Earliest Arrival Flows with
Time-Dependent Data*

Horst W. Hamacher f, Stevanus A. Tjandra
Fachbereich Mathematik, Universitat Kaiserslautern, Germany

Abstract

In this paper we discuss an earliest arrival flow problem of a network having
arc travel times and capacities that vary with time over a finite time horizon T'.
We also consider the possibility to wait (or park) at a node before departing on
outgoing arc. This waiting is bounded by the value of maximum waiting time
and the node capacity which also vary with time. We give a pseudo-polynomial
time O(nm?T3U) algorithm to find such a flow, where U is the largest capaci-
ties, n is the number of nodes, and m is the number of arcs. We also show that
the worst-case complexity decreases by a factor O(T) when infinite waiting is
allowed. Finally we report the computational results of our algorithm.

Keywords: Network flows; Earliest arrival augmenting path; Dynamic cut

1 Introduction

Classical (static) network flow models have been well known as valuable tools
for many applications (see e.g. Ahuja, Magnanti, and Orlin [1]). However, they
fail to capture the dynamic property of many routing problems, for instance,
transportation, production plan, and evacuation problems, as described in a
survey by Aronson [2]. To tackle this problem, Ford and Fulkerson [5, 6] in-
troduced flows which takes time, called as travel time, to pass an arc of the
network. These flows are called dynamic flows or flows over time and deter-
mine the number of flow units entering the arc at each point in time. The travel
times and arc capacities are assumed to be constant. Ford and Fulkerson [5, 6]
gave a polynomial time algorithm to solve the maximum dynamic flow problem.
The objective of maximum dynamic flow problem is to send as much flow as
possible to the sink for a given time horizon T'.

Gale [7] introduced a variant of maximum dynamic flow problem that seeks

*This research has been supported by Deutsche Forschungsgemeinschaft (DFG) grant spp-
1126 ” Algorithmik Grosser und Komplexer Netzwerke”
fTel.: +49 631 205 2267; Fax: +49 631 ; E-mail: hamacher@mathematik.uni-kl.de

a dynamic flow which is maximum not only for 7', but also for every time
T < T. Naturally, this problem is harder than the maximum dynamic flow
problem, though both problems share the same constraints. Concerning the
application of dynamic flow to the evacuation problem, this earliest arrival flow
gives a better evacuation plan than the maximum dynamic flow, since it pushes
more people to reach the safety as early as possible. An overview on the in-
terrelation of dynamic network optimization and evacuation modeling can be
found in Hamacher and Tjandra [9].

Minieka [12] and Wilkinson [15] showed that the earliest arrival flow exists, and
they both also provide pseudo-polynomial time algorithms to find this flow.
Their algorithms work on the assumption that the network has constant travel
times and capacities. There is no known polynomial time algorithm to solve
the earliest arrival flow problem (Fleischer [3]). Under the same assumption of
network data, Hoppe and Tardos [10] developed the first polynomial-time ap-
proximation algorithm, with time complexity O("Z(m + n log n)log U), where
U is the largest capacities, n is the number of nodes, and m is the number of
arcs. It is proved to be within (1+¢€) of optimality, i.e. if x is a dynamic flow for
the time horizon T provided by the algorithm and VZT, is the value of earliest

arrival flow for any time horizon 7' < T', then VET/ <1+ e)VzT/ (x). This al-

gorithm is a capacity scaling shortest augmenting path algorithm applied to the
static network. The capacity scaling is done in an upward direction, which is
opposite of the usual capacity scaling algorithm (see e.g. Ahuja, Magnanti, and
Orlin [1]). Instead of using path decomposition as in the temporally repeated
flow technique (see e.g. Ford and Fulkerson [6]), Hoppe and Tardos used the
chain decomposition which allowing to use some backward arcs.

In the continuous-time environment, the flow represents the rate at which some
commodity entering the arc at each point in time. Several results dealing with
the earliest arrival flow problem in this context can be mentioned here. Ogier
[13] worked on the earliest arrival flow problem on the continuous-time dynamic
network of having zero travel times. He assumed that the arc and node capaci-
ties are piecewise-constant function on interval [0, 7] with at most k breakpoints
(i.e. the points of time at which the value of function changes). Under such
assumption, Ogier proved that the earliest arrival flow has at most nk break-
points. These breakpoints can be computed with nk series of static maximum
flow computations on the static network with nk nodes and (m+n)k arcs. The
desired flow is then obtained by combining together the maximum flows with
respect to each breakpoint. This process needs additional O(nk) series of static
maximum flow computations, each on a network with n nodes. Thus, the overal
complexity is determined by the time to solve nk series of static maximum flow
problems on the static network with nk nodes and (m + n)k arcs. Fleischer
[3] improved Ogier’s algorithm by using a generalization of parametric maxi-
mum flow algorithm of Gallo, Grigoriadis, and Tarjan [8]. The complexity is
improved to O(k?mnlog(kn?/m)). Fleischer and Skutella [4] generalized the
earliest arrival flow problem with constant data by considering multiple sources.

In this paper we generalize the earliest arrival flow problem by considering
the time dependence of the network data. We will develop an algorithm solving
the earliest arrival flow problem when the network has time-dependent travel
times and arc capacities (TAEAFP). We also consider the possibility to wait
(or park) at a node before departing on outgoing arc. This waiting is bounded
by the value of maximum waiting time and the node capacity which also vary
with time. In the next section, we formally introduce TAEAFP. In Section 3 we
extend the ideas of the residual network in the case of static network (see e.g.
Ahuja, Magnanti, and Orlin [1]) to the dynamic case. In Section 4 we work out
the details of the algorithm. The finite waiting assumption is relaxed to infi-
nite waiting in Section 5, where a faster algorithm is obtained. An illustrative
example is given in Section 6. Computational results on several examples on
randomly generated networks in Section 7 conclude this paper.

