Zur Chemie zweikerniger Cp^R-Eisen-P₂und -P₄-Komplexe

Vom Fachbereich Chemie der Universität Kaiserslautern zur Verleihung des akademischen Grades "Doktor der Naturwissenschaften" genehmigte Dissertation (D 386)

> vorgelegt von Dipl.-Chem. Thorsten Sögding aus Landau in der Pfalz

Betreuer der Arbeit: Prof. Dr. O. J. Scherer Tag der wissenschaftlichen Aussprache: 21. Mai 2003

Kaiserslautern 2003

Vom Fachbereich Chemie der Universität Kaiserslautern am 21. Mai 2003 als Dissertation angenommen.

Dekan: Prof. Dr. G. Niedner-Schatteburg

Prüfungskommission:

Vorsitzender: Prof. Dr. H.-G. Kuball1. Berichterstatter: Prof. Dr. O. J. Scherer2. Berichterstatter: Prof. Dr. H. Sitzmann

Die vorliegende Arbeit entstand in der Zeit von August 2000 bis Oktober 2002 im Fachbereich Chemie der Universität Kaiserslautern

Meinem Betreuer, Herrn Prof. Dr. O. J. Scherer danke ich recht herzlich für die Aufnahme in seinen Arbeitskreis, den mir gewährten Freiraum bei der Gestaltung meines Themas, seine große Begeisterungsfähigkeit und Unterstützung, sowie seine stete Diskussionsbereitschaft.

Verzeichnis der Abkürzungen

Abb.	Abbildung
amu	atomare Masseneinheit
AT	Austrittstemperatur
br.	breit
^t Bu	tert-Butylrest
bzw.	beziehungsweise
centr.	Centroid
CI	Chemische Ionisation
Cp*	η^5 -Pentamethylcyclopentadienyl-Ligand
Cp"	η^5 -Bis- <i>tert</i> -butylcyclopentadienyl-Ligand
Ср'''	η^5 -Tri- <i>tert</i> -butylcyclopentadienyl-Ligand
Cp^4	η^5 -Tetraisopropylcyclopentadienyl-Ligand
Cp ⁵	η^5 -Pentaisopropylcyclopentadienyl-Ligand
Cp=	η^5 -Bis-trimethylsilylcyclopentadienyl-Ligand
Cp ^R	zu spezifizierender η^5 -Cyclopentadienyl-Ligand
EI	Elektronenstoß-Ionisation
GEP	Gerüstelelektronenpaare
In"	η^5 -Di- <i>tert</i> -butyl-Indenyl-Ligand
Int.	Intensität
IR	Infrarot
Me	Methylrest
NMR	Nuclear-Magnetic-Resonanz
PE	Petrolether
Ph	Phenylrest
QT	Temperatur der Ionenquelle
RT	Raumtemperatur
THF	Tetrahydrofuran
TMS	Trimetylsilylrest
VE	Valenzelektronen

J	$[{Cp^4Ni}_2(\mu_3-P)_2{W(CO)_4}]$	
K	$[(CpFe)_4(P_2X_2)_2]$	
L	$[{Cp"Co}_{3}(\mu_{3}-P)_{2}]$	
Μ	$[\{Cp^{R}Co\}_{4}P_{4}]$	
1	$[{Cp'''Fe}_2(\mu-CO)(\mu-\eta^{2:2}-P_2)]$	
2	$[{Cp^{R}(OC)_{2}Fe}_{2}(\mu-\eta^{1:1}-P_{4})]$	
2a	$[{Cp'''(OC)_2Fe}_2(\mu-\eta^{1:1}-P_4)]$	
2b	$[{In''(OC)_2Fe}_2(\mu-\eta^{1:1}-P_4)]$	
3	$[\{Cp'''Fe\}_2(\mu\text{-}CO)(\mu_3\text{-}\eta^{2:2:1}\text{-}P_2)\{W(CO)_5\}]$	RSA
4	$[Fe_2(CO)_7P_2\{Cr(CO)_5\}_2]$	
5	$[\mathrm{Fe}_{2}(\mathrm{CO})_{6}(\mu-\mathrm{P}_{2}^{\mathrm{t}}\mathrm{Bu}_{2})]$	
6	$[{Cp'''Fe}_2(\mu-\eta^{4:4}-P_2S_2)]$	RSA
7	$[{Cp'''Fe}_2(\mu-\eta^{4:4}-P_2Se_2)]$	RSA
8	$[{Cp^{R}Fe}_{2}(\mu-\eta^{4:4}-P_{4})]$	
8 a	$[{Cp'''Fe}_2(\mu-\eta^{4:4}-P_4)]$	
8b	$[{In''Fe}_2(\mu-\eta^{4:4}-P_4)]$	RSA
8c	$[{Cp'''Fe} {In''Fe}(\mu-\eta^{4:4}-P_4)]$	RSA
8d	$[{Cp''Fe}_2(\mu-\eta^{4:4}-P_4)]$	
9	$[\{Cp'''Fe\}_2(\mu_3-\eta^{4:4:1}-P_2S_2)\{W(CO)_5\}]$	
10	$[\{Cp'''Fe\}_2(\mu_3-\eta^{4:4:1}-P_2Se_2)\{W(CO)_5\}]$	
11	$[Cp'''_2Fe_2P_2S_2\{W(CO)_5\}_2]$	RSA

Verzeichnis der Verbindungen

 $[{Cp^{R}(OC)_{2}Fe}_{2}(\mu-\eta^{1:1}-P_{4})]$

 $[{Cp'''(OC)_2Fe}_2(\mu-\eta^{1:1}-P_4)]$

 $[{Cp'''Fe}_2(\mu-CO)(\mu-\eta^{2:2}-P_2)]$

 $[Co_2(CO)_5(PPh_3) (\mu - \eta^{2:2} - As_2)]$

 $[{Cp^{R}Fe(CO)_{2}}_{2}]$

 $[{Cp'''Fe(CO)_2}_2]$

 $[Cp^{R}Fe(\eta^{5}-P_{5})]$

 $[{Cp^{R}Fe}_{2}(\mu-\eta^{4:4}-P_{4})]$

 $[Fe_2(CO)_6(\mu-C_2^tBu_2)]$

Α

B

С

D

Ε

F

G

Η

I

- 12 $[Cp'''_2Fe_2P_2Se_2\{W(CO)_5\}_2]$
- **13** $[Cp^4_2Ni_2P_4\{W(CO)_5\}_2]$
- 14 $[Cp'''Fe(\mu_4-\eta^{4:2:1:1}-P_2Se_2)Fe(CO) Cp'''{W(CO)_5}_2]$ RSA
- 15 $[Cp''Fe(\mu-\eta^{4:1:1}-P_4)Fe(CO) Cp'']$
- **16** [Cp'Rh(μ - $\eta^{4:1:1}$ -P₄)Rh(CO) Cp']
- 17 $[Cp^{=}Ru(\mu-\eta^{4:1:1}-P_4)Ru(CO) Cp^{=}]$
- **18** [{Cp'''Fe}₂(μ -P)₂]
- **19** $[{Cp^{R}Fe}_{2}(\mu_{4}-\eta^{4:4:1:1}-P_{4}){W(CO)_{5}}_{2}]$
- **19a** $[{Cp'''Fe}_2(\mu_4-\eta^{4:4:1:1}-P_4){W(CO)_5}_2]$ **RSA**
- **19d** $[{Cp''Fe}_2(\mu_4-\eta^{4:4:1:1}-P_4){W(CO)_5}_2]$
- $\textbf{20} \qquad [\{Cp'''Co\}_2(\mu_4\text{-}\eta^{4:4:1:1}\text{-}P_4)\{W(CO)_5\}_2]$
- **21** [{ $Cp^{R}Fe(CO)_{2}$ }]
- **21a** $[{Cp'''Fe(CO)_2}_2]$
- **22** [In"₂Fe]
- **23** $[{Cp^{R}Ru(CO)_{2}}_{2}]$
- **23a** $[{Cp'''Ru(CO)_2}_2]$
- **23d** $[{Cp''Ru(CO)_2}_2]$
- 24 $[{Cp'''Ru}_2(\mu-CO)(\mu-O)]$ RSA
- **25** [{Cp'''Ru}₂(μ - η ^{4:4}-P₄)] **RSA**
- **26** $[{Cp^{=}Ru}_{2}(\mu-\eta^{2:2}-P_{2})_{2}]$
- **27** $[{Cp^{R}Rh}_{2}(\mu-\eta^{2:2}-P_{2})_{2}]$

