
Linear Optimization in School Mathematics

Horst W. Hamacher∗

Stefanie Müller∗

MaMaEuSch†-Report

Management Mathematics for European Schools

∗Department of Mathematics, University of Kaiserslautern
†MaMaEuSch has been carried out with the partial support of the European Com-

munity in the framework of the Socrates programme and with partial support of the
state of Rheinland-Pfalz and with partial support of the VolkswagenStiftung. The con-
tent of the project does not necessarily reflect the position of the European Community,
nor does it involve any responsibility on the part of the European Community.



Contents

1 Why Linear Optimization in School? 3

2 Was does linear Optimization mean? 5

3 Translation of the Real-World Problem 7

3.1 Modelling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

3.2 Linear Programs . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

3.2.1 The graphical Procedure for the Solution . . . . . . . . . . 9

4 The Simplex Method 11

4.1 Standard Form . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

4.2 Basic Representation . . . . . . . . . . . . . . . . . . . . . . . . . 13

4.3 Basic Solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

4.4 Optimality Test . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

4.5 Basis Exchange . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

4.6 Tableaus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

4.7 The Simplex Algorithm . . . . . . . . . . . . . . . . . . . . . . . . 26

5 Example: Soft Drinks 27

5.1 Standard Form . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

5.2 Simplex Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

1



CONTENTS 2

6 Example: Gardening-machines 33

6.1 Solution with the Simplex Method . . . . . . . . . . . . . . . . . 34

6.2 Integer Optimization . . . . . . . . . . . . . . . . . . . . . . . . . 34

6.2.1 Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

6.2.2 Solution in the two-dimensional Case . . . . . . . . . . . . 35

6.2.3 Solution in the more-dimensional Case . . . . . . . . . . . 36

A Rank of a Matrix A 38



Chapter 1

Why Linear Optimization in

School?

Mathematics in general is said to be not vivid and to exist only for mathemati-

cians. The idea of mathematics among pupils is the idea of a science which serves

only as its end in itself. It seems to be important to face the prejudice that

mathematics is far from any practical use.

Mathematics is a science which provides services and whose help is needed in

almost all fields of life. School mathematics should awaken the perception in the

pupils’ fields of life how mathematics works and how the search for the right theory

for the solution of a whole class of problems makes it possible in the opposite way

to act again practically. If it is e.g. even for today’s powerful computers already

difficult to solve the ”travelling salesman”-problem for 25 places to visit, how

much more necessary is it hence to have a suitable theory for this and similar

problems. Here the mathematician is needed.

The motivation to develop materials for lessons of a different kind is also due

to meet the demands of the school curriculum: ”A further function of lessons in

mathematics is to give pupils an understanding of the process of mathematics.

Where mathematical methods can be used to structure a problem, to represent

essential aspects of complex facts in a model and to search for a solution, corre-

lations between theory and practice can be experienced. (...) Pupils (...) shall

draw relations between non-mathematical facts and mathematics, work the prob-

lem with mathematical methods, interpret the solutions found and judge them

critically. Moreover limits of the subject’s specific methods and limits of mathe-

matics shall be realized.”[2]
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CHAPTER 1. WHY LINEAR OPTIMIZATION IN SCHOOL? 4

Optimization is one of those themes whose practical relevance is obvious.

Pupils ”optimize” with the method ”off the top of their heads” and obtain in

many fields of everyday life on basis of their respective experiences quite useful

results. But if one proceeds in this way in decisive fields of life, stranding will

be preprogrammed. Namely if personal assessments and ratings influence the

judgement of a situation, the whole insecurity, which is naturally present in hu-

man action, will also be included. If a problem is handled mathematically, this

insecurity will not exist.

But before a problem can be formulated mathematically, a reduction to the

essential, which is done by men, has to happen. This again entails that sev-

eral persons extract various mathematical problems from one real-world prob-

lem, since they allow different questions with the same underlying information.

This process, which is called modelling, will be elaborated among other things in

section 3.1.

To begin with in chapter 2 it shall become clear what the term ”linear opti-

mization” means. For that purpose some problems from the real life, which can

be solved with the aid of linear optimization, are specified. One of these prob-

lems will be considered closer and finally, after in chapter 3 and 4 procedures for

the solution have been presented, it will be solved in chapter 5. With a further

example in chapter 6 it shall be briefly explained how one obtains a solution for

an integer optimization problem.

The present text is meant to be an assistance for teachers. It is clear to the

authors that it is yet not suitable for pupils in its actual form, since still some

mathematical terms, which in general are not introduced in school mathematics,

are used. We hope that this text is understood by some teachers as a suggestion

to work out a version which is ”closer to the pupils” - as a joint work between

university and school.

To the mathematical fields which are required in the present text or for whose

introduction in school mathematics this work may serve as well belong the draw-

ing of lines by means of equations of the straight line, the shift of terms of inequal-

ities and their geometrical interpretation as well as the calculation with vectors

and matrices as part of the linear algebra. Within the scope of the represented

themes the introduction of the notion of a vector as ordered number-n-tuple is

possible as well.



Chapter 2

Was does linear Optimization

mean?

Linear optimization is a field of application of linear algebra and has a great

relevance to the solution of optimization problems in economy, engineering and

administration. Linear optimization deals with the maximization or minimization

of a value subject to certain restrictive conditions. Thus an optimal value is no

”extremum”, but an ”extremum with certain constraints”.

If an enterpriser wants to find out how many units of diverse products have

to be produced in order to maximize the profit subject to given selling-prices, the

production facilities will be restricted by marketing conditions, capacity limita-

tions and financial bottlenecks.

If e.g. hazardous goods shall be carried by a transportation enterpriser, then

the number of carried goods shall be maximized. The company’s capacities like

size and number of lorries however restrict the number of goods which have to be

carried. Besides the given safety regulations have to be kept. According to the

hazard which originates from the material only fixed amounts are allowed to be

carried at once. Some goods are not allowed to be carried together, since they

become hazardous only in combination. Restrictive conditions can be derived

likewise from this.

Another example of a real-world problem which can be solved with linear

optimization is the design of a pipeline. The pipeline of a plant conveys e.g. a

liquid with a fixed temperature. The occurring heat loss has to be compensated

by heating before entering the next production step. The costs for heating are

proportional to the heat loss. But the heat loss can be reduced by adding an
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CHAPTER 2. WAS DOES LINEAR OPTIMIZATION MEAN? 6

isolation, from which costs arise. If now the best possible compromise between

the thickness of the isolation and the compensation of the heat loss shall be found,

a method of linear optimization can be used.

