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Introduction

The theory of elasticity forms the central core of solid mechanics and deals with the
systematic study of stress, strain, and displacement in an ideally elastic body under the
influence of external forces (see, for example, [42],[46],[75]). It is a broad fundamental
science having applications in a variety of areas such as materials science (modelling the
mechanical properties of solids), geophysics (the Earth’s deformation analysis, interpre-
tation of seismic data using elastic wave analysis), engineering structural mechanics, etc.
The underlying mathematical theory of elasticity provides a rich framework for the study
of such applications and also offers many interesting and challenging mathematical con-
cepts such as the governing partial differential equations and the qualitative and quantita-
tive properties of their solutions. More precisely, in the theory of linear elastostatics, the
displacement field can be modelled by a coupled linear system of elliptic partial differen-
tial equations called Cauchy-Navier equations. The corresponding mathematical concepts
are known as Cauchy-Navier theory. Finding the solution of Cauchy-Navier equations in
a bounded domain, where the solution satisfies given prescribed boundary conditions,
represents the well-known inner displacement boundary-value problem of elastostatics
([46],[58]). The solution of this problem (i.e. the deformation analysis in a homogeneous
isotropic elastic media) is a considerable issue of the theory of linear elasticity, and, in
particular, is of practical significance in the field of geoscience.

When we look at the solution strategies available in handling such problems in elas-
tostatics, several numerical approaches can be found in the literature. For example, the
Finite Element Methods (FEM) ([8]), Methods of Fundamental Solutions (MFS) [55]
and Boundary Element Methods (BEM) ([11],[48]), etc. Although, much progress has
been made in the numerical analysis of these methods, some techniques have their own
drawbacks and limitations in different applications. For example, it is generally recog-
nized that mesh generations for 3D domains remain one of the major challenges for the
FEM. Also MFS techniques are mostly applied to axisymmetric two-dimensional prob-
lems. Although, BEM is expected to be advantageous in large-scale problems due to the
reduction of the dimensionality, nevertheless, it reveals serious shortcomings like the fact
that the resulting system of linear algebraic equations is non-sparse and non-symmetric.
Other inherent disadvantages are the sensitivity of the results to the choice of colloca-
tion points, the inaccuracy of the elastic (displacement) fields near boundaries and the
smoothness constraints needed to treat the problems with hypersingular kernels.
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From classical literature, it is evident that the framework of integral equations provides an
appropriate tool to represent the boundary-value problems of elastostatics ([52]). In this
framework, recalling the formulation of governing equations of linear elasticity in terms
of displacements in R?® (i.e. the Cauchy-Navier equations), the associated fundamental
solutions can be established in a matrix form. The fundamental solutions then can be
used to generate, by a layer theoretical method, boundary integral equations, which are
used to replace the given original boundary-value problem. The existence of such equa-
tions can be found in literature, for example, in [58]. Uniqueness is assured under certain
conditions on the material properties such as that the media are assumed to be homoge-
neous and isotropic (see, for example, [46]). The use of potential methods in elasticity and
the associated theory of linear integral equations in elasticity has been investigated by
several authors since the first issue of Fredholm (see, for example, [5],[29],]46],[52],[58]).
In this respect, it should be mentioned that the differential equations for displacement
vector fields in elastic equilibrium and, thereby, the corresponding integral forms for the
inner displacement boundary-value problems can be prescribed in analogy to classical po-
tential theory for harmonic functions. Thus, the displacement vector corresponds to the
scalar harmonic function, whereas the integral formulae parallel the Gauss flux theorem
and, moreover, the well known Betti’s and Somigliana representations correspond to the
Green formulae. Consequently, the fundamental existence and uniqueness theorems can
be formulated in analogy to the corresponding theorems for harmonic functions. More
detailed theoretical treatments on those topics are given, for example, in [58].

To solve such boundary integral equations using traditional numerical procedures, arbi-
trarily dense distributions of the boundary values are required. Moreover, boundary inte-
gral equations which consist of singular kernels like Green’s representation on a boundary
for elastostatic boundary-value problems, are hardly treatable (see, for example, [4],[75]).
At this point, it is worth mentioning that, with the Runge framework of sphere ori-
ented techniques, displacement boundary value-problems of linear elastostatics have been
successfully treated by several techniques. For example, the global basis method ([37]),
Navier spline interpolation ([28],[29],[81]), etc. The basic concept in behind all those
topics is the use of comparatively simply structured tensorial kernel functions. Another
traditional way of modelling the displacement vector field for a spherical boundary is the
use of Fourier representations with vector spherical harmonics as basis functions (see,
for example, [37],[43]). A major drawback of these methods, for example, in regional
modelling, is that the spherical harmonics are globally supported and do not display any
localization in the space domain. In consequence, local changes of a function may af-
fect the whole set of Fourier coefficients, hence, changing the representation of the data
function globally. Due to the well-known fact that ideal space and frequency localization
are mutually exclusive (see, for example, [30],[33]), one has to consider kernel functions
compromising the space and frequency localizations. In this respect, the use of special
kernel functions like for example, scaling functions and associated wavelets become sig-
nificant tools for handling the underlying problems. In such consideration, the scaling
functions and wavelets are tensor type kernels representing bases in certain spaces and
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characterized by their localization properties in both space and frequency domains.

Wavelet analysis is a relatively new mathematical discipline which has generated much
interest in both pure and applied mathematics in the past fifteen years. It was originated
as a powerful tool for signal and image analysis, and it has covered out the areas like time
series analysis, matrix compression, data coding, analysis of signals and approximation
theory, e.g. data compression in image processing (see, for example, [20],[63]). Wavelet
methods are being used and applied in a large variety of fields of science, engineering and
technology today, such as numerical solutions of partial differential equations, problems
in geosciences, etc (see, for example, [51],[56]).

Wavelets are, in general, basis functions defined over R" or torus in certain function
spaces, the elements of the function spaces can be represented using kernels at differ-
ent positions and scales. Those are particularly well suited for representing complicated
functions, for example, elastic displacement fields in our consideration, breaking up to
simple pieces of functions. The reason is that wavelets are well localized in space domain
as well as in frequency domain (see, for example, [12],[45],[53]). More precisely, the fun-
damental strength of wavelets lies in its ability to achieve a very high resolution locally
using a certain number of localized functions. Today, wavelet analysis is well established
in many scientific disciplines as an effective alternative tool in contrast to the extreme
space-frequency tradeoff of the standard mathematics of Fourier theory.

Recently, wavelet methods became a new fast numerical tool, for example, for the so-
lution of elliptic boundary-value problems, for solving boundary integral equations (see,
for example, [3],[9],[15],[51],[73]). In geophysically relevant problems, there is a growing in-
terest in wavelet applications based on sphere oriented techniques, i.e. based on spherical
multiresolution analysis (see, for example, [30],[40],[41] for the scalar case, [6],[7],[10],[30]
for the vectorial case, [30],[77] for the tensorial case). Moreover, geomathematical meth-
ods such as harmonic wavelets (see, for example, [26],[31],[39] and references therein) or
wavelets for the numerical treatments of the pre-maxwell equations of geomagnetics have
been investigated in a series of publications (see, for example, [62] and the literature
therein). Those efforts have been devoted in the representations based on scalar, vec-
tor and tensor valued functions and a significant progress has been made in a variety of
fields, like gravimetry ([33],[66]), gradiometry problems ([26],[32],[35],[77]) and magnetic
field determination ([6],[7],[10],[62]). A detailed overview about the publications involving
wavelet applications in geomathematical problems has been given in [69].

However, most of the previous work invested in the construction of those wavelet en-
vironments has focused on "harmonic’ type problems such as the outer harmonic multi-
scale modelling in potential theory ([26],[38]). Less effort, however, has been expended
on handling wavelet applications in elliptic boundary-value problems in linear elasticity
like Cauchy-Navier deformation analysis (cf. [1]). Even more, in the case of elasticity,
it should be noted that the geophysically relevant multiscale approaches in a spherical
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framework are still at a rudimentary level. It is the purpose of this work to establish
a novel approach to the solution of the inner displacement boundary-value problem of
elastostatics using tensor wavelet method which we introduce as Cauchy-Navier wavelet
solvers. We focus on two essential topics: wavelets defined by layer potentials (a spatial
approach to wavelets) and the wavelets associated to vector spherical harmonics (a spec-
tral approach to wavelets).

The first method is based on the limit and jump relations defined on regular surfaces
according to the potential theory in elasticity ([58]). In the standard potential theoretic
framework, the inner displacement boundary-value problem defined on regular boundaries
is transformed to a Fredholm integral equation of second kind such that the techniques of
standard wavelet concept for solving integral equation become available (see, for example,
[3],[14]). Kernels defined by limit and jump integral operators are considered as scaling
functions to establish a new wavelet family on regular surfaces (cf. [1],[32]). The second
technique is developed having the ultimate goal of constructing a suitable wavelet approx-
imation associated to Green’s integral representation for the displacement boundary-value
problem of elastostatics. The starting point is the use of tensor product kernels defined
on Cauchy-Navier vector fields as scaling functions (cf. [1],[34],[43],[81]). This technique
is known to be a spectral approach to wavelets for the boundary-value problems of elas-
tostatics associated to the geophysically relevant spherical boundaries.

When we turn to geophysically relevant applications, we see that geodetic measurements
of crustal deformation provide direct tests of geophysical models which are used to de-
scribe the dynamics of the Earth. Two major tasks are to obtain geodetic measurements
of surface displacements of the Earth crust, and to analyse the deformations of Earth
interior using elastic properties. It is experienced that, by making precise measurements
of deformation of the Earth’s surface, one can model the static displacements of the in-
terior of the Earth crust by the Cauchy-Navier theory. Hence, above mentioned solution
strategies can be applied to solve such problems which is the goal of this work. More-
over, it should be remarked that the topics of Cauchy-Navier wavelet solvers have been
studied in this work in order to apply these techniques to practical problems of deforma-
tion analysis. In this thesis we first discuss various test examples for three dimensional
boundary value-problems for numerical realization. One real application is considered to
show the applicability of the techniques so as to make the first step towards practical
applications.

The outline of the thesis is as follows:

Chapter 1 presents the basic definitions and the principles of foundation within the scope
necessary for this study. Hence, the main concepts of the scalar and vector spherical
harmonics are reviewed. As the tensors take a prominent role throughout this investiga-
tion, the Legendre tensors and the tensor product kernel structures on vector spherical
harmonics are briefly presented. Moreover, the theory of linear elasticity including the
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derivation of the governing Cauchy-Navier equations and the associated boundary-value
problems are recapitulated.

Chapter 2 is mainly devoted to discuss the potential methods in elasticity that paral-
lel the classical potential theory. Starting from the definition of elastic potentials on
regular surfaces a vector field satisfying the elasticity equation is derived in terms of vec-
tor harmonics. In analogy to classical potential theory we discuss the limit and jump
relations within the framework of Hilbert spaces of square-integrable vector fields on reg-
ular surfaces. We examine how all those results can be extended to the (adjoint) dual
layer potentials.

In Chapter 3, a general overview of the uniqueness, existence, and the regularity of the
solution of the displacement problem is discussed. Moreover, in this chapter, a ”gener-
alized” Fourier series representation to the solution of the inner displacement boundary-
value problem associated to a regular boundary is achieved. This is, of course, a global
basis technique and this is done by taking a Fourier representation using a Cauchy-Navier
vector field defined in terms of vector harmonics so that the vector field represents an
orthonormal basis on the regular surface.

In Chapter 4, in the framework of layer potentials and their operator formulations dis-
cussed in Chapter 2, we introduce a wavelet technique (i.e. a spatial approach to Cauchy-
Navier wavelets) in the nomenclature of the Hilbert space of square-integrable vector
fields on a regular boundary. Introducing so-called Cauchy-Navier scaling functions and
wavelets, the wavelet transforms and the reconstruction formulae both in continuous and
discrete forms are explicitly established. Based on appropriate numerical integration rules
a pyramid scheme is developed. This overall approach is then used to represent a multi-
scale approximation of the solution of the inner displacement boundary-value problem of
elastostatics. An extension of those techniques to dual layer potentials is briefly recapit-
ulated.

Chapter 5 addresses a spectral approach to wavelets, introducing the so-called Cauchy-
Navier wavelet solvers for the inner displacement boundary-value problem associated to
the geophysically relevant case of a spherical boundary. Green’s integral representation
of the solution is taken into account. Essential tools are Cauchy-Navier vector fields
possessing the vector spherical harmonics as boundary values. Using tensorial product
kernels associated to the Cauchy-Navier vector field as scaling functions, a wavelet concept
is introduced. More explicitly, a multiscale approximation of the solution of the displace-
ment boundary value-problem is established via a wavelet approximation associated to
Green’s integral representation. Finally, as usual in a wavelet framework of elastic fields
from prescribed displacement vectors, a tree algorithm is developed for the decomposition
and reconstruction.

Chapter 6 deals with numerical results. Both methods are treated by test examples
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in which geophysically relevant spherical boundaries such as spheres are used for the nu-
merical realization. The potential theoretical approach is tested only for approximations
of boundary functions, whereas the second wavelet approach associated to Green‘s repre-
sentation is tested by solving an inner displacement boundary-value problem. Both global
and local approximations produce accurate results by a lower scale approximation, when
compared to exact solutions for the test problems under consideration. As a last example,
the method is applied to the deformation analysis of a particular region of the Earth, viz.
Nevada using a discrete set of surface displacements provided by satellite observations.

Chapter 7 contains a short summary of the work and some general conclusions. Moreover,
in this Chapter new directions of research that opened up as outcomes of the work are
briefly discussed.

Finally, the appendices are dedicated to technicalities, i.e. to present supplementary
proofs, some computational tools, a table of real data and more detailed graphical illustra-

tions of scaling functions and wavelets.

The interrelations between the chapters can be briefly illustrated as follows:

Introduction
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Chapter 1

Preliminaries

We start this chapter by introducing basic definitions and conventional notation we use
throughout this study. Next we discuss the basic facts on scalar and vector spherical
harmonics and some consequence results which are necessary in our work. It should be
noticed that we only give the resulting facts on spherical harmonics. For more details
the reader is referred to [30] and the literature therein. Finally, we give a detailed repre-
sentation of the theory of linear elasticity including the derivation of the Cauchy-Navier
equation which describes displacements in elastic media. Moreover, we give an overview
of the boundary-value problems of linear elasticity and some remarks on the classical
solution techniques.

1.1 Basic Notation and Definitions

Throughout this study we use the following conventional notation unless otherwise stated:

the scalar functions are denoted by capital letters F, G, ..., the vector fields are denoted
by lower-case letters f,g,... and tensor fields of second rank are by boldface lower-case
letters f, g, .. ..

We denote the set NU {0} by Ny, where N represents the set of positive integers. The
set of integers is represented by Z. R*® denotes the three-dimensional (real) Euclidean
space. We consistently write x,y, ... for the elements of R®. In components we have the
representation
| 2 3
T = T1€6 + To€” + 136, (1.1)

1

where the vectors €', €2, €3 form the canonical orthonormal basis in R?,

1 0 0
e=10],E=11],eE=10
0 0 1

The inner product, vector product, and the tensor product between = and y, respectively,
are defined by
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3
zoy=a"y= Zl‘z‘yz', (1.2)

i=1
T Ay = (Tays — T3Ya, T3Y1 — T1Y3, T1Y2 — Tath)” , (1.3)

1Y T1Y2 T1Y3
TQy=my = | Toy1 ToYo ToYs (1.4)
T3Y1 T3Y2 T3Y3

An important relation between the scalar product and tensor product is given by
(z®y)z=(y-2)z, (1.5)
for any z,y,z € R3.

The Euclidean norm of z is denoted by |z| and defined as |z| = (z - z)/2.

The so-called double dot product between two tensors tq, ts € R3*3, is defined by

3

tl : tz = Zz(tl)i’j(tz)i’j' (16)

i=1 j=1
The sphere centered at the origin with radius R is denoted by
Qr = {z € R®*||z| = R}, (1.7)

while the unit sphere (i.e. R = 1) is simply denoted by Q2. Moreover, in order to represent
the elements on 2 we usually use Greek letters &,7,... .

1.2 Spherical Function Spaces and Spherical
Harmonics

The set of scalar functions F' : 2 — R possessing k£ times continuous derivatives on
the unit sphere is denoted by C*¥)(Q), 0 < k < oo, in particular, CO(Q) = C(Q). L£2(Q)
denotes the set of all square-integrable scalar-valued functions F' : 2 — R. The space
L?() is the completion of C(2) with respect to the norm || - |2y equipped with the
inner product < -, - >r2(q) defined by

< F,G > pooy= /Q F()G(E)dw(€), F.G € L2(Q), (1.8)

i.e.

£2(Q) — m”“ﬁ?(m- (19)
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Moreover,
Pl = sup [F©). F € C@) (110
€
The norm || - ||z>(q) may be estimated by
1Fl|c2(0) < VAT || Fllo@), F € C(Q). (1.11)
For any z € R® x # 0, we have the representation x = r¢, r = |z|, where £ =

(&1,&,&3)T € Q is the uniquely determined directional unit vector of z.

Any point £ € €) can be represented in spherical coordinates by
£ =1 —t2(cos pe' + sin pe®) + te, (1.12)

where,
t=cosh,0c[0,7],¢ € [0,2m).

(0 : latitude, ¢ : longitude, t : polar distance).

Moreover, we consider the directional unit vectors (€”, €?, €") corresponding to spherical
coordinates to be defined by (cf. [30])

V1 —1t2cosp —sing —tcos
€= Vl—t2sing |, = cosep |, €= —tsing

t 0 V1—12

We list below a number of differential operators in coordinate free representation.

Symbol Differential Operator
\Y% Gradient
A Surface gradient

A=V-V Laplace operator
A* = V*-V* | Beltrami operator
L* Surface curl gradient

Table 1.1: Differential operators

For the convenience of the reader we also give the representation of those operators in
local polar coordinates (1.20):

o 1_,
Ve =£5-+ -V, (1.13)
1 d

Vi = — sin pe! + cos pe?)— 1.14
b = (s + cos ) (1.14)
0

+ V1 — 12(—tcos pe' — tsin pe + /1 —t2€3)§, (1.15)
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A, = <%)2 + % (%) + %Ag, (1.16)
Ay = %(1 _ t?)% tioe (%)2, (1.17)
Ly =V1—t2(sinpe' — cos ger)% (1.18)

+ 11_ = (—t cos pe' — tsin pe? + me?»)%. (1.19)

The scalar spherical harmonics Y,, of degree n are defined as the everywhere on €2 infinitely
differentiable eigenfunctions corresponding to the eigenvalues A**(n) = —n(n+1), n=
0,1,... of the Beltrami operator A*, i.e. (A —n(n+1))Y,(£) =0, €€ Q.

The space of all scalar spherical harmonics of degree n is a linear space of dimension
2n + 1 and is denoted by Harm,(2). Furthermore, the set of spherical harmonics given
by {Y,,; : n=0,1,...,5 =1,...,2n + 1} is always assumed to be an orthonormal system
in the sense that

/Q Y (6) Yot (€) dw(€) = by, (1.20)

where n and j are the degree and the order of the spherical harmonic Y, ; respectively,
and ¢ is Kronecker’s delta. The space Harmg_,(2) denotes the space of all spherical
harmonics up to degree m and, hence, dim(Harmg_,(Q)) = > i o2k +1) = (m + 1)

The functions H, : R® — R of the form H,(x) = r"Y,(£), r = |z|, £ € Q are homoge-
neous harmonic polynomials of degree n. Moreover, in connection with the eigenfunctions
of the Beltrami operator, it can easily be checked that

A(Hp(x)) = A(r"Ya(€))

a\> 20 1 ..\,
<(§> +;E+T—2A§>TY}L(§)

(n(n — 1)r"t + 2nr""2)Y, () + TH_QAEYn(f)

n(n+ 1)r" DY, () —r" 2n(n + 1)Y,(€)

Il
—~

Many of the important properties of spherical harmonics can be found in literature, for
example, [30],[68]. We review only some of them, which are necessary in our investigation.
For more details the reader is referred to [30].

Theorem 1.1 The set of all spherical harmonics {Y,; :n=0,1,...,57=1,...,2n+1}
is closed in L%(Q), i.e. for every F € L%(Q) and for any given € > 0 there exist an integer
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N = N(€) and coefficients a, ; € R such that

N 2n+1

Y Yo, — F

i=1 j=1

<e (1.21)
(@)

In the framework of Hilbert theory the closure is equivalent to the statement: For any

F € £*(Q) we have the Fourier expansion in the sense of || - ||z2(q)
oo 2n+1
F=> Y F\n,j)Ya (1.22)
n=0 j=1

where the Fourier coefficients F”(n, j) are given by the formula

P, j) = / F(6)Yo,(6)dw(€), neNo, j=1,2,..2n+1. (1.23)
Q
Equivalently, we have the Parseval identity for any F,G € £*(Q)
oo 2n+1
<F,G>p@= Y Y F'n,j)G(n,j) (1.24)
n=0 j=1

and, therefore, the norm can be reformulated as

oo 2n+1

1/2
Plew = (X 3 1wil) . Fecio (1.25

n=0 j=1

The Legendre polynomials P,, n=0,1,2,..., given by

[n/2) _
Pu(t) = Z(—1)k2n(n 52;‘@!(2:)_! k)!k!t"’%, te[-1,1], (1.26)

k=1

are the infinitely differentiable eigenfunctions on the interval [—1, 1] corresponding to the

Legendre operator
Ly =(1—1% d 2—2t d
- dt dt

which are bounded on [—1,+41] such that P,(1) = 1.

Apart from a multiplicative factor the Legendre polynomial P, (e3-) : £ — P,(e3-£),€ € Q,
is the only spherical harmonic that is invariant under all orthonormal transformations
keeping € fixed.

