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Chapter 1

Introduction

1.1 Floods in Urban Areas

The task of the sewer system in urban areas is to collect waste water from
houses and industries and to pipe it to purification plants in order to treat it
and re-integrate it into the hydrological cycle. Furthermore, the sewer system
drains surface water in case of rain events in order to protect streets and houses
from flooding.

Figure 1.1: Flood problem in the spring 2000 at Kindsbach, close to the city
of Kaiserslautern (Photo by G. Kries, also title photo of thesis)

During heavy rain events in the past years, sewer system were frequently
overloaded and floods in the streets caused high damage. Figure 1.1 gives an
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example of a flood problem in the spring of 2000 at Kindsbach near Kaiser-
slautern. Climate changes are expected to increase the occurrence of heavy
rain events in our region. The current natural disasters in the catchment area
of the river Elbe and in the south of France are tragic, but probably only first
and sad examples of increasing problems caused by heavy rainfall.

The dimensions of the sewer system (e.g. diameter of sewer pipes) limit
the drainage capacities and thus the flood protection potential. The actual
procedure of dimensioning sewer systems computes the required diameters to
drain the surface for specified rain events. The estimation of potential damage
for higher rainfall is not included. The construction and the maintenance
of sewer systems are important, but also expensive duties for communities.
Since most sewer systems were built decades ago, there is a costly demand
for modernization in the next years. These maintenance costs as well as the
construction costs for new development areas increase with the dimensions of
the system debiting communities. Since communities and its inhabitants are in
particular interested in preventing serious damages caused by floods in urban
areas, the optimal design approach should minimize the sum of construction
and maintenance costs and of potential flood damages. The assessment of
these potential flood damages depends on the relations between rain events,
surface topography, sewer dimensioning and flood risks. Insurance agencies
are also interested in such estimations to get a dependable base for calculating
their contributions.

Mathematical modeling and numerical simulations of the involved water
flow processes are applied to estimate these relations reliably. Usually, the flow
processes in the sewer system and on the surface are handled separately: The
free surface flow in the street is considered in a pure mass balance approach to
approximate water inputs into the sewer system. The flow in the sewer system
is modeled hydro-dynamically. In case of an overload of the sewer system,
the flow of water on the surface is not simulated. Instead, the water from
the sewer system is stored virtually together with the mass input terms of the
mass balance surface model at the manhole and re-integrated into the system
after the flood. This approach can indicate potential flood regions but due
to the simple model approach on the surface, reliable evaluations of potential
damages for the connected houses are not possible.

Extending this approach, it is possible to model the interaction of the water
flow between sewer and surface within a coupled sewer-system surface-runoff
approach. For that purpose, a hydro-dynamical model approach is applied
also to the free surface flow in the street. The hydro-dynamical models for the
sewer system and the free surface flow in the flood regions (i.e. streets) and the
model approach for the drainage of water from catchment areas are coupled
by exchange nodes as illustrated in Figure 1.2 (on the right).
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Sewer system

Figure 1.2: Example of an application area (map on the left), sketch of model
regions (middle) and concept of model coupling (on the right)

Free surface flow of water within the simulation of flood events in streets
can be modeled in different complex, but also computationally expensive ways
from simple mass balances over Shallow Water Equations (SWE) up to Navier-
Stokes Equations (NSE). Applying the 3D-NSE to flood simulations in compu-
tational domains with typical sizes of street sections (e.g. 40m x 8m) requires
extremely high memory as well as CPU-times. Several calculations of flood
scenarios with modified parameters for the purpose of optimization exceed
present computer capacities. Therefore, the NSE approach cannot be applied
practically to simulate the free surface flow in flood regions. In contrast, the
SWE approach requires only fractions (factor < 1/100) of the computational
efforts of the NSE, permitting practical application.

Since a dependable assessment of flood risks in urban areas requires reliable
simulations, the accuracy of the SWE model approach is considered in detail.
The task of this thesis is first to assess the accuracy of the SWE results for
special flow problems typical for floods in urban areas, and second to derive
suitable extensions of the SWE, thus increasing the accuracy of the results
within reasonable computational effort.

1.2 Challenging Flow Problems Manhole and
Curb

The 2D-SWE can be derived from the 3D-NSE by depth integration under the
assumption of hydrostatic pressure distribution. They assume depth-averaged
horizontal velocities but do not consider vertical velocities. Flood problems
in urban areas, as illustrated in Figure 1.3, do not necessarily fulfill these
assumptions und thus challenge the applicability of the SWE:
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sidewalk

street

A

curb ? :
manhole

Figure 1.3: 3D-view of a typical flood problem in a street due to an overloaded
sewer system

sidewalk

curb street

maﬁhole

Figure 1.4: 2D-profile of a typical flood problem in a street due to an overloaded
sewer system
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When the sewer system is overloaded, water flows out of a manhole onto the
street. Figure 1.3 demonstrates a 3D-view and Figure 1.4 a 2D-profile of this
typical flood situation in a street. The applicability of the SWE is reviewed
for two special flow problems involved in this flood situation:

1. The flow of water out of a manhole within the coupling of the flow in
the sewer system and at the free surface due to an overload of the sewer
system and

2. the flow over or against the curb of the sidewalk.

These two challenging flow problems are the starting point of this thesis and
are denoted as the flow problems manhole (1.) and curb (2.).

The goal of this thesis is first to demonstrate the inaccuracy of the classical
SWE for these flow problems and second to derive a new mathematical model,
i.e. an extension of the SWE, describing the challenging flow problems accu-
rately. In order to emphasize the difference to extended versions, the SWE are
usually denoted as classical SWE.

1.3 Investigation of Literature

There exist enormous numbers of books and articles about NSE (e.g. [6], [13],
[25], [42], [43], [53], [54]) and SWE (e.g. [1], [3],[35], [47], [51]) and about
numerical schemes to solve them (e.g. [17], [18], [49], [26], [35] [51]), compar-
ing numerical solution to analytic, or benchmark solutions for selected flow
problems, e.g. driven cavity for NSE [12] or dam break problem for SWE [11].

The derivation of SWE within asymptotic expansions, depth integration
and also heuristical approaches can be found in [3], [18], [19], [31], [16], [47].

The SWE are applied successfully to a wide range of applications, in par-
ticular in river hydraulics [1], [3], [35] [45], [51], but also in meteorology and
for avalanche modeling [24].

In contrast to this high availability of literature for derivations, numerical
schemes and applications of the classical SWE, works questioning the applica-
bility of SWE for selected flow problems and seeking for extensions are rare in
literature. Naf [31] included vertical velocities in the SWE yielding a set of 8
equations (most of them are PDE) for the 1D-SWE and a set of 10 equations
for the 2D-SWE. But the numerical results, tested on the dam break problem
on a coarse FEM grid are not convincing and suffer from oscillations.

Haasenritter [18] considered the flow problem curb as the flow over an
obstacle in her diploma thesis and proposed an extension in the numerical
treatment of the flux estimation at the curb.
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Plenty of articles were found that treat the problem of obstacles in flows,
but most of them in a closed channel [8], [44], [55], and some for free surface
flows [15], [22], [34]. They are either derived for NSE, for potential flow, or
they consider special numerical techniques to solve the classical SWE without
any extensions that involve e.g. vertical velocities.

The demand for simulation of such flow problems within the flood risk
assessment in urban areas on the one hand and the lack of research in this
field on the other hand inspired this thesis.

1.4 Outline of the Thesis

The thesis is divided into two main parts:

In the first part, the Navier-Stokes Equations (NSE), the Euler Equations
and the classical Shallow Water Equations (SWE) are presented as existing
model approaches for the free surface flow of water in Chapter 2. The compar-
ison of analytical solutions of the Euler Equations, numerical NSE solutions
and SWE results for the challenging flow problems manhole and curb, intro-
duced in Section 1.2, shows differences questioning the reliable applicability of
the classical SWE for the considered flow problems in Chapter 3.

Thus, suitable extensions of the SWE are derived in the second part of
the thesis and their results are compared to the NSE benchmark solutions.
The Extension Vorter Separation introduces a fluid bottom layer as a sepa-
rated vortex region defining a new bottom level for the main flow domain in
Chapter 4. Approximations of vertical velocities yield the Extension Pressure
Correction in Chapter 5, entailing additional terms in the momentum equation
of the SWE.

The differences between NSE and the extended SWE are decreased. Thus,
the developed extensions allow a more reliable simulation of the flow problems.
The increased accuracy of results is achieved by moderate additional computa-
tional effort still requiring only fractions of the CPU times of the NSE solution.

Since the extensions are derived only for the 1D-SWE in Chapter 4 and 5,
Chapter 6 presents the extensions also for the 2D-SWE.

Finally, Chapter 7 offers conclusions and an outlook to further work con-
nected with the problems.

Since the Extension Vortexr Separation of Chapter 4 and in particular the
Extension Pressure Correction of Chapter 5 are based on modified assumptions
in the derivation of the SWE, we present two derivations in detail in Chapter
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2. Notations and some mathematical and physical background are excluded
from the thesis into Appendix A.

Appendix B, containing portraits and data of famous mathematicians in-
volved in the derivation of the mathematical background of the equations of
motion in fluid dynamics, close out the appendix and the thesis. In particular
the biography of Jean Claude de Saint-Venant is included since he was deeply
involved in the derivation of the theoretical background.
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Chapter 2

Models for Free Surface Flow of
Water

The flow of water has always caused amazement in various fields of interest,
reaching from the basic need of drinking water in order to survive over engi-
neering and political questions of water transport and distribution, sustainable
development of water resources up to fine arts. ;From the physical point of
view, the flow of the liquid water is described by conservation laws for mass,
momentum and energy. These conservation laws are expressed mathemati-
cally as Partial Differential Equations (PDE). Most of the foundations of the
mathematical models were derived already in the 19" century and earlier. The
equations are often named in memory of their inventors, e.g. Newton, Euler,
Navier, de Saint-Venant, Stokes or Reynolds. Appendix B provides further
information about those mathematicians.

Due to the increase of powerful computer capacities and in particular due
to the development of modern numerical solvers for PDE, many improvements
were obtained in the last two decades in the field of Computational Fluid Dy-
namics (CEFD). It is today possible to simulate fluid flow for many applications.

2.1 Mathematical Modeling

Historical Remark 2.1 Galileo Galilei (born 1564 in Pisa, died 1642 in
Arcetri, Florence) already mentioned that
“the book of nature is written in the language of mathematics. “

In fact, mathematical modeling and in particular nowadays its numerical
implementations are capable of describing physical properties for the simula-
tion of processes. These simulations allow to understand processes in detail,
sparking ideas for modifications and optimizations of the processes (e.g. in

9
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Mathematical Simulation

1. column: 2. column: 3. column:
model numerical parameters,
approach, solution

assumptions scheme physical data
(NSE, SWE) |/ (FVM, FPM) (2(,9),Sy)

Nature, Real Processes

Figure 2.1: Columns of mathematical simulation: 1. mathematical modeling,
2. numerical scheme and 3. data and parameters. Example of real flood process
and a mathematical simulation on the left hand side

industry) and yielding the economical prediction of processes in different sce-
narios. Thus, mathematical modeling is a sustainable key technology with
growing importance.

The mathematical simulation of a process is usually based on the three
columns as illustrated in Figure 2.1, where examples for the free surface flow
of water are given in brackets:

1. mathematical model approach with its assumptions,
2. numerical solution scheme with its implementation and
3. parameters and physical data.

Departing from simplifying assumptions (e.g. water is incompressible), the
model equations are derived. In fluid dynamics, these are usually conservation
laws. There exist different model approaches varying in complexity and posed
assumptions. This variability, indicated by the varying width of the 1.column
of the figure, occurs also in the other columns, given e.g. by the choice of the
numerical solution scheme or the grid resolution.

Explanation 2.2 The first two columns for fluid flow are very general columns
and the model approach and the numerical solution scheme are applicable to
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many different flow problems. ;From the mathematical point of view, the sim-
ulation of water flow in a rwer, oil flow in a pipe, break fluid in a tube or urine
flow in a diaper are similar. This generality of mathematical modeling implies
mgenuity.

The application to a real problem requires data, e.g. the bottom elevation
zp(x,y) with different spatial resolutions. Depending on the choice of the
model, further parameters (e.g. bottom friction) are required. The left side
of Figure 2.1 gives an example for a real flood process and a mathematical
simulation of the process.

Explanation 2.3 In this thesis, numerical results of different model approaches
are compared. Since the numerical schemes were applied already successfully,

differences in the results are effected by the choice of the model approach. Con-

centrating on the first column in Figure 2.1, the major purpose of the thesis

s the proper mathematical modeling of the free surface flow of water within

reasonable computational effort in order to enable the reliable application to

large flow problems.

2.2 Overview over Model Approaches

The model approaches for the simulation of free surface flow of water are
introduced in the next sections of this chapter and summarized in Figure 2.2.
The most general equations of motion for free surface flow of the liquid water
are the 3D-Navier-Stokes Equations (3D-NSE). Assuming a channel of infinite
width, yields the neglect of the y-dimension and simplifies the 3D-NSE for the
real 3D flow problems (left hand side) to the 2D-NSE (right hand side) in a
2D-profile of the flow problems. Considering only these two dimensions x and
z, the horizontal velocity v = 0 and all y-derivatives 0/0y = 0 are neglected.

Explanation 2.4 The incompressible Euler Equations are the in-viscid NSE.
Instead of deriving the SWE from the NSE, we demonstrate their derivation
from the Euler Equations and obtain their frictionless form. The friction is
added in a separate section due to viscous considerations by an empirical ap-
proach. That derivation is chosen since the friction is small for the consid-
ered flow problems and an empirical friction parameter is required even in the
derivation from the NSE.

The derivation of the Shallow Water Equations (SWE) departs from the
Euler Equations and the assumption of hydrostatic pressure pp,. This sim-
plifies the 3D-NSE to the 3D-SWE and the 2D-NSE to the 2D-vertical-SWE
respectively. The integration over the water depth h = H — z, yields the
2D-SWE and the 1D-SWE respectively.
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real 3D 2D-profile
z z
neglect y-dimension
)
x x
v=0,4=0
3D-NSE / 3D-Euler 2D-NSE / 2D-Euler
p(2) = Phy P(2) = Phy
3D-SWE 2D-vertical-SWE
f: dz lej dz

2D-SWE (2.70)

Yr

w dy

1D-SWE (2.72)

source terms

1D-SWE (2.76)
real cross sections

1D-SWE (2.77)
cylinder-symmetric

Figure 2.2: Overview of model approaches and their derivation for free surface
flow of water in real 3D (left hand side) and simplified 2D-profile where the y-
dimension is neglected (right hand side). Avoiding high computational effort,
the results of the NSE (benchmark) and classical SWE model approaches are
compared in the 2D-profile in Chapter 3.
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Remark 2.5 The 2D-SWE denote the depth integrated 2D-equations in the
x-y plane. The considered flow problems in 2D-profiles in the x-z plane are

solved by the 2D-NSE and the 2D-vertical-SWE.

The 1D-SWE exist in different formulations: (2.72) for profiles, identical to
infinite or rectangular channels, (2.76) for the application to natural rivers with
real cross sections A. These cross sections A are given by the natural profile
of the river bed and depend on the water level h causing additional terms in
the 1D-SWE. Finally, there exist the cylinder-symmetrical formulation (2.77)
with additional source terms.

The last section of this chapter presents the applied numerical solution
schemes for these model approaches. Following Explanation 2.3, Section 2.5
is only an overview since the focus of the thesis is located on mathematical
modeling.

2.3 Navier-Stokes Equations (NSE)

Historical Remark 2.6 The Navier-Stokes Equations (NSE) were first de-
rived by Claude Louis Marie Henri Navier (see Appendiz B.1) in 1821. Not
fully understanding all about shear stress in a fluid, he found the proper equa-
tions nevertheless.

Although Adhémar Jean Claude Barré de Saint-Venant (see Appendiz B.2)
derived the equations properly in 1842, the NSE were named in memory of
Navier and of George Gabriel Stokes (see Appendiz B.1), who showed them
independently two years later in 1844.

2.3.1 Model Assumptions

Remark 2.7 To avoid misunderstandings, the applied notations are summa-
rized in Appendix A.1. Some theoretical background for conservation laws is
provided in Appendiz A.2 and details concerning viscous flow behavior are pre-
sented in Appendiz A.4.

Figure 2.3 illustrates the notations for the free surface flow over a fixed bot-
tom with z,(z,y) as elevation above datum. The free water surface is denoted
with H(z,y). The water depth is given by h(x,y) = H(x,y) — zy(z,y). The
pressure at the free surface is assumed to be the constant atmospheric pres-
sure py(z,y) = py for the entire computational domain. Forces due to earth
rotation (Coriolis force) or wind stresses on the water surface are neglected.

The density is a scalar field p(Z) and for the incompressible fluid water,
p(Z) = p = const is assumed for all points & in the fluid domain Q. The
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Figure 2.3: Sketch of fluid domain with bottom elevation z,(x,y) and free
surface water level H(z,y) and further notations

pressure p(Z) is assumed to be a differentiable scalar field in the fluid domain.
The velocity field is a vector field @(Z) = (u,v,w)? that is assumed to be
differentiable and defines the motion of the fluid and the fluid domain (¢).
The fluid domain is assumed to remain always simply connected, no drops of
water are considered. Further assumptions for the boundary conditions (e.g
free-slip or no-slip conditions) are given in Section 2.3.5.

Since water is assumed to be incompressible, we always mean the incom-
pressible NSE and incompressible Euler Equations when dealing with NSE and
Euler Equations respectively. Incompressible fluids are assumed to have a con-
stant density, p = const. The notation 'incompressible’ is slightly misleading
since p = const is in fact density conservative and thus not only incompress-
ible but also independent of temperature effects. Assuming constant density
p, temperature variations that usually affect the density and require the in-
volvement of the conservation of energy are not considered in the equations of
motion. Conservation of mass and momentum in 3 directions yields 4 equa-
tions for the 4 unknowns p and @ = (u,v,w)’. For the simulation of free
surface flow, further conditions for the determination of the free surface H are
required as presented in Section 2.3.5.

Since several derivations of the NSE exist in literature (e.g. [6], [13] [38],
[53], [54]), we demonstrate some basics of the derivation of the equations and
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refer to literature for the details. Some theoretical background for conservation
laws is presented in Appendix A.2.

2.3.2 Mass Conservation

The mass conservation in 3D reads

Tl

Qt

p+ div(pi) dV.

QJ|Q3

For p = const this equation is simplified to 0 = fQ(t) div(i) dV holding for
any choice of Q(t) and thus yielding

div i 8x+8y+8z 0 (2.1)

For incompressible fluids, the mass conservation is identical to a volume
conservation described by the continuity equation (2.1).

2.3.3 Momentum Conservation

Due to Newton’s 2" law of motion, generally known as F= md, forces change
the momentum due to acceleration. Denoting forces per unit mass with f,
Newton’s law is re-written as

d L
i=—i=i=f. (2.2)

The equations of motion based on Newton’s law (2.2) depend on the evalu-
ation of the force on the right hand side. For special flow behaviors, dominant
forces are selected and other forces are neglected, as summarized in Table 2.1
taken from [53].

flow behavior a= f Newton
hydrostatic 0= f_é; + f_l; Euler

in-viscid a= f_é; + f_l; Euler, Bernoulli
viscid a= f; + f;a + f:/ Navier, Stokes
viscid, creeping | 0= fo + fp + fi | Stokes, Oseen

Table 2.1: Consideration of forces for different flow behaviors and the mathe-
maticians involved in the derivation of the resulting equations of motion
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Three forces are considered for the viscous, incompressible flow description
with NSE:

e force due to earth gravitation (fg =g = (0,0,—g)7),
e force due to the pressure gradient (f_l; = —1/p grad p) and
e friction force due to viscosity  (fir = 1/p div T = VAT)

with the viscous friction (A.22) for Newtonian Fluids (A.21).

Historical Remark 2.8 The names of the mathematicians involved in the
deriwation of the resulting equations of motion that were named in their mem-
ory are giwen also in Table 2.1. Further historical remarks are provided in
Appendiz B.

Inserting the material derivative of the velocity d/dt @ = 0/0t @ + (4 -
grad)d from (A.7) into (2.2) and considering the forces due to pressure, viscous
friction and gravity yields the incompressible 3D-Navier-Stokes Equations (3D-
NSE), describing the conservation of mass and momentum (2.3) in 3D with
the variables and parameters listed in Table 2.2.

divid = 0,
J., . 1 L
50 + (@-grad) @ = —— grad p+vAd+g. (2.3)
p
@ : velocity vector
p : pressure

p . constant density
v

: kinematic viscosity

—

g : external force (i.e. gravity)

Table 2.2: Variables and parameters in the NSE

Particular solutions of the 3D-NSE can be obtained from the 2D-NSE.
Assuming a channel of infinite width and no influence of the y-dimension allows
to neglect this dimension. This is considering the flow in a 2D-profile across
the channel and allows the simplification of the NSE to 2D. The problem in
2D is considered in the variables z, z and the velocities u, w (see Figure 2.2,
right hand side).
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2.3.4 Incompressible 3D-Euler Equations

The viscosity v of water is very small v = 1075m?/s (see Remark A.13). Ne-
glecting the viscous friction term vA4 in the 3D-NSE yields the incompressible
3D-Euler Equations. Since we present the derivation of the homogeneous SWE
departing from these equations we present them in detailed form:

a—$u+ %U-i- R0 = 0,
0 0 0 0 10
Eu+ua—xu+va—yu+wau = _;8_xp’
0 10
§v+u%v+va—yv+w&v = _;8_yp’
0 0 0 0 10
§w+u%w+va—yw+w$w = —;gp—g. (2.4)

2.3.5 Boundary Conditions for Free Surface Flow

The equations of motion are PDE. Appropriate boundary conditions at the
bottom and at the free surface are required to solve the PDE uniquely.

Kinematic Boundary Conditions usually assume no penetration of wa-
ter into the ground or into the air. The condition of no flux through the fixed
bottom is fulfilled by the so called free-slip condition

iy i =0, (2.5)

where 77 is the normal vector at the bottom. Since the normal velocity com-
ponent is prescribed to be zero, the velocity is tangential to the ground and
the condition is named ’free-slip’ condition.

In case of a source of water at the ground, e.g. caused by an inflow of water
from a manhole, the flux through the ground is given as the normal component
of the inflow velocity ¢. (2.5) is thus extended to

ﬁb U= q, (26)

¢ has the dimension of a velocity and yields -integrated over an area- a volume
flow in m3/s.

