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1. Didactical and methodological principles 

Location theory considers the possibilities to use mathematical methods in order to 
find good locations for facilities in industry and administrations. A good location for a 
central warehouse of a company has, for instance, been found if the sum of the 
transport and warehouse costs are minimized and if the warehouse is also used up to 
its capacity. If, on the other hand, an administration is looking for a location of a new 
firehouse or a hospital, an important criterion for an optimal location is that the 
longest distance should not surpass a given bound. 
 
The location problems introduced in this publication belong to a group of so-called 
planar problems since the given locations are defined by two co-ordinates, i.e. the 
problem is considered in the Euclidean plane. Moreover, we restrict ourselves to 
searching for a single optimal new location.  
 
Simple location problems can efficiently be solved by triangle constructions, distance 
computations in coordinate systems and methods of elementary calculus. In this way 
the issues considered here can primary been dealt with using methods and contents 
of mathematics classes for 14 – 18 year old students.  
 
This evaluation with respect to its feasibility in application oriented teaching is also 
shared by a large group of teachers which have participated in continuing education 
courses, although those teachers were at the beginning surprised regarding the non 
conventional approach to teach mathematics.  
 
Including location theory as part of school mathematics is not only reasonable from a 
mathematical point of view. It is also advantageous with respect to didactical and 
methodological reasons. The approach is contributing to a higher motivation due to 
the practice oriented teaching and the ability to repeat and strengthen mathematical 
ideas which have already been taught. In particular one should emphasize the 
opportunity students will have to acquire a social and activity driven knowledge which 
is possible by a methodological organisation of mathematics classes. 
 
Moreover location theory is one of the possibilities to accept the challenge of the 
mathematics curriculum with respect to relevant applications, multidisciplinarity and 
mathematical modelling. According to the curriculum in German high schools: „A 
further task of the mathematics curriculum is to show students the process of 
mathematizing real world problems. Whenever mathematics is used as means to 
structure a practical problem, to represent essential aspects of complex conditions in 
a model and to find solutions, interaction between theory and practice can be 
experienced. (...) Students should be able to interrelate mathematics and facts 
outside of mathematics, to work on this problem with mathematical means, to 
interpret solutions which have been found in this mathematical context and to 
evaluate them. In this process the limits of a specific discipline and in particular of 
mathematizing should also be recognized.1  
For the teaching, examples have been chosen which – starting from the every day 
                                                           
1 Curriculum of mathematics (Lehrplan Mathematik, Grund- und Leistungsfach Jahrgangsstufen 11 bis 
13 der gymnasialen Oberstufe (Mainzer Studienstufe), 1998, Seite 7. Sowie „Problemlösendes 
Verhalten“ und „Mathematisierung von Sachproblemen“ im Lehrplan Mathematik (Klasse 7-9/10), 
Hauptschule, Realschule, Gymnasium 1984, Seite 11-13 
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experience of young people – show how to use mathematics to solve problems in 
management, society and science/technology. The aim is to look at typical problems 
of modelling based location planning, which can be solved by mathematical methods. 
These methods correspond to the usual knowledge of students or which can easily 
be derived by extending well-known results usually taught in schools. 
 
From consulting activities which have been done in the working group Optimization of 
the University of Kaiserslautern for industry the following three typical types of 
problems have been selected for the mathematics classes.  
 
1. The problem of a central warehouse (cf. 2.1) represents a type of problem in 

which the sum of distances of given locations – for instance smaller warehouses – 
and a new facility – e. g. the central warehouse – has to be minimized. This 
problem comes in several variations:  

• Where to build the central baggage claim in an airport such that the 
passengers coming from different gates can minimize their walking distance? 

• Where to locate a playground in a neighbourhood such that the children living 
in neighbourhoods close by have short distances to this playground. 

 

This problem can be solved in various ways such that working on this topic can be 
done for different age groups: 

•  If we have three given locations we can use the construction of a specific point 
(the Fermat Point) using specific lines in a triangle (Simson Lines). 

• By minimizing the sum of distances using elementary calculus. 
 

Such location problems can be discussed with students as young as 14 or 15. In 
order to give more exact recommendations for the age group one should consider 
whether existence proofs and the properties of the Fermat Point should indeed be 
worked on (see 6.1). In this case one has to use congruence theorems but also 
the theorem of the inscribed tetragon  and its inversion (in proof 1) or the property 
of a rotation as a congruence mapping (in proof 2). There are however important 
pedagogical and time management reasons which may recommend to delete the 
mathematically exact proofs of the Fermat Point. This deletion will not lead to a 
strong loss with respect to quality of the course. In order to solve the problem 
using triangle constructions – in a coordinate system or directly in a geographical 
map – constructions have to be used which allow teachers and students to 
practice and repeat well-known basic constructions. The result also can be 
generated using a physical model in experimental form for three existing locations.  

In a course for older students this location problem can also be solved using 
elementary calculus. The problem offers the possibility to introduce functions with 
two variables. Here it is possible to show that a solution which the students know 
from functions with one variable can only be carried over if the distance is chosen 
„smartly“: only if the squared distance is used, one obtains an objective function 
which can be separated into two parts such that each of these parts is depending 
only on one variable. In this situation the optimum can be found in the classical 
way.  

The mathematical model can moreover be extended in order to obtain a better 
reflection of reality. If the smaller warehouses are used with different frequencies 
one uses these frequencies as factors by which the distance between central 
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warehouse and small warehouses is multiplied (weighted distance). In the general 
case of n given locations with different frequencies and squared distance one can 
derive in this way the optimal location using a closed form expression for the 
coordinates (cf. 5.1 and 5.2). 

2. In setting up the model the computation of the distance between two points is often 
of crucial importance. Therefore different metrics have been emphasized in 
advanced education courses for teachers. In schools one usually introduces the 
Euclidean distance but it is very meaningful to look also at the square of these 
distances and others. Using the example of the assembly of printed circuit boards 
(see 2.2) it is shown that the distances have to be computed in different ways 
depending on the type of movement of the robot. If the robot can only move 
parallel to the coordinate axes and if the movement has to be done sequentially, 
the distance of a point P(x1,x2) to the origin is given by the so-called ℓ1-norm: 
ℓ1(OP) = lx1l + lx2l . 

An intuitive interpretation of this kind of distance measurement is given if one 
considers the computation of distances in a city having streets built like a checker 
board as for instance in Mannheim (Germany) or Manhattan (USA). Therefore this 
type of distance is also called Manhattan distance.  

In general, students (and also teachers) are not used to deal with this type of 
distance computation. Consequently it is an often very surprising experience to 
look at the set of points having constant distance to one or two fixed given points: 
Perpendicular bisectors turn into broken lines, circles are appearing as regular 
closed broken lines. 

This example for teaching mathematics can be further extended. Given the 
conditions for the coordinates of our points not surpassing a certain distance from 
a fixed given point one can do a complete case analysis using inequalities. The 
resulting graphs representing the solution sets can be drawn such that this 
problem can be used for 15-year-old students as an example for linear equations 
and inequalities. 

3. Looking at the problem of planning a fire house, (cf. 2.3) we want to minimize the 
maximum distance of the location we are looking for to given locations. The 
problem can be solved using circumcircles of a triangle defined by three given 
locations. The same procedure can be used if more than three locations are given. 
One has to consider all combinations of three locations and then chooses the best 
of the resulting solutions.  
In this approach one has to distinguish between acute and obtuse triangles and 
one also has to apply the theorem of Thales for a right-angled triangles. Hence 
this approach is particularly suited for 14-year-old students. For this age group the 
theorem of Thales can be nicely introduced within this application. Besides 
practising triangle constructions and description of these constructions there is 
also the opportunity to formulate algorithms. 

Courses sketched here, are all designed to take approximately five to eight hours. 
More time should not be spent. By this approach not much time is taken away 
from the normal mathematics curriculum. In addition the working on practice 
oriented problems like locational planning leads to new motivation for this classical 
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curriculum. This limitation in time means for the teachers that they have to 
emphasize some of the topics described in this paper and to work on this chosen 
topics in an exemplary way. Correspondingly, there is no need to do the complete 
series of lectures mentioned in this report. They are meant as motivations and 
hints how the topics described in sections 3 – 5 can be used in different age 
groups. 

In order to complete the process of modelling2 in which a real world problem is 
mapped into a mathematical one and solved in this context, one has to look at the 
solution found by mathematical means and to evaluate this solution in the real 
world environment. Ever so often, these solutions do not satisfy the requirements 
from the practical context as it is shown in the following example. If, for instance, 
one finds the location of a garbage dump (instead of the location of a central 
warehouse) one would possibly get a location in the centre of the city, since here 
the sum of the transport roads is minimized! 

The reaction of students to given series of lectures was throughout positive. They 
are highly motivated and were ready and willing to work for several hours on new 
concepts which from a mathematical point of view are not easy. Very often, it was 
possible to get into contact with students who usually are not so fond of 
mathematics. For all students it was interesting to see which kinds of problems 
can be solved by mathematics and that mathematics doesn’t simply end in itself. 

