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Abstract

In this paper we consider set covering problems with a coefficient
matrix almost having the consecutive ones property, i.e., in many rows
of the coefficient matrix, the ones appear consecutively. If this prop-
erty holds for all rows it is well known that the set covering problem
can be solved efficiently. For our case of almost consecutive ones we
present a reformulation exploiting the consecutive ones structure to
develop bounds and a branching scheme. Our approach has been
tested on real-world data as well as on theoretical problem instances.

1 Introduction

Set covering problems belongs to the best studied combinatorial optimization
problems, which becomes evident when reading the annotated bibliography
[CNS97] or the excellent survey [CFT00] on state-of-the art algorithms.
Among other reasons the interest in set covering problems is due to their
large potential of modeling real-world problems such as scheduling, facility
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location, or production optimization problems. Unfortunately, the majority
of set covering problems arising in practice are very large. For example,
in crew scheduling one easily obtains set covering problems with thousands
of variables and constraints as it is reported, e.g., in [CFT+97] for railway
and in [MS00] for airline crew scheduling problems. Since the set covering
problem is NP-hard ([GJ79]) and also difficult from the point of view of
theoretical approximation ([LY94]), such large problem instances are hard
to solve. This motivates the development of efficient heuristic procedures
for solving large-scale problems, see e.g. the Lagrangian-based heuristic of
[CFT99].

However, if the coefficient matrix of the set covering problem has the con-
secutive ones property, (i.e., the ones in each row appear consecutively ) the
problem can be easily solved. This can be done, e.g., by linear programming
methods which is due to the fact that matrices with consecutive ones prop-
erty are totally unimodular. More sophisticated methods are discussed in
[jVW62, NW88, Sch03].

In this paper we propose a new approach for solving large real-world set cov-
ering problems. Namely, many practical applications of set covering prob-
lems deal with relatively sparse matrices containing many rows of consecutive
ones, if the columns are sorted in a way that is often motivated within the
application. One example (for which real-world data were available for test-
ing our approach) is the continuous stop location problem which is described
in detail in Section 6. Many other examples for coefficient matrices with
almost consecutive ones property appear in various practical applications.
This gives rise to develop a procedure for solving set covering problems in
which the covering matrix almost has the consecutive ones property.

The remainder of the paper is structured as follows. First, we formally intro-
duce the notion of set covering problems, the consecutive ones property and
give a first reformulation which will be the basis of the subsequent approach.
In Section 3 we derive lower and upper bounds on the problem. Based on
these bounds we develop a branch and bound approach in Section 4. In Sec-
tion 5 we show how the problem size can be reduced using the efficient data
structure of Section 2. Section 6 is devoted to our numerical results, and in
Section 7 we interpret these results and present a better definition of almost
having the consecutive ones property.
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2 The almost consecutive ones property and

a reformulation

We use the following notation to describe set covering problems.

(SCP)

min cx
s.t. Acovx ≥ 1M

x ∈ {0, 1}N ,
(1)

where 1M ∈ IRM denotes the vector consisting of M ones, c ∈ IRN con-
tains the costs of the columns, and Acov is an M ×N -matrix with elements
amj ∈ {0, 1}, m = 1, . . . ,M, j = 1, . . . , N . We may assume without loss of
generality that Acov neither has zero rows nor zero columns and that the
costs cj are positive.
The goal is to find an optimal solution x∗, or equivalently, an optimal set
N ∗ ⊆ N := {1, . . . , N} of columns of Acov, where N ∗ = {n ∈ N : x∗n = 1}.

Definition 1 A matrix Acov has the consecutive ones property (C1P) if
there exists a permutation of its columns such that all rows m ∈ {1, . . . ,M} of
the resulting matrix A satisfy the following condition for all j1, j2 ∈ {1, . . . , N}:

amj1 = 1 and amj2 = 1 =⇒ amj = 1 for all j1 ≤ j ≤ j2.

If a matrix has the consecutive ones property, the permutation of the columns
making the ones appear consecutively can be found by using the algorithm
of [BL76, MT98]. This algorithm can be performed in O(MN). Without loss
of generality we can therefore assume that a matrix with consecutive ones
property is already ordered, i.e. we assume that its ones already appear
consecutively in all of its rows. We say that a set covering problem has C1P
if its covering matrix Acov has C1P.

For a matrix Acov (not necessarily having the consecutive ones property) we
say that a row m̄ of a given matrix Acov has the consecutive ones property, if
the ones appear consecutively in this row, i.e., if for all j1, j2 ∈ {1, . . . , N}:

am̄j1 = 1 and am̄j2 = 1 =⇒ am̄j = 1 for all j1 ≤ j ≤ j2.