The normal vector 7, at the ground is given via derivatives of the bottom
elevation z,(x,y) as presented in Figure 2.4 by

_ 9%
xr

= % . (2.7)
1
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( OH OH ].)T

ng = oz~ Oy’

ﬁH — (UHJUHJU)H)T

Figure 2.4: Tllustration of free slip conditions at the free surface H(¢, x,y) and
the bottom z,(x,y)

Similarly as (2.5) is extended for an inflow of water from the ground to
(2.6), the free-slip condition for the free surface has to be extended by the
possible temporal changes of this interface. Any flux through the free surface
H yields obviously a change of the position of the free surface in time

oOH
ot

The normal vector iy at the free surface is also given via derivatives of the
free surface H(t,z,y) as presented in Figure 2.4 by

(2.8)

ig=| —%2% |. (2.9)

Figure 2.4 illustrates the free slip conditions at the free surface H(z,y) and
the bottom z,(x,y), finally yielding

= — o — o — 2.10

WH or gy TG (2.10)
82’1, 82’1,

= — — . 2.11

wy Ubax+vbay+q ( )

These kinematic boundary conditions are appropriate for the frictionless Euler
Equations (2.4) requiring only one boundary condition at the bottom and the
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surface to be solvable uniquely.

The NSE are second order PDE due to the viscous term from (A.21). In
addition to the kinematic boundary conditions sufficient for the Euler Equa-
tions, the NSE require further conditions for well-posedness.

Dynamic Boundary Conditions require further restrictions for the flow
velocity or the pressure usually based on assumptions for forces. The viscous
fluid is assumed not to move at the fixed bottom z,. Thus the velocity at the
bottom has to be zero as required by the no-slip condition

i = 0. (2.12)

Explanation 2.9 The no-slip condition @ = 0 at the bottom for the fluid water
with small viscosity v usually results in a small viscid bottom layer. For free
surface flow of viscous fluids over a plane wall, the size of this layer depends

on the Reynolds-number Re from Definition A.15 with 1/v/ Re. For water with
v = 10—6m?/s and typical depth h = 0.1m and velocity u = 1m/s, we obtain

Re = — ~ 10° (2.13)
v
and thus a small bottom layer. Instead for the very viscid fluid oil, this layer
can be large.

Historical Remark 2.10 Nevertheless, the occurrence of this layer is impor-
tant for the understanding of friction in viscid fluids. Prandtl [38] introduced
this boundary layer theory and closed the gap between experiments and calcu-
lations for viscid fluids.

The continuity of total stress 7—p/pId at the free surface between the fluid
and the air is assumed. We denote the jump between the values in water and
air in normal direction 7iy of the free surface H as [}, (T —p/pId)]. Continuity
is given, if the inner product of this jump and the normal vector 7y vanishes

ik (1 — %Id)] iy =0, (2.14)

Remark 2.11 As presented in [16], it is possible to introduce a further equa-
tion for the free surface description using a function U with the value one
inside the fluid ( V(x,y,z) = 1 for z(z,y) < z < H(x,y) ) and zero out-
side. Solving the transport equation of this function yields the description of
the free surface. The applied numerical scheme for the NSE of Section 2.5.1
15 a mesh-free particle method and contains this description automatically.
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2.4 Classical Shallow Water Equations (SWE)

Since numerical solutions of the 3D-NSE for large scale problems require high
computational effort, simplifications were derived and applied to various flow
problems. The flow of water in rivers, e.g. the Rhine river with more than
1000 km length, some 100 meters width and only a few meters depth, is usu-
ally dominated by the length scale. The width and in particular the depth
dimensions are less important. The 2D-SWE and 1D-SWE require less com-
putational effort than the NSE and are applied successfully to many river flow
problems, e.g. to the operational water level prediction in the Rhine river [45].

There exist already presentations of the derivation of the SWE from the
NSE in literature [47], [16], [18]. In oder to have a base for the derivation
of extensions of the SWE, we present two derivations of the 2D-SWE in this
thesis:

An asymptotic expansion of the 3D-Euler Equations for the small ratio be-
tween depth and length scales yields the frictionless 2D-SWE in Section 2.4.1.
Assuming a hydrostatic pressure distribution, these equations are derived in-
dependently of any asymptotic in Section 2.4.2 by depth integration of the
3D-Euler equations.

Historical Remark 2.12 In the French scientific community the SWE are
named Saint-Venant equations in memorial of Adhémar Jean Claude Barré de
Saint-Venant (see Appendiz B.2).

2.4.1 Derivation of SWE via Asymptotic Expansion

The asymptotic expansion presented in [47], [18] is based on a sufficiently small
proportion between the typical depth and length scales of the water flow. We
consider the incompressible Euler Equations (2.4)) with gravity force —g in
z-direction. Let the typical depth scale d be small compared to the horizontal
length scales & > d. Rescaling the variables with these typical scales yields
dimensionless independent variables z, 7, 2

L1 .1 1

&=, U= -y, Z=-z. (2.15)

A scaling of time and velocity is also required to rescale the whole Euler

Equations.

Definition 2.13 ¢ = +/gh is defined as characteristic velocity for free surface
flow of water with water depth h.

¢ is the typical travel velocity of a small disturbance (e.g. waves generated by
a stone thrown into a lake) in the free surface of standing water with water
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depth A. It can be understood as a kind of speed of sound for surface waves.
Assuming ¢ = \/gh to be the typical horizontal flow velocity, we apply v/gd as
the typical scale of the horizontal velocity to rescale the velocities v and v.

1 1

i = ——u, U=
Vad Vad

To be consistent, we rescale the time appropriately by the quotient of the
scaling factors of velocity and length dimension

Jad

v, (2.16)

t=r—t 2.17
k ) ( )

yielding the following scaling for the vertical velocity
H=—2 (2.18)

W

Since we rescaled the vertical dimension with 1/d we proceed similar with the
water level and the water depth

| ~ 1
H=-H h = =h. 2.19
d ) d ( )
The scaling of the energy is given by the square of the velocity scaling and this
yields the appropriate scaling for the pressure

1
p=—0p. 2.20
o (2.20)

We rewrite the Euler Equations (2.4) in the rescaled variables by extracting
the scaling factors, e.g.

ou  Ogdimu  9\/gd i _ /gdoi

— = = . 2.21
o~ Oklx ok @ k Oi (2.21)
or oo
d ~ N
9~ 9dl: od : | & 0 |

Dividing by +/¢gd and multiplying with 1—2 yields the mass conservation
equation in rescaled variables:

d? (811+86) n ow

k2 “ox 0y 0z

0. (2.23)

Introducing the small parameter

2

d
e=5 <1, (2.24)
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the 3D-Euler Equations are re-written separated in orders of €. For the sake
of simplicity, the hats (e.g. u = @) are omitted, yielding:

S I ey
€ (g—?+u%+vg—2+g—§) + wg—zzo (2.26)
€ (%+ug—;+v3—2+g—§) + w%zo (2.27)
€ (%+u%+v%+%+l) + wg—zzo (2.28)

The kinematic boundary conditions at the free surface H and the bottom
zp read in rescaled variables

oOH oH oH

aZb azb . .
€ (ua—x + Ua—y) = w at z=z,. (2.30)

Within the asymptotic expansion, the dependent variables are developped
in series of e:

" (2.31)
v o= 0O 4 e® @ 4. (2.32)
w = w9+ ew® 4@ 4., (2.33)
H = HO 4 eHO £ 2H® ... (2.34)
p = p@ L ep® 4 2p® 4., (2.35)

Inserting these series into the rescaled Euler Equations yields terms of different
orders of € in every conservation equation and in the boundary conditions.
Since we assume € to be small, the equations contain terms of different scales.
Thus we separate the different orders of epsilon in the rescaled Euler Equations
to own equations of the different orders. We concentrate first on the terms
without €, i.e. the zeroth order equations:

ow©
=0 2.36
aZ b ( )
ou®
©) =0 2.37
ov(®
©) =0 2.38
w az b ( )
(0)
w00 g, (2.39)

0z
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Due to (2.36), w(®)(z) is constant over the water depth. This holds also for
u(®(z) and for v¥ (). The zeroth order equations of the boundary conditions
yield w”(H) = w® () = 0 and thus

w® = 0, (2.40)
u® = uO, z,y), (2.41)
@ = Ot z,y). (2.42)

The first order equations of the asymptotic expansion read

ou®) N owM (z)v®  owW

=0 2.43
o Oy * 0z ’ (243)
Ou® ou® ou®  gp»
(0) (0) —
u +o + =0, (2.44)
ot ox oy ox
ov(0) ov(0) ov(0) ap(O)
© © =0 2.45
ot o ox v oy + oy ’ (24)
op0
1=0. 2.46
s (2.46)

(2.46) is an ODE yielding a constant pressure gradient in z-direction and thus a
linear pressure for p(¥). Assuming the pressure to be the constant atmospheric
pressure at the whole free surface and setting this pressure py = p(H (t,z,y)) =
0, we obtain the Hydrostatic Pressure Distribution

P (w,y,2,1) = HO(z,y,t) - z. (2.47)

The non-scaled pressure distribution with constant pressure py at the surface
reads
Phy =P+ pg(H — z). (2.48)
The only first order expression in the first order equations (2.43)-(2.46) is
w®. Due to (2.41) and (2.42), u'® and v(¥) are constant over the water depth
and thus independent of z. Hence (2.43) can be integrated

[ ow [ U 9O
dz = w® _
5, 7Y (20) ox + dy

2b 2p

w(2) = wh (z) + dz  (2.49)

w(z) as well as wM(H®) are given by the first order equations of the
kinematic boundary conditions as
OH©O OH©O OH©
(0) (0) = W(HO 2.50
T P w (H™), (2.50)
9% . ©09%
ox dy
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Replacing w(V(z,) in (2.49) by (2.51) yields
ou©® 90 A(u® A(v©®
_OuT o ( (u'%z) N (v 2)
ox dy ox oy
Obviously, (2.52) has to fulfill also (2.50). This condition together with (2.44)

and (2.45) where the Hydrostatic Pressure Distribution is inserted yields the
2D-SWE in zeroth order terms:

oH®) N OuO (HO — z) N v O (H©O — z,)

wV(z) =

) (2.52)

=0 2.93

ot ox oy ’ (2:53)
ou® Ou® ou®  9H©)

(0) (0) =0 2.54

ot " or TV ey T T (2:54)
ov© ov© ov®  H9H©)

gt o ;’x +0© gy + 5, =0 (2.55)

A derivation for the viscid case is given in [16].

2.4.2 Derivation of SWE via Depth Integration

This derivation of the 2D-SWE departs from the 3D-Euler Equations (2.4).
Assuming a Hydrostatic Pressure Distribution and inserting (2.48) into the
x- and y-momentum equations yields pressure gradient terms in the resulting
frictionless 3D-Shallow Water Equations (3D-SWE):

Ju Ov Ow

ot = 2.

pe + 9 + P 0, (2.56)
0 0 0 0 10
- - — — - = 2.
8tu+(u8x+vay+w8z)u+p8xphy 0, (2.57)
0 0 0 0 10
el — b= — S = 0. 2.
8tv+(u8x+vay+waz)U+p8yphy 0 (2.58)

Depth-Averaging

The next step in the derivation of the 2D-SWE is the averaging over the
water depth by integrating the 3D-SWE from the bottom z; to the free surface
H as done e.g. in [3], [18] or [31].

The 2D-SWE involve only depth-averaged quantities. A scalar function
f(z,y,2) is considered as a depth-averaged function f(x,v), only depending
on r and y by averaging over the water depth h = H — z,.

Definition 2.14

Fa) = s [ ) d: (2.59)

b

is defined as the depth-average of the scalar function f(x,y, z).
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Depth Integration of Continuity Equation
The integration of the continuity equation (2.56) of the frictionless 3D-SWE

H
0= @ 8_v —dz—/—dz+/—dz+/—dz
833 0z
Zp

is evaluated by considering the three terms separately. The first term can be
evaluated due to the transport theorem (A.8)

IR Ty PR SO O TR B

T Z_ax vas “Hax “”ax_ax uHax ubax’
2p(x) b

where

H

1
= E/u dz (2.60)

Zp
is the depth-averaged velocity in = direction according to Definition 2.14. Sim-
ilarly, the second term (again oh = h 1/h f: vdz = ff: v dz) reads

H(y)

H
oy 0Oy 5y Yoy — Oy 5y Yoy
( 2

The integration of the third term is trivial and can be evaluated by applying
the Kinematic Boundary Conditions from (2.11)

8w 211) OH 0H 0H 0z 0z
U — 4

or dy

— dz=wy —w = - tug—— t+tvps— —u
0z e R R

2p
Since the bottom z; is assumed to be fixed for all times ¢, we obtain

OH Oh+=z 0h
— = = —. 2.61
ot ot ot (261)
Adding the three terms, most terms cancel and the depth integrated con-
tinuity equation of SWE is obtained:
Oh  Ouh  Ovh
—+—+ = =q. 2.62
ot T or Ty ¢ (262)

Equation (2.62) describes the conservation of mass with possible inflow of
water (e.g. in the flow problem manhole) given by the source term g.
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Depth Integration of Momentum Equations - conservative parts
We proceed similarly with the momentum equations, i.e. we obtain for the
depth integration of the conservative part of the z-momentum equation

"
/(3_u+u6_u+va_u+w(;_z) dz (2.63)

(5 + + + ) dz (2.64)

"
div_i=0 / ou Ou?  duv  duw

N ot  Ox dy 0z
2

d(hu)  O(huuw)  O(huv)
= ) 2.65
ot * ox * dy ( )
The detailed integration is given in [31], where again most terms cancel
due to the kinematic boundary conditions. In general uwu # @u, and since we

do not want to proceed with mixed depth-averages uu, we compute

o(huu)  O(huu) 0 _ 5
e - on +%/(u—u(z)) dz (2.66)

and for the mixed term

H

/(u —u(2))(0 —v(z)) dz (2.67)

Zb

Jd(huv)  O(huv) 0

dy oy oy
with so-called dispersion terms depending on the depth-profiles u(z), v(2).

Depth Integration of Pressure Gradients
The depth integration of the hydrostatic pressure distribution yields

Hl 0 T 0 r oOH
—— = [ —g(H —2)dz= —d
[ amrte) e = [ Gottr =) de= [ o5 a:
2p 2p 2b
pr— _— H — _= _— — _ R
gax( %) =9 ox h gaxh+gaxh
0.1 , 0z 0.1 ,
_ o1 9% _ 9 (Z.p2) — 2.
52 (391°) + gh5= = 5 (5.9h°) = ghSpa, (2.68)
where Sy, = —0z,/0z is the negative bottom slope in z-direction. Similarly,

the integrated pressure gradient for the y-momentum equation reads

H
10 o,
[ 55(e) 2 = 5 (Gab?) — ghSi, (2:69)

2b
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The terms discussed separately above are added for the depth integrated
momentum equations: the conservative parts from (2.65) and the depth in-
tegrated pressure gradients from (2.68) and (2.69). Neglecting the dispersion
terms (or better skipping them into an empirical friction term as described in
the next section) yields the frictionless 2D-SWE:

h uh vh q
0 2 1,72 0
% uh + a— u“h + §gh + a— uvh = gthx s
x
vh uvh I\ v2h 4 Lgn? ghSy,
(2.70)
with the variables and parameters listed in Table 2.3.
h = H-—z : water depth
u = u= % fZIb{ u dz : depth-averaged velocity in z-direction
v = U= % f: v dz : depth-averaged velocity in y-direction
q : inflow velocity for water sources *
g = 93813 : earth acceleration
Spe = —% : negative bottom slope in z-direction.
Shy = —%—2’ : negative bottom slope in y-direction.

Table 2.3: Variables and parameters in the frictionless 2D-SWE

Explanation 2.15 Identifying the depth-averaged flow velocities (e.g. @) from
above with the zeroth order flow velocities (e.g. u(o)) from the asymptotic ex-
pansion, the two formulations of the 2D-SWE (2.70) and (2.53)-(2.55) can be
transferred into each other.

Thus, we have presented two different paths from the Euler Equations to
the frictionless SWE.

2.4.3 Friction Approach for SWE

The frictionless SWE are derived from the Euler Equations that do not consider
viscous friction. Since the fluid water has a small viscosity of v ~ 1075m?/s,
the friction seems to be not important in particular for small scale problems.
Thus, the frictionless SWE describe most features of small scale water flow
realistically. Since the viscosity of water is not really zero, the flow of wa-
ter is always connected with small friction. This viscous friction can become
important in particular for large scale flow problems.
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We consider the flow of water down a hill with constant bottom slope. Ap-
plying the frictionless SWE to this flow problem yields increasing momentum
due to the bottom slope. Thus the momentum would increase and the water
level would decrease on the whole hill. Observations are in contrast to this
considerations. The water flow reaches a maximal momentum and a minimal
water depth. This is due to the friction acting as a force against the motion,
not considered in the frictionless SWE.

Empirical friction formulas were introduced according to observation, that
the friction terms depend on the square of the velocity, the water depth and the
structure of the bottom. The terms ghSy, and ghSy, are introduced as negative
source terms on the right hand side of the SWE (2.70). They are assumed
to subsume up the effects of the dominant bottom friction and other internal
stresses due to viscous friction and the dispersion terms from (2.66) and (2.67).
Due to the dominance of the bottom friction they are called empirical bottom
friction terms Sy. The estimation of the friction terms Sy involves an empirical
friction parameter, e.g. Manning-Strickler [20] @

Ste ) n?ld|
= —F u. 2.71
( Sty h3 ( )

Remark 2.16 The empirical friction parameter n depends on the type of the
bottom and wvaries from 0 for frictionless bottoms over 0.03 for a street and
0.1 for typical river beds and can reach even higher values. Also other friction
laws exist for the SWE (e.g. Chezy-Brahms [31]). These laws differ in the
computation of the friction term, but all laws require an empirical friction
coefficient.

2.4.4 1D-SWE
Neglecting the y-dimension in the 2D-SWE yields the 1D-SWE

0 h 0 uh B q
ot ( uh > * or ( u?h + %th > - ( gh(Sps — Stz) > ’ (2.72)

Historical Remark 2.17 The 1D-SWE were first derived by Adhémar Jean
Claude Barré de Saint-Venant (see Appendiz B.2) at the age of 74 in 1871.
Generally they are called Saint-Venant equations. In order to use a uniform
notation, the name 1D-SWE is applied, but the origin of the equations is em-
phasized.

It is also possible to derive these equations via asymptotic expansion or
depth integration from the 2D-Euler equations as presented in the previous
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section for the 2D case. The friction approach presented in 2.4.3 is also applied
to the 1D case. Furthermore (2.72) can be derived heuristically as done in [19].
As remarked in the overview, there exist different formulations of the 1D-SWE.
Formulation (2.72) is valid for the flow in a rectangular channel with constant
width.

The 1D-SWE are applied very often in literature [1], [18], [20], [26], [31],
[45], [51] containing details about the derivation and the properties of the SWE
as typical nonlinear hyperbolic PDE.

The nonlinear PDE can be written in quasi-linear form

% ( uhh > * ( ghguz 21u > % ( uhh ) = ( gh(s,mq— S;) ) - (273)

. : 0 1
The eigenvalues of the matrix ( gh—u? u > are

Al = u+\gh=u+e¢, (2.74)

Ao = u—+/gh=u—c. (2.75)

applying the characteristic velocity ¢ from Definition 2.13.

Depending on the relation between the size of u and h, the eigenvalues \;
and Ay have different or same (usually both positive) signs. This property is
important for the characteristics and implies the choice of suitable boundary
conditions. In order to differentiate between the two cases,

Definition 2.18 Fr = % = # 1s defined as the Froude number.

The square of the Froude number gives the ratio between inertia and gravity
force Fr? = u?/gh. For Fr < 1 the flow is called sub-critical and for Fr > 1
the flow is called super-critical.

Boundary Conditions

Without loss of generality, we assume a 1D flow oriented in positive x-
direction with v > 0 in the computational domain 2 = [z;, z,]. Illustrating
the flow variables in a graph, the inflow boundary x; is at the left and called left
boundary, the outflow boundary x, is at the right, called the right boundary.
The bottom elevation z,(x) = 0 is assumed to be plane yielding H = h. No
source of water form the ground is assumed with ¢ = 0.

The boundary conditions at the free surface and the bottom (in particular
the kinematic ones) are already incorporated in the SWE. Thus, only the
boundary conditions at the border of the computational domain €2 and initial
conditions h(t = 0,z) and u(t = 0,z) for z € Q are required to solve the
1D-SWE uniquely.
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Depending on the flow case, different kinds of boundary conditions are
required at the left and right boundary: Sub-critical flow with Ay < 0 < Ay
and characteristics in positive and negative x-direction requires one inflow and
one outflow boundary condition. The flux u(¢, z;)h(t, x;) is usually prescribed
at the inflow boundary in the sub-critical flow case.

The boundary condition at the outflow for the sub-critical is usually a more
difficult choice. In contrast to the inflow boundary, the flux uh is not always
given there, but is determined by the flow behavior in the model domain.
There exist different possibilities for that boundary condition:

e A wall at the outflow position is assumed with u(z,)h(z,) = 0.

e The water level h(t,z,) is prescribed when e.g. a weir is located at the
outflow boundary defining a maximum water level.

e A known relation between water level h(x,) and flux u(z,)h(z,) is as-
sumed in free flowing river sections. This relation can be determined by
measurements and is applied e.g. for the forecast model of the Rhine
river [45]

e A free outflow can be allowed also as boundary condition. For the flow
problems handled in this thesis, this outflow boundary condition is usu-
ally chosen.

Super-critical flow with 0 < Ay < A; and characteristics only in positive
a-direction requires two inflow h(¢,x;) and u(t,z;) and no outflow boundary
condition.

Since it is possible that the flow case changes in the computational domain
causing shocks in the solution, combinations of the types of boundary condi-
tions are possible. An sub-critical inflow can become supercritical due to high
bottom slopes. This flow requires only one inflow and no outflow boundary
condition. If a supercritical inflow becomes sub-critical two inflow and one
outflow boundary conditions are required. The numerical resolution of the
shocks occurring in the changing regime has been a hard challenge and has
been solved by different suitable techniques [51], [19], [18].

Application to Rivers

The 1D-SWE are usually applied to simulation of open channel flow. In
particular for simulation in rivers and their application in forecast systems
the 1D-SWE obtain reliable results [45]. For these applications, the natural
profiles of the cross sections in the rivers have to be included and the conserved
variables are usually changed from h and uh into A and (Q = Au. Thus, the
cross section area A is applied instead of the water depth A and the discharge
(@ instead of the momentum uh.
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Furthermore, 0A/0h occurs in the quasi-linear formulation of the general-
ized 1D-SWE for real cross sections. The relation between the change of cross
section area A in dependence of the water depth A has to be estimated. In the
rectangular channel 0A/0h = b is the constant width of the channel. For gen-
eral cross sections, the size of this term has to be computed from measurements
of the cross section profile.