In addition to the fact that the motivation has been enhanced by the closeness of 
mathematical problems to reality, it was also shown that this methodology of 
teaching mathematics leads to discussion amongst the students regarding 
solutions of given problems. Students are encouraged to work in small groups 
such that they can find out for themselves how to use their initiative, their skills in 
communication and their social competence in order to tackle problems. There is 
for instance a double purpose in encouraging each of the small groups to present 
their solutions to the group of all students. On one hand there is a discussion in a 
larger group of people on the other hand the students acquire an ability to present 
results and to process new information in a larger context. The feedback obtained 
from the larger group is then a positive motivation for further work. 

Since the students should develop the decisive ideas by themselves teachers 
should restrict themselves from too much influence. They should only give 
additional impulses if important aspects are missing to solve the problem or if 
mathematical methods are needed which are new to the students. In this way 
teachers are no longer generators of learning processes but help to initiate and 
carry through such processes. Conscientiously they have to take themselves back 
and become more consultants in the framework of mathematical teaching. 

Within the context of motivating students and key qualifications, it is also important 
to point out the role of computers as a part of mathematical modelling. The usage 
of suitable software gives the students the possibility to experiment with a method 
preferred by students for developing solutions. Simultaneously, students develop 
in this way a feeling for routine-like usage of PC’s. 

                                                           
2 compare Ministerium für Bildung, Wissenschaft und Weiterbildung Rheinland-Pfalz: Lehrplan Mathematik. 
Problemlösen mit mathematischen Methoden – Modellbildung, S. 18 ff., 1998. 
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2. The significance of locational planning. Introductory examples. 
2.1.  The Warehouse Problem. 

The warehouse problem deals with a set of given small warehouses which should be 
assigned to a central warehouse in such a way that the overall distance between the 
central warehouse and the small warehouses is as small as possible.  
 
In order to solve the problem the existing n warehouses Exm(am1,am2), m=1,2,...,n,  
and the central warehouse X(x1,x2) which has to be built are represented as points in 
the plane. As distance measure we choose the Euclidean distance between the 
central warehouse X and each of the different smaller warehouses Exm 
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If one wants to consider in this model also the frequencies of ways between the 
warehouses one has to weight the distances with these frequencies. 

A numerical example4  

In a company there are three small warehouses which are given on a map by the 
coordinates E1 = (1/2),  E2 = (7/3) and E3 = (4/5). The management wants to set up a 
new central warehouse in a new location such that the sum of the overall distances (it 
is the sum of all distances between the small warehouses and the central 
warehouses) is as small as possible. 
 
Model 1: A simple distance to central warehouse X(x1,x2) 
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If one chooses for instance X1 = (4/2) we obtain by replacing X1 by 4 and X2 by 2 the 
overall distance to the small warehouses as 

09 +  + 19 +  + 90 +  = 6 + 10  ≈ 9,2 . 

If we choose X2 = (4/5), we obtain 

                                                           
3 Curriculum of mathematics (Lehrplan Mathematik, Grund- und Leistungsfach Jahrgangsstufen 11 bis 
13 der gymnasialen Oberstufe (Mainzer Studienstufe), 1998, Seite 7. Sowie „Problemlösendes 
Verhalten“ und „Mathematisierung von Sachproblemen“ im Lehrplan Mathematik (Klasse 7-9/10), 
Hauptschule, Realschule, Gymnasium 1984, Seite 11-13 
4 Horst W. Hamacher: Mathematische Lösungsverfahren für planare Standortprobleme, Vieweg Verlag 

Braunschweig/Wiesbaden 1995 
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99 + + 49 + + 00 +  = 18 + 13  ≈ 7,8. 

If there are no additional restrictions in the problem we would therefore prefer 
location X2 = (4/5) to the first location X1= (4/2). 

 

Model 2: Weighted distances 

If we know by our data analysis that we would have to go from the new central 
warehouses five times and three times more often to the small warehouses E1 and E2 
than to E3, respectively. A more realistic model for the distance is given by multiplying 
the simple distance between E1 and X with the factor w1 = 5 and between E2 and X 
with w2 = 3. Therefore we get the weighted distance as 
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Checking the weighted distance of the two candidate locations considered above we 
obtain for 
 

X1 (4/2) 095 +⋅  + 19 +⋅3  + 90 +⋅1  = 18 + 10⋅3 ≈ 27,5 

X2 (4/5) 995 +⋅  + 19 +⋅3  + 10 +⋅1  = 2⋅15 + 13⋅3 ≈ 32,0 
In this example X1 (4/2) would be a better location than the second one for the central 
warehouse. 
 
Using these simple examples one gets a feeling that the question how to find the 
best possible location has to be reflected more keenly.  
 
Model 3: More definitions of distances 

It is necessary to improve the way distances are measured in the models. Euclidean 
distance only makes sence if it is possible to move directly between the central and 
the small warehouses. This applies to helicopters, cars in the dessert or possibly for 
boats in waters where they can move freely, but not for all problems. Therefore it 
should be possible to find out the distance d(Exm,X) between any possible location 
X (x1/x2) and corresponding small warehouses Exm from a network or street network. 
(For instance distance tables as in road maps). 

While setting up the model it has thus to be checked which mathematical definitions 
have to be used in order to model the distances.  

 
2.2. Production of Printed Circuit Boards 

Another example which emphasizes the importance of choosing a good distance 
measure (a metric) is the production of printed circuit boards using robots: 
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In assembly of printed circuit boards M parts belonging to N different classes 
(transistors, storage elements etc.) are sampled on specific points Exm of the printed 
circuit board. Here we assume N ≤ M. It is required to set up locations for the bins in 
which the different types of parts are stored. While trying to find a good location for 
X1,...,XN for these bins one has to observe the following facts.  
1. There should be some safety margin between those bin locations and the printed 

circuit board. 
2. The time of assembling the printed circuit board should be minimized. 
 
For the model we assume that the sequence in which the parts are inserted is fixed. 
(This is by the way another interesting mathematical problem which can be 
modelled.) For our further considerations it is important to know how the robot arm is 
moving since this is determining the distances of the routes.  
 
a) Two linear engines which allow a simultaneous movement in two coordinate 

directions.  
 

The next insertion can only be started if both of the engines stop. In this situation 
the following “distance” between an insertion point Exm (am1,am2) and the location 
X (x1,x2) for a bin holds: d (Exm, X) = max{lam1 - x1l, lam2 - x2l}  
One also uses the denotation d (Exm, X) = ∞ (Exm, X) in this case. 

b) If the robot arm has only one driving engine the movement along the coordinate 
axes have to be done sequentially and the „distance“ between insertion point and 
location of the bin is given by d(Exm, X)= lam1 - x1l + lam2 - x2l = ℓ1 (Exm, X). 

 
Numerical example for the production of printed circuit boards 
 
The situation is considered in which two bins (N = 2) containing round and angular 
parts for insertion points on the printed circuit boards denoted Ex1, ..., Ex4 (M = 4) 
should be used. The safety distance between printed circuit board and bin is 
represented by a rectangle around the printed circuit board (cf. Fig. 1a). 
 
 
 
 
 
 
Figure 1a: 
Printed circuit board in a rectangle 
with fixed insertion points for four parts 
belonging to two type classes5. 
 
 
 
X1 is a possible location for bins with round parts and 
X2 is a possible location for bins with angular parts. 
 
From each type two parts have to be inserted. 
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5 From: Horst W. Hamacher: Mathematische Lösungsverfahren für planare Standortproblem, Vieweg 
Braunschweig/Wiesbaden, 1995 



 
The robot arm is working on the board following the sequence Ex1, ..., Ex4. The 
working sequence is abbreviated by the notation (1,2,3,4).  
 
 
 
 
 
Figure 1b: A robot tour based on the 
insertion sequence (1, 2, 3, 4) 
 
 
 
 
 
 
The tour of the robot arm following the insertion sequence (1, 2, 3, 4) with X1 as 
starting and ending point has an overall length which is depending on X1 and X2: 

f(X1,X2) = d(X1, Ex1) + d(Ex1, X1) + d(X1, Ex2) +  d(Ex2, X2) + d(X2, Ex3,)  + d(Ex3, X2) +   

+ d(X2, Ex4,)  + d(Ex4, X1)        (1) 

= 2 d(Ex1, X1) + d(Ex2, X1) + d(Ex2, X2) + 2 d(Ex3, X2) + d(Ex4, X2)  + d(Ex4, X1)  (2) 

= 2 d(Ex1, X1) + d(Ex2, X1) + 0 ⋅ d(Ex3, X1) + d(Ex4, X1) + 0 ⋅ d(Ex1, X2) + d(Ex2, X2) +  

+ 2 d(Ex3, X2) + d(Ex4, X2)        (3) 

= f1(X1) + f2(X2)  with         (4) 

f1(X1) = 2 d(Ex1, X1) + d(Ex2, X1) + 0 ⋅ d(Ex3, X1) + d(Ex4, X1) and    (5) 

f2(X2) = 0 ⋅ d(Ex1, X2) + d(Ex2, X2) + 2 d(Ex3, X2) + d(Ex4, X2)    (6) 

In part (1) the tour is written in that way starting from X1, inserting at Ex1, going back 
to X1, inserting at Ex2. The round parts are now inserted. The robot arm now is going 
from inserting location Ex2 to bin X2, inserting an angular part at Ex3, back to the bin 
X2, and inserting a last part at Ex4. From here the robot arm is going „home“ to bin X1.  