But the heat loss does not only depend on the thickness of the isolation, but

also on the diameter of the pipeline. The diameter of the pipeline fixes again the

costs of investment of the pipeline as well as the running expenses of the pipeline

system, since the expended hoisting capacity follows from the diameter of the

pipeline by the pressure loss. Here as well a compromise between the hoisting

capacity and the costs of investment can be found by linear optimization.

A discussion of further examples of situations where one can solve a real-world

problem with linear optimization would certainly lead to far. A detailed example

is represented now and shall be solved after the theory of linear optimization was

discussed and the procedure for the solution was explained.

Example 2.1 A big company for soft drinks wants to put a new product on the

market. The new beverage shall be mixed out of three liquid ingredients, where

the first ingredient costs 5 Euro per liter, the second ingredient 2 Euro per liter

and the third ingredient 0,25 Euro per liter. Besides ingredient 1 contains 3g/l of

sugar and 4 units/l of a flavor, while the second ingredient contains 7g/l of sugar

and 8 units/l of the flavor and the third ingredient 20g/l of sugar and no flavor.

Due to technical reasons at least 100 liters of the beverage have to be produced per

production process.

The market research found out that the beverage will be accepted by the target

group, if the parameters are in the following interval.

The completed beverage shall contain at least 3g/l and at most 6g/l of sugar.

At least 3 units of the flavor shall be in one liter of the beverage. Besides the

beverage shall consist of at least 40% of ingredient 1, while ingredient 2 is allowed

to amount at most 50% and ingredient 3 at most 30% of the new beverage.



Chapter 3

Translation of the Real-World

Problem

3.1 Modelling

The assumptions of the real-world problem now have to be seized in a mathemat-

ical model. Therefore the variables x1,x2 and x3, which stand for the amount of

the respective liquid in liters, are introduced.

The soft drink company of course wants to keep the production costs low.

The cost function

5 · x1 + 2 · x2 + 0.25 · x3

is the sum of the products of the respective liquid with its price and is called the

objective funktion.

From the restrictions concerning the beverage’s content of sugar the following

constraintsresult:

3 · x1 + 7 · x2 + 20 · x3 ≥ 3 · (x1 + x2 + x3)

3 · x1 + 7 · x2 + 20 · x3 ≤ 6 · (x1 + x2 + x3)

The constraint for the content of flavor is:

4 · x1 + 8 · x2 ≥ 3 · (x1 + x2 + x3)
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CHAPTER 3. TRANSLATION OF THE REAL-WORLD PROBLEM 8

For the portion of each ingredient in the soft drink one obtains a constraint

as well.

x1 ≥ 0.4 · (x1 + x2 + x3)

x2 ≤ 0.5 · (x1 + x2 + x3)

x3 ≤ 0.3 · (x1 + x2 + x3)

The minimum amount of 100 liters, which has to be produced per production

process, yields:

x1 + x2 + x3 ≥ 100

Of course the portion of all ingredients has to be greater than zero. One

obtains the nonnegativity constraints:

x1, x2, x3 ≥ 0

Since on the right-hand side there should not be any variables, some trans-

formations are necessary. Finally one obtains the optimization problem1:

min 5 · x1 + 2 · x2 + 0.25 · x3

s.t. 4 · x2 + 17 · x3 ≥ 0

−3 · x1 + x2 + 14 · x3 ≤ 0

x1 + 5 · x2 − 3 · x3 ≥ 0

0.6 · x1 − 0.4 · x2 − 0.4 · x3 ≥ 0

−0.5 · x1 + 0.5 · x2 − 0.5 · x3 ≤ 0

−0.3 · x1 − 0.3 · x2 + 0.7 · x3 ≤ 0

x1 + x2 + x3 ≥ 100

x1, x2, x3 ≥ 0

3.2 Linear Programs

The optimization model found at the end of chapter 3.1 is called linear program.

The objective function ~c · ~x is linear. Each solution ~x which satisfies all the

constraints is called feasible solution of the LP2 and ~c · ~x is called objective

value of this solution.
1s.t. = subject to
2linear program
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Example 3.1 (from[3]) Another linear program is:

max x1

s.t. −x1 + x2 ≤ 1

x1 + x2 ≤ 3

x1, x2 ≥ 0

Example 3.1 was chosen because it only has two variables x1 and x2. A linear

program with only two variables can be solved in a graphical way.

3.2.1 The graphical Procedure for the Solution

To solve a LP with only two variables one can use the graphical procedure for

the solution. For that purpose the variables x1 and x2 are drawn upon the

axes of abscissae and ordinate of a co-ordinate system in which subsequently the

constraints are drawn (see figure 3.1).
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Figure 3.1: Graphical representation of the constraints from example 3.1

If one notes that the constraints are inequalities and that the nonnegativity

constraints have to be fulfilled as well, one obtains the speckled region in figure

3.2 in which one has to search for the optimal solution. This region is called

feasible region .

The objective function now has to be shifted to the right as far as possible 3.

In general the objective function however will be no line parallel to the ordinate.

3With minimization problems one shifts the objective function to the left.
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Figure 3.2: Graphical representation of the feasible region from example 3.1
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Figure 3.3: Graphical representation of the optimization problem from example

3.1

By a parallel shift of the objective function to greater or smaller objective values

one finally obtains the optimal solution. In figure 3.3 it can be seen that after the

shift the objective function is still adherent to the feasible region in point (3, 0).

Thus the optimal solution x1 = 3 and x2 = 0 is found.



Chapter 4

The Simplex Method

The idea of the simplex method, with which in contrast to the graphical procedure

LPs with more than two variables can be considered as well, is to move from corner

point to corner point of the feasible region and to improve thereby constantly the

objective value. The procedure will end, if the objective value cannot be improves

any more.

In Example 3.1 one would move from corner point (0, 0) to (3, 0) or via (0, 1)

and (1, 2) to (3, 0), which can be seen in figure 3.2.

4.1 Standard Form

To solve a LP with the help of the simplex method, it has to be in standard

form.

Definition 4.1 A LP of the form

min ~c · ~x
s.t. A~x = ~b

xi ≤ 0 ∀i

is called LP in standard form, where ~c is the cost vector and ~b is the demand vector

and A represents the coefficient matrix. One assumes that A is a m × n-matrix

with rank(A)1 = m. Thus one leaves away the redundant constraints.

1see page 38
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CHAPTER 4. THE SIMPLEX METHOD 12

To transform am arbitrary LP into standard form, several transformations have

to be done. These shall be illustrated in example 3.1.

The LP has the following form:

max x1

s.t. −x1 + x2 ≤ 1

x1 + x2 ≤ 3

x1, x2 ≥ 0

This is a maximization problem. To obtain a minimization problem as re-

quired for the standard form, the objective function has to be multiplied by −1.