The empirical friction coefficients n are usually fitted to obtain best agree-
ment between model results and measurements [45]. [19] gives a detailed
heuristic derivation for the 1D-SWE in that formulation

o (A 0 Q B ¢
§<Q>+a_x<%2+%QA2>_<9A(SM—SM)>' (2.76)

Cylinder-Symmetric Flow Problems

z
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Figure 2.5: Sketch for illustration of cylinder-symmetric flow problem manhole

The flow problem manhole has a cylinder-symmetry illustrated in Figure
2.5. Thus, polar coordinates are more useful in the description

T\ cos ¢
(o) =(50)
with the velocities ( u > = u, ( cos ¢ > _

v sin ¢

The cylinder-symmetrical 1D-SWE (2.77) contain additional source terms on
the right hand side due the cylinder-symmetric coordinates as presented in
[28]:

0 h 0 uyh q— M
J— —_— = r 2 . 2
3 (o ) * 0 Can Ve ) = (o sy ) @

r

For stationary solutions of the outflow of water from a manhole as illustrated
in Figure 2.5, the flux from the manhole () is equal to the integral of the flux
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hu, over each circle with radius r around the manhole:

2w

Q():Qr:/hurdd):%rrhur.

0

Comparing the fluxes @),, and @),, over two circles with radius r; and 79 yields

hu,.,
T1 ’
T2

hu,, =

leading to the mass source term —hu, /r in (2.77).

2.5 Numerical Solution Schemes

Since analytical solutions for the NSE and the SWE exist only for some ideal-
ized and restricted applications (e.g. frictionless dam break problem for SWE),
numerical solution schemes are usually applied to solve the equations of mo-
tion.

There exist plenty of literature about numerical schemes for NSE and SWE
(e.g. [17], [18], [49], [26], [35] [51]) with a wide variety of different approaches:
Finite Differences Schemes, Finite Element Methods, Finite Volume Schemes
as well as mesh-free Particles Schemes have been applied already successfully
to the equations. This section is restricted to a short overview of the numerical
methods applied to the calculation of the results presented in Chapter 3.

2.5.1 Numerical Solution Scheme for NSE

The Finite Pointset Method FPM developed by Kuhnert and Tiwari [23], [48]
[49] is applied to solve the NSE for the free surface flow of water. The FPM is
a mesh-free particle (i.e. Lagrangian) method where numerical particles carry
the fluid information and are moved with the fluid velocity within a particle
projection method.

Instead of using a fixed and regular computational grid as in Finite Dif-
ference or Finite Volume schemes, the set of particles is considered as the
computational grid. The NSE are discretized directly on each particle. There-
fore, spatial derivatives of fluid quantities (e.g. pressure) have to be estimated
by considering the particles in the vicinity.

Since the particles are moved with the fluid flow, the computational grid
and also the vicinity relations change during the calculation. That increases
the difficulty of the mesh-free approach, but enables the handling of complex
geometries, in particular free surfaces.
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Projection method

As proposed in [7], an explicit projection method of first order accuracy in
time is used, consisting of two steps: First, the new particle position #"*! at
time t"™! and the intermediate velocity @* are computed explicitly from the
value at time " (time step "' — " = §t):

Pt = i 4ot a” (2.78)
i = U+ 0t VAT + 6t § (2.79)

In the second step, @* is corrected by solving the equations
@t = @ — ot grad p"tt (2.80)
with the incompressible constraint
div "t = 0. (2.81)
By taking the divergence of (2.80) and involving (2.81) we obtain a Poisson
equation for the pressure
div u*
ot
For further details (e.g. boundary conditions) we refer to [48].

Ap™tt = (2.82)

Weighted Least Square Method WLS

Within the projection method, numerical approximation of derivatives are
required. A weighted least square method is applied to the finite point set:

The function values f(Z) are given on a finite number of discrete points Z;
for 2 = 1,2,...,N. For the computation of a derivative the value at the point
Z; is compared to the values of the points in the vicinity of &;, given e.g. by a
ball with a radius r. Since the distribution of the points in the ball around z;
is not regular, the distances between the particle on Z; and the particles on Z;
vary in the interval (0, 7] and also within time.

These distances are applied to define a weighting function ¢(Z; — 2, r) with
compact support (i.e. the ball). Following [49],

|| —2]|? el 2
5 S erp(—a=="1) —exp(—a) , if ||, —Z|| <r
80(%' B x7r) _ { . p( r ) p( ) els|(|3 || (2.83)

is a possible choice for the weighting function with a real constant o € R™, v &~
6. The smaller the size of r the finer the resolution of the scheme and the higher
the number of particles.

The derivatives can be computed using a Taylor series expansion and a
least square approximation on the neighboring points, where the weighting
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function ¢ is involved as presented in detail in [49].

The computational effort for the approximation of a derivative is higher
than within a grid-based approach, where the vicinity relations on the fixed
computational grid can be used for efficient calculations. On the other hand,
approaches with a fixed mesh do not have the flexibility of the presented parti-
cle scheme. In particular simulations with complex or moving flow geometries
such as free surfaces are more efficient in the particle method framework.

2.5.2 Numerical Solution Scheme for SWE

A Finite Volume Scheme is applied to the 2D-SWE as well as for the 1D-SWE
first derived by Toro [51]. Finite Volume schemes are based on the integral form
of conservation laws and are thus also valid for weak solutions enabling the
application also to discontinuous solutions as e.g. for dam break simulations.

The high resolution Godunov-type method is second order accurate and
uses MUSCL (Monotonic Upstream Schemes for Conservation Laws) recon-
struction and a simple but robust approximative Riemann solver. Haasenritter
[18] extended the scheme, originally constructed only for homogeneous SWE,
to the inhomogeneous equations opening the applicability to simulations over
non-horizontal ground with varying roughness. Special attention has to be
given in order to balance the discretizations of the conservative part and the
inhomogeneous part of the pressure gradient terms from (2.68) and (2.69) [15].

Furthermore, the scheme is adapted to problems with dry bottom. Most
numerical schemes for SWE are not capable of simulating situations where the
water depth h is zero.

For further details of the numerical scheme we refer to the diploma thesis of
Haasenritter [18] where different test calculations demonstrate the applicability
and accuracy of the scheme.



Chapter 3

Results: 2D-NSE vs Classical
1D-SWE

We restrict this and the next two chapters to flow problems only in 2D-profiles
and proceed to 3D-problems in Chapter 6. This simplification reduces the
computational effort enormously whereby nevertheless the potential to com-
pare the results of the different model approaches and to develop extensions
of the classical SWE is conserved.

The two challenging flow problems manhole and curb were already intro-
duced in Section 1.2. We first present the numerical solutions of the 2-NSE.
These numerical results are then confirmed by analytical solutions derived from
stationary considerations with the in-viscid 2D-Euler Equations. We proceed
presenting the solutions of the classical 1D-SWE.

Relying on the confirmed numerical results of the NSE, we define them as
benchmark solutions since no experimental data are available. Following Ex-
planation 2.3, the discrepancies of the classical SWE to the benchmark solution
are interpreted as an impreciseness of the SWE model approach demonstrating
the need for extensions.

3.1 Flow Problem Manhole

The flow problem manhole -already introduced in Section 1.2- is a special flow
problem in flood simulations in urban areas. We simulate a constant inflow
q(t) = q of water from the manhole onto the initially dry street. Bottom
structures in the street are neglected (2, = 0 everywhere) to focus on the
outflow problem.

As illustrated in Figure 3.1, we assume the problem in a 2D-profile with
symmetry to the center line of the manhole at x = 0. At the inflow interval

35
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Figure 3.1: Sketch of the flow problem manhole in a 2D-profile

[0, z,,] between the center (x = 0) and the boundary z,, of the manhole, a
constant vertical inflow velocity w, = ¢ is assumed. We choose the manhole
radius to be x,,, = 0.3m for all simulations and compute solutions for different
inflow velocities wy, in particular for w, = 1m/s, w, = 2m/s and w, = 3m/s.
We choose the computational domain Q = [z, z,| = [0m, 2m] large enough to
include all effects in the vicinity of the manhole.

3.1.1 Solutions with 2D-NSE

The 2D-NSE solutions calculated with the FPM-Code of Kuhnert and Tiwari
[49] -presented in Section 2.5.1- are illustrated in Figure 3.2. The inflow veloc-
ity is chosen as w, = 1m/s for the presentation of in-stationary results. The
velocity vectors of the fluid particles at the time steps ¢ = 0.6s,0.7s,0.8s and
2.0s are presented as blue arrows.

Due to the inflow condition at the manhole [0,x,,], a water column is
rising above this interval. The vertical velocities decrease with their distance
to the bottom owing to gravity force. The flow is also distributed in the
horizontal direction and floods the street. Due to the vertical inflow velocities
wy, the region of the street directly beside the manhole remains dry initially,
but is finally filled with water and a vortex region develops. Far away from
the manhole, the flow becomes uniform with constant water level A and flow
velocity uy above a small bottom layer.

Figure 3.3 illustrates three stationary solutions for the inflow velocities
wy = 1m/s (top), wy = 2m/s (middle) and w, = 3m/s (bottom). The water
level of the free surface H is the upper border of the fluid domain.

Remark 3.1 The water level Hygp is not given explicitly by the applied NSE
solution scheme. A function is fitted to the locations of the particles at the



3.1. FLOW PROBLEM MANHOLE 37

i1 . =

Figure 3.2: 2D-NSE solutions for the flow problem manhole as velocity vectors
in the fluid domain at the time steps ¢ = 0.6s,0.7s,0.8s and 2.0s (from top
left to right bottom)

surface at the upper limit of the flow domain. The FPM-code marks these
surface particles for the required evaluation of the water level Hysg.

We consider two selected points of the free surface:
e The height of the water column above the manhole -denoted with H.,
e and the water depth at the outflow boundary z, -denoted with A,

H,. and h, increase with the vertical inflow velocity w,. Their dependencies
will be compared to those of other model approaches.

The size of the vortex region also increases with w,. Furthermore it is
obvious that the vortex region usually dominated by one big vortex contain
several smaller vortices. Vortices can be separated from the region and travel
with the flow out of the computational domain. The dynamics of these vortices
inhibit a really stationary solution yielding only quasi-stationary solutions.

We select one solution that appears to be close to the average of different
quasi-stationary solutions and define this solution to be the stationary bench-
mark solution for comparison to the results of other model approaches.
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Figure 3.3: Selected stationary benchmark solutions of 2D-NSE for the flow
problem manhole for the inflow velocities w, = 1m/s (top), wy = 2m/s (mid-

dle) and wy, = 3m/s (bottom) as velocity arrows and water level Hygsg (as red
dashed line)
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3.1.2 Analytical Solutions with Stationary 2D-Euler

Neglecting viscous friction, the flow is described by the 2D-Euler Equations
instead of the 2D-NSE. Instead of solving these equations numerically -as done
for the NSE in the previous section- we present a stationary analytical solution
obtained by considerations of continuity equation, momentum conservation
and Bernoulli’s law on streamlines.

Point | variable | value
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0

0
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0

Wy
pgho
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E e e g|E eg|E e sE e

Figure 3.4: Sketch of the stationary solution of the flow problem manhole with
assumptions to derive an analytical solution

Figure 3.4 sketches the stationary solution comparable to the stationary
benchmark solutions in Figure 3.3. We assume the constant atmospheric pres-
sure at the free surface to be zero py = 0. We denote B = z,, as the radius
of the manhole and thus the length of the inflow interval [0, z,,]. The height
of the water column above the manhole is denoted with H, as done in the
previous section.

We further assume that the flow becomes uniform with the flow velocity
u, and the water depth h, at the outflow cross section in between the selected
points 4 and 5 in Figure 3.4. A hydrostatic pressure distribution is assumed
in between points 4 and 5.

An overview of the assumptions for the velocities u and w and pressure p
at the selected points 1-5 is given in the table beside the figure. For a given
inflow velocity wy, we seek 4 unknowns H., py, h, and u, requiring 4 equations.
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Continuity equation
For stationary flow, the inflow flux between the points 1 and 3 is identical
to the outflow flux between the points 4 and 5, yielding

wpB = uyh,. (3.1)

Bernoulli
Due to Bernoulli’s law, the energy

1
562 +24 gh = const. (3.2)
p

remains constant on streamlines. We consider the two streamlines from point
1 to 2 and from point 2 to 5 and obtain

1 5, p
—w, + = =g9H,, 3.3
ui+ 2 (33)
1
gH, = ~u2 + gh,. (3.4)

2 [

(3.1), (3.3) and (3.4) are 3 equations for the 4 unknowns. Bernoulli’s law on
streamline (3,4) and any further energy consideration (even integrated ones)
do not result in a new independent equation.

Departing from the vertical momentum equation, we develop a formula
for the pressure on the streamline (1,2) to obtain the 4 equation for the
analytical solution. We assume w to decrease linearly on the streamline (1, 2)
from the vertical inflow velocity w, to zero

and consider a 2" oder ansatz function for the pressure distribution
p(z) = Az* + B2+ C.

The vertical momentum equation of the 2D-Euler Equations reads:

ox 0z  poz

Since u = 0 on this streamline, we obtain

0,1 , p
@(iw + ;) =9
Comparing the coefficients and inserting p(H) = 0, we obtain:
p(2) W 5, (Wh wg
e %o 2y (Yo H -0, 3.5
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Remark 3.2 p(0) = py is equivalent to (3.3)

The integrated momentum conservation equation reads

fﬁ(*-ﬁ) dA+7{§ﬁ dA = 0. (3.6)

Applying this to the horizontal momentum conservation for the whole flow
domain (1,2,5,4) yields the 4" equation required for the analytical solution

H. ho

1 1
uzho:/@dz—/gho dz = —gH? — —gh? —
P 2 2

1
gwgﬂc. (3.7)

0 0

We obtain a set of 4 nonlinear equations (3.1), (3.3), (3.4) and (3.7) for
the 4 unknowns H., pg, h, and u,. This set has only one real solution with
positive values for u,. Instead of presenting the elaborated analytical form of
the solution, we compare the dependencies of H. and h, on the inflow velocity
wyp from this analytical solution with the results from 2D-NSE and 1D-SWE
in Figure 3.7 in Section 3.1.4.

3.1.3 Results with 1D-SWE

In the SWE model approach, the mass source term ¢ = w is prescribed at
the inflow interval [0, z,,]. At the left boundary x = 0, the symmetry line,
a reflecting boundary condition is assumed and at the right boundary a free
outflow of is allowed (see Section 2.4.4). We apply the 1D-SWE with the
friction approach of Manning and Strickler as described in Section 2.4.3 and
set n = 0.03 typical for streets.

Figure 3.5 illustrates the SWE results of the flow problem manhole. The wa-
ter level Hgy g (solid green line) and the (scaled) velocity 1/10 ugy g (dashed
red line) at the time steps ¢ = 0.2s, 0.4s, 0.6s, 0.8s, 2.0s and 5.0s are pre-
sented. The principle flow behavior with SWE is similar to that of the NSE
benchmark solution: Above the manhole a water column rises and the water
floods the street. The distributions of water in the street are different. In
the SWE results, water flows immediately in the x-direction and the street
is flooded quicker. A comparison between the solutions at 0.6s of the NSE
(Figure 3.2 top left) and of the SWE (Figure 3.5 middle left) demonstrates
this difference. Another difference to the NSE solution is that neither the dry
region at the boundary of the manhole nor the developed vortex region can be
re-produced in the SWE results.
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Figure 3.5: SWE results: water level Hgwp (solid green line) and the
velocity 1/10 ugwp (scaled as dashed red line) at the time steps ¢t =
0.2s,0.4s,0.6s,0.8s,2.0s and 5.0s (from top left to right bottom)
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Figure 3.6: Comparison of stationary solutions of water levels for the flow
problem manhole. Hysg as dashed red line, Hgy g as solid blue line for the
inflow velocities w, = 1m/s (left) wy, = 2m/s (middle) and wy, = 3m/s (right)
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3.1.4 Comparison of Results

The SWE solution becomes really stationary. Figure 3.6 compares the water
levels Hgw g of the stationary solutions from SWE to the NSE benchmark wa-
ter levels Hygp for the inflow velocities w, = 1m/s (left), w, = 2m/s (middle)
and wy, = 3m/s (right). Serious local as well as global differences in the water
levels are obvious.

We focus the comparison to the two selected points in the free surface H,
(height of water column) and h, (outflow water depth) as announced in the
previous sections.
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Figure 3.7: Comparison of dependencies of H. (blue) and h, (green) on the
inflow velocity w, from analytical considerations (dashed line), from classical
SWE (solid line) and from the NSE benchmark solutions (circles)

Figure 3.7 compares of dependencies of H. (blue) and h, (green) on the
inflow velocity wy. The numerical NSE benchmark solutions (circles) are con-
firmed by the analytical in-viscid solution (dashed line). This approves the
assumption that the friction has no dominant effect on the local flow behavior.

The solutions of the classical SWE (solid line) are rather far away from the
NSE benchmark solutions in particular for high inflow velocities w;,. H. is too
low and h, is too high. Thus the Froude number Fr at the outflow boundary
x, is computed too low with the classical SWE approach. For w, = 3m/s the
difference is approximately a factor 5. These differences are truly crucial for
the assessment of flood risks.
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3.2 Flow Problem Curb

The challenging flow problem curb introduced in Section 1.2 is another special
flood situation in urban areas. In contrast to the assumption of a plane street
in the flow problem manhole, the street is usually bordered by sidewalks with
curbs of some centimeters height. The reliable simulation of this flow problem
curb is crucial to assess the flood risk of the houses connected to the street.
Instead of coupling the flow problems manhole and curb as they occur in the
real applications, the problems are considered isolated in order to examine
them separated.

curb

la------- >

il

0

Figure 3.8: Sketch of the flow problem curb

Figure 3.8 illustrates the plane topography of the street and of the sidewalk
with a single jump of size h, in the bottom elevation at the curb located at
x = 0m. Choosing the height of the curb hy = 0.1m defines the entire bottom

elevations in the computational domain 2 = [z, x| = [—1m, 1m]
0 ,z<0,
z(z) = { he x>0, (3.8)

We assume an initially dry street and prescribe the inflow at the left.

3.2.1 Benchmark Solutions with NSE

Sub-critical case

For sub-critical inflows ) with small velocities u; the flow is reflected at
the curb and the water floods back to the symmetry line and is reflected
again. Figure 3.9 illustrates the stationary solution for the sub-critical case
with @ = 0.1m?/s in the vicinity of the curb.
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Figure 3.9: Selected stationary NSE benchmark solution for the flow problem
curb in the sub-critical case: Velocity arrows in blue and water level Hygsp as
red dashed line
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Figure 3.10: Selected stationary NSE benchmark solution for the flow problem
curb in the super-critical case: Velocity arrows in blue and water level Hygsg
as red dashed line
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In front of the curb, the water level h; is higher than the water level h,
behind the curb. The inertia of the inflow is not sufficient to flow over the
curb. Instead, the water level in front of the curb raises and the gravity force
finally yields to the flow over the curb.

Super-critical case

For high Froude numbers (e.g. F'r = 3), there is no reflection at the curb
and the water flows over the curb establishing dynamic vortex regions in front
and behind the curb as illustrated in Figure 3.10. The solution behind the curb
is dynamic and vorticies separate from the vortex regions and are transported
through the flow domain.

The inertia of the inflowing water is high enough to let the water jump over
the curb. The water level H behind the curb is higher than in front of the
curb. Same holds even for the water depth h. The surface structure behind
the curb is influenced by the vortex motions.

3.2.2 Analytical Solutions with Stationary 2D-Euler

Analogously to the flow problem manhole, we assume in-viscid stationary flow
described by the 2D-Euler Equations.

A

c 3
pr =10 [
h,
2 %’ Uo
g )4
— 7 .
Loy y D .
0

Figure 3.11: Sketch of the stationary solution for the flow problem curb with
assumptions to derive an analytical solution

Figure 3.11 illustrates the flow behavior of the flow problem curb in the
super-critical case. Nevertheless, the following derivations are valid for all
stationary flow cases.

Again, we assume the constant atmospheric pressure to be zero pressure
at the surface pg = 0. At the left inflow boundary we assume a homogeneous
horizontal inflow velocity u; with the water depth h;. At the outflow boundary
on the right hand side, we assume a constant horizontal outflow velocity wu,
with a water depth h,.
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Furthermore, a uniform horizontal flow with w = 0 and a hydrostatic pres-
sure distribution is assumed at the inflow and outflow boundary (all selected
points 1-4).

We are interested in the relations between the unknowns u;, h;, u, and h,,.

Continuity equation
For stationary flow, the flux through the inflow line between point 1 and 2
is equal to the outflow flux between the points 3 and 4

Uzhz = Uoho. (39)

Bernoulli
Applying Bernoulli’s law (3.2) to the streamlines 2 to 3 and 1 to 4 yields
identically
u? + 2gh; = uZ + 2g(h, + hy). (3.10)

Inserting (3.9) into (3.10) yields
ud + (2ghs — 2gh; — ul)u, + 2gu;h; = 0. (3.11)

Assuming that h,, h; and u; are given, the analytical solution for the unknowns
h, and wu, can thus be evaluated. (3.11) is a third order algebraic equation
yielding three solutions u, € C. Since only u, € RT is physically relevant, we
choose the appropriate solutions derived by MAPLE.
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Figure 3.12: Dependency of the outflow water depth hy (left hand side) and
the outflow velocity u, (right hand side) on the inflow velocity u; for different
inflow heights h; = 0.5k (black), hs (green), 2h; (blue), 3hy (red), 4hs(yellow)
with A, = 0.1m from analytical solution

Figure 3.12 illustrates the dependencies of h,(u;) (left) and wu,(u;) (right)
for different choices of h; = 0.5hy, hy, 2hg, 3h, 4hs (colors) for hy = 0.1m.
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Two separated sets of solutions for the sub-critical and the super-critical
flow case are visible. On the right hand sides of the two figures, the super-
critical solutions are visible. These solutions require a minimal inflow velocity
u; with enough inertia to flow over the curb. The water depth h, is always
higher than the inflow water depth h; < h,. h; is illustrated as a small col-
ored dot on the right boundary of the left figure. This is due to the loss of
momentum to lift over the curb. This loss of momentum is also visible for the
velocities u, in the right figure since u, < ;.

On the left hand sides of the two figures, the sub-critical solutions are
visible. The water levels in front of the curb are always higher than behind
the curb and h; + hy, > h, holds.

For the inflow heights h; = 0.5h, (black) and h; = hy (green) there are no
sub-critical stationary solutions, since the flow is reflected and a water height
h; > h, is established.

The major difference between the two sets of solution is that the sub-critical
flow over the curb is only possible due to the slack flow caused by reflection
and not -as in the super-critical case- due to the inertia of the flow itself.

In the gap between the sub-critical and super-critical stationary solutions
there exist no stationary solution.

3.2.3 Comparison with 1D-SWE Results

The curb is not modeled as a real step of infinite slope in the classical SWE,
but considered as a jump hg within one grid cell with size dz yielding the slope

hs/dz.

