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Abstract

Contrary to symbolic learning approaches, which
represent a learned concept explicitly, case-based
approaches describe concepts mplicitly by a pair
(CB,sim), i.e. by a measure of similarity sim and
a set C'B of cases. This poses the question if there are
any differences concerning the learning power of the
two approaches. In this article we will study the rela-
tionship between the case base, the measure of simi-
larity, and the target concept of the learning process.
To do so, we transform a simple symbolic learning al-
gorithm (the version space algorithm) into an equiva-
lent case-based variant. The achieved results strengt-
hen the hypothesis of the equivalence of the learning
power of symbolic and case-based methods and show
the interdependency between the measure used by a
case-based algorithm and the target concept.

Introduction

In this article (which is a short version of the work
presented in (Wess & Globig 1994)) we want to com-
pare the learning power of two important learning pa-
radigms — the symbolic and the case-based approach
(Aha 1991). As a first step in this direction, (Jantke
1992) has already analyzed the common points of in-
ductive inference and case-based learning. Under the
term symbolic learning' we subsume approaches, e.g.
(Michalski, Carbonell, & Mitchell 1983), that code the
knowledge provided by the presentation of the cases
into a symbolic representation of the concept only, e.g.
by formulas, rules, or decision trees. The learning task

*The presented work was partly supported by the Deut-
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! Case-based systems may also use symbolic knowledge.
The use of the term ”symbolic learning” in this work may
therefore be confusing to the reader. But, since the term
”symbolic learning” is also used to contrast a special class of
learning approaches to systems which use neural networks,
we think that the use of the term ”symbolic learning” as
characterization of these approaches is appropriate.

we want to study is the classification of objects. The
aim of a classification task is to map the objects x of
a universe U to concepts C' C U, i.e to subsets of the
universe. In the most simple scenario we have to decide
the membership problem of a certain concept C.

For this special scenario we will show that a case-
based approach has the same learning power as a sym-
bolic approach. We will therefore present a simple
symbolic learning algorithm (the Version Space (Mit-
chell 1982)) and transform this algorithm into a equi-
valent case-based variant. Based on this example we
will show that for case-based approaches there exists
a strong tradeoff between the set of learnable concepts
and the minimal number of cases in the case base. We
will conclude that for our scenario the used bias must
have a comparable strength in both approaches.

Basic Algorithm for Case-Based
Classification

The fundamental problem the two approaches have to
solve during the learning phase is the same. At every
moment the learner knows the correct classification of
a finite subset of the universe only. The knowledge that
the algorithm is able to use is incomplete and, therefo-
re, the computed hypothesis needs not to be correct. In
the application phase a case-based system tries to clas-
sify a new case with respect to a set of stored cases, the
case base C'B. For simplicity, we consider cases as tup-
les (z, class(x)) where z is a description of the case and
class(x) is the classification. Given a new case (y,7)
with unknown classification, the system searches in the
case base C'B for the nearest neighbor (z, class(z)) (or
the most similar case) according to a given measure of
similarity? sim : U x U — [0,1]. Then it states the

2The dual notion is that of a distance measure d: U x
U — R7T. In the sequel we will use the term measure if we
do not want to distinguish between similarity and distance
measures. Both types of measures have the same power
(Richter & Wess 1991) and we will use them with respect
to the context of the examples.



classification class(z) of the nearest neighbor as the
classification of the new case (y,7), i.e (y,class(z)).
For the basic case-based algorithm cf. (Aha 1991;
Aha, Kibler, & Albert 1991).

From the viewpoint of machine learning, case-based
learning may be seen as a concept formation task. This
raises the question how the learned concepts are repre-
sented in case-based approaches. Contrary to symbolic
learning systems, which represent a learned concept ez-
plicitly, e.g. by formulas, rules, or decision trees, case-
based systems describe a concept C' implicitly (Holte
1990) by a pair (C'B, sim). The relationship between
the case base and the measure used for classification
may be characterized by the equation:

‘Concept = Case Base + Similarity Measure‘

This equation indicates in analogy to arithmetic that it
is possible to represent a given concept C' in multiple
ways, i.e. there exist many pairs C = (CBy, simy),
(CBg, simg), ..., (CBy, simy) for the same concept
C. Furthermore, the equation gives a hint how a
case-based learner can improve its classification abili-
ty. There are three possibilities to improve a case-
based system. The system can (1) store new cases
in the case base, (2) change the measure of simila-
rity or (3) change both, the case base and the si-
milarity measure. During the learning phase a case-
based system gets a sequence of cases X1, X»,... with
X; = (x;,class(z;)) and builds up a sequence of
pairs (C'By, simy), (CBag, sims), . .., (C'Bg, simg) with
CB; C{Xi1,Xs,...,X;}. The aim is to get in the limit
a pair (CBy, sim,) that needs no further change, i.e.
dn Vm > n (CBy,, sim,) = (C By, simy, ), because it
is a correct classifier for the target concept C.
Case-based systems apply techniques of nearest-
neighbor classification in symbolic domains. The basic
idea is to use the knowledge of the known cases direct-
ly to solve new problems. By directly we mean, that
the case-based system does not try to extract explicit
knowledge during the learning phase and apply this
abstract knowledge during the application phase.

A Case-Based Variant of a Symbolic
Learner

To demonstrate the fundamental equivalence of the
learning power of symbolic and case-based learners, we
transform a well-known symbolic learner — the Versi-
on Space (VS) from (Mitchell 1982) — in an equivalent
case-based variant. The Version Space algorithm is
a simple and well-known symbolic learning algorithm.
Because of its simplicity it is easy to show a lot of pro-
perties, which hold for many other learning algorithms,
where it would be difficult to prove them.

The Symbolic Version Space

The universe U of cases consists of finite vectors over
finite value sets W; (U = Wy x --- x W,). We want
to decide the membership problem of a certain con-
cept C. The concepts to learn fix the value of certain
attributes®. We can describe these concepts C as vec-
tors (C1,...,Cp), with C; = x or C; = a;; € W;. A
case ((a1, ..., an), class(a)) fulfills the concept C, if for
all 1 < i < nholds: C; = % or C; = a;, 1.e. C; = *
is fulfilled by every « € W;. We further demand that
C; # « for at least one 1.

A concept C'is called consistent with a set of cases, if
all positive cases of the set fulfill the concept and none
of the negative does. The symbolic version space solves
the learning problem by updating two sets S and G of
concepts. S contains the most specific concept that
is consistent with the known cases and G includes the
most general concepts consistent with the known cases.
The task of the symbolic algorithm is to change the
sets S and G in order to preserve their properties. For
the algorithm cf. (Mitchell 1982). It is important that
at every moment all cases subsumed by S are known
to be positive, and all cases that are not subsumed
by any concept of G are known to be negative. This
observation leads to a partial decision function VS :
U — {0, 1} that can be used to classify new cases:

1 ifVC e S[C(z) =1]
VS(xz)=40 ifvVC e G[C(z)=0]

7 otherwise
As long as S # G VS will not classify all cases of the
universe. If a case is covered by S but not by G it is
not clear whether it belongs to the concept C' or not.
So VS will not return an answer for those cases (this
is the semantics of the ”7” in the decision function).

A Case-Based Variant of the Version Space

If we analyze the version space algorithm, it is obvious
that the main learning task is to distinguish between
relevant and irrelevant attributes. We will use this ob-
servation to construct a case-based variant VS-CBR
of the algorithm of the previous section. An attribu-
te value is called relevant, if it is part of the target
concept C' = (ay,...,a,). For every attribute i, we
define a function f; that maps ¢ € W; to {0, 1} with
the following definition:

1 ifCi==
ﬁ»(m)z{

0 otherwise

°i.e. these concepts represent the conjunctions of atomic
formulas z; = a;, e.g. shape = circle A size = big.



The functions f; will be combined to f: U — {0,1}"
fl(ar,...,an)) = (fular), ..., fa(an)). The distance
between two cases a and b is then defined using the
city-block metric as follows:

df(aa b) = |f1(a1) - fl(b1)| +-+ |fn(an) - fn(bn)|

It is obvious that every change of the functions
f1,f2, ..., fn causes a change of the underlying mea-
sure dy. The intended function f; is learnable by the
algorithm in Fig. 1. The algorithm expects the first
case to be positive.