Remark:  

d is a distance measure. In this example it is a metric in a mathematical sense. One 
of the characteristics of a metric is the symmetry (i.e. the direct way from A to B has 
the same length than from B to A). This is used coming from (1) to (2): d(X1, Ex1) = 
d(Ex1, X1) 

In (2) equal terms are collected together, in (3) the terms are sorted depending either 
on X1 or X2. (4), (5) and (6) are defining functions f1 and f2 depending either on X1 or 
on X2. 
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2 ⋅ d(Ex1, X1) has the meaning that a round part taken from the bin located at X1 is 
inserted in EX1 and the robot arms than moves back to the X1. 

0 ⋅ d(Ex3, X1) means that there is no round part connecting Ex3 and X1.  

Since the robot arm moves back to bin at Ex1 after inserting Ex4 there is the part one 
times d (Ex4, X1).  

In the same way the part of the robot tour is computed which has to do with insertion 
of angular parts which are stored in a bin located at X2.  

Here the term d(Ex2, X2) reflects the situation that after inserting the round parts the 
robot arm has to move to the bin with angular parts to start from there inserting 
angular parts. If one calculates  the minimum of the functions f1(X1) and f2(X2) we get 
locations in which the bins storing the round and angular parts respectively should be 
located in order to minimize the overall length f of the tour of the robot arm. The bins 
can however not be placed without the restriction since we have to deal with a 
security distance, Hence we have to choose locations from a given part of the plane 
excluding the rectangle.  

 

2.3.  Planning of a firehouse 
In order to keep a certain maximum reaction time the planning of a firehouse includes 
the important question where to put it. If one wants for instance to set up a company  
internal firehouse dealing with three production sites at Ex1, Ex2, Ex3 one may want to 
have a reaction time of at most 10 minutes. Thus the location X of the new firehouse 
has to fulfil  the following constraints:  

2(Exm, X) ≤ s für m = 1, 2, 3. Here s is the distance which can be covered within 10 
minutes. 

It would even be better if the fire brigade can arrive the location of fire as quickly as 
possible. That is one wants to find an r which satisfies 2 (Exm, X) ≤ r such that r is as 
small as possible (m = 1, 2, 3). Again 2  is a Euclidean distance. 
It may be helpful to start the search for a procedure to find X by interpreting a 
possible result. If the location X of the firehouse would be known we know that 2 
(Exm, X) ≤ r for all m. Hence the production sites Ex1, Ex2, Ex3 are contained within a 
circle centred at X with radius r or on its boundary. Consequently we are looking for 
the centre of a circle which covers the given points Ex1, Ex2, Ex3  with a radius as 
small as possible. 
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3. Geometrical solutions for selected location problems 
 
Fortunately, several of the examples mentioned above can be solved by using simple 
constructions which are known from geometric classes of age group 13 – 15.  
 
3.1 Solution of the central warehouse problem by finding the Fermat point. 
 
Recall: Given three existing locations Exm, m =1,2,3, (existing warehouses), which 
are not lying on a line, we want to find a new location for a central warehouse in such 
a way that the (weighted) sum of the distances is minimized. The geometrical 
procedure for the case of equal weights consists of the following steps (see fig. 2): 
Step 1: Draw the triangle A,B,C ( A = Ex1, B = Ex2, C = Ex3). 

Step 2:  Construct on every side of the triangle an equilateral triangle. By this 
procedure the points A*, B*, C* are generated. 

Step 3: Connect each of the newly constructed points A*, B*, C* in an 
equilateral triangle with the related corner point of the triangle A, B, C, 
which does not belong to this equilateral triangle (A with A*, etc.). 
(Simson-lines6). 

Step 4: The Simson-line are intersected in one point, the optimal location, 
called the Fermat-point F. 

 
 
 
 
 
 
 
Figure 2: 
Construction of the Fermat-point using 
Simson-lines 

A B

C 
B* 

C* 

A*

F  
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6 Named by Robert Simson, an English mathematician 1687 - 1768 



Using geometrical procedures the central warehousing problem can also be solved 
for weighted distances and if four existing locations given. In all other cases we have 
to use iterative procedures. 
 
Remark: 
The construction of the Fermat – point with equilateral triangles is a special case of a 
so-called Torricelli configuration7. On each side of an arbitrary given triangle ∆ABC 
directly similar triangles ∆ABC*, ∆BCA*, ∆ ACB* are constructed (see fig. 3). 
For the constellation in fig. 3 the following facts hold: 

The „diagonals“ *AA , *BB , and  *CC  in this drawing are intersecting to a point, the 
Torricelli-point T. In this intersection point one can find again the angles α‘, β‘, γ‘ of 
the additional triangles and the length of the „diagonals“ *AA , *BB ,  *CC  have the 
same relation as the altitude of these triangles.  

In the special case discussed above with equilateral triangles (α‘ = β‘ = γ‘ = 60°), the 
diagonals *AA , *BB , *CC  have the same length and include angles of 60°. 

 
 

A B 

C 

C* 

A* 

B* 

T 

 
 
 
 
 
 
 
Figure 3:Torricelli-configuration 
with α ′ = 40°, 

β ′ = 65°, 
γ ′= 75° 
 
 
 
For this special case we observe: 
If the triangle ∆ABC does not contain an angle larger than 120° the Simpson lines 
intersect inside the triangle. The sum of the distances of a point P to the corner points 
A, B, C is reaching its minimum if and only if P is the intersection point of the 
diagonals T. The sum of these distances then corresponds to the sum of diagonals. 
This extreme value problem has been formulated by P. de Fermat10 and that is the 
reason why T is also called the Fermat point F (see fig. 2). In the English speaking 
literature the problem is associated with Robert Simson who taught at about 1750 at 
the University of Glasgow11 
                                                           
7 Evangelista Torricelli (1608-1647) 
8 Pierre de Fermat (1601 - 1665) posed this problem in his „Discours de Maxima et Minima“  1643/44. 
9 See Homepage „History of mathematics archive“ of St. Andrews University, Scotland. http://www-
history.mcs.st-and.ac.uk/history/Mathematicians (under Torricelli, Simson, Fermat) 
10 Pierre de Fermat (1601 - 1665) posed this problem in his „Discours de Maxima et Minima“  1643/44. 
11 See Homepage „History of mathematics archive“ of St. Andrews University, Scotland. http://www-
history.mcs.st-and.ac.uk/history/Mathematicians (under Torricelli, Simson, Fermat) 
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In the case that there is an angle of 120° the Fermat point coincides with the vertex 
of an angle. If there is an angle which is larger than 120° the intersection point of the 
Simson lines lies outside of the triangle and is not the point minimizing the sum of the 
distances. This can also be seen using dynamic geometry software if one moves one 
of the corner points of the triangle. 
 
3.2 Planning of a firehouse 
 
The location problem can be described as follows: With respect to existing 
companies a firehouse is to be built such that the maximum distance between one of 
the companies and the firehouse is as small as possible. 
We use a planar model with Euclidean distance. 
If we have found a location X for the firehouse such that a distance to all companies 
Exi is less then s and everyone can be reached in less than a given time, for instance 
ten minutes, then the circle centred at X contains all given locations12. 
 
3.2.1 Problem for 2 locations Ex1, Ex2 

The location X is just the centre of the line segment   Ex  Ex 21

3.2.2 Problem for 3 locations Ex1, Ex2, Ex3 

a) Ex1, Ex2, Ex3 build an acute triangle. In this case the circumcircle of the triangle 
∆ Ex1 Ex2 Ex3 is the smallest circle containing the given locations and the centre 
of this circle is the location X for the firehouse. 

 
b)If triangle ∆ Ex1 Ex2 Ex3 is obtuse then there is a better solution than the centre of 

the circumcircle. The centre of the longest side of the triangle is the optimal 
location of the firehouse. 

 
3.2.3 Procedure for more than three locations 

In this case we are looking for the smallest circle (i.e. the circle with the smallest 
radius), covering all given locations Exm. Such a circle contains at least two locations 
on its boundary.  
 
Solution procedure: 
Step 1: Draw all circumcircles of triples of locations (Exi, Exj, Exk) with i ≠ j, i ≠ k, j ≠ k 

for all i, j, k = 1, ..., M 

Step 2: Draw all circles centred at the centres of the line segments jiExEx , which 
contain Exi and Exj on their boundaries. 

Step 3: Delete all circles which do not cover all locations. 
Step 4: Choose among the remaining circles one with smallest radius. 
Numerical Example with 4 Locations: 
Ex1 =(0|3), Ex2 =(5|8), Ex3 =(9|0), Ex4 =(9|3) 
Sub problems 
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12 With circle the interior of a circle joined with the border is meant. 



1. Draw the points in a coordinate system! 
2. How many pairs and how many triples do we have? 
3. Draw all circumcircles given by three of the given locations! 
4. Are there feasible circles which are only defined by 2 locations? 
5. Which of the circles is the best? 
6. What happens if Ex4 =(10/3) or Ex4 =(11/8) are considered instead? 
 