For any pair (§,7) €  x 2, the sum

2n+1

Fn(ga 77) = Z Yn,j(g)yn,j(n) (1'27)

Jj=1
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is invariant under the orthonormal transformation u (cf. [30]), i.e. F,,(u€,un) = F,(&,n)
for all u satisfying u”u = uu” = i3, (i is the unit matrix in R®). This leads us to obtain
the so called addition theorem for spherical harmonics:

2n+1

2n+1
> Yay(OYasn) = = —Fal€-m), (Em) €QxQ (1.28)
j=1
In particular, we have
2n+1 2n + 1
DIV OF = —— £ (1.29)
. s
j=1
Furthermore, it is easy to see that
2n+1
Yn,i(€)] < : (1.30)

A7

1.3 Spherical (Vectorial) Function Spaces and
Vector Spherical Harmonics

Next we are concerned with vector-valued functions as known from [30] associated to
scalar spherical harmonics. With the notation and definitions mentioned above, a vector
valued function f : {2 — R? can be represented in canonical form as

3

f) =D Fi(&e, €€9, F()=/[¢)- ¢, i=1,23 (1.31)

i=1

As in the scalar case, the space of square-integrable vector valued functions defined on
Q is denoted by £2(2). Thus, the space £2(f2) is a Hilbert space equipped with the inner
product

< f.9 >em= / F(6) - () dwle) f.g € P, (1.32)

c®(Q), 0 < k < oo, consists of k—times continuously differentiable vector valued func-
tions defined on € and ¢(Q2) = 0 (Q).

Moreover,
[flley = sup [F(E)], [ € c(€). (1.33)
gen
It is known that
2(Q) = () @, (1.34)
The norm || - ||2() may be estimated by

£ llexiey < VAT flleiy. | € (). (1.35)
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Any function f € ¢®(Q) can be decomposed into the normal and tangential components
using the operators p,,. and py,, defined by

pnor(f(g)) = (f(é-) : g)ga (136)
ptan(f(g)) = f(f) - pnm‘(f(é‘))a (137)

respectively.

As an immediate consequence we are able to define

lror () ={Pror (f) | f € ()}, (1.38)
Cian(Q) ={pran(f) | f € C(Q)}. (1.39)

In consequence,
) () = £ () ® L4, (). (1.40)

Definition 1.1 Let F be of class C*)(Q), i € {1,2,3}, where

o _ 0 =1
11 ifi=2,3.

Then the operators o) : C(©)(Q) — ¢(S2), respectively, are defined by

o' F(€) = €F(€), i=1,
o) F(§) =V'F(g), i=2,

(
o/ F(§) =EAVF(§) = LiF(9), i=3,
£Ee.

It is clear that oél)F(ﬁ ) is a radial vector field, while oéZ)F(E) and 0§3)F (€) are tangential.

As it is well-known (cf. [30]), any function f € ¢(() can be represented in the form

f(€) =EF(8) + VI Ry(E) + LiF3(§), € (1.41)

with appropriately defined functions F; : Q@ — R.

The space of square-integrable vector valued functions defined on €2, is denoted by
0%(Qint). Thus, the space £2(Q4,;) is a Hilbert space equipped with the inner product

< F9 o= [ £@)-9l@) dale) f9€ E (). (142)

int

Moreover, for all X C R?, ¢*)(K), 0 < k < oo, consists of all k—times continuously
differentiable vector valued functions defined on K. Conventionally, ¢(K) = ¢ (KC).
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Accordingly,
17l = sup £ (2 f € el), (1.43)
S

Now we recapitulate some concepts of vector spherical harmonics as given in the mono-
graph [30].

Definition 1.2 Let Y,, be a scalar spherical harmonic of degree n, i.e. Y,, € Harm, ().

Let o, g = 1,2,3 be defined as above. Then the vector fields y,(f) : Q) — R3? defined by
yg)(&) = O(Z)Yn(f), £eQ, i=1,2,3 are called vector spherical harmonics of degree n

and kind 1.

Let the space of all vector spherical harmonics of degree n and kind ¢ be denoted by
harmy)) (Q).

Then we let .
harmé?,___,n(Q) = @ harm,(:)(Q). (1.44)
k=0;
Consequently, we obtain
o) H'”ﬂ(g)
2,(Q) = @ harm () (1.45)
k=0;

and
2(Q) = @ (). (1.46)

To obtain an orthonormal set of vector spherical harmonics (in £*(2)—sense) we choose
the coefficients of normalization as

O =41 o=l (1.47)
n(n+1) ifi=2,3.

(@) of the form

Considering these coefficients we are able to construct the vector field y,,

y &) = () 20V (6), 1=1,2,3, n=0,0;+1,.., j =1,2,...2n + 1,

n,J n

which form an orthonormal set in the sense that
Q

Now we come to another important result on vector spherical harmonics (proved in [30]).

Theorem 1.2 The system of vector spherical harmonics {y,(f)J, 1=1,2,3,n=0;,0; +
1., j = 1,2,....2n + 1} is closed in c(?) and complete in ¢*(Q2) with respect to the
corresponding norms.
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More precisely,
———y e
Q) = spcm{y(l)} e (1.49)
Furthermore, any f € £%(2) can be represented in || - ||;z()—sense by its Fourier series

2n+1

3 oo
Z Z (Z) (n,j) yT(L’)], (1.50)

i=1 n=0; J:1

f

where
(1) (n.d) = [ 1(6)-383(6) dlo) (151)

For our purposes, it is worth to consider the addition theorem for vector spherical har-
monics (see [30]).

Let f : Q — R? be a smooth vector field of the form

F©) =D Fi(9)e. (1.52)

By applying the operator o(?) on each component of f, 0 f can be defined as

3 3

o= o) Y R = (o Fu¢) @ i=1,23 (1.53)

k=1 k=1

This implies that for each i, the operator o) represents a mapping from vectorial fields
to tensorial fields. This property leads [30] to obtain the following explicit formula

— S8 — N0 N
Z NGETRIOESY ((uﬁf’) 20 Yn,j(£)> ® ((uﬁ)) 2o >Yn,j(n)>

j=1
(z -3 LN (i) (k)
(un 2 Zo Y, (X)o77 Y, i(n)
2n+1
- (uSZ))_%( % Ok) Z Yo (€

_1 _1 2 +1
= (1) 7 (1) 2o TPy (€ )

-12n+1
(%) (k)Y 2221 ~ (Z (*) p
= () F (ulP) 1% o Pal€-m)
2n +1
(z k)
2 Lol e,m).
The last formula is known as the addition theorem for vector spherical harmonics ([30]).

The tensorial functions p$™* (&,m) are called Legendre tensors of degree n of type (i, k).
It should be noted that these tensors can be shown to be given in the following form:
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Theorem 1.3
PV (E,n) = Pu(E-néE®n, neN,

P = — L Plemeale—(E-mul, neN,
n(n+ 1))}

P2 () = — - _Ple - (E-n)El@n neN,
n(n+ 1))}

p2? (&) = m{Pﬁ(f = E-nE®[E— (& n)n]

+ B (& Mlitan(€) — (n— (E-n)E) @]}, neN,
1] {Py(&-n)n—(E-nE®@[nAE
+ P& -n)=jtan(n) —E@nAE]}, neN,
1 1/

W{Pn &-mlEAn) @ (E— (& -nn)]

+ P& m)itan(&) —EAN®N}, neEN,

W{Pﬁ(& “MEAD @ [nAE]

+ P, &-mlE-niis—E@) —m—(§-mME ¢}, neN,

where we have used the abbreviations

1 00
iz = [010],
0 01
itan(f) = i3_§®§7
Jtan(§) = Z(ﬁ/\ei)@)ei, &neq.

P>V (&,n) =

p>(&,n) =

p>A(&,n) =

As a consequence, the addition theorem (cf. [30]) may be used to represent any vector
spherical function f € £*(Q2) by means of Legendre tensors. To be more concrete, any
function f € £2(f2) can be represented in ¢?(Q)—sense as follows:

3 oo 2n+1 A .
EDIDID I GURCRI
i=1 n=0; j=1
3 oo 2n+l '
=333 [ 1945 dot@nt)
i=1 n=0; j=1
3 o0 2J'n+1 ) .
=Y 2% [0 eul©se doo
i=1 n=0; j=1
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=Xy Z [0 @00 @
=22 /Q LD (L €)F(€) dwle).

This representation provides us a certain approximate identity for £2(2)—functions. Roughly
speaking, this tells us how a reproducing kernel structure can be used to establish wavelets
via a spectral approach. In Chapter 5 we discuss those topics in detail.

1.4 Regular Surfaces

A surface ¥ C R3? is called regular (cf. [26]) if it satisfies the following properties:

(i) X divides R? uniquely into the bounded region ¥;,; (inner space) and the unbounded
region Y. (outer space) given by ey = R\ Sis, it = Zine U D,

(ii) X is a closed and compact surface free of double points,
(iii) X contains the origin,
(iv) X is locally of class C®.
Given a regular surface then there exist positive constants a and /3 such that

a < o™ = inf |2| < sup |z| = o < B. (1.54)
zed TEX

Qo and Qs denote the spheres of radii o and §, respectively. As usual, Q5", Q5" (and
Qmt Q) denote the inner and outer spaces of Q5 (and €,), respectively.

Figure 1.1: An illustration of a regular surface.
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A vector field f defined on ¥ possessing k£ continuous derivatives is said to be of class
B (X), 0 < k < co. As usual, V(%) (= ¢(X)) is the class of continuous vector fields
f defined on ¥. The space ¢(X) is a complete normed space endowed with the norm
| fllezy = supges |f(x)]- In ¢(X) we have the inner product < -,- >y equipped with
the norm

|UW%»=<AJH@VmN@>a (1.55)

where dw represents the surface element on ¥. Furthermore, for each f € ¢(X), we have
the norm-estimate

WM@S¢WMNM»HW=LW- (1.56)

By #2(X) we denote the space of (Lebesgue) square-integrable vector fields on ¥. Tt is
known that ¢2(X) is a Hilbert space with respect to the inner product < -, - >p(x) and a
Banach space with respect to || - [|lz(x). £*(X) is the completion of ¢(¥) with respect to
the norm || - [|2(x), i.e.

2(x) = dn) e, (1.57)

1.5 Mathematical Subjects of Elasticity

In what follows we briefly motivate the Cauchy-Navier equation in linear elastostatics in
terms of displacements, where the media are assumed to be homogeneous and isotropic.

1.5.1 Formulation of the Equations in Elasticity

First we recapitulate some results known from the theory of elasticity: we will always
regard the inner space ¥;,;; of a closed surface ¥ as a fixed reference configuration of a
body. By a deformation of ¥;,; we mean a one-to-one c!'-function z : ¥;,; — R® such
that det(V ® z) > 0. The function v : ¥;,; — R?, defined by u(z) = 2(z) —z, = €
Yint, is called the displacement of ¥,,; relative to the deformation z. The tensor field
(V ® u)(z) is called the displacement gradient. The (infinitesimal) strain tensor is de-
fined by e = 2((V®u) + (V ®u)") as the symmetric part of the displacement gradient,
while the antisymmetric part is used to define the (infinitesimal) rotation tensor d as
d = i((Veu) — (V®u)T). While d describes a 'rigid’ displacement field, e is re-
sponsible for the 'non-rigid’ displacements. According to Kirchhoff’s Theorem (see, for
example, [64]) two displacement fields u and u' corresponding to the same strain field
imply v = v’ + w where w is a rigid displacement field. One calls trace(e) = V - u the
(elastic) dilatation. Thus the dilatation is determined by the diagonal elements of e, the
remaining elements of e prescribe torsions. Every displacement field v can be decomposed
into a pure torsion ur (i.e. V -ur = 0) and a pure dilatation up (i.e., VA up = 0) so
that v = ur + up.
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An elastic body in a strained configuration performs by definition a tendency of recov-
ering its original form: this tendency is materialized by a field of forces on each part of
the body by the other parts. This field of internal forces called (elastic) stress, is due to
the interaction of the molecules of the body which have been removed from their relative
position of equilibrium and to recover it, following the principle of action and interaction.
If z is a point of a (regular) surface element in ¥;,; with unit normal v, then the stress
vector s,(x) = T,(u)(x) is the force per unit area at x exerted by the portion of X
on the side of the surface element in ¥;,; towards v(z) on the portion of ¥;,; on the
other side. For time-independent behaviour and in the absence of body stress fields there
exists a symmetric tensor field s, called stress tensor field, such that s, = sv for each vec-
tor v and V(sa) = 0 for each fixed a € R® (for more details see, for example, [46],[58],[80]).

Hooke’s law relates the stress to strain, i.e. linear elasticity of the body implies that
for each x € ¥;,; there exists a linear transformation c¢ from the space of all tensors into
the space of all symmetric tensors such that s = ce. Consequently, the linear theory of
elasticity is based on the strain-displacement relation

o= %((V@u)—i— (Vauh), (1.58)

the stress-strain relation
s =ce (1.59)

and the equation of equilibrium

V-s+b=0, (1.60)
where the divergence is applied on each column of the tensor s and b is the body force
field in X;,;.

The above equations imply the displacement equation of equilibrium in X,
V-c(Veu)+b=0. (1.61)

For given ¢ and b, this is a coupled linear system of partial differential equations for the
fields u, e and s. If the material is isotropic, ¢ is given by

ce = 2ue + A(trace e)is, (1.62)

where the scalars A and p are called the Lamé moduli and i is the identity matrix of order
3. Moreover, if the material is homogeneous, A and p are constants (typical requirements
imposed on A and p are > 0, 3X 4+ 2u > 0 (see, for example, [57]). Therefore, in the
homogeneous isotropic case, observing the identities (see, for example, [34])

V-(uVeu))=pAu, V- (u(Veu)') =0, V-(ANV-u)i)=AV(V-u), (1.63)
we are led to the displacement equation of equilibrium in the form

pAu+ (A + p)V(V -u) +b=0. (1.64)
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Finally, assuming that the body force field b vanishes, this equation can be reduced to
the so-called Cauchy-Navier equation in X,

pAu+ (A4 p)VVu = 0. (1.65)

This equation plays the same role in the theory of elasticity as the Laplace equation in
the theory of harmonic functions and it formally reduces to it for 4y = 1, A = —1. The
Cauchy-Navier equation allows an equivalent formulation in ¥,

Au+oVV .y =0, (1.66)

where 0 = (1 —2p)™%, p=X/2(A+p), p#0. pis the Poisson ratio. Equation (1.65)
represents a coupled linear system of elliptic partial differential equations. For simplicity
we let

Qu = pAu+ (A4 p)VVu =0, (1.67)

in ;. It is easy to show that the displacement field v is biharmonic and its divergence
and curl are harmonic. This yields a deep relation between linear elasticity and potential
theory (see, for example, [58]).

1.5.2 Boundary-value Problems of Classical Elasticity

The problems in elasticity consist of finding the stress and the displacement in an elastic
body subject to surface forces, surface displacement and body forces. Particularly, the
problem determining the displacements in X;,; C R?® subject to a given state of displace-
ment on the boundary ¥ is known as the inner displacement boundary-value problem.
More precisely, we seek a vector valued function u : ;,; — R? such that the displacement
field u satisfies the given boundary conditions f on X, i.e. u|y = f. Subject to certain
restrictions on the nature of the solution, the surface > and also the form of boundary
conditions, the existence and the uniqueness of the problem is assured (cf. [58],[61]).

In solving boundary-value problems of elasticity, a variety of methods can be found in
literature. Some of these methods depend primarily on intuition, while others are based
on a systematic application of the techniques of applied mathematics. Roughly speaking,
some of those methods are the inverse method, the method of potentials ([42],[58]), Betti’s
method, the integral transform methods ([79]), the complex variable methods ([23]), the
variational methods, ([74],[76],[84]) and the Runge approximations ([5],[26],[27],[37]). Sev-
eral investigations on those methods can be found in literature, for example, [58],[65],[75].

The solution of the interior boundary-value problem is of practical significance in sev-
eral fields. For example, in geosciences, the analysis of elastic crustal deformation in a
particular area can be modelled by the surface displacements. Moreover, this linear elas-
tostatic Cauchy-Navier approach can be used to describe the deformation of an elastic
plate of a particular thickness, such as tectonic plates (or Earth’s crust itself) under-
going movements in response to the forces and loads (see, for example, [67],[71]). From
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the mathematical point of view, once the boundary displacement vectors on an arbitrary
but smooth bounded surface (the so-called regular surface of our consideration) has been
given, the displacement problem is uniquely solvable (cf. [37]). However, in the most
real problems the boundary functions cannot be expected to be available in closed forms.
Instead, methods defined on a discrete pointset requiring computational numerical treat-
ments are essential.



Chapter 2

Potential Methods for the
Cauchy-Navier Equation

In what follows, the classical single- and double- layer potentials are considered in elas-
tostatics. More accurately, we discuss three types of potential operators, namely, single
layer, double layer and the derivative of single layer operators defined on a regular surface
Y. The well-known limit and jump relations are established (cf. [37],[58]). Moreover, in
addition to the classical approach, we extend all the limit and jump relations to the dual
case.

2.1 Elastic Potentials on Regular Surfaces

The set pot(3;n:) (more precisely, poty ,(Xin)) denotes the space of (elastic) potentials
u € ¢ () satisfying the Cauchy-Navier equation pAu + (A + p)VVu = 0 in Sy

(with A\, p being fixed) ([37]). With pot(X;,;) we denote the space of all vector fields
u: Y — R® satisfying the properties

(i) u is of class ¢(Zi),
(il) uls;,, € Pot(Lint).

Note that ||l|
pot (Simt) | & = dO(%), (2.1)

Moreover, the set pot(Z..;) denotes the space of all vector fields u € ¢?(Z,,;) satisfying
the Cauchy-Navier equation in ¥, and being regular at infinity, i.e. |u(z)| = o(1) (cf.
[34]).

22
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2.2 A Cauchy-Navier Vector Field Associated to
Vector Harmonics

Let Qg be the sphere of radius R. It is well known (see, for example, [37]) that any
vector field b € c¢(Q%Y) with Ah = 0 in Q%' can be represented as series expansion in
terms of the vector harmonics H,, je*, n=0,1,...,57=1,2,....2n+1, k=1,2,3, with
H, (z) = |z|"Y, (&), 2 = |z|§, n=0,1,2,..., j=1,2,...,2n+ 1 so that

oo 2n+1 3

=22 D biyHage (2.2

n=0 j=1 k=1

where
O lel" = [ (h(16) - &) Hus(€)d(©). 23)
In other words, assuming that u € c(Q0%*) with Qu(z) = 0 in Qi ie. u € pot(Qirt), we
have
A4 p
Ou(z) + T(V cu(z))z) =0 for all z € Q. (2.4)
Moreover, for a given field u € ¢ (Q%!) with Ah(x) = 0 the equation
A+
is uniquely solvable such that Qu = 0 in Q% (cf. [5],[37]). More explicitly,
1 |
) = 1(0) = (s [ 710 e ) 26
p:
where we used the abbreviations
1+ 2a A4 p
v= , a="——
« 21

Hence, to any vector harmonic H, je¥, there exists a uniquely defined vector field ug“;

such that <>u§f3 = 0, namely,
A+
(n+2)A+ (n+4)u

Consequently, any vector field u € pot(Q%?) can be represented by the series expansion

ul) () = Hyj(z)e" —

(VH, () - €")z. (2.7)

oo 2n+1 3

=22 > cajn(@), € QR (2:8)

n=0 j=1 k=1

_ /Q (( (@ )+A2#(v e ))x) FW)HH,J-(S) duw (£). (2.9)

It is not difficult to see that the right hand side of (2.8) is convergent in ¢*(Q2z) and
absolutely and uniformly convergent in ¢2(Q%%) ([37]).

where
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2.3 Layer Potential Operators on Regular Surfaces

At each point z of a regular surface ¥ we can construct a normal v(x) pointing into the
outer space X.,;. The set

(1) ={z, eR |2, =z +1v(2), TEX} (2.10)

generates a parallel surface which is exterior to surface X for 7 > 0 and interior for 7 < 0.
If |7| is sufficiently small the parallel surface is regular and the normal to one parallel
surface is normal to the other parallel surface. More precisely, it is known from [68] that
for a given regular surface ¥ there exists a real number 7 > 0 such that each parallel
surface X(7) represents a regular surface for each 7 with 0 < 7 < 7 in the sense as defined
in Section 1.4. This is the reason why, in case of dual layer potentials, the parameter 7
is chosen such that 7 < 7. Moreover, it should be remarked that for larger values of T,
¥(7) may not represent, in general, a regular surface.

The matrix I'(z), x € R® with |z| # 0, given by

A +3u i r At (@-e)(z-eh) 1
Plo) = 2u(A + 2p) ((6 o A+3p |z|? )m>i,k—1,2,3 (2.11)

is constituted by the so-called fundamental solutions ['y(z) = T'(z)e*, k =1, 2,3, associ-
ated to the operator ¢ (cf. [58]).

Equivalently, the right hand side of (2.11) can be represented as

_ A+3u (i3 (A+p)(z®)
(x)‘2u<A+2u><|x|+A+3u PE ) (2.12)

The differential operator

(211()\“‘2#)% + A+ )N+ 2u)vV 4+ (A + p)v x V><> (2.13)

n:)\+3u

is called the (pseudo-)stress operator. Furthermore, n,['y(z), = € R® with |z| # 0, is
given by

0o 1
n,lk(x) = (81/($) m)Ak(x), (2.14)
where ) 300 ) (e )
w k +u) (€8 -x)x
A = =1,2,3. 2.1
k() >\+3M(6 + 2 PE ), k=1,2,3 (2.15)
We let

A(z) = (Ai(z) - €9)

It should be recapitulated that the boldface capital (Greek) letters are used to denote the
tensor-valued kernels I' and A.

o bE=1,2,3 (2.16)
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We introduce p(7), pn(7) and n,(7) as the operators of the single, double and the
n—derivative of the single layer potential, respectively.

p(r)a(e) = [ Tla, = 0)o(v) doty) (217)
p(7) : operator of the single layer potential on 3 for values on X(7),
pu(r)a(e) = [ (G Al = 0)a(0) d() (219

Pn(T) : operator of the double layer potential on ¥ for values on X(7),

0,(7)9(0) = [ (s YA = 1)) d() (219)

al/(x) ‘:E’r - y‘
— 1, [ T~ 9)9(w)daly)
x
n,(7) : n-derivative of the single layer potential on X for values on X(7).