For the different flow cases, appropriate boundary conditions are required
for the SWE solution as described in Section 2.4.4.

For sub-critical flow (F'r < 1), one inflow and one outflow boundary condi-
tion are required. We prescribe the inflow flux at the left boundary x; as the
constant flux Q;(z;); = uh;. We allow a free outflow at the right boundary
Ty

For super-critical flow (F'r > 1), two inflow and no outflow boundary con-
ditions are required. The inflow flux @); is prescribed by setting the water
depth h; as well as the velocity u;.

Sub-critical case
Similar to the NSE solution, the sub-critical flow is reflected at the curb,
before a stationary solution is obtained.
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Figure 3.13 compares the stationary water levels Hgy g and Hygg for the
sub-critical flow at the left hand side. Hgy g is close to Hysg in the vicinity of
the curb. The principle flow behavior is similar to the NSE and the analytical
solution. For the stationary sub-critical flow, the SWE approach is applicable.
The discrepancy between the numerical SWE results and the NSE solutions
is caused in particular by the implementation of the curb as a jump in one
computational grid cell. Haasenritter [18] suggested a special numerical treat-
ment of the flux at discontinuities in the bottom leading to even more accurate
results for sub-critical flows.
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Figure 3.13: Comparison of stationary solutions of water levels for the flow
problem curb: Hygsg as dashed red line, Hgy g as solid blue line and bottom
2y as green line for sub-critical flow (left hand side, Q; = u; - h; = 0.1m?/s)
and for super-critical flow (right hand side, u; = 3m/sh; = 0.1m)

Super-critical case

The right hand side of the figure compares the water levels for the super-
critical flow illustrating local differences in front and behind the curb. The
water level Hgy g is constant h; in front and constant A, behind the curb, sim-
ilar to structure of the the bottom elevation z,. Due to the loss of momentum
caused by the bottom slope h;/dz at the curb, the water depth behind the curb
is higher A, > h;. The SWE register the curb in fact only as a locally restricted
negative source term in the momentum equation in the super-critical flow case.

The high local differences in the water level are visible in Figure 3.13 (right
hand side). The height of the water in the vicinity of the curb is too low
with SWE in the super-critical flow case. That is because the vortices in front
and behind the curb are not considered. In the 3D application, the local flow
behavior is crucial for the assessment of flood risks.



50 CHAPTER 3. RESULTS: 2D-NSE VS CLASSICAL 1D-SWE

3.3 Need for Extensions

Summarizing the differences between the SWE results and the NSE bench-
mark solutions for the flow problems manhole and curb demonstrates the need
for extensions:

Flow Problem Manhole

There are serious differences between the SWE results and the NSE bench-
mark solution due to the simplified assumptions of the SWE. In particular the
neglect of the vertical momentum from the inflow at the manhole causes too
low heights of water column H, and too low Fr-numbers at x,. The higher
the vertical inflow velocity wy, the higher are the differences. Such differences
can be crucial when assessing the flood risks (e.g. if we have to assess whether
the water has enough momentum to jump over a curb or not).

Flow Problem Curb

The differences of the water levels for the flow problem curb are concen-
trated to the vicinity of the curb. For the sub-critical flow case, the differences
are small and the SWE are applicable in this context. This is different for the
super-critical case, where the local behavior at the curb can also be crucial
when assessing the flood risks.

Need for Extensions

In particular the flow problem manhole can not be simulated reliably with
the SWE. Vortices and non-zero vertical velocities prevent the applicability
when dependable results are required. Thus, there is a demand to derive
extensions including flow effects not considered in the classical SWE. Such
extensions should

— be justified physically,

— be applicable within the SWE framework,

— increase the computational effort only moderately and

— clearly reduce the differences between SWE and NSE results.

Studying the NSE benchmark solutions in detail to detect effects influenc-
ing the flow behavior not considered in the classical SWE yields in particular

1. the appearance of vortex regions and
2. non-zero material derivatives of the vertical velocity w

Appropriate extensions are derived based on the incorporation of these effects
in the next chapters.



Chapter 4

Extension Vortex Separation

The comparison between the NSE benchmark solution and the results of the
classical SWE in Chapter 3 demonstrates the need for extensions of the SWE.
These extensions should fulfill the properties (3.12)-(3.15) discussed in the
previous section.

The NSE benchmark solutions for the flow problems manhole (Figure 4.1,
left) and curb (Figure 4.2, left) contain vortices in the flow domain. The
Extension Vortex Separation assumes that these vortex regions are dead zones
not participating in the main flow above. The circulating flow of water inside
these regions involves no exchange of water with the main flow in the stationary
case. Nevertheless, the vortex regions influence the main flow since the bottom
for the main flow above is represented by them. We pose two important
questions:

1. How to design the separation line between the vortex region and the
main flow domain above 7

2. What are the effects of the separation of the vortex region on the main
flow description with SWE 7

Question 1 is answered in Section 4.1 by an empirical design approach based
on the availability of the NSE-benchmark solution. This empirical approach
is required to assess the quality of the physical design approach derived in
Section 4.2. Obviously, the high computational effort of the NSE-solutions
can only be avoided by a physical design approach. Section 4.3 describes how
to include in-stationary considerations into the stationary design approach of
the vortex regions.

The effects of the Extension Vortex Separation on the friction approach
of the SWE are discussed in Section 4.4. Further answers to Question 2 are
presented given within the Extension Pressure Correction in Chapter 5.

ol
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Figure 4.1: NSE benchmark solution and concept of Extension Vortex Separa-
tion for the flow problem manhole

Main flow vortex

Figure 4.2: NSE benchmark solution and concept of Extension Vortex Separa-
tion for the flow problem curb
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4.1 Empirical Design Approach

The concept of separating vortex regions at the bottom near the manhole and
the curb is illustrated on the right hand side of Figures 4.1 and 4.2 respectively.
The NSE benchmark solutions illustrated on the left hand side of the figures
contain vortices in those regions.

The empirical design of the vortex region fits a flow separation line to the
NSE solution. The separation line, approximated by a function s(x), repre-
sents the upper boundary of the vortex region as well as the new bottom for
the main flow above.

The design of the separation line is restricted to smooth fit functions s(z) €
C' in order to obtain a smooth bottom elevation z;, for the SWE flow above.
Furthermore, constraints for the fit function s(x) are postulated due to the
observed flow behavior of the NSE solution. The class of possible fit functions
s(x) € S'is chosen as polynomials of minimum order fulfilling these constraints.

The separation line s(x) is finally fitted to the NSE result by minimiz-
ing a functional F'(s) that measures the ”quality” (see Definition 4.7) of the
parameterized fit function s(z).

4.1.1 Constraints for the Fit Function s(z)

Since the vortex regions consist of water, they are obviously located above the
given bottom elevation z,. Thus,

s(x) > z(x) (4.1)
is the first constraint for the separation line s(z). The separation line is iden-

tical to the bottom s(z) = z,(z) for regions without vortices. Vortex regions
only occur for s(x) > z,(x) in the "support of the vortex region”.

Definition 4.1 (Support of the vortex region) The set supp(s — z,) =
{r € R | s(z) — z(x) > 0} is the support of the nonnegative function of the
height of the vortex region s(x) — z,(x). The smallest closed interval containing
this set

(5, we] = {Na yerlz, yll[z, y] > supp(s — 2)} (4.2)

1s defined as the ”Support of the vortex region”.
Considerations of the flow behavior of the NSE benchmark solution yield

assumptions for selected points on the separation line s(x) or its slope at se-
lected points.
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Flow Problem Manhole

As in Chapter 3, we assume the center of the manhole to be located at
x = 0 and the z-axis to be the symmetry line of the flow. The boundary of
the manhole is located at x = x,,,. The velocity vectors of the NSE benchmark
solution on the left hand side of Figure 4.1 allow an estimation of the behavior
of the separation line s(x):

s(x)

manhole

0 T Ty

Figure 4.3: Constraints for the empirical design of the separation line for the
flow problem manhole

The separation line s(z) starts at the boundary of the manhole in (z,,,0)
with a given slope §'(z,,) = my > 0 due to the inflow condition. The separation
line reaches a maximum at the top of the vortex and decreases until it re-
attaches the bottom in the re-attachment point x,.. We assume a zero slope
in x, in order to obtain s(x) € C! in x,. Obviously, the support of the vortex
region is [x,,, x,] and the design of s(x) is restricted to this interval.

These constraints for s(z) illustrated in Figure 4.3 are summarized as:

Separation point at xz,, $(xm) =0

Slope at x,, is myg s'(zm) = my (4.3)
Re-attachment point at z, s(x,) =0 '
Slope at x, is 0 s'(z,) =0

The constraints (4.3) pose 4 conditions for s(z) > 0 for © € [x,,, x,] fulfilled

by a unique third order polynomial s(x)

= a3x® + ayr® + a1 + ag. The
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coefficients as, as, a1 and ay depend on the values of x,,, z, and mg by:

5 = (44)
o = o (15)
" “
“ = Gt o

Thus, the class of fit functions S is chosen as the set of third order polynomials
s(x) € P? fulfilling (4.3), i.e. with the coefficients a3, as,a; and ag from (4.4)
to (4.7).

€ P? fulfilling (4.3) DX € [Ty, 1y

= z(x) Cx ¢ Ty, 1y

5= {s<x>|s<x>{ b ()

Explanation 4.2 s(z) ¢ C! at the boundary of the manhole in x,,, since
§'"(Ty) = mo > 0 and s(x) = 0 = z, for x € [0,2,,], the plane manhole area.
S ¢ Ct is accepted for the special point x,, yielding a continuous estimation
of vertical velocity w in Chapter 5.

Remark 4.3 There exist of course other functions s(x) ¢ S but s(z) € C!
and fulfilling (4.3). For the sake of simplicity the choice of S is reduced to the
third order polynomials. Results with this restriction are satisfactory.

Flow Problem Curbd

The curb with the step size h, is located at x = 0 with the bottom elevation
2z, = 0 for x < 0 and z, = h, for x > 0 as illustrated in Figure 4.4. Analogously
to the flow problem manhole, constraints for > 0 are postulated by an offset
of the constraints (4.3) from 0 to hs:

Top of the curb (0, hs) € s(z) s(0) = hy

Slope at 0 is mg s'(0) = my (4.9)
Re-attachment point at x, s(xy) = hg ’
Slope at x, is 0 s'(z,) =0

Again, 4 conditions for s(x) > hy for z € [0, x,] determine a unique third
order polynomial.

The constraints of s(z) for z < 0 are postulated by assuming s(z) € C*
in x = 0 (yielding 2 conditions) and choosing a separation point at z; as
illustrated in Figure 4.4:
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A
s(0) = h
s'(0) = my
s(x)) =0
s'(w) =0 curb
2 ( z

Figure 4.4: Constraints for the empirical design of the separation line for the
flow problem curb

Top of the curb (0, hs) € s(z) s(0) = hy

Slope at 0 is my s'(0) = myg (4.10)
Separation point at z; s(x) =0 '
Slope at x; is 0 s'(0) = myg

The unique third order polynomial fulfilling the 4 conditions (4.10) for
x € [x;,0] does at times not satisfy (4.1) yielding negative values for s(z).
Instead of applying more complicated functions (e.g. s(z) = a; cosh(ay(x +
as) + ay,x € [21,0]), we reduce s(z) to a 2" order polynomial for z € [z, 0].
This assures (4.1), but a degree of freedom is abandoned by coupling the slope
myg and the separation point z;:

s(z;) = 0 and §'(z;) = 0 yields s(z) = a(r — z;)%, a € RY for a 2™ order
polynomial on [z;,0]. The other constraints from (4.10) read s(0) = hy, = aa?

and §'(0) = my = —2ax, satisfactory if
mox; = —2h, (4.11)
is fulfilled.

Explanation 4.4 The restriction (4.11) reduces the design of s(x) for x <0
to the choice of only one physical parameter mqg or x;.

The physical design approach in Section 4.2 is restricted to x > 0. The
estimation of my entails thus the design for v < 0 without any further assump-
tions. Hence, the following presentation is based on the choice of the slope my
as the physical design parameter.
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Remark 4.5 Within the physical design approach in Section 4.2 we consider
the separation line s(x) as a trajectory of a water particle. Assuming a constant
force acting on the motion of the water particle on the separation line for x < 0
yields the parabola form for s(x) € P2,

The design of the vortex region is determined uniquely by the choice of the
two parameters x, and myg (respectively z;, see Explanation 4.4) yielding the
class S C C! of fit function s(z):

€ P? fulfilling (4.10)  : =z € [24,0]
S = {s(x) € C'(R) | s(z) { € P? fulfilling (4.9) c wel0,z] )}
= zy(2) : else

(4.12)

The polynomial coefficients of s(x) = bya? + byz + by on [z;,0] and s(z) =

azx® + asx? + a1 + ag on [0, z,| depend on the choice of my and z, due to the
postulated constraints in (4.9) and (4.10):

—2
a3 — m—zo, o — mo, ay = My, ag = hs (413)
Ty Ty
2
m
b2 = 4—};:, b1 = My, bo = hs (414)

The setting of the fit parameters x, and mg entails the determination of the
unique separation line s(x).

4.1.2 Fit Procedure

In the previous section we have presented physical constraints for the sepa-
ration line s(x). These constraints (4.3) for the flow problem manhole and
(4.9), (4.10) for the flow problem curb employ the physical parameters x, and
mg describing a re-attachment point and a flow direction observed in the NSE
benchmark solution.

To determine its exact values from the NSE solution admits subjective
freedoms and is not unique. But it is possible to restrict the parameters to
physically relevant intervals and exclude choices far away from the reasonable
values. This is done manually yielding, =, € [z, | and my € [mg;, mo,].

The assumed constraints are idealizations based on the examination of the
NSE benchmark solution. In particular the restriction of the separation line
to polynomial fit functions s(z) € S is physically not necessary and done to
avoid complicated computations. Thus, even inserting the correct values from
the NSE solution may produce a fit function s(z) not describing the separation
line perfectly.



58 CHAPTER 4. EXTENSION VORTEX SEPARATION

Seeking the best choice of the parameters x, and my to fit the flow separa-
tion line s(z) to the NSE results, an approach of minimizing an error functional
F(s) can be applied. F'(s) measures the "quality” of the separation line s(x)
compared to the NSE solution. Therefore we define ”quality” of the separation
line s(z) and its quantification. The separation line s(x) is assumed to sepa-
rate the vortex region from the main flow domain without exchange of water
in the stationary solution. F(s) measures the flux across the separation line
that is minimal if s(x) is tangential to the velocities Uygg.

The tangential vector of s(z) is obtained by the slope s'(x) as

By = ( S,(lx) ) , (4.15)

determining also the unit normal vector 7iy,) perpendicular to t_;(w)

( _5’1(‘”) ) (4.16)

Figure 4.5: Tangential vector fs(x) and normal vector 7iy,) on s(x)

The inner product 7iy(,) - nsk(2) quantifies the flux of the NSE flow across
the separation line s(z) at x. Integrating the norm of that flux across the
separation line s(x) yields the total flux fluz(s) across the line:

fluz(s) = / 7s(2) - Unse| dz (4.17)
R

For s(x) = z(z) there is no contribution to fluz(s) due to the assumption
of no penetration of water in the bottom as kinematic boundary condition.
Thus, the integration over R can be reduced to an integration over the support
of the vortex region [z, x.| (see Definition 4.1).
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Remark 4.6 A minimization approach for fluxz(s) results in s(z) = z(x)
everywhere without any vortex region and fluz(s) = 0.

The suitable quality measure F'(s) determines the flux across s(x) per unit
length. flux(s) from (4.17) is divided by the length of s(z) in the support of
the vortex region assumed to be nonempty.

Definition 4.7 Let insp(x, z) be the given velocity vectors of the NSE bench-
mark solution. The "quality” of a separation line s(x) is defined by the fluzx
across s(x) per unit length on the support of the vortex region |xs,x.] # {}:

F(s) (@))] dz (4.18)

Te
! / ey - s
= Mgz * U x,$
RV ETE e

s(x) can be determined by minimizing F'(s) within a multi-parameter min-
imization under constraints

min {F(s)|s(x) € S}. (4.19)
Ty € [-Trl;xrr]
mo € [moy, Mo,

Remark 4.8 Since the empirical design is only needed for the assessment of
the results of the physical design, the efforts of such a minimization process are
avoided. Instead, the allowed intervals for the fit parameters are restricted to
small intervals and finally chosen by comparing F(s) obtained by several test
calculations.

4.1.3 Results with Empirical Design Approach

The results of the empirical design approach are illustrated in Figures 4.6 (three
figures for three inflow velocities) and 4.7 for the flow problem manhole and
curb respectively. The fitted separation line s(z) is plotted in green and the
resulting water level from the stationary SWE-solution above the separated
vortex region is plotted in red. The NSE velocity vectors, illustrated as arrows
in the background, allow an assessment of the separation qualities of s(z).
This yields reasonable agreements although min F'(s) > 0.
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Figure 4.6: Results of the empirical design approach for s(z) (green line) with
stationary SWE water level H (red line) and NSE velocities in the background
for the flow problem manhole with different inflow velocities (from top to bot-
tom: wy, = lm/s, w, = 2m/s, and w, = 3m/s)
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Figure 4.7: Results of the empirical design approach for s(x) (green line) with
stationary SWE water level H (red line) and NSE velocities in the background
for the flow problem curb with inflow velocity ug = 3m/s

4.2 Physical Design Approach

There are two severe disadvantages in the empirical design approach for s(z):

1. The computational effort is not reduced since the computation of the
NSE solution is still required.

2. The design approach is restricted to polynomials performing special con-
straints.

We derive a physical design approach finally executable without these disad-
vantages. This approach departs from the concept of a minimum flux across
the separation line.

4.2.1 Concept of Trajectory

The functional F(s) (4.18) quantifies the flux of the NSE flow across the sep-
aration line s(z) per unit length. F(s) is applied as a quality measure since
s(x) is expected to separate the vortex region and the main flow. The separa-
tion line s(x) obtained with this approach is locally almost tangential to the
velocity vectors tysg in the vicinity, as shown in Figures 4.6 and 4.7.

Applying the trajectory of one water particle in the NSE flow as the separa-
tion line s(x) assures that #ysp(x) is collinear to t:(x) and thus perpendicular
to 7s(z). This yields a zero flux across s(x) with F'(s) = 0. This holds for every
trajectory in a stationary flow. s(x) is chosen as the particular trajectory of a
selected water particle to be defined below for each flow problems.
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The 2D-NSE solution contains uysg(z,2) and wysg(z, z) for all (z,2) in
the flow domain. A water particle in the stationary flow moves due to the

ODE system
()-() e
z WNsg ) '

The initial conditions for the first order ODE system are given by the selected
water particle defining the appropriate trajectory

(z(r =0),z(r =0)) = (w0, 20)- (4.21)

Remark 4.9 We design s(z) for stationary solutions. The ODE system (4.20)
describes a time-dependent motion of a water particle on streamlines in the
stationary solution. Since the variable t is reserved for the time in the flow
description with NSE, we define a new time variable T for the solution of the
ODE (4.20). T denotes the time within the motion of a water particle in the
stationary NSE solution.

For the flow problem manhole, we choose the water particle at the boundary
of the manhole. For the flow problem curb, we choose the water particle
touching the top of the curb:

(zo,20) = (xp,0) , flow problem manhole (4.22)
(x9,20) = (0,hs) , flow problem curb (4.23)

Figure 4.8: Design of s(z) as a trajectory of a selected water particle in the
stationary NSE-benchmark solution for the flow problem manhole

The trajectory s(z) from that design approach is the pathline (z(7), z(7))
obtained as solution of (4.20) with the initial conditions (4.23). For the flow
problem manhole, s(z) is illustrated in Figure 4.8.
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The trajectory is not as smooth as obtained by the empirical design, where
the fit polynomials assure the smoothness and regularity of s(x). That is due
to the fact that the NSE solution is not really stationary and we have selected
a particular solution as stationary solution. Thus, s(z) varies for different
selected NSE solutions. Furthermore, the vortex region is reproduced only
poorly since the flow is not re-attached to the bottom.

For the flow problem curb, this design approach fails since the NSE velocity
Unse(0,hs) = 0 due to the no-slip condition at the bottom.

Thus, the results of this physical design approach are neither convincing
nor possible without the NSE solution. We simplify the approach below.

4.2.2 Simplified Equations of Motion

Instead of considering the flow velocities sz from the NSE solution, the
equations of motion of the water particle (4.20) are simplified. uygg(z,2) is
replaced by the depth-averaged horizontal velocity usw g(z) from the SWE in
each cross section x

u(z,z) = uswp(x) forall z € [z(x), H(x)]. (4.24)

( i > _ ( Uswzf(x) > ' (4.25)

Since the vertical velocity w is not considered in SWE, we approximate w
by solving a further ODE of the equations of motion. Newton’s second law of
motion for the vertical z-direction reads

This yields

== f,, (4.26)

claiming that the vertical acceleration is identical to the sum of all forces in
vertical direction per unit mass f,. We consider the gravity force —g as the
dominant force the z-direction and neglect all other forces, and obtain

W= —g. (4.27)

(4.25) and (4.27) are the idealized equations of motion for the trajectory of
the water particle

x USWE
Z | = w : (4.28)
w -9

The initial conditions (zg, zp) from (4.23) have to be completed by an initial
condition for w.
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4.2.3 Initial Conditions for the Trajectory

The initial conditions for the flow problems manhole and curb for the first
two equations of (4.28) are already given in (4.22) and (4.23) respectively. wy
denotes the initial vertical velocity at the initial point (xg, zg).

For the flow problem manhole, this vertical velocity wy is simply given
by the inflow condition from the manhole

wy = ¢q. (4.29)

USWE
X

Z

USWE(fEm)
o U= (USWE(«'L'm); wO)

($0, Zo)

x
0 T

Figure 4.9: Initial conditions for physical design of the separation line for the
vortex region as a trajectory for the flow problem manhole

Figure 4.9 illustrates the initial conditions for the trajectory of the flow
problem manhole.

Since no initial vertical velocity is given explicitly for the flow problem
curb, w, is estimated by considering the energy conservation. The kinetic
energy of a water particle approaching the curb with the horizontal velocity
ug is u3 /2. That holds also for a water particle close to the bottom above the
small viscous bottom layer.

We assume that this water particle is lifted up the curb from z = §z ~ 0 to
2 = h, and a part of the kinetic energy turns into potential energy. Assuming
energy conservation yields the absolute velocity || at the top of the curb in

(0, hs) as
|@| = \/u? — 2ghs. (4.30)
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Since |i| = |(u, w)"| = Vu? + w? = Juswg(0)2 + w3, we obtain

wy = \/(u% —2ghy)? — uswp(0)2. (4.31)

Figure 4.10 illustrates the initial conditions for the trajectory of the flow prob-
lem curb.