2 The Time-Dependent Earliest Arrival Flow Prob-
lem

A discrete-time dynamic network G = (N, A,T) is a directed graph, where N
is the set of nodes, A is the set of directed arcs, and T is a finite time horizon of
interest discretized into the set {0,... ,T'}. The dynamic network G is assumed
to have only a single source s and a single sink d. For simplicity, we assume
that no arc enters the source s and no arc leaves the sink d. Moreover, G is
antisymmetric, i.e. (i,7) € A = (j,i) ¢ A. Each arc (i,7) € A has a time-
dependent capacity u;;(t) € Rj and an associated time-dependent travel time
Xij(t) € Z§. The capacity u;;(t) defines the maximum number of flow units
that can enter arc (i, j) at time ¢. The travel time \;;(¢) defines the time period
needed to traverse the arc (i,7), departing from node ¢ at time ¢. This travel
time is defined upon entering an arc, and is assumed to be constant for the
duration of travel along that arc. This model of travel time is known as a
frozen arc model, see Orda and Rom [14]. Waiting in any node i € N — {s,d}
at any time ¢t € {0,...,7 — 1} is described by w;(t), the maximum allowable
waiting time, and a;(t) € Rf , the corresponding waiting capacity. This capacity
defines the maximum number of flow units that can be held over one time unit
at node i. The value of w;(t) is decided by the current time ¢ and not by the
arrival time at the node. Therefore, it has a value of either zero or one.

Definition 2.1 A discrete-time dynamic network flow x (also known as flow
over time) over a time horizon T € Zg’ is given by the function

x: (AU{(,3) : i € N}) x{0,...,T} > R}

For any t € {0,...,T}, the value z;;(t) determines the number of flow units
entering arc (4, j) at time ¢. Since we are interested to find the flow distribution
only for the time horizon T', we bound the time ¢ by t 4+ A;;(t) < T. The flow
z;;(t) is bounded above by the arc capacity u;;(t), i.e.

0<uzi(t) < wy(t), (5,5) €A, t+ X)) <T (1)

Figure 1: Conservation flows

Flow from node i at time ¢t to the same node with travel time \;(t) = 1
represents the amount of holdover flows. This flow is denoted by z;;(t) and
bounded above by the node capacity a;(t).

0<L :C“(t) < ai(t)wii(t), 1€ N — {S,d}, t=0,...,T (2)

The value of the flow arriving at a given node 7 at a given time ¢ is obtained by
summing flows from all predecessor nodes of 7 over all possible departure times
¢ in which the sum of departure time and travel time equals ¢, as shown in
Figure 1. The dynamic network flow conservation constraint is thus formulized
by

Z Z zji(t) — Z zi5(t) =
(UAEA [t ' + i (¢)=t} {(@4) = (1,5)€A, t+Xi; (1) <T}
zii(t) —zu(t—1), i€ N—{s,d}, t=0,..., T (3)

To describe the earliest arrival flow, we need the notion of a maximum dynamic
flow. Given a time horizon T, the time-dependent maximum dynamic network
flow problem (TdAMDNFP) maximizes the dynamic flows reaching the sink. It
is formulized as

T
(TAMDNFP) max Vyr(x) = » Y > zig(t) (4
t=0
Subject to (1) — (3)
Here, VZT (x) denotes the value of a discrete-time dynamic flow x for the time

horizon T. We denote by VET the value of mazimum dynamic flow for a time
horizon T.

Now, we are ready to describe what the discrete-time earliest arrival flow prob-
lem (TdEAFP) problem is.

Definition 2.2 A discrete-time earliest arrival flow for the time horizon T is
a dynamic flow in which as many flow as possible arrive at the sink during any
time horizon T' for every T <T.

By Definition 2.2, the objective function of TAEAFP is to maximize VETI (x)

for every T' = 0,... ,T. We denote by V. ' < the value of discrete-time earli-

est arrival flow for a time horizon T. Furthermore, the set of feasible solutions
of TAEAFP is defined exactly the same as that of TAMDNFP.

By Definition 2.2, every earliest arrival flow is a maximum dynamic flow, but
the converse is not true. In Figure 2, the dynamic flow indicated by the solid
lines is a maximum dynamic flow for 7" = 7. But it is not an earliest arrival
flow, since its value for 7" = 3 is zero while VZT’ s = 1.

node

Figure 2: Discrete-time maximum dynamic flow vs discrete-time earliest arrival
flow. The solid lines indicate the maximum dynamic flow without having the
earliest arrival property, and the dashed lines indicate the earliest arrival flow

3 The Residual Dynamic Network

Here we extend the ideas of the residual network of the static network (see e.g.
Ahuja, Magnanti, and Orlin [1]) to the dynamic one. Suppose that arc (i, 5) at
time ¢ carries z;;(t) units of flow. Then we can send an additional u;;(t) —z;;(%)
units of flow departing from node i at time ¢ to node j along arc (3,j). Also
we can send up to z;;(t) units of flow from node j departing at time ¢ + X;;(¢)
and consequently arriving at node i at time ¢ over the arc (i, j), which amounts
to canceling the existing flow on the arc. Here we employ arc with negative
travel time (i.e. departing at ¢ + \;;(¢) and arriving at ¢) to permit the return
of capacity to an arc.

The similar ideas can be applied for the waiting times and capacities. Sup-
pose that z;;(t) units occupy node ¢ at time ¢ for at least one unit time. Then
the additional a;(t) — x;(¢) units can wait and at most z;(¢) units can cancel
their waiting, at node ¢ at time ¢. The waiting canceling at node ¢ at time ¢ is
modeled by using a negative waiting time at node ¢ at time ¢t + 1 and denoted
by w; ™ (t + 1). Since the waiting canceling at node ¢ at time ¢ may occur only
when w;(t) is positive, w; ™ (¢ + 1) has value -1 or zero. The capacity of waiting
canceling is denoted by a?~ (¢ + 1). Moreover, we denote by a ' () the maxi-
mum free waiting space at node 7 at time t.

Using these ideas, the residual dynamic network with respect to the current
dynamic flow x is defined as follows.

Definition 3.1 The residual network with respect to a given feasible dynamic
flow x is defined as Gy := (N, Az, T) with Ay := A} U A, where

A = {(5,4) : (,5) € A, It < T — Xgj(t) with ugj(t) > zi5(t)} (5)
and
A; = {(Z,]) : (],’L) €A LT - Aji(t) with .’L‘ji(t) > 0} (6)
G is provided with the set of parameters, namely:

o the residual travel times

AL (1) = Nigt) o (0,5) € A T4 N (1) <T |
P Nat) () € At 4 Nlt) =t < T, zp(t) >0

e the residual arc capacities

T . uz(t) _:Ei'(t) a(i’j) € Aa t+>‘i'(t) <T
Uij(t) = { xjji t’) J) A A /\;i(t’) i< (8)

e the residual positive and negative waiting times

wt(t) = wi(t), i€ N—{s,d}, t<T, 9)

wf‘(tz+ 1) —wi(t), i€ N —{s,d}, t<T (10)

e the residual waiting capacities

alt(t) = ai(t) —zu(t), i€ N —{s,d}, t<T, (11)
a;” (t+1) zii(t), 1€ N —{s,d}, t <T, (12)

Since the travel times are time-dependent, there may exist an arrival time ¢
at node j which corresponds to several departure times ti,... ,%; from node
i along the arc (i,j) € A, ie. t + \j(t) =t, V& € {t1,... ,tx}. Therefore,
at such an arrival time ¢, the corresponding backward arc (j,4) of (i,5) has k
different negative travel times A7;(¢) as shown in Figure 3.