The operators p(7), Pn(7), n,(7) form mappings from ¢?(X) into ¢(X) provided that
|7| is sufficiently small. Furthermore, the integrals formally defined by

P(O)g(e) = | Tz = 1)a(s) doly). (2.20)
0 1

.0)9(0) = [ (Gt J A~ 1)) des) (221)
0 1

0,00(0) = [ (s s ) A — 000 dety) 222

exist and define linear bounded operators p(0), p,(0), n,(0) mapping £*(X) into ¢(X).

Note that a more detailed description of those properties can be found, for example,
in [5],[37].

2.3.1 Limit and Jump Relations

As mentioned before, the potential operators in elastostatics behave near the boundary
much like the ordinary harmonic potential operators (cf. [5],[37],[58]). In particular, limit
formulae and jump relations can be formulated in analogy to the potential theoretical
case. To be more explicit, let i be the identity operator in £2(X). For all 7 > 0 sufficiently
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small the limit operators I*(7), 4 = 1,2, 3, and the jump operators j; (1), j =1,2,3,4,5,
are defined by

Iy (1) = p(£7) - p(0), (2.23)
(1) = pn(£7) — Pr(0) F 27, (2.24)
If(7) = np(£7) — n,y(0) + 27i, (2.25)
Ji(t) = p(1) — p(-7), (2.26)
J2(7) = Pu(7) — Pu(—T) — 47, (2.27)
J3(7) = np(7) = ny(—7) + 4ri, (2.28)
J4(7) = pu(7) + Pu(=7) — 2P, (0), (2.29)
J5(7) = ny(7) + ny(—7) — 2n,(0), (2.30)

respectively.

Furthermore, it should be remarked that the first three representations (2.23)-(2.25) are
often called limit relations, while the latter five (2.26)-(2.30) are being considered as jump
relations.

Then, the classical results of Cauchy-Navier theory (cf. [58]) tell us that, for all g € ¢(X),
lim (|1 (7)gllezy = 0, @ =1,2,3, (2.31)

7>0

7>0
In [5],[37] these limit relations are formulated within the #*(X)—nomenclature.
Theorem 2.1 For all g € £*(%)
lim ||I7(7)glles) =0, i=1,2,3, (2.33)

>0

and

:_lrl_{% ||j.7(7—)g||€2(2) =0, 7=12,3, 47 d. (234)

>0
Proof. We use a modification of a technique due to Lax [59]. Denote by t(7) one of the
operators (1), i=1,2,3, j;(1), j=1,2,3,4,5. Let t*(7) be the adjoint operator with
respect to the inner product < -,- >p(x). According to the Cauchy-Schwarz inequality
we find

1607)9 s < lgllegsy 6P gy (2:35)

Therefore, it follows that

18(T)glleogmy < Nalleos £ ()T [ (2.36)
< llgllezsy gl I (7 (7)6(7)) gl s).
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Induction yields that for all n > 2,
7 n_ * n—1
1t(T)gllz2s) < N9l () glles)- (2.37)

Because of the boundedness of the operators t*(7) and t(7) with respect to || - || there
exists a positive constant D such that

IolEisy < IZID™ gl gl 121 = ( [ du)'” (2.38)
Thus, for all n > 2 and g € ¢(X) with g # 0, we obtain
t YIgllesy N2
Kl p(IEllslen) ™ 239
19lex(s) l9lles)
Letting n tend to infinity we obtain for all g # 0

9—n

n—oo ||g||42(2)

This shows that |[t(7)||ex) < D for all g € ¢(X). Since ¢(X) is a dense linear subspace of
/%(X), we are able to extend the operator t(7) from ¢(X) to £*(X) without enlarging its
norm (cf. [2],[37],[60]). Therefore, t(7) is bounded with respect to || - ||2(sy and we have

() lle < A/ I8 e 18 () gy (2.41)

Hence, it follows that |[t(7)|lem) — 0as 7 — 0, 7 > 0. O

2.4 Layer Potentials for the Dual Operators

Using the limit and jump operators for the potentials, i.e. p(£7), pn(£7) and n,(£7)
listed in Section 2.3, we now define the limit and jump relations corresponding to dual
operators. Note that a similar consideration for limit and jump relations on dual opera-
tors associated to the Laplace has been discussed in [24].

As usual, the dual (adjoint) operators p*(7), p;(7) and nj(7) of the potential opera-
tors p(7), p»(7) and n,(7) are given, respectively, by

< [,p(1)g >er) =< p*(1)f, 9 >ewm), (2.42)
< f,ou(7)g >y =< Ph(T) [, 9 >em), (2.43)
< f, Ilp(T)g >g2(2) =< Il;(T)f, g >32(2), (2.44)
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for f,g € F2(2).

To obtain the explicit representations for the dual (potential) operators we observe that

< £,p(N)g e = /f (2) du(z)

:/f(x)-/r(:u—y)g(y) duw (y)dw (x)
/ / y) dw(y) - f(z) dw(x)
/E / z) dw(z) - g(y) dw(y)

—< [ T = )(@) do(o). 9 >em
x
=< p*(T)f,g >y - (245)
Hence, by virtue of the property I'(z) = I'(—x), we are able to write

p*(r)g(x) = / T'(e - y,)g(y) dw(y). (2.46)

This provides the dual (or adjoint) single layer potential operator p*(7) defined on the
parallel surface (7) for the values on X.

Note that Equation (2.46) can also be formulated for the inner parallel surface X(—7)
(by formally replacing 7 by —7).

Since the matrix A is symmetric, we use similar arguments as above to derive the explicit
forms of p; (7) and nj;(7). In detail, we have

< £ Pu(7)g >y = / £(@) - pa(r)g(z) duw(z)
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This provides the dual (or adjoint) n-derivative of the single layer potential operator p (7)
defined on the parallel surface X(7) for the values on X.

Finally, we see that

< finy(1)g > /f -n,(7)g(z) dw(z)

/f /(81/(?:3) |le |)A(fv —y)9(y) dw(y)dw(z)
_ / / (Mx) ﬁ)A(xT — ) f(z) dw(z) - g(y) dw(y)

=< p;(T)f,g > - (2.49)
Hence, we have
; = o 1 x— w
0 0)9(0) = [ (Gt A= w)aly) daly) (2:50)

This provides the dual (or adjoint) double layer potential operator ny(7) defined on the
parallel surface Y(7) for the values on X.
Finally, we arrive at the following theorem.

Theorem 2.2  Suppose that for all T with 0 < 7 < 7, the limit operators U*(7), i =
1,2,3, and the jump operators ji(T), j=1,2,3,4,5, are defined by

11*(r) = p*(£7) — p*(0), (2.51)

L*(7) = pi(+7) — pi(0) F 2ri, (2.52)

(1) = nj(+7) — n}(0) & 2i, (2.53)

ji(r) =p*(r) = p*(-7), (2.54)

i5(1) = pr(1) — Py (—7) — 4ni, (2.55)

33(7) = ny (1) — 0y (—7) + 4mi, (2.56)

ji(r) = p,(7) + Py (—7) — 2p,(0), (2.57)

j5(7) = ny(7) + ny(—=7) — 2n,(0) (2.58)

Then for all g € ¢(X2)

lim [ (7)gllusy = 0, i=1,2,3, (2.59)

>0

1)_{%”1; (T)g”C(E) =0, 7=123, 47 9, (260)
7>0
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and for all g € 2(2),

lim [[;*(7)gllem) =0, i=1,2,3, (2.61)
7>0

lim 55 (gl = 0, j=1,2.3,4,5. (262

>0

Proof. The cornerstones for the validity of Theorem 2.2 are the boundedness of the
dual operators (see, for example, [5]). O



Chapter 3

Existence, Uniqueness and
Regularity

3.1 Inner Displacement Boundary Value Problem

In the notations given above the homogeneous isotropic elastic displacement boundary-
value problem can be formulated as follows (cf. [29]): Given f € ¢(X), find a vector field

u € pot(Lin:) satisfying the boundary condition uly = f.

As it is well-known, the boundary-value problem has a unique solution (see, for example
[57]). In order to prove the existence (cf. [37]) we use the double layer potential

u(z) =pn(0)g(z)

0 1
- 1) AE - dw(y), g € c(X). 3.1
L(au(y) = y\) (=~ )9)d(y). g€ () (3.1)
Observing the discontinuity of the double layer potential we obtain from (2.24)
f(z) 2()+/(6 1)A( )g(y) dw(y) (3.2)
AR T = w ) .
MO* J o o=y ) M VW

for all z € ¥. The resulting integral equation —f = (271 — p,(0))g, g € ¢(X) fulfills all
standard Fredholm theorems (see, for example, [52]).

The homogeneous integral equation (27i — p,(0))g = 0 has no solution different from
g = 0. Thus, the solution of the boundary-value problem exists and is representable by
a double layer potential as indicated in (3.1). For details the reader is referred to [58].
The operator t = 27i — p,(0) and its adjoint operator t* (with respect to the scalar
product < -,- >p(x)) form mappings from ¢(X) into ¢(X) which are linear and bounded
with respect to the norm || - ||l¢x). The operators t,t* in ¢(X) are injective and, by the
Fredholm alternative, bijective in the Banach space ¢(X). Consequently, by the open
mapping theorem (see, for example, [85]) the operators t~', t* ' are linear and bounded

31
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with respect to || - ||¢x). Moreover, (t*)~' = (t=')*. But this implies that both t~' and
(t*)~! are bounded with respect to the norm || - ||ez(x) in ¢(X). As we have shown, for a
given f € ¢(X), there exists a vector field g € ¢(X) determined by (3.2) such that u is
representable in the form (3.1). Suppose that K is a subset of ¥;,; with dist(XC, ¥) > 0.
Then the Cauchy-Schwarz inequality applied to (3.1) gives for each x € K

i< ([ 3 (5 Aste =) 2dw(y>) ([ |g(y)\2dw(y>)%. (33)

k=1
lullegey = sup |u(z)| < E lglles), (3.4)
ze

(avfzy) ﬁ) Aelz =)

In connection with (3.2) this implies the existence of a positive constant B (depending
on ¥ and K) such that

N

But this means that

where
3

pesu([3

k=1

1
2 3

ww)’ (3.5)

lullogs < Bl fllegs) < Bllfllee. (3.6)

Summarizing our result we obtain the following regularity condition.

Theorem 3.1 Let u be a vector field of class pot(Xin) and K a subset of Yy with
dist(K,X) > 0. Then

1/2
el < B( [ 1t dw(x)) = Bllufle (3.7

Finally, as in the case of harmonic functions, we are able to formulate an £?(X)—regularity
theorem associated to the aforementioned boundary-value problem as follows:

The(lrem 3.2 Let u be any vector field of class pot(Xin) and K a subset of Yy with
dist(KC,X) > p > 0, where p is a sufficiently small real number. Then, there erists a
constant C = C(p,K), such that

ullegey < Cllfllexs),
where [ = uls.

The proofs are omitted here, for the details the reader is referred to [37].
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3.2 (*(X)—closure of Cauchy-Navier Vector Fields

Our starting point is the construction of an £2(3)—basis (cf. [37]).

Definition 3.1 A countable system {u,} C pot(Zin;) is said to be an (*(X) — basis
system on X, if the closure of span{u,|s} is equal to £*(2) (understood in the sense of
- [lezz)):

spanfunls} 7 = 2(5). (3.8)

Assuming that {u,} possesses the ¢2(3)— basis property we are able to formulate the
next theorem.

Theorem 3.3 Let f be a given field of class ¢(X). Let u be the unique solution of the

inner displacement boundary-value problem u € pot(Xin),u|ls = f. Suppose that {u,} is

a countable system in pot(3;,:) such that

spanfunls} 7 = £(2).

Then, for any given & and any given subset K C ¥y with dist(KC, ) > 0, there exists an
integer No = Ny(€) and coefficients a1, aa, ..., an, such that

No 2 1/2
( /E @)=Y antin(a) dw(:v)) <: (3.9)
and N
sug u(z) — Zanun(x) < Be (3.10)

In other words, the £?(3)—approximation using a system {u,} on ¥ implies uniform ap-
proximation (in the ordinary sense) on each K C X;,; with dist(K,¥) > 0, i.e. locally
uniform approximation in ¥,

Our interest now is to list some systems {u,} C pot(3;,;) possessing the £?(¥)—basis
property on ¥ and, in particular, being suitable for numerical purposes (for more details,
see, for example, [37],[34]).

Lemma 3.1 Let (z,) be a fundamental system in R®\ Xy with the following properties:
1. dist((zy), %) > p >0,

2. for each u € c(R® \ i) satisfying Qu = 0 in R® \ Ty, reqular at infinity, the
equations w(z,) =0 forn =1,2,--- imply u =0 in R® \ X;,;.

Then the system Ty(x — x,), n=1,2,---; k=1,2,3, is linearly independent such that

span{Tx(@ — o) laen} ) = (). (3.11)
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Proof. The linear independence follows from the fact that x,, # x,, for n # m. Therefore,
it remains to show that

Te(r — ), n=1,2,---; k=1,2,3, (3.12)
forms a basis in £2(X), i.e. for given g € £?(X), the assumptions
/ Tuly — ) - 9(y) dw(y) =0, n=1,2,..., k=123 (3.13)
b
imply g = 0. For that purpose we observe that the single layer potential
3
uw) =Y [ Tuly = ) - 9l0) doto)e (314
k=12
vanishes at all points z,,, n = 1,2, -+ ; consequently, u(z) = 0 for all z € R? \ ¥;,;. Thus
the assertion of Lemma 3.1 is proved by Theorem 3.3. 0
Lemma 3.2 The sequence {ugf;}, n=201..., j=12,....2n+1, k =1,2,3 as
defined in (2.7), is linearly independent such that
e,
span{ult)|} = 2(%). (3.15)
Proof. Let g be of class £2(X) satisfying
/g(y)-uﬁl’f;(y) dw(y)=0,n=0,1,..., j=1,2,....2n+1, k=1,2,3. (3.16)
b

We have to show that g = 0. To this end we observe that the series expansion of I'y(z —y)
(considered as a function of x)

Dua =) = 3° D~ any(a)u}(v) (3.17)

with

A+ 3u T 1
() = H,. 1
a 7.7($) 2/1:()\ + 2111) m + 1 ‘x|2n+1 7.7(‘/1") (3 8)

is analytic for all z € R®* \ Q. For all z € R® \ Q2% we thus find

u(@) =) /E Ti(z —y) - 9(y) dw(y)e®

oo 2n+1 3

=> "3 an(2) /E ul(y) - g(y) dw(y)e"

n=1 j=1 k=1

=0. (3.19)

However, this implies by analytic continuation that u = 0 in R® \ X;,;. Hence, again by
virtue of Theorem 3.3, we have the desired result. (Il
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3.3 A Generalized Fourier Series Approach to the
Displacement Boundary-Value Problem

We now arrive at formulating the following approximation scheme for computing the
solution u of the inner displacement boundary-value problem: given f € ¢(X), find u €

pot(Xin) with uly, = f.

(i) Choose a system {u,} C pot(X;;) satisfying
2(2) = span{uls] .

(ii) Compute the vector fields

fm = Zanun|g, u™ = Zanun, (3.20)
n=1 n=1

by solving the linear equations
Z/ w(x) - up(x) dw(z)a, = / f(z) - w(x) dw(x), 1=1,2,....,m.  (3.21)
n=1"7% 2

Then the field u(™ determined as above serves as approximation to u. The linear combi-
nation f(™ is best in the sense that

(/E 2 dw(x))1/2 < (/E

for any selection of constants by, bs,...,b,. According to the Gram-Schmidt orthonor-
malization process, there exists a system {u;} given by

m 2

f(z) - Z bun ()

n=1

1/2
dw(ac)) (3.22)

f(z) - Z nUn ()

U;kl = Z dn,lul, (323)
=1

where d,,; are the corresponding (constant) coefficients, such that {u}|s} is orthonormal
in the sense that

/E ul () - () do(@) = G (3.24)

In terms of the orthonormal system {u’} the best approximation f(™ now reads

£ =32 A, (3.25)
n=1
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where the Fourier coefficients of f with respect to the system {u |z} are given by
£m) = [ 1) ui(a) data). (3.26)
b2

According to Theorem 3.3, the ¢2—convergence of f(™ to f

lim ( /
m—0oQ »

implies ordinary pointwise convergence of the u(™ to u for each z € X;p;:

de(x)) 1/2 =0 (3.27)

f@) = (i (=)
M@:gymequ=2ywm@. (3.28)

The series (3.25) is uniformly convergent on every subset K C ¥;,; with dist(KC,X) > 0.
Moreover, because of the estimate (3.22), we have for each m € N

< B( dw(x)) v

< B( / F@)P o)~ 3 \fA(l)P)l/z- (3.29)

=1

sup
z€EK

u(z) =Y S0 (z) u(z) =Y fA)ui(z)

In conclusion, once a complete orthonormal basis {u’} on X is specified, the uniform
approximation for the solution on every compact subset of ¥;,; can be established. Hence,
this generalized Fourier series approach can be used as a ’global technique’ for numerical
purposes in solving discrete boundary-value problems of elastostatics (see, for example,
[37]).



Chapter 4

A Spatial Approach to
Cauchy-Navier Wavelets

In what follows, we establish a general setup for multiscale approximation of elastic fields
based on the limit and jump relations of the potential operators defined in the framework
of the Hilbert space of square-integrable functions £2(3). Moreover, we develop a tree
algorithm for the decomposition and reconstruction of elastic fields as a significant part
of our wavelet analysis. It should be mentioned that the wavelet theory as presented here
admits two essential origins: On the one hand side, the conventional wavelet approach
is based on the classical limit and jump relations in the usual ¢?(X)—framework, on the
other hand a different wavelet approach can be deduced from the dual limit and jump
relations in the ¢?(X)—framework.

4.1 Cauchy-Navier Wavelets Associated to Layer Po-
tentials

Our point of departure is the tensor kernel functions occurring in the potential integral
operators (2.23)-(2.30) which act as scaling functions within our wavelet approach.

Definition 4.1 Let the tensor-valued kernels, @gi) EXE — R¥ §=1,...,8, be
defined by

M (z,y) = T'(z, —y),

20 wy) = i( a”(?%)xfly)A( v) - (5V(?y)\xiy\> (Jﬁ_y)>’
1
o ( ov(z) |z, — )

A
o (
T(z_, —y),

) —
l/a(y) m>A($ - (51/8(:1/) \xfl— yI)A(LT - y)>’

3 (z,y) =

8 (z,y) = (e, —y

0 = o (

37
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2060 =~ (g )20 0~ (g =) A0,
@) :% ( Q%@/)ﬁyx(% —u ((%a(y) Ix—Tl— yI)A(xT - y))’
20 w0) =5 ( (@) Ao =9+ (s =g —0)

where T is a positive real number and (z,y) € ¥ x X. Then, for i =1,...,8, the family
{9} of kernels @1 : ¥ x ¥ — R**?® is called a (Cauchy-Navier) Y—scaling function
of type i. Moreover, <I>§i) Y XY — R¥3 (l.e. 7 =1) is called the mother kernel of the
(Cauchy-Navier) ¥—scaling function of type i.

More detailed calculation gives us the following result.

Lemma 4.1 Forz,y € X,

20w = 5 () |90 (5 s ) o
+(V(x)-1/(y))( LI — )ig}

=yl o —y[3

()@= -ve -0 (=55 - 5==7)
(o =) v 80 (s - )

o) ) (o= 9) @ v(a) + (o) @ (e =) (T - )
=) )@ =) @ vl + @) © = 9) (Tt )

+(v<x>-u(y>(x—y>®(x_y))< T )

|$T _y|5 |$—'r _y‘5

+(V(x)-1/(y)1/(x)®1/(y))< LA S )]} (4.1)

|xT _y|5 |$—T _y|5

As an immediate consequence of Theorem 2.1 we are led to the following result, which
may be understood in £%(¥)—sense.

Theorem 4.1 For f € (?(X), x € &, we have

([sT(@ =) f(y) dw(y), i=1
0, i =
lim [ @0 (z,y)f(y) dw(y) = { f (@), i=23,56 (42)
e fE(GV?y) |z£y|)A(x - y)f(y) dw(y)’ =17
s (ot ) MA@ — ) f(y) doly), i=8.
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Theorem 4.1 enables us to introduce wavelet functions via an appropriate scaling equation.

Definition 4.2  Let {@Si)} be a family of X—scaling functions of type i defined as above.
Then the family {®D} of kernels ) : ¥ x & — R¥*3 defined by

. d .
¥9(z,9) = ~((r) " - 20(w,1), 5,y €Y, (43)
T
is called a (Cauchy-Navier) S—wavelet function of type i, where v is a given positive real-

valued function depending upon 7. Moreover, \Ilgi) 1Y x ¥ — R¥*3 defines the so-called
mother kernel of the (Cauchy-Navier) ¥—wavelet of type i.

It should be noted that, in wavelet terminology, (4.3) is called the (scale continuous)
Y. —scaling equation. The factor a(7)~! can be chosen in an appropriate way. For sim-
plicity, throughout the remainder of this work, we use a(7) =771, 7 > 0.

