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Introduction

The major task of this thesis, starting as a topic of the Graduiertenkolleg ”Math-
ematics and Practice”, University of Kaiserslautern, was multiscale modelling of
ionospheric current systems and the corresponding magnetic field with application
to satellite data. The contents of this topic, if analyzed in more detail, spans a wide
frame within geophysical as well as mathematical science. First of all, the problem
of describing ionospheric current systems and the corresponding magnetic fields is
a problem of electromagnetism. Thus, the full set of Maxwell’s equations hold (see
e.g. [6]). Today’s knowledge of the Earth’s ionosphere and the geomagnetic field
together with the availability of magnetic field measurements do not put us in a po-
sition of being able to solve the complete system of Maxwell’s equations. Thus, we
discuss an approximation by dropping terms from the full system that are suspected
of being small. Suppose we are interested in fields whose typical length scale is L
and whose typical time scale is T . Since high density spatial coverage of magnetic
field data is much easier to obtain than coverage in time with high resolution, it
is valid to assume that L/T is much smaller than the velocity of light. Some well
known considerations (see e.g. [6]) show that in this case some terms can be dropped
in the full system of Maxwell’s equations. This simplification causes a decoupling
of the system into an electromagnetic and a magnetostatic part, called quasi static
approach. The resulting system is called the system of pre-Maxwell equations. Since
we are interested in connecting the current systems and the magnetic field we are
mainly concerned with the system of magnetostatic equations, i.e.

∇∧ b(x) = µ0j(x),

∇ · b(x) = 0

where x is lying in the area of interest, b denotes the magnetic field, and j the
electric current density. µ0 is the permeability of vacuum with c2 = 1/(µ0ε0), where
ε0 is the capacitivity of vacuum.
In consequence, the pre-Maxwell equations are the leading system of equations in
this thesis. They form a system of partial differential equations and if we assume
the area of interest to fulfill certain properties, the inhomogeneity j to be given
everywhere and boundary values for b to be available, then the theory of partial
differential equations gives the unique solvability of the above system. However,
there is a critical point in the previous considerations. Neither the current system
j nor the magnetic field b are given everywhere in the ionosphere. Thus, the sys-
tem of pre-Maxwell equations is not solvable at all under the above assumptions.
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2 Introduction

The only data which are available are magnetic field measurements on an approxi-
mately spherical regular surface in the ionosphere, from which as much information
concerning ionospheric current systems should be derived as possible. These data
are provided by low-flying satellites with nearly circular, near-polar orbits as the
German geosientific satellite CHAMP. In order to obtain as much information as
possible the problem demands another modelling step. At this point, a commonly
(in geophysics) used simplification can be applied to the model, the height inte-
grated ionosphere. It is assumed that all the horizontal currents of the ionosphere
are present at just one altitude, which can be interpreted as a height integrated cur-
rent system. This simplification turns the problem of deriving the current system
from given magnetic field measurements to be uniquely solvable. But it should be
noted that the current system calculated in this way will never be present in this
form in reality. The system is an equivalent current system which induces the same
magnetic field as the real ionospheric current system. This approach has already
been used in the geomagnetic literature for modelling the connection between cur-
rent systems and the corresponding magnetic fields (see e.g. [2], [4] and [37] and the
reference about ionospheric current systems therein).

As regards the subject of global and dense coverage of geomagnetic field data, satel-
lites orbiting the Earth in low, near-polar orbits provide a firm basis for acquiring
the necessary spatially high resolution observations. MAGSAT (1979-1980) was the
first, and for a long time only, geomagnetic field mission with appropriate vector
instruments. Despite its comparatively short duration (6 months), the MAGSAT
mission built the foundation for a huge amount of scientific geomagnetic results (for
results concerning topics of this thesis see [9], [11], [39], [43], [51] or [58]). The Dan-
ish satellite Ørsted, which is also equipped with highly accurate scalar as well as
vector instruments, orbits the Earth since 1999 and has great impact on main field as
well as external field modelling. The German CHAMP mission which started in the
summer of 2000 and which is operated by the GFZ Potsdam, is, besides other scien-
tific tasks, designed for highly accurate geomagnetic field mappings. Due to its low
orbit compared to Ørsted and MAGSAT and due to its advanced instrumentation
CHAMP provides the scientific community with scalar as well as vector magnetic
field data enabling an improvement in main, crustal, ionospheric and external field
modelling (for recent results concerning the CHAMP mission the reader is referred
to [55]). A further step forward concerning the geomagnetic data situation may be
achieved by SWARM, a constellation of 4− 6 low orbiting satellites of the CHAMP
type which are designed to measure the magnetic field in different layers of the iono-
sphere (see e.g. [40]). For more information about flying, upcoming and proposed
geomagnetic satellite missions the reader is referred to the internet page
http://denali.gsfc.nasa.gov/research/mag field/purucker/mag missions.html.

In addition to the availability of adequate data sets, ionospheric current and geo-
magnetic field modelling need appropriate mathematical tools which allow modelling
of the fields adapted to the present data situation and which give the possibility of
geophysical interpretation. If looking for first results concerning a mathematical
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treatment of ionospheric current systems and the corresponding magnetic fields it is
inevitable to have a look at the considerations in [37]. It tells us, that the induced
magnetic field above the sphere of the equivalent current system is harmonic and
can be developed into a series of outer harmonics. The corresponding Fourier coef-
ficients can be connected to the coefficients of the current function of the spherical
current system which is a scalar function on the sphere of the equivalent current
system. This gives a first functional connection of the ionospheric current system
and the corresponding magnetic field. A major drawback of this ansatz is the global
support of the spherical harmonics which does not give rise to the regional shape of
the current system. Quiet ionospheric current systems are driven by solar effects and
so they mainly appear on the day-side of the Earth. There are also currents present
at the night-side of the Earth (see, for example, [41] for a recent result concerning
nighttime F region ionospheric currents observed in CHAMP data) but compared
to the magnitude of the daytime currents the ones on the night-side of the Earth
can be neglected. Scalar spherical harmonics are not appropriate to resolve this
discrepancy between the two sides of the sphere. They have to be substituted by
basis functions which account to the regional structure of the effects to be modelled.
Furthermore, the approach as presented in [37] connects the scalar current function
of the current system to the scalar magnetic potential of the induced magnetic field
which is not really satisfactory when concerned with vectorial problems. Neverthe-
less the approach gives the possibility to get a first impression of the shape of the
ionospheric current system of the Earth which can be seen in Figure 1.

Figure 1: Current function of the ionospheric mid-latitude solar quiet current sys-
tem. The coordinates are magnetic latitude and local time. ([37], page 303)

The next step in developing a connection between the current system and the in-
duced magnetic field is the transfer of the previously mentioned scalar theory to a
vector approach since both magnetic field and current system are vector fields. The
system of trial functions which is commonly used in geomathematical applications
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for modelling vectorial problems is the system of vector spherical harmonics de-
noted by {y(i)

n,k} as, for example, presented in [20]. It is based on the decomposition
of spherical vector fields into a radial part and two tangential parts and represents
the components of a spherical vector field with respect to the spherical Helmholtz
decomposition theorem (see e.g. [42]). This system of vector spherical harmonics
has already been used in geomagnetic applications in [7], [9] and [43]. For further

theoretical considerations concerning the system {y(i)
n,k} of vector spherical harmon-

ics, as for example the addition theorem connecting the system to vector Legendre
polynomials, the reader is referred to [20]. Observing the applicability of the sys-
tem to pre-Maxwell problems it becomes soon clear that another system of vector
spherical harmonics, denoted by {u(i)

n,k}, is much more advantageous for dealing with
these kind of problems. This system has, for example, been introduced in [16] for
quantum-mechanical applications, but also in the geomagnetic literature (see e.g.
[6]) and in the mathematical literature (see e.g. [20]) it has already been used. The
main advantage of the system is the decomposition property. For i = 1 the Fourier
series with respect to u

(1)
n,k represents that part of the spherical vector field which is

induced by sources lying inside the sphere, where the magnetic field measurements
are taken. For i = 2 the expansion in terms of the system u

(2)
n,k represents the part

of the field which is created by sources outside the sphere and the series in u
(3)
n,k

gives the part of the field which is due to the radial projection of sources crossing
the sphere itself. This major advantage of the system {u(i)

n,k} of vector spherical
harmonics has already been observed in [6]. The system yields the possibility of
describing the pre-Maxwell problem in a comprehensive vectorial nomenclature.

Although we have found a way of modelling the problem of combining ionospheric
current systems and the corresponding magnetic field in a vectorial way, it is not a
satisfactory result, since vector spherical harmonics retain the property of having a
polynomial structure and a global support. On the one hand they do not show any
space localization which is needed for modelling ionospheric current systems, on the
other hand the functions show an ideal spectral or momentum localization which is
very advantageous for an interpretation in terms of multipoles. Uncertainty prin-
ciples describe this discrepancy between ideal space and frequency localization (see
e.g. [18] for the scalar case and [10] for a first approach to the vectorial case). The
essential result states that simultaneous ideal localization in space and frequency
is mutually exclusive. The extreme trial functions in the sense of the uncertainty
principle are given by scalar/vector spherical harmonics for ideal frequency localiza-
tion on the one hand and Dirac functionals for ideal space localization on the other
hand. Thus, it becomes clear that Fourier methods, which are based on spherical
harmonics are well suited to resolve frequency phenomena, but their application to
model and obtain high resolution regional or local phenomena is critical. A trade-
off between space and frequency localization has to be found. A compromise can
be obtained by special kernel functions which are constructed as weighted sums
over the corresponding orthonormal systems (scalar/vector spherical harmonics) of
certain frequency bands. According to the uncertainty principle, the reduction of
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frequency localization leads to an enhancement of space localization such that the
kernel functions show only small spatial extension. This is the reason why these
kernel functions can be constructed in all intermediate stages of space localization.
The construction principle is illustrated in Table 1.

Ideal frequency localization No frequency localization
No space localization Ideal space localization
� -

spherical harmonics scalar / vector Dirac functional
kernel functions

Table 1: A graphical illustration of the construction principle of kernel functions
following the uncertainty principle.

Using kernels at different scales to detect and approximate spatial as well as cer-
tain frequency features in given data is called multiscale modelling. The special
type of kernel functions we use in this thesis are vectorial radial basis functions,
called vector scaling functions and vector wavelets. An essential characteristic of
wavelets techniques is that they are able to establish a multiresolution analysis, i.e.
the function space containing the data is decomposed into a nested sequence of ap-
proximating subspaces. It is possible to break up complicated functions, like the
geomagnetic field, electric current densities, or geopotentials into different ’pieces’
and to study these pieces separately. This procedure called multiresolution analysis
can be explained as follows. Starting from a sequence of scaling functions, the mul-
tiresolution analysis of the function space under consideration is obtained in terms
of the corresponding scale spaces. In each of these scale spaces an approximation
of the function at a certain scale is constructed. For increasing scale the approxi-
mation improves and the information contained on coarse level is contained in all
scale spaces above. The difference between two approximations is called the detail
information contained in the so-called detail space. In spectral nomenclature, scal-
ing functions act as a nested sequence of low-pass filters while wavelets establish
the corresponding subsequent band-pass filters. An extensive discussion concerning
scaling functions and wavelets can be found in [19] and [20], while in [7], [9], [42] and,
especially, in [43] applications of the vectorial wavelet approach to geomagnetic field
modelling can be found. A construction principle for scaling functions and wavelets
for operator equations in a general Hilbert space concept can be found in [21]. A
multiscale technique for regularization of inverse problems has been developed in
[25] and for a construction principle of scaling functions and wavelets in a general
Hilbert space approach the reader is referred to [49].

These special vector kernel functions now give us the possibility to model the pre-
Maxwell problem described above in a vectorial nomenclature as well as with space
localizing trial functions. This will be done in this thesis in a comprehensive the-
oretical framework and the application of multiscale methods in this field will be
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demonstrated. A first step during the course of this thesis is the construction of
scaling functions and wavelets based on the system of vector spherical harmonics
{u(i)

n,k}, which retain the property of decomposing a given spherical vector field with
respect to its sources. It will give the possibility to decompose a spherical vector
field into parts induced by sources inside, outside, or on the sphere just by having
only regional data.
Furthermore, a second application of kernel functions is the reconstruction of the
source fields, i.e. the ionospheric current distribution corresponding to given mag-
netic field data. Since this problem is of ill-posed nature it demands more than
the simple approximation property of scaling functions and wavelets. Therefore,
we develop a method for multiscale regularization of ill-posed vectorial problems
and apply it to the problem of determining ionospheric current systems. Numerical
applications illustrate the introduced approaches and demonstrate the applicability
and practicality of the proposed wavelet techniques. It should be noted that the
numerical examples presented here are not intended to be detailed physical case
studies but ought to be seen as testing examples and as the starting point for such
research.
The outline of the thesis is as follows.

Chapter 1 introduces some basic notations and relations which we are going to use
throughout the thesis. Additionally, a couple of well-known results which are use-
ful for an easy understanding of the following discussions are briefly recapitulated.
Topics include scalar and vector spherical harmonics, inner and outer harmonics as
well as the Helmholtz and the Mie representation.

In Chapter 2 a general approach to the theory of multiscale techniques in separa-
ble Hilbert spaces is presented. Section 2.1 starts with the introduction of a scalar
multiscale approach in order to deal with scalar operator equations with known sin-
gular system. In Section 2.2 the theory is generalized to the vectorial case, i.e. a
multiscale decomposition of operator equations between separable Hilbert spaces of
vector functions, so called tensor-operator equations, is discussed. The formulation
of both, the scalar as well as the vectorial multiscale techniques, is based on the
Fourier theory in the respective Hilbert spaces such that the results can easily be
interpreted in terms of conventional methods. In Section 2.3 we compare the vector
multiresolution technique to the canonical tensorial approach for tensor-operator
equations and the equivalence of both approaches is proved. At the end of this
chapter in Section 2.4 the theory of multiscale regularization for vectorial inverse
problems is embedded in the multiresolution theory for tensor-operator equations.
We briefly introduce the theory of ill-posed problems in a general Hilbert space
approach and define regularization vector scaling functions and wavelets which are
used for the multiscale regularization of vectorial inverse problems in a bilinear ap-
proach.

As for the discussion of ionospheric currents and the corresponding magnetic fields,
multiscale techniques are of great importance. Magnetic field signatures, either be-
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ing of crustal nature or being induced by interior or exterior current systems are of
comparably small spatial extend. Therefore, it is reasonable to avoid global trial
functions and choose a modelling technique that can cope with the regional features.
To fulfill this property spherical vector scaling functions and wavelets are introduced
in Chapter 3. First of all the pre-Maxwell problem is discussed and an approach
based on the Mie representation is presented to solve the problem in the area of
interest (outer space of the Earth). Adapted to the availability of magnetic field
data on an (approximately) spherical surface, a decomposition of the magnetic field

with respect to a special system of vector spherical harmonics, denoted by {u(i)
n,k}, is

presented based on Fourier techniques. The special property of the representation
of a spherical vector field in this orthonormal system is the decomposition into parts
with respect to the area, where the respective parts are produced. In Section 3.2
the decomposition is transferred to multiscale techniques. Based on the theory of
Chapter 2 a multiscale decomposition of the identity operator on the Hilbert space
l2(Ω) of measurable vector valued functions on the unit sphere Ω is presented. The
defined vector scaling functions and wavelets retain the property of decomposing a
spherical vector field with respect to its sources. Moreover, they allow a regional
decomposition and reconstruction of a vector field, i.e. a spherical vector field can
by decomposed into parts induced by sources lying inside, outside or on the sphere
referring to the availability of only regional information. At the end of the chapter
this approach is applied to CHAMP magnetic field data and it is shown, how crustal
field determination, as discussed in a multiscale framework in [43], can be improved
by previously applying the technique presented here.

Apart from the challenge of separating magnetic field data with respect to its sources,
the task is to reconstruct these sources, i.e. to reconstruct ionospheric current sys-
tems corresponding to given magnetic field data, called ’inverse source problem’ (see
e.g. [5]). This is the main topic of Chapter 4. First of all the problem is formulated
and certain modelling steps are applied, as for example the introduction of the height
integrated ionosphere, in order to turn the problem to be adequate for satellite data
and to be solvable (see e.g. [1], [3] or [37] and the reference therein for a geophysical
justification of the height integrated ionosphere). In this context the spherical Biot-
Savart operator is introduced which is used to solve the ’direct source problem’ as
well as the ’inverse source problem’ in spherical geometries. The operator is based on
Biot-Savart’s law of electrodynamics (see e.g. [35]). A major result of this chapter
is the calculation of the singular system of this operator, where the system of vector
spherical harmonics {u(i)

n,k} is again involved. Based on the multiresolution regular-
ization technique developed in Section 2.4 and using the calculated singular system,
regularization vector scaling functions and wavelets are defined. In order to demon-
strate the applicability and the efficiency of our method, we apply the multiscale
technique to two simulated current systems. The corresponding magnetic field data
are calculated using explicit representations or approximate integration rules. Then
the current systems is reconstructed from these data using the multiscale regular-
ization techniques. To emphasise the advantages of regularization scaling functions
and wavelets in contrast to vector spherical harmonics, a space localizing current
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system (Cowling channel) is simulated.
Since an essential task of this thesis is the application to satellite data we test our
approach with magnetic field data of three different satellite missions. At first, we
reconstruct current systems from given MAGSAT magnetic field data. With the oc-
curring results, we were able to calculate the course of the equatorial electrojet over
the Earth during a day. In a second satellite application we reconstruct a ionospheric
current system corresponding to given CHAMP magnetic field data. For a realis-
tic image of the ionosphere an Earth fixed reference frame is the wrong coordinate
system. Thus, we transform CHAMP magnetic field data to a Sun fixed reference
frame given by the magnetic local time (MLT) and the quasi dipole latitude (QD-
lat). In order to apply the multiscale regularization techniques to a global data set
in magnetic local time and quasi dipole latitude we use the simulated measurements
of the proposed SWARM satellite mission in a third application to satellite magnetic
field data.



Chapter 1

Preliminaries

In this chapter the reader is provided with the essential tools used in the course of
this thesis. We start with introducing some basic notation and the nomenclature
which is used in our considerations. Then we will discuss scalar spherical harmonics
which are the basic functions when dealing with problems in spherical geometries.
Based on the scalar spherical harmonics we will develop two sets of vector spherical
harmonics. At the end we will give two different representations for vector fields,
the Helmholtz decomposition which is restricted to regular surfaces and the Mie
representation which is true under certain circumstances for a subset of the three-
dimensional Euclidean space.

1.1 Notation

During the course of this thesis we will permanently be confronted with scalar,
vector and tensor fields. For the notation of these fields we will use the following
symbols: Scalar fields will be denoted by capital letters (F,G, etc), vector fields
are symbolized by lower-case letters (f, g, etc), and tensor fields are represented by
boldface letters (f ,g,F,G, etc).

Let x, y ∈ R3, then x · y denotes the standard Euclidean inner product of x and y,
x ∧ y symbolizes the vector (cross) product and x ⊗ y = xyT is the tensor product
of x and y.

Any point x ∈ R3 with x 6= 0 may be written in the form x = rξ, where r = |x|
is the distance of x to the origin 0 and ξ ∈ R3, ξ = (ξ1, ξ2, ξ3)

T , is the uniquely
determined directional unit vector of x.

A sphere of radius R centered around the origin is denoted by ΩR = {x ∈ R3 | |x| =
R}. In particular, Ω = Ω1 is the unit sphere in R3. We set Ωint

R for the ’inner space’

of ΩR, Ωint
R = {x ∈ R3 | |x| < R} while Ωext

R = R3 \ Ωint
R is the ’outer space’ of ΩR.

Clearly, Ωext
R = {x ∈ R3 | |x| > R}. By Ω(R1,R1) we denote the open spherical shell

9



10 Chapter 1. Preliminaries

with inner radius R1 and outer radius R2 given by

Ω(R1,R2) = {x ∈ R3 |R1 < |x| < R2} .

Any point ξ ∈ Ω can be represented in polar coordinates as follows:

ξ =
√

1− t2(ε1 cosϕ+ ε2 sinϕ) + ε3t, (1.1)

−1 ≤ t ≤ 1, 0 ≤ ϕ < 2π, t = cosϑ ,

(ϑ : latitude, ϕ : longitude, t : polar distance) or equivalently

ξ = ε1 sinϑ cosϕ+ ε2 sinϑ sinϕ+ ε3 cosϑ,

where ε1, ε2, ε3 denotes the standard Euclidean basis in R3. The unit vectors cor-
responding to the spherical polar coordinates are denoted by εr, εϕ and εt(= −εϑ)
and form the so-called moving local orthonormal triad. The relation of the local
system to the standard Euclidean system is given via

εr(ϕ, t) = ε1
√

1− t2 cosϕ+ ε2
√

1− t2 sinϕ+ ε3t,

εϕ(ϕ, t) = −ε1 sinϕ+ ε2 cosϕ,

εt(ϕ, t) = −ε1t cosϕ− ε2t sinϕ+ ε3
√

1− t2,

and vice versa

ε1 = εr(ϕ, t)
√

1− t2 cosϕ− εϕ(ϕ, t) sinϕ− εt(ϕ, t)t cosϕ,

ε2 = εr(ϕ, t)
√

1− t2 sinϕ+ εϕ(ϕ, t) cosϕ− εt(ϕ, t)t sinϕ,

ε3 = εr(ϕ, t)t+ εt(ϕ, t)
√

1− t2.

In what follows we need a number of differential operators which we introduce next.
∇x = (∂/∂x1 , ∂/∂x2 , ∂/∂x3)

T denotes the gradient in R3 and∇∗ represents its tangen-
tial part, called surface gradient. The Laplace operator is symbolized by ∆ = ∇ ·∇
and the corresponding tangential operator, called Beltrami operator, is given by
∆∗ = ∇∗ · ∇∗. The curl gradient Lx is given by Lx = x ∧∇x with tangential coun-
terpart given by L∗ which is called surface curl gradient.

We want to remark, that all these operators are used free of coordinates throughout
this thesis. Nevertheless, for the convenience of the reader we give a list of local
representations. The operators can be expressed as follows.

∇x = ξ
∂

∂r
+

1

r
∇∗
ξ , x = rξ ∈ R3 \ {0} (1.2)

∇∗
ξ =

1√
1− t2

(
− sinϕε1 + cosϕε2

) ∂

∂ϕ
(1.3)

+
√

1− t2
(
−t cosϕε1 − t sinϕε2 +

√
1− t2ε3

) ∂

∂t
, (1.4)
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L∗ξ = ξ ∧∇∗
ξ , ξ ∈ Ω , (1.5)

=
√

1− t2
(
sinϕε1 − cosϕε2

) ∂
∂t

(1.6)

+
1√

1− t2

(
−t cosϕε1 − t sinϕε2 +

√
1− t2ε3

) ∂

∂ϕ
, (1.7)

∆x =

(
∂

∂r

)2

+
2

r

∂

∂r
+

1

r2
∆∗
ξ , x = rξ ∈ R3 \ {0} (1.8)

∆∗
ξ =

∂

∂t

(
1− t2

) ∂
∂t

+
1

1− t2

(
∂

∂t

)2

. (1.9)

A variety of function spaces will be needed in this thesis. Let C(U) be the set of all
continuous, real functions defined on the set U ⊂ R3, equipped with the norm

‖F‖C(U) = sup
x∈U

|F (x)| .

A function is said to be of class C(k)(U), 0 ≤ k ≤ ∞, if it is k−times continuously
differentiable on U . If U ⊂ R3 is a measurable subset of R3, the set of scalar
functions F : U → R which are measurable and for which

‖F‖Lp(U) =

(∫
U

|F (x)|p dx
) 1

p

<∞

is denoted by Lp(U), where dx denotes the volume element in U .

In analogy to the scalar case we define function spaces of vector valued functions.
These spaces will normally be symbolized by lower-case letters. Let c(U) be the set
of all vector valued, continuous functions f : U → Rn defined on the set U ⊂ R3,
equipped with the norm

‖f‖c(U) = sup
x∈U

|f(x)| .

A vector field f is said to be of class c(k)(U), 0 ≤ k ≤ ∞, if every component function
f · εi, i = 1, . . . , n, of f is k−times continuously differentiable on U . If U ⊂ R3 is
a measurable subset of R3, the set of vector fields f : U → R which are measurable
and for which

‖f‖lp(U) =

(∫
U

|f(x)|p dx
) 1

p

<∞

is denoted by lp(U).

The space of rank-2 tensors with continuous coordinate functions defined on the set
U is denoted by c(U). Endowed with the norm

‖f‖c(U) = sup
x∈U

|f(x)|

the space c(U) is a Banach space. Similarly, the space of all p times continuously
differentiable tensor fields is denoted by c(p)(U), (0 ≤ p ≤ ∞). We define by l2(U)
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the space of all square-integrable tensor fields on the measurable region U . Equipped
with the inner product

(f ,g)l2(U) =

∫
U

f(x) · g(x)dx, f ,g ∈ l2(U),

the space is a Hilbert space, where the dot product of two rank-2 tensors f ,g is
defined by

f · g =
3∑

i,j=1

fij gij .

For most of our calculations the set U is given by a regular surface which will be
defined next.

Definition 1.1
A surface Σ ⊂ R3 is called regular surface, if it satisfies the following properties:

1. Σ divides the three–dimensional Euclidian space R3 into the bounded inner
region Σint and the unbounded outer region Σext = R3 \Σint, Σint = Σint ∪Σ,

2. Σint contains the origin,

3. Σ is closed and compact, free of double points,

4. Σ is locally of class C(2).

By the last point of the above definition, we can conclude that there exists a contin-
uous unit normal field ν on Σ, which can be assumed to be directed into the outer
space Σext.
In order to separate vector fields into their tangential and normal parts with respect
to a regular surface we introduce the projection operators pnor and ptan by

pnorf(x) = (f(x) · ν(x))ν(x), x ∈ Σ, f ∈ c(Σ),

ptanf(x) = f(x)− pnormf(x), x ∈ Σ, f ∈ c(Σ) .

The corresponding subspaces of c(Σ) are given by

cnor(Σ) = {f ∈ c(Σ)|f = pnorf},
ctan(Σ) = {f ∈ c(Σ)|f = ptanf}.

The spaces c
(p)
nor(Σ) and c

(p)
tan(Σ), 0 ≤ p ≤ ∞ are defined in the same fashion.

The set of vector fields f : Σ → R which are measurable and for which

‖f‖lp(Σ) =

(∫
Σ

|f(x)|p dωΣ(x)

) 1
p

<∞

is denoted by lp(Σ), where dωΣ(x) symbolizes the surface element on Σ. Note that
in the case of Σ = ΩR with radius R > 0 we just write dωR(x) instead of dωΩR

(x)
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and dω instead of dω1.

The definition of the normal and the tangential operator is extended in canonical
way to vector fields in l2(Σ). Hence,

l2nor(Σ) = {f ∈ l2(Σ)|f = pnorf},
l2tan(Σ) = {f ∈ l2(Σ)|f = ptanf}.

Clearly, we have the orthogonal decomposition

l2(Σ) = l2nor(Σ)⊕ l2tan(Σ) .

Definition 1.2
Let f be a tangential vector field with respect to the regular surface Σ, i.e. f ∈
c
(1)
tan(Σ). Furthermore, let f possess the component functions Fi, i.e. f(x) =∑3
i=1 Fi(x)ε

i, x ∈ Σ. Then the surface gradient ∇∗· and the surface curl L∗·
are defined by

∇∗ · f =
3∑
i=1

(∇∗Fi) · εi ,

L∗ · f =
3∑
i=1

(L∗Fi) · εi .

1.2 Scalar Spherical Harmonics

In this section some important results concerning homogeneous harmonic polyno-
mials in R3 restricted to the unit sphere Ω will be presented. At first the Legendre
polynomials have to be introduced.

Definition 1.3
Let Pn : [−1, 1] → R, n ∈ N0, be a function satisfying

1. Pn is a polynomial of degree n,

2.
1∫

−1

Pn(t)Pl(t) dt = 0, n 6= l,

3. Pn(1) = 1, for all n ∈ N0.

Then the function Pn, n ∈ N0, is called the Legendre polynomial of degree n.

By the above properties the Legendre polynomial of degree n is uniquely defined.
An explicit representation of the Legendre polynomial of degree n is given by

Pn(t) =
1

2n

[n/2]∑
s=0

(−1)s
(2n− 2s)!

(n− 2s)! (n− s)! s!
tn−2s, t ∈ [−1, 1],
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where [·] denotes the well known Gauss bracket (see e.g. [20]). The second property
of Definition 1.3 demands the orthogonality of two Legendre polynomials of different
degree. The L2[−1, 1]−norm of a Legendre polynomial of degree n can be calculated
using the explicit representation and is given by∫ 1

−1

Pn(t)Pm(t) dt =
2

2n+ 1
δn,m, n,m ∈ N0 ,

where δn,m is the Kronecker symbol given by δn,m = 1 if n = m and δn,m = 0 else.

Due to results of potential theory the relation between the expression 1/ |x− y| and
the Legendre polynomials can be deduced explicitly by

1

|x− y|
=

1

|y|

∞∑
n=0

(
|x|
|y|

)n
Pn(ξ · η). (1.10)

provided that x = |x| ξ , y = |y| η, ξ, η ∈ Ω, |x| < |y|. For the proof of this formula
the reader is referred, for example, to [20].
Finally we mention the notation of a Legendre transform.

Definition 1.4
Suppose that F ∈ L1[−1, 1] is given. Let Pn be the Legendre polynomial of degree
n, then the Legendre transform is defined by

LT : L1[−1, 1] → {{F∧(n)}|n ∈ N0}

LT (F )(n) = F∧(n) =

∫ 1

−1

F (t)Pn(t) dt .

The numbers F∧(n), n ∈ N0, are called Legendre coefficients of the function F .

The Legendre functions are members of a special class of spherical functions intro-
duced by the following remark.

Remark 1.5
Any function of the form

Gξ : Ω → R, ξ ∈ Ω fixed,

η 7→ Gξ(η) = G(ξ · η), η ∈ Ω,

is called a zonal or radial basis function with respect to the axis ξ ∈ Ω. The set of
all zonal functions is isomorphic to the set of all functions of type G : [−1, 1] → R,
hence, we can regard C(k)[−1, 1], 0 ≤ k ≤ ∞, and Lp[−1, 1] equipped with the
corresponding norms as subspaces of C(k)(Ω) and Lp(Ω). Any zonal function Gξ(·)
depends only on the spherical distance between ξ and η.
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In what follows scalar spherical harmonics are introduced. The approach presented
here is based on [20]. Scalar spherical harmonics are restrictions of homogeneous
harmonic polynomials in R3 to the unit sphere. More explicitly, let Hn : R3 → R be
a homogeneous harmonic polynomial of degree n, i.e.

1. Hn is polynomial of degree n in R3,

2. Hn(λx) = λnHn(x) for all λ ∈ R and x ∈ R3 (homogeneity),

3. ∆xHn(x) = 0 for all x ∈ R3 (harmonicity),

then the restriction Yn = Hn|Ω is called a scalar spherical harmonic of degree n. The
space of all spherical harmonics of degree n is denoted by Harmn(Ω). Its dimension
is known to be d(Harmn(Ω)) = 2n+1. Spherical harmonics of different degrees are
orthogonal in the sense of the L2(Ω)−inner product, i.e.

(Yn, Ym)L2(Ω) =

∫
Ω

Yn(ξ)Ym(ξ)dω(ξ) = 0, n 6= m.

An essential result of the theory of scalar spherical harmonics is the fact that any
spherical harmonic Yn , n ∈ N0 , is an infinitely often differentiable eigenfunction of
the Beltrami operator ∆∗ corresponding to the eigenvalue −n(n+ 1) , n ∈ N0 , i.e.

∆∗
ξYn(ξ) = −n(n+ 1)Yn(ξ), ξ ∈ Ω, Yn ∈ Harmn(Ω), n ∈ N0 .

Throughout the remainder of this work, we denote by {Yn,k}k=1,...,2n+1 a complete
orthonormal system in the space Harmn(Ω) with respect to the inner product
(·, ·)L2(Ω).

The following theorem, which is known as the addition theorem of spherical harmon-
ics, relates this orthonormal systems in Harmn(Ω) to the aforementioned Legendre
polynomials Pn on [−1, 1].

Theorem 1.6
Let {Yn,k}k=1,...,2n+1 be an orthonormal system of spherical harmonics with respect
to (·, ·)L2(Ω). Then

2n+1∑
k=1

Yn,k(ξ)Yn,k(η) =
2n+ 1

4π
Pn(ξ · η), ξ, η ∈ Ω.

As an immediate consequence of the addition theorem we obtain by letting η = ξ

2n+1∑
k=1

|Yn,k(ξ)|2 =
2n+ 1

4π
, ξ ∈ Ω.

The addition theorem also shows us that the Legendre polynomial of degree n (seen
as a zonal function, Pn(ξ· ), on the sphere) is the only spherical harmonic of degree
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n that is invariant with respect to orthogonal transformations which leave ξ ∈ Ω
fixed.
The series

∞∑
n=0

2n+1∑
k=1

F∧(n, k)Yn,k

is called the Fourier expansion or (spherical harmonic expansion) of F with Fourier
or (spherical harmonic) coefficients given by

F∧(n, k) =

∫
Ω

F (ξ)Yn,k(ξ) dω(ξ),

n = 0, 1, . . . ; k = 1, . . . , 2n+ 1.
The system of spherical harmonics is closed in L2(Ω), i.e. we have, for all F ∈ L2(Ω),

lim
N→∞

∥∥∥∥∥F −
N∑
n=0

2n+1∑
k=1

F∧(n, k)Yn,k

∥∥∥∥∥
L2(Ω)

= 0.

Furthermore, the system of spherical harmonics is complete in L2(Ω), i.e. F ∈ L2(Ω)
and F∧(n, k) = (F, Yn,k)L2(Ω) = 0 for all n = 0, 1, . . . ; k = 1, . . . 2n+1, implies F = 0.
For a general definition of closure and completeness and relations between the two
terms in Hilbert spaces the reader is referred to [13].

By Harmp,...,q(Ω), q ≥ p ≥ 0, we denote the space of all spherical harmonics of
degree n with p ≤ n ≤ q. The orthogonality of the spherical harmonics of different
degree yields

Harmp,...,q(Ω) =

q⊕
n=p

Harmn(Ω).

The dimensions of this spaces are given by

d(Harmp,...,q(Ω)) =

q∑
n=p

(2n+ 1),

d(Harm0,...,q(Ω)) = (q + 1)2 .

If Yn ∈ Harmn(Ω), then

2n+ 1

4π

∫
Ω

Pn(ξ · η)Yn(η) dω(η) = Yn(ξ), ξ ∈ Ω.

In other words, the kernel function KHarmn(Ω) : Ω× Ω → R defined by

KHarmn(Ω)(ξ, η) =
2n+ 1

4π
Pn(ξ · η), (ξ, η) ∈ Ω× Ω,

represents the unique reproducing kernel in the Hilbert space Harmn(Ω) with re-
spect to the L2(Ω)−inner product. Moreover, KHarmp,...,q(Ω) =

∑q
n=pKHarmn(Ω) is
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the reproducing kernel in Harmp,...,q(Ω). For the definition of a reproducing kernel
and the corresponding reproducing kernel Hilbert space the reader is referred to [13].

The formula of Funk and Hecke,∫
Ω

G(ξ · η)Yn(η) dω(η) = G∧(n)Yn(ξ), ξ ∈ Ω, G ∈ L1[−1, 1], (1.11)

establishes a connection between spherical harmonics and radial basis functions.
It should be noted that this formula, together with the reproducing scalar kernel
KHarmp,...,q(Ω), constitutes the basis for the introduction of spherical singular inte-
grals and spherical wavelets (see e.g. [20] and [26]).

For later use we introduce the inner (outer) harmonics as the solution of the exterior
(interior) Dirichlet problem in Ωint

R (Ωext
R ) corresponding to boundary values Yn,k on

ΩR.

Definition 1.7
The system of inner (outer) harmonics {H int

n,k(R; ·)}
(
{Hext

n,k(R; ·)}
)
, n = 0, 1, . . . ; k =

1, . . . , 2n+ 1, of degree n is defined by

H int
n,k(R;x) =

1

R

(
|x|
R

)n
Yn,k

(
x

|x|

)
, x ∈ Ωint

R ,

Hext
n,k(R;x) =

1

R

(
R

|x|

)n+1

Yn,k

(
x

|x|

)
, x ∈ Ωext

R .

The systems of inner and outer harmonics satisfy the following properties

1. Hext
n,k(R; ·) is of class C(∞)(Ωext

R ), H int
n,k(R; ·) is of class C(∞)(Ωint

R ).

2. ∆xH
ext
n,k(R;x) = 0 for all x ∈ Ωext

R , ∆xH
int
n,k(R;x) = 0 for all x ∈ Ωint

R .

3. Hext
n,k(R; ·) is regular at infinity, i.e.

∣∣Hext
n,k(R;x)

∣∣ = O (1/ |x|) and∣∣∇xH
ext
n,k(R;x)

∣∣ = O
(
1/ |x|2

)
as |x| → ∞.

4.
(
H i
n,k(R; ·), Hj

m,l(R; ·)
)
L2(ΩR)

= δn,mδk,l for i, j ∈ {int, ext}.

More information about these systems of functions and proofs of the above relations
can be found in [20]. According to our construction, it is clear that in the case of
ΩR = Ω we have H int

n,k(R; ·)|R=1 = Hext
n,k(R; ·)|R=1 = Yn,k for all n = 0, 1, . . . ; k =

1, . . . , 2n+ 1.

It is obvious that the system {Y R
n,k} = {H int

n,k(R; ·)|ΩR
} = {Hext

n,k(R; ·)|ΩR
} forms

an orthonormal system in L2(ΩR). Furthermore, the system {Y R
n,k} is closed and

complete in L2(ΩR).
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1.3 Two Sets of Vector Spherical Harmonics

Definition 1.8
For ξ ∈ Ω and F ∈ C(0i)(Ω) the operators o(i) : C(0i)(Ω) → c(Ω), i ∈ {1, 2, 3}, are
defined via the spherical operators

o
(1)
ξ F (ξ) = ξF (ξ),

o
(2)
ξ F (ξ) = ∇∗

ξF (ξ),

o
(3)
ξ F (ξ) = L∗ξF (ξ).

where we have used the abbreviation

0i =

{
0 if i = 1

1 if i = 2, 3 .