6

nodei

node

Figure 3: A single arrival time associates with several departure times. The
dashed lines correspond to the backward arcs

4 Solution Algorithm for Earliest Arrival Flow Prob-
lem with Time-Dependent Data

To solve TAEAFP with time-dependent data, we adapt a well known succes-
sive shortest augmenting path technique for solving the static maximum flow
problem (see e.g. Ahuja, Magnanti, and Orlin [1]). Instead of looking for a
shortest s — d augmenting path in the residual network, we look for an s — d
augmenting path with the earliest arrival time at node d. Therefore, we call this
modified technique as the successive earliest arrival augmenting path algorithm.

We define a dynamic augmenting path as follows.
Definition 4.1 (Dynamic augmenting path)

e A dynamic augmenting path is a dynamic s — d path Psg(t1) in Gy com-
posed by a sequence of node-time pairs (NTPs) from node s to node d that
is ready at node s at time t; € {0,... ,T}, as given by

Psd(tl) = {8 = jl(tlatll)’jZ(tQa tl2)a s ad = jl(tlatz)}a
byt €40,..., T}, k=1,...,1 (13)
where tg11 = t;c + A e (t;c), k=1,...,1—1 and define t; = t;.
For any NTP jk(tk,t;c), the first time parameter ty denotes the ready time
at node ji, and the second one t;c denotes the departure time from node
jk- The ready time ty also defines the arrival time at node j, from the
previous node jg_1, fork=2,... 1.

o The residual capacity €(P) of Psq(t1) is the minimum value between the
minimum residual capacity of arcs in Psy(t1) and the minimum residual
waiting capacity of any waiting node in Pyy(t1) denoted by €,(P) and
ea(P), respectively, i.e.

WlP) = min (ul () (1)
€(P) = min min {a%t (¢ , min {a%” ¢ 15
() = i min (GO, m EO) 09
€(P) := min{e,(P),eq(P)} (16)

IF{t" : tp<t < t;c —1} =0, then we define

min {a;?"'(t”)}::oo
t<t’ <t -1 "

Also if {t' @ t, +1 <t <tx} =0, then

min {a® (£')} == o0

i<t <t
Figure 4 illustrates Definition 4.1. The new flow distribution x is computed as

fl%l

t P4, gm0, B0
j. i——»&

Jio \»\
;

Jir

tkD2

Figure 4: Dynamic augmenting path

follows.
wij(}) +e(P) i # 4, i(t,0), j(T+ A5(D), ¢)
v — e(P) i # 4, 36+ AED), i(E ")

rii(t) = $Mﬂ+dP),z—%t<t<t i(t,)eP :
zi(t) —e(P) ,i=j t <t<t, i(t,t)eP
(1) , otherwise

V (i,5) € AU{(3,i) : i€ N—{s,d}}, t€{0,1,...,T}
(17)

We denote x = x + ¢(P) the dynamic flow given by (17).

The successive earliest arrival augmenting path algorithm always augment flow
along an s —d path having the earliest arrival time at node d in the residual net-
work. Since the residual network may have backward arcs whose associated arc
travel times are negative valued, a time-dependent label correcting algorithm,
called the EAAP (Earliest Arrival Augmenting Path) algorithm, is used to find
an s — d earliest arrival augmenting path. This algorithm uses the so-called
scan eligible (SE) list that stores the nodes which have potential of improving
the arrival time of at least one other node. During the initialization step of the
algorithm, only the source node s is in the SE list. At each iteration of the
algorithm, a node, called the current node, is removed from the SE list. We
denote by

e 7;, the earliest arrival time at node 1 € N,

e pred;(t), t € {0,...,T}, the predecessor node of node i along an s — 4
augmenting path that arrives at node 7 at time ¢, and

e dep;(t), t € {0,...,T} , the departure time from node pred;(t) corre-
sponding to an arrival time ¢ at node ¢ along an s — 7 augmenting path.

Suppose that node i is the current node. For every successor nodes j of node i, a
temporary label is computed through the corresponding s — i augmenting path
and arc (4, 7). If it is possible to build an s— j augmenting path departing from i
at time ¢ and arriving at j at time ¢+ \;;(¢) which is not possible previously via
another path (i.e. previously recorded pred;(t+ A;j(t)) = 00), then the value of
pred;(t + Aij(t)) is updated from oo to i. Because any s — d augmenting path
that uses this s — 7 path as a subpath may lead to a lower earliest arrival time
at the sink node d, this node j will enter the SE list. Moreover, ¢ + \;;(t) will
update the value of ; if it is earlier than 7;. The labeling process of node j is
then continued by considering both positive and negative waiting allowance at
node j. The labeling at node j is done for t = t+ i () +1,t+ X5 (8)+2,...,T
as long as waiting is allowed (i.e. wJ“(t' —1) > 0 and a]”(t' —1) > 0) and
predj(t,) = 00. Otherwise, this labeling process at node j is stopped. By con-
sidering that the waiting canceling at node j7 may lead to a better decision, the
labeling of node j is also continued for ¢ = ¢+ Xij(t)=1,t+Xi(t)—2,...,0. The
labeling process on this stage is stopped when it meets ¢ that does not satisfy
the waiting conditions wj ™ (t +1) <0 and ajm-_(t' +1)>0or predj(t') # 00.
Once all the successor nodes of the current node have been considered, another
current node is selected from the SE list, triggering the next iteration of EAAP
algorithm. The algorithm stops once an iteration has completed and the SE
list is empty. If 7y < T', then the corresponding s — d earliest augmenting path
P and maximum flow augmentation ¢(P) can be obtained by backtracking pro-
cedure. Otherwise, the current dynamic flow x is optimal (see Proposition 4.4
later on). The pseudocode of EAAP algorithm is given in Algorithm 4.1.

