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Abstract:
In this paper, the reflection  and refraction of a plane wave at an interface between

.two half-spaces composed of triclinic crystalline material is considered. It is shown that
due to incidence of a plane wave three types of waves namely quasi-P (qP), quasi-SV
(qSV) and quasi-SH (qSH) will be generated governed by the propagation condition
involving the acoustic tensor.  A simple procedure has been presented for the calculation
of all the three phase velocities of the quasi waves. It has been considered that the
direction of particle motion is neither parallel nor perpendicular to the direction of
propagation. Relations are established between directions of motion and propagation,
respectively. The expressions for reflection and refraction coefficients of qP, qSV and
qSH waves are obtained. Numerical results of reflection and refraction coefficients are
presented for different types of anisotropic media and for different types of incident
waves. Graphical representation have been made for incident qP waves and for incident
qSV and qSH waves numerical data are presented in two tables.

Key words: Reflection, refraction, incident wave, triclinic medium, quasi-P,quasi-SV,
quasi-SH

1. Introduction

The study of reflection and refraction phenomena of elastic waves is of
considerable interest in the field of Seismology, in particular seismic prospecting as the
Earth’s surface might be supposed of consist of different layers having different material
properties. The elastic properties of a crystalline material depend on the internal structure
of the material.

Effect of earthquake on artificial structures is of prime importance to engineers
and architects. During an earthquake and similar disturbances a structure is excited into a
more or less violent, with resulting oscillatory stresses, which depend both upon the
ground vibration and physical properties of the structure. So, wave propagation in
anisotropic medium plays a very important role in civil engineering and geophysics.

The propagation of body waves and surface waves in anisotropic media is
fundamentally different from their propagation in isotropic media. In seismology
anisotropy manifests itself most straightforwardly by a variation of the phase speed of
seismic waves with their direction of propagation. A material displaying velocity
anisotropy must have its effective elastic constants arranged in some form of crystalline
symmetry. Cramplin [1977] has pointed out that the behaviour of both body and surface
waves in anisotropic structures differs from that in isotropic structures, and variation of
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velocity with direction is only one of the anomalies which may occur. Within an
anisotropic material three body waves propagate in any direction, having different and
varying velocity and different and varying polarization. In highly anisotropic medium the
P, SV and SH are coupled. This coupling introduces polarization anomalies which may
be used to investigate anisotropy within the earth.

The problem of reflection and refraction of elastic waves have been discussed by
several authors. Without going into the details of the research work in this field we
mention the papers by Knott [1899], Gutenberg  [1944], Achenbach [1976], Keith and
Crampin [1977, 1977a, 1977b], Tolstoy [1982], Norris [1983], Pal and Chattopadhyay
[1984], Auld [1990], Ogden and Sotirropoulos [1997,1998], Chattopadhyay and
Rogerson [2001].

Crampin and Taylor [1971] studied surface wave propagation in examples of
unlayered and multilayered anisotropic media, which is examined numerically with a
program using as extension of the Thompson-Haskell matrix formulation. They studied
some examples of surface wave propagation in anisotropic media to interpret a possible
geophysical structure. Crampin [1975] showed that the surface waves have distinct
particle motion when propagating in a structure having a layer of anisotropic material
with certain symmetry relations.

In this paper we have studied the reflection and refraction of a plane wave at the
interface of of two triclinic crystalline media. Relations have been established between
directions of motion and propagation, respectively. Reflection and refraction coefficients
due to incident qP,qSV and qSH waves have been computed for different types of
anisotropic media. It has been observed that triclinic media plays a significant role in case
of reflection and refraction.

2. Formulation of the problem

Consider a homogeneous triclinic medium having twenty one elastic constants.
We assume ),,( 32 txxuu ii = , i=1,2,3. (1)

The stress-strain relations are

12161315231433132212111111 eCeCeCeCeCeC +++++=τ  ,

12261325232433232222111222 eCeCeCeCeCeC +++++=τ  ,

12361335233433332223111333 eCeCeCeCeCeC +++++=τ  , (2a)

12461345234433342224111423 eCeCeCeCeCeC +++++=τ  ,

12561355234533352225111513 eCeCeCeCeCeC +++++=τ  ,

12661356234633362226111612 eCeCeCeCeCeC +++++=τ
where

jiij CC =  , )(2 ,, ijjiij uue +=  and iu  (i=1,2,3) are the displacement components.