The reader should note that the definition domain of the operator o(1) is the space of
all continuous functions, while the operators o(2) and o(3) are defined for continuously
differentiable scalar fields. It is clear that o(1)F is a radial vector field, while o(2)F
and o(3)F are purely tangential. Furthermore, the operators o(i) can be extended in
a canonical way to the space l2(Ω).

The adjoint operators O(i) : c(0i)(Ω) → C(Ω) of o(i) with respect to the l2(Ω)−inner
product are defined by

(o(i)G, f)l2(Ω) = (G,O(i)f)L2(Ω), i ∈ {1, 2, 3},

for all f ∈ c(0i)(Ω) and G ∈ C(0i)(Ω). An easy calculation showes the following
explicit representations of O(i) for ξ ∈ Ω and f ∈ c(0i)(Ω)

O
(1)
ξ f(ξ) = ξ · pnorf(ξ),

O
(2)
ξ f(ξ) = −∇∗

ξ · ptanf(ξ),

O
(3)
ξ f(ξ) = −L∗ξ · ptanf(ξ)

where pnor is the normal projection and ptan is the tangential projection of a con-
tinuous vector field f ∈ c(Ω) with respect to the unit sphere.

Some useful relations concerning the application of the operators o(i), i ∈ {1, 2, 3}, to
a radial basis function defined in Remark 1.5 can be given (cf. [20]). More detailed,
if F ∈ C(0i)[−1, 1], then

o
(1)
ξ F (ξ · η) = F (ξ · η)ξ, (1.12)

o
(2)
ξ F (ξ · η) = F ′(ξ · η)(η − (ξ · η)ξ), (1.13)

o
(3)
ξ F (ξ · η) = F ′(ξ · η)(ξ ∧ η). (1.14)

Motivated by the operators o(i) we will now introduce vector spherical harmonics.
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Definition 1.9
For any Yn ∈ Harmn(Ω) the vector field

y(i)
n = o(i)Yn, n ≥ 0i, i ∈ {1, 2, 3},

is called a vector spherical harmonic of degree n and type i.

According to our construction we get

ξ ∧ y(1)
n (ξ) = 0, ξ · y(2)

n (ξ) = 0, ξ · y(3)
n (ξ) = 0,

and

L∗ξ · y(2)
n (ξ) = 0, ∇∗

ξ · y(3)
n (ξ) = 0,

i.e. y
(1)
n is a purely radial field while y

(2)
n and y

(3)
n are tangential vector fields. The

set harm
(i)
n denotes the set of all vector spherical harmonics of order n and type i.

By definition, we let

harm0 = harm
(1)
0 ,

harmn =
3⊕
i=1

harm(i)
n , n ≥ 1.

If {Yn,k}n=0,1,...;k=1,...,2n+1 is an L2(Ω)−orthonormal set of scalar spherical harmonics
it easily follows by the properties of the o(i)−operators (see [20]) that

y
(i)
n,k = (µ(i)

n )−1/2o(i)Yn,k,

i ∈ {1, 2, 3}, n ≥ 0i; k = 1, . . . , 2n+1, forms an l2(Ω)−orthonormal system of vector

spherical harmonics, where the normalization values µ
(i)
n are given by

µ(i)
n =

{
1 if i = 1
n(n+ 1) if i = 2, 3 .

(1.15)

It is known that the system {y(i)
n,k} is a complete and closed orthonormal system in

l2(Ω). To explain this we need some further notation and preparation which follows
mainly the course of [20].

Definition 1.10
A vector field hn : R3 → R3, n ∈ N0, is called a homogeneous harmonic vector
polynomial of degree n if hn · εi is a homogenous harmonic polynomial of degree n
for every i ∈ {1, 2, 3}.

Using the abbreviation

Harmn(R3)εi = {Hnε
i|Hn ∈ Harmn(R3)},
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the space of all homogeneous vector polynomials of degree n is characterized by

3⊕
i=1

Harmn(R3)εi.

Suppose that Hn is of class Harmn(R3), then it is immediately clear, that ∇Hn is a
homogeneous harmonic vector polynomial of degree n−1. A simple calculation shows
that x 7→ x ∧ ∇xHn(x), x ∈ R3, yields a homogeneous harmonic vector polynomial
of degree n and it easily follows that x 7→ ((2n + 1)x− |x|2∇x)Hn(x), x ∈ R3, is a
homogeneous vector polynomial of degree n+ 1 (see e.g. [20]).
This motivates the following definition.

Definition 1.11
For F : R3 → R being sufficiently smooth the operators k

(i)
n , i ∈ {1, 2, 3}, are, for

x ∈ R3, defined by

k(1)
n F (x) = ((2n+ 1)x− |x|2∇x)F (x),

k(2)
n F (x) = ∇xF (x),

k(3)
n F (x) = x ∧∇xF (x).

For later use we need the curl in R3 of the above vector fields k
(i)
n F , i ∈ {1, 2, 3},

which will be given here.

Lemma 1.12
Let the function F ∈ C(2)(R3) be given. Then we have

∇x ∧ (k(1)
n F (x)) = −(2n+ 3)k(3)

n F (x), (1.16)

∇x ∧ (k(2)
n F (x)) = 0, (1.17)

∇x ∧ (k(3)
n F (x)) = x(∆xF (x))− 2k(2)

n F (x)− (x · ∇x)k
(2)
n F (x) (1.18)

for x ∈ R3.

Proof:
An easy calculation shows that

∇x ∧ k(1)
n F (x) = ∇x ∧ ((2n+ 1)x− |x|2∇x)F (x)

= (2n+ 1)∇xF (x) ∧ x+ F (x)(∇x ∧ x)
−∇x |x|2 ∧∇xF (x)− |x|2 (∇x ∧∇xF (x)). (1.19)

Observing that the second and the fourth term in (1.19) vanish we obtain

∇x ∧ k(1)
n F (x) = −(2n+ 1)(x ∧∇x)F (x)− 2(x ∧∇x)F (x)

= −(2n+ 3)k(3)
n F (x).
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This yields (1.16). Equation (1.17) is obvious and by some similar calculations as
performed in (1.16) we get

∇x ∧ k(3)
n F (x) = ∇x ∧ (x ∧∇xF (x))

= x(∆F (x))−∇xF (x)(∇x · x)
+(∇xF (x) · ∇x)x− (x · ∇x)∇xF (x)

= x(∆xF (x))− 2k(2)
n F (x)− (x · ∇x)k

(2)
n F (x).

This finally gives the desired result. �

An important consequence of (1.18) can be achieved by using the decomposition of
the gradient into a normal and a tangential part with respect to the unit sphere Ω,
∇x = ξ∂r + (1/r)∇∗

ξ , and the representation of the Laplace operator in spherical
coordinates, ∆x = ∂2

r + (2/r)∂r + (1/r2)∆∗
ξ . For x = rξ, r = |x| > 0, we obtain

∇x ∧ k(3)
n F (x) = x(∆xF (x))− 2∇xF (x)− (x · ∇x)∇xF (x)

= x(∆xF (x))− 2∇xF (x)− (r∂r)

(
ξ∂rF (x) +

1

r
∇∗
ξF (x)

)
= x(∆xF (x))− 2ξ∂rF (x) +

2

r
∇∗
ξF (x)

−x∂2
rF (x) +

1

r
∇∗
ξF (x)− ∂r∇∗

ξF (x)

= x

(
∆xF (x)− ∂2

rF (x)− 2

r
∂rF (x)

)
+∇∗

ξ

(
−1

r
∂r(rF (x))

)
= ξ

(
1

r
∆∗
ξF (x)

)
+∇∗

ξ

(
−1

r
∂r(rF (x))

)
where we have used the abbreviation ∂r = ∂/∂r. Thus we find, for x = rξ ∈ R3\{0},

∇x ∧ k(3)
n F (x) = o

(1)
ξ

(
1

r
∆∗
ξF (rξ)

)
+ o

(2)
ξ

(
−1

r
∂r(rF (x))

)
, (1.20)

where the operators o(1) and o(2) are given as formulated in Definition 1.8.

Let us now return to the operators k
(i)
n and their connection to homogeneous har-

monic vector polynomials. Observing the aforementioned properties of the operators
k

(i)
n , we can summarize our results as follows.

Lemma 1.13
Let Hn be of class Harmn(R3), n ∈ N0. Then k

(i)
n Hn is a homogeneous harmonic

vector polynomial of degree deg(i)(n), where we have used the abbreviation

deg(i)(n) =


n+ 1 if i = 1

n− 1 if i = 2

n if i = 3.
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From the representation of the gradient in spherical coordinates (1.2) it follows that

k(1)
n (rnYn(ξ)) = (n+ 1)rn+1Yn(ξ)ξ − rn+1∇∗

ξYn(ξ),

k(2)
n (rnYn(ξ)) = nrn−1Yn(ξ)ξ + rn−1∇∗

ξYn(ξ), (1.21)

k(3)
n (rnYn(ξ)) = rnL∗ξYn(ξ)

for Yn ∈ Harmn(Ω) and x = rξ, r = |x| > 0. Thus, we get by virtue of the Definition
of the o(i)−operators (see Definition 1.8),

k(1)
n Yn(ξ) = (n+ 1)o(1)Yn(ξ)− o(2)Yn(ξ),

k(2)
n Yn(ξ) = no(1)Yn(ξ) + o(2)Yn(ξ),

k(3)
n Yn(ξ) = o(3)Yn(ξ) .

for Yn ∈ Harmn(Ω) and ξ ∈ Ω. Note that the operators k
(i)
n act on the variable ξ,

as does o(i), but this will not be indicated in our notation unless it does not lead to
confusion.

By a simple rearrangement of the above equations it can be verified that every
type 1 or type 2 vector spherical harmonic of degree n can be expressed as linear
combinations of homogeneous vector polynomials of degree n−1 and n+1, restricted
to the unit sphere, whereas a spherical harmonic of order n and type 3 is a linear
combination of scalar spherical harmonics of order n, i.e.

o(1)Yn(ξ) =
1

2n+ 1

(
k(1)
n rnYn(ξ)

)
r=1

+
1

2n+ 1

(
k(2)
n rnYn(ξ)

)
r=1

,

o(2)Yn(ξ) =
−n

2n+ 1

(
k(1)
n rnYn(ξ)

)
r=1

+
n+ 1

2n+ 1

(
k(2)
n rnYn(ξ)

)
r=1

,

o(3)Yn(ξ) =
(
k(3)
n rnYn(ξ)

)
r=1

,

In conclusion, we get

harm(i)
n ⊂

3⊕
j=1

Harmn−1(Ω)εj ⊕
3⊕
j=1

Harmn+1(Ω)εj, i = 1, 2, (1.22)

harm(3)
n ⊂

3⊕
j=1

Harmn−1(Ω)εj. (1.23)

From (1.22) and (1.23) we can easily deduce the following orthogonality relations.

Lemma 1.14
Let y

(i)
n ∈ harm(i)

n and Ym ∈ Harmm. Then∫
Ω

y(i)
n (ξ)Ym(ξ)dω(ξ) = 0,

whenever i ∈ {1, 2} and m /∈ {n− 1, n+ 1} or i = 3 and m 6= n.
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At this point we give a result of the theory of vector spherical harmonics which will
be of use later on but fits into the concept at this point, namely a generalization
of the Funk–Hecke formula (see (1.11)) to the vectorial case. We give the theorem
without any proof. The motivation, the development and the proof can be found in
[20].

Theorem 1.15
Let G ∈ L1[−1,+1] and assume Yn to be of class Harmn. Then, for all η ∈ Ω, we
have ∫

Ω

G(ξ · η)o(1)
ξ Yn(ξ) dω(ξ) = G∧

(1,1)(n)o(1)
η Yn(η) +G∧

(1,2)(n)o(2)
η Yn(η),∫

Ω

G(ξ · η)o(2)
ξ Yn(ξ) dω(ξ) = G∧

(2,1)(n)o(1)
η Yn(η) +G∧

(2,2)(n)o(2)
η Yn(η),∫

Ω

G(ξ · η)o(3)
ξ Yn(ξ) dω(ξ) = G∧

(3,3)(n)o(3)
η Yn(η),

where the numbers G∧
(i,j)(n) are given by

G∧
(1,1)(n) =

1

2n+ 1
((n+ 1)G∧(n+ 1) + nG∧(n− 1)) ,

G∧
(1,2)(n) =

1

2n+ 1
(G∧(n− 1)−G∧(n+ 1)) ,

G∧
(2,1)(n) =

n(n+ 1)

2n+ 1
(G∧(n− 1)−G∧(n+ 1)) ,

G∧
(2,2)(n) =

1

2n+ 1
(nG∧(n+ 1) + (n+ 1)G∧(n− 1)) ,

G∧
(3,3)(n) = G∧(n).

Another property which is deducible from (1.22) and (1.23) is the fact, that

harmn ⊂
n+1⊕

m=n−1

3⊕
i=1

Harmm(Ω)εi .

On the other hand it is obvious from the corresponding results of the theory of scalar
spherical harmonics that

⊕∞
m=0

⊕3
i=1Harmm(Ω)εi is dense in c(Ω) with respect to

‖·‖c(Ω) and dense in l2(Ω) with respect to (·, ·)l2(Ω).

Summarizing the result we obtain the following theorem.

Theorem 1.16
Let the system of vector spherical harmonics {y(i)

n,k} n=0i,...;
k=1,...,2n+1

, i ∈ {1, 2, 3}, be defined

as in (1.15). Then the following statements are valid:

1. The system of vector spherical harmonics is closed in c(Ω) with respect to
‖·‖c(Ω) and ‖·‖l2(Ω).
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2. The system is complete in l2(Ω) with respect to (·, ·)l2(Ω).

Note that the system of vector spherical harmonics given by

y
(i),R
n,k =

1

R
y

(i)
n,k, i ∈ {1, 2, 3}; n = 0i, . . . ; k = 1, . . . , 2n+ 1, (1.24)

establishes a closed and complete orthonormal system in the Hilbert space l2(ΩR).

Part (1) of this theorem states, that every continuous vector field f ∈ c(Ω) can
be approximated with arbitrary accuracy by a finite linear combination of vector
spherical harmonics. Part (2) is equivalent to the fact that every vector field in l2(Ω)

can be expressed by its Fourier series in terms of the system {y(i)
n,k}, i.e.

lim
N→∞

∥∥∥∥∥f −
3∑
i=1

N∑
n=0i

2n+1∑
k=1

(f
(i)
Y )∧(n, k)y

(i)
n,k

∥∥∥∥∥
l2(Ω)

= 0, (1.25)

with the Fourier coefficients

(f
(i)
Y )∧(n, k) =

(
f, y

(i)
n,k

)
l2(Ω)

=

∫
Ω

f(ξ) · y(i)
n,k(ξ)dω(ξ).

The subscript Y thereby denotes that the Fourier coefficients are taken with respect
to the orthonormal system of vector spherical harmonics Y = {y(i)

n,k} n=0i,...;
k=1,...,2n+1

, i ∈
{1, 2, 3}.
In terms of subspaces of l2(Ω) we may, of course, write

f =
3∑
i=1

f
(i)
Y

with the vector fields f
(i)
Y , i ∈ {1, 2, 3}, given by

f
(i)
Y =

∑
(n,k)∈N (i)

(f
(i)
Y )∧(n, k)y

(i)
n,k

in the sense of the l2(Ω)−norm, where we have used the abbreviation

N (i) = {n = 0i, . . . ; k = 1, . . . , 2n+ 1}. (1.26)

Consequently, we are able to write

l2(Ω) = l
2,(1)
Y (Ω)⊕ l

2,(2)
Y (Ω)⊕ l

2,(3)
Y (Ω), (1.27)

with

l
2,(1)
Y (Ω) =

∞⊕
n=0

span{y(1)
n,k|k = 1, . . . , 2n+ 1}

‖·‖l2(Ω)

, (1.28)

l
2,(2)
Y (Ω) =

∞⊕
n=1

span{y(2)
n,k|k = 1, . . . , 2n+ 1}

‖·‖l2(Ω)

, (1.29)

l
2,(3)
Y (Ω) =

∞⊕
n=1

span{y(3)
n,k|k = 1, . . . , 2n+ 1}

‖·‖l2(Ω)

. (1.30)
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The decomposition of l2(Ω) into the subspaces l
2,(i)
Y (Ω) separates between purely

radial and tangential vector fields. It consists of the space l
2,(1)
Y (Ω) which contains

purely radial fields and the two tangential field spaces l
2,(2)
Y (Ω) and l

2,(3)
Y (Ω), the

first of which contains surface curl free vector fields and the second contains surface
divergence free fields.

To construct a second set of vector spherical harmonics we use the restriction of
homogeneous harmonic vector polynomials to the sphere. Thus, we return to (1.21)

where we have applied the operators k
(i)
n defined in Definition 1.11 to the harmonic

function rnYn. If we restrict the resulting functions to the unit sphere we get another
system of vector spherical harmonics. This system is known from theoretical physics
and developed, for example, in [5] or [16]. The introduction of the system given in
this thesis follows mainly the course of [20] and [50]. In our nomenclature a system
of vector spherical harmonics is described by the following lemma.

Lemma 1.17
Let {Yn,k} n=0,1,...;

k=1,...,2n+1
be an L2(Ω)− orthonormal system of scalar spherical harmonics.

Then the vector fields

u
(1)
n,k = (ν(1)

n )−1/2
(
(n+ 1)o(1)Yn,k − o(2)Yn,k

)
,

=

√
n+ 1

2n+ 1
y

(1)
n,k −

√
n

2n+ 1
y

(2)
n,k,

n = 0, 1, . . . ; k = 1, . . . , 2n+ 1,

u
(2)
n,k = (ν(2)

n )−1/2
(
no(1)Yn,k + o(2)Yn,k

)
,

=

√
n

2n+ 1
y

(1)
n,k +

√
n+ 1

2n+ 1
y

(2)
n,k,

n = 1, 2, . . . ; k = 1, . . . , 2n+ 1,

u
(3)
n,k = (ν(3)

n )−1/2o(3)Yn,k = y
(3)
n,k,

n = 1, 2, . . . ; k = 1, . . . , 2n+ 1,

form an l2(Ω)−orthonormal set of vector spherical harmonics with the normalization
coefficients given by

ν(1)
n = (n+ 1)(2n+ 1), n ∈ N0,

ν(2)
n = n(2n+ 1), n ∈ N,
ν(3)
n = n(n+ 1), n ∈ N .
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The proof of this lemma easily follows from computations involving the orthonor-
mality of the system {y(i)

n,k}. The reader should note, that the system {u(i)
n,k} does

not separate between radial and tangential fields. However, as we will see later, this
system has other advantageous properties in electro- and magnetostatic modelling.

A direct consequence of Theorem 1.16 is the following result.

Corollary 1.18
Let the system of vector spherical harmonics {u(i)

n,k} n=0i,...;
k=1,...,2n+1

, i ∈ {1, 2, 3}, be defined

as in Lemma 1.17. Then the following statements are valid:

1. The system of vector spherical harmonics is closed in c(Ω) with respect to
‖·‖c(Ω) and ‖·‖l2(Ω).

2. The system is complete in l2(Ω) with respect to (·, ·)l2(Ω).

Note that the system of vector spherical harmonics given by

u
(i),R
n,k =

1

R
u

(i)
n,k, i ∈ {1, 2, 3}; n = 0i, . . . ; k = 1, . . . , 2n+ 1, (1.31)

establishes a closed and complete orthonormal system in the Hilbert space l2(ΩR).

Part (2) of Corollary 1.18 enables us to represent every l2(Ω)−vector field f by its

Fourier series in terms of the system {u(i)
n,k} n=0i,...;

k=1,...,2n+1
, i ∈ {1, 2, 3}, i.e. we have

lim
N→∞

∥∥∥∥∥f −
3∑
i=1

N∑
n=0i

2n+1∑
k=1

(f
(i)
U )∧(n, k)u

(i)
n,k

∥∥∥∥∥
l2(Ω)

= 0,

with Fourier coefficients

(f
(i)
U )∧(n, k) =

(
f, u

(i)
n,k

)
l2(Ω)

=

∫
Ω

f(ξ) · u(i)
n,k(ξ)dω(ξ).

Note that, as before, the subscript U denotes that the Fourier coefficients are taken
with respect to the orthonormal system of vector spherical harmonics
U = {u(i)

n,k} n=0i,...;
k=1,...,2n+1

, i ∈ {1, 2, 3}.
Alternatively to the above representation, we can write

f =
3∑
i=1

f
(i)
U

with the vector fields f
(i)
U , i ∈ {1, 2, 3}, given by

f
(i)
U =

∑
(n,k)∈N (i)

(f
(i)
U )∧(n, k)u

(i)
n,k
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in the sense of the l2(Ω)−norm. In the sense of subspaces of the Hilbert space l2(Ω)
the above results may be written as follows.

l2(Ω) = l
2,(1)
U (Ω)⊕ l

2,(2)
U (Ω)⊕ l

2,(3)
U (Ω), (1.32)

with

l
2,(1)
U (Ω) =

∞⊕
n=0

span{u(1)
n,k|k = 1, . . . , 2n+ 1}

‖·‖l2(Ω)

, (1.33)

l
2,(2)
U (Ω) =

∞⊕
n=1

span{u(2)
n,k|k = 1, . . . , 2n+ 1}

‖·‖l2(Ω)

, (1.34)

l
2,(3)
U (Ω) =

∞⊕
n=1

span{u(3)
n,k|k = 1, . . . , 2n+ 1}

‖·‖l2(Ω)

. (1.35)

For both orthonormal systems there are certain vectorial addition theorems available
as for the case of scalar spherical harmonics (see Theorem 1.6). For the formulation
of the vectorial addition theorems tensorial Legendre functions have to be intro-
duced. Since these functions are not further needed during the course of this thesis
they are not given here. The interested reader is referred to [50], where systems of
vector spherical harmonics are introduced in a very complete manner.

Finally, it should be mentioned that both system of spherical harmonics of degree
n are infinitely often differentiable eigenfunctions of the vectorial Beltrami operator
∆∗, defined by

∆∗ = pnorm(∆∗ + 2)pnorm + ptan∆
∗ptan ,

to the eigenvalue −n(n + 1), i.e. we have for all n = 0i, . . . ; k = 1, . . . , 2n + 1 and
i ∈ {1, 2, 3},

∆∗y
(i)
n,k = −n(n+ 1)y

(i)
n,k ,

∆∗u
(i)
n,k = −n(n+ 1)u

(i)
n,k .

For more information concerning the definition and the properties of the vectorial
Beltrami operator the reader is again referred to [50].

1.4 The Mie Representation

The following section is concerned with the introduction of two different kinds of
representing vector fields. First of all we will formulate the Helmholtz decomposi-
tion for vector fields on a regular surface and specify the decomposition for spherical
vector fields. We will see that this decomposition is strongly related to the operators
o(i) introduced in the last section. The Helmholtz representation theorem for regular
surfaces is just a special case of the general Helmholtz decomposition theorem for
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vector fields defined on the Euclidean space R3.
In addition to the Helmholtz representation we will present another decomposition,
called Mie representation, which can be formulated for solenoidal vector fields de-
fined in a subset of R3. The Mie representation is well known especially in the
geomagnetic literature (see [5], [6]) but also used in mathematics (see [29], [59]).
We will just recapitulate some important facts of the Mie representation which are
useful for further considerations.

In the nomenclature introduced in the previous sections the Helmholtz decomposi-
tion theorem for vector fields on regular surfaces reads as follows.

Theorem 1.19
Let Σ be a regular surface. Furthermore, let f : Σ → R3 be a continuously dif-
ferentiable vector field on Σ. Then there exist uniquely determined scalar fields
F1 ∈ C(1)(Σ) and F2, F3 ∈ C(2)(Σ) satisfying∫

Σ

Fi(x)dωΣ(x) = 0, i = 2, 3,

such that

f = νF1 +∇∗F2 + L∗F3 . (1.36)

Equation (1.36) is called Helmholtz decomposition of f with respect to the regular
surface Σ.

For a proof of this theorem the reader is referred, for example, to [45] and for a
development of this result from the more practical point of view with application to
geomagnetism see, for example, [6].

Observing that the sphere Ω is just a special regular surface in R3 we get the following
result.

Corollary 1.20
Let f : Ω → R3 be a continuously differentiable vector field. Then there exist

uniquely determined scalar functions F1 ∈ C(1)(Ω) and F2, F3 ∈ C(2)(Ω) satisfying∫
Ω

Fi(ξ)dω(ξ) = 0, i = 2, 3,

such that

f(ξ) = ξF1(ξ) +∇∗
ξF2(ξ) + L∗ξF3(ξ) (1.37)

= o(1)F1(ξ) + o(2)F2(ξ) + o(3)F3(ξ), ξ ∈ Ω

where the operators o(i), i ∈ {1, 2, 3}, are given in Definition 1.8.
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Because of (1.37) the operators o(i), i ∈ {1, 2, 3}, are sometimes called Helmholtz
operators.

It should be mentioned that F1 is just the radial projection of f and that for the
Helmholtz scalars F2 and F3 explicit representations are available in terms of the
Green function with respect to the Beltrami operator (see [20]). Note that the
Helmholtz theorem for the sphere is also valid for vector fields on ΩR, R > 0, since
a vector field defined on ΩR can be mapped isomorphically to a vector field defined
on Ω.

If the vector field f is defined on a spherical shell Ω(a,b) ⊂ R3 the spherical Helmholtz
decomposition can be applied on every sphere Ωr with r ∈ (a, b). This procedure
results in sufficiently smooth scalar fields F1, F2, F3 : Ω(a,b) → R with

f(rξ) = ξF1(rξ) +∇∗
ξF2(rξ) + L∗ξF3(rξ) r ∈ (a, b), ξ ∈ Ω . (1.38)

Using representation (1.38) we can apply the curl operator to a vector field f in
Helmholtz representation.

Lemma 1.21
Let the vector field f : Ω(a,b) → R3 be decomposed as in (1.38). Then we have

(∇∧ f)(rξ) = ξ

[
∆∗
ξF3(rξ)

r

]
+∇∗

ξ

[
−∂r(rF3(r, ξ))

r

]
+ L∗ξ

[
∂r(rF2(rξ))

r
− F1(rξ)

r

]
,

for r ∈ (a, b) and ξ ∈ Ω.

A proof of this result can be found, for example, in [6].

For a scalar field F the abbreviation ∂rF is in a mathematically correct notation
given by

∂rF (rξ) =

(
∂

∂r′
F (r′ξ)

)
|r′=r .

As we can see in the above version of the spherical Helmholtz theorem, the decom-
position of a vector field into Helmholtz scalars is restricted to spheres or to regular
surfaces. If the radius of the sphere changes the Helmholtz scalars change and they
may even mix. Thus, the Helmholtz decomposition does not seem to be the best
method to cope with given three-dimensional vector fields. To overcome this draw-
back we introduce another decomposition of a vector field, called Mie representation.
This method is just applicable for certain so-called solenoidal vector fields, which
turns out to be not a severe restriction in most geomathematical applications. The
Mie representation is a decomposition of a solenoidal vector field into a poloidal and
a toroidal part, which are special types of vector fields.

Most of the definitions and proofs in this paragraph can be found in [6] and the
references therein.
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Definition 1.22
Let f be a vector field defined on a non-empty region U ⊂ R3. f is called solenoidal
in U if, for every closed surface S lying entirely in U ,∫

S

f(y) · dωS(y) = 0 .

By Gauss’ theorem it is clear that every vector field being solenoidal in U is diver-
gence free in U . The converse is false as the reader can verify with the vector field
f(x) = x/ |x|2 , x ∈ Ω(a,b) with 0 < a < b.
After this preparation we are able to formulate the Mie representation, which is the
fundamental theorem for our further considerations concerning geomathematical
vector fields.

Theorem 1.23
Let Ω(a,b) be a spherical shell with 0 ≤ a < b <∞. Furthermore, let f be a solenoidal
vector field in Ω(a,b). Then there exist unique scalar fields P,Q in Ω(a,b) such that∫

Ωr

P (x) dωr(x) =

∫
Ωr

Q(x) dωr(x) = 0, r ∈ (a, b),

and
f = p+ q = ∇∧ LP + LQ in Ω(a,b).

The vector field p = ∇∧LP is called the poloidal part of f and the field q = LQ is
called the toroidal part of f .
This nomenclature is put in concrete terms in the following definitions.

Definition 1.24
Let Ω(a,b) be defined as above, then a vector field q is called toroidal in Ω(a,b) if there
exists a scalar field Q in Ω(a,b) such that

q = LQ in Ω(a,b).

Q is called the toroidal scalar of q in Ω(a,b).
Furthermore, a vector field p is called poloidal in Ω(a,b) if there exists a scalar field
P in Ω(a,b) such that

p = ∇∧ LP in Ω(a,b).

P is called the poloidal scalar of p in Ω(a,b).

If we have a look at the definition of the curl gradient as Lx = x ∧ ∇x and use the
representation of the gradient in polar coordinates ∇x = ξ ∂

∂r
+ 1

r
∇∗
ξ with x = rξ ∈

R3 \ {0}, then we see that

Lx = rξ ∧
(
ξ
∂

∂r
+

1

r
∇∗
ξ

)
= ξ ∧∇∗

ξ = L∗ξ .
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But this shows us that toroidal vector fields are purely tangential fields if restricted
to a sphere Ωr with r ∈ (a, b).

Next, we recapitulate a theorem which gives a possibility to test whether a vector
field is poloidal or toroidal in a spherical shell Ω(a,b).

Theorem 1.25
1. A vector field p in Ω(a,b) is poloidal if and only if it is solenoidal and its curl is

tangential, i.e. (x/ |x|) · (∇x ∧ p(x)) = 0 for all x ∈ Ω(a,b).

2. A vector field q in Ω(a,b) is toroidal if and only if it is solenoidal and tangential,
i.e. (x/ |x|) · q(x) = 0 for all x ∈ Ω(a,b).

A proof of this theorem can be found, for example, in [6].

At the end, we connect the two fundamental representations of this section, the
Mie representation given in Theorem 1.23 and the Helmholtz representation given
in Corollary 1.20.

Theorem 1.26
Let f be solenoidal in Ω(a,b). Let, furthermore, the Mie representation of f be given
by

f = ∇∧ LP + LQ in Ω(a,b).

Then the Helmholtz representation of f restricted to a sphere Ωr with r ∈ (a, b) is
given by

f(x) = ξ

(
∆∗
ξP (x)

r

)
+∇∗

ξ

(
−1

r

∂

∂r
(rP (x))

)
+ L∗ξQ(x), x ∈ Ωr.

A proof of this theorem can be found in [6].

In this case the application of the (spherical) operators ∇∗ and L∗ to the three-
dimensional scalar fields P and Q, must be seen as the application to the restrictions
of the scalar fields P and Q to the corresponding sphere Ωr.
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Chapter 2

Multiresolution Analysis of
Operator Equations

In this chapter we introduce a multiresolution analysis for operator equations bet-
ween two separable Hilbert spaces of scalar or vector valued functions, based on the
knowledge of the singular system of the operator. The theory as presented here, is
based on [21] and [25].

At first we will formulate the multiscale approach for operators between two Hilbert
spaces of scalar valued functions. This concise introduction should give the reader
a feeling how scaling functions and wavelets for evaluating operator equations can
be built and how a multiresolution decomposition of the evaluation of an operator
equation can be established. Then we will go over to operator equations between
two vector valued function spaces and formulate a vectorial multiresolution analy-
sis by means of vector scaling functions and wavelets. The canonical approach for
dealing with operator equations between vector valued function spaces would be by
means of tensorial kernel functions which will briefly be introduced and which will
be shown to be equivalent to the vectorial ansatz.
At the end of the chapter we include the method of regularization of inverse problems
by a multiresolution analysis using scaling functions and wavelets. The approach
presented here is (for the scalar case) mainly due to [25]. First our purpose is to
give some general properties concerning inverse problems. Then we will formulate
the multiscale regularization approach for scalar valued problems and after this gen-
eralize the ansatz to vectorial problems. The bilinear vectorial multiscale approach
was the leading task for the formulation of this chapter since our main interest is a
regularization of vectorial inverse problems in terms of a multiresolution analysis.

For more information about multiresolution of operator equations the reader is re-
ferred to [49] and the reference therein, who has developed a multiresolution ap-
proach within a general Hilbert space concept. Similar formulations of multiscale
evaluation of operator equations and regularization by multiresolution can be found
in [21] and [30] for the scalar case and in [43] for the vectorial case with applica-
tion to geomagnetism. As already done in these thesis, we restrict ourselves in this

33
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chapter to the scale discrete case, because it is the important one for numerical
applications. But it should be noted that the theory can also be formulated for the
scale continuous case.
Furthermore the major task of this chapter is the development of vector scaling
functions and wavelets in a general Hilbert space context which can only be done in
a bilinear approach. Thus, we will restrict ourselves in the scalar as well as in the
tensorial ansatz to the bilinear case but it should be noted that these two approaches
can also be formulated in a linear sense (cf. [49].)

2.1 The Scalar Case

Consider two separable Hilbert spaces (H, (·, ·)H) and (K, (·, ·)K) of scalar valued
functions defined on domains DH ⊂ Rn and DK ⊂ Rn, respectively. Additionally,
let the operator Λ : H → K, defined by

ΛF = G, F ∈ H, G ∈ K,

be injective, bounded, linear and compact. Any compact operator Λ : H → K can
be represented by its singular system (σn, Hn, Kn), where {σ2

n} are the non-zero
eigenvalues of the selfadjoint operator Λ∗Λ which are assumed to be numbered in

descending order. {Hn} is a complete orthonormal system in R(Λ∗)
‖·‖H (of corre-

sponding eigenfunctions of Λ∗Λ), while {Kn} denotes a complete orthonormal system

in R(Λ)
‖·‖K (of corresponding eigenfunctions of ΛΛ∗). A diagonalized version of the

operator equation is then obtained by the following equations:

ΛHn = σnKn, ΛF =
∞∑
n=0

σn(F,Hn)HKn, F ∈ H,

Λ∗Kn = σnHn, Λ∗G =
∞∑
n=0

σn(G,Kn)KHn, G ∈ K.

The development of the multiresolution analysis will be based on so-called product
kernels which are defined in the following definition, which is due to [25].

Definition 2.1
A function Γ (·, ·) : DH ×DK → R of the form

Γ (x, y) =
∞∑
n=0

Γ∧ (n)Hn (x)Kn (y) , x ∈ DH, y ∈ DK

is called (H,K)−product kernel . The sequence {Γ∧ (n)}n=0,1,... is called the symbol
of the product kernel. If

∞∑
n=0

((ΦJ)
∧(n)Hn(x))

2
< ∞ for all x ∈ DH,

∞∑
n=0

((ΦJ)
∧(n)Kn(y))

2
< ∞ for all y ∈ DK.
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then the product kernel is called admissible.
The H−convolution of a product kernel Γ against a function F ∈ H is defined by

(Γ ∗H F )(y) = (Γ(·, y), F )H , y ∈ DK,

while the K−convolution of a product kernel Γ against a function G ∈ K is defined
by

(Γ ∗K F )(x) = (Γ(x, ·), G)K , x ∈ DH.

It is clear by definition that, for an admissible product kernel, Γ (x, ·) is of class K
for every fixed x ∈ DH and Γ (·, y) ∈ H for every fixed y ∈ DK.

We are now interested in introducing countable families {ΦJ}, J ∈ Z, of kernel
functions which may be understood as scaling functions in our wavelet concept for
scalar operator equations under consideration.

Definition 2.2
Let {(ΦJ)

∧(n)}n=0,1,..., J ∈ Z, be a family of admissible symbols satisfying the fol-
lowing properties:

1. lim
J→∞

((ΦJ)
∧(n))2 = σn, n ∈ N0,

2. ((ΦJ−1)
∧(n))2 ≤ ((ΦJ)

∧(n))2 , J ∈ Z, n ∈ N0,

3. lim
J→−∞

((ΦJ)
∧(n))2 = 0, n ∈ N0.

Then {(ΦJ)
∧(n)}n=0,1,..., J ∈ Z, is called the generating symbol of a scaling function.

The family of kernels {dΦJ}, J ∈ Z, given by

dΦJ(x, y) =
∞∑
n=0

(ΦJ)
∧(n)Hn(x)Kn(y), x ∈ DH, y ∈ DK

is called decomposition scaling function and the family of kernels {rΦJ}, J ∈ Z,
given by

rΦJ(x, y) =
∞∑
n=0

(ΦJ)
∧(n)Kn(x)Kn(y), x, y ∈ DK

is called reconstruction scaling function.

By the admissibility of the generating symbol {(ΦJ)
∧(n)} it follows that for fixed

y ∈ DK, dΦJ(·, y) ∈ H, rΦJ(·, y) ∈ K for all J ∈ Z. This enables us to verify a
reconstruction formula. More explicitly, the scaling functions establish a ”discrete
approximate identity”.
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Theorem 2.3
Let

{
(ΦJ)

∧ (n)
}
n=0,1,...

, J ∈ Z, be the generating symbol of the scaling functions
dΦJ and rΦJ . Furthermore, let, for F ∈ H, the function GJ be given by

GJ = rΦJ ∗K (dΦJ ∗H F ). (2.1)

Then
lim
J→∞

‖GJ −G‖K = 0

holds for all G ∈ K with ΛF = G.

The proof of this theorem can simply be deduced by the properties of the generating
symbol {(ΦJ)

∧(n))} in Definition 2.2 and can in detail be found, for example, in
[21] or [30].

According to our construction, for any F ∈ H, each convolution operator TJF
defined by TJ : H → K, TJF = GJ = rΦJ ∗K (dΦJ ∗H F ), J ∈ Z, provides an
approximation of G = ΛF at scale J . In terms of filtering TJ may be interpreted as
low-pass projection filter. Accordingly, we understand the scale space VJ to be the
image of H under the operator TJ :

VJ = TJ(H) =
{
rΦJ ∗K (dΦJ ∗H F )|F ∈ H

}
.

The following result is an immediate consequence of the previous ones.

Theorem 2.4
The scale spaces {VJ}J∈Z satisfy the following properties:

1. VJ ⊂ VJ ′ ⊂ K, J ≤ J ′,

2.
∞⋃

J=−∞
VJ

‖·‖K
= K,

Proof:
The properties follow directly from Definition 2.2 (2.) and Theorem 2.3. �

If a sequence of subspaces of a Hilbert space K satisfies the conditions of Theorem
2.4, then we call them a multiresolution analysis (MRA).

The definition of the scaling function now allows us to introduce wavelets. Wavelets
are defined via their symbol by aid of a ”refinement (scaling) equation”.

Definition 2.5
Let

{
(ΦJ)

∧ (n)
}
n=0,1,...