Let us now assume that in the set covering problem the coefficient matrix
Acov almost has the consecutive ones property, i.e., that the ones appear
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consecutively (possibly after permuting the columns) in many rows of Acov.
Since set covering problems in which Acov has the consecutive ones property
can be solved efficiently the idea is to decompose each “bad” row in which
the ones do not appear consecutively into a set of new rows, all of them
satisfying the consecutive ones property, and to require that at least one of
these rows needs to be covered. In a first attempt, we define:

Definition 2 Let Acov be a 0-1-matrix with M rows and N columns.

1. If Acov
m is a row of Acov let blm be its number of blocks of consecutive

ones.

2. Acov almost has the consecutive ones property, if
∑M

m=1 blm � MN .

We remark that the condition of the above definition will turn out to be
necessary to ensure an efficient behavior of our solution approach, but still
there remain instances that cannot be solved in reasonable time by our ap-
proach although satisfying the almost consecutive ones property. Another
criterion to classify well-solvable matrices will be made precise at the end of
this paper.

Now consider a zero-one matrix Acov with M rows, such that in rows 1, . . . , p
the ones appear consecutively (i.e., blm = 1 for m = 1, . . . , p), and in rows
p + 1, . . . ,M we have blm > 1.
For the ith block of consecutive ones in row m let

• fm,i be the column of the first 1 of block i and

• lm,i be the column of its last 1.

This means, that

amj =

{
1 if there exists i ∈ {1, . . . , blm} such that fm,i ≤ j ≤ lm,i

0 otherwise.

We remark that we can save a consecutive ones matrix in O(M) space and
consequently, a matrix with almost consecutive ones property in almost linear
space. We will henceforth use this data structure to save problem instances
of (SCP) with almost C1P.

Consider a row Acov
m of Acov with blm > 1. We replace Acov

m by blm rows,

Bm,1, Bm,2, . . . , Bm,blm
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each of them containing only one single block of row Am, i.e., we define the
jth element of row Bm,i as

(Bm,i)j =

{
1 if fm,i ≤ j ≤ lm,i

0 otherwise.

The set covering problem

(SCP)
min cx
s.t. Acov

m x ≥ 1 for m = 1, . . . ,M
x ∈ {0, 1}N

can hence be reformulated as (SCP’)

min cx
s.t. Acov

m x ≥ 1 for m = 1, . . . , p
Bm,ix ≥ ym,i for m = p + 1, . . . ,M, i = 1, . . . , blm∑blm

i=1 ym,i ≥ 1 for m = p + 1, . . . ,M
ym,i ∈ {0, 1} for m = p + 1, . . . ,M, i = 1, . . . , blm

x ∈ {0, 1}N .

Lemma 1 (SCP) and (SCP’) are equivalent.

Proof:

(SCP) =⇒ (SCP’): Let x be a feasible solution of (SCP). Since Acov
m x ≥ 1

for all m = 1, . . . ,M there exists (at least) one block i = l(m) of row
m such that Bm,ix ≥ 1. Defining

ym,i =

{
1 if i = l(m)
0 otherwise

yields Bm,ix ≥ ym,i and
∑blm

i=1 ym,i ≥ ym,l(m) = 1, hence (x, y) is feasible
for (SCP’) with the same objective value.

(SCP’) =⇒ (SCP): On the other hand, each feasible solution of (SCP’)
satisfies Acov

m x ≥ 1 for m = 1, . . . , p, while for m = p + 1, . . . ,M we
know that

blm∑
i=1

ym,i ≥ 1
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and hence there exists (at least) one i = l(m) for each row m with
ym,l(m) = 1. From this we conclude

Bm,l(m)x ≥ ym,l(m) = 1,

i.e., x covers block l = l(m) of row m. This finally yields Acov
m x ≥ 1

also for m = p + 1, . . . ,M . Together, Acovx ≥ 1, hence x is feasible for
(SCP) with the same objective value.

QED

It is more convenient to rewrite (SCP’) in matrix form. To this end, we
define

• the matrix A as the first p rows of Acov,

• bl =
∑M

m=p+1 blm as the total number of blocks in the “bad” rows of
Acov, i.e., in rows of Acov without consecutive ones property,

• I as the bl × bl identity matrix,

• B as the matrix containing the bl rows Bm,i, m = p + 1, . . . ,M ,i =
1, . . . , blm and

• C as a matrix with M − p rows and bl columns, with elements

cij =

{
1 if

∑p+i−1
m=p+1 blm < j ≤ ∑p+i

m=p+1 blm
0 otherwise.

In the following we will use the next — equivalent — formulation of (SCP’):

(SCP’)
min cx
s.t. Ax ≥ 1p

Bx −Iy ≥ 0bl

Cy ≥ 1M−p

x ∈ {0, 1}N ,
y ∈ {0, 1}bl.

