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Chapter 1

Introduction

Classical (static) network flow models have been well known as valuable tools for many
applications (see e.g., Ahuja, Magnanti, and Orlin [AMO93]). However, they fail to cap-
ture the dynamic property of many real-life problems, such as traffic planning, production
and distribution systems, communication systems, and evacuation planning. A static flow
can not properly consider the evolution of a system over time. The time here is an es-
sential component, either because the flows of some commodity take time to pass from
one location to another, or because the structure of the network changes over time. In
real-life problems, both phenomena may appear together. Take, for example, a building
evacuation problem: people have finite walking speed and from time to time the pas-
sageway (e.g., corridor and stairwell) can become unaccessible due to, for instance, smoke,
fire, or falling debris. More examples are described in the survey paper of Aronson [Aro89].

To tackle this problem, Ford and Fulkerson [FF58, FF62] introduced flows which take
time, called travel time, to pass an arc of the network over a finite time horizon 7". This
flow is called dynamic flow or flow over time. The time itself can take a continuous or
discrete value. In this thesis we focus on the discrete-time dynamic flow.

Not surprisingly, dynamic network flow problems are more complex than static ones, since,
for example, they require to keep track of when each unit of flow travels through an arc of
the network so that no arc capacity is violated at any time. Only in some cases, these prob-
lems are polynomially solvable, see e.g., Ford and Fulkerson [FF58, FF62] and Burkard,
Dlaska, and Klinz [BDK93]. In many cases dynamic network flow problems are NP-hard
or at least there is no polynomial time algorithm known to solve them, see e.g., Hoppe and
Tardos [HT94], Klinz and Woeginger [KW95], Fleischer [Fle01], and Fleischer and Skutella
[FS02].

All of the existing results on dynamic network flow that we have mentioned above as-
sume that the network attributes such as arc travel times (or costs), arc and node capaci-
ties, and the supply at the source nodes, are constant (i.e., time-independent). For many
applications mentioned previously, this constant assumption is, however, certainly inade-
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quate. To obtain more realistic results, the model must account for the time-dependent
(or time-varying) nature of those network attributes. We make the distinction between
the words ”dynamic” and ”time-dependent”. Dynamic is associated with the movement of
flow over time through the network whereas time-dependent is associated with the network
attributes. Hence, we have dynamic network flow problems either with constant attributes
or with time-dependent attributes. We call a dynamic network flow problem with time-
dependent attributes a time-dependent dynamic network flow problem.

In general there are three approaches to solve dynamic network flow problems. The first
approach is to create a so-called time-expanded network which is a static representation
of the dynamic network. This network is constructed by making a copy of the original
network for each discrete-time period. The dynamic flow problems are then solved by ap-
plying existing static network flow algorithms to this time-expanded network. The size of
the time-expanded network is in general exponential with respect to the input size of the
problem and therefore is typically very large for realistic problems. The second approach is
to reduce dynamic network flow problems to static ones and make use of existing algorithms
to solve them. The third approach is to explore only the time-dependent property of net-
work attributes without doing the time-expansion. In some cases, the second approach is
much better than the other approaches, since it gives strongly polynomial time algorithms,
see e.g., Ford and Fulkerson [FF58, FF62] and Burkard, Dlaska, and Klinz [BDK93]. In
general this approach is used when the network attributes are constant. The first and third
approaches are commonly used when the network attributes are time-dependent. Minieka
[Min74] used the second approach to solve a time-dependent problem in which arcs of the
network may be added or removed in any time period. However, he indicated that, in the
worst case, it is computationally more efficient to use the first approach than the second
approach. In this thesis, we use the third approach to solve discrete-time dynamic network
flow problems with time-dependent attributes and show that, in some cases, this approach
provides better computational complexity than the first one.

Many dynamic network flow problems are considered as extensions of static network flow
problems. These include maximum dynamic flow and minimum cost dynamic flow prob-
lems. Some examples of ”original ” dynamic network flow problems, where the time itself
is in question, are the quickest flow and earliest arrival flow (or universal maximum flow).
The maximum dynamic flow problem seeks a dynamic flow which sends as many as possible
a commodity from a single source to a single sink of the network within the time horizon 7.
The minimum cost dynamic flow problem seeks a dynamic flow that minimizes the total
shipment cost of a commodity in order to satisfy demands at certain nodes within 7'. The
quickest flow problem seeks the minimum time 7" required to send a given flow value from
the source to the sink. This problem is considered as the inverse of maximum dynamic
flow problem. The earliest arrival flow problem is a variant of the maximum dynamic
flow problem that seeks a dynamic flow which is maximum not only for 7', but also for
every time T' < T. In this thesis we review some results on the mazimum dynamic flow,



earliest arrival flow, and quickest flow problems with constant attributes and develop some
algorithms to solve these problems with time-dependent attributes.

When costs are equal to travel times, the supply of every node (except the sink) is one and
all arc capacities are infinite, then the minimum cost dynamic flow problem reduces to the
dynamic shortest path problem. There are various papers dealing with dynamic shortest
path problems with time-dependent network attributes such as costs and travel times (i.e.,
time-dependent dynamic shortest path problems). These include the works of Cooke and
Halsey [CH66], Orda and Rom [OR90, OR91], Ziliaskopoulos and Mahmassani [ZM93], and
Wardell and Ziliaskopoulos [WZ00]. These problems consider only a single objective func-
tion. Without time dependency, there are several papers dealing with multicriteria (static)
shortest path problems. These include the works of Hansen [Han80], Martins [Mar84],
Corley and Moon [CM85], and Brumbaugh-Smith and Shier [BSS89]. Time-dependent
multicriteria dynamic shortest path problems, as combination of the previous two problem
classes, have attained relatively little attention in the literature. The works of Kostreva
and Wiecek [KW93| and Getachew, Kostreva, and Lancaster [GKLO00], to the best of our
knowledge, are the only ones which have been published in the area of time-dependent
multicriteria dynamic shortest path problems. In this thesis we develop two algorithms to
solve time-dependent bicriteria dynamic shortest path problems (TdBiDSP). While the first
algorithm deals only with the nonnegative network attributes, the second one allows the
arcs of the network to have negative travel times and costs. We develop the first algorithm
to solve TdBiDSP with negative travel times and costs. The possibility to wait (or park) at
a node before departing on outgoing arc, in order to keep the total cost low, is also taken
into account.

Most of the existing literature on computational testing rely on CPU time as the pri-
mary measure of performance. CPU time depends greatly on, for example, the specific
computer used, chosen programming language, the programmer skills, etc.. Moreover, the
typical CPU time analysis does not help us identify the bottleneck operations of the algo-
rithm. To overcome these drawbacks, Ahuja, Magnanti, and Orlin [AMO93| proposed to
use the so-called representative operation counts. These counts are determined by a small
number of lines of code that represent the empirical behavior of the algorithm. By iden-
tifying the representative operation counts of an algorithm, we can use them to estimate
the CPU time, to identify some asymptotic bottleneck operations, and to compare two al-
gorithms. We will use this approach to analyze the performance of our proposed algorithms.

As an interesting application, in this thesis we consider evacuation problems. These prob-
lems are brought horrifically into focus by the New York World Trade Centre disaster on
September 11, 2001. Figure 1.1 describes the chaos situation during an emergency evac-
uation. Evacuees must move to a safety area as quickly as possible in a crowded and
smoky environment and also face the threat of falling debris from the ruined building or
other disasters which may come along. Since time is a decisive parameter in these prob-
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Figure 1.1: Walking through disaster

lems, dynamic models should be used instead of the static ones. In general, there are
two approaches to model the evacuees distribution in order to estimate the evacuation
time, namely microscopic and macroscopic models. In the microscopic models each evac-
uee is considered as a separate flow object, whereas in the macroscopic models, evacuees
are treated as a homogeneous group where only common characteristics are taken into
account. A survey of both approaches on evacuation problems was reported in Hamacher
and Tjandra [HT02]. In this thesis we focus on the macroscopic models and only review
some of the results of the microscopic approaches.

This thesis is organized as follows. In Chapter 2, we give the formulation of a discrete-
time dynamic network flow problem (DTDNFP). Moreover we describe a time-expanded
representation of a dynamic network which can be considered as a static network in the
larger size. We use the idea of developing a residual static network to define the residual
dynamic network. In Chapter 3 we review approaches to solve the maximum dynamic
flow problem with constant attributes. We give a dual formulation of the maximum dy-
namic flow problem with time-dependent attributes and its associated dynamic cut. A
hybrid algorithm which combines the capacity scaling and the shortest augmenting path
algorithms to solve the maximum dynamic flow problem with time-dependent attributes
is discussed in this chapter. We also report a computational analysis of this algorithm.
A special class of the maximum dynamic flow problem, known as the earliest arrival flow
problem, is discussed in Chapter 4. After reviewing the approaches to solve the earliest
arrival flow problem with constant attributes, we describe a new algorithm to solve the
earliest arrival flow problem with time-dependent attributes and report a computational
analysis. We also prove that the complexity of the new algorithm is reduced when infinite
waiting is considered. In Chapter 5 we review the approaches to quickest flow problems
with constant attributes. By a simple network modification, we show that we can use
the new algorithm proposed in Chapter 4 to solve the quickest flow problems with time-



dependent attributes. In Chapter 6 we review the existing results on dynamic shortest
path problems and multicriteria (static) shortest path problems. We propose two new
algorithms, label setting and label correcting algorithms, to solve TdBiDSP and compare
their performance to that of the existing algorithm. In Chapter 7, after reviewing both
micro and macro approaches to the evacuation problems, we describe how to apply the
results developed in the previous chapters to find optimal evacuee distributions and opti-
mal evacuation paths. We apply our algorithms to find the lower bound of the evacuation
time of Building 42 in the University of Kaiserslautern, Germany. Finally, in Chapter 8
we conclude our discussion on dynamic network optimization with some ideas for possible
further research works.






Chapter 2

Dynamic Network Flow

Dynamic network flow models describe network-structured, decision-making problems over
a time horizon T'. We can formulate the dynamic network flow problem in two ways depend-
ing on whether we use a discrete or continuous representation of time. The discrete-time
dynamic network flow problem is a discrete-time expansion of a static network flow problem.
In this case we distribute the flow over a set of predetermined time periods ¢ =0,... ,7. In
a continuous-time dynamic network flow problem we look for the flow which is distributed
continuously over time within the time horizon 7', i.e., the time parameter is treated as a
real number.

In this chapter, we focus our discussion on a discrete-time dynamic network flow. In
the next section we give the definition of a discrete-time dynamic network flow problem.
In Section 2.2 we describe the time-expanded representation of a discrete-time dynamic
network. In Section 2.3 we discuss the First-In First-Out (FIFO) property of a discrete-
time dynamic network with time-dependent attributes. Here attributes mean travel time,
cost, and arc and node capacities. The development of a discrete-time dynamic residual
network in Section 2.4 concludes this chapter.

2.1 Discrete-Time Dynamic Network Flow

A discrete-time dynamic network G = (N, A, T) is a directed graph, where N is a set of
nodes, A is a set of directed arcs, and 7' is a finite time horizon of interest discretized into
the set {0,...,T}. We denote the cardinality of N and A by n and m, respectively. Here
we assume that G is antisymmetric, i.e., (i,j) € A= (j,7) ¢ A. Each arc (i,j) € A has a
time-dependent capacity u;;(t) € Rf, an associated time-dependent travel time \;;(t) € Z¢,
and time-dependent cost ¢;;(t) € R for ¢ = 0,...,T. The time-dependent capacity u;;(t)
defines the maximum number of flow units that can enter arc (i, j) at time ¢. But, it does
not bound the total flow on that arc at a given time ¢.

The travel time \;;(¢) defines the time period needed to traverse the arc (i,j), depart-

7
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ing from node ¢ at time ¢. This travel time is defined upon entering an arc and is assumed
to be constant for the duration of travel along that arc. Therefore if a flow starts departing
an arc from ¢ to j at time ¢y, then it will arrive at j at time ¢y + A;;(¢9). This model of
travel time is known as the frozen arc model (see e.g., Orda and Rom [OR90]). Another
model of travel time is referred to as the elastic arc model. In this elastic arc model, a flow
that starts departing an arc from ¢ to j at time ¢, will arrive at j at the first instance of
time ¢, > ¢, for which ¢, — ¢t > A\jj(t1), ie.,

t; = min{t’ : t’ > t(), t’ > 1o+ /\ZJ(t’)} (21)

This elastic arc model has a property that leaving node i earlier guarantees that the flow
will arrive no later at node j along (4,j) than leaving later. This property is well known
as the First-In First-Out (FIFO) property and will be discussed in more detail in Section
2.3. In the frozen arc model non-FIFO behavior is possible, therefore it is considered more
general than the elastic arc model. In this thesis we focus on the frozen arc model.

Each node 7 of the network G has a time-dependent node capacity a;(t) € Ry, t =0,...,T
which defines the maximum number of flow units that can be held over one time unit at
node 1.

As in the static network, there is also a vector of demand-supply of the network nodes
at time t € {0,...,T} denoted by q(t) = (¢;(t))ien as described below.

>0 , node i is a source (supply node) at time ¢
¢i(t){ <0 ,nodei is a sink (demand node) at time ¢ (2.2)
=0 , node ¢ is a transshipment node at time ¢

Different from the static network, in dynamic network flow models there may exist some
nodes as transshipment nodes at one time and then become source nodes later, and vice
versa.

Definition 2.1 A discrete-time dynamic network flow x over a time horizon T € Z§ is
given by function

x:(Au{(i,i) : i€ N}) x{0,..., T} = R}

For every t € {0,...,T}, the value z;;(t) determines the number of movement flow units
entering arc (7,7) at time ¢. Since we are interested to find the flow distribution only for
the time horizon T', we may limit the flow z;;(¢) for time ¢ with ¢ + X;;(t) < T. Flows
from node i at time ¢ to the same node with travel time \;;(¢) = 1 represent the amount
of holdover flows. This flow is denoted by z;;(t).

To determine the total flow arriving at a given node ¢ at a given time ¢, we need to
consider flows on every predecessor node j of i at every departure time ¢ in which the sum
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Figure 2.1: Conservation flows

of t and the travel time \;(¢') equals the given arrival time ¢ (see Figure 2.1). Therefore,
the total flow arriving at node ¢ at time ¢ is given by

> > )

() €AU{(4,8) : 1ENY {¢' 1t +2 (¢ )=t}

Let ¢r(x(t)) be the general objective function of a discrete-time dynamic network flow
problem (DTDNFP) with argument x(¢). The formulation of DTDNFP is given by

T

min (or max) ¢r(x) = > or(x(t)) (2.3)
> > wlt)-

UDEA ' A+, (t )=t}
> 45(t)

zii(t) — zi(t — 1) — q(t), i€ N, t=0,..., T (2.4)

< (), i€N, t=0,...,T

Equation (2.4) formulates the discrete-time dynamic network flow conservation constraints.
The formulation of movement flow and holdover flow (i.e., waiting) capacity constraints
are given by (2.5) and (2.6), respectively.

Now, let us discuss the integrality property of DTDNFP. Let A be an n(T + 1) x (m +
n)(T + 1) matrix, called the node-arc incidence matrix of G = (N, A,T). The rows
of A are indexed by it with i € N and ¢t € {0,...,T}, while the columns are indexed
by ijt with (i,j) € AU{(i,i) : i € N}. Each column ijt of matrix A corresponds to the
variable x;;(t) with (4,5) € AU {(3,7) : i € N}, t € {0,...,T}. The column ijt of
matrix A has a +1 in the it-th row, a —1 in the j(t + X;;(¢))-th row, and the rest of its



10 Chapter 2. Dynamic Network Flow

entries are zero. We denote the vector of supply or demand of size n(T + 1) and the vector
of holdover capacity of size n(T + 1) by q and a, respectively. Let’s also define I as an
(m+n)(T+1) x (m+n)(T +1) identity matrix and u' as an m(T +1) +n(T + 1) vector.
Vector u combines vectors u of arc capacities and a of holdover capacities as

Hence, in matrix form, DTDNFP can be represented as follows.

min (or max) or(x)
Subject to
Ax = q 7
Ix < u .
x >0 (2.9)

Theorem 2.1 The node-arc incidence matriz A of G = (N, A, T) is totally unimodular.

Proof:

The proof is done when we can show that every k& x k submatrix B of A has determinant
0,+1, or —1. We do the proof by using induction on k. Since each element of A is 0,41,
or —1, the theorem is true for £k = 1. Suppose that the theorem holds for some k. Let B
be any (k + 1) x (k + 1) submatrix of A. This matrix satisfies exactly one of the three
following possibilities:

1. B contains a column with only zero elements,

2. every column of B has exactly two nonzero elements, in which case, the product of
these two elements must be —1,

3. some j-th column of B have exactly one nonzero element.

In case 1, the theorem holds since the determinant of B is zero. In case 2, the rows in B
are linearly dependent, since summing all of the rows in B yields a zero vector. Conse-
quently, the determinant of B is zero. In case 3, let ¢ be the row of B which has exactly
one nonzero element. Let B' be the submatrix of B obtained by deleting the i-th row and
the j-th column. Then the absolute value of the determinant of B equals that of B'. By
the induction hypothesis, the determinant of B’ is 0,+1, or —1, so the determinant of B
is also 0,41, or —1. |

To describe the integrality property of the optimal solution of DTDNFP, we need the
following unimodularity theorem.
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Theorem 2.2 (Unimodularity theorem, see e.g., Ahuja, Magnanti, and Orlin
[AMO93])

Let A be an integer matriz with linear independent rows. FEwvery basic feasible solution
defined by the constraints Az =b, z > 0 is integer for any integer vector b if and only if
A is unimodular.

Using this theorem, we can establish the following result.

Theorem 2.3 If u,a, and q are integer vectors, then DTDNFP has an integer optimal
dynamic flow.

Proof:

Since constraints (2.4)-(2.6) define a compact feasible region of DTDNFP, the fundamental
theorem of linear programming (see e.g., Hamacher and Klamroth [HK00]) implies that
DTDNEFP has an optimal solution. Let matrix A be partitioned into matrices A, and A,
of size n(T+1) xm(T+1) and n(T+1) xn(T+1), respectively. Vector x is also partitioned
into vectors x, and x, of size m(7T'+ 1) and n(7 + 1), respectively. Vector x, corresponds
to the movement flow z;;(t), (¢,j) € A, t < T and vector x, corresponds to the holdover
flow z4(t),i € N, t <T. By adding a vector y, of size m(T + 1) as the slack variables
of the arc capacity constraints and a vector y, of size n(T + 1) as the slack variables of
the holdover capacity constraints, (2.8) can be written as an equality. The constraints of
DTDNFP can thus be constructed as

Xu
A, : A, : 0 0 (\ q
I ¢ o ! I ! 0 o [=1] v (2.10)
Vu
U R A a
Let us define A, z, and b as follows.
Xu
A, : A, : 0 : O (\ q
X,
A = I 0 I o |,z=1] ... |,b:=] u
. . . Yu
o ¢ I i 0 I - a

Since A is totally unimodular (TU), A is TU. Therefore A is unimodular. Consequently,
Theorem 2.2 implies that there is an integer optimal dynamic flow x of DTDNFP. W
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2.2 Time-Expanded Network

DTDNFP requires to keep track of when each unit travels through an arc so that no arc
capacity is violated at any time. Therefore, finding an optimum solution of DTDNFP is
more complicated than that of static network flow problems. However, this complication
can be resolved by transforming DTDNFP into a static network flow problem on a time-
expanded replica of the original network.

Definition 2.2 (Time-dependent version of the definition given in Ford and
Fulkerson [FF58]) The time ezxpansion of G = (N, A,T) over a time horizon T defines
a time-ezpanded network Gp = (Np, Ar) where

Np:={i(t) : i€N, t=0,...,T}
and At consists of the set of movement arcs
AM = {(i(t),5(t") : (5,5) € A, t' =t + N;(t) < T}
and the set of holdover arcs
A" = {(i(t),i(t+1)) : i€ N, t=0,1,...,T—1}
i.e.,
Ap =AMy A"

The capacity u;(t) of the movement arc (i(t),7(t)) is determined by the capacity ui;(t)
and the capacity u;;(t) of the holdover arc (i(t),i(t+1)) is determined by the node capacity
a; (t)

Figure 2.2 shows a time expansion of a network for 7' = 4. Every static flow f in G from
the sources s(0),...,s(T) to the sinks d(0),...,d(T) corresponds to a dynamic flow x in
G, and vice versa. The one-to-one correspondence is given by

Ti5(t) = fit)ie+2 (1)

Since static flows in G and dynamic flows in G are equivalent, discrete-time dynamic
network flow problems can always be solved as static network flow problems in the larger
network. Thus, no additional algorithm is required to solve the dynamic network flow prob-
lems. However, if T is very large, then the network G becomes very large and the number
of calculations needed to solve the dynamic flow problems on G becomes prohibitively
large. The dependence of the network size on T is a disadvantage of this approach. In
Section 3.3, we will discuss an approach to avoid this disadvantage.

In a discrete-time dynamic network, the time period ¢ depends on the basic unit € in
which the travel times are measured. For example, if we choose 5 seconds as the length of
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{ai(t)}
(Xig (1), wis (1))

3 ,t<1 )2 ,t<2

Arz(?) '_{ | otsq 0w '_{ 4 t>2
The other arcs have constant travel times and capacities.
Every node has constant capacity.

{8}

(b) The associated time-expanded network G with T = 4

Figure 2.2: The network G = (N, A, T) and its associated time-expanded network Gr

the basic unit (i.e., @ = 5), then specifying three time periods for traversing an arc (i, j) at
time ¢ (i.e., A;;(t) = 3) means we need fifteen seconds to do so. The number of time periods
T is obtained by dividing the planning horizon of interest by the length # of the basic unit.
The smaller 6, the more accurately the model represents the actual flow’s evolution. If #
tends to zero, then the solution of the discrete-time dynamic network flow problems will
approximate well the solution of the corresponding continuous-time dynamic network flow
problems.

Now consider the case when the travel times are constant, i.e.,

Xij(t) == Nij, V(i) € A, t€{0,..., T}
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The upper bound of the number of nodes and arcs in Gt are described by the following
proposition.

Proposition 2.1 Let n and m denote the cardinality of N and A, respectively. If the
travel times are constant, then n(T+1) and (n+m)T+m—3" 4 Aij is the upper bound
of the number of nodes and arcs in G, respectively.

Proof:

Since we generate at most (7 + 1) copies of each node, the upper bound of the number
of nodes is n(T' + 1). A movement arc (i,j) € A, ¢ # j, is repeated from ¢t = 0 till at
most t =T — \;j, i.e., it is repeated (T"+ 1 — \;;) times. Since there are m arcs, the total
number of movement arcs in Ay is m(T + 1) — Z(i,j)e 4 Nij- With additional holdover arcs
(1(t),i(t + 1)), we get the upperbound of the number of arcs in Gr. W

Hence, Gr = (Nr, Ar) has O(nT) many nodes and O((n + m)T) many arcs. In fact,
we will never use any path from the source which arrives at the sink after time 7. There-
fore, we can reduce the size of the time-expanded network by eliminating these paths
(including the corresponding nodes). To build a compact time-expanded network based
on the dynamic network G' with a single source node s and a single sink node d, we first
describe some important definitions.

Definition 2.3

e If P is a path in G, we denote by A(P) the length of P with respect to the travel times
as gen by

AP) = ) Ay (2.11)

e We denote by \; and \; the length of shortest path from the source node s to the node
1 and the length of shortest path from the node i to the sink node d, respectively. For
every node 1 € N, we define a set of times T; for which node i at time t € T; is
reachable from the source and also can reach the sink within the time horizon T, as
follows

Ti={t+X : t+N+N<T,te{0,...,T}} (2.12)

o For every arc (i,j) € A, we define a set of times T;; for which node i of arc (i,7) at
time t € T;; is reachable from the source and the sink is also reachable within T from
node j at time t + \;j, as follows

Ty={t+N : t+XN+XN;+X,<T,te{0,...,T}} (2.13)
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By definition, we have A\, =0 and T, = {0,...,7 — A}

The set T; determines a set of times where we can copy the node 7 and guarantee that
there exists a path from the source to the sink that passes through node 7 at time t € 7;
within the time horizon T. Whereas the set T;; determines a set of times where we can
copy the arc (7, ) and guarantee that the time-copy of this arc belongs to at least one path
from the source to the sink within 7°. While the values of \; for all # € /N can be calculated
by using the forward version of Djikstra’s label setting algorithm, the values of \; for all
1 € N can be obtained by applying the backward version of this algorithm. Therefore the
sets T; and T;; can be found for all i € N and (4,5) € A in O(n?). A detailed procedure is
summarized in Algorithm 2.1.

Algorithm 2.1 : Building a compact G from G with constant travel times

INPUT  Network G = (N, A, T) with constant travel times.
OUTPUT Time-expanded network Gy = (N, Ar).

0 Calculate )\; and ); for every i € N.
1 Determine 7; for every i € N and T;; for every (i, j) € A.
2 Determine Ny :={i(t) : 1€ N ; t € T;},

AM = {(i(t),5(t) = (5,5) € A; t € Ty}
and A" == {(i(t),i(t+1)) : ie N-{d}; t,t+1 €T}
Ap = AM U AH

To deal with multiple sources and sinks, one can add a super source s* and super sink
d* to the original network. Let S and D be the set of sources and sinks, respectively.
We then build arcs (s*,s) for every s € S and (d,d*) for every d € D with zero travel
times and infinite capacities. Consequently, the definitions of ); and )\; are modified with
respect to s* and d*. Figure 2.3 shows a compact version of Gy in Figure 2.2(b) un-
der the assumption that all arcs have constant capacities and travel times. Note that the
network in Figure 2.3 has three sources, namely node 1, 2, and 3, and a single sink, node 4.

Since the time-expanded network may have several time-copies of each source node and
each sink node, we may introduce a super source s” and a super sink d’ to create a single
source/single sink time-expanded network G (see Figures 2.4 and 2.5). How the super
source is connected to the source is actually depends on the problem. In the discrete-time
maximum dynamic network flow problem (DTMDNFP) that will be discussed in Chapter
3, the super source is connected to all time-copies of the source nodes. Arcs from the super
source to every time-copy of the source node have zero travel time and infinite capacities.
In this case, we do not have holdover arcs for source nodes which do not have predecessors
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[capacity]

Figure 2.3: Compact version of G for T = 4 in Figure 2.2 under an assumption that
Aa2(t) =1, t <4 and ua(t) :=2, t < 4

time
0 1 2 3 4

Super source [arc capacity]

Figure 2.4: Time-expanded network G with T = 4 for the discrete-time maximum dy-
namic network flow problem

as shown in Figure 2.4 (e.g., node 1 in Figure 2.2a). In the discrete-time minimum cost
dynamic network flow problem (DTMCDNFP), the super source is connected only to the
time zero copy of the source nodes (see Figure 2.5). In this case, we may have holdover
arcs for source nodes. Arcs from the super source have zero travel time and their capacities
are equal to the initial occupancies. On the other hand, for every problem, generally all
time-copies of every sink node are connected to the super sink and there is no holdover arc
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time
0 1 2 3 4
[cost, arc capacity]

{supply >0 or demand < 0}
{0} = transshipment node

SuperSink

{-10}

Figure 2.5: Time-expanded network Gr with 7" = 4 for the discrete-time minimum cost
dynamic network flow problem

for the sink nodes. All connections to the super sink have zero travel times and infinite
flow capacities.

2.3 First-In First-Out

Since the travel times are not constant, we may have two possible properties, First-In
First-Out (FIFO) and non-FIFO. An arc (i,7) € A is said to have a FIFO property if
leaving node 7 earlier guarantees that one will arrive no later at node j along (7,7) than
leaving 7 later. Hence, in FIFO, the travel time associated with arc (7, j) is a nondecreasing
function, i.e.,

t/ + )\Z] (t/) S 1','” + /\U (t”)’ t/ < t”

Therefore, waiting at node i before traversing arc (7, ) is not necessary, since it will not
save the time. This FIFO property is also known as non-overtaking property in traffic
disciplines.

Definition 2.4 (e.g., Pallottino and Scutella [PS97] ) An arc having a FIFO prop-
erty is called a FIFO arc. A dynamic network G = (N, A,T) is called FIFO network when
all of its arcs are FIFQO.

On the other hand, when the FIFO property is not satisfied, sometimes it may give an
advantage to wait for a certain amount of time at the beginning node of an arc before
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2

t

-

ot NG () t+ A (1)

Figure 2.6: Non-FIFO property

traversing that arc. Figure 2.6 describes a non-FIFO property.

Recal the definition of a travel time according to the elastic arc model discussed in Section
2.1.

Property 2.1 FIFO property is maintained in the elastic arc model.
Proof:

Consider two different departure times ¢; and ¢ with ¢; < 5. Let t'l and t'2 be the associated
arrival times of ¢; and ¢, along an arc (4, j), respectively. FIFO property is maintained if
t; < t,. By (2.1), we obtain

ty=min{t : £ >t, t >t 4+ \;(t)}
and

ty=min{t : t >ty t >ty 4+ \y(t)}

Let By and By be theset {t : ¢ >t, t >t +\;(t)}and {t : ¢ >to, t > to+N;(t)},
respectively. Lets take any t* € B,. Since t1 < to, t* > t; and t* > ¢+ \;;(t*), i.e., t* € By.
Therefore B, C B; that implies t'1 < t;. [ |

On the other hand, a travel time according to the frozen arc model, in general, does
not maintain the FIFO property.
2.4 Residual Dynamic Network

Here we extend the idea of residual network in the case of static network (see e.g., Ahuja,
Magnanti, and Orlin [AMO93]) to the dynamic one. Suppose that arc (i, j) at time ¢ carries
z;;(t) units of flow. Then we can send the additional w;;(t) — z;;(¢) units of flow departing
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from node i at time ¢ to node j along arc (7, j). Also, we can send up to z;;(¢) units of flow
from node j departing at time ¢ + \;;(¢) and consequently arriving at node 7 at time ¢ over
the arc (7, ), which amounts to canceling the existing flow on the arc. Here we employ
arc with negative travel time (i.e., departing at ¢ + \;;(¢) and arriving at t) to permit the
return of capacity to an arc. Whereas sending a unit flow from ¢ departing at time ¢ to
j along (i, 7) increases the flow cost by ¢;;(t) units, sending flow in the reverse direction
from j departing at time t+\;;(¢) to ¢ on the same arc decreases the flow cost by ¢;;(t) units.

The similar ideas can be applied to the waiting capacities. Suppose that z;(t) units
occupy node 7 at time ¢ for at least one unit of time. Then the additional a;(t) — z(t)
units can wait and at most z;(¢) units can cancel their waiting, at node i at time . We
denote by af*(t) the maximum free waiting space at node 7 at time ¢. The capacity of
waiting canceling at node ¢ at time ¢ is denoted by af~ (¢t + 1).

Using these ideas, the residual dynamic network with respect to the current dynamic flow
x is defined as follows.

Definition 2.5 The residual dynamic network with respect to a given feasible dynamic
flow x is defined as Gy := (N, Al UA,,T) with A, := Al U A, where

G, 1s provided with attributes

o residual travel times
BT =Ni(t) (i) €A, A Ni(t) =t < T, zi(t) >0
(2.16)

e residual arc costs
& (t) L Cij(t) s (Z,]) - A, t+ )\Z](t) < T
o —Cjz’(t’) ,(j, Z) € A, t + )\ji(t’) =t<T, .Z‘ji(t’) >0
(2.17)

oy . J wii(t) —@i(t) (7)€ A i+ Ay(t) T
" { wji(t) ,(j,Z) €At +Ni(t)=t<T (2.18)



20 Chapter 2. Dynamic Network Flow

e residual waiting capacities

U,-w+(t) = az(t) - flfu(t), 1€ N, t<T, (219)

a® (t+1) zi(t), i€ N, t < T, (2.20)

Since the travel times are time-dependent, there may exist an arrival time ¢ at node j
corresponds to k different departure times t1, ... , ¢ from node ¢ along the arc (i,j) € A,
ie, t + \;({t) =t, ¥t € {t1,...,tx}. At such an arrival time ¢, the corresponding
backward arc (j,4) of (i,j) has k different negative travel times \%;(¢) as shown in Figure
2.7.

node j

Figure 2.7: A single arrival time associates with several departure times. The dashed lines
correspond to the backward arcs
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Maximum Dynamic Network Flows

The problem of maximum dynamic flow was introduced by Ford and Fulkerson [FF58,
FF62]. This problem seeks a discrete-time dynamic flow which sends a commodity as
many as possible from a single source to a single sink within the time horizon 7', without
exceeding the arc capacity. All flow leaving the source must arrive at the sink by the time
horizon T'. Ford and Fulkerson showed that if the network has constant or fixed travel times
and capacities, then the solution of maximum dynamic flow problem can be obtained by
solving a minimum cost circulation flow problem on the static network. Therefore, this
maximum dynamic flow problem is polynomially solvable. The maximum dynamic flow is
obtained by repeating a path decomposition of the minimum cost static flow as long as
possible within 7". This technique is called the temporally repeated flow. Minieka [Min74]
modified this temporally repeated flow technique to solve a similar problem under a weaker
assumption. Here it is assumed that arcs of the network may be added or removed in any
time period. He indicated that if the number of arc changes is excessive, then it is compu-
tationally more efficient to apply the static maximum flow algorithm to the time-expanded
network. For a network with multiple sources, Hoppe and Tardos [HT94] introduced a
dynamic flow for the time horizon T' that lexicographically maximizes the amounts leaving
the sources. They showed that this lexicographic mazximum dynamic flow can be obtained
in a polynomial time. Anderson, Nash, and Philpott [APP82] generalized the discrete-time
maximum dynamic flow to the continuous-time maximum dynamic flow. They assumed
that the travel times are zero but the capacity may vary with time. To obtain an optimal
dynamic flow, they developed a continuous-time version of Ford and Fulkerson’s maxi-
mum static flow labeling algorithm. They also defined a continuous-time dynamic cut
and proved the continuous-time version of static maximum flow-minimum cut theorem.
Philpott [Phi90] relaxed the assumption of zero travel times from the previous model into
constant nonnegative travel times.