Algorithm 4.1 works well when G, does not contain any negative cycle. How-
ever, since the original network G has no negative travel times, adding some
arcs with negative travel times to create G, will not create any negative cycle.
The following proposition describes this property.

Proposition 4.1 Given a dynamic network G that does not contain any neg-
ative cycle, its associated G5 will also not contain any negative cycle

Proof :

Suppose that there is a negative cycle in G, with respect to the travel times.
Since the original network G does not have negative travel times, the cycle must
use some backward arcs. Supppose that the cycle begins at node j at time ¢, uses
a backward arc (j,4) departing at time ¢, and reaching node ¢ at time ¢+ \;;(t).
By construction of backward arc, there must exists, in previous iteration, an
augmenting path that uses arc (i, 7) departing from node i at time ¢ such that
' +Xij(t') =t with \;;(t") > 0. Since \j;(t) = —\i;(t), we obtain t+\;(t) =t .

Algorithm 4.1 (Earliest Arrival Augmenting Path Algorithm) : find-
ing an s — d earliest arrival augmenting path

INPUT The residual network G := (N, AT U A, T) as given by Definition 3.1
OUTPUT The s — d earliest arrival augmenting path P and e(P)

0 Set SE := {s} and define the initial labels for each node i € N :
0 ,21=s

oo , otherwise

and for all t€{0,...,T}

=

-1 ,i1=s t , =38
predi(t) ::{ oo , otherwise 5 depi(t) ::{ oo , otherwise
1 Select the current node. If SE = () then go to step 3.
Otherwise, select ¢ € SE and set SE := SE — {i}.
2 Scan current node and update the labels

For all (¢,7) € Az do {
Forallt € {t:m <t <T, uf;(t) >0, t+ Xi;j(t) < T, predi(t) # oo}
do { If (pred;(t + Aij(t)) = co) then
{If (m; >t + Xij(t)) then 7; := 1t + \ij (¢)
pred;(t+ X\ij(t)) =1 5 dep;(t+ Xij(t)) =t
SE := SE + {j}
Define t :=t+ Ay (t) + 1
While (' < T, wi*(t -1)>0, a?(t —1) >0,
and pred;(t) = o0))
do {predj(t’) =i ; depj(t’) =t —1;¢t + +}
Define t :=t + Aij(t) — 1
While (¢ >0, w? (¢ +1) <0, a® (t +1) >0,
and pred;(t) = o0)
do { if (m; > t then mj = t
predi(t) =j ; depj(t):=t +1;t ——}
} } } Return to step 1
3 Constructing the s — d earliest arrival augmenting path.
If 74 > T then P := 0 and ¢(P) =0
Else { j:=d ; t:=m; ; i:=pred;(t)
Define P := {d(t,t)} and e(P) := o0
While (j # —1) { t' := dep;(t)
If (¢ # j) then { cap := ug; t);t =t}
Else if (t > t'), then cap := af"'(tl)
Else cap := af‘(tl)
If (cap < €(P)) then e(P) := cap
i =i j:=1 ; i:zpredj(t’) b=t
(i £i)then P:=P+{i (t,t)} }

1

Suppose without loss of generality, the cycle continues to reach node k£ at time
t +Xi(t'), and back to node j from k at time ¢ + X\jx (') + Mg (£ +Xig(t)). The
total travel time to complete one cycle is —)\ij(t') + Xi(t) + /\kj(t’ + Xir(t)).
Since this is a negative cycle, —Xi;(t') + \ig(t) + Mg (£ + Nig(t)) <0, ie.

Xis(t) + Mg (8 + i (t)) < Aij(t) (18)

10

Since in the previous iteration the augmenting path uses (i,) at time ¢ , direct
connection from ¢ departing at time t to 7 must be not longer than uses arcs
(i,k) and (k,j), i.e.

Nik () + Mg (¢ + Nk () > Nij(t)
contradicting (18). [|

To analyze the complexity of Algorithm 4.1, we divide its execution into passes.
We define a pass as follows.

Definition 4.2
o Pass 0 ends after node s is scanned for the first time.

o Pass k ends after all nodes in the SE-list at the end of pass k — 1 have
been scanned.

From this definition, if a node j is removed from the SE list before the end of
pass k, then there must be a node ¢ with (7, j) € A, removed from the list before
the end of pass (k — 1) and some ¢, m; < t < T such that pred;(t + X\i;(t)) is
improved from oo to 4. In this condition, 7; may also be improved. Proposition
4.1 implies that G, does not contain any negative cycle. Since G, has at most
n(T + 1) node-time pairs, there exists at most n(7 + 1) — 1 passes.

Proposition 4.2 Algorithm 4.1 terminates with the earliest arrival augment-
ing paths from the source node s to all other nodes in N, where waiting is
limited. It is a pseudopolynomial algorithm with running time O(nmT?).

Proof :

Let us denote by PRED; the set {t : pred;(t) # oo, t < T}. When Algo-
rithm 4.1 terminates, SE is empty and m; <t + X;;(t) for all j € N — {i} and
t € PRED;. By definition, m; must be in PRED; and w; < t, Vt € PRED,;.
Suppose 3j : m; > t + Aij(t) for some ¢ and ¢ € PRED;. There are two
possible cases that must be considered with respect to the travel times A;;(t).
Suppose that A;;(t) > 0. Since ¢t > m; and t < T, we obtain m; < T. The
algorithm is initiated by defining m; = oo for ¢ # s. Therefore, if i # s, then m;
has been updated and node ¢ was placed in the SE list. However, if ¢ = s, then
i was also in the SE list. The assumption 7; > t + X;;(¢) for some ¢t € PRED;
implies that node ¢ was not completely scanned and must still be in the SE list.
This contradicts the assumption of termination. Now, consider the case when
Xij(t) <0, ie. (i,7) is a backward arc in G,. By construction of a backward
arc, (4,7) can only have positive capacity for ¢ < T'. Therefore m; < T and node
1 was placed in the SE list. By the same reason as in the case of nonnegative
travel times, the assumption m; > ¢ + X;;(¢) for some ¢ € PRED); contradicts
the assumption of termination.

Concerning the computational complexity, there are at most n(7+1) — 1 passes

and any current node ¢ scans all arcs (7,j) € Ay in O(m) time. Furthermore,
each time an arc (4, j) is considered, at most 7'+ 1 computations are required in

11

order to determine the departure time from node ¢ that will lead to the earliest
arrival time at node j. Therefore, the overal complexity is O(nmT?). |

Remark 4.1 By applying the classical (static) label correcting algorithm on
the time-expanded network in which the travel times are considered as costs,
the earliest arrival augmenting path is obtained in O(n(n + m)T?). Therefore
Algorithm 4.1 is faster with respect to the additional factor in the worst case
computational complezity.

