large as 2N as seen from the following example.

Example 2. Consider the 1d case with
1 2
up(x) = exp|—x°/2
o(2) = = expl-a?/2

and the error after one time step At =1/2 .

We take as uniform random numbers u; = (N — ¢ 4+ 1/2)/N which is evenly
distributed in [0, 1]. Since the initial value is a standard Gaussian, we do the
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initial sampling by the inversion method outlined earlier. In our notation this
is
20 =H ') i=12,...,N.

As test function we take 1(_0)(z). Then

F(z8) = - xi(s)a! + H™'(2))

Note that
o<z +H N (2) <0

is equivalent to

,—1/2
0<z<H(—2%) =1-H(z%) =1—u; = - N/ .
Hence Fx(z,s) can be written as,
N
Fy(z,8) =Y 101 uy(2)1a)(9)
i=1
VA \
1f----mmmmmmmm - .
Fy=0 |
C N N N N N )I

I S S S S >S
Onon LIy I
FIGURE 4.9. Graph of Fy(z, s) in the z,s plane.

If we choose a special partition as shown in fig. 4.10, then since the support of
function Fy has 2N — 2 corners, V(Fn(z,s)) > 2N — 2 and Koksma-Hlawka
inequality does not ensure convergence in this case. It is therefore desirable
to make the variation less thereby making the error small, again by Koksma-
Hlawka inequality. Consistent with later use, we shall denote the support of
Fy in the (z, s) plane by Ey. The trick is to reduce the number of corners of £y
in order to make the variation small. We return now to approximating the area
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|
O

FIGURE 4.10. A partition to calculate the variation. Observe

that each square containing a corner contributes a 1 to the vari-

ation.

Z )

Z\

FIGURE 4.11. Graph of the approximations &£, (left) and &y

(right) in the (z, s) plane. Note that £y C Ex C En-
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of £y. We consider instead of N corners, the upper and lower approximations
of Ex, En, €y respectively, with v/N corners as shown in figure 4.11. Thus we
get by Koksma-Hlawka inequality, that the error, using QMC points is v N /N,
where the factor 1/N is taken as the discrepancy of the QMC sequence up to
a logarithmic factor. However, we have considered a different function and
hence we have to take into account the area of difference between the upper
and lower estimate A(Ex \ €y ).

Z )
1

s
FIGURE 4.12. The shaded area shows the graph of Ex \ €-

The area of difference can be seen from figure 4.12 to be 1/v/N. Thus we see
that we can achieve 1/ VN convergence with our algorithm. This seems to be
the optimal choice since we need to strike a balance between approximating
the function and keep the area of difference roughly equal.

We return to the problem of estimating the approximation, by comparing the
measures on the family of intervals

(—oo,w) = H(—oo,w,-) weR

i=1

in the general multidimensional case. Our test functions are now ¢(x) =
1(_sow)(x). Observe that

—oco<HY2)+ 2! <w
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is defined componentwise
—00 < H; '(2) + (x); <w; Vji=1,...,s.
Hence we have
0<z<Hw-—=zx))

We introduce
N

Ev = J0,H(w - 2?)) x I,

=1

Then,
N
ley(z,8) = Zl(o,H(w—wg)))(z) 17,(s)

=1
N

= > x(5) Lo (H'(2) + 27)
=1

= FIyn(z,9)

Hence with [ = & 3" | 6(,.5:), We have
[T} (o0, @) — (@A) (—00,w)|
_ ‘ / 1e, (2, [T (dzds) — / 1, (2, 5)dzds
Is+1

= | TV (Ew) = Aunslen)

From the definition of €y, it is clear that it depends on w. But what we are

interested in is an estimate independent of w. Since £y has too many corners
we go over to the approximations £, and &y with less corners. Note that if
éN Cén C gN, then

TV (Ewn) <TTV(Ew) < TT"(Ew)
= [1"Ex) — An1(En) STTV(EN) = Asr(En) S TTV(EW) — Asra(En)