Inhaltsverzeichnis

1	Einleitung	1
1.1	Übergangsmetall-Komplexe mit einem P ₄ -Butterflygerüst	
1.2	Decarbonylierungsprodukte von [{ $Cp^{R}(OC)_{2}Fe$ }_2(μ - $\eta^{1:1}$ -P ₄)] (A)	
1.3	P ₂ -Liganden als 4e ⁻ -Donoren mit μ - $\eta^{2:2}$ -Koordination	
1.4	Oxidative Darstellung von ÜM-Komplexen mit PX-Liganden	4
2	Problemstellung	6
3	Eigene Ergebnisse	
3.1	Untersuchungen zur Reaktivität des Diphosphadimetallatetrahedrans	
	$[{Cp'''Fe}_2(\mu-CO)(\mu-\eta^{2:2}-P_2)](1)$	7
3.1.1	Umsetzung von [{Cp'''Fe} ₂ (μ -CO)(μ - $\eta^{2:2}$ -P ₂)] (1) mit [W(CO) ₆]	7
3.1.1.1	Zweite Säulenfraktion: $[{Cp'''Fe}_2(\mu_3-CO)(\mu-\eta^{2:2:1}-P_2){W(CO)_5}]$ (3)	8
3.1.1.1.1	Eigenschaften und IR-Spektroskopie	8
3.1.1.1.2	NMR-Spektroskopie	9
3.1.1.1.3	Massenspektrometrie	9
3.1.1.1.4	Strukturvorschlag für Verbindung 3	10
3.1.1.1.5	Röntgenstrukturanalyse von [{Cp'''Fe} ₂ (μ -CO)(μ_3 - $\eta^{2:2:1}$ -P ₂){W(CO) ₅ }] (3)	10
3.1.2	Umsetzung von [{Cp'''Fe} ₂ (μ -CO)(μ - $\eta^{2:2}$ -P ₂)] (1) mit Chalkogenen	13
3.1.2.1	Erste Säulenfraktion: [{ $Cp'''Fe$ } ₂ (μ - $\eta^{4:4}$ - P_2X_2)] (6 , 7) (X = S, Se)	14
3.1.2.1.1	Eigenschaften und IR-Spektroskopie	14
3.1.2.1.2	NMR-Spektroskopie	15
3.1.2.1.3	Massenspektrometrie	15
3.1.2.1.4	Strukturvorschlag für Verbindung 6 und 7	16
3.1.2.1.5	Röntgenstrukturanalyse von [{Cp'''Fe} ₂ (μ - $\eta^{4:4}$ -P ₂ X ₂)] (6,7) (X = S, Se)	16
3.2	Komplexierung von [{ $Cp'''Fe$ } ₂ (μ - $\eta^{4:4}$ -P ₂ X ₂)] (6 , 7) (X = S, Se)	
	mit [W(CO) ₆]	22
3.2.1	Erste Säulenfraktion: [{Cp'''Fe} ₂ (μ_3 - $\eta^{4:4:1}$ -P ₂ X ₂){W(CO) ₅ }] (9,10)	
	(X = S, Se)	23
3.2.1.1	Eigenschaften und IR-Spektroskopie	23
3.2.1.2	NMR-Spektroskopie	23
3.2.1.3	Massenspektrometrie	24
3.2.1.4	Strukturvorschlag für Verbindung 9 und 10	25
3.2.2	Zweite Säulenfraktion: $[Cp''_2Fe_2P_2X_2\{W(CO)_5\}_2]$ (11, 12) (X = S, Se)	26

3.2.2.1	Eigenschaften und IR-Spektroskopie	26
3.2.2.2	NMR-Spektroskopie	
3.2.2.3	Strukturvorschlag für Verbindung 11 und 12	
3.2.2.4	Röntgenstrukturanalyse von $[Cp'''_2Fe_2P_2S_2\{W(CO)_5\}_2]$ (11)	
3.2.3	Dritte Säulenfraktion: [Cp'''Fe(µ4-η ^{4:2:1:1} -P ₂ Se ₂)Fe(CO) Cp'''	
	{W(CO) ₅ } ₂] (14)	33
3.2.3.1	Eigenschaften und IR-Spektroskopie	33
3.2.3.2	NMR-Spektroskopie	33
3.2.3.3	Strukturvorschlag für Verbindung 14	
3.2.3.4	Röntgenstrukturanalyse von [Cp'''Fe(μ_4 - $\eta^{4:2:1:1}$ -P ₂ Se ₂)Fe(CO)Cp'''	
	{W(CO) ₅ } ₂] (14)	
3.3	Photolyse von [{Cp'''Fe} ₂ (μ -CO)(μ - η ^{2:2} -P ₂)] (1) und dessen anschlies-	
	sende Umsetzung mit Chalkogenen	39
3.4	Komplexierung von [{Cp'''Fe} ₂ (μ - $\eta^{4:4}$ -P ₄)] (8a) mit [W(CO) ₆]	
3.4.1	Erste Säulenfraktion: $[{Cp'''Fe}_2(\mu_4-\eta^{4:4:1:1}-P_4){W(CO)_5}_2]$ (19a)	43
3.4.1.1	Eigenschaften und IR-Spektroskopie	43
3.4.1.2	NMR-Spektroskopie	43
3.4.1.3	Strukturvorschlag für Verbindung 19a	
3.4.1.4	Röntgenstrukturanalyse von [$\{Cp'''Fe\}_2(\mu_4-\eta^{4:4:1:1}-P_4)$	
	{W(CO) ₅ } ₂] (19a(A))	
3.5	Umsetzung des [{In"(OC) ₂ Fe} ₂ (μ - η ^{1:1} -P ₄)] (2b) mit	
	$[{Cp'''Fe(CO)_2}_2] (21a)$	53
3.5.1	Zweite Säulenfraktion: [{ $Cp''Fe$ } ₂ (μ - $\eta^{4:4}$ -P ₄)] (8a)	
3.5.1.1	Eigenschaften und IR-Spektroskopie	
3.5.1.2	NMR-Spektroskopie	55
3.5.1.3	Strukturvorschlag für Verbindung 8a	55
3.5.2	Dritte Säulenfraktion: [{In"Fe} {Cp $"Fe$ }(μ - $\eta^{4:4}$ -P ₄)] (8c)	56
3.5.2.1	Eigenschaften und IR-Spektroskopie	
3.5.2.2	NMR-Spektroskopie	56
3.5.2.3	Strukturvorschlag für Verbindung 8c	57
3.5.2.4	Röntgenstrukturanalyse von [{In"Fe}{Cp ["] Fe}(μ - $\eta^{4:4}$ -P ₄)] (8c)	57
3.5.3	Vierte Säulenfraktion: $[{In"Fe}_2(\mu-\eta^{4:4}-P_4)]$ (8b)	61
3.5.3.1	Eigenschaften und IR-Spektroskopie	
3.5.3.2	NMR-Spektroskopie	