The successive earliest arrival augmenting path algorithm repeats the process
of finding an s — d earliest arrival augmenting path until the dynamic flow is
maximum. The detail description of the algorithm is given in Algorithm 4.2.

Algorithm 4.2 : Solving (s,d)/()\(t),u(t),a(t),w(t))/VET

INPUT Network G = (N, A,T),
time-dependent travel time A(t), capacity u(t),
holdover capacity a(t), and

maximum allowable waiting time w(t).
OUTPUT Earliest arrival flow z;;(t).

0 Set the dynamic flow z;;(t) =0, V(i,5) € 4; t =0,...,T.
1 Call Algorithm 4.1 to find an s — d earliest arrival
augmenting path P in G, and its €(P).
If P # (0, then go to step 2. Otherwise, go to step 3.
2 Find the maximum dynamic augmentation of x along P
and update the current flow and G,.
Repeat the process by going back to step 1.
3 Stop the process and x is an earliest arrival flow.

To prove that Algorithm 4.2 produces a maximum dynamic flow, we need the
notion of dynamic cut.

Definition 4.3 (Dynamic Cut)
o (Consider two set-valued functions

Cr:{0,..., T} — 2% (19)
and
COr(t) = N-Or(t) (20)

that satisfy s € Cr(t) and d € Cp(t) for all t < T.
We denote by Cr the collection of all Cr.

12

The s — d dynamic cut is a set of arcs (Cp,Cr) defined by

(CT,ET) = {G@),5(t+)\ij(t))) :1€Cp(t),j € 6T(t +)\ij(t)),
t+)\ij(t) <T, (i,j) € A} U
{G@#),i(t+1)) : i€ Cprt)NCr(t+1), w;(t) >0,
i€N—{s,d}, t<T} (21)

e The set of times when the movement arc (i,j) € A crosses the dynamic
cut is determined by

Pg;- = {t 1 1€ CT(t), j € C_T(t +)\ij(t)), t+)\ij(t) < T} (22)

and the set of times when the holdover arc (i,i), i € N — {s,d} crosses
the dynamic cut is determined by

TL:={t : i€ Cr(t)NCr(t+1), wi(t) >0}, i€ N —{s,d} (23)

e The value (also called capacity) Wz (Cr) of a dynamic cut (Cr,Cr) is
defined as

Wer(Cr)i= Y D ug®+ D>, > ailt) (24)

(i,4)€A tery; ieN—{s,d} teT'};

e The minimum s — d dynamic cut (Cr,Cr) is an s — d dynamic cut with

|14

= r(Cy), YOr € Cr

The value of a dynamic cut as defined by (24) is determined by the capacities
of the arcs crossing the cut as well as the storage capacities at points in time
where some nodes in N passes from the source side to the sink side of the cut.

Theorem 4.1 The value VZT (x) of any dynamic flow x is bounded above by
the capacity of any dynamic cut (Cr,Cr).

Theorem 4.2 (Maximum dynamic flow - minimum dynamic cut)

The value of the mazimum dynamic flow from a source node s to the sink node
d equals the value of the minimum s — d dynamic cut. Moreover, a dynamic
flow x* and a dynamic cut (C},C_i'i) are jointly optimal and having equal valu
if and only if

T;(t) = 0 , 1 € Cx(t) and j € CH(t+ Nij(2))
zi(t) = ug(t) i€ CH(t) and j € CF(t+ Aij(t))
z5;(t) = wi(t)ai(t) , 1€ Cp(t) and i€ CH(t+1)
Tj;(t) = 0 , i € On(t) and i € Cp(t+1)

13

The termination of Algorithm 4.2 occurs when the sink node d in the resid-
ual network is not s-reachable, i.e. my > T or predy(t) = oo, Vt < T. Using the
value of label pred, we can give a specific definition to the function Cp in (19)
as follows.

Cr(t) = {i:pred;(t) # o, i€ N} (25)
and
Cr(t) = {i:predi(t) = o0, i € N} (26)

By this definition, when Algorithm 4.2 terminates, node s and d is in Cr(?)
and Crp(t), respectively, for any time ¢ < 7. Furthermore, the set of times

1"3;-, V(i,j) € A and TE Vi € N — {s,d} is given by

Ty = {t: predi(t) # oo, predj(t+ Aij(t)) = oo, t+ Xj(t) <T} (27)
and

Ty = {t: wi(t) >0, predi(t) # oo, predi(t+1) = oo, t+1< T}, (28)
respectively.

Proposition 4.3 When Algorithm 4.2 terminates, the set of time-erpanded
arcs (Cr,Cr) as defined by (25)-(26) with respect to the label at the termination
stage, defines a minimum s — d dynamic cut for the time horizon T and the
current dynamic flow x is a mazimum dynamic flow.

Proof:

Clearly, s € Cr(t) and d € Cr(t) for any t+ < T. Since the algorithm cannot
label any node j € Cr(t + Xjj(t)) from any node i € Cr(t) with t + X\;;(t) <T
and (i,j) € A, the residual movement capacity uj;(t) = 0 for each (i,7) €
(Cr(t), Cr(t + Xij(t))). Furthermore, since uf;(t) = uy(t) — 45(t) + z5(t +
ij(t), zij () < wij(t), and z;i(t + Aij(¢)) > 0, the condition ufj(t) = 0 im-
plies that z;;(t) = wu;;(t) for every arc (i,5) € (Cr(t),Cr(t + X\ij(t))) and
z;i(t + \ij(t)) = 0 for every arc (j,i) € (Cr(t + Xij(t)),Cr(t)). We must
also show that z;;(t) = 0 for every arc (4,5) € (Cr(t), C(t + Xij(t))). Suppose
that this is not true, i.e. z;j(t) > 0 for every arc (i,5) € (Cr(t), C(t + X\ij(t))).
By (8), uj;(t + Aij(t)) > 0. Consequently, we can label ¢ at time ¢ from j at
time ¢+ \;j(t), contradicting the assumption that i € Cr(t). Therefore, we can

conclude that z;;(t) = 0 for every arc (4,5) € (Cr(t), C(t + \ij(t))).