We now need an estimate of A\;,1(Ex). Note that

“Xs1(En) = =XNp1(En) = A1 (En \En) = —Asi1(En) — Asr1(En \ Ep)
“s11(EN) = “A11(En) + As11(En \EN) < —Xs11(EN) + Asi1(En \ EN)
Hence,

= [TT¥E) = A (Ex)] = Asa(En \ ) < [TV (En) = Assa(En)

< [TT¥(En) = AenaEn)] + Aeia(En \ Ew)
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If we set,

Ay = max{‘HN(éN) - )\s+1(§N)‘ ; ‘HN(gN) - )‘s+1(5N)H
By = Ap(En\Ey)
Then,
(4.6.55) ‘HN(SN) - ASH((‘JN)‘ < Ay + By
Having reached this stage, what is now important is to construct the suitable
sets £ and Ey. We need to have a nice structure for £y so that we can have

the bounding boxes £, and En. Assume that the points m? are sorted with
respect to the first coordinate in decreasing order. Then,

H(w — m?)l

are sorted in ascending order. The subscript 1 denotes the first component of
the vector under consideration.

A typical plot of £y intersected with (z1,s) plane I' looks like as shown in
figure 4.14.

21 A

I

0 1 S

F1GURE 4.13. The shaded region shows the graph of Ey N T in
the (z1,s) plane.

It may be observed that £y has lot of corners and so as shown in example 2,
the variation of Fjy can be large.

Assume we start with N particles and let N = ™ for some b and m. Consider
groups of particles of length b* for 0 < p < m. So there are in total o™ *
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groups. Define,

(4.6.56) U [0 Hy((w — 2 1ypsn), )) ) I (= 1), k)
pm—p
(4657)  Ev:= | [0, Hi((w—ahy),)) x I"7F x [(k — DB, kb*—™)
k=1
1) 1)
1 1

0
(a) (b)
FIGURE 4.14. The shaded region shows the graph of (a) £, NT
and (b) ExNT in the (2y,s) plane. In thiscaseb=2,m =3,y =1

It is clear from the construction that £ C £y C Ex and we have

b H

Asr1(En \Ey) < Z A1 (Hl — (k—1ypn 1)) Hi((w — ‘I’gbu)ﬂ) by

)\1 (Hl((w —aY),), Hi((w — m?v)l)) pH—m
(4.6.58) < prm

IN

Note that in the second step, we have sorted the position of the particles with
respect to the first coordinate. Thus,

(4.6.59) By < b

What we finally need is an estimate on the discrepancy of a point set on an
interval in /°. We introduce,

(4.6.60) Dy = sup |[[V[a,b) — Nssa[a, b))

a',b'eIS
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1A

-

0 1 S

FIGURE 4.15. The shaded region shows the graph of Ex \ £y
in the (z1,s) plane. Note that it is the union of disjoint sets.

Then,
(4.6.61) ITV(Ex) = Assi(Ex)| = 0 Dy

since £, consists of b # rectangles and each of them are bounded by Dy.
A similar estimate holds for £y since it has a similar structure and hence we
have,

(4.6.62) ‘HN(EN) . )\5+1(5_N)‘ — b 1Dy
In our terminology,

(4.6.63) Ay <™ HDy

Note that a rectangle [a',b) € I* has 2° corners and

v <28

')
By Koksma-Hlawka inequality we have,
Dy <V(1

[a’,b'))D}kV

Combining the results we get,
‘HN(EN)_)\S—I—l(gN)‘ = AN+BN
‘HN(gN)_)‘s—H(gN)‘ = AN+BN

< bm—uD}kv + pH—m

We thus have the following lemma.
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Lemma 4.2. The error in the quasi-Monte Carlo approximation is given by
Dy <" Dy + v+ ™

where N = b™ s the number of particles, i is an integer with 0 < p < m and
D3 is the star discrepancy of the (0, m, s + 1)-net.

We replace our estimate obtained in lemma 4.2 with the estimate obtained in
lemma 2 of [15] and the rest of the proof is as done in [15]. In our discussion
on the particle method for the diffusion equation, we have proved the following
theorem.