Uswe
x

z

uswr(0)
o @ = \/ug — 2gh,
(xOJ ZO) — (0) hs) hs
1o curb

T

Figure 4.10: Initial conditions for physical design of the separation line for the
vortex region as a trajectory for the flow problem curb

Following the trajectory of the water particle back in time for the design
of s(z) for x < 0 requires also an ODE for w similar to (4.27). Obviously, the
forces due to pressure are higher than the gravity force yielding a lift of the
water particle. In order to avoid the difficult task to approximate the pressure
and its gradient in front of the curb and possibly further forces, we apply parts
of the empirical design approach from the previous section.

The initial condition wy = w(r = 0) together with the horizontal velocity
uswp(x = 0) = u(r = 0) from the SWE solution yields a velocity vector

(e = 0) = ( usw(0) ) (4.32)

Wo

in the starting point of the trajectory (z¢,z9) = (0, hs). For the slope of the
trajectory in that point, we obtain

mgy = wo/USWE(O). (433)

We insert this slope in (4.11) from the empirical design approach for x < 0
and obtain the separation point x; = —2hs/mg and a uniquely determined
s(z) € P2
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4.2.4 Iteration Process
uswe(r) in (4.28) is considered the stationary horizontal flow velocity over
the already separated vortex region. Since the design of the vortex region in-
fluences the stationary SWE solution and in particular ugyy g, the problem is
implicit, and solved by a fix-point iteration process.

Start of Iteration

We start the iteration without any vortex region setting s (z) = 2 ().

Iteration Step 1

We solve the stationary 1D-SWE flow problem for s (z) = z,():

2( w0 R (0) >_ q (4.34)
0z \ (WO)2HO 4 39(h®)? ) T\ ghO(2p@ — 5y )

This yields (u z = u©, bW, . = B©), the stationary results from the classi-
cal SWE presented in Chapter 3.

The second stage in the first iteration step is the evaluation of s()(z) by
solving (4.28) with u© = u{), , from above.

) u©
A =1 w |. (4.35)
w -9

We note, that not only the first component on the right hand side of (4.35) is
influenced by u(®) = ugOV)VE, but also the initial conditions due to (4.31).

The integration (e.g. numerically with an explicit Euler scheme) yields a
time (7) parameterized trajectory (z(Y)(7), 20(7))7. Since sV () is a function
defined for z € 2 C R and not for 7, a transformation between x and 7 is
required. Assuming u(®) > 0 for all z, the mapping

T:00,7.) = [z(0), z(r.)], T(r)=zW(r) (4.36)
is bijective and the inversion
T [z(0), ()] = [0,7), T 'aW(r)=r (4.37)

exists uniquely. s(!)(z) can be evaluated for z € [2(0),z(7.)] by applying 7!
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Due to the constraint (4.1), s(z) is cut by the bottom z,
sW(z) = maz (T (x)), 2(z)) (4.38)

and a first iteration s (z) of the separation line s(z) is obtained.

Iteration Step n

For a given separation line s (z), the suitable ID-SWE flow solution ugnV)VE

is computed by solving

9 U R > g
9 _ ks L (439
e ( (u)2R) 4 g ()2 ghm (=) _ g, ) (4.39)

As in the first iteration step for n = 0, we estimate the new trajectory as the
solution of

4(n+1) u™
) ) = w . (4.40)
w -9
with the initial conditions
z(r =0) T,
z(t =0) = 0 , (4.41)
w(T = 0) q
for the flow problem manhole, and
z(r = 0) 0
w(r = 0) V(i =29k, = (W (0))?

for the flow problem curb.

Remark 4.10 There exist x € Q with s+ (z) < s (x) within the iteration
process, i.e. when the design of the separation line st is below s™. Since the
computed horizontal velocity U(Snv)VE 15 the average velocity in the cross section
sM(z) < 2z < H™(z), a horizontal velocity u for z(x) < z < s™(z) is
required. According to (4.24), we apply also ug"V)VE(x)

As in the first iteration step, we have to re-parameterize the trajectory
from time to space by the inversion T—! of the bijective mapping T

s+ (z) is finally obtained by cutting it with the given bottom elevation
2(z) as done in (4.38).

Thus, the iteration process contains two stages:

1. Solving the stationary 1D-SWE for a given bottom s (z).

2. Determination of the trajectory s+ (z) by solving (4.40).
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Convergence of the Iteration Process
Flow Problem Manhole

Applying this iteration process to the flow problem manhole, the trajec-
tory s(x) = lim,_, s™(z) lead to numerical convergence after only a few
iteration steps. Figure 4.11 illustrates the first steps of the iteration process
for w, = 2m/s.
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Figure 4.11: First iteration steps s (z),n = 1 (blue), 2 (green), 3 (red), 4
(cyan), 5 (magenta), 6 (yellow), 7 (black) and converged separation line s(z)
(black dashed line) for the flow problem manhole

We consider s(x) as a time-parameterized curve

T o se(m) [ z(7)

(i )=(0)=(0) )

For the flow problem manhole, s,(7) is independent of the iteration. We con-
sider only the last two components of (4.40), yielding

s (n+1)
w -9
with the initial conditions

( z":(t(iz)()) ) _ ( 2 ) | (4.45)
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Obviously, (4.44) and (4.45) are independent of the iteration process and can
be solved explicitly, yielding

A1)\ _ [ we - g7 (4.46)
w(T) wy — gT '
for all iteration steps n.

This represents a parabola form of s,(7) with the maximum s, at Ta

2
Wy w

Sz(Tmax) — 32(?) = Smazx = 2_;
The time-parameter 7, of the re-attachment point of s,(7.) = 0 is also uniquely
determined as

(4.47)

2wb
Te = —, 4.48
p (4.48)

yielding the compact time-parameter interval 7 € [0, 7]

Thus, the second stage of the iteration process is reduced to the first com-
ponent s,(7) of (4.40), where u(z) determines by the parameterized mapping
T between 7 and z as defined in (4.36).

i =u™ | with z(r =0) = z,,. (4.49)
The solution of (4.49) is uniquely determined
s$(1) =T (1) = 2™ (1) = 2 + / u™ (2" (7)) dF. (4.50)
0

Since u™ > 0 we can invert T and obtain
m(z) =T (z). (4.51)
Inserting (4.51) in (4.46) yields

1
s(x) = s:(7(2)) = 5:(T7 (@) = wp T (x) = 59(T7" ()" (4.52)
Thus, the design of s(x) is scaled in the z-dimension by the mapping T’
determined by the velocity u(z). The reason why the process converges is
obviously the fact, that this scaling of the separation line s(x) influences the

solution of the stationary SWE only moderately that convergence is enabled.

Remark 4.11 We have tested the iteration process for several values of wy,
and obtained always convergence within the first iteration steps. Instead of
proofing convergence we apply the numerical results for s(x) to compute so-
lutions for the extended SWE, and compare them to the empirical design ap-
proach.
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Flow Problem Curb

The initial condition wy of the flow problem curb depends on ugw g, and
is thus also involved in the iteration process. The convergence for ug = 3m/s
requires some more iteration steps.

If wg is chosen too small, there is no convergence for s(z). The first iteration
steps produce s(x) as a kind of wall at the curb and then fails. The existence
of such a limit ug > u* has already been observed in the NSE solutions and in
the analytical Euler solutions.
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4.2.5 Results with Physical Design Approach
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Figure 4.12: Results of the physical design approach for s(x) (green line) with
stationary SWE water level H (red line) and NSE velocities in the background
for the flow problem curb with inflow velocities ug = 3m/s

Figure 4.13: Comparison of design of s(x) and the water levels (Benchmark
dashed black): empirical (blue), physical (green) and physical with S, (red) for
the flow problem manhole with inflow velocities w, = 1m/s (left) w, = 2m/s
(middle) and w, = 3m/s (right)

The results of the physical design approach are illustrated in Figures 4.14 (three
figures for three inflow velocities) and 4.12 for the flow problem manhole and
curb respectively.
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Figure 4.14: Results of the physical design approach for s(z) (green line) with
stationary SWE water level H (red line) and NSE velocities in the background
for the flow problem manhole with different inflow velocities (from top to bot-
tom: wy, = lm/s, w, = 2m/s, and w, = 3m/s)
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The computed separation line s(z) is plotted in green and the resulting
water level from the stationary SWE-solution above the separated vortex re-
gion is plotted in red. The NSE velocity vectors, illustrated as arrows in the
background, allow an assessment of the separation qualities of s(x).

The water levels are closer to the benchmarks, but the differences are gen-
erally higher than with the empirical design.

4.2.6 Forces on the Water Particle

For the flow problem curb, the physical and empirical designs of s(x) are close
to each other for vy = 3m/s. For the flow problem manhole these designs
of s(x) and the appropriate water levels H are compared to the benchmark
solution in Figure 4.13.

The designs are close together for w, = 2m/s. But for w, = 1m/s the
vortex region from the physical design is estimated too small (almost a factor
of 2) and for w, = 3m/s it is slightly too big. The reason for these differences is
the neglect of some forces in the approximation of the stationary equations of
motion (4.27) where only the gravity force f = —g is included. Consideration
of additional forces for the water particle on the trajectory s(x) yields modified
designs of the trajectories and thus of s(z).

z

0 Y

Figure 4.15: Sketch of forces acting on the water particle on the trajectory

s(x)

Considering forces per unit mass (i.e. accelerations), the sizes of the z-
component f of the force f are estimated. Figure 4.15 illustrates these forces.
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e The water particle flows in the earth gravity field. The pertaining earth
acceleration fg = —g is already included in the equation for w in (4.27).

e The water column with the height h(z) = H(z) — s(x) causes a force
due to pressure on the particle. The force fir = —gh acts in the same
direction as the gravity force fg.

e The pressure correction quantified in the next chapter also effect an ad-
ditional force and yields a correction of fiy = —(g + g)h with g from
(5.37).

e The rotating water motion in the vortex region causes a centrifugal force
fr = v?/r in normal direction Ts(z)- v is given by the flow velocity and
r by the size of the vortex region.

For the small outflow velocity w,, the rotation of the vortex produces a
force enlarging the designed vortex (e.g. for w, = 1m/s, where the design is
too small). For high outflow velocities, the force of the water column above
the vortex region and its dynamics down-sizes the designed vortex (e.g. for
wy = 3m/s, where the design is slightly too large).

Even if these considerations are reasonable, the iteration process with the
additional forces did not lead to convergence.
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4.3 Considerations of In-Stationary Flow

The dimensions of the vortex region depend on the main flow above, in par-
ticular on the vertical inflow velocity w, for the flow problem manhole and the
horizontal velocity wug for the flow problem curb. In the application to flood
problems in urban areas it is to be expected that these values are varying in
time. In-stationary flow behavior with varying w;, respectively uy changes the
size of the separated vortex region over time.

Thus, the stationary consideration of the previous sections is extended
to in-stationary flow behavior. Assuming only slight changes of the main flow
allows to consider the flow as quasi-stationary and to apply the designed vortex
regions for the actual flow values from the stationary consideration. Thus, the
in-stationary approach for the Extension Vortex Separation involves a time
dependent bottom s(z,t) for the main flow. Changes of the dimensions of
the vortex region are realized by an exchange of water with the main flow,
obviously influencing the main flow.

4.3.1 Dependencies of the Vortex Regions on the Flow
Behavior

The design of the vortex region for the flow problem manhole depends on the

vertical inflow velocity w,, as illustrated in Figure 4.16. The size of the vortex

region increases with the inflow velocity wy, consistent with expectations and
the NSE results.
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Figure 4.16: Dependency of s(x) for different vertical inflow velocities w, for
the flow problem manhole (w, = 0.5m/s (blue line close to the bottom), 1m/s
(green line), 1.5m/s, 2m/s, 2.5m/s, 3m/s (yellow line at top of all lines))

The Extension Vortex Separation for the flow problem curb is applicable
only for high Fr-numbers in super-critical flow cases. The designs of the vor-
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tex region for the inflow velocities uy = 3m/s,4m/s and 5m/s are illustrated
in Figure 4.17. The slope s'(0) of the separation line at the the curb is de-
creasing with the inflow velocity uy and the distances of the separation and
re-attachment points to the curb are increasing also, and thus also the size of
the vortex region.
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Figure 4.17: Dependency of s(z) for different horizontal inflow velocities v for
the flow problem curb (uy = 3m/s (green), 4m/s (red) and 5m/s (cyan))

The dependency of s(z) on the flow parameters wj, and g is denoted with
sy, and s,,. The stationary designs are applied for quasi-stationary design
approaches. According to the actual value of wy(t) and wuy(t), the design of
s(x) is updated, denoted as:

s(x,t) = sw,w(x) , flow problem manhole

s(x,t) = sy (z) , flow problem curb (4.53)

4.3.2 Effects of In-Stationary s(z,¢) on the Equations of
Motion

The classical SWE approach is derived for a fixed bottom z,(¢, x,y) = z(z,y)
not varying in time. Thus, all terms with time derivatives of the bottom 0z,/0t
are canceled in the derivation. Due to the Extension Vortexr Separation, the
bottom s(z,t) for the SWE depends on the flow behavior as illustrated above.
The time-dependent flow behavior changes the bottom denoted by s(z, ), also
varying in time (4.53).
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Mass conservation law
The kinematic boundary condition at the bottom presented in (2.11) with-
out neglect of the temporal derivative of the bottom z;, reads

0z 0z 0z
b —b +'Ub—b +Q7

wb:§+ub8x dy

where ¢ from (2.6) is the vertical inflow velocity. In addition to this external
inflow ¢, there is an internal flow ¢; over the bottom caused by the motion of
s(x,t).

Since s(x,t) is the bottom for the SWE flow, it replaces z, yielding

~ 0s(z,1) 0s(x, 1)
ot T oz

in 1D. The term ¢, + ¢ describes the in- or outflow of water generated by
the free-slip condition. ¢, is applied to real inflows e.g. from a manhole and
represents ¢ from (2.6). In addition to this term, ¢y describes the exchange
flow between the main flow and the vortex region. Thus, it is the flow velocity
over the moving separation line s(z,t) and given by

W + qm + G5 (4.54)

0s(x, 1)
ot '
since an exchange of water between vortex region and main flow is assumed.

If the solid bottom 2z, varies in time, ¢; = 0 since there is no water exchange.
The continuity equation reads

G =— (4.55)

oH N ouh _ Os(w,t)
ot oz 0Ot
finally reduced to the known form (2.72) due to (4.55).

A further change due to 0s(z,t)/0t # 0 within the derivation of the mass
conservation law of the 1ID-SWE (2.72) is that

+qmt+ 49 =qm =q, (456)

OH  O(h+s(x,t))  Oh 0s(w,t)

o ot ot ot
Applying h instead of H yields

@jL@_ . _ 0s(x,1)
ot " or  mTETIT T

(4.57)

The different effects of the moving bottom (solid or water region) are il-
lustrated in Figure 4.18 for the simplified case of a water column at rest in an
open box. The left hand side represents the initial situation at ¢, with water
level H(ty) and the right hand side the changed situation at t;. A change of
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the solid bottom z,(t;) increases the water level H(t;) (top figure). In con-
trast, the separation of a water region does not change the water level H (t;)
(bottom figure) since the conservation of mass is given by the sum of water in
the separated region and the domain above.

Thus, changing s(x,t) in time realized by exchanges of water with the main
flow does not affect the mass conservation as long as s(x) < H(x) is assured.

H(t)
aw
2 (th)
2(to) 7| solid material
to t
H(to) H(ty)
s(t1)
s |

Figure 4.18: Sketch for the effects of a changing bottom over time (left hand
side ¢, right hand side ¢;) for the simplified case of a water column at rest in
an open box. Top: a solid bottom change affects the water level H. Bottom:
separating a water region by s(z) does not effect the water level H

Momentum conservation law

Similar considerations for the momentum conservation law yields no change
in the horizontal momentum equation due to the time dependency of s(x,t)
in contrast to the integration of the mass conservation. In the integration of
the horizontal momentum equation, u, 0z,/0t occurs twice: as a positive term
from the transport theorem

H

H

0 . 0H 0z
/au dz = a/u dz—uHﬁ—l—ubﬁ (4.58)
2

2b

and as a negative term when inserting the kinematic boundary conditions into
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the lower boundary value of the depth integration of duw/0z

H
ouw oH oH 0z 0z
5z 2 = Wl = wan =gy = (GG ) — (G g ).
2p
(4.59)

Due to the different signs, the additional terms 0z,/0t cancel. Thus, the
change of the solid bottom level does not affect the horizontal momentum as
illustrated in the top sketches from Figure 4.19.
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H (to) / ult)
hin)
i U(to) iv Zb(tl)
h(tg solid material
¢ “ /
to 1
H(to) H(t)
A A u(t)
ulto M ey

water
h(to) 2 (to) / 2 (1)
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Figure 4.19: Sketch for the effects of a changing bottom over time (left hand
side tg, right hand side t1) for the simplified case of a homogeneous water flow
with initial horizontal velocity wu(tp). Top: a solid bottom change does not
affect the horizontal momentum wu(ty)h(ty) = u(t1)h(t1). Bottom: separating
a water region by s(z,t) does affect the horizontal momentum wu(to)h(ty) #

u(ty)h(ty).

Remark 4.12 This does not mean that a change of the solid bottom can not
influence the horizontal momentum at all. A lift of the solid bottom in a
small interval entails a lift of the water level H due to changes in the mass
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conservation as described above. Even if this lift has no direct effect on the
momentum equation, the changed water level entails a horizontal moment as
well.

The bottom sketches in Figure 4.19 show the effects of the temporal change
of the vortex separation line on the momentum uh. Since the change of s(x,t)
is not assumed to change the horizontal velocity u, we assume

u(to) = u(ty) (4.60)

Since the vortex contains a circulating motion, this assumption is reasonable.
The moving water column is thus simply cut or added with the continuous
velocity u. The assumption (4.60) yields the source term

Js(x,t)
ot

—u (4.61)
in the horizontal momentum equation, describing exactly the mentioned pro-
cess of cutting and adding the moving water column. This yields the 1D-SWE
for a moving bottom as a separated vortex layer s(x,t) = f(wy(t), uo(t)).

2 H +2 uh B q
ot \ uh 0 \ w’h+4gh® )~ \ gh(-%2d — §p,) — w22l )

(4.62)

4.3.3 Effects of Traveling Vortices

The assumption of a completely stationary separated vortex region is not valid.
In particular for the flow problem curb, the NSE calculations are not stationary.
Changes of the vortex region are caused by vortex motions yielding fluctuations
in s(x,t). The NSE solution includes separation of vortices that travel with the
main flow. The size of these vortices is reduced until they are finally dissolved
due to viscous friction as illustrated in Figure 4.20.

The time-dependent design of s(z,t) can be adapted on the vortex motion
in order to include these effects. Since a given vortex motion influences the
design of s(z,t), the computation of the SWE flow has to be coupled with a
vortex flow model.

This inclusion requires very high computational effort. Furthermore, we
are not interested in the resolution of every single vortex but in the reliable
description of the average flow behavior. Thus, we neglect the motion of the
separated vortices and rebuild only the large vortex areas in the flow domain.
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s(x, 1)
Main flow Q C =
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Figure 4.20: Separated vortices influencing the design of the interface s(z,t)

4.4 Friction Approach for Extended SWE

Figure 4.21: Sketch for extensions of friction approach for the flow over a
separated vortex region. Comparison of u(z) for fixed bottom z, and vortex
region s(x)

The Extension Vortex Separation affects the friction approach of the SWE of
Section 2.4.3 as illustrated in Figure 4.21. In contrast to the classical SWE
(left hand side), the main flow is not flowing over a solid bottom with bottom
friction due to a viscous bottom layer but over a vortex region of water (right
hand side). Since the vortex region contains a circulating flow, 815—(;) at the
separation line s(z,t) is not as dominant as in the classical SWE case. Hence,

the assumption for the dominant bottom friction term Sy, is not fulfilled and
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the considerations have to be extended.

Friction forces are not the dominant forces in the free surface flow of water
considered for floods in urban areas. This is in particular evident in Figure 3.7,
where the analytical in-viscid Euler solution is in agreement with the numerical
NSE solution.

Thus, the high effort to consider every part x of the vortex region sepa-
rately and to derive a friction formulation depending on s(x,t) will cause only
small effects. Instead, we propose to consider the vortex region within only
one friction approach, that contains the integrated considerations.

The vortex motion has to be kept against the viscous and bottom friction.
The size of the horizontal velocity of the vortex motion illustrated in Figure
4.21 above the viscous bottom layer is almost equal to the horizontal flow ve-
locity u. Assuming the dominance of this bottom friction effects for the whole
friction approach, it is reasonable to apply a similar friction approach on the
separated vortex region as on the solid bottom. Since we seek for extensions
of the classical SWE as close as possible to the classical ones, we apply the
same friction approach. Within modifications of the friction parameter n, dif-
ferences could be captured if required.

The agreement of the analytical in-viscid solutions and the numerical viscid
NSE results, e.g. Figure 3.7 demonstrates the low importance of the friction
approaches for the considered flow problems.



Chapter 5

Extension Pressure Correction

The zeroth order equations of the asymptotic expansion of the Euler Equa-
tions of Section 2.4.1 yield a zero vertical velocity w(®) = 0 and horizontal flow
velocities u(® and v(® that are constant over the water depth A(®). The first
order equations of this expansion yield the hydrostatic pressure distribution
p0) = Phy and the frictionless 2D-SWE formulated in zeroth order terms R,
u©® and v(®. The 2D-SWE are also derived -independently of the asymp-
totic expansion- in Section 2.4.2 from the 3D-Euler Equations by assuming
hydrostatic pressure by depth-integration.

Both formulations (2.53)-(2.55) and (2.70) of the frictionless 2D-SWE can
be transferred into each others if the zeroth order expansion terms of the
velocity are identified with the depth-averaged velocity as already discussed
in Section 2.4. The hydrostatic pressure distribution is also common in both
formulations.

We first demonstrate the relations between vertical velocity and pressure
distribution and derive the Extension Pressure Correction by approximating
vertical velocities and elaborating their contribution to the pressure distribu-
tion into the SWE.

5.1 Hydrostatic Pressure vs Vertical Velocity

Theorem 5.1 demonstrates the equivalence of the hydrostatic pressure distri-
bution and the neglect of the material derivative of the vertical velocity w for
the in-viscid case.

Theorem 5.1 The assumption of a hydrostatic pressure distribution (2.48) is
equivalent to the assumption of vanishing material derivative of the vertical
velocity w = 0 for in-viscid, incompressible fluids.

Proof. Inserting the hydrostatic pressure distribution py, from (2.48) into
the vertical momentum equation of the Euler Equations (2.4) yields w = 0.