3.5.3.3	Strukturvorschlag für Verbindung [{In"Fe} ₂ (μ - $\eta^{4:4}$ -P ₄)] (8b)			
3.5.3.4	Röntgenstrukturanalyse von [$\{In''Fe\}_2(\mu-\eta^{4:4}-P_4)$] (8b)			
3.6	Orientierender Versuch zur Synthese des $[{Cp'''Ru(CO)_2}_2]$ (23a) als			
	Ausgangsverbindung für P ₄ -Butterflykomplexe des Rutheniums			
3.6.1	Erste Säulenfraktion			
3.6.1.1	Eigenschaften und Analytik			
3.6.2	Zweite Säulenfraktion			
3.6.2.1	Eigenschaften und Analytik			
3.6.3	Dritte Fraktion: [{Cp'''Ru} ₂ (μ-CO)(μ-O)] (24)			
3.6.3.1	Eigenschaften und IR-Spektroskopie			
3.6.3.2	NMR-Spektroskopie			
3.6.3.3	Strukturvorschlag für Verbindung 24			
3.6.3.4	Röntgenstrukturanalyse von [$\{Cp'''Ru\}_2(\mu-CO)(\mu-O)$] (24)			
3.6.4	Vierte Fraktion			
3.6.4.1	Eigenschaften und Analytik			
3.7	Orientierender Versuch zur Reaktivität von [$\{Cp'''Ru\}_2(\mu-CO)(\mu-O)$] (24)			
	gegenüber weißem Phosphor			
3.7.1	Erste Säulenfraktion: [{Cp'''Ru} ₂ (μ - η ^{4:4} -P ₄)] (25)			
3.7.1.1.	Eigenschaften und IR-Spektroskopie			
3.7.1.2	NMR-Spektroskopie			
3.7.1.3	Strukturvorschlag für Verbindung 25			
3.7.1.4	Röntgenstrukturanalyse von [{Cp'''Ru} ₂ (μ - η ^{4:4} -P ₄)] (25)			
4	Experimenteller Teil			
4.1	Analysemethoden und –geräte			
4.2	Ausgangsverbindungen			
4.3	Versuchsbeschreibungen			
4.3.1	Umsetzung von [{Cp'''Fe} ₂ (μ -CO)(μ - $\eta^{2:2}$ -P ₂)] (1) mit [W(CO) ₆]			
4.3.2	Umsetzung von [{ $Cp'''Fe$ } ₂ (μ -CO)(μ - η ^{2:2} -P ₂)] (1) mit den Chalkogenen			
	S ₈ und Se _{grau}			
4.3.3	Komplexierung der Chalkogen-Produkte [{Cp'''Fe} ₂ (μ - η ^{4:4} -P ₂ X ₂)] (6,7)			
	$(X = S, Se) mit [W(CO)_6]_{}$			
4.3.4	Photolyse von [{Cp'''Fe} ₂ (μ -CO)(μ - $\eta^{2:2}$ -P ₂)] (1) und anschließende			
	Umsetzung mit den Chalkogenen Schwefel und Selen			
4.3.5	Komplexierung von [{Cp'''Fe} ₂ (μ -n ^{4:4} -P ₄)] (8a) mit [W(CO) ₆]			

4.3.6	Umsetzung von [$\{In''(OC)_2Fe\}_2(\mu-\eta^{1:1}-P_4)$] (2b) mit	
	$[{Cp'''Fe(CO)_2}_2] (21a)$	93
4.3.7	Orientierender Versuch zur Synthese von $[{Cp'''Ru(CO)_2}_2]$ (23a) als	
	Ausgangsverbindung für die Synthese von P ₄ -Butterflyverbindungen	94
4.3.8	Orientierender Versuch zur Umsetzung von	
	$[{Cp'''Ru}_2(\mu-CO)(\mu-O)]$ (24) mit P ₄	95
5	Zusammenfassung	96
6	Literaturverzeichnis	101
7	Anhang	104

1 Einleitung

1.1 Übergangsmetall-Komplexe mit einem P₄-Butterflygerüst

Der erste röntgenstrukturanalytische Nachweis der Tetraphosphabicyclobutan-Komplexe vom Typ [{Cp^R(OC)₂Fe}₂(μ - $\eta^{1:1}$ -P₄)] (**A**) gelang 1999 *T. Hilt* ^[1,2] aus der Arbeitsgruppe *Scherer*, fast genau 10 Jahre nach der ³¹P-NMR-spektroskopischen Entdeckung dieser Verbindungsklasse durch *T. Brück* ^[3]. In dieser Zeit scheiterten einige Arbeitsgruppen, darunter auch die von *Jutzi* ^[4] und *Weber* ^[5] am eindeutigen Strukturbeweis der Butterflyverbindungen **A**. Anhand des Cp^{III}-Derivates konnte *Hilt* die bereits angenommene Struktur mit zwei 17VE-Übergangsmetall-Fragmenten in exo/exo-Anordnung an den beiden Flügelspitzen-Phosphoratomen eindeutig nachweisen. Man erhält [{Cp^R(OC)₂Fe}₂(μ - $\eta^{1:1}$ -P₄)] (**A**) in sehr guten Ausbeuten bei der Kurzzeitthermolyse der Eisen-Zweikernkomplexe [{Cp^RFe(CO)₂}₂] (**B**) mit weißem Phosphor in Toluol.

1.2 Decarbonylierungsprodukte von $[{Cp^{R}(OC)_{2}Fe}_{2}(\mu-\eta^{1:1}-P_{4})]$ (A)

In der von *Schwarz* ^[6,7] 1995 dargestellten Serie von P₄-Eisenkomplexen der Zusammensetzung [Cp"₂Fe₂(CO)_{4-n}P₄] (n = 0-4) erhält man bei der Umsetzung von [{Cp"'Fe(CO)₂}₂] (C) mit weißem Phosphor durch photolytisch induzierte sukzessive CO-Eliminierung aus dem Butterflykomplex fünf weitere phosphorhaltige Verbindungen mit substituentenfreien P₄-Liganden. Zwei davon konnte *Schwarz* ^[6,7] röntgenstrukturanalytisch eindeutig nachweisen, darunter den *pseudo*-Tripeldeckerkomplex [{Cp^RFe}₂(μ - η ^{4:4}-P₄)] (**D**), den *Hilt* ^[1,2] vier Jahre später neben dem Butterflykomplex **A** und dem Pentaphosphaferrocen $[Cp^{R}Fe(\eta^{5}-P_{5})]$ (**E**) anhand des Cp^{'''}-Derivates kristallstrukturanalytisch identifizierte.

In Komplex **D** spricht die Zahl von 46 Valenzelektronen gemäß den Zählregeln von *Wade*^[8] für ein *closo*-Polyeder mit (n+1) = 7 GEP und einem oktaedrischen Grundgerüst. Die strukturanalytischen Daten widerlegen diese Annahme jedoch, da in Wirklichkeit eine gewinkelte P₄-Kette mit trapezoider Anordnung der Phosphoratome vorliegt. In der thermodynamisch stabilsten Konformation von **D** stehen die *tert*-Butylgruppen der beiden Cp^{III}-Liganden genau ekliptisch zueinander. Die Kurzzeitthermolyse von **A** führt dagegen zu anderen Modifikation von **D**, in dem die Alkylgruppen sowohl ekliptisch als auch gestaffelt angeordnet sind, wie ich während meiner Diplomarbeit röntgenstrukturanalytisch nachweisen konnte ^[9]. Der Begriff *pseudo*-Tripeldecker veranschaulicht am ehesten die räumlichen Gegebenheiten von Verbindung [{Cp^RFe}₂(µ-η^{4:4}-P₄)] (**D**).

Die Verkürzung der Reaktionszeit bei der Thermolyse von $[{Cp'''(OC)_2Fe}_2(\mu-\eta^{1:1}-P_4)]$ (F) auf 45 Minuten lieferte *Eichhorn* und *Sögding* ^[9,10,11] im Jahr 2000 das bis dahin noch unbekannte Decarbonylierungsprodukt $[{Cp'''Fe}_2(\mu-CO)(\mu-\eta^{2:2}-P_2)]$ G mit einem Fe₂P₂-Tetrahedrangerüst.

1.3 P₂-Liganden als 4e⁻-Donoren mit μ - $\eta^{2:2}$ -Koordination

Komplexe dieser Art mit einem M₂E₂-Tetrahedrangerüst (E = P, As) wurden 1969 erstmals von *L. F. Dahl* ^[12] aus Co₂(CO)₈ und AsCl₃ synthetisiert und in Form des PPh₃-Derivates [Co₂(CO)₅(PPh₃)(μ - $\eta^{2:2}$ -As₂)] (**H**) röntgenstrukturanalytisch nachgewiesen. Des Weiteren wurden als Übergangsmetalle noch Wolfram, Chrom und Mangan verwendet und mit Arsenbzw. Phosphorhalogeniden oder weißem Phosphor als P_n-Quelle umgesetzt. Nach *Wade* ^[8] und *Mingos* ^[13] stellen solche Verbindungen 40VE-Cluster mit (n+2) = 6 GEP und 15 VE-Übergangsmetall-Fragmenten an zwei der vier Tetraederecken dar und können als *nido*trigonale Bipyramide angesehen werden. Die unkomplexierte E₂-Einheit ist senkrecht zur Metall-Metall-Bindungsachse angeordnet und fungiert als 4e⁻-Donor. Diesen Sachverhalt diskutieren *Saillard et al.* ^[14] ausführlich an den Beispielen [Fe₂(CO)₆(μ - $\eta^{2:2}$ -C₂^tBu₂)] (**I**), das 1975 von *Cotton* ^[15] synthetisiert wurde, und seinem Kobalt-Analogon, bezugnehmend auf das von *Hoffman* ^[16] entwickelte Isolobal-Prinzip von (CR)_n- und P_n-Fragmenten. Das Tetrahedran **G** dagegen weist nur 5 GEP auf. Der daraus resultierende Elektronenmangel am Eisen-Zentrum wird durch eine formale Fe-Fe-Doppelbindung kompensiert, die noch zusätzlich carbonylverbrückt ist.