Theorem 4.6.7. Let X" be the point set consisting of mﬁ"), cen, iBS:,l), then the
star c-discrepancy of X" satisfies,

n—1
(4.6.64) Dy(X™;¢,) < Dy(X% o) + 0™ Y Dy (Y ™) + np~m

m=0

where ¢, s the exact solution of the diffusion equation at the n'* time step and
Y is a (0,m, s+ 1)-net in base b, the smallest prime > s + 1.

The star discrepancy of a low discrepancy is as given in (4.4.28), which is
essentially 1/N behavior, except for the logarithmic factor. From (4.6.64), we
see that the error has two contributions, namely, 6™ #D3(Y) and b* ™. In
order to minimize the error we choose i such that

(4.6.65) —p=p—m

which yields p = |m/2] or p = [m/2], up to a logarithmic factor. This means
that we can achieve an order of convergence 1/v/N, up to a logarithmic factor,
which is comparable to the Monte Carlo estimate. It is now the comparison
between deterministic 1/ V/N versus the stochastic 1/\/N convergence. We
shall later see in the chapter on numerical results, that there is still some ad-
vantage in using QMC.

Combining the observations in the last two sections, the algorithm of our par-

ticle method in s dimensions can be summarized as follows.
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Algorithm 4.1.

Input m > 1, At andn; T =nAt

Sample N = b™,m > 1 particles from the given initial distribution
Initialize n < 0

Transport all the N particles along the integral curves of b

or s L =

Sort the N particles according to the magnitude of the first coordinate
of the particle positions
6. Diffusion
fore=1,N
(i) Produce a (0,m,s+1)-net Y = (y1,...,Ys+1)
(ii) [b™y1] yields a particle number P
(iii) Use the remaining s coordinates of the genmerated se-
quence to increment the coordinates of the Pth particle by
N(0,2At) variables
end;
T.n+—n+1
8. if mAt<T)
goto 4
else

stop







CHAPTER 5

Numerical Results

In this chapter we summarize the results of various numerical simulations that
have been carried out using different approaches. We mainly compare the
computations carried out on the algorithms presented in [15] and [16] with
the one developed in this thesis. All the computations are done on a AMD
Athlon 1400 MHz machine with 1.5GB memory running Debian Linux 3.0.
The CPU time we shall refer to is as measured on this machine. The complete
implementation is done in ANSI C language.

In our computations we take as (t,m, s) — net in base b the Faure sequence
[5]. Construction of such nets have been proposed for example by Sobol [28],
Faure [5], Niederreiter [19]. Generally it takes O(m?s) time to generate a point
using the straightforward algorithm. The method proposed by Antonov and
Saleev to generate a (t,m, s) — net in base 2 requires only O(ms) time. This
method was generalized by Eric Thiémard [30] to an arbitrary base b based
on the idea presented in [29]. The calculation uses integer arithmetic thereby
guaranteeing high precision. For the Monte Carlo simulation, we use the Unix
inbuilt random number generator function drand48.

For the sorting, we use the quicksort algorithm proposed by Hoare, [26]. Quick-
sort is based on the method of recursion and is the fastest known algorithm
requiring about O(nlogn) steps (for a large number of elements) in contrast
to the other sorting rules like insertion sort, bubble sort which require O(n?)
steps. The worst case for quicksort corresponds to already sorted data in which
it takes O(n?) steps.

The chapter is organized as follows. In the first section we review the superi-
ority of QMC over MC both in accuracy and computational time for sampling
initial values. The second section deals with the problem of plain diffusion
in high dimensions. In the third section we present results of the simulation
carried out on the Fokker-Planck equation derived earlier.
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5.1. Integration

As a first task, we compare the time taken by the Faure generator and the
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FIGURE 5.1. Time taken to sample particles distributed accord-
ing to standard normal for dimensions 1 to 12 (the first row refers
to dimensions 1,2 and 3, the second row 4, 5 and 6 and so on).
The stars correspond to MC whereas the circles correspond to
QMC. The x-axis is set to log scale and denotes the total number
of particles considered; the y axis shows the CPU time taken in
seconds.
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random generator to sample particles distributed according to standard normal
distribution in various dimensions. We use the inversion technique outlined
earlier for sampling. Since the standard normal distribution, N (0, I), is radial,
the inversion technique can be applied to each coordinate to produce a vector
of size equal to the given dimension distributed according to N(0,1). It is
clear from figure 5.1 that it is indeed economical to generate the Faure points

even in high dimensions.