The equations of motion without body forces are

ijij u
��ρτ =,  ,i=1,2,3. (2b)

The following nonvanishing equations of motion are obtained after using equations (1)
and (2)



3

})({)2(
2
2

2
2

26
32

2
2

25462
3

2
2

452
2

1
2

66
32

1
2

562
3

1
2

55 x

u
C

xx

u
CC

x

u
C

x

u
C

xx

u
C

x

u
C

∂
∂

∂∂
∂

∂
∂

∂
∂

∂∂
∂

∂
∂ ++++++

+
2

1
2

2
2

3
2

46
32

3
2

45362
3

3
2

35 })({
t

u

x

u
C

xx

u
CC

x

u
C

∂
∂ρ

∂
∂

∂∂
∂

∂
∂ =+++  , (3)

}2{})({
2
2

2
2

22
32

2
2

242
3

2
2

442
2

1
2

26
32

1
2

46252
3

1
2

45 x

u
C

xx

u
C

x

u
C

x

u
C

xx

u
CC

x

u
C

∂
∂

∂∂
∂

∂
∂

∂
∂

∂∂
∂

∂
∂ ++++++

2
2

2

2
2

3
2

24
32

3
2

44232
3

3
2

34 })({
t

u

x

u
C

xx

u
CC

x

u
C

∂
∂ρ

∂
∂

∂∂
∂

∂
∂ =++++ , (4)

})({
2
2

1
2

46
32

1
2

36452
3

1
2

35 x

u
C

xx

u
CC

x

u
C

∂
∂

∂∂
∂

∂
∂ +++

})({
2
2

2
2

24
32

2
2

44232
3

2
2

34 x

u
C

xx

u
CC

x

u
C

∂
∂

∂∂
∂

∂
∂ ++++

2
3

2

2
2

3
2

44
32

3
2

342
3

3
2

33 }2{
t

u

x

u
C

xx

u
C

x

u
C

∂
∂ρ

∂
∂

∂∂
∂

∂
∂ =+++ . (5)

Let ),,0( )(
3

)(
2

nn ppp
�

 denote the unit propagation vector, nc  is the phase velocity and nk  is

the wavenumber of plane waves propagating in the 32xx -plane.

We consider plane wave solution of equations (3) to (5) as
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where
),,( )(

3
)(

2
)(

1
nnn dddd  is the unit displacement vector and

)( )(
33

)(
22 tcpxpxk n

nn
nn −+=η . (7)

Inserting the expressions of (6) into the equations (3) to (5), we have
0)( )(

3
)(

2
)(

1
2 =++− nnn PdTddcS , (8)

0)( )(
3

)(
2

2)(
1 =+−+ nnn RddcQTd , (9)

0)( )(
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2)(
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)(
1 =−++ nnn dcWRdPd (10)
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2
355 2 pCppCpCS ++= ,
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226322546

2
345 )( pCppCCpCT +++= ,
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246324536

2
335 )( pCppCCpCP +++=  ,
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344 2 pCppCpCQ ++=  ,
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224324423
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334 )( pCppCCpCR +++=  ,
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2
2443234

2
333 2 pCppCpCW ++= . (11)

From equations (8),(9) and (10), we obtain
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The equations (12) to (14) may be used to calculate d  in terms of p .

Eliminating )(
3

)(
2

)(
1 ,, nnn ddd  from (8),(9) and (10), we have

03
2

2
4

1
6 =+++ acacac  (15)

where
)(1 WQSa ++−=  ,

222
2 PTRQWWSQSa −−−++= ,

)2( 222
3 QPPTRWTSRSQWa −+−−−= . (16)

Solving the equation (15), we will obtain the phase velocities of quasi-P(qP),quasi-
SV(qSV) and quasi-SH(qSH)  as

3
)

3
cos(2 12 a

rcL −−= ϕρ , (17)

3
)

3
60cos(2 102 a

rcSV −+= ϕρ , (18)

3
)

3
60cos(2 102 a

rcSH −−= ϕρ (19)

where

3
21
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2
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q +−= ,
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2
12 aa

p
−=  ,

pr −=  , )(cos
3

1

r

q−=ϕ . (20)