Similar ideas are used to prove that the holdover flows z;(t) = a;(t) for ev-
ery holdover arc (i,4) crossing from Cr(t) to C(t + 1) and z4(t) = 0 for every
holdover arc (i,4) crossing from Cr(t) to Cr(t + 1). Since the algorithm can
not label any node i in Cr(t + 1) from node i-itself at time ¢ with ¢t +1 < T, it
must be that the residual positive waiting capacity a7"(t) = 0. Let us denote
by z;;(t + 1) the number of waiting canceling units at node 4 at time ¢. Since

14

a? () = a;(t) — ii(t) + x5 (t + 1) with z4(t) < a;(t), and zj; (£ + 1) > 0, the
condition af(t) = 0 implies that z;(t) = a;(t) and z;(t + 1) = 0 for every
node i € Cr(t) N Cp(t + 1). To show that z;(t) = 0 for every holdover arc
(i,3) € (Cr(t),Cr(t+ 1)), we must show that a7~ (¢ + 1) = 0 for such an arc.
If @i (¢t +1) > 0, then node i at time ¢ can be labeled from i-itself at time
(t + 1), contradicting the assumption that ¢ € Cr(t). Therefore, it must be
a; (t+1) = 0, implying z;;(¢) = 0 for every holdover arc (i,7) crossing from
Cr(t) to Cp(t+ 1).

Furthermore, Theorem 4.2 implies that x is a maximum dynamic flow and
the corresponding dynamic cut (Cr,Cr) is a minimum dynamic cut. [|

Finally, the correctness that Algorithm 4.2 produces an earliest arrival flow
is stated by the following proposition.

Proposition 4.4 Let us denote by U the biggest capacity over all (i,7) € A
and over time t € {0,... ,T}, i.e.

= i 2
U o, {r(glf?fT}{ug(t)} (29)

Algorithm 4.2 solves TAEAFP with the worst case complezity O(nm?T3U).

Proof :

By Proposition 4.3 and the fact that the augmentation always done in a path
with the earliest arrival time at the sink, Algorithm 4.2 produces a maximum
dynamic flow with earliest arrival property for the time horizon T'. Furthermore,
since the capacity of the cut is at most mUT and each augmentation carries at
least one unit of flow, there is at most mUT augmentations. By Proposition
4.2, the overall complexity is O(nm?2T3U). [|

5 Infinite waiting
Here we allow infinite waiting at every node i € N — {s,d}, i.e.
w;i(t) =1 and a;(t) :=o00, i € N — {s,d}, t€{0,... ,T}

Proposition 5.1 Suppose that the waiting times and capacities are infinite. If
there is an s — j augmenting path with arrival time m; < T (i.e. pred;(nj) #
00), then there must exist an s — j augmenting path for any arrival time t > 7;,
i.e. pred;(t) # oo, Vi€ {mj+1,m +2,... ,T}.

Proof :

Let P;; be an s — j augmenting path with arrival time ;. Since the waiting at
any node in N — {s,d} and at any time in {0,... ,7T} is infinite, we can extend
this path by considering the waiting at node j for ¢ — 7; time units to obtain
an s — j augmenting path arriving at node j at time ¢ > 7;. |

Proposition 5.1 has the following direct consequence.

15

Corollary 5.1 Consider the case when infinite waiting in any node 1 € N —
{s,d} is allowed. Assume that during an iteration in Algorithm 4.1, node i is
selected as the current node. If node j at time t is reachable from node i at
time t, i.e. uf;(t) >0, t+ Xj(t) = t < T, but it is not previously reachable
from any other node, i.e. predj(t') = 00, then the previous value of m; must be
strictly greater than t and the current value is greater than or equal to t.

Using this corollary, step 2 of Algorithm 4.1 can be simplified as given in Table
1.

Scan current node and update the labels
For all (4,5) € A, do
{ Forallte{t:m <t<T, uj(t) >0, t+ Xi(t) <T}
do {
If (pred;(t + Xi;(t)) = oo) then
{
T =t + X\i;(2)
pred;(t+ Xij(t)) :=1 ; depj(t+ Aij(t)) =1
SE :=SE+ {j}
Define ¢ := ¢+ Aij(t) +1
While (t < T) and (pred;(t) = o))
do {pred;(t)=j ; depj(t):=t —1;t ++}
Define ¢ :=t 4+ \;;(t) — 1
While (£ >0, wi™ (£ +1) <0, a} (£ +1) >0,
and pred;(t) = o)
do { if (m; > t') then mj :=¢
predj(t) =4 ; depj(t):=t +1;¢ ——}
}
}

} Return to step 1

Table 1: Modified step 2 of Algorithm 4.1 when infinite waiting is allowed

Another important consequence of Proposition 5.1 is stated by the following
proposition.

Proposition 5.2 If the waiting is infinite, by applying the scaning and updat-
ing processes given in Table 1 to step 2 of Algorithm 4.1, an earliest arrival
augmenting path can be found in O(nmT).

Proof :

By Proposition 4.2, the modified algorithm finds an earliest arrival augmenting
path. Since the waiting is infinite, by Proposition 5.1, there are at most n — 1
passes (instead of n(T + 1) — 1 passes in the case of finite waiting). Conse-

16

quently, an earliest arrival augmenting path can be found in O(nmT). |

Corollary 5.2 Algorithm 4.2 solves TdEAFP in O(nm?T?U) when infinite
waiting is allowed for every node i € N — {s,d}.

By considering Remark 4.1, we obtain the following corollary.

Corollary 5.3 Under the assumption of infinite waiting, Algorithm 4.2 is more
efficient by factor T than implementing the successive static shortest augmenting
path algorithm on the time-expanded network.

This assumption of infinite waiting also influences the characteristic of the dy-
namic cut as stated by the following lemma.

Proposition 5.3 If infinite waiting is allowed for every node i € N — {s,d},
once a node 1 is in the source side of the cut at time t, it will stay there forever,
i.e. ifi € Cp(t), then i € Cp(t') for any time t > t.

Proof :
Follow directly from the definition of Cr given by (25) and Proposition 5.1.
|

6 Illustrative Example

The following Example 6.1 illustrates the implementation of Algorithms 4.1 and
4.2.

Example 6.1

Figure 5 shows a network structure with 6 nodes and 8 arcs where node 0 is
the source and node 5 is the sink. The time-dependent travel times and arc
capacities are given in Table 2. The time-dependent maximum waiting times
and capacities are given in Table 3. We define T' equals 7 time units.