Having seen that it is faster to generate and use QMC points, we now show that
they approximate the sampled function better than MC points. Consistent
with later use, we consider sampling from the standard normal distribution
f(z). If we take B as the set of 1000 boxes having a random center and
random length uniformly distributed in (0,1) and define

n /|

where P is the set of points sampled from f, then for a fixed dimension, D%

(5.1.1) D = sup

can be calculated for each N. A parameter « is fit in such a way that
(5.1.2) DY = CN*°

in the sense of least squares. We see from figure 5.2 that the order of conver-
gence of QMC is significantly better than MC.

-0.4
* * x ¥ %
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-05 * % * ¥ i
* T
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-0.6 o
O O
© o
5 -0.71 o)
O
-0.8
@]
-0.9f o
-1 Q L L L L L
0 2 4 6 8 10 12
Dimension

FIGURE 5.2. Initial sampling error. Value of o in MC (stars)
and QMC (circles) simulations restricting to a maximum of 10°
particles.
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Remark 3. It is to be noted that the rate of convergence we get by the least
squares fit is dependent heavily on the data under consideration. Especially for
the strongly fluctuating results obtained with MC and QMC, an extra data point
can improve or worsen the order of convergence. For the data set presented
in figure 5.3 for example, the order of convergence is reduced by including the
error value corresponding to the largest particle number.

5
IogloN

Ficure 5.3. The data set is represented by the solid line. The
least square fit of the data is shown by the dashed line and the
same for the data without the last point included is shown by
the dash dot line.

Since the particle numbers cannot be freely chosen in our QMC algorithm
for diffusion problems, the size of the data set used for fitting is eventually
restricted by memory limitations. Thus the estimated convergence order is not
of high precision and it should just give an indication of the general behavior
of the algorithm.

5.2. Plain diffusion

We now consider the plain diffusion problem in dimension s.

uy = Au

(5.2.3) T iex 2
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The reason for choosing this problem is that the analytical solution can be
calculated quite easily and this is helpful in comparing our numerical results.
The exact solution for this problem can be written down as the convolution of
the Gauss kernel G(z,t) with the initial value u(z,0). Thus

v =l
(5.2.4) u(@,t) = O+ p( (1+4t))

The nature of the exact solution facilitates calculating moments of the form

Jza llx||5u(x, t)de, where ||z||, denotes the 2-norm of . In fact, we have for
v €N, with g = 1/14’74’5

0 it oy =2u+1
5.2.5 T t)dx = u-1
( ) s ”17”2’(1,((13, ) T ,BQM H (S + 2m) if = 2:“‘

m=0

We now compare our implementation with the one described in [15] and Monte
Carlo. The first aspect in this regard would be to check the accuracy of the
methods. With the same notion of discrepancy explained earlier, we calculate
« for dimensions 1 to 8 taking 10 time steps of 0.0001 each.

Dim | MC | QMC | QMC [15]
0.56 | -0.47 | -0.58
2045 | -0.44 | -0.59
0.57| -0.49 | -0.64
048] -0.63 | -0.56
0.47] -054 | -0.57
0.64 | -0.59 | -0.62
044 | -053 | -0.57

OO | x| W|N

TABLE 5.1. Simulation of diffusion.