(2)

The constraint Cy ≥ 1M−p makes sure that at least one block of each row
Acov

m with m ≥ p + 1 is covered.
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Note that all three matrices A,B, and C have the consecutive ones property.
Unfortunately, the coefficient matrix of (SCP’) does not have the consecutive
ones property, and also is not totally unimodular in general, such that non-
integer basic solutions may exist.

3 Deriving lower and upper bounds

Our reformulation (SCP’) suggests simple bounds for the optimal solution. A
lower bound is obtained by relaxing all constraints that contain variables ym,i.
This can be interpreted as simply forgetting about the rows which destroy
the consecutive ones property of the matrix, i.e., we do not require them to
be covered. The corresponding IP is the following set covering problem with
C1P

(SCPl)
min cx
s.t. Ax ≥ 1p

x ∈ {0, 1}N .

Lemma 2 Each optimal solution of (SCPl) is a lower bound on (SCP’).

Proof: Since A only contains a part of the rows of Acov (SCPl) is a relaxation
of (SCP), and the result follows by Lemma 1.

QED

Since the coefficient matrix of (SCPl) has the consecutive ones property,
solutions may be calculated efficiently. However, we can tighten the lower
bound as follows. To this end, consider the dual of the LP-relaxation of
(SCP’), given by

(Dual-SCP’)

max 1pηA + 1blηC

s.t. AT ηA + BT ηB ≤ c
− ηB + CT ηC ≤ 0

ηA , ηB , ηC ≥ 0.

We easily obtain a bound by solving (Dual-SCP’) and rounding as follows.
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Lemma 3 Let η′ = (η′A, η′B, η′C) be feasible for (Dual-SCP’), then

f l := d1pη
′
A + 1blη

′
Ce

is a lower bound for (SCP’).

Proof: By the well known duality results for linear programs, the expression
1pη

′
A + 1blη

′
C is a lower bound for the LP-relaxation of (SCP’), and thus for

the problem itself. The integrality requirements allow for rounding up.
QED

Now suppose that an optimal solution xl of (SCPl) is known. Let η∗A be the
corresponding dual optimal solution, i.e., belonging to problem

(A)

max 1ηA

s.t. AT ηA ≤ c

ηA ≥ 0.

Then, η := (η∗A, 0, 0) is feasible for the dual of the LP-relaxation of (SCP’)
and hence a lower bound according to Lemma 3. It can be improved by
performing a limited number of simplex pivots on (Dual-SCP’) starting from
η. We do not suggest to solve to optimality, as this may be too costly if the
initial solution is far from optimal.

Now we turn our attention to the calculation of a upper bounds. We again
start with the formulation (SCP’) (see page 5). Fixing ym,i = 1 for all m ∈M
and all i = 1, . . . , blm again results in set covering problem with consecutive
ones property. Moreover, it yields a feasible solution to the original problem
and thus an upper bound. This strategy requires that each row m which can
be covered by more than one block must be covered by at least one column
in each block. The solution found is hence feasible but will in general have
more columns selected than necessary. Formally, this solution is found by
solving

(SCPu)
min cx
s.t. Ax ≥ 1p

Bx ≥ 1bl

x ∈ {0, 1}N
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Lemma 4 Each feasible solution of (SCPu) is an upper bound on (SCP’).

Proof: Let xu be a feasible solution of (SCPu). Defining y = 1bl yields
a feasible solution (xu, y) of (SCP’), hence cxu is an upper bound on the
optimal objective value. QED

A straightforward idea to improve this bound is, not to require that all rows
of B are covered, but select only one of them for each original row m.

Definition 3 Let l : {p + 1, . . . ,M} → N be a mapping selecting a block
i = l(m) for each row m ∈ {p + 1, . . . ,M}. We call the mapping l feasible if

1 ≤ l(m) ≤ blm

for all m = p + 1, . . . ,M . We also write l ⊆ {p + 1, . . . ,M}×N to specify l.

Now let l be a feasible mapping and consider the following set covering prob-
lem with C1P.

(SCPu(l))
min cx
s.t. Ax ≥ 1p

Bm,l(m)x ≥ 1 for all p + 1, . . . ,M
x ∈ {0, 1}N

By solving (SCPu(l)) we can derive an upper bound on (SCP’) which is
better than the best bound obtained by solving (SCPu) as follows.

Lemma 5 Let x∗ be the optimal solution of (SCP) and l be a feasible map-
ping.

1. Each feasible solution x of (SCPu(l)) satisfies cx ≥ cx∗.

2. If xu is an optimal solution of (SCPu), and xu(l) an optimal solution of
(SCPu(l)) we have

cx∗ ≤ cxu(l) ≤ cxu.