()
OO, (2

Figure 5: A network for Example 6.1

Initially, we define the flow variables z;;(t) = 0, V(7,5) € A; Vt < T. Therefore,
we have G; = G. The results of Step 1 of Algorithm 4.2 are given in Table 4.
Since 5 = 4 < T = 7, the augmenting path P; and the maximum flow aug-
mentation €(P;) can be obtained by a backtracking procedure as described in

17

(@4) | (0,1) (0,2) (1,3) (1,5) (2,4) (2,5)

uij(t) | 6,t<1[2,¢t<1][5 ¢t>0[3,¢t<3][5 t>0]|6,t>0
2,t>2 |5, t>2 1, t>4

Aij(t) |4, t<1[2,t<1[1,t>0 3, t=4|1,t<4]|5,t<1
5,t>2 | 4, t>2 L, t#4 |2, t>5|3,t>2

Table 2: Time-dependent travel times and capacities for the network in Example
6.1

i€ N —{0,5} 1 2 3 4
wi(t) 1,t<4|1,t>00,t>0]0,t>0
0,t>5
ai(t) 4,t<4 5 t>0]0,¢t>0]0,¢t>0
0,t>5

Table 3: Time-dependent maximum waiting times and capacities for the net-
work in Example 6.1

Labels time ¢

0 1 2 3 415 6 7

To=0 | predo(t) | -1 | -1 | -1 | -1 |-1]-1]-1]-1
depot) | 0 | 1 | 23 45617

m =3 |predi(t) | co |oo |00 | 4 | 0|1 0|0
depi(t) | oo oo oo | 3 | 0| 4 | oo 2

ma=2 | preda(t) |00 oo | O | 2 | 2|2 |2]| 2
deps(t) oo oo | O 2 [3[4] 5] 6

w3 =4 | preds(t) | oo oo |0 |0 | 1 |1 |1]
deps(t) |00 |0 |0 |00 | 3[4]| 5 |

s =3 | preda(t) | co | oo oo | 2 | 2| 2 | 0| 2
depa(t) | oo oo oo | 2 [3| 4 |oo| b

ms =4 | preds(t) | oo | oo |0 |0 | 1| 2| 2| 2
deps(t) | oo oo o0 |00 | 3| 2| 3 | 4

Table 4: Labels on nodes after completing Algorithm 4.1

step 3 of Algorithm 4.1. We obtain P, = {0(0,0),2(2,2),4(3,3),1(3,3),5(4,4)}
with G(Pl) = 2.

The time-dependent travel times and capacities of the new residual network

are given in Table 5. Four backward arcs (2,0), (4,2), (1,4), and (5,1) are
added to the residual network. The dynamic flow x is updated by using

18

(4, 9) (0,1) (0,2) (1,3) (1,5) (2,4) (2,5)
uF(t) | 6,t<1]0,t=0]5 ¢t>0]|1,t>3]3,t=2]6, (>0
2,t>2 |2 t=1 3,t<2 |5 t#2

5 t>2
T) | 4 t<1 |2 t<1|1,t>0]3,t=4|1,t<4 |5 t<1
5, t 4, t>2 1,t#4 |2 t>5 (3, ¢t>2
(4, 9) (3,2) 4,1) (2,0) (4,2) (1,4) (5,1)

uf(t) | 5, 6>0 3, t=3| 2, t=2 | 2,t=3 |2, ¢t=3| 2, t=4

5,t#3| 0, t#2 | 0,t#3 |0, t#3| 0, t#4
o) | 0,200,620 —2,t=2] —1,t=3]0,t>0]| —1, t=4
0, t#2 0,t#3| 0, t#4

Table 5: Time-dependent travel times and capacities for the residual network
after the first pass of Algorithm 4.1

Labels time ¢

0 1 2 3 4 5 6 7

To=0 | predo(t) | -1 | -1 |-1]|-1]-1]|-1]-1]-1
depo®) |0 | 1 | 23145 |67

m =4 | predi(t) | co |oo |0 | oo | 0 | 1 |oco]| O
depi(t) [o0 | oo |00 |00 | 0| 4 |00 2

m=5 | preda(t) | co | oo |0 |0 || 3|0 | 2
depa(t) |00 |0 |0 |0 |0 | b | 2|6

m3 =5 | preds(t) | co | 00 |00 | 00| 00| 1 1 | oo
deps(t) |00 | oo |0 |0 |0 | 4] 5 |

ma=7 | preda(t) | 0o | 00 | 00 | 00 | 00 | 00 | 00| 2
depa(t) | oo | oco | oo | oo | oo |oco|oo]| b

ms =00 | preds(t) | oo | 0o | 00 | 00 | 00 | 00 | 00 | 0
deps(t) |00 | 0o | o0 | o0 | o0 |00 |o0]|

Table 6: Labels on nodes after completing Algorithm 4.1 for the fifth times

(17). The process is then continued to look for another earliest augment-
ing paths. Three additional earliest augmenting paths have been found be-
fore the stopping criterion of Algorithm 4.2 is fulfilled (i.e. 75 > T'), namely:
P, ={0(1,1),2(3,3),5(6,6)} with e(P2) =2, P3 ={0(0,0),1(4,5),5(6,6)} with
e(P3) =1, and Py = {0(0,0),1(4,4),5(7,7)} with e(P,) = 1.

The final labels (i.e. after the fifth pass of Algorithm 4.1) which are not able to
generate any augmenting path, are shown in Table 6. The earliest arrival flow
x having value Vs~r—r (x) = 6 is given in Table 7.

From the final labels given in Table 6, we can construct the sets I‘Z-Tj for ev-

ery arc (i,7) € A and I'% for every node i € N — {0,5}. The results are shown
in Table 8. Figure 6 (a) depicts the minimum dynamic cut (C7,C7) and the

19

zij (t)

time ¢

o

—_

N

w
e~
ot
(=]
~

o1 (t)

Zo2(t)

:L‘13(t)

z15(t)

Z24(t)

x25(t)

x32(t)

z41(t)

O OO OO OO OO OO O N W N

O OO OO OO OO OO O MO O

O OO OO O NO OO OoOocOoOo O

N NO O NS OIN N OO Ol ©
O OO OO0 OO Ol RO OoOoOoOo O
O OO OO0 OO0 O RO oo O
O OO OO0 OO0 Ol OO O
O OO OO0 OO oo oo oo o

Table 7: Earliest arrival flow of Example 6.1. The upper position of each row
x;;(t) contains the optimal flow when the waiting at a node is limited, while
the lower one deals with the case when infinite waiting is allowed at any node

\'O
—
—

-
)
—

&)
—

SFSSFMSSSSU—’HSF‘HS
—

Table 8: The sets ' for every arc (4,5) € A and T'Z for every node i € N—{0,5}

ij

correspond to the earliest arrival flow of Example 6.1

corresponding optimal dynamic flow.