The solution (see fig. 4) has been determined using triples: 
∆ E1 E2 E3: circumcircle K1 has the radius r1 ≈  4,6 L.E. 
∆ E1 E2 E4: circumcircle K 2 has the radius r2 ≈  5 L.E. 
∆ E1 E3 E4: circumcircle K 3 has the radius r3 ≈  4,7 L.E. 
∆ E2 E3 E4: circumcircle K 4 has the radius r4 ≈  7 L.E. 
(we are dealing with an obtuse triangle) 
 
Ki = {P| ii rPM ≤ } 
K 1 contains all 4 points 
K 2 does not contain E3  
K 3 does not contain E2 
K 4 does contain all 4 points, but r4 > r1 
 
Hence the centre of the circle K1 is the optimal location for the firehouse. 
If we change E4 to E4 =(10/3) K1 remains the optimal circle since all existing locations 
are lying on its boundary. 
 
 
 
Figure 4:  
Search for an optimal location of the 
firehouse with respects to given 4 
companies (numerical example). 
Shown are four circumcircles for four 
triangles built by each triple of the 
four points E1, E2, E3, E4. M1, M2, M3, 
M4 are the centres of that 
circumcircles. 
 
 
 
 
 
 
 
 
For E4=(11/8) however triangle  E∆ 1 E2 E4 is obtuse and K3 becomes the “optimal” 
circle and consequently the centre of K3 the optimal location for the fire house. 
The questions remains unanswered whether an optimal circle is always unique. 
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3.3 Restrictive Location Problems 
 
In many problems there is an additional restriction for the choice of locations. 
Examples for Restrictions: 
1. printed circuit board problem: 
Along the boundary of the printed circuit board we have to maintain a certain security 
distance in which we can not position any bins. (Similar requirements have to be 
satisfied in conveyor belt production.) 
 
2. Firehouse 
A nature reserve cannot be used for the location of a firehouse. 
 
In the mathematical model we will represent the restriction by excluding the interior of 
a polygon R. On the boundary ∂R however we can locate facilities. 
 
Solution approach: 
Step 1: Solve the unrestrictive problem (i.e. determine all optimal locations without 

taking the restriction to the region R into consideration). 
Step 2: If we have found in step 1 a location which is feasible, the procedure 

terminates. 
Step 3: Otherwise augment  the objective value until we have found a location X* 

with the objective value which is feasible. 
 
In the firehouse problem we obtain an optimal location by extending the radii of the 
circles about the location of the companies until we generate an intersecting region 
which is contained inside the forbidden region but touches the boundary. 
 
Example: Find the optimal location in a model with restrictions (firehouse, figure 5)! 
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Ex 4
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 2Ex 3

perpendicular bisector
of Ex3Ex4   

perpendicular bisector 
of Ex 1 Ex 4 

A 4

B 4

perpendicular bisector 
of Ex 1Ex 2 

B 1

B 3

A 3
L 1

L 4

L 2
perpendicular bisector 
of Ex 2 4 

A 1

A 2
B 2

Ex 

In this example we are looking for a location of a firehouse serving the companies located at Ex1,..,Ex4  
where the region inside the pentagon P1,P2,P3,P4,P5  is a nonfeasible region. We are looking for the 
centre of such a circle which covers the location of the companies (here 4). For such centre points the 
intersection points of perpendicular bisectors of  

jiExEx  with the boundary of the infeasible area (here 
denoted by Ai and Bj) and the projections of the location of the companies (corner points) Exk on the 
boundary of the nonfeasible region are possible candidates (here 
L1, L2and L4, the other projections are not existing on 
the pentagon. ) 

perpendicular bisector
of Ex

 
 
 
 
 
 
 
 
 
 
 
 

 



 
 
 
 
 
 
Figure 5: Determining the optimal location in the model with restrictions. 
 
For all circles centred at Exm having a radius larger than the minimum radius found in 
step 1 we conclude that their intersection is a circular lune. The „corner“ of this 
circular lune is built by the intersection of two circles and its boundaries consist of 
circular arcs (see fig. 6). 
 
Here the following cases can occur: 
a) The „corner“ of a circular lune is touching the boundary of the forbidden region. 
b) The boundary of the polygon describing the restrictions is becoming a tangent to 

one of the circle segments. 
 
From this we deduce a rule for finding the location: 
a) Consider all intersection points between perpendicular bisectors of jiExEx , i ≠ j, 

i,  j = 1, ..., M and the boundary ∂R of the restrictions. 
b) Consider all those points on the boundary ∂R in which the line segment which is 

part of the restricting polygon is a tangent to the circle centred at Exm, 
m = 1, ..., M. (This means that all projection points of Exm, m = 1, ..., M which 
exists on the boundary ∂R are considered.) 

The best candidate from a) and b) is an optimal location for the problem. 
 
Numerical example 
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perpendicular bisector 
of Ex 1 Ex 2

   projection 
of Ex 2  on P 1 P 2 

perpendicular bisector
of Ex 2  Ex 3 

X 1 

 projection 
3 on P1P4 

 projection 
of Ex1 on P3P4 

Ex1=(55), Ex2=(157), Ex3=(715) are given locations. The restriction is described 
by a polygon with the corner points P1=(65), 
P2=(814), 
P3=(1014), 
P4=(147) (see. 
figure 6). 

 

of Ex

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 



 
 
 
 
 
 
 
 
 
 
Figure 6: 
Visualisation of the algorithm to find an optimal location subject to restrictions: Xi are 
the projections of Exi to the boundary, Bi are the intersection points of perpendicular 
bisectors of the sides of the triangle with the boundary of the forbidden region. 
 
We find the location following our solution approach: 
 
1. Without restriction: The centre M of the circumcircle of ∆ Ex1 Ex2 Ex3  is 

determined. 
2. The centre point is located in the infeasible region R. Search for a feasible 

location. 
 
3a) Consider the intersection points between the perpendicular bisectors of the sides 

of the triangle and the boundary ∂R! From all of these Bi B5 is the best candidate 
as intersection point between 21PP  and the perpendicular bisector on 21ExEx . 

3b) Draw the projection points of Ex1, Ex2, Ex3 on ∂ R to obtain X1, X2, X3! 
Taking X2 we get a circle with the smallest radius since the arc triangle A1, A2, A3 
is touching the polygon at X2. 

3c) Comparing the “best points” from 3a) and 3b) the circle centred at B5 has a radius 
which is slightly larger than the circle centred at X2. 

 
The solution is  X2 = (6,88,7) with r 8,9≈ . 
(To get the mathematical strength of the applied algorithm cf. Hamacher (1995), 
chapter 4.4.) 
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4. Angular circles and broken perpendicular bisectors as modelling 

tools 
 
If one moves in a coordinate system along the axis (example robot arm) or in a 
rectangular street network, the Euclidean distance is not suitable measuring 
distances. 
 
A better metric for this model is the so called -norm, which is defined as follows: 

: IR 
1

1
2→ IR; (x1x2) →x1+ x2. 

The -norm is often called rectangular distance or Manhattan distance. The 
distance is expressing the distance from the point X (x

1

1|x2) to the origin. In details this 
means: 

I. quadrant x1 ≥  0 ∧ x2 ≥  0 →  (x1 1, x2) =  x1 + x2 
II. quadrant x1<  0 ∧ x2 ≥  0 →  (x1 1, x2) = -x1 + x2 
III. quadrant x1<  0 ∧ x2 <  0 →  (x1 1, x2) = -x1 - x2 
IV. quadrant x1>  0 ∧ x2 <  0 →  (x1 1, x2) =  x1 - x2 
 
The notion of the geometric objects circle (centred at a given centre with a fixed 
radius and perpendicular bisector (with respect to a given line segment) which often 
used in Euclidean geometry have in this metric a somewhat unusual interpretation 
but the basic definition is the same.  
 
For instance the unit circle K(0,1) := {(x1, x2) ∈ IR 2| 1(x1, x2) = 1} has the following 
representation in a coordinate system (see fig. 7). 
 
 
Using a case analysis we obtain 
for the I. quadrant:      x1 + x2 = 1 
for the II. quadrant:     -x1 + x2 = 1 
for the III. quadrant:      -x1 - x2 = 1 
for the IV. quadrant:       x1 - x2 = 1 
 
 
Figure 7: 
Unit circle in the metric corresponding to the -norm. 1

 
 
Example: 
In Manhattan there are two post offices located at Ex
would like to find out which of the households is the 
offices. I.e. it wants to partition Manhattan into two par
part is associated to one and only one post office. 
In order to find the separating line between the two parts
all points which with respect to the -norm have the sa1

and from Ex2(b1,b2) with the coordinates (a1,a2), (b1,b
perpendicular bisector): 
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1 and Ex2. The post system 
closest to which of the post 
ts. Each household of each 

 we have to find the set IB1of 
me distance from Ex1(a1,a2) 
2) of Ex1, EX2 (finding the 

1

x1-1

x2-Achse



IB1 = {X ∈ IR 2| (X - Ex1 1) = (X - Ex1 2)} 
  = {(x1, x2) ∈ IR 2 | x1 - a1 + x2 - a2 = x1 - b1 + x2 - b2} 
 
The length of the paths in such a metric is depending on the fact whether the paths 
are parallel to the coordinate axis or not. Hence the graphs of the perpendicular 
bisectors distinguish  from each other whether the location of the two post offices 
within a street map is on a parallel to the coordinate axis. 
 