Proof:
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1. We define for m = p + 1, . . . ,M

ym,i =

{
1 if i = l(m)
0 otherwise

to obtain a feasible solution (x, y) of (SCP’) (and hence a feasible so-
lution x of (SCP)) with the same objective value as (SCPu(l)).

2. cx∗ ≤ cxu(l) directly follows from part 1 of this lemma, while cxu(l) ≤
cxu holds since (SCPu(l)) is a relaxation of (SCPu).

QED

Next, we introduce a heuristic for (SCP’) that works by choosing a good
mapping l(m) for the formulation (SCPu(l)). It is based on a cost argument,
i.e., for each row we choose the cheapest block that can be used to cover it:

Heuristic 1: Cost-Heuristic

Input: Acov, b, c.

Output: A feasible solution x of (SCP).

Step 1. Obtain matrices A and B of (SCP’).

Step 2. For m = p + 1, . . . ,M:
Assign l(m) = i if cj = minj′:amj′=1 cj′ and fm,i ≤ j ≤ lm,i.

Step 3. Let x, y be the solution of (SCPu(l)).

Step 4. Output: x.

Note that it is also a reasonable strategy to choose l(m) based on the proba-
bility that the chosen column can be used to cover many other rows, i.e., we
change Step 2 in Heuristic 1 to

Step 2’. For m = p + 1, . . . ,M:
Assign l(m) = i if |cover(j)| = maxj′:amj′=1 |cover(j′)| and fm,i ≤ j ≤ lm,i.
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Next we construct a feasible solution and an upper bound by combining
the lower bound obtained from (SCPl) with the cost-based heuristic (Algo-
rithm 1). To this end, determine the set of rows which are not covered by xl,
i.e., define M0 = {m : Acov

m xl = 0} and choose l(m) according to Algorithm 1
for all m ∈M0. Note that xl is an optimal solution of (SCP) if M0 = ∅. We
solve the reduced set covering problem

(Red-SCP(l))

min cx
s.t. Bm,l(m)x ≥ 1 for all m ∈M0

x ∈ {0, 1}N

and let x̃ be an optimal solution. We obtain the following result.

Lemma 6 Let x∗ be an optimal solution of (SCP). Furthermore, let xl be
an optimal solution of (SCPl) and x̃ be an optimal solution of (Red-SCP(l)).
Then x given via

xn = max{xl
n, x̃n}, n = 1, . . . , N

is feasible for (SCP), and in particular cx ≥ cx∗.

Proof: Let M0 = {m : Acov
m xl = 0}. Then, for all m 6∈ M0 we have that

Acov
m x ≥ Acov

m xl ≥ 1,

hence these rows are covered by x. Now take m ∈M0. We obtain

Acov
m x ≥ Acov

m x̃ ≥ Bm,l(m)x̃ ≥ 1.

Together, Acovx ≥ 1M and the result follows.
QED

The following algorithm contains upper and lower bound computation both
based on a solution xl of (SCPl).

Algorithm 2: Upper and lower bound for (SCP)

Input: data of (SCP), iteration limit k.

Output: Feasible solution xu and lower bound f l on (SCP).
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Step 1: Solve (SCPl) with optimal solution xl and dual solution η∗A.

Step 2: Perform k simplex iterations on (Dual−SCP ′) starting from the
feasible solution η = (η∗A, 0, 0). Let η′A, η′B, η′C be the result.

Step 3: For all m ∈M0 := {m|Amxl = 0} find l(m) as in Heuristic 1.

If M0 = ∅ stop: xu = xl is optimal solution.

Step 4: Solve (Red-SCP(l)) with respect to M0 and l.
Let x̃ be the solution.

Step 5: Define for all n ∈ N: xu
n = max{xl

n, x̃n}.

Step 6: Output: xu and f l = d1pη
′
A + 1blη

′
Ce.

4 Branch and bound approach

For solving set covering problems with almost C1P we propose a branch and
bound algorithm based on the equivalence of (SCP) and (SCP’). The idea is
to consider a row m of the original covering matrix Acov (for p < m ≤ M)
in each layer of the branch and bound tree and iteratively select one of the
ym,i variables in (SCP’) and set it to one. This means, the corresponding
row Bm,i can be added to matrix A in (SCP’) while all other rows Bm,i′ with
i′ 6= i can be deleted from B.
Consider an instance of (SCP’). For a set of rows Mfix ⊆ {p+1, . . . ,M} with
blm > 1 for all m ∈Mfix and a feasible mapping l onMfix we define P(Mfix, l)
as the new problem instance of (SCP’) in which the variables ym,l(m) are fixed
to 1 for all m ∈Mfix.
Using the notation MC = {p + 1, . . . ,M} \Mfix we get