, J ∈ Z, be the generating symbol of scaling functions accord-

ing to Definition 2.2. Then the generating symbol
{
(ΨJ)

∧ (n)
}
n=0,1,...

, J ∈ Z, of the

associated wavelets is defined via the ”refinement equation”

(ΨJ)
∧ (n) =

(
(ΦJ+1)

∧ (n)2 − (ΦJ)
∧ (n)2

)1/2
, n ∈ N0. (2.2)
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The family
{
dΨJ

}
, J ∈ Z, of kernels given by

dΨJ (x, y) =
∞∑
n=0

(ΨJ)
∧ (n)Hn(x)Kn(y), x ∈ DH, y ∈ DK,

is called decomposition wavelet associated to the family of decomposition scaling
functions

{
dΦJ

}
, J ∈ Z, whereas the family {rΨJ}, J ∈ Z, of kernels given by

rΨJ (x, y) =
∞∑
n=0

(ΨJ)
∧ (n)Kn(x)Kn(y), x, y ∈ DK,

is called reconstruction wavelet associated to the family of reconstruction scaling
functions {rΦJ}, J ∈ Z.
The corresponding mother wavelets are denoted by dΨ0 and rΨ0, respectively.

We can easily derive from the refinement equation (2.2) that, for n ∈ N0,(
(ΦJ+1)

∧ (n)
)2

=
J∑

j=−∞

(
(Ψj)

∧ (n)
)2

=
(
(Φ0)

∧ (n)
)2

+
J∑
j=0

(
(Ψj)

∧ (n)
)2
. (2.3)

Thus, we can deduce from (2.3) that

rΦJ+1 ∗K dΦJ+1 =
J∑

j=−∞

(
rΨj ∗K dΨj

)
= rΦ0 ∗K dΦ0 +

J∑
j=0

(
rΨj ∗K dΨj

)
(2.4)

holds pointwise in DH×DK. Similar to the definition of the operator TJ we are now
led to convolution operators RJ : H → K, J ∈ Z, defined by

RJF = rΨJ ∗K (dΨJ ∗H F ), F ∈ H.

Thus, Equation (2.4) can be rewritten in operator notation as

TJ+1 =
J∑

j=−∞

Rj = T0 +
J∑
j=0

Rj .

The convolution operator RJ describes the detail information of F at scale J . In
terms of filtering, RJ = rΨJ ∗K dΨJ ∗H, J ∈ Z, may be interpreted as a band-pass
filter. This fact immediately gives rise to introduce the detail spaces WJ as follows:

WJ = RJ (H) =
{
rΨJ ∗K (dΨJ ∗H F )|F ∈ H

}
.

For example, WJ contains the detail information needed to go from an approxima-
tion GJ at level J to an approximation GJ+1 at level J + 1. Hence, we get

VJ +WJ = VJ+1, J ∈ Z.

It should be noted that, in general, the sum in the last equation is neither direct
nor orthogonal.

The main result of our wavelet approach now can be formulated in the following
theorem.



38 Chapter 2. Multiresolution Analysis of Operator Equations

Theorem 2.6
Let {(ΦJ)

∧(n)}n=0,1,..., J ∈ Z, be the generating symbol of a scaling function. Sup-
pose that {(ΨJ)

∧(n)}n=0,1,..., J ∈ Z, is the generating symbol of the associated
wavelet. Furthermore, let F be of class H. Then

GJ = rΦ0 ∗K (dΦ0 ∗H F ) +
J−1∑
j=0

rΨj ∗K (dΨj ∗H F )

is the J−level approximation of G satisfying

lim
J→∞

‖GJ −G‖K = 0.

for all G ∈ K with ΛF = G.

The last equations show the main characteristics of the multiresolution analysis by
wavelets. The approximated solution GJ ∈ VJ is improved to GJ+1 ∈ VJ+1 by
adding the so-called detail information of level J contained in WJ . An even more
important property of the multiresolution analysis by wavelets is that we are able
to guarantee lim

J→∞
GJ = G in the sense of the ‖·‖K−norm.

2.2 The Vectorial Case

In the following section we generalize the previously presented concept for a multi-
scale analysis of a scalar operator equation to the vectorial case. Similar considera-
tions can be found in [43] in a general Hilbert space concept and for the special case
of spherical functions in [8].

Let us now consider two separable Hilbert spaces (h, (·, ·)h) and (k, (·, ·)k) of vector
valued functions (with values in R3) defined on domains Dh ⊂ Rm and Dk ⊂ Rm,
respectively, where Rm is in most of our applications the space R3. Furthermore, let
the operator Λ : h → k, defined by

Λf = g, g ∈ h, g ∈ k,

be injective, bounded, linear and compact. Such an operator will from now on
be called briefly tensor-operator, because it maps vector fields to vector fields. Any
compact operator Λ : h → k between two separable Hilbert spaces can be represented
by its singular system (σn, hn, kn) where {σ2

n} are the non-zero eigenvalues of the
selfadjoint operator Λ∗Λ which are assumed to be numbered in descending order.

{hn} is a complete orthonormal system in R(Λ∗)
‖·‖h , while {kn} denotes a complete

orthonormal system in R(Λ)
‖·‖k . A diagonalized version of the operator equation is

then obtained by the following equations:

Λhn = σnkn, Λf =
∞∑
n=0

σn(f, hn)hkn, f ∈ h,

Λ∗kn = σnhn, Λ∗g =
∞∑
n=0

σn(g, kn)khn, g ∈ k.
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In what follows, the development of the multiresolution analysis will be based on
so-called vector product kernels which are defined next. For the definition we need
another separable Hilbert space of scalar valued functions defined over the domain
DH which will be given by (H, (·, ·)H).

Definition 2.7
Let (h, (·, ·)h) and (H, (·, ·)H) be real separable Hilbert spaces of vector, respectively,
scalar valued functions over the domain Dh ⊂ Rm, respectively, DH ⊂ Rm. Let,
furthermore, {hn}n∈N and {Hn}n∈N be corresponding countable, orthonormal and
complete systems in h and H, respectively. Then, a function γ (·, ·) : Dh×DH → R3

of the form

γ (x, y) =
∞∑
n=0

γ∧(n)hn(x)Hn(y), x ∈ Dh, y ∈ DH ,

is called (h,H)−vector product kernel . The sequence {γ∧(n)}n=0,1,... is the symbol
of the vector product kernel.
As in the scalar case, the symbol {γ∧(n)} is called admissible if

∞∑
n=0

(γ∧(n)hn(x))
2
< ∞ for all x ∈ Dh,

∞∑
n=0

(γ∧(n)Hn(y))
2
< ∞ for all y ∈ DH.

By the admissibility of the symbol we can conclude that εi · γ (x, ·) ∈ H for every
fixed x ∈ Dh and i = 1, 2, 3, and γ (·, y) ∈ h for every fixed y ∈ DH.

In contrast to the scalar case, we now have to introduce two different convolutions,
i.e. a decomposition convolution, called the h−convolution, which results in a scalar
function and a reconstruction convolution, called the ?−convolution, which maps
the scalar field back to a vector valued function.

Definition 2.8
Let γ : Dh × DH → R3 be a vector product kernel with admissible symbol. The
h−convolution of γ against a vector valued function f ∈ h is defined by

(γ ∗h f)(y) = (γ(·, y), f)h , y ∈ DH,

while the ?−convolution of a product kernel γ against a scalar valued functionG ∈ H
is defined by

(γ ? G)(x) =
3∑
i=1

(
εi · γ(x, ·), G

)
H , x ∈ Dh.

By the admissibility of the product kernel γ it is clear that

(γ ∗h f) ∈ H for all f ∈ h,

(γ ? G) ∈ h for all G ∈ H.
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Using the orthonormality of the system {hn} in the Hilbert space h we easily get
for f ∈ h

γ ∗h f =
∞∑
n=0

γ∧(n)f∧(n)Hn (2.5)

in the sense of the H−norm, where {f∧(n)} are the Fourier coefficients of f with
respect to the system {hn} ⊂ h. With the same argument we find for G ∈ H

γ ? G =
∞∑
n=0

γ∧(n)G∧(n)hn (2.6)

in the sense of the h−norm where {G∧(n)} are the Fourier coefficients of G with
respect to the system {Hn} ⊂ H.

The following theorem leads us to the construction of decomposition and reconstruc-
tion vector kernel functions which will be called vector scaling functions.

Theorem 2.9
Let h, k and H be Hilbert spaces as given in the course of this section. Furthermore,
let γ1 be a (h,H)−vector product kernel with admissible symbol {γ∧1 (n)} and γ2

be a (k,H)−vector product kernel with admissible symbol {γ∧2 (n)}. Then, for each
f ∈ h, we obtain

γ2 ? γ1 ∗h f =
∞∑
n=0

γ∧1 (n)γ∧2 (n)f∧(n)kn

in the sense of the k−norm where {f∧(n)} are the Fourier coefficients of f with
respect to the orthonormal system {hn} ⊂ h.

Proof:
Observing that for f ∈ h, γ1 ∗h f is an element of H, the proof is just a combination
of Equation (2.5) and Equation (2.6). �

Remark 2.10
The reader should note that the Hilbert space H of scalar valued functions over
the domain DH is just a ”park” Hilbert space in our bilinear multiscale theory for
tensor-operator equations. The only prerequisite imposed on H is the separability,
i.e. the existence of a countable orthonormal system {Hn}n=0,1,... in H. No other
conditions on H or DH have to be assumed. If either h or k are Hilbert spaces of
vector valued functions over a regular surface which have emerged from a Hilbert
space of scalar valued functions over the same regular surface (as for example by the
Helmholtz theorem), then it is obvious to choose H to be this special Hilbert space
of scalar valued functions. For example if h = l2(Σ) and k = l2(Σ′), where Σ and Σ′

are both regular surfaces, then H is either chosen to be L2(Σ) or L2(Σ′).
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We are now interested in developing countable families {ϕJ}, J ∈ Z, of vector ker-
nel functions as in the scalar case which are called vector scaling functions in our
multiscale concept for tensor-operator equations.

Definition 2.11
Let h, k and H be Hilbert spaces as given in the course of this section and let
{hn}, {kn} and {Hn} be the respective orthonormal systems. Furthermore, let
{(ϕJ)∧(n)}n=0,1,..., J ∈ Z, be a family of admissible sequences satisfying the following
properties;

1. lim
J→∞

((ϕJ)
∧(n))2 = σn, n ∈ N0,

2. ((ϕJ−1)
∧(n))2 ≤ ((ϕJ)

∧(n))2 , J ∈ Z, n ∈ N0,

3. lim
J→−∞

((ϕJ)
∧(n))2 = 0, n ∈ N00,

where σn are the singular values of the operator Λ : h → k. Then {(ϕJ)∧(n)}n=0,1,...,
J ∈ Z, is called the generating symbol of a vector scaling function. The family of
kernels {dϕJ}, J ∈ Z, given by

dϕJ(x, y) =
∞∑
n=0

(ϕJ)
∧(n)hn(x)Hn(y), x ∈ Dh, y ∈ DH

is called decomposition vector scaling function and the family of kernels {rϕJ}, J ∈
Z, given by

rϕJ(x, y) =
∞∑
n=0

(ϕJ)
∧(n)kn(x)Hn(y), x ∈ Dk, y ∈ DH

is called reconstruction vector scaling function.

By the admissibility of the generating symbol {(ϕJ)∧(n)} it follows that, for fixed
y ∈ DH,

dϕJ(·, y) ∈ h, J ∈ Z, rϕJ(·, y) ∈ k, J ∈ Z.

This enables us to verify that the scaling functions establish a ”discrete approximate
identity”.

Theorem 2.12
Let {(ϕJ)∧(n)}n=0,1,..., J ∈ Z, be the generating symbol of the vector scaling func-
tions dϕJ and rϕJ . Furthermore let, for f ∈ h, the function gJ be given by

gJ = rϕJ ? (dϕJ ∗h f). (2.7)

Then
lim
J→∞

‖gJ − g‖k = 0

holds for all g ∈ k with Λf = g.
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Proof:
Let the operator TJ : h → k, J ∈ Z, be given by

TJf = rϕJ ? (dϕJ ∗h f).

Then we can easily deduce by Theorem 2.9 that

TJf =
∞∑
n=0

((ϕJ)
∧(n))2f∧(n)kn

holds in the sense of the k−norm where {f∧(n)}n=0,1,... are the Fourier coefficients
of f with respect to the system {hn} ⊂ h. Furthermore, we are able to deduce that

‖TJ‖ = sup
f∈h

‖TJf‖k

‖f‖h

= sup
f∈h, ‖f‖h=1

‖TJf‖k

= sup
f∈h, ‖f‖h=1

(
∞∑
n=0

((ϕJ)
∧(n))

4
(f∧(n))

2

)1/2

≤ sup
n∈N0

((ϕJ)
∧(n))

2

(
∞∑
n=0

(f∧(n))
2

)1/2

= sup
n∈N0

((ϕJ)
∧(n))

2
<∞

for every J ∈ Z, since
{
((ϕJ)

∧(n))2}
n∈N0

is an admissible symbol. Now we obtain

from Parseval’s identity (see e.g. [13]) that

lim
J→∞

‖Λf − TJf‖2
k = lim

J→∞

∞∑
n=0

(
σn − ((ϕJ)

∧(n))
2
)2

(f∧(n))2 . (2.8)

Finally, Definition 2.11 yields

0 ≤
(
σn − ((ϕJ)

∧(n))
2
)2

= σ2
n − 2σn((ϕJ)

∧(n))2 + ((ϕJ)
∧(n))4 ≤ 4σ2

n ,

which allows us to interchange the limit and the sum in (2.8), since (σn)n∈N0 is
bounded. Using Definition 2.11 we deduce the desired result. �

According to our construction, for any f ∈ h, each operator TJ defined by

TJ : h → k,

f 7→ TJf = gJ = rϕJ ? (dϕJ ∗h f), J ∈ Z,

provides an approximation of g = Λf at scale J . In terms of filtering TJ may be
interpreted as vectorial low-pass projection filter. Accordingly, we understand the
vector valued scale space vJ to be the image of h under the operator TJ :

vJ = TJ (h) =
{
rϕJ ? (dϕJ ∗h f)|f ∈ h

}
.

The following result is an immediate consequence of the previous ones.
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Theorem 2.13
The scale spaces {vJ}J∈Z satisfy the following properties:

1. vJ ⊂ vJ ′ ⊂ k, J ≤ J ′,

2.
∞⋃

J=−∞
vJ

‖·‖k

= k .

Proof:
The properties follow directly by Definition 2.11 (2.) and by Theorem 2.12. �

If a sequence of subspaces of a Hilbert space of vector valued functions k satisfies
the conditions of Theorem 2.13, then we call them a vector multiresolution analysis
(VMRA).

The definition of the vector scaling function now allows us to introduce vector
wavelets. They are introduced via their symbol by aid of a ”refinement (scaling)
equation” which is an equivalent definition as in the scalar case (see Definition 2.5).

Definition 2.14
Let {(ϕJ)∧(n)}n=0,1,..., J ∈ Z, be the generating symbol of vector scaling functions
according to Definition 2.11. Then the generating symbol {(ψJ)∧(n)}n=0,1,..., J ∈ Z,
of the associated vector wavelets is defined via the ”refinement equation”

(ψJ)
∧(n) =

(
(ϕJ+1)

∧(n)2 − (ϕJ)
∧(n)2

)1/2
, n ∈ N0. (2.9)

The family
{
dψJ
}
, J ∈ Z, of kernels given by

dψJ (x, y) =
∞∑
n=0

(ψJ)
∧ (n)hn(x)Hn(y), x ∈ Dh, y ∈ DH,

is called decomposition vector wavelet associated to the family of decomposition
vector scaling functions, whereas the family {rψJ}, J ∈ Z, of kernels given by

rψJ (x, y) =
∞∑
n=0

(ψJ)
∧ (n)kn(x)Hn(y), x ∈ Dk, y ∈ DH,

is called reconstruction vector wavelet associated to the family of reconstruction
vector scaling functions

Similar to the definition of the operator TJ we are now led to convolution operators
RJ : h → k, J ∈ Z, defined by

RJf = rψJ ? (dψJ ∗h f), f ∈ h.



44 Chapter 2. Multiresolution Analysis of Operator Equations

The convolution operators RJ describe the detail information of f at scale J . In
terms of filtering, RJ = rψJ ?

dψJ∗h, J ∈ Z, may be interpreted as a vectorial band-
pass filter. This fact immediately gives rise to introduce the vector valued detail
spaces wJ as follows:

wJ = RJ (h) =
{
rψJ ? (dψJ ∗h f)|f ∈ h

}
.

The main result of our vector wavelet approach for tensor-operator equations can
be formulated in the following theorem.

Theorem 2.15
Let {(ϕJ)∧(n)}n=0,1,..., J ∈ Z, be the generating symbol of a vector scaling function.
Suppose that {(ψJ)∧(n)}n=0,1,..., J ∈ Z, is the generating symbol of the associated
vector wavelet. Furthermore, let f be of class h. Then

gJ = rϕ0 ? (dϕ0 ∗h f) +
J−1∑
j=0

rψj ? (dψj ∗h f)

is the J−level approximation of g satisfying

lim
J→∞

‖gJ − g‖k = 0 ,

for all g ∈ k with Λf = g.

Remark 2.16
It should be noted that the wavelet concept for operator equations in the scalar case
presented in Section 2.1 is just a special case of the previously discussed multiscale
theory for tensor-operator equations. Even the case if one of both Hilbert spaces of
vector valued functions h or k consists of scalar valued functions is included in the
vectorial theory. It is obvious that in this case the ”park” Hilbert space H is chosen
to be that very Hilbert space of scalar valued functions which is just to prevent
any confusion. If both Hilbert spaces consist of scalar valued functions, the choice
of H is arbitrary. In this case the ?−convolution becomes the K−convolution of
Section 2.1.

2.3 The Tensorial Approach

The last section on vector wavelets provides us with a multiscale technique for deal-
ing with tensor-operator equations. From the theoretical point of view this is not
the canonical way to handle vectorial problems. The natural way of dealing with
vector fields in a multiscale framework is given by tensor kernel functions and tensor
convolutions (see e.g. [8], [20], [49], or [50]). We will now present a brief introduction
of the tensorial theory for tensor-operator equations in Hilbert spaces which will be
based on [49]. At the end we will show that both multiscale theories, the tensorial
one and the vectorial ansatz presented in Section 2.2 are equivalent.
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Thus, as at the beginning of Section 2.2, let us consider two separable Hilbert spaces
(h, (·, ·)h) and (k, (·, ·)k) of vector valued functions defined on domains Dh ⊂ Rm and
Dk ⊂ Rm, respectively. Furthermore, let the tensor-operator Λ : h → k, defined by

Λf = g, f ∈ h, g ∈ k,

be injective, bounded, linear and compact with singular system (σn, hn, kn).

Definition 2.17
Any function Γ : Dh ×Dk → R3×3 of the form

Γ(x, y) =
∞∑
i=1

Γ∧(n)kn(x)⊗ hn(y), x ∈ Dk, y ∈ Dh

is called (h, k)−tensor kernel function if its symbol {Γ∧(n)}n∈N0 ⊂ R is admissible,
i.e.

∞∑
n=0

(Γ∧(n)kn(x))
2 < ∞ for all x ∈ Dk,

∞∑
n=0

(Γ∧(n)hn(y))
2 < ∞ for all y ∈ Dh .

The convolution of a (h, k)−tensor kernel function against a vector field f of class h

is defined by

(Γ ∗ f) (x) =

∫
Dh

Γ(x, y)f(y)dωDh
(y), x ∈ Dk .

For the convolution of a (h, k)−tensor kernel function against a vector field we easily
get, for f ∈ h,

Γ ∗ f =
∞∑
n=0

Γ∧(n)f∧(n)kn

in the sense of the k−norm where {f∧(n)}n∈N0 are the Fourier coefficients of f with
respect to the orthonormal system {hn} ⊂ h. By applying this result twice we can
formulate, for two tensor kernel functions, the following theorem.

Theorem 2.18
Let Γ1 be a (h, k)−tensor product kernel with admissible symbol {Γ∧

1 (n)} and Γ2

be a (k, k)−tensor product kernel with admissible symbol {Γ∧
2 (n)}. Then for each

f ∈ h we have that

Γ2 ∗ Γ1 ∗ f =
∞∑
n=0

Γ∧
1 (n)Γ∧

2 (n)f∧(n)kn

in the sense of the k−norm where {f∧(n)} are the Fourier coefficients of f with
respect to the orthonormal system {hn} ⊂ h.
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This leads us as in the scalar case (see Section 2.1) to the definition of tensor scaling
functions and tensor wavelets as reproducing tensor kernel functions.

Definition 2.19
Let {(ΦJ)

∧(n)}n=0,1,..., J ∈ Z be a family of admissible symbols satisfying the fol-
lowing properties:

1. lim
J→∞

((ΦJ)
∧(n))2 = σn, n ∈ N0,

2. ((ΦJ−1)
∧(n))2 ≤ ((ΦJ)

∧(n))2 , J ∈ Z, n ∈ N0,

3. lim
J→−∞

((ΦJ)
∧(n))2 = 0, n ∈ N0,

where σn are the singular values of the operator Λ : h → k. Then {(ΦJ)
∧(n)}n=0,1,...,

J ∈ Z, is called the generating symbol of a tensor scaling function. The family of
kernels {dΦJ}, J ∈ Z, given by

dΦJ(x, y) =
∞∑
n=0

(ΦJ)
∧(n)kn(x)⊗ hn(y), x ∈ Dk, y ∈ Dh,

is called decomposition tensor scaling function and the family of kernels {rΦJ},
J ∈ Z, given by

rΦJ(x, y) =
∞∑
n=0

(ΦJ)
∧(n)kn(x)⊗ kn(y), x, y ∈ Dk,

is called reconstruction tensor scaling function. Furthermore, let as in the scalar case
the symbol {(ΨJ)

∧(n)}n=0,1,..., J ∈ Z, of the associated tensor wavelets be defined
via the scaling equation

(ΨJ)
∧(n) =

(
(ΦJ+1)

∧(n)2 − (ΦJ)
∧(n)2

)1/2
, n ∈ N0.

Then the family
{
dΨJ

}
, J ∈ Z, of kernels given by

dΨJ (x, y) =
∞∑
n=0

(ΨJ)
∧ (n)kn(x)⊗ hn(y), x ∈ Dk, y ∈ Dh,

is called decomposition tensor wavelet associated to the family of decomposition
tensor scaling functions, whereas the family {rΨJ}, J ∈ Z, of kernels given by

rΨJ (x, y) =
∞∑
n=0

(ΨJ)
∧ (n)kn(x)⊗ kn(y), x, y ∈ Dk,

is called reconstruction tensor wavelet associated to the family of reconstruction
tensor scaling functions.
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This definition together with Theorem 2.18 enables us to formulate the following
statement (reconstruction formula).

Theorem 2.20
Let f be of class h. Suppose {rΦJ} and

{
dΦJ

}
to be decomposition and recon-

struction tensor scaling functions and {rΨJ} and
{
dΨJ

}
to be the associated tensor

wavelets. Then
lim
J→∞

∥∥rΦJ ∗ dΦJ ∗ f − Λf
∥∥

k
= 0

as well as

lim
J→∞

∥∥∥∥∥
(
rΦ0 ∗ dΦ0 ∗ f +

J∑
j=0

rΨj ∗ dΨj ∗ f

)
− Λf

∥∥∥∥∥
k

= 0 .

This theorem gives us the theoretical foundation for the multiscale treatment of
vector fields as given by the canonical approach for tensor-operator equations. Fi-
nally, we show that the multiscale ansatz of vector scaling functions and wavelets
presented in Section 2.2 is equivalent to the tensorial case presented in this section.
Similar results have been formulated in [8], [43] and [50]. In the last reference nearly
the approach which we present here has been introduced while the other ones have
formulated the equivalence for special cases of operator equations.

Theorem 2.21
Let f be of class h. Suppose Γ1 to be a (h, k)−tensor product kernel with admissible
symbol {(Γ1)

∧(n)} and Γ2 to be a (k, k)−tensor product kernel with admissible
symbol {(Γ2)

∧(n)}. Furthermore, let γ1 be a (h,H)−vector product kernel and
γ2 be a (k,H)−vector product kernel with symbols {(γ1)

∧(n)} and {(γ2)
∧(n)} as

defined in Definition 2.7 satisfying

(γ1)
∧(n) = (Γ1)

∧(n) ,

(γ2)
∧(n) = (Γ2)

∧(n)

for all n ∈ N0. Then
Γ2 ∗ Γ1 ∗ f = γ2 ? γ1 ∗h f

holds in the sense of the k−norm.

Proof:
From Theorem 2.18 we know that

Γ2 ∗ Γ1 ∗ f =
∞∑
n=0

(Γ1)
∧(n)(Γ2)

∧(n)f∧(n)kn

in the sense of the k−norm where {f∧(n)} are the Fourier coefficients of f with
respect to the orthonormal system {hn} ⊂ h. The assumption

(γ1)
∧(n) = (Γ1)

∧(n) ,

(γ2)
∧(n) = (Γ2)

∧(n)
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for all n ∈ N0 leads to

Γ2 ∗ Γ1 ∗ f =
∞∑
n=0

(γ1)
∧(n)(γ2)

∧(n)f∧(n)kn

in the sense of the k−norm. Using Theorem 2.9 yields

Γ2 ∗ Γ1 ∗ f = γ2 ? γ1 ∗h f

in the sense of the k−norm which is the desired result. �

2.4 Regularization by Multiresolution

Based on the theory presented in the previous sections we will now give an overview
on wavelet regularization techniques in a general Hilbert space framework. The con-
siderations (especially in the scalar case) follow mainly the course of [25]. But at
first we recapitulate some facts concerning the solution of inverse problems.

Let (H, (·, ·)H) and (K, (·, ·)K) be two separable Hilbert spaces of either scalar or
vector valued functions and let G ∈ K be given. Then we are interested in finding
the function F ∈ H which is related to G via

Λ : H → K, ΛF = G, (2.10)

where the operator Λ is assumed to be bounded and linear. The problem of solving
this operator equation is called well-posed in the sense of Hadamard, if the following
statements hold true:

1. For each G ∈ K there exists at least one F ∈ H with ΛF = G.
(Existence of the inverse)

2. For each G ∈ K there exists one and only one F ∈ H with ΛF = G.
(Uniqueness of the inverse)

3. The solution F ∈ H depends continuously on the right hand side G ∈ K.
(Continuity of the inverse)

If at least one of this properties is violated, then the problem is said to be ill-posed.

In practical applications we are generally not concerned with the ideal situation of
a well-posed problem. First of all a solution of ΛF = G exists only if G is in R(Λ),
the range of Λ. Errors due to unprecise measurements result in noisy data which
may cause that G /∈ R(Λ). The perturbed right hand side will be denoted by Gδ

with a known error level given by∥∥Gδ −G
∥∥
K ≤ δ . (2.11)
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In order to define a solution even in this case we consider an approximate solu-
tion, which occupies the least-squares property, i.e. one seeks that element of H
solving minF∈H

∥∥ΛF −Gδ
∥∥
K. If Λ is injective, the solution of minF∈H

∥∥ΛF −Gδ
∥∥
K

is uniquely determined as the orthogonal projection of Gδ onto R(Λ)
‖·‖K , otherwise

there exist infinitely many solutions if Gδ ∈ R(Λ)⊥. Then we are interested in the
least-squares solution which is of minimal norm ‖F‖H.

Determining the desired least-squares solution with minimal norm is equivalent to
the determination of the (unique) generalized solution F+. It is defined via an
additional mapping, the so-called generalized inverse (or Moore-Penrose inverse)
Λ+ : R(Λ)⊕R(Λ)⊥ → H. For G ∈ R(Λ)⊕R(Λ)⊥ any F ∈ H is least-squares solu-
tion of ΛF = G if and only if F is a solution of the normal equations Λ∗ΛF = Λ∗G.
It follows that the generalized solution is just that very least-squares solution that
minimizes ‖F‖H. The space of all least-squares solutions is (F+ + ker(Λ)). How-
ever, the described concept of least-squares solution with minimal norm fails, if
G /∈ R(Λ) ⊕ R(Λ)⊥ or the inverse operator Λ−1 is not continuous. Then, the lack
of continuity needs to be replaced by a regularization of Λ+. In other words, in
the situation that only a disturbed right hand side is known instead of G, we are
interested in an approximation of the generalized solution F+ which depends con-
tinuously on the given data.

At first we have to define exactly what is understood by the above mentioned term
of regularization.

Definition 2.22
Let (H, (·, ·)H) and (K, (·, ·)K) be two separable Hilbert spaces and let Λ : H → K
be linear and bounded. Then the family of operators ΛJ : K → H, J ∈ Z, is called a
regularization of the generalized inverse Λ+ if the following conditions are fulfilled:

1. ΛJ is linear and bounded on K for all J ∈ Z.

2. For any G ∈ R(Λ)⊕R(Λ)⊥, the limit relation

lim
J→∞

∥∥ΛJG− Λ+G
∥∥
H = 0

holds.

The function FJ = ΛJG is called J-level regularization of the problem ΛF = G and
the parameter J is called regularization parameter.

If we apply the regularization ΛJ to a disturbed right hand side Gδ we get for the
approximation error of FJ with respect to F+∥∥FJ − F+

∥∥
H ≤

∥∥ΛJG
δ − ΛJG

∥∥
H +

∥∥ΛJG− Λ+G
∥∥
H (2.12)

≤ ‖ΛJ‖
∥∥Gδ −G

∥∥
K +

∥∥ΛJG− Λ+G
∥∥
H (2.13)

≤ δ ‖ΛJ‖+
∥∥ΛJG− Λ+G

∥∥
H (2.14)
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with ‖ΛJ‖ = sup‖G‖K=1 ‖ΛJG‖H . This decomposition shows that the error consists
of two parts: the first term reflects the influence of the incorrect data and the second
term is due to the approximation error between ΛJ and Λ+. Typically the first term
will increase as J →∞ because of the ill–posed nature of the problem, whereas the
second term will decrease as J →∞ according to the definition of a regularization
(see Definition 2.22). Every regularization scheme requires a strategy for choosing
the parameter J in dependence on the error level δ in order to achieve an acceptable
total error for the regularized solution.

2.4.1 The Scalar Case

Let us now at first consider H and K to be Hilbert spaces of scalar valued functions.
An important tool in this context is the concept of the singular system of the operator
Λ. Let Λ : H → K be injective, bounded, linear and compact with countable
singular system {σn, Hn, Kn}n=0,1,..., where {σ2

n} are the non-zero eigenvalues of the
selfadjoint operator Λ∗Λ which are assumed to be numbered in descending order.

{Hn} is a complete orthonormal system in R(Λ∗)
‖·‖H such that ΛHn = σnKn, while

{Kn} denotes a complete orthonormal system in R(Λ)
‖·‖K such that Λ∗Kn = σnHn.

The generalized inverse of the operator Λ can be given in terms of the singular
system by

F+ = Λ+G =
∞∑
n=0

σ−1
n (G,Kn)KHn, G ∈ R(Λ)⊕R(Λ)⊥. (2.15)

It is well known, that the sequence {σn}n∈N0 has a unique cluster point 0, i.e.
limn→∞ σn = 0, but this does not guarantee the convergence of the sum in (2.15).
Another problem may be, that the generalized solution does not depend continu-
ously on the data G. To overcome these problems our purpose is to construct a
regularization in terms of a multiresolution analysis.

We now define regularization scaling functions via their symbol as we have done for
scaling functions for the solution of operator equations.

Definition 2.23
Let

{
(ΦJ)

∧ (n)
}
n=0,1,...

, J ∈ Z, define a family of admissible product kernels in the

sense of Definition 2.1 satisfying additionally the following properties:

1. lim
J→∞

((ΦJ)
∧(n))2 = σ−1

n , n ∈ N0,

2. ((ΦJ)
∧(n))2 ≥ ((ΦJ−1)

∧(n))2 , J ∈ Z, n ∈ N0,

3. lim
J→−∞

((ΦJ)
∧(n))2 = 0, n ∈ N0 .
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Then {(ΦJ)
∧(n)}n=0,1,... is called the generating symbol of a regularization scaling

function {ΦJ}, J ∈ Z. The family of kernels {dΦJ}, J ∈ Z, given by

dΦJ(x, y) =
∞∑
n=0

(ΦJ)
∧(n)Hn(x)Kn(y), x ∈ DH, y ∈ DK,

is called decomposition regularization scaling function and the family of kernels
{rΦJ}, J ∈ Z, given by

rΦJ(x, y) =
∞∑
n=0

(ΦJ)
∧(n)Hn(x)Hn(y), x, y ∈ DH,

is called reconstruction regularization scaling function.

In analogy to Theorem 2.3 we establish the following result.

Theorem 2.24
Let {(ΦJ)

∧(n)}n=0,1,..., J ∈ Z, be the generating symbol of the regularization scaling

functions dΦJ and rΦJ , respectively, as defined in Definition 2.23. Then

lim
J→∞

∥∥FJ − Λ+G
∥∥
H = 0

holds for all G ∈ R(Λ)⊕R(Λ)⊥ with ΛF = G, where FJ , given by

FJ = ΛJG = rΦJ ∗H (dΦJ ∗K G), (2.16)

is said to be the J−level approximation of Λ+G.

Proof:
The proof follows analogously to the one of Theorem 2.3. �

It is clear, that the sequence of operators ΛJ , J ∈ Z, defined in (2.16) is a regular-
ization in the sense of Definition 2.22.

From now on the complete theory of multiresolution for operator equations can be
transferred to the case of multiscale regularization. We can define decomposition
and reconstruction regularization wavelets (as in Definition 2.5) and give a wavelet
regularization theorem (compared to Theorem 2.6). We will just repeat some im-
portant facts of regularizing wavelet theory and regularizing multiresolution at this
point.

Definition 2.25
Let

{
(ΦJ)

∧ (n)
}
n=0,1,...

, J ∈ Z, be the generating symbol of a regularization scaling

function. Then the generating symbol
{
(ΨJ)

∧ (n)
}
n=0,1,...

, J ∈ Z, of the associated

regularization wavelets is defined via the refinement equation

(ΨJ)
∧ (n) =

(
(ΦJ+1)

∧ (n)2 − (ΦJ)
∧ (n)2

)1/2
, n ∈ N0. (2.17)
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The family
{
dΨJ

}
, J ∈ Z, of kernels given by

dΨJ (x, y) =
∞∑
n=0

(ΨJ)
∧ (n)Kn(x)Hn(y), x ∈ DH, y ∈ DK,

is called decomposition regularization wavelet, whereas the family {rΨJ}, J ∈ Z, of
kernels given by

rΨJ (x, y) =
∞∑
n=0

(ΨJ)
∧ (n)Hn(x)Hn(y), x, y ∈ DH,

is called reconstruction regularization wavelet.

Next, we will give the analogue to Theorem 2.6 for the case of regularization in
terms of multiresolution.

Theorem 2.26
Let {(ΦJ)

∧(n)}n=0,1,..., J ∈ Z, be the generating symbol of a regularization scaling
function. Suppose that {(ΨJ)

∧(n)}n=0,1,..., J ∈ Z, is the generating symbol of the
associated regularization wavelet. Then

FJ = rΦ0 ∗H (dΦ0 ∗K G) +
J−1∑
j=0

rΨj ∗H (dΨj ∗K G)

is the J−level approximation of Λ+G satisfying

lim
J→∞

∥∥FJ − Λ+G
∥∥
H = 0 ,

for all G of class R(Λ)⊕R(Λ)⊥ with ΛF = G.

The proof of this theorem immediately follows from Definition 2.25 of regularization
wavelets.

At last, we give the important fact of multiresolution for the regularization case.

Theorem 2.27
The scale spaces VJ defined by VJ = ΛJ

(
R(Λ)⊕R(Λ)⊥

)
satisfy the following prop-

erties:

1. VJ ⊂ VJ ′ ⊂ H, J < J ′,

2.
∞⋃

J=−∞

VJ

‖·‖H

= H .

Proof:
The assertions follow immediately by Definition 2.23 and Theorem 2.24. �
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2.4.2 The Vectorial Case

Next, we consider the vectorial case. Thus, let (h, (·, ·)h) and (k, (·, ·)k) be two sep-
arable Hilbert spaces of both vector valued functions (with values in R3) and let
g ∈ k be given. Then we search the function f ∈ h, which is related to g via

Λ : h → k, Λf = g, (2.18)

where the tensor-operator Λ is assumed to be bounded, linear, injective, and compact
with singular system {σn, hn, kn}n=0,1,.... {σ2

n} are the non-zero eigenvalues of the
selfadjoint operator Λ∗Λ which are assumed to be numbered in descending order.

{hn} is a complete orthonormal system in R(Λ∗)
‖·‖h such that Λhn = σnkn, while

{kn} denotes a complete orthonormal system in R(Λ)
‖·‖k such that Λ∗kn = σnhn.

The generalized inverse for this problem can as in the scalar case be given in terms
of the singular system by

f+ = Λ+g =
∞∑
n=0

σ−1
n (g, kn)khn, g ∈ R(Λ)⊕R(Λ)⊥. (2.19)

As for the case of operator equations the standard approach of regularizing this
vector valued inverse problem would be a multiresolution by means of regularizing
tensor scaling functions and wavelets (see e.g. [49]). We do not introduce this canon-
ical approach here because it can easily be derived from the tensorial approach for
operator equations presented in Section 2.3, but it will not be used any more in this
thesis.

To regularize this vectorial problem we construct a regularization in terms of a vector
multiresolution analysis. We define regularization vector scaling functions via their
symbol as we have done for vector scaling functions for the evaluation of operator
equations.

Definition 2.28
Let the Hilbert spaces h, k and H be spaces of vector and scalar valued functions, re-
spectively, as given in Section 2.2 and let {hn}, {kn} and {Hn} be the corresponding
orthonormal systems in h, k andH, respectively. Furthermore, let {(ϕJ)∧(n)}n=0,1,...,
J ∈ Z, define a family of admissible product kernels satisfying additionally the fol-
lowing properties:

1. lim
J→∞

((ϕJ)
∧(n))2 = σ−1

n , n ∈ N0,

2. ((ϕJ)
∧(n))2 ≥ ((ϕJ−1)

∧(n))2 , J ∈ Z, n ∈ N0,

3. lim
J→−∞

((ϕJ)
∧(n))2 = 0, n ∈ N0 .