83
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Inserting the assumption w = 0 in the z-momentum equation of the Euler

Equations yields:
10
O=th=—-—p-— 5.1
== 5P (5.1)
Since ¢ is a constant, (5.1) can be integrated yielding

z

p(z) = pH+/—pg dz (5.2)
Pry(2) = pm+pg(H — 2), (5.3)

with the constant pressure p(H) = py at the free surface as assumed in Section
2.3.1 and thus identical to (2.48). =

Vertical velocity of NSE benchmark solution

Figure 5.1 illustrates the size of the vertical velocities of the NSE benchmark
solution for the flow problem manhole with the vertical inflow velocity w, =
2m/s in the colored plot of the flow domain.
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Figure 5.1: Size of vertical velocity from the NSE-benchmark solution for the
flow problem manhole with w, = 2m/s

High positive values with upward flow direction are colored in red at and
above the manhole. Negative values with flow direction downward are colored
in blue and occur above the decreasing part of the vortex region. Far away
from the manhole the values of w are almost 0.
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Remark 5.2 Since the vortex region is separated from the main flow by the
Ezxtension Vortex Separation of Chapter 4, its extreme vertical velocity values
in Figure 5.1 are not discussed.

The sizes of the vertical velocity w are comparable to those of the horizon-
tal velocity u. High variations of w cause high values of w in the vicinity of the
manhole. Such not vanishing values of w # 0 are in particular evident for the
flow over the separated vortex region. The physical design approach of Sec-
tion 4.2 includes serious changes (1 = —g) of the vertical velocity w for water
particles traveling on the separating trajectory. This fact is in contradiction
to the assumption w = 0 and following Theorem 5.1 also in contradiction to
the hydrostatic pressure assumption.

Since the hydrostatic pressure assumption is the base for the derivation of
the classical SWE, the Extension Pressure Correction modifies the pressure
distribution by incorporating vertical velocities.

We first approximate vertical velocities via linear interpolation between
the vertical velocities at the free surface and the bottom involved in the kine-
matic boundary condition. Secondly we demonstrate that this approximation
is identical to the first order expansion term w() of the vertical velocity from
the asymptotic expansion.

5.2 Approximation of Vertical Velocity w

5.2.1 wpy and w, from Kinematic Boundary Conditions

Vertical velocities at the free surface and the bottom occur in the kinematic
boundary conditions involved in both derivations of the classical SWE in Sec-
tion 2.4.2. We repeat (2.11) for the 2D-Euler Equations (neglect of y-direction)
also illustrated in Figure 5.2 for the stationary flow case:

OH oOH
. 82’1, 8zb

The bottom elevation z, for the flow problems is given not only by the fixed
topography but also by the Extension Vorter Separation that may depend on
time. Thus (5.5) is extended by 0z,/0t.

Assumptions for uy and u,
The horizontal flow velocity uy and uy are required to compute wy and wy,
from (5.4) and (5.5). The SWE derived by depth-integration consider u = 4
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Figure 5.2: Kinematic boundary conditions for stationary 2D-Euler flow

as a depth-averaged velocity @ = % f: u dz without further information about
its vertical distribution.

No-slip conditions are assumed as dynamic boundary conditions at the
bottom as already remarked in the Sections 2.3.5 and 2.4.3 for the viscous NSE
flow. Due to the small viscosity of water (v ~ 10*6’”72) the viscous bottom layer
denoted with 0z is small. This results from considerations of typical sizes of
bottom layers for low-viscid flow but also from the NSE benchmark calculations
and their agreement to the in-viscid analytical solution from Chapter 3.

2 H z

2y + 0z

Figure 5.3: Sketch of the vertical distribution of the velocity @(z) in a cross
section with a small bottom layer of size dz (left hand side) and distribution of
the horizontal velocity component u(z) with the depth-average @ in comparison
to a linear distribution u,(z) with u|,—,, = 0 and u|,_y = 2% (right hand side)



5.2. APPROXIMATION OF VERTICAL VELOCITY W 87

Figure 5.3 illustrates a typical vertical distribution of the velocity vector
i(z) at the left with a small bottom layer and an almost homogeneous distribu-
tion above that small bottom layer. This holds in particular for the horizontal
velocity component u(z) of the NSE flow at the right. The horizontal velocity
u above the small viscous bottom layer at z = z, + dz is almost equal to the
average over the cross section u|,—,, 5. ~ @. Thus, we set

ug = up = = u. (5.6)

Remark 5.3 The assumption uyg = u, = u = u has even more eligibility for
the flow over the vortex region. The bottom is not a fixed ground but a water
layer with vortex motion inside. The physical design of the vortex region is
obtained by setting u = ugsw g for the water particles traveling on that path.

Furthermore it is reasonable to apply w, = w(z, + dz) as vertical velocity
close to the bottom. Assuming a constant size of the viscous bottom layer 6z
yields

Oz +9z) 0z

wy = w(zp +02) = u(zy + 02) ———= =

Remark 5.4 The linear distribution u,(z) = 2@% resulting as the linear

profile, that assumes u, = 0 and 4 = f: uy(2) dz is illustrated in Figure 5.3.
The differences to u(z) in particular at the surface and above the bottom layer
are obvious. Thus, it is more reasonable to approximate u(z) = .

Inserting the depth-averaged horizontal velocity u in (5.4) and (5.5), the
vertical velocity at the surface wy and at the bottom w, can be computed for
the SWE solution:

oH oH
e TR (5:8)
. 82,, 82’1,
U (5.9)

The flow problem manhole involves inflow terms ¢(z) in the continuity
equation (2.62) given as the vertical inflow velocity normal to the plane ground.
The estimation of the vertical velocity at the bottom w, is replaced by

wy(7) = q(7) (5.10)

in the interval of the manhole.
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5.2.2 Approximation of Vertical Distribution w(z)

Departing from the vertical velocity wy (5.8) at the surface and w, (5.9) at
the bottom, the vertical distribution w(z) is approximated. Since the SWE
approach considers even the dominant horizontal velocity u as an average over
the depth u, it seems to be reasonable to assume likewise a depth-averaged
vertical velocity w = wyq in a zeroth order approximation

wy (x) +wb(33).

5 (5.11)

w(z, z) = w(r) = w(x) =

wo(x) is chosen as the average of the vertical velocities at the surface wy and
the bottom wy,.

Zb

Figure 5.4: Zeroth order approximation wy(z) and first order approximation
wi(z) of vertical distribution w(z)

Figure 5.4 illustrates this zeroth order approximation wy on the left hand
side. On the right hand side, a first order approximation of the vertical distri-
bution w(z) is assumed by a linear interpolation between wy and wy,
zZ — Zp

h

Within this first order approximation, the vertical velocity gradient

wy(x) + (1 — Ywp (). (5.12)

w(z, z) =w(z,2) =

ow; wg — wy

= 1
0z h (5.13)
is generally not zero. Rewriting w; in terms of wy and Jw;/0z yields
ow h
wy(z, 2) = wo(x) + a—;(x)(z —(a+3)) (5.14)

Since wy is constant over the water depth we denote it as zeroth order
approximation of w(z). According to that we call the linear interpolation first
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order approximation w;. The order describes the degree of vertical resolution
of the vertical velocity w(z).

We restrict this presentation to the zeroth order wy(z) and first order ap-
proximation wy (x, z). Higher order approximations of the vertical velocities w,
e.g. quadratic, are not considered in this thesis, since their derivation would
require additional assumptions. Furthermore, it seems to be sufficient to apply
wy and w; recalling that even the horizontal flow velocity is approximated as
zeroth order approximation over the water depth.

Both approximations wg(x) and wq(z,z) are based only on the vertical
velocities at the surface wy and the bottom w,. Thus, we estimate them
explicitly from the solution of the SWE

wy (x) + wy(z)

wo(z) =
_ %[agg) + 8z§ix) + u(x)(agix) + aza”:(f))], (5.15)
w(e2) = wnlo) + D () + 27
e o s
Haggm B a%ix) t o (agy) B 8Z§i$))]
Ao (begg;r ) (5.16)

If x € [0, x,,] belongs to the interval of the manhole with prescribed vertical
inflow velocity w,(x) = ¢, we obtain:

wie) = 7D 4Ty g (.17
wiez) = SO )2y
L) e L)
ZZmts) }E?;;r 2 (5.18)

Remark 5.5 In 2D, v(z) and the y-derivatives of H(x,y) and z(x,y) are
involved additionally as presented in Chapter 6.

Remark 5.6 We usually avoid a notation at great length and do not write the
time dependency of the variables u(z,t), H(x,t), z(x,t) and w(z,t) explicitly.
That does not mean we consider stationary solutions only.
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5.2.3 Comparison of Approximation and Asymptotic Ex-
pansion

We recall (2.40) and (2.52) from Section 2.4.1 for the 2D-Euler case

w® = 0, (5.19)

ou® O(u©
wV(z) = — gx z+%, (5.20)

and show that w; constructed in (5.16) is identical to w® from (5.20) if we
assume u(”) = u = 1/h f: u dz.

Lemma 5.7 wy is the depth-average of wy(z), i.e. wy = Wy = Wy

Proof. w; = ; :wl dz = %f:wo dz + ¢ Zi[g—f(x)(z —(m+ %) dz =

_ P _
wy + 570 = wy = wo ™

Theorem 5.8 The linear approzimation wy from (5.16) is identical to the
first order expansion term of the asymptotic expansion wM from (5.20)

wy(z,2) = wh(z, 2). (5.21)

wo(z) from (5.15) is the depth-average of w(z, 2)

wo(z) = ﬁ/w(l)(aj,z) = %/wl(aj,z). (5.22)

Proof. The first order equation of the asymptotic expansion of the conti-
nuity equation of the 2D-Euler Equation reads
Ow® ou®

9z  Ox

(5.23)

The first order boundary conditions for w) are identical to the kinematic
boundary conditions from (5.4) and (5.5):

0 0
oH© o oHD

w g = 5 T (5.24)
0z, 0z
wV|,_,, = a—t”+u(°>a—;. (5.25)

(5.23) together with the given value of w(!)(z;) at the bottom in (5.25) yields
identical to (5.20)

ow

w(l)(z) 5
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We demonstrate that (5.23) is fulfilled by 0w, /0z from (5.13):

awl Wy — Wy w(1)|z:H - w(1)|z:zb

5 . = O (5.27)
due to the identity of the boundary conditions, yielding
9 = o) : (5.28)
Applying the mass conservation law
OH© 90,0
5 + 9 0 (5.29)
yields
Huwr _Bu(g)h(o) +4© 8h(g)+zb _ u(o)%
e h©
ou®  Gw®
= T, = o, (5.30)

;From (5.30) together with the identity of the boundary conditions, we con-
clude that w; in (5.16) is identical to the first order expansion term w(!)

wy(z,2) = wh(z, 2). (5.31)

wp in (5.15) represents the depth-average of w; due to Lemma 5.7 and thus
also the depth-average of w(!

H(0)

1
Wo = 5y / wV(2) dz. (5.32)

Zb

The difference between the approximation of w(z) from above and the
asymptotic expansion is that the zeroth order approximation wy # 0 instead
of w® = 0. The fact that w(® = 0 in the asymptotic expansion yields sim-
plifications in the resulting equations of motion, in particular in the pressure
distribution p(z).
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5.2.4 Vertical Velocity wy for the Flow Problems

Figures 5.5 and 5.6 illustrate the stationary SWE solution with the Extension
Vortex Separation for the flow problems manhole (up for different values of ¢)
and curb (left). The vertical velocities wg(x) are computed for these stationary
SWE solutions and compared to the depth-averaged vertical velocities of the
according NSE benchmark solutions. The averaging of w was not performed
over the whole water depth but the vortex regions of the NSE solutions are
excluded.

Flow Problem Manhole

We consider the stationary solution for the flow problem manhole in Figure
5.5 for different vertical inflow velocities wy, = 1m/s (left), wy, = 2m/s (middle)
and w, = 3m/s (right). The comparisons of wy to the depth-averaged vertical
velocities w from the NSE benchmark solution are amazingly good.
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Figure 5.5: Up: bottom (green line) and free surface elevation (red line) from
SWE with Extension Vortexr Separation. Down: Comparison of vertical ve-
locity wy (green smooth line) with the depth-averaged vertical velocity from
the NSE benchmark solution (blue fidget line) for the flow problem manhole
for the vertical inflow velocities w, = 1m/s (left) w, = 2m/s (middle) and
wy = 3m/s (right)

Explanation 5.9 The plotted values for wy are computed from the SWE-
solution with (5.11). The depth-averaged NSE results are plotted for compar-
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ison only. Taking the simplifications in the derivation of (5.11) into account,
the qualitative and quantitative agreements are amazingly good.

Obviously, we obtain wy(z = 0) = 1/2 w, at the left boundary. That is be-
cause the water level above the manhole is almost constant and the horizontal
velocity u is small yielding wy = v 0H/0z ~ 0. wy decreases since wy < 0
due to the decreasing 0H/0x < 0 and the increasing u > 0. At the top of
the vortex region we have w, = 0 and due to wg < 0 we obtain wy < 0 for
that point already. wg reaches a minimum and then approaches the value 0
far away from the manhole.

Flow Problem Curb

Similar to the flow problem manhole, the comparison result of wy to the
depth-averaged vertical velocities from the NSE benchmark solution in the
Figure 5.6 reproduces the principal flow behavior. Due to separating vortices in
the NSE solution, that were partly cut out of the averaging process according
to the design of the vortex region, oscillations in the depth avaraged NSE
results occur.

05

045

04F

0.35[

031

Figure 5.6: Left: bottom and free surface elevation from SWE with Exten-
sion Vorter Separation. Right: Comparison of vertical velocity wy (green
smooth line) with the depth-averaged vertical velocity from the NSE bench-
mark solution (blue fidget line) for the flow problem curb for the inflow velocity
up = 3m/s

Some dm in front of the curb, the vertical velocity wy = 0. This holds also
some dm behind the curb. In between we observe an increase of vertical veloc-
ity to a maximum at the curb and then a decrease with a negative minimum
value located in the decreasing part of the vortex region before wy approaches 0.
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5.3 Pressure Correction p,

Both derivations of the SWE from the Sections 2.4.1 and 2.4.2 are based on
a hydrostatic pressure distribution pp, (2.48). Following Theorem 5.1, this
assumption is equivalent to the assumption of vanishing material derivatives
of the vertical velocity w = 0 in the in-viscid case. The approximation of the
vertical velocities wy and w; from the previous section allows also the evalua-
tion of w, assuming that w is smooth enough. Thus, we correct the pressure
distribution p(z) by adding a pressure correction term p,. involving 1.

The z-momentum equation (5.1) of the 2D-Euler Equations (2.4) of Section
2.3.4 reads

dw 0 0 0 10
w—%—%w+(u—+w—)w——gap—g- (5.33)

w can be evaluated due to the approximation of w from the previous section.
This yields an ODE for the pressure with known right hand side

p .
5, = P9 Pl tugo twas)=—plg +w). (5.34)
We integrate (5.34) from the free surface H to z and obtain
p(2) = pu + pg(H — 2) + pu(H — ). (5.35)

pe(z) = pw(H — z) is an additional term correcting the hydrostatic pressure
distribution pp, and is thus denoted as pressure correction peorrection = Pe in
the pressure distribution

p(Z) = Phydrostatic + Peorrection = Phy + De. (536)

Since the dimension of 1w is m/s?, the dimension of an acceleration,

w

ow ow ow N
= tus-two—=g.=3 (5.37)

can be interpreted as a correction of the gravity acceleration ¢ due to changes
of w. The pressure distribution reads:

p(2) = pu +plg+g)(H — 2). (5.38)

The acceleration correction ¢ is not constant, but depends at least on x and
generally also on z.
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5.3.1 Pressure Correction for Zeroth Order Approxima-
tion wo

For the zeroth order approximation w = wy(z), the vertical derivative of wy is
zero Qwy/0z = 0 since wy is constant over the water depth.

ow ow

g:wza‘i‘ua—x (5.39)
is thus simplified and (5.35) reads
ow ow
p(2) = pay(2) + pe(2) = pu + pg(H — 2) + p(a + ua—x)(H —2).  (5.40)

Only in this zeroth order approximation, g(z) does not depend on z. The
pressure correction term for the zeroth order approximation of wy is

pel2) = pa(H = 2) = p(Se + uS2)(H - 2). (5.41)

5.3.2 Pressure Correction for First Order Approxima-
tion w1

For the first order approximation wi(z,z), we obtain a quadratic pressure
distribution. We recall (5.14)

811)1 h

@)z - 2+ )

wi(x, z) = wo(x) + 5

and integrate (5.39) from the free surface H to z

0 0 0 0
/ P, —/ —pg — p(—w +u—;U —l—w—w) dz (5.42)

to obtain
1 ow 0w
~1 B it 2y 1 2 2
P(e) =i+ plo +3)H = 2) + py (G2 +up s ) (12 = ) (5.4)
with
ow ow 0 ow h ow ow h
-1 1 0 1 1 142
= — — — — (—= —). 44
9= T Uarle, ) twm = (G B g). (5.44)

The pressure correction term of the first order approximation w; reads

Pi(:) = 0 (H = )+ o ()2 4 w01 (5.45)
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5.4 Impact of Pressure Correction p. on SWE:
Sp

We recall the derivation of the SWE by depth-integration of the Euler Equa-
tions where we assumed a hydrostatic pressure distribution (2.48). Integrating
the equations over the water depth yields the SWE with depth-averaged hor-
izontal velocities. The forces due to pressure gradients are involved in the
momentum equation of the 1D-SWE (2.72) as depth-integrated hydrostatic
pressure gradient term

C

H

10p B oH oh+z 0, 1 , 0z
/ pOx dz = ghax_ gh ox _8x( 2gh) ghax

Zb

from (2.68). The approximated vertical velocity w modifies the hydrostatic
pressure distribution p(z) by the pressure correction term p.. This term also
entails a depth-integrated pressure gradient term

H

B 1 dp.
S, — / o (5.46)

2p

Correcting the assumption of hydrostatic pressure by involving the pressure
correction term p, into the basic assumption of the SWE-derivation yields S,,,
the depth integrated pressure correction, as an additional term on the right
hand side of the SWE.

5.4.1 Calculation of S, for Zeroth Order Approxima-
tion wy

The zeroth order approximation wy results in the pressure distribution p(z) =
pu+p(g+g)(H — z) with pressure correction p.(z) = pg(H — z). The pressure
correction gradient reads

10 o0 .
_;a_xpc = _8_x(g(H_Z))
o5 D,

where 0g/0x is the partial derivative of g(x) with respect to x, where ¢ is
assumed to be smooth enough for the derivation.
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To obtain the additional term .S, for the momentum equation of the SWE,
the pressure gradient is integrated over the water depth A

H
10 89 0
Pe /—;%pc dz %Z— %(QH) dz
2p 2b
03 27 O(h+ =)
T 0z 2 ox .
10g 0 0
= 58_h(H + 2) — a—(gh)h - a—(gzb)h
o 1_., .

= —— (= ) 4

5.4.2 Calculation of S, for First Order Approximation
wi

The first order approximation w; entails the pressure correction term

1, 0wy o

(2) = pg (H — ) + 20y, I
Pe -9 2% 0z 0201

(H* — 2%).
Its pressure gradient reads

10 1 0 0 (1, 0w, 9 9
———pl = = H— _ H? —
pax Ox (9 2) Ox ( (G 0z y +u8z8x)( )
. 8@1 0 ~1 10 811)1 8211)1
%Z B %(g H) - (2 8x( 0z ) +U828x
10 8w1 82’(1)1 2
+28x(( 5 ) +U828x)z (5.49)

where % is the partial derivative of §'(x) with respect to x, where again g'

is assumed to be smooth enough for the derivation.
Sp1 is obtained by integration over the water depth A

B 10 . 89 0
Spr = / pax dz = 5 © 8x( g H)dz
2p Zb
T 10 8 8 1.0 0 0?
’U)l w w1 w1 2
H? d
/2833 8z8x ) - (2)8x(( 82) +u828x)z :
o 0 ~1 2 ~1 0 1 8w1 6271)1 2
= 5 ( h*) + g thm—a—( (( 8z) +uazax)H )h
0 1 8w1 6271)1 3 3
——(=((—— H’ — . .
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5.4.3 Structure of 5,

The source term S,, from (5.48) for the zeroth order approximation wy and in
particular S,1 from (5.50) for the first order approximation w; are complicated
and contain various derivatives. Since w depends on %—f and ¢ depends on
g—;’, the term 24 contains third order x—derivatives of H. Even considering

ox

the most simple case with a stationary solution 2 5; = 0 and a plane bottom

(zy = 0= H = h) indicates the complexity of S,,.
For this simplified case, the zeroth order approximation wy for the velocity

reads

Wi + Wy 1 1 0Oh

The acceleration correction g reads

g0 L0 L udh L0t
=0 =% T e 2" T 2 s o T a2
For the structure of S,, from (5.48), we obtain
a,1_,
Spc - 8$(29h )
10,1, 0udh ,0°h

. Li0 2
= 300 2"ra T aQ)h)

1 Oou . Oh Oh Oh 0*h 6u ou ,0h
= —— Y & S 2 2p 207 " 2

( 8xh8x ox + hax 02 833 éh:h oz

8 28h ou  ,0*h .2 , 03N

—_— — bl

+u82h8 38h82 h83) (5.51)

This term contains z-derivatives of u up to 2"%rder and of h up to 3"%order
and various mixtures of them. Considered for real applications with time de-
pendence and with varying bottom elevation z,(x) # const, the structure of
Sp. in (5.51) becomes even more complicated. That is even worse for the first
order approximation w; in Sp;.

Since for general flow cases it is difficult to decide which terms in (5.51) are
small compared to others, it is difficult to extract dominant terms and neglect
others.

5.4.4 Inclusion of S, in SWE

The inclusion of Sy, in the z-momentum equation of SWE (2.72) changes the
nonlinear first order PDE system into a highly nonlinear third order PDE sys-
tem. Usually, the numerical solution of third order PDE requires the special
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treatment of the highest order derivative. The numerical solution scheme ap-
plied in this thesis to solve the SWE (see Section 2.5.2) cannot be applied to
that problem.

In Section 3.3 we have formulated the aim to develop extension based on the
SWE and their numerical solution scheme (3.13). Instead of substituting the
numerical solution scheme by another technique, we apply a splitting scheme
and evaluate S, at the end of a time step from the applied numerical solution
scheme and treat S, as a further source term.

Recognizing the danger of losing well-posedness of the problem due to that
procedure, a regularization method is applied within the evaluation of S, as
presented in Section 5.5. The extended SWE read

9 h 0 uh B q
ot ( uh > o ( u*h + 59h* > - ( GhShe — ghSs + Sp.. > (5.:52)

Replacing S, with Sy yields the formulation for the first order approximation
in analogy to (5.52).