One obtains:

−min −x1

s.t. −x1 + x2 ≤ 1

x1 + x2 ≤ 3

x1, x2 ≥ 0

Now the constraints, which are given in terms of inequalities, shall be trans-

formed into equalities. This is done by introducing so called slack variables and

surplus variables. The slack variables are added to the ≤-equalities to generate

equalities. Likewise the surplus variables are subtracted from the ≥-equalities.

In the present example only ≤-equalities exist, so that only slack variables have

to be introduced.

−min −x1

s.t. −x1 + x2 + x3 = 1

x1 + x2 + x4 = 3

x1, x2, x3, x4 ≥ 0

In this example all variables x1, x2 are ≥ 0, so that referring to this no trans-

formations have to be done. If in a LP there is a variable xi which is not sign

constrained, xi will be replaced by x+
i ≥ 0 and x−

i ≥ 0, where xi = x+
i − x−

i will

be valid.

After these necessary transformations the LP is in standard form with

coefficient matrix A =

(
−1 1 1 0

1 1 0 1

)
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demand vector ~b =

(
1

3

)
cost vector ~c = (−1, 0, 0, 0)

The coefficient matrix has rank(A) = 2. Two columns at a time are linearly

independent. But if one adds to any combination of two columns a third one, the

three columns will be linearly dependent:

1 ·
(
−1

1

)
− 1 ·

(
1

1

)
+ 2 ·

(
1

0

)
= 0

1 ·
(
−1

1

)
+ 1 ·

(
1

1

)
− 2 ·

(
0

1

)
= 0

1 ·
(
−1

1

)
+ 1 ·

(
1

0

)
− 1 ·

(
0

1

)
= 0

1 ·
(

1

1

)
− 1 ·

(
1

0

)
− 1 ·

(
0

1

)
= 0

4.2 Basic Representation

Definition 4.2 A basis of A is a set AB = (AB(1), ..., AB(m)), where AB(1), ..., AB(m)

are columns of A. AB is a m×m sub-matrix of A with rank(AB) = m. The cor-

respondent variables ~xB = (xB(1), ...xB(m))
T are called basic variables. The

remaining variables ~xN = (xN(1), ...xN(n−m))
T are called non-basic variables

and the correspondent columns of the coefficient matrix are collected by AN =

(AN(1), ..., AN(n−m)).

If one considers example 3.1, several bases can be found, e.g.:

1. B = (3, 4) AB =

(
1 0

0 1

)

2. B = (1, 2) AB =

(
−1 1

1 1

)

3. B = (4, 1) AB =

(
0 −1

1 1

)

If now ~x is a solution of a LP in standard form, i.e. if A · ~x = ~b holds, then

AB · ~xB + AN · ~xN = ~b will hold as well, and vice versa.
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One can see this easily by writing A · ~x = ~b as

x1 · A1 + ... + xn · An = ~b, where A1, . . . , An are the columns of A .

Example 4.1

(
−1 1 1 0

1 1 0 1

)
·


x1

x2

x3

x4


= x1 ·

(
−1

1

)
+ x2 ·

(
1

1

)
+ x3 ·

(
1

0

)
+ x4 ·

(
0

1

)
=

(
1

3

)

Therefore it is clear that the summands can be exchanged in their sequence,

and therefore they can be represented as AB · ~xB + AN · ~xN = ~b .

For the basis B = (3, 4) it follows:

(
1 0

0 1

)
·
(

x3

x4

)
+

(
−1 1

1 1

)
·
(

x1

x2

)
=

(
1

3

)

Therefore it holds:

A · ~x = ~b

⇐⇒ AB · ~xB + AN · ~xN = ~b

⇐⇒ AB · ~xB = ~b− AN · ~xN

⇐⇒ ~xB = A−1
B ·~b− A−1

B · AN · ~xN (4.1)

Equation 4.1 is the basic representation of ~x with respect to basis B. Based

on the derivation it is clear that any solution can be represented in this form, if

the inverse of the matrix AB can be computed.

For B = (3, 4) AB is the identity matrix. Therefore AB = A−1
B .

For B = (1, 2) AB =

(
−1 1

1 1

)
. For the computation of A−1

B two systems of

linear equations have to be solved:

(
−1 1

1 1

)
·
(

a1

a2

)
=

(
1

0

)



CHAPTER 4. THE SIMPLEX METHOD 15

(
−1 1

1 1

)
·
(

b1

b2

)
=

(
0

1

)

Since the systems differ only on the right-hand side, the computations can be

collected in one scheme:(
−1 1

1 1

∣∣∣∣∣ 1 0

0 1

)
−→

(
−1 1

0 2

∣∣∣∣∣ 1 0

1 1

)
−→

(
1 −1

0 2

∣∣∣∣∣ −1 0

1 1

)
−→

(
1 0

0 1

∣∣∣∣∣ −1
2

1
2

1
2

1
2

)

After the transformations the inverse matrix A−1
B is on the right-hand side.

For the different bases from example 3.1 the basic representation can be com-

puted.

1. B = (3, 4) AB =

(
1 0

0 1

)
A−1

B = AB = I =

(
1 0

0 1

)
(

x3

x4

)
= ~xB = I ·~b− I · AN · ~xN

=

(
1

3

)
−
(
−1 1

1 1

)
·
(

x1

x2

)

=

(
1

3

)
−
(
−x1 + x2

x1 + x2

)

=

(
1 + x1 − x2

3− x1 − x2

)

2. B = (1, 2) AB =

(
−1 1

1 1

)
A−1

B = 1
2
·
(
−1 1

1 1

)
(

x1

x2

)
= ~xB =

1

2
·
[(

−1 1

1 1

)
·
(

1

3

)

−
(
−1 1

1 1

)
·
(

1 0

0 1

)
·
(

x3

x4

)]

=
1

2
·
[(

2

4

)
−
(
−x3 + x4

x3 + x4

)]

=

(
1

2

)
− 1

2
·
(
−x3 − x4

x3 + x4

)
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3. B = (4, 1) AB =

(
0 −1

1 1

)
A−1

B =

(
1 1

−1 0

)

(
x4

x1

)
= ~xB =

(
1 1

−1 0

)
·
(

1

3

)

−
(

1 1

−1 0

)
·
(

1 1

1 0

)
·
(

x2

x3

)

=

(
4

−1

)
−
(

1 1

−1 0

)
·
(

x2 + x3

x2

)

=

(
4

−1

)
−
(

2 · x2 + x3

−x2 − x3

)

4.3 Basic Solution

Definition 4.3 A solution ~x is called basic solution of A · ~x = ~b, if

~xN = ~0 and therefore ~xB = A−1
B ·~b. If additionally ~xB ≥ 0 holds, ~x is called basic

feasible solution .