Definition 4.3  Let {@@} be a Y—scaling function of type i. Then the associated
S—wavelet transform of type i, (WT)Y : 2(X) — (2(X) of a function f € (2(X) is
defined by

(WT)9 ()(z) = / OO (2, y)f (1) dw(y), €3, (4.4)

According to our definitions we obtain explicit formulae for the ¥ —scaling and ¥ —wavelet
functions by means of the ordinary differential equations

T (z,y) = —Td—@(TZ)(ac,y), i=1,...,8. (4.5)
=

4.2 Scale Continuous Reconstruction Formula

It is not difficult to show that the Y—wavelet functions {\Ilsi)}, 1 = 1,...,8, behave
(componentwise) like O(77'), hence, the convergence of the integrals occurring in the
next theorem is guaranteed (cf. [1],[32],[37]).

Theorem 4.2  Let {<I>$i)} be a YX—scaling function of type i. Suppose that f is of class
(%(X). Then the reconstruction formula

(5 T(z—y)f(y) dw(y), i=1

o 0, i=4
/ (WT)Si)(f)(x)(iT—T =< f(2), i=2,3056  (4.6)

’ Jo G i) Ale = 9)f () do(y), i=7

ka(GV(?z) |miy\)A(‘/E —y)fly) dwly), i=38

holds in the sense of || - ||
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Proof. Let R > 0 be arbitrary. Taking the identity

@%)(w,y) :/R \IJS)(x,y) o T,y € X, (4.7)

we obtain
* dr
WT)® 0 ) d
[ wWnon@ T = [ [ w0 dw) T
‘/(/"<v1xy )f@)mww
- [ #@)) dato)
Letting R tend to 0 we get the desired result. U

Next we are interested in formulating the wavelet transform and the reconstruction for-
mula by formally using the so-called ’shift’ and ’dilation’ operators. Those enable us to
form a family of wavelets using the mother wavelet ¥;. To be more specific, we define
the x—shift and 7—dilation operators of a mother kernel, respectively, by
T, 80— 1,00 = (s, ), (4.8)
D, : oY Do) = ¢ (4.9)

Consequently, this yields by composition
T,D, 9V = T, 90 = 9D (z ), i=1,...,8. (4.10)

;
Summarizing our results we therefore obtain

Theorem 4.3 Forx € X and f € (2(%)

(Jx Tz — y)f(y) dw(y), i=1
0, i=4
lim | 7,D,8 (x,y)f(y) dw(y) = { f(=), i=2,3,506 (4.11)
oo oG A — ) f(v) dwly), i=T
\fE(BV(?a:) e ) Az =) f(y) dw(y), =38
and
(J5 Tz = y)f(y) dw(y), i=1
0, ] =
|7 [ 100w i) dwE =4 1), i=2,8.56
fE(au?y) \miy\)A(‘T —y)fy) dw(y), 1=
ka(BVasc) ) Az =) f(y) doly), =38

(4.12)
hold in the sense of || - ||e2(2)

Proof. The proof follows immediately from the results stated in Theorem 4.2. 0
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4.3 Scale Discrete Reconstruction Formula

Let (7;)jez denote a monotonically decreasing sequence of real numbers satisfying the
properties
lim 7; =0, lim 7; = oo, (4.13)
j—oo j—o—o0

(for example, 7; = 277).

Given a Y—scaling function {®®} of type 7, we define the (scale) discretized ¥—scaling
function and wavelets of type 7 by {@f;(z)},{qlf;(z)} with

37" =al) jez.

Then we are led to the following result.

Theorem 4.4  For f € (2(%), the limit

([oT(@ —y)f(y) dwly), i=1
0, 1=
lim &7 (2,9 f(y) dw(y) = f(), i=2,356 (4.14)
fE(GVZy) |m;y|)A(x - y)f(y dw y)a 1=
\fZ(au(m) |x—y|)A(x - y)f(y dw y)a 1=
holds in the || - || (s —sense.
Proof. Obviously, Theorem 4.4 is just a discretization of Theorem 4.1. Il

Definition 4.4 Let {@f;(i) }iez be a scale discretized Y—scaling function of type i. Then
the (scale) discretized X —wavelet function \IljD;(i) of type i is defined by

B . v d
0@y =90y = [ W@y, jEL zyel, i=1,....8 (415

Tj+1

With the definition of \I»'Si) we immediately obtain

J o Jj+1 J
_— dr T

P Tj d . d s s
@m%%w:_/mT_@QQW)T=¢m%Lw—¢Qm@w%IWEE-(4w)

In the wavelet terminology, the equation (4.16) is called the (scale) discretized Y. —scaling
equation of type 4. It should be remarked that, with a suitably chosen 7;, formula (4.16)
can easily be used to formulate the scale discrete X —wavelets. As examples, the following
figures show the localization property of both scaling functions and wavelets.
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Figure 4.1: Sectional illustration of scale discrete X—scaling function @;?;(5) (z,-) at levels
1,2 and 3 with € variable and ¢ = 7/4 and z fixed. <I>JD;(5)($, ) = @g?)(x, -) for 7 =277,

j = 1,2,3. Frobenius norm, diagonal components (left) and non-diagonal components
(right).
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3 with 6 variable and ¢ = 7/4 and z fixed. \IJJD;(S) (z,) = ‘Ilgf) (z,-)forT=277,5=1,2,3.
Frobenius norm, diagonal components (left) and non-diagonal components (right).



Chapter 4. A Spatial Approach to Cauchy-Navier Wavelets 44

Assume that f is a vector field of class ¢*(X) and consider the discretized Y —scaling
equation of type i (see, Equation 4.16). Then, for J € Z sufficiently large and N € N, we
have

/E B2 (2,)f(y) deo(y) = / 82D (2, ) f(y) deo(y)

+ 2_; /E‘I’f;(i)(%y)f(y) dw(y), = €. (4.17)

By taking into account the property (4.15) we find in connection with Theorem 4.3 the
following result.

Theorem 4.5 Let {@]-D;(i)} be a (scale) discretized Y—scaling function of type i. Then
the multiscale representation of a function f € £2(X)

[ #70w i) + 3 [ ¥79w i) dow

([T —y)f(y) dw(y), i=1
0, i=4
=< f(2), i=2,3,5,6 (4.18)

fE(aué()y) \xiy\)A(‘r - y)f(y) dUJ(y), 1=7
LIE(BV?:U) |wiy|)A(x - y)f(y) dw(y)a 1=28

holds for all J € Z (in the sense of || - || ).

Our considerations lead us in canonical way to the definition of the (scale) discretized
Y—wavelet transform of type ¢ by

(WT)”O(f)(z) = / TP (0, ) f(y) dwly), © € 5. (4.19)

We are able to derive the following corollary.

Corollary 4.1  Let {@f;(i)} be a (scale) discretized Y—scaling function of type i. Then,
for all f € (3(X),

([T —y)f(y) dw(y), i=1
% 0, i=4
> (WD) () (@) = { f(@), i=2356  (420)
= fE(au(zy) |z£y\)A(x - y)f(y) dw(y)’ =17
\fE((’)l/(?:c) \wiy\)A(‘T - y)f(y) dw(y), 1=28

holds in the || - || (s —sense.
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In conclusion, any function f € ¢%(X) can be represented as a multiscale sum of the
wavelet transforms corresponding to \Ilf;(z), i€{2,3,5,6}.

As always in the theory of wavelets (cf. [26],[30],[41]), the operators p;);(i), r;);(i) de-
fined by

pP 0 = [ #0001 duty), £ € £E) (421
0 f = /E w7 y) fy) dwly), fe () (4.22)

may be understood as filters for scale and detail information, respectively.

D@ and details spaces w; Dy

The scale spaces v; of type ¢ are defined by

o O ={p) O (f) | £ € (D)}, (4.23)
w) ={xPO(f) | £ € A}, (4.24)
respectively.
It is clear that
D;(e % D;(¢
p, () =7 () + ), Jew. (4.25)
Consequently,
vy =07+ wf @ (4.26)
vy =)+ Zw (4.27)
Jj=Jo

However, it should be remarked that the sum (4.25), in general, is neither direct nor
orthogonal (cf. [32]).

4.4 A Tree Algorithm

In what follows, we present a particular scheme which simplifies the computational process
of the reconstruction and decomposition of the wavelet approximation. This is known as

a tree algorithm that provides a recursive process to compute the integrals p; ’(Z)( f) and

er i) (f) on different levels starting from an initial approximation of a given f € £*(X)

without falling upon the original vector field f in each step.
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For this purpose, we use appropriately chosen approximate integration rules such that

p ZW 187 (2, 507) Fyp?),s (4.28)

ZW N e R V(A (4.29)

where {(y,]cvj , W,jv 7y € ¥ x R} are the prescribed integration points and weights and the
symbol ' &' means that the error is negligible.

From (4.28), we conclude that for sufficiently large J € N there exist coefficient vec-
tors a,’ € R®, k=1,..., Ny, such that

Z@D(Z (2,907 )an’, i=1,...,8, t €Y, (4.30)
where,

V=W fWY), k=1,...,N; .

Now we want to introduce an algorithm to obtain the coefficients

N; __ N; N; 3% N .
a'i = (alf,...,aNj,) eRN . j=Jy, ...,
such that
(a) the vector a’i is obtainable from a™i+1, j = Jy,...,J — 1,
(b) the expressions ij;(i)(f)(x), erj(f) (f)(x) can be written as
N;
Jai.
Z xyk Ya,’, j=1Joy-.-,, (4.31)
Nj,1
(i ; Nj_1y Nj—-1 .
B0 (N@) =Y e ey e = d 1L (432)
k=

The tree algorithm can be divided into two parts, namely the initial step and the pyramid
step.

For the initial step we consider J € N to be sufficiently large and thus we see that

ay’ =W fyd?), k=1,...,N;. (4.33)
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The aim of the pyramid step is to construct a® from a’i+! by recursion. At this point,
it is essential to assume that there exist (tensor) kernel functions Egz) Y x Y — R3S
such that

D;(d) ~ D;(4) =(1)
&0 (1, ) ~ /E &0 (1, )20 (2, ) du(2), (4.34)
=)~ [ 2092 ) o) (4.35)
for j = Jy,...,J. A reasonable choice for Egi) is

:gl) (i’J—k(z)? .7: JOa' . 7‘]1 S {2’3’5’6}

with L € N suitably large. By the approximate integration rules we obtain
[ 20wt dot ~ [ | [ #7020 60 doa)| 1) ot
b » s
- Dj(i) =(9)
= [ #7060 [ =60 sdst)| dote)

N;
~ Y87 (@, 4,7)a,”, (4.36)
k=1
where
W =W [ 001w do), 5= e (4.37)

Hence, in connection with (4.35) we find

N]+1
~ W EZ =0 v EL 67 0) 1 0) do(y)
=1
Njt1 N
=W > By e (4.38)

=1
forj=J—-1,...,Jpand k=1,...,N;.

The last formula is known as the pyramid step.

We see that once the coefficients a’i are calculated, the coefficients a™i-1 are obtained
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by (4.38).

Altogether, starting from an initial value a7 all the coefficient vectors can be calcu-
lated recursively. Note that the coefficients a7 in the initial step do not depend on the

choice of Ey) = @?fL) Furthermore, the functions Eg-l), j = Jy,...,J, can be chosen

independently of the ¥—scaling function used in the integrals pf;(i)( f) and r]-D;(i) (f)-

Finally, following the proposed pyramid scheme described by (4.33) and (4.38), the de-
composition and reconstruction process of the wavelet approximation can be illustrated
briefly as follows:

f = alvv - gl - ... 3 gl N a7
D%) iD-(i) %-(i) D-(i)/\ Ds(d)
r; " (f) v, (f) LA (f) T (f) Py, (f)

(decomposition scheme)

aNJO aNJ0+1 aNJ—l
DJ@') %-(i) D\-L(z')
;. (f) ;o (f) r;n(f)

D;(d) ™ D;(4) D;(d) > D;(d)
P, (f) —=+—= pulf) =+-+—= p, 3 (f)=>+—= p,(f)

(reconstruction scheme).

4.5 Multiscale Solution of the Inner Displacement
Boundary-Value Problem of Elastostatics

In the sequel, we discuss the solution of the inner displacement boundary-value problem
by means of wavelet approximation techniques derived in the preceding chapters. Exis-
tence, uniqueness and regularity of the solution of the problem are known from Chapter 3.

For given f € ¢(X) the solution u € pot(X;,:) with u|x, = f of the (inner) displacement
problem can be expressed uniquely by a double layer potential

umwz/( 0 1 yA(—y)ly) doly), g€ (). (4.39)

» 0v(y) |z —yl

As it is known, the corresponding integral equation reads as follows

(2n —pa(0))g = —f, g€ (). (4.40)
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More explicitly,

2mg(a) = [ (o) Aa = 9)aly) de(s) =~ (o), g€ A(S), s €. (441

To approximate u given by the double layer potential in (4.39), we use the concept stated

in Theorem 4.1. In accordance with this approach we are able to rewrite (4.41) approxi-
mately in the form

2g(z) — / 820 (2, 1)g(y) do(y) = —f(z), €S, (4.42)

provided that L € N is sufficiently large. Once the boundary integral equation (4.40) has
been solved, the density function g is inserted into (4.39) and thereby the (approximate)
solution u is obtained in ;. Like in many cases of boundary integral equations there
is, in general, no straightforward way of constructing the unknown function g. It is,
therefore, necessary to apply a suitable approximation method. In this respect we again
go back to Theorem 4.1 that enables us to formulate

g(y) = jli_)r?o : @f;(5) (y,2)g(2) dw(z). (4.43)

Using an appropriate numerical integration technique, an approximation of g of level J,
denoted by g;, can be expressed by

ZWN@ (ORTRIC
_Zq> ORI AL (4.44)

where VVlNJ , l=1,..., N are the integration weights corresponding to the nodal points
yex, l=1,...,N;and b}’ € R® [ =1,...,N;.

The unknowns blNJ € R 1 =1,...,Ny, are deducible from (4.40) by solving a system
of linear equations obtained by a suitable approximation method such as collocation,
Galerkin procedure, least square approximation etc. (see for example, [25]). In con-

sequence, we are led to the following system of equations for the unknowns blNJ,l =
1,...,Ny,

Z(?WI’D (5)(me, lNJ ZWNJ(I, (5)( mJ’yk )@f?(ﬂ(yé\lJ’leJ))blNJ — _f(y,,]XJ)’
k=1
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It should be mentioned that such a consideration leads to a system of linear equations with
a ’full’ matrix which seems to require much computational work for the definition of the
matrix as well as for the solution. In this context, taking into consideration the localization
behavior of the kernel functions, suitable accelerating techniques such as panel clustering,
domain decomposition etc can efficiently be used (see, for example, [44],[47],[49]), which
is, however, beyond the scope of this work. Moreover, further modifications of such tech-
niques relevant to this particular consideration will be needed.

In this respect, a variant of our tree algorithm comes into play: once the starting values

bY = (b7, ..., by’ )" € R®>N/ are given, the coefficients b™i = b, .. .,bxj)T € R3>*N; |
j=dJy,...,J —1, are obtained by the recursion formula
Nj+1
by =W > 2 (g, 5, 0, k=1,...,N;. (4.46)

=1

The corresponding approximate integrals are obtained by

N;
D, (9)2) ~ Y 87 @,y €5, G = oy, (4.47)
k=1
and
N;
10 () (@) Y P @,y by €S, j=do+ 1,0, (4.48)
k=1
where
D;(z D;(z D;(7
0 (9)(z) = py P (9)(z) — PV (9) (2). (4.49)

Hence, we finally arrive at the following theorem for the inner displacement boundary-
value problems of the Cauchy-Navier theory.

Theorem 4.6 Let X be a regular surface. For given f € c(X), let u be the potential of
class pot(Xin) with uls = f. Then the function f; € ¢(X) given by

Nig J-1 Nj
_—ZWZQD(Z NJO NJO—QWZZ\II xyl b
j=Jo l=1
+Z(/ ®7 a5 0") dt) )5
J—1 N;j

+> Z(/ (,9) % (y,57) dw(y ))bfvj, (4.50)

j=Jo =1
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T € X, represents a J—scale approzimation of f € c¢(X), in the sense of || - ||p2(x), where
1=2,3,5,6 and L € N is sufficiently large. Furthermore,

Ny,
u, zz/ B2 (. )82 (, 4¥0) d ()b
=1 V=

J—1 Ny

; He Nj
+y / PN ()0 (y, g0y du(y)b?  (451)

j=Jo 1=1

represents a J—scale approzimation of u in the sense of || - ||c(K) for every subset K C Xy
with dist(KC, ) > 0.

In other words, locally uniform approximation on ¥;,; is established from quadratic ap-
proximtion on X by means of Cauchy-Navier wavelets.

4.6 Cauchy-Navier Wavelets associated to Dual
Layer Potentials

In preceding sections, our wavelet construction was based on layer potentials in Cauchy-
Navier theory of elasticity and the associated limit and jump relations. The corresponding
wavelets canonically involve integration over ¥ to approximate the (boundary) function
at a particular point x € ¥, in which the different resolutions are taken letting =, tend to
x (or equivalently 7 tend to 0). In contrast to the above wavelet approach based on in-
tegration procedures over the regular surface 3, one can introduce an alternative wavelet
procedure by means of dual layer potentials.

In what follows, we develop the Cauchy-Navier wavelet method by means of jump re-
lations (2.51)-(2.58) associated to dual layer potential operators. In this context, we only
investigate the resulting facts which are different from the classical case. The remaining
results can easily be established in analogy to the theory developed in previous sections.
Moreover, we are concerned with scale discrete wavelet reconstructions, which provide
an alternative technique to treat the inner displacement boundary-value problems in a
multistep setting.

We start from the following definition.

Definition 4.5 Suppose that T is a positive real number such that 0 < 7 < 7T (where
7 is defined in Section 2.3). Then the family {® DY of kernels ® : & x & — R3,
1=1,...,8, defined by
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& (z,y) = T(z—y,),

GO (G e G =) )
9 = 5 (g A= v~ (Gt JAG =0,

v (y) |z — sl
(I’:(4)($’y) = T(@—y)-T@-y,),

900 = 1 ( (5 JAe =) = (oo J A =10,
90 == (g ) A =1~ (s JAG =30,

8u(y) |$ - yT| al/(y) |l‘ - y—7'|

#w0) =3 (G )2+ (g g A v o)
() L AR G LU )

is called dual ( Cauchy;Navier) Y—scaling function of type i. Correspondingly, the family
(DY of kernels XD : 0 x B — R¥>3, i =1,...,8, given by
. d .
(2, y) = —(a(T))_ld—‘I’i@ (z,9),
T

is called a dual (Cauchy-Navier) ¥—wavelet of type i.
1

~—

Note that we have chosen «(7) = 7~

As a consequence of Theorem 2.1 we are led to the following result in analogy to Theorem
4.1, which is to be understood in the ¢?(3)—sense.

Theorem 4.7 For f € (2(%), z € X, we have

fz fy) dw(y), 1=1

0, i=4
tim [ @0 (2, )f(y) doly) =  £@), i=2,356 (452
oo (ol ) A — ) f(4) dw(y), i=T

s (G2 a5 Am — ) f(y) dw(y), i=38.

In connection with Definition 4.3 we easily define the wavelet transform for the dual case.

Definition 4.6  Suppose that T is a positive real number such that = < 7. Let {@j(i)}
be a dual X—scaling function of type i. Then the associated X —wavelet transform of type
i, (WT):(O (X)) — (S ) of a function f € (*(X) is defined by

(WT)x /‘I’* z,y) f(y) dw(y). (4.53)



Chapter 4. A Spatial Approach to Cauchy-Navier Wavelets 53

Parallel to the classical approach, we now arrive at a scale continuous reconstruction for-
mula with respect to the dual wavelets, however, in general, we have to restrict the scale
parameter 7 to the finite interval (0, 7].

We restrict ourselves to the investigation of scale discrete scaling functions and wavelets.

Let the set Z; be defined by
Zr={j€Z | 1, <7} (4.54)

for appropriately chosen parameter 7;, where {7;},cz denotes a monotonically decreasing
sequence of positive real numbers satisfying the property

lim 7; = 0. (4.55)

j—o00
Moreover, we let
Jo=min{j €Z | 7, <T}.
j

Given a dual X—scaling function {®*¥}, 0 < 7 < 7 of type i, we are able to define the
(scale) discretized dual ¥ —scaling function {@f*;(z)}, and wavelets {\I’f*;(z)}, Jo<j<oo
of type .

Hence, we let

Dx;(i) __ & Dx*(4
& = 0. (4.56)

In connection with Theorem 4.4 we are now led to the following result.

Theorem 4.8 For f € (*(X), the limit

([u Tz =) f(y) dw(y), i=1
0, i=
lim | @7 (@,)f(y) doly) = { f(@), i=2,3,56 (457)

z—y)fly) dw(y), =7
z—y)f(y) dw(y), i=38

fE (6Ua$) |a:iy|

1
\ fE (3'/(1/) |z—y|

O~

-

holds in the || - || 2(s)—sense, where (z,y) € ¥ x X.
Proof. This result follows from the proof of Theorem 4.4. O

Definition 4.7 Let {@f*;(i)}, Jo < j < o0, be a scale discretized dual X—scaling func-
tion of type i. Then the corresponding (scale) discretized dual X—wavelet function \P]l-)*;(i)

of type 1 is defined by

Dx;(1) o *(4) o i *(7) dr
v ($,y) - \I,Tj (x,y) - \Ilr (x,y)

i —, JHoh<j<o0, ,yeX, 1=1,...,8.
Tit1 T

(4.58)
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With the definition of ¥*® we immediately obtain

*:(1 i d *(1 d EH T *3 7
T (2,y) = _/ T 0@,y = 8@, y) - 87 (ay), vy e (459)
Tj+1

Theorem 4.9 For f € (*(X), the limit

([T (@ —y)f(y) dw(y), i=1
0, 1=4

lim [ &7 (z,9)f(y) do(y) = { f(), i=2,3,5,6 (4.60)
7270 © ¥ fz(au(m : |)A($ —y)fly) dw(y), =7

= |

holds for all x € X.