Then {(ϕJ)∧(n)}n=0,1,... is called the generating symbol of a regularization vector

scaling function. The family of kernels {dϕJ}, J ∈ Z, given by

dϕJ(x, y) =
∞∑
n=0

(ϕJ)
∧(n)kn(x)Hn(y), x ∈ Dk, y ∈ DH,
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is called decomposition regularization vector scaling function and the family of kernels
{rϕJ}, J ∈ Z, given by

rϕJ(x, y) =
∞∑
n=0

(ϕJ)
∧(n)hn(x)Hn(y), x ∈ Dk, y ∈ DH,

is called reconstruction regularization vector scaling function.

In analogy to Theorem 2.12 we are led to the following result.

Theorem 2.29
Let {(ϕJ)∧(n)}n=0,1,..., J ∈ Z, be the generating symbol of the regularization vector

scaling functions dϕJ and rϕJ , respectively, as given in Definition 2.28. Then

lim
J→∞

∥∥fJ − Λ+g
∥∥

h
= 0

holds for all g ∈ R(Λ)⊕R(Λ)⊥ with Λf = g, where fJ , given by

fJ = ΛJg = rϕJ ? (dϕJ ∗k g), (2.20)

is said to be the J−level approximation of Λ+g.

Proof:
The proof follows analogously to that of Theorem 2.12. �

It is clear, that the sequence of operators ΛJ , J ∈ Z, defined in (2.20) is a vectorial
regularization in the sense of Definition 2.22.

From now on the complete theory of multiresolution for tensor-operator equations
can be transferred to the case of regularization. We can define decomposition and re-
construction regularization vector wavelets (as in Definition 2.14) and give a wavelet
regularization theorem (compared to Theorem 2.15). Some important facts of reg-
ularizing vector wavelet theory and regularizing vector multiresolution analysis will
be repeated at this point.

Definition 2.30
Let

{
(ϕJ)

∧ (n)
}
n=0,1,...

, J ∈ Z, be the generating symbol of a regularization scaling

function. Then the generating symbol
{
(ψJ)

∧ (n)
}
n=0,1,...

, J ∈ Z, of the associated

regularization wavelets is defined via the refinement equation

(ψJ)
∧ (n) =

(
(ϕJ+1)

∧ (n)2 − (ϕJ)
∧ (n)2

)1/2
, n ∈ N0. (2.21)

The family
{
dψJ
}
, J ∈ Z, of kernels given by

dψJ (x, y) =
∞∑
n=0

(ψJ)
∧ (n)kn(x)Hn(y), x ∈ Dk, y ∈ DH,
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is called decomposition regularization vector wavelet, whereas the family {rψJ}, J ∈
Z, of kernels given by

rψJ (x, y) =
∞∑
n=0

(ψJ)
∧ (n)hn(x)Hn(y), x ∈ Dh, y ∈ DH,

is called reconstruction regularization vector wavelet.

Next, we will give analogue to Theorem 2.15 for the case of multiscale regularization.

Theorem 2.31
Let {(ϕJ)∧(n)}n=0,1,..., J ∈ Z, be the generating symbol of a regularization vector
scaling function. Suppose that {(ψJ)∧(n)}n=0,1,..., J ∈ Z, is the generating symbol of
the associated regularization vector wavelet. Furthermore, let g be of class R(Λ)⊕
R(Λ)⊥ with Λf = g. Then

fJ = rϕ0 ? (dϕ0 ∗k g) +
J−1∑
j=0

rψj ? (dψj ∗k g)

is the J−level approximation of Λ+g satisfying

lim
J→∞

∥∥fJ − Λ+g
∥∥

h
= 0.

The proof of this theorem immediately follows by Definition 2.30 of a regularization
wavelet. At last, we give the important fact of a vectorial multiresolution for the
regularization case.

Theorem 2.32
The scale spaces vJ defined by vJ = ΛJ

(
R(Λ)⊕R(Λ)⊥

)
satisfy the following prop-

erties:

1. vJ ⊂ vJ ′ ⊂ h, J < J ′,

2.
∞⋃

J=−∞

vJ

‖·‖h

= h .

Proof:
The assertions follow immediately by Definition 2.28 and Theorem 2.29. �

Finally we present four possible choices for the generating symbol {(ϕJ)∧(n)} of a
regularization vector scaling function.

1. Truncated Singular Value Regularization (TSVR)

(ϕJ)
∧(n) =

{√
σ−1
n n = 0, . . . , NJ

0 n ≥ NJ + 1
. (2.22)



56 Chapter 2. Multiresolution Analysis of Operator Equations

This is the simplest method of regularization. The singular values are taken
up to a certain threshold NJ , while the others are discarded. A possible choice
for NJ could be

NJ =

{
0 J ∈ Z, J < 0

2J − 1 J ∈ Z, J ≥ 0
.

For a graphical illustration of the symbols for truncated singular value decom-
position see Figure 2.1.

2. smoothed Truncated Singular Value Regularization

(ϕJ)
∧(n) =


√
σ−1
n n = 0, . . . ,MJ√
σ−1
n τJ(n) n = MJ + 1, . . . , NJ

0 n ≥ NJ + 1

. (2.23)

where τJ(n) is monotonically decreasing in [MJ , NJ ] from τJ(MJ) = 1 to
τJ(NJ) = 0. A possible choice for MJ , NJ could by

MJ =

{
0 J ∈ Z, J < 0

2J − 1 J ∈ Z, J ≥ 0
, NJ =

{
0 J ∈ Z, J < 0

2J+1 − 1 J ∈ Z, J ≥ 0
.

3. CP, Cubic Polynomial regularization

(ϕJ)
∧(n) =


√
σ−1
n

(
1− n

NJ

)2

(1 + 2 n
NJ

) n = 0, . . . , NJ ,

0 else
.

As for TSVR, a possible choice for NJ could be

NJ =

{
0 J ∈ Z, J < 0

2J − 1 J ∈ Z, J ≥ 0
.

For a graphical illustration of the symbols for CP regularization see Figure 2.2.

4. Tikhonov (TH) regularization

(ϕJ)
∧(n) =

√
σn

σ2
n + γJ

, n = 0, 1, . . . ; J ∈ Z, (2.24)

with {γJ}J∈Z being a sequence satisfying limJ→∞ γJ = 0 and limJ→−∞ γJ = ∞.
For singular values that are large compared to γJ , we obtain (ϕJ)

∧(n) '√
σ−1
n , i.e. there is almost no regularization. If the singular values are small

compared to γJ , we end up with (ϕJ)
∧(n) ' 0. For a discussion of choosing

the regularization parameter γJ in practical applications see [30].
For a graphical illustration of the symbols for Tikhonov regularization see
Figure 2.3.
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At the end we give a concrete example of the truncated singular value (TSVR),
the cubic polynomial (CP) and the Tikhonov (TH) regularization. The singular
values which we use appear in the relation between spherical current fields and their
respective magnetic field which will be used later on and which is one of the essential
applications of this thesis. The singular values are given by

σn =

√
n

2n+ 1

(
R1

R2

)n+1

, n ∈ N0 , (2.25)

where R1 is the height of the current system, typically R1 = 100 km above the
Earth’s surface, and R2 is the height, where the magnetic field is evaluated, resp.
where the magnetic field measurements are taken, typically R2 = 400 km above the
Earth’s surface. The exponentially ill–posed nature of the inverse problem is obvious
and can bee seen very well in the semilogarithmic illustration of the singular values
(see Figure 2.2 and Figure 2.3).
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Figure 2.1: Symbols (ϕJ)
∧(n) for truncated singular value regularization (TSVR)

for different values of NJ given by NJ = 25 − 1 = 31, NJ = 26 − 1 = 63, and
NJ = 27 − 1 = 127. The singular value is thereby given by (2.25).
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Figure 2.2: Symbols (ϕJ)
∧(n) for cubic polynomial (CP) regularization for different

values of NJ given by NJ = 25 − 1, NJ = 26 − 1, and NJ = 27 − 1. Note the
semilogarithmic scaling of the axis for the singular values.
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Figure 2.3: Symbols (ϕJ)
∧(n) for Tikhonov regularization for values γJ = 2−7,

γJ = 2−9, and γJ = 2−11. Observe the semilogarithmic scaling of the axis for the
singular values.



Chapter 3

Separation of Vectorial Fields
With Respect to Sources

This chapter is concerned with the first major result of this thesis, the separation of
vector fields with respect to their sources. First of all, we will define what is meant by
a source and resulting field, respectively, and how they are coupled. The dominating
differential equations in this context are the system of pre-Maxwell equations. We
will see that the Mie representation presented in Section 1.4 is the appropriate
representation to handle this system of differential equations. In the second section
of this chapter we will present a method of separating vector fields on a sphere
with respect to their sources, which is mainly due to [6]. It is based on a special
Fourier decomposition of a spherical vector field and in this context the orthonormal
system {u(i)

n,k} of vector spherical harmonics plays an essential role. After that we are
concerned with an approach of decomposing a vector field by scale dependent, space
localizing radial basis functions, called scaling functions and wavelets. This approach
is developed in the context of Chapter 2 by establishing a multiscale decomposition
of the identity operator on l2(Ω). In contrast to the Fourier approach involving the

orthonormal system {u(i)
n,k} this ansatz provides us with the possibility to separate a

vector field locally with respect to its sources. This fact results in the advantageous
property that we do not need a global coverage of data to decide whether the vector
field is induced by sources inside or outside the sphere where the measurements are
taken. This decision can be made only based on local information of the field.

Definition 3.1
Let Ω(a,b) be a spherical shell with 0 ≤ a < b < ∞. The vector field g is called a
vectorial source and the scalar field G is called a scalar source of the vector field
f ∈ c(1)(Ω(a,b)) if the three fields are coupled in Ω(a,b) via the pre-Maxwell equations

∇∧ f = g ,

∇ · f = G.

Note that for given g and G in Ω(a,b) the problem of finding f fulfilling the above
equations is not uniquely solvable. The problem can be made unique by imposing

59
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certain boundary conditions for f on Ωa and Ωb.
Physically interpreted the equations state that f is induced by the vectorial current
density g and the scalar charge density G. Since we are mainly interested in vectorial
source fields we assume G to vanish in Ω(a,b). The resulting equations, called pre-
Maxwell equations, are given by

∇∧ f = g , (3.1a)

∇ · f = 0. (3.1b)

in Ω(a,b). Applying the divergence to (3.1a) results in a third equation given by

∇ · g = 0 in Ω(a,b) . (3.2)

An appropriate approach of handling the system of differential equations (3.1) is
given by the Mie representation. If we assume f to be solenoidal in Ω(a,b) (see
Definition 1.22), we can conclude by Gauss’ Theorem, that f is divergence free.
Thus, every vector field f , solenoidal in Ω(a,b), fulfills equation (3.1b) and has a Mie
representation given by

f = pf + qf = ∇∧ LPf + LQf in Ω(a,b)

with Pf , Qf being the Mie scalars of f . Because of (3.2) the same arguments and the
same approach for the source field g can be used. Thus, g yields a Mie representation,
too, given by

g = pg + qg = ∇∧ LPg + LQg in Ω(a,b) (3.3)

with Pg, Qg being the Mie scalars of g. Taking the curl of the Mie representation of
f we deduce by Equation (3.1a)

g = ∇∧ LQf + L(−∆Pf ) in Ω(a,b) . (3.4)

Since the Mie representation of a solenoidal vector field is unique (see Theorem 1.23),
comparing (3.3) and (3.4) results in the following system of fundamental equations

Qf = Pg, (3.5a)

∆Pf = −Qg, (3.5b)

in Ω(a,b). These equations state that poloidal sources produce toroidal fields, and
toroidal sources produce poloidal fields. Furthermore, the toroidal scalar of the re-
sulting field f is just the poloidal scalar of the source field g, and the poloidal scalar
of f and the toroidal scalar of the source g are connected via the Poisson equation
in Ω(a,b). This shows that the problem of solving (3.1) on Ω(a,b) is reduced to the
problem of solving a scalar Poisson problem, which is an elliptic partial differential
problem. The equations are solvable if the inhomogeneity g and by this Qg is given
and boundary values for f are given on Ωa and Ωb.



Chapter 3. Separation of Vectorial Fields With Respect to Sources 61

It is well known from classical Gauss theory (see [6]) that, if the spherical shell Ω(a,b)

is free of source fields, the resulting vector field f restricted to a sphere Ωc with
c ∈ (a, b) can be decomposed into two parts

f = f I(c) + fE(c) (3.6)

where f I(c) is the field produced by sources inside Ωa and fE(c) by sources outside Ωb.

The main questions concerning this formulation are now:
Is such a separation of the resulting field also possible if we use the Mie representa-
tion and, furthermore, can it be applied to the case, where Ω(a,b) contains a source
field g? This question will be answered in the following paragraph.

Suppose g to be a source field in Ω(a,b). Assume that the Mie representation of g is
given by

g = pg + qg = ∇∧ LPg + LQg in Ω(a,b).

Furthermore, let Ωc be a sphere with radius c ∈ (a, b).
Following Biot-Savart’s law (see [35]) the definition of a field induced by sources g
inside Ωc is known to be

f I(c)(x) = ∇∧ aI(c)(x), x ∈ R3 , (3.7)

with

aI(c)(x) =
1

4π

∫
Ωint

c

g(y)

|x− y|
dy, x ∈ R3 , (3.8)

Is by this definition the field g the only source field of f I(c) or are there other sources?
Following Definition 3.1 we have to calculate ∇ ∧ f I(c) to get the source fields of
f I(c). It is given by

∇∧ f I(c) = ∇
(
∇ · aI(c)

)
−∆aI(c). (3.9)

Because of the well known relation between the Coulomb integral and the Poisson
equation, the expression (3.8) implies

∆aI(c) = −g in Ω(a,c) ,

= 0 in Ω(c,b) .

Thus, Equation (3.9) becomes

∇∧ f I(c) = g + ∇
(
∇ · aI(c)

)
in Ω(a,c) ,

= ∇
(
∇ · aI(c)

)
in Ω(c,b) .

This equation shows us that g certainly is a source field of f I(c), but we have to
compute ∇ · aI(c) to get all source terms of f I(c). Using ∇ · g = 0 and Gauss’
theorem yields

∇ · aI(c)(x) = − 1

4π

∫
Ωc

ν(y) · g(y)
|x− y|

dωc(y), x ∈ R3, (3.10)
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where ν is the unit normal field on Ωc pointing into the outer space Ωext
c . Conse-

quently, we see that, in general, g is not the only source field of f I(c). There is also
a source part coming from ∇

(
∇ · aI(c)

)
which might be different from zero. The

integral in (3.10) only vanishes if ν · g = 0 on Ωc, i.e. if g is a tangential field on Ωc.

Although the above considerations seem to be a complication, they are not. From
the fundamental equations (3.5) we know that toroidal sources, which are purely
tangential, produce poloidal fields, and vice versa. If we now just take the poloidal
part pf of f and separate this vector field into an internally induced part p

I(c)
f and

an externally produced part p
E(c)
f , as we have done in (3.6), we can conclude from

the considerations of (3.7), (3.8) and (3.9) that

∇∧ pI(c)f = qg in Ω(a,c) ,

= 0 in Ω(c,b) ,
(3.11)

∇∧ pE(c)
f = 0 in Ω(a,c) ,

= qg in Ω(c,b) .
(3.12)

The terms ∇(∇ · aI(c)) and ∇(∇ · aE(c)) vanish, since qg as a toroidal field is purely
tangential. By using the fundamental equations (3.5) we can easily deduce that

∆P
I(c)
f = −Qg in Ω(a,c) ,

= 0 in Ω(c,b) ,
(3.13)

∆P
E(c)
f = 0 in Ω(a,c) ,

= −Qg in Ω(c,b) .
(3.14)

So at least we have succeeded in meaningfully defining what is meant by the part of
the poloidal field produced by sources inside Ωc and the part produced by sources
outside it, i.e. we are able to separate the resulting field in the Mie representation.
For a presentation of the above considerations from the point of view of geophysical
applications the reader is referred to [6].

3.1 Representation by Vector Spherical Harmonic

Expansion

The following section is concerned with the separation of a resulting vector field in
terms of an internally and an externally induced part. First of all we present the
classical ansatz by decomposition into a Fourier series of vector spherical harmon-
ics. This approach follows mainly [6], but we will put it into a more mathematical
framework at this point.

Let the inner and outer harmonics {H int
n,k}, {Hext

n,k}, respectively, be given as in

Definition 1.7. According to Equation (3.11), p
I(c)
f can be represented by a scalar
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potential U
I(c)
f with p

I(c)
f = −∇U I(c)

f in Ωext
c and U

I(c)
f being harmonic in Ωext

c , i.e.

there exist coefficients (p
I(c)
f )∧(c;n, k) such that

U
I(c)
f (x) =

∞∑
n=0

2n+1∑
k=1

(p
I(c)
f )∧(c;n, k)Hext

n,k(c;x), x ∈ Ωext
c . (3.15)

Similarly, by Equation (3.12), p
E(c)
f can be written as p

E(c)
f = ∇UE(c)

f in Ωint
c ,

where the scalar potential U
E(c)
f is harmonic in Ωint

c . Thus, there exist coefficients

(p
E(c)
f )∧(c;n, k) such that

U
E(c)
f (x) =

∞∑
n=0

2n+1∑
k=1

(p
E(c)
f )∧(c;n, k)H int

n,k(c;x), x ∈ Ωint
c . (3.16)

Finally, we can expand the toroidal scalar Qf of f on Ωc into a Fourier series of
spherical harmonics, i.e. there are coefficients (qf )

∧(c;n, k) such that

Qf (x) =
∞∑
n=0

2n+1∑
k=1

(qf )
∧(c;n, k)Y c

n,k(x), x ∈ Ωc. (3.17)

In order to present the separation of the resulting field in a more comprehensive
manner we introduce the following nomenclature.

Definition 3.2
Let {Hext

n,k(c;x)}, {H int
n,k(c;x)} be the system of outer, respectively, inner harmonics

defined in Definition 1.7.
The system {h(1)

n,k(c; ·)} n=0,1,...;
k=1,...,2n+1

is, for x ∈ Ωext
c , defined by

h
(1)
n,k(c;x) = −∇xH

ext
n,k(c, x)

=
1

c2

(c
r

)n+2 (
(n+ 1)ξYn,k(ξ)−∇∗

ξYn,k(ξ)
)
, x = rξ, r = |x| , r ≥ c,

n = 0, 1, . . . ; k = 1, . . . , 2n+ 1.

The system {h(2)
n,k(c; ·)} n=1,2,...;

k=1,...,2n+1
is, for x ∈ Ωint

c , defined by

h
(2)
n,k(c;x) = ∇xH

int
n,k(c, x)

=
1

c2

(r
c

)n−1 (
nξYn,k(ξ) +∇∗

ξYn,k(ξ)
)
, x = rξ, r = |x| , r ≤ c,

n = 1, 2, . . . ; k = 1, . . . , 2n+ 1.

Finally, the system {h(3)
n,k(c; ·)} n=1,2,...;

k=1,...,2n+1
is, for x ∈ Ωc, defined by

h
(3)
n,k(c;x) = LxY

c
n,k(x) =

1

c
L∗ξYn,k(ξ), x = cξ, ξ ∈ Ω,

n = 1, 2, . . . ; k = 1, . . . , 2n+ 1.
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By the harmonicity of the inner and outer harmonics, respectively, we immediately
see that the vector fields h

(1)
n,k are divergence free in Ωext

c , the system h
(2)
n,k is diver-

gence free in Ωint
c , and the fields h

(3)
n,k are surface divergence free on Ωc. The vector

fields h
(1)
n,k and h

(2)
n,k, respectively, may be called divergence free vector outer and inner

harmonics with respect to the sphere Ωc.

In the following lemma we connect the system of vector outer resp. inner harmonics
{h(i)

n,k} to the system {u(i)
n,k} of vector spherical harmonics defined in Lemma 1.17.

Lemma 3.3
Let {u(i)

n,k} be the system of vector spherical harmonics defined in Lemma 1.17. For
x = rξ, r = |x| , ξ ∈ Ω, and n = 0i, . . . ; k = 1, . . . , 2n+ 1 we have

h
(1)
n,k(c;x) =

√
(n+ 1)(2n+ 1)

c2

(c
r

)n+2

u
(1)
n,k(ξ), x ∈ Ωext

c , (3.18)

h
(2)
n,k(c;x) =

√
n(2n+ 1)

c2

(r
c

)n−1

u
(2)
n,k(ξ), x ∈ Ωint

c , (3.19)

h
(3)
n,k(c;x) =

√
n(n+ 1)

c
u

(3)
n,k(ξ), x ∈ Ωc. (3.20)

Restricting the system {h(i)
n,k} to a sphere Ωc and reordering the statements of the

above lemma yields

u
(1)
n,k(ξ) =

c2√
(n+ 1)(2n+ 1)

h
(1)
n,k(c; cξ),

u
(2)
n,k(ξ) =

c2√
n(2n+ 1)

h
(2)
n,k(c; cξ),

u
(3)
n,k(ξ) =

c√
n(n+ 1)

h
(3)
n,k(c; cξ)

for ξ ∈ Ω and c > 0. Restricting the system {h(i)
n,k} especially to the unit sphere

Ω = Ω1 results in

u
(i)
n,k =

(
ν(i)
n

)−1/2
h

(i)
n,k(1; ξ),

for n = 0i, . . . ; k = 1, . . . , 2n + 1, i ∈ {1, 2, 3}, where the normalization coefficients

ν
(i)
n are given in Lemma 1.17.

The above lemma shows that the system {u(i)
n,k} of vector spherical harmonics has its

profound background in another physical context than it seems to be in Lemma 1.17,
where the system was just introduced as a linear combination of the system {y(i)

n,k}.
The system {u(1)

n,k} is the restriction of a vector field being divergence free in Ωext to

the unit sphere Ω. Furthermore, the system {u(2)
n,k} is the restriction of a vector field

being divergence free in Ωint to the unit sphere Ω. Finally, the vector fields {u(3)
n,k}
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are toroidal vector spherical harmonics on Ω, which are surface divergence free.

Using the relations of Lemma 3.3 we immediately obtain the following orthogonality
relations for the system {h(i)

n,k} if restricted to the sphere Ωc.

Corollary 3.4
Let {h(i)

n,k} be the system of vector fields defined in Definition 3.2. Then, for all
n,m = 0i, . . . ; k, l = 1, . . . , 2n+ 1 , we have

1.
(
h

(i)
n,k, h

(j)
m,l

)
l2(Ωc)

= 0, if i 6= j,

2.
(
h

(1)
n,k, h

(1)
m,l

)
l2(Ωc)

= δn,mδk,l
ν
(1)
n

c2
,

3.
(
h

(2)
n,k, h

(2)
m,l

)
l2(Ωc)

= δn,mδk,l
ν
(2)
n

c2
,

4.
(
h

(3)
n,k, h

(3)
m,l

)
l2(Ωc)

= δn,mδk,l ν
(3)
n .

These considerations help us to represent the vector fields p
I(c)
f , p

E(c)
f and qf in an

orthogonal expansion of the system {h(i)
n,k} based on (3.15), (3.16) and (3.17) and

the notation of Definition 3.2. We arrive at

p
I(c)
f (x) = −∇xU

I(c)
f (x) =

∞∑
n=0

2n+1∑
k=1

(p
I(c)
f )∧(c;n, k)h

(1)
n,k(c;x), x ∈ Ωext

c , (3.21)

p
E(c)
f (x) = ∇xU

E(c)
f (x) =

∞∑
n=1

2n+1∑
k=1

(p
E(c)
f )∧(c;n, k)h

(2)
n,k(c;x), x ∈ Ωint

c , (3.22)

qf (x) = LxQf (x) =
∞∑
n=1

2n+1∑
k=1

(qf )
∧(c;n, k)h

(3)
n,k(c;x), x ∈ Ωc. (3.23)

Following an argument in [6], if the source field g is piecewise continuous, (3.15) and
(3.16) and, hence, (3.21) and (3.22) remain true pointwise in the limit r → c, i.e.
they hold in Ωext

c , respectively, Ωint
c . Therefore, we can write, for x ∈ Ωc,

f(x) = p
I(c)
f (x) + p

E(c)
f (x) + qf (x)

=
∞∑
n=0

2n+1∑
k=1

(p
I(c)
f )∧(c;n, k)h

(1)
n,k(c;x)

+
∞∑
n=1

2n+1∑
k=1

(
(p
E(c)
f )∧(c;n, k)h

(2)
n,k(c;x) + (qf )

∧(c;n, k)h
(3)
n,k(c;x)

)
. (3.24)
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Corollary 3.4 enables us to calculate the coefficients (p
I(c)
f )∧(c;n, k), (p

E(c)
f )∧(c;n, k)

and (qf )
∧(c;n, k) as follows

(n+ 1)(2n+ 1)

c2
(p
I(c)
f )∧(c;n, k) =

(
h

(1)
n,k(c; .), f

)
l2(Ωc)

,

n(2n+ 1)

c2
(p
E(c)
f )∧(c;n, k) =

(
h

(2)
n,k(c; .), f

)
l2(Ωc)

,

n(n+ 1)(qf )
∧(c;n, k) =

(
h

(3)
n,k(c; .), f

)
l2(Ωc)

.

These coefficients can be substituted in (3.24) to give a Fourier representation of

the internally produced poloidal field p
I(c)
f , the externally poloidal field p

E(c)
f , and

the toroidal part qf of f on Ωc.

Finally, we can replace the system {h(i)
n,k} restricted to Ωc by the system {u(i)

n,k} in
accordance with Lemma 3.3.

Theorem 3.5
Let the system {u(i)

n,k} of vector spherical harmonics be defined as in Lemma 1.17.
Furthermore, let the vector field f be of class l2(Ωc) with 0 < c <∞. Then we have

f(c ξ) =
∞∑
n=0

2n+1∑
k=1

(p
I(c)
f )∧(c;n, k)u

(1)
n,k(ξ)

+
∞∑
n=1

2n+1∑
k=1

(
(p
E(c)
f )∧(c;n, k)u

(2)
n,k(ξ) + (qf )

∧(c;n, k)u
(3)
n,k(ξ)

)
, (3.25)

for ξ ∈ Ω with the coefficients given by

(p
I(c)
f )∧(c;n, k) =

(
u

(1)
n,k, f(c ·)

)
l2(Ω)

(3.26a)

(p
E(c)
f )∧(c;n, k) =

(
u

(2)
n,k, f(c ·)

)
l2(Ω)

(3.26b)

(qf )
∧(c;n, k) =

(
u

(3)
n,k, f(c ·)

)
l2(Ω)

. (3.26c)

The first part represents the field resulting from sources inside Ωc, the second part
is coming from sources outside Ωc and the third part is the toroidal part of f on Ωc.

This theorem provides a first step to separate a field vector f on a sphere Ωc into
a poloidal internally generated, a poloidal externally generated and a toroidal part.
It should be noted that for numerical implementations, i.e. the evaluation of the
integrals appearing in (3.26), a global coverage of observational data all over the
sphere is needed. To overcome this difficulty a local concept for the reconstruction
of the different parts of the vector field f has to be formulated. This will be done
in the following section.
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3.2 Representation by Vector Scaling Functions

and Wavelets

In contrast to Section 3.1, where we have presented a representation of the internally
and externally induced parts of a vector field f in terms of vector spherical harmo-
nics, we now develop a decomposition of a vector field f on the sphere by spherical
vector wavelets, i.e. by scale dependent, space localizing radial basis functions.

Referring to the nomenclature of Chapter 2 we present a special multiresolution
analysis of the identity operator Id : l2(Ω) → l2(Ω) given by Id(f) = f, f ∈ l2(Ω).
In Chapter 1 we have introduced two different orthonormal systems for the Hilbert
space l2(Ω) which both can be used for establishing the singular system of the
identity operator. A multiscale analysis of the identity using the system of vector
spherical harmonics {y(i)

n,k} is extensively discussed in [42]. We use in this section the

{u(i)
n,k} system of vector spherical harmonics defined in Lemma 1.17. More explicitly,

the singular system {σn′ , hn′,kn′} of the identity operator Id : h = l2(Ω) → k = l2(Ω)
is given by

hn′ = u
(i)
n,k, (n, k) ∈ Ni, i ∈ {1, 2, 3} ,

kn′ = u
(i)
n,k, (n, k) ∈ Ni, i ∈ {1, 2, 3},

σn′ = 1, n′ ∈ N0 .

The theory of multiresolution for operator equations as presented in Chapter 2 can
now easily be applied to the case of the identity operator. Basically, this does not
give any new information compared to a multiscale decomposition of the identity
based on the system {y(i)

n,k}. Nevertheless there is an advantage in the special choice
of the singular system. We have already seen in the previous section that the sys-
tem {u(i)

n,k} of vector spherical harmonics fulfills the property of separating a given
spherical vector field into an internally induced part, an externally induced part,
and a part produced by sources on the sphere itself. In the following section this
advantageous property will be transferred to the case of a multiscale representation.
By this, it can be shown that the decomposition with respect to sources is also
possible in a space localizing framework.

We restrict ourselves to vector fields f ∈ l2(Ω) which is no loss of generality since
every vector field f of class l2(Ωc), c ∈ (0,∞), can be mapped isomorphically to a
vector field of class l2(Ω).

Because of the importance for the following considerations we recapitulate a combi-
nation of Corollary 1.18 and Theorem 3.5.

Corollary 3.6
Let {u(i)

n,k} be the system of vector spherical harmonics as defined in Lemma 1.17.
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Suppose that f ∈ l2(Ω). Then

f = f
(1)
U + f

(2)
U + f

(3)
U

=
3∑
i=1

∞∑
n=0i

2n+1∑
k=1

(f
(i)
U )∧(n, k)u

(i)
n,k (3.27)

holds in the sense of the l2(Ω)−norm, where the Fourier coefficients are, for n =
0i, . . . ; k = 1, . . . , 2n+ 1, given by

(f
(1)
U )∧(n, k) =

(
u

(1)
n,k, f

)
l2(Ω)

,

(f
(2)
U )∧(n, k) =

(
u

(2)
n,k, f

)
l2(Ω)

,

(f
(3)
U )∧(n, k) =

(
u

(3)
n,k, f

)
l2(Ω)

.

The first part in (3.27), f
(1)
U , represents the poloidal field resulting from sources

inside Ω, the second part, f
(2)
U , is the field corresponding to sources outside Ω, and

the third part, f
(3)
U , is the toroidal part of the vector field f on Ω.

3.2.1 Scaling Functions and Wavelets

At first we introduce special vector kernel functions, which are the starting point
of the multiscale approximation theory of l2(Ω) vector fields. This will be done
in accordance with the nomenclature presented in Section 2.2 in a general Hilbert
space concept.

Definition 3.7
Let {(k(i))∧(n)}n=0i,..., i ∈ {1, 2, 3}, be an admissible sequence of real numbers, i.e.

∞∑
n=0i

2n+ 1

4π

∣∣(k(i))∧(n)
∣∣2 <∞ . (3.28)

Then a vector kernel function k(i) is defined by

k(i) : Ω× Ω → R3 (3.29)

k(i)(ξ, η) =
∞∑
n=0i

2n+1∑
k=1

(k(i))∧(n)u
(i)
n,k(ξ)Yn,k(η), ξ, η ∈ Ω. (3.30)

Next, as in Section 2.2, two types of convolutions are introduced which are equivalent
to the convolutions defined in Definition 2.8. The first one enables us to calculate
scalar coefficients for each vector field f of class l2(Ω), a process which will be
called decomposition. The second type of convolution will give us the possibility to
reconstruct the vector field from its scalar coefficients.
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Definition 3.8
Let the vector kernels k(i), i ∈ {1, 2, 3}, be given as in Definition 3.7. Furthermore,

let f be a vector field of class l2(Ω). Then the (decomposing) convolution of k(i)

against f is defined by

(k(i) ∗ f)(ξ) =

∫
Ω

k(i)(η, ξ) · f(η) dω(η), ξ ∈ Ω . (3.31)

Furthermore, let F be of class L2(Ω). Then the (reconstructing) convolution of k(i)

against F is defined by

(k(i) ? F )(ξ) =

∫
Ω

k(i)(ξ, η)F (η)dω(η). (3.32)

The two types of convolutions satisfy a substantial property of Fourier analysis,
namely that the convolution of two functions in spatial domain is equivalent to
multiplication of the Fourier representations of the two functions in the spectral
domain. It can easily be shown that

(k(i) ∗ f) =
∞∑
n=0i

2n+1∑
k=1

(k(i))∧(n)(f
(i)
U )∧(n, k)Yn,k, (3.33)

(k(i) ? F ) =
∞∑
n=0i

2n+1∑
k=1

(k(i))∧(n)F∧(n, k)u
(i)
n,k (3.34)

holds in the sense of the L2(Ω)−norm, respectively, the l2(Ω)−norm. If we combine
the two convolutions of a function f ∈ l2Ω) against two kernel functions h(i) and
k(i), i ∈ {1, 2, 3} fixed, we get

(k(i) ? (h(i) ∗ f)) =
∞∑
n=0i

2n+1∑
k=1

(h(i))∧(n)(k(i))∧(n)(f
(i)
U )∧(n, k)u

(i)
n,k (3.35)

in the sense of the l2(Ω)−norm, which is the Fourier representation of the internally
produced poloidal (for the case i = 1), the externally produced poloidal (if i = 2)

or the toroidal part (if i = 3) of f , where the Fourier coefficients (f
(i)
U )∧(n, k) of f

(i)
U

are filtered with the symbol (h(i))∧(n)(k(i))∧(n). It is obvious that we can get an
approximation of each part of f just by a suitable choice of the kernel functions,
respectively, their symbols. This leads us to scaling functions and wavelets as special
reproducing vector kernel functions.

Definition 3.9
Let {(ϕ(i)

J )∧(n)}n=0i,..., J ∈ Z, i ∈ {1, 2, 3}, be a family of symbols satisfying

1. {(ϕ(i)
J )∧(n)} is admissible for all J ∈ Z, i.e.

∞∑
n=0i

2n+ 1

4π

∣∣∣(ϕ(i)
J )∧(n)

∣∣∣2 <∞,
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2. limJ→∞(ϕ
(i)
J )∧(n) = 1 and limJ→−∞(ϕ

(i)
J )∧(n) = 0 for all n ∈ N0i

,

3. (ϕ
(i)
J )∧(n) ≤ (ϕ

(i)
J+1)

∧(n), J ∈ Z, n ∈ N0i
.

Then the vector symbol (ϕJ)
∧(n) =

(
(ϕ

(1)
J )∧(n), (ϕ

(2)
J )∧(n), (ϕ

(3)
J )∧(n)

)T
is called

the family of generating symbols of a scale discrete vector scaling function.

Definition 3.10
Let J1, J2 ∈ Z be fixed and let {(ϕ(i)

J1
)∧(n)} be a generating symbol of a vector

scaling function as given by Definition 3.9, then the scale discrete dilation operator
DJ2 is defined by

(DJ2ϕ
(i)
J1

)∧(n) = (ϕ
(i)
J1+J2

)∧(n), i ∈ {1, 2, 3}, n ∈ N0i
. (3.36)

The application of DJ2 on the vector symbol {(ϕJ1)
∧(n)} is given by

(DJ2ϕJ1)
∧(n) = (ϕJ1+J2)

∧(n) =
(
(ϕ

(1)
J1+J2

)∧(n), (ϕ
(2)
J1+J2

)∧(n), (ϕ
(3)
J1+J2

)∧(n)
)T

.

Vector scaling functions are now introduced by choosing an admissible generating
symbol as the symbol of a vector kernel function.

Definition 3.11
Let {(ϕJ)∧(n)}, J ∈ Z, be a family of generating symbols of a vector scaling function
as defined in Definition 3.9, then the kernel function

ϕ0(ξ, η) =
3∑
i=1

∞∑
n=0i

2n+1∑
k=1

(ϕ
(i)
0 )∧(n)u

(i)
n,k(ξ)Yn,k(η), ξ, η ∈ Ω ,

is called the scale discrete mother vector scaling function. The dilated scale discrete
vector scaling function (or just dilated vector scaling function if no confusion is likely
to arise) is defined via

ϕJ(ξ, η) = DJϕ0(ξ, η) =
3∑
i=1

∞∑
n=0i

2n+1∑
k=1

(ϕ
(i)
J )∧(n)u

(i)
n,k(ξ)Yn,k(η), ξ, η ∈ Ω.

Note that

ϕJ(ξ, η) =
3∑
i=1

ϕ
(i)
J (ξ, η), ξ, η ∈ Ω ,

with

ϕ
(i)
J (ξ, η) =

∞∑
n=0i

2n+1∑
k=1

(ϕ
(i)
J )∧(n)u

(i)
n,k(ξ)Yn,k(η), ξ, η ∈ Ω.

The functions ϕ
(i)
J ( . , . ) are called scale discrete vector scaling functions of type i.
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In Chapter 2 we have introduced decomposition vector scaling functions rϕJ and
decomposition vector scaling functions dϕJ in a general Hilbert space concept. Both
are in the case of a multiscale decomposition of the identity operator just equal,
rϕJ = dϕJ , and given by the above defined vector scaling function.

It is clear by definition that the generating symbol (ϕJ)
∧(n) = ((ϕ

(1)
J )∧(n), (ϕ

(2)
J )∧(n),

(ϕ
(3)
J )∧(n))T tends componentwise to 1 as J tends to infinity. This enables us to ap-

proximate an l2(Ω)−vector fields using the convolutions introduced in Definition 3.8.

Theorem 3.12
Let {(ϕJ)∧(n)}, J ∈ Z, be the generating symbol of a vector scaling function.
Suppose that ϕJ is the corresponding vector scaling function. Furthermore, let f be
of class l2(Ω). Then, for i ∈ {1, 2, 3},

lim
J→∞

∥∥∥ϕ(i)
J ? ϕ

(i)
J ∗ f − f

(i)
U

∥∥∥
l2(Ω)

= 0 .

Moreover,
lim
J→∞

‖ϕJ ? ϕJ ∗ f − f‖l2(Ω) = 0.

Proof:
Using (3.35) and Parseval’s identity we obtain, for J ∈ N0 and i ∈ {1, 2, 3},

lim
J→∞

∥∥∥ϕ(i)
J ? ϕ

(i)
J ∗ f − f

(i)
U

∥∥∥2

l2(Ω)

= lim
J→∞

∫
Ω

∣∣∣∣∣
∞∑
n=0i

2n+1∑
k=1

(
((ϕ

(i)
J )∧(n))2(f

(i)
U )∧(n, k)u

(i)
n,k(ξ)− (f

(i)
U )∧(n, k)u

(i)
n,k(ξ)

)∣∣∣∣∣
2

dω(ξ)

= lim
J→∞

∫
Ω

∣∣∣∣∣
∞∑
n=0i

2n+1∑
k=1

(
((ϕ

(i)
J )∧(n))2 − 1

)
(f

(i)
U )∧(n, k)u

(i)
n,k(ξ)

∣∣∣∣∣
2

dω(ξ)

= lim
J→∞

∞∑
n=0i

2n+1∑
k=1

(
((ϕ

(i)
J )∧(n))2 − 1

)2 (
(f

(i)
U )∧(n, k)

)2

.