P(Mfix, l)

min cx
s.t. Ax ≥ 1p

Bm,l(m)x ≥ 1 for all m ∈Mfix

Bm,ix ≥ ym,i for m ∈MC , i = 1, . . . , blm∑blm
i=1 ym,i ≥ 1 for m ∈MC

ym,i ∈ {0, 1} for m ∈MC , i = 1, . . . , blm
x ∈ {0, 1}N .
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Lemma 7 Let x∗ be an optimal solution of (SCP), and let xM
fix,l, yM

fix,l be
an optimal solution of P(Mfix, l). Then

1. cx∗ ≤ cxM
fix,l.

2. For each fixed Mfix ⊆ {p + 1, . . . ,M} we have

cx∗ = min
l feasible

cxM
fix,l.

Proof:

1. Extend xM
fix,l, yM

fix,l to a feasible solution of (SCP’) by defining

ym,i =

{
1 if i = l(m)
0 otherwise

for all m ∈Mfix.

2. Let x∗, y∗ be an optimal solution of (SCP’). Then for all m ∈ {p +
1, . . . ,M} there exists some i such that ym,i = 1. Define l(m) = i for all

m ∈Mfix and let yM
fix

be the vector y∗, restricted to the components of
Mfix. This means, x∗, yM

fix
is feasible for P(Mfix, l) and consequently,

cxM
fix,l ≤ cx∗

From part 1 we already know cx∗ ≤ cxM
fix,l, hence equality is attained.

QED

The following observations are the basis for the branch and bound approach.

• P (∅, ∅) =(SCP’).

• Fixing ym,i = 1 in P (Mfix, l) for some m ∈ MC and for some 1 ≤ i ≤
blm leads to P (Mfix ∪ {m}, l ∪ {(m, i)})

• The coefficient matrix of P ({p + 1, . . . ,M}, l) has the consecutive ones
property and the problem can hence be solved efficiently, e.g., by an
adapted network simplex approach as described in detail in [Ruf02].

Thus, by fixing iteratively variables ym,i we always obtain subproblems of
the same type, and in each iteration the number of rows m with blm = 1
increases (yielding a larger matrix A with consecutive ones property) while
the number of “bad” rows m with blm > 1 decreases. Hence, we get closer
to the consecutive ones property in each step.
The branch and bound algorithm can finally be stated as follows.
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Algorithm 3: Branch and bound for (SCP)

Input: Acov, b, c, and accuracy ε.

Output: Feasible solution x of (SCP), such that cx− cx∗ ≤ εcx∗,

if x∗ is the optimal objective value.

Step 1: Initialize best known upper bound fu := ∞,

best known solution x := 1,

and set of problems to be investigated List := {P (∅, ∅)}.

Step 2: While List 6= ∅ do

Step 3: Select problem P = P (Mfix, l) ∈ List and reduce its size
according to Section 5.

Step 4: For P, calculate lower bound f l
P, upper bound fu

P,

and corresponding feasible solution xP with Algorithm 2.

Step 5: If fu > fu
P then update fu := fu

P, x := xP.

Step 6: If fu > (1 + ε)f l
P then select row m ∈MC and update

List := List ∪ {P (Mfix ∪ {m}, l ∪ {(m, i)})|i = 1, . . . , blm}.
Step 7: List := List \ {P}.

5 Reducing the size of the problem

Before attempting to solve a set covering problem it is advisable to try and
reduce its size. The well-known reduction rules of [TR73] (see also [NW88])
can be modified slightly to account for the special data structure used for
storing the instance of a set covering problem with almost C1P property.
Recall that for each row m of the original covering matrix Acov we only have
to store the first and the last column fm,i and lm,i of each block i.

Lemma 8 Let m,m1 ∈ {1, . . . ,M}.

14



1. If blm = 0, the problem is infeasible.

2. If blm = 1 and fm,1 = lm,1, all feasible solutions x of (SCP) satisfy
xfm,1 = 1.

3. If blm = 1 and there exists i1 ∈ {1, . . . , blm1} such that

fm1,i1 ≤ fm,1 ≤ lm,1 ≤ lm1,i1 ,

it is sufficient to consider (SCP) without row Acov
m1

.