Definition 4.8 Let {@f*5(i)} be a dual X—scaling function of type i. Then the associated
dual X—wavelet transform of type i (WT)f*(i) : 2(2) — 2(X) of a function f € (%(X)
15 defined by

(WT), )Pt /\IID* z,y)f(y) dw(y), z €. (4.61)

Finally, we arrive at the following important theorem.

Theorem 4.10 Let {@J-D*;(i)}, Jo < j < o0, be a (scale) discretized X— scaling function
of type i. Then the multiscale representation of a function f € £2(X)

/<1>*<Z( y)duw(y +Z/\IID* (z,9)f(y) dw(y)

([oT(@ —y)f(y) dw(y), i=1
0, i=4
=1 (@), i=2,3,5,6 (4.62)

E(alfzw) \xiy|)A(‘T - y)f(y) dw(y): =17
s Gy ) Ale —9)f (y) doly), i=8

holds for all J € Z with J > J,.

Moreover, the operators defined by
o)) = [ #0010 dot), S e C) (463)
7O = [ #OC0I0) det), £ e BE) (464
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represent scale and detail information, respectively. Moreover, it should be remarked that
the above definition of wavelet transform can be regarded as a filter detail information as
well.

In the computations of those filters we have a certain restriction for the choice of j,
i.e. j > Jy. Therefore, for the reconstruction formula of a given function f € £*(%), we

need a starting filtered version pi”(f) with suitably chosen J.

More explicitly, for f € £2(X), we have an approximate identity

lim ||/ = B (f)llex) = 0, (4.65)

i2Jo

and the multiscale representation of f can be represented by
;N + YO = (4.66)
j=J

for all J > Jy, where ¢ = 2, 3,5, 6.

In consequence, it is not difficult to show that the filters p;(i) and pg-i) and also the

filters r;(i) and rgi) represent dual relations with respect to £2(X)—topology. To be more
explicit, we state the following theorem.
Theorem 4.11

(i) Let ij;(i) and pf*’(i

discrete Y3 scaling functions @f;(i) and <I>]-D*;(i), respectively. Then

), Jo < j < o0, be the filters of type i corresponding to the scale

< Pf*;(i) (f), 9 >em=</, P]L-);(i) (9) >e) (4.67)
holds for all f, g € *(X).

(ii) Let er;(i) and er*’(i), Jo < jJ < 00, be the filters of type © corresponding to the scale

discrete ¥ wavelets ¥ and ‘IIJ-D*;(i), respectively. Then

< I’f*;(i) (f), 9 >em=<f, I’f;(i) (9) >ex) (4.68)

holds for all f, g € £*(X).

Proof.
(i) Let f,g € /). For simplicity, we consider the case i = 1. Thus, the connection with



Chapter 4. A Spatial Approach to Cauchy-Navier Wavelets 56

the symmetry of kernel functions, the straightforward calculations yield
<ol Vg > = [ ([ T 0)00) datw)) - 9t0) dute)

/ / (s, — 2)g(x) duo(z) - [(y) deo(y)

/ / 2y, = )g(y) dw(y) - f(2) dw(x)

:/Ef(ac)- (/EF(:I:TJ- —4)g(y) dw(y)) dw(z)

< f, Pf;(l) (9) >e) -
(ii) In connection with Part (i) the scale discretized scaling equation (4.59) leads to

er*;(i)(f)a g >pr) =< P]+1 f) = Z)(f),g >e2( )

=< p3+1 fig >pem) — < P] 7(Z)(f)ag >pr(x)
</, Pg+1 (9) >pew) — < f, PJ )(9) >pe(x)
< fa _7 (g) >Z2

<

Kl
Rl

O
Finally, it should be noted that the above dual multiscale representation also enables us
to guarantee fast computation using a suitable tree algorithm. An appropriate pyramid
scheme can be obtained in analogy to the classical case, taking into account the integra-
tions over parallel surfaces X(7) as well as suitable restrictions for the choice of 7 (cf.
Section 4.3, [1],[32]).



Chapter 5

A Spectral Approach to
Cauchy-Navier Wavelets

The wavelets defined in the last chapter are introduced on particular properties of kernel
functions involving the fundamental solutions I';, Ty, I's. In doing so a wavelet concept
associated to the Cauchy-Navier equation is established by limit relations in the space
domain. In what follows, we restrict ourselves to the geophysically interesting interior
Dirichlet problem of linear elasticity corresponding to a spherical boundary. To be more
concrete, we use the properties of closure and completeness of the particular system of
vector spherical harmonics in the space of £2(Q) of square-integrable vector fields on the
unit sphere to deduce a wavelet concept based on limit relations in the spectral domain.
The approach is closely related to the vector wavelet theory developed in [30].

We first give a brief overview of this approach as an introductory remark: On((:g the

Cauchy-Navier vector field Us)l corresponding to the vector spherical harmonics ynz,l has
been specified within the spherical framework of the inner space €2;,,; of the unit sphere 2,
the Green tensor of the inner displacement boundary-value problem can be represented

as follows:

o 2n+1
ga,m) =23 Y v0@ eyl m), =€ ne. (5.1)
1=1 n=0; [=1

The solution of the associated displacement boundary-value problem then reads as follows:
Given a continuous vector field f : Q@ — R®, find u € pot(Qyy;) such that u|q = f. The
displacement boundary-value problem is uniquely solvable in integral form by

u(z) = / g(z, ) f(n) dw(n), o € Uins. (5.2)

In consequence, as the Green tensor is explicitly available in spherical nomenclature, u
can be determined by numerical integration avoiding any solution of linear equations. For
appropriate integration rules see, for example, [22].

S7
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A multiscale approach to the inner displacement boundary-value problem, i.e. a space-
dependent frequency analysis in deformation analysis can be obtained by introducing
a scaling tensor {<I>jD }, j € Z. Roughly speaking, a (discrete) Cauchy-Navier scaling
function <I>jD with ¢;(n), can be represented by a tensor kernel

3 o 2n+1
P, =33 @)l @) @ (M), = € Vi, (5.3)
i=1 n=0; [=1

which converges to the ’Green kernel’ g as j tends to infinity. As a matter of fact, {¢;(n)}
essentially is understood to be a real monotonically increasing sequence satisfying

lim ¢;(n) = 1 (5.4)
j—00

foreach n=0,1,....

According to this multiscale principle, @f constitutes an approximate convolution iden-
tity, i.e. the convolution integral

/Q P (2, 1) () deo() (5.5)

formally converges to the solution of the inner displacement boundary-value problem

/Q &(z, ) F(n) du(n) = u(z) (5.6)

for all z € €;,; as j tends to infinity.

In more detail, if u is the displacement field corresponding to vector field f on the unit
sphere (2, then
Jl'i)r(r)lo |lu — <I>JD * fllee) = 0. (5.7)

Moreover, in connection with the regularity condition (see Theorem 3.2), for all subsets
IC C Qi with dist(/C, 2) > 0, we have the approximate identity

lim sup |u(z) — (@7 * f)(z)| =0, (5.8)
I pek
ie.,
i — L — =

It should be noted that the wavelet transform acts as a space and frequency localization
process in the following way: if {<I’jD } is a Cauchy-Navier scaling function and j is a

sufficiently large positive value, then <I>jD (z,-), z € Q, is highly concentrated around the
point x. Moreover, as j becomes smaller, <I)J-D (z,-) becomes more and more localized in
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frequency. Correspondingly, the space localization is more and more decreasing. In con-
clusion, the products x +— <I>JD(:1:, nf(n), x € Qins, 1 € Q, for each fixed value j, display
information u at various levels of spatial resolution or frequency bands. Consequently,
as j decreases, the convolution integrals ‘I>]-D x [ display coarser, lower-frequency features.
As j approaches infinity, the integrals give sharper and sharper spatial resolutions. This
is quite comparable to the (discrete) wavelet approach in Chapter 4 based on the limit
relations of elastic potentials in space domain.

Each scale-space approximation tI>Jl-) * f must be made directly by computing the rele-
vant convolution integrals. In doing so, however, it is inefficient to use no information
from the approximation ‘I>]-D x f within the computational process of @? x f provided that
j < j'. In fact, the efficient construction of wavelets begins by a recursive method which
is ideal for computation.

lim Jlu— (@ + f) Z‘I’ % fllew =0 (5.10)
provided that
3 oo 2n+1
=2 Z vi()vy(@) @ yy(m),  © € Lm, (5.11)
i=1 n=0; I=
is given such that
¥i(n) = in(n) = ¢i(n) (5.12)
for n = 0,1,.... Conventionally, the family {\IJJD } is called a wavelet. The wavelet

transform is defined by

(TP« f)(a /\IID z,1)f(n) dw(n). (5.13)

5.1 Cauchy-Navier Vector Fields Corresponding to
Vector Spherical Harmonics

First we briefly recapitulate some well-known results on Cauchy-Navier vector fields. For
details the reader is referred to [27],[34],[43], [81] In particular we are interested in finding

0 ¢ pot(£2,¢) such that UHZ\Q = yfz)l, 1 =1,2,3, n=0;,0;, +1,.

n,l

the vector fields v
I=1,....2n+1.

We start our investigations by considering some properties of homogeneous harmonic
polynomials defined in R3.

Lemma 5.1 Let H, : R?® — R, n € Ny, be a homogeneous harmonic polynomial of
degree n. Then, for all x € R®, we have
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(i) O(ViH,(z)) =0,
(it) O(z AV Hy(x)) =0,
(iii) O(zHp(x) + an|z|*VoHy(z)) = 0,

where 4943
R o (5.14)
2(n(c+2)+1)
Proof. These results can be obtained by straightforward calculations. 0

Let {H,; | Il = 1,2,...,2n + 1} be a maximal linearly independent system of homoge-

neous harmonic polynomials of degree n. We seek a vector field vff)l : Qe — R® in

pot(Qin;) such that vff)l q=y" (cf. [34)).

n,l

Lemma 5.2 Let vnz)l c Qe — R, 1=1,2,3, be defined by

)

v (@) = tHoy(2) + an(jof? = )VeHyy(z), n=0,1,..,j=1,..,2n+1,
v (2) = (n(n +1)) 2 (VoHuu(z)) —mol)(z), n=1,.,5=1,.,2n+1,  (5.15)
1)7(132(33) (n(n +1))_%(.’L‘/\Van,l(.’L‘)), n=1.,1=1,..2n+1,

’

where an is as defined in Lemma 5.1, and Hy,; is given by Hnl = |z|"Yo,, z = |z|, € € QL.
Then v\ l is the only vector field of class pot(Qn) such that U |Q = yﬁl)l

Proof. The results of Lemma 5.2 follow from straightforward calculations. O

In terms of vector spherical harmonics the system (5.15) can be written as

o) (@) = oD () (€) + 7V (r)y ),
v (@) = o@(r)yl)(€) + 72 (r)y (), (5.16)
vl(z) = o (r)y)(E),

where r = |z|, x =rf, &€ Q and

=[n(n+1)]" 2n( + na)r" (1 = r?),
", (5.17)

= 7" (1 — na,(r* — 1)).
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The (Cauchy-Navier) system {vs)l i=1,23 n=0,0+1.,1=1,.,2n+ 1} is,
indeed, orthonormal in the sense that

/fo)l(ﬁ) n'l'(ﬁ)dw(ﬁ)Z i, Onmt OL 11 - (5.18)

Remark. By obvious modifications, this system can be reformulated with respect to a

sphere (25 of radius 8. More precisely, we are easily able to obtain vector fields Un l(ﬁ, )

in pot(QfB"t) satisfying vn,j(ﬁ, )y /Byﬁlj

?%2(Qp). The details will be omitted.

and an orthonormal condition in the sense of

Remark. Under the assumptions 3\ + 2 > 0, ¢ > 0 it is not difficult to deduce
the following estimates (cf. [34]).

Atp_1 3+ 1

=
w

=
w

Hence, for all n > 3,

_ 1no+24 30

S 2no+2n+1

11+ 242
21+2+L
12+ 2

< - —22 =1
21+

Moreover, for all n > 1, we have

3

1
<2.
ol <5+ <

no

Finally, we state the following lemma.

Lemma 5.3 Let K C Qs such that dist(KC,Q) > v > 0. Then, for all x € K,

oM ()] < (1 =71 +n),
(2

o (r)] < (n(n +1))2(1 —y)" !
oD ()] < (1 =)™

V()] < (n(n+ 1)1 =)™,
T2 (r)] < (1= (1 +n),

provided that n > 3, where r = |x|.
Finally, it should be mentioned that

2n+1
A7

o)l = sup_[vi)(@)] < 2(1+n)(1— )" €{1,2,3}.  (5.19)

TEQint
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5.2 Inner Displacement Boundary-Value Problem

As pointed out above, we deal with the following displacement problem. Given a contin-
uous vector field f: Q@ — R3, find u € pot(Qiy;) such that ulg = f

It is well-known (see, for example, [43]) that the unique solution of this displacement
boundary-value problem can be written as

u(z) = / g(z, ) f () dw(n), = € Uins, (5.20)

where g is the Green function of the displacement problem.

In particular, we obtain the following result.

Lemma 5.4 Forx € Qi 1 € {1,2,3},
w0i@) = [ ey st .21

Proof. The field vf:)l corresponds to the solution of Cauchy-Navier equation associated

to the boundary values y,(:)l on €. Hence, in connection with the uniqueness theorem the

representation (5.20) implies the required result. O
Observing this property we are able to formulate (see, for example [43])

Theorem 5.1 Let u be the unique solution of the inner displacement boundary-value
problem: for a given continuous vector field f : Q — R3, find u € pot(Qn;) so that
ulqg = f. Then u can be represented in integral form

u(z) = /Qg(:v,n)f(n) dw(n), =€ Qin. (5.22)

Moreover, u admits a series representation of the form

oo 2n+1

Zzz<f’ynl EZ(Q)UZ,( z), (5.23)

in the sense that

3 N 2nt1l . . 1/2
Jlim ( / O =333 < 1.98) >e@ va©)P dW(§)> =0 (5.24)
i=1 n=0; I=1

implies that the uniform convergence of the series to u on every subset K C €, with
dist(IC, Q) > 0, i.e.

2n+1

3 N
) =220 >0 < Lyl >e@ vi(@)

=1 n=0; =1

=0. (5.25)

lim sup
N—>oo =
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Once again, it should be remarked that the convergence in ¢*(2)—topology on Q implies
that the convergence in the sense of || - || & for all subsets K C i, with dist(K, ) >0

(cf. [34]).

Proof. (cf. [43]). By the completeness of the system {ys)l} in £2(Q) we have,

3 N 2n+1
Hf - Z Z Z (f(i))/\ (n,l)ysy)l — 0, as N — oo, (5.26)
i=1 n=0; =1 2(0)
for all f € 2(Q).
Moreover,
ue) = [ gl n)f) duo(o) (527
Q
and . .
W@ = [ glanl) doto) (529
Q
It follows that
3 N 2n+1 A ]
u(@) =YD > (1Y) (.l ()
=1 n=0; I=1
3 N 2n+1 A )
= /g(:r,n)f(n) do(n) =D > > (9" (n, l)/g(m,n)yff,)z(n) dw(n)
@ i=1 n=0; I=1 @

3 N 2n+1

F=325"37 () (o)

k=1 i=1 n=0; I=1 £2(Q)
3 N 2n+l A )

< O(K) ‘f 2D (|
1=1 n=0; [=1

Q)

where C'(K) is a constant depending on the set K C Q.
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This implies that

sup |u(x

zeK i=1 n=0; I=1
3 N 2n+1 )
CHR||F =222 iy
i=1 n=0; =1 2(Q)
The right hand side tends to 0 as N — oo, which completes the proof. 0
It should be remarked that the Green tensor kernel
3 oo 2n+1 . )
=33 3 @) eylim), =€, neQ (5.29)

can be equivalently written as follows:

sten) =3 22 o pit e b + fj{ 2”; ! }{T£I>(r)p;2’1> €}

+ i{%}{aﬁ?’)(ﬂp?’?”(é, n)}- (5.30)

n=1

Following this decomposition we write that

) = S o0 pnem |+ {2 0 ope e n

n=0 n=1
(5.31)
is associated to the radial displacements of f on €2, while
(2n+1
Bunle,) =3 2t W o2 0p2 ) + 72 (2 6 |
n=1
2n+1
ST (3) (3,3) 92
+ 2 {2 W ooepeen ) (5:32)

n=1

associates the tangential displacements of f on ).

5.3 A Multiscale Approximation

We begin by introducing an admissibility condition.
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5.3.1 (Scale Discrete) Cauchy-Navier Scaling Functions

Let £2(Qin; x Q) denote the set of all square-integrable functions defined on Qg x Q
equipped with the inner product

<hgSpn o= / / (2,6) : gz, &) dw(€) do (5.33)

znt

We begin our wavelet approach with the following definition (cf. [30]).

Definition 5.1 A piecewise continuous function 7o : [0,00) — R is said to satisfy an
admissibility condition, if

Z%( sup )\’yo(x)\> < oo. (5.34)

z€[n,n+1
We state the following definitions in parallel to the theory developed in [34].

Definition 5.2  Let the function ¢y : [0,00) — R satisfy the admissibility condition
(5.34) and the following properties:

(i) o is monotonically decreasing,

(1) o is continuous at 0,

(1i1) ¢o(0) = 1.
Then the real-valued function g is called the generator of the scale discrete Cauchy-Navier
scaling function ®f : Uy x Q — R3*3 defined by

co 2n+1

3
3 (z,n) =Y > ) (po()v)(=) @y (n), € Ui, n € Q. (5.35)

i=1 n=0; [=1

Definition 5.3 Let ¢y be a generator of a scale discrete Cauchy-Navier scaling function
&) as defined in (5.35). Then, for all j € 7, the dilated generator ¢; : (0,00) — R, is
defined by

0 () = po(277x), for all x € (0, 0). (5.36)

Moreover, the Cauchy-Navier scaling function <I’jD : Qine X Q — R3*3 4s given by

(e =33 D (e3(m)na@) @y, @€ Qny nEQ, jEL. (5.37)
Note that the right hand side of (5.37) is well defined, since the condition

> Do m)P < oo (5.39)

n=0

holds whenever the admissibility condition (5.34) for ¢y is satisfied (cf. [66]).

As an immediate consequence we are led to the following theorem.



Chapter 5. A Spectral Approach to Cauchy-Navier Wavelets 66

Theorem 5.2 FEvery discrete Cauchy-Navier scaling function @f , ] €Z, 1s an element
of class EZ(QM x Q).

Proof. To verify this result we reformulate a discrete version of a proof given in [34].

Considering the £2(Qy,,; x )-inner product (5.33) of two tensors vs)l ® ys)l and vff,”)l, ® yfj,l,)l,
we obtain

( (@) @) (@

z) ® yn 1 'n’ il X yn’ % >£ (Qomt Q) di’ilén’n’é‘l’ll||U£LZ’)1||€2(W)' (539)

For all n > 3 we get the estimates

/n il do = / / ( (o) i + () ) |> dw () dr
=/0 (o0 (r)’r dr—|—/01( ()% dr

1 1
< / r# 2 (1 4 n|ay|)*r? dr + / a2(n(n +1))r2n — 2r* dr
0 0

(1+n)? n(n+1) (n+1)
=(n
2n +1 2n+1 ’

W) ds = / [ (@205 + G201 ) doto) ar

1) 1
< 7n +1))" / r* 22 dr 4+ (1 +n)? / rn=2p2 |
nn+1) Jo 0

n(n+1) N (1+n)?
- 2n+1 2n+1 —

1
1
/ UT(Lgl)(LL')‘ dx :/ r2nt2p2 dp =
Qint , 0

2n+ 3
With the help of orthogonality we finally get the estimate

<

‘/Qint

<2(n+1),

oo 2n+1

3
1221 o = D0 D2 D (i)

i=1 n=0; =1

< oQ.

znt)

a
Definition 5.4 Let {<I>]-D}, Jj €L, be a (scale discrete) Cauchy-Navier scaling function

of level j. Suppose that the function f is of class £>(Q). Then the convolution of <I>§)
against f, <I>]-D x f, is defined by
@)= [ BFCn)f0) dotn) (5.40)
Q
Moreover, the scale space v; is defined by

= {@f xf | felrr(Q)}. (5.41)
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Now we are able to formulate the following theorem (cf. [34]).
Theorem 5.3 Let E € EQ(QW x Q) be a function which is representable in the form

oo 2n+1

E(z,n) = ZZZ@ ® (), (2,1) € Dt x (5.42)

=1 n=0; =1

in the sense of £2(Qins x Q), where € is admissible as defined in (5.34). Then the convo-
lution

=+ = [ St doto). ] e O, (5.43)
is an element of £2(Quns) expandable into a Fourier series as follows:
3 oo 2n+1 )
Exf=> 3 Y &n) < fynili) >em vl (5.44)
i=1 n=0; =1

Moreover, if [ € (), then this series converges uniformly in every subset KK C Qi
with dist(IC, Q) > 0
Proof. Since E is the £2(Q; x Q)-limit of the sequence of the partial sums

N 2n+1

ZZZ‘S . yO(m), NEN, 2 € Qup, n€Q, (5.45)

7
=1 n=0; I=1

and the field f is the EQ(Q)—limit of the partial sums
N 2nt1

S = Z S5 < hl ) (5.46)

i=1 n=0; [=1

we are able to write
Exf= N,Jlg,rg . sn(-m) far(n) dw(n)
N 2n+1 N 2n/+1

= wam Z DI Z E(n) < £,450 >eg@) vl /nyf}(n) -y (n) dw(n)
’ i,i'=1n=0; I=1 n'=0, I'=
3
)

oo 2n+1
=1 n=0;

Z £(n) < f, Zlﬁf)l >p2(q) Us)l
0; =1

To show the convergence in £?(Q;,;) we observe that
2
|| [ 1= sm@e s dsm
Qint Q

dx
<[ [1E=swenP dswmds | s,
Qint
=|E - SN||£2(mXQ)||f||Z2(Q))

— 0 as N — o0,
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/Qint

and

2

dx

/Q (5w (2, €)(f—f) (1) doo(n)

/mt/‘sN”‘?dw dx/lf Fnr)(m)]? dew(n)

< /_ / sl n)? dw(n) dell(F = Fin) e

—0 as N' — .