The value of (C7,C7) is determined by

WZ7(C7) =

20

Z Z ’U,Z'j(t) + Z Z ai(t)

(i,j)€Ater],

i€N—{s,d} tel',

node i

node i

Figure 6: The minimum dynamic cut of Example 6.1. The upper side of the
dashed line is the source side of the cut, while the lower side is the sink side of
the cut. The shaded circles are in the source side of the cut. The bold curves
are the curves of the optimal flows of the arcs in the cut. Numbers in the curves
define the values of the flows. (a) The minimum dynamic cut when only limited
waiting is allowed and (b) when infinite waiting at any node but the sink node,
is allowed

which is equal to the value of the earliest arrival flow for T' = 7.

When infinite waiting at any node is allowed, including the waiting at the
source node 0, the value of earliest arrival flow changes to Vewr=r = 7. The
optimal flow distribution of this case is given in the lower position of each row
z;;(t) in Table 7. Figure 6 (b) depicts the optimal flow distribution and dynamic
cut when infinite waiting at any node is allowed. O

21

7 Computational Results

Experiments are run to know the computation performance of the proposed
Algorithm 4.2. Toward this goal, a series of experiments is run on the basis of
randomly generated dynamic networks. To do the experiments, Algorithm 4.2
is implemented in C++ and run on a PC Pentium III, 500 MHz, and RAM of
256 MB.

To generate the random sample of dynamic networks, a dynamic random net-
work generator is developed by extending the idea of NETGEN, proposed by
Klingman, Napier, and Stutz [11], to include the time-dependent data. The
generated networks are connected. The experiments are conducted on random
networks with 50, 100, 500, and 1000 nodes and time horizon 7" = 100. For
each choice of n nodes, we create networks with indegree and outdegree of each
node 2, 4, 6, and 8. It is assumed that the source node and sink node has
zero indegree and zero outdegree, respectively. This degree setting implies the
generated networks have 2n, 4n, 6n, and 8n arcs. The minimum and maximum
travel time is defined as 1 and 10, respectively, and the minimum and maximum
capacitiy is defined as 25 and 50, respectively. The maximum waiting capacity
is defined as 10. For each specific setting of n and m, we test five random
dynamic networks. Therefore, the total number of observations is 80.

The results of the experiments are given in Table 9. To find out the inter-

| n | m/n | Average CPU-time (in seconds) | Average no. of EAAP |

50 | 2 24.31 1,310.40
4 49.19 1,729.60
6 74.66 2,232.60
8 114.17 2,855.80
100 | 2 55.41 1,331.20
4 101.02 1,649.20
6 269.45 2,412.40
8 381.74 3,203.00
500 | 2 367.22 1,474.20
4 1,790.08 2,972.60
6 2,342.31 3,312.80
8 2,717.88 3,954.20
1000 | 2 2,214.14 2,679.00
4 5,412.12 3,755.00
6 6,723.90 4,095.40
8 9,733.41 4,393.00

Table 9: Computational test results of Algorithm 4.2

relation among the CPU-time, number of nodes n, and network density m/n,
we do regression of the log (base 10) of the CPU-time against the log of n and

22

log of m/n. We obtain the following equation

CPU = 0.0267n! 465 (m /n) 128

where CPU denotes the estimate CPU-time in seconds. The adjusted R? is
0.9631 and the standard error is 0.5343. The value of adjusted R? which close
to 1 and a fairly small standard error indicate that the fit is indeed very good.

References

[1]

2]

[10]

[11]

[12]

R. Ahuja, T. Magnanti, and J. Orlin. Network Flows : Theory, Algorithms,
and Applications. Prentice Hall, Englewood Cliffs, New Jersey, 1993.

J. E. Aronson. A survey of dynamic network flows. Annals of Operation
Research, 20:1-66, 1989.

L. Fleischer. Universally maximum flows with piecewise-constant capaci-
ties. Networks, 38(3):115-125, 2001.

L. Fleischer and M. Skutella. The quickest multicommodity flow problem.
In W. Cook and A. Schulz, editors, Integer Programming and Combina-
torial Optimization, volume 2337 of Lecture Notes in Computer Science,
pages 3653, Springer, Berlin, 2002.

L. Ford and D. Fulkerson. Constructing maximal dynamic flows from static
flows. Operation Research, 6:419-433, 1958.

L. Ford and D. Fulkerson. Flows in Network. Princeton University Press,
Princeton, New Jersey, 1962.

D. Gale. Transient flows in networks. The Michigan Mathematical Journal,
6:59-63, 1959.

G. Gallo, M. Grigoriadis, and R. Tarjan. A fast parametric maximum flow
algorithm and applications. SIAM J. COMPUT, 18(1):30-55, 1989.

H. Hamacher and S. Tjandra. Mathematical modeling of evacuation prob-
lems: a state of the art. In M. Schreckenberg and S. Sharma, editors, Pedes-
trian and Evacuation Dynamics, pages 227-266, Springer-Verlag, Berlin,
2002.

B. Hoppe and E. Tardos. Polinomial time algorithms for some evacuation
problems. Proc. of 5th Ann. ACM-SIAM Symp. on Discrete Algorithms,
pages 433441, 1994.

D. Klingman, A. Napier, and J. Stutz. NETGEN : A program for generat-
ing large scale capacitated assignment, transportation, and minimum cost
flow network problems. Management Science, 20, 1974.

E. Minieka. Maximal, Lexicographic, and dynamic network flows. Opera-
tions Research, 21:517-527, 1973.

23

[13] R. Ogier. Minimum delay routing in continuous-time dynamic networks
with piecewise constant capacities. Networks, 18:303-318, 1988.

[14] A. Orda and R. Rom. Shortest-path and minimum-delay algorithms in net-
works with time-dependent edge-length. Journal of the A.C. M., 37(3):607—
625, 1990.

[15] W. Wilkinson. An algorithm for universal maximal dynamic flows in a
network. Operation Research, 19:1602-1612, 1971.

24