Numerical example a): Ex1(00), Ex2 (40), i.e. one of the coordinates are equal. 
 
 
 
 
Figure 8: 
Determination of the perpen-
dicular bisector in numerical 
example a) 
 
 
 
 
 
 
 
 
 

                    x2-axis

With the condition |x1 - 0| + |x2 - 0
bisector is defined. A case distincti
 
Region 2: 0 ≤ x1 ≤ 4 ∧ x2 ≥ 0  
 Condition for the perpendicu
     (x
                                             
                                             
 IL2 = {(x1, x2}) ∈ IR 2  x1 = 2 
 The graph is a parallel to the
 
Region 5: 0 ≤ x1 ≤ 4 ∧ x2 < 0  
 Condition: (x1 - 0) - (x2 - 0) =
                       ⇔  x1 - x2 = -x1 + 4 -
    ⇔  x1 = 2 ∧ x2 < 0 
 IL5 = {(x1, x2) ∈ IR 2 x1 = 2 ∧
 The graph is a parallel to the
 
Region 1: 0 < x1 ∧ x2 ≥ 0 
 Condition: - (x1 - 0) + (x2 - 0
  ⇔    - x1 + x2 = - x1 + 
  ⇔    0 = 4 ∧ x2 ≥ 0  
                lL1 = { } 

 

 
 
 
 
 
 
 
 
 
 
 
                                                                                 x1- axis 

E1 E2 

region 1

region 2

region 3 

region 4 region 6 

region 5

| = |x1 - 4| + |x2 - 0|, (x1, x2)∈ IR 2 the perpendicular 
on leads to the definition of 6 regions in IR 2 : 

lar bisectors: 
1 - 0) + (x2 - 0) = - (x1 - 4) + (x2 - 0) ∧ x2≥ 0 

     ⇔          x1 + x2 = - x1 + x2 + 4  
     ⇔          x1 = 2 ∧ x2 ≥ 0 arbitrarily 
∧ x2 ≥ 0}  
 x2-axis with a distance 2 in the 1st quadrant. 

 - (x1 - 4) - (x2 - 0) ∧ x2< 0 
 x2  

 x2 < 0} 
 x2 -axis with a distance 2 in the 4th quadrant. 

) = - (x1 - 4) + (x2 + 0), x2 ≥ 0 
4 + x2 
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For regions 3, 4, 6 there is as in region 1 a new pair of numbers for the solution 
hence there are no points in the plane which satisfy the conditions. Thus we get a 
perpendicular bisector as in the case of the Euclidean distance. 
 

Numerical example b):    Ex1 (00), Ex2 (42), both coordinates are different. 

Using the  (X, Ex1 1) = (X, Ex1 2) leading to |x1 - 0| + |x2 - 0| = |x1 - 4| + |x2 - 2|  we 
have to distinguish now 9 regions: 
 
 
 
 
Figure 9: 
Perpendicular bisector, separating the patches of two post officesEx1 und Ex2, for 
numerical example b) 

E2

 
 
 
 
 
 
 
 
Region 1: x1 < 0 ∧ x2 > 2  
There is no solution that means the perpendicular bisector does not cross this region. 
 
Region 2: 0 ≤ x1 ≤ 4 ∧ x2 > 2  
                Condition: (x1 - 0) + (x2 - 0) = - (x1 - 4) + (x2 - 2) 
                            ⇔   x1 + x2 = - x1 + x2 + 2 
                            ⇔   2x1= 2 
                            ⇔   x1 = 1 ∧ x2 > 2 arbitrarily 

         lL2 = {(x1, x2) ∈ IR 2 x1 = 1 ∧ x2 > 2}.  
The graph is a parallel to the x2-axis with distance 1 for points with ordinates 
greater than 2. 

Region 3: x1 > 4 ∧ x2  > 2            ⇒ no solution  

Region 4: x1 < 0 ∧ 0  ≤ x2  ≤ 2 ⇒ no solution 

Region 5: 0 ≤ x1 ≤ 4 ∧ 0 ≤ x2 ≤ 2  

                Condition: (x1 - 0) + (x2 - 0) = - (x1 - 4) - (x2 - 2) 
⇔ x1 + x2 = - x1 + 4 - x2 + 2 
⇔ 2x1  + 2x2  = 6 
⇔ x2 = - x1 + 3 

         lL5 = {(x1, x2)∈ IR 2 x2 = - x1 +3 ∧ 0 ≤ x1 ≤ 4 ∧ 0 ≤ x2 ≤ 2}  
The graph is a line segment with slope - 1 passing (0|3) 

 21

E1

Gebiet 1 Gebiet 2 Gebiet 3

Gebiet 4 Gebiet 5
Gebiet 6

Gebiet 7 Gebiet 8 Gebiet 9

region 1 region 2 region 3 

region 4 

region 9 region 8 region 7 

region 6 
region 5 



Region 6: x1 > 4 ∧ 0 ≤ x2 ≤ 2   ⇒ no solution 

Region 7: x1 < 0 ∧ x2 < 0      ⇒ no solution 

Region 8: 0 ≤ x1 ≤ 4 ∧ x2 < 0  
      Condition:  (x1 - 0) - (x2 - 0) = - (x1 - 4) - (x2 - 2) 

                            ⇔     x1 - x2 = - x1 - x2 + 6  

⇔   2 x1 = 6  

⇔   x1 = 3 ∧ x2 < 0 

        lL8 = {(x1, x2)∈ IR 2 x1 = 3 ∧ x2 < 0}. 

The graph is a parallel to the x2-axis with distance 3. 

Region 9: x1 > 4 ∧ x2 < 0     ⇒  no solution 

Numerical example c): Ex1 (0/0), Ex2 (4/4),  both coordinates are different. 
 
 
 
Figure 10: 
Perpendicular bisector for 
numerical example c). In 
the regions 1 and 9 all  
points are contained in the  
set of solutions. 
 
 
 
 
 
 
 
 
 
 
 
 

There are solutions in Regio

Region 1: x1 < 0 ∧ x2 > 4  

               Condition:   - (x1 - 

⇔   - x1 +

⇔   0 = 0

       lL1 = {(x1, x2)∈ IR 2

 

7
 
n 1, Region 5, Region 9 

0) + (x2 - 0) = - (x1 - 4) + (x2 - 4)  

 x2 = - x1 + 4 + x2 - 4 

 ∧ x2 > 4 

 x1 < 0 ∧ x2 > 4 }  
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The whole region is part of the solution set! 
 
Region 5: 0  ≤  x1  ≤  4 ∧ 0 ≤  x2  ≤  4  

     Condition: (x1 - 0) + (x2 - 0) = - (x1 - 4) - (x2 - 4)  

        x⇔ 1 + x2 = - x1 + 4 - x2 + 4 

        2 x⇔ 1 + 2 x2 = 8  

        x⇔ 2 = - x1 + 4 

        lL5 = {(x1, x2) ∈ IR 2 x2 = - x1 + 4, 0 ≤ x1 ≤ 4 ∧ 0 ≤ x2 ≤ 4} 

The graph is a line segment in region 5 with slope – 1 and the x2-crossing at 4 

 

Region 9:  x1 > 4 ∧ x2 < 0 

                 Condition: (x1 - 0) - (x2 - 0) = (x1 - 4) - (x2 - 4) 

⇔   x1 - x2 = x1 - 4 - x2 + 4 

⇔   0  =  0 

          lL9 = {(x1, x2)∈ IR 2 x1 > 4 ∧ x2 < 0}  

The whole region is part of the solution set. 

For the remaining regions there are no pairs x1, x2 satisfying the conditions. 
 

Generalization of the results: 

Case 1: a12 = a22 ∧ a11 ≠ a21  The perpendicular bisector consists of a  
vertical line. 

Case 2: a11 = a21 ∧ a12 ≠ a22  The perpendicular bisector consists of a  
horizontal line. 

Case 3: a11 ≠ a21 ∧ a12 ≠ a22 with 

Case 3a) a11 - a21 > a12 - a22 
The perpendicular bisector consists of two vertical half lines connected by a 
diagonal line segment 

Case 3b) a11 - a21 <  a12 - a22 
The perpendicular bisector consists of two horizontal half lines connected by a 
diagonal line segment 

Case 3c)  a11 - a21 = a12 - a22 
The perpendicular bisector consists of two quadrants and a diagonal 
connecting line segment 

Case 4: (degenerate case)  a11 = a21 ∧ a12 = a22 
The perpendicular bisector is the whole plain. 

 

 23



5. Solving location problems using discussion of differentiable 
functions 

 

5.1 The problem of a central warehouse with respect to 2
2  - distances 

Numerical example: Small warehouses are located in Ex1 (11), Ex2 (14), Ex3 
(21), Ex4 (41), Ex5 (44). 

The number of trips for a week to the small warehouses Exi is wi. Hence let us 
consider in the following computations the weights w1 = 2, w2 = 1, w3 = 1, w4 = 2, w5 = 
4. Without any further information we assume that the distance is an Euclidean one 
( 2 – metric, see section 2.1). The solution of our problem consists in minimizing the 
sum of weighted distances: 

)X,Ex()xa()xa()X,Ex(d m
2

22m
2

11mm 2
=−+−=  

S (X) = 2
22m

2
11mm

M

1m

)xa()xa(w −+−∑
=

 

First we look at the sum of the quadratic distance and minimize these.13 We thus 
consider:  

f (X) =   ( )2
22m

2
11mm

M

1m
)xa()xa(w −+−∑

=

For our numerical example this yields: 
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 f (X) = f1 (x1) + f2 (x2) 
 
The sum can be partitioned into the sum of two functions depending on a single 
variable x1 and x2 respectively. 