In this chapter we focus the discussion on discrete-time maximum dynamic network flow
problems. Three main topics will be covered

e the temporally repeated flow technique used to solve a maximum dynamic flow prob-

21
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lem with constant attributes,
e the dynamic cut and its properties, and

e a time-dependent shortest augmenting path algorithm with a capacity scaling to solve
a maximum dynamic flow problem with time-dependent attributes.

In the next section, we formulate a maximum dynamic flow problem. In Section 3.2 we
give a dual formulation of the maximum dynamic flow problem, formal definition of a
dynamic cut, and discuss a dynamic version of the maximum flow-minimum cut theorem.
In Section 3.3 we review the temporally repeated flow technique of Ford and Fulkerson.
The time-dependent shortest augmenting path algorithm with capacity scaling is discussed
in Section 3.4. Computational results on several examples based on randomly generated
networks in Section 3.5 conclude this chapter.

3.1 Problem Formulation

Given a time horizon 7', a discrete-time s — d maximum dynamic network flow problem
(DTMDNFP) seeks a discrete-time dynamic flow which sends a commodity as many as
possible from a single source s to a single sink d within the time horizon 7', without
exceeding the arc and node capacity. This problem assumes that there are neither supplies
nor demands at every node and at every time, i.e., ¢;(t) = 0, Vi € N, Vt. Moreover,
without loss of generality, we assume that there are no outgoing arc from the sink d and
no incoming arc to the source s in the network G = (N, A, T'). By referring to the general
DTDNFP discussed in the previous chapter, the objective function of a DTMDNFP is
defined as follows.

$r(x) = Vir (x) :=

t

> o zalt) (3.1)

T
=0 (i,d)eA {t't' +X;q(t' )=t}

Here, VET (x) denotes the value of a discrete-time dynamic flow x for a time horizon T.
The formulation of a DTMDNFP is given as follows.

(DTMDNFP) max Vs-r (x) (3.2)
Subject to

> > )

(UDEA {t' ' +; (¢ )=t}

> 2;(t) = zu(t) —x5(t—1), i€ N—{s,d}, t=0,...,T (3.3)
{(2,9) = (LI)EA, t+Ai;(H)<T}
0<zu(t) < at),ie N—{s,d}, t=0,...,T (3.5)
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We denote the value of maximum dynamic flow for a time horizon T by VET. Using the
problem classification presented in Appendix D, we then denote this problem by

(s, d)/(/\(t), u(t), a(t))/VZT

As a consequence of Theorem 2.3, we establish the following integrality property of DT-
MDNFP.

Theorem 3.1 If u and a are integer vectors, then DTMDNFP has an integer optimal
dynamic flow.

3.2 Dynamic Cut

Since the discrete-time dynamic network can be considered as a static network in the larger
network, the results on dynamic cuts follow directly from those of static network. However,
the definition and properties of a dynamic cut must take into account the effect of travel
times. This condition motivates the discussion on this section.

A dynamic cut is considered as a dynamic extension of the static cut.

Definition 3.1 (Dynamic Cut)
e Consider two set-valued functions
Cr:{0,..., T} — 2% (3.6)
and €T(t) = N-— CT(t)

that satisfies s € Or(t) and d € Cp(t) for allt < T. We denote by Cr the collection
of all Cr. The s — d dynamic cut is a set of arcs (Cr,Cr) defined by

(CT,aT) = { (Z(t),](t+ Azj(t))) : Z € CT(t),] S éT(t'f‘ )\Z](t)),
t+ )\Z](t) < T, (Z,]) € A} U
{Gi(t),i(t+1)):i € Cr(t)NCr(t+1), i€ N —{s,d}, t <T} (3.8)

o The set of times when a movement arc (i,5) € A crosses a dynamic cut (Cp,Cr) is
determined by

Ih=A{t : ieCr(t), j€COr(t+X;(1), t+Nj(t) <T} (3.9)

and the set of times when the holdover arc of node i crosses (Cr,Cr) is determined
by

IL:={t :ieCr(t)NCr(t+1)}, i€ N—{s,d} (3.10)
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e The value (capacity) Wy-r (Cr) of a dynamic cut (Cr,Cr) is defined by

Wz = Z Zu” Z Zai(t) (3.11)

(ij)€Atery 1€N—{s,d} teT%

e A minimum s — d dynamic cut (CT,éT) s an s — d dynamic cut with

Wy (Cr) < Wy (Cy), VCr € Cr

The value of a dynamic cut as defined by (3.11) contains contributions from capacities of
arcs crossing the cut and from the node capacities at points in time where some nodes in
N pass from the source side to the sink side of the cut.

Remark 3.1 The definition of T'; can be derived from the definition of FZ?;- by defining
Xii(t) =1 foralli € N —{s,d} andt =0,... ,T — 1.

Lemma 3.1 (Net flow crossing the s — d dynamic cut) The net movement and wait-
ing flow crossing an s — d dynamic cut (Cr, Cr) is equal to the value of this flow.

Proof :
Suppose that x is a feasible dynamic flow. By the conservation flow constraint (3.3), the
value Vs-r(x) of x can be described by

)=3 > 245(t)

=0 {(57]) : (S’j)eA’ t+)‘S](t)ST}

Since s € Cp(t) and d € Cr(t) forallt € {0,...,T}, by adding (3.3) for all nodes i € Cr(t),
forall t € {0,...,T} and Vs-r(x), we obtain

S D SR

> > %‘z‘(tl)] +

(G GA)EAY ('t +2j5(t' )=t}

XT: 2. [xii(t)—xii(t—l)} (3.12)

t=0 ieCr(t)—{s}
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Furthermore, by exploring the fact that node j may be in Cr or Cr, we then obtain

Vier (x) Z[ 3 T

t=0 SeCT(t) jeCr(t+A;(t)),(6,5)€A

> > zij(t) —

i€Cr(t) JECT(t+Xi; (1)),(1,5)€EA

> > i) —

i€CT (1) jeCr(t'),t +Xji(t )=t,(j,i)EA

2.

i€CT(t) jeCp(t' )t +2ji(t)=t,(j,i) €A
T—1p

Z Z z4(t) + Z a:n(t)} —

t=0 HeCr(t)NCr (t+1)—{s} i€Cr()NCr(t+1)—{s}

T r

>, > zalt — 1) + Y ziilt — 1)] (3.13)
t=1 “ieCr(t)NCr (t-1)—{s} i€Cr(t)NCr(t—1)—{s}

Equation (3.13) can be simplified by noting that whenever node & belongs to Cr(ty), [
belongs to CT(tl + )\kl(tl)); (k',l) € A, and tl + )\kl(tl) S T, the variable xk:l(tl) in the
second term of the right-hand side of (3.13) for node ¢ = k and t = ¢, cancels the variable
—24(t1) in the third term for node i = [ and ¢ = t,. Also, the variable 2;(t,) in the fifth
term of the right-hand side of (3.13) for ¢t = ¢; with 0 < ¢; < T cancels the variable —z;;(t)
in the seventh term for ¢ = ¢; + 1. We obtain then
T
Vir(x) = Z[ 3 S -

t=0 HeCr(t) jeCr(t+ri; (t)),(i,5) €A

)3 > w4

i€Cr(t) jeCr(t ), +Aji(t)=t,(j,i)eA

t=0 jeCr(t)NCr(t+1)—{s} t=1 jeCr(t)NCr(t—1)—{s}

= > D =t _i > > zii(t)) +

(i.7)€A teTy t=0 4€Cr(t) jeCTr(t ), +Xji(t' )=t,(j;i)€A

i€EN—{s,d} teTL t=1 jeCr(t)NCr(t—1)—{s}

The first expression on the right-hand side of (3.14) denotes the amount of flow from the
nodes in Cr to nodes in C'y, while the second expression denotes the amount of flow re-
turning from the nodes in C' to the nodes in Cr. The third expression denotes the amount
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of flow waiting at some points in time where the nodes are crossing the cut from C7 to
C'r, and the fourth denotes the amount of flow waiting at some points in time where the
nodes are crossing the cut in the reverse direction. Therefore, the right-hand side denotes
the net movement and waiting flow across the cut. [ |

Theorem 3.2 The value VET (x) of every dynamic flow x is bounded above by the capacity
of every dynamic cut (Cr,Cr).

Proof :
Substituting z;;(?)
expression, z;(t) <
shows that

Vr(x) < Z ZUU Z Zaz = Wysr(Cr) [ |

(i,j)€A terT ieN—{s,d} ter'},

< wuy(t) in the first expression of (3.14), z;(t) > 0 into the second
a;(t ) in the third expression, and z;;(t—1) > 0 into the fourth expression

Corollary 3.1 The value of every mazimum dynamic flow is less than or equal to the
capacity of every dynamic cut in the network.

As in the static network maximum flow problem, a dynamic cut has a close relation with
the dual of a maximum dynamic flow problem. A dual formulation DTMDNFP' of the
maximum dynamic flow problem (see (3.2) - (3.5)) is obtained by assigning dual multipliers
mi(t), pi;(t) and p;(t) to the constraint (3.3) and the upper bound constraints of (3.4) and
(3.5), respectively.

(DTMDFP) min Vyr(mp) = D > py(tyuy(®) +
(i)€A{t : 0<t+X; ()T}

S S paltait) (3.15)

1€N—{s,d} t=0

Subject to

7Tz(t) — 7Tj(t =+ )\Zj(t
— Ty (t + /\ij(t

i,j € N—{s,d}, t+ XN;(t) <T
i=s,J#d, t+ X;(t) <T
its,j=d t+\;(t)<T
i=sj=d t+\;(t)<T
ieN—{sd}, t=0,..., T -1
ieN—{s,d}, t=0,...,T

, (5,7) € A, t+M;(t) <T
ieN—{s,d}, t=0,...,T

o O O O = = O O

IV IV VA IV IV IV IV IV
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Without loss of generality, we define 7,(t) := 0 and my4(t) := 1 for all t € {0,...,T}.
Consequently, the dual constraints (3.16) - (3.20) are simplified into
mi(t) —m(t+1)+pu(t) > 0,i€N—{s,d}, t=0,...,T—1 (3.25)

The interrelation between the solution of the dual problem and the dynamic cut is described
by the following theorem.

Theorem 3.3 Every s—d dynamic cut (Cy, Cp) determines a feasible solution to the dual
of the mazximum dynamic flow problem as follows.

1 ,i€Cp(t), j€Cr(t+ ;1))

pilt) = { 0 ,otherwise (3.26)
) L 0 ,i € CT(t)

milt) = { 1 ,ieCp(t) (3.27)
o 1 ieCr(t), ieOp(t+1)

pilt) = { 0 ,otherwise (3.28)

Proof:
o m,(t) = 0 since s(t) € Cr, Vt ; m4(t) = 1 since d(t) € Cr, Vt
These values do not violate any constraints of the dual problem.

e For every (i,j) € A —{(s,d)}, we need to consider 2° = 8 cases as a combination of
six possible states of node ¢ and j that may be in Cr or Cr as follows.

.t [ 2 [ 3 |

i€ Crp(t) |i€Cp(t) |i€Cr(t+1)

i€ Trlt+1) | j € Crlt+2(8) | § € Trlt + Ay (1)

These 8 cases for every (i,j) € A — {(s,d)} are shown by a tree diagram in Fig-
ure 3.1. It is easily showed that none of these 8 cases violates any dual constraint,
for example:

Case 1:

1 € CT(t), 1€ CT(t + 1), j € CT(t+ /\z](t))
pij(t) =0, mi(t) = 0, m(t +1) =0, m;(t + Ay;(t)) = 0, pu(t) =0
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Figure 3.1: Eight possible cases of i and j that may be in Cr or Cr for every (i,5) €

A—{(s,d)}

Case 4:
i € Cp(t), i€ Cr(t+1), j € Cp(t+ \ij(t)
pij(t) =1, m(t) =0, m(t+1) =1, m(t+ X;(t) =1, pu(t) =1,

These values satisfy all relevant dual constraints (3.16), (3.20) - (3.23). The proof
can be also extended to prove the feasibility for arcs (s, ) and (4, d).

e By redefining p to

_ 1 telf
pij(t) = { 0 ,otherwise

1 jteT}
pii(t) = { 0 ,otherwise

the cost of the dual feasible solution can be reformulized as

V’ZT (mp) = > pij (H)uss(t) +

(i)€A {t : 0<t+A; ()<T}

Y Y )t

iEN—{s,d} t=0
= D D u®+)Y D> )
(1,4)eA tEFg;. iEN terT

= Wyr(Cr)
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Consequently, Theorem 3.2 can be considered as the weak duality theorem for DTMDNFP.
The strong duality theorem of DTMDNFP is known as the mazimum dynamic flow -
minimum dynamic cut theorem.

Theorem 3.4 (Maximum dynamic flow - minimum dynamic cut)

The value of maximum dynamic flow from a source node s to the sink node d equals the
value of minimum s — d dynamic cut. Moreover, a dynamic flow x* and a dynamic cut
(Cx, C%) are jointly optimal and having equal value if and only if

z(t)= 0 i€ Ch(t) and j € Ch(t + (1))

zj;(t) = ug(t) , i€ Cp(t) and j € Cq(t+ (1))
oi(t) = a;i(t) , i€ Cht) andi€ CL(t+1)
()= 0 ,i€ChHt) andi€ Cp(t+1)

The interrelation between a residual dynamic network and a dynamic cut is described by
the following theorem.

Theorem 3.5 For any dynamic flow x of value Vs-r(x) in G = (N, A, T), the additional
flow that can be sent from the source s to the sink d is less than or equal to the residual
capacity of any s — d dynamic cut.

Proof:
Suppose that x is a dynamic flow having value VET (x) + AV with AV > 0. By Theorem

3.2, Vg-r (x) + AV < Wy-r (Cr), for any dynamic cut (Cr, Cr). This implies
AV < Wer(Cr) — Vsr(x)

By (3.14)
Z Z uii(t) — xi5(t Z Z a;(t) — ziu(t)) +
(1,4)€A tEFT i€N—{s,d} teT'”
T
t=0 4€Cr(t) jeCr(t' )t +Ai (' )=t,(j,i)€ A t=1 jeCr(t)NCr(t—1)—{s}

Since G = (N, A, T) is assumed to be antisymmetric,

i > > zi(t) = Z > 3 u(t)

t=04€Cr(t) jcCr(t' ), +Xji(t )=t,(4;1)c A =0 4€Cr(t) jeCr (') 1A=t <T\(i,j)eAs

By extending the definition of I'7; in (3.9) for all (i,7) € A} U A, we obtain

> > > i) = Y Y ue)

t=04€Cr(t) je  Cr(t' )t +Xi(t)=t,(j,i)€A (i,j)EAL eIy
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Since Ay;(t) = Aj;(t) for any (i,7) € A7,

DY gt —zp)) = D ) ug()

(ij)eAtery (i.j)€EAT teTh

Since A%(t + 1) = —1 when z;(t) > 0, Remark 3.1 implies

}ﬂ

-1

Z Z ri(t—1) = Z al (t+1)

=1 jeCr(t)NCr(t—1)—{s} =0 jeCr(t+1)NCr(t)—{s}

- Y e

i€N—{s,d} ter7,

and

Yo D (w) —w)= Y Y @)

i€N—{s,d} teI'T, i€N—{s,d} teI'",

Hence,

AV < T S+ Y D ak() n

(1.4)€Az teT'L, i€eN—{s,d} teT”

3.3 Solution Algorithm for a Maximum Dynamic Net-
work Flow Problem with Constant Attributes

Here constant attributes mean
Aij (1) == Nij, wii(t) == w4, (4,5) € A, t€{0,...,T}
and
a;(t) :=a;, i€ N —{s,d}, t€{0,...,T}

For the purpose of the problem classification presented in Appendix D, we denote this
problem by

(s,d)/ (A, a)/VET

We will see later that either finite or infinite waiting assumptions do not influence the
optimal flow distribution.

One idea of efficiently tackling DTMDNFP is to use information obtained by solving a
related optimization problem in the associated (much smaller!) static network. Here, the
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maximum dynamic flow is obtained by repeating feasible flows along some static paths (see
Definition 3.2) from the source to the sink as long as possible starting from time zero within
the time horizon T'. This approach is called temporally repeated flows (see Definition 3.3).

We define f : A — R as a static (classical) flow from s to d in a static network
Gsiat = (N, A) associated to a dynamic network G = (N, A, T). The static network G
refers to the same graph as that of G. It is obtained by disregarding the time horizon 7',
node capacities, and considering the travel times as cost attribute.

Definition 3.2 (Path flow and path decomposition, see e.g., Hamacher and
Klamroth [HKO00])

e A path flow vp = (v(P), P) is a static flow of value v(P) along the path P in the
associated static network Ggqa = (N, A) of the dynamic network G = (N, A, T), i.e.,

o [P ,Gg)eP
vp(1,5) = { 0 , otherwise

o Let P = {P,Ps,...,P} be a set of paths with associated path flows vp,, ... ,Vp,
of values v(Py),... ,v(Py). P is a path decomposition of the static flow £ if f =

k
Zl:l R

Recall the definition of A(P) given by (2.11).
Definition 3.3 (Temporally repeated flows, Ford and Fulkerson [FF58, FF62])

o Let yp = (v(P), P) be a path flow. The temporally repeated path flow v is a dynamic
flow obtained by repeating the path flow vp for (I +1— A(P)) times, i.e., by sending
v(P) units of flow every time period from time zero to time T — A(P) along the same
static path P.

o A temporally repeated flow (TRF) is a dynamic flow obtained by temporarily repeating
all path flows of some path decomposition P. The value of TRF is then denoted by
v(Pr) and given by

v(Pr) = Y v(B)(T+1—A(P)) (3.29)

PIE]P

Example 3.1

Figure 3.2 shows a network with six nodes and eight arcs. Node 1 and 6 are the source
and the sink node, respectively. Travel time and capacity attributes are attached on each
associated arc. We define the time horizon 7" = 7 time units. Let P = {P;, P,, P3} where
TP = (U(Pl) =1,P = (1a2’6))7 TP, = (5>P2 = (17 2a473’6))7 TPy = (LPS = (173’6))'
The distance of each path with respect to the travel times are A\(P;) = 4, \(P,) = 7, and
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Figure 3.3: Discrete-time dynamic network flow for Example 3.1. The solid lines and
dashed lines correspond to TRF and non-TRF, respectively

A(P3) = 4. The TRF obtained by temporarily repeating all path flows in P is represented
by the solid lines in Figure 3.3. P; is repeated four times at ¢t = 0, 1, 2, 3. P, is repeated only
once at time t = 0, and P; is repeated four times at time £t = 0,1,2,3. As a comparison, a
dynamic flow which is not a TRF is represented by dashed lines. U

Let P = {P,, P,,..., P} be a path decomposition of f. We denote by d;;.p, the arc-path
incidence value where

_J 1, €eh _
Siiip, _{ 0 otherwise * L= Lok (3.30)

Obviously, we have

fij = Z 5ij;PlU(Pl)’ V(Z’]) €A (331)

PeP
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We denote by A;(F)) the distance with respect to the travel times from the source to node
i along some P, € P as shown in Figure 3.4, i.e., if P, = {s = ji,j2,... ,jjp| = d}, then

N 1=t

ANP) =Y N, (3.32)

'=1

Suppose P, € P is repeated at time ¢ < T'— A(F;), we denote by C +iip, the dynamic arc-path
incidence value.

£t :{ 1 ,(G,j5)€eR, t +N(P)=t t=0....T (3.33)

by 0 , otherwise

In ¢f;'p, t' denotes the departure time at node s and ¢ denotes the arrival time at node ¢
along P,. Obviously ZT A(R) 1itp < 1for every t € {0,...,T}. The dynamic flow x4(t)

for every arc (i,7) € A and every time t = 0,... ,7T can be obtained by
T—X\(P,)
wt) =D > v(P)Gin (3-34)
PeP =0

For the incoming flow to some node 7 € N, (3.34) implies

T-X\(P)

t(t Aji)
it =Ne) = 2 D v(F)Gan

PeP =

The interrelation between d;,p, and (f;’p can be explained as follows. By (3.30), ¢};'p can
be redefined as

’y _{ L dgp =1t +MP)=t o o (3.35)

UiP 1 0, otherwise
and
xS 0e =1 t+X(P) =t~ X
J5h 0 , otherwise
1 L0 =1, ¢ +X(P) =t
0 , otherwise
Moreover, (3.35) implies that ZT AP titp = 1 for some t € {0,...,T} if and only if

dij;p, = 1. This is equivalent to the condltlon that 6;;,p, = 0 if and only if ZT AR =0
for all t € {0,...,T}. Therefore, we obtain

T-(F))

Z ij; P, < 5ZJ,PH le {O T} (3.36)

Z]Pl
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|le—— A (P)) —

Figure 3.4: Travel time distance A;( ;) from the source node s to the node i along the path
b

Since P, is a simple path, we obtain

T—A(P,)
(t=Aji)
>SOY G <
(J1)€EA =0

for every P, € P.

Furthermore, since P, is a path from s to d, for some j € N, ZT A#) Cjt.i;(ltpl_’\j") =1, Vie

N —{s,d}, ¥t € {0,...,T} if and only if 3j' € N with ZT A(P) ZJ P = 1. Hence,
T—A(P,) T-A(P)
tt)w .
>3 At e TS et wen-(ad)
(J:i)eA (1.)eA =0
vt e {0,...,T}
and
T-A(P,) T—-A(P,)
(t-Ag)
> Y G =0e Z > Cin=0
(€A =0 (1J)€EA t'=0

These imply

T-\P) T—-\F)

> Z Cgutf” > Z e = (3.37)

(4:1)eA = (i,5)€A ¢ =

Equation (3.37) represents a dynamic path fomulation of the dynamic network conserva-
tion flow constraint. This result will be used by Theorem 3.7 to prove that the TRF solves
the maximum dynamic network flow problem with constant attributes ( i.e., TRF solves
(s,d)/(\,b, U,)/VZT). But first, we want to discuss how to find a static flow f in which its
path decomposition can be used to obtain a maximum dynamic flow x.

Let us denote by f;; and fys the static flow on arc (i,j) € A and the circulation flow
of the static network Gye = (N, A) from d to s, respectively. We define the cost ¢;; per
unit of flow in arc (¢,7) € AU{(d,s)} as follows.

S Y (i,j) € A
i = { —(T'+1) , circulation arc (d, s) (3.38)
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The circulation arc is defined to have infinite flow capacity. The minimum cost circulation
problem (MCCP) on the static network is thus defined by

(MCCP) min Y Njfyy — (T+1)fa (3.39)
(i,j)€A
Subject to
Z fij — Z fji = 0,7€N (340)
(i,7)€AU{(d,s)} (4,8)€AU{(d,5)}
0< fi; < wy, (4,5) €A (3.41)

We denote this minimum cost static circulation flow problem by (see Appendix D)

(8’ d)/(u’ C)/CE cire

Figure 3.5 shows an example of the circulation network where the cost of each arc is defined
by (3.38).

(cost, capacity)

(=(T+1),00)

Figure 3.5: A circulation network with circulation arc (6,1) and cost of each arc defined
by (3.38)

The next theorem shows that TRF obtained from the path decomposition of MCCP in
the static network, solves DTMDNFP with constant attributes.

Theorem 3.6 (Ford and Fulkerson [FF58, FF62]) Finding a mazimum temporally re-
peated flow in a dynamic network G = (N, A, T) is equivalent to solving MCCP in the
associated static network Ggq = (N, A).

Proof:

Let f be a feasible static flow in G4 = (N, A) satisfying Constraints (3.40) - (3.41) and
let P = {Py,..., P} beits s — d path decomposition. By using d;;.p,, the distance A\(P)
of path P, can be determined as

AP) = ) Xijdijn,

(ij)eA
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Hence, (3.31) implies

Do iy = D u(B) Y b

(i,j)€A PeP (3,5)€A
= > o(P)A(P)
PeP

The value of TRF in (3.29) implies
o) = D o(P)(T+1-AR))

PP

= (T+1)Y v(P) =) v(P)AR)

PcP PeP

Since » pcpv(F2) = D2 ayea fid, We obtain

v(PT) = (T+1) Z fia — Z Aij fij
(i,d)eA (i,j)eA
= —( > Njfij— (T+1)fa) (3.42)
(i,j)€A
The negative of the right-hand side of (3.42) represents the objective function of MCCP.

Therefore, the optimum solution of MCCP will generate the maximum TRF in G =
(N,A,T). N

To prove that TRF solves the single source single sink DTMDNFP with constant attributes,
we will use the maximum dynamic flow - minimum dynamic cut theorem (Theorem 3.4).
Since the maximum dynamic flow can be obtained from the static flow, the corresponding
dynamic cut can also be determined from the static network. Consider MCCP given by
(3.39)-(3.41). This problem can be considered as the maximum TRF problem by writing
the objective function in (3.39) as

— > Nifis + (T +1) fus (3.43)
(i,7)€A

If we assign the dual multipliers 7;, Vi € N and p;;, V(4,j) € A to the constraints (3.40)
and (3.41), respectively, then the dual formulation of the maximum TRF problem is given
by

(i,4)€A
—Ns+na > T+1 (3.45)
m—n+py > —Xij, V(i,j) €A (3.46)

Without loss of generality, the values of 7y and 7, can be set to zero and (7'+1), respectively.
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Lemma 3.2 (Ford and Fulkerson [FF58, FF62]) The set valued function Cy and Cr
with

Cr(t) == {i : ;; <t ieN}, te{0,1,...,T} (3.48)
Cr(t) == N—Cr(t) (3.49)

define a dynamic cut (Cr,Cr) of Gr with
(CT,C_T) = {(Z(t),j(t + )‘U)) € AT 7} S 1< n; — /\ZJ} (350)

If (n,p) is an optimal solution of the dual problem defined by (3.44) - (3.47), then the
capacity of the cut (Cr,Cr) is equal to the value of temporally repeated flow.

Proof:

Since ns = 0 and 1y = T + 1, by the definition of Cr(t) we have that s € Cy(t) and
d & Cr(t) for every time t € {0,...,T}. Obviously, (3.50) defines an s — d dynamic cut in
the sense of (3.8). By (3.50), the set of times when the movement arc (i(t), j(t+Xi;)) € Aum
crosses the dynamic cut is determined by the set

Moreover the definition of (Cr, C7) in (3.50) implies that there is no holdover arc (i(t), i(t+

1)) € Ay crossing the dynamic cut, i.e., I'; = (). By using (3.11), the capacity W (Cr)
of (Cr, Cy) is determined by

WET(CT) = Z Zuzg Z Z ’U/Z]

(i,j)€A tery (i.5)eA  mi
= Z maX{O, Ny — N — )\Z-j}uij (352)
(i,)eA

If (n,p) is the optimal solution of the dual problem, then the complementary slackness
theorem of the primal-dual optimality condition implies that for all (i,j) € A

ni—nj+pi; > —Nij = [fi; =0 (3.53)
pi; >0 = fij = uy (3.54)

The dual constraints (3.46)-(3.47) imply that if n; — n; — A;; > 0, then p;; > 0. Therefore,
we can obtain the following condition.

maX{O, ny—mn — )\ij}(uij - fij) =0, V(iaj) €A (3-55)
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Hence, using this equation, (3.52) is modified to

Wsr(Cr) = Z max{0,n; — 7 — Aij } fij
(i,j)€A
nj—Aij —1 nj—1 nj—1
= Z Z fij=ZZfij—Z Z fii
(i,j)eA  t=m; (i,5)€EA t=m; (4,4)EA t=nj —Xi;
= Z ( - fzg Z Aij fij
(4,5)€A (i,5)eA
= 775 Z fsz Z 771( Z fjl_ Z fZJ
(sy8)€A tEN—{s,d} (4yi)eA (i,5)€A
+17a( Z fia) — Z Aij fij
(i,d)€A (i,))€A

By the flow conservation constraint (3.40) and the assumptions that n, = 0 and g = T+1,

we obtain
Ws-r(Cr) = (DD )= Y Nifis
(i,d)eA (1,7)€A
= fds - Z )\zgfm n
(1,5)€A

Proposition 3.1 Once a node i is in the source side of the cut at time t, it will stay there
forever, i.e., if i € Cp(t), then i € Cp(t) for every time t > t.

Proof:
The proof follows immediatelly from the definition of C'r given by (3.48). [
Now, we are ready to prove that TRF solves (s, d)/()\, u, CL)/VZT.

Theorem 3.7 A dynamic flow x defined as the temporally repeated flow by (3.34), solves
(s,d) /(A u, a)/VET. Moreover the dynamic cut (Cr,Cr) defined by (8.50) is a minimum
dynamic cut.

Proof:
By (3.37), we obtain

T—A(P)

S - - Y wyl) = Yu(p (z > G-
(J)eA (3,5)€A P clP
T— A(P,)
> Y )
(14)€A =0
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By defining the holdover flow z;;(t) = 0,Vi € N; t =0,...,T, the dynamic flow x satisfies
the flow conservation constraint (3.3).

Furthermore, we have to prove that 0 < z;;(t) < w;;, V(i,j) € A; t =0,...,T. Since
v(P,) > 0 for every P, € P and there is no negative coefficient in (3.34), z;;(¢) must be
non-negative. By (3.36), we obtain

T-AP)
zij(t) = Z v(P) Z itjfpl < Z v(P)04j;p, = fij
PP =0 P eP

< gy, V(Z,])EA, t=0,...,T

Hence, x is a feasible solution of the problem (s, d)/(\, u,a)/ Vs-r. Furthermore, by The-
orem 3.6 and Lemma 3.2, x is indeed an optimal solution of (s,d)/()\,u,a)/VZT and
(Cr,Cr) defined by (3.50) is a minimum dynamic cut. [

Hence, in order to solve the maximum dynamic flow problem with constant capacity, we
only have to solve the minimum cost circulation problem in the small static network. More-
over, the proof shows that the maximum dynamic flow problem with constant capacities
and travel times never requires hold-over at all nodes, i.e., z;;(t) = 0,Vi € N;Vt =0,...,T.
Therefore, variables x;;(t) can be eliminated from the problem formulation.

The following theorem shows that every feasible circulation can be decomposed into path
flows.

Theorem 3.8 (see e.g., Hamacher and Klamroth [HK00]) If f is a feasible circulation
in a static network  Ggq = (N, A), then there exists dicycles Cy,... ,Cy with values
v(C),...,v(C) such that

(@) vo, = (v(Ch),C)) is a dicycle flow in Gga, VI =1,2,... k.

(b) f= Z;C:I e
(¢) k<m

Proof:
The assertion trivially holds if f = 0. If f # 0, we choose (i1,is) € A with f;;, > 0.
Since f is the circulation in G, there exists an arc (ig,i3) € A with f;,;, > 0. Using the

same argument, we iteratively obtain a (not simple) dipath (i,... 4, ... i) such that
Jiigr > 0,0 =1,...,k—1and iy = i for k > k' > 1, where k is minimal with this
property. Then C := (i)/,... i) is a dicycle with

v(C) :=min{f;; : (i,j) € C} >0 (3.56)

We set f := f — 4. Then f is again a feasible circulation in G. We can conclude that
either f = 0 or we iterate this procedure. By (3.56), there is at least one arc that attains
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the value f;; = 0 in each iteration. Therefore we need at most m iterations until f = 0.
[ |

Corollary 3.2 Fuvery feasible flows in the network G4 can be decomposed into
(a) Dicycle flows
(b) Path flows from the source to the sink

By disregarding the circular arc (d, s), the decomposition of f yields s — d path flows.