From table 5.1 we conclude that our method nearly obeys the estimate we
have established earlier. One can also observe that the algorithm QMC [15]
outperforms both MC and QMC. In view of the error estimate in [15], this is
actually not expected. Choosing, for example, N = b** and d; = k for all 4,
the estimate predicts a convergence like 1/N /25 The d;’s in our calculation
have been chosen as shown below for the case s = 4.
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di|dy|dsy|dy| N=0bXd
1|1/0/|0|121
1/11]1]0/1331
111114641
211 |1]|1]161051

TABLE 5.2. Various combinations of d;’s used in our computation.

Regarding the computational time we start with a comparison of MC and QMC
again doing 10 steps of 0.0001 each. The results are summarized in figure 5.4.
It is clear from figure 5.4 that QMC is faster compared to MC especially in
high dimensions which is in accordance with the results in section 5.1.
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FiGURE 5.4. CPU time required by MC and our method for
ten steps of plain diffusion for dimensions 1 to 9. The stars
correspond to MC whereas the circles correspond to QMC. The
x-axis is set to log scale.
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A comparison between QMC and QMC [15] is not so straight forward, because
the two methods work on completely different particle numbers. For a problem
in s dimension, we just consider a s + 1 dimensional Faure sequence in base b,
the least prime number > (s+1), whereas in [15], Faure sequence of dimension
2s in base b, the least prime > (2s + 1) is considered. So we cannot estimate
the time required to carry on the computation with a fixed number of particles.

The main difference between QMC and QMC [15] is in the sorting rule. So
the difference in computational times can be viewed as the time to sort the
particles according to the two implementations. From figure 5.5, it is clear that
multi-index sorting takes considerably much more time compared to sorting
only along one dimension. Observe that for 1d case both the methods coincide.
The percentage of sorting time in QMC can be estimated by comparing figures
5.4 and 5.5.

OI@PBBRRRIR®®

-0.5
-1 0
1 2 3 4 0
4 10 10 3
A
3 *
2 5 5
1 e} q d
& o A
ob—o—e—e 0 OO 0 SO
2 4 6 0 2 4 6 0 2 4 6
1.5 ¥ 6 m 60
e * * *
b * *
1 4 40
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0 o 0 S 0
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F1GURE 5.5. Comparison between sorting with respect to the
first coordinate and full sorting as in [15] for dimensions 1 to
9. The stars correspond to QMC [15] whereas the circles corre-
spond to QMC. The x-axis is set to log scale.
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Since we are finally interested in calculating certain second order functionals
of our original Fokker-Planck equation, we now proceed calculating the same
for the simple diffusion problem.

-0.1
o
-0.2 o o
o o
-0.3
o
-0.4
* (@] (@]
¥ *
-0.5} * * " *
* *
_06 L
2 4 6 8 10
Dimension

Ficure 5.6. Convergence of MC and our method for dimen-
sions 2 to 10 in calculating the second order functionals. 10
time steps with At = 0.1 were taken. The circles correspond
to QMC whereas the stars correspond to MC. The convergence
order of the worst case error is plotted.

By worst case error we mean the maximum error taking all the second order

moments

(5.2.6) / zixju(x, t)de 1,7 =1,2,...,s

into consideration.

It is clear from figure 5.6 that MC outperforms QMC quite considerably. This
is not surprising in so far as the Koksma-Hlawka inequality cannot be applied to
the present situation for the variation of the quadratic functions is infinite. In
order to understand the dismal performance of QMC, let us consider a 1d case.
We consider just 64 particles (figure 5.7) and allow them to undergo diffusion
until time ¢t = 1 with a time step of 0.01. It is seen that while MC particles
remain confined, a few QMC particles drift away with considerable velocity.
The reason for the particles drifting away is obviously due to correlation among
the QMC points. Since the quadratic functionals give high weight at large
distances, it now seems natural that the non-diffusive behavior of the far out
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FI1GURE 5.7. Particles performing diffusion in 1-d. MC to the
left and QMC to the right.

particles spoils the convergence order. Consequently, one expects even worse
convergence orders by taking higher order moments of the solution like

(5.2.7) / 2|5 u(z, t)da.
Rs

However, these expectations are not satisfied as can be seen from figure 5.8,

_0_536

R

Dimension
FiGure 5.8. Convergence of MC and our method for dimen-
sions 2 to 6 in calculating [ |||/, u (e, t)de. The circles corre-
spond to QMC whereas the stars correspond to MC. The worst
case error is plotted.
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and we have to leave the question concerning the reduction of convergence
order unanswered.