This implies that

Isw * fvr —E%* fllpgy — 0, as N,N' — oo, (5.47)
since

/ dx</ /\Hxn\de /|f )2 dw(n) do. (5.48)
m ant

To prove the locally uniform convergence in €2;,;, let ¢ and gy be given as follows.

| =) o)

2n+1

3 00
g=>.3"3" () < £,4) >ew v, (5.49)

=1 n=0; I=1

3 N 2n+1

av =33 Y 9(n) < f,4) >e@yl), NeN (5.50)

i=1 n=0; =1

Then it is not difficult to see that

oo 2n+1
lg(n) — =N < 158 e v )
i=1 n=N [=1
3 oo 2n+1 1/2 oo 2n+1 ' 1/2
(ZZ <oyt > )) (ZZ (v(n))2|y§,)l(77)l2>
i=1 n=N [=1 i=1 n=N =1
3 oo 2n+1 1/2 00 1/2
2n+1
(o33 <cnlistn) (3002} e
i=1 n=N [=1 n=N

The right hand side of (5.51) is independent of 7 and tends to 0 as N — oco. Hence, g is an
element of ¢(€2). In connection with Theorem 3.2, we are able to conclude that the series
(5.44) converges in the sense of || - || ) for every subset X C (2 with dist(K, €2) > 0 and

E % g € pot(§ine) is the solution corresponding to the boundary-value problem defined in
Theorem 5.1. ]
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Theorem 5.4 Let u be the unique solution of the inner displacement boundary-value
problem: for a given continuous vector field f : @ — R3, find u € pot(Qy,;) so that
ulg = f. Then

lim |87 * f — ulle2ge) =0, (5.52)
and,
. D _
Jim || # f — ull 5y =0, (5.53)

for all subsets K C Qs with dist(KC, ) > v > 0.

Moreover, if %, j < j', is also admissible in the sense that
J

o0
2 1 ;
> (A0 <o
c~  Ar \yjy(n)
®jt (n)#0

then the scale spaces form a multiresolution analysis in the sense that

v; C vy C pot(th)

o
U v, D pot(Qint) [ie-

JEZL

Proof. The points of departure are the representations

u(z) = / g(z,7) () deo(n)

/ S50 3 ) @l ) et

1=1 n=0; I=1

Moreover, from Lemma 5.3, we know the estimate

@) < 21+ m)(1 - )y P, (554
provided that z € K and n > 3.
For z € Q;,;, we now observe that
(@ * f)(z) — u(z)|
- / & 1)) dtn) = [ o)) (o)
oo 2n+1 ] ]
1 330> (st [ 00 1000 ot = [ 4o - o) o) ) oo
i=1 n=0; 1
00 2ln+1 )
= ZZZ p3(n) = 1) < foyy > e vi(e)
=1 n=0; =1
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By the Cauchy-Schwarz inequality it follows that

oo 241 ) 1/2
(@ * f)(2) — u(2)] < (ZZZ (¢5(n v@%(x)\) 1fllezy- - (5:55)

1=1 n=0; I=1

Since 0 < (p;(n) —1)> < 1and 35 3% 0; St \Uff)l|2 < 00, the above series is uni-
formly convergent with respect to j. Therefore we are able to formulate

. D
jlggo @5 * [ — ull )

< lim sup

J—oo €K

/Q B2 (2,7 f(n) dw(n) — u(z)

oo 2n+1

< lim sup (i DD (e

€K \ i=1 n=0; I=1

= sup (Z f: Qiﬂ (Jlggo 0i(n 1)2>

€K \i=1 n=0; =1

‘”(x)f) 17 ey da
Un,1 2(0)

o) (@) ) (Rl

=0.

To prove the multiresolution analysis, in connection with Theorem 5.3 we notice that
CI’]-D * [ can be regarded as solution of the displacement problem u; = <I>J-D x [ € pot(Qint),
®P « flo = g; € V(Q), where

3 oo 2n+1

9= > > (@i(n) < frup) >e) Yo (5.56)

Thus, since 0 < ¢;(n) < @;(n) for all n € Ny, we may conclude that u; € v;, wujlg =
g; € A9(Q) implies the existence of a function

3 [e’s} 2n+1
win i
”,_z 3 Z( j n)<f,ynl>2 o v (5.57)
n=0;

@ 1 (n)#0

in ¢(©(Q) due to the requirement that 2 ™) is admissible. Obviously, <I> kb= @D * f
@)1 (n) 95
such that <I>JD * fewvp.

Finally, for u € pot(Qy;) there exists a field f € ¢{©(Q) such that u|qo = f and tI>jD xf —u
uniformly on every subset K C €;,; with dist(C, Q) > 0. Since <I>]-D x few;forall j €Z,

we have
u € U U ,
JEZ

which completes the proof. (Il
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5.3.2 (Scale Discrete) Cauchy-Navier Wavelets

Next, we introduce scale discrete wavelets which facilitates the multiscale approximation
developed in the previous section.

Definition 5.5 Let ¢q : [0,00) — R be an admissible generator of a Cauchy-Navier
scaling function as defined in (5.34). Let 1y : [0,00) — R be a piecewise continuously
differentiable function satisfying the admissibility condition (5.34) and the property

Yo(r) = wo(2/2) — @o(z), = € [0,00). (5.58)

Then, the function 1y is called a generator of a Cauchy-Navier wavelets U} € £2(Qip X Q)

defined by
¥ (zm) =3 Z > wo(n)oll)(z) @y (), (5.59)

for (z,m) € Qs x .
Accordingly, the j™ level Cauchy-Navier wavelet \11]’.3 can be formulated as

3 oo 2n+1

P (z,n) = DFy (2,) = 3 3 3 (05(n)) 20 (2) © 9 (), (5.60)

i=1 n=0; (=1
for (x,1) € Qins x N and j € Z.

Definition 5.6 Let \Ilf be a discrete Cauchy-Navier wavelet of level 7, j € Z, as defined
above. Suppose that the function f is of class £*(2). Then the scale discretized Cauchy-
Navier wavelet transform (WT)P : £2(Q) — £2(Qins) is defined by

(W) (F)(a) = (W)« £)a) = [ #(a,n)f(n) d(), (5:61

for all x € Q.

Moreover, the corresponding detail space w;, j € Z, to a wavelet \IIJD , is given by

= {<I’].D xf| fer(Q} (5.62)

It should be remarked that the convolution <I>]-D * [ can be understood as a smoothing of
the original function f associated to the scaling function <I>]D at level j, interpretable as
a low pass filter. The convolution of the wavelet \IljD against f provides the information

(detail information) between two successive smoothing <I> x f and <I>J 1 * f, which is
known as band pass filter.

Moreover, the definition of the wavelets \IljD as the difference of two scaling functions
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<I>;-j +1 and @f enables us to decompose a scaling function @7, into a scaling function of
lower scale Jy, Jy < J, and wavelets ‘Ilf,j =Jo,...,J of the form

J
(I)?—I—l(xan) = (i’?g (./E, 77) + Z \Il]D(xan)a (5’3,77) € Qint x €. (563)
j=Jo

Defining the convolution operators p;’ and r?, j € N, by

p; (f)(z) = (87 * f)(=), (5.64)
7 (f)(@) = (7 * (@), (5.65)

T € Qing, [ € £2(2) we have the following representations for the scale and detail spaces
vj, wj, respectively.

v; = Py (£*(Q)), (5.66)
w; =15 (£2()). (5.67)

To be more explicit, we state the following lemma.

Lemma 5.5 Let {@f}, j € Z, be a (scale discrete) Cauchy-Navier scaling function

and {¥7} be the corresponding (scale discrete) Cauchy-Navier wavelets. If f € c(Q) is
gwwen, then for all J,,Jo € Z, J; < Jo,

Ja—1
> WP f=®) xf-B) «f (5.68)

Jj=J1

in £2(2)—sense. Moreover, the equality (5.68) also hold in the sense of || - ||y for all
subsets K C Qiny with dist(IC, Q) > v > 0.

Proof. We obtain by interchanging the sum and integration

Jo—1 Jo—1

S s =Y [ #Penr) dow
=/QZ‘I'§’(-,77)J”(77) dw(n)

J 3 oo 2n+1

- [EX Y wnlein) . (669

Qi—Jo i=1 n=0; I=1
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Using the addition theorem for vector spherical harmonics and the property ,;(0) = 0 we
arrive at a representation of the form

DI NTCEIEETURS ol €= R EREIRI

+10(l2)pl? (€ ) + o2 (|2))pE2 (€, m)

O p22 (€, 1) + oD ()PP, )}, (5.70)

for each fixed = € ;,, where, £ = x/|z|.

Using Lemma 5.3 and the property of Legendre tensors that \p(z’] (&,m)e¥| < 1 fori,j =
1,2,3, k € {1,2,3} (see [30]), we are able to deduce that the absolute value of each
component of the tensor in (5.70) is less than or equal to

5 () i -0 Hin s 1+ o+ )1

n=3
+(nn+1))2+m+1)+ 1 -7} (5.71)
Hence, the boundedness can be guaranteed, since |1 — | < 1. Consequently, the series

(5.70) is absolutely convergent, and uniform convergent with respect to j. Hence, by
interchanging the summations in (5.69), we are able to formulate

Jo—1 002n+1J21
DRIEVE /ZZZ 0y ) @ 35 (n) des(r)
j= 1n=0; i=1 j—Ji

oo 2n+1 Ja—1

- /QZ 23 2 (pmalm) = ey(men 1 ® (1) dw(n)

0; I=1 j=J1
2n+1
= [0 S s ) 018300 et
i=1 n=0; [=1
=) x f—®) x f, (5.72)
which completes the proof. Il

As a consequence, we finally arrive at the following reconstruction formula, which provides
a wavelet representation for the solution of the displacement boundary-value problem.

Theorem 5.5 Let {Q’JD}, Jj € Z be a (scale discrete) Cauchy-Navier scaling function
and {‘I']D } be the corresponding (scale discrete) Cauchy-Navier wavelets. Moreover, let
u be the unique solution of the inner displacement boundary-value problem: for a given
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f€c(), findu € pot(Qint) such that u|g = f. Then, the equalities

Jo—1
B xf=®) xf+> B xf, (5.73)
Jj=J1
u= (@) * f)+ > (WT)P(f), (5.74)
Jj=h

hold both in the sense of £2(Q) and || - ||y for all subsets K C Qiny with dist(KC, ©2) > 0,
for all Jl, Jo € Z with J; < Js.

Proof. In connection with Lemma 5.5 straightforward calculations yield

Jo—1
B xf+ > WPaf=BD wf+ (D w f— B« f) =B « f. (5.75)
Jj=J

Since the series §
N @®Pxf, J>, (5.76)
Jj=J1

is uniformly convergent with respect to j due to Lemma 5.5, the limit exists as J tends
to infinity.

Moreover, we see that

¢§*f:q>?l*f+§\1:f*f, J > Ji. (5.77)
j=T1
By virtue of Theorem 5.4 this leads to
lu— @7 % flloey =0 as J — oo. (5.78)
But this implies o
) x f+ D (B xf)=u (5.79)
Jj=J1

in the sense of || - ||, for all K with dist(/C, €2) > 0, which gives the desired result O

It should be remarked that, by letting J; tends to —oo, we can obtain a fully discrete
wavelet reconstruction formula for the solution of the displacement boundary-value prob-
lem. However, for numerical purposes, it is worth to consider a wavelet reconstruction
of (5.79) along with an initial filtered version @7 * f with a sufficiently small J; (for
example, J; = 0).
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5.3.3 Computational Aspects

For numerical purposes, we now develop an (exact) fully discrete wavelet representation
for the solution of the displacement boundary-value problem. We restrict ourselves to the
bandlimited wavelets (for example, Shannon or cubic polynomial wavelets). To calculate
the convolutions p; and r; in fully discrete form, we have to use an appropriate numeri-
cal integration rule over the sphere (for example, provided by [22],[30]). We construct a
tree algorithm (a pyramid scheme) that provides a recursive procedure to compute the
wavelet coefficients from level to level. The construction principles are similar to those of
the scalar and vectorial cases given in [7],[30],[77].

For simplicity, we suppose that the generator of the scaling function has a support such
that

supp o = [0, 1]. (5.80)

Accordingly, we have _
supp ¢; = [0,2’], (5.81)
supp 1; C [0,277]. (5.82)

Thus, the resulting scaling functions and wavelets satisfy (cf. [77])
&Pz, )¢ € pot(Te)
\IIJD(a:, )€’ € pot(Qiny),

where 1 = 1,2,3 and = € ;.

Moreover, it is not difficult to show that the corresponding scale and detail spaces with
respect to the bandlimited functions in £2(Q) are finite-dimensional subspaces in pot(€n¢)
(cf. [30]).

Assuming that a system {(ni,W,ivj) € QxR k=1,...,N;} constitutes an integra-
tion rule which is exact of order (2! — 1) within the bandlimited framework of (5.81)
such that (cf. [7],[30],[36])

Ni
py(f)(@) =Y W @ (x,n)) f()), = € Qns- (5.83)

k=1

Theorem 5.6 Assume that the scaling functions and the wavelets satisfy the conditions
(5.81) and (5.82). Furthermore, suppose that the system {(n.,W}) € Q xR, k =
1,...,N;} constitutes an integration rule which is exact of order 227+t — 1 for each scale
j € Ny. Then the solution of the displacement boundary-value problem has a discrete
(exact) wavelet representation

u(z) = (B0« f)(z) + 35 WED @, ) () (5.84)

§=0 k=1
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for all z € K for every subset KK C Qyny with dist(K,€2) > 0.

Moreover, if f is assumed to be bandlimited with level J € N, then the above represen-
tation can be reduced to

J N;j

u(@) = (B * (@) + D> W8P (@, u)) £ (), (5.85)

=0 k=1
where J is such that < f, yﬁf)l >p@=0foralln>2/* 1=1...2n+1,i=1,2,3.

Furthermore, we are able to express the J*»—level approximation of u, denoted by u;
of the form

J Nj
u@) = (@5 « N)(@)+ D > WCP (@ nl)f(n), Jo €No, Jo < J. (5.86)
j=Jdo k=1

Next we construct a tree algorithm for the computations of wavelet coefficients r;(f).
Basic steps are the well-known initial step and the pyramid step (cf. [26]).

Assume that for sufficiently large J € N there exist coeflicient vectors a,lch e R k=
1,..., Ny such that

Ny
D¢ . Njy,N.
Py () =) @7 n" ). (5.87)

k=1

We want to introduce an algorithm to obtain vector coefficients
ali = (af]j,...,a%;) eR¥N =1y, ..., J
such that
(a) the coefficients ai-1 is obtainable from a’i, j = Jy +1,..., J,

(b) the expressions pf(f) and r?(f) can be written as

N

PP (1)) =D ®P(.n)ay’, G =1Jo.o, ] (5.88)
k=1
Nj

P ()= @P(mNay’, j=Jo+1,..., (5.89)
k=1

For the initial step, we suppose that J € N is sufficiently large and, thus, we see that

ay? =W f(m?), k=1,...,Ny. (5.90)
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The aim of the pyramid step is to construct a’¥/-t from a’¥’ by recursion. At this point
we follow the procedure known from [77].

For arbitrary (fixed) x € €;,; we consider the convolution

@0+ £)@) = [ 810 0) dutr) .91
=D WP (z,0") f (i) (5.92)

In connection to the Shannon generators (see Section 5.3.4) and the definition of the
scaling function ®% the formula (5.91) can equivalently be written as

3 2/412n41

(@741 % f)(2) ZWNJ D0 vmil@) @y f () (5.93)

i=1 n=0; [=1

In light of (5.90) we are able to write
(@7, % f)(- Z ®7..(, . (5.94)

Since the coefficients akNJ, k =1,...,N; do not depend on the corresponding scaling
function (see, for example, [77]), we are able to formulate

(B2« f)(- Z@D NyalYs (5.95)

Observing the form (5.94) we obtain an expression for ®% * f introducing the values

akNJ ' k=1,...,Ny_; such that

Ny

(®7 % f)(- Z S apy ! (5.96)

Comparing the right hand sides of (5.95) and (5.96) we get the relation

Nj_1

Z@D g Z@D Jad. (5.97)

It is clear that the equation (5.97) has to be solved for akNJ ~! in terms of akN" . To obtain
an another equivalent form to (5.97) which may easily be solvable, we see that

Ny_1

/QZ (&, -yl d /QZQD & )ay’ -y dw(€),  (5.98)

k=1 k=1
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fori=1,2,3,n=0;,...,2771, j=1,...,2n+ 1. It follows that

NJ—I NJ
g Nj_1 Nj_1 1
y ) ay =Y gm0, (5.99)
k=1 k=1

fori = 1,2,3, n = 0;,...,2'71, j = 1,...,2n + 1. Thus the problem reduces to the
solution of the equation (5.99) which leads to the following theorem (cf. [30],[77]).

Theorem 5.7  The solution akN"’l, k=1,...,N;j_1 of (5.99) is given by

Njy_1 3 2741

B B 2n+1 .. B
a T =W N Y e ey (5.100)

=1 i=1 n=0;

Proof. The statement of Theorem 5.7 follows by quite analogous steps as given in [34]
for the scalar case. For more details concerning the tree algorithm we refer the reader to,
for example, [7],[77].

Taking into account the pyramid step (5.100) in connection with the multiscale repre-
sentation we finally obtain decomposition and reconstruction schemes as follows.

f = a% = a5 ... 5 a5 alw

! I ! 7N
20 () 2 1) ph ()
(decomposition scheme)
aVJo alNig+1 a1
1 1 \J

G () 2 (f)

hY h \

pr (f) —+— pp (f) —=++—> po_(f) >+ pL(f)
(reconstruction scheme).

Finally it should be remarked that in the evaluation steps of the tree algorithm, fur-
ther modifications can be undertaken to reduce the computational time. For example,
panel clustering techniques (cf. [44]), domain decomposition, etc. For more details the
reader is referred to [30],[44],[49] or the references therein.

5.3.4 Examples for Cauchy-Navier Wavelets

In what follows, we present some bandlimited scaling functions and wavelets. In order
to realize the localization properties of scaling functions and wavelets we illustrate the
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cartesian components and the Frobenius norm of those functions. The numerical imple-
mentation shows that the non-diagonal components of both scaling functions and wavelets
are dominated by their diagonals. This means that, for numerical purposes, the kernels
can be used as diagonal matrices neglecting the non-diagonal terms, when the higher order
levels are considered. Three different Cauchy-Navier scaling functions and wavelets up to
level 4 are presented. Note that the scaling functions <I>Jl-7 (z,-) and the wavelets \IIJD (z,-)
are considered for a given fixed point x € (2. Moreover, for the sectional illustrations, we
choose ¢ = 7/4 (fixed).

Shannon Wavelets

The compactly supported generator ¢, for Shannon wavelets is given by (cf. [30])

1 ifze]0,1
oola) = o (5.101)
0 else
and correspondingly the dilates ¢;, j € Z, have the representation
1 ifz €]0,2)
pj(z) = (5.102)
0 else.
Via the refinement equation we get the generator v; of the wavelet of level j, j € Z,
1 ifx e [27,27H)
¥(e) = (5.103)
0 else.
i E ,,,,,,,,, | - =4 s ’_‘,____ =z
(a) (b)

Figure 5.1: Generators for the Shannon scaling functions (left) and for the wavelets (right)
at levels 7 = 1,2, 3,4.
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It should be remarked that the Shannon generator provides orthogonal scale and detail
spaces. More specifically, we have v;.; = v; +w; with v; L w;, j € Z.

120

LN

100~

Norm of mjD (%)

Norm of WP (%)
3 ! 8
T T
. .

IS
8
T

20

Figure 5.2: Frobenius norm of the Shannon scaling functions (left) and wavelets (right)
at levels 7 = 1,2, 3, 4.

T T T T

s — Diagonal — Diagonal

PR — Comp (1,2),(2.1) — Comp (1,2),(2,1)
8 1 \ - = Comp (1,3),(2.3) [ * — = Comp (1,3),(2,3)
1 = Comp (3,1),(3,2) 251

=+ Comp (3,1),(3,2) {{
= = Norm

= = Norm

(x.*)

P

Figure 5.3: Components and the Frobenius norm of the Shannon scaling function (left)
and wavelets (right) at level 3.

Modified Shannon Wavelets

The modified Shannon wavelets have less oscillations than Shannon wavelets ([30]). They
may be referred as ’smooth’ versions of Shannon wavelets. However, they do not fulfill
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81
the orthogonal properties. More explicitly, the corresponding generator gy is given by (cf.
[30]),

1) (5.104)

where h € (0, 1) is an apriori given parameter. Thus, the corresponding dilates ¢;, j € Z
have the representation

1 if z € [0,27h)
pj(z) = ¢ 522 ifz € [27h,2)

(5.105)
0 else.

For this generator, three cases will be considered. h < 0.5, h > 0.5, and h = 0.5. Via the

refinement equation we can obtain three generators for v;, in particular, for A = 0.5, we
have

(0 if z € [0,2071)
1 (L252)  ifwe 2 2)
/2 )
Pi(x) = < A o 5.106
() (1721/32 :c) if 7 € [29,29%1) ( )
0 if z € 277 00).

12

12

08

0.8

o906

=06

0.4

0.4

0.2

0.2

10 15 20 25

Figure 5.4: Generators for the modified Shannon scaling functions (left) and wavelets
(right) at levels j =1,2,3,4.
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Figure 5.5: Frobenius norm of the modified Shannon scaling functions (left) and wavelets

(right) at levels j = 1,2, 3, 4.