1.4 Oxidative Darstellung von ÜM-Komplexen mit PX-Liganden

Erste Ergebnisse auf dem Gebiet der koordinativen Stabilisierung von PX-Bausteinen in der Koordinationssphäre von Übergangsmetall-Komplexen lieferten *Marcó et al.* ^[17] zu Beginn der 70er Jahre. Fast 20 Jahre später gelang *Braun* ^[18] und *Vondung* ^[19] aus unserem Arbeits-kreis die Synthese eines binuklearen Nickel-Komplexes [{Cp⁴Ni}₂(μ_3 -P)₂{W(CO)₄}] (J) mit zwei dreifachverbrückenden PX-Liganden (X = O, S).

Zu den wenigen bekannten Beispielen auf diesem Gebiet zählen auch die oxidierten $[(CpFe)_4(P_2X_2)_2]$ -Dreiecksdodekaeder (**K**) (X = O, S, Se) von *Kemény* ^[20,21] aus dem Jahr 1994 und die von *Weigel* 1999 entdeckten dreikernigen [{Cp"Co}_3(\mu_3-P)_2]-Cluster (**L**) und [{Cp^RCo}_4P_4]-Cubane (**M**) mit einem oder mehreren PX-Liganden (X = O, S, Se) ^[22]. Diese Ergebnisse stellte *Kemény* den theoretischen Berechnungen von *M. Hofmann* aus der Arbeits-gruppe von *P. v. R. Schleyer* zu den freien P₂X₂-Isomeren (X = O, S, Se) vergleichend gegenüber und fand dabei einige brauchbare Übereinstimmungen ^[20,21,23]. Seit der Entdeckung der ersten Übergangsmetall-Komplexe mit PX-Liganden hält das Interesse an diesen eher seltenen Verbindungen beständig an ^[24].

2 Problemstellung

Ziel dieser Arbeit war es zunächst, die Reaktivität der freien Elektronenpaare an den beiden Phosphoratomen in dem kürzlich entdeckten Komplex [{Cp'''Fe}₂(μ -CO)(μ - $\eta^{2:2}$ -P₂)] (1) mit einem Fe₂P₂-Tetrahedrangerüst zu untersuchen. Dies wird durch Koordination mit [W(CO)₅]-Fragmenten oder durch Oxidation mit Schwefel oder Selen erreicht. Die so erhaltenen Produkte sollen danach auf ihre Verwendung als Edukte für weitere Reaktionen getestet werden. Desweiteren sollte die Umsetzung der P₄-Butterflyverbindung [{In''(OC)₂Fe}₂(μ - $\eta^{1:1}$ -P₄)] (**2b**) mit dem Bis-[(dicarbonyl)(tri-*tert*-butyl-cyclopentadienyl)-eisen(I)] im Hinblick auf die Eignung von **2b** als alternative P_n-Quelle einen weiteren Schwerpunkt dieser Arbeit darstellen.

Im Anschluß daran sollten noch einige orientierende Versuche zur Synthese des bisher noch unbekannten Ruthenium-Dimers [$\{Cp'''Ru(CO)_2\}_2$] durchgeführt und seine Reaktivität gegenüber weißem Phosphor untersucht werden.

3 Eigene Ergebnisse

3.1 Untersuchungen zur Reaktivität des Diphosphadimetallatetrahedrans [{Cp'''Fe}₂(μ-CO)(μ-η^{2:2}-P₂)] (1)

Unter Thermolysebedingungen entsteht aus dem Cp^{'''}-Butterfly vom Typ [{Cp^R(OC)₂Fe}₂(μ - $\eta^{1:1}$ -P₄)] (**2**) neben zwei weiteren Decarbonylierungsprodukten der Komplex **1** mit einer tetrahedranähnlichen Struktur, die ich schon während meiner Diplomarbeit röntgenstrukturanalytisch eindeutig nachweisen konnte ^[10,11]. Die strukturellen Unterschiede von Verbindung **1** bieten im Gegensatz zu den bisher bekannten Diphosphadimetallatetrahedranen von *Huttner* ^[25] und *Vahrenkamp* ^[26] zahlreiche Möglichkeiten, die Reaktivität dieses ungewöhnlichen Tetrahedrans im Folgenden zu untersuchen. Sowohl die freien Elektronenpaare an den beiden Phosphoratomen als auch die Fe-Fe-Doppelbindung sowie die μ -CO-Gruppe stellen reaktive Zentren von [{Cp'''Fe}₂(μ -CO)(μ - $\eta^{2:2}$ -P₂)] (**1**) dar.

3.1.1 Umsetzung von [{Cp'''Fe}₂(μ-CO)(μ-η^{2:2}-P₂)] (1) mit [W(CO)₆]

In einer Tauchlampenapparatur mit Wasserkühlung wird Wolframhexacarbonyl in Tetrahydrofuran ca. 45 Minuten bestrahlt. Schon nach kurzer Zeit färbt sich das Reaktionsgemisch intensiv gelb. Die frisch bereitete [W(CO)₅·thf]-Lösung gibt man direkt in sechs- bis achtfachem Überschuß zu festem [{Cp'''Fe}₂(μ -CO)(μ - $\eta^{2:2}$ -P₂)] (1) und rührt die grüne Reaktionslösung 36 Stunden bei Raumtemperatur. Anschließend wird das Lösungsmittel am Ölpumpenvakuum entfernt und der gelbgrüne Rückstand säulenchromatographisch an Kieselgel bei –20 °C aufgearbeitet.

$$[\{Cp'''Fe\}_{2}(\mu-CO)(\mu-\eta^{2:2}-P_{2})] \xrightarrow{[W(CO)_{5}\cdot thf]} [\{Cp'''Fe\}_{2}(\mu-CO)(\mu_{3}-\eta^{2:2:1}-P_{2})\{W(CO)_{5}\}]$$
(1)
(3)
$$Cp''' = C_{5}H_{2}^{t}Bu_{3}-1,2,4$$

Abb. 3.1: Reaktionsbedingungen bei der Komplexierung von $[{Cp'''Fe}_2(\mu-CO)(\mu-\eta^{2:2}-P_2)]$ (1) mit $[W(CO)_6]$ Mit einem Lösungsmittelgemisch von Petrolether und Toluol im Verhältnis 20:1 erhält man zunächst einen orangegelben Vorlauf, aus dem nach dem Entfernen des Lösungsmittels nicht umgesetztes $[W(CO)_6]$ als weißes Pulver zurückbleibt. Die zweite Fraktion wird mit der glei-

umgesetztes [W(CO)₆] als weißes Pulver zurückbleibt. Die zweite Fraktion wird mit der gleichen Polarität des Petrolether/Toluol-Gemisches als grüngelbe Lösung gewonnen. Sie weist im ³¹P-NMR-Spektrum zwei miteinander wechselwirkende Dubletts auf, die auf eine einzelne phosphorhaltige Verbindung schließen lassen. Lösungsmittelgemische steigender Polarität eluieren keine weiteren Fraktionen.

3.1.1.1 Zweite Säulenfraktion: $[{Cp'''Fe}_2(\mu-CO)(\mu_3-\eta^{2:2:1}-P_2){W(CO)_5}]$ (3)

3.1.1.1.1 Eigenschaften und IR-Spektroskopie

Die grüne, kristalline Substanz, die nach der säulenchromatographischen Aufarbeitung zurückbleibt, ist sowohl in unpolaren Lösungsmitteln wie Pentan und Hexan als auch in polaren Solventien wie Dichlormethan und Tetrahydrofuran sehr gut löslich. Verbindung **3** kann problemlos kurzzeitig an Luft gehandhabt und unter Schutzgas über Monate gelagert werden. Im IR-Spektrum einer Toluollösung von **3** werden drei Banden im Bereich terminal koordi-

nierter CO-Liganden bei $\overline{v} = 2064 \text{ cm}^{-1}$, 1947 cm⁻¹ und 1928 cm⁻¹ beobachtet, die auf das 16VE-Übergangsmetallfragment {W(CO)₅} zurückgeführt werden können. Das Signal bei $\overline{v} = 1765 \text{ cm}^{-1}$ kann der verbrückenden CO-Gruppe an der Fe-Fe-Doppelbindung des Tetrahedrangerüstes zugeordnet werden.