In example 3.1 the solutions with respect to the bases B = (3, 4) and B =

(1, 2) are basic feasible solutions.

1. B = (3, 4) ~xN =

(
x1

x2

)
=

(
0

0

)
~xB =

(
x3

x4

)
=

(
1

3

)

2. B = (1, 2) ~xN =

(
x3

x4

)
=

(
0

0

)
~xB =

(
x1

x2

)
=

(
1

2

)

3. B = (4, 1) ~xN =

(
x2

x3

)
=

(
0

0

)
~xB =

(
x4

x1

)
=

(
4

−1

)
In this case ~xB 6≥ ~0 and therefore ~x is no basic feasible solution.

By trying to represent these solutions in a graphical way (see figure 4.1), one

can easily see why feasible respectively infeasible solutions are concerned.

The basic solution with respect to basis B = (4, 1) with x1 = −1 and x2 = 0

is not contained in the feasible region, while the solutions with respect to the

bases B = (3, 4) and B = (1, 2) with x1 = 0 and x2 = 0 respectively x1 = 1 and

x2 = 2 are contained in the feasible region.
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Figure 4.1: Graphical representation of feasible and infeasible solutions.

Moreover one sees in figure 4.1 that the basis solutions correspond to the

corner points of the feasible region.

4.4 Optimality Test

From chapter 3.2.1 it is already known that the optimal solution of the LP from

example 3.1 is ~x =

(
3

0

)
.

But how can starting from a known feasible solution the optimal solution be

found ?

To begin with the objective value of the respective solution shall be considered.

The objective value of the solution ~x =

(
0

0

)
is ~c · ~x = (1, 0) ·

(
0

0

)
= 0, while

for the solution ~x =

(
1

2

)
it is ~c · ~x = (1, 0) ·

(
1

2

)
= 1.

Now one can use the basic representation of a basic feasible solution (see

equation 4.1) to derive an optimality condition.

~c · ~x = ~cB · ~xB + ~cN · ~xN

(4.1)
= ~cB · (A−1

B ·~b− A−1
B · AN · ~xN) + ~cN · ~xN

= ~cB · A−1
B ·~b + (~cN − ~cB · A−1

B · AN) · ~xN

Since for a basic solution ~xN = 0 holds, it follows: ~c · ~x = ~cB · ~xB = ~cB · A−1
B ·~b.
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The question now is, if the objective value can be improved further.

The modification of the solution yields a change of the objective value by (~cN−~cB ·
A−1

B ·AN) · ~xN . Since so far ~xN = ~0 holds, there is only the possibility to increase

~xN . Since moreover we always consider a minimization problem and therefore

want to decrease the objective value, for a j ∈ {1, . . . , n−m} (cN(j) − ~cB · A−1
B ·

AN(j)) < 0 has to hold in order to achieve an improvement of the objective value.

This means:

Theorem 4.1 The basic feasible solution ~x with respect to B is optimal, if

(cN(j) − ~cB · A−1
B · AN(j)) ≥ 0 ∀j ∈ {1, . . . , n−m}

Thus the values c̄N(j) := (cN(j)−~cB ·A−1
B ·AN(j)), which are called reduced costs,

contain the information whether it is useful to increase the value of a non-basic

variable xN(j) from 0 to a value δ > 0 .

Example 4.2 In the following now once more the solutions with respect to the

different bases shall be considered.

1. B = (3, 4), N = (1, 2)

~cN − ~cB · A−1
B · AN

= (−1, 0)− (0, 0) ·
(

1 0

1 0

)
·
(
−1 1

1 1

)

= (−1, 0)− (0, 0) ·
(
−1 1

1 1

)
= (−1, 0)− (0, 0)

= (−1, 0) 6≥ (0, 0)

The optimality condition is not satisfied.

2. B = (1, 2), N = (3, 4)

~cN − ~cB · A−1
B · AN

= (0, 0)− (−1, 0) · 1

2
·
(
−1 1

1 1

)
·
(

1 0

0 1

)

= (0, 0)− 1

2
· (−1, 0) ·

(
−1 1

1 1

)

= (0, 0)− 1

2
· (1,−1)

= (−1

2
,
1

2
) 6≥ (0, 0)
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The optimality condition is not satisfied.

3. B = (1, 3), N = (2, 4)

~cN − ~cB · A−1
B · AN

= (0, 0)− (−1, 0) ·
(

0 1

1 1

)
·
(

0 1

1 1

)

= (0, 0)− (−1, 0) ·
(

1 1

2 1

)
= (0, 0)− (−1,−1)

= (1, 1) ≥ (0, 0)

Thus the basis belonging to B is optimal.

~xB =

(
x1

x3

)
= A−1

B ·~b =

(
0 1

1 1

)
·
(

1

3

)
=

(
3

4

)

~xN =

(
x2

x4

)
=

(
0

0

)

As already found out graphically in chapter 3.2.1, ~x =

(
3

0

)
2 is the optimal

solution.

4.5 Basis Exchange

As already mentioned in chapter 4.3, the basic feasible solutions correspond to

the corner points of the feasible region. Corresponding to the idea of the simplex

method to move from corner point to corner point as long as the objective value

still improves, we will now move from a basic feasible solution to the next one as

long as the optimality condition is not fulfilled.

But how does one get from a basic feasible solution to the next one ?

The situation subsists that the optimality condition does not hold. This

means, ∃ s ∈ {1, . . . , n−m} : c̄N(s) = cN(s) − ~cB · A−1
B · AN(s) < 0

2With ~x it is meant ~x =
(

x1

x2

)
. As soon as a final solution is specified, the slack variables,

surplus variables or other variables, which were only needed to transform the LP in standard
form, are disregarded.
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Till now xN(s) = 0 held, but at present xN(s) is increased to a value δ > 0 while

all the other non-basic variables xN(j) remain the same.

What happens to the objective value if xN(s) = δ ?

~c · ~x = ~cB · A−1
B ·~b + (~cN − ~cB · A−1

B · AN) · ~xN

= ~cB · A−1
B ·~b + (~cN(s) − ~cB · A−1

B · AN(s))︸ ︷︷ ︸
<0

·δ

i.e. the objective value ~c · ~x decreases since δ > 0 .

Subsequently the question occurs how large δ can be chosen. Of course δ shall

be made as large as possible since the objective value shall be minimized.

For that purpose we consider the basic representation 4.1 of the solution

~xB = A−1
B ·~b + A−1

B · AN · ~xN

Since all non-basic variables except xN(s) remain equal to zero, it holds:

~xB = A−1
B ·~b + A−1

B · AN · xN(s)

= A−1
B ·~b + A−1

B · AN · δ

Since the new solution shall further remain feasible, every component of ~xB has

to be greater or equal to zero.