Algorithm to Learn f for VS-CBR
1. Initialize fi(z;) =0 for all 1, z; € W;

2. Let the first positive case be ((a1,...,an),+). Let
fi(ar) = 1 and CB = {(a, +))

3. Get a new case ((b1,...,bn), class(b)).

4. If class(b) is negative, store b in the case base C'B,
ie. CB:=CBU {(b,—)}

5. If class(b) is positive and fi(b;) = 0, then let
fi(zi) = 0 for all z; € W; (f; maps now every
value to zero).

6. If there exist two cases (a, class(a)), (b, class(b)) €
CB with d¢(a,b) = 0 and class(a) # class(b) then
ERROR: The target concept C is not member of
the version space.

7. If the concept C is determined then STOP: The
concept is learned. The classifier (C'B,dy) consists
of the case base C'B and the measure dy

8. Go to step 3.

Figure 1: Algorithm to learn f for VS-CBR

If the concept is learned, the function f and the case
base C'B are used for classification. Given a new case
(¢, ?), the set

F:={zeCB|Yy € CBds(z,c)<ds(y,c)}

is computed. The classification class(z) of the most
similar case (z, class(z)) is then used for the classifica-
tion of the new case (¢, 7). If F' contains more than one
case and these cases have different classifications then
class(c) is determined by a fixed strategy to solve this
conflict. Different strategies are possible and each stra-
tegy will induce a own decision function for VS-CBR.
For example, one conflict solving strategy may state
the minimal classification according to a given ordering
of the concepts. To solve the membership problem, we
assume that a case (¢,7) is classified as negative if it

has the same minimal distance from a positive and a
negative case, i.e. d((a,+),(c,?)) = d((b,—),(c, 7)) is
minimal. To achieve this behavior of the classifier the
ordering of the concepts must be negative < positive.

Analysis

Now let us analyze VS-CBR’s way of classification in
more detail. Positive and negative cases are used dif-
ferently in VS-CBR during the learning phase:

e Positive cases are used to change f, i.e. to adapt
the distance measure dy. They will not be stored in
the case base (with the exception of the very first
positive case).

e Negative cases are stored in the case base C'B but
do not change the distance measure d.

The information that is used by VS to change S and
G is used by VS-CBR to change the case base or the
measure of similarity. It is easy to show that all cases
which are classified by the symbolic VS will also be
classified correctly by the case-based one. The diffe-
rence is that the case-based variant VS-CBR, computes
a classification for every case of the universe (because
the distance measure is total) while the symbolic VS
classifies only if it knows that the proposed classifica-
tion must be correct. Otherwise (i.e. the case fulfills a
concept from G but not the concept in S) it will not
produce any classification at all. If we add a test, whe-
ther the classification of the nearest neighbor is correct
to VS-CBR,, we can force VS-CBR to produce only cer-
tain classifications, too. But this test would more or
less be a variant of the original VS algorithm.

Relationships between C'B, sim, and C

We have shown that it is possible to reformulate the
Version Space algorithm in a case-based manner so
that the case-based variant behaves as the symbolic
algorithm. It is important to understand the implica-
tions of a measure of similarity to the set of represen-
table concepts.

On one hand, case-based systems (C' B, sim) use the
cases in the case base C'B to fill up the equivalence
classes induced by the measure sim. On the other
hand, they use the cases to lower the number of equi-
valence classes by changing the measure simn. Thereby,
the target concept C may be identified by fewer cases.
But, a lower number of equivalence classes means that
the modified measure sim’ can distinguish between fe-
wer concepts. Having this in mind, we can be compa-
re case-based systems with respect to two dimensions:
minimality and universality. The first dimension re-
lates to the implicit knowledge that is coded into the



used measure sim. Because we are not able to mea-
sure this implicit knowledge directly, we have to look
at the size of the case base instead. More knowledge
coded in the used measure sim will result in a smaller
(minimal) size of the case base C'B within the classifier

(CB, sim).

Definition 1 The similarity measure sim, of a case-
based system (CBy,simy) is called better informed
than a measure simy of a system (CBag,sims) iff
both systems are classifiers for the same concept C,
|CBy| < |CBg| holds, and there is no CBj C CB; so
that (C' B}, sim;) is a classifier for the concept C.

The second dimension relates to the set of learnable
concepts. We must distinguish between the represen-
tability and the learnability of a concept. A concept C'
is called representable by a measure sim, if there ezists
a finite case base C'B such that (C' B, sim) is a classifier
for C. A concept C' is called learnable by a measure
stm, if there exists a strategy to build a finite case base
CB such that in the limit (C'B, sim) is a classifier for
the concept.