Remark 5.10 S, = —%(%th) + ghSy: is similar to the pressure gradient
term of the hydrostatic pressure distribution —%(%gfﬂ) + ghSps. This term in
the classical SWE is split into two terms: the conservative part —%(%ghz) 08
inserted in the fluz function and —gh% = ghSy, is applied as a source term
on the right hand side of the SWE. In contrast to this procedure, S,, and Sy
are wnvolved as pure source terms into the SWE. Although that S,. has the
same structure, it is not considered as a conservative term following (3.13).

Remark 5.11 (5.52) represents the formulation of the SWE with the Exten-
ston Pressure Correction caused by approxrimations of vertical velocities w as
zeroth order wq or first order wy approximations. The classical SWE approach
assumes hydrostatic pressure, for the in-viscid case equivalent to w = 0 due
to Theorem 5.1. Then, g and S,, vanish reducing (5.52) to the classical SWE
(2.72).
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5.5 Regularization

Applying a splitting scheme to include S, into the SWE entails the danger
of losing well-posedness of the problem as discussed in the previous section.
Thus, regularization methods are applied.

Furthermore, the approach of the Extension Pressure Correction p. as-
sumes smooth solutions where all derivatives exist and can be computed. The
source term S, contains third order z-derivatives of H requiring H € C*. For
real flow problems H ¢ C' may occur for some applications. We extend the
approach to functions that do not have the desired regularity, e.g in case of
weak solutions.

Even water levels H € (> may cause problems, since various differenti-
ations are involved in the computation of the term and differentiation is an
ill-posed problem. Appendix A.5 provides an introduction to ill-posed prob-
lems.

wy(x1)

Figure 5.7: Problems with the estimation of vertical velocities w(z)

5.5.1 Differentiation as an Ill-posed Problem

The demand for regularization methods is demonstrated by a typical problem:
It is possible that small waves occur in the water level H(x), e.g. due to
the inclusion of the additional source term S,, in the momentum equation.
Assuming that these surface waves are represented by a sinus function with a
small amplitude (¢ < 1) and a high frequency 2 with large n > 1 disturbing
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the water level Hy(z), we obtain
H(z) = Hy(w) + € sin(a). (5.53)
€
The differences between H and Hj are small and limited by e:

max |H — (Ho)| = e (5.54)

Since wy = f(H,), the z-derivative of H is required for the estimation of
the vertical velocity, yielding

OH 0OH,
5= —(%O +n Cos(%x), (5.55)
which involves a large error
OH 0H,
—— —— | =n. 5.56
I?e%( | o0x o0x " ( )

Figure 5.7 shows the problem: In front of the curb the average vertical
velocity is positive since the water is lifted over the curb. The estimation of
vertical velocity at the surface wy results in highly oscillatory data due to the
effects of the disturbing waves. wy derived as a zeroth order approximation of
w, yields also an oscillating function with positive and negative values despite
the positivity of the vertical velocity in front of the curb.

Remark 5.12 Continuing the calculations and estimating e.g. g as depending
on 22 yields the inclusion of 2

2Hy n? . _/n
oz’ o ot sm(;x)) and thus even poorer results
in particular for 5%.

Similar problems occur in case of weak solutions e.g. for the dam break
problem. Weak solutions are only integrable and generally ¢ C', at times
¢ C°. They fulfill only the integral form of the equation and generally not the
differential form, since the derivatives do not exist everywhere. The numerical
differentiation of such functions yields not reliable results and special treat-
ments are required (e.g. ENO-schemes [19]).

Furthermore it is possible that even if the SWE solution is regular enough
to compute the pressure correction gradient term S, , its impact on the SWE
produces less regular solutions or oscillations. The applicability of the Ex-
tension Pressure Correction depends on the stability and robustness of the
numerical differentiation. N&f [31] did struggle with similar problems.
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5.5.2 Mollification Methods

The presented consideration of the vertical velocities w, the dynamical pressure
pe and the source term S, and their estimations are approximations. We can
neither expect that these approximations can resolve local phenomena as small
surface waves nor are we interested in these small scale phenomena.

To obtain a stable and robust estimation of the vertical velocities we smooth
H, z, and v appropriately to make them more regular in order to enable the
calculation of the derivatives involved in (5.48) and (5.50).

Following [29], mollification methods can solve the problems we have pre-
sented in the previous section. They smooth functions ¢ C' into functions
€ C* and smooth effects of disturbances.

Definition 5.13 For any locally integrable function f : R* O Q — R, the
mollifier Js is defined by

Jﬁ@%=/wmw—wfwmy (5.57)

with the nonnegative function ms : R* — R given for any § > 0 such that
1. my € C=(R"),
2. mg(x) =0 for ||x|| > 0 and ms(x) > 0 for ||z|| <9,
8. Janms(z) do =1,
For example, ms can be the function

[ C el for el <
ms(z) = { 0. for ||zl > o (5.58)

where C' is a suitable constant chosen such that [, ms(z) dz = 1. We may
also choose a Gaussian curve mgs = C' exp(—d||z|[?) for ms instead of (5.58).

Remark 5.14 If f € LP(R"), Jsf(z) = (ms * f)(x) is the convolution of f
and mg.

Theorem 5.15 Let f: R* O Q — R be a locally integrable function. Then
Jsf € C> ()

Proof. [29], p.219 =
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Choice of ms and 9§

The mollifier J5 depends on the choice of the smoothing function ms and
in particular on the choice of 4. § is the parameter to control the strength of
the mollification process. In the limit ¢ — 0 there is no mollification at all and
for a f € LP(R") it can be shown ([29], p.220) that lims_o||Jsf — f|lpo =0

In the other limit 6 — oo, f is smoothed to a constant function everywhere.

The right choice of 6 > 0 is the truly crucial point in the theory of regular-
ization. Chosen too low, the problems remain, and chosen too large, important
information of the function f is lost.

We proceed with this problem practically: Since we can not expect to
involve the source term S, from (5.48) without mollification, we choose § as
minimal as we can to receive a stable numerical procedure.

5.5.3 Other Regularization Methods

Beside the applied mollification method we have also tested other methods of
regularization:

e low pass filter method included in a Fourier analysis and
e spline approximation.

In particular we tested the low pass filter method: The function is resolved
in its frequencies by a Fourier analysis. The low pass filter cuts all frequencies
higher than a selected frequency, that can be understood as the regulariza-
tion parameter. The smoothed function is reconstructed out of the reduced
frequencies by an inverse Fourier transformation. One reason for testing this
method is that we are interested in derivatives of smoothed functions. An
advantage of the Fourier analysis is that a function developed in a Fourier
base can be derivated easily by shifting coefficients only. Numerical tests for
this regularization method gave bad results with so-called Gibbs phenomenon
(oscillations) at the boundaries. For periodic data, the method approved very
good results instead. Since the vertical velocity can not be expected to be
periodic, this method cannot be applied.

A similar procedure is the singular value decomposition of the considered
operator and cutting the spectrum of the operator. Due to the bad results
with the Fourier method, this procedure was not implemented.

A further way to smooth the function is to use spline approximations and
to minimize the sum of the approximation errors and a variation punishing
functional. This procedure (even if parts of the numerics are given in libraries
as NAG) is very costly and did not result in as good results as operating the
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mollifiers.

Thus, compared to other methods implemented and tested, the mollifier
method is chosen since best results were obtained. Furthermore, its imple-
mentation is easy to include into the numerical solution scheme of the SWE.

5.5.4 Application to S,

The mollification method is applied several times in the computation of S, in
(5.48). The first time for the calculation of the vertical velocities at the free
surface wy and at the bottom w,. Here the mollification of H and z, yields
smooth derivatives. Furthermore, the horizontal flow velocity v is mollified. In
addition to these required mollifications, each derivation process is prepared
by a mollification in order to ensure smooth solutions.

Remark 5.16 Since the mollification method is applied several times, each
mollification can be controlled by a separate mollification parameter 6. Due
to restricted research time, no numerical exploration of what might be the best
strateqy for the best solution was performed. We applied the same § yielding
suitable solutions.

5.6 Results with Extension Pressure Correc-
tion

Since the first order approximation term 5,1 required an enormous effort of
regularization increasing the computational effort enormously, we decided to
present only the solutions with the zeroth order approximations.

5.6.1 Flow Problem Manhole

The introduction of the separated vortex regions has increased the height of
the water column above the manhole even over the height of the NSE. This
height is decreased by the additional source term included by the Extension
Pressure Correction yielding satisfying agreements between the NSE bench-
mark solution and the extended SWE results illustrated in Figure 5.8.

Figure 5.9 compares the SWE-solutions with and without Extension Pres-
sure Correction and illustrates the effects of the source term .S, . The integral
of Sy, (x) over parts of the domain is not zero. At the inflow interval and the
increasing part of the vortex the water is accelerated yielding a decrease in the
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water level. At the decreasing part of the vortex, the flow has a negative ac-
celeration. The vertical momentum of the in-flowing water from the manhole
is included via S, in contrast to the classical SWE.
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Figure 5.8: Water and ground level (vortex region) for the flow problem man-
hole with Extension Vortex Separation and Extension Pressure Correction com-
pared to the NSE benchmark solution for w, = 1m/s
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Figure 5.9: Comparison of SWE-solutions for the flow problem manhole with
and without Extension Pressure Correction
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Figure 5.10: Comparison of pressure distribution as colored plots with val-
ues from 0 in blue to high value in red for different model approaches of
flow problem manhole (w, = 1m/s). jFrom top to bottom: classical SWE,
SWE+Extension Pressure Correction, SWE+Extension Vortex Separation,
SWE-+Extension Vortex Separation+ Extension Pressure Correction, NSE-
benchmark solution
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The effects of the extensions are illustrated in Figure 5.10 comparing the
pressure distributions as colored plots for the following model approaches

1. classical SWE,

SWE + Extension Pressure Correction,

SWE + Extension Vortex Separation,

SWE + Extension Vorter Separation + Extension Pressure Correction,
NSE-benchmark solution

CrkE W

The pressure is presented in all plots by the same color levels from blue for
zero over green, yellow to red for high pressures.

There are two possibilities to assess the results: First by comparing the
water levels given by the upper boundary of the colored domain and second by
comparing the colors in the flow domain. The result with the classical SWE is
far away from the NSE benchmark solution that is in good agreement with the
extended SWE (SWE + Extension Vortexr Separation + Extension Pressure
Correction).
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Figure 5.11: Comparison of dependencies of H. (blue) and h (green) on the
inflow velocity wy, from analytical considerations (dashed line), from classical
SWE (solid line), from extended SWE (dashed-dotted) and from the NSE
benchmark solutions (circles)

Figure 5.11 includes the results of the extended SWE into Figure 3.7, and
presents the dependencies of the water column hight H,. and outflow hight h,
from the vertical inflow velocity wy, for the analytical solution, the NSE bench-
mark solution, the classical SWE and the extended SWE (SWE+Extension
Vortexr Separation+ Extension Pressure Correction). It is obvious that the
results of the extended SWE are in much better agreement to the analytical
considerations and the NSE benchmark results than the classical ones.
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5.6.2 Flow Problem Curb

The introduction of the separated vortex regions increases the water level in
front of the curb and decreases it at top of the vortex region yielding satisfy-
ing agreements between the NSE benchmark solution and the extended SWE
results illustrated in Figure 5.12.
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Figure 5.12: Water and ground level (vortex region) for the flow problem curb
with Extension Vortexr Separation and Extension Pressure Correction com-
pared to the NSE benchmark solution for uy = 3m/s
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Figure 5.13: Comparison of SWE-solutions for the flow problem curb with and
without Extension Pressure Correction
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Figure 5.13 compares the SWE-solutions with and without Extension Pres-
sure Correction and illustrates the effects of the source term .S, . The integral
of S, (x) over the domain is zero. Thus, the effects of the Extension Pressure
Correction are restricted to the local flow behavior. Nevertheless, the local
differences in 2D may influence the global flow behavior as well.

The success of the extensions is also visible in the comparison of the pressure
distributions: Figure 5.14 illustrates the pressure distribution as colored plots
for the following model approaches

1. classical SWE,
2. SWE + Extension Pressure Correction,
3. SWE + Extension Vortex Separation,

4. SWE + Extension Vortex Separation + Extension Pressure Correction,

t

. NSE-benchmark solution.

The pressure is presented by the color where the same color levels (from blue
for zero over green, yellow to red for high pressure) are applied for all plots.

As for the flow problem manhole, there are two possibilities to assess the
results: First by comparing the water level given by the upper boundary of
the colored domain and second by comparing the colors in the flow domain.
The results with the classical SWE are rather far away from the NSE bench-
mark solution that agrees with the extended SWE (SWE + Extension Vortex
Separation + Extension Pressure Correction).

The water level is also rebuilt reasonably with the extended SWE (SWE +
Extension Vortex Separation + Extension Pressure Correction). This success
shows the potential of the extensions to model the real flow behavior (i.e. NSE
benchmark solution) reliably within reduced computational effort. The CPU
times of the SWE are almost doubled due to the effort of the mollification
method, but remain still only fractions of the NSE effort.

Remark 5.17 The real flow behavior from the NSE solutions for the flow
problem curb is dynamic as explained in the presentation of the FExtension
Vortex Separation. Thus, the emphasis of the success of the Extension Pressure
Correction is set on the flow problem manhole.
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Figure 5.14: Comparison of pressure distribution as colored plots with values
from 0 in blue to high values in red for different model approaches of flow prob-
lem curb (ug = 3m/s). (From top to bottom: classical SWE, SWE+Extension
Pressure Correction, SWE+Extension Vortex Separation, SWE+Extension
Vortex Separation+ Extension Pressure Correction, NSE-benchmark solution
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5.6.3 Avalanche Modeling

As presented in [24], the SWE are also applied for simulation of avalanches.
The friction approach is modified, but the main flow behaviors are similar. The
picture on the left side of Figure 5.15 illustrates an avalanche flowing down a
hill.

Figure 5.15: Example of an avalanche (left hand side), pressure distribution
of test calculation with pressure correction (middle) and without Extension
Pressure Correction (i.e. classical SWE with pure hydrostatic pressure, right

hand side)

A critical situation in the flow process of an avalanche is its arrival from
a hill at a flat region in the valley, e.g. the boundary of a village. The flow
behavior in that critical region determines how much momentum from the hill
is transferred into the valley and how far the avalanche can flow. Thus, the
reliable simulation of this flow process is essential for a precise forecast of the
avalanche danger for the valley.

At this critical point, the slope decreases from a high value to almost zero.
In order to estimate the effects of the Extension Pressure Correction for the
flow behavior of avalanches, the results of the classical SWE and the extended
SWE are compared for such a typical flow situation in Figure 5.15. The pres-
sure distributions are presented in the colored plots with the same color levels
as in Figure 3.13.

In the classical SWE, no increase of the pressure is observed as obvious in
the extended SWE solution. Since the flow velocity is re-oriented in that point,
high pressure values are expectable according to the solution of the extended
SWE. Such differences become crucial in particular when erosion models are
involved that are coupled to the pressure as an important physical parameter
of that process.
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Chapter 6

Extensions in 2D

In Figure 2.2, we have given an overview over model approaches for the free
surface flow of water. The approaches on the left hand side describe the flow
behavior in 3D and those on the right hand side are restricted to 2D-profiles.
In Chapter 3 we have compared the numerical results of 2D-NSE, 1D-SWE and
stationary analytical solutions for 2D-Euler Equations. Due to the described
discrepancy of 1D-SWE to the 2D-NSE/2D-Euler results (see Section 3.3), we
have developed the Extensions Vorter Separation and Pressure Correction in
the Chapters 4 and 5 respectively. Thus, we could decrease the discrepancies
and rebuild the flow behavior more realistically.

This chapter starts with a presentation of the flow problems in 3D and their
solution with the classical 2D-SWE. We advance the derivations of the Exten-
sion Vortex Separation of Chapter 4 and the Extension Pressure Correction of
Chapter 5 into 2D and compare their results to the classical ones.

6.1 Results with Classical 2D-SWE

We recall the introduction of the flow problems in Section 1.2. Figure 1.4
illustrates the 2D-profile of the 3D flow problems presented in Figure 1.3. We
first emphasize the differences between the 2D-profile flow problem before we
present the numerical solution of the 3D-problem.

The 2D-SWE (2.70) are solved numerically with the scheme briefly pre-
sented in Section 2.5.2. The discretizations grid of the finite volume scheme is
rectangular, in our case chosen quadratic with dz = dy = 0.05m.

6.1.1 Flow Problem Manhole

Figure 3.1 in Section 3.1 sketches the considered 2D-profile flow problem. In
fact, this flow problem does not describe exactly the 3D outflow of water from

113
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a manhole. Despite the real 3D flow problem is cylinder-symmetrical, we
have considered the 2D-profile flow problem without appropriate source terms
describing the decreasing flux uh with increasing distance to the center of the
manhole as included in in the cylinder symmetric form of the 1ID-SWE (2.77).

0

Wy

Figure 6.1: Sketch of the flow problem manhole as a 2D-profile without con-
sideration of the cylinder-symmetric source terms as inflow from a rectangular
area into a bordered rectangular channel

In fact, the consideration of the flow problem without the source terms
describes the inflow from a rectangular manhole into a channel as illustrated
in Figure 6.1.1. We have decided to apply the classical 1D-SWE (2.72) with-
out the cylinder-symmetric source terms since it is more practical to compare
uniform stationary solutions without decreasing flux.

For the 3D flow problem, we assume a free outflow at the borders of the
computational domain Q = [—2m, 2m] x [—2m, 2m] and set a source term for
the vertical inflow velocity ¢ = wy in the area of the manhole. This area A,, is
bordered by a circle with radius z,, = 0.3m around the center of the manhole
in zy = (0,0). We discretize A,, in the quadratic computational grid by the
union of all grid cells with midpoint distance to the center low or equal to x,,.

Figure 6.2 illustrates the stationary 2D-SWE-solution of the flow problem
manhole with vertical inflow velocity w, = 2m/s. The principle flow behavior
is similar to the 1D case: A water column is rising above the manhole and
water is distributed over the street.

Figure 6.3 compares a cut through the 2D-SWE results (blue line) with
the computed 1D cylinder-symmetric results (green line) showing almost iden-
tical results. The red line above these lines illustrates the 1D-SWE results of
Chapter 3 also with wy, = 2m/s.

The water column H, with 2D-SWE is lower as in the 1D case. The water
level H far away from the center of the manhole does not remain constant but
decreases with the distance to the center of the manhole. This is due to the
neglect of the cylinder-symmetric source terms.
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Figure 6.2: SWE results as water levels H (z, y) with colored absolute velocities
in the steady state solution
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Figure 6.3: Comparison of a cut through the 2D-SWE results (blue line) with
the 1D cylinder-symmetrical results (green line) and the 1D-SWE results of
Chapter 3 for w, = 2m/s
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The applicability of the numerical solution scheme is demonstrated in Fig-
ure 6.4 by comparing its solution for a circular dam break problem to a pub-
lished solution presented in [27]. The initial condition of the circular dam
break are chosen as

e 2 2
H(t:()’x,y):{ hi=1.0m ,\/z2+y?<0.3m (6.1)

ho =0.1m , else.

Our numerical solutions are in agreement with those from literature.

1 Shallow water dam break, t=0.19; 200 x 200
T T T T T T T T

0.8
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Figure 6.4: Comparison of contour plot of water levels of a circular dam break
(h; = 1.0m for x < 0.3m, hy = 0.1m else at t=0s). Left: numerical 2D-SWE
solution at ¢t = 0.19s, right: analog solution from [27]

6.1.2 Flow Problem Curb

Considering the flow problem curb as a 2D-profile as done in Section 3.2 does
not offers the possibility to include flow transversal to the profile. The inflowing
water -even if reflected in the sub-critical flow case- is finally forced over the
curb. This simulates in fact the flow over a step in a bordered channel as
illustrated in Figure 6.5.

Similar to the neglect of cylinder-symmetric source terms in the flow prob-
lem manhole, we choose this physically modifying simplifications in order to
concentrate on the flow problem and to restrict the difficulties.

Figure 6.6 illustrates the real 3D application of water flow over a curb. In
contrast to the 2D-profile problem, water flows in both horizontal directions
and only a part of the water floods the sidewalk. The other part is reflected
and flows transversal to the former flow direction. If the height h; and the
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Figure 6.5: Sketch for illustration of the 2D-cut for the flow problem curb

momentum u;h; of the water flowing towards the curb are too low, there is no
flow over the curb at all.

_
R

Figure 6.6: Sketch of the flow over a curb in a real 3D application

Instead of considering the flow problem curb isolated from the flow problems
manhole as done for the 1ID-SWE, we couple both problems in 2D. Figure 6.7
illustrates the bottom elevation z, of the flow problem curb in 2D, where
the manhole is assumed to be located at the center of the street. We define
Q = [-bm,bm] x [=5m,5m] and set a source term for the vertical inflow
velocity ¢ = wy in the area of the manhole. This area A,, is bordered by a
circle with radius z,, = 0.3m around the center of the manhole in z, = (0, 0).
The curb with the step-size hy; = 0.1m is located at © = 3m and x = —3m.
Thus we receive the bottom elevation

0.0m ,—3am < x < 3m
a(r,y) = { hy =0.1m ,else. (6:2)

Similarly to the 1D case, the curb is not modeled as a step of infinite slope
but as a jump in between one computational grid cell on the xz-dimension.
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Figure 6.7: Bottom structure of the flow problem curb in 3D as the topography
of the street with sidewalks and the manhole in the middle of the street

Figure 6.8 illustrates the stationary results where the sidewalks are flooded.
In contrast to the 1D flow problem, where all the water is finally forced to flow
over the curb, a fraction of the water flows over the curb and the other fraction
is flowing below the level of the sidewalk on the street transversal to the curb
as already sketched in Figure 6.6.
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Figure 6.8: SWE results as colored water depths h(z,y) in the stationary
solution with flooding of the sidewalks
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6.2 Extension Vortex Separation in 2D

The Extension Vorter Separation separates vortex regions at the bottom as
dead zones defining the new bottom for the main flow above. This approach
is also applicable for 3D flow problems modeled with 2D-SWE. In Chapter
4, a physical design approach of the separation line s(x) for extensions of
the 1D-SWE is presented. The 1D separation line is extended to a function
s(x,y) in 2D with vortex regions below that function above the ground z,(z, y).

The physical design approach in Chapter 4 is directly applicable to the flow
problem manhole. We consider the problem in cylinder-symmetry reduced in
1D and exchange the horizontal flow velocity usw g by the radial one. Figure
6.9 illustrates the resulting vortex region for the flow problem manhole for
wy = 2m/s.
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Figure 6.9: Example of the Extension Vortex Separation for the flow problem
manhole with 2D-SWE

The physical design approach for the vortex region from 1D can also be
applied to the flow problem curb in 2D. Figure 6.2 illustrates how to advance
the Extension Vortex Separation from 1D to 2D. We consider the 2D-problem
as a union of 1D-problems oriented perpendicular to the curb and decompose
the velocity vector into a normal component , and a tangential component
ti;. The normal component u, determines the design of the vortex region as
done in 1D.