6 T — T T T T 20 T T T T T T
=—— Diagonal = Diagonal
— Comp (1,2),(2,1) — Comp (1,2),(2,1)
- — Comp (1,3),(2,3)
~- Comp (3,1),(3.2)
= = Norm

K - - Comp (1,3),(2.3)
\ -+ Comp (3,1),(3,2) H
' - = Norm

Figure 5.6: Components and the Frobenius norm of the modified Shannon scaling function
(left) and wavelets (right) at level 3.

Cubic Polynomial Wavelets

To avoid the highly oscillating characteristic of the Shannon wavelets one can use alterna-
tively the cubic polynomial wavelets as a modified version, however, loosing the property
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of orthogonality. The generating functions are as follows (cf. [30]):

@) = { (()1 — 2)2(1 + 22) ;fl:; e [0,1) (5.107)

and then the corresponding dilates ¢;, j € Z:

(1—272)*(1+2279) ifz €]0,29)
pj(x) = (5.108)
0 else,
(1—279"1)2(1+2792) — (1 —272)?(1 + 27 z) ifx €[0,27)
Pi(z) = < (1 — 2797 12)2(1 + 279x) if z € [27,2711)
0 if z € [271!, 00).
(5.109)
(a) (b)

Figure 5.7: Generators for the cubic polynomial scaling functions (left) and wavelets
(right) at levels j =1,2,3,4.
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15+

Figure 5.8: Frobenius norm of the cubic polynomial scaling functions (left) and wavelets
(right) at levels j = 1,2, 3, 4.

T T T T T T T T
—— Diagonal = Diagonal
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N A = = Norm = = Norm

Figure 5.9: Components and the Frobenius norm of the cubic polynomial scaling function
(left) and wavelets (right) at level 3.

5.4 Green’s Function Associated to the Radial
Boundary Displacements on the Unit Sphere

Next we are concerned with the particular determination of the Green function associated
to radial displacements ([43]). To this end recall the decomposition of the Green function
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g in its normal and tangential splitting g = gnor + Stan (see, (5.30),(5.31)).

Lemma 5.6 Assume that the boundary function f : @ — R3® is a normal vector field to
Q, i.e. fis of the form f(n) =nH(n) with H € C(Q2), n € Q. Then, the unique solution
u of the displacement boundary-value problem can be represented by the integral

u(z) = /anor(x,n)f(n) dw(n), =€ Qins. (5.110)

Proof. It is sufficient to show that the integral [, 8an(,7)f(n) dw(n) vanishes when
the boundary function is of the special form f(n) = nH(n), n € Q with H € C(2). Hence,
we observe

oo 2n+1

[ s duton = [ 353 ((v,ﬁ"f;(o ® 42 m) nH<n>) duo(n)

n=1 j=1
oo 2n+1

<[y (<v£?3-(6) ® v () nH<n>) deo(n)

n=1 j=1
2n+1

>3 ([ s - nit o) ot o)

n=1 j=1

+ /Q Yy (n) - nH (n) dw(n) (vff;(f)))

which completes the proof, since yff;(n) -n =0 and yff’;(n) -n =0 for all n € Q. O

To get an explicit representation for the function g,,. we recapitulate the following iden-
tities (see [43]).

For 7 # —2 we have

ms (T)

an(2n+1) =m(r) + ma(r) + T (5.111)
ann(2n + 1) =my (T)n(2n + 1) + mQ;T) (2n + 1)+ (5.112)
where
ma(r) = —m, (5.114)
ma(T) = —(37;;1)(27; 1), (5.115)

m3(7) = —mq (7)ma (7). (5.116)



Chapter 5. A Spectral Approach to Cauchy-Navier Wavelets 86

Observing well-known properties of Legendre polynomials we obtain

- 1

P,(t)r™ = = Fy(r,1), 5.117
nX_% ) (1—=2rt+1r2)2 1(r.t) ( )
i@n NP = — T By (5.118)
e " (1—2rt+12)% s .
Zn(?n +1)P,(t)r" ! = %Fg(r, t) = F3(r, t), (5.119)
n=1
i ¥1Pn(t)r"‘1 _ () /T : 1 _ ds = Fy(r,t), (5.120)
=+ () o s'=(7) (1 — 25t + 2)3

where Fy, Fy, F3 and F} are the abbreviations for the series (5.116)-(5.119), respectively.

Substituting t = £ -, we get

Brole) = 2 307 e P )en+ RO 0n]  (2)
I O G CED) (5:122)

Set N
A= i@n + 1)r"t P, (1), (5.123)
Ay = 271(277, + Dy (r"t — r" P, (t), (5.124)
As = io(zn + Day (r™ ™ — r"H P (2). (5.125)

Hence, we have

Bror(1) = - (A + e @]+ Asl(n — (€ mE) ©]).  (5126)
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With the above notations we find

o

A=) @+ D)t P (t) = rF(r, ) (5.127)
Ay = ;[ml(ﬂn(?n +1)+ mQQ(T) (2n+ 1) + (ma(r) — mQQ(T)) - ’:"f?) . +1%+2]
=m0 - DEr ) + T2 (R
+ (ms(7) — mQZ(T))(r - %)FI(T, t) T?fz) (r — %)F4(r, t) = Fs(r,t), (5.128)

A5 = @20+ 1) (2 = 1P

-o1 gan@n LD = P

= 5 2 me) + mate) + 2Ly

= 5 I ) = 1)+ malr) (= D Dms(r) = Falr, )]

=(r— %)(ml(f)%z«g(r, t) + mQ(T)%Fl(r, t) + mg(f)%ﬂ(r, t)) = Fe(r,t). (5.129)

This finally leads to the representation

gnor(xa 77) = %(TF&(T: t) + F5(Ta t))[i ® 77] + %FG(% t)[(ﬂ - (f : 7))5) ® 77]‘ (5130)

Altogether, if only radial displacements are prescribed on the spherical boundary, the
above explicit form can be used efficiently to solve the displacement boundary-value prob-
lems by numerical integration. Finally, it should be remarked that, in order to obtain an
implementable representation for the complete Green function including tangential parts,
further investigations are required.



Chapter 6

Numerical Results

In this chapter we are concerned with the numerical realization of the wavelet approxi-
mations developed in previous sections.

6.1 A Test Example - Use of Cauchy-Navier Wavelets
Associated to Layer Potentials

We present some test examples for the geoscientifically important case of a sphere (i.e.,
Y =Q).

6.1.1 Spherical Approximation of Vector Fields by Layer
Potentials

For this purpose, we first consider the vector field f : @ — R? given by

r063 7_1§€'63§h
2
h—¢-€
f(é):<%<h£1)€3 7h§§'63g% (61)
2
(osfe))e o econ
\

with h = 1/2 (cf. [37]).
The third component of the boundary function f is illustrated in Figure 6.1.

We are particularly interested in approximating (the third component) of the vector func-
tion f by our wavelet approach based on layer potentials (as prescribed above). Figure 6.2
shows the sectional illustration of approximations of the boundary function corresponding
to the Y —scaling function @S?) for different levels, i.e. 7, =277, j =1,2,3,4. Note that,
in each evaluation step, a sufficiently large number of equiangular longitude-latitude grid

88
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points on the unit sphere has been used in order to avoid oscillations in the approximation
process.

Boundary values
1 T T T
Boundary values sl i
2 5}
o
=2 Sost q
5 £
o] o
£ Soar |
8 =
° 2]
= T o2f i
o
)
0 L L L L L
0 05 1 15 2 25 3 35
0
(a) (b)

Figure 6.1: Functional values of f (third component): (a) on a longitude-latitude grid of
points on  (b) one-dimensional sectional illustration.

Boundary approximations at levels 1,2,3,4
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Figure 6.2: Sectional illustration of the scale approximations of f (third component)
associated to the X —scaling function @g) for j =1,2,3,4.

In accordance with Theorem 4.1 it may be expected that our multiscale procedure also

provides a good approximation of u € pot(§2;) with ulq = f inside Q. However, we did
not make effort to make a more detailed quantitative description.
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6.2 Test Examples - Use of Cauchy-Navier Wavelets
Associated to Vector Spherical Harmonics

In this section, we apply our multiscale procedure (i.e. the spectral approach to wavelets)
for a simple inner displacement boundary-value problem, of which the boundary is as-
sumed to be the unit sphere 2 and an analytical solution is explicitly known for €;,;. In
contrast to the test problems, where only the boundary function is known (for example,
Section 6.1 or real geophysically relevant problems), this test example enables us to check
the accuracy of the approximation in the inner space {2;,;. For simplicity, we investigate
the obtained accuracy of the solution on the surface of €5 C 4y and the scale ap-
proximations of given boundary function. To be more explicit, we consider the solution

u € pot(§ip;) corresponding to the boundary field u|q = f given by
_ 1% 5
J@) === ~ 5573

We choose, in particular, 0 = 2.5 (i.e. A =2, u=3).

(22 + 22 + 22)é + %é”, o #0. (6.2)

The following figure shows the exact boundary displacements under the displacement
function f.

X
Rupet

Figure 6.3: The reference (left) and the deformed (right) configurations of the unit sphere
Q) associated to the displacement function f.

We compute the multiscale approximations of the inner displacements on the sphere €2/,
for the first five levels by means of three different type of wavelets, namely, Shannon,
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modified Shannon and cubic polynomials wavelets. For the quantitative analysis of the
accuracy, the radial and tangential displacements are taken into account. Following figures
show the exact radial displacement quantities and tangential displacement vectors on 8— ¢
plane, by gray scale colormaps and arrows, respectively.

Q.

0.05

dalstatetetet o/ 7/ /

5
P
-
P
P
<«
e

-0.05

Figure 6.5: The (exact) radial and tangential displacements on the sphere
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6.2.1 Multiscale Approximation - Scale and Detail Reconstruc-
tions (Global)

In what follows, we approximate the displacements over the sphere 2;/, using the bound-
ary displacements over the whole unit sphere 2. Since the evaluation of wavelet coefficients
naturally consists of integrations over the unit sphere 2, we have to use an appropriate
integration rule. We use an equiangular longitude-latitude grid system where the integra-
tion weights are explicitly known (see, for example, [22]). Moreover, assuming that the
wavelets are bandlimited, we are able to use an exact integration rule as mentioned in
Chapter 5.

Assuming that the boundary displacement function is bandlimited, we compute our mul-
tiscale approximations by using three different bandlimited wavelets mentioned above. In
each case, the multiscale approximations are observed until the detail information are al-
most negligible. Moreover, at each level j, a sufficiently large number of equiangular grid
points are used for numerical integration so that the exact integration is assured (see, for
example, [22],[30]). The following series of Figures 6.6-6.13 show multiscale reconstruc-
tions.

It should be remarked that we use gray scale colormaps for the radial displacements
and arrows for the tangential displacement vectors of each approximation. Moreover, in
order to show the quantitative properties of results, we scale the size of arrows at each
level taking the exact tangential displacement vectors as the reference size.

Multiscale Analysis Using Shannon Wavelets

-0.05

(a) Scale at j =1 (b) Detail at j =1

Figure 6.6: Scale and detail reconstructions by Shannon wavelets.
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Figure 6.7: Scale and detail reconstructions by Shannon wavelets.
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Figure 6.8: Scale and detail reconstructions by modified Shannon wavelets.
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(b) Detail at j = 2

(a) Scale at j = 2

(d) Detail at j =3
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(e) Scale at j =4

ified Shannon wavelets.
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Multiscale Approximation Using Cubic Polynomial Wavelets
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(c) Scaleat j =5 (d) Detail at j =5

Figure 6.11: Scale and detail reconstructions by cubic polynomial wavelets.

Next we evaluate the scale approximations for boundary displacements (i.e. displacements
on ) by using cubic polynomial wavelets up to level 5. For the purpose of comparing
those results with the scale approximations of inner displacements, we plot the results
together with scale approximations obtained on €2;/5. The Figures 6.12 - 6.13 illustrate
the radial and tangential displacements. It should be noted, once again, that the arrows
of tangential displacement vectors are scaled taking the exact values on € and 2,
respectively, as the reference scales.
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In conclusion, the Shannon wavelet approximation has provided a fast convergence pro-
cess where the detail information is rapidly decreased. One may conclude that, this is
due to orthonormal property of the Shannon wavelets. Since the spectral coefficients of
Shannon wavelets are either 0 or 1, whole information of the boundary data are covered
up to a certain degree in terms of vector spherical harmonics (see, Figure 5.1). However,
a major drawback of Shannon wavelets is the oscillating characteristic in the detail re-
constructions. It may happen in higher level resolutions due to the sharp cutting of the
wavelets in the frequency domain.

Furthermore, a smooth version of bandlimited wavelets, i.e. the cubic polynomial wavelets
give a slowly decreasing but smooth process in detail reconstruction. However, higher level
resolutions are required to get a better approximation.

For the quantitative analysis of the accuracy, one can consider different types of error
measures, in particular, we use the mean absolute error e, defined by

Curs = % 3 Ju(z) — (o), (6.3)

rEB
#B=n

where B denotes the point set which contains n points.

The vector fields v and @ are the exact and approximate displacements, respectively.
Error behaviour of our three different wavelet approximations on €2;/, is given by the
following figure.

0.03

T T
—— Shannon

— — Cubic Polynomial
— - Modified Shannon

0.02- \

Level

Figure 6.14: Mean absolute errors (eqs) of three different wavelet approximation of the
inner displacements on ;5.
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6.2.2 Multiscale Approximation - Scale and Detail Reconstruc-
tions (Local)

In the remaining part of our numerical realization, we illustrate the multiresolution in
terms of cubic polynomial wavelets. Since the cubic polynomial wavelets are smoother
and localize in the space domain, we expect to obtain a better local resolution for the
scale approximations of the displacement field.

In what follows, we consider again the same displacement boundary-value problem (i.e.
the test example of Section 6.2.1) using only a part of the boundary displacements on
the sphere (2. More specifically, we use the boundary function to be given for the region
é € [0, 2.09439] (= [0°, 120°]), 6 € [0, 1.04719] (= [0°, 60°) on 2. For simplicity, we only
approximate the (inner) displacements for the region prescribed by ¢ € [0.8901, 1.2043]
(= [51°, 70°]), 6 € [0.4450, 0.6221] (= [25°, 35°]) on the surface Qg9 (see Figure 6.15).
Moreover, to avoid the boundary effect to the approximate solutions (i.e. Gibb’s phe-
nomenon), a sufficiently large number of boundary data, that covered the evaluation
area, are used for the boundary integrations.

Figure 6.15: The test region of the multiscale approximation (local). The dark points in
the middle describe where the approximations are evaluated.

In order to illustrate the multiresolution idea, we plot a series of pictures of scale ap-
proximations and detail reconstructions (see Figures 6.16 - 6.17). In those pictures, the
quantities of inner displacements are presented by their magnitudes (i.e. by using the
Euclidean norm).



Chapter 6. Numerical Results 101

=1

06

0.082

055 0.081
05 0.08

0.079

09 0.95 1 1.05 11 115 1.2
0 j=2

0.6
0.135
0.55
0.13
@
0.5 0.125
0.12

09 0.95 1 1.05 11 115 1.2
¢ =3

06 N 0.05
055
. 0.045
05
0.04
05 11 115 12

095 1 105 11 115 09 095 1 105
¢ ¢

o
©

0.95 1 1.05 11 115
¢ j=2

s
N

o
©

0.95 1 1.05 11 115
¢ j=3

s
[N}

4
©
I
N

=4

0.3

0.29

0.28
0.27

0.9 0.95 1 1.05 11 115 1.
¢ j=5

IN)

0.3

0.29

0.28

0.27
09 095 1 105 11 115 1.

9 j=6

N

0.31 - 0.00048
0.3 0.00046
0.29 0.00044

0.00042
0.28

0.0004

0.27

09 095 1 105 11 115 1.

[N}

Figure 6.16: Multiscale approximation of displacements on €2 g9 at levels from 1 to 6. The
Euclidean norm of the scale (left) and detail (right) reconstructions of the displacement
vectors.
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Figure 6.17: Scale approximation and exact values. Euclidean norm of the scale approxi-
mation at level 7 (left) and the exact displacements (right).

Looking at the above results, we see that the detail information at level 6 is nearly
negligible. Hence, we conclude that a better approximation can be obtained locally,
within the first 7 resolutions by cubic polynomial wavelets.

6.3 An Application to Deformation Analysis of the
Earth

In what follows, we are concerned with an application of our Cauchy-Navier wavelet ap-
proach developed in Chapter 5. The deformation analysis of the Earth’s interior near to
the surface is approximated from displacements on the spherical Earth’s surface assumed
to be spherical. The boundary displacement vectors under consideration are computed
from mean velocity displacements obtained from GPS satellite measurements (see, for
example, [16]).

As it is well-known, the Earth is a deformable body and its shape is continuously un-
dergoing changes; thus the relative positions of the points on the Earth’s surface change
continuously. Three-dimensional movements (displacements) on the Earth’s surface and
the interior are a consequence of various physical and anthropogenic processes within the
Earth’s system. For many areas, the Earth’s surface is subject to small but important
displacements known as Earth’s deformations, like uplift, lateral movements, elastic de-
formation, etc. Those can be understood in a sense of (spatial) global and local changes
of the relative positions and occur due to many reasons such as tidal forces, active tec-
tonic processes, Earth rotation and polar motion and crustal loading and unloading. The
movements of the tectonic plates due to the tidal forces may cause to change the Earth
gravity field and the shape of the Earth as a rigid body, whereas the time varying surface
loads cause to crustal deformations (locally) which may create cracks in the Earth’s crust
(that are, however, not considered of this work).
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6.3.1 Crustal Deformation

The Earth’s crust is composed by lithospheric plates with varying thickness from 10 to
80 km having the average density of p = 2.67g/cm?®. This crust is affected by various (re-
gional) loading and unloading processes. Being considering the Earth’s material simply
as a solid the Earth’s crust exhibits the non-linear stress-strain behaviour. Practically, in
some regions, the Earth’s materials may behave strain-rate sensitive obeying the Hooke’s
law and, thus, the Earth’s deformation can be modelled by using the the concepts of
elasticity theory. Many crustal rocks exhibit (linear or nonlinear) elastic properties with
a Young modulus dependent on the confining pressure having a Poisson’s ratio in a range
from 1/10 to 1/2 (for the most of rocks it is 0.27 (cf. [50]). In this context, the study of
the elastic deformations of the Earth crust plays a considerable role in the Earth sciences.

Even though most surface displacements have minor effect on landscapes and ecosys-
tems, there are several advantages such as the determination of where drainage channels
are suddenly displaced by faults, where the highest displacements occur which exceed the
elastic limits and cause a crack (known as crack problems). Another important example
is the deformation analysis of lake areas, where the displacements may occur due to the
changes of the water load on it. Such an analysis had been done by Tiicks, ([81]) for
deformation analysis of the Blasjo lake, in Norway by satellite and terrestrial data. The
crustal deformation analysis based on classical geodetic measurements has been subject
to a large number of research directions (see, for example, [19]). Many other possible
problems have been discussed by several scientists (see, for example, [13],[21],[54],[83]).

6.3.2 Deformation Analysis for the Nevada Area Using GPS
Measurements

In this study, we use the Nevada region (USA) as our test area for modelling the elastic
deformation. This area lies between the longitudes 125.0W and 115.0W and latitudes
32.5N and 42.5N. From Geophysical point of view, the choice of this area is justified,
because it has found that the Nevada region located in the North American tectonic
plate is a most active deformable area in the USA. During the past decade, three con-
siderable Earthquakes and several minor movements occurred in this area ([72]). In our
approach we determine the elastic deformation in the Nevada region using the mean sur-
face displacement velocities measured during the time period 1994-2000 determined by
GPS (Global Positioning System) geodetic measurements. Mean velocities are used to
calculate the mean surface displacement rates in which the several stations, spread evenly
throughout the considered area, are selected. It is worth to mention that the geodetic
measurements with GPS are widely applied in geophysical studies. At present short-term
crustal deformation can be detected within the accuracy of 2mm by using space tech-
niques. For more detailed informations on numerous applications, the reader is referred
to, for example, [17],[19],[70],[78],[82]. However, our work is restricted only to the analysis
of mean deformation of the interior using readily available boundary data.

At this point it is worth mentioning the well-known datum problem. Roughly speak-
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ing, a geodetic datum defines the size and shape of the Earth as well as the origin and
orientation of the coordinate systems used to map the Earth. The technological advance-
ments that have made possible global positioning measurements with sub-meter accuracies
require careful datum selection between coordinates. Referencing geodetic coordinates to
the wrong datum can result into large position errors. The commonly chosen coordi-
nate system is the latitude, longitude, and height system. The Prime Meridian and the
Equator are the reference planes used for defining longitudes and latitudes. Moreover,
three-dimensional positions can be determined in an Earth fixed coordinate system with
respect to the center of mass. For more details about the datum problem, the reader is
referred to geodetic literature.

In our consideration, we start from boundary displacements which are available in carte-
sian coordinates for a certain subarea of the Earth. To be more specific, we consider a
set of nodes to be given in an Earth’s fixed coordinate system such that every displace-
ment vector is associated to one of the members of the nodal system (see Appendix C).
Necessary information and data are available in the web site http://quake.wr.usgs.gov/ re-
search/ deformation/ gps/ auto/ CL.html maintained by the USGS-Earthquake Hazards
Program- Northern California.
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(a) (b)

Figure 6.18: California and Nevada areas (USA) and GPS stations - the test area. (Source:
USGS - Earthquake Hazards Program- Northern California).

It is worth mentioning that one can use the (original) scattered data set (see Figure
6.19(a)) directly for wavelet approximations introducing an appropriate integration pro-
cedure. However, for simplicity, we wish to apply a readily available numerical integration
rule which we have used in previous test examples. For this purpose, as it is essential
to have boundary data on equiangular grid points, we evaluate the mean boundary dis-
placements on each equiangular grid point by taking the average of given displacements
at neighbouring points. The Figures 6.23(a)-6.23(b) show the scattered data and the
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estimated values of them on equiangular grid points.
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Figure 6.19: (a) 1994-2000 average horizontal velocities of the crustal deformation at
115 points measured using GPS (source : USGS - Earthquake Hazards Program- North-
ern California). (b) 1994-2000 average horizontal velocities of the crustal deformation
transformed to equiangular longitude-latitude grids.