Definition 2 A similarity measure simy is called mo-
re universal than a similarity measure sims iff the set
of concepts that are learnable by simy is a proper subset
of the set of concepts that are learnable by sim;.

Using an universal similarity measure conflicts the mi-
nimality of the case base. Reducing the size of the case
base, which means to code more knowledge into the
measure, usually results in a less universal similarity
measure. We can distinguish two extreme situations:

All knowledge is coded into the case base: The
similarity is maximal if and only if the compared
cases are identical, i.e. sim(z,y) = 1 <= =z =y,
0 otherwise. The measure is universal because it
is able to learn every binary concept C; in the
given universe U. But to do so, it needs the whole
universe as a case base, i.e CB := U. Thus, the
resulting system (U, =) is universal but not minimal.

All knowledge is coded into the measure: The
similarity is maximal if and only if the classification
of the compared cases C(z) is identical, i.e. the
measure of similarity sim knows the definition of
the concept C to learn. Nearly the whole knowledge
about the concept is then coded into the measure.
The case base contains almost one positive ¢t and
one negative case ¢~ and is used only to choose
between some trivial variations. The measure
sim(z,y) =1 <= C(z) = C(y) (0 otherwise)
can only distinguish between four concepts (C,
=C', True — i.e. all cases are positive, False —
i.e. all cases are negative). Thus, the resulting

system ({¢*,c¢™},C(z) = C(y)) is minimal but not
universal.

In a case-based learner, two processes — reducing the
size of the set of learnable concepts (hypothesis space)
and increasing the size of the case base — should be
performed. The measure sim(z,y) <= C(z) = C(y)
indicates a simple way to reformulate any symbolic al-
gorithm in a case-based manner, i.e. use the actual
symbolic hypothesis to construct such a measure and
store one positive and one negative case in the case
base.

Discussion

The symbolic as well as the case-based approach com-
pute a classification when a new case is presented. If
only the input and the output of the algorithms are
known, we will not be able to distinguish between the
symbolic and the case-based approach. The symbo-
lic algorithm builds up its hypothesis by revealing the
common characteristics of the cases in a predefined hy-
pothesis language. The hypothesis describes the rela-
tion between a case and the concept. One component
of a case-based learner is a measure, that states the
similarity or the distance between cases. The measu-
re defines a preference relation between two cases and
is therefore independent from the existence of a con-
cept. A main difference between case-based and sym-
bolic classification algorithms is the representation of
the learned concept. A case-based classifier (C' B, sim)
consists of a case base C'B and a measure of similarity
sim. It is possible to represent the same concept C
in multiple ways, i.e. by different tuples (CB;, sim;).
But, neither the case base C'B nor the measure sim
is sufficient to build a classifier for C'. The knowledge
about the concept C'is spread to both. Thus, the hypo-
thesis produced by a case-based algorithm represents
the concept only tmplicitly, while symbolic procedu-
res build up an ezplicit representation of the learned
concept.

If the problems and the power of case-based and
symbolic approaches are similar as we have seen for
our simple scenario, the question arises whether the
two approaches can be interchanged in all situations.
We assume that we want to get a classifier only and not
an explicit description of the concept. In the second
case, a case-based system cannot be the appropriate
choice. Within this perspective, the symbolic and the
case-based approach seem to be interchangeable in the
described context. The symbolic approach corresponds
to a kind of compilation process whereas the case-based
approach can be seen as a kind of interpretation during
run time. Which approach should be used in a concre-
te situation is a question of an adequate representation



of the previous knowledge. If previous knowledge con-
tains a concept of neighborhood that leads to appropria-
te hypotheses, a case-based approach is a good choice.
In this scenario we are able to code the neighborhood
principle into the measure used. The case-based ap-
proach will then produce good hypotheses before the
concept is learned, i.e. when not all equivalence classes
of the measure are filled.