In isotropic case

µλ 2332211 +=== CCC  ,

λ=== 231312 CCC  ,

µ=== 665544 CCC  (21)

and all other elastic constants are zero.
Substituting (21) in equations (17),(18) and (19) and after simplification, we obtain the
following  compressional velocity ( Lc ) and the repeated roots ( SVc  and SHc ) for shear

velocity as

,
22

ρ
µλ +=Lc

ρ
µ== 22

SHSV cc . (22)
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We solved the equation (15) and obtained three real roots of  2c . The largest root is
assigned to the phase velocity of qP waves, the second largest is the phase velocity of
qSV waves and the lowest root for the phase velocity of qSH waves. The phase velocities
of quasi-transverse waves (qSV and qSH) will not be identical in case of triclinic
medium. The result was tested with different sets of data as mentioned in section 4. If any
geophysical evidence exists that the qSH wave velocity is more than qSV wave velocity
then the nature of the graphs of the reflected qSV and reflected qSH of this paper are to
be interchanged. This method of solution for calculating the velocities of all the three
quasi-waves is most general and will be helpful to identify the phase velocities for
different types of anisotropy.

3. Solution of the problem

Consider a triclinic crystalline medium. The 3x -axis is taken along the free

surface and 2x -axis is vertically downward. Plane wave is incident at the free boundary

02 =x . Incident qP  or qSV or qSH  waves will generate reflected qP, reflected qSV,
reflected qSH waves and also refracted qP, refracted qSV, refracted qSH waves. It is also
clear from the equations (3),(4) and (5) that all the displacement components are coupled.
Let n=0,1,2,3,4,5,6 be assumed for incident wave, reflected qP, qSV, qSH and refracted
qP, qSV, qSH waves respectively.
In the plane 02 =x , the displacements and stresses of incident and reflected waves are
represented by

)exp()()(
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j idAu η=  , j=1,2,3.

)exp(1
)(

12 nnnn
n iAikP ητ =  ,

)exp()(
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n iAikR ητ = (23)

where
}{ )(

2
)(

3
)(

3
)(

246
)(

3
)(

336
)(

2
)(

2261
nnnnnnnn

n pdpdCdpCdpCP +++=
+ )(

2
)(

166
)(

3
)(

156
nnnn pdCpdC + , (24)

}{ )(
2

)(
3

)(
3

)(
224

)(
3

)(
323

)(
2

)(
222

nnnnnnnn
n pdpdCdpCdpCQ +++=

+ )(
2

)(
126

)(
3

)(
125

nnnn pdCpdC + , (25)

}{ )(
2

)(
3

)(
3

)(
244

)(
3

)(
334

)(
2

)(
224

nnnnnnnn
n pdpdCdpCdpCR +++=

+ )(
2

)(
146

)(
3

)(
145

nnnn pdCpdC + ,

)( )(
33 tcpxk n

n
nn −=η

and n=0,1,2,3,4,5,6. (26)
For n=4,5,6 the elastic constants  ijC to be replaced by /

ijC  and accordingly equations (23)

to (26) will be changed for the refracted waves in the upper half-space.
For incident plane waves

Iccpp ==−= 00
)0(

30
)0(

2 ,sin,cos θθ .

For reflected qP waves
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2 ,sin,cos Lccpp === θθ .

For reflected qSV waves

Tccpp === 22
)2(
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For reflected qSH waves
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For refracted qSH waves
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136
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2 ,sin,cos Tccpp ==−= θθ  (27)

where TLI ccc ,, 1 , 1Tc , //
1,, TL cc  and /

1Tc  are the phase velocities of incident plane wave,
reflected qP, reflected qSV, reflected qSH waves, refracted qP, refracted qSV and
refracted qSH waves respectively.
The boundary conditions at 02 =x  are
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Using the boundary conditions and the equations (23) to (26), we obtain,
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The above equations are valid for all values of 3x  and t. Therefore, we have
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and
ωθθθθθθθ ======= 66554433221100 sinsinsinsinsinsinsin kkkkkkk (42)

where k and ω  are apparent wave number and circular frequency respectively. The

amplitude ratios of qP,qSV and qSH are denoted by  
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Solving the equations (34)-(39), the reflection and refraction coefficients of qP, qSV and
qSH may be obtained as
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4. Numerical Calculations and Discussions