Tabelle 3.1: IR-Absorptionsbanden f
 ür die Carbonylgruppen von Verbindung 3 in Toluol

$[\{Cp'''Fe\}_2(\mu-CO)(\mu_3-\eta^{2:2:1}-P_2)\{W(CO)_5\}] (3)$		
2064 (vs)	W(<u>CO</u>) ₅	
1947 (vs)	W(<u>CO</u>) ₅	
1928 (vs)	W(<u>CO</u>)5	
1765 (s)	verbrückendes CO	

3.1.1.1.2 NMR-Spektroskopie

Das Aufspaltungsmuster der Signale im ¹H-NMR-Spektrum von **3** spricht für eine symmetrische Umgebung an den beiden Cp^{'''}-Liganden. Die drei Singuletts bei $\delta = 1.02$ ppm, $\delta = 1.25$ ppm und $\delta = 3.30$ ppm stehen in einem Integralverhältnis von 9:18:2 zueinander und können den teilweise chemisch und magnetisch äquivalenten Alkylgruppen und den beiden Ringprotonen des dreifach substituierten Cyclopentadienylringes zugeordnet werden.

Im ³¹P-NMR-Spektrum von Verbindung **3** werden zwei intensitätsgleiche Dubletts bei δ = 629.4 ppm und δ = 454.0 ppm beobachtet, die über eine ¹J_{P,P}-Kopplungskonstante von 503.54 Hz miteinander korrelieren. Ein deutlicher Dacheffekt an beiden Signalen unterstreicht diese Wechselwirkung.

Tabelle 3.2:	¹ H- und ³¹ P-NMR-Daten von [{Cp'''Fe} ₂ (μ -CO)(μ ₃ - η ^{2:2:1} -P ₂){W(CO) ₅ }] (3);
	400.14 MHz und 161.97 MHz, C ₆ D ₆ , 293 K

$[{Cp'''Fe}_2(\mu-CO)(\mu_3-\eta^{2:2:1}-P_2){W(CO)_5}] (3)$			
δ [ppm] Zuordnung			
¹ H-NMR	1.02 (s, 18 H)	C(CH ₃) ₃ , Cp ^{III} -Ligand	
	1.25 (s, 36 H)	C(CH ₃) ₃ , Cp ^{'''} -Ligand	
	3.30 (s, 4 H)	Ringprotonen am Cp'"-Ligand	
³¹ P-NMR	$629.4 (d, 1 P); {}^{1}J_{P,P} = 503.54 Hz$	P-Atom unkomplexiert	
	454.0 (d, 1 P); ${}^{1}J_{P,P} = 503.54 \text{ Hz}$	P-Atom komplexiert	

3.1.1.1.3 Massenspektrometrie

Im EI-Massenspektrum von [{Cp'''Fe}₂(μ -CO)(μ_3 - $\eta^{2:2:1}$ -P₂){W(CO)₅}] (**3**) kann das Molekülion der Zusammensetzung [Cp'''₂Fe₂(CO)₆WP₂]⁺ zwar nicht beobachtet werden, dafür aber mehrere Fragmentionen, die durch schrittweise Eliminierung von CO-Gruppen entstanden sind. Den Basispeak bei m/z = 668.1 amu bildet das Fragmention der Zusammensetzung [Cp'''₂Fe₂(CO)P₂]⁺. Das weitere Fragmentierungsmuster von **3** wird in *Tabelle 3.3* wiedergegeben.

$[{Cp'''Fe}_2(\mu-CO)(\mu_3-\eta^{2:2:1}-P_2){W(CO)_5}] (3)$		
Fragmention	m/z [amu]	rel. Intensität [%]
$\left[\mathrm{Cp'''_2Fe_2(CO)_4WP_2}\right]^+$	936.1	3.31
$\left[\mathrm{Cp'''_2Fe_2(CO)WP_2}\right]^+$	852.1	7.41
$\left[\mathrm{Cp'''_2Fe_2WP_2}\right]^+$	824.0	67.24
$\left[Cp'''_2Fe_2(CO)P_2\right]^+$	668.1	100.00
$\left[Cp'''_2Fe_2P_2\right]^+$	640.2	25.22
$[Cp'''FeP_2]^+$	345.2	12.00
[Cp'''Fe] ⁺	289.2	26.48
$[^{t}Bu]^{+}$	57.1	55.37

Tabelle 3.3: Ausgewählte Fragmente aus dem EI-Massenspektrum von 3; 70 eV, Trägergas= Isobutan, $AT = 140 \ ^{\circ}C$, $QT = 200 \ ^{\circ}C$

3.1.1.1.4 Strukturvorschlag für Verbindung 3

Sowohl die charakteristischen CO-Banden im IR-Spektrum als auch das Fragmentierungsmuster des EI-Massenspektrums untermauern die Annahme, daß es sich bei Verbindung **3** um das einfach komplexierte Tetrahedran [{Cp'''Fe}₂(μ -CO)(μ ₃- η ^{2:2}-P₂){W(CO)₅}] (**3**) handelt. Einen weiteren Beweis liefert die NMR-Spektroskopie. Im Vergleich zum Edukt **1** treten im Phosphorresonanzspektrum von **3** nun zwei Signale auf, da die Komplexierung nur eines der beiden P-Atome mit {W(CO)₅} die A₂-Symmetrie aufhebt. Ein typisches AB-Spinsystem wird beobachtet, wobei das Dublett bei höherem Feld eine zusätzliche Linienverbreiterung aufweist, die auf eine Phosphor-Wolfram-Wechselwirkung zurückgeführt werden kann. Den eindeutigen Strukturbeweis liefert jedoch die Röntgenstrukturanalyse, die von [{Cp'''Fe}₂(μ -CO)(μ ₃- η ^{2:2}-P₂){W(CO)₅}] (**3**) angefertigt werden konnte

3.1.1.1.5 Röntgenstrukturanalyse von [{Cp'''Fe}₂(μ -CO)(μ_3 - $\eta^{2:2:1}$ -P₂){W(CO)₅}] (3)

Für die Röntgenstrukturanalyse geeignete Einkristalle von **3** konnten durch Abdiffusion des Lösungsmittels aus einer gesättigten Hexanlösung erhalten werden. Schwebepartikel wurden zuvor mittels Filtration über eine D3-Fritte aus der Lösung entfernt. Nachfolgende *Abbildung 3.2* zeigt die Molekülstruktur von **3** im Kristall mit der Nummerierung der zentralen Baueinheit. Ausgewählte Bindungslängen und –winkel sowie besten Ebenen und Winkel zwischen

diesen Ebenen sind in *Tabelle 3.4* aufgelistet. Alle übrigen Strukturdaten, Atomkoordinaten und Meßparameter können dem Anhang entnommen werden.

Abb. 3.2: Molekülstruktur von [$\{Cp'''Fe\}_2(\mu-CO)(\mu_3-\eta^{2:2:1}-P_2)\{W(CO)_5\}$] (**3**) im Kristall

Die Kristallstruktur von [{Cp'''Fe}₂(μ -CO)(μ_3 - $\eta^{2:2:1}$ -P₂){W(CO)₅}] (**3**) zeigt als zentrales Bauelement ein P₂Fe₂-Tetrahedran, in dem zwei P-Atome senkrecht zur Fe-Fe-Bindungsachse angeordnet sind. Im Gegensatz zu den vergleichbaren Molekülen [Fe₂(CO)₇P₂{Cr(CO)₅}₂] (**4**) von *Huttner* ^[25] und [Fe₂(CO)₆(μ -P₂^tBu₂)] (**5**) von *Vahrenkamp* ^[26] ist in Komplex **3** nur ein Phosphoratom mit dem 16VE-Übergangsmetall-Fragment {W(CO)₅} komplexiert. Damit fungiert die P₂-Einheit als 6e⁻-Donor. Die beiden P-Atome spannen zusammen mit dem C-Atom der Carbonylbrücke und dem Wolframatom des Komplexierungsmittels eine Ebene auf, deren maximale Abweichung lediglich 0.008 Å beträgt. Sie umschließt mit den beiden planaren Fünfringcentroiden jeweils ein Eisenatom in einem Winkel von 171.6° bzw. 171.0°. Die Anordnung der beiden Carbocyclen zueinander weicht um 19.3° von der Parallelität ab und