(~xB)i = (A−1
B ·~b)i + (A−1

B · AN(s))i · δ ≥ 0 für i = 1, . . . ,m

Since δ shall be chosen as large as possible, it follows:

δ = xN(s) := min

 (A−1
B ·~b)i

(A−1
B · AN(s))i

: (A−1
B · AN(s))i > 0

 (4.2)

While computing δ with respect to equation 4.2, which is called ratio rule,

two cases may occur.

Case 1:

∀i = 1, . . . ,m : (A−1
B · AN(s))i ≤ 0

In this case the ratio rule yields no restriction for δ. Thus δ can be chosen

arbitrarily large and therefore the objective value can be made arbitrarily

small. In this case the LP is called unbounded .
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Case 2:

δ = xN(s) := min

 (A−1
B ·~b)i

(A−1
B · AN(s))i

: (A−1
B · AN(s))i > 0


=

(A−1
B ·~b)r

(A−1
B · AN(s))r

Now it holds:

xN(j) = 0 ∀j 6= s

xN(s) =
(A−1

B ·~b)r

(A−1
B · AN(s))r

xB(i) = (A−1
B ·~b)i − (A−1

B · AN(s))i · xN(s)

= (A−1
B ·~b)i − (A−1

B · AN(s))i ·
(A−1

B ·~b)r

(A−1
B · AN(s))r

A so called basis exchange happens. B(r) leaves the basis, i.e. xB(r) = 0,

and N(s) enters the basis, i.e. xN(s) > 0. ([3])

B(r)

N(s)

B N

PPPPPPPPq

i

Figure 4.2: Basis exchange: B(r) leaves the basis, N(s) enters the basis.
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Example 4.3 B = (3, 4), N = (1, 2)

As already found out in example 4.2 the basic solution, which belongs to this basis,

is not optimal. ~cN − ~cB ·A−1
B ·AN = (−1, 0), this means that by increasing xN(1)

an improvement of the objective value is achieved.

xN(1) = δ = min

 (A−1
B ·~b)i

(A−1
B · AN(1))i

: (A−1
B · AN(1))i > 0


=

 (A−1
B ·~b)2

(A−1
B · AN(1))2


=

{
3

1

}
= 3 = x1

xN(2) = x2 = 0

xB(1) = x3 = (A−1
B ·~b)1 − (A−1

B · AN(1))1 · xN(1) = 1− (−1) · 3 = 4

xB(2) = x4 = (A−1
B ·~b)2 − (A−1

B · AN(1))2 · xN(1) = 3− 1 · 3 = 0

The new basis now is B′ = (3, 1), N ′ = (4, 2). By considering this graphically

one finds out that one moved from the basic solution with respect to B = (3, 4)

~x = (0, 0) to the basic solution with respect to B′ = (3, 1) ~x = (3, 0) (see figure

4.3).
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Figure 4.3: Graphical representation of the basic solutions with respect to B =

(3, 4): ~x = (0, 0) and with respect to B′ = (3, 1): ~x = (3, 0) as corner points of

the feasible region.
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4.6 Tableaus

Before in chapter 4.7 the simplex method is represented in a comprised form,

the basis exchange shall be organized in an efficient way. This shall be done by

storing the LP in so-called tableaus .

The objective function is rewritten as −z + c1 · x1 + . . . + cn · xn = 0 and like

the constraints it is also stored in a matrix which is written in tableau form as

starting tableau T = (tij) with i = 0, 1, . . . ,m and j = 0, 1, . . . , n, n + 1 :

T =

−z x1 . . . xn

1 c1 . . . cn 0

0 a11 . . . a1n b1

...
...

...
...

0 am1 . . . amn bm

=
1 ~c 0
~0 A ~b

T represents a system of linear equations with m+1 equations. The 0th col-

umn is associated with the variable −z, the ith column with xi (i = 1, . . . , n) and

the (n + 1)-st column contains the information about the right-hand sides.

For a basis B one denotes with TB the non-singular (m + 1)× (m + 1) - matrix

TB =


1 ~cB

0
... AB

0



T−1
B =

(
1 −~cB · A−1

B

~0 A−1
B

)

T−1
B T =


1 ~c− ~cB · A−1

B · A −~cB · A−1
B ·~b

0
... A−1

B · A A−1
B ·~b

0

 =: T (B)

T (B) is called the simplex tableau associated with the basis B:

• The first column is always the vector (1, 0, . . . , 0)T . This column only em-

phasizes the character of the 0th row as an equation. Since this column

does not change during the simplex method, it can be omitted.
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• For j = B(i) ∈ B A−1
B Aj = ~eTi (ith unit vector with m components) holds.

Furthermore cj −~cBA−1
B Aj = cj − cj = 0 holds. Thus T (B) contains in the

column corresponding to the ith basic variable xB(i) the value 0 in the 0th

row and then the ith unit vector with m components.

• For j = N(i) ∈ N the entry is t0j = cj − ~cBA−1
B Aj = cj, i.e. the t0j are the

reduced costs of the non-basic variables xj.

• In the last column A−1
B ·~b is the vector of the basic solution with respect to

B and consequently −~cB · A−1
B ·~b is the negative of the objective value of

the current basic solution.

Example 4.4 Considering once more example 3.1 with basis B = (1, 2) it fol-

lows:

T =

−z x1 x2 x3 x4

1 −1 0 0 0 0

0 −1 1 1 0 1

0 1 1 0 1 3

Since:

A−1
B =

(
−1/2 1/2

1/2 1/2

)
and

~cB · A−1
B = (−1, 0) ·

(
−1/2 1/2

1/2 1/2

)
=
(

1

2
,−1

2

)

one obtains:

T−1
B =


1 −1/2 1/2

0 −1/2 1/2

0 1/2 1/2


Thus the simplex tableau corresponding to the basis B is

T (B) = T−1
B T =

−z x1 x2 x3 x4

1 0 0 −1/2 1/2 1

0 1 0 −1/2 1/2 1

0 0 1 1/2 1/2 2
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Following the interpretation of T (B) one takes from the 0th row the reduced

costs c3 = −1/2, c4 = 1/2 of the non-basic variables and one can see that the

optimality condition is not satisfied. Looking at the last column, we can see that

x1 = 1, x2 = 2 are the values of the basic variables in the basic solution with

objective value −t0 n+1 = −1.

If t0j < 0 for some j ∈ {1, . . . , n}, the optimality condition will not be satisfied

and one will try to move the non-basic variable into the basis. Using the simplex

tableau, the value of δ can be easily computed with the ratio rule:

δ = xj = min

{
ti n+1

tij
: tij > 0

}
.