At this point it might be disappointing to apply the method for our Fokker-
Planck problem, in which we have to evaluate the moment functional with an
unbounded weight function. It turns out however, that the algorithm works
remarkably well. In view of the comments above, this could be explained by
the presence of the additional drift term in the equation (spring forces) which
counteract diffusion and suppress particles drifting away.

5.3. Numerical simulation of Fokker-Planck equation

We are interested in the steady state solution of

oY 0 < ol ) o O
5.3.8 — = — | kQ, — — + N
05 ot ; aq, "%~ 5q;)" ; 0Q; 0Q,
subject to suitable initial condition in order to evaluate the stress tensor,
9¢
( ) T ; R3WNV-1) Q] 3Q] ’(/J Q

and calculate the viscosity 1 and first normal stress difference coefficients given
by (2.5.53) and (2.5.54) respectively. In other words this means to say that we
would like to evaluate,

(5.3.10) =~ lim Z /R v 5 5 »dQ

Numerically we do it as follows. Consistent with algorithm 4.1, P particles are
sampled from the initial distribution and they undergo transport and diffusion
according to the dynamics of the equation. The material functions n and ¥
are calculated at every time step till steady state is reached.

A typical plot of viscosity and first normal stress difference coefficient is as
shown in figure 5.9 (taken from the dumbbell case with 5° particles). However,
in the higher dimensional case there is an initial spike in the values of viscosity
and first normal stress difference coefficient as can be seen from 5.10. This just
means that one needs to run the simulation for a longer time till the stationary
values are obtained. The following figure 5.11 shows the results of simulation
run up to time 7" = 500 in the case of 8 beads and the stationary situation can
be observed.
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FIGUrRE 5.9. Typical plot of viscosity (left) and first normal
stress difference coefficient (right) versus time.
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FIGURE 5.10. Plot of viscosity (left) and first normal stress dif-
ference coefficient (right) versus time showing initial spike in the
case of 8 beads.
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FIGURE 5.11. Plot of viscosity (left) and first normal stress dif-
ference coefficient (right) versus time showing stationary situa-
tion in the case of 8 beads.
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Remark 4. It can be observed from the expression for TP, that the tensor is
symmetric. The only property which needs to be verified is the equality of 7],
and 7F,. It is observed that the relative difference in their values remain within

4%.

Now we study the dependence of the steady state values of n and ¥ on the
initial conditions. We consider the following three cases with reference to the
dimensional variables, but we do suitable transformations to adapt to non-
dimensional form.

1. The position of the connector vectors are independent Gaussian distributed
with mean zero and variance one.

2. We start from a delta distribution, that is to say that all beads are on top
of each other at the origin

3. We take ¢(Q,0) = 1, that is we start with the equilibrium steady state
solution of the flow problem corresponding to fluid at rest.

In the first case, we do the usual inversion technique to generate the standard
normal variable and use the transformation Z introduced in subsection 2.5.2.
For the last case, we use the acceptance rejection technique to sample according
t0 1¢q. The first result is marked with an SN to represent sampling from normal
distribution, the second with DD to signify the delta distribution and the last
with EQ to emphasize equilibrium distribution. From figure 5.12 and 5.13, it

14 : ‘ ‘ : 25
SN

1.2 1 - —~

EQ

15

DD

0.5

0 2 4 6 PRETS 0 2 4 6 8 10
Time Time
FIGURE 5.12. Non-dimensional viscosity (left) and first normal
stress difference coefficient (right) for different choices of initial
condition for the case of dumbbell.
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is clear that as expected the convergence is not affected by the choice of initial
condition. But a careful examination shows that steady state is attained ahead
of time in the case of choices 1 and 3 compared to 2. The only disadvantage of
choice 3 is that, many particles should be produced before a required number
is selected. In the case of dumbbells only 10% of the particles are accepted on
an average. So we conclude that choice 1 is the optimal choice both accuracy
wise and computational cost wise.
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FIGURE 5.13. Non-dimensional viscosity (left) and first normal

stress difference coefficient (right) for choices 1 and 2 of initial

condition for the 8 beads case.