im Vergleich zur mittleren Ebene um 10.1° beziehungsweise um 9.2°. Die Cp^{"-}-Liganden neigen sich dabei in Richtung der CO-Gruppe zu der P₂CW-Ebene hin. Ein Vergleich der oben beschriebenen Daten mit den Werten der unkomplexierten Verbindung 1 zeigt deutlich den geringen Einfluß des W(CO)₅-Fragmentes auf das Gesamtsystem ^[9,10,11]. Ausgenommen davon sind die alkylierten Cp-Ringe, die um 2.6° weiter zu dem Carbonylliganden hin "gedrückt" werden, da das Wolframpentacarbonyl-Fragment mehr Platz beansprucht als ein lonepair am Phosphoratom. Dagegen ist der Einfluß auf die Bindungslängen und –winkel im P₂Fe₂-Tetrahedrangerüst so gering, daß die Abweichungen größtenteils in Bereichen von 0.01 – 0.02 Å oder 1° liegen. Sowohl die P(1)-P(2)-Bindung als auch die Fe(1/2)-P(1)-Bindungen werden durch die Komplexierung an P(1) etwas verkürzt, während die Fe(1)-Fe(2)- und die Fe(1/2)-P(2)-Bindungen sich leicht vergrößern. In Komplex **3** weichen die Winkel mäßig stark vom Tetraederwinkel (60°) ab. Durch die Komplexierung reduziert sich die Symmetrie der Verbindung zwar, wie die NMR-Spektroskopie eindeutig zeigt gewinnt dadurch aber gegenüber dem Edukt deutlich an Stabilität insbesondere unter Lichteinfluß.

Tabelle 3.4	Ausgewählte Strukturdaten	von [{Cp'''Fe} ₂ (μ -C	CO)(μ ₃ -η ^{2:2:1}	$^{1}-P_{2}$ {W(CO) ₅ }] (3)
-------------	---------------------------	--	--	--

Fe(1) - Fe(2)	2.4123(12)
Fe(1) - P(1)	2.2745(17)
Fe(1) - P(2)	2.2940(18)
Fe(2) - P(1)	2.2704(16)
Fe(2) - P(2)	2.3082(17)
P(1) - P(2)	2.051(2)
Fe(1) - C(99)	1.912(6)
Fe(2) - C(99)	1.917(7)
$Fe(1) - C(1)-C(5)_{centr.}$	1.749
$Fe(2) - (6)-C(10)_{centr.}$	1.739

• Ausgewählte Bindungslängen in Å

Ausgewählte Bindungswinkel in Grad

$Cp'''_{centr.} - Fe(1) - Fe(2)$	171.6	P(1) - Fe(1) - P(2)	53.34(6)
$Cp'''_{centr.} - Fe(2) - Fe(1)$	171.0	P(1) - Fe(2) - P(2)	53.21(6)
Fe(1) - P(1) - Fe(2)	64.11(5)	Fe(1) - C(99) - Fe(2)	78.10(2)
Fe(1) - P(2) - Fe(2)	63.22(5)		

• Ebenendefinition und maximale Abweichung aus diesen Ebenen in Å

Ebene	Atome	Maximale Abweichung
E1	C(6) - C(7) - C(8) - C(9) - C(10)	0.0075
E2	C(99) - P(1) - P(2)	-
E3	C(1) - C(2) - C(3) - C(4) - C(5)	0.0070
E4	C(99) - P(1) - P(2) - W(1)	0.0080

• Winkel zwischen den besten Ebenen in Grad

Ebenen	E1/E2	E1/E3	E1/E4	E2/E3	E3/E4
Winkel	10.0	19.3	10.1	9.4	9.2

3.1.2 Umsetzung von [{Cp'''Fe}₂(μ -CO)(μ - η ^{2:2}-P₂)] (1) mit Chalkogenen

Da sich durch Einwirkung von Luftsauerstoff Komplex 1 unter Braunfärbung direkt zersetzt, werden bei den nachfolgend beschriebenen Umsetzungen nur die beiden Chalkogene Schwefel und Selen verwendet.

Dazu löst man [{Cp'''Fe}₂(μ -CO)(μ - $\eta^{2:2}$ -P₂)] (1) in einem Einhalskolben mit Hahn in wenig Toluol und gibt einen acht- bis zehnfachen Überschuß an Schwefel oder Selen zu der grünen Reaktionslösung. Diese wird dann unter Lichtausschluß 72 Stunden bei Raumtemperatur gerührt. Anschließend entfernt man das Lösungsmittel am Ölpumpenvakuum und untersucht den gelbgrünen Rückstand ³¹P-NMR-spektroskopisch. Das Rohlösungsspektrum zeigt für beide Ansätze jeweils zwei Singuletts im Bereich zwischen δ = -80 ppm und δ = 170 ppm, woraufhin der Feststoff säulenchromatographisch an Kieselgel bei tiefen Temperaturen aufgearbeitet wird.

[{Cp'''Fe} ₂ (µ-CO)(µ-η ^{2:2} -P ₂)]	$\frac{X}{3 \text{ d. RT}}$	[{Cp'''Fe} ₂ (µ-η ^{4:4} -P ₂ X ₂)]
(1)	• •,	(6,7)
$Cp''' = C_5 H_2^{t} Bu_3 - 1, 2, 4$		X = S, Se

Abb. 3.3: Reaktionsbedingungen bei der Umsetzung von $[{Cp'''Fe}_2(\mu-CO)(\mu-\eta^{2:2}-P_2)]$ (1) mit Schwefel und Selen

Beide Trennungsvorgänge liefern je zwei Fraktionen, von denen die erste mit einem Petrolether/Toluol-Lösungsmittelgemisch im Verhältnis 20:1 als hellgrüne, im Fall des Selens als gelbgrüne Lösung, eluiert werden kann. Im Phosphorresonanzspektrum detektiert man nur noch das Signal bei höherem Feld. Das Selenderivat ist gelegentlich mit der noch unbekannten phosphorhaltigen Verbindung, die bei tieferem Feld in Resonanz tritt, geringfügig verunreinigt. Die zweite, orange bzw. rotbraune Fraktion erhält man mit einem 1:1-Gemisch von Petrolether und Toluol. Jedoch konnte in dieser und auch in keiner weiteren Fraktion ein zweites Singulett bei $\delta = 156.6$ ppm bzw. $\delta = 169.9$ ppm oder ein anderes Phosphorsignal ³¹P-NMR-spektroskopisch detektiert werden.

3.1.2.1 Erste Säulenfraktion: $[{Cp'''Fe}_2(\mu-\eta^{4:4}-P_2X_2)]$ (6,7) (X = S, Se)

3.1.2.1.1 Eigenschaften und IR-Spektroskopie

Die Schwefelverbindung 6 und das Selen-Derivat 7 bleiben nach dem Entfernen des Lösungsmittels am Ölpumpenvakuum als grüne Feststoffe zurück, die sich in unpolaren Lösungsmitteln wie Pentan und Hexan gut lösen. Mit steigender Polarität der Solventien nimmt auch die Löslichkeit von 6 und 7 deutlich zu. Gegenüber dem Edukt 1 sind beide Komplexe bezüglich der Einwirkung von Licht und Luftsauerstoff wesentlich beständiger und können mehrere Wochen unter Schutzgas ohne sichtbare Veränderungen gelagert werden.

Das IR-Spektrum einer Toluollösung von 6 und 7 weist keine Signale im charakteristischen Bereich terminal oder verbrückend koordinierter Carbonylliganden auf.

3.1.2.1.2 NMR-Spektroskopie

Das Protonenresonanzspektrum zeigt für beide Verbindungen das charakteristische Aufspaltungsmuster des Tri-*tert*-butyl-Cyclopentadienylliganden in symmetrischer Umgebung. Die drei Singuletts für die Alkylgruppen und die beiden Ringprotonen weisen jeweils ein Integralverhältnis von 9:18:2 auf.

Auch das ³¹P-NMR-Spektrum spricht für Komplexe hoher Symmetrie, da jeweils nur ein einziges Singulett die beiden Verbindungen charakterisiert. Die Signale für das Schwefel- und das Selen-Derivat treten bei ähnlichen chemischen Verschiebungen auf.