The first two rules are trivial to check and apply, and the third can be
efficiently implemented for matrices with C1P. As has been shown in [Sch03],
all possible reductions according to rule 3 can be performed in O(NlogN)
time for an N ×N C1P-matrix. In our case, only in the first p rows of Acov

the ones appear consecutively, i.e., each of them only has one block of ones
between fk,1 and lk,1. Applying the reduction procedure leads to the strictly
monotone form of the first rows of Acov, i.e.,

f1,1 < f2,1 < . . . < fk,1 and l1,1 < l2,1 < . . . < lk,1

reducing the size of the matrix A to k ≤ p rows. Still missing from the
list of rules in Lemma 8 is the usual column reduction criterion ([TR73])
for set covering problems with non-unit costs. While there is no obvious
reformulation of this rule in terms of the special data structure fm,i, lm,i of
(SCP), it still allows us to limit optimization to column sets of the following
type:

Definition 4 Let S ⊂ N . For each row m ∈ M and block of ones i ∈
{1, . . . , blm}, set cm,i(S) = min{cj|fm,i ≤ j ≤ lm,i ∧ j ∈ S}, as well as

jmin
m,i (S) := min{j ∈ S|fm,i ≤ j ≤ lm,i ∧ cjmin

m,i (S) = cm,i(S)}

as the leftmost column in which the minimum is attained, and

jmax
m,i (S) := max{j ∈ S|fm,i ≤ j ≤ lm,i ∧ cjmax

m,i (S) = cm,i(S)}

as the rightmost column containing the minimum.

The left-hand reduced column set given S is now defined as

L(S) := S ∩
M⋃

m=1

blm⋃
i=1

{fm,i, . . . , j
min
m,i (S)},
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and the right-hand reduced column set given S as

R(S) := S ∩
M⋃

m=1

blm⋃
i=1

{jmax
m,i (S), . . . , lm,i}.

The above can be used to construct a column set sufficient for optimization:

Lemma 9

1. To find an optimal solution of (SCP), it is only necessary to consider
those columns of Acov with index in R(L(N )).

2. R(L(N )) = L(R(L(N ))) = R(R(L(N ))).

Proof:

1. It is sufficient to show that using only columns in L(N ) for optimization
yields an optimal solution, since everything else works analogously.

Assume that L(N ) 6= N , let j0 ∈ N \ L(N ), and let m0, i0 such that

fm0,i0 = max{fm,i : m ∈M, i ∈ {1, . . . , blm} and fm,i ≤ j0 ≤ lm,i}.

Since j0 6∈ L(N ), we have

fm0,i0 ≤ jmin
m0,i0

(N ) < j0.

By choice of m0, it is clear that the column jmin
m0,i0

(N ) of Acov contains
a 1 in each row where column j0 has a 1. And by Definition 4, its
cost coefficient is less than or equal to cj0 . But these two arguments
together form the usual column reduction criterion for set covering
problems with non-unit costs, i.e. an optimal solution for (SCP) can be
found without considering column j0.

2. Let S0 := R(L(N )). Observe that R(S) = R(R(S)) for any S ⊂ N
by construction, so in particular S0 = R(S0). Assume that S0 6= L(S0)
and let j0 ∈ S0 \ L(S0). Define

m0 := arg max
m∈M

{fm,i|fm,i ≤ j0 ≤ lm,i, i ∈ {1, . . . , blm}}.

If i0 is the block index such that fm0,i0 ≤ j0 ≤ lm0,i0 , j0 6∈ L(S0) requires

fm0,i0 ≤ jmin
m0,i0

(S0) < j0.
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As S0 ⊂ N , we also have jmin
m0,i0

(S0) ≥ jmin
m0,i0

(N ), i.e.

fm0,i0 ≤ jmin
m0,i0

(N ) < j0.

But the choice of m0 implies that jmin
m0,i0

(N ) ≥ jmin
m,i0

(N ) for all pairs
(m, i) such that fm,i ≤ j0 ≤ lm,i, and thus j0 6∈ L(N ), a contradiction
to j0 ∈ S0 ⊂ L(N ).

QED

Note that the results of Lemma 9 apply analogously to the set L(R(N )).
Since in general R(L(N )) 6= L(R(N )), a reduction heuristic based on the
above should determine both sets and choose the smaller one for optimiza-
tion. Part 2 of the lemma shows that further applications of the procedure
are futile. Constructing the sets and choosing the smaller one can easily be
implemented with a time complexity of O(MN), i.e. linear in matrix size,
whereas the implementation of the classical column reduction criterion due
to [TR73] usually needs O(N2M).
The outlined procedure is a heuristic in the sense that it will in general not
remove all columns possible. In fact, it does not even consider dominating
columns with non-minimal cost. Nevertheless, the impact on the real-world
problem is satisfactory, as shown in Section 6.