In order to minimize f (X) we have to minimize f1 (x1) and f2 (x2). It is thus sufficient to 
get xi such that f'i (xi) = 0 ∧ fi" (xi) > 0, i =1,2. 

For the numerical example yields: 

f1 (x1) = 10 x1
2 – 58 x1 + 103 ⇒ f1' (x1) = 20 x1 – 58  ∧   f1" (x1) = 20 > 0 

f2 (x2) = 10 x2
2 – 50 x2 +  85  ⇒ f2' (x2) = 20 x2 – 50  ∧   f2" (x2) = 20 > 0 

f1' (x1) = 0 ⇒ x1 = 2,9   ;   f2' (x2) = 0 ⇒ x2 = 2,5 
                                                           
13 The associated quadratic function does not yield the same solutions since the squaring of the distance puts a 

weight on points which are further away. On the other hand [S (X)]2  is on IR differentiable whereas S (X) is 
not differentiable in (am1, am2). 
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Hence we have found: The central warehouse is located at X* (2,92,5) using  - 
distances. 

2
2

If we want to solve the problem using parameters instead of specific numbers we get 
an explicit formula allowing us to compute the optimal location. Before we get this 
formula we want to go through another specific example: 

Given: 

Ex1 (1,518),   Ex2 (18,621),   Ex3 (22,515),   Ex4 (19,23),   Ex5 (00) 

w1 = 4,   w2 = 8,   w3 = 6,   w4 = 4,   w5 = 5 

Compute the optimal location with respect to  – distance! 2
2

Solution: f (x) = 4 ⋅ (1,5 – x1)2 + 8  (18,6 – x1)2 + 6 ⋅ (22,5 – x1)2 + 4 ⋅ (19,2 – x1)2 

  + 5 ⋅ (0 – x1)2 + 4 ⋅ (18 – x2)2 + 8 ⋅ (21 – x2)2 + 6 ⋅ (15 – x2)2  

  + 4 ⋅ (3 – x2)2 + 5 ⋅ (0 – x2)2 

with f1' (x1) = 0 ⇔8 ⋅ (1,5 – x1) ⋅ (- 1) + 16 ⋅ (18,6 – x1) ⋅ (- 1) + 12 ⋅ (22,5 – x1) ⋅ (- 1)  

                                 + 8 ⋅ (19,2 – x1) ⋅ (- 1) + 10 ⋅ (0 – x1) ⋅ (- 1) = 0 

 and f2' (x2) = 0  ⇔    8 ⋅ (18 – x2) ⋅ (- 1) + 16 ⋅ (21 – x2) ⋅ (- 1) + 12 ⋅ (15 – x2) ⋅ (- 1) 

   + 8 ⋅ (3 – x2) ⋅ (- 1) + 10 ⋅ (0 – x2) ⋅ (- 1) 

Hence we get the solution X* (13,58  12,67), fi”(xi)=54 > 0, i=1,2. 

With these two examples we realize how to find the general solution: 
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⋅=   > 0, since all weights are positive. 

⇒ f1 (x1) has a minimum for positive weights if the x1-value is computed as by 

 f'1 (x1) = 0:   x1 = 
∑
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Analogously we get from f2' (x2)= 0 the zero with x2 = 
∑

∑

=

=
M

1m
m

M

1m
2mm

w

aw
 

If we insert into this formula the specific value of the exercise we see: 

x1 = 
54321

515414313212111

wwwww
awawawawaw

++++
⋅+⋅+⋅+⋅+⋅  

= 75,13
27

6,366
54684

052,1945,2266,1885,14
==

++++
⋅+⋅+⋅+⋅+⋅  

x2 = 
54321

525424323222121

wwwww
awawawawaw

++++
⋅+⋅+⋅+⋅+⋅  

= 6,12
27

342
54684

0534156218184
==

++++
⋅+⋅+⋅+⋅+⋅  

Up to now we have considered the square of the Euclidean distance. 
What happens if we use „normal“ Euclidean distance? 
 

We are looking for the minimum of 

 f (x) = 2
22m

2
11mm

M

1m
)xa()xa(w −+−⋅∑

=

. 

Here we encounter the following difficulties. 

1. f(x) cannot be written as a sum of two functions each of which is only depending 
on a single variable. 

2. One has to consider partial derivatives depending on x1 and. x2 respectively: 

  
2

22m
2

11m

imi
m

M

1mi )xa()xa(
)1()xa(w

x
f

−+−

−⋅−
=

∂
∂ ∑

=

,   i = 1,2 

3. The partial derivatives do not exist in the given locations Exm, m = 1,.., M. 
4. There exists tests which allow us to find out whether one of the existing locations 

is optimal. If this is not the case one has to use an iterative procedure to 
determine the zeros of the related partial derivatives. 

Further details can be found in Hamacher14:. 

 

                                                           
14 aus: Horst W. Hamacher: Mathematische Lösungsverfahren für planare Standortprobleme, Vieweg 

Verlag Braunschweig/Wiesbaden 1995 
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5.2 Examples in which f (x) is only piecewise differentiable: Central 
warehouse problem with 1 -distance 

In many cases neither the - nor the -metric is a suitable tool to model the 
distances. 

2
2
2

 
For instance the distance in a street network like Manhattan or Mannheim or the 
movement of a robot arm or the distance between points in a high rise warehouse 
ask for the rectangular distance (see section 4). 

Since a circle in this metric is angular, has corners and is built by line segments the 
same is true for the set of points which have the same distance from a given point: 
They are lying on an angular circle centred at a fixed point (am1, am2) and satisfy the 
condition 

am1 - x1 + am2 - x2 = r 

For the numerical example am1 = 4, am2 = 2 and r = 3 the circle consists of  

lL = {(x1, x2)  4 - x1 + 2 - x2 = 3} given by the line segments  
x2 = - x1 + 3 for x1 ≤ 4 ∧  x2 ≤ 2 and  x2 = x1 – 5 for x1> 4 ∧ x2 ≤ 2 
x2 = - x1 + 9 for x1 > 4 ∧ x2 > 2 and  x2 = x1 + 1 for x1≤ 4 ∧ x2 > 2 

Consequently the sum of distances in the direction of coordinate axis to any point on 
the circle is 3 length units. 

If we use the 1 - norm for our location problem (central warehouse from chapter 4) 
we have to calculate the minimum of the following function f: 

(w)X(f m

M

1m
∑

=

= am1 - x1 + am2 - x2) 

m

M

1m
w∑

=

= am1 - x1 + am

M

1m
w∑

=
m2 - x2= f1 (x1) + f2 (x2)  

Again the function depending on two variables can be written as the sum of two 
functions each of which depending only on a single variable which we can investigate 
separately.  

As a numerical example for locations and weights we choose again the same 
values as in section 5.1. 

Ex1 (1 | 1), Ex2 (1 | 4), Ex3 (2 | 1), Ex4 (4 | 1), Ex5 (4 | 4) with the weights w1 = 2,   
w2 = 1, w3 = 1, w4 = 2 and w5 = 4 

Then we get: 

f1 (x1) = 2 ⋅ 1 - x1 + 1 ⋅ 1 - x1 + 1 ⋅ 2 - x1 + 2 ⋅ 4 - x1  + 4 ⋅ 4 - x1  

 = 3 ⋅ 1 - x1 + 2 - x1 + 6 ⋅ 4 - x1  
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Due to the absolute value we have to do a case analysis resulting in two piecewise 
linear functions f1 (x1), f2 (x2) changing their slope in a corner. Hence these functions 
are continuous but not differentiable in all points. 

Case analysis for f1(x1): 

1. Case x1 ≤ 1: f1(x1) = 3 ⋅ (1 - x1) + (2 - x1) + 6 ⋅ (4 - x1) = 29 - 10 x1  

2. Case 1 ≤ x1≤  2: f1(x1) = 3 ⋅ (x1 - 1) + (2 - x1) + 6 ⋅ (4 - x1) = 23 - 4 x1  

3. Case 2 ≤ x1≤4: f1(x1) = 3 ⋅ (x1 - 1) + (x1 - 2) + 6 ⋅ (4 - x1) = 19 - 2 x1  

4. Case x1 ≥ 4: f1(x1) = 3 ⋅ (x1 – 1) + (x1 - 2)+ 6 ⋅ (x1 - 4) = - 29 + 10 x1  

 

If we draw f1(x1) we observe the following (see figure 11): 

1. f1(x1) is piecewise linear. The graph is on each of the intervals a line segment. 
2. f1 has corners in which the function is continuous but not differentiable. 
3. The minimum lies in a corner in which the slope changes sign. 
4. The x1 – coordinate of the optimal location is x1 = 4. 
 