The design of the separated vortex region depends on the 2D-distribution
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£y

Figure 6.10: Consideration of the normal component , to advance the Ex-
tension Vortex Separation for the flow problem curb from 1D into 2D

of the velocity in front of the curb. Due to the coupling of the flow problems
we obtain a cylinder-symmetric flow from the manhole determing the normal
component in front of the curb. Figure 6.11 illustrates an example for the
vortex region at the curb in 2D.
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Figure 6.11: Example of the Extension Vortex Separation for the flow problem
curb with 2D-SWE
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6.3 Extension Pressure Correction in 2D

The Extension Pressure Correction derived in Chapter 5 for the 1D-SWE is
also applicable to the 2D-SWE. The most important steps of its derivation in
2D are presented below.

6.3.1 Approximation of Vertical Velocities w

Vertical Velocity wy at the Surface and w;, at the Bottom

Following Section 5.2, the vertical velocities w(x,y) are approximated by
the kinematic boundary conditions. At the surface H and the bottom z,, no
penetration of water into the ground and the air is assumed. The equations
(2.10) and (2.11) extended for a time dependent bottom z(¢, z, y) read

OH OH OH
Wy = E—FUH%—FUHa—y,
%+u%+v%+
ot "oz "oy e

wy =

As was done for u in (5.6) and illustrated in Figure 5.3, we assume also
vy = vy = v = v. This yields

on _ oH oM
a " or oy’
6zb 8zb 8zb

(6.3)

Wy =

for the vertical velocities at the free surface (6.3) and at the bottom (6.4).
Identical to (5.10),

wy(z,y) = q(r,y) (6.5)

is assumed as the prescribed vertical inflow velocity at the bottom in the area
of the manhole.

Vertical Distribution w(z)

Departing from the estimation of the vertical velocity w at the surface wy
(6.3) and the bottom w, (6.4) the vertical distribution w(z) is approximated
as zeroth order approximation wy.

w(z,y, ) = B, y) = wla,y) = O LEOED) g

wo(x,x) is chosen as the average of the vertical velocities at the surface wy
and the bottom w, estimated in (6.3) and (6.4) in analogy to the approach in
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1D.

Vertical Velocities wy for the Flow Problem Manhole

The vertical velocities wy(z,y) for the flow problem manhole is illustrated
in Figure 6.12 for w, = 2m/s. The 2D distribution is in agreement with the
results of the 1D cylinder symmetric computations.
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Figure 6.12: Vertical velocity for the 2D flow problem manhole

6.3.2 Pressure Correction p,.

In analogy to the 1D-SWE, the approximated vertical velocities entail a cor-
rection of the hydrostatic pressure distribution

p(2) =pu +pg(H — 2) + pg(H — 2) = phy + Pe- (6.7)

where
pe(2) = pi(H — 2). (6.8)

is the pressure correction. The acceleration correction g reads in 2D:
g=w=—+tu—+v—. (6.9)

6.3.3 Impact of Dynamical Pressure p. on SWE: S,

The pressure correction term p,. entails depth-integrated pressure correction
gradient terms S, and S, as additional terms in the z- and y-momentum
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equations of the SWE:

o ,1_,
J ,1._ .
Spey = —a—y(§9h2)+9h5by- (6.11)

These terms are derived similarly to the 1D case.
The extended 2D-SWE read

h uh vh
% uh | + 82 u?h + %gh2 + 82 uvh
vh T woh Y\ u2n + %ghz
q
= | 9h(Ses — Spz) + Sp.. | - (6.12)

gh(Sby - Sfy) + Spcy

Similarly to the 1D case, we apply them within a splitting scheme as source
terms.

6.4 Results with Extended 2D-SWE

The Extensions in 2D have been implemented and applied to the flow problem
manhole and curb.

6.4.1 Flow Problem Manhole

The flow problem manhole is cylinder-symmetric and the results are presented
and compared as cuts through the 2D solution. Since no 3D-NSE solution is
available, we compare the results of the classical and the extended 2D-SWE
in Figure 6.13.

The impact of the included vortex region lifts the height of the water column
H_ and increases the momentum and thus the Froude number F'r.

6.4.2 Flow Problem Curb

Figure 6.14 demonstrates the applicability of the Extensions in 2D for the
flow problem curb. The local behavior at the curb influences the global flow
behavior yielding different flow paths than in Figure 6.8. The water column
is higher and larger and the velocities are also higher. Due to the extensions,
the part of water flowing over the curb is increased. Thus, the flood risk for
houses connected to the street is also increased.
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Figure 6.13: Cut through the different 2D solutions for the flow problem man-
hole. Classical SWE (Water level H in red), SWE+Extension Vorter Separa-
tion (H green, s black) and SWE+Extension Vortex Separation +Extension
Pressure Correction (H cyan)
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Figure 6.14: Water levels of the 2D flow problem curb with Extension Vortex
Separation and Extension Pressure Correction



Chapter 7

Conclusions and Outlook

The accurate simulation of the outflow of water from a manhole and the flow
of water over a curb is crucial for the assessment of flood risks in urban areas.

The Navier-Stokes Equations (NSE) describe the free surface flow of water
accurately, but their numerical solution requires high CPU times and memory.
Therefore, the approach is not applicable practically for the simulation of flood
problems in urban areas.

The classical Shallow Water Equations (SWE) require only fractions (factor
< ﬁ) of the NSE computational effort. They assume a hydrostatic pressure
distribution and depth-averaged horizontal velocities but consider neither vor-
tices in the vertical plane nor vertical velocities.

The comparison of NSE solutions and the SWE results for the special flow
problems manhole and curb shows local as well as global differences. This is
due to the fact, that these flow problems involve vortices in the vertical plane
and vertical velocities. Thus, the classical SWE approach can not be applied
reliably.

Suitable extensions of the SWE have been derived from physical considera-
tions of the NSE flow behavior in order to increase the accuracy and thus also
the reliability of the SWE results. The Extension Vortex Separation introduces
a fluid bottom layer as a separated vortex region. This layer is considered as
a dead zone and represents the bottom for the main flow above. For this main
flow, vertical velocities are approximated that correct the pressure distribution
entailing additional terms in the momentum equation of the SWE within the
Extension Pressure Correction.

The differences between the NSE and the extended SWE have been de-
creased and more realistic pressure distributions are obtained yielding more
accurate and reliable results. The increase of the computational effort due to
the extensions is only moderate.
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The design approach of the vortex regions has been done for stationary
solutions only. In-stationary flows have been considered quasi stationary. Fur-
ther attention could be spend on real in-stationary flow behavior.

The extensions of the SWE are usually restricted to the close vicinity of
the manhole and the curb respectively. Assuming a further increasement of
computer capacities, it would be possible to nest the NSE approach into the
SWE flow at these crucial locations. For that purpose, the SWE flow and the
NSE flow have to be coupled efficiently.

On the other hand, CPU capacities — even increasing over time — will
be always restricted. For large scale applications of floods in parts of a big
town within large systems of streets, the 2D-SWE approach requires compu-
tational effort of a size that renders it impractical to apply. Thus, there is the
demand for development of simplified schemes (e.g. mass balances) applicable
practically, and obtaining reliable results.



Appendix A

Mathematical and Physical
Detalils

A.1 Notations
We work in the vector space R® and points are denoted as vectors & = (x, v, 2)T
or ¥ = (x1,T2,23)". When considering simplified problems in lower dimen-
sions, in particular in R we write only x. Vectors are always written with the
vector arrow & and tensors of 2"¢ order are written in bold letters, e. g. T, R,
Id .

The vector space is equipped with the inner product @ - b = (ay,as9,a3) -

(by, b2, b3)" = a1by + asby + azbs and the Euclidean norm ||@|| = \/Z?ﬂ az.
The vectors @ and b can be multiplied to a tensor of 2"dorder (@ ® b) =
(a1, a2, a3)" - (b1, ba, b3) with components (@ ® b);; = a;b;. We avoid the sum-

mation convention and write summations always explicitly.

Assume that the scalar function a : 2 — R and the vector function a :
0 — R? are differentiable and describe a scalar field and a vector field.

The partial derivative of @ with respect to x is denoted as da/0x and
notation with subscript a, is avoided. This notation is similar for y, z and the
time ¢.

Remark A.1 Letter subscripts usually give hints for the location (e. g. wy =
W=y, or hy for h at the inflow point i), further specification (e. g. f, as
gravitational force).

The differential operator

<
[l
|~
b=
=
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operates as a gradient on the scalar field a(Z) denoted as

grad a = Va = g—; (A.2)

ou 9o, Oa (A.3)
Jr 0y 0z
Furthermore, we use the divergence operation not only on vectors within a
mapping R? x R* — R, but extend it to tensors of 2"? order, in particular for
the stress tensor 7 within the mapping R® x R¥3 — R3. Let 7 € R**3 consist
of 3 row vectors T = (71, T, 73) with 7 € R?, then div T = (6-?1, V-7, 6-?3)T.
The inner product of V with itself is the scalar Laplace operator

A=Y =Dy (3%)2 yEas (AA)

Applied to a vector, A has to be applied to every component of the vector, e.
g. Al = (Au, Av, Aw)T.

Beside this inner product, V can be used in a vector product with a vector
field giving the rotation of the vector field

a3 __ day

. Jy 0z
rotd=Vxd=| 92 9% | (A.5)

z gw

day _ Oay

ox dy

The fluid is considered as a continuum in an open, simply connected fluid
domain Q C R® with its boundary 92. The fluid is moving with the velocity
field @ and the fluid domain is also moving with time ¢ € R and Q = Q(¢)
and 0€2 = 0€(t) are time-dependent.

Remark A.2 We use Euler Coordinates, i. e. considering motion of particles
observed from a fized point and not moving with the particle. Only in Section
2.5.1 we do use the Lagrange Coordinates, since the FPM is a Lagrangian
scheme.

Definition A.3 We denote C°(R) as the set of continuous real functions on
R, CY(R) as the set of differentiable real functions on R and C§(R) as the set
of differentiable real functions with compact support.

Definition A.4 We denote a real function f : R — R to be smooth when f
is differentiable f € C*(R).
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The total or material derivative of a differentiable function f(Z,t), depend-
ing on time and space coordinates of a moving water particle in the fluid
domain €2(t) is given by

f@0) = SHEN = 5 F@0 + (grad FEH) 0, (A6)

due to the chain rule of differentiation. « is the velocity of the fluid motion.
For the material derivative of the velocity vector field @, (A.6) is valid for
every component u,v and w and yields the following three equations written
in vector form

. d 0

u(Z,t) = —u(z,t) = aﬁ(f, t) + (@ - grad) i(z,t). (A.7)
Definition A.5 (Historical Remark and Explanation) As extension to
the accentuation Remark, we signalize historical contents in what we call His-
torical Remark. Furthermore, an Explanation gives tmportant insights and
summoarizes considerations.

A.2 Mathematical Formulation of Conserva-
tion Laws

Conservation of mass, momentum and energy are the physical properties for
the derivation of any set of equations describing fluid flow. The physical prin-
ciple behind those laws is the assumption, or better the fact due to experience
that a quantity (e. g. mass) is neither destroyed nor produced and thus con-
served in the fluid domain. Since the fluid domain Q(¢) is moving with time
due to the water flow we introduce the transport theorem for the mathematical
description of total derivatives of fluid quantities.

Theorem A.6 (Transport theorem) Let f be a differentiable, scalar func-
tion in the fluid domain €(t)

[ AU Q) x {t}t € [to, tmas) } = R,
(Z,t) = f(Z,1)
and U be the smooth velocity field of the flow. Then the following holds:
d . o0 . . S -
= / (7 0)dV = / SR +din(f@ 0 @) av (AS)
Q(t)

Q(t)

Proof. e. g. [53], page 84. m
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Remark A.7 The divergence term in the volume integral can be transferred
into a surface integral over the boundary 0SA(t) by applying the divergence
theorem.

In particular, we consider the 1D case of the theorem that follows directly
from (A.8).

Corollary A.8 The domain S2(t) is an interval I(t) = [x1(t), 22(t)] C R vary-
ing differentiable in time with velocities 2, (t) and x4(t). For the differentiable,
scalar function f: {UI(t) x {t}|t € [to, tmaz]} — R the following holds

5172(t) 5172(t) a
Flastide = [ 2w dn + S0, 050 £ (0,020, (A9

a:l(t) a:l(t)

Sl

We consider the scalar quantity «(Z,t) to be conserved within the fluid
motion given by the velocity field #(Z). Conservation of the quantity o means
that the integral over any moved fluid domain €(t) is constant with respect
to time t. Thus, we postulate the following relationship for arbitrary fluid
domains Q(?):

0= %Qé a7, t) dV = / (%a(f, 1) + div(a(7, 1) @7, t))) AV (A.10)

Q(t)

due to the transport theorem (A.8).
Since the integral vanishes for arbitrary fluid domains Q(t) the integrand
has to be zero and we obtain:

J . DN o
Ea(x, t) + div(a(Z,t) u(Z,t)) = 0. (A.11)

This equation is the standard form of a homogeneous conservation law given
in differential form.

A.3 Euler Equations

As an example of a set of conservation laws we present the Euler Equations
in 1D by setting the conserved quantity « from (A.11) to the density p, the
momentum in z direction pu and the energy E, as done in [26].

Historical Remark A.9 Leonhard Euler (see Appendiz B.1) was the first
scientist who derived these equations of motion, that were long time believed
to describe every fluid motion correctly and uniformly.
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For the mass conservation we set o« = p and obtain in 1D:

p(z,t) + g(p(x,t)u(mt)) =0 (A.12)

ot ox

(A.12) can be solved in isolation only if the velocity u(z, t) is known a priori
or as a function of p. Then pu is a function flux(p) and we rewrite (A.12) as

0
ot

where flux(p) = up is the flux function of p.

p+—flux( )=0 (A.13)

The conservative principle is usually extended by introducing additional
terms on the right hand side when e. g. the mass conservation is influenced
by mass source terms ¢ from inflow boundaries or when the momentum pu is
influenced by forces.

Due to Newton’s second law of motion, a force f entails a change of mo-
mentum

o) =1 (A14)
Considering only the pressure gradient force f = ——p and including this term
into the flux term flux(pu), the conservation law for the momentum can be
written as

0

9 (pu) + - (pu+p) = 0 (A.15)

Together with the energy conservation (E: energy density, derivation in
[26]) the 1D-Euler Equations read

a [’ 0 pu .
pvll IO R pu>+p | =0 (A.16)
E t u(E + p)

Definition A.10 (Hyperbolicity) A system of conservation laws

0. 0. 0. -

iz 0) ()
where @(z,t) : R x R — R™, f(@) : R™ — R™ and A(@) € R™™ its Jacobian

matriz, is called (strictly) hyperbolic if A(@) is diagonizable with real (distinct)
eigenvalues \;(i) for all @ € R™.

Remark A.11 The Euler equations (A.16) are hyperbolic conservation laws.
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: _ ou
% T N 5,

Figure A.1: Viscous friction in the Couette flow

Weak solutions

In the conservation law (A.11), the quantity « needs to be differentiable
with respect to time ¢ and to space #. At times, that property of the solution
is not fulfilled, e. g. in case of discontinuous initial conditions of a dam break
problem. Furthermore, hyperbolic conservation laws tend to form shocks solu-
tions ¢ C° even for smooth initial conditions. We include generalized solutions
with the following

Definition A.12 (weak solution) A function u(x,t) € L™ is called a weak
solution of

9 0
ot o f () =0 (A.18)

if the integral of the equation multiplied with any test function ® € C} over
space and time is zero:

//(%q) u+ %@ f(u)) dx dt = 0. (A.19)

A.4 Viscous Effects

The Euler Equations (B.1) do not consider viscous effects. Due to the neglect
of these terms in the equations of motion, experiments and calculations differ
when viscous friction of the fluid causes loss of momentum and energy.

A well-known example for such differences is the Couette flow illustrated
in Figure A.1: A panel located at the top of a fluid domain is pulled in the
horizontal plane with the velocity uy over the fluid domain with the fluid depth
h.

According to the Euler Equations (A.16), no force has to be expected to
initiate the motion of water or to act against the motion of the panel. To the
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contrary, experiments show a flow of water caused by the moved panel and a
force of the water acting against the steady motion of the panel. This force
increases with the velocity of the panel uy and decreases with the distance of
the panels h. Furthermore the force depends on the fluid between the panels.
The physical ability of a fluid to act against a motion of laminar layers is called
dynamic viscosity 7. Experiments yield the force against the motion per unit
surface element of the panel, which is the stress 7 in the horizontal direction

as illustrated in Figure A.1:

ou

Remark A.13 The dynamic viscosity n of water depends on its temperature.
At T = 0°C the viscosity is ny—poc = 179.3-10°Pa s, at T = 20°C' we have
only 55% of that value with Np—opec = 100.3-107°Pa s and at T = 100°C' the
viscosity n is less then 20% of nr—gec. Since we do not consider temperature
effects, we assume 1 = Nr—sgec, . €. V & 10*67”?2.

For general fluid motion with the velocity field @(Z) the stress is a tensor
of second order.

Definition A.14 A fluid is called a Newtonian fluid iff

8U,Z' 8U,j
Tij N 77(833] + 8$Z)

(A.21)

Since the stress entails a viscous force fV on the fluid motion, it has to be
included in the momentum equations for the viscous NSE. The force fv per
unit mass can be evaluated as %div 7. For incompressible Newtonian fluids,
this is simplified to

- 1
fv = ;div T =vAU (A.22)

due to (A.21) with v = 7 as kinematic viscosity in m;

Definition A.15 (Reynolds-number Re) Let v be the kinematic viscosity
of the fluid, u be the typical velocity and | be the typical length scale of the
flow. The ratio Re = “7[ is defined as the dimensionless Reynolds-number to
compare the inertia and the viscous friction forces.

Considering the flow of water in urban areas with typical flow velocities
of u = 1m/s and typical water depths of [ = 0.1m yields a typical Reynolds-
number Re = %l = 10°. Since this number is very high, the flows are expected
to be turbulent.
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A.5 Ill-posed Problems

Since differentiation is an ill-posed problem, it has to be handled carefully. We
repeat some background from literature [10], [29]

Definition A.16 (Hadamard) A mathematical problem is said to be well-
posed if

For all admissible data, a solution exists. (A.23)
For all admissible data, the solution is unique. (A.24)
The solution depends continuously on the data. (A.25)

Remark A.17 A problem that is not well-posed is said to be ill-posed.

(A.25) is usually the reason for the ill-posedness of problems. For those
problems a classification of the ill-posedness depending on the degree of dis-
continuity of (A.25) exists. We refer to [10].



Appendix B

Historical Remarks

Most theoretical background for this thesis was derived already in the 19th
century and several parts of the theory, in particular the Navier-Stokes, Eu-
ler, Saint-Venant and Reynolds equations, were named in memory of their
inventors.

Some historical remarks are given within the thesis, and in this appendix
portraits and some dates on those mathematicians are assembled. The se-
quence is based on the date of birth and has nothing to do with any kind of
scientific order. Since several reports about most of those mathematicians and
their lives and work are available and well-known, we omit a presentation of
their biographies.

Since Adhémar Jean Claude Barré de Saint-Venant derived major theoreti-
cal background for the subjects of this thesis, his biography is briefly presented.

The information and portraits were taken from the Internet from articles
by J.J. O’Connor and E.F. Robertson [36]. We thank for the permission to
present the images and dates and refer to further historical remarks presented
there.
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B.1 Portraits and Dates

Sir Isaac Newton

Born: 4 Jan 1643 in Woolsthorpe, Lincolnshire, England
Died: 31 March 1727 in London, England

Leonhard Euler

Born: 15 April 1707 in Basel, Switzerland
Died: 18 Sept 1783 in St Petersburg, Russia
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Claude Louis Marie Henri Navier

Born: 10 Feb 1785 in Dijon, France
Died: 21 Aug 1836 in Paris, France

Adhémar Jean Claude Barré de Saint-Venant

Born: 23 Aug 1797 in Villiers-en-Bire, Seine-et-Marne, France
Died: 6 Jan 1886 in St Ouen, Loir-et-Cher, France
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George Gabriel Stokes

Born: 13 Aug 1819 in Skreen, County Sligo, Ireland
Died: 1 Feb 1903 in Cambridge, Cambridgeshire, England

Osborne Reynolds

Born: 23 Aug 1842 in Belfast, Ireland
Died: 21 Feb 1912 in Watchet, Somerset, England
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B.2 Adhémar Jean Claude Barré de Saint-Venant

Jean Claude Saint-Venant was a student at the Ecole Polytechnique, entering
the school in 1813 when he was 16 years of age. He graduated in 1816 and
spent the next 27 years as a civil engineer. For the first seven of these 27 years
Saint-Venant worked for the Service des Poudres et Salptres, then he spent the
next 20 years working for the Service des Ponts et Chaussées.

Saint-Venant attended lectures at the College de France and the lecture
notes he took in Liouville’s 1839-40 class have survived. He taught mathemat-
ics at the Ecole des Ponts et Chaussées where he succeeded Coriolis.

Saint-Venant worked mainly on mechanics, elasticity, hydrostatics and hy-
drodynamics. Perhaps his most remarkable work was that which he published
in 1843 in which he gave the correct derivation of the Navier-Stokes equations.

Seven years after Navier’s death, Saint-Venant re-derived Navier’s equa-
tions for a viscous flow, considering the internal viscous stresses, and eschew-
ing completely Navier’s molecular approach. That 1843 paper was the first to
properly identify the coefficient of viscosity and its role as a multiplying factor
for the velocity gradients in the flow. He further identified those products as
viscous stresses acting within the fluid because of friction. Saint-Venant got
it right and recorded it. Why his name never became associated with those
equations is a mystery. Certainly it is a mishap of technical attribution.

We should remark that Stokes, like Saint-Venant, correctly derived the
Navier-Stokes equations but he published the results two years after Saint-
Venant.

Saint-Venant developed a vector calculus similar to that of Grassmann
which he published in 1845. He then entered into a dispute with Grassmann
about which of the two had thought of the ideas first. Grassmann had pub-
lished his results in 1844, but Saint-Venant claimed (and there is little reason
to doubt him) that he had first developed these ideas in 1832. Again it would
appear that Saint-Venant was unlucky.

In the 1850s Saint-Venant derived solutions for the torsion of non-circular
cylinders. He extended Navier’s work on the bending of beams, publishing a
full account in 1864.

In 1871 he derived the equations for non-steady flow in open channels,
named the de Saint-Venant equations.

In 1868 Saint-Venant was elected to succeed Poncelet in the mechanics
section of the Académie des Sciences. By this time he was 71 years old, but he
continued his research and lived for a further 18 years. At age 86 he translated
(with A. Flamant) Clebsch’s work on elasticity into French.
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