Since the admissible symbol {(ϕ(i)
J )∧(n)} tends to 1 if J tends to infinity and is

monotonically increasing in J , the term
(
((ϕ

(i)
J )∧(n))2 − 1

)
is smaller than 1 for all

n ∈ N and for J sufficiently large. Thus, we can interchange sum and limit and from
limJ→∞(ϕ

(i)
J )∧(n) = 1 we finally get the desired result. �

Theorem 3.12 can be interpreted as the wavelet counterpart of Theorem 3.5. It tells
us that, if we convolve a spherical vector field f of class l2(Ω) twice with the scaling

function ϕ
(i)
J , we obtain an approximation of f

(i)
U at scale J . In the case i = 1 this is

an approximation of that part of f which is induced by sources inside Ω, if i = 2 it
is the part of f which is induced by sources outside Ω and in the case i = 3 it is an
approximation of the toroidal part of f which is induced by the radial projection of
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source fields crossing Ω.
From the point of view of Fourier theory the reader may argue that the same result
has already been achieved in Theorem 3.5 in an easier context and nomenclature.
The main advantage of the above theorem results from a substantial property of
wavelet theory, the localization property. Scaling functions and special kernel func-
tions called wavelets, which are defined in the next paragraph, are known as very
well space localizing functions. This property is due to scaling functions to be clus-
ters of a system of orthonormal functions in the corresponding Hilbert space. The
mathematical background for the discrepancy between spatial and spectral localiza-
tion is given by the uncertainty principle. It is a general result of Fourier analysis
and tells us that the product of the variance in space and the variance in frequency
of a function is bounded away from zero. In other words, a function cannot posses
a good localization behavior in spatial domain and in the Fourier domain at the
same time. The extreme trial functions in the sense of the uncertainty principle are
given by vector spherical harmonics {u(i)

n,k} for ideal frequency localization on the

one hand and the Dirac functional δ
(i)
Ω on l

2,(i)
U given by

δ
(i)
Ω (., .) =

∞∑
n=0i

2n+1∑
k=1

u
(i)
n,k(.)Yn,k(.), i ∈ {1, 2, 3}, (3.37)

for ideal space localization on the other hand. A graphical illustration of the uncer-
tainty principle and the construction of vector kernel functions is given in Table 3.1.

Ideal frequency localization No frequency localization
No space localization Ideal space localization

� -

vector spherical harmonics vector kernels Dirac functional

u
(i)
n,k k(i)(., .) δ

(i)
Ω (., .)

Lemma 1.17 Definition 3.7 Equation (3.37)

Table 3.1: The uncertainty principle.

For the scalar case on the sphere the uncertainty principle has been established in
[18] and [19]. A first approach for a vectorial uncertainty principle has been made

in [10] based on the orthonormal system {y(i)
n,k}. There, the author has classified

vector kernel functions following the uncertainty principle. For further information
about these results the reader is referred to this thesis. From the point of view of
functional analysis it is clear that a similar relation as the one presented in [10] can

be developed based on the orthonormal system {u(i)
n,k} defined in Lemma 1.17.

By the space localizing property of scaling functions and wavelets we are now able to
separate a given field f ∈ l2(Ω) locally with respect to its sources. In consequence,
we do not need a global coverage of data as for the application of Theorem 3.5.
With given data only in a regional area of the unit sphere Ω we are able to decide



Chapter 3. Separation of Vectorial Fields With Respect to Sources 73

which part of f results from sources inside, outside or on the sphere.

To complete the theory of a multiscale decomposition of the identity, we introduce
the above mentioned scale discrete vector wavelets as special vector kernel functions.
Similar to vector scaling functions they are determined via their symbols. The
symbols of vector wavelets are related to the symbols of the corresponding vector
scaling function via the refinement equation which will be given next.

Definition 3.13
Let {(ϕJ)∧(n)}n=0i,..., J ∈ Z, be the family of generating symbols of a scale discrete

vector scaling function. Furthermore, let {(ψ(i)
J )∧(n)}n=0i,..., J ∈ Z, i ∈ {1, 2, 3}, and

{(ψ̃(i)
J )∧(n)}n=0,1,..., J ∈ Z, i ∈ {1, 2, 3}, be symbols satisfying

1. {(ψ(i)
J )∧(n)} and {(ψ̃(i)

J )∧(n)} are admissible for all J ∈ Z, i.e.

∞∑
n=0i

2n+ 1

4π

∣∣∣(ψ(i)
J )∧(n)

∣∣∣2 <∞,
∞∑
n=0i

2n+ 1

4π

∣∣∣(ψ̃(i)
J )∧(n)

∣∣∣2 <∞,

2. {(ψ(i)
J )∧(n)} and {(ψ̃(i)

J )∧(n)} fulfill the refinement equation, i.e.

(ψ
(i)
J )∧(n)(ψ̃

(i)
J )∧(n) =

(
(ϕ

(i)
J+1)

∧(n)
)2

−
(
(ϕ

(i)
J )∧(n)

)2

, n ∈ N0i
, J ∈ Z.

Then

(ψJ)
∧(n) =

(
(ψ

(1)
J )∧(n), (ψ

(2)
J )∧(n), (ψ

(3)
J )∧(n)

)T
and

(ψ̃J)
∧(n) =

(
(ψ̃

(1)
J )∧(n), (ψ̃

(2)
J )∧(n), (ψ̃

(3)
J )∧(n)

)T
are called the family of generating symbols of a scale discrete vector wavelet and the
family of generating symbols of a scale discrete dual vector wavelet, respectively.

In the same manner as in Definition 3.10 we can define the application of the dila-
tion operator DJ2 , J2 ∈ Z, on the generating symbol of a discrete mother wavelet
{(ψJ1)

∧(n)} and a discrete dual mother wavelet {(ψ̃J1)
∧(n)}, for n ∈ N0i

, by

(DJ2ψJ1)
∧(n) = (ψJ1+J2)

∧(n),

(DJ2ψ̃J1)
∧(n) = (ψ̃J1+J2)

∧(n) .

With the aid of these generating symbols we are now able to introduce vector
wavelets as a special class of vector kernel functions.
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Definition 3.14
Let {(ψJ)∧(n)}, J ∈ Z, and {(ψ̃J)∧(n)}, J ∈ Z, be generating symbols of scale
discrete wavelets as given in Definition 3.13. Then the scale discrete mother vector
wavelet and the scale discrete dual mother vector wavelet are given by

ψ0(ξ, η) =
3∑
i=1

∞∑
n=0i

2n+1∑
k=1

(ψ
(i)
0 )∧(n)u

(i)
n,k(ξ)Yn,k(η), ξ, η ∈ Ω ,

and

ψ̃0(ξ, η) =
3∑
i=1

∞∑
n=0i

2n+1∑
k=1

(ψ̃
(i)
0 )∧(n)u

(i)
n,k(ξ)Yn,k(η), ξ, η ∈ Ω.

The dilated versions of the mother wavelet and the dual mother wavelet are defined
by

ψJ(ξ, η) = DJψ0(ξ, η) =
3∑
i=1

∞∑
n=0i

2n+1∑
k=1

(ψ
(i)
J )∧(n)u

(i)
n,k(ξ)Yn,k(η), ξ, η ∈ Ω ,

and

ψ̃J(ξ, η) = DJ ψ̃0(ξ, η) =
3∑
i=1

∞∑
n=0i

2n+1∑
k=1

(ψ̃
(i)
J )∧(n)u

(i)
n,k(ξ)Yn,k(η), ξ, η ∈ Ω.

As in Definition 3.10 of a vector scaling function we can also write

ψJ(ξ, η) =
3∑
i=1

ψ
(i)
J (ξ, η), ξ, η ∈ Ω ,

with

ψ
(i)
J (ξ, η) =

∞∑
n=0i

2n+1∑
k=1

(ψ
(i)
J )∧(n)u

(i)
n,k(ξ)Yn,k(η), ξ, η ∈ Ω

and

ψ̃J(ξ, η) =
3∑
i=1

ψ̃
(i)
J (ξ, η), ξ, η ∈ Ω

with

ψ̃
(i)
J (ξ, η) =

∞∑
n=0i

2n+1∑
k=1

(ψ̃
(i)
J )∧(n)u

(i)
n,k(ξ)Yn,k(η), ξ, η ∈ Ω .

The functions ψ
(i)
J ( . , . ) and ψ̃

(i)
J ( . , . ) are called scale discrete vector wavelets of

type i and scale discrete dual vector wavelets of type i, respectively.

Using this definition we are led to a reconstruction of a vector field f ∈ l2(Ω) by
means of its wavelet transform which will be introduced in the following.
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Definition 3.15
Let ϕJ be a scale discrete vector scaling function and ψJ be the corresponding scale
discrete vector wavelet. Then, for f ∈ l2(Ω), the spherical vector wavelet transform
of type i and the spherical vector wavelet transform are defined by

(WT )
ψ

(i)
0

(f)(J ; ξ) = (ψ
(i)
J ∗ f)(ξ) =

∫
Ω

ψ
(i)
J (ξ, η) · f(η) dω(η)

and

(WT )ψ0(f)(J ; ξ) = (ψJ ∗ f)(ξ) =

∫
Ω

ψJ(ξ, η) · f(η) dω(η).

Now, we are able to give the above mentioned reconstruction of a vector field f ∈
l2(Ω) by means of its wavelet transform.

Theorem 3.16
Let ϕJ , J ∈ Z, be a vector scaling function and let ψJ , J ∈ Z, and ψ̃J , J ∈ Z, be
the corresponding vector wavelet function and its dual. Then, for f ∈ l2(Ω), the
following reconstruction formula holds true

f
(i)
U = ϕ

(i)
0 ? ϕ

(i)
0 ∗ f +

∞∑
j=0

ψ̃
(i)
j ? ψ

(i)
j ∗ f,

= ϕ
(i)
0 ? ϕ

(i)
0 ∗ f +

∞∑
j=0

ψ̃
(i)
j ? (WT )

ψ
(i)
0

(f)(j; · ), i ∈ {1, 2, 3},

in the sense of the l2(Ω)−norm. Moreover,

f = ϕ0 ? ϕ0 ∗ f +
∞∑
j=0

ψ̃j ? ψj ∗ f,

= ϕ0 ? ϕ0 ∗ f +
∞∑
j=0

ψ̃j ? (WT )ψ0(f)(j; · ) ,

in the sense of the l2(Ω)−norm

Proof:
Observing the definition of the dilates we obtain for the generating symbol of the
vector wavelet functions

(ψ
(i)
J )∧(n)(ψ̃

(i)
J )∧(n) =

(
(ϕ

(i)
J+1)(n)

)2

−
(
(ϕ

(i)
J )(n)

)2

, n ∈ N0i
.

Via summation we get

J∑
j=0

(ψ
(i)
j )∧(n)(ψ̃

(i)
j )∧(n) =

J∑
j=0

[(
(ϕ

(i)
j+1)

∧(n)
)2

−
(
(ϕ

(i)
j )∧(n)

)2
]
,

=
(
(ϕ

(i)
J+1)

∧(n)
)2

−
(
(ϕ

(i)
0 )∧(n)

)2

, n ∈ N0i
.
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Simply rearranged, this yields

(
(ϕ

(i)
0 )∧(n)

)2

+
J∑
j=0

(ψ
(i)
j )∧(n)(ψ̃

(i)
j )∧(n) =

(
(ϕ

(i)
J+1)

∧(n)
)2

, n ∈ N0i
.

By this formula for the generators and the linearity of the convolutions we can
deduce that, for f ∈ l2(Ω),

ϕ
(i)
0 ? ϕ

(i)
0 ∗ f +

J∑
j=0

ψ̃
(i)
0 ? ψ

(i)
0 ∗ f = ϕ

(i)
J+1 ? ϕ

(i)
J+1 ∗ f.

holds in the sense of the l2(Ω)−norm. Letting J tend to infinity, Theorem 3.12
finally gives the desired result. �

Remark 3.17
Definition 3.13 and 3.14 are quite general construction principles for scale discrete
vector wavelets. Many concrete examples for the scalar case can be found in [20] and
for the vectorial case in [7]. In this work we will only use so called P-scale discrete
vector wavelets, which are defined by equaling the two generators of a vector wavelet
function and its dual, i.e. (ψ

(i)
J )∧(n) = (ψ̃

(i)
J )∧(n), n ∈ N0i

. Thus, the refinement
equation reads for all n ∈ N0i

(ψ
(i)
J )∧(n) = (ψ̃

(i)
J )∧(n) =

√(
(ϕ

(i)
J+1)

∧(n)
)2

−
(
(ϕ

(i)
J )∧(n)

)2

, J ∈ Z. (3.38)

3.2.2 Scale and Detail Spaces

In this section a main ingredient of a multiscale theory will be formulated, viz.
the so called vector multiresolution analysis. At first we introduce operators which
represent the decomposition and reconstruction of the space l2(Ω) in terms of vector
scaling functions and wavelets.

Definition 3.18
The operators P

(i)
J , R

(i)
J , i ∈ {1, 2, 3}, and PJ , RJ are defined by

P
(i)
J : l2(Ω) → l

2,(i)
U (Ω) PJ : l2(Ω) → l2(Ω)

P
(i)
J f = ϕ

(i)
J ? ϕ

(i)
J ∗ f, J ∈ Z, PJf = ϕJ ? ϕJ ∗ f, J ∈ Z,

R
(i)
J : l2(Ω) → l

2,(i)
U (Ω) RJf : l2(Ω) → l2(Ω)

R
(i)
J f = ψ̃

(i)
J ? ψ

(i)
J ∗ f, J ∈ Z, RJ = ψ̃J ? ψJ ∗ f, J ∈ Z.
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The image spaces of l2(Ω) under the above operators are given by

V
(i)
J =

{
P

(i)
J f | f ∈ l2(Ω)

}
, i ∈ {1, 2, 3},

VJ =
{
PJf | f ∈ l2(Ω)

}
,

W
(i)
J =

{
R

(i)
J f | f ∈ l

2(Ω)
}
, i ∈ {1, 2, 3},

WJ =
{
RJf | f ∈ l2(Ω)

}
.

The spaces VJ , V
(i)
J are called scale spaces (of type (i)) and the spaces WJ , W

(i)
J are

called detail spaces (of type (i)).

The operators PJ and P
(i)
J may be understood as low pass filters which provide

filtered information of the function f , while RJ and R
(i)
J may be interpreted as band

pass filters which deliver detail information between two consecutive scales. This
becomes much clearer if we look at the following statements.
Obviously, due to Theorem 3.12, we know that

∞⋃
j=0

V
(i)
j

‖·‖l2(Ω)

= l
2,(i)
U (Ω), i ∈ {1, 2, 3}, (3.39)

∞⋃
j=0

Vj

‖·‖l2(Ω)

= l2(Ω). (3.40)

We also know, that the generators {(ϕJ)∧(n)} and, hence, {((ϕJ)∧(n))2} are mono-
tonically increasing in J for n ∈ N0i

fixed, such that, for i ∈ {1, 2, 3}, the dilated
generators satisfy

(ϕ
(i)
J )∧(n) ≤ (ϕ

(i)
J+1)

∧(n), n ∈ N0i
,

and (
(ϕ

(i)
J )∧(n)

)2

≤
(
(ϕ

(i)
J+1)

∧(n)
)2

, n ∈ N0i
.

This immediately leads to

V
(i)
0 ⊂ · · · ⊂ V

(i)
J ⊂ V

(i)
J+1 ⊂ · · · ⊂ l

2,(i)
U (Ω), i ∈ {1, 2, 3}, J > 0, (3.41)

as well as
V0 ⊂ · · · ⊂ VJ ⊂ VJ+1 ⊂ · · · ⊂ l2(Ω), J > 0. (3.42)

The last two properties form substantial results of scaling function and wavelet the-
ory called the vector multiresolution analysis (VMRA). Equation (3.39) and (3.40)
tell us that the approximation of a vector field converges to the original vector field
when the scale is increased. From (3.41) and (3.42) we can see, that an approxima-
tion at some resolution contains all the information of an approximation at lower
scale. Hence the operators PJ and P

(i)
J can clearly be understood as low pass filters

for vector fields in l2(Ω).
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Observing Theorem 3.16 we easily obtain the following relations

V
(i)
J = V

(i)
0 +

J−1∑
j=0

W
(i)
j , i ∈ {1, 2, 3}, J > 0 ,

VJ = V0 +
J−1∑
j=0

Wj, J > 0 .

In particular,

V
(i)
J+1 = V

(i)
J +W

(i)
J , i ∈ {1, 2, 3}, J ∈ Z , (3.43)

VJ+1 = VJ +WJ J ∈ Z . (3.44)

This may be interpreted as follows. The scale space VJ contains a PJ−filtered
version of a vector field of class l2(Ω). The lower the scale, the higher the intensity
of filtering. By adding RJ−details contained in the space WJ the scale space VJ+1

is created, which consists of filtered versions at resolution J + 1. However, it should
be remarked that the sum in (3.43) is, in general, neither direct nor orthogonal.

3.2.3 Examples of Scaling Functions and Wavelets

In this section some generators and their corresponding scale discrete scaling func-
tions and wavelets are presented and graphically illustrated. We distinguish between
bandlimited and non-bandlimited wavelets.

Bandlimited Wavelets

From the various possibilities of bandlimited wavelets (see, for example, [20]) we
present here only two of them, the Shannon wavelets and the Cubic Polynomial (CP)
wavelets, because they will be the preferred kernel functions in our applications.

Shannon Wavelet The family of generating symbols of the Shannon scaling func-
tion is given by

(ϕ
(i)
J )∧(n) =

{
1 n < 2J ,

0 else,
n ∈ N0i

, J ∈ Z,

for i ∈ {1, 2, 3}. Using the refinement equation for P−scale wavelets (3.38) we
immediately get

(ψ̃
(i)
J )∧(n) = (ψ

(i)
J )∧(n) =

{
1 2J ≤ n < 2J+1,

0 else,
n ∈ N0i

, J ∈ Z.
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It can be concluded from Equation (3.35) that the reconstruction via the Shannon
wavelets is given by

PJf =
3∑
i=1

2J−1∑
n=0

2n+1∑
k=1

(f
(i)
U )∧(n, k)u

(i)
n,k, J ∈ Z ,

RJf =
3∑
i=1

2J+1−1∑
n=2J

2n+1∑
k=1

(f
(i)
U )∧(n, k)u

(i)
n,k J ∈ Z .

But these equations are just partial sums out of the Fourier expansion of f . This
means that we have constructed an orthogonal multiresolution analysis, and the
sums in (3.43) are orthogonal and direct in this case.
In Figure 3.1 the Shannon scaling function of different types and at different scales
can be seen.

CP-Wavelet Shannon scaling functions and wavelets establish an orthogonal mul-
tiresolution analysis, i.e. on the one hand they show advantageous behavior in the
Fourier domain but on the other hand they are highly oscillating in the space domain
(see Figure 3.1) which is a great disadvantage for local decomposition and recon-
struction. These oscillations can be reduced by modifying the symbols {(ϕJ)∧(n)}.
The step at n = 2J in the frequency domain has to be smoothed to reduce the os-
cillations in the space domain. A good modification is the CP−generating symbol,
defined by

(ϕ
(i)
J )∧(n) =

{(
1− n

2J

)2 (
1 + 2 n

2J

)
n < 2J ,

0 else,
n ∈ N0i

, J ∈ Z.

for i ∈ {1, 2, 3}. The corresponding P−scale wavelet generators are, for n ∈ N0i
,

given by

(ψ̃
(i)
j )∧(n) = (ψ

(i)
J )∧(n) =

=


((

(1− n
2J+1 )

2(1 + n
2J )
)2 − ((1− n

2J )2(1 + n
2J−1 )

)2)1/2

n < 2J(
(1− x

2J+1 )
2(1 + n

2J )
)1/2

2J ≤ n < 2J+1

0 else

.

Naturally, the orthogonality of the scale spaces in (3.43) is lost.
Figure 3.2 shows the cubic polynomial (CP) scaling function of different types and
at different scales.

Non-Bandlimited Wavelets

In the non-bandlimited case we have a global support of the generating symbol, i.e.

(ϕ
(i)
J )∧(n) 6= 0, for all n ∈ N0i

.

We will again only give some examples of the vast amount of non-bandlimited
wavelets. For more examples the interested reader is referred to [20].
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(a) Type 1 scaling function ϕ
(1)
J at

scale J = 3
(b) Type 1 scaling function ϕ

(1)
J at

scale J = 5

(c) Type 2 scaling function ϕ
(2)
J at

scale J = 3
(d) Type 2 scaling function ϕ

(2)
J at

scale J = 5

(e) Type 3 scaling function ϕ
(3)
J at

scale J = 3
(f) Type 3 scaling function ϕ

(3)
J at

scale J = 5

Figure 3.1: Shannon vector scaling function ϕ
(i)
J of different types and at different

scales. Colors indicate the radial component and arrows the tangential direction.
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(a) Type 1 scaling function ϕ
(1)
J at

scale J = 3
(b) Type 1 scaling function ϕ

(1)
J at

scale J = 5

(c) Type 2 scaling function ϕ
(2)
J at

scale J = 3
(d) Type 2 scaling function ϕ

(2)
J at

scale J = 5

(e) Type 3 scaling function ϕ
(3)
J at

scale J = 3
(f) Type 3 scaling function ϕ

(3)
J at

scale J = 5

Figure 3.2: Cubic polynomial vector scaling function ϕ
(i)
J of different types and at

different scales. Colors indicate the radial component and arrows the tangential
direction.
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Exponential Wavelets The generator of this scaling function is of the form

(ϕ
(i)
0 )∧(n) = exp(−h(n)), n ∈ N0i

for i ∈ {1, 2, 3}, where the function h : [0,∞) → R has to satisfy

1. h(0) = 0, h(x) > 0 for x > 0,

2. h(x) is strict monotonically increasing,

3.
∞∑
n=0

2n+1
4π

exp(−2h(n)) <∞.

Two special cases for this type of scaling functions are well known. The first example
is the Abel-Poisson scaling function with h(x) = Rx with some R > 0. The second
one is the Gauss-Weierstrass scaling function where h(x) = Rx (x + 1) with some
R > 0. For the Abel-Poisson scaling function we easily get

(ϕ
(i)
J )∧(n) = exp

(
−R n

2J

)
(ψ̃

(i)
J )∧(n) = (ψ

(i)
J )∧(n) =

√(
exp

(
−R n

2J+1

))2

−
(
exp

(
−R n

2J

))2

.

for i ∈ {1, 2, 3}, J ∈ Z and n ∈ N0i
.

Rational Wavelets The generating symbol of the Rational scaling function is
given by

(ϕ
(i)
J )∧(n) = (1− 2−Jn)s, n ∈ N0, J ∈ Z

for i ∈ {1, 2, 3} and given s > 1.

At the end of this section it should be remarked that a pyramid scheme for the
computation of the wavelet coefficients is available. This is a recursive method for
the determination of the wavelet coefficients from level to level, starting from an
initial approximation of a given field. For more information concerning pyramid
schemes see [20] for the scalar case and [7] or [22] for the case of vector scaling

functions and wavelets based on the system {y(i)
n,k} of vector spherical harmonics.

3.2.4 Computational Aspects

As we have already stated in Section 2.3 the canonical approach for multiscale
approximation of vectorial problems are tensor scaling functions and wavelets. In
the nomenclature of the previous sections these tensor kernels are of the form

k(ξ, η) =
3∑
i=1

∞∑
n=0i

2n+1∑
k=1

(k)∧(n)u
(i)
n,k(η)⊗ u

(i)
n,k(ξ), ξ, η ∈ Ω . (3.45)

Although this statement can be simplified by suitable vectorial addition theorems
(see [50]) the main problem of the tensorial approach is the evaluation of the tensorial



Chapter 3. Separation of Vectorial Fields With Respect to Sources 83

terms in (3.45) and the evaluation of the tensor Legendre polynomials appearing in
the addition theorems. To overcome these problems we have introduced a vectorial
approach for the decomposition and approximation of vector fields in the previous
section. But, up to this point, we have not shown that the problem of evaluating
the scaling functions and wavelets has been solved. This will be done in this section,
i.e. we show how vector kernel functions of the form

k(i)(ξ, η) =
∞∑
n=0i

2n+1∑
k=1

(k(i))∧(n)u
(i)
n,k(ξ)Yn,k(η), ξ, η ∈ Ω, i ∈ {1, 2, 3}

can be evaluated in numerical applications.

At first, we give some rearrangements of the kernel functions. Using the relations of
Lemma 1.17 and the scalar addition Theorem 1.6 we get, for ξ, η ∈ Ω,

k(1)(ξ, η) =
∞∑
n=0

2n+ 1

4π

(k(1))∧(n)√
(n+ 1)(2n+ 1)

(
(n+ 1)o

(1)
ξ Pn(ξ · η)− o

(2)
ξ Pn(ξ · η)

)
,

k(2)(ξ, η) =
∞∑
n=1

2n+ 1

4π

(k(2))∧(n)√
n(2n+ 1)

(
no

(1)
ξ Pn(ξ · η) + o

(2)
ξ Pn(ξ · η)

)
,

k(3)(ξ, η) =
∞∑
n=1

2n+ 1

4π

(k(3))∧(n)√
n(n+ 1)

o
(3)
ξ Pn(ξ · η).

Using the rules (1.12–1.14) for the application of the operators o(i), i ∈ {1, 2, 3}, to
a zonal function we arrive at

k(1)(ξ, η) = ξ
∞∑
n=0

2n+ 1

4π

√
n+ 1

2n+ 1
(k(1))∧(n)Pn(ξ · η)

− (η − (ξ · η)ξ)
∞∑
n=1

2n+ 1

4π

(k(1))∧(n)√
(n+ 1)(2n+ 1)

P ′
n(ξ · η), (3.46)

k(2)(ξ, η) = ξ

∞∑
n=1

2n+ 1

4π

√
n

2n+ 1
(k(2))∧(n)Pn(ξ · η)

+ (η − (ξ · η)ξ)
∞∑
n=1

2n+ 1

4π

(k(2))∧(n)√
n(2n+ 1)

P ′
n(ξ · η), (3.47)

k(3)(ξ, η) = (ξ ∧ η)
∞∑
n=1

2n+ 1

4π

(k(3))∧(n)√
n(n+ 1)

P ′
n(ξ · η) (3.48)

for ξ, η ∈ Ω. These formulas show that the kernel functions k(1) and k(2) are the
sum of two terms, each of them consisting of a directional part times a scalar sum
over weighted Legendre polynomials or derivatives of Legendre polynomials. The
kernel function k(3) can just be expressed by a directional part times a scalar sum
of derivatives of Legendre polynomials. Obviously, the main task is to calculate the
weighted sums over Legendre polynomials Pn(t), t = ξ · η, or their derivatives P ′

n(t).
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Note that in the case of bandlimited kernels the sums are, of course, finite. In the
non-bandlimited case if no explicit representation is available, (which is the matter
in the majority of cases), the sums in (3.46), (3.47) and (3.48) need to be suitably
truncated.

A naive method of summation would be to use well known recurrence relations for
the functions Pn(t) and P ′

n(t) to calculate the polynomials and their derivatives
of different degrees and then to sum up. This method turns out to be extremely
unstable for higher degrees, such that another technique should be used. We use
a method due to [14] called Clenshaw algorithm which deals with the computation
of sums of certain special functions. The method has been applied to sums as they
appear in (3.46), (3.47) and (3.48) in the literature about vector kernel functions
(see e.g. [7], [8] or [42]) and shown to run perfect. For more details about the
application of the Clenshaw algorithm for the evaluation of vector kernel functions
the reader is referred to [42].

3.3 A Spectral Scheme for the System {u(i)
n,k}

In the following section we introduce the necessary nomenclature and the func-
tionalanalytic framework for transforming homogeneous harmonic vector fields in
spherical geometries. First of all, we have to discuss the operators which transform
the fields and then we have to derive the corresponding singular systems in order to
apply our multiscale approach for operator equations, respectively for regularization
developed in Chapter 2.

Our starting point is the space of all homogeneous harmonic polynomials U defined
outside a sphere ΩR. Following a classical ansatz due to [28] these scalar fields can
be characterized as follows. For any given boundary function F ∈ L2(ΩR), the
corresponding Fourier series in outer harmonics is locally uniformly convergent on
each subset of Ωext

R with positive distance to the boundary (see e.g. [24]). Thus, the
following definition is mathematically sound.

Definition 3.19
Let {Y R

n,k} n=0,1,...;
k=1,...,2n+1

be a system of scalar spherical harmonics in L2(ΩR) and let

{Hext
n,k(R; .)} n=0,1,...;

k=1,...,2n+1
be the system of outer harmonics with respect to the sphere

ΩR introduced in Definition 1.7. Then the space Pot(Ωext
R ) is defined to be the space

of all potentials U : Ωext
R → R of the form

U(x) =
∞∑
n=0

2n+1∑
k=1

U∧
R(n, k)Hext

n,k(R;x), x ∈ Ωext
R ,

where the coefficients U∧
R(n, k) are given by

U∧
R(n, k) =

∫
ΩR

U(x)Y R
n,k(x) dωR(x) ,
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for n = 0, 1, . . . ; k = 1, . . . , 2n+ 1, and the coefficients satisfy

∞∑
n=0

n∑
k=1

|U∧
R(n, k)|2 <∞ .

Loosely spoken, the space Pot(Ωext
R ) consists of all harmonic functions in Ωext

R cor-
responding to square-integrable Dirichlet boundary conditions on ΩR.

If we assume the vector field f to be source free in Ωext
R , i.e.

∇∧ f = 0 ,

∇ · f = 0 ,

in Ωext
R , then there exists a potential U ∈ Pot(Ωext

R ) such that f = −∇U in Ωext
R .

The gradient field to the potential U of class Pot(Ωext
R ) can easily be calculated by

using the decomposition of the gradient in terms of a normal and a tangential part
(see Equation (1.2)). Applying the definition of the o(i)−operators we obtain for
U ∈ Pot(Ωext

R )

f(x) = (−∇U)(x)

=
∞∑
n=0

2n+1∑
k=1

U∧
R(n, k)

(
R

|x|

)n(
n+ 1

|x|2
o(1)Yn,k

(
x

|x|

)
− 1

|x|2
o(2)Yn,k

(
x

|x|

))
,

=
∞∑
n=0

2n+1∑
k=1

U∧
R(n, k)

(
R

|x|

)n √(n+ 1)(2n+ 1)

|x|
u

(1),R
n,k (x) ,

for all x ∈ Ωext
R . Especially, for x ∈ ΩR, we arrive at

f(x) =
∞∑
n=0

2n+1∑
k=1

U∧
R(n, k)

√
(n+ 1)(2n+ 1)

R
u

(1),R
n,k (x) .

In order to map a potential U , restricted to a sphere ΩR1 to a second sphere ΩR2

we have to apply the well known Abel-Poisson operator. The operator is a pseudo-
differential operator which is defined via its symbol according to [19].

Definition 3.20
Let the operator ΛAP : L2(ΩR1) → C(∞)(ΩR2) be given via

(ΛAPF )(x) =

∫
ΩR1

KΛAP
(x, y)F (y)dωR1(y), F ∈ L2(ΩR1), x ∈ ΩR2 ,

where the scalar kernel function KΛAP
is defined to be

KΛAP
(x, y) =

∞∑
n=0

2n+1∑
k=1

(ΛAP )∧(n)Y R2
n,k (x)Y

R1
n,k (y), x ∈ ΩR2 , y ∈ ΩR1 ,



86 Chapter 3. Separation of Vectorial Fields With Respect to Sources

and the symbol {(ΛAP (n)}n=0,1,... is given by

(ΛAP )(n) =

(
R2

R1

)n
, n = 0, 1, . . . .

This transformation of a harmonic function from one sphere to another can equiva-
lently be extended to the gradient of the potential, for which we have to introduce
a tensorial analogue of the Abel-Poisson operator.

Definition 3.21
Let the operator ΛAP : l2(ΩR1) → c(∞)(ΩR2) be given via

(ΛAPf)(x) =

∫
ΩR1

kΛAP
(x, y)f(y)dωR1(y), f ∈ l2(ΩR1), x ∈ ΩR2 ,

where the tensorial kernel function kΛAP
is defined to be

kΛAP
(x, y) =

∞∑
n=0

2n+1∑
k=1

(ΛAP)∧(n)u
(1),R2

n,k (x)⊗ u
(1),R1

n,k (y), x ∈ ΩR2 , y ∈ ΩR1 ,

and the symbol {(ΛAP(n)}n=0,1,... is given by

(ΛAP)(n) =

(
R2

R1

)n+1

, n = 0, 1, . . . .

If the scalar field U is of class Pot(Ωext
R ) the application of the Abel-Poisson op-

erator ΛAP to U |ΩR1
, respectively of the tensorial Abel-Poisson operator ΛAP to

f |ΩR1
= (−∇U)|ΩR1

, makes physically only sense if R1, R2 ≥ R, because otherwise

the sphere ΩR2 lies in Ωint
R , i.e. in regions, where sources might be present.

For R1 and R2 related as above we can summarize our results in the spectral scheme
given in Table 3.2. Similar schemes, in geodesy called Meissl schemes, have already
been developed for the system of vector spherical harmonics {y(i)

n,k} in [50].

This spectral scheme and the considerations above give us the possibility to apply
the multiscale methods for operator equations presented in Chapter 2, respectively,
for regularization in the inverse case presented in Section 2.4. Formally, all the
transformations under consideration are of the form

Λh = k, h ∈ h, k ∈ k

where Λ : h → k is a compact, linear scalar, respectively tensor-operator and h and
k are separable Hilbert spaces of (scalar or vector) functions. Table 3.3 summa-
rizes the possible configurations for Λ, h and k. {σn, hn, kn} symbolizes the singular
system of the respective operator Λ in accordance to the nomenclature of Chapter 2.
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ΩR1

U |ΩR1

{Y R1
n,k}

(2n+1)(n+1)
R1−−−−−−→

(−∇U)|ΩR1

{u(1),R1
n,k }

(
R1
R2

)ny y(R1
R2

)n+1

ΩR2

U |ΩR2

{Y R2
n,k}

(2n+1)(n+1)
R2−−−−−−→

(−∇U)|ΩR2

{u(1),R2
n,k }

Table 3.2: Spectral scheme for the transformation of potentials of class Pot(Ωext
R ).

Observe that a physically meaningful transformation is only given if R1, R2 > R.

h ∈ h k ∈ k Λ h k {hn, kn, σn}

U −∇U (−∇)|Pot(Ωext
R ) L2(ΩR1) l

2,(1)
U (ΩR1)

{
Y R1
n,k , u

(1),R1

n,k , (n+1)(2n+1)
R1

}
U U ΛAP L2(ΩR1) L2(ΩR2)

{
Y R1
n,k , Y

R2
n,k ,

(
R1
R2

)n}
−∇U −∇U ΛAP l

2,(1)
U (ΩR1) l

2,(1)
U (ΩR2)

{
u

(1),R1

n,k , u
(1),R2

n,k ,
(
R1
R2

)n+1
}

Table 3.3: Functional-analytic framework of the transformations presented in Ta-
ble 3.2. The nomenclature is chosen in accordance to Chapter 2.
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Equivalently to Definition 3.19 we can introduce the space of scalar potentials in
the inner space of a sphere ΩR, if we observe that for any given boundary function
F ∈ L2(ΩR), the corresponding Fourier series in inner harmonics is locally uniformly
convergent on each subset of Ωint

R with positive distance to the boundary (see e.g.
[24]).

Definition 3.22
Let {Y R

n,k} n=0,1,...;
k=1,...,2n+1

be a system of scalar spherical harmonics in L2(ΩR) and let

{H int
n,k(R; .)} n=0,1,...;

k=1,...,2n+1
be the system of inner harmonics with respect to ΩR introduced

in Definition 1.7. Then the space Pot(Ωint
R ) is defined to be the space of all potentials

U : Ωint
R → R of the form

U(x) =
∞∑
n=0

2n+1∑
k=1

U∧
R(n, k)H int

n,k(R;x), x ∈ Ωint
R ,

where the coefficients U∧
R(n, k) are given by

U∧
R(n, k) =

∫
ΩR

U(x)Y R
n,k(x) dωR(x) ,

for n = 0, 1, . . . ; k = 1, . . . , 2n+ 1, and the coefficients satisfy

∞∑
n=0

n∑
k=1

|U∧
R(n, k)|2 <∞ .

If we assume the vector field f to be source free in Ωint
R , i.e. ∇ ∧ f = 0, ∇ ·

f = 0 in Ωint
R , then there exists a potential U ∈ Pot(Ωint

R ) such that f = ∇U in
Ωint
R . The gradient field of the potential U of class Pot(Ωint

R ) can be calculated, as
before for the exterior case, using the decomposition of the gradient in terms of a
normal and a tangential part (see Equation (1.2)). According to the definition of
the o(i)−operators we obtain for U ∈ Pot(Ωint

R )

f(x) = (∇U)(x)

=
∞∑
n=0

2n+1∑
k=1

U∧
R(n, k)

(
|x|
R

)n+1(
n

|x|2
o(1)Yn,k

(
x

|x|

)
+

1

|x|2
o(2)Yn,k

(
x

|x|

))
,

=
∞∑
n=1

2n+1∑
k=1

U∧
R(n, k)

(
|x|
R

)n+1
√
n(2n+ 1)

|x|
u

(2),R
n,k (x) , x ∈ Ωint

R .

Restricting f to ΩR we especially get

f |ΩR
=

∞∑
n=1

2n+1∑
k=1

U∧
R(n, k)

√
n(2n+ 1)

R
u

(2),R
n,k

pointwise and in the sense of the l2(ΩR)−norm.



Chapter 3. Separation of Vectorial Fields With Respect to Sources 89

The previously defined scalar as well as the tensorial Abel-Poisson operator can be
applied to a function of class Pot(Ωint

R ) as well but it should be noted that the appli-
cation of these operators physically only makes sense if R1R2 ≤ R because otherwise
the sphere ΩR2 lies in regions where sources are present.
For R1, R2 fulfilling the property above we can summarize our results in the spectral
scheme in Table 3.4 equivalently to the scheme given in Table 3.2.