 
 
Figure 11: 
Piecewise differentiable 
functions f1(x1) and f2(x2) 
 
 
 
 
 
 
 
 
 
Case analysis for f2(x2)  = 

    

1. Case   1x2 ≤

2. Case 1     f4x2 ≤≤ 2(x2

3. Case     f2x4 < 2(x2

Using the drawing of f2(x2)

1. f2(x2) is piecewise linea

 

 

22222 x44x12x11x41x12 −⋅+−⋅+−⋅+−⋅+−⋅  

   = 22 x45 −⋅+−⋅ x15  

   f2(x2)    = 5 )x4(5)x1( 22 −⋅+−⋅  = 25 – 10 x2 

)    = - )x4(5)x1(5 22 −⋅+−⋅  = 15 

)    = - )x4(5)x1(5 22 −⋅−−⋅  = - 25 + 10 x2 

 we can read of the following results (figure 11): 

r since the graph is on each of the intervals a line segment. 
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2. f2 has corners in which the function is continuous but not differentiable. 
3. At least one minimum lies in one of those corners. 
4. The x2 -coordinate of the optimal location lies in the interval [1; 4], i.e. all points of 

the line AB with A (4 | 1) , B (4 | 4) are minima of f2(x2). 
 
The minima are the only points in which we can draw a horizontal line „below the 
function“ which intersects the function. (This corresponds to a tangent parallel to the 
x1-axis in the minimum of a twice differentiable function.) Here the criterion for a 
minimum is the change of the slope of the function from a negative to a positive 
value.  
 
The general question is as follows: 

How do we find the minimum of a function g(x)=∑
=

−
M

1m
mm xaw , that means how do we 

find the corner in which is a change of sign in the slope of the piecewise linear 
function? 
We assume, that in g(x) equal terms have already been collected such that we have 
a1 < a2 <.. < an (n M). Now we consider the function on the interval [a≤ q; aq+1]. For m > 
q+1 we get )xa(a mm −=x− , for m ≤ q we assume mm axxa −=− , hence g(x) can 
be written as the sum of the two terms: 

g(x)= = (  x +( ) )xa(w)ax(w m

q

1m

M

1qm
mmm −+−∑ ∑

= +=
∑∑

+==

−
M

1qm
m

q

1m
m ww ) m

q

1m
m

M

1qm
mm awaw ∑∑

=+=

−

      =c q x + b ;  g (x) is hence a linear function on [aq q; aq+1]. 

We have thus to find a  in which the slope of g(x) is changing sign. q

The slope "left of a " (i.e. for aq

q

q-1<x< a ) is denoted with gq
—  ( a q )=∑  

the slope "right of a " (i.e. for a

∑
=

−

=

−
M

qm
m

1q

1m
m ww ,

∑
+=

−
M

1qm
mm ww .q<x< aq+1) is denoted with g+ ( a )=∑  q

=

q

m 1

Hence we are looking for a  for which gq
— ( a )q ∧≤ 0  g+ ( a q ) ≥  holds. 0

 
If we apply these ideas to the example above  

f1(x1) = 3⋅ 1 - x1 + 2 - x1 + 6⋅ 4 - x1 we obtain: 

Slope left of a1 : g— (1) = = - 10, ∑∑
==

−
3

1m
m

0

1m
m ww

 right of a1 : g+ (1) = = 3 - 7= - 4. ∑∑
==

−
3

2m
m

1

1m
m ww

Slope left of a2: g— (2) = g+(1)= - 4,  

  right of a2: g+ (2) = ∑ = 4 - 6= - 2. ∑
==

−
3

3m
m

2

1m
m ww

Slope left of a3: g— (4) = g+(2) = - 2,  
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 right of a3: g+ (4)= = 10, ∑∑
==

−
3

4m
m

3

1m
m ww

hence the change of sign in the slope is identified at a3 = 4 (see figure 11). 
 
By changing the upper summation index we add each time twice the weight wq by 
going from aq to aq+1 since it appears in the additive term and disappears in the sum 
which needs to be subtracted. (See example where w1+w2+w3 = 10 and hence g— (1)= 
-10,  -10 + 2 ⋅ 3 = - 4 = g— (2) and so on.) 
In other words one looks for the smallest q for which g+ (q) ≥  holds, i.e. where a 
change of sign occurs.  

0

.      ∑ w          | + ∑  
=

q

1m
m ∑

+=

≥
M

1qm
mw

=

q

1m
mw

  2            | :2    ∑
=

⋅
q

1m
mw ∑

=

≥
M

1m
mw ⇒ ∑

=

q

1m
mw ∑⋅≥

=

M

m
mw

12
1

  (*) 

If the inequality (*) is satisfied with a strict inequality then aq is the unique minimizer. 

(See solution of f1(x1): the median is 5 and = 10 hence a∑
=

3

1m
mw 3 is the unique 

minimizer of the function.) 
If the inequality (*) is satisfied however with equality sign, then all values between aq 

and aq+1 minimize the function. (See f2(x2): the median value is 5 and = 5.) ∑
=

1

1m
mw

In summary the following four cases can occur: 
 
Case 1: The solution for x1 and x2 is unique, then the optimal location of the location 

problem is given by point P(x1,x2). 
Case 2: The solution for x1 is unique and for x2 is not unique, then the solution set is 

represented by a line segment which is parallel to the x2-axis. 
Case 3: The solution for x1 is not unique and for x2 is unique, then the solution set is 

a line segment which is parallel to the x1-axis.  
Case 4: The solution is not unique neither for x1 nor for x2. Then the graph of the 

optimal solution set is not given by a finite rectangle in IR2. 
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6. Appendix - Proofs relating to the Fermat point 
 
In case there is enough time for the teaching unit „locational planning“ or it is taught 
to a class of the students which are very talented in mathematics we would like to 
present two possibilities to formally proof the Fermat point. 
 

6.1 Proof 1 related to the Fermat point 
In this proof we will show the following properties of the Fermat point: 
- the points looked for can be found by triangles sitting on the sides of the given 

triangle and the diagonals intersect in one point.  
- only this point minimizes the sum of the distance to the corner points. 
The proof uses the theorem of the inscribed tetragon and is only valid for triangles 
with angles less than 120o. 

 
Assumption: 

1. ∆ABC is an arbitrary triangle with angles less than 120°. 

2. On each of the triangle sides we have constructed equilateral triangles ∆BCG, 
∆ACD, ∆ABE. 

3. We have drawn the lines CE , AG  und BD  (cf. fig.12a). 
 
Claim: 
1. CE , AG  and BD  intersect in a common intersection point Q. 
2. AQ  + BQ  + CQ  < RA  + BR  + CR  yields where R is any point inside the 

triangle ABC with R≠Q. (In this case Q is a point with the minimum sum of 
distances to the corner points of the triangle, hence the Fermat point.) 

 
Proof of Claim 1: 
The proof is relatively difficult and constructs first the Fermat point in a different way 
namely as intersection point of the circumcircles of the equilateral triangles (part I), 
and then shows that this point is lying on the „diagonal lines“ (part II). 

If one wants to use this proof in mathematics classes parts should have been 
discussed before. 

Part 1: To each of the equilateral triangles we construct a circumcircle with its 
corresponding centre (fig. 12a): 

The circumcentre of triangle ∆ ACD is K, of ∆ BCG is L and of ∆ ABE is M. 

The circumcircles of ∆ ADC and ∆ ABE intersect in point A and an additional point P. 
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A B

C

D

E

P

K

L

M

Q

GFig 12a: 
Situation of the proof of claim 1.  
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
Lets consider now the quadrangle DAPC. It is an inscribed tetragon of the circle with 
centre K. Angle ∢�ADC is 60°. In an inscribed tetragon the sum of two opposite 
angles is 180°. Therefore ∢ CPA = 120° yields. APBE is an inscribed tetragon, too, 
and, in the same way, ∢ BEA = 60° (by assumption) and therefore ∢ APB = 120° 

yields. 

From ∢ APB + ∢ CPA + ∢ BPC = 360° one concludes ∢ BPC = 120°. 

The contraposition of the theorem of the inscribed tetragon holds (only that 
quadrangle has a circumcircle, by which the sum of two opposite angles is 180°). 
Therefore with the assumption ∢ CGB = 60° and the fact ∢ BPC = 120° it follows, 
that BQCG is an inscribed tetragon with centre L. C and Q are the intersection points 
of the circumcircles of ∆ ADC and ∆ CGB. Q coincides with P. (i.e. the third 
circumcircle intersects with the other two circles in one point, the point P.)  

Result part I: The circumcircles of the equilateral triangles sitting on the sides of the 
given ∆ABC intersect in one point. 

What is missing up to now? The proof, that this point is the intersection point of the 
line segments AG , BD , CE , i.e. it yields: P∈ AG , P∈ BD  and P∈ CE . 