Theorem 3.6 - 3.7 and Corollary 3.2 trigger a simple algorithm, described in Algorithm
3.1, to solve the maximum dynamic flow problem with constant capacities and travel times.

Algorithm 3.1 : Solving (s,d)/()\,u,a)/VZT via TRF

INPUT  Dynamic network G = (N, A, T), constant capacity
functions u,j, a;, and travel time \;;.
OUTPUT Maximum dynamic flow z;;(¢).

0 Set the dynamic flow z;;(t) =0, V(i,5) € A; t =0,...,T.
1 Apply the minimum cost circulation flow algorithm to

the network G, with cost on each arc is

defined by (3.38). Let the optimal solution be f*.

2 Decompose f* into k£ path flows
P, P, ..., P, such that f* = Zle v(B).
3 zi;(t) = Zl S AT y(P) G, (1,5) € A, t=0,...,T.

The decomposition in step 2 can be done by using the method contained in the proof
of Theorem 3.8 which may run in O(mn) (see, for example Ahuja, Magnanti, and Orlin
[AMO93]). The complexity of the above algorithm is thus dominated by the one of MCCP,
that is, for example, O(m log n(m + n log n)), due to Orlin [OrI88§].

Example 3.2
Consider again the network in Figure 3.2. It is desired to calculate the maximum dynamic
flow reaching the sink for 7" = 7 time units. The corresponding circulation network is
shown in Figure 3.5. The optimal solution of MCCP is shown in Table 3.1 (only the
positive flows).

Step 2 of Algorithm 3.1 gives the following path flows.
[ J P1 = {1,2,6},)\(P1) = 4,'0(P1) — 1
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Arc (,) | (L2) | (L3) 1 24) | 2.6) | (3,6) | (4,3) | (6,1)
Flowf; | 6 | 1 | 5 | 1T | 6 | 5 | 7

Table 3.1: Minimum cost circulation flow for static network in Example 3.2

o P, =1{1,2,4,3,6},A\(2) = T7,0(P,) = 5
[ ] P3 = {1,3,6},A(P3) = 4,U(P3) — 1

Hence, P, must be repeated four times at time t = 0,1,2 and 3, P, must be repeated
only once at time ¢ = 0 and P; must be repeated four times at time ¢t = 0,1,2,3. The
optimal discrete-time dynamic flows are shown by the solid lines in Figure 3.3. The value
of dynamic flow equals 13 unit of flow, i.e., Vs-r—r =13, in which 2 units of flow arrive at
the sink at time ¢ = 4, 5,6 and 7 units at time ¢t = 7.

The corresponding optimum dual solution of the static MCCP is
m=0;m=3;m=4;m=4;175=3;n=28

Pr2=0; p13=3; pa=0; pes=4; p35=0; pss =1; pi3=0; ps2 =0
Using (3.48), the set-valued function Cp_7 is obtained as follows.

{1} t=0,1,2
07(t) = {1’2:5} :t =3
{172:573a4} :t:475a677

The set of times when the movement arc (i(t), j(¢t + A;;)) crossing the s — d dynamic cut
are

F{QZ'?:@ ; FI3 = {05172} ) Pg4:@ ; F;G = {3147536} ;

T =0; T ={4}; T =0; I3, =0

By using (3.11), the minimum value of dynamic cut is

W (Cr) = > ug(t) =13

(i.4)€A ter];

which is equal to the value of maximum dynamic flow. O

3.4 Solution Algorithm for a Maximum Dynamic Net-
work Flow Problem with Time-Dependent Attributes
Consider the hybrid algorithm which combines the capacity scaling and the shortest aug-

menting path algorithms of the static network flow problem (see e.g., Ahuja, Magnanti, and
Orlin [AMO93]). This algorithm solves the maximum static flow problem in O(nmlogU)
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with U the maximum capacity. Here we generalize this algorithm to take into account the
time dependency of the network attributes. In this generalization, the associated residual
dynamic network G, of a dynamic network G = (N, A, T') discussed in Section 2.4 will be
put to use.

From the residual dynamic network G, we define a A-residual dynamic network G,(A)
as a dynamic network containing only arcs and nodes whose residual capacity is at least
A. Note that G,(1) = G, and G(A) C G,. Let us denote by U the biggest capacity over
all (7,7) € A and over time t € {0,...,T}, i.e.,

U := max max }{ui]—(t)} (3.57)

(i,j)eA te{0,...,.T

The capacity scaling procedure starts with A := 218U} and halves its value in every scaling
phase until A = 1. Consequently, there is 1 + [logU| = O(logU) capacity scaling phases.

We define a dynamic augmenting path in G (A) as follows.

!
tk+1
! '” ! !
Lo b Ly =LA @)

Jia \\
3

tk+2

Figure 3.6: Dynamic augmenting path

Definition 3.4 (Dynamic augmenting path)

e A dynamic augmenting path is a dynamic s — d path Ps(t1) in G5z (A) composed of
a sequence of node-time pairs (NTPs) from node s to node d that ready at node s at
time t; € {0,...,T}, as given by

Psd(tl) = {8 = jl(tla t'l)’ '2(t2’ tIZ)’ R ’d = jl(tl’ t;)}’
tht, €{0,..., T}, k=1,... 1 (3.58)
where tyy =t + A (6), k=1,...,1—1 and define t; = t,.
For every NTP jk(tk,t}c), t, denotes the ready time at node j;, and t}e denotes the
departure time from node j,. The ready time ty, also defines the arrival time at node
Jk from the previous node jx_1, for k =2,... 1.
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o The length T of Psq(t1) with respect to the number of arcs in Pyy(t1) is defined by

7(Py(ty)) :i=1—1+ 2_: | t, — ty | (3.59)

Here we consider one time unit of waiting as a one arc.

e The residual capacity €(P) of Psy(t1) is the minimum value between the minimum
residual capacity of arcs in Psq(t1) and the minimum residual waiting capacity of
every waiting node in Pyy(t,) denoted by €,(P) and €,(P), respectively, i.e.,

@W(P) = min ., (0} (3.60)
€(P) = min min  {a® (¢’ , min {ai" t 3.61

(P) 1§k§l*1{tk§t”§t'k—1{ 7 ()} t;+1gt”gtk{ g )1} (3.61)
e(P) := min{e,(P), e (P)} (3.62)

IfF{t" : t, <t <t,—1} =0, then we define

min  {a®T(# )} := o0
tkSt,,St,k_l{ 2t}

Also if {t" : t, +1 <t <t} =0, then

. _,n
(o ) =
A L

By the definition of G;(A), e(P) > A. Figure 3.6 illustrates Definition 3.4. The new flow
distribution x is computed as follows.

"

xijgt‘)ﬂgp) , i g, i(t 1), (4 M5(D),t ;

wij(D) = e(P) i #j, j(t, T+ A5(0), it

() =  wa(®) +e(P) ,i=j t<t<t,i(t,{)eP ,
zii(t) —e(P) ,i=j,t <t<t, i(t,t)€P
zi;(t) , otherwise

V (i,7) € AU{(i,i) : 1€ N—{s,d}}, te€{0,1,...,T}
(3.63)

We denote x = x + ¢(P) as the dynamic flow given by (3.63).
The shortest dynamic augmenting path procedure always augment a flow along an s — d

dynamic path having the fewest number of arcs in G,(A). We denote by ¢;(t) the distance
from node ¢ departing at time ¢ € {0,... ,T} to the sink node d.
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Definition 3.5 We say that the distance function ¢ is valid in G4(A) if it satisfies
¢q(t) = 0,t=0,...,T (3.64)

¢i(t) < () +1, V(i,5) € Ay, t,t =0,..., T with t +X5(t') =¢, ufj(t) > A(3.65)

¢i(1)
¢i(t)

Conditions (3.64) - (3.67) are referred to as validity conditions.

Gi(t+1)+1, Vie N—{s,d}, t=0,...,T—1 withal*(t) > A  (3.66)
Gt —1)+1, Vie N—{s,d}, t=1,...,T with af (t) > A (3.67)

VANVAN

Proposition 3.2 If ¢ is valid in G,(A), then ¢;(t) is a lower bound on the length (with
respect to the number of arcs) of the shortest i — d dynamic augmenting path in G,(A).

Proof:
Let Piy(t1), as defined in (3.58), be any i — d dynamic path with 4 = ¢ and ¢; = ¢. The
validity conditions imply that

¢i1—1(t;—1) < ¢z’l (tl) +1= ¢id(tl) +1=1
¢i172(t;—2) < ¢y (i) +1= ¢i171(t;_1)+ |t —tiq | +1
<24 [t —tia |
G ot s) < Gy y(tia) 1=y ,(t o)+ [ty —tio|+1
-1
<3+ Y -t
k=1—2
' -1
k=2
1-1
$i(t) = i(t) < I—=1+Y [ty —ty] m
k=1

Proposition 3.3 If ¢(t) > n(T + 1), the residual dynamic network contains no s — d
dynamic augmenting path departing from node s at time t and arriving at d within the
time horizon T .

Proof:
Proposition 3.2 implies that

os(t) <nm—1+(n—-2)T <n(T+1)

Therefore, there will be no any s — d dynamic augmenting path departing from node s at
time ¢ and arriving at d within the time horizon 7" having ¢,(t) > n(T + 1). [
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Corollary 3.3 Fach flow augmentation requires O(nT) time.

To describe the procedure to find the shortest dynamic augmenting path (SDAP) in G, (A),
we need the notion of admissible dynamic path.

Definition 3.6 (Admissible arc) An arc (i, ) is called admissible at timet € {0,... ,T}
in the residual dynamic network G5(A) if it satisfies

$i(t) = ¢;(t) + 1 with uf;(t) > A

for somet =t + AL (t) with t € {0,...,T}. Moreover, waiting at node i for t —t time
units starting at time t is called admissible in G(A) if it satisfies

$i(t) = ¢s(t) +t —t witha® (t) > A, t<t <t —1

Waiting canceling at node i for t —t time units starting at time t is called admissible in
Gz () if it satisfies

Gi(t) = di(t)+t—t witha®™ (£ ) >N, t +1<t <t

We call a dynamic augmenting path Py4(t;) admissible if each arc and the waiting in
the path are admissible. The shortest dynamic augmenting path procedure proceeds by
augmenting flows along the admissible dynamic path from the source node to the sink
node. The procedure maintains an admissible dynamic path Pj;(ts) that arrives at node i
at time ¢;. To complete this path, we define t; := t; and set node ¢ as the current node.
If there is an arc (i, ) admissible at time ¢;, then we perform the advance step by joining
this arc to P(ts). If no admissible arc (7, j) at time #; is found but a waiting or a waiting
canceling at node 4 for one time unit is admissible, then we define t; =¢+1ort; =t —1,
respectively. Otherwise we perform the relabel step by updating the label of current node
i at time ¢;. This is done as follows. Define the temporary set T;(t) as

!

Ti(t) = {o;t)+1 : ufj(t
{os(t +1)+1 :
{;(t —1)+1 :

!

) > A, t=t +N(t) <T}HU
) > A +1<THU
= (t) > At —1>0}

S8 S8

(3.68)

The value of ¢;(t') is updated by

¢i(t) :==min{p : @€ Yy(t)} (3.69)

If the set Y;(t') is empty, then ¢;(¢) is set to infinity. After relabeling, we backtrack by
one arc. If ¢; # t;, then we reduce ¢; by one (if t; > ;) or increase t, by one (if #; < t;) and
repeat the process of checking the admissible arc from node i at the new time t;-. Otherwise,
if t; = ¢; and i # s, then we delete node 4 at time t; from P,(t,) and repeat the process
of checking the admissible arc from the last node in Py;(t5). We repeat these steps until
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the dynamic path reaches the sink node d, at which time we perform flow augmentation.
If node ¢ is the source node and the new value of qb,-(t') is equal to infinity, then Propo-
sition 3.3 implies that there is no augmenting path from the source node at time ¢ in G (A).

The pseudocode of shortest dynamic augmenting path with capacity scaling is given in
Algorithm 3.2. The initial distance label ¢ can be computed by performing the backward
breadth-first search (see e.g., Ahuja, Magnanti, and Orlin [AMO93]) in the residual network
starting at the sink node at every time ¢t € {0,...,7'}. This can be done in O((n+ m)T).

Proposition 3.4 For every G,(A), Algorithm 3.2 maintains valid distance labels at each
step. Moreover, each relabel operation strictly increases the distance label of a node-time
pair.

Proof :

By performing backward breadth-first search algorithm, we obtain initial valid distance
labels ¢ for every G,(A). Assume, inductively, that ¢ is valid prior to an operation. The
advance operation in step 3 does not change any residual capacity or ¢.

The relabel operation in step 4 modifies ¢;(t;). This happens only if there is no
e arc (i,j) € A, satisfies ufj(t;) > A with t'—i—)\;‘j(t;) < T and ¢;(t;) = qﬁj(t;-l—)\;”j(t;))-i—l,

e possibility to wait for one unit time, i.e., a?*(t;) > A with t; + 1 < T and ¢;(t;) =
¢i(t; + 1)+ 1, and

e possibility to cancel the waiting, i.e., a? (£;) > A with ¢; —1 > 0 and ¢;(t;) =
¢i(t; — 1) + 1.
The validity conditions (3.64) - (3.67) imply that
o ¢i(t) < &;(t; + /\;”J(t;)) + 1 for every arc (i,j) € A, satisfies ufj(t;) > A with
£+ N(t) < T,

o ¢i(t)) < ¢i(t; +1) + 1if a®F(t;) > A with t;+ 1 < T, and
o ¢i(t)) < &i(t; — 1)+ 1if a® (t;) > A with ¢; — 1 > 0.
Therefore, if T;(t;) defined by (3.68) is not empty, then
¢i(t;) <min{p : @ € Ti(t)} =: ¢;(t;)

with ¢;(¢;) the new distance label after the relabel operation. Hence, the relabel operation
preserves the validity conditions for all arcs emanating from 7 or for the possibility to wait
or cancel the waiting at time #,. For every incoming arc (k,) with ¢, + A\zs(t,) = t;, by the
induction hypothesis, it satisfies the validity conditions. Since ¢;(t;) < ¢;(t;), the relabel
operation preserves the validity conditions for (k,i) departing at time ¢, and strictly in-
creases the value of ¢;(t;).
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Algorithm 3.2 : Solving (s,d)/()\(t),u(t),a(t))/VzT

INPUT  Dynamic network G = (N, A, T) with A(¢),u(t), a(t)).
OUTPUT Maximum dynamic flow x.

x := 0 and A := 2llogV]
Initialize the distance label ¢ and set ¢ = 0.
Define P := {s(t,,t,)} with t, :=t and ¢, i=s
Advance node-time pair i(t;, tZ).
While ¢4(t) < n(T + 1)
{ IfEIleth(zg)eAw,u (t )>A
t 4+ N (t) < T, andqﬁz( D) = dilt; + A5(¢; ))+1
{ 1 —t+AI(') tj:=t;, P:= PU{J(J,J)} =7}
Elselft+1<T af+()>A and ¢;(t;) = ¢(t; + ) 1
{ t.++}
Elseift;,—1>0, af (t;) > A, and ¢;(t;) = ¢i(t; — 1)+ 1
{ ti—-}
Else { gotostep4 } } go to step 5
4 Relabel node-time pair i(;, t;).
Determine Y;(t;) as defined in (3.68)
If Yi(t;) # 0 { relabel ¢;(t;) as defined by (3.69) }
Else { set ¢;(t;) = o0 }
if ¢, >t; {t; — — }
else if t; < t; {t; ++ }
else { delete i(t;,t;) from P,
If i # s { defines the last node in P asi }
Else { ¢s(t) =0 }

w N =Oo

}

Return to step 3
5 If d is reachable through P
{ augment flow along P, update G,(A), go to step 2 }
Elseift <T { ¢+ + and go to step 2 }
Elseif A>1 { A:=A/2,gotostepl }
Else { x is a maximum dynamic flow }

The flow augmentation in step 5 might remove some arcs in the dynamic augmenting
path P from G,(A). This modification to G,(A) does not affect the validity conditions
of ¢. The flow augmentation might also create some additional backward arcs or waiting
cancelings. By the admissibility property of augmenting path (see Definition 3.6), the va-
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lidity conditions of these additional arcs or waiting cancelings are also preserved. |
Before we continue discussing the number of augmentation process in Algorithm 3.2, we
define the dynamic cut (Cp, Cr) in G,(A) as follows.

Cr(t) = {i:¢i(t)>n(T+1), i€ N} (3.70)
and
Cr(t) = {i:¢;(t) <n(T+1), i€ N} (3.71)

By this definition, if there is no dynamic augmenting path from the source node to the
sink node in G,(A), nodes s and d are in Cr(t) and Cr(t), respectively.

Proposition 3.5 Algorithm 3.2 has O((m + n)T logU) augmentations.

Proof :

Let’s consider the dynamic flow > x at the end of A-scaling phase, having value V'. Fur-
thermore, we denote by (Cj,C;.) the corresponding dynamic cut in Go(A). By defi-
nition, the residual capacity of every arc and every waiting in (Cj, C'.) is strictly less
than A. Therefore, the capacity of this cut is at most (m + n)AT. Theorem 3.5 im-
plies VZT -V < (m + n)AT. In the next scaling phase, each augmentation carries at
least A /2 units of flow, so this scaling phase can perform at most 2(m + n)7T" such aug-
mentations. Since there are O(logU) capacity scaling phases, Algorithm 3.2 has at most
O((m + n)TlogU) augmentations. [

Proposition 3.6 The total number of augmentations in Algorithm 3.2
O((m +n)nT?logU)

Proof :
Corollary 3.3 and Proposition 3.5 prove the proposition. |

Proposition 3.7 In Algorithm 3.2 each distance label increases at most n(T + 1) times.
Consequently, the total number of relabel operations is at most n?(T + 1)2.

Proof :

Each relabel operation at node i at time ¢; increases the value of ¢;(Z,) by at least one unit.
After the algorithm has relabeled node 7 at time ; at most n(T+1) times, ¢;(t;) > n(T+1).
This node-time pair will never been selected again during an advance operation (i.e., step
3) since every node-time pair in the partial augmenting path have label values less than
n(T +1). Therefore, Algorithm 3.2 relabels every node at any time at most n(7' 4 1) times

and the total number of relabel operations is bounded by n?(T + 1)2. [

To prove that Algorithm 3.2 gives a maximum dynamic flow, we use the maximum dynamic
flow-minimum dynamic cut theorem.
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Proposition 3.8 When Algorithm 3.2 terminates, i.e., /A < 1, the set of time-expanded
arcs (Cr,Cr) as defined by (3.70)-(3.71) with respect to the label at the termination stage,
defines a minimum s —d dynamic cut for the time horizon T and the current dynamic flow
X s a mazimum dynamic flow.

Proof:

Clearly, s € Cr(t) and d € Cr(t) for any ¢t < T. Since the algorithm cannot label any
node j € Cr(t + X\;j(t)) from any node i € Cr(t) for t + N\;;(t) < T and (4,5) € A, the
residual movement capacity u;(t) = 0 for each (i,5) € (Cr(t), Cr(t + Aij(t))). Therefore
7;5(t) = u;;(t) for every arc (i,j) € (Cr(t), Cr(t + A\i;(t))). Moreover by the definition of
a residual dynamic network, uf;(t + Aij(t)) = ;;(t), which implies z;( + Ai;(t)) = 0 for
every arc (j,1) € (Cr(t + N\i;(t)), Cr(t)). We must also show that z;;(t) = 0 for every arc
(i,7) € (Cr(t),C(t + \ij(t))). Suppose that this is not true, i.e., z;;(t) > 0 for every arc
(1,7) € (Cr(t), C(t + Aij(t))). By (2.18), u%;(t + A(t)) > 0. Consequently, we can label
at time ¢ from j at time ¢+ \;;(¢), contradicting the assumption that i € Cr(t). Therefore,
we can conclude that z;;(t) = 0 for every arc (i,5) € (Cr(t), C(t + \i;(2))).

Similar ideas are used to prove that the holdover flows z;;(t) = a;(t) for every holdover arc
(4,1) crossing from Cr(t) to Cr(t + 1) and z4(t) = 0 for every holdover arc (i,7) crossing
from Cr(t) to Cr(t + 1). Since the algorithm can not label any node i in Cr(t + 1) from
node ¢-itself at time ¢ with t+1 < T, it must be that the residual positive waiting capacity
al*(t) = 0. Let us denote by z;; (¢ + 1) the number of waiting canceling units at node i at
time . Since a¥"(t) = a;(t) — z4(t), 24(t) = a;(t) for every node i € Cr(t) N Cp(t + 1),
Moreover, by the definition of a residual dynamic network, af (¢t + 1) = z4(t), which im-
plies z;;(t + 1) = 0 for every node i € Cr(t) N Cr(t +1). To show that x;(t) = 0 for every
holdover arc (i,4) € (Cr(t), Cr(t + 1)), we must show that a¥ (¢t + 1) = 0 for such an arc.
If a7 (t+ 1) > 0, then node ¢ at time ¢ can be labeled from i-itself at time (¢ + 1), con-
tradicting the assumption that i € Cy(t). Therefore, it must be a?~ (¢ + 1) = 0, implying
74(t) = 0 for every holdover arc (i,) crossing from Cr(t) to Cp(t + 1).

Furthermore, Theorem 3.4 implies that x is a maximum dynamic flow and the corre-
sponding dynamic cut (Cr, Cr) is a minimum dynamic cut. [ |

Proposition 3.9 Algorithm 3.2 correctly computes a mazximum dynamic flow for the time
horizon T in O((m + n)nT?logU) time.

Proof :

Algorithm 3.2 terminates when A < 1 and ¢4(t) > n(T + 1) for every t € {0,...,T}.
Propositions 3.3 and 3.8 imply that the dynamic flow obtained at the end of the algorithm
is a maximum dynamic flow for the time horizon T. The computational complexity comes
from Propositions 3.6 and 3.7.

The following Example 3.3 illustrates the implementation of Algorithm 3.2.
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Example 3.3

Figure 3.7 shows a network structure with 6 nodes and 8 arcs where node 0 is the source
and node 5 is the sink. The time-dependent travel times and arc capacities are given in
Table 3.2, while the time-dependent waiting capacities are given in Table 3.3. We define the
time horizon T equals 7 time units. Initially, we set the flow variables z;;(t) = 0, V(i,7) €

()
OO, (2

Figure 3.7: A network for Example 3.3

uij(t) | 6, 6<1|2 ¢t<1]|5, t>0]3,¢t<3|5 t>0]6, >0
2,t>2|5,t>2 1, t>4

Aj(t) |4, t<12 t<1]|1,t>0|3,t=4]|1,t<4]5 t<1
5,t>2 |4, t>2 1, t#4 ]2, t>5 |3, t>2

Table 3.2: Time-dependent travel times and capacities for the network in Example 3.3

i€ N—{0,5} 1 2 3 1

a;(?) 1,t<4]5 t>0]0,{>0]0,¢t>0
0,t>5

Table 3.3: Time-dependent waiting capacities for the network in Example 3.3

A; Vt <T. We obtain U = 6 and A := 4. It is found that there is no augmenting path in
G(4). The process is continued with A = 2. The initial label for every node i € N and for
every t € {0,...,T} in the residual network G,(2) is shown in Table 3.4. The algorithm
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¢i(t)
t 0|12 |3 |4]|5 |67
1€N
0 22|00 |00 |00 | 00| x| x
1 1]1] 1 1 oo |00 |00 | 00
2 1]1]1 1 1 | o0 | o0 | o0
3 212 2 2 2 oo | 0|
4 212 2 2 oo | 00| 0|
5 0|0l O0O]JO0O]O0O]O0O]|O0]O0

Table 3.4: Initial label for the residual network G,(2) in Example 3.3

finds the following shortest dynamic augmenting path
P, ={0(0,0),2(2,2),5(5,5)} with e(P;) = 2

The dynamic flow x and the residual dynamic network G.(2) are then updated. The node
labels are updated during the relabel operation in step 4 of the algorithm. The new node
labels are shown in Table 3.5. These labes show that no augmenting path can be found

¢i(t)

.y
[en]
—
[N
w
S
[
D
~

mgwwpo
o| vo| ro| | [ 8
N Y PO
o| vo| ro| | [ 8
o vo| ro| | [ 8
SEINEEE
SEEIEIEE
SEEIEIEE
SEEIEIEE

Table 3.5: The node labels after the first shortest dynamic augmenting path in G(2) is
found

from the source node 0 at ready time ¢ = 0. The process is then continued for £ = 1. The
algorithm finds the second augmenting path

Py ={0(1,1),2(3,3),5(6,6)} with ¢(P,) = 2

The dynamic flow x and the residual dynamic network G,(2) are then again updated.
Since no more augmenting path exists in G;(2), the process is continued with G;(1). Two
additional shortest augmenting paths are found.

P; ={0(0,0),1(4,4),5(7,7)} with ¢(P;) =1 and

Py =4{0(0,0),1(4,5),5(6,6)} with e(P,) = 1.

The maximum dynamic flow is shown in Table 3.6. The value of maximum dynamic flow
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Tij (t) time ¢
0[1[2[3]4][5]6][7
o1 (t) 2/o0[of[o0]0]0]0]O
z13(t) ojfofoJof[o]o0]O]O
z15(t) ojloloflof[1]1]0]0O
T24(t) ojfofojof[o]o0]O]O
T25(t) o[of2]2]o0ofo0]0]0O
z32(t) olofojof[o]0]O]O
z41 (1) ojfofofofofo]0]O

Value of the flow

arriving at the sink 213 |1

Table 3.6: Maximum dynamic flow of Example 3.3.

is

VET:7 - 6 E]

3.5 Computational Results

In computational testing, we rely on the representative operation counts introduced by
Ahuja, Magnanti, and Orlin in [AMO93] (see Appendix C)

e to identify the asymptotic bottleneck operations and
e to estimate the running time for different problems sizes

of Algorithm 3.2. To reach these goals, a series of experiments is made based on randomly
generated dynamic networks. For these experiments, Algorithm 3.2 is implemented in
C++ and run on a PC Pentium III, 500 MHz, and RAM of 256 MB.

To conduct the experiments, a dynamic random network generator is developed by ex-
tending the idea of NETGEN (Klingman, Napier, and Stutz [KNS74]) to include the time-
dependent attributes (see Appendix B). The generated networks are connected (weakly).
Eleven parameters must be specified in order to generate the network topology, arc travel
times and capacities, and node waiting capacities. These parameters are

e random seed,
e time horizon T,
e number of nodes,

e indegree and outdegree of each node,
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e minimum and maximum value of travel times (must be nonnegative),
e minimum and maximum value of arc capacities (must be nonnegative), and

e maximum value of waiting capacities (must be nonnegative).

The experiments are conducted on random networks with 50, 100, 500, and 1000 nodes
and time horizon 7" = 100. For each choice of n nodes, we create networks with indegree
and outdegree of each node 2, 4, 6, and 8. It is assumed that the source node and sink
node have zero indegree and zero outdegree, respectively. This degree setting implies that
the generated networks have 2n, 4n, 6n, and 8n arcs. We denote by  the density of the
network, that is 6 = m/n. The minimum and maximum travel time is set to 1 and 10,
respectively, and the minimum and maximum capacitiy is set to 25 and 50, respectively.
The maximum waiting capacity is set to 10. For each specific setting of n and m, we test
five random dynamic networks. Therefore, the total number of observations is 80.

Here we identify the following set of representative operations:

(a) relabeling process and

(b) flow augmentation process
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(a) A plot of the ratio of relabel node-time-pairs (b) A plot of the ratio of flow augmentation

in relabeling operation to the total number to the total number of operations

of operations

Figure 3.8: Identifying asymptotic bottleneck operations in Algorithm 3.2

We denote by qrejaper(I) the number of node-time-pairs scanned in the representative oper-
ation (a), summed over all current nodes and all existing augmenting paths and denote by
Qaug () the number of flow augmentation in the representative operation (b), summed over
all existing augmenting paths, of a problem instance I. The value of eaper and igyq is
determined from the relabel operation in step 4 and step 5 of Algorithm 3.2, respectively.
Let

OZE (I) = Olpelabel (I) + Qgug (I)
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denote the sum of the representative operation counts. Figure 3.8(a) - (b) give the plots
of  oreraper(I)/ax (1), and aquy(1)/ax(I) for increasing larger problem instances and then
look for a trend. Meanwhile, the trend on CPU time is shown in Figure 3.9(a). A plot for
each different network density ¢ is given to help usto visualize the effects of n and m on the
growth of either representative operation counts or CPU time. The plot in Figure 3.8(a)
suggests that the relabeling process is an asymptotic bottleneck operation in Algorithm 3.2,
and the plot in Figure 3.8(b) suggests that the flow augmentation is an asymptotic nonbot-
tleneck operation. Moreover, Figure 3.9(a) shows that CPU time increases exponentially
in denser networks. A plot of the number of augmenting paths for various network size n
and 0 is shown in Figure 3.9(b).
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(a) CPU time (in seconds) (b) The number of SDAP

Figure 3.9: CPU time and the number of shortest dynamic augmenting paths for various
n and densities § = m/n
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Figure 3.10: Determine the quality of the estimators of performance functions of Algorithm
3.2

To estimate the growth rate of the count of asymptotic bottleneck operation, v ejaper, We
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. . ! .
define an estimator function « (I) = enf1§° for some choice of constants ¢, e;, and es.

relabel
The regression analysis yields
a;elabel(l) — 12, 206.377 n-82650-406

as a best fit for oy eiaper(I) with adjusted R? value 0.899 and standard error 0.493. The
values of adjusted R? and standard error indicate that the fit is moderately good. Figure
3.10(a) shows a plot of the ratio between the estimated and the true values which also
support the goodness of the fit obtained by the regression analysis. Moreover, we obtain
the virtual running time of an instance I, V' (I), the estimator function of CPU time, as
follows:

V(I)=3.729 x 107 qretaet (1) 0igyy (1)*27"

with adjusted R? value 0.966 and standard error 0.342. These values indicate that the
fit is indeed very good. The plot of the ratio V(I)/CPU(I) is shown in Figure 3.10(b),
where C'PU(I) denotes the CPU time (in seconds) obtained by running Algorithm 3.2 for
a problem instance I. It is also found that the linear function of cejaper(f) and gy (1)
does not fit well the CPU time.






Chapter 4

Earliest Arrival Flows

Gale [Gal59] introduced the earliest arrival flow problem as a variant of maximum dynamic
flow problem that seeks a dynamic flow which is maximum not only for 7', but also for
every time 7' < T. Naturally, this problem is harder than the maximum dynamic flow
problem, though both problems share the same constraints. In an evacuation problem, this
earliest arrival flow gives a better evacuation plan than the maximum dynamic flow, since
it pushes more people to reach the safety as early as possible.

Minieka [Min73] and Wilkinson [Wil71] showed that the earliest arrival flow exists, and
they both also provide pseudo-polynomial time algorithms to find this flow. Their algo-
rithms work on the assumption that the network has constant travel times and capacities.
There is no known polynomial time algorithm to solve the earliest arrival flow problem
(Fleischer [Fle01]). Under the same assumption of network attributes, Hoppe and Tar-
dos [HT94] developed the first polynomial-time approximation algorithm. Instead of using
path decomposition as in the temporally repeated flow technique, Hoppe and Tardos used
the chain decomposition which allowing to use some backward arcs. We will discuss this
approach in Section 4.2.

In a continuous-time environment, a dynamic flow represents the rate at which a com-
modity enters an arc at each point in time. Several results dealing with the earliest arrival
flow problem in this context can be mentioned here. Ogier [Ogi88] worked on the ear-
liest arrival flow problem on a continuous-time dynamic network with zero travel times.
He assumed that the arc and node capacities are piecewise-constant function on interval
[0,T] with at most k breakpoints (i.e., the points of time at which the value of function
changes). Under such assumption, Ogier proved that the earliest arrival flow has at most
nk breakpoints. These breakpoints can be computed with nk series of static maximum flow
computations on the static network with nk nodes and (m + n)k arcs. The desired flow
is then obtained by combining together the maximum flows with respect to each break-
point. This process needs additional O(nk) series of static maximum flow computations,
each on a network with n nodes. Thus, the overal complexity is determined by the time
to solve nk series of static maximum flow problems on the static network with nk nodes

57
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and (m + n)k arcs. Fleischer [Fle01] improved Ogier’s algorithm by using a generalization
of parametric maximum static flow algorithm of Gallo, Grigoriadis, and Tarjan [GGT89].
The computational complexity is improved to O(k?*mn log(kn?/m)). Fleischer and Skutella
[FS02] generalized the earliest arrival flow problem with constant attributes by considering
multiple sources.