As for the exterior case, we are now able to apply the multiscale methods for operator
equations and the multiscale technique for regularization presented in Chapter 2.
All the transformations can be written in operator notation as

Λh = k, h ∈ h, k ∈ k

where Λ : h → k is a compact, linear scalar respectively tensor-operator and h and
k are separable Hilbert spaces of (scalar or vector) functions. Table 3.5 gives the
possible configurations for Λ, h and k for the interior case.

ΩR1

U |ΩR1

{Y R1
n,k}

n(2n+1)
R1−−−−→

(∇U)|ΩR1

{u(2),R1
n,k }

(
R1
R2

)ny y(R1
R2

)n+1

ΩR2

U |ΩR2

{Y R2
n,k}

n(2n+1)
R2−−−−→

(∇U)|ΩR2

{u(2),R2
n,k }

Table 3.4: Spectral scheme for the transformation of potentials of class Pot(Ωint
R ).

Observe that a physically meaningful transformation is only given if R1, R2 < R.
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h ∈ h k ∈ k Λ h k {hn, kn, σn}

U ∇U ∇|Pot(Ωint
R ) L2(ΩR1) l

2,(2)
U (ΩR1)

{
Y R1
n,k , u

(2),R1

n,k , (n+1)(2n+1)
R1

}
U U ΛAP L2(ΩR1) L2(ΩR2)

{
Y R1
n,k , Y

R2
n,k ,

(
R1
R2

)n}
∇U ∇U ΛAP l

2,(2)
U (ΩR1) l

2,(2)
U (ΩR2)

{
u

(2),R1

n,k , u
(2),R2

n,k ,
(
R1
R2

)n+1
}

Table 3.5: Functional-analytic framework of the transformations presented in Ta-
ble 3.4. The nomenclature is chosen in accordance to Chapter 2.

3.3.1 An Application to a Multi-Satellite Constellation

The following section is concerned with a short overview of the advantages for mag-
netic field modelling of a multi-satellite constellation. We will show how a constel-
lation of different satellites of CHAMP type on spherical orbits at different heights
can be used to extract the sources lying between the orbital spheres. To simplify
matters we will just have a look at a configuration of two satellites flying at two
different altitudes R1 and R2 with R2 > R1.
Such a constellation may be given by a proposed satellite mission called SWARM,
which consists of four satellites of the CHAMP type. In [40] the suggested constel-
lation are two satellites at a height of R1 = 450 km and two satellites at an altitude
of R2 = 550 km. Two satellites at each altitude are needed to get a good method
for correcting and preprocessing the magnetic field data on each sphere. For more
information concerning the SWARM mission the reader is referred to [40] and to
Section 4.4.5 later on in this thesis.

The method of transforming the respective fields from one sphere to another de-
veloped in the previous section enables us to extract the part of the magnetic field
which is due to sources lying between the two spheres ΩR1 and ΩR2 . We will briefly
present how this concept can be established. The functions representing magnetic
field data on each sphere are denoted by f1 ∈ l2(ΩR1) and f2 ∈ l2(ΩR2).

1. Use the multiscale method developed in Section 3.2 to get that part of the
magnetic field on each sphere which is induced by sources inside the orbital
sphere. This results in fields P

(1)
J f1 ∈ l2,(1)U (ΩR1) and P

(1)
J f2 ∈ l2,(1)U (ΩR2) given

by

P
(1)
J f1 = ϕ

(1)
J ? ϕ

(1)
J ∗ f1,

P
(1)
J f2 = ϕ

(1)
J ? ϕ

(1)
J ∗ f2,

with J ∈ Z chosen suitably large. The scaling function ϕ
(i)
J is here the vector

scaling function defined in Definition 2.2 based on the system {u(i)
n,k} of vector

spherical harmonics and the operators P
(1)
J , J ∈ Z, are the projection operators

defined in Definition 3.18.
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2. Use the multiscale method based on vector scaling functions and wavelets for
tensor-operator equations developed in Chapter 2 and the singular system
for the tensorial Abel-Poisson operator to transform the field P

(1)
J f1 from the

sphere ΩR1 to ΩR2 . Since the corresponding singular value σn = (R1/R2)
n+1,

n ∈ N0, is such that the problem is well-posed, no regularization has to be
used and the multiscale method for tensor-operator equations developed in Sec-
tion 2.2 can simply be applied. This results into a field TJ ′P

(1)
J f1 ∈ l2,(1)U (ΩR2)

given by
TJ ′P

(1)
J f1 = rϕJ ′ ? (dϕJ ′ ∗l2(ΩR1

) P
(1)
J f1), J ∈ Z ,

where in this case the decomposition and the reconstruction vector scaling
functions are given by

dϕJ ′(x, y) =
∞∑
n=0

2n+1∑
k=1

(ϕJ ′)
∧(n)u

(1),R1

n,k (x)Y R1
n,k (y), x ∈ ΩR1 , y ∈ ΩR1 ,

rϕJ ′(x, y) =
∞∑
n=0

2n+1∑
k=1

(ϕJ ′)
∧(n)u

(1),R2

n,k (x)Y R1
n,k (y), x ∈ ΩR2 , y ∈ ΩR1 ,

and the symbols {(ϕJ ′)∧(n)}n∈N0 satisfy

1. lim
J ′→∞

((ϕJ ′)
∧(n))2 = σn =

(
R1

R2

)n+1

, n ∈ N0,

2. ((ϕJ ′−1)
∧(n))2 ≤ ((ϕJ ′)

∧(n))2 , J ′ ∈ Z, n ∈ N0,

3. lim
J ′→−∞

((ϕJ ′)
∧(n))2 = 0, n ∈ N0.

As before J ′ ∈ Z should be chosen large enough (comparable to J ∈ Z from

the first step). This upward continuation of the vector field P
(1)
J f1 from the

sphere ΩR1 to the sphere ΩR2 is based on the assumption that the region Ωext
R1

is source free. But this means that the sources lying between the two spheres
ΩR1 and ΩR2 has no influence on the transformed field TJ ′P

(1)
J f1 ∈ l2,(1)

U (ΩR2).

The difference of the two fields P
(1)
J f2 and TJ ′P

(1)
J f1 delivers us this special

magnetic field which is induced by sources lying in the spherical shell Ω(R1,R2).

3. Calculate the difference of the two fields P
(1)
J f2 and TJ ′P

(1)
J f1 in l

2,(1)
U (ΩR2)

fJ,J ′ = P
(1)
J f2 − TJ ′P

(1)
J f1, J, J ′ ∈ Z .

This field now contains the magnetic field which is induced by sources lying in
the spherical shell Ω(R1,R2). Since, as for example in the case of the proposed
SWARM constellation, this spherical shell is totally lying outside the spherical
Earth and, hence, the sources which induce the magnetic field fJ,J ′ are due
to current systems in the shell. A multiscale approach for reconstructing an
equivalent spherical current system from the magnetic field data will be pre-
sented in the following chapter and can be applied at this point to calculate
an equivalent current system corresponding to the magnetic field data.
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The above considerations show us that a constellation of two satellites at two dif-
ferent altitudes will improve the knowledge of the ionosphere. It will offer us the
possibility to reconstruct the currents which are lying in between the two orbital
spheres. Together with a possible reconstruction of the F region ionospheric current
system which is present at a height of 110 km (the reconstruction of this current
system from SWARM magnetic field data is simulated in Section 4.4.5), this tech-
nique yields a great improvement of the knowledge of the ionosphere in contrast to a
single satellite constellation like the CHAMP mission. From the mathematical point
of view a constellation of several satellites at different altitudes would be even better
in order to resolve the resulting fields and by this the source fields of different layers
of the ionosphere. But such a constellation of single satellites at different heights is
not so advantageous for data preprocessing and correction. For more details about
the advantages of the constellation of the proposed SWARM mission the reader is
referred to [40].

3.4 An Application to CHAMP Magnetic Field

Data

In this section we apply the previously presented multiscale approach for separating
given spherical vector fields with respect to their sources to a set of CHAMP vector
magnetic FGM data. At the end of the section we show how the approach can be
used to improve the derivation of a crustal geomagnetic field model.

The magnetic field data set we use has been made available by Dr. Stefan Maus
from the GFZ Potsdam. The data were sampled between June 2001 and Decem-
ber 2001. Standard methods of preprocessing and data selection have been applied
which follow common criteria for main and crustal field modelling and which have
been executed at the GFZ Potsdam. These steps are explained in detail in Ap-
pendix A.

In contrast to past satellite missions like MAGSAT, the orbit of the CHAMP satellite
is almost spherical and we assume the spherical approximation to be valid. Conse-
quently, after subtracting the low frequency contributions, we suppose the altitude
variations to be negligible and assume the data to be given on a mean altitude.
Actually this assumption has been used by other authors concerned with handling
CHAMP magnetic field data (see e.g. [11] and [46]).

In order to apply the multiscale technique of Section 3.2 we need to discretize the
appearing integrals by means of an appropriate integration rule. In our opinion, the
method proposed in [15] is advantageous since the regular equiangular longitude-
latitude grid reflects the real situation of higher density of data at the poles. Fur-
thermore, the spherical integration rule proposed in [15] can be chosen to be exact
up to a certain degree and the corresponding integration weights are given in closed
form. Consequently, the next step in our approach of separating CHAMP magnetic
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field data with respect to their sources is to average the scattered data onto the in-
tegration knots of our integration rule. This gridding procedure is a very important
and sensitive step. Several techniques for averaging given disturbed spherical data
to regular grids have been discussed in the literature (see [2]) and have been used
in magnetic field analysis (e.g. [46] and [51] for satellite data and [1] for terrestrial
data). Commonly used methods can roughly be divided into two categories, the
distance method which is, for example, used for CHAMP data in [46] and the dis-
tribution method which has been applied to MAGSAT data in [51]. We are of the
opinion that a combination of both methods is arguably the best choice.

For a given point x on the regular grid we search for all points lying within a certain
spherical distance around x. Classical distance methods would weight all data points
in this vicinity of x with respect to their distance to x. In contrast, our method is at
first based on a robust iterative M-estimation to detect outliers in the distribution
of the data in this very vicinity of x. This procedure of outlier detection is described
in detail in Appendix B.

After sorting out outliers we average the remaining data using the distance weight
function

(0.5 + 0.5 cos(πd/D))p, p = 1, 2, 3, 4, (3.49)

where d is the spherical distance of the data point to x on mean orbit height and D
is the previously chosen search radius for the vicinity of x. The parameter p gives
the strength of the weighting. For large p, sample values lying near to the point x
are weighted much stronger than measurements lying far away, while for small p, the
influence of those measurements is increasing. For a dense coverage of data a large
value of p should be used while if the data are given more or less scattered, a small
value of p is the better choice. A graphical illustration of the weight function can be
seen in Figure 3.3. This sort of weight functions has already been used successfully
by other groups working with CHAMP data (see [46]).

If the satellite data are averaged to a regular integration grid, the method of mul-
tiscale separation can be applied to the magnetic field. First of all we have a look
at the pure data set obtained after the averaging procedure (see Figure 3.4). It is
clearly visible that there are still contributions in the data which are not among
the crustal field of the Earth but are induced by current systems crossing the orbit
or flowing outside the orbit. These effects are especially visible in the tangential
components in polar regions.

Next, we apply our method of separating the given vector field with respect to its
sources, i.e. we apply the multiscale approach presented in the previous section to
separate the magnetic field on satellite’s height into the poloidal internally induced
part contained in l

2,(1)
U , the poloidal externally generated part belonging to l

2,(2)
U and

the toroidal part contained in l
2,(3)
U . The poloidal part of the magnetic field which is

generated from sources inside the orbital sphere and which has been filtered out of
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Figure 3.3: Distance weight function given in (3.49) for p = 1 (solid), p = 2 (dashed),
p = 3 (dotted) and p = 4 (dash-dotted). The value of the search radius is D =
400 km in this case and d gives the spherical distance of the measurements to the
point to be weighted on.

the CHAMP data set with a cubic polynomial vector scaling function at scale 5 can
be found in Figure 3.5. The difference between the original data set and the wavelet
approximation of the part resulting from inner sources can be seen in Figure 3.6.
These contributions are containing the toroidal part of the magnetic field as well
as the part which is induced by sources outside the satellite’s orbit. It is obvious
that they are not due to crustal field contributions. Even the structure of the source
field which has induced these fields can be seen. In the radial component of the
toroidal and the externally generated field (Figure 3.6(b)) a positive trend can be
seen northward of the dipole equator while a negative trend is visible southwards of
the equator. This field is the typical magnetic signature of a ring current outside
the satellite’s orbit which can be interpreted as that there are still contributions in
the original data set coming from the magnetospheric ring current.
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(a) εϑ−component (b) εϕ−component

(c) (−εr)−component

Figure 3.4: Original CHAMP data set averaged to a regular grid of 130×130 points.

(a) εϑ−component (b) (−εr)−component

Figure 3.5: Magnetic field induced by sources lying inside the satellite’s orbit. The
field was obtained by convolution of the original data set given in Figure 3.4 with
a cubic polynomial vector scaling function of type 1 at scale J = 5. It should be
noted that it is also possible to reconstruct the εϕ−component which is not plotted
here for the sake of brevity.
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(a) εϑ−component (b) (−εr)−component

Figure 3.6: Toroidal and externally induced field of the CHAMP data set given in
Figure 3.4. The field is the difference of the original data set and the magnetic field
induced by sources lying inside the satellite’s orbital sphere.

The separation of the magnetic field measured by CHAMP into the poloidal inter-
nally induced, the poloidal externally generated and the toroidal part can be used
to improve main and crustal field modelling which are inner sources of the magnetic
field corresponding to the satellite’s orbit. This improvement will be demonstrated
in the next section in the case of multiscale (i.e. local) crustal field modelling.

3.5 Improved Crustal Field Modelling

In this section we show, how the above developed separation of the magnetic field
with respect to its sources and the application to CHAMP magnetic field data can
be used to improve crustal field modelling.
The crustal magnetic field is that part of the Earth’s magnetic field which is due
to lithospheric magnetization. Appropriately low-flying satellites as the German
geosientific satellite CHAMP can measure and resolve these lithospheric contribu-
tions of the magnetic field. For modelling crustal field contributions from given
satellite data we use a wavelet approach presented in [43]. It is essentially based
on formulating the problem as an operator equation between two Hilbert spaces via
certain integral equations and to use regularizing wavelets to get an inversion of the
equation. The theory can easily be embedded in our general multiscale concept for
regularizing of vectorial inverse problems presented in Section 2.4. At this point we
just give the functionalanalytic framework in a comprehensive manner. Formally,
all the integral equations under consideration are of the form

Λh = k, h ∈ h, k ∈ k ,

where Λ : h → k is a compact operator and h and k are separable Hilbert spaces
of (scalar or vector) functions. Elements of the Hilbert space k thereby correspond
to the actual observables (i.e. the satellite measurements) and those in the Hilbert
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space h are the quantities which are to be calculated from the former ones. Ta-
ble 3.6 summarizes the possible configurations for Λ, h and k. {σn, hn, kn} is the
singular system of the operator Λ in accordance with the nomenclature of Chapter 2.

h ∈ h k ∈ k Λ h k {hn} {kn} σn

U ∂rU ΛPot L2(ΩR1) L2(ΩR2) Y R1
n,k Y R2

n,k

(
R1

R2

)n
n+1
R2

∂rU ∂rU ΛAP L2(ΩR1) L2(ΩR2) Y R1
n,k Y R2

n,k

(
R1

R2

)n
∇∗U ∂rU λ∇∗ l

2,(2)
Y (ΩR1) L2(ΩR2) y

(2),R1

n,k Y R2
n,k

(
R1

R2

)n
1
R2

√
n+1
n

U ∇∗U λPot L2(ΩR1) l
2,(2)
Y (ΩR2) Y R1

n,k y
(2),R2

n,k

(
R1

R2

)√
n(n+ 1)

∂rU ∇∗U λ∂r L2(ΩR1) l
2,(2)
Y (ΩR2) Y R1

n,k y
(2),R2

n,k

(
R1

R2

)
R1

√
n
n+1

Table 3.6: Functionalanalytic framework of crustal field modelling. This table is
due to [43].

The operators appearing in Table 3.6 can be described as follows. ΛPot is the oper-
ator connecting a harmonic function U on a sphere to the radial derivative of the
same potential U on another sphere. ΛAP is the Abel-Poisson operator connecting
the restrictions to different spheres of a potential field U which has still been intro-
duced in Definition 3.20. λ∇∗ denotes the operator connecting the surface gradient
∇∗ of a certain potential function U to its radial derivative on another height. Fi-
nally, λPot and λ∂r connect the potential field U respectively its radial derivative ∂rU
at a certain height to its surface gradient at another height. For a mathematically
correct definition of the above operators and the deduction of the corresponding
singular systems the reader is referred to [43].

To show that the method of separating the magnetic field with respect to its sources
is advantageous for crustal field modelling we regularize two different data sets. At
first, we take the pure data set which has been made available by the GFZ Potsdam
and which has already been described (see Figure 3.4). The data set is averaged to
a regular equiangular longitude-latitude grid on mean orbit height and then a reg-
ularization by cubic polynomial regularizing scalar wavelets of the operator ΛAP is
applied to the radial projection of the magnetic field (geomagnetic Z-component, see
Appendix A). Since we use scaling functions and wavelets which are spatially local-
izing trial functions to represent and to regularize the magnetic field this procedure
of downward continuation can be applied locally. (For more information about local
crustal field modelling see [43] or our results in [23] and [44].) Thus, we are able to
regularize the crustal field only over arctic regions. This local reconstruction of the
crustal field emphasizes the advantages of our method of separating the magnetic
field with respect to its sources, since over the arctics the influence of outer sources
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is stronger than in mid-latitude regions (see Section 3.4).

The regularization of the original data set is shown in Figure 3.7 where the (−εr)−
component of the lithospheric field at mean Earth’s radius (6371.2 km) over the
north pole is plotted. This reconstruction of the crustal field was obtained by using
a CP regularization vector scaling function at scale J = 6.

In a second case we have taken the (−εr)−component of the data set of Section 3.4 as
our initial data set where the method of filtering out the externally induced and the
toroidal magnetic field has previously been applied. This magnetic field corresponds
to sources lying inside the satellite’s orbital sphere (see Figure 3.5). The result of
the regularization process can be seen in Figure 3.8. As before, the reconstruction
of the crustal field was obtained by using a CP regularization vector scaling function
at scale J = 6.

The difference of the two crustal field reconstructions is plotted in Figure 3.9. If the
part of the field which is not coming from inner sources is not filtered out in advance,
these parts of the measured magnetic field are treated as a crustal field contribution
which vitiate and complicate crustal field determination and interpretation especially
in polar regions.

Figure 3.7: (−εr)−component of the crustal field at mean Earth’s surface
(6371.2 km) over the north pole without applying the method of filtering out the
externally induced and the toroidal magnetic field presented in the previous Sec-
tions. The result is obtained by multiscale regularization of the (−εr)−component
of the pure data magnetic field data set with a cubic polynomial regularizing scaling
function at scale 6.
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Figure 3.8: (−εr)−component of the crustal field at mean Earth’s surface
(6371.2 km) over the north pole. The result is obtained by multiscale regularization
of the (−εr)−component of the magnetic field resulting from inner sources with a
cubic polynomial regularizing scaling function at scale 6.

Figure 3.9: Difference in the (−εr)−component between the crustal field obtained
by the pure magnetic field data set (Figure 3.7) and the crustal field obtained by
the magnetic field with sources only inside the satellite’s orbit (Figure 3.8).



100 Chapter 3. Separation of Vectorial Fields With Respect to Sources



Chapter 4

Determination of Ionospheric
Current Systems

In the following chapter we discuss the second essential topic of this thesis, the
reconstruction of source terms corresponding to given resulting field measurements.
The system of partial differential equations which describe the connection of the
source field, g, and the resulting field, f , are, as in the previous chapter, the pre-
Maxwell equations given by

∇∧ f = g ,

∇ · f = 0 ,

in a certain domain D ⊂ R3. We assume the domain D to be a spherical shell,
i.e. D = Ω(a,b) and g ought to be vanishing outside Ω(a,b). The system of partial
differential equations is an elliptic problem which is solvable if the inhomogeneity g
is known in Ω(a,b) and boundary values for f are known on Ωa and Ωb. For modelling
ionospheric current systems and the corresponding magnetic field this assumption,
however, is unrealistic because neither the source system g is given anywhere nor
the boundary values for f are given on both boundaries.
We are in the situation that magnetic field data are provided on a sphere Ωc ⊂ Ω(a,b)

with c ∈ (a, b), i.e. lying completely in the ionosphere. To handle this situation the
functionalanalytic framework presented in Chapter 2 turns out to be the appropri-
ate one. If we assume the current system to be of spherical shape we can define an
operator, called spherical Biot-Savart operator, which connects the source field g on
the sphere ΩR1 to the resulting field on another sphere ΩR2 . This type of height
integrated spherical current system is called equivalent current system in the geo-
magnetic literature (see e.g [6] or [37]), because the same magnetic field is induced
by this system as by the real ionospheric current system. In a second step we will
see that the orthonormal system {u(i)

n,k}, which has already been used in the previous
chapter, is an advantageous system to form the singular system of the corresponding
operator. A major task of this chapter will be the calculation of the corresponding
singular values of the Biot-Savart operator.
At this point we will see that the determination of the equivalent current system
from given magnetic field data is an exponentially ill posed problem, i.e. suitable
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regularization techniques have to be applied. Since the singular system of the cor-
responding operators are calculated we are able to apply the multiscale technique
for regularization developed in Section 2.4.
At the end of the chapter we will present several numerical applications for recon-
structing current systems from magnetic field measurements. The first two examples
are simulations in order to verify the theoretical considerations and to clarify some
physical problems. Then we apply our method to magnetic field data of two satellite
missions, MAGSAT and CHAMP, which gives us an impression of the ionospheric
current systems of the Earth. In this context we also apply our approach in a dif-
ferent coordinate system, given by the magnetic local time and by the quasi dipole
latitude which is more useful for describing ionospheric current systems and the cor-
responding magnetic field. At the end we apply our approach to simulated SWARM
magnetic field data in order to have a large amount of satellite’s measurements in
all local times available.

4.1 The Modelling of the Problem

In this first section we will introduce the problem and we will give some simplifi-
cations how the problem can be modelled to be uniquely solvable. First of all we
are concerned with a problem of electromagnetism. Here, the full set of Maxwell’s
equations in a vacuum hold. They are given by

∇∧ e(x, t) = −∂tb(x, t) (4.1)

∇ · e(x, t) =
1

ε0

ρ(x, t) (4.2)

∇∧ b(x, t) = µo (j(x, t) + ε0∂te(x, t)) (4.3)

∇ · b(x, t) = 0, (4.4)

where x is in the ionosphere understood as a spherical shell Ω(a,b), a < b with a
at approximately 110 km and b larger than 1000 km above the Earth’s surface. ρ
denotes the electric charge density, j the electric current density, e the electric field,
b the magnetic field, µ0 is the permeability of vacuum and ε0 is the capacitivity of
vacuum with c2 = 1/(µ0ε0) (see e.g. [35]).

As far as satellite measurements are concerned we are not able to solve the com-
plete system of Maxwell’s equations. Thus we discuss an approximation by dropping
terms from the full system of equations that are suspected of being small. These
simplifications are mainly due to [6] were a more physical justification can be found.

Suppose we are interested in fields whose typical length scale is L and whose typical
time scale is T . Then a priori without any physical and mathematical laws to guide
us we can conclude that

∇ · e ≈ E/L, |∇ ∧ b| ≈ B/L,
|∂te| ≈ E/T, |∂tb| ≈ B/T,
∇∧ e = E/L



Chapter 4. Determination of Ionospheric Current Systems 103

where E is the strength of the electric field and B is the magnitude of the magnetic
field. Now (4.1) and (4.3) tell us that these various magnitudes are not independent.
According to (4.3) E/L ≈ B/T and therefor |∂te| ≈ LB/T 2. Furthermore, it follows
that

|∂te|
|∇ ∧ b|

≈
(
L

T

)2

. (4.5)

Hence, we see that if times scales are long compared to typical spatial scales the
right hand side in (4.5) is small. It is apparently a good approximation, therefore,
to drop ε0∂te, which is called the displacement current, in (4.3). This simplification
causes a partial decoupling of the system (4.1)–(4.4) into an electromagnetic and a
magnetostatic part, called quasi static approach The resulting system are called the
pre-Maxwell equations. We are mainly interested in the magnetostatic part which
reads as follows

∇∧ b(x) = µ0j(x), (4.6)

∇ · b(x) = 0 (4.7)

for x ∈ Ω(a,b). In the nomenclature of Chapter 3 this means that µ0 times the current
density j is the source field for the magnetic field b, and b is divergence free, i.e. it
has no scalar sources.

Since the magnetic field is of zero divergence in R3 it is solenoidal in Ω(a,b) and the
Mie representation can be applied. Hence, b can be represented as b = ∇∧LPb+LQb

in Ω(a,b) where Pb and Qb are the poloidal and toroidal Mie scalars of b. The source
field of the magnetic field are the electric current densities. Following the arguments
at the beginning of Chapter 3, the current density j is of zero divergence in R3, too,
and thus can be represented by the Mie representation j = ∇∧LPj +LQj in Ω(a,b)

where Pj and Qj are the Mie scalars of j. The Mie scalars of the source field and
the resulting magnetic field are coupled via (see (3.5))

µ0Pj = Qb, (4.8)

−µ0Qj = ∆Pb, (4.9)

in Ω(a,b). This is from our point of view the fundamental system of equations to
model ionospheric currents and their resulting field. The equations state that µ0

times the poloidal scalar of the current density, Pj, is just the toroidal scalar of the
magnetic field, Qb. Furthermore, −µ0 times the toroidal scalar of the current den-
sity, Qj, and the poloidal scalar of the resulting magnetic field, Pb, are coupled via
a Poisson equation in Ω(a,b). It reduces the problem of solving the vectorial system
(4.6) – (4.7) to the problem of solving a scalar Poisson equation.

Using Theorem 1.26, the Mie representation of the magnetic field b and the current
system j can, for each x = rξ with r 6= 0, be rewritten as

b = ξ
∆∗Pb
r

+∇∗
(
−∂r(rPb)

r

)
+ L∗Qb
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and

j = ξ
∆∗Pj
r

+∇∗
(
−∂r(rPj)

r

)
+ L∗Qj .

But this provides us with a first very easy connection between the current system j
and the induced magnetic field b. If we have a look at the radial projection of the
current system j at a certain height r and if use (4.8) we arrive at

Jrad(rξ) = ξ · j(rξ) =
∆∗
ξPj(rξ)

r
=

∆∗
ξQb(rξ)

µor
r > 0, ξ ∈ Ω . (4.10)

This means, that if we are able to represent the toroidal scalar Qb of the magnetic
field on a certain height in terms of radial basis functions and if we are further-
more able to apply the Beltrami operator to that radial basis function, then we
are able to reconstruct the radial current density Jrad on that very height. Later
on in Section 4.4 we will apply this method and see how (4.10) can be used in a
multiscale framework. The above result has already been obtained in [51], where a
reconstruction of the radial current density by means of scalar spherical harmonics
has been performed. In [43] the same result has been used to get a reconstruction
of the radial current density in terms of scaling functions and wavelets.

4.2 The Biot-Savart Operator

In the following section we introduce an approach of how the pre-Maxwell problem
in spherical geometries can be modelled and modified to be uniquely solvable. We
will present the general Biot-Savart operator which is based on Biot-Savart’s law
of electrodynamics (see e.g. [35]). In order to apply the operator when satellite
measurement are concerned we will restrict it to spherical geometries. But at first
the general definition.

Definition 4.1
Let g : R3 → R3 be a divergence free, differentiable vector field. Then the Biot-

Savart operator in R3, T : c(1)(R3) → c(2)(R3), is defined by

f(x) = (Tg)(x) =
1

4π

∫
R3

g(y) ∧∇y
1

|x− y|
dy, x ∈ R3. (4.11)

A simple calculation shows that

Tg(x) =
µ0

4π

∫
R3

g(y) ∧ x− y

|x− y|3
dy, x ∈ R3. (4.12)

Equation (4.12) is equivalent to

f(x) = ∇∧ a(x), x ∈ R3, (4.13)

where

a(x) =
1

4π

∫
R3

g(y)

|x− y|
dy, x ∈ R3. (4.14)
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The vector field a is called vector potential of g in R3. The discussion of (3.7), (3.8),
and (3.9) shows us that the sources of this field in the sense of Definition 3.1 are
given by

∇∧ f = g +∇(∇ · a), in R3. (4.15)

But the last term vanishes in R3 because of ∇ · a = 0 which follows directly from
(4.14) by partial integration and by g to be of zero divergence. Thus, g is the only
source field of f , if f is given by (4.11).

The Biot-Savart operator solves the ’direct source problem’ in R3, i.e. the operator
calculates the effects of a given vectorial source distribution. Its inverse operator
T−1, disregarding whether it exists, is unique or even continuous, would solve the
’inverse source problem’, i.e. it would calculate the vectorial source system corre-
sponding to a given field in R3. As we have argued before, this operator is not
suitable to cope with the present data situation. We neither know the resulting
field nor the source distribution in the whole ionosphere, thus neither direct nor the
inverse source problem can be solved.
To overcome this problem let us redefine the Biot-Savart operator in a slightly dif-
ferent manner adapted to spherical geometries.

Definition 4.2
Let R1, R2 > 0, R1 6= R2, be given and let g : ΩR1 → R3 be a vector field of
class l2(ΩR1). Then the spherical Biot Savart operator from ΩR1 to ΩR2 , TR1,R2 :
l2(ΩR1) → l2(ΩR2), is defined by

f(x) = (TR1,R2g)(x) =
1

4π

∫
ΩR1

g(y) ∧ x− y

|x− y|3
dωR1(y), x ∈ ΩR2 . (4.16)

Note that in contrast to Definition 4.1 of the Biot-Savart operator T in R3 we do
not require g to be divergence free or surface divergence free here. For the spherical
Biot-Savart operator we can immediately state the following lemma.

Lemma 4.3
The adjoint operator T ∗R1,R2

: l2(ΩR2) → l2(ΩR1) of TR1,R2 with respect to the
l2−inner product is given by

T ∗R1,R2
= TR2,R1 .

Proof:
For f ∈ l2(ΩR1), g ∈ l2(ΩR2) some easy calculations involving Fubini’s Theorem
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result in

(TR1,R2f, g)l2(ΩR2
) =

∫
ΩR2

(
1

4π

∫
ΩR1

f(y) ∧ x− y

|x− y|3
dωR1(y)

)
· g(x) dωR2(x)

=
1

4π

∫
ΩR2

∫
ΩR1

(
f(y) ∧ x− y

|x− y|3

)
· g(x) dωR1(y) dωR2(x)

=
1

4π

∫
ΩR1

∫
ΩR2

(
x− y

|x− y|3
∧ g(x)

)
· f(y) dωR2(x) dωR1(y)

=

∫
ΩR1

(
1

4π

∫
ΩR2

g(x) ∧ y − x

|y − x|3
dωR2(x)

)
· f(y) dωR1(y)

= (f, TR2,R1g)l2(ΩR1
).

But this gives the desired result. �

Furthermore, we are able to prove the following important properties of the operator
TR1,R2 .

Lemma 4.4
The spherical Biot-Savart operator TR1,R2 : l2(ΩR1) → l2(ΩR2) as defined in Defini-
tion 4.2 is linear, bounded and compact.

Proof:
The linearity of the operator is obvious. To prove the boundedness we note that the
operator can be written as tensorial integral operator by

(TR1,R2g)(x) =

∫
ΩR1

kR1,R2(x, y)g(y) dωR1(y), x ∈ ΩR2

with

kR1,R2(x, y) =
1

4π


0 x3−y3

|x−y|3 − x2−y2
|x−y|3

− x3−y3
|x−y|3 0 x1−y1

|x−y|3

x2−y2
|x−y|3 − x1−y1

|x−y|3 0

 , x ∈ ΩR2 , y ∈ ΩR1 .

For fixed x ∈ ΩR2 we have

|(TR1,R2g)(x)|
2 =

∣∣∣∣∣
∫

ΩR1

kR1,R2(x, y)g(y) dωR1(y)

∣∣∣∣∣
2

≤
∫

ΩR1

|kR1,R2(x, y)|
2 dωR1(y) ‖g‖l2(ΩR1

) . (4.17)

Thus, we can conclude that

‖TR1,R2‖ = sup
g∈l2(ΩR1

)

‖TR1,R2g‖l2(ΩR2
)

‖g‖l2(ΩR1
)

≤ ‖kR1,R2‖l2(ΩR2
×ΩR1

)
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with

‖kR1,R2‖l2(ΩR2
×ΩR1

) =

∫
ΩR1

∫
ΩR2

3∑
i,j=1

(kR1,R2(x, y))
2
ij dωR2(x)dωR1(y)

=
1

8π2

∫
ΩR1

∫
ΩR2

1

|x− y|4
dωR2(x)dωR1(y)

≤ 2
R2

1R
2
2

|R2 −R1|4
.

This shows the boundedness of the operator TR1,R2 .

It remains to prove the compactness of the operator TR1,R2 , where we follow an idea
due to [61]. Since the space c(ΩR2 × ΩR1) is dense in l2(ΩR2 × ΩR1) we can find
a sequence of tensor kernels {kn}n=0,1,... ⊂ c(ΩR2 × ΩR1) which converges against
kR1,R2 in the sense of the l2(ΩR2×ΩR1)−norm. The integral operators corresponding
to the integral kernels kn are denoted by Tn, n = 0, 1, . . . . By the compactness of
ΩR2 ×ΩR1 it follows that the kernels kn, n = 0, 1, . . . , are uniformly continuous and
this implies that the image of the set

B = {g ∈ l2(ΩR1) | ‖g‖l2(ΩR1
) ≤ 1}

under each operator Tn is equicontinuous (see [61]). By similar arguments as in
Equation (4.17) the uniform boundedness of the set Tn(B) can be shown for each
n ∈ N0. Thus, we can conclude using the Theorem of Arzelà-Ascoli (see [61]) that
the operators Tn are compact for all n ∈ N0. Involving Equation (4.17) we easily
see that

‖TR1,R2 − Tn‖ ≤ ‖kR1,R2 − kn‖l2(ΩR2
×ΩR1

) (4.18)

which tends to zero as n tends to infinity. Since the space of all compact operators
is a closed subspace, (4.18) shows the compactness of TR1,R2 . �

If we extend the definition domain of the operator T of Definition 4.1 to the space
of distributions, the field TR1,R2g(x), x ∈ ΩR2 , may formally be understood as the
resulting field of the current distribution g(y)δ(r − R1), y = rξ ∈ R3, under the
Biot-Savart operator T restricted to the sphere ΩR2 . These considerations show us
that (4.16) is equivalent to

TR1,R2g(x) =

(
∇x′ ∧

(
1

4π

∫
ΩR1

g(y)

|x′ − y|
dωR1(y)

))
x′=x

, x ∈ ΩR2 . (4.19)

The operator P : l2(ΩR) → c(0)(R3 \ ΩR), R > 0 given by

(P g)(x) =
1

4π

∫
ΩR

g(y)

|x− y|
dωR(y), x ∈ R3 \ ΩR (4.20)

is called vector single layer operator on l2(ΩR). The spherical vector field f = Pg is
called single layer potential of the layer function g on ΩR.
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The operator in (4.19) seems to be adequate for modelling the given data situation.
It reflects the fact that we have only data on a single sphere from which we want
to get as much information as possible. The spherical Biot-Savart operator solves
the spherical ’direct source problem’ from ΩR1 to ΩR2 , i.e. the operator calculates
the vectorial effects on the sphere ΩR2 of a given spherical source distribution on
ΩR1 . Its inverse operator T−1

R1,R2
, again disregarding any existence, uniqueness or

continuity statements, solves the spherical ’inverse source problem’, i.e. it calculates
the vectorial source system on ΩR1 corresponding to a given resulting field on ΩR2 .

4.3 A Singular System of the Biot-Savart Opera-

tor

At this stage we have defined an operator to handle the ’direct source problem’ and
the ’inverse source problem’ in spherical geometries. The aim of the following section
is to calculate a singular system of this operator in order to apply the multiscale
technique for operator equations and regularization developed in Chapter 2.

By the compactness of TR1,R2 we know that the operator has a countable singular
system. In order to constitute a multiresolution analysis for operator equations
in the sense of Chapter 2 we have to calculate the singular system denoted by
{σn′ , hn′ , kn′} of the operator TR1,R2 : h = l2(ΩR1) → k = l2(ΩR2) explicitly. To find
corresponding orthonormal systems in the Hilbert spaces h and k, respectively, is a
very simple step. For the sake of clarity we recapitulate a result of Section 1.3.

Lemma 4.5
Let the system of vector spherical harmonics {u(i)

n,k} n=0i,...;
k=1,...,2n+1

, i ∈ {1, 2, 3}, be given

as in Definition 1.17 and the system {y(i)
n,k} n=0i,...;

k=1,...,2n+1
, i ∈ {1, 2, 3}, as in Defini-

tion 1.15. Furthermore, let R > 0 be given. Then the system

u
(i),R
n,k =

1

R
u

(i)
n,k, i ∈ {1, 2, 3}; n = 0i, . . . ; k = 1, . . . , 2n+ 1,

as well as the system

y
(i),R
n,k =

1

R
y

(i)
n,k, i ∈ {1, 2, 3}; n = 0i, . . . ; k = 1, . . . , 2n+ 1, (4.21)

forms an orthonormal system in l2(ΩR). Furthermore, both systems of spherical
vector fields are closed and complete in l2(ΩR) with respect to (·, ·)l2(ΩR).

Which system of both is the adequate one for the orthonormal systems of the singular
system of the operator TR1,R2 becomes clear in the next theorems which give a first
step to derive the singular values of the operator.
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Theorem 4.6
Let the system of vector spherical harmonics be given as in Definition 1.15.
Then we have for R2 < R1

TR1,R2y
(1),R1

n,k = −
√
n(n+ 1)

2n+ 1

(
R2

R1

)n+1

y
(3),R2

n,k , (4.22)

TR1,R2y
(2),R1

n,k =
n

2n+ 1

(
R2

R1

)n+1

y
(3),R2

n,k , (4.23)

TR1,R2y
(3),R1

n,k = − n+ 1

2n+ 1

(
R2

R1

)n (√
n

n+ 1
y

(1),R2

n,k + y
(2),R2

n,k

)
. (4.24)

Proof:
For the proof of this theorem we use the representation (4.19) of the operator TR1,R2 .
So let r < R1 then we have by (1.10)

1

|x− y|
=

∞∑
m=0

rm

Rm+1
1

Pm (ξ · η) , x = rξ ∈ Ωint
R1
, y = R1η ∈ ΩR1 . (4.25)

Inserting this expansion into (4.20) gives for x = rξ, y = R1η

(P y
(1),R1

n,k )(x) =
1

4π

∫
ΩR1

∞∑
m=0

rm

Rm+1
1

Pm (ξ · η) 1

R1

o(1)
η Yn,k(η) dωR1(η)

=
1

4π

∞∑
m=0

rm

Rm
1

∫
Ω

o(1)
η Yn,k(η)Pm(ξ · η) dω(η) .