Thus one recognizes an unbounded objective function by the fact that a col-

umn corresponding to a non-basic variable xj with t0j < 0 contains only entries

≤ 0. If δ = tr n+1

trj
, one will do a so-called pivot operation with the element

trj > 0 , i.e. one will transform the jth column of T (B) into an unit vector using

elementary row operations. The resulting tableau is the simplex tableau T (B′)

with respect to the new basis B′.

Example 4.5 We continue example 4.4 . Since t03 = −1/2, x3 shall be moved

into the basis. The ratio rule yields δ = x3 = t25
t23

= 2
1/2

= 4, thus the last tableau

of example 4.4 is pivoted with the element t23 = 1
2
.

1 0 0 −1/2 1/2 1

0 1 0 −1/2 1/2 1

0 0 1 1/2 1/2 2

T (B)

−→

1 0 1 0 1 3

0 1 1 0 1 3

0 0 2 1 1 4

T (B′)

In T (B′) all reduced costs t0j are non-negative, thus the corresponding basic

solution ~x =

(
x1

x2

)
=

(
3

0

)
is optimal.

If t0j ≥ 0 ∀ j = 1, . . . , n and ti n+1 ≥ 0 ∀ i = 1, . . . ,m, T (B) is called an

optimal (simplex-) tableau. ([3])
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4.7 The Simplex Algorithm

The procedure obtained in the previous sections shall now be formulated in terms

of an algorithm.

Simplex Algorithm

Problem: min{~c ~x : A · ~x = ~b, ~x ≥ ~0}

(INPUT) Basic feasible solution ~x = (~xB, ~xN) with respect to a basis B.

(1) Compute the simplex tableau T (B).

(2) If t0j ≥ 0 ∀ j = 1, . . . , n

(STOP) ~x = (~xB, ~xN) with xB(i) = ti n+1 (i = 1, . . . ,m) and ~xN = ~0 is the

optimal solution of the LP with objective value −t0 n+1

(3) Choose j with t0j < 0.

(4) If tij ≤ 0 ∀ i = 1, . . . ,m

(STOP) The LP is unbounded.

(5) Determine r ∈ {1, . . . ,m} with tr n+1

trj
= min

{
ti n+1

tij
: tij > 0

}
and pivot with trj.

Goto (2).



Chapter 5

Example: Soft Drinks

Now one can return to example 2.1 and determine an optimal solution using the

simplex method.

5.1 Standard Form

The LP now has to be transformed into standard form. After the introduction of

slack variables and surplus variables it follows:

min 5x1 + 2x2 +0.25x3

u.d.N. 4x2 + 17x3−x4 = 0

−3x1 + x2 + 14x3 +x5 = 0

x1 + 5x2− 3x3 −x6 = 0

0.6x1−0.4x2− 0.4x3 −x7 = 0

−0.5x1 +0.5x2− 0.5x3 +x8 = 0

−0.3x1−0.3x2 + 0.7x3 +x9 = 0

x1 + x2 + x3 −x10 =100

xi≥ 0 i = 1, . . . , 10

As it is required for the algorithm, the problem now is in standard form with

~c = (5, 2, 0.25, 0, 0, 0, 0, 0, 0, 0)

~bT = (0, 0, 0, 0, 0, 0, 100)

27
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A =



0 4 17 −1 0 0 0 0 0 0

−3 1 14 0 1 0 0 0 0 0

1 5 −3 0 0 −1 0 0 0 0

0.6 −0.4 −0.4 0 0 0 −1 0 0 0

−0.5 0.5 −0.5 0 0 0 0 1 0 0

−0.3 −0.3 0.7 0 0 0 0 0 1 0

1 1 1 0 0 0 0 0 0 −1



5.2 Simplex Method

As (INPUT) a basic feasible solution with respect to a basis B is required.

B = (1, 4, 5, 6, 7, 8, 9) is a basis. Now it has to be checked, whether the corre-

sponding basic solution is feasible, whether ~xB = A−1
B ·~b ≥ ~0 holds.

AB =



0 −1 0 0 0 0 0

−3 0 1 0 0 0 0

1 0 0 −1 0 0 0

0.6 0 0 0 −1 0 0

−0.5 0 0 0 0 1 0

−0.3 0 0 0 0 0 1

1 0 0 0 0 0 0



A−1
B =



0 0 0 0 0 0 1

−1 0 0 0 0 0 0

0 1 0 0 0 0 3

0 0 −1 0 0 0 1

0 0 0 −1 0 0 0.6

0 0 0 0 1 0 0.5

0 0 0 0 0 1 0.3



A−1
B ·~b =



0 0 0 0 0 0 1

−1 0 0 0 0 0 0

0 1 0 0 0 0 3

0 0 −1 0 0 0 1

0 0 0 −1 0 0 0.6

0 0 0 0 1 0 0.5

0 0 0 0 0 1 0.3


·



0

0

0

0

0

0

100


=



100

0

300

100

60

50

30
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Thus the basis B = (1, 4, 5, 6, 7, 8, 9) is feasible. Consequently the algorithm

can start.

(1) Computation of T (B):

• A−1
B · A =



0 0 0 0 0 0 1

−1 0 0 0 0 0 0

0 1 0 0 0 0 3

0 0 −1 0 0 0 1

0 0 0 −1 0 0 0.6

0 0 0 0 1 0 0.5

0 0 0 0 0 1 0.3



·



0 4 17 −1 0 0 0 0 0 0

−3 1 14 0 1 0 0 0 0 0

1 5 −3 0 0 −1 0 0 0 0

0.6 −0.4 −0.4 0 0 0 −1 0 0 0

−0.5 0.5 −0.5 0 0 0 0 1 0 0

−0.3 −0.3 0.7 0 0 0 0 0 1 0

1 1 1 0 0 0 0 0 0 −1



=



1 1 1 0 0 0 0 0 0 −1

0 −4 −17 1 0 0 0 0 0 0

0 4 17 0 1 0 0 0 0 −3

0 −4 4 0 0 1 0 0 0 −1

0 1 1 0 0 0 1 0 0 −0.6

0 1 0 0 0 0 0 1 0 −0.5

0 0 1 0 0 0 0 0 1 −0.3



• ~cB·A−1
B ·A = (5, 0, 0, 0, 0, 0, 0)·



1 1 1 0 0 0 0 0 0 −1

0 −4 −17 1 0 0 0 0 0 0

0 4 17 0 1 0 0 0 0 −3

0 −4 4 0 0 1 0 0 0 −1

0 1 1 0 0 0 1 0 0 −0.6

0 1 0 0 0 0 0 1 0 −0.5

0 0 1 0 0 0 0 0 1 −0.3


= (5, 5, 5, 0, 0, 0, 0, 0, 0,−5)
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• ~cB · A−1
B ·~b = (5, 0, 0, 0, 0, 0, 0) ·