6 Numerical results

As mentioned in the introduction, the main purpose of our branch and bound
algorithm was to solve a stop location problem provided by Deutsche Bahn.
The goal in the stop location problem is to cover a given set of demand
points by new stops along the track system. A demand point is covered if the
distance to its closest stop is smaller than a given covering radius r. After
deriving the finite dominating set of candidate locations for new stops via
the method in [SHLW02, Sch02], the problem can be formulated as (SCP)
with the following interpretation.

• Each row of Acov corresponds to a demand point.

• Each column of Acov corresponds to a candidate location for a new
train station on the existing network of tracks.
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• Acov
i,j = 1 if and only if candidate location j is at most at distance r

from demand point i.

• The costs c are the traffic loads at the candidate locations as a measure
of the negative effects of the new stops, i.e. passengers sitting in the
train and waiting while the train halts.

We refer to [SHLW02, Sch02] for details. An optimal solution of the prob-
lem corresponds to placing new train stations such that all demand points
are covered and the negative effect of the new stops is minimized. The cov-
ering radius r is given as 2 km, but we also generated problem instances
Rr for values of r = 1, 3, 5, 10 km, using the same sets of demand points
and candidate locations. It can be shown that the covering matrix Acov has
the consecutive ones property if the network consists of a straight line rail
track only, see [SHLW02, Sch02]. In our real world data, constellations of
demand points and candidate locations which result in submatrices violating
this property are rare. Thus, the test problems almost have the consecutive
ones property, as can be seen in the Table 1 (which will be described in detail
below). In particular, the more rows of Acov already have the consecutive
ones property, the fewer branchings are required by the algorithm in worst
case. Consecutive block minimization is NP-hard [GJ79], so we recommend
using some kind of sorting heuristic to improve the structure of the matrix
(see e.g. [Ruf02, OR03]).

The algorithm was tested on other instances as well, to get an idea of the
class of problems it can solve in reasonable time. First, we applied it to the
unit-cost set covering problems arising from the incidence matrices of Steiner
triple systems. These problems were introduced by Fulkerson, Nemhauser,
and Trotter in 1974 [BL76] (see also [MT98]), who suggest using them as test
cases for set covering algorithms. This is motivated by the fact that they are
hard to solve despite their relatively small size. Note also that each row of
such a matrix has only 3 non-zero entries, i.e., the problem instances almost
have the consecutive ones property according to the initial definition. The
algorithm was applied to the instances with 27, 45, 81, 135, and 243 columns,
referred to as STS27, . . . , STS243. For a specialized algorithm that can solve
up to STS81, see [MS94].
More tests were done using randomly generated problem instances of small
size (100 × 100). To highlight the differences between sparse matrices and
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Table 1: Algorithmic performance
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those with almost consecutive ones property, we give results for three sets of
random problems, all with randomized non-unit costs:

1. In problems A1, . . . , A5 we generated matrices with 1 to 5 blocks of
consecutive ones per row, each consisting of 1 to 9 ones. This results
in an average density of ones of 15 %, i.e., the matrices are not sparse
but almost have the C1P.

2. Instances B1, . . . , B5 were generated with a probability of 3 % for any
given entry to be one. This results in matrices which are both sparse
and almost have the C1P.

3. Finally, C1, . . . , C5 are similar to the Bi, but with a density of 5 %.

Table 1 shows how our algorithm performed on these instances (where we
set a time limit of one hour running time). It lists the following information:

Before Reduction: Here we list the number of columns (Cols) and rows
(Rows), where Total refers to the total number of rows and Split
contains the number of rows with more than one block in the original
formulation (SCP). We also listed the maximal number of blocks Max.
Blocks appearing in the original data.

After Red.: The number of columns and rows are listed again after applying
Lemmas 9 and 8. Note that the formulation used here is (SCP’), i.e.,
each split row is decomposed into a row for each block.

Initial: We further list the lower bound LB found for the first subproblem,
which is a global lower bound, and the difference Gap between the
initial upper and lower bound. In case of the real world problems, it is
expressed as a fraction of the lower bound.

Solution: Here, Subp. contains the number of subproblem instances solved
by the algorithm within our time limit of one hour, Time lists the total
running time of the algorithm, and Value refers to the best solution
value found. Finally, Opt? states, whether optimality was recognized.
Note that some of the STS problems where solved optimal although
the algorithm did not terminate within the time limit. For this class
of problems, we also listed the best known values in brackets in the
Value column.
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The following observations should be mentioned:

1. The real-world problem instances are reduced markedly through pre-
processing, and all except the one with 3 km cover radius can be solved
to optimality within the time limit. However, in all cases where op-
timality is established, the initial lower bound is equal to the optimal
objective value. Since the bound is valid for all derived subproblems,
the algorithm terminates as soon as a corresponding feasible solution
is found. Judging from the problem with r = 3 km, the number of
required branchings is not yet satisfactory if the initial bound is not
tight.