Now that we have fixed the initial condition, we have all the ingredients to
compare MC and QMC. Figure 5.14 (left) shows two independent runs of the
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FIGURE 5.14. Monte Carlo simulation to calculate the viscosity.
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Monte Carlo algorithm for calculating the viscosity. The average values ob-
tained from the two trajectories is shown in figure 5.14 (right). Note that we
have chosen the 7 scale to show the behavior more clearly in the stationary
part of the curve.

The trajectory obtained using our scheme, (figure 5.15), is quite smooth com-
pared to the Monte Carlo simulation meaning that the stationary value is well
attained at a earlier time.
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FiGure 5.15. Quasi-Monte Carlo simulation to calculate the viscosity

A similar behavior is observed also in the case of first normal stress difference
coefficient as shown in figure 5.16.
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FIGURE 5.16. Comparing MC and QMC simulation in calcu-
lating the first normal stress difference coefficient.

For a single run with 57 particles, the Monte Carlo method took 2275 seconds
whereas our scheme took about 4448 seconds. Since we need to average values
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over several trajectories, to get a trajectory as smooth as in the case of QMC,
we conclude that our scheme works significantly better both in accuracy and
computational time.

Since we are interested in the steady state values of the viscosity and the first
normal stress difference coefficient, we would now study the influence of the
time step on the stationary value of our method. Again as a test case we take
the dumbbell case with 5° particles. Three different time steps, namely 0.01,
0.1 and 1.0 are considered. From figure 5.17, it is evident that the difference
in the values obtained using At = 0.1 and At = 0.01 is less than 2%. Also
the case At = 0.01 takes ten times more time compared to At = 0.1. In view
of these facts, we conclude that it is judicious to consider At = 0.1 for the
simulations.
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FI1GURE 5.17. Time accuracy of the scheme for calculating vis-

cosity (left) and first normal stress difference coefficient (right).

Having studied the time dependence with a fixed number of particles, we now
study the dependence of the viscosity and first normal stress difference coef-
ficient on the sample size. We consider the dumbbell case and march with a
time step of 0.1 till time 7" = 10.0 with 5°, 5% and 57 particles. It can be seen
from figure 5.18 that as the particle number increases, the oscillations decline
in magnitude and steady state is attained ahead in time.

At this stage, we have the following situation: MC and QMC both work for
high dimensions, the former can be implemented in a straightforward manner

whereas the latter requires sorting and shuffling the particle positions at each



94 5.3 Numerical simulation of Fokker-Planck equation
11 2.2
218 N=3125
1.081 2.16
2.14
N=3125

1.06 212
- 3 21
1.04¢ 208
2.06

1.02f
2.04
2.02

1 L
2

FIGURE 5.18. Dependence of viscosity (left) and first normal

Time

Time

stress difference coefficient on the sample size.

8 T 40
*
6 30
+
4 % 20
O
2 10
+ O
ole & | P
4 5 6 4 5 6 7
300 250
200 *
200
150
100
100
50
+
0l—% & obs—% O
4 5 6 3 5 7

FIGURE 5.19. Time taken for transport (stars), sorting (circles)
and diffusion (+) per time step for 3, 4, 5 and 6 beads. The x
axis shows the particle numbers in log scale and y axis, the CPU
time in seconds.

time step. The advantage is that QMC results have less noise compared to
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MC, but the extra processes may take up additional time. But what we ob-
serve (figure 5.19), is that this does not contribute significantly as transport
dominates the total computational time. Though the time taken for diffusion
is quite significant in the case of 3 beads, it is overtaken by transport in higher
dimensions (4, 5 and 6 beads).