In this chapter we focus the discussion on the discrete-time earliest arrival flow problem
(DTEAFP). In the next section, we formulate the earliest arrival flow problem. In Section
4.2 we review the chain decomposition and the approximation algorithm of Hoppe and
Tardos [HT94]|. A new, successive earliest arrival augmenting path algorithm to solve the
earliest arrival flow problem with time-dependent attributes is discussed in Section 4.3. In
Section 4.4 we show that a faster algorithm is obtained when the finite waiting assumption
is relaxed to infinite waiting. An illustrative example is also given in this section. Compu-
tational results on several examples based on randomly generated networks in Section 4.5
conclude this chapter.

4.1 Problem Formulation

Definition 4.1 FEarliest arrival flow for the time horizon T s a dynamic flow in which as
much flow as possible arrives at the sink during any time horizon T, for every T < T.

Hence, an optimal solution of DTEAFP is a solution of the maximum dynamic flow prob-
lem, not only for the allotted time horizon 7', but also for every smaller time horizons
T' < T. Referring to DTMDNFP in Chapter 3, the objective function of a DTEAFP with
single source s and single sink d can be formulated as

!

Gr(x) = Vi or (x) = >y > wut), T'=0,...,T

t=0 (4,d)€A {t':t +Aiq(t' )=t}

S

Hence, DTEAFP is formulated as follows.

TI
(DTEAFP) max Vi cr(x) => o zalt),
t=0 (Ld)EA {t':t +Aiq(t )=t}
T =0,...,T (4.1)

Subject to  (3.3) — (3.5)

We denote by VET: <r the value of a discrete-time earliest arrival flow for a time horizon

T. When the waiting capacity is infinite, we denote this problem by (see Appendix D)

(Sa d)/(/\(t)a u(t))/VZT'ST
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and by
(Sa d)/()‘(t), U’(t)’ a’(t))/VETIST
when the waiting capacity is finite.

By definition, every earliest arrival flow is a maximum dynamic flow, but the converse
is not true as illustrated by the flow distribution in Figure 4.1 using the data of Example
3.2. A dynamic flow indicated by the solid line in Figure 4.1 is a maximum dynamic flow
for T = 7 but not an earliest arrival flow, since the value of this flow for 7' = 3 is only
zero. In fact, the maximum dynamic flow for 7' = 3 has value 1.

time
o 1 2 3 4 5 6 7

node

Figure 4.1: Discrete-time maximum dynamic flow vs discrete-time earliest arrival flow. The
solid lines indicate a maximum dynamic flow without having the earliest arrival property,
and the dashed lines indicate an earliest arrival flow

Theorem 4.1 (Minieka [Min73]) There is always a mazimum dynamic flow for the
time horizon T with the earliest arrival property.

Proof:

The proof is done if we can generate an earliest arrival flow for the time horizon 7". This
flow will be generated on a time-expanded network. Let us denote by s and d” the super
source and the super sink of the associated time-expanded network G of G = (N, A, T),
respectively. The super source s’ is connected to every time-copy of source node s € N.
Furthermore, every time-copy of sink node d € N is connected to the super sink d’ (see
again Figures 2.4). All these connections have infinite arc capacities and zero travel times.
Algorithm 4.1 finds the earliest arrival flow of G. For every times t;,t, € {0,...,T}
with ¢; < t5, when step 1 of the Algorithm 4.1 maximizes the flow via arc (d(t,),d?),
it does not change the flow entering (d(t1),d"), because the maximization algorithm will
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never reroute a flow already at the sink. Consequently, step 1 applied on t = ¢, yields a
maximum dynamic flow for any time ¢ < t5. Hence, an earliest arrival flow can always be
generated for any time horizon 7. |

Algorithm 4.1 (Minieka [Min73]): Solving
(s,d)/(A(t), u(t), a(t))/VET:ST on the time-expanded network

INPUT  Time expanded network Gr.
OUTPUT Earliest arrival flow x.

0 Set the time period t to 1.

1 Maximize the flow x from s’ to d” via arc (d(t),d") € Ar
by setting temporarily the capacity of arcs
(d(t),d") € Ap,t >t to zero (i.e., close temporarily
those arcs).

2 If t =T stop.
Otherwise, increase t by 1, set the capacity of
arc (d(t),dT) back to infinity and go to step 1 using
the current flow x as the starting flow.

4.2 Solution Algorithm for an Earliest Arrival Flow
Problem with Constant Attributes

In this section we review an approximation algorithm of Hoppe and Tardos [HT94]. Before
going further, we need the notion of residual network of a static flow. In a static network
flow, the travel times are considered as costs.

Definition 4.2 (Residual static network) Consider a static network G = (N, A).
The residual network with respect to the feasible static flow £ is defined as wat = (N, A}' U

A7) with arc set A} :={(1,7) : (i,)) € A, fij <uy} and A7 :={(j,1) : (4,)) € A, fi; >
0}. The residual travel times are

/\f ::{ )\ij a(Za])EA_f'—
K =i 5 (4,5) € Ay

and the residual capacities are

W fji ,(Z:])EA;
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Recall the antisymmetry of the dynamic network G and Definition 3.2 on path flow and
path decomposition. Hoppe and Tardos [HT94| introduced a chain decomposition (also
called non-standard path decomposition) in Gftat.

Definition 4.3 (chain decomposition)

P={P,P,,...,P} is a chain decomposition of a static flow £ if f = Zle vp, and it
may contains path flow in P that using arcs in opposite directions, i.e. the path contains
some arc (j,1) with (i,j) € A. Consequently, we call P, € P as a chain flow instead of path

flow.

Hence, a chain flow may use residual arcs with negative travel times.

Example 4.1
Consider a static network shown in Figure 4.2(a) with node 1 the source node and node 4
the sink node. Suppose P is a set of paths with P = { P}, P,} where :

P ={1,2,3,4} ; P,=1{1,3,2,4}

with v(P;) = 1 and v(P,) = 1, respectively. PP is a chain decomposition since P, € PP uses
arcs (2,3) € A in the opposite direction (see Figure 4.2 (b)) , i.e. P, uses arc (3,2) ¢ A.
Figure 4.2(c) shows a dynamic flow induced by the chain decomposition in Figure 4.2(b).
U

Suppose that the arc capacities are integral. Let us denote by U the maximum arc capacity,
i.e.

U := i
(g]l.)ag;{“zy}
By using the chain decomposition, Hoppe and Tardos [HT94] developed the first polynomial-
time approximation algorithm, with time complexity O(™(m+n log n)log U). It is proved
to be within (1 + €) of optimality, i.e. if x is a dynamic flow for a time horizon 7" provided
by the algorithm and VET: is the value of maximum dynamic flow for any time horizon

T < T, then

Vsz <1+ e)VETf (x) (4.2)
This algorithm is a capacity scaling shortest augmenting path algorithm applied to the
static network. The capacity scaling is done in an upward direction. The following example
shows that the downward capacity scaling algorithm does not solve the earliest arrival flow
problem.

Example 4.2
Consider a network shown in Figure 4.3 with node 0 the source node and node 3 the sink
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(A uy) static flow

—_

(a) A static network Gy = (IV, A) (b) A chain decomposition

node

o
2 O
O
O

(c) The induced dynamic flows

Figure 4.2: A chain decomposition and its associated induced dynamic flow

(12)

(L,1)

Figure 4.3: A network for Example 4.2

node. Suppose that the time horizon 7" is 5 time units. An optimal solution x, obtained
by using the downward capacity scaling, and the earliest arrival flow x* are given in the
following table.

T 011123 )
V() [0]0/0]1[1]3
Vsz (x*) 11

O

This example shows a fact that a small capacity arc that is short might carry more flow
than a large capacity that is long.
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The detail procedure of the approximation algorithm given in Algorithm 4.2 is explained as
follows. Let us denote by A the capacity scaling factor. The algorithm starts with A =1
and iteratively doubles this factor until no augmenting path of length less than or equal
to T exists in the residual static network GY,,,. The initial iteration uses GZ,,, with all
residual capacities are evenly divisibly by A and find consecutively shortest augmenting
paths of distance (with respect to the travel times) < T until the value of the static flow
exceeds mA /e with m the cardinality of A. At this point, the scaling factor is doubled
(i.e. A :=2A) and the residual capacities are rounded down by A as

u{] = uf] — (u{] mod A), V(i,5) € Ay (4.3)
Since all residual capacities are integer multiplies of /A, the consecutive augmentation has
at least A units of flows. If f is the current static flow and P is the shortest augmenting
path in Gfmt, we define the maximum flow augmentation along P as

Vmaz(P) = min {u; : (i,j) € P} (4.4)
A new static flow is obtained as follows.

fzg"‘vmam(P) 71f (’L,_])EP
fii = fij = Vmaz(P) ,if (§,4) €P , V(i,j) € A (4.5)
fij , otherwise

We denote the static flow given by (4.5) by f = f + v,,4.(P). In each augmentation, the
flow along a path is added to a set of path flows P that will induce a dynamic flow at the
end of the algorithm.

4.3 Solution Algorithm for an Earliest Arrival Flow
Problem with Time-Dependent Attributes

To solve a DTEAFP with time-dependent attributes, we adapt a well known successive
shortest augmenting path technique for solving the static maximum flow problem (see e.g.
[AMO93]). Instead of looking for a shortest s — d augmenting path in the residual static
network, we look for an s — d augmenting path with the earliest arrival time at node d in
the residual dynamic network. Therefore, we call this technique as the successive earliest
arrival augmenting path algorithm. A dynamic augmenting path is defined as in Definition
3.4. A new flow distribution x is computed as in (3.63).

The successive earliest arrival augmenting path algorithm always augment flow along an
s — d path having the earliest arrival time at node d in the residual dynamic network.
Since the residual dynamic network may have backward arcs whose associated arc travel
times are negative valued, a time-dependent label correcting algorithm, called the EAAP
(Earliest Arrival Augmenting Path) algorithm, is used to find an s — d earliest arrival
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Algorithm 4.2 (Hoppe and Tardos [HT94]) :
Solving (s, d)/()\,u,a)/V <

INPUT  Dynamic network G = (N, A, T),

constant capacity function w;;, travel time )\;;, and e.
OUTPUT Earliest arrival flow x.
0 Set A=1,f=0,P=0.
1 If there exists s — d path P in G7,,, of total travel time < 7,
then set o = 0.
Otherwise, go to Step 5.
2 Ifo< % and there exists a shortest s — d path P in GZ,,, of

total travel time < 7', then find P.
Otherwise, go to step 4.
3 Augment f with v, (P) following (4.5) and
extend P := P U {P}. Update the residual network G7,,,
0 1= 0 + Unae(P), and go to step 2.
4 Increase the capacity scaling A := 2A.
Modify the residual arc capacities according to (4.3).
Continue the iterative process by going to step 1.
5 If P # (), then the dynamic flow x is obtained by repeating
all path flows in P and
Vir < (14 6Ver (%), VT <T.

Otherwise, the problem is infeasible.

augmenting path. This algorithm uses the so-called scan eligible (SE) list that stores the
nodes which have potential of improving the arrival time of at least one other node. During
the initialization step of the algorithm, only the source node s is in the SE list. At each
iteration of the algorithm, a node, called the current node, is removed from the SE list.
We denote by

e 7;, the earliest arrival time at node i € N,

e pred;(t), t € {0,...,T}, the predecessor node of a node i along an s — i augmenting
path that arrives at node ¢ at time ¢, and

e dep;(t), t € {0,...,T} , the departure time from node pred;(t) corresponding to an
arrival time ¢ at a node ¢ along an s — ¢ augmenting path.

Suppose that node i is the current node. For every successor nodes j of node 4, a temporary
label is computed through the corresponding s — ¢ augmenting path and arc (4, 7). If it is
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possible to build an s — j augmenting path departing from 7 at time ¢ and arriving at j at
time ¢ + A;;(¢) which is not possible previously via another path (i.e., previously recorded
that pred;(t + \;j(t)) = 00), then the value of pred;(t + A;;(t)) is updated from oo to i.
Because any s — d augmenting path that uses this s — j path as a subpath may lead to a
lower earliest arrival time at the sink node d, this node j will enter the SE list. Moreover,
t 4+ Aij(t) will update the value of 7; if it is earlier than 7;. The labeling process of node j
is then continued by considering both positive and negative waiting allowance at node j.
The labeling at node j is done for ¢ =t + \;(t) +1,t+ \i;(t) +2,... , T as long as waiting
is allowed (i.e., a}”(t' — 1) > 0) and pred;(t ) = co. Otherwise, this labeling process at
node j is stopped. By considering that the waiting canceling at node j may lead to a better
decision, the labeling of node j is also continued for ¢ =t + Aij(t) = 1,6+ N (t) —2,...,0.
The labeling process on this stage is stopped when it meets ¢ that does not satisfy the
waiting condition a?‘(t' +1) > 0 or pred;(t') # oo. Once all the successor nodes of the
current node have been considered, another current node is selected from the SE list, trig-
gering the next iteration of EAAP algorithm. The algorithm stops once an iteration has
completed and the SE list is empty. If 74 < T, then the corresponding s — d earliest aug-
menting path P and maximum flow augmentation ¢(P) can be obtained by a backtracking
procedure. Otherwise, the current dynamic flow x is optimal (see Proposition 4.4 later
on). The pseudocode of EAAP algorithm is given in Algorithm 4.3.

Algorithm 4.3 works well when G, does not contain any negative cycle. However, since
the original network GG has no negative travel times, adding some arcs with negative travel
times to create G, will not create any negative cycle. The following proposition describes
this property.

Proposition 4.1 Given a dynamic network G that does not contain any negative cycle,
its associated G, will also not contain any negative cycle

Proof :

Suppose that there is a negative cycle in GG, with respect to the travel times. Since the
original network G does not have negative travel times, the cycle must use some backward
arcs. Supppose that the cycle begins at node j at time ¢, uses a backward arc (j, i) departing
at time ¢, and reaching node ¢ at time ¢ + A;;(t). By the construction of a backward arc,
there must exists, in previous iteration, an augmenting path that uses arc (i, j) departing
from node i at time ¢ such that ¢ + \;(#') = ¢ with A;;(#) > 0. Since \;i(t) = =)y (t),
we obtain ¢ + Aj;(t) = t'. Suppose that the cycle continues to reach node k (there may be
some nodes in between) at time ¢; and arrive back at node j from k at time t; + A\g;(t).
We denote the distance (with respect to the travel times) between node ¢ at time ¢+ \j;(%)
and node k at time t; along the cycle as A;;. The total travel time to complete one cycle
is —\ij(t') + Air + Agj(tr). Since the cycle is a negative cycle, —\;;(t') + Aix + Aij(tr) < 0.
This implies

Ask + (1) < Mg (t) (4.6)



66 Chapter 4. Earliest Arrival Flows

Algorithm 4.3 (Earliest Arrival Augmenting Path Algorithm) : finding an s—d
earliest arrival augmenting path

INPUT The residual dynamic network G, := (N, A} UA;,T) as given by Definition 2.5
OUTPUT  An s — d earliest arrival augmenting path P and e(P)

0 Set SE := {s} and define the initial labels for each node i € N :
0 ,i1=s

oo , otherwise

and for all ¢t € {0,...,T}

T =

-1 ,i=s t ,i=s
predi(t) = { oo , otherwise ; depi(t) ::{ oo , otherwise
1 Select the current node. If SE = () then go to step 3.
Otherwise, select ¢ € SE and set SE := SE — {i}.
2 Scan the current node and update the labels

For all (i,j) € A, do {
Forallt € {t:m <t <T, uf;(t) >0, t + Xij(t) < T, pred;(t) # oo}
do { If (pred;(t + Ai;(t)) = oo) then

{If (mj >t + X\ij(t)) then m; := ¢ + X;;(¢)
predj (t + )\ij (t)) =1 ; depj(t + )\,’]‘ (t)) =t
SE = SE +{j}
Define t :=t + \;;(¢) + 1
While (1 < T, a§+ t —1)>0, and pred;(t) = c0))
do {pred;(t)=j ; dep;(t):=t —1;t ++}
Define ¢ :=t + \i;(t) — 1
While (¢ > 0, af*(t' +1) >0, and pred;(t) = o0)
do { if (m; >t then 7 :==¢
predj(t) =37 ; depj(t):=t +1;t ——=}
} } } Return to step 1
3 Constructing an s — d earliest arrival augmenting path.
If 74 > T then P:=( and ¢(P) =0
Else { j:==d ; t:=m ; i:=pred;(t)
Define P := {d(t,t)} and €(P) := oo
While (j # —1) { t := dep;(t)

If (i # j) then { cap := u;”j(t') st =t}

Else if (t > t'), then cap := a®*(t)

Else cap := a?™ (t)

If (cap < €(P)) then e(P) := cap

P=icji=i o i:=predj(t’)

If (i’ #4) then P:= P+ {i (¢

I

=1

3t
)} )

Since in the previous iteration the augmenting path uses (4, j) at time ¢ , a direct connection
from i departing at time ¢ to j must be not longer than uses the path from 7 to k and the
arc (k,j), i.e.

Xij () < Agk + Mej ()
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contradicting (4.6). [

To analyze the complexity of Algorithm 4.3, we divide its execution into passes. We
define a pass as follows.

Definition 4.4

e Pass 0 ends after node s is scanned for the first time.

e Pass k ends after all nodes in the SE list at the end of pass k — 1 have been scanned.

From this definition, if a node j is removed from the SE list before the end of pass £,
then there must be a node i with (4, j) € A, removed from the list before the end of pass
(k—1) and some ¢, m; <t < T such that pred;(t + \;;(t)) is improved from oo to i. In
this condition, m; may also be improved. Proposition 4.1 implies that G, does not contain
any negative cycle. Since G, has at most n(7T + 1) node-time pairs, there exists at most
n(T 4+ 1) — 1 passes.

Proposition 4.2 If the residual dynamic network G has some s—d dynamic augmenting
paths, then Algorithm 4.3 finds an s — d earliest arrival augmenting path in O(nmT?).

Proof:

Let us denote a set {t : pred;(t) # oo, t < T} by PRED;. When Algorithm 4.3 termi-
nates, SE is empty and 7; <t + \;;(¢) for all j € N — {i} and t € PRED,. By definition,
m; must be in PRED; and m; <'t, Vt € PRED;. Suppose 3j : m; > t+ \;;(t) for some
1and t € PRED,;. There are two possible cases that must be considered with respect to
the travel times \;;(¢). Suppose that A;;(t) > 0. Since ¢t > m; and ¢t < T, we obtain m; < T
The algorithm is initiated by defining m; = oo for ¢ # s. Therefore, if 7 # s, then 7; has
been updated and node ¢ was placed in the SE list. However, if ¢ = s, then 7 was also in
the SE list. The assumption 7; > t 4+ \;;(¢) for some ¢t € PRED; implies that node i was
not completely scanned and must still be in the SE list. This contradicts the assumption
of termination. Now, consider the case when \;;(¢) < 0, i.e. (4,7) is a backward arc in
G,. By construction of a backward arc, (7,j) can only have positive capacity for t < 7.
Therefore m; < T and node ¢ was placed in the SE list. By the same reason as in the case of
nonnegative travel times, the assumption 7; > t 4+ \;;(¢) for some ¢t € PRED; contradicts
the assumption of termination.

Concerning the computational complexity, there are at most n(7 + 1) — 1 passes and
any current node 4 scans all arcs (i,5) € A, in O(m) time. Furthermore, each time an
arc (7, ) is considered, at most 7'+ 1 computations are required in order to determine the
departure time from node ¢ that will lead to the earliest arrival time at node j. Therefore,
the overal complexity is O(nmT?). W

Remark 4.1 By applying the classical (static) label correcting algorithm on the time-
expanded network in which the travel times are considered as costs, the earliest arrival
augmenting path is obtained in O(n(n + m)T?). Therefore Algorithm 4.3 is faster with
respect to the additional factor in the worst case computational complexity.
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The successive earliest arrival augmenting path algorithm repeats the process of finding
an s — d earliest arrival augmenting path until the dynamic flow is maximum. The detail
description of the algorithm is given in Algorithm 4.4.

Algorithm 4.4 : Solving (s,d)/()\(t),u(t),a(t))/VETIST

INPUT  Network G = (N, A, T),
time-dependent travel time \;;(t), capacity wu;;(t),
holdover capacity a(t).
OUTPUT  Earliest arrival flow z;;(¢).

0 Set the dynamic flow z;;(t) =0, V(i,5) € A; t =0,...,T.
Call Algorithm 4.3 to find an s — d earliest arrival
augmenting path P in G, and its €(P).
If P # (), then go to step 2. Otherwise, go to step 3.
2 Find the maximum dynamic augmentation of x along P
and update the current flow and G,.
Repeat the process by going back to step 1.
3 Stop the process and x is an earliest arrival flow.

—y

To prove that Algorithm 4.4 produces maximum dynamic flow, we will use the dynamic
cut. The termination of Algorithm 4.4 occurs when the sink node d in the residual network
is not s-reachable, i.e. w4 > T or predy(t) = oo, Vit < T. Using the value of label pred, we
give a specific definition to the function C7r in (3.6) as follows.

Cr(t) = {i:pred;(t) # oo, i € N} (4.7)
and
Cr(t) = {i:predi(t) =00, i € N} (4.8)

By this definition, when Algorithm 4.4 terminates, node s and d is in Cr(t) and Cr(t),
respectively, for any time ¢ < 7. Furthermore, the set of times FiTj, V(i,j) € A and
I'Z Vi e N — {s,d} is given by

Fz;- = {t : pred;(t) # oo, pred;(t + \i;(t)) =00, t + \;;(t) < T} (4.9)
and

I = {t : predi(t) # oo, pred;(t+1) =00, t+1 < T},
(4.10)

respectively.
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Proposition 4.3 When Algorithm 4.4 terminates, the set of time-expanded arcs (Cr, Cr)
as defined by (4.7)-(4.8) with respect to the label at the termination stage, defines a min-
imum s — d dynamic cut for the time horizon T and the current dynamic flow X is a
mazimum dynamic flow.

The proof of this proposition is similar to the proof of Proposition 3.8.

Finally, the correctness that Algorithm 4.4 produces an earliest arrival flow is stated by
the following proposition.

Proposition 4.4 Let us denote by U the biggest capacity over all (i,j) € A and over time
tef{0,...,T}, ie

(gggéte{rg{%}{ug( )} (4.11)

Algorithm 4.4 solves
(87 d)/()‘(t)’ U’(t)’ a(t))/v T'<T

with the worst case complexity O(nm?T3U).

Proof :

By Proposition 4.3 and the fact that the augmentation always done in a path with the
earliest arrival time at the sink, Algorithm 4.4 produces a maximum dynamic flow with
the earliest arrival property for the time horizon 7'. Furthermore, since the capacity of
the cut is at most mUT and each augmentation carries at least one unit of flow, there is

at most mUT augmentations. By Proposition 4.2, the overall complexity is O(nm?T3U).
[ |

4.4 Infinite Waiting

Here we allow infinite waiting at every node i € N — {s,d}, i.e.
a;(t) :=o00, i€ N —{s,d}, t€{0,...,T}

Proposition 4.5 Suppose that the waiting capacities are infinite. If there is an s — j
augmenting path with arrival time 7; < T (i.e. pred;(m;) # 00), then there must exist an
s — j augmenting path for any arrival time t > wj, i.e. pred;(t) # oo, Vt € {m; +1,m; +
2,...,T}.

Proof :

Let P;; be an s — j augmenting path with arrival time 7;. Since the waiting at any node in
N —{s,d} and at any time in {0, ... ,T} is infinite, we can extend this path by considering
the waiting at node j for ¢ — 7; time units to obtain an s — j augmenting path arriving at
node j at time ¢ > ;. |

Proposition 4.5 has the following direct consequence.



70 Chapter 4. Earliest Arrival Flows

Corollary 4.1 Consider the case when infinite waiting in every node i € N — {s,d} is
allowed. Assume that during an iteration in Algorithm 4.3, node i is selected as the current
node. If node j at time t is reachable from node i at time t, i.e. ufi(t) >0, t+ \;(t) =
t < T, but it is not previously reachable from any other node, i.e. pred; (t') = 00, then the
previous value of m; must be strictly greater than t and the current value is greater than
or equal to t.

Using this corollary, step 2 of Algorithm 4.3 can be simplified as given in Table 4.1.

Scan the current node and update the labels
For all (i,7) € A; do
{ Forallte{t:m <t<T, ujt) >0, t+N\;(t) <T}
do {
If (pred;(t + A\ij(t)) = oo) then
{
Ty = t+ )\Z'j(t)
predj(t + /\”(t)) =1 ; depj(t + )\Z](t)) =1
SE:=SE+{j}
Define ¢ :=t 4+ \;;(t) + 1
While (t < T) and (pred;(t) = o0))
do {pred;(t) =3 ; dep;(t):=t —1;t ++}
Define ¢ := 1+ \;;(t) — 1
While (¢ > 0, a;-”_(t' +1) >0, and pred;(t) = oo)
do {if (m; > t) then m; :==¢
pred;(t) =3 ; depj(t) =t +1;¢ ——}
}
}

} Return to step 1

Table 4.1: Modified step 2 of Algorithm 4.3 when infinite waiting is allowed

Another important consequence of Proposition 4.5 is stated by the following proposition.

Proposition 4.6 If the waiting is infinite, by applying the scaning and updating processes
given in Table 4.1 to step 2 of Algorithm 4.3, an earliest arrival augmenting path can be
found in O(nmT).

Proof :
By Proposition 4.2, the modified algorithm finds an earliest arrival augmenting path. Since
the waiting is infinite, by Proposition 4.5, there are at most n — 1 passes (instead of n(7T +
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1) — 1 passes in the case of finite waiting). Consequently, an earliest arrival augmenting
path can be found in O(nmT). [

Corollary 4.2 Algorithm 4.4 solves (s,d) /(A(¢), u(t), a(t))/VETrST in O(nm?T?U) when
infinite waiting is allowed for every node i € N — {s,d}.

By considering Remark 4.1, we obtain the following corollary.

Corollary 4.3 Under the assumption of infinite waiting, Algorithm 4.4 is more efficient
by factor T than implementing the successive static shortest augmenting path algorithm on
the time-expanded network.

This assumption of infinite waiting also influences the characteristic of the dynamic cut as
stated by the following lemma.

Proposition 4.7 If infinite waiting is allowed for every node i € N — {s,d}, once a node
i is in the source side of the cut at time t, it will stay there forever, i.e. if i € Cr(t), then
i € Cp(t) for any time t > t.

Proof :
Follow directly from the definition of Cr given by (4.7) and Proposition 4.5. [

The following Example 4.3 illustrates the implementation of Algorithms 4.3 and 4.4.

Example 4.3
Consider again the network problem of Example 3.3. The network structure is shown in

Labels time ¢

0 1 2|13 (4|56 |7

mo=0 | predo(t) | -1 |-1]-1|-1{-1|-1|-1]-1
depo®) 10 [ 123145617

m =3 | predi(t) oo oo |0 | 4 | 0|1 |00 0
depi(t) |0 |00 |oco| 3|0 |4 |00 2

=2 | preds(t) |occ oo | 0O | 2|2 2|22
depa(t) [0 |00 | 0| 23 [4]5]6

w3 =4 | preds(t) | coc | oo |0 oo | 1 |1 |1 |00
deps(t) [ o0 |0 |00 |3 4] 5 |

ma=3 | predy(t) oo oo |0 | 2|2 |2 |00 2
deps(t) | oo |0 |00 | 2 | 3|4 ]o0]| b

m5 =4 | preds(t) [ oo oo |0 |0 | 1| 2] 2 | 2
deps(t) | o0 |00 | 0|0 |3 2] 3| 4

Table 4.2: Labels on nodes after completing Algorithm 4.3

Figure 3.7. Initially, we define the flow variables z;;(t) = 0, V(i,j) € A; Vt < T. Therefore,
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we have GG, = G. The results of Step 1 of Algorithm 4.4 are given in Table 4.2. Since
m5 =4 < T =7, an augmenting path P, and the corresponding maximum flow augmenta-
tion €(P;) can be obtained by a backtracking procedure as described in step 3 of Algorithm
4.3. We obtain P; = {0(0,0),2(2,2),4(3,3),1(3, 3),5(4,4)} with ¢(P;) = 2.

GH | O [ 02 [ @©3) | @5 | & | @9
uf(#) [ 6,t<1]0,¢t=05t>01,t>3]3,t=2]6,t>0
2,t>21]2 t=1 3,6<2 |5, t#2

5, > 2

No(#) |4, t<1 |2 ¢<1|1,t>0|3,t=4]|1,t<4]5 t<1

5,t>2 |4, t>2 1, t#£4 |2, ¢t>5[3,t>2

(4,9) (3,2) (4,1) (2,0) (4,2) (1,4) (5,1)
uf(®) [5,t>0]3,¢t=3| 2, t=2 | 2,¢t=3 |2, t=3| 2, (=4
5,t#3| 0,t#2 | 0,t#3 |0, t#3| 0, t#4
N(#) [0,t>0]0,¢>0| 2, ¢=2| —1,¢=3]0,¢{>0| -1, ¢t=4
0, t #2 0,t#3| 0, t#4

Table 4.3: Time-dependent travel times and capacities for

first pass of Algorithm 4.3

the residual network after the

Labels time ¢

0 1 213|456 7

m0=0 | predo(®) | -1 | -1 | -1 ] 1] -1|-1]-1]-1
depo(t) | O | 1| 2|34 ]5]6]|T7T

m =4 | predi(t) | 0o |00 |0 |0 | 0 1 |oco]| O
dep1(t) [ o0 |00 |00 |oo| 0|4 o0 2

m2 =05 | preda(t) | 0o | 00| o0 | 0|00 | 3]0 | 2
depa(t) |00 |00 |00 |00 |0 | 5| 2] 6

m3=25 | preds(t) | 00 | oo |00 | o0 oo | 1 |1 | o0
deps(t) | 0o | 00 |0 |0 |0 | 4|5 | o0

ma =T | predy(t) | 0o | 00 | 00 | 00 |00 |00 | 00 | 2
deps(t) | oo | oo | oo | oo |oo|oc|oo]| 5

w5 =00 | preds(t) | 0o | 0o [ 00 | 00| 00 | 00| 00 | 00
deps(t) | 0o | 00 |00 | 00| 00 | 00| 00| 00

Table 4.4: Labels on nodes after completing Algorithm 4.3 for the fifth times

The time-dependent travel times and capacities of the new residual network are given
in Table 4.3. Four backward arcs (2,0), (4,2), (1,4), and (5,1) are added to the residual
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network. The dynamic flow x is updated by using (3.63). The process is then continued to
look for other earliest augmenting paths. Three additional earliest augmenting paths have
been found before the stopping criterion of Algorithm 4.4 is fulfilled (i.e. w5 > T'), namely:
P, ={0(1,1),2(3,3),5(6,6)} with e(P,) = 2, P; = {0(0,0),1(4,5),5(6,6)} with ¢(P3) =1,
and P, = {0(0,0),1(4,4),5(7,7)} with ¢(P;) = 1.

x5 (t) time ¢
011234 |5]6]|7
zo1(t) 2|0|0(0j0|0O|0O]|O
3/10(0]0]0|0]0]O
Zo2(t) 212|0(0j0]|0|0]|O
212|0(0j0|0|0]|O
z13(t) olo[of[o0][O0]O0f0]|O
0/]0(0]0]0|0]0]O
z15(1) 010(0|2|1|1]0]0
010021 |1]1]0
T24(1) 010(2]0]0|0]0]0O
010(2]0]0|0]0]0O
Z25(t) 01]0(0]2]0|0]0]0
01]0(0]2]0|0]0]0
z32(t) ojfofojof[o]o0]O]O
0/]0(0]0]0|0]0]O
T41(2) 0/]0j0]2]0|0]0]0O
0/]0j0]2]0|0]0]0O

Value of the flow

arriving at the sink 2101311
210132

Table 4.5: Earliest arrival flow of Example 4.3. The upper position of each row x;;(t)
contains an optimal flow when the waiting at a node is limited, while the lower one deals
with the case when infinite waiting is allowed for every node

The final labels (i.e. after the fifth pass of Algorithm 4.3) which are not able to gen-
erate any augmenting path, are shown in Table 4.4. The earliest arrival flow x having
value Vs-r=7(x) = 6 is given in Table 4.5. Moreover, x has the same value as the maximum
dynamic flow of Example 3.3. However, it has two units of flow which arrive one unit time
earlier at the sink node.