Numerical calculations were performed for incident qP, qSV and qSH waves with
different types of anisotropic data. We have considered eight hypothetical data  in case of
Data-1 and twelve hypothetical data in case of Data-3 to get the effect of 21 elastic
constants.
The following cases have been considered:
Data-1: The 13 elastic constants for the case of AT-cut quartz are (Tiersten[1969])

GPaCGPaCGPaC 83.102,77.129,74.86 332211 === ,

,66.3,15.27,25.8 141312 GPaCGPaCGPaC −==−=
,92.9,7.5,42.7 342423 GPaCGPaCGPaC ==−=

GPaCGPaCGPaCGPaC 53.2,01.29,81.68,61.38 56665544 ==== ,
3/649.2 cmgm=ρ .

To test the effect of triclinic structures, we have considered the following hypothetical
values of the constants:

5.74645363526251615 ======== CCCCCCCC GPa.

Data-2: The 13 elastic constants of Data-1 case and
5.04645363526251615 ======== CCCCCCCC GPa

Data-3: The 9 elastic constants for Rochelle salt (Auld [1990]) are
,4.39,4.41,0.28 332211 GPaCGPaCGPaC ===

,6.9,85.2,66.6 665544 GPaCGPaCGPaC ===
.7.19,0.15,4.17 231312 GPaCGPaCGPaC ===

3/ /7.2 cmgm=ρ .
We have considered alongwith the set of Data-3, the following hypothetical data

5.056243414 ==== CCCC GPa
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and
5.04645363526251615 ======== CCCCCCCC  Gpa.

Curve-1 has been drawn considering the values of the upper layer as Data-1 and for the
lower layer as Data 3. Curve-2 has been drawn with the set of vaules for the upper layer
as Data-3 and the lower layer as Data-2.
Figures 1 to 6 have been drawn for incident qP waves. It has been observed that the
existence of the angles for amplitude ratios of reflected and refracted waves are upto

068 . Curves 1 and 2 have some jumps at certain angles for each diagrams from 1 to 6.
Due to want of practical data the actual behaviour cannot be presented but idea can be
made by considering these hypothetical data about the behaviour of reflection and
refraction of waves in a triclinic media which is highly anisotropic in nature.
Table-1  

The reflection coefficients for incident qSV waves for the set of data of curve-1 as
mentioned above:

θ  in
degrees

01 / AA 02 / AA 03 / AA 04 / AA 05 / AA 06 / AA

0 0.5011 -0.7285 -0.7182 0.1916 0.0303 -0.1682
10 0.8549 -.7938 -0.9305 0.0236 -0.0082 0.0416
20 -0.13409 -2.4629 1.7378 -0.5539 -0.0201 0.6569
30 0.3268 -3.0822 2.4645 -0.4448 0.0258 0.4792
40 0.5807 -3.3594 2.4821 2.4825 0.1714 -2.6587
50 -0.9412 3.1518 -2.2028 -2.6552 -0.2639 2.7961
60 1.1948 -2.7522 -1.9326 1.5351 0.2678 -1.47136
70 1.5806 -2.5766 -1.8422 1.3135 0.2564 -.9914

Table-2  

The reflection coefficients for incident qSH waves for the set of data of curve-1 as
mentioned above:

θ  in
degrees

01 / AA 02 / AA 03 / AA 04 / AA 05 / AA 06 / AA

0 -0.5187 -1.2574 0.9662 0.6328 0.0136 -0.4530
10 1.9077 0.5953 -3.2210 1.3696 0.0425 -1.2106
20 0.4372 -1.7627 0.7549 1.0272 0.0758 -0.9497
30 0.1879 -2.8943 2.3863 0.5420 0.0573 -0.4573
40 0.5246 -3.2924 2.7141 3.5593 0.1596 -3.6311
50 0.7984 -2.7937 2.2873 2.6008 0.2034 -2.5651
60 0.6717 -1.8051 -1.7599 1.2689 0.1439 -0.9705
70 -2.3998 2.6543 -0.0552 -0.6534 -0.3901 1.3588
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