100

0

300

100

60

50

30


= 500

• ~c−~cb ·A−1
B ·A = (5, 2, 0.25, 0, 0, 0, 0, 0, 0, 0)− (5, 5, 5, 0, 0, 0, 0, 0, 0,−5)

= (0,−3,−19
4
, 0, 0, 0, 0, 0, 0, 5)

=⇒ T (B) =

1 0 −3 −19
4

0 0 0 0 0 0 5 −500

0 1 1 1 0 0 0 0 0 0 −1 100

0 0 −4 −17 1 0 0 0 0 0 0 0

0 0 4 17 0 1 0 0 0 0 −3 300

0 0 −4 4 0 0 1 0 0 0 −1 100

0 0 1 1 0 0 0 1 0 0 −0.6 60

0 0 1 0 0 0 0 0 1 0 −0.5 50

0 0 0 1 0 0 0 0 0 1 −0.3 30

In the following the first column can be omitted, as already explained on

page 23.

(2) t02 < 0 and t03 < 0 =⇒ The solution is not optimal yet.

(3) Let j = 2 with t02 = −3 < 0.

(4) t12, t32, t52, t62 > 0 =⇒ The LP is not unbounded.

(5) δ = tr n+1

tr2
= min

{
ti n+1

ti2
: ti2 > 0

}
= min

{
100, 300

4
, 60, 50

}
= 50 ⇒ r = 6

Now one has to pivot with t62:

T (B) =

0 −3 −19
4

0 0 0 0 0 0 5 −500

1 1 1 0 0 0 0 0 0 −1 100

0 −4 −17 1 0 0 0 0 0 0 0

0 4 17 0 1 0 0 0 0 −3 300

0 −4 4 0 0 1 0 0 0 −1 100

0 1 1 0 0 0 1 0 0 −0.6 60

0 1 0 0 0 0 0 1 0 −0.5 50

0 0 1 0 0 0 0 0 1 −0.3 30
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=⇒

0 0 −19
4

0 0 0 0 3 0 3.5 −350

1 0 1 0 0 0 0 −1 0 −0.5 50

0 0 −17 1 0 0 0 4 0 −2 200

0 0 17 0 1 0 0 −4 0 −1 100

0 0 4 0 0 1 0 4 0 −3 300

0 0 1 0 0 0 1 −1 0 −0.1 10

0 1 0 0 0 0 0 1 0 −0.5 50

0 0 1 0 0 0 0 0 1 −0.3 30

Now the column 2 has entered the basis, while the eighth column left the

basis. The new basis is B = (1, 2, 4, 5, 6, 7, 9).

−→ (2)

(2) t03 < 0 =⇒ The solution is not optimal yet.

(3) Let j = 3 with t02 = −19
4

< 0.

(4) t13, t33, t43, t53, t73 > 0 =⇒ The LP is not unbounded.

(5) δ = tr n+1

tr3
= min

{
ti n+1

ti3
: ti3 > 0

}
= min

{
50, 100

17
, 300

4
, 10, 30

}
= 100

17
⇒ r = 3

Now one has to pivot with t33:

T (B) =

0 0 −19
4

0 0 0 0 3 0 3.5 −350

1 0 1 0 0 0 0 −1 0 −0.5 50

0 0 −17 1 0 0 0 4 0 −2 200

0 0 17 0 1 0 0 −4 0 −1 100

0 0 4 0 0 1 0 4 0 −3 300

0 0 1 0 0 0 1 −1 0 −0.1 10

0 1 0 0 0 0 0 1 0 −0.5 50

0 0 1 0 0 0 0 0 1 −0.3 30

=⇒

0 0 0 0 19
68

0 0 32
17

0 219
68

−5475
17

1 0 0 0 − 1
17

0 0 −13
17

0 −15
34

750
17

0 0 0 1 1 0 0 0 0 −3 300

0 0 1 0 1
17

0 0 − 4
17

0 − 1
17

100
17

0 0 0 0 − 4
17

1 0 84
17

0 −47
17

4700
17

0 0 0 0 − 1
17

0 1 −13
17

0 − 7
170

70
17

0 1 0 0 0 0 0 1 0 −0.5 50

0 0 0 0 − 1
17

0 0 4
17

1 − 41
170

410
17

The new basis is B = (1, 2, 3, 4, 6, 7, 9).

−→ (2)
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(2) t0j ≥ 0 ∀j = 1, . . . , n (STOP)

~x =


x1

...

x10

 =



750/17

50

100/17

300

0

4700/17

70/17

0

410/17

0


is optimal with objective value −t0n+1 = 5475

17
≈ 322

From the optimal tableau the values of x1, . . . , x10 can be taken as follows:

Non-basic variables have the value of zero, i.e. in this case x5 = 0, x8 = 0 and

x10 = 0.

The values of the basic variables are written in the last column. In the first

column the unit vector with 1 in the first row is written. Therefore the basic

variable x1 is associated with the value of 750
17

which is written in the last column

of the first row.

In the second column the unit vector with 1 in the sixth row can be found.

Consequently x2 = 50, since 50 is written in the last column in the sixth row.

The values of the other basic variables have been equally taken from the tableau.

This procedure is easy to understand, if one recalls that the non-basic variables

are equal to zero and that the tableaus represent a system of linear equations.



Chapter 6

Example: Gardening-machines

In this section another example shall be considered, on which several limits and

difficulties of the simplex method are illustrated.

Example 6.1 A company produces and sells four different gardening-machines:

shredders, lawn-mowers, small tractors and reaping-machines. Per shredder 1500

Euro profit are realized, while per lawn-mower 3500 Euro, per small tractor 3000

Euro and per reaping-machine 4000 Euro are gained. The company of course

wants to maximize its profit.

The production happens in a three-step process:

Step 1: Production of components

Step 2: Improvement of the surface

Step 3: Assembly

For the single production steps defined production times per production unit are

given. Moreover the production capacities in the single production steps are

bounded. The following schedule represents the conditions:

Product Shredder Lawn-mower Tractor Reaping-machine Capacity

Step 1 3.0 1.0 3.0 4.0 315

Step 2 1.0 2.0 2.7 4.0 270

Step 3 2.0 5.0 5.5 3.0 400

It is expected that a maximum of 30 shredders is saleable. Moreover due to op-

erational reasons at least twelve lawn-mowers, 20 small tractors and ten reaping-

machines shall be sold.