From the final labels given in Table 4.4, we can construct the sets FiTj for every arc (i,7) € A
and T'}; for every node i € N — {0,5}. The results are shown in Table 4.6. Figure 4.4 (a)
depicts a minimum dynamic cut (C7,C7) and the corresponding optimal dynamic flow.
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Table 4.6: The sets I'j; for every arc (i,j) € A and I'j; for every node i € N — {0,5}
correspond to the earliest arrival flow of Example 4.3

The value of (C7,C) is determined by

(ij)eAter]; i€ N—{s,d} teI',
= 6

which is equal to the value of the earliest arrival flow for 17" = 7.

When infinite waiting at any node is allowed, including the waiting at the source node
0, the value of earliest arrival flow changes to Vs-r—r = 7. The optimal flow distribution
of this case is given in the lower position of each row z;;(¢) in Table 4.5. Figure 4.4 (b)
depicts the optimal flow distribution and dynamic cut when infinite waiting at any node
is allowed. g

4.5 Computational Results

In computational testing, we again rely on the representative operation counts, as described
by Ahuja, Magnanti, and Orlin in [AMO93],

e to identify the asymptotic bottleneck operations and
e to estimate the running time for different problems sizes

of Algorithm 4.4. For these experiments, Algorithm 4.4 is implemented in C++ and run on
a PC Pentium III, 500 MHz, and RAM of 256 MB. The same random networks, generated
in Section 3.5 for testing Algorithm 3.2, are put to use.
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node i

5 O O O O

(a) The minimum dynamic cut with finite waiting.

timet

node i

5 O O O O

(b) The minimum dynamic cut with infinite waiting

Figure 4.4: The minimum dynamic cut of Example 4.3 The shaded circles are in the source
side of the cut. The bold arrows represent the optimal flows of the arcs in the cut. The
numbers beside the arrows define the values of the flows

Here we identify the following set of representative operations:

(a) scanning process of node-time pairs by a current node to find an earliest arrival
augmenting path

(b) flow augmentation process
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We denote by seqn(I) the number of node-time-pairs scanned in the representative oper-
ation (a), summed over all current nodes and all existing augmenting paths and denote
by @aug(I) the number of flow augmentation in the representative operation (b), summed
over all existing augmenting paths, of a problem instance I. The value of ®scen and oy is
determined from the scanning operation in step 2 of Algorithm 4.3 and step 1 of Algorithm
4.4, respectively. Let

as(I) = asean(I) + Qaug ()

denote the sum of the representative operation counts. Figure 4.5(a) - (b) give the plots
of  ean(I)/ax (1), and aguy(I)/ax (1) for increasing larger problem instances and then
look for a trend. While, the trend on CPU time is shown in Figure 4.6(a). The plot in
Figure 4.5(a) suggests that the scanning process is an asymptotic bottleneck operation in
Algorithm 4.3, and the plot in Figure 4.5(b) suggest that the flow augmentation is an
asymptotic nonbottleneck operation. Moreover, Figure 4.6(a) shows that CPU time in-
creases faster in the more dense networks. A plot of the number of augmenting paths for
various network size n and 0 is shown in Figure 4.6(b).

To estimate the growth rate of the count of asymptotic bottleneck operation aje.,, We
define an estimated function o, (I) = cn®6°* for some choices of constants c, e;, and e,.

The regression analysis yields

!

0y, (1) = 18,729.768 n!18050-530

as a best fit for aseqn (1) with adjusted R? value 0.960 and standard error 0.429. The value
of adjusted R? which close to 1 and a fairly small standard error indicate that the fit is
indeed very good. Figure 4.7(a) shows a plot of the ratio between the estimated and the
true values which also support the goodness of the fit obtained by the regression analysis.

1.0010 0.0045
0.0040 —e—m/n=2
0.0035 B —=—mn=4
000304 min=6
Otug  0.0025 ) A min=8
AScar Oz 0.0020
Oz 0.0015
m/n=6 0.0010
0.9950 —-4—- m/n=8
0.0005 —_—
0.9940 T T | 0.0000 -+ |
50 100 500 1000 1000
n n
(a) A plot of the ratio of scanned node-time-pairs (b) A plot of the ratio of flow augmentation
in scanning operation to the total number to the total number of operations

of operations

Figure 4.5: Identifying asymptotic bottleneck operations in Algorithm 4.4
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12,000.00 - _ 5,000.0000 -
—-A—- m/n=8
i 4,500.0000 1
_ 10,000.00 1 N 4,000.0000 1
g s < % 3,500.0000
S 8000001 TS mn=2 o g 0 .
3 K £ 3,000.0000 .-
< 6,000.00 | 4 5 2,500.0000 ]
£ & 2,000.0000 1
S 400000 1 E 1,500.0000 1
5 < 1,000.0000 M2  —=—min=4
2,000.00 1 500.0000 1 min=6  —-a-- m/n=8
0.00 e 0.0000 ‘ : ‘
0 50 100 500 1000
n n
(a) CPU time (in seconds) (b) The number of EAAP

Figure 4.6: CPU time and the number of earliest arrival augmenting paths for various n
and densities 6 = m/n

Moreover, we obtain the virtual running time of an instance I, V' (I), as an estimate function
of CPU time, as follows:

V(I) =1.48810"° tigean(1)" % crguy(1)*°

with adjusted R? value 0.973 and standard error 0.459. A plot of the ratio V(I)/CPU(I)
is shown in Figure 4.7(b), where CPU(I) denotes the CPU time (in seconds) obtained by
running Algorithm 4.4 for a problem instance I. It is also found that the linear function
of teqn(I) and cgyy(I) does not fit well the CPU time.

3.0000

25000 4 i
2.0000 - 6
—-A—-8
o' V(O 150001
)—/‘.—’4.\’
o5 CPUD) ;0000 —//:\-
S P T— g T —k
0.5000 4
0.0000 . . .
: : . 50 100 500 1,000
50 100 n 500 1,000 n
(a) The ratio of 18,729.768 n!-180§0-530 ¢ (b) The ratio of 1.48810 8 azeq, (1)'986 x
Oscan Qgug (1)0'564 to the CPU time

Figure 4.7: Determining the quality of the estimators of performance functions of Algorithm
4.4






Chapter 5

Quickest Flow Problems

The quickest flow problem seeks a discrete-time dynamic flow which sends the given v
units of flow from the source s to the sink d of the network in minimum time (see e.g.,
Burkard, Dlaska, and Klinz [BDK93] and Fleischer and Tardos [FT98|). Concerning the
evacuation problem, Hamacher and Tjandra [HT02] used this quickest flow model to find
the minimum evacuation time of a given number of building occupants. In this application,
v is considered as the initial contents of the network, i.e., v := ¢4(0).

When only one path can be used for sending the flow, this problem is known as the quickest
path problem (see e.g., Chen and Chin [CC90] and Rosen, Sun, and Xue [RSX91]). When a
network has multiple sources and multiple sinks, the corresponding quickest flow problem
is called the quickest transshipment problem. Jarvis and Ratliff [JR82] showed that the ear-
liest arrival flow with value at least v solves the quickest flow problem. Burkard, Dlaska,
and Klinz [BDK93] gave several polynomial algorithms and a strongly polynomial algo-
rithm to solve the quickest flow problem with constant attributes. Fleischer and Skutella
[FS02] generalized the quickest flow problem by considering several commodities.

In this chapter we focus the discussion on the discrete-time quickest flow problems (DTQFP).
Three different assumptions on the given value v and the network attributes will be covered.

e v :=¢5(0) and the network attributes are constant, i.e.,

)\zy(t) = )\ija Uzj(t) = Uy, (Z,]) € A, and a,(t) = a, 7 € N,
te{0,...,T}

Waiting capacities are considered infinite. We denote this problem by
(s,d) /(N u, a)/TEqs(o)
e v :=¢;(0) and time-dependent network attributes, where we denote this problem by
(5,d)/(A(t), u(t), a(t)) / Tsac0

79
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Here, we also discuss how to tackle a similar problem with multiple sources and single
sink.

e In a more general DTQFP, we consider v := Y, ¢,(t) with g¢,(t) > 0 for some
t € {0,...,T} as the supply to the source s which may vary over time. We denote
this problem by

(s,d)/(A(2) t))/T. oo

In the next section, we formulate the quickest flow problem with v := ¢,(0). In Section
5.2 we review the polynomial algorithm of Burkard, Dlaska, and Klinz [BDK93|.
discuss the solution algorithm for the network with time-dependent attributes in Section
5.3. The discussion on a solution algorithm for the quickest flow problem with time-
dependent supplies in Section 5.4 concludes this chapter.

5.1 Problem Formulation

The objective function of DTQFP with ¢,(0) units of flow can be formulated simply as
minimizing the time 7 to clear the network with ¢,(0) initial contents. This DTQFP with
a single source s and a single sink d is formulated as follows.

(DTQFP) min T (5.1)

Subject to
2. 2 wmi)-
(A EA {t' ' +2;(t )=t}
o o K Lii (t) — Xy (t — 1) , otherwise ’
{(15.7) : ('L:])EAz t+Al](t)ST}

ie N—{d}, t=0,...,T (5.2)

zii(t) = 0,t>T,i€N (5.3)
zij(t) = 0, t+ X;(t) > T, (i,j) € A (5.4)
0<zui(t) < at), t=0,...,T, ie N—{d} (5.5)
0 <wmi(t) < wj(t), t+ Nj(t) <T, (i,j) € A (5.6)

We denote by Tzqs(o) the travel time of a discrete-time quickest flow (i.e., the minimum
clearing time) of a given initial content ¢5(0), namely

T =min{T : Vyr > q,(0)} (5.7)

5.2 Quickest Flow Problem with Constant Attributes

Recall, Vsr is the value of a maximum dynamic flow for a time horizon 7". In order to
tackle DTQFP, some properties of VET are stated next.
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Theorem 5.1 (Burkard, Dlaska, and Klinz [BDK93])
Let )\ be the length of a shortest s — d path with respect to the travel times. Then the
following results hold.

(a) VET 1$ a monotonously increasing function and for T > X it increases strictly.
(b) A(T) :=Vsr — Vs-r-1 is monotonously increasing, i.e.,

A(T +1) > A(T),VT > 1

(c) Let vmas be the value of a mazimum static flow (i.e., mazimum flow in the static
network G = (N,A)). Then, AN(T) can attain its value only from the set

{0,1,..., Vmaz }-

Corollary 5.1 (Burkard, Dlaska, and Klinz [BDK93]) Vsr > ¢5(0) is achieved
by at least (%W time units, i.e.,

qs (0) — VEO

Umazc

T5(gs(0)) > |

1

The interrelations between the maximum dynamic flow and the quickest flow are described
by the following lemma.

Lemma 5.1 (Burkard, Dlaska, and Klinz [BDK93])

(a) Let x be a dynamic flow of value ¢5(0) for the time horizon T with T > 0. If
Vs < qs(0) then x is a quickest flow of value q5(0) and Tsoo =T

(b) ForT = TEqs(o) — 1 we get Vsz < ¢5(0)

Proof :
The proofs of (a) and (b) follow immediately from the assumption of the lemma and (5.7).
|

The solution is obtained by applying an iterative process with two main steps. The first step
estimates the time period T" by utilizing a binary search, Newton or interpolation technique.
The second one solves the maximum dynamic flow problem for the time horizon 7. By
Theorem 3.6, the maximum dynamic flow can be obtained by solving a minimum cost cir-
culation static flow problem with parameter 7. The process is repeated until VET ~ ¢5(0).
The solution algorithm by utilizing a binary search is shown in Algorithm 5.1.

The initial interval [T}, T,] can be determined by following proposition.
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Algorithm 5.1 (Burkard, Dlaska, and Klinz [BDK93]) :
Solving (s,d)/(\,u, a)/Tzqs ©

INPUT  Network G = (N, A, T), constant capacity function u,;,
travel time J\;;, and ¢5(0).

OUTPUT Ts0:00-
0 Calculate the initial lower bound 7; and upper bound 7, of TEqs ©),
ie, Tyuo) € (T}, T,
1 Calculate the mid point 7, of an interval [T}, T,], i.e.,
T. =T, + @
Calculate VZTC by applying, for example, Algorithm 3.1.
2 If Vs-z. > ¢5(0) then set T, = T; and go to Step 1.

Else if VETC < ¢5(0) then set 7; = T, and go to Step 1.
Else, the quickest time is Tzqs(o) =T, and terminate the algorithm.

Proposition 5.1 (Burkard, Dlaska, and Klinz [BDK93]) The initial values for T; can

be taken as
s(0) — Vo
T, := max{/\, ’7(1()72-‘ } (5.8)

vmaw

And if v; denotes the value of a static flow that induces a TRF of mazximum value for
T =T, then the initial value for T, can be taken as

qs(0) — VETl-‘

- (5.9)

T, =T + "

Proof:
Corollary 5.1 and the fact that no flow can reach the sink for 77 < A validate (5.8). Since
v; induces a TRF of maximum value for T = 7; and A(T) is a monotonously increasing,
(0)_VET1

A(T; + 1) > v;. Therefore, we need at most qu additional time units in order to

increase the current value Vi-z to ¢5(0) which validates (5.9). W

Using the initial values as defined in (5.8)-(5.9), step 0 of Algorithm 5.1 requires some cal-
culations to solve one static shortest path problem (to determine \), one static maximum
flow problem (to determine v,,,4;) and two minimum cost circulation problems (MCCP) to
obtain VETI and VETM. Since finding the midpoint 7, can be done in a constant time, the
calculation in Step 1 is dominated by the calculation to solve a MCCP in order to find
Vs-z.. Moreover, since the length of the initial interval is less than ¢;(0) and maximum
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value of A(T) is Umqs, then the maximum number of binary search iteration is

min{[log ¢s(0)] + 1, Vmaz }
Hence, the overall complexity of the Algorithm 5.1 is
O(min{[log ¢5(0)], vmas } O(MCCP))

5.3 Quickest Flow Problem with Time-Dependent At-

tributes
A solution of DTQFP with time-dependent attributes can be obtained by utilizing the

solution of the corresponding DTEAF (i.e., Algorithm 4.4) as stated by the following
theorem.

Theorem 5.2 Suppose X is an earliest arrival flow for a time horizon T with value VZT (x).

If
T* := min{T" : VZT’ (x) > ¢s(0), T < T} (5.10)

exists, then T* solves the discrete-time quickest flow problem with initial contents ¢s(0).

Proof :
If T* does not solve the quickest flow problem, then there is 7" < T* and flow x” with
value VET” (x") = ¢5(0). Hence, VET” (x) < VZT” (x"). This contradicts the fact that x is

also maximum for 7" < T. [ |

Before implementing Algorithm 4.4 to solve this quickest flow problem, we need to modify
the original network G to facilitate the initial supply ¢5(0). A super source s* and an arc
(s*,s) is added to N and A, respectively, i.e.,

N:=NU{s"} ; A:=AU{(s"s)}

The attributes of arc (s*,s) and of node s* are defined as follows.

Aps(t) = 0, t>0 (5.11)
Uy (£) = {gs(o) ijg (5.12)
as(t) = 0, t>0 (5.13)

The maximum dynamic flow in the modified G is bounded above by ¢s(0). The problem
is infeasible if Vi-r < ¢5(0).

Proposition 5.2 By implementing Algorithm 4.4, no additional process is required to cal-

culate Ty o0 = min{T" : VZT’ (x) > ¢5(0), T" < T}.
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Proof:
Consider the step 1 of Algorithm 4.4 which implements Algorithm 4.3. Since the label 7,4
denotes the earliest arrival time at the sink node d, Tzqs(o) is the value of m; at the last

augmentation before the stopping condition 74 > 7" := T reached (see step 3 of Algorithm
4.3). Therefore no additional process is required to calculate Tzqs ©)- [ |

The solution algorithm for (s, d)/(A(t), u(t),a(t))/ Ts-as0 that uses Algorithm 4.4 is sum-
marized in Algorithm 5.2.

Algorithm 5.2 : Solving (s,d)/(\(t) (t))/T. 05 (0)

INPUT  Network G = (IV, A, T),
time-dependent capacity u(t), travel time \(¢),
holdover capacity a(t), and g,(0).
OUTPUT Tywo-
0 Modify the original network G = (N, A, T))
by adding a dummy node and a dummy arc with data
according to (5.11) - (5.13).
Set the time 7" large enough such that the problem
is feasible.
1 Apply Algorithm 4.4 to find x the solution of
(5*’ d)/()‘(t)a u(t)v a’(t))/VET’ST

2 Tqs0) is determined by the value of 74 at the last

>
augmentation before the stopping condition w4 > T reached.

Proposition 5.3 Algorithm 5.2 solves (s,d)/(A(t) (t))/T. sas@ i O (nmgs(0)T?).
The worst-case complexity reduces to O(nm s(O)T) when znﬁmte waiting s allowed for
every node i € N — {d}.

Proof:

The correctness of the algorithm follows immediately from Theorem 5.2. Since the maxi-
mum dynamic flow is bounded above by ¢,(0), the number of augmentations is also bounded
above by ¢,(0). |

Now, consider a DTQFP with multiple sources. Let us denote by S, a set of nodes with
positive initial contents, i.e.,

S:={ieN : ¢(0) >0}
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A time-dependent parameters DTQFP with a set of multiple sources S is denoted by (see
Appendix D)

(S, d) /(A(t), u(t), alt)) /Ts

with v the total initial contents of all nodes in S, i.e.,

v:=> ql0) (5.14)

les

We add a super source node s* and connect it to each node in S. We denote by Ag the set
of additional arcs (s*,), Vi € S. The set of nodes N and the set of arcs A of the network
G = (N, A,T) are extended to

N:=NU{s"} and A:=AUAg (5.15)

The waiting capacity of s* is defined by (5.13). The travel times and capacities of arcs
(s*,i) € Ag are defined by

Ailt) = 0,1>0 (5.16)
Uga() 1= {gi(o) 77:8 (5.17)

The modified algorithm to solve (S, d)/(A(t), u(t),a(t)) /T~ is given by Algorithm 5.3.

Algorithm 5.3 : Solving (S,d)/(A(t), u(t), a(t)) /Ts»

INPUT  Dynamic network G = (N, A, T) with time-dependent capacity wu;;(?),
travel time \;;(t), holdover capacity a(t), and
the set S of nodes with positive initial contents.
OUTPUT Ty

0 Modify the original network G = (N, A, T)
by adding dummy node and dummy arc with data
according to (5.13) and (5.16) - (5.17).
Set the time 7" large enough such that the problem is feasible.

1 Apply Algorithm 4.4 to find the solution x of
(8*, d)/(/\(t)a U(t)a a(t))/VETIST
2 Ty~ is determined by the value of 74 at the last augmentation before

the stopping condition 7z > T reached.
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Proposition 5.4 Algorithm 5.3 solves

(S, d)/(A(t), u(t), a(t)) /T
in O(nmT?v). The complexity reduces to O(nmTv) when infinite waiting is allowed for
every node in N.

Example 5.1

Consider a network of Example 3.3 shown in Figure 3.7. We assume that ¢o(0) = 10 and
¢1(0) = 4, no initial supply at other nodes. Therefore, we define S := {0, 1}. The modified
network is shown in Figure 5.1.

|

g © O &
@)

Figure 5.1: A Network for Example 5.1

The maximum dynamic flow is given in Table 5.1. The value of maximum dynamic flow is

VZT:7 = 14
The minimum total time needed to clear the network is T e = 7. O

zi;(t) time ¢

0 1]2[3]4][5[6]7
Towo(t) |10/ 0|0]0]0]0[0][0O
Zo-1(t) | 4 [0]0]0]0]0[0][O
To1(1) | 0 |[0|0]0|O][0[0][O
To2(t) |10[0[0[0[0[0][0]0
zi3() | 0 [0[O0[O[0O][O[O]O
z15(1) | 4 [0|/0]0|0]0[0][0O
zo4(t) | O [O]JO]O]O]O]O]O
z5(t) | O JOJO[O][O][5]5]0
z32(t) | O [O]O]0O]0]0]0]0
zu() [ O JOJO0[O0][O0]0]0]O

Table 5.1: The optimal dynamic flow of (s*,d)/(A(¢), u(t), a(t))/VzTIST of Example 5.1
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5.4 Quickest Flow Problem with Time-Dependent Sup-
plies

Consider now a more general time-dependent attributes DTQFP by considering ¢(t) as the
supply to the source s which may vary over time. We define the supply function at any
node ¢ € N and any time ¢ as follows.

>0 ,1=s
qi(t){ P it s , t€{0,...,T}

Here, the objective function is to minimize the total time needed to send all supplies from
the source to the sink. The formulation of this problem is given by

(DTQFPqt ) min T (5.18)
Subject to
Z Z ji(t) — Z zij(t) = zu(t) —2u(t — 1) — a(?),
(JADEA [t +2;:(t' )=t} (i.4)eA
Vie N —{d},
t=0,...,T (5.19)
and constraints (5.3) — (5.6)

Let us denote by Q)7 the total supply of node s for the time horizon 7', i.e.,

Qr =Y qlt) (5.20)

The travel time of a discrete-time quickest flow (i.e., the minimum clearing time), Tzq(t),
of a given time-dependent supplies ¢(¢) to the source, is given by

T.

o) = min{7T : Vsr 2> Qr} (5.21)

We denote this problem by (see Appendix D)

(s,d)/(A(¢) (t))/T. 0

We can modify the network G' and use again Algorithm 4.4 to solve this problem. The
network modification of G = (N, A, T) is done in a similar way as in the previous section.
A super source s* and an arc (s*,s) is added to N and A, respectively, i.e., N := N U

{s*} ; A:=AU{(s* s)}. The parameters of arc (s*,s) and of node s* are defined as
follows.
Ass(t) == 0,t>0 (5.22)
ugs(t) = g5(t), t>0 (5.23)

as- (t) 0, >0 (5.24)
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Algorithm 5.4 : Solving (s,d)/()\(t),u(t),a(t))/TEq(t)

INPUT  Dynamic network G = (N, A, T),
time-dependent capacity u;;(t), travel time \;;(?),
holdover capacity a(t), and the supply q(%).
ouTPUT TEq(t) .
0 Modify the original network G = (N, A, T))
by adding a dummy node and a dummy arc with data
according to (5.22) - (5.24).
Set the time T large enough such that the problem
is feasible.

1 Apply Algorithm 4.4 to find x the solution of
(5%, )/ (A1), u(t), 2(0) Vi cr
2 TZq(t) is determined by the value of 74 at the last

augmentation before the stopping condition 74 > T reached.

An algorithm to solve (s, d)/(A(t), u(t), a(t))/TEq(t) is given in Algorithm 5.4.

Since the total supply of node s for the time horizon 7T is (7, the maximum dynamic
flow is bounded above by Q7. The complexity of Algorithm 5.4 is thus O(nmT?Qr), and
O(nmTQr) when inifinite waiting for every node is allowed.

Remark 5.1 By a suitable network modification, the solution algorithm can be easily ez-
tended to solve the multi source problem with time-dependent supplies.



Chapter 6

Time-Dependent Bicriteria Dynamic
Shortest Path Problems

Shortest path problems are one of the best studied network optimization problems (see
e.g., Bertsekas [PB91] and Ahuja, Magnanti, and Orlin [AMO93]) with many applications,
such as in transportations (see e.g., Ziliaskopoulos and Mahmassani [ZM93], and Chabini
[Cha98]) and evacuation planning (see e.g., Kostreva and Wiecek [KW93], Yamada [Yam96]
and Getachew, Kostreva, and Lancaster [GKLO0O]). In this chapter we consider time-
dependent bicriteria dynamic shortest path problems (TdBiDSP) which differ from the
classical shortest path problems in two ways

e two, generally contradicting, objective functions instead of a single one
e time dependency of travel times of arcs, waiting at nodes, and cost function

TdBiDSP is a valuable tool in several of the applications mentioned above, since most
of these processes are time dependent and more than one set of time dependent cost at-
tributes are to be taken into account. Our main motivation is the application in evacuation
modelling, where shortest paths represent evacuation routes. Obviously, these routes are in
case of emergeny subject to changes over time (expressable as time varying costs and travel
times) and different types of cost representing for instance speed or reliability may be of
interest. A set of possible evacuation routes may also be put together to a dynamic flow
which can be used to model a complete evacuation plan. Paths and cycles play in this con-
text the role of building up and improving existing plans, respectively. In this situation cost
may be negative as well as positive, a situation which will be analyzed later in this chapter.

Without time dependency, there are several papers dealing with multicriteria shortest
path problems. Hansen [Han80] introduced ten different types of bicriteria path problems.
He also showed that one can construct a specific static network in which the number of
Pareto optimal paths grows exponentially with the number of nodes in the network. Mar-
tins [Mar84| developed a multiple labeling version of Djikstra’s label setting algorithm to
generate all Pareto shortest paths from the source node to every other node in the network

89
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(i.e., one-to-all shortest paths). Corley and Moon [CM85] used dynamic programming to
solve the multicriteria shortest path problem. Brumbaugh-Smith and Shier [BSS89] pro-
posed a label correcting with a multiple labeling for the bicriteria shortest path problem.
They also proposed a linear time algorithm for merging two Pareto optimal sets.

On the other hand, there are various papers, dealing with time dependency, but with
a single objective function. Here, time-dependent dynamic shortest path problems can be
classified into fastest path and minimum cost dynamic path problems. In a fastest path
problem, the cost of an arc is the travel time of that arc. Its objective is then to seek for
paths having minimum length with respect to time-dependent travel times. A minimum
cost dynamic path problem seeks for dynamic paths having minimum length with respect to
the cost while considering the time needed to travel from one node to another. Hence, the
fastest path problem is a particular case of the minimum cost dynamic path problem. The
first paper dealing with a fastest path problem appears to be by Cooke and Halsey [CH66].
They extended Bellman’s optimality principle (Bellman [Bel58]) to obtain fastest paths
from every node in the network to one destination (i.e., sink) node, i.e., all-to-one fastest
paths. The travel times on arcs are defined to have positive integer values for every time
period taken from a time-grid {ty,to+1,... ,to+M}. Here, the integer number M must be
chosen in such a way that the problem is feasible. Dreyfus [Dre69] proposed a modification
of Djikstra’s static shortest path algorithm to calculate a fastest path between two nodes
for a given departure time. His algorithm works well only for the FIFO (First-In First-Out)
network (see Definition 2.4). The complexity of Dreyfus’s algorithm is the same as that of
Djikstra. Ziliaskopoulos and Mahmassani [ZM93] proposed label-correcting algorithms to
calculate both all-to-one fastest paths and minimum cost dynamic paths for every possible
departure times. Their algorithms do not require a FIFO assumption. Similar algorithms
were proposed by Wardell and Ziliaskopoulos [WZ00]. Chabini [Cha98] proposed backward
label setting algorithms in which the labeling is done in a decreasing manner with respect
to the time period. His algorithms solve both fastest and minimum cost dynamic paths for
all possible departure times without FIFO requirement. In a continuous-time environment,
many results on time-dependent dynamic shortest paths (i.e., fastest path or minimum cost
dynamic path) can be found in the literature, including the results from Orda and Rom
[OR90, OR91], Philpott and Mees [PM93], and Philpott [Phi94]).

In the literature, multicriteria dynamic shortest path problems, as combination of the
above two problem classes, have attained relatively little attention. Kostreva and Wiecek
[KW93] generalized the result of Cooke and Halsey [CHG66] to the multicriteria case. The
cost function of an arc is assumed to be positive vector valued function of time and may
be discontinuous. A backward dynamic programming is developed to generate all Pareto
minimum cost dynamic paths leading from every node in the network to the sink node.
A forward dynamic programming is also discussed by these authors to generate all Pareto
minimum cost dynamic paths from the source to every other nodes in the network un-
der FIFO and nondecreasing arc cost assumptions. Getachew, Kostreva, and Lancaster
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[GKLO00] generalized the results of Kostreva and Wiecek by replacing their nondecreas-
ing arc cost assumption by lower and upper bounds of the cost (for the forward dynamic
programming) and by relaxing the time grid assumption. To the best of our knowledge,
these two papers are the only ones which have been published in the area of multicriteria
time-dependent shortest path problems.

In this chapter we will develop two algorithms solving TdBiDSP. While the first algorithm
deals only with the nonnegative attributes, the second one allows arcs of the network to
have negative travel times and costs. The possibility to wait (or park) at a node before
departing on an outgoing arc, in order to keep the total cost low, is also taken into account.
In the next section, we formally introduce TdBiDSP. In Section 6.2 we classify the problem
as an NP-hard problem, show that Belman’s optimality principle holds for the all-to-one
problem, but not the one-to-all problem and introduce the concept of negative dynamic
cycles. Section 6.3 deals with the necessary data structures for the labels, which take into
consideration the time and bicriteria environment. In Section 6.4 we assume nonnegative
attributes, work out details of the algorithm of Kostreva and Wiecek [KW93| and present a
new, label setting algorithm. The non-negativity assumption is dropped in the subsequent
Section 6.5, where a label correcting algorithm is developed which can be used to detect
negative dynamic cycles, or solve TdBiDSP if such cycles do not exist. Computational
results on several examples based on randomly generated networks in Section 6.6 conclude
this chapter.

6.1 Problem Formulation

A discrete-time dependent network G = (N, A, T) is a directed graph, where N is a set
of nodes, A is a set of directed arcs, and T is a finite time horizon of interest discretized
into the set {0,...,7}. We denote by n and m the cardinality of N and A, respectively.
Moreover, it is assumed that G has a single sink d. Each arc (i, ) carries a travel time
function \;;(t) with

A Ax{0,..., T} = Z
1

and a cost (vector) function ( 22 ) of two criteria components with

A Ax{0,..., T} >R k=1,2

where the superscript k corresponds to the cost function of criteria k. The travel time
Aij(t) follows the frozen arc model (see Section 2.1).

We denote by w;(t) the maximum allowable waiting time at node ¢ starting at time t.
Here, we assume that the maximum waiting time at every node and at every time has a
memory-less property, i.e., the maximum waiting time is decided by the current time, not



92 Chapter 6. Time-Dependent Bicriteria Dynamic Shortest Path Problems

t) =3, wi(t+1):=3,w(t+2) :=0,w;(t+3) ==L wi(t+4) =1
w;i(t) :=0,w;(t +1) :=1,wi(t+2):=3,w;(t+3) :=0,w;(t+4):=0

g

t t+1 t+2 t+3 t+4 t+5
nodei (O

odej (O OO0

Figure 6.1: Memory-less property of maximum waiting time

by the earlier time or even the arrival time at the node. Figure 6.1 illustrates the memory-
less property of a maximum waiting time. This memory-less property implies that it is
enough for w;(t) to have value either zero or one, i.e.,

w;(t) €{0,1}, ie N, t € {0,...,T}

Furthermore, a time-dependent holding cost attribute h;(¢) can be associated with the node
1 to define a penalty for waiting one time unit at node ¢ at time ¢.

We define a dynamic path and a dynamic cycle, respectively, as follows.

Definition 6.1 (Dynamic path) A dynamic j; — j; path Pj,;,(t1) is a sequence of node-
time pairs (NTPs) from the node j; to the node j; that is ready at node j; at time t; €
{0,...,T}, as given by

lejl (tl) = {jl(tl,tl), - ,jq(tq,tq), - ,jl(tl,tl)}, tq, t’q € {0, - ,T},
g=1,...,1 (6.1)
where ty41 = t; + )\jqjqﬂ(t;), q=1,...,1—1 and define t; = t,.
For any NTP jq(tq,t:]), the first time parameter t, denotes the ready time at node j,, and

the second one t; denotes the departure time from node j,. A ready time t, also defines the
arrival ttme at node j, from the previous node jo—1, for q=2,... 1.

Figure 6.1 illustrates Definition 6.1.

If t € {0,...,T} is a ready time of node 7 and t is a departing time from node i with
t > t, then the corresponding total waiting cost at node 4, denoted by H;(t,t ), is given by

tl
Ht,t)= > h(t")
' =t+1
We denote by P;,;,(t1) the set of all paths from node j; with ready time ¢; € {0,...,T}
and reach the node j; within the time horizon 7. We also denote the union of P;,  (¢1) for
all 11 € {0, cen ,T} by ]lejl'
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tq+1

|
t e ()
q q lysr tq+7‘1q1q+1 q
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Figure 6.2: Dynamic path on the time-expanded graph

Definition 6.2 The length of a dynamic path Pj,;,(t1) with respect to the travel times and
waiting times is given by

)\(lejl (tl)) = t; -t (6'2)

Definition 6.3 (Dynamic cycle) A dynamic j; — j; path P;,j,(t1) defined by (6.1) is a
dynamic cycle if j1 = ji, th =t; and t, = t;.