Now, we can apply Theorem 1.15 and get

(P y
(1),R1

n,k )(x) =
1

4π

∞∑
m=0

(
r

R1

)m
1

2n+ 1((
(n+ 1)P∧

m(n+ 1) + nP∧
m(n− 1)

)
o
(1)
ξ Yn,k(ξ)

+
(
P∧
m(n− 1)− P∧

m(n+ 1)
)
o
(2)
ξ Yn,k(ξ)

)
.

Let us now observe that by Definition 1.4 we have that

P∧
m(n) =

4π

2n+ 1
δm,n, m ∈ N0, n ∈ N0. (4.26)

Thus, we get by using (1.21)

(P y
(1),R1

n,k )(x) =

(
r

R1

)n+1
1

(2n+ 1)(2n+ 3)

(
(n+ 1)o

(1)
ξ Yn,k(ξ)− o

(2)
ξ Yn,k(ξ)

)
+

(
r

R1

)n−1
1

(2n+ 1)(2n− 1)

(
no

(1)
ξ Yn,k(ξ) + o

(2)
ξ Yn,k(ξ)

)
=

1

Rn+1
1

1

(2n+ 1)(2n+ 3)
k(1)
n (rnYn,k(ξ))

+
1

Rn−1
1

1

(2n+ 1)(2n− 1)
k(2)
n (rnYn,k(ξ)). (4.27)
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Now, we can use Lemma 1.12 to obtain the curl in R3 of (4.27).

∇x ∧ (P y
(1),R1

n,k )(x) =
1

Rn+1
1

1

(2n+ 1)(2n+ 3)
∇x ∧ k(1)

n (rnYn,k(ξ))

= − 1

Rn+1
1

2n+ 3

(2n+ 1)(2n+ 3)
rnk(3)

n Yn,k(ξ)

= − 1

2n+ 1

(
r

R1

)n+1
1

r
o
(3)
ξ Yn,k(ξ)

= −(µ
(3)
n )1/2

2n+ 1

(
r

R1

)n+1

y
(3),r
n,k (ξ). (4.28)

Restricting (4.28) to the sphere ΩR2 with R2 < R1 gives

TR1,R2y
(1),R1

n,k (ξ) = −(µ
(3)
n )1/2

2n+ 1

(
R2

R1

)n+1

y
(3),R2

n,k (ξ).

This shows (4.22).

For Equation (4.23) we again use Equation (4.25) to get, for x = rξ, y = R1η and
r < R1,

(P y
(2),R1

n,k )(x) =
1

4π

∫
ΩR1

∞∑
m=0

rm

Rm+1
1

Pm (ξ · η) (µ
(2)
n )−1/2

R1

o(2)
η Yn,k(η) dωR1(η)

=
1

4π

∞∑
m=0

rm

Rm
1

(µ(2)
n )−1/2

∫
Ω

o(2)
η Yn,k(η)Pm(ξ · η) dω(η)

Applying Theorem 1.15 we find

(P y
(2),R1

n,k )(x) =
1

4π

∞∑
m=0

rm

Rm
1

(µ
(2)
n )−1/2

(2n+ 1)(
n(n+ 1)

(
P∧
m(n− 1)− P∧

m(n+ 1)
)
o
(1)
ξ Yn,k(ξ)

+
(
nP∧

m(n+ 1) + (n+ 1)P∧
m(n− 1)

)
o
(2)
ξ Yn,k(ξ)

)
Observing Equation (4.26) yields

(P y
(2),R1

n,k )(x) =

(
r

R1

)n+1
(µ

(2)
n )−1/2

(2n+ 1)(2n+ 3)

(
−n(n+ 1)o

(1)
ξ Yn,k(ξ) + no

(2)
ξ Yn,k(ξ)

)
+

(
r

R1

)n−1
(µ

(2)
n )−1/2

(2n+ 1)(2n− 1)

(
n(n+ 1)o

(1)
ξ Yn,k(ξ) + (n+ 1)o

(2)
ξ Yn,k(ξ)

)
.

Now, using Equation (1.21) we easily see that

(P y
(2),R1

n,k )(x) =
−(µ

(2)
n )−1/2 n

Rn+1
1 (2n+ 1)(2n+ 3)

k(1)
n (rnYn,k(ξ))

+
(µ

(2)
n )−1/2(n+ 1)

Rn−1
1 (2n+ 1)(2n− 1)

k(2)
n (rnYn,k(ξ)). (4.29)
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Applying Lemma 1.12 to derive the curl in R3 of (4.29) and observing that µ
(2)
n = µ

(3)
n

gives

∇x ∧ (P y
(2),R1

n,k )(x) =
−n
Rn+1

1

(µ
(2)
n )−1/2

(2n+ 1)(2n+ 3)
∇x ∧ k(1)

n (rnYn,k(ξ))

=
n

Rn+1
1

(µ
(2)
n )−1/2(2n+ 3)

(2n+ 1)(2n+ 3)
rnk(3)

n Yn,k(ξ)

=
n

(2n+ 1)

(
r

R1

)n+1

(µ(3)
n )−1/2 1

r
o
(3)
ξ Yn,k(ξ)

=
n

2n+ 1

(
r

R1

)n+1

y
(3),r
n,k (ξ). (4.30)

If we now restrict (4.30) to the sphere ΩR2 with R2 < R1 we arrive at

TR1,R2y
(2),R1

n,k (ξ) = − −n
2n+ 1

(
R2

R1

)n+1

y
(3)
n,k(ξ).

But this shows (4.23).

Proving (4.24) is on the one hand easier but on the other hand more difficult as the
previous two ones. The first step is much easier than before. Again using (4.25), we
get for x = rξ, y = R1η, r < R1

(P y
(3),R1

n,k )(x) =
1

4π

∫
Ω

∞∑
m=0

rm

Rm+1
1

Pm (ξ · η) 1

R1

(µ(3)
n )−1/2o(3)

η Yn,k(η) dωR1(η)

=
1

4π

∞∑
m=0

rm

Rm
1

(µ(3)
n )−1/2

∫
Ω

o(3)
η Yn,k(η)Pm(ξ · η) dω(η)

Applying Theorem 1.15 results in

(P y
(3),R1

n,k )(x) =
1

4π

∞∑
m=0

rm

Rm
1

(µ
(3)
n )−1/2

(2n+ 1)
P∧
m(n)o

(1)
ξ Yn,k(ξ). (4.31)

By use of (4.26), we can simplify the sum in (4.31) to obtain

(P y
(3),R1

n,k )(x) =

(
r

R1

)n
(µ

(3)
n )−1/2

2n+ 1
o
(3)
ξ Yn,k(ξ)

=

(
1

R1

)n
(µ

(3)
n )−1/2

2n+ 1
k(3)
n (rnYn,k(ξ)). (4.32)
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Now we apply Lemma 1.12, respectively (1.20), to find the curl in R3 of (4.32)

∇x ∧ (P y
(3),R1

n,k )(x) =

(
1

R1

)n
(µ

(3)
n )−1/2

2n+ 1
∇x ∧ k(3)

n (rnYn,k(ξ))

=

(
1

R1

)n
(µ

(3)
n )−1/2

(2n+ 1)

[
o
(1)
ξ

(
1

r
∆∗
ξ(r

nYn,k(ξ))

)
+o

(2)
ξ

(
−1

r

∂

∂r
(rn+1Yn,k(ξ))

)]
.

Evaluating these terms and observing that µ
(2)
n = µ

(3)
n yields

∇x ∧ (P y
(3),R1

n,k )(x) = −(µ(2)
n )−1/2 n+ 1

2n+ 1

(
r

R1

)n
1

r

(
no

(1)
ξ Yn,k(ξ) + o

(2)
ξ Yn,k(ξ)

)
= − n+ 1

2n+ 1

(
r

R1

)n(√
n

n+ 1
y

(1),r
n,k (ξ) + y

(2),r
n,k (ξ)

)
.

Restricting this equation to the sphere ΩR2 with R2 < R1 results in

TR1,R2y
(3),R1

n,k (ξ) = − n+ 1

2n+ 1

(
R2

R1

)n(√
n

n+ 1
y

(1),R2

n,k (ξ) + y
(2),R2

n,k (ξ)

)
which is the desired result. �

The above theorem for R1 < R2 is the first step to obtain the singular system of the
operator TR1,R2 . In a second step we have to investigate the opposite case R2 > R1

since we know that T ∗R1,R2
= TR2,R1 .

Theorem 4.7
Let the system of vector spherical harmonics be given as in Definition 1.15.
Then for R2 > R1 we have

TR1,R2y
(1),R1

n,k = −
√
n(n+ 1)

2n+ 1

(
R1

R2

)n
y

(3),R2

n,k , (4.33)

TR1,R2y
(2),R1

n,k = − n+ 1

2n+ 1

(
R1

R2

)n
y

(3),R2

n,k , (4.34)

TR1,R2y
(3),R1

n,k = − n

2n+ 1

(
R1

R2

)n+1
(√

n+ 1

n
y

(1),R2

n,k − y
(2),R2

n,k

)
. (4.35)

Proof:
The proofs of (4.33)–(4.35) will be performed in a shorter way since they run similar
to the proofs of (4.22)–(4.24). Only those steps which are different to the proof of
Theorem 4.6 will be executed explicitly here.
So let R1 < r, then (4.25) does not hold any more, but we can write

1

|x− y|
=

1

|y − x|
=

∞∑
m=0

Rm
1

rm+1
Pm (ξ · η) , x = rξ ∈ Ωext

R1
, y = R1η ∈ ΩR1 .
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By similar calculations as for (4.22) we thus get

(P y
(1),R1

n,k )(x) =

(
R1

r

)n+2
1

(2n+ 1)(2n+ 3)

(
(n+ 1)o

(1)
ξ Yn,k(ξ)− o

(2)
ξ Yn,k(ξ)

)
+

(
R1

r

)n
1

(2n+ 1)(2n− 1)

(
no

(1)
ξ Yn,k(ξ) + o

(2)
ξ Yn,k(ξ)

)
= − Rn+2

1

(2n+ 1)(2n+ 3)
k(2)
n

(
1

rn+1
Yn,k(ξ)

)
+

(
R1

r

)n
1

(2n+ 1)(2n− 1)

(
no

(1)
ξ Yn,k(ξ) + o

(2)
ξ Yn,k(ξ)

)
. (4.36)

Applying the curl in R3 to (4.36) we see using Lemma 1.12 that the first term
vanishes, i.e. we only have to evaluate

∇x ∧ (P y
(1),R1

n,k )(x) =
Rn

1

(2n+ 1)(2n− 1)
∇x ∧

(
1

rn

(
no

(1)
ξ Yn,k(ξ) + o

(2)
ξ Yn,k(ξ)

))
,

=
Rn

1

(2n+ 1)(2n− 1)
∇x ∧

(
ξ

[
nYn,k(ξ)

rn

]
+∇∗

ξ

[
Yn,k(ξ)

rn

])
.

By means of Lemma 1.21 we can calculate the curl in R3 of this vector field in
Helmholtz representation and obtain

∇x ∧ (P y
(1),R1

n,k )(x) = −(µ
(3)
n )1/2

2n+ 1

(
R1

r

)n
y

(3),r
n,k (ξ). (4.37)

Restricting (4.37) to the sphere ΩR2 with R2 > R1 gives

TR1,R2y
(1),R1

n,k (ξ) = −(µ
(3)
n )1/2

2n+ 1

(
R1

R2

)n
y

(3),R2

n,k (ξ).

This shows (4.33).

To prove Equation (4.34) similar calculations as for (4.23) and (4.33) have to be
performed. As an intermediate result we get for r > R1

(P y
(2),R1

n,k )(x) =
n(µ

(2)
n )−1/2Rn+2

1

(2n+ 1)(2n+ 3)
k(2)
n

(
1

rn+1
Yn,k(ξ)

)
+

(
R1

r

)n
(µ

(2)
n )−1/2 (n+ 1)

(2n+ 1)(2n− 1)

(
no

(1)
ξ Yn,k(ξ) + o

(2)
ξ Yn,k(ξ)

)
.

Applying the curl in R3 and using equivalent arguments as for the application of the
curl in R3 to P y

(1),R1

n,k yields

∇x ∧ (P y
(2),R1

n,k )(x) = − n+ 1

2n+ 1

(
R1

r

)n
y

(3),r
n,k (ξ). (4.38)
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Restricting this equation to ΩR2 with R2 > R1 gives the desired result

TR1,R2y
(2),R1

n,k (ξ) = − n+ 1

2n+ 1

(
R1

R2

)n
y

(3),R2

n,k (ξ).

The final part of the proof now shows Equation (4.35). By some easy computations
similar to those for the proof of (4.24) we achieve

(P y
(3),R1

n,k )(x) =

(
R2

r

)n+1
(µ

(3)
n )−1/2

2n+ 1
o
(3)
ξ Yn,k(ξ). (4.39)

Involving Lemma 1.12, respectively (1.20), we get the curl in R3 of (4.39) by

∇x ∧ (P y
(3),R1

n,k )(x) = −n(µ
(3)
n )−1/2

2n+ 1

(
R1

r

)n+1
1

r

(
(n+ 1)o

(1)
ξ Yn,k(ξ)− o

(2)
ξ Yn,k(ξ)

)
= − n

2n+ 1

(
R1

r

)n+1
(

n+ 1√
n(n+ 1)

y
(1),r
n,k (ξ)− y

(2),r
n,k (ξ)

)
.(4.40)

Restricting (4.40) to the sphere ΩR2 with R2 > R1 yields

TR1,R2y
(3),R1

n,k (ξ) = − n

2n+ 1

(
R1

R2

)n+1
(√

n+ 1

n
y

(1),R2

n,k (ξ)− y
(2),R2

n,k (ξ)

)
.

This gives (4.35) and finishes the proof of Theorem 4.7. �

Using the representation of the system {u(i)
n,k} in terms of the system {y(i)

n,k} (see

Lemma 1.17) we immediately get the following result which reveals the system {u(i)
n,k}

to be the orthonormal systems suitable for dealing with the spherical Biot-Savart
operator TR1,R2 .

Corollary 4.8
Let the system of vector spherical harmonics be given as in Lemma 1.17.
Then we have for R2 < R1

TR1,R2u
(1),R1

n,k = −
√

n

2n+ 1

(
R2

R1

)n+1

u
(3),R2

n,k , (4.41)

TR1,R2u
(2),R1

n,k = 0, (4.42)

TR1,R2u
(3),R1

n,k = −
√

n+ 1

2n+ 1

(
R2

R1

)n
u

(2),R2

n,k , (4.43)

while for R2 > R1

TR1,R2u
(1),R1

n,k = 0, (4.44)

TR1,R2u
(2),R1

n,k = −
√

n+ 1

2n+ 1

(
R1

R2

)n
u

(3),R2

n,k , (4.45)

TR1,R2u
(3),R1

n,k = −
√

n

2n+ 1

(
R1

R2

)n+1

u
(1),R2

n,k , (4.46)
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This corollary points out the essential advantage of the system {u(i)
n,k} of vector

spherical harmonics when we deal with the operator TR1,R2 . It allows us to write
the operator equation in the sense of Chapter 2 in a concise form.
Physically interpreted Corollary 4.8 connects the components of a spherical current
system to the corresponding magnetic field at a different height. In other words
the corollary states that current systems of class l

2,(2)
U (ΩR1) induce no magnetic field

inside the sphere where they are present and current systems of class l
2,(1)
U (ΩR1) pro-

duce no magnetic field outside the sphere ΩR1 . This is a generalized mathematical
form of a result presented in [27] which says that spherical poloidal currents produce
no magnetic field inside the sphere where they are present.

Observing that T ∗R1,R2
= TR2,R1 and combining the two previous corollaries we get

the following result.

Corollary 4.9
Let the system of vector spherical harmonics be given as in Lemma 1.17.
Then we have for R2 < R1

T ∗R1,R2
TR1,R2u

(1),R1

n,k =
n

2n+ 1

(
R2

R1

)2n+2

u
(1),R1

n,k , (4.47)

T ∗R1,R2
TR1,R2u

(2),R1

n,k = 0, (4.48)

T ∗R1,R2
TR1,R2u

(3),R1

n,k =
n+ 1

2n+ 1

(
R2

R1

)2n

u
(3),R1

n,k , (4.49)

and for R2 > R1

T ∗R1,R2
TR1,R2u

(1),R1

n,k = 0, (4.50)

T ∗R1,R2
TR1,R2u

(2),R1

n,k =
n+ 1

2n+ 1

(
R1

R2

)2n

u
(2),R1

n,k , (4.51)

T ∗R1,R2
TR1,R2u

(3),R1

n,k =
n

2n+ 1

(
R1

R2

)2n+2

u
(3),R1

n,k , (4.52)

Since we deal with the situation that resulting field measurements are given on a
sphere which is above the source field, we are mainly interested in the last three
equations of Corollary 4.9 and in Equations (4.44 - 4.46) of Corollary 4.8.

Equations (4.41 - 4.43) and Equations (4.44 - 4.46) now establish the starting point
to apply the multiscale methods for tensor-operator equations and the multiscale
regularization techniques for vectorial inverse problems which we have developed in
Chapter 2. The singular system of the Biot-Savart operator TR1,R2 : h → k, for
R2 < R1, is given in Table 4.1 and, for R1 < R2, in Table 4.2.
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h k {hn} {kn} σn

l
2,(1)
U (ΩR1) l

2,(3)
U (ΩR2) u

(1),R1

n,k −u(3),R2

n,k

√
n

2n+1

(
R2

R1

)n+1

l
2,(3)
U (ΩR1) l

2,(2)
U (ΩR2) u

(3),R1

n,k −u(2),R2

n,k

√
n+1
2n+1

(
R2

R1

)n
Table 4.1: Singular system of the spherical Biot-Savart operator TR1,R2 : h → k for
the case R2 < R1.

h k {hn} {kn} σn

l
2,(2)
U (ΩR1) l

2,(3)
U (ΩR2) u

(2),R1

n,k −u(3),R2

n,k

√
n+1
2n+1

(
R1

R2

)n
l
2,(3)
U (ΩR1) l

2,(1)
U (ΩR2) u

(3),R1

n,k −u(1),R2

n,k

√
n

2n+1

(
R1

R2

)n+1

Table 4.2: Singular system of the spherical Biot-Savart operator TR1,R2 : h → k for
the case R2 > R1.

In the unified functionalanalytic framework as developed in Chapter 2 these equa-
tions are of the form

Λh = k, h ∈ h, k ∈ k,

where Λ : h → k is a compact operator and h and k are separable Hilbert spaces of
square-integrable vector functions. The singular system of Λ is, for n′ ∈ N0, given
by {σn′ , hn′ , kn′}.

Remembering Definition 2.4 of a well-posed problem , i.e. existence, uniqueness and
continuity of the inverse, we realize that the problem of calculating h ∈ h with

Λh = k (4.53)

for given k ∈ k is ill-posed since the first and the third property of a well-posed
problem are violated. At first, for arbitrary functions k ∈ k, k is not necessary
in the range of Λ which violates the first property (note that we have to assume
observational errors or noise in any practical application which may cause that
k /∈ R(Λ)⊕R(Λ)⊥ such that even the generalized inverse, Λ+, cannot be applied).
At this point a first regularization step has to be applied. Second, if we have a look
at the generalized solution of (4.53), i.e. the Moore-Penrose inverse which is given
by

Λ+k =
∑
n′∈N

σ−1
n′ (k, kn′)khn′ (4.54)

for k ∈ R(Λ) ⊕ R(Λ)⊥, the singular system of Λ indicates the type of violation of
the third property of a well-posed problem. The right hand side of (4.54) is not
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necessarily convergent. Thus, it is obvious that the singular values of the Biot-
Savart operator given in Table 4.1 and Table 4.2 constitute an exponentially ill
posed problem. In order to force convergence we have to replace (4.54) by a filtered
version of this expansion. This has been done in Section 2.4 in a general multiscale
framework for regularization of vectorial inverse problems.

4.4 Simulations and Numerical Applications

In the following section we will give different applications of our previously presented
multiscale approach for reconstructing current systems from given magnetic field
data. At first, we will apply our methods to two simulations, where we are able
to calculate the magnetic field corresponding to the simulated current configuration
explicitly. After these simulated examples we apply our method to real satellite
magnetic field data. To demonstrate the applicability of our approach, we use data
of three different satellite missions, the MAGSAT mission (1979-1980), the CHAMP
mission (2000-2005) and the proposed SWARM mission, where simulated data are
available.

4.4.1 A Simulation of a Ring Current System

As a first application of our method of reconstructing current systems from given
magnetic field data we simulate a spherical ring current which can be seen in Fig-
ure 4.1. The current system is supposed to exist on a sphere with radius R1 = 100 km
and is assumed to be purely tangential where the north-component jϑ is vanishing
and the east component jϕ is given by

jϕ(ϕ, ϑ) =


(
1− |ϑ−π/2|

π/18

)2 (
1 + 2 |ϑ−π/2|

π/18

)
, ϑ ∈ [π/2− π/18, π/2 + π/18]

0, else,

for ϕ ∈ [0, 2π). The corresponding magnetic field is calculated at a height of R2 =
400 km in order to simulate satellite configurations. The field is computed using
Biot-Savart’s law given by

b(x) =
µ0

4π

∫
Ω100

j(y) ∧ (x− y)

|x− y|3
dω100(y), x ∈ Ω400 , (4.55)

using suitable rules for numerical integration, where µ0 = 4π · 10−7N/A2 is the
magnetic permeability of the vacuum. The resulting magnetic field can be seen in
Figure 4.1.
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Figure 4.1: Left: Simulated configuration of a spherical ring current at radius R1 =
100 km. Color indicates the absolute value of the current at a height of R2 = 400 km.
Right: Calculated induced magnetic field b of the simulated ring current system.
Arrows indicate tangential components while colour indicates the negative radial
component.

Since the simulated current system is purely toroidal and we are in the case of
R2 > R1, only Equation (4.46) plays a role. i.e. we have to regularize

TR1,R2 : h → k,

where TR1,R2 is the spherical Biot-Savart operator given in Definition 4.2 and

h = l
2,(3)
U (ΩR1), {hn′} = {−u(3),R1

n,k } n=1,...;
k=1,...,2n+1

,

k = l
2,(1)
U (ΩR2), {kn′} = {u(1),R2

n,k } n=1,...;
k=1,...,2n+1

,

σn′ =

√
n

2n+ 1

(
R1

R2

)n+1

, n′ ∈ N .

This leads to decomposition regularization vector scaling functions {dϕJ}, J ∈ Z,
(see Definition 2.28) given by

dϕJ(x, y) =
∞∑
n=1

∞∑
k=1

(ϕJ)
∧(n)u

(1),R2

n,k (x)Y R2
n,k (y), x ∈ ΩR2 , y ∈ ΩR2 ,

and reconstruction regularization vector scaling functions {rϕJ}, J ∈ Z, of the form

rϕJ(x, y) = −
∞∑
n=1

∞∑
k=1

(ϕJ)
∧(n)u

(3),R1

n,k (x)Y R2
n,k (y), x ∈ ΩR1 , y ∈ ΩR2 ,

where the symbol {(ϕJ)∧(n)}n=1,2,... satisfies

1. lim
J→∞

((ϕJ)
∧(n))2 = σ−1

n , n ∈ N,

2. ((ϕJ)
∧(n))2 ≥ ((ϕJ−1)

∧(n))2 , J ∈ Z, n ∈ N,
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3. lim
J→−∞

((ϕJ)
∧(n))2 = 0, n ∈ N .

The result of our reconstruction with a regularization vector cubic polynomial scal-
ing function at scale J = 8 can be seen in Figure 4.2. In Figure 4.3 we have plotted
the absolute value of the εϕ−component (geomagnetic Y-component) of the recon-
structed current system along the zero meridian for different scales. It is clearly
visible that the reconstruction of the current system is improved by increasing the
scale. But this procedure can only be continued up to a certain scale. After this
maximal scale the problem will be over-regularized, i.e. the regularization error is
still reduced but the error occurring from noisy data will increase (see (2.12)). (Note
that in the case of simulations we do not have any noise but since we use approx-
imate integration rules to evaluate the appearing convolution integrals we produce
errors which behave like noise.)

Figure 4.2: Reconstruction of the simulated ring current system with a regular-
ization cubic polynomial scaling function at scale J = 8. Note that the area of
reconstruction is just the coloured area in order to minimize computational effort.
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Figure 4.3: Absolute value of the εϕ−component (geomagnetic Y-component) of the
reconstructed current system along the zero meridian for scales J = 4, J = 5, J = 6
and J = 8. The red line shows the original simulated current system.

4.4.2 A Simulation of a Local Current System
(Cowling Channel)

As a second example we have simulated a geophysically more relevant current sys-
tem. We approximated the current configuration of a Cowling channel.
A Cowling channel is a confined ionospheric area with an enlarged conductance (up
to 17 times higher than the conductance of the surrounding area), leading to hor-
izontal ionospheric currents with magnitudes that are enhanced compared to the
background. The channel usually has a larger extent in the direction of the current
flow (’channel direction’) than perpendicular to it. At the edges of the cowling chan-
nel direction, radial currents are present to feed or diverge the enlarged horizontal
currents, respectively. For a detailed description of a cowling channel and the geo-
physical background the reader is referred to [36] and [37]. We simulate the current
configuration of such a Cowling channel by three line currents flowing radially from
infinity onto the Earth up to a height of R1 = 100 km, then flowing parallel to the
Earth for about 10◦ and then diverging radially to infinity again. A sketch of the
current system can be seen in Figure 4.4. A similar model has been used in [1] and
[4] to simulate a Cowling channel in a different context.
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Figure 4.4: Left: Simulated current configuration of a Cowling Channel. The cur-
rent strength of one line current is 1A. Crosses indicate currents flowing onto the
Earth, whereas dots indicate radially diverging currents. The height of the horizon-
tal current system is R1 = 100 km. Right: Induced magnetic field at a height of
R2 = 400 km. Color indicates negative radial component, whereas arrows indicate
horizontal components.

The corresponding induced magnetic field is calculated at a height of R2 = 400 km
to simulate satellite like configurations using Biot-Savart’s law (4.55), where the
simple configuration of the current system has the great advantage of being able to
calculate the integral in (4.55) explicitly. The induced magnetic field can be seen in
Figure 4.4.

Since we are now in the case of horizontal as well as radial currents, the induced
magnetic field consists of a poloidal and a toroidal part. To reconstruct poloidal
currents from the toroidal magnetic field the following method is used, which has
already been described in [7] and applied to CHAMP magnetic field measurements
in [43] and [47].

Reconstruction of Radial Current Densities

As we have seen in (4.10) the connection between toroidal magnetic field scalar Qb

and the radial current density Jrad at the same height is given by

Jrad(rξ) = ξ · j(rξ) =
∆∗
ξPj(rξ)

r
=

∆∗
ξQb(rξ)

µor
r > 0, ξ ∈ Ω . (4.56)

Using the vector scaling function of type 3, ϕ
(3)
J , defined in Section 3.2 with a suitable

chosen maximum scale J we are able to approximate the toroidal part, qb, of the
magnetic field b on Ωr. Thus we have

qb(r ·) ' ϕ
(3)
J ?

(
ϕ

(3)
J ∗ b

)
=

J∑
J ′=0

ψ
(3)
J ′ ?

(
ψ

(3)
J ′ ∗ b

)
,
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in the sense of the l2(Ω)−norm, where the functions ψ
(3)
J are the vector wavelets of

type 3 introduced in Section 3.2. Observing the fact, that pb = L∗Qb we immediately
get an approximation of the toroidal scalar, Qb, by

Qb(r ·) ' ΦJ ∗
(
ϕ

(3)
J ∗ b

)
=

J∑
J ′=0

ΨJ ′ ∗
(
ψ

(3)
J ′ ∗ b

)
, (4.57)

in the sense of the L2(Ω)−norm, where the kernels ΦJ and ΨJ are, for ξ, η ∈ Ω,
given by

ΦJ(ξ, η) =
∑

(n,k)∈N (3)

1√
n(n+ 1)

(
ϕ

(3)
J

)∧
(n)Yn,k(η)Yn,k(ξ) ,

ΨJ(ξ, η) =
∑

(n,k)∈N (3)

1√
n(n+ 1)

(
ψ

(3)
J

)∧
(n)Yn,k(η)Yn,k(ξ)

and (ϕ
(3)
J )∧(n) and (ψ

(3)
J )∧(n) are the symbols of the vector scaling function ϕ

(3)
J of

type 3 and the vector wavelet ψ
(3)
J of type 3, respectively, used in (4.57). Using

the fact that ϕ
(3)
J (η, ξ) = L∗ξΦJ(η, ξ) and ψ

(3)
J (η, ξ) = L∗ξΨJ(η, ξ) for ξ, η ∈ Ω and

observing (4.56) we end up with an approximation of the radial current density Jrad
on Ωr given by

Jrad(rξ) ' 1

rµ0

(
Φ̃J ∗

(
ϕ

(3)
J ∗ b

))
(ξ) (4.58)

=
1
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(
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(
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))
(ξ) for ξ ∈ Ω , (4.59)

where the scalar valued kernels Φ̃J and Ψ̃J are, for ξ, η ∈ Ω, given by

Φ̃J(ξ, η) = ∆∗
ξΦJ(η, ξ)

=
∑

(n,k)∈N (3)

−
√
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(
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−
√
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(
ψ
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J

)∧
(n)Yn,k(η)Yn,k(ξ) .

Expression (4.58) connects the toroidal part of the magnetic field on a certain height
to the radial current density at that very height in terms of radial basis functions.
This equation yields the possibility to compute the radial current density Jrad from
given magnetic field data on a certain height numerically in a multiscale framework.
The equation is just a different expression for the well known fact that the toroidal
magnetic field at a certain altitude is solely due to the radial currents crossing the
sphere at that height.
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In Figure 4.5, Figure 4.6 and Figure 4.7 three reconstructions of the radial current
density at satellite’s height (400 km) of the simulated Cowling channel can be seen.
In the low scale reconstruction, radial currents densities are detected but they are
not clearly resolved. The three line currents which are flowing towards the Earth on
the right side and away on the left side are reconstructed as one current system. If
we now increase the scale, then it can be seen that there is a second high frequent
structure embedded in the two current systems crossing the satellite’s sphere. If
we increase the scale of the reconstruction scaling functions another time the real
structure of the current system becomes visible, i.e. the three line currents are
resolved. To approximate such a detailed structure is almost impossible using scalar
or vector spherical harmonics.

Figure 4.5: Radial current density at a height of 400 km of the simulated Cowling
channel obtained by a cubic polynomial scaling function given in (4.58) at scale
J = 8. Radial currents are detected but the exact shape of the current system can
not be resolved at this scale.

Figure 4.6: Radial current density at a height of 400 km of the simulated Cowling
channel obtained by a cubic polynomial scaling function given in (4.58) at scale
J = 9. The high frequent structure of the current system can be anticipated.
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Figure 4.7: Radial current density at a height of 400 km of the simulated Cowling
channel obtained by a cubic polynomial scaling function given in (4.58) at scale
J = 11. The complete structure of the current system, i.e. the three line currents
are resolved.

Reconstruction of Toroidal Currents

In the following paragraph we apply our method developed in Section 4.2 to recon-
struct the horizontal toroidal part of the current system from the simulated magnetic
field data. Since the current system that we reconstruct is below the (simulated)
satellite’s orbit we are in the case of R2 > R1 and the Hilbert space framework states
as follows. We have to regularize

TR1,R2 : h → k,

where TR1,R2 is the spherical Biot-Savart operator given in Definition 4.2 and

h = l
2,(3)
U (ΩR1), {hn′} = {−u(3),R1

n,k } n=1,...;
k=1,...,2n+1

,
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,

σn′ =

√
n

2n+ 1

(
R1

R2

)n+1

, n′ ∈ N .

The corresponding reconstruction and decomposition regularization scaling func-
tions are given as in the previous section.

The final result, a reconstruction of the current system at a height of 100 km with
a regularization vector cubic polynomial scaling function at scale J = 7 can be seen
in Figure 4.8. In the right of Figure 4.9 the −εϕ−component (geomagnetic negative
Y-component) of the reconstructed current system along the 90◦−meridian for dif-
ferent scales is plotted. As in the previous example of the simulated ring current,
it is clearly visible that the reconstruction is improved from one scale to the next
one. The left of Figure 4.9 shows a zoomed-in version of the reconstructed current
system of Figure 4.8 including the original simulated current system.
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Figure 4.8: Reconstruction of the horizontal current system of the simulated Cowling
channel obtained with a regularization vector cubic polynomial scaling function at
scale J = 7.
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Figure 4.9: Left: Zoom in into Figure 4.8 with original simulated current system.
Right: Absolute value of the −εϕ−component of the reconstructed current system
along the 90◦−meridian for scales J = 5, J = 6 and J = 7. The red circles give the
position of the original simulated current system.

As the reader can see the reconstruction of the horizontal part of the current system
is qualitatively very good, i.e. the reconstruction reflects the shape of the simulated
current system and it as at the right position. But on the other hand the magnitude
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of the reconstruction absolutely fails to approximate the strength of the original
current system. This can be explained as follows. The horizontal current system
which we have simulated in this case consists of three line currents. If we characterize
these current systems in the sense of the l2(ΩR1) Hilbert space we find out that their
norm is zero because the current system is defined on a set of measure zero. This
formally means that we are not able to reconstruct the current system from the
magnetic field data because our theory developed in Chapter 2 is based on the
regularization of a compact operator between two Hilbert spaces. But this means
that we have to reconstruct the zero function in the Hilbert space of functions which
represents the current systems (i.e. in l2(Ω)).
What we see in Figure 4.8 and Figure 4.8 is clearly not an approximation of the zero
function, but it is a current system which induces the same magnetic field on the
satellite’s orbit as the simulated line currents system. This reconstructed current
system is called equivalent current system in the geophysical literature (see [1], [4],
[36] and [37]).
Our theory developed in Section 4.2 and Section 4.3 is geophysically based on the
reconstruction of these equivalent current systems. As we have already stated in
Section 4.1 we are not able to reconstruct the complete three-dimensional current
system from the magnetic field information on just a single sphere. The best thing
we can do is to reconstruct the poloidal part of the current system on satellite’s
height from the toroidal part of the magnetic field measurements (see Figure 4.7)
and to reconstruct an equivalent toroidal current system below the satellite’s altitude
from the poloidal part of the magnetic field measurements (see Figure 4.8). This
toroidal current system is a height integrated current system representing all toroidal
currents existing below the satellite’s orbit. Thus, the height of this equivalent
current is best chosen to be the height, where the main toroidal currents exist (in
this example 100 km and in most geophysical applications 110 km (see e.g. [1], [4]
or [37])).

4.4.3 An Application to MAGSAT Magnetic Field Data

In the following section we apply our previously tested algorithms for reconstructing
ionospheric current systems to real satellite data. At first we will apply our mul-
tiscale technique of reconstructing radial current densities on satellite’s height due
to (4.58). In [51] a similar technique, in terms of spherical harmonics, is applied
to MAGSAT data and in [43] radial current densities have been reconstructed from
given MAGSAT magnetic field data by means of wavelet techniques. The radial
current distributions are due to ionospheric F region currents and their radial com-
pensation currents. In a second step we apply the method presented in Section 4.2
and Section 4.3 to reconstruct a horizontal equivalent current system at an altitude
of R1 = 110 km from the given satellite’s magnetic field data.

The data sets used in this application are similar to those in [51]. They have been
made available to us by Nils Olsen, the author of [51], who has also done the whole
preprocessing and averaging process. MAGSAT was a low flying satellite with a
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Sun synchronous orbit, thus the satellite was measuring the magnetic field only at
dawn and dusk local times. Neglecting the variations in altitude of the satellite,
one month of data (centered at March 21, 1980) are averaged onto the equiangular
longitude-latitude grid at mean altitude R2 which has already been used in the pre-
vious sections for numerical integration (see [15]). As stated before, the averaging
process was done by Nils Olsen using his method which is presented in [51]. The dusk
and dawn data are treated separately such that two separate data sets are obtained.
Prior to the averaging process a geomagnetic main field model (GSFC(12/83) up to
degree and order 12) has been subtracted from the measurements in order to avoid
any effects due to neglected altitude variations. For a detailed description of the
data preprocessing and handling the reader is again referred to [51].

The radial current distribution at a fixed height and the corresponding magnetic
field can be connected in a multiscale framework by Equation (4.58). As in the pre-
vious application we calculate the radial current density by means of a vector cubic
polynomial scaling functions of degree J = 6 from the evening data set. Figure 4.10
shows the reconstruction of the radial current density Jrad.

Figure 4.10: Radial current distribution during evening local time calculated in
accordance with Equation (4.58) using a vector cubic polynomial scaling function
expansion at scale J = 6.

The largest radial current densities are present in polar regions. At the magnetic ge-
omagnetic equator comparatively weak upward currents are detected. These current
distributions are due to vertical compensation currents of the equatorial electrojet
which is a typical ionospheric F region current system built up by a Cowling chan-
nels which has been discussed in the previous section. The signatures follow the
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geomagnetic equator which is expected from theoretical considerations concerning
a Cowling channel (see [37]). The reader should observe that the current system
will never be present as we see it in Figure 4.10. What we see is the behavior of
a small part of the equatorial electrojet’s radial compensation currents during the
course of a day. This is because ionospheric current systems can not be described
in an Earth fixed coordinate system. Ionospheric currents are Sun fixed systems
since the conductance of the ionosphere is varying with the influence of the Sun
and not with respect to geographical longitude and latitude. A better coordinate
system to describe these effects is given by the magnetic local time and the quasi
dipole latitude which is presented in Section 4.4.5. Since MAGSAT with its Sun
synchronous orbit is measuring the magnetic time only in two fixed magnetic local
times, it is not possible to get a real good image of the ionospheric current systems
from this data. Moreover, we get an impression of a small strip of the total current
system while moving over the Earth within a day.