We have analyzed the relationship between the mea-
sure of similarity, the case base, and the target con-
cept in the described scenario of classification tasks (cf.
(Globig & Wess 1994)). The learning algorithm needs
strong assumptions about the target concept in order
to solve its task with an acceptable number of cases.
Assumptions exclude certain concepts from the hypo-
thesis space. Symbolic learners use these assumptions
to restrict the language to represent their hypotheses.
A case-based learner have to code this assumptions in-
to the measure of similarity. These restrictions of the
hypothesis space are called bias. (Rendell 1986) divides
the abstraction done by a learning system in two parts:
the bias (to describe the amount of assumptions), and
the power of the learner. We have characterized case-
based systems by the number of learnable concepts and
the number of cases they need to identify a target con-
cept. Case-based algorithms use the cases of the case
base to fill equivalence classes induced by the measure
used. On the other hand, they use the knowledge from
the cases to lower the number of equivalence classes
by changing the measure. Thereby, the target concept
may be identified by fewer cases. The used measure
defines the set of the learnable concepts and the cases
in the case base select a concept from this set.

The bias relates to the restriction of the set of learna-
ble concepts induced by the measure of similarity and
is therefore comparable to the degree of universality.
The minimal size of the case base reflects the informa-
tion the learner needs to come to a correct hypothesis,
i.e. the power of the learner (Rendell 1986). Using
an universal similarity measure conflicts the minima-
lity of the case base. Reducing the size of the case
base, which means to code more knowledge into the
measure, usually results in a less universal similarity
measure. We have stressed that the measure (respec-
tively the way to modify the measure) is the bias of
case-based reasoning. Because case-based systems are
based on a bias that cannot be deduced from the cases,
we reject the thesis (Cost & Salzberg 1993) that case-
based classification is more appropriate in situations
with a low amount of previous knowledge.

We conclude that for classification tasks there is
no fundamental advantage in the learning power of
case-based systems as maintained by (Cost & Salzberg

1993). Since the number of cases an algorithm need
to learn a concept is directly related to the size of the
hypothesis space, the used bias must have a compa-
rable strength in both approaches. While symbolic
approaches use this extra evidential knowledge to
restrict the language to represent their hypotheses,
the case-based algorithms need it to get appropriate
measures of similarity.

Acknowledgement: We would like to thank M.M.
Richter, K.-D. Althoff, H.-D. Burkhard, and K.P. Jant-
ke for many helpful discussions, and the anonymous
reviewers for their comments.

References

Aha, D. W.; Kibler, D.; and Albert, M. K. 1991. Instance-
Based Learning Algorithms. Machine Learning 6:37—-66.

Aha, D. W. 1991. Case-Based Learning Algorithms. In
Bareiss, R., ed., Proceedings CBR Workshop 1991, 147—
158. Morgan Kaufmann Publishers.

Cost, S., and Salzberg, S. 1993. A weighted nearest neigh-
bor algorithm for learning with symbolic features. Machi-
ne Learning 10(1):56-78.

Globig, C., and Wess, S. 1994. Symbolic Learning and
Nearest-Neighbor Classification. In Bock, H.-H.; Lenski,
W.; and Richter, M., eds., Information Systems and Data-
Analysis, 17-27. Springer Verlag.

Holte, R. S. 1990. Commentary on: PROTOS an exemplar-
based learning apprentice. In Kodtratoff and Michalski
(1990). 128-139.

Jantke, K. P. 1992. Case-Based Learning in Inducti-
ve Inference. In Proceedings of the 5th ACM Workshop
on Computational Learning Theory (COLT-92), 218-223.
ACM Press.

Kodratoff, Y., and Michalski, R., eds. 1990. Maschine
Learning: An Artificial Inteligence Approach, volume I11.
Morgan Kaufmann.

Michalski, R.; Carbonell, J. G.; and Mitchell, T., eds.
1983. Machine Learning: An Artificial Intelligence Ap-
proach, volume 1. Palo Alto, California: Tioga.

Mitchell, T. 1982. Generalization as search. Artificial
Intelligence 18(2):203-226.

Rendell, L. 1986. A general framework for induction and
a study of selective induction. Machine Learning (1):177—
226.

Richter, M. M., and Wess, S. 1991. Similarity, Uncer-
tainty and Case-Based Reasoning in PATDEX. In Boyer,
R. S, ed., Automated Reasoning, Essays in Honor of Woo-
dy Bledsoe. Kluwer Academic Publishing. 249-265.

Wess, S., and Globig, C. 1994. Case-Based and Symbo-
lic Learning - A Case Study. In Wess, S.; Althoff, K.-D.;
and Richter, M. M., eds., Topics in Case-Based Reaso-
ning - selected papers from the First European Workshop
on Case-Based Reasoning, Kaiserslautern, 1993. Springer
Verlag.