It should be noted that a dynamic cycle may exist, since negative travel times are allowed.

Moreover, a dynamic j; —j; path Pj,; (¢1) is called simple if it does not contain any dynamic
cycle.

1
To define the cost of a path, it is useful to define the following operation. For ( 52 ) € R?

and e € R define
1 1
g _ g +e
<92)®6_(92+6> (63)

Let ¢ : Pj,;, — R%. The total cost of a j; — j; path Pjj,(t1) € P;,;(t1) is defined by
(AP ) ) Z S~ (G () ,
C(Pju'z (tl)) = ( 2 lejz (tl)) - ; c?qjq“(t:z) @ qu (tq’ tq) (6-4)

Using this cost definition, we give a definition of a negative dynamic cycle as follows.

Definition 6.4 (Negative dynamic cycle) A dynamic cycle P;,;,(t1) is a negative dy-
namic cycle if at least one component of c(P;,;,(t1)) has a negative value.
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For every node i € N and every ready time t € {0,...,T}, we want to find a shortest
dynamic path from ¢ to a single sink d with respect to the cost vector ¢ and the holding cost
h. To derive the linear programming formulation of this problem we define the following

objective function CkZT as

ko= ci(W)zy(t) + ) D wa(Dh(t), k=1,2 (6.5)

=0 (Z,j)EA {tlt'—l—)\”(t’):t} t=0 ZEN—{d}

The supply vector q is defined by

1 , i€ N—-{d}, te{0,...,T}
g(t)=¢ —(n-1)(T+1) ,i=d, t=T
0 , otherwise

The linear programming formulation of TdBiDSP is given as follows.

(TdBiDSP) min ckET, Vk=1,2 (6.6)

Subject to

> 2 ml)-
(GAEA{t ' +2:(t' )=t}
Z zij(t) = 2iu(t) —2u(t — 1) — q(?),
{(17.7) : (’i,j)EA, t+)‘ij(t)ST}
i€N, t=0,...,T (6.7)
t=0,...,T (6.8)

In (6.8), it is assumed that a;(t) = M for every node i € N — {d} and for every time
t € {0,...,T} in which M is a very big number. Therefore if w;(t) = 1, then the holdover
flow x;;(t) is unbounded. Moreover, it is assumed that the arc capacity u;;(t) = oo for
every arc (4,j) € A and for every time ¢t € {0,...,T}.

In general, there exists no dynamic flow that simultaneously minimizes csz for both

k = 1,2, i.e., no dynamic path Pj(t) that simultaneously minimizes c*(P;4(t)) for both
k = 1,2. Nevertheless a privileged set of paths called the set of Pareto optimal (efficient
or nondominated ) paths can be determined. To describe a Pareto optimal path, we need
the notion of a vector ordering.

1 1

Definition 6.5 (Vector ordering) Let z; = ( ; ) and zo = ( z% ) be two vectors in
1 2

R2.
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o 2 = 2 if and only if 2F = 25 for all k =1,2.
o 21 < 2 if and only if 28 < 2% for all k =1,2.

o 21 < 2o if and only if 2F < 25 for all k = 1,2 and there exists k € {1,2} such that
ko Lk
27 < 25.

Definition 6.6 (Pareto optimal path and minimal complete set)

(a) Let Pyy(t) and Py(t) be two paths in Pig(t). We say Pig(t) dominates Py(t) if and
only if

7

c(Pia(t)) < c(Pig(t))

(b) A path Py(t) € Piy(t) is called Pareto optimal (PO) or nondominated if there is no
other path P, (t) € Piy(t) dominating Piy(t).

(c) Two PO-paths Piy(t) and Pyy(t) in Piy(t) are said equivalent if and only if c(P;,(t)) =
c(Piq(t)). Otherwise, they are said nonequivalent.

(d) A complete set PO(Piy(t)) C Pig(t) of PO-paths is a set such that any path Pi(t) ¢
PO(Py4(t)) is either dominated or equivalent to at least one PO-path P;y(t) € PO(Py(t)).

(e) A complete set is minimal if and only if it does not have two equivalent PO-paths.
We then denote by PO(Piy(t)) the minimal complete set of all Pareto optimal paths
from node i to the sink node d with ready time t € {0,... ,T} at node i.

We denote the problem of finding PO(P;(t)) for every node i € N (all-to-one) and for
every ready time t € {0,...,7T} by

(i, d) / (A(t), w(t), c(t), h(t) / PO(P)

Our objective is to develop some algorithms to solve this problem.

6.2 Problem Characteristics

6.2.1 Complexity

Looking at the problem complexity, as in the case of bicriterion static path problem (see
Hansen [Han80]), Example 6.1 shows a network with time dependent attributes in which
the number of PO-paths grows exponentially with the number of nodes in the network.
Therefore, in the worst case, this problem is intractable and any algorithm for generating
all Pareto dynamic paths is thus doomed to an exponential computation time.
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travel time

a /@

[N
=

Figure 6.3: Example network with exponential number of Pareto optimal paths

Example 6.1
Consider a network shown in Figure 6.3.
We assign the following two cost criteria to each arc of the network.

([ 2(t+1) o g
(Qi_l(t—i—l) ,if =741 and 7 is odd
cij(t) = g Jdfj=i+1landiiseven ; te€{0,...,T}
271 (t+1) e .
\ < 2(t + 1) ,if j =14+ 2 and 7 is odd

Let us assume that w;(t) = 0 for every node i € N and every time t € {0,...,T}, i.e.,
no waiting is allowed for every node. By this cost definition, there are 2" =8 PO-paths
from node 1 to node 7 for every ready time 0 <ty < T — 6, as shown in Table 6.1. O

6.2.2 Principle of Optimality

In the case of static shortest path problems, the principle of optimality says that the
subsets of an optimal solution are also optimal (see e.g., Bellman [Bel58]). Concerning
the multicriteria dynamic shortest path problem, we formalize the principle optimality as
follows.

Definition 6.7 (Principle of optimality in a forward direction)
Let P,j(t) € PO(Ps;(t)). The forward principle of optimality holds for Py;(t) if and only if
for each intermediate node i of Py;(t), the sub-path Py;(t) is also in PO(Pg(t)).

Definition 6.8 (Principle of optimality in a backward direction)
Let Pyy(t) € PO(Piq(t)). The backward principle of optimality holds for Piy(t) if and only
if for each intermediate NTP j(t;, t;) of Pi(t), the sub-path Pjq(t;) is also in PO(P;4(t;)).

When waiting at the nodes is allowed, a similar FIFO property can be imposed on arc
costs c.
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| Pyr(ty), 0<t, <T —6 c(Pir(to) |
186 + 42t
93 4 21¢,

{1(to,t0), 2(to + 1,80 + 1), 3(to + 2,20 + 2), 4(to + 3,t0 + 3),

5(to + 4,t0 +4),6(to + 5, t0 +5)}, 7(to + 6,20 + 6)}
{1(to, to), 2(to + 1,80 + 1), 3(to + 2, to + 2),

4(to+ 3,19+ 3),5(tg + 4,10 +4), 7(to + 6,19 + 6)}
{1(to, to), 2(to + 1,to + 1), 3(to + 2, to + 2),

5(to +4,to+4),7(tg + 6,t0 + 6)}

()
(%)
(e )
{1(to, o), 2(t0 + 1,10 + 1), 3(to + 2, t0 + 2), ( 174 + 38t )
(62200 )
(620 )
(i)

106 + 26ty
173 + 37t

94 + 22t,
185 + 41t,

105 + 25t

5(to +4,to +4),6(to + 5,t0 + 5), 7(to + 6,10 + 6) }

{1(to, to), 3(to + 2,t0 + 2),5(to + 4, to + 4),
6(to + b,to + 5),7(to + 6,20 + 6)}

{1(to, t0), 3(to + 2,t0 + 2),5(to + 4, to + 4),
T(to + 6,19 +6)}

{1(to, t0), 3(to + 2, to + 2),4(to + 3, to + 3),
5(to + 4,t0 +4),7(to + 6,15+ 6)}

{1(to, t0), 3(to + 2, %0 + 2), 4(to + 3,10 + 3), ( 19845:2421t20 )
5(to + 4,10 +4),6(to + 5,t0 + 5), 7(to + 6,10 + 6) }

173 + 37ty
106 + 26ty

93 + 21ty
186 + 42ty

105 + 25t
174 + 38ty

Table 6.1: Pareto optimal paths and their associated values of Example 6.1

Definition 6.9 (e.g., Pallottino and Scutella [PS97] ) An arc (i,)) is said to have a
Cost Consistency (CC) property if leaving node i earlier along (i,j) does not cost more
than leaving i later, i.e.,

’

¢
) <)+ D h(t —1), VE<t, k=12
' =t41
A dynamic network G = (N, A, T) is said to be a CC network when all of its arcs have CC
property.
The following theorem shows that the backward principle of optimality holds, even if FIFO
or cost consistency assumptions do not hold.

Theorem 6.1 (Kostreva and Wiecek [KW93]) Let G = (N, A, T) be a dynamic net-
work with nonnegative costs and travel times. The backward principle of optimality holds
for any Pareto optimal path in G.
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Proof:
Let Pyy(t) € PO(Piy(t)) with j(t;, t;) € P,y(t). Assume that Pj4(t;) C Pia(t) is not a Pareto
optimal, i.e., there exists some path P]'-d(tj) such that
c(Piy(t;)) < e(Pia(t;)) (6.9)

Let P;;(t) be the subpath of P,(t). By concatenating P;;(t) with Pj4(t;) and P]{d(tj), we
obtain two paths Pi(t) and Pj,(t) such that their total cost are

c(Pua(t)) = c(Py(t)) + c(Pja(t;))
and

c(Pa(t)) = c(Py (1)) + c(Piq(t;)
, respectively. Condition (6.9) implies

c(Pia(t)) < c(Pa(t))

contradicting the fact that P,;(t) is a Pareto optimal path. Hence, P;4(t;) must be a Pareto
optimal path. |

In contrast, one can build a dynamic network, even if FIFO and CC properties are satisfied,
such that the forward principle of optimality does not hold.

Example 6.2

Consider a dynamic network G = (N, A,T = 8) shown in Figure 6.4. Node 0 is the source
node and node 3 is the sink node. Clearly each arc in G has a FIFO property and every
cost component has a CC property. The path Py3(0) = {0(0,0),2(1,1),3(2,2)} is a Pareto
optimal path from node 0 to node 3 with ready time ¢t = 0. Its total cost is

9
(ra(o) = () )
This path dominates Py, (0) = {0(0,0),1(3,3),2(4,4), 3(5,5)} which has total cost

(o) = 1 )

The path Py,(0) = {0(0,0),1(3,3),2(4,4)} is a Pareto optimal path from node 0 to node
2 with ready time ¢ = 0. Its total cost is

, 2
(o) = ( 3 )
This path dominates Py, (0) = {0(0,0),2(1,1)} which has total cost

(Pu(®) = ( ¢ )

We see that Pyy(0) is a subset of a Pareto optimal path Py3(0), but it is dominated. Hence,
the forward principle of optimality does not hold. O
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)\01(75) = 3, t Z 0 3 )\02(75) = )\12(75) = )\Qg(t) = 1, t Z 0
wi(t)y=0, 1€ N, t>0

cor(t) = c2(t) = (

Figure 6.4: A network for Example 6.2

If the principle of optimality is not valid, optimal subpaths as partial results can not be
used to obtain the optimal paths. Therefore, one cannot use the forward label setting-type
algorithm to find Pareto optimal paths. However, Theorem 6.1 guarantees that we can use
the label setting principles in a backward direction to find the all-to-one Pareto optimal
paths. This will be worked out in more detail in Section 6.4.

6.2.3 Negative Dynamic Cycle

We allow in this subsection positive as well as negative travel times. In case of positive travel
times, a dynamic path may pass through the same node several times but with increasing
arrival times (i.e., the path must pass through different node-time pairs). Therefore, there
will be no negative dynamic cycle. Furthermore, since T is finite, the cost of this path is
also finite, disregarding the fact that the cost may also be negative. But, if the network
has negative travel times, then there may exist some negative dynamic cycles within 7'.
The following example illustrates these phenomena.

Example 6.3

Consider a network shown in Figure 6.5.

Let T'= 17 and assume that no waiting is allowed. Consider a dynamic path P;7(0) from
node 1 to node 7 with ready time ¢y = 0.

Pi;(0) = {1(0,0),2(1,1),4(4,4),6(5,5),5(6,6),2(7,7),4(10, 10),
6(11,11),5(12,12),2(13,13),4(16,16), 7(17,17)}

The total cost of path P;7(0) is

(i) = ( 5 )
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Figure 6.5: A network for Example 6.3

This path is a PO-path and passes through the same nodes 2 and 4 three times, nodes 5
and 6 two times, with different departure and arrival times. Hence, P;7(0) does not contain
any dynamic cycle. Other Pareto optimal paths in Py7(0) are

7

P.(0) = {1(0,0),2(1,1),4(4,4), 3(6,6),2(7,7),4(10, 10), 3(12, 12),
2(13,13), 4(16, 16), 7(17,17)}

with value ¢(P},(0)) = ( —51 ) and

11

P.(0) = {1(0,0),2(1,1),4(4,4), 3(6,6),2(7,7),4(10,10),6(11,11),
5(12,12),2(13, 13), 4(16, 16), 7(17,17)}
with value ¢(P};(0)) = ( _218 )

Now, if we change the travel time of arcs (4,6),(6,5),(5,2) to -1, then for any ¢ with
t,t+3€{0,...,T} we will obtain the following negative dynamic cycle

{2(¢,1),4(t + 3,t + 3),6(t + 2,t + 2),5(t + 1,t + 1),2(¢, )}

) -7 0
Wlthcost<_4><<0> O

6.3 Label Structure

We denote by ;(t) a label associated with node i at time ¢ with the following components
(see Figure 6.6) :

e a tuple of reals 7!, 72, corresponding to the total cost with respect to the two cost
criteria,
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e a tuple of integers ¢,cqay, taepart, COrresponding to the ready time and departure time,
respectively,

e a pointer succ_ptr points to the Pareto optimal label of the successor node.

These tuple of reals, tuple of integers, and pointer, are then called the cost component,
time component, and successor pointer, respectively, of the label m;(t). Hence, m;(t) is
represented by

71'1
T (t) = (( 2 ) ) (treadya tdepart); SUCC—ptT) (610)

We denote the cost component of label 7;(t) by cost(m;(t)). The need to store the time
components makes the structure of a label 7;(¢) more complex than that of the static path
problem.

We denote the set of labels of node i at time ¢ by II;(¢). This set is represented as a
singly linked list having | IT;(¢) | cells and each cell corresponds to the label m;(t) € I1;(¢).
Each cell will have six fields as the amount of information we wish to store. Five data
fields will store the five components of 7;(¢) and the sixth field will store a pointer to the
next cell in the list. We denote by next_ptr the pointer to the next cell in the list. If a cell
happens to be the last cell in the list, by convention we set its link to (.

Example 6.4
Consider Example 6.3. Figure 6.6 shows a representation of IIg(11). O

|l‘l,-(z) -|—-| | @

tready | Ldepart

succ_ ptr | next_ ptr-|—>

[mavf—{-s[3Juefo| [ » |
]
oS oo w] [+l [wlul + T » ]
]

e T v ]

Figure 6.6: Label structure

6.4 Algorithms for All Ready Times with Nonnega-
tive Attributes

In this section, we first discuss the algorithm of Kostreva and Wiecek [KW93]. Next, we
will discuss our proposed backward label setting algorithm. With nonnegative attributes,
we mean the cost components may have zero or positive value, but the travel time must
be positive.
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6.4.1 Backward Dynamic Programming

Kostreva and Wiecek [KW93] developed a backward dynamic programming approach to
generate all Pareto optimal paths leading from every node in the network to the sink node.
In order to update the set of Pareto labels of node i at time t.eqqy € {0,...,T}, the
algorithm considers the labels of all node j with (i,j) € A at every torrivar € {0,...,T}
in which t4rivat = tdepart + Aij(tdepart). The value of t4epqre is determined by the value of
waiting time at node ¢ starting at ¢,¢qqy. The backward dynamic programming in [KW93]
does not consider the waiting time, but it can be easily extended to that case. Here,
instead of modeling the waiting by a self-loop as suggested by the authors, we consider it
directly in the labeling process. Since it is assumed that the maximum waiting time has a
memory-less property, the value of ¢4epqr+ Tuns over all possible departure times in the set
Depart;(treqdy) defined by

Departi (t'ready) = {tready} U
{t' : treagy +1 <t <t <T with
t—1
[ wt") >0 and w(t) =0} (6.11)
t”:tready

The backward dynamic programming approach is summarized as follows. For every set
I1;(t) of labels, we denote by VMIN(II;(t)) the vector minimization over the associated
cost components of all members of the label set IL;(¢). The vector minimization process
yields the set of labels with associated Pareto optimal costs. Let II; (tready)(l) be the set of
labels of all Pareto optimal 7 — d paths with ready time t,¢qqy Of at most | arcs. The set
Hi(tready)(l“) for any tyeqay € {0,...,T} is obtained by

VMIN (Hj (tarrival)(l) + Cij (tdepm“?f)e9
Hi(treadyatdepart))a ie€N— {d} (6]_2)

Hi(tready)(l+1) = 0 '
{ (( 0 > ; (treadyatready); 0) }7 i=d

Where tarrival = tdepart + )\z] (tdepa/rt)a fOI’ al] tdepart € Departi (t'ready)-
The operation

Hj (tar'rival) ® + Cij (tdepart) ® Hz (treadya tdepart)

sums the associated cost component of every label in II; (tarrivar)® With the vector Cij (tdepart)
® H;(tready, taepart). This operation also sets the associated time component of every la-
bel in the set IT;(tready) Y t0 (tready, taepart) and the associated successor pointer to node
j. The iteration continues until II;(t,eqqy)) converges to IL;(treqqy) for all i € N and
tready € {0,...,T}. The complete algorithm is summarized in Algorithm 6.1.
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Algorithm 6.1 (Kostreva and Wiecek [KW93])

INPUT  Network G = (N, A,T), w(t),c(t), and h(t).
OUTPUT PO(Py(t), Vi€ N, Vte {0,...,T}.
0 Modify the cost vector ¢;;(t), Vt € {0,...,T} as follows.
1
( zygg > 4N LT
cij(t) = v ; V(i,5) € A
,t+ )\ij (t) >T
1 Assign the initial label to each node for all ¢t € {0,... ,T}
0 :
I(1)® = {<( 0 ) ! (t’t)’@>} =
0 , otherwise
Set [ := 0.
2 Calculate the new set II;(trcqdy) Y, Vi € N, Vteady € {0,...,T},
as determined by (6.12).
3 If T (treaay ) Y = Mi(tready)®, Vi € N, Vtreqay € {0,..., T}, then
go to Step 4. Otherwise, set [ := 1+ 1 and go to Step 2.
4 For any ¢ € N and any t € {0,...,T}, output PO(P;4(t)) as obtained
by forwardtracking the successor pointers of II;(t).
Terminate the algorithm.

To solve the vector minimization problem in Step 2 of Algorithm 6.1, we sort the set
of labels Hj(tamval)(l) + Cij(taepart) ® Hi(treadys taepart) according to the first criteria. If we
denote the cardinality of this set of labels by b, then the sorting process can be done in
O(b log b) by applying mergesort technique. Maintaining the set of labels as a linked list
will give an advantage to the implementation of mergesort technique, since there will be
no demand for an extra space O(b) as if this sorting technique is applied on arrays. On
the set of sorted labels (with respect to the first criteria), the minimum vectors can be
obtained in O(b). Therefore, the vector minimization problem in Step 2 of Algorithm 6.1
can be solved in O(b log b).

6.4.2 Backward Label Setting Algorithm

Since all data are nonnegative, no negative dynamic cycle will exist. We therefore in this
subsection, extend the idea of Djikstra’s label setting static shortest path. Theorem 6.1
guarantees that the labeling process can be done in a backward direction from the sink node
d to all other nodes in the network.

We consider, over the set of all labels associated with each node 7 € N at each ready time
tready € {0, ..., T}, the set of temporary and permanent labels denoted by I1; (¢,eqdy ) 1mp and
I1; (tready) prm, respectively. The set II;(fready)prm contains only labels having nonequivalent
Pareto optimal cost components. The corresponding dynamic paths from this node ¢ with
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ready time %44, can be found by tracing its successor pointers (i.e., succ_ptr). At any
intermediate step of the algorithm, the permanent labels remain unchanged, but the tem-
porary labels can be changed or deleted. Initially, for every node ¢ and every time t,¢qqy,
we define IL;(¢ready ) prm Dy an empty set. Since we assume that no arc leaves the sink node
d, we assign the sink node d at any time t,eq4y € {0,...,T}, a temporary label having cost
component zero, and every other node 7 an empty set, i.e.,

0 .
Hi (tready)tmp = { (( 0 ) ; (treadya tready); @) } , 1= d ,
0

, otherwise
tready € {0,...,T} (6.13)

At each iteration, a label is removed from the set of temporary labels and put into the set
of permanent labels. This means that a label is set permanently in each iteration. Every
label 7;(tready) in ;(¢ready)prm determines a dynamic path from i with ready time ¢,cqqy
that contains only node-time pairs j'(tmadyj,,tdepmj,) having labels in IL; (treadyj, )prm as

internal nodes.

Suppose that a label 7} (tarrivat) € ILj(tarrivat)tmp is chosen as the pivot label to be put
in Hj (ta’l"l"i’l)al)prm, ie.,

Hj (tarrival)prm = Hj (tarrival)prm U {77-; (tarrival)}

This pivot label is then used to generate the new labels (as candidate of temporary labels)
for all nodes ¢ at time ?,¢q4, those can reach node j at time t4rripar. Let 7;(treqay) be the
candidate for the temporary label of a node 7 at ready time t,¢q4,. We define

7Ari (tready) = 7T;'( (tdepart + )‘ij (tdepart)) + (Cij (tdepart) ® Hz (treadya tdepart))a
(’i, ]) € A7 tdepart + )\ij (tdepart) = tarrivala
tdepart € DepaTti (tready) (614)

This label 7;(¢;eqqy) is then merged with II;(¢,eqdy)tmp- Executing this step means deleting
all labels representing dominated dynamic paths from ¢ with ready time ?,¢.q4, to the sink.
The algorithm stops when I (¢reqdy ) tmp = 0 for all i € N and all ¢,¢04y € {0,...,T}.

Let us define the following set operation Merge to obtain the minimal complete set of
B; U B, with B; and B, two set of labels. We denote by cost(v) the cost component of
v € B; U By. For any B; and By we define

Merge(By,By) = ByUBy—{v € B;UBy : cost(u) < cost(v) for some
u # v with u,v € B; U By} (6.15)

where the relation < is given by Definition 6.5. This merge operation includes the process of
deleting the corresponding time and pointer components of the dominated cost components.
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By (6.15), Merge(By, Bs) contains only nonequivalent Pareto optimal labels in B; U Bs.
Since the set {7;(treqay)} is a singleton, it is obvious that Merge({7;(tready) }> i (tready) tmp)
can be done in O(| IL;(¢ready ) imp |) time.

The following theorem implies that the labeling process of 7;(¢) can be done in a decreasing
order of time.

Theorem 6.2 The labeling process of m;(tready) depends on the label at time t > ready Ut
does not depend on the labels at the lower time period.

Proof:
Since A (taepart) > 0, (6.14) includes only 7;(tarrivat) fOr tarrivar > tdepart- M

Corollary 6.1 The labeling process can be done in a decreasing order of time, i.e., starting
from time treqqy =T down to 0.

This corollary implies that the algorithm is started by processing the set II;(treqdy — 1)tmyp
for any i € N—{d} only when IT;(¢,eqdy)tmp = 0 for all j € N and ¢,¢q4y € {1,...,T}. Con-
sequently, the selection of a pivot label 7} (tarrivat) € ILj(farrivat)tmp can be done arbitrarily,
as stated by the following proposition.

Proposition 6.1 An arbitrary selection rule can be applied to choose a pivot label 75 (tarrival)
from the set IL;(tarrivat)tmp- In effect, each member of IL;(t)prm for any t € {0,... ,T} de-
fines a Pareto optimal 7 — d dynamic path with ready time t.

Proof:

The merging process (6.15) implies that IL,(¢)sm, contains only nonequivalent Pareto op-
timal labels. Furthermore, Corollary 6.1 implies that during the labeling process at time
t, no additional label is inserted into or deleted from II;(t)sy,. The members of I1;(¢)¢m,
are moved to I1;(¢),.m one by one and the labeling process at time ¢ finishes when II; (%),
is empty. Therefore, an arbitrary selection rule for the pivot label can be applied and
guarantees that II;(¢),.» contains only nonequivalent Pareto optimal labels. |

This proposition implies that 7 (farrivar) can be chosen in a constant time O(1) by e.g.,
maintaining the set I1;({arrival)tmp as a linked list and take U (tarrivar) from the head of this
list.

In order to do labeling in a decreasing order of time, we need to determine

° Arrivali_jl(tamml), the set of all possible departure times in {0,...,7} along arc
(i,7) € A arriving at node j at time tgripar, 1-€-.,

Arrivaly (tarriva) = {t 1 € 4+ Xg(t) = tarriva} (6.16)
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o Depart; (tgepart), the set of all possible ready times in {0, ... ,T} at node i € N —{d}
departing from node 7 at time Zgepare, 1.6,

Depart; (tgepars) = {t : 0<t <t < tgepart With
tdepartfl

I w)>0andw(t—1)=0} (6.17)

1"

' =t
The set Arrivaligl(ta,«mal) may be empty. But, the set Depart; ' (tgepars) has cardinality at
least one, since tgepere € {0,..., T} itself must be in this set. These two inverse sets can
be determined in a preprocessing step before the labeling process. The alternative is to
compute these inverse sets as needed while employing the labeling algorithm.

The proposed algorithm to find the minimal complete set of all PO-paths from every
node i € N — {d} in the network to the sink d and for all ready times ¢ € {0,...,T} is
summarized in Algorithm 6.2. At the end of algorithm there are as many permanent labels
associated with node ¢ € N and ready time ¢t € {0,...,7} as the number of nonequivalent
Pareto optimal dynamic paths from ¢ with ready time ¢ to the sink node. The correctness
of Algorithm 6.2 is shown by the following proposition.

Proposition 6.2 Algorithm 6.2 generates PO(P;4(t)) for any node i € N and ready time
te{0,...,T}.

Proof:

By (6.15), II;(%)4mp contains only nonequivalent Pareto optimal labels. The set II;(%)m,
will be emptied and its content is moved into II;(¢)prm during the labeling process at time
t. Theorem 6.2 and Proposition 6.1 imply that II;(¢),rm is a minimal complete set. Fur-
thermore, in step 2, all possible candidates for the Pareto optimal labels of any predecessor
nodes 7 € N are tested from all permanent Pareto optimal labels of the successor node
j € N with (4,j) € A. This is correct since by Theorem 6.1, no Pareto optimal path can
be constructed from a dominated sub-path. |

Later in Section 6.6 we compare the performance of Algorithms 6.1 and 6.2. The following
example illustrates Algorithm 6.2.

Example 6.5

Consider a network in Figure 6.7. Node 5 is the sink node. We define the time horizon T'
equals to eight time units. The maximum waiting w, cost data corresponding to the travel
cost ¢ of two criteria and waiting cost h for every arc and for every time ¢ in {0,...,T}
are given below.

m@z(})JSS;cMﬂz(?)tS&cﬂﬂz(g)tSS
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Algorithm 6.2

INPUT  Network G = (N, A,T), w(t),c(t), and h(t).
OUTPUT PO(Py(t)), Vie N, Vte {0,...,T}.

0 Modify the cost vector ¢;;(t), Vt € {0,...,T} as follows.
1
< Zzzjgg ) 4+ Aij(t) <T
est)=q il : V(i,j) € A

4+ (t) > T

1 Define the initial set of temporary labels to every node 1 € N and
for all t € {0,...,T} as

IL; () tmp ;:{ {((@8 ) i (61) 5 @)} ji=d

, otherwise
Assign the empty set as the initial set of permanent labels to
every node i € N and for all t € {0,...,T}, i.e., ILi(t) prm = 0.
2 For t4rrivar =T down to 0 do
{
While UieN Hz (tarTival)tmp 7£ @ do
{ Select a pivot label m; (tarrivar) from ;e y Mi(tarrivat)emp
Remove 77; (tarrival) from Hj (tarrz'val)tmp to Hj (tarrival)prm-
For all (¢,5) € A do
{ For each tgepart € Arrivali_jl(tawiwl)
{For each tyreqay € Departi_l(tdepwt)
{ 5 (tready) = 7"'; (tarrz’val) + (Cij (tdepart) ® H; (treadya tdepart))
Hz' (tready)tmp = Merge (Hz (tready)tmp; {'fri(tready)})
}
}
}
}
}
3 For any i € N and any t € {0,...,T}, the set PO(IP;4(t)) is obtained
by forwardtracking the successor pointers of II;(t)prm -
Terminate the algorithm.

do
do

2) <3 3) <3
)= E%% ,t>3 el = Eé) ,t>3 |
czg(t):<}>,t§8,024(t):<é>,t<8,034(t):<§),‘v’t<8,
2Y) <o (4) <3
cas(t) = Ezlg e ;ocas(t) = <§> e
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travel time )

/

2 ,t<3

)‘23(t):{ 1 ,t>3

Figure 6.7: Network for Example 6.5

1 ,i=23,4andt>4

Hl(t, t') = (t’ - t)a Vt’ =1 ; ’U}Z(t) = { 0 otherwise

The final label II;(t),., for every node i € N and for every time ¢t € {0,...,T} are
reported in Table 6.2 and Table 6.3.

The Pareto optimal dynamic paths from node 0 to node 5 that are ready to leave node 0
at time £ = 0 are

{0(0,0),2(2,2), 3(4,4), 5(6,6)}  with value ( ! >
{0(0,0),2(2,2),3(3,3), 4(4,4),5(5,5)}  with value ( 2 )

Hence,

PO(Pg(0)) = {{0(0,0),2(2,2),3(4,4),5(6,6)},{0(0,0),2(2,2),
3(3,3),4(4,4),5(5,5)} }

We see from Table 6.3 that there is no path which can leave node 0 after time ¢t = 5 and
arrive at node 5 in time horizon 7' = 8 or earlier. U

6.5 Algorithm for All Ready Times with Arbitrary
Attributes

When negative travel times and costs are allowed, Theorem 6.2 is no longer valid. More-
over, as shown in Example 6.3, there may exist some negative dynamic cycles within 7.
Consequently, dynamic shortest path algorithms must be able to detect negative dynamic
cycles.

We describe here an algorithm based on the label correcting technique. Inside we use
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Node IL;(8) prm

I I (6),r
s {0 )ieo0)f | (o )sem)} | {((o):6om0))
N (O EZID (TED)
3 0 0 {((4);(6,6);5(8)),

(( 23) ;(6,6);41(7))}

2 ] 0 {(( ; ) ;(6,6);41(7))}
| 0 0 {((3):e00m)}
0 7 7 7

Node I (5) prm i(4)prm i(3)prm

5

Table 6.2: The label set I1;(t),m for every node i € N and for every time ¢ € {0,...,T}
of Example 6.5

a scan eligible (SE) list to store the nodes which have potential of improving the labels of
at least one other node. During the initialization step of the algorithm, only the sink node
is in the SE list. The labeling process moves backward from the sink to all other nodes.
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5 {((48);@,2);0)} {((43);@,1);@)} {(gg);m,w)}

* |1 Jreasto)y |15 )sams@) (5 )oorsm) )

BT (6 EZED) K (A (D)

o) owal. () wawe)]
).

Table 6.3: (Cont.) The label set II;(t),mm for every node i € N and for every time t €
{0,...,T} of Example 6.5

The label structure of node i at time ¢ is given by (6.10) and II;(¢) denotes the set of all
cost labels associated with node i of ready time ¢. At each iteration of the algorithm, a
node, called the current node, is removed from the SE list. In the first iteration, the sink
node is defined as the current node. During the scanning process of the current node, the
temporary labels of all predecessor nodes of the current node are calculated for each time
step t € {0,...,T}. As the algorithm progresses, the label II;(¢) is updated in such a way
that II;(¢) is always a Pareto optimal set. The cardinality of II;(¢f) may increase or de-
crease as the algorithm proceeds. Upon termination, this set contains the labels denoting
all Pareto optimal dynamic paths from node ¢ to the sink node d with ready time ¢. The
current node is selected from the SE list by following the FIFO rule.