As the last task, we compare our implementation with that of [16]. As in
the case of diffusion, the error estimate does not converge if, for example, we
consider some of the d;s to be equal to zero. This leads us to consider minimal
particle numbers of the form b°. So we could address only the dumbbell case
with this algorithm for otherwise the particle numbers grow very large. Figure
5.20 shows the time evolution of n and ¥ by both the methods in the dumbbell
case.
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FIGURE 5.20. Comparison between QMC and QMC [16]. 5°
particles were considered and a time step of 0.01 was chosen.
For QMC [16], Az was taken to be such that 2sAt/Az? < 1/25
to satisfy the stability condition.

We now take up the benchmark case, i.e, dumbbell case, to compare with the
results presented in [22]. Various combinations of z, 5 and d are taken and
the non-dimensional viscosity and first normal stress difference coefficient are
calculated. A single computation took about 476 seconds. The results shown
in figures 5.21 and 5.22 are in accordance with the ones reported in [22].

We conclude our discussion with simulation results for a real high dimensional
case. We consider the case of 10 beads, that is a 27 dimensional Fokker-Planck
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FIGURE 5.21. Non-dimensional viscosity (left) and first normal
stress difference coefficient (right) for a fixed d = 2.5. The bro-
ken line corresponds to z = 30 and the solid line corresponds to
z=3
1.05 2.12
1.04 : 21
2.08
1.03
2.06
=1.02 >
2.04
1.01
2.02
1 2
0.99 108
0 2 4 6 8 10 0 2 4 6 8 10
B B

FIGURE 5.22. Non-dimensional viscosity (left) and first normal
stress difference coefficient (right) for a fixed z = 0.1. The bro-
ken line corresponds to d = 1.0 and the solid line corresponds to
d=0.5

equation. A total of 293 particles were considered and we march with a time
step of 0.5 seconds till time 7" = 250 seconds. The average CPU time taken
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for a time step was about 107 seconds and 1 and ¥ were calculated after every
5 time steps.
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FIGURE 5.23. Non-dimensional viscosity (left) and first normal
stress difference coefficient (right) for the 10 beads case.






Conclusions

With the method developed in this thesis, the two important material functions
of a dilute polymer solution undergoing shear flow, namely the viscosity 1 and
the first normal stress difference coefficient ¥ can be calculated for larger
number of beads subjected to the memory restrictions. In the two beads case,
the decline of viscosity with increasing shear rate [ is verified and this confirms
the experimental result presented in subsection 1.0.1. The quantity ¥ is non
zero and this explains the rod climbing phenomenon described in subsection
1.0.2.

In the course of our analysis, we have compared the effectiveness of MC and
QMC in integration, diffusion and Fokker-Plank equation for high dimensional
problems. The scenario is mixed and is summarized in the following table.

Integration | Diffusion | Fokker-Planck equation
MC - + -
QMC + - +

TABLE 5.3. Comparing MC and QMC for different applications.

The superiority of QMC over MC in plain integration is well known. We
discuss it in section 5.1, where it is also seen that QMC method is faster
compared to MC. The better order of convergence (eventually 1/N versus
1/v/N) however, does not carry over to plain diffusion problems due to the
correlation among QMC points. In fact, if integral functionals with weight
functions of unbounded variation like quadratic, biquadratic of the solution are
considered, QMC performs worse than MC. This may be due to the fact that
because the particles are drifting away, the errors are amplified by the weight
function. Fortunately for our application, though we also consider functionals
with unbounded variation, due to an extra drift term (spring forces), the QMC
particles do not move away so much and we achieve improvement over MC.
Regarding the computational time for our application, the sorting time does
not contribute significantly to the total time since the former is dominated by
advection. Thus we achieve improvement both in accuracy and computational
time using our method.

The scheme presented in this thesis is based on the one presented in [15].
However compared to the methods in [15] and [16] our method works in real
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high dimensions with feasible particle numbers, thus allowing us to consider
large number of beads to carry out simulations of polymer models.
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