Missing boundary data in the considered region are filled up by using appropriate linear
interpolation and extrapolation procedures. The complete set of boundary displacement
vectors is shown in Figures 6.20(a)-6.20(b). In these figures, the gray colormaps show the
Euclidean norm of the boundary displacements, whereas the arrows represent the hori-
zontal displacements.
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Figure 6.20: (a) 1994-2000 average crustal deformation of the region covered by latitudes
34N — 45N and longitudes 121W — 110W (i.e. ¢ € [239°,2509],6 € [34°,45°]) including
extended (interpolated and extrapolated) data. The gray colormap represents the mag-
nitude of the mean deformation in mm and the horizontal displacements are prescribed
by arrows. (b) Magnitude (Euclidean norm) of the mean displacements in mm on 6 — ¢
plane.

We use the above boundary displacement vectors and our wavelet technique with cubic

polynomial wavelets to approximate displacement fields in the region covered by latitudes
38N — 41N and longitudes 117W — 112W (i.e. 0 € [38°,41°], ¢ € [241°,2467]).

For this particular data set (see Appendix C), we see that the radial displacements are
nearly negligible compared to horizontal displacements. Therefore, for simplicity, we
transform the data onto a spherical boundary. We use a spherical Earth’s surface with
mean radius 6731 K'm and approximate the displacements in the interior on the spherical
area of radius 0.999 x 6731 K'm covered by the above longitude-latitude boundaries.

The following figures show the multiscale approximations up to level 8. We present
our results in two different forms: using the magnitudes of the approximate displacement
vectors and considering the tangential displacements. For more convenience, we scale the
vectorial quantities of scale approximations as in previous sections taking the results at
level 8 as reference scale. Moreover, in the representation of detail information, we use the
detail reconstruction at level 1 as reference values. The Fuclidean norm of displacements
vectors (the magnitudes) is represented by gray colormaps. It should be remarked that
the arrows in Figures 6.21-6.23 (i.e. the horizontal displacements) are appeared in one
direction, because, the changes of the directions are almost negligible compare to the size
of the displacement vectors.
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Figure 6.21: Multiscale approximation of displacements at levels 1,2, 3. The magnitude
(gray colormap) and tangential displacements (arrows) of scale (left) and detail (right)
reconstructions.
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Figure 6.22: Multiscale approximation of displacements at levels 4,5. The magnitude
(gray colormap) and tangential displacements (arrows) of scale (left) and detail (right)
reconstructions.
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reconstructions.



Chapter 7

Concluding Remarks

The focus of this work had been to develop two families of wavelet solvers for the inner
displacement boundary-value problem of elastostatics. The methods we developed are
particularly suitable for the deformation analysis corresponding to geoscientifically rele-
vant (regular) boundaries like sphere, ellipsoid or the actual Earth’s surface.

The principal idea of our spatial approach to Cauchy-Navier wavelets discussed in Chapter
4, is based on the classical limit and jump relations of elastostatics. The overall approach
can be viewed as a first attempt to 'short-wavelength modelling’, i.e. high resolution of
the fine structure of displacement fields. The method is restricted to the homogeneous
and isotropic case of linear elasticity, hence, it should be formulated under more com-
plex (geo)physical assumptions in future investigations. We believe that the ’zoom in’
procedure as presented here will become a flexible and useful technique of microstruc-
tural analysis of elastic displacement fields on regular boundaries. It is a drawback for
complicated geometries that we have to resort a suitable linear system solver to obtain
the wavelet coefficients of the resulting integral equations for solving the boundary-value
problem for inner displacements. The difficulties can be overcome by establishing integra-
tion rules over regular boundaries. But it should be noted that, the multiscale structure
together with the pyramid scheme dramatically reduce the computational effort.

It has been shown that the spectral approach to Cauchy-Navier wavelets provides an
efficient numerical procedure to approximate the solution of the inner displacement boun-
dary-value problem associated to spherical boundaries. The resulting algorithms are sim-
ple and efficient. In contrast, solving the associated linear systems, the inherent advantage
of this method is that we need only boundary integrations to approximate the inner dis-
placements. Moreover, the use of the wavelet strategy provides a ’zoom in’ property to
handle the problems locally, which is of practical significance in many geoscientific prob-
lems for (local) deformation analysis. The method provides sufficiently accurate solutions
only within less multiresolution steps when compared to the exact solutions for the test
problems considered. Moreover, it is demonstrated in numerical examples that the cubic
polynomial wavelets are particularly well suited in both global and local problems. The

109
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test problem we dealt with real data can be viewed as the first step towards practical
applications, and illustrates the large potential of the method. The method is ready to
take on the challenge for solving more applied geoscientifically relevant problems in a
straightforward manner.

In order to accelerate the evaluation process of tensorial kernel functions appearing in
both approaches, the knowledge of, for example, Fast Multipole Methods and Domain
Decomposition Techniques can be applied with necessary modifications. That is, how-
ever, beyond the scope of this work. Moreover, there are a number of ways to extend
the methods presented in this thesis. The following avenues of research show particular
promise: (i) The spatial approach to Cauchy-Navier wavelets has originated from the
concept of fundamental solutions. In doing so, the method can also be established for the
solution of problems which have more complicated fundamental solutions such as prob-
lems involving anisotropic materials, where, however, the corresponding limit and jump
relations have to be specified in close adaptation to the physical reality. (ii) The spectral
approach can be formulated on non-spherical regular boundaries as well, in which a com-
plete reformulation according to the Cauchy-Navier theory and non-trivial modifications
are essential. This is a challenge for future work.



Appendix A

Further Results on Cauchy-Navier
Scaling Functions and Wavelets

In this section we present a graphical representation of Cauchy-Navier scaling functions
and wavelets considering the tensors componentwise. We consider the Shannon and the
cubic polynomial functions at the levels 1,2,3 and 4. The corresponding scaling and
wavelet functions Q’JD (z,-), \IIJD (z,-) are evaluated over the § — ¢ plane being z € (—1,1,0)
fixed. (i.e. the fixed point z is represented by polar coordinates as r = 1,¢ = 7,0 = w/2.)

A.1 Shannon Scaling Functions and Wavelets

1 |
0.15 0.2 0.25 0.3

Figure A.1: Shannon scaling function at level 1.
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Figure A.3: Shannon scaling function at level 2.
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Figure A.4: Shannon wavelet at level 2.
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Figure A.5: Shannon scaling function at level 3.
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Figure A.7: Shannon scaling function at level 4.
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Figure A.8: Shannon wavelet at level 4.

A.2 Cubic Polynomial Scaling Functions and
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Figure A.9: Cubic polynomial scaling function at level 1.
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Figure A.13: Cubic polynomial scaling function at level 3.
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Figure A.14: Cubic polynomial wavelet at level 3.
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Figure A.15: Cubic polynomial scaling function at level 4.
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Appendix B

Auxiliary Results

B.1 Partial Sums of Legendre Series via Clenshaw’s
Algorithm

The general problem is to compute the sums of the kind
N
Sn(t) = A T,(1), (B.1)
n=0

with the constant coefficients A,. The function T, () is assume to satisfy the difference
equation

To(t) — an(t)Th1(t) — by(t)T2(t) =0, b, #0, n=2,...,N. (B.2)
To the above problem the well-known Clenshaw’s algorithm is given by
UN+1 = UN+2 = 0, (B3)
Un =An+an+1Un+1+bn+2Un+2, for n = N,N— 1,...,]_, (B4)
SN == (AO + b2U2)T0 + UlTl- (B5)

In case of calculating the coefficients of Legendre tensors assciated with the scaling func-
tions and wavelets in Chapter 5, the problem is to compute the finite sums which are
similar to the form (B.1) in which 7,, represents the Legendre polynomials. Therefore,
in what follows we construct a modified form of the Clenshaw’s algorithm for the partial
sums (B.1) where the function 7}, is replaced by the Legendre function P, and its first
two derivatives. Our purpose is to go through the complete proof of the algorithm for the
general setting given by

SN(t) = i Anprsm) (t)’ (B6)

where m represents the order of the derivative of P, with respect to t and m = 0,1, 2.
Note that for each m, the function P\™ (t) satisfies the difference equation (B.2) and thus
the method can be applied as well. Hence we state the following.
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Lemma B.1 Let P, be the Legendre polynomial of degree n. Then the followings hold:

Po(t) — (2" - l)tPnl(t) - (n - 1>Pn2(t) =0, neN\{0,1} (B.7)

n

P;(t)—(%_l)tp,;_l(t)—< ” )P;L_Q(t)zo, n €N\ {0,1,2} (B.8)

n—1

P(t) — (2" - 1>tP;;_ (t) — (Z “_L ;)R';_Q(t) =0 neN\{0,1,2,3). (B.9)

Moreover, considering the above three equations the general form can be written as

P (t) — a™(t) P () — b P () = 0, (B.10)
where
2n — 1 n+m-—1
m(t) = t. ()= —— and N\{0.1.... 1 Ny.
an() n_ma n() n—m and n € \{’ ) am+ },mE 0

Lemma B.2 Let the recurrence relation of the derivatives of the Legendre functions
P,Sm), m € Ny be given by (B.10). Then the partial sum

N
Sy =Y A.Pm(t) (B.11)

with the constant coefficients A, is given by the Clenshaw’s algorithm of the form

UN+1 = UN+2 = O;
Uk = Ak + a’k+1Uk+1 + bk+2Uk+2a fOT’ k= NaN - 1) ceeym ot 1a

Sx = (Am + busoUnns2) P (8) + U1 P

This lemma can easily be proved using the technique given in [18].

Proof.
Recall the difference equation

PI™(t) — ag(t) P (8) — b P (1) = 0, (B.12)
m=0,1,..., n=m+2,m+3,---.

Assume that, for instance, Py" (t) # 0 for all ¢ € [—1,1]. Then the fraction

P (1)
P (1)

. m
- am—i—l
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can be defined.
Observing the equations

P (t) = PiM(t) (B.13)
P (8) — ajp PV (1) = 0 (B.14)
together with (B.11) we obtain the linear system of equations
Mqg=r, (B.15)
where
[ 1 0 \
—a7, 10
b2 —Omio 1 0
M = 0 —bmys —Omys 1 ’
\ i - 1)
B ) P 1)
P (t 0
q= m+1( and 7 =
Pi™ (1) 0

Since det(M) # 0, M~! exists.
Letting a’ = (A, Ay, ..., Ax)" and u' = (Up, Upgr, - .., Un)? we get the sum

N
Sy =Y AP (t) =a"q=d" (M 'r) = (M "a)"7. (B.16)
Taking the vector u such that MTu = a we obtain,
Sy = (M Ta)'r = uTr = U, P{™(2). (B.17)
Observing the linear system M7y = a we find for k = N,N —1,...,m+ 1,
Uk = Ak + (J,ZLU]H_l + bZnUk_}_g. (B18)

Substituting the relations U,, = A, +al Uy +000 U yo and (B.14), finally we obtain
Sy =Um P (1)
=(Am + app Unr + 0 o Un2) PU(2)
=(Apn + by o Unms2) P (8) + s Una P (8)/
=(Am + b Um2) P& (8) + Unt PSD (8). (B.19)

Now the assumption PU™(¢) # 0 can be relaxed. Then the results in (B.18) and (B.19)
together with the auxiliary conditions Uy = Uy11 = 0 complete the desired proof. [J

Finally, corresponding to our computational work we state the following corollary.
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Corollary B.1 Let the conditions of Lemma B.2 be given. Then the partial sums

N
Sy=Y_ P™(t), m=0,1,2, N>m, (B.20)

n=m

are given by the following three forms of the Cleschew’s algorithm:
(a) For m =0,

Unvi1 =Uni2 =0,

Uk :Ak+ak+1Uk+l+bk+2Uk+25 fO?"k:N,N—l,...,l,
Sy = (A() + bQUQ) + tU;.
(b) Form =1,
UN-|—1 = UN+2 = 0,
Uk :Ak+ak+1Uk+l+bk+2Uk+25 fO’I"k:N,N—l,...,Q,

SN = (Al + bgUg) + 3tU2
(c) For m =2,

UN+1 = UN+2 = Oa
Uk = Ak + ak+1Uk+1 + bk+2Uk+2, fOT‘ k= N, N — 1, ey 3,
SN = 3(A2 + b4U4) + —15tU3



Appendix C

Crustal Deformation Data

C.1 GPS Measurements

GPS measurements of 1994-2000 average surface displacements in Nevada region

Station Lati(d) Long(d) Hight(m) M.0.T N(mm) E(mm)  Up(mm) X Y Z Ux Uy Uz
1 39.2847 -118.3031 2006.9270 1994.4562 -13.98 -11.26 -0.05 -2404910.5840 -4165374.5876 4176899.7850 -14.14 -2.08 -10.85
2 41.1622 -119.9997 1860.4360 1994.5274 -14.06 -11.61 =-0.05 -2437640.4098 -4223066.8570 4099566.8889 -14.66 -2.18 -10.62
3 40.2450 -118.0056 1210.8115 1996.8161 -14.06 -11.41 -0.05 -2084794.6061 -4306501.9368 4206355.6756 -14.41 -2.13 -10.76
4 41.5111 -114.1682 1907.2390 1997.8949 -12.81 -12.33 -0.04 -2230787.5469 -4693201.7419 3687325.6562 -14.78 -2.24 =-9.62
5 35.5410 -114.5772  777.2983 1997.1104 -12.69 -10.99 -0.04 -2449777.5147 -4295450.8655 4018103.1284 -13.08 -1.91 -10.35
6 35.1132 -113.1716  660.9141 1994.3753 -12.50 -10.96 -0.04 -2193462.2846 -4740922.6764 3648524.7953 -12.95 -1.89 -10.25
7 38.6145 -118.5481 1745.9064 1994.4507 -13.91 -11.15 -0.05 -2454286.5379 -4346454.0845 3960058.1163 -13.95 -2.05 -10.89
8 38.1351 -117.1216 2042.5556 1994.4452 -13.74 -11.12 -0.04 -2426735.5753 -4399939.5798 3918510.8777 -13.82 -2.02 -10.83
9 38.6334 -119.8233 2316.1411 1999.3466 -14.12 -11.04 -0.05 -2508640.9979 -4314311.2222 3962053.0336 -13.96 -2.04 -11.06

10 38.7333 -115.2236 2103.4195 1994.4369 -13.10 -11.57 -0.04 -2245135.9437 -4449170.3527 3970579.2131 -14.00 -2.08 -10.25
11 42.6564 -115.5345 1846.0452 1994.5329 -13.00 -12.48 -0.04 -2094268.4785 -4206793.1350 4300755.0431 -15.09 -2.30 -9.59
12 41.2995 -117.0804 1322.3656 1994.5274 -13.74 -11.81 -0.05 -2321048.0578 -4201171.9136 4188339.9307 -14.71  -2.20 -10.36
13 40.6543 -118.6533 1171.9475 1994.5132 -13.87 -11.60 -0.05 -2375276.8624 -4224618.7885 4134135.2920 -14.53 -2.16 -10.55
14  41.1732 -118.5814 1739.2059 1999.3675 -13.89 -11.70 -0.05 -2362243.6484 -4189123.3924 4178068.5050 -14.67 -2.19 -10.49
15 41.9047 -113.2088 1575.3807 1999.4088 -12.46 -12.58 -0.04 -1987147.9538 -4320139.2265 4238786.3346 -14.89 -2.27 -9.30
16 36.5851 -114.0889 1071.4782 1997.5204 -12.84 -11.18 -0.04 -2241004.3375 -4612884.0786 3781158.7450 -13.39 -1.97 -10.33
17 36.0981 -113.9557  869.5820 1994.3767 -12.25 -11.30 -0.04 -2102521.4807 -4712541.6786 3737505.6592 -13.256 -1.96 -9.92
18 40.8478 -117.2708 1257.6970 1999.3658 -13.69 -11.74 =-0.05 -2322890.9369 -4237726.6781 4150476.1659 -14.58 ~-2.18 -10.38
19 38.4602 -115.8468 1801.8606 1999.3749 -12.91 -11.59 -0.04 -2204845.7048 -4490095.4201 3946691.1870 -13.93 -2.07 -10.14
20  41.0994 -114.8900 1728.3791 1997.2602 -12.59 ~-12.34 -0.04 -2043132.2156 -4359633.3790 4171884.8705 -14.67 -2.23 =-9.51
21 40.7661 -114.0811 1507.0519 1999.3988 -12.84 =-12.15 =-0.04 -2115003.0062 -4352023.0028 4143768.9491 -14.58 -2.20 =-9.75
22 40.7566 -116.9194 1359.5044 1994.4973 -13.19 -11.97 -0.04 -2203060.9377 -4308763.8899 4142873.8804 -14.57 -2.19 -10.02
23 38.2504 -118.7767 1946.8583 1999.3438 -13.84 -11.10 -0.05 -2448970.4902 -4377741.9958 3929205.9899 -13.85 -2.03 -10.89
24  41.5097 -119.4994 1322.8858 1999.3630 -14.21 -11.60 -0.05 -2428237.9157 -4122224.1935 4205858.4164 -14.76 -2.20 -10.67
25 37.5293 -114.7803 1142.7954 1997.8530 -12.62 -11.50 -0.04 -2158286.7110 -4582508.5966 3864838.2367 -13.66 -2.03 -10.03
26  40.9052 -116.1966 1289.7152 1994.5035 -13.41 -11.90 -0.04 -2252186.9369 -4271038.5024 4155312.8201 -14.60 -2.19 -10.17
27 39.5135 -118.1243 1479.7453 1994.4619 -14.03 -11.28 -0.05 -2454936.5270 -4273450.0169 4037398.8268 -14.21 -2.09 -10.85
28 38.0309 -116.1145 1389.9839 1997.8205 -13.44 -11.24 -0.04 -2353225.5221 -4447181.6675 3909003.7566 -13.80 -2.03 -10.61
29 39.3512 -116.5816 1901.5700 1994.4722 -13.30 -11.61 -0.04 -2274868.9066 -4385225.3172 4023751.8431 -14.17 -2.11 -10.31
30 38.0843 -118.8247 2529.4349 1994.4507 -13.83 -11.07 -0.05 -2451384.0337 -4390683.9161 3914369.9201 -13.81 -2.02 -10.91
31 38.8251 -116.8100 1728.1434 1999.3575 -13.23 -11.53 -0.04 -2274145.8190 -4426908.1566 3978289.6691 -14.03 -2.08 -10.33
32 36.1547 -114.6369  961.7476 1999.3222 -12.67 -11.15 -0.04 -2208876.9377 -4659621.6622 3742632.9806 -13.26 -1.95 -10.25
33 36.4148 -114.5484 1039.6217 1994.3880 -12.69 -11.20 -0.04 -2208753.6397 -4640836.2022 3765949.3728 -13.34 -1.96 -10.24
34  38.8141 -116.0313 1371.0670 1994.4507 -13.46 =-11.41 =-0.04 -2334324.4529 -4396023.1607 3977116.3253 -14.02 -2.07 -10.52
35 35.2004 -113.4250 214.4424 1994.3752 -12.42 -11.01 -0.04 -2170008.2901 -4745176.8923 3656178.2357 -12.98 =-1.90 -10.17
36 36.2859 -112.9345 1427.1133 1999.3347 -11.94 -11.47 -0.04 -2017070.3236 -4736856.6856 3754659.2235 -13.31 -1.98 -9.65
37 38.7599 -116.1161 1943.1227 1994.4371 -13.44 -11.41 -0.04 -2329790.5089 -4403195.6949 3972786.0689 -14.00 -2.07 -10.51
38 39.2822 -118.4497 1302.1140 1994.4562 -13.93 -11.28 -0.05 -2438592.4397 -4301386.1971 4017441.3595 -14.14 -2.08 -10.81
39 37.6152 -113.1582 1449.7864 1994.4178 -12.50 -11.57 -0.04 -2125679.4188 -4591587.2633 3872582.1589 -13.69 -2.04 -9.93
40 37.8938 -115.9418 1504.9239 1997.4686 -12.88 -11.47 -0.04 -2214370.2114 -4528450.7231 3897075.8141 -13.77 -2.04 -10.19
41 37.8854 -117.5445 1732.1005 1999.3411 -13.61 -11.13 -0.04 -2402210.1421 -4432529.0011 3896473.8304 -13.75 -2.01 -10.77
42 39.0740 -113.5626 1783.0670 1994.4288 -12.38 -11.97 -0.04 -2051757.0054 -4515230.0786 3999822.3134 -14.11 -2.12 -9.63
43 39.2032 -113.1570 1886.2495 1999.3991 -12.50 -11.96 -0.04 -2077236.4154 -4486712.7324 4018753.7034 -14.17 -2.13 -9.70
44 39.2032 -113.1573 1886.0737 1994.4288 -12.50 -11.96 -0.04 -2077220.0168 -4486722.0267 4018751.5381 -14.17 -2.13 -9.70
45 35.4759 -113.1872  707.8818 1999.3186 -12.49 -11.05 -0.04 -2182429.1746 -4720446.6766 3681401.8777 -13.06 -1.91 -10.20
46 39.2699 -114.0470 1817.3094 1999.3886 -12.85 -11.80 -0.04 -2164461.8547 -4447052.5441 4016707.8623 -14.16 -2.12 -9.97
47 39.9437 -118.7973 1887.2176 1994.4731 -13.83 -11.47 -0.05 -2389819.9799 -4275608.0631 4074407.6190 -14.33 -2.12 -10.63
48 39.0012 -118.2458 1408.8700 1999.3530 -13.99 -11.18 -0.05 -2463701.7752 -4309849.9578 3993309.9978 -14.06 -2.06 -10.90
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