Suppose that node 7 is a predecessor node of the current node j. We denote the set
of temporary labels of node i at time t,eqqy € {0,...,T"} generated by j by {tmpLabel}.
Recall the definition of Depart;(treqay), the set of all possible departure times in {0,...,7T'}
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of the ready time t,¢q4y, given by (6.11). Using Depart;(tready), we define

{tmpLabel} = H; (tarri'ual) + (Cij (tdepart) S H’L (treadya tdepart))a
for all tgepert € Depart;(tready)
with tam‘ival = tdepa'rt + )\ij (tdepa'rt) (618)

The set {¢tmpLabel} is then merged with the current label of node i at time ¢,eqdy, ;i (tready),
yielding I1;(tready )new, 1-€-,

Hi (tready)new = Merge(Hi (tready)a {tmpLabel}) (619)

The definition of Merge function is given by (6.15). If I1;(¢reqdy )new is not equal to IT;(treqdy),
then we replace II;(tready) by ILi(tready)new and send the node i to the tail of SE list, i.e.,
SE := SE + {i}. We then select again a node from the head of the SE list and repeat the
same process until the list SE becomes empty (i.e., no current node can be selected), or
the algorithm detects the existence of a negative dynamic cycle.

Lemma 6.1 If at any time during the labeling algorithm there is a dynamic cycle, then
this dynamic cycle is negative.

Proof:
Suppose the labeling process produces a dynamic path P given by

P = {ji(ti, 1), ja(tas to), -, Gret (tho1, B 1)}
with j; = ¢ as shown in Figure 6.8 (take k£ = 4).

t 5 4 Bt =ty =t}

J2 >
N
J3 > \
Ja=h N //'

Figure 6.8: The dynamic cycle for the proof of Lemma 6.1
Since we do cost labeling in a backward direction, the cost label of any node j; € P satisfies

COSt(ﬂ-le(tl-i-l)) = COSt(’ile (tl)) + (CjH—l:jl (tl+1) D Hjl+1(tl+17 tl—f—l))
By taking the sum over [ =1 to & — 2, we obtain

k—2

cost(mj,_, (ts-1)) = cost(mj, (t1)) + D (Cirie (1) © Hyp (b1, 141)) (6.20)
1=1
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Now, suppose that the scanning process of the current node j; 1 on arc (i, jx_1) creates a
dynamic cycle C, i.e., jr = j1 =1, tx = t1, t’k = t’l, and

= {J1(t1,11), 2(tarta) s -« o Gt (Bt toer), G (ths te) = 41 (1, 11) }

This cycle is created only if either cost(wjk_l(tk 1)) + (¢ - (t)) ® Hj, (t1,1,)) dominates
cost(m;, (t1)) or both cost(m;, _, (te—1))+(cj, jo_, (t1)®H;, (t1,1,)) and cost(7r]1 (t1)) are Pareto
optimal. If this scanning process replaces the current label of 7, (¢1) (i.e., cost(m;,_, (te-1))+
(¢jyje_,(t1) @ Hj, (t1,t,)) dominates cost(m;, (t1))), then just before the scanning process we
must have

cost(mj, (1)) > cost(mj,_, (te-1)) + (jro_y (t1) ® Hy, (11,11)) (6.21)
The sum of (6.20) and (6.21) yields

cost(mj,_, (tk—1)) + cost(mj, (t1)) > cost(mj, (1)) + cost(mj,_, (tx—1)) +

Z(Cjzﬂ,jz (tl-i—l) ® Hjl+1 (tl-|-1, tl-|—1))
=1

0 > ¢c(C) (6.22)

On the other hand, if both cost(m;,_, (ts 1)) + (¢j,ji_,(t1) ® Hj,(t1,1,)) and cost(mj, (t;))
are Pareto optimal, then one component of

COSt(Trjkq (tkfl)) + (le;jk—l(tll) ©® H (tl’ ))

must be smaller than the corresponding component of cost(r;, (t;)) and the other compo-
nent is bigger than that of cost(m;, (¢;)). Without loss of generality, we assume that the
first component of cost(m;,  (tx_1)) + (¢4, (1)) © Hj,(t1,1;)) is smaller than the first
component of cost(m;, (t)), i-e.,

cost! (m, (1)) > cost (my,_, (tx-1)) + (ch 5, (£) + Hy, (11,1))) (6.23)

J15Jk—1

The sum of the first component of (6.20) and (6.23) yields
0> c'(C) (6.24)
Hence, C' is a negative dynamic cycle. |

Proposition 6.3 Suppose that for some node i € N — {d} and some time t € {0,... T},
there is some dynamic 1 — d path with ready time t containing a negative dynamic cycle.

(a) If both components of the cost of the negative dynamic cycle are negative, then

PO(Piq(t)) = 0.

(b) If one component of the cost of the negative dynamic cycle is negative and the other
is zero, then PO(Pyy(t)) = 0.
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(c) If one component of the negative dynamic cycle is negative and the other is positive,
then there will be an infinite number of Pareto optimal dynamic paths.

Proof:
Let C be a negative dynamic cycle associated with the label m;(¢).

(a) Suppose that cost!(m;(t)) < 0 and cost?(m;(t)) < 0. Let’s construct a new label of
node 7 at time ¢, 7, (%), obtained by repeating the cycle C two times. We obtain

cost! (m;(t)) = 2cost' (m;(t)) < 0 and cost®(m;(t)) = 2cost?(m(t)) < 0

Obviously, ;(t) dominates m;(t). Since we can repeat the cycle infinitely, the labeling
process will always be able to produce a new 7;(t) that dominates the current label
m;(t). Hence, there will be no Pareto optimal 7;(%).

(b) Without loss of generality, assume that cost'(m;(t)) < 0 and cost?(m;(t)) = 0. As in
the proof of (a), we can have label () such that

cost (m;(t)) = 2cost*(m;(t)) <0 and cost®(m;(t)) = 2cost?(m;(t)) = 0

Therefore, m;(t) dominates 7;(t). Since we can repeat the cycle infinitely, there will
be no Pareto optimal 7;(?).

(¢) Without loss of generality, assume that cost!(m;(t)) > 0 and cost?(m;(t)) < 0. As
in the proof of (a), let’s construct a new label 7;(t) by repeating C' two times. We
obtain

cost (m;(t)) = 2cost*(m;(t)) > 0 and cost®(m,(t)) = 2cost?(m(t)) < 0
where
cost' (m;(t)) > 2cost'(m;(t)) and cost?(m;(t)) < 2cost®(m(t))

Therefore, both m;(t) and 7;(t) are Pareto optimal paths. Since we can repeat this
cycle infinitely, there will be an infinite number of Pareto optimal dynamic paths.
|

To detect the existence of a negative dynamic cycle, we divide the execution of the algorithm
into passes. The definition of a pass is given as folows.

Definition 6.10
e Pass 0 ends after node d is scanned for the first time.

e Pass k ends after all nodes in the SE list at the end of pass k — 1 have been scanned.
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From this definition, if a node i is removed from the list before the end of pass k, then
there must be a node j with (7,j) € A removed from the list before the end of pass (k —1)
and there are t ;¢ € {0,...,T} such that TI;(¢) is improved from IT;(¢). We denote by ps
the index of a pass of the execution of the algorithm. From the definition of a pass, we
increase ps by one if at the end of pass ps, the list SE is not empty. We denote by ls the
node in the tail of SE list at the end of pass k — 1, i.e.,

ls = tail(SE)
If the current node is equal to Is at the end of pass k and SE # (), then
ps:=ps—+1

Lemma 6.2 If the SE list is not empty at the end of pass (n—1)(T'+1), then the dynamic
network must contain a negative dynamic cycle.

Proof:

Define ps; to be the greatest £ such that node 7 is selected as the current node during
pass k. If ps; is positive, then there must be a node j with (i, j) € A and some t,¢ such
that TT;(¢) is updated from II;(¢') during pass (ps; — 1), i.e., node j at time ¢ becomes a
successor component of some member of I1;(¢). Since the label of node j may be updated
again at a pass greater than ps;, we obtain the following interrelation

ps; <ps;+1

The value of ps; is strictly greater than (ps; — 1) only if the label of node j is updated
again before the end of pass greater or equal than ps;. Therefore, the ps values of any
two consecutive nodes in a dynamic path differs by one. Since it is assumed that no arc
leaves node d, we obtain psy; = 0. Furthermore, we know that the maximum number of
nodes but the sink node in the time-expanded network for {0,...,T} is (n — 1)(T + 1).
Now, suppose the algorithm runs until a node ¢ is selected as the current node in pass
(n—1)(T + 1)+ 1. Since ps; = (n —1)(T + 1) + 1, then we must eventually repeat some
nodes j at time t € {0,...,T} during the forwardtracking process to find an i — d Pareto
optimal dynamic path that is ready at node i at time ¢ € {0,...,7}. Hence, this path
contains a dynamic cycle. By Lemma 6.1, this cycle must be a negative dynamic cycle. H

Hence, the existence of a negative cycle can be detected by either finding a dynamic cycle
(see Lemma 6.1) or checking the number of passes.

Since {tmpLabel} is in general not a singleton, the merging process in (6.19) is not as
simply as that in Section 6.4. Brumbaugh-Smith and Shier [BSS89] proposed an algorithm
for a merge operation of two Pareto optimal sets, B; and By, which has a linear worst-case
time complexity of O(| By | + | By |). This method works on assumption that B; and
B, are ordered sets with respect to their cost components, arranged by increasing value of
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the first criteria of the cost component. Hence, if the cardinality of B; is k; and cost(B;)
defines a set of cost components of all members of B;, then

1 1 1
cost(By) = {(Z%)’(Z%)”(Z%l) :l,<l":>ull,<ullu,
z’,z”e{1,...,k1}}

Since cost(Bj) contains only different Pareto optimal values, it follows that the values corre-
sponding to the second criteria form a strictly decreasing sequence, ie., | <" = ulZ, > ulz,,.

Let us denote the time component and the pointer component of u € Bj by time(u)
and point(u), respectively. Then B; can be represented as

B = {(cost(ul);time(ul);pomt(ul)),...,

(cost(ukl);time(ukl);point(uk1)> <l = uy < ups

I ed1,... ,/ﬁ}}

The same arrangement is applied to Bs, i.e., if k9 is the cardinality of By, then

B, = {<cost(v1);time(vl);point(vl)),...,

(cost(vk2);time(vk2);point(vk2)> <" vy < U

1,0 e{,... ,kQ}}
We define the set concatenation operation ”&” as

{ug, .o yupe J&{vr, .o vk, = {ur, s Uk, V1, Uk, )
Details of the modified Merge procedure are given in Algorithm 6.3.

Proposition 6.4 Algorithm 6.3 produces a minimal complete set M of By U By in
O(| B [+ Bz ).

Proof:

The proof focusses on step 2 of the algorithm. For any 7 < k; and j < ko, if uzl < vjl- then
we check the value of u; compared with v7. If u7 < v, then u; dominates v;. Therefore,
we skip v; and remove it from further consideration as a member of M by increasing the

counter j. Since v} is increasing and v]2- is decreasing, we can continue removing v; by
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Algorithm 6.3 (adapted from Brumbaugh-Smith and Shier [BSS89])

INPUT B; and B, are ordered sets arranged by increasing value
of the first criteria of the cost component.
OUTPUT Merge(Bi,Bs)

0 Initiate counter 4 =1 and j = 1.
Initiate Merge set M = (.
1 If ¢ > ky then
M = M&{'Uj,.. . ,’Uk2}
Go to Step 3.

If j > ko then
M = M&{ui,... ,ug}
Go to Step 3.
2 If uj < 11]1- then
while uf < v
J=j+1
1 =1+ 1 and Go to Step 1.
Else if vjl. < uj then
while v} < u?
i=i+1
M = M&{’UJ}
j =7+ 1and Go to Step 1.
Else if uf < v} then
repeat
j=j+1
until UJ2- < uf
i1 =1+ 1 and Go to Step 1.
Else
repeat
i=14+1
until uf < v}
M = M&{’Uj}
j =7+ 1and Go to Step 1.
3 Merge(By,Bs2) :== M
Terminate the algorithm.

increasing the counter j as long as uf < v. Furthermore, since u; and v; are increasing,

u; is Pareto optimal and placed into the set M. We then increase the counter 7 and check
again the possibility to include the new u; into M by going back to step 1. We do similarly
in the case of vjl- < u}, but for possibly removing u; from further consideration as a member
of M. Moreover, if u; = v}, then we check the value of u7 compared to v7. If uf < v?, then
u; dominates v;. Since v} is increasing and sz is decreasing in B,, we skip v; sequentially
until we find v} < uf. At this time we can check again the possibility to include v in M.
But, if u7 > v, then similarly we skip u; sequentially until we find u; < v?. In case the two
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cost values u; and vj; are identical, i.e., u; = v; and uf = v, we disregard u; keeping the
minimal property of the set M. The complexity follows directly by computing the steps of

the algorithm. |

The proposed label correcting algorithm to generate all Pareto optimal 7 — d paths for
any 7 € N and for any ready time ¢ € {0,... ,T} is shown in Algorithm 6.4.

Algorithm 6.4

INPUT
ouTPUT

0

Network G = (N, A, T), w(t),c(t), and h(t).
PO(Pia(t), Vi € N, Vt € {0,...,T}.

Modify the cost vector ¢;;(t), Vt € {0,...,T} as follows.

Cij(t) t+ ;) <T
cis(t) = () oo V(i) € 4

o 4Nt > T
Assign the label to each node for all ¢ € {0,...,T'}

Hi(t):{ {((@8) ; (t,t);w)} i—d

, otherwise
Set SE := {d}.
Set ps:=0; ls:=d.
Take the current node j from the head of SE and
set SE := SE — {j}.
Scan the current node
For all (i,j) € A do
{ For tyeqay =0 to T do
{ For all t4epart € Depart;(treqdy) do
{ If IL; (tdepart + Nij(tdepart)) 7 0, then calculate
{tmpLabel} := I1;(taepart + Nij (taepart) + (Cij(taepart)®
Hi (treadya tdepart))
IL; (tready)new = Merge(ILi(treaay), {tmpLabel})
If Hz (tready)new 7é Hz (tready)y then
Set II; (tready) =1I; (tready)new
Set SE := SE + {i}
}
}

}

If j =ls and SE # (), then
ps:=ps+1; ls:=tail(SE)

If ps = (n—1)(T + 1) + 1 or a dynamic cycle is found,
then there is a negative dynamic cycle. Terminate the algorithm.
If SE = (), then go to Step 5.
Return to Step 2.
For any i € N and any t € {0,...,T}, the set PO(P;4(t)) is
obtained by forwardtracking the successor pointers of IL;(t).
Terminate the algorithm.
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Theorem 6.3 (Correctness of the Algorithm 6.4) Algorithm 6.4 generates all Pareto
optimal paths from every node in the network to the sink and for all ready times t €
{0,...,T} in a finite number of steps or it detects a negative dynamic cycle.

Proof:

If a dynamic cycle is found or ps = (n — 1)(T' 4+ 1) + 1, then by Lemmas 6.1 and 6.2,
the algorithm detects the existence of a negative dynamic cycle. On the other hand, if
this is not the case, then the contrapositive of Lemma 6.2 guarantees that Algorithm 6.4
terminates (because the SE list is empty) at most (n—1)(7'+1) passes. Upon termination,
for all i € N and ¢t € {0,...,T}, every m;(t) € II;(t)) defines a Pareto optimal path.
Suppose 3 7;(tready) € i(tready) With

(Cij (tdepm‘t) Y Hz (treadya tdepart)) + 7AT] (tarrival) < 7%z (tready)

for some ﬁ—] (tarrival) € {ﬂ-j (ta'r'rival}-

Since the scanning process in step 3 is done for all (¢, j) € A, for all ¢,¢4ay € {0,...,T'}, and
for all ¢,¢qqy € Depart;(treqay), the condition above implies that node j was not completely
scanned yet and must still be in the SE list, contradicting the termination of the algorithm.
[ |

The following example illustrates Algorithm 6.2.

Example 6.6
Consider the problem in Example 6.5 (Figure 6.7), where we only change the data of arc

(3,4) to A34 := —1 and cz4(t) = ( 2

_o | t <8, respectively.
We obtain

PO(Pos(0)) = {{0(0,0),2(2,2),3(4,5),4(4,4),5(5,5)},{0(0,0), 1(1, 1),
3(2,2),5(4,4)}}

with the corresponding optimal values < g ) and ( g ) Il

6.6 Computational Results

A set of experiments are conducted to compare the performance of the three algorithms
discussed in the previous sections. In computational testing, again we rely on the repre-
sentative operation counts (see Appendix C).

e to identify the asymptotic bottleneck operations,
e to estimate the running time for different problems sizes, and

e to obtain a fair comparison
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of the three Algorithms 6.1, 6.2, and 6.4. To reach these goals, a series of experiments
is run on the basis of randomly generated dynamic networks. All travel times and costs
are nonnegative since only one of the three algorithms can deal with negative attributes.
However, separate experiments with negative attributes are also run to analyze the per-
formance of Algorithm 6.4 when it deals with negative attributes. For the experiments,
Algorithms 6.1, 6.2, and 6.4 are implemented in C++ and run on a PC Pentium III, 500
MHz, and RAM of 256 MB.

To conduct these experiments, a dynamic random network generator is developed by
extending the idea of NETGEN (Klingman, Napier, and Stutz [KNS74]) to include the
time-dependent attributes (see Appendix B). The generated networks are connected. The
experiments are conducted on random networks with 50, 100, 500, and 1000 nodes and
time horizon 7' = 100. For each choice of n nodes, we create networks with indegree and
outdegree of each node 2, 4, 6, and 8. It is assumed that the source node and sink node
have zero indegree and zero outdegree, respectively. This degree setting implies that the
generated networks have 2n, 4n, 6n, and 8n arcs. We denote by § = m/n the density of
the network. The minimum travel time is always set to one. The maximum travel time
and costs of both criteria are set to 10 units. The maximum holding cost is set to 10. For
each specific setting of n and m, we test five random dynamic networks. Therefore, the
total number of observations is 80.

Algorithm 6.1

Here we identify the following set of representative operations:
(a) sorting process
(b) finding the nondominated vectors among the sorted labels vectors
(c) convergence testing

We denote by asortrs(1), Quminks(I), and qeonvics(I), the number of comparisons done in
representative operations (a), (b), and (c), respectively, of a problem instance I. Let

O KS (I) = QsortK S (1) + Qymink s (1) + acon'uKS(I)

denote the sum of the representative operation counts. Figure 6.9(a) - (c) give the plots of
Wsorts(L) /oy ks(L),  wminks(I)/as ks(I), and ceonvrs(l)/as ks(I) for increasingly
larger problem instances and look for a trend. While, the trend on CPU time is shown in
Figure 6.9(d). A plot for each different network density § is given to help us in visualizing
the effects of n and m on the growth of either representative operation counts or CPU
time. The plot in Figure 6.9(a) suggests that the sorting process is an asymptotic bottle-
neck operation in Algorithm 6.1, and the plots in Figure 6.9(b) - (c) suggest that the other
two representative operations are asymptotic nonbottleneck ones. Moreover, Figure 6.9(d)
shows that the CPU time increases from linear to exponential growth in denser networks.
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Figure 6.9: Identifying the asymptotic bottleneck operations and CPU time of Algorithm
6.1 for various n and densities m/n

To estimate the growth rate of the count of asymptotic bottleneck operation agyixs, We
define an estimator function o, ,g(I) = crsn®xs§exs for some choices of constants
Cks,€iks, and esgg. The regression analysis yields

s (I) = 13,174.435 pl-218451-418

as a best fit for ageixs(l) with adjusted R? value 0.997 and standard error 0.139. The
value of adjusted R? which close to 1 and a fairly small standard error indicate that the
fit is indeed very good. Figure 6.10(a) shows a plot of the ratio between the estimated
and the true values which also support the quality of the fit obtained by the regression
analysis. Moreover, we obtain the virtual running time of an instance I, Vi siineqr(I), as a
linear estimate function of CPU time, as follows:

VKSlinear(I) = 43710_6 asortKS(I) - 2210_5 avminKS(I) + 13210_4 acom}KS(I)
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with adjusted R? value 0.927 and standard error 148.407. A better estimator of the CPU
time is given by the following exponential function

Vies(I) = 7.125107 gorecs (1) 22" yminies (1) aonprcs(I) 2%

with adjusted R? value 0.992 and standard error 0.260. The plot of the ratio Vxs(I)/CPUks(I)
is shown in Figure 6.10(b), where CPUgkg(I) denotes the CPU time (in seconds) obtained
by running Algorithm 6.1 for a problem instance I.
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Figure 6.10: Determine the quality of the estimators of performance functions of Algorithm
6.1
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Figure 6.11: Identifying asymptotic bottleneck operations in Algorithm 6.2

Algorithm 6.2

We identify the following set of representative operations:
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Figure 6.12: CPU time (in seconds) of Algorithm 6.2 for various n and densities m/n

(a) merging process
(b) selecting the pivot label

We denote by oupergers and opivotrs, the number of comparisons done in the merging pro-
cess and the number of labels scanned in selecting the pivot label, respectively. Since the
pivot label can be chosen from the head of the corresponding list of temporary labels in
O(1), Theorem 6.2 implies that aypierrs determines the number of nondominated labels
over all nodes in N and all ready times in {0,...,T}. Figure 6.11(a) - (b) give the plots
of oumergers/os 1s(I) and opivorrs /s 1s(I) where ay (1) denotes the sum of oupergers
and apiyerrs. These plots suggest that the merging process is an asymptotic bottleneck op-
eration in Algorithm 6.2, and that selecting the pivot label is an asymptotic nonbottleneck
operation. Figure 6.12 shows that CPU time increases faster in the denser networks.

As in the case of Algorithm 6.1, we define an estimator function a,,,,,.;.¢(I) = cpgn®es§e2rs
for some choices of constants cpg, €115, and esrg, to estimate the growth rate of the count
of asymptotic bottleneck operation cumerger.s. The regression analysis yields

!

Cppergers () = 628.988 nt 17851270

as a best fit for aumergers(I) with adjusted R* value 0.938 and standard error 0.582. These
statistic values and a plot of the ratio between the estimated and the true values in Figure
6.13(a) indicate that the fit is indeed very good. The virtual running time of an instance
I, Vis(I), as a linear estimate function of CPU time, as follows:

Vis(I) = 3.23107% aunergers(I) + 5.03107° qpivorrs (1)

with adjusted R? value 0.984 and standard error 1.923. The plot of ratio Vis(I)/C PUrs(I)
is shown in Figure 6.13(b), where C PUrs(I) denotes the CPU time (in seconds) obtained
by running Algorithm 6.2 for a problem instance I. The estimates seems to be moderately
good for small values of n and excellent for larger values of n.
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Figure 6.13: Determine the quality of the estimators of performance functions of Algorithm
6.2

Algorithm 6.4

Here we identify the following set of representative operations:
(a) sorting process
(b) merging process of two sorted set of labels

We denote by osorir.c and tupergerc, the number of comparisons done in the sorting process
and merging process, respectively. Figure 6.14(a) - (b) give the plots of asorir.c/0y ro(1)
and omerger.c/ay no(l) where ax (1) denotes the sum of asorirnc and umergerc. These
plots suggest that the sorting process is an asymptotic bottleneck operation in Algorithm
6.4, and that the merging process of two sorted set of labels is an asymptotic nonbottleneck
operation. Figure 6.15 shows that CPU time increases faster in the denser networks.
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Figure 6.14: Identifying asymptotic bottleneck operations in Algorithm 6.4
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Figure 6.15: CPU time (in seconds) of Algorithm 6.4 for various n and densities m/n

Here we define an estimator function o, ,; (1) = cpen®+¢§re for some choices of con-
stants crc, e1rc, and esr ¢, to estimate the growth rate of the count of asymptotic bottleneck
operation asetrc- The regression analysis yields

!

asortLC(I) — 1’ 380.481 n1.22151.562

as a best fit for aorrc(I) with adjusted R? value 0.997 and standard error 0.134. These
statistic values and a plot of the ratio between the estimated and the true values in Figure
6.16(a) indicate that the fit is indeed very good. The virtual running time of an instance
I, Vic(I), as a linear estimate function of CPU time, as follows:

Vie(I) = 4.4107% aorire () — 2.7107° aiergerc (1)

with adjusted R? value 0.982 and standard error 8.114. The plot of the ratio Vi.c(I)/CPULc(I)
is shown in Figure 6.16(b), where CPU¢(I) denotes the CPU time (in seconds) obtained
by running Algorithm 6.4 for a problem instance I. The estimates seems to be moderately
good for small values of n and excellent for larger values of n.

Comparison

The results of the experiments with respect to the CPU time are given in Table 6.4.
Figure 6.17(a) constrasts the performance of Algorithms 6.1, 6.2, and 6.4, with respect
to the CPU time. The plots of the ratio ay rs(I)/ay rc(l), ayrc()/ox ks(I), and
ay ro(l)/ax ks(I) for some instances I are shown in Figure 6.17(b) - (d). From these
figures, we can conclude that Algorithm 6.2 is asymptotically superior to the other two
algorithms when the network attributes are nonegative. However, Algorithm 6.4 is able
to deal with negative attributes, an advantage that the other two algorithms do not have.
Furthermore, Algorithm 6.4 is also asymptotically superior to Algorithm 6.1.
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Figure 6.16: Determine the quality of the estimators of performance functions of Algorithm
6.4

n | m/n | Average CPU time (in seconds)
Algorithm 6.1 ‘ 6.2 ‘ 6.4
50 2 2.66 1.01 1.05
4 6.00 1.64 3.21
6 6.24 2.29 3.67
8 14.47 3.00 7.92
100 2 7.37 2.24 2.57
4 14.61 3.65 7.41
6 24.63 5.18 12.96
8 36.98 6.90 19.25
500 2 62.76 14.61 | 17.82
4 164.99 24.42 | 57.73
6 321.29 35.83 | 107.75
8 464.51 48.69 | 152.03
1000 2 251.85 3141 | 44.81
4 756.21 55.99 | 154.17
6 1,269.37 83.87 | 257.73
8 2,275.02 117.09 | 394.18

Table 6.4: Computational test results

Allowing negative data

For the case of arbitrary attributes, the minimum travel time and costs of both criteria
are always set to the negative value of their corresponding maximum values. The max-
imum value of the attributes are set as in the case of nonnegative attributes. To avoid
the negative dynamic cycle, the network is assumed acyclic. In this case, networks with a
topological order are generated.
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Figure 6.17: Comparing Algorithms 6.1, 6.2, and 6.4

To control the distribution of attributes with negative values, we set the percentage of
negative data to 0, 5 and 10 percents. The results of experiment with respect to the CPU
time from 10 random networks with size n = 500 and density 6 = 8 is shown in Table
6.5. It is found that the CPU time increases as the percentage of negative data increases.
Moreover, the CPU time tends to be unstable as the percentage of negative data increase,

as shown in Figure 6.18.
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percentage of negative data 0% 5% 10%
average of CPU time (seconds) || 104.451 | 2,956.273 | 8,995.864
standard deviation 3.726862 | 757.5691 | 3,126.029

Table 6.5: Computational test results of Algorithm 6.4 for three sets of networks with
n = 500, m/n = 8, and three different percentages of negative data

CPU-time (seconds)
N
~

sample number

Figure 6.18: The CPU time of Algorithm 6.4 for ten random samples with n = 500,
m/n = 8, and three different percentages of negative data






Chapter 7

Application to Evacuation Problems

7.1 Introduction

Some critical issues may come together with the development of inhabited areas such as,
city, office buildings, condominiums, passenger aircrafts, ships, and trains. One such issue
is the question of how to evacuate a large number of threatened people in a minimum time
and with utmost safety during an emergency situation. There are a number of reasons why
an emergency evacuation is necessary. Threat of fire or/and smoke, bomb threat, toxic gas
leak, and earthquake may trigger an emergency evacuation. This evacuation issue under-
lines the need for analysis of the design of such areas to obtain an idea of how and what
amount of time an emergency evacuation can be accomplished. Unfortunately, it is not
possible to test the design under some realistic emergency scenario. It is highly costly and
unethical to expose people to real emergencies. Therefore, some careful theoritical analysis
must be done to estimate the evacuation performances. The number of fatalities, number
of safe evacuees, and evacuation time are typical and important performance measures of
an evacuation process (see e.g., Lgvas [Lgv95]).

Evacuation planning as a part of the emergency management is a complex problem that
must take into account many aspects including

e location planning of emergency facilities such as emergency shelters and ambulances
(see e.g., Sundstrom, Blood, and Matheny [SBM95] and Matheny, Keith, Sundstrom,
and Blood [MKSB97]),

e analysis of evacuee’s behavior in a panic situation (see e.g., Sandberg [San97] and
Helbing, Farkas, and Vicsek [HFV00])

e design of evacuation facilities, such as exit or emergency stairs, exit signs, and the de-
sign of a directional sound to guide people towards the nearest exit (see e.g., Tanaka,
Hagiwara, and Mimura [THM96] and Withington [Wit02])

129
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e analysis of the hazard propagation such as a propagation of smoke and fire in a
building (see e.g., Klote [K1095] and Ebihara, Notake, and Yashiro [ENY96])

e analysis of evacuee’s movement distribution to determine the evacuation time

In this thesis we focus the discussion on the analysis of evacuee’s movement distribution
to determine the evacuation time.

In general, there are two approaches used to model the evacuees distribution in order
to determine the evacuation time, namely micro- and macroscopic models. A survey of
both approaches on evacuation problems was reported in Hamacher and Tjandra [HT02].
In microscopic models, each evacuee is considered as a separate flow object and provided
with some personal attributes, for example, walking speed, personal memory and psycho-
logical condition. These attributes will be used to determine the movement decisions, for
example to select the nearest walkway, move on the walkway only when there is no blockage
at the end, or change the destination target before reaching it. The psychological responds,
such as panic and hysterical during the catastrophe and or life-threatening situations (e.g.,
fire in a crowded building) may significantly influence the movement decisions and crowd
behaviours (see e.g., Helbing, Farkas, and Vicsek [HFV00]). The main tool of this approach
is simulation and it has been used by several research groups, for example Ebihara, Oht-
suki, and Iwaki [EOI92], Doheny and Fraser [DF96], Owen, Galea, and Lawrence [OGL96],
Gwynne, Galea, Owen, Lawrence, and Filippidis [GGO199], Helbing, Farkas, and Vicsek
[HFV00], and Kliipfel, Kénig, Wahle, and Schreckenberg [KKWS00].

On the other hand, macroscopic models are mainly based on optimization approaches
and do not consider individual differences and decisions for selecting egress routes (egress
is means of going out). Occupants are treated as a homogeneous group where only com-
mon characteristics are taken into account. These models are mainly used to produce good
lower bounds for the evacuation time. Since the time is a decisive parameter in an evacua-
tion process, most macroscopic approaches are based on dynamic network flow models, see
for example, Chalmet, Francis, and Saunders [CFS82], Kisko, and Francis [KF85], Choi,
Francis, Hamacher, and Tufekci [CFHTS88], Fahy [Fah91], Kostreva, and Wiecek [KW93],
and Montes [Mon94]. The common idea of these models is to represent an inhabited area
in a static network Gy = (N, A). The modeling of evacuation over time is then done in
the network G = (I, A, T) which is a dynamic extension of Ggq. In this dynamic network
modeling, dynamic network flows correspond to the evacuation flows.

The evacuation time, that is a time needed to complete an evacuation process, basically
consists of three main time components (Graat, Midden, and Bockholts [GMB99], Lgvas
[Lov9s8])

1. The time evacuees need to recognize a dangerous situation. It is called the awareness
time and influenced mainly by the reliability of the alarm system and the familiarity
of evacuees with emergency signals.
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2. The time evacuees need to decide which course of action to take. It is called the
preparation time and influenced by the experience of evacuees in facing an emergency
situation. This can, for instance, be generated through some emergency practice and
training. Behavioral and organizational factors are the main contributors to the
duration of this time component.

3. The time evacuees need to move towards the safety area, which is known as the
egress time. It is influenced by the availability of emergency exit signs, well planned
evacuation procedures, constructional factors (e.g., effective width of walkway, slope
of stairs), and human behavior during panic situations.

Since the behavioral and organizational factors are the main contributors to the first two
time components, it is hard to predict analytically the duration of those time components.
Therefore, most evacuation models emphasize the calculation of egress time and treat the
result as a lower bound of the real evacuation time.

In this chapter we focus the discussion on the macro modeling of the evacuation problems
using a dynamic network. In the next section we describe a network model of evacuation
objects. The need of evacuation modeling with time-dependent attributes is described in
Section 7.3. In Section 7.4 we discuss how to apply the theoritical results, discussed in
the previous chapters, to find the optimal flow distributions and optimal evacuation paths
with respect to the egress time. The computational results of dynamic network models
applied to the evacuation plan of Building 42 at the University Kaiserslautern, Germany,
in Section 7.5 conclude this chapter.