In a second step we apply the method presented in Section 4.2 to the MAGSAT data
set. In order to get just the magnetic field which is due to horizontal ionospheric
current systems we subtract the evening and the morning data set. As we have
seen before, at evening local time, ionospheric current systems are present while
we can assume that in the morning data the influence of those currents systems
is comparatively small. Since we reconstruct the toroidal part of the ionospheric
current system from the poloidal part of the magnetic field measurements and since
we are in the case of R2 > R1, only Equation (4.44) of Corollary 4.8 plays a role in
our regularization step. i.e. we have to regularize

TR1,R2 : h → k,

where TR1,R2 is the spherical Biot-Savart operator given in Definition 4.2 and
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,
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, n′ ∈ N .

The corresponding decomposition and reconstruction regularization vector scaling
functions are then given as in the previous sections.

The result of our reconstruction with a regularization vector cubic polynomial scal-
ing function at scale J = 6 can be found in Figure 4.11. The strong influence of
the ring currents around the poles can be seen. But also the current system of the
equatorial electrojet can clearly be seen. The strange current systems at the zero
meridian in the middle of the figure is not a real current system but it is more or less
due to errors in the averaging process, since, as already stated at the reconstruc-
tion of the radial current densities from given MAGSAT data, we are just able to
reconstruct a small time band of the ionospheric current system smeared out over
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the Earth. Thus, any averaging error or a gap in the data coverage will produce an
artificial current system which is not physically motivated and which is not present
in reality.

Figure 4.11: Equivalent horizontal current distribution during evening local time at
a height of 110 km calculated from MAGSAT magnetic field measurements using a
regularization vector cubic polynomial scaling function expansion at scale J = 6.

In order to show the possibilities of regional calculations, Figure 4.12 presents a
reconstruction of the horizontal current distribution during evening local time along
the magnetic equator at a height of 110 km. The result is obtained using regulariza-
tion vector cubic polynomial scaling functions at scale J = 6. The data window was
chosen slightly larger than the reconstruction area in the case of a local reconstruc-
tion in order to suppress Gibbs phenomena at the boundary of the visualization area.

Figure 4.13 shows the course of the equatorial electrojet during a day. In this figure
the area where the absolute value of the εϕ−component (geomagnetic Y-component)
of the current system is larger than 90% of its maximum on the corresponding
meridian is coloured red.
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Figure 4.12: Local reconstruction of the equivalent horizontal current distribution
during evening local time at a height of 110 km calculated using a regularization
vector cubic polynomial scaling function expansion at scale J = 6.

Figure 4.13: Course of the equatorial electrojet during a day. Red area indicates
|j · εϕ| to be larger than 90% of the maximum along the corresponding meridian.

4.4.4 An Application to CHAMP Magnetic Field Data

The next step in testing our methods for reconstructing ionospheric current systems
from given magnetic field data is the application to data measured by the CHAMP
satellite. In contrast to the MAGSAT mission CHAMP is covering all local times
within approximately four months. As we have already stated before, the Earth
fixed coordinate system (lat, lon) is not the appropriate one to describe ionospheric
currents and their corresponding magnetic effects, because these systems are varying
with respect to the position of the Sun and not with respect to the Earth. Thus, we
will change the parametrization of the sphere to a new coordinate system given by
the magnetic local time (MLT) substituting the longitude and the quasi dipole lati-
tude (QDlat) instead of the latitude. This new coordinate system will be explained
in more detail during the course of the section.
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We will apply in this section both, our method of reconstructing radial current
densities on satellite’s height due to (4.58) and the approach of reconstructing a
horizontal equivalent current system from given CHAMP satellite’s magnetic field
data presented in Section 4.2 and Section 4.3 in this new coordinate system.

Reconstruction of Current Systems in Magnetic Local Time

The morphology of the geomagnetic variations produced by ionospheric currents
can only weakly be represented in a coordinate system which is Earth fixed. This
is because the magnetic field induced by currents is not linked to geographical long-
itude and latitude as, for example, is the lithospheric field. It is rather fixed to the
position of the Sun and the distance of the observer (in this case the satellite) to
the geomagnetic equator. Thus, in order to describe these phenomena we have to
change the reference system from an Earth fixed frame to a Sun fixed frame. A coor-
dinate system which is commonly used in geophysics in this context is the Magnetic
Local Time (MLT) and Quasi Dipole Latitude (QDlat). The magnetic local time
thereby denotes the relative position of the observer with respect to the magnetic
field and the Sun and the quasi dipole latitude represents the relative position of
the observer with respect to the geomagnetic equator. In Figure 4.14 a single day
(9. September 2001) of the position of CHAMP measurements can be seen in the
geographical coordinate system (lat,lon) and the Sun fixed reference frame (QDlat,
MLT). For more information concerning the description of geomagnetic coordinate
system the reader is referred to [56] or [58] and the reference therein.
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Figure 4.14: Left: Position of one day (20.09.2001) of CHAMP measurements in the
Earth fixed geographic coordinate system (lat, lon). Right: The same day in the
Sun fixed coordinate system (QDlat, MLT).

To show that our method is also able to handle data in this coordinate system we
take just three days of CHAMP data (10., 16. and 17. September 2001) which
where available at the internet page http://www.dsri.dk/multimagsatellites

/types/equatorial electrojet.html. In these days CHAMP was at 12.30 and
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00.30 local time. The advantage of these data sets is the explicitly given main field,
crustal field and magnetospheric ring current correction such that these compli-
cated steps can be avoided. We transform the data to the (MLT, QDlat) coordinate
system by use of an algorithm made available by the GFZ Potsdam and imple-
mented by Nils Olsen from the DSRI Kopenhagen. Then, we average the data to
an equiangular integration grid (in the coordinate system (MLT, QDlat)) using the
algorithm presented in Section 3.4. The reference system (MLT, QDlat), with values
QDlat ∈ [−90, 90] and MLT ∈ [0, 24] is thereby just seen as another coordinate sys-
tem parameterizing the unit sphere where the magnetic local time is seen as a linear
transformation of the longitude with MLT = 12 representing the zero meridian.

We apply the method presented in Section 4.2 to the CHAMP data set in the Sun
fixed reference frame (MLT, QDlat) in order to reconstruct the toroidal part of
the equivalent ionospheric current system from the poloidal part of the magnetic
field measurements. Since we are in the case of R2 > R1, only Equation (4.44)
of Corollary 4.8 plays a role in our regularization step. The functionalanalytic
framework is given as follows. We have to regularize

TR1,R2 : h → k,

where TR1,R2 is the spherical Biot-Savart operator given in Definition 4.2 and
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The corresponding decomposition and reconstruction regularization vector scaling
functions are then given as in the previous sections.
The result of our reconstruction with a regularization vector cubic polynomial scal-
ing function at scale J = 3 can be seen in Figure 4.15. The maximal strength of
the detected equivalent ionospheric current system is approximately 10mA/m. Ac-
cording to [12] and [39] the amplitude of the solar quiet mid latitude ionospheric
current systems is 10 − 36mA/m. This shows that the detected current system is
in the lower band width of the real ionospheric current systems. Since the scale of
reconstruction is very low it can be assumed that the real strength of the current
system is higher than the reconstructed amplitude.

With respect to the given amount of data (3 days of CHAMP magnetic field mea-
surements) the reconstructed current system shown in Figure 4.15 is a good result.
It demonstrates that the used trial functions, i.e. regularization vector scaling func-
tions and wavelets, are a good choice for handling the problem. As already men-
tioned in [37] the main disadvantage of spherical harmonics is that the reconstructed
current system on the day-side of the Earth will appear on the night-side as well
because of symmetry arguments. This problem does not appear if scaling functions
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Figure 4.15: Equivalent horizontal current distribution in the Sun fixed coordinate
system (QDlat, MLT) at a height of 110 km calculated using a regularization vector
cubic polynomial scaling function expansion at scale J = 3.

and wavelets are used. These kernel functions do not fulfill an exact frequency lo-
calization property which is not needed for the reconstruction of the current system
anyway, but they provide the possibility of space localizing reconstruction and this
property is much more important for the reconstruction of a ionospheric current
distribution from given magnetic field measurements.

In order to demonstrate the regional applicability of the presented multiscale tech-
niques for reconstructing ionospheric current systems from CHAMP magnetic field
data we present two local applications in the following.
At first we reconstruct the radial current density at satellite’s height from the data
in the Sun fixed reference frame (QDlat, MLT). The radial current distribution at a
fixed height and the corresponding magnetic field at the same height are connected
in a multiscale framework by Equation (4.58). As in the previous applications to
MAGSAT data and to the simulated Cowling channel we calculate the radial current
density by means of a vector cubic polynomial scaling functions of degree J = 6 from
the data set. Figure 4.16 shows a local reconstruction of the radial current density
Jrad over the north pole. The obtained radial current distribution is in correspon-
dence with the models of these current systems of polar regions discussed in [34]
and [53].

In a second local application we calculate the toroidal part of the equivalent iono-
spheric current system at a height of 110 km from the poloidal part of the CHAMP
magnetic field measurements. The local reconstruction is performed in a region



134 Chapter 4. Determination of Ionospheric Current Systems

Figure 4.16: Radial current distribution in the coordinate system (MLT, QDlat)
calculated using Equation (4.58) with a vector cubic polynomial scaling function
expansion at scale J = 6 over the geomagnetic north pole.

given by QDlat ∈ [−30, 30] and MLT ∈ [08.00, 16.00], i.e. in an area where strong
ionospheric current systems like the equatorial electrojet are present. For this recon-
struction we toke data of several months between September 2001 and June 2002 in
order to get a good coverage of measurements in the region of interest. Main field,
crustal field and magnetospheric ring current corrections have been executed as de-
scribed in Appendix A. Furthermore, several data selection steps have been applied
in order to filter out tracks with particular high residuals. For further information
concerning data selection and preprocessing see Appendix A.

The functionalanalytic framework is given as before. The reconstruction of the
equivalent ionospheric current system with a regularization vector cubic polynomial
scaling function at scale J = 5 can be seen in Figure 4.17. The maximal recon-
structed strength of the current system is approximately 25 mA/m which is a more
realistic value than the amplitude of the reconstruction in Figure 4.15 which is due
to the increased scale. The structure of the reconstructed ionospheric current system
in Figure 4.17 is not like the reader might expect in equatorial regions, which can
be explained by gaps in the data coverage and by the presence of disturbed data
due to temporally fast changing field aligned currents or other effects.
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Figure 4.17: Local reconstruction (QDlat ∈ [−30, 30], MLT ∈ [08.00, 16.00]) of the
equivalent ionospheric current distribution at a height of 110 km calculated using a
regularization vector cubic polynomial scaling function expansion at scale J = 5.

4.4.5 An Application to SWARM Magnetic Field Data

In the following section we give an example how the multiscale method of recon-
structing current systems from magnetic field data can be used in connection with
the proposed satellite mission SWARM, and how the constellation of this satellite
mission can be used to improve the knowledge of ionospheric current systems.
SWARM is a satellite mission proposed by a consortium of 27 institutes and uni-
versities under the leadership of the Danish Space Research Institute (DSRI Kopen-
hagen). It is designed to study the dynamics of the Earth’s magnetic field and
its interactions with the system Earth. The concept consists of a constellation of
four satellites of the CHAMP type in two different polar orbits between 400 km and
550 km altitude. The proposed configuration over a period of 5 years is illustrated
in Figure 4.18.
To simulate the SWARM mission and the emphasize its advantages a simulator
(based on the comprehensive model of the near-Earth magnetic field described in
[58]) has been implemented at the GFZ Potsdam and the data have been made
available at the DSRI Kopenhagen. For more information concerning SWARM and
the EndToEnd simulation of the SWARM mission the reader is referred to [40] and
to the internet page http://www.dsri.dk/swarm/.

Reconstruction in Magnetic Local Time

To show that our method is also able to handle a big amount of data in the Sun
fixed coordinate system (MLT, QDlat) we take 60 days of data between January
2000 and April 2000 of one of the low flying SWARM satellite’s. Since the satellite
is flying a quasi circular orbit with nearly no polar gap, the rotation of the plane
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Figure 4.18: Constellation of the simulation of the proposed SWARM satellite mis-
sion. The simulated period of the mission is 1997 - 2002. In the upper figure the
local time behavior of the four satellites can be seen. In the lower figure the altitude
of respectively two satellites during the course of the mission is illustrated.

where the satellite is flying in with respect to the Sun is very slow. Thus, the period
of 4 months is necessary to get data within all magnetic local times which can be
seen in the upper part of Figure 4.18.
As before the data are transformed to the (MLT, QDlat) coordinate system and av-
eraged to an equiangular integration grid (in the coordinate system (MLT, QDlat))
using the algorithm presented in Section 3.4.

The ionospheric current system which has been used to simulate SWARM magnetic
field data is a purely toroidal, horizontal current system at a height of 110 km (see
[58]). Thus, in order to apply our method developed in Section 4.2 to reconstruct
the current system corresponding to the simulated magnetic field data we are in the
following functionalanalytic situation. We have to regularize

TR1,R2 : h → k,

where TR1,R2 is the spherical Biot-Savart operator given in Definition 4.2 and
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The corresponding reconstruction and decomposition regularization scaling func-
tions are given as in the previous sections.

A reconstructed equivalent ionospheric current system at a height of 110 km ob-
tained with a regularization cubic polynomial vector scaling function at scale J = 5
can be found in Figure 4.19. The main contours of the ionospheric current system
are reconstructed. In order to reconstruct finer details of the current system a higher
resolution of the simulated satellite tracks (at the moment 1 sample/min ' 440 km
sample distance) would be necessary.

Figure 4.19: Equivalent horizontal current distribution in the Sun fixed coordinate
system (QDlat, MLT) at a height of 110 km calculated using a regularization vector
cubic polynomial scaling function expansion at scale J = 5.

The maximal strength of the detected equivalent ionospheric current system is more
than 25mA/m. As already mentioned before, according to [12] and [39] the ampli-
tude of the solar quiet current system is 10− 36mA/m.

Determination of the Current Function

In the following paragraph we show that our multiscale approach for reconstructing
ionospheric current systems from magnetic field data can even be used to determine
the current function of the corresponding current system. But at first we have to
define the term current function.

Definition 4.10
Let the spherical vector field f ∈ l2(Ω) be surface divergence free, i.e. there exists a
scalar field F ∈ L2(Ω) with

f = L∗F on Ω .

Then the function F is called a current function of the vector field f .
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In other words, the current function F is the Helmholtz scalar of type 3 of the
vector field f (see Corollary 1.20). Note that the current function as defined in
Definition 4.10 is only unique up to a constant. In order to force uniqueness of the
definition we have to demand that the integral of F over the unit sphere (Ω) is
vanishing, i.e.

∫
Ω
F (ξ) dω(ξ) = 0.

Using the regularization vector scaling function which we have introduced in Sec-
tion 2.4 with a suitable chosen maximum scale J we are able to approximate the
toroidal part qj of the equivalent current system j on ΩR1 . Thus, we have for b being
of class l2(ΩR2)

qj ' rϕJ ?
(
dϕJ ∗ b

)
on ΩR1 ,

where the decomposition regularization vector scaling functions, {dϕJ}, J ∈ Z, and
the reconstruction regularization vector scaling functions, {rϕJ}, J ∈ Z, are given
by

dϕJ(x, y) =
∞∑
n=1

∞∑
k=1

(ϕJ)
∧(n)u

(1),R2

n,k (x)Y R2
n,k (y), x ∈ ΩR2 , y ∈ ΩR2 ,

rϕJ(x, y) = −
∞∑
n=1

∞∑
k=1

(ϕJ)
∧(n)u

(3),R1

n,k (x)Y R2
n,k (y), x ∈ ΩR1 , y ∈ ΩR2 ,

and the symbol {(ϕJ)∧(n)}n=1,2,... establishes a multiresolution regularization, i.e.
it satisfies the essential property of the generator of a regularization

lim
J→∞

((ϕJ)
∧(n))

2
= σ−1

n =
2n+ 1

n

(
R2

R1

)n+1

, n ∈ N .

Observing the fact, that qj = L∗Qj on ΩR1 and using the relation

u
(3),R1

n,k =
1√

n(n+ 1)
L∗Y R1

n,k on ΩR1 ,

we immediately get an approximation of the toroidal scalar Qj by

Qj ' ΦJ ∗
(
dϕJ ∗ b

)
on ΩR1 , (4.60)

where the scalar kernels ΦJ is, for ξ, η ∈ Ω, given by

ΦJ(ξ, η) =
∞∑
n=1

n∑
k=1

1√
n(n+ 1)

(ϕJ)
∧ (n)Y R1

n,k (η)Y
R2
n,k (ξ) , (4.61)

and {(ϕJ)∧(n)} is the symbol of the regularization vector scaling function rϕJ , resp.
dϕJ presented above.

Equation (4.60) connects the magnetic field on a certain sphere ΩR2 to the cur-
rent function Qj of the equivalent current system j on ΩR1 in terms of radial basis
functions. In the general functionalanalytic framework of Chapter 2 the connection
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between current function and corresponding magnetic field is given in Table 4.3. As
can be seen from the singular values the problem is still of ill-posed nature such that
the multiscale regularization technique of Section 2.4 has to be applied.

H k {hn} {kn} σn

L2(ΩR1) l
2,(1)
U (ΩR2) Y R1

n,k −u(1),R2

n,k

√
1

(n+1)(2n+1)

(
R1

R2

)n+1

Table 4.3: Singular system of the operator, T : H → k, connecting the current
function on a sphere ΩR1 , given in H, with the corresponding induced magnetic
field on a sphere ΩR2 contained in k.

In Figure 4.20 we have plotted equipotential lines of the current function of the
equivalent current system shown in Figure 4.20.

Figure 4.20: Equipotential lines of the current function of the equivalent horizontal
current distribution in the Sun fixed coordinate system (QDlat, MLT) calculated
using a regularization scalar cubic polynomial scaling function ΦJ defined in Equa-
tion (4.61) at scale J = 5. Red indicates the maximum strength of the current
function while blue indicates the minimum.
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Summary and Outlook

During the course of this thesis a comprehensive framework for the connection of
ionospheric current systems and the corresponding magnetic field has been devel-
oped. A general Hilbert space approach to vector wavelet techniques was introduced
in Chapter 2 including multiscale regularization of ill-posed vectorial problems in
Section 2.4. From this general principle concrete examples were deduced, i.e. the
multiscale decomposition of the identity operator with respect to a special system
of vector spherical harmonics in Chapter 3 and the multiscale regularization of the
Biot-Savart operator in Chapter 4.

In Chapter 2 we presented a general Hilbert space approach for operator equations
with known singular system in a multiscale framework. At first we introduced the
scalar case since the necessary notation and the multiscale principle can be explained
very well in this case. Then we generalized our concept to the vectorial case and
we compared the canonical tensorial approach with the bilinear vectorial approach.
Furthermore, we showed that the two techniques are equivalent. In the concept of
multiresolution analysis for operator equations the multiscale regularization tech-
nique for ill-posed problems can be included which has been done in Section 2.4.

Chapter 3 was concerned with the multiscale decomposition of magnetic field mea-
surements with respect to a special system of vector spherical harmonics. First of all
the separation of a spherical vector field with respect to its sources was introduced
in a Fourier concept, i.e. the Hilbert space l2(Ω) was decomposed by the system

of vector spherical harmonics {u(i)
n,k} into three subspaces. The subspace l

2,(1)
U con-

tains that part of the vector field which is induced by sources inside the sphere Ω,
the space l

2,(2)
U contains the part which is due to sources outside the sphere Ω, and

l
2,(3)
U contains the toroidal part of the vector field which is induced by the radial
projection of the source fields crossing Ω. In the course of Chapter 3 this concept of
decomposing a spherical vector field was transferred to the multiscale case. Vector
scaling functions and wavelets were introduced which retain the property of sepa-
rating a vector field with respect to its sources. The main advantage of those kernel
functions is the possibility of space localizing decomposition, i.e. they deliver the
possibility to decompose a vector field with respect to its sources just by having only
regional or even local information. As an application of this multiscale technique a
CHAMP magnetic field data set was decomposed and it was shown that, although
common techniques for correcting effects of outer sources have been applied, there
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are still contributions of outer sources present in the data. These interferences can
be corrected by using the presented technique. Furthermore, it was shown that
multiscale crustal field determination as presented in [43] can be improved by pre-
viously applying the technique of filtering out effects of outer sources introduced in
this chapter.

In Chapter 4 the multiscale approach for regularization of vectorial inverse prob-
lems developed in Section 2.4 was applied to the problem of reconstructing source
terms, i.e. ionospheric current systems, from given magnetic field measurements. To
model the problem such that unique solvability is achieved, the concept of a height
integrated ionosphere was introduced. The current system and the corresponding
magnetic field were connected via the spherical Biot-Savart operator. In order to ap-
ply the multiscale techniques of Section 2.4 the singular system of this operator was
calculated. Thereby the system of vector spherical harmonics {u(i)

n,k} plays a decisive
role. The central mathematical results of this chapter are the proofs of Theorem 4.6
and Theorem 4.7 which give in connection with Corollary 4.8 and Corollary 4.9 the
singular values of the spherical Biot-Savart operator.
To demonstrate the applicability of the approach, the technique was applied to two
simulated current systems. The corresponding magnetic field data were simulated
using explicit representations or approximate integration rules and then the cur-
rent system was reconstructed from this data using the multiscale regularization
techniques. To demonstrate the advantages of regularization scaling functions and
wavelets in contrast to vector spherical harmonics, a space localizing current system
was simulated and reconstructed which is not possible with a vector spherical har-
monic approach.

Since an essential task of this thesis is the application to satellite data we tested
our approach with magnetic field data of three different satellite missions. At first,
we calculated current systems from given MAGSAT magnetic field data. The re-
constructed current systems gave us a first impression of the shape of the real iono-
spheric current systems but since MAGSAT was only flying in a small local time
band (dawn-dusk orbit), this impression has to be interpreted very carefully. Nev-
ertheless, we were able to calculate the course of the equatorial electrojet over the
Earth during a whole day from the MAGSAT data.
In a second satellite application we reconstructed a ionospheric current system cor-
responding to given CHAMP magnetic field data. For a realistic image of the iono-
sphere an Earth fixed reference frame is the wrong coordinate system. Thus, we
transformed CHAMP magnetic field data to a Sun fixed reference frame given by
the magnetic local time (MLT) and the quasi dipole latitude (QDlat). Our cal-
culations could easily be implemented in this new coordinate system. The results
achieved in this application gave us a first detailed impression of the real shape of
the solar quiet current system in the lower ionosphere. Since only regional magnetic
field measurements in this Sun fixed coordinate system were available the advanta-
geous applicability of scaling functions and wavelets could clearly be demonstrated
in this context.
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In order to apply the multiscale regularization techniques to a global data set in
magnetic local time and quasi dipole latitude we used the simulated measurements
of the proposed SWARM satellite mission. The achieved result agrees with the
model of the ionospheric current system which has been used to simulate SWARM
magnetic field data. This demonstrates the applicability of our technique to future
satellite missions.

A future task of developing the theory as presented in this thesis, especially as re-
gards Chapter 4, is the generalization to non-spherical geometries. While in the
whole thesis we were concerned with problems of multiscale regularization and de-
composition in spherical geometries, we will now briefly introduce an approach in
non-spherical geometries such that in practical applications it is no longer necessary
to consider additional assumptions concerning the geometry of the satellite’s orbit.
For the sake of brevity we assume that we are interested in the toroidal part of the
equivalent spherical current distribution contained in the subspace l

2,(3)
U (ΩR1) and we

assume that the magnetic field measurements are taken in Ωext
R1

, the exterior space
of ΩR1 . In order to formulate the problem in non-spherical nomenclature we have to
use the generalized version of the Biot-Savart operator as defined in Definition 4.1.
Let R1 > 0 be given and let g : ΩR1 → R3 be a vector field of class l2(ΩR1). Then
the operator T : l2(ΩR1) → c(∞)(Ωext

R1
) is given by

f(x) = (Tg)(x) =
1

4π

∫
ΩR1

g(y) ∧ x− y

|x− y|3
dωR1(y), x ∈ Ωext

R1
. (4.62)

As we have seen in Section 4.2 this definition is equivalent to

T g(x) =

(
∇x′ ∧

(
1

4π

∫
ΩR1

g(y)

|x′ − y|
dωR1(y)

))
x′=x

, x ∈ Ωext
R1
. (4.63)

The measurements performed by the satellite give us the possibility to derive, from
a specific vectorial function g representing the magnetic field, N discrete samples
g(xl) at positions {x1, . . . , xN} ⊂ Ωext

R1
. The problem can now be formulated as

follows:
Find a function f ∈ l2,(3)

U (ΩR1) such that

(T f)(xl) = g(xl), l = 1, . . . , N .

In order to get an approximation of f we take a scaling function approximation of
the function f in l

2,(3)
U (ΩR1), i.e. we substitute f by

PJ(f)(x) =

NJ∑
k=1

akϕ
(3)
J (x, yk), x ∈ ΩR1 ,

with ai ∈ R, {y1, . . . yNJ
} ⊂ ΩR1 and J,NJ sufficiently large. The points {yk}k=1,...,NJ

are called the model points on the sphere ΩR1 . These points can be taken, for exam-
ple, to be the integration knots of a certain spherical integration rule. The function
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ϕ
(3)
J is the spherical scaling function of type 3 defined in Definition 2.2.

The values ak can be obtained by solving a linear system given by

NJ∑
k=1

ak(T ϕ
(3)
J ( . , yk))(xl) = g(xl), l = 1, . . . , N .

The remaining problem is the evaluation of the matrix elements for establishing the
linear system, i.e. we have to evaluate for k = 1, . . . , NJ

(T ϕ
(3)
J ( . , yk))(x), x ∈ Ωext

R1
.

This can be done in accordance to the proof of Theorem 4.7 and Corollary 4.8 and
results in

(T ϕ
(3)
J ( . , yk))(x) =

∞∑
n=1

2n+1∑
k=1

(ϕ
(3)
J )∧(n)(T u

(3),R1

n,k )(x)Y R1
n,k (yk)

= −
∞∑
n=1

2n+1∑
k=1

(ϕ
(3)
J )∧(n)

√
n

2n+ 1

(
R1

r

)n+1

u
(1),r
n,k (x)Y R1

n,k (yk)

with r = |x| > 0, x ∈ Ωext
R1

.
For evaluating the product kernel function connecting the magnetic field and the
corresponding current system, fast multipole methods are available. They have been
introduced for the scalar case in [30] and [48]. Another possibility of reducing the
computational effort of solving the linear system is the application of domain de-
composition methods, which have been developed in [31] and [32].

It should be noted that, in general, N > NJ such that the system of linear equations
is overdetermined. A possible method to restrict the degree of overdetermination is
to choose a subset out of the vast amount of observational data. This subset should
ensure global coverage and uniform distribution as well as preferably good condition
of the linear system. For strategies of choosing such a subset the reader is referred
to [17] and [43].

This non-spherical approach for reconstruction ionospheric current systems from
given magnetic field data can easily be applied to the case where ground based
measurements of the magnetic field are available. A similar approach using explicitly
given, space localizing radial basis functions, called elementary currents, has been
applied in [1] to ground based magnetic field measurements. For the calculation of
the matrix elements Equation (4.43) instead of Equation (4.46) has to be taken into
consideration.



Appendix A

CHAMP Magnetic Data
Preprocessing

In this appendix we present some brief information concerning the geophysical
nomenclature and the magnetic data preprocessing for CHAMP FGM data.

In Chapter 1 we have introduced spherical coordinates. The standard parametriza-
tion used for geophysical data is such that −180◦ ≤ ϕ < 180◦, −90◦ ≤ ϑ ≤ 90◦,
where ϑ = −90◦ is the south pole and ϑ = 90◦ is the north pole. ϕ = 0 is identified
with the Greenwich meridian. If the corresponding unit vectors are given by ε̂r , ε̂ϑ

and ε̂ϕ then they can be identified with the components of the geomagnetic coordi-
nates by the scheme given in Table A.1.

Local Coordinates Geomagnetic Coordinates Name of the Geom. Coord.

ε̂ϑ X north component

ε̂ϕ Y east component

−ε̂r Z downward component

Table A.1: Relation between local spherical and geomagnetic coordinates.

The downward component is sometimes also called vertical component and the geo-
magnetic north and east components are referred to as the horizontal components.

In Chapter 1 the system of spherical harmonics has been introduced in a coordinate
free form without giving any numerical realization. Every orthonormal system in
L2(Ω) has been called a system of spherical harmonics which indicates that there
are infinitely many of them. Here we will give one special example of a system
of spherical harmonics which is frequently used in geomagnetic applications. It is
the system of Schmidt semi-normalized spherical harmonics in terms of Legendre

145



146 Appendix A. CHAMP Magnetic Data Preprocessing

functions. The system is given in polar coordinates by

Ỹn,k(ξ) = cn,kP
|k|
n (t) cos(kϕ), k = −n, . . . , 0 ,

Ỹn,k(ξ) = cn,kP
|k|
n (t) sin(kϕ), k = 1, . . . , n ,

where the normalization factors cn,k are given by

cn,k =

√
2(n− |k|)!
(n+ |k|)!

,

and P k
n denotes the associated Legendre Functions of degree n and order k given by

P k
n (t) = (1− t2)k/2

(
d

dt

)k
Pn(t), t ∈ [−1, 1] ,

k = 1, . . . , n. The tilde is just to point out that in this example of a system of
spherical harmonics the second index k is not running as usual from 1 to 2n+1 but
from −n to n.

Next we present a realization of the geomagnetic potential U in terms of the special
system of spherical harmonics presented above. It is given by

U = R

{
NMF∑
n=1

n∑
k=0

(
gkn cos(kϕ) + hkn sin(kϕ)

)(R
r

)n+1

P̄ k
n (cos(ϑ)) (A.1)

+

NSV∑
n=1

n∑
k=0

(
ġkn cos(kϕ) + ḣkn sin(kϕ)

)(R
r

)n+1

(t− t0)P̄
k
n (cos(ϑ))

+
2∑

n=1

n∑
k=0

(
qkn cos(kϕ) + skn sin(kϕ)

) ( r
R

)n+1

P̄ k
n (cos(ϑ))

+ Dst

[
r

R
+Q1

(
R

r

)2
] [
q̃0
1P̄

0
1 (cos(ϑ)) +

(
q̃1
1 cos(ϕ) + s̃1

1 sin(ϕ)
)
P̄ 1

1 (cos(ϑ))
]}

,

where P̄ k
n = cn,kP

k
n . R = 6371.2 km is the mean radius of the Earth, (r, ϑ, ϕ) are geo-

centric coordinates and the quantities (gkn, h
k
n) and (qkn, s

k
n) are the so-called Gauss

coefficients (special realizations of the Fourier coefficients with respect to the sys-
tem Ỹn,k) describing sources internal to the satellite’s orbit(up to degree NMF = 13
for main field correction) and external to the orbit (up to degree 2), respectively.
(ġkn, ḣ

k
n) describe the linear secular variation (calculated to degree nSV = 13 around

the model epoch t0 which is chosen to be t0 = 2001 for the model CO2 (see [54]).
The coefficients q̃0

1, q̃
1
1 and s̃1

1 account for the variability of contributions from the
magnetospheric ring current (parameterized by the Dst index) plus their internal,
induced counterpart (considered to be coupled by the factor Q1 = 0.27 a value found
by [38]). The Dst index is an hourly measured value reflecting the strength of the
magnetospheric ring current. It can be download from the World Data Center of Ge-
omagnetism, Kyoto, (http://swdcdb.kugi.kyoto-u.ac.jp). As already stated in
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[54] and [57], especially the magnetospheric ring current correction is a very critical
point. There are often unmodelled external field contributions left in the data which
we have already seen in Section 3.4. To overcome these problems the author of [52]
proposes to use another index than Dst, called RC, to characterize the Magneto-
spheric ring current. An even better approach would be a better parametrization of
the ring current, in particular to model its local time dependence (as for example
suggested in [60]).

To finish this chapter we shortly present the standard correction and preprocessing
steps which have been applied to the CHAMP magnetic field data set being made
available by the GFZ Potsdam.
For the lower latitudes, which are latitudes of 60◦ below and above the geomagnetic
equator, night time data are selected between 22:00 and 06:00 local time. The period
between 19:00 to 22:00 local time has been excluded to avoid disturbance of night
time F region currents which have been shown to be existent for CHAMP data in [41].
For polar latitudes a 5% subset of data were selected with particular low residuals.
All the data were selected in times with a global index of geomagnetic activity
Kp ≤ 2. Main field, including secular variations, external field and magnetospheric
ring current contributions are subtracted using a model given by the gradient field
of a harmonic potential U as presented in Equation (A.1). After these standard
corrections the magnetospheric signal remaining in the data is still of the order of
the strength of the crustal field signal. These external contributions are removed by
fitting and subtracting track by track an external field including the corresponding
induced internal fields. This is done up to a spherical harmonic degree of n = 2.
For a justification of this method and for more information the reader is referred to
[46] and [57].
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Appendix B

M-Estimation for Outlier
Detection

In the following we explain in a very comprehensive manner how we use a statistical
method to detect outliers in the satellite magnetic field data set in a certain vicinity
of the point we want to average the data to. The method we use is strongly related
to M-estimation, a robust statistical method for estimating parameters. For more
information about robust estimation and the standard nomenclature of M-estimation
the reader is referred to [33].
Let x1, x2, . . . , xn be a random sample (measurements) that arises from a distribution
with density F (x − m) where m is a location parameter and F is assumed to be
continuous. The maximum likelihood estimator m̂ is the maximum of the likelihood
function or, for simplicity, of the logarithm of the likelihood function which is given
by

lnL(m) =
n∑
i=1

lnF (xi −m) = −
n∑
i=1

ρ(xi −m),

where ρ(x) = − lnF (x). ρ is called the objective function of the estimation. Thus,
maximizing lnF (x) is equivalent to minimizing

K(m) =
n∑
i=1

ρ(xi −m) (B.1)

and this is equivalent to solving the equation K ′(m) = 0 or

n∑
i=1

ψ(xi −m) = 0, (B.2)

where we have set ψ(x) = ρ′(x). The function ψ is called the influence function of
the M-estimation. In principle, Equation (B.1) can be seen as the starting point of
the M-estimation. The function ρ can be chosen arbitrarily, fulfilling the properties
of being symmetric, positive-definite and with a unique minimum at zero. But there
is still a little problem concerning the estimator resulting from (B.2). If we multiply
the measurements x1, . . . , xn by a constant, the original estimator is not necessarily
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multiplied by the same constant. In order to overcome this inconsistency we have
to define a scale invariant M-estimator m̂ given by the solution of

n∑
i=1

ψ

(
xi − m̂

s

)
= 0, (B.3)

where s is a robust estimate of the scale such as, for example,

s =
median (|xi −median(xi)|)

0.645
.

To find the solution of (B.3) we use an iterative method, called weighted least
squares which is for an arbitrary starting point m(0) given by

m(l+1) =

n∑
i=1

wixi

n∑
i=1

wi

, with wi = w

(
xi −m(l)

s

)
, i = 1, . . . , n , (B.4)

l = 1, 2, . . . , where we have set w(x) = ψ(x)/x. The function w is called the weight
function of the M-estimation. Convergence of the above iteration can be proven if
the ρ− function is chosen to be convex (see e.g. [33]).
The most typical classroom example of the above described process is the L2−M-
estimator given by

ρ(x) =
x2

2
, ψ(x) = x, w(x) = 1, x ∈ R . (B.5)

The iteration (B.4) is becoming stationary after just one iteration step and results in
the mean value x̄ of the samples {xi}. A graphical illustration of the corresponding
function can be seen in Figure B.1.

A more complicated but frequently used example is Huber’s M-estimation given by

ρ(x) =

{
x2/2 ,

c(|x| − c/2) ,
ψ(x) =

{
x ,

c sgn(x) ,
w(x) =

{
1 , |x| ≤ c,

c/ |x| , |x| > c .
(B.6)

An illustration of Huber’s functions can be found in Figure B.2. Huber’s functions
are chosen such that all measurements in a certain band around 0 are weighted with
1 and all the other samples are weighted as small as possible such that convexity of
the ρ−function is still guaranteed. As stated before, convexity of the ρ−function is
needed to prove convergence of the iteration scheme (B.4) (for details see [33]).

The M-estimation functions we use in our approach for detecting outliers are given
by

ρ(x) =

{
x2/2 ,

c2/2 ,
ψ(x) =

{
x ,

0 ,
w(x) =

{
1 , |x| ≤ c,

0 , |x| > c .
(B.7)
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These functions can be called modified Huber’s functions. As we can see in Fig-
ure B.3 the corresponding ρ−function is no more convex. This means that conver-
gence in (B.4) can no longer be guaranteed but if the threshold c is taken not too
small and, at the same time, the starting point of the iteration m(0) is chosen appro-
priately (e.g. the median of the data samples), convergence in (B.4) can be assumed.
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Figure B.1: Corresponding functions for L2−M-estimation.
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Figure B.2: Corresponding functions for Huber’s M-estimation.
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Figure B.3: Corresponding functions for modified Huber’s M-estimation.



152 Appendix B. M-Estimation for Outlier Detection

The aim of using such an M-estimation for averaging CHAMP magnetic field data
is the detection of outliers. We do not use the estimated weighted mean value of the
iteration (B.4) as our final value for the point for further considerations but we use
the M-estimation to detect outliers in the data set in the vicinity of x. This means
that only those data which are weighted by 1 in the last iteration step if (B.4) are
taken and those which are weighted by 0 are neglected. Practical reasons for outliers
may considered to be measuring errors due to performance of the instruments or,
in polar regions, the magnetic signature of temporally fast changing field aligned
currents. Finally, our methods for outlier detection in a given data set x1, . . . , xn
results in the following algorithm.

Algorithm B.1
SET

m(0) =
1

n

n∑
i=1

xi, s = median

{∣∣∣∣xi −m(0)

0.6745

∣∣∣∣ , i = 1, . . . , n

}
WHILE

∣∣∣m(l+1)

m(l) − 1
∣∣∣ > ε

SET

wi = WEIGHTFKT

(
xi −m(l)

s

)
, i = 1, . . . , n

SET

m(l+1) =

∑n
i=1wixi∑n
i=1wi

END

FOR i = 1 to n

IF (wi = 0): xi is outlier

END

where WEIGHTFKT is the modified Huber’s weight function.
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[60] J. Schwarte, H. Lühr, and R. Holme. Improved Parametrization of Exter-
nal Magnetic Fields from CHAMP Measurements. In P. Schwintzer C. Reig-
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