Tabelle 3.5: ¹H- und ³¹P-NMR-Daten von [{Cp'''Fe}₂(μ - $\eta^{4:4}$ -P₂X₂)] (6,7) (X = S, Se);400.14 MHz und 161.97 MHz, C₆D₆, 293 K

	$[{Cp'''Fe}_{2}(\mu-\eta^{4:4}-P_{2}S_{2})] (6)$	$[\{Cp'''Fe\}_2(\mu-\eta^{4:4}-P_2Se_2)] (7)$
	δ [ppm]	Zuordnung
¹ H-NMR	1.39 (s, 18 H)	1.38 (s, 18 H)
	1.52 (s, 36 H)	1.47 (s, 36 H)
	3.35 (s, 4 H)	3.34 (s, 2 H)
³¹ P-NMR	-111.7 (s, 2 P)	-86.1 (s, 2 P)

3.1.2.1.3 Massenspektrometrie

Im EI-Massenspektrum von Komplex **6** und **7** wird jeweils der Molekülionenpeak $[M]^+$ bei m/z = 704.1 amu bzw. m/z = 797.9 amu mit einer relativen Intensität von 55.36 % beziehungsweise 90.43 % beobachtet. In beiden Fällen bildet das $[{}^{t}Bu]^+$ - Fragmention den Basispeak der jeweiligen Spektrums. Weitere Fragment-Ionen beider Verbindungen sind in *Tabelle 3.6* aufgelistet.

$[{Cp'''Fe}_2(\mu-\eta^{4:4}-P_2S_2)] (6)$		$[\{Cp'''Fe\}_2(\mu-\eta^{4:4}-P_2Se_2)] (7)$			
m/z [amu]	rel. Intensität [%]		m/z [amu]	rel. Inter	ısität [%]
$\left[Cp'''_2Fe_2P_2S_2\right]^+$	704.1	55.35	$[Cp'''_2Fe_2P_2Se_2]^+$	797.9	90.43
$\left[Cp'''FeP_2 \right]^+$	332.1	4.30	$\left[Cp'''_2Fe_2Se_2\right]^+$	738.0	18.25
$\left[Cp'''-2^{t}Bu\right]^{+}$	81.1	14.51	$[Cp'''FePSe]^+$	399.0	13.79
$\left[\mathrm{S}_{2} \right]^{+}$	64.0	23.61	$\left[\mathrm{Cp'''}\text{-}2^{\mathrm{t}}\mathrm{Bu}\right]^{+}$	203.1	21.92
$[^{t}Bu]^{+}$	57.1	100.00	$[^{t}Bu]^{+}$	57.1	100.00
$[^{t}Bu-CH_{3}]^{+}$	41.0	95.92	$[^{t}Bu-CH_{3}]^{+}$	41.0	18.16

Tabelle 3.6: Ausgewählte Fragmente aus dem EI-Massenspektrum von 6 und 7; 70 eV, Trägergas = Isobutan, AT = 140 °C, QT = 200 °C

3.1.2.1.4 Strukturvorschlag für Verbindung 6 und 7

Ausgehend von den analytischen Daten, die auf ein Molekül hoher Symmetrie ohne Carbonylliganden und mit einem oder mehreren Phosphoratomen schließen lassen, kann für beide Komplexe kein eindeutiger Strukturvorschlag erarbeitet werden. Das Massenspektrum deutet auf eine P_2S_2 - bzw. P_2Se_2 -Einheit hin, deren genaue Anordnung jedoch nicht ersichtlich wird. Den endgültigen Strukturbeweis liefert daher die röntgenographische Strukturbestimmung von 6 und 7.

3.1.2.1.5 Röntgenstrukturanalyse von [{Cp'''Fe}₂(μ - $\eta^{4:4}$ - P_2X_2)] (6,7) (X = S, Se)

An den schwarzgrünen Einkristallen von 6 und 7, die man durch Abdiffusion des Lösungsmittels aus einer gesättigten Hexanlösung erhält, konnte eine röntgenographische Strukturbestimmung durchgeführt werden. *Abbildung 3.4* zeigt das Ergebnis der Kristallstrukturanalyse für die Selen-Verbindung 7 mit der Nummerierung der zentralen Baueinheit im Molekül. Ausgewählte Strukturparameter beider Röntgenstrukturanalysen sind in *Tabelle 3.7* aufgelistet, detaillierte Angaben zu den Kristalldaten und Meßparametern finden sich im Anhang.

Abb. 3.4: Molekülstruktur von $[{Cp'''Fe}_2(\mu-\eta^{4:4}-P_2Se_2)]$ (7) im Kristall

Stellvertretend für Verbindung 6 und 7 weist die Strukturanalyse des Selen-Derivates 7 beide Komplexe als *pseudo*-Tripeldecker aus mit je einem η^5 -koordinierten Cp^{III}-Liganden als Oberbzw. Unterdeck und einer zentralen X-P-P-X-Kette, die zweifach η^4 -überkappt wird von jeweils einem 13VE{ Cp^{III}Fe}-Fragment. *Abbildung 3.4* scheint zunächst ein wenig verwirrend, da bei beiden Kristallisationsexperimenten eine Fehlordnungsproblematik auftritt. Die Datensätze waren dennoch sehr gut verfeinerbar, wie man an den kleinen R-Werten im Anhang sehen kann. Prinzipiell kommt es zu einer Überlagerung von zwei Molekülen. Neben den beiden Carbocyclen sind lediglich Fe(1), Fe(2) und P(2) beiden Molekülen gemeinsam. Sie spannen eine kristallographische Spiegelebene auf, an der P(1), Se(1) und Se(2) auf die andere Seite des Moleküls gespiegelt werden und so die Positionen P(1A), Se(1A) und Se(2A) ergeben. Die schwarzen, durchgezogenen Linien verbinden die Atome Se(2), P(1), P(2) und Se(1A) zum Mitteldeck eines Moleküls, dessen maximale Abweichung von der Planarität nur 0.0002 Å beträgt. Diesen Wert erreicht auch das Mitteldeck des zweiten Moleküls, das von den Atomen Se(2A), P(1A), P(2) und Se(1) und von den gestrichelten Linien in *Abbildung 3.4* dargestellt wird. Die Besetzungszahl dieser Atome – ausgenommen Fe(1), Fe(2) und P(2) – beträgt demnach gerade $\frac{1}{2}$, das heißt, die Wahrscheinlichkeit für eine der beiden Atomanordnungen liegt nahezu bei 50 %.

Abb. 3.5: Molekülstruktur von $[{Cp'''Fe}_2(\mu-\eta^{4:4}-P_2Se_2)]$ (7)

Der Abstand der beiden Eisenatome beträgt 3.18 Å und wird als nicht bindend eingestuft. Eine Newman-Projektion entlang dieser Metall-Metall-Achse gibt Aufschluß über die Stellung der drei Decks zueinander. Die drei *tert*-Butylgruppen an den Fünfringcentroiden sind genau ekliptisch zueinander angeordnet, wodurch die C-Atome in Carbocyclus ebenfalls zur Deckung kommen. Das Mitteldeck, das eigentlich von sieben Atomen aufgespannt wird, nimmt aber nur fünf Positionen ein, da P(1A) und Se(1A) bzw. P(1) und Se(1) so dicht beieinander liegen, das sie teilweise überlappen. Diese fünf Positionen liegen auf einer radial nach außen gerichteten Verlängerung der fünf C-Atome und können daher auch als ekliptisch angeordnet betrachtet werden.

Abb. 3.6: Molekülstruktur als Newman-Projektion entlang der Fe-Fe-Bindungsachse von $[{Cp'''Fe}_2(\mu-\eta^{4:4}-P_2Se_2)]$ (7) im Kristall

Die Abweichungen der einzelnen Decks von einer parallelen Anordnung zueinander können bei Werten zwischen 0.6° und 1.2° als sehr gering angesehen werden. Die Winkel an Fe(1) und Fe(2) mit den Cyclopentadienylzentren sind mit 179.7° und 179.5° nahezu linear. Daraus ergibt sich für Komplex **6** und **7** im Gegensatz zu den strukturell ähnlichen *pseudo*-Tripeldeckerkomplexen mit P₄-Mitteldeck eine Aufhebung der bisher beobachteten gewinkelten Struktur dieser Verbindungen. Da sich der Abstand der Eisenatome zu den Cyclopentadienyldecks in allen drei Komplexen nur wenig unterscheidet ([{Cp'''Fe}₂(μ - η ^{4:4}-P₄)] (**8**): 1.74 Å ^[1,2], **6**: 1.69 Å und **7**: 1.68 Å), hat die "Streckung" des Moleküls den "Verlust" der Fe-Fe-Einfachbindung zur Folge.