7.2 Network Model of Evacuation Objects

A dynamic network model of evacuation objects has the following components:

a. Time horizon and basic unit
The time horizon 7" is broken up into finite uniform time periods t =0,1,... ,7T. As
we have discussed in Section 2.1, the time period ¢ depends on a basic unit € in which
travel times are measured. Hence, if we choose 5 seconds as the length of the basic
unit (i.e., # = 5), then time period ¢ = 3 associates with a real time 15 seconds. A
time horizon T" = 12 corresponds to one minute of real time in this scenario.

b. Node
Nodes are used to model the connected points and/or locations. There are some
alternatives to consider in defining a node. For example, a node may represent a
single room (or hall, stair, lobby, etc.) in a building or ship evacuation, a seat or a
row of seats in a passenger aircraft evacuation, and a train compartment in a train
evacuation. It may also represent an intersection point between two crossed walkways.
In a detail modeling, a room can be split up into several nodes. Furthermore, each
node in the network has a capacity, denoted by a, which represents the maximum
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number of evacuees can safely occupy a node at one time. Actually many factors
play important roles in determining the node capacity, including the type of room
or building represented by the node itself. In a swimming pool, for example, the
number of people must be limited, even before the consideration of an emergency
situation, in order to prevent accidents. Personal comfort and convenience as well
as weight limitations should be also taken into account. These considerations are
used to determine the so-called occupant load factor which represents the minimum
required area per person. The node capacity can thus be determined, for instance, by

. . floor space area maximum allowable weight
node capacity := min , -
occupant load factor ° average weight per person

Some examples of occupant load factors are listed in Table 7.1.

‘ Object type ‘ Occupant load factor in 4%ere meters
persons
University auditoriums 0.63
Classrooms 1.8
Swimming Pools 4.5 for pool area and 1.35 for the deck
Library 4.5 for reading rooms and 9 for stacks
Dormitories (residential halls) 4.5

Table 7.1: Some occupant load factor (see table 10-A of the Uniform Building Code [ICB]).

C.

Arc

Arcs can be used to model corridors, hallways, stairways, streets, or a connection
between two intersection nodes. An arc connects two center points of locations which
are considered as nodes. Its direction is determined by the expected or possible
direction of evacuees movement. An arc may have several attributes, for example
flow capacity, travel distance and travel time. Arc travel time, denoted by A, is
determined by the physical distance and the travel speed. If 8 is defined by 5 seconds
and the travel time is measured 13 seconds long, then X is determined as three time

units long, since
13
Ai=|—| =3
5]

The physical distance of an arc object (e.g., corridor, stair, street) can be measured
as a distance between the center of the two locations connected by this arc. The
speed itself is actually depended on the density. When the density is low, any speed
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can be chosen, but when the density is high, individuals will have to conform their
speed to the speed of the mass. When a walkway becomes more crowded, people tend
to slow down their pace in order to keep a comfortable distance between themselves
and others. Fruin [Fru71] gave several levels of crowd ranging from less than 0.39
persons per meter width-second (PMS) to more than 1.39 PMS which corresponding
to the average travel speed ranging from 1.3 m/s for minimum crowd to less than
0.30 m/s for crushing crowds. These data are given in Table 7.2. A crowd level data
can be used to determine the arc flow capacity (denoted by u) which represent the
maximum number of evacuees that can traverse the corresponding arc per unit time.
For example, in a hallway of 3 meters width, the crowd level D determines that the
number of people who can pass any point of interest in the hallway during a second
is between 2.49 and 3.33. If @ is defined by 5 seconds, then the arc capacity will be
between 12 and 17 person per time unit.

d. Source and sink nodes

Some locations which house a significant number of evacuees are considered to be the
source nodes in a network. The supply of a source node is given by the number of
evacuees in the location associated with the node. The safety locations that might
be considered as the final destinations of evacuees movement, are considered as the
sink nodes. In the evacuation problem, we have only one sink node by connecting
all the exit nodes to one artificial node and assign the total number of evacuees
as the demand value of this node. Hence, evacuation problems can be modeled as
multi-sources single-sink dynamic network flow problems.

Example 7.1

Figure 7.1 is a plan section of the first floor of a building. This floor section has eleven
rooms and a long corridor. It is connected to the building’s exit door at the second floor by
a stairwell exit. Another building’s exit door is located at the right end of the corridor (not
shown in the picture). Table 7.3 is an example of how to define the nodes for this floor.
Node d is added into the network as the sink node which represent the common safety area.

To define arcs of the network, consider a situation in which some persons are located
in room 2 just before the announcement of an evacuation. As soon as they find out that
there will be an evacuation, they run out from their room and step into the corridor area
modeled by node C4. Then, some of them may choose to move to C3 since they want to
go out via the building’s exit door at the right end of the corridor while the others choose
to move to C) since they want to go out via the building’s exit door at the second floor.
Similar situations are considered for other rooms. These movement possibilities determine

the direction of arcs in the network model. Table 7.4 lists the arcs of the floor plan example.
O
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During an evacuation process, a connection between two nodes may only be temporary
due to, for instance, blocking by fire or smoke.

Crowd level

Average
Speed
(m/seconds)

Description

>13

Level of crowd : 0.39 PMS or less.

Virtually unrestricted choice of

speed; minimum maneuvering to pass; crossing
and reverse movements are unrestricted; flow is
approximately 25% of maximum capacity.

1.25-1.3

Level of crowd : 0.39 - 0.56 PMS.

Normal walking speeds only

occasionally restricted; some occasional
interference in passing; crossing and reverse
movements are possible with occasional conflict;
flow is approximately 35% of maximum
capacity.

1.15-1.25

Level of crowd : 0.56 - 0.83 PMS.

Walking speeds are partially

restricted; passing is restricted but possible with
maneuvering to avoid conflict; flow is reasonably
fluid and is about 40 — 65% of maximum capacity.

1.0-1.15

Level of crowd : 0.83 - 1.11 PMS.

Walking speeds are restricted and

reduced, passing is rarely possible without

conflict; crossing and reverse movements are

severely restricted with multiple conflicts; some
probability of momentary flow stoppages when
critical densities might be intermittently reached;
flow is approximately 65 — 80% of maximum capacity.

0.55-1.0

Level of crowd : 1.11 - 1.39 PMS.

Walking speeds are restricted and

frequently reduced to shuffling; frequent
adjustment of gait required; passing is impossible
without conflict; crossing and reverse movements
are severely restricted with unavoidable conflicts;
flows attain maximum capacity under pressure, but
with frequent stoppages and interruptions of flow.

0-0.55

Level of crowd : 1.39 PMS or more.

Walking speed is reduced to

shuffling; passing is impossible; crossing and
reverse movements are impossible; physical
contact is frequent and unavoidable; flow is
sporadic and on the verge of complete breakdown
and stoppage.

Table 7.2: Travel speed for different crowd levels, Fruin [Fru71]

7.3 The Need of Time-Dependent Modeling

In this case, an arc that represents a
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Figure 7.1: The floor plan and its corresponding network representation for Example 7.1

| Node specification | Area associated with the node |
R1 - R11 Room 1 - Room 11
C1,...,C9 Areas in the long corridor in front of

the room’s exit doors or the entrance door to
the stairwell exit

SE The stairwell exit
EX The building’s exit door at the right end of
the corridor
d An additional node as the common safety area

Table 7.3: Node definition of the floor section plan

connection must also be temporary, i.e., the arc capacity decreases over time and becomes
zero after some times. Furthermore, increasing crowd and some other physical barriers
may also increase the travel times. Therefore, the time needed to travel from one node to
another is highly likely to be time-varying. The following eyewitness report from the 11
September 2001 disaster at the World Trade Centre, New York, USA, highlights the need
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| Arc specification | Arc definition |
(Ri, Cj) Passageway from the room ¢ to the corridor
area j in front of the exit door of room ¢
(Ci, Cj) Passageway in the corridor between area i and j
(C8, SE) Passageway via stairwell from the left end of corridor
to the exit at the second floor
(C1, EX) Passageway in the corridor to the the exit at

the right end
(SE, d), (EX, d) | Passageway from the building exits to the common
safety area

Table 7.4: Arc definition of the floor section plan

of evacuation modeling with time-dependent attributes.

Joe Crimmins, of Hoboken, N. J., was on the 43rd floor in the cafeteria
of the World Trade Center tower hit by the first airplane. ”There was an ex-
plosion” Crimmins said. ”The building shook. Within seconds, you could see
debris coming towards the window. So we just ran toward the emergency exit.
It took about 20 minutes to a half hour to get out. The stairways were crowded
and smoky. The lower 10 to 15 floors were filled with water, so we were walking
through water as firemen were walking up.”

A survivor security consultant, Joseph Gomez, says: ”Everyone made
for the fire exits. There was screaming and panic. People were shoving and
pushing.”

Michael Hingson, the 51-year-old has been blind since birth. Michael was
on the seventy-eighth floor of the World Trade Center, the One building, the
north tower. He was guided out by his guide dog Roselle and another colleague,
Frank. ”The crowds weren’t huge at first,” Hingson said. ”But as we started
making our way down, they got bigger. It was getting hot, too, with tempera-
tures in the stairwell climbing higher than 90 degrees.” Hingson was sweating
and Roselle was panting. ”We moved fairly swiftly until we hit about the 40th
floor. Then things got kind of jammed, a lot of stopping and starting.”

On the other hand, it is also possible to build some additional emergency connections at
the later time (i.e., not starting from time zero) to expedite the movement of the occupants.
For example, emergency exit by using a ladder fire or a helicopter.
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Consequently, dynamic network flow models with time-dependent attributes are consid-
ered more suitable than those with constant attributes.

7.4 Solution Methods

Here we apply the time-dependent dynamic network flow models and their associated
solution algorithms which are developed in the previous chapters to determine

1. the lower bound of the evacuation time,
2. the evacuation routes, and
3. the maximum capacity of inhabited area with respect to the safety requirements.

We say ”lower bound” because we do not consider other time components like awareness
time, preparation time, etc. (see Section 7.1).

7.4.1 Optimal Evacuees Distribution

The application looks at the evacuation of a building with either known or unknown number
of occupancies. When the number of residents in a building is difficult to estimate (e.g.,
a public building), we are interested to find the maximum number of evacuees which can
be sent to the safety area within a given time horizon 7. Since it is required to save as
many evacuees as possible and as quickly as possible, the time-dependent earliest arrival
flow model (see Chapter 4) is considered more suitable than the maximum dynamic flow
model. The model also assumes that the arc capacities and travel times may vary over
time. These assumptions fulfill the requirement of an evacuation modeling as described in
Section 7.3. Algorithm 4.4 can be used to obtain the following results.

e The optimal flow distribution x represents the flow distribution of evacuees within
the time horizon T'.

e The total flow V_,_,(x) bounds the number of people that can be safely evacuated

within the 7" time units. Hence, the results of EAF model can be used to design the
capacity of an inhabited area with respect to the safety requirements.

e The set of times I'}; (see (3.9) and (4.9) ) determines how long a corridor or a street,
etc., represented by an arc (4, j), is fully occupied within the time horizon 7. If ¥ (K)
denotes the cardinality of the set K, then an arc (i, j) is considered as the bottleneck
if

Y(Ty) = max{y(Ty,) : (k1) € A} (7.1)
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Sensitivity analysis can be conducted to see the effect of additional exit routes and decreas-
ing/increasing the capacities of some routes due to e.g., increasing/decreasing of smoke
intensity. The results can then be used to improve the structural design of the system
under study.

When the initial occupancy is known, the quickest flow model with time-dependent at-
tributes (see Chapter 5) can be used to obtain the minimum evacuation time. This model
will find an optimal evacuees distribution x minimizing the total evacuation time 7". Since
the network evacuation model is a multiple source single sink network model, Algorithm
5.3 can be used to find the optimal 7" and the optimal evacuee distribution.

7.4.2 Multicriteria Evacuation Routes

During an evacuation process, an evacuee by taking a quick look at a scene in the panic sit-
uation, may consider not only the time required to travel along the route, but also whether
the route is blocked by the presence of fire or smoke, availability/clarity of exit signs, and
familiarity. One may choose a route (or path) with longer distance from his/her position
to the safety area when he/she is more familiar to this route than to other routes. Fur-
thermore, the preference value to some criteria on selecting the evacuation routes may also
change over time due to some reasons. Some common reasons are psychological conditions
(e.g., increasing panic and hysterical), structural changes (structural failure, additional
emergency exits), increasing/decreasing of smoke intensity, and fire propagation. These
multiple criteria which determine the movement decision are then considered as vector of
cost attributes. We denote by c;() the k-th component of the cost vector ¢;;(t) corre-
sponds to the k-th criterion.

In the case of two criteria, Algorithm 6.2 or 6.4 can be applied to determine all pos-
sible evacuation routes for each occupant, from his/her initial location, which have the
minimum cost (or Pareto optimal cost). However, these two algorithms can be extended
to the case of more than two criteria.

7.5 Case Study

In this section we apply our algorithm to find the lower bound of the evacuation time of
Building 42 in the University of Kaiserslautern, Germany.

Building 42 at the University of Kaiserslautern is a six stories building composed of lec-
tures rooms, auditoriums, offices, halls, and library. Figure A.1 in Appendix A gives the
first floor plan of Building 42. The other floors have similar plans, but without three
auditoriums as in the first floor. This building is provided with a lift and two stairwell
exits. However, it is assumed that during an emergency situation, the lift is not used. The
basement is not considered because there are rarely people present. The network repre-
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sentation of all floors are given in Appendix A which consists of 108 nodes (including the
super source and super sink) and 198 arcs. Node 0 and node 107 is the super source and
the super sink, respectively. Node 0 and 107 might be drawn several times in order to find
a representation of the network such that the reader can follow the network connections
easier. A node drawn by a circle surrounded by a rectangle describes a building object
(e.g. room, stairwell, or exit) located in the floor one level above/below the current floor.

We define one time unit by 5 seconds and the time horizon 7T is set to 70 time units.
The constant travel time and capacity data are obtained from Montes [Mon94] and at-
tached in the network representation. Table 7.5 lists all nodes with positive initial contents
of total 687 people. Algorithm 5.3 is used to find the minimum evacuation time. The
solution is then compared to the one given by Montes in [Mon94]. Figure 7.2(a) and (b)
shows the distribution of the evacuees and the cumulative number of evacuees, respectively.

Nodes 1 2 31416 7-12 25| 26-32 | 44
Initial contents | 45 | 120 | 40 | 20 | 7 | 10 each | 12 | 10 each | 12

Nodes 45-51 | 64| 66-72 | 85 | 87 |88 |89 |90 | 95
Initial contents | 10 each | 12 | 10 each | 12 |10 | 20| 7 [ 30| 5

Nodes 98-99 | 100
Initial contents | 10 each | 45

Table 7.5: Distribution of initial occupations of Building 42

Algorithm 5.3 yields 36 time units, which is equal to 180 seconds, as the evacuation time
of 687 people. The same evacuation time is obtained by Montes [Mon94] by applying a
min cost flow algorithm of Bertsekas [PB91] on the associated time-expanded network.
However, Algorithm 5.3 provides better flow distribution since it sends out more people in
a shorter time, as shown in Figure 7.2(a). The cumulative number of safe evacuees at
every time t € {12,...,35} are 6 units bigger that the one provided by Montes. This is
happened since Algorithm 5.2 always maintains the earliest arrival property, i.e. it sends
flows as many as possible and as quickly as possible. Furthermore, Figure 7.2(c) shows
that exit arcs (25,107) in the first floor and (25,107) in the second floor are most passed
through. These arcs can be considered as the bottleneck arcs.

When the exit arc (25,107) is completely blocked after 2 time units (i.e. arc (25,107)
has zero capacity for ¢t > 2), Algorithm 5.3 shows that only 657 people are able to leave
the building in 36 time units. The evacuation time of 687 people now increases to 39 time
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units. See Figure 7.3(a) and (b).

Concerning the running time, the results of this case study are obtained in 51.42 sec-
onds with a personal computer having 252 megabyte RAM and 500 megahertz.
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Chapter 8

Conclusions and Future Research

In this thesis we discussed dynamic network flow problems and their application to the evac-
uation problems. We reviewed some existing approaches of the dynamic network problems
with constant attributes and gave a generalization of the hybrid capacity scaling and short-
est augmenting path algorithm to consider the time dependency of the network attributes.
We also developed a new, successive earliest arrival augmenting path algorithm, to solve an
earliest arrival flow problem with time-dependent attributes. Under an assumption of infi-
nite waiting, this algorithm is more efficient by factor 7" than implementing the successive
static shortest path algorithm on the time-expanded network. The computational analysis
showed that the scanning process is the asymptotic bottleneck operation of this algorithm.
By modifying the network, we showed that this algorithm can be used to solve a quickest
flow problem with time-dependent attributes. Even when the supply to the source vary
with time. The modification is done by adding a dummy node as the super source and de-
fine the capacity of all arcs going out from this node by the initial contents or supply value.

Dealing with a discrete-time dynamic path, we developed a dynamic label setting and
a dynamic label correcting algorithms for the bicriteria dynamic shortest path problems
with time-dependent travel times, cost vectors, waiting times, and holding costs. We also
compared the performance of these two new algorithms with the existing algorithm of
Kostreva and Wiecek [KW93]. The computational analysis showed that in the case of
positive valued data, the dynamic label setting algorithm is superior to the other two al-
gorithms. However, the dynamic label correcting algorithm is able to deal with negative
attributes, an advantage that the other two algorithms do not have. It is also asymptotically
superior to the one of Kostreva and Wiecek. Furthermore, our dynamic label correcting
algorithm, to the best of our knowledge, is the first algorithm designed to solve a bicri-
teria dynamic shortest path problem with unrestricted (in sign) time-dependent attributes.

As an application problem, we discussed the evacuation problems and showed how to use
the solution algorithms developed for the dynamic network flow problems, to find optimal
evacuee distributions and optimal evacuation paths. In particular, we apply our dynamic
network flow algorithm to find a lower bound of the evacuation time of Building 42 in
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the University of Kaiserslautern, Germany. The results is compared to the one given in
Montes [Mon94]. It is found that our algorithm provides better flow distribution since it
sends out more people in a shorter time. Moreover, our algorithm is able to account for
the time-dependent nature of the evacuation problems, such as increasing travel times due
to, for instance crowd and smoke, and decreasing or increasing the capacity of passageway.
The properties which are not considered by Montes [Mon94].

In the rest of this chapter, we discuss some further research topics related to dynamic
network flows and evacuation modeling.

Minimum cost dynamic flows. In this thesis we have not yet considered the mini-
mum cost dynamic flow problem. If the supply is equal to the value of maximum dynamic
flow for a given 7', then the problem is called the minimum cost maximum dynamic flow
problem. On the other hand, when T is equal to the quickest time to send the supply from
the source to the sink, the problem is called the minimum cost quickest flow problem. One
can construct an example showing that the temporally repeated flow (TRF) does not give
a minimum cost dynamic flow. Klinz and Woeginger [KW95] showed that this problem
is NP-hard, even for the network with constant attributes (also for series-parallel graphs).
Consider now when the network attributes are constant. One can show that finding a mini-
mum cost augmenting path in the residual dynamic network is a constrained static shortest
path problem. Desrochers and Soumis [DS88] brought this constrained static shortest path
problem as a multiobjective shortest path problem. They proposed a label-setting algo-
rithm to solve this problem in which the travel time (or weight) and cost are considered
together as a vector. The label setting algorithm, however, will not work in our case since
the residual costs and travel times may be negative. Instead, we can use the static version
of our label correcting algorithm in Chapter 6 to find the Pareto optimal s — d augmenting
paths in the static residual network having distance (with respect to the travel times) less
than 7. The minimum cost augmenting path is then given by the Pareto optimal path
having the minimal residual cost. The interesting questions are when and how long we
can repeat this restricted augmenting path within 7. We know that TRF does not work,
therefore we may start repeating this augmenting path not from time zero. Moreover,
this augmenting path may contain some backward arcs. Therefore, to keep the feasibility,
repeating the flow on backward arc (j,7) must be stopped at time ¢ + A;; when there is no
positive flow on forward arc (i, ) at time ¢. The answer to these questions will determine
the overal complexity of the algorithm.

Earliest arrival flows. In Chapter 4 we have discussed several algorithms for solving
the earliest arrival flow problem. However those algorithms are either pseudo-polynomial
time or approximation algorithms. There is no known polynomial time algorithm to solve
the earliest arrival flow problem. It is an open problem to prove if the earliest arrival flow
problem is an NP-hard problem.
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Multicommodity-like dynamic flows. Consider an evacuation problem in which young,
old, and handicapped people occupy the same area. In the dynamic network terminology,
these differences lead to different commodities with different travel times. As in the clas-
sical multicommodity flow problem, these commodities will also share the arc and node
capacities. But in an evacuation problem, different commodities may come from the same
source and certainly have the same sink. The difference on the travel time leads to a
different time-expanded structure of the dynamic network for each commodity. It is an
interesting open problem to model this problem as a dynamic network flow problem.
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Building 42 and Its Network
Representations

Figure A.1: Building 42 first floor
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Appendix B

Dynamic Network (Generator

Here we describe a generator for dynamic networks with time-dependent attributes. The
generator can generate networks associated with two classes of problems maximum dynamic
flow (or earliest arrival flow) and bicriterion dynamic shortest path problems. The user
has control of the network structure through the use of the following parameters

e random seed,

e time horizon 7T,

e number of nodes,

e indegree and outdegree of each node,

e minimum and maximum value of allowable travel times
e allowable waiting time at any node (zero or one)

We make the distinction between words ”parameters” and ”attributes”. Parameters are
associated with the inputs which must be given by the user to generate the network and
attributes are associated with the network attributes such as travel times, capacities, etc..
The generator asks the user to supply a seed number for the random number generator.
This feature implies that the generator will regenerate the same problem if every input
parameter is the same. Furthermore, the users are allowed to control some parameters to
vary the structural characteristics within a class of problem. For the maximum dynamic
network flow problems, these parameters are

e minimum and maximum value of arc capacities (must be nonnegative) and
e maximum value of waiting capacities (must be nonnegative).
and for the bicriterion dynamic shortest path problems, these parameters are

e minimum and maximum value of allowable costs on both the first and second criteria
and
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e maximum value of holding cost.

The creation process of a dynamic network problem can be divided into two main parts.
The first part creates a network which is concerned with obtaining the proper number of
nodes and guaranteeing that the resulting network is connected. The second part com-
pletes the generation while insuring that the remaining specifications are fulfilled, such as
indegree and outdegree requirements of each node, range of travel times, etc..

The first part of the network generation is to give all nodes an integer number between
0 and the number of nodes minus one. The source node and sink node is numbered by
zero and number of nodes minus one, respectively. Next, some paths from source to sink
are generated in such a way that they are pairuise disjoint and mutually exhaustive of all
nodes except source and sink (following the idea of Klingman, Napier, and Stutz in devel-
oping NETGEN [KNS74]). To generate such paths, we create a list L containing all nodes
but the source node. From the source node, we select one node 7 from L randomly using
random numbers from a uniform probability distribution and connect the source node to %
(creating an arc). If 7 is the sink node, then we obtain a source-sink path and repeat the
process from the source node. Otherwise, remove i from L, repeat the process of selecting
a node from L, and connect the new selected node to the last selected one to create a new
arc until L becomes empty. If L is empty but 7 is not the sink node, then just connect 7 to
the sink node and terminate the first part of the creation process. Note that a condition
for selecting a node from L must be given in such a way that an arc connecting source
and sink nodes are not twice generated. During the creation of an arc, the associated arc
attributes, such as travel times, capacities (for maximum dynamic network flow problems),
and cost vectors (for bicriteria dynamic shortest path problems), are also generated for
each time period t = 0,...,7T. The attribute values are generated randomly while insuring
that the specifications given by the user are met, such as travel times range, cost range,
and capacity range. The first part of the creation process is ended by generating all node
attributes, such as waiting times, waiting capacities (for maximum dynamic network flow
problems), and holding cost (for bicriteria dynamic shortest path problems), for each time
period t = 0,... ,7T. At this point, the network has the correct number of nodes, nodes
attributes, and is guaranteed to be connected.

The second part of the network generation process begins by creating the lists of nodes
having less indegree, I, and less outdegree, O, compare to the indegree and outdegree
specifications given by the user. Next, a new arc (7, j) is created by selecting a node i
and 7 randomly from O and I, respectively. A condition must be given in such a way
that no parallel arc is created and the antisymmetric property of the graph is maintained.
This process is continued until at least one of I and O is empty. If I is empty but not
O, then one can enforce the indegree requirement by connecting the source node to nodes
with deficient indegree if it is possible (avoiding parallel arcs and keeping antisymmetric).
Similarly, if it is possible, one can enforce the outdegree requirement by connecting nodes
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with deficient outdegree to the sink node. The final network will approximate the required
indegree and outdegree of each node. The creation of an arc is followed by generating the
associated arc attributes as described in the first part.

The dynamic network generator also provides a tool to generate acyclic network with
negative values of attributes. In this case, networks having a topological order are gener-
ated. To control the distribution of negative travel times and capacities, one additional
specification can be given by the user, namely the percentage of negative data v . During
the generation process of attribute values for an arc, a random integer number v in the
closed interval [0,100] is generated. If v > o, then no negative value will be generated.
Otherwise, only negative values are generated. This percentage of negative data will not
give any effect when the minimum value of an attribute is nonnegative.






Appendix C

Representative Operation Counts

Ahuja, Magnanti, and Orlin [AMO93] noted that CPU time as a measure of the perfor-
mance of an algorithm has the following drawbacks:

e it is implementation dependent, i.e. the CPU time strongly depends, for example,
on the chosen programming language, compiler and computer, the implementation
style and skill of the programmer;

e because of multiple sources of variablity, CPU times are often hard to replicate;

e since CPU time is an aggregate measure of empirical performance, it is difficult to
obtain detailed insight into an algorithm’s behavior using CPU time measurements
only. As an example, a typical CPU time analysis does not identify the bottleneck
operations of an algorithm.

Therefore, they propose to use the representative operation counts to overcome those draw-
backs. The background of their idea is that instead of counting the number of times the
algorithm executes each line of code, one can focus on a relatively small number of lines
that represent the empirical behavior of the algorithm. These small number of lines of code
are called as the representative operation counts.

In order to describe the idea of representative operation counts, we need the knowledge of
what a computer does in executing a program.

Definition C.1 (e.g. Ahuja, Magnanti, and Orlin [AMO93]) Suppose that z denotes
the size of a problem. An algorithm is said to be ©(g(z)) if for some constants ky > 0, kg >
0, and zy, the algorithm takes at least k1g(z) and at most kag(z) time for all z > 2.

Let assume that the computer’s program is written so that each line of the code gives
O(1) instructions to the computer and that each instruction requires O(1) time units, and
at least one time unit. By this assumption, the execution time of each line of code is
bounded from both above and below by a constant number of units. Therefore, each line
of code requires ©(1) time units. Suppose that the computer program we are investigating
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consists of a finite number of lines of computer code [y,... ,lx. Let M be a subset of
{1,...,K} and [ljs denote the set {l; : i € M}. For a given instance I of the problem,
a;(I), 1=1,...,K, denote the number of times that the computer executes line i of this
computer program.

Definition C.2 (Ahuja, Magnanti, and Orlin [AMO93]) The set ly is a represen-
tative set of lines of code of a program if for some constant k,

(1) < K(Y (1)

jeM
for every instance I of the problem and for every line l; of code.

This means that the time spent in executing any line /; is dominated (up to a constant) by
the time spent in executing the lines of code in a representative set. Therefore, the CPU
time of the computer program on instance I denoting by CPU([/), is determined by that
of the representative set, as described by the following property.

Property C.1 ([AMO93]) Let M be a representative set of lines of code. Then

CPU(I) = O3 ay(D))

JjEM

To determine the representative operation counts of an algorithm, the following criteria
can be used (McGeoch [McG97)):

e a most frequently executed line of code, such as one appearing inside several nested
loops

e a count of loop iterations that are sensitive to some property of input, and

e a frequently executed data structure operation, such as a comparison between two
labels

By identifying the representative operation counts, we can use them
e to estimate the CPU time,
e to identify some asymptotic bottleneck operations, and
e to compare two algorithms

as described in the following paragraphs.

Ahuja, Magnanti, and Orlin [AMO93] proposed to use the representative operation counts
as a linear estimation of CPU time. This linear estimation is called the virtual running
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time of an algorithm. If we denote the virtual running time of an algorithm for an instance
I by V(I), then

|M|

V() = Z ko (1)

where k;, i =1,...,| M | are constants selected so that V(I) is the best possible estimate
of CPU(I). It is suggested to use multiple regression to obtain those constants ki, . .. , k.
Using virtual running time is particularly well suited for situations in which the testing is
carried out on more than one computer with different capabilities. When the experiment
changes from one computer system to another, the representative operation counts remain
unchanged. Therefore, using the representative operation counts from the previous study
and the constants (of the estimated function) obtained for the new computer system (by
doing regression analysis on the new computer), one can obtain the virtual running time
for all problems of the previous study measured in terms of the new computer system. This
is one of the several advantages of using virtual running time instead of CPU time. More
advantages are described in [AMO93].

Definition C.3 (asymptotic bottleneck/nonbottleneck operations) An operation is
considered to be an asymptotic bottleneck operation for an algorithm if the operation con-
sumes a significant percentage of the sum over all operations counts as the problem size
increases. In contrast, an operation is considered to be an asymptotic nonbottleneck opera-
tion if its share in the the sum over all operations counts becomes smaller and approaches
zero as the problem size increases.

[AMO93] suggested the graphical approaches for indentifying an asymptotic bottleneck
operation of an algorithm. This is done by making plots of a;(I)/(3_;cp @;(1)), Vi =
1,...,| M | for increasingly larger problem instances I and look for a trend. To esti-
mate the growth rate of this bottleneck operation, [AMO93] suggested to use an estimated
function of n and ¢, such as cyn®™ i for some choices of constants cyy, €137, and espy.
Multiple regression technique is then used to estimate the values of these constants and
obtain the statistics (such as adjusted R? and standard errors) to evaluate the quality of
the fit.

The representative operation counts can also be used to compare two different algorithms
A; and A,. Let ay, (k) and a4, (k) be the total expected number of representative opera-
tions performed by the algorithms .A; and A, on instances of size k. Algorithm A, is said
asymptotically superior to algorithm A, if

lim x4, (k)

=0
k—00 Q Y, (k)






Appendix D

Classification of Dynamic Network
Problems

Here, we describe a classification scheme either for dynamic network path problems or
dynamic network flow problems. We use this classification scheme throughout this disser-
tation. This classification scheme is based on three positions

Posl / Pos2 / Pos3 (D.1)

with the following meaning.

Pos1 :

Pos2 :

Pos3 :

Number of source nodes and sink nodes, e.g.

(s,d) : single source s and single sink d

(S,D) : multi sources - multi sinks with S the set of source
nodes and D the set of sink nodes with cardinality
greater than one

Assumption on the network parameters which may include,

for example, the travel time A, arc capacity u ,

node (or holdover) capacity a,

maximum waiting time at a node w, flow cost ¢ and holding

cost h.

Some parameters may be constant or time-dependent.

If the parameter is time-dependent,

then we end the notation with (¢), e.g.

(A(t),u(t),a,w(t),c(t), h(t)) denotes the network with

time-dependent travel time, time-dependent arc capacity,

constant node capacity, time dependent maximum

waiting time, and time-dependent flow and holding costs.

We write the parameter only if it is necessary.

Type of the problem, where notation ) and [ are used

for the discrete-time and continuous-time representations,

respectively. The notation T denotes the time horizon 7.
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Appendix D. Classification of Dynamic Network Problems

CET par

CET lex

T5(y(0)):
: discrete-time maximum flow problem

VET
VETI <T
PO(P)
YT <T

: discrete-time minimum cost problem
: discrete-time minimum cost problem

with Pareto relation

: discrete time minimum cost problem

with lexicographic relation
discrete-time quickest flow problem

: discrete-time earliest arrival flow problem

: Pareto optimum dynamic paths problem
: continuous-time minimum cost problem

: continuous-time earliest arrival flow

problem (CTEAF)

The dynamic properties of the system is recognized from the notation 7" used in the third
position of the classification scheme. As an example, single source - single sink discrete-
time maximum dynamic network flow problem with constant travel times and constant arc
capacities (see Section 3.3) is classified as

(s,d)/(\u, a)/VET

while, the corresponding minimum cost static circulation problem with cost defined by
(3.38) can be classified as

(S’ d)/(u’ C)/CE cire
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