33
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6.1 Solution with the Simplex Method

For example 6.1 the following optimization model results:

max 1.5x1 + 3.5x2 + 3.0x3 + 4.0x4

s.t. 3.0x1 + 1.0x2 + 3.0x3 + 4.0x4 ≤ 315

1.0x1 + 2.0x2 + 2.7x3 + 4.0x4 ≤ 270

2.0x1 + 5.0x2 + 5.5x3 + 3.0x4 ≤ 400

x1 ≤ 30

x2 ≥ 12

x3 ≥ 20

x4 ≥ 10

xi ≥ 0 ∀i = 1, . . . , 4

After the transformation into standard form and the application of the simplex

method one obtains the following solution: x1 = 0, x2 = 36, 5714, x3 = 20, x4 =

35, 71431. The now arising problem is easy to see. The solution is not integer. In

example 2.1 this was not a problem, for it is not difficult to measure 750
17

l ≈ 44.12l

of a liquid, but it is problematic now. There are only whole gardening-machines.

6.2 Integer Optimization

Problems, whose solution has to be integer, are considered in integer optimiza-

tion. Integer optimization shall not be discussed here as in detail as the simplex

method. Nevertheless an insight into how one can obtain an integer solution shall

be given.

6.2.1 Problems

We consider once again the solution which we have obtained for example 6.1:

x1 = 0, x2 = 36, 571438, x3 = 20, x4 = 35, 71429

This solution does not really solve the problem of the enterpriser who wants to

optimize the production of his gardening-machines. He needs an integer solution.

How can one proceed to obtain an integer solution starting from the optimal so-

lution?
1In the internet one finds e.g. under [4] software with which one can among other things

solve linear programs.
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It is obvious that by rounding the optimal solution up or down an integer solution

is obtained. Consequently for example 6.1 one obtains x1 = 0, x2 = 37, x3 = 20,

x4 = 36 as a solution. But this solution is infeasible, since it violates the second

and the third constraint of the LP.

There are cases in which one obtains a feasible but very bad integer solution by

rounding the solution.

Thus one sees that the obvious method to generate an integer solution by

rounding quickly leads to bad or even infeasible solutions. In the following a

better method to generate an integer solution shall be presented briefly.

6.2.2 Solution in the two-dimensional Case

Based on the possibility of the graphical representation, the method to generate

integer solutions is introduced by an example with two variables.

Example 6.2 A transportation company wants to transport several goods which

are classified into different hazard rates. A unit of good 1 has a hazard rate of

9 on a scale from −10 to +10, while a unit of good 2 has a hazard rate of −4.

Besides one unit of good 1 requires one unit of space in the transporter and gains

a profit of 2 million Euro. One unit of good 2 yields a profit of 7 million Euro,

but requires 4 units of space.

The total capacity of a transporter is 14 units of space and the maximum

hazard value, which is not allowed to be exceeded, is 36.

Since the transportation company wants to place as many goods as possible

in a transporter, the following optimization problem results:

max 2 · x1 + 7 · x2

s.t. 1 · x1 + 4 · x2 ≤ 14

9 · x1 − 4 · x2 ≤ 36

x1, x2 ≥ 0

x1, x2 integer

In figure 6.1 one sees that the optimal solution of this problem is not integer.

Indeed x1 = 5 is an integer number, but with x2 = 2, 25 the transportation

enterpriser cannot do a lot.
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PPPPPPPPPPPPPPPPPP Objective function 2x1 + 7x2

Optimal solution: x1 = 5, x2 = 2, 25
Objective value= 25, 75

u

Figure 6.1: Graphical representation of the integer optimization problem from

example 6.2 with non-integer optimal solution

Now either x2 ≤ 2 or x2 ≥ 3 has to hold. These two cases now have to be

considered separately.

If one shifts the objective function separately in both parts of figure 6.2, one

will obtain for each of the subproblems an optimal solution with an objective

value which is smaller than the objective value of the original solution. In this

case one obtains for x1 = 4, 8̄, x2 = 2 an objective value of 23, 7̄ and for x1 = 2,

x2 = 3 an objective value of 25. Since the greater one of the objective values

is associated with an integer solution, the problem is solved. If this is not the

case, so if the better value is associated with a non-integer value, one will have

to repeat the method and to compare always all objective values.

6.2.3 Solution in the more-dimensional Case

The method from section 6.2.2 can be applied to problems with more than two

variables. The subproblems are handled and solved like a LP. The optimal so-

lution is checked on integrality and if necessary, the problem will be divided

further.

We return once more to example 6.1. The solution obtained by the simplex

method is x1 = 0, x2 = 36, 571438, x3 = 20, x4 = 35, 71429.

Since x2 and x4 are not integral, four cases x2 ≤ 36 and x4 ≤ 35, x2 ≤ 36 and

x4 ≥ 36, x2 ≥ 37 and x4 ≤ 35 as well as x2 ≥ 37 and x4 ≥ 36 have to be

considered . If one respectively puts these inequalities as additional constraints

in the LP and solves it with the simplex method, one will obtain:
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Figure 6.2: Partition of the optimization problem from example 6.2 into two

subproblems.

x2 ≤ 36 x2 ≤ 36 x2 ≥ 37

x4 ≤ 35 x4 ≥ 36 x4 ≤ 35

x1 = 10 x1 = 0 x1 = 0

x2 = 33 x2 = 36 x2 = 37

x3 = 20 x3 = 20 x3 = 20

x4 = 35 x4 = 36 x4 = 35

~c · ~x = 330, 5 ~c · ~x = 330 ~c · ~x = 329, 5

For x2 ≥ 37 and x4 ≥ 36 an infeasible problem results.

x2 ≥ 37, x4 ≥ 36 and x3 ≥ 20 contradicts the constraint x1 +2x2 +2.7x3 +4x4 ≤
270. Since a maximization problem is concerned, the greatest objective value

~c ·~x = 330, 5 is the best and x1 = 10, x2 = 33, x3 = 20 and x4 = 35 is the optimal

integer solution.

There are still further methods of integer optimization which can be looked

up in [1].



Appendix A

Rank of a Matrix A

To explain the rank of a matrix A, the notion of the linear dependence of vectors

is required.

Definition A.1 (Linear Dependence) The vectors (a1, a2, . . . , an) are called

linearly dependent, if there are α1, α2, . . . , αn ∈ IR which are not equal to zero

and for which

α1 · a1 + . . . + αn · an = 0

holds, this means, if a1, . . . , an represent zero in a non-trivial way.

The vectors (a1, a2, . . . , an) are called linearly independent, if they are not

linearly dependent, this means, if

α1 · a1 + . . . + αn · an = 0, α1, α2, . . . , αn ∈ IR α1 = . . . = αn = 0

holds.

Rank of a Matrix A

A m× n-matrix A has rank r, if and only if among the column vectors of A

(i) there are r linearly independent vectors and

(ii) r + 1 vectors at a time are linearly dependent.
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