Still, the initial duality gap is so small for all problems that even a
single iteration of the algorithm appears to be a good heuristic.

2. The performance on the STSi problems is not satisfactory. Initial
reduction has little effect, and the algorithm requires far too many
iterations, although the initial solutions are fairly close to the optima.
This result prompts a revision of the notion of almost having the C1P
for a matrix in Section 7.

3. The randomized instances illustrate that sparsity and almost having
the C1P are indeed two different things.

Note that in the case of hard unit-cost problems like STSi, the performance
of the algorithm as a heuristic can be improved by assigning costs from
a large range to cut down on the number of subproblems which need to be
investigated. The resulting solutions of the new weighted problem are feasible
for the original problem with unit-costs and yield a good approximation of
the problem in a considerably smaller running time. For example, assigning
the Fibonacci series as costs to STS27 results in a problem instance which
can be solved to optimality in less than 20 minutes by our branch and bound
algorithm. The resulting solution needs 19 columns instead of the optimal
18 for the unit cost problem.

7 Extensions

As we have seen in Section 6, the initial definition of a matrix with almost
consecutive ones property includes the instances based on Steiner triple sys-
tems, where the algorithm generates too many subproblems to be efficient.
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Table 2: An added criterion for almost C1P

# log2(T ) 2N Opt? # log2(T ) 2N Opt?

Real-world instances Random instances (1-5 blocks per row)
R1km 10.0 1414 Yes A1 151.7 190 Yes
R2km 164.6 1778 Yes A2 141.8 184 Yes
R3km 366.3 1772 No A3 141.5 184 Yes
R5km 418.5 1186 Yes A4 146.1 176 Yes
R10km 104.4 330 Yes A5 136.0 196 Yes

STS-based instances Random instances (3% density)
STS27 174.5 54 No B1 144.1 195 Yes
STS45 500.6 90 No B2 151.0 190 Yes
STS81 1663.8 162 No B3 149.5 184 Yes
STS135 4711.8 270 No B4 137.2 184 Yes
STS243 15372.3 486 No B5 133.7 184 Yes

Random instances (5% density)
C1 209.1 200 Yes
C2 230.6 200 No
C3 217.3 198 No
C4 216.0 200 No
C5 221.6 200 No

Thus, it seems necessary to include a limit on the worst-case number of sub-
problems in a more appropriate definition of a matrix almost having the
C1P:

Definition 5 For (SCP) as in 2 determine

T := (M − p + 1)
M∏

m=p+1

blm.

The matrix Acov almost has the consecutive ones property for computational
purposes if for sufficiently small constant c > 0 holds

log2(T ) ≤ cN.

The above is motivated by the following lemma, and the fact that 2N is the
complexity of solving the problem by total enumeration, i.e., the condition
is equivalent to

T ≤ (2N)c.

Lemma 10 T is an upper bound on the number of subproblems P = P (Mfix, l)
processed by Algorithm 3.
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Proof: To find an exact solution, the accuracy for algorithm 3 is set to ε = 0,
i.e., Step 6 generates new subproblems if fu > f l

P . Note that the bounds
always coincide if Mfix = {p + 1, . . . ,M}, as both the problem (SCPu(l))
and its dual (A) have the C1P. Therefore, in worst case, each subproblem
P gives rise to blm new problems, where m is the row selected in Step 6,
until Mfix = {p + 1, . . . ,M}. We can assume w.l.o.g. that the rows are
selected in ascending order. Since the first subproblem has Mfix = ∅ and
each newly generated problem adds one element to the set, the maximal
number of subproblems is less than or equal to

M−p∑
k=0

p+k∏
m=p+1

blm ≤ (M − p + 1)
M∏

m=p+1

blm = T.

QED

Note that T , like the notion of almost C1P itself, depends heavily on the
order of the columns chosen for Acov. Even worse, the criterion is influenced
by the ratio of rows to columns in the matrix, which can change drastically
during preprocessing. Thus, the extended definition should be treated as a
rule of thumb only. Still, Table 2 shows that choosing c = 2 classifies the
problems of Section 6 properly.

Another field of research is motivated by results in [Ruf02] showing that
some sparse matrices can be transformed to almost have the C1P via column
permutation. As the criterion favors matrices with more columns than rows,
it would be better to deal with the dual problem based on (Acov)T if M � N .
Another case where the dual is of interest are set covering problems where
the covering matrix is “almost” an interval matrix, i.e. (Acov)T almost has
the C1P. The algorithm as given cannot deal with the resulting set packing
problems, but since such problems are as easy as set covering for totally
unimodular matrices, a generalization of the algorithm to include set packing
would be of interest.
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