Part II: If one connects P with the points A, B, C, D, E and G (cf. Fig. 12b), so the 
following angles are equal:∢ DPA =∢ CPD = ∢ GPC = ∢ BPG = ∢ EPB = ∢ APE = 
60° (Proof look see below). It follows, that the points A, P, G as well as D, P, B and 
C, P, E are lying on a straight line. 
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ig. 12b : Sketch 1st Proof, Part II 

 DPA =∢ CPD = ∢ GPC = ∢ BPG = ∢ EPB = ∢ APE = 60° 

struction of the equilateral triangles sitting on the original triangle sides (Fig. 
e congruence identity of the following triangles is shown with the help of the 
nce theorem sas (side-angle-side): ∆CAE ≅ ∆DAB („is congruent“). 

al side length: ADAC = , because ∆ ACD is by assumption equilateral. 

al side length: AEAB = , because ∆ ABE is by assumption equilateral. 

 angles ∢ EAC and ∢ BAD are equal, for: 

C =∢ BAC + ∢ EAB=∢ BAC + 60°=∢ BAC + ∢ CAD=∢ BAD. 

triangles are congruent and so the equality of ∢ ADB = ∢ ACE =  yields. 
can write ∢ CPD as ∢ CPD = 180°- (60°+

δ
δ ) - (60°-δ )= 60°. 

her triangles one can repeat the proof for the remaining angles. On the other 
ith the help of the above results related to the inscribed tetragon (cf. fig. 12a) 
 conclude with ∢ CPA = 120° that ∢ DPA = 60° yields. 
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As vertical angle there holds ∢ EPB = ∢ BPG = 60°, with ∢ APB = 120° it follows ∢ 
APE = ∢ APB - ∢ EPB = 120° - 60° = 60°, and with ∢ BPC = 120° there follows 
∢ GPC = ∢ BPC - ∢ BPG = 120° - 60° = 60°. 

Now claim 1 is proved: AG , CE  and BD  intersect in one point. This point is the 
intersection point of the circumcircles of the additionally constructed equilateral 
triangles sitting on the sides of the given triangle ABC or the intersection point of the 
connection lines AG , BD ,CE . Additionally we got the result that these connection 
lines intersect under a 120° angle: ∢ APB= ∢ BPC= ∢ CPA =120°. 

 
Proof of claim 2: 
At first we prove the lemma holding for equilateral triangles: 

The sum of the distances of an arbitrary point inside an equilateral triangle to the 
sides of that triangle is constant (Fig. 13). 

This interesting and perplexed circumstances can be proved in other parts of classes. 

 
Proof of the lemma: 
Construction: 
a) Choose a point out of the equilateral triangle ABC and draw the 

perpendiculars to all sides from that point. The feet of the perpendiculars are 
called R, Q, S and it yields: PR  ⊥ AB , PQ⊥ BC and PS  ⊥ AC . 

b) Construct the midperpendicular (i.e. the height in the equilateral triangle) on 
AB  with foot D; it holds AB  ⊥ CD . 

c) Draw the parallel to AB  through P, which intersects CD  in G, AC  in E and 
BC  in F! Than by construction it holds PR  = GD . 

d) The foot of the perpendicular to  BC  through E say T. The resulting triangle 
CEF is equilateral (figure of the intercept theorems with ∆ ABC or statement 
with corresponding angle with AB IIEF) and its height is CG, ET  respectively. 
Because in a equilateral triangle all heights have the same length, it holds 
CG  = ET . 

e) Draw a parallel to CB  through P, which intersects AC  in H and ET  in N: NT  

= PQ  

f) Because the triangle EHP is equilateral (reasoning like d), the heights in this 
triangle have also the same length: SP  = EN  
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Figure 13: 

Sketch to prove the lemma for  

equilateral triangles: 

The sum of distances of an  

arbitrary point inside the triangle 

from the sides is constant 

 
 
 
 

 

Thus holds: PS  + PQ  = EN  + N

    = ET  = C

With PR  = GD  (it follows from c): T

PS  + PQ  + PR  = CG  + GD  = C
ABC a constant, the length of the heig

 
To perform claim 2 we have to use an
other hand we don’t need the distan
the points of the given triangle. This is

In claim 1 we got the result that the
points of the given triangle include 
construction M is the Fermat point in t

a) In triangle ABC (no angle larger t
with ∢ CMA = ∢ AMB = ∢ BMC =

b) Draw in A, B, C respectively the p
P, Q, R. 

c) ∆ PQR is equilateral due to the foll

 1.) ∢ CQB is 60°, because in 
rectangles by construction and

 2.) ∢ ARC = 60°, because in quad
construction and ∢ CMA = 120

 3.) With sum of angles in a triangle

 

C

A BD

P FE

Q

R

S

T

G

H

N

T  (following e, f) 

G  (following d). 

he distance of the point from the side is: 

D . Consequently it is for all equilateral triangles 
ht in this equilateral triangle. 

 equilateral triangle to apply the lemma. On the 
ces to the sides but to the sum of distances to 
 combined in the following construction: 

 connection lines from the Fermat point to the 
an angle with 120°. Therefore in the following 
he triangle ABC (Fig. 14): 

han 120°) let M be the point inside the triangle 
 120° 

erpendiculars to AM , BM , CM  intersecting in 

owing facts: 

quadrangle CMBQ ∢ MCQ and ∢ MBQ are 
 ∢ CMB is 120° by initial situation. 

rangle CRAM ∢ MAR = 90° = ∢ RCM holds by 
° holds by assumption. 

 equals 180° for ∢ BPA yields 60°. 
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d) Let D be another point in triangle ABC, DA , DB  and DC  be its distances to the 
corners A, B, C. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

     
 
Now we have to p
the distance from D

Proof: 

(*) MA  + MB  + M
perpendicular to th

If we substitute in 
with the direct conn

DE  + DF  + DG  

it holds MA  + MB

The construction o
if there is no angl
equal with point C.

 

 Figure 14: Situation 1st proof, part 2 

rove: The sum of the distances from M to the corners is less than 
 to the corners: 

MA  + MB  + MC  < DA  + DB  + DC  

C  = DE  + DF  + DG  (with lemma and DE , DF , DG  are the 
e sides of the triangle PQR. 

our equation (*) on the right side the perpendiculars DE , DF , DG  
ections from D to the points A, B, C, with 

< DA  + DB  + DC  

 + MC  < DA  + DB  + DC   qed. 

f the Fermat point results into a point inside the triangle if and only 
e 120° or larger. In the case ∢ ACB = 120° the Fermat point is 
 If there is an angle larger than 120° the intersection point of that 
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construction lies outside the triangle and the vertex of this angle has the minimal sum 
of distances from the given triangle points A, B, C.  

 
6.2 Second proof to the Fermat point 

Given a triangle ABC with no angle larger than 120°. Wanted is that point P, for 
which the sum of distances to the corners is minimal.15 

In the following we assume that all angles are less than 120°. The proof is shorter 
compared to the first one; it has the basic idea that the straight line is the shortest 
distance between a start an end point compared to all possible broken lines between 
these two points. It uses congruent triangles arisen by rotation.16 By rotation the 
distances from P to the corners of the triangles are built into a broken line. The sum 
of distances from P to the corners of the triangle is minimal, if and only if the resulting 
broken line is a straight line. 

Assumption:  
1. Let P be an arbitrary point inside the triangle ABC. 
2. D is outside of  ABC and ∆  ADC is equilateral, i.e. it holds ∆ AC = AD = DC  and 

∢ CAD = ∢ DCA = ∢ADC = 60°. 
 
Claim: 

If P is the point with minimal sum of distances then P lies on BD  and it holds 
PCPBPABD ++= . 

Proof: 
1. Choose P inside the triangle and rotate ∆ APC about A by 60° (Fig. 15), while C 

is mapped onto D. Let the image point from P be P' and 'DPCP = . 

2. APP' is equilateral, because ∢PAP' = 60° and ∆ 'APAP =  because of the 

rotation 'PPAP =⇒ . 
3. For the sum of the line segments it yields: 
   CPBPAP ++  = 'DPBP' ++AP  (from 1. and 2.) 

      = 'DPBP' +PP +  (from 2.)  

      = BDD'P' ≥+PPBP +  

(equality holds if and only if P and P' are on BD .) 

The sum 'DPBP'PP ++  is minimal, if B, P, P' and D lie on a straight line and it 

yields BDCPBPAP =++ , which just is the shortest connection. 

                                                           
15 The idea of this proof has its origin from the mathematical historian Joseph Ehrenfried Hofmann in 

1929 
16One can find this proof in an older German school book Lambacher-Schweizer: Geometrie 1, 1983 , 

Klett-Verlag, Stuttgart, ISBN 3-12-730500-1, pages 104-105. An application is given in that book: 
Three cities plan to build a new common water tower. 
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Conversely yields: If P and P' are on BD  then the angles formed between the 
straight lines ,PA  PB  and PC  are always 120°. This has to be proved: 

 
 
 
 
 
 
 
 

 
 
 

   
 
Assumption: 
                    

Claim: ∢CPA

Proof:  

 

A

B

C
D

P '

P

Figure 15: Construction to the 2nd proof of the Fermat point 

Figure and construction of P’ like above (conf. fig. 15).  
      The points P, P', B, D lie on a straight line: 

 = ∢ APB = ∢ BPC = 120° 

1. APP' is equilateral (conf. point 2 above) and ∢P'PA = 60°. ∆

Thus yields: ∢ APB = 180° - ∢ P'PA =180° - 60° = 120° . 

2.∢ CPA = ∢ DP'A (point 1 above) 

Thus yields: ∢CPA = ∢DP'A =180° - ∢AP'P= 180° - 60° = 120° 

3. Now holds: ∢BPC = 360° - 120° - 120° = 120°. 
qed. 
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