Eine weitere Erklärung für das Ausbleiben der Metall-Metall-Bindung liefert die Berechnung der Gerüstelektronenpaare nach Wade ^[8]. Für die Chalkogen-Komplexe **6** und **7** ergibt sich eine Anzahl von (n+2) = 8 GEP für n = 6, also ein nido-Cluster, während Verbindung **8a** mit der reinen P₄-Kette nur (n+1) = 7 GEP enthält. Der Elektronenüberschuß in **6** und **7** führt zur Spaltung der Fe-Fe-Bindung.

Seite 20

len-Derivat liegt der Abstand zwischen Se(1A) und Se(2) bzw. Se(2A) und Se(1) mit jeweils 3.18 Å eindeutig im nicht bindenden Bereich. In der Se-P-P-Se-Kette beträgt der P-P-Abstand im Mittelteil 2.11 Å und spricht für eine Mehrfachbindung, wie man es auch im P₅-Ring des Cp⁴-Pentaphosphaferrocens (P-P: d = 2.11 Å) beobachten kann ^[1,2]. Die Bindungsverhältnisse im Mitteldeck haben sich damit gegenüber der P₄-Kette gerade umgekehrt, da an den Phosphor-Selen-Seiten mit 2.32 Å und 2.28 Å Einfachbindungen auftreten.

Obwohl äußerlich sehr ähnlich, konnten doch zahlreich Unterschiede zwischen den *pseudo*-Tripeldeckerkomplexen mit abgewandelten Mitteldecks herausgestellt werden(vgl. S. 57ff.).

Tabelle 3.7 Ausgewählte Strukturdaten von $[{Cp'''Fe}_2(\mu-\eta^{4:4}-P_2X_2)]$ (6,7) (X = S, Se)

[{Cp'''Fe}₂(μ	$-\eta^{4:4} - P_2 S_2)] (6)$	[{Cp'''Fe} ₂ (μ-	$\eta^{4:4}$ -P ₂ Se ₂)] (7)
S(2) - P(1)	2.056(2)	Se(2) - P(1)	2.284(3)
P(1) - P(2)	2.0945(19)	P(1) - P(2)	2.108(3)
P(2) - P(1A)	2.0945(19)	P(2) - P(1A)	2.108(3)
P(2) - S(1A)	2.2399(15)	P(2) - Se(1A)	2.3154(16)
S(1) - P(2)	2.2400(15)	Se(1) - P(2)	2.3155(16)
P(1A) - S(2A)	2.056(2)	P(1A) - Se(2A)	2.284(3)
Fe(1) Fe(2)	3.145	Fe(1) Fe(2)	3.183
S(1A) … S(2)	3.004	Se(1A) Se(2)	3.175
$S(2A) \cdots S(1)$	3.004	Se(2A) Se(1)	3.175
$Fe(1) - Cp'''_{centr.}$	1.687	$Fe(1) - Cp'''_{centr.}$	1.685
$Fe(2) - Cp'''_{centr.}$	1.683	$Fe(2) - Cp'''_{centr.}$	1.683

• Ausgewählte Bindungslängen in Å

• Ausgewählte Bindungswinkel in Grad

[{Cp'''Fe} ₂ (µ-η ^{4:4} -P ₂ S ₂)] (6)		$[\{Cp'''Fe\}_2(\mu-\eta^{4:4}-P_2Se_2)] (7)$		
S(2) - P(1) - P(2)	102.88(9)	Se(2) - P(1) - P(2)	101.52(12)	
P(1) - P(2) - S(1A)	101.46(7)	P(1) - P(2) - Se(1A)	105.29(11)	
S(1) - P(2) - P(1A)	101.45(7)	Se(1) - P(2) - P(1A)	105.29(11)	
P(2) - P(1A) - S(2A)	102.9	P(2) - P(1A) - Se(2A)	101.5	
$Cp'''_{centr.} - Fe(1) - Fe(2)$	179.4	$Cp'''_{centr.} - Fe(1) - Fe(2)$	179.7	
$Cp'''_{centr.} - Fe(2) - Fe(1)$	179.2	$Cp'''_{centr.} - Fe(2) - Fe(1)$	179.5	

<u>3 Eigene Ergebnisse</u>

Ebene	Atome	Maximale Abweichung
E1	C(1) - C(5) - C(4) - C(5A) - C(1A)	0.0083
E2	S(2) - P(1) - P(2) - S(1A)	0.0030
E3	S(1) - P(2) - P(1A) - S(2A)	0.0030
E4	C(6) - C(10) - C(9) - C(10A) - C(6A)	0.0007

• Ebenendefinition und maximale Abweichung aus diesen Ebenen in Å für 6

• Winkel zwischen den besten Ebenen in Grad für 6

Ebenen	E1/E2	E1/E3	E1/E4	E2/E3	E2/E4	E3/E4
Winkel	1.6	1.6	2.6	1.8	1.6	1.6

• Ebenendefinition und maximale Abweichung aus diesen Ebenen in Å für 7

Ebene	Atome	Maximale Abweichung
E1	C(1) - C(5) - C(4) - C(5A) - C(1A)	0.0085
E2	Se(2) - P(1) - P(2) - Se(1A)	0.0002
E3	Se(1) - P(2) - P(1A) - Se(2A)	0.0002
E4	C(6) - C(10) - C(9) - C(10A) - C(6A)	0.0029

• Winkel zwischen den besten Ebenen in Grad für 7

Ebenen	E1/E2	E1/E3	E1/E4	E2/E3	E2/E4	E3/E4
Winkel	0.8	0.8	0.7	1.2	0.6	0.6

3.2 Komplexierung von [{Cp'''Fe}₂(μ - $\eta^{4:4}$ -P₂X₂)] (6,7) (X = S, Se) mit [W(CO)₆]

In struktureller Hinsicht ähneln die Verbindungen [{Cp'''Fe}₂(μ - $\eta^{4:4}$ -P₂X₂)] (**6**,**7**) (X = S, Se) den *pseudo*-Tripeldeckerkomplexen vom Typ [{Cp^RFe}₂(μ - $\eta^{4:4}$ -P₄)] (**8**) mit einem P₄-Mitteldeck, wie die Röntgenstrukturanalyse im vorangegangenen *Kapitel 3.1.2* zeigt. Daher sollten die Verbindungen **6** und **7** auch in der Lage sein, analoge Reaktionen an den beiden verbleibenden Phosphoratomen einzugehen. Im Cp''-Derivat **8d** gelang *Schwarz* ^[6] die Komplexierung der beiden endständigen P-Atome der P₄-Kette mit dem 16VE-Übergangsmetallfragment {W(CO)₅}.

Aus diesem Grund wird Wolframhexacarbonyl mit dem koordinierenden Lösungsmittel Tetrahydrofuran in eine Tauchlampenapparatur gegeben und 45 Minuten bestrahlt. Die so bereitete, intensiv gelbe [W(CO)₅·thf]-Lösung gibt man zu den bereits vorgelegten Verbindungen [{Cp'''Fe}₂(μ - $\eta^{4:4}$ -P₂X₂)] (**6**,7) (X = S, Se) und rührt das gelbgrüne Reaktionsgemisch ca. 20 Stunden bei Raumtemperatur. Nach dem Entfernen des Lösungsmittels am Ölpumpenvakuum wird der Reaktionsrückstand ³¹P-NMR-spektroskopisch vermessen. Das Spektrum der Rohlösung zeigt mehrere Signale, die auf mindestens zwei phosphorhaltige Verbindungen schließen lassen. Deshalb wird der Feststoff säulenchromatographisch an Kieselgel bei -20 °C aufgearbeitet.

$$[\{Cp'''Fe\}_{2}(\mu_{3}-\eta^{4:4:1}-P_{2}X_{2})\{W(CO)_{5}\}]$$

$$(9,10)$$

$$+$$

$$[\{Cp'''Fe\}_{2}(\mu-\eta^{4:4}-P_{2}X_{2})] \xrightarrow{[W(CO)_{5}\cdot thf]} > [Cp'''_{2}Fe_{2}P_{2}X_{2}\{W(CO)_{5}\}_{2}]$$

$$(6,7) \qquad (11,12)$$

$$+$$

$$[Cp'''Fe(\mu_{4}-\eta^{4:2:1:1}-P_{2}Se_{2})Fe(CO)Cp'''\{W(CO)_{5}\}_{2}]$$

$$(14)$$

$$X = S, Se$$

Abb. 3.7: Darstellung der Reaktionsprodukte bei der Umsetzung von Verbindung 6 und 7 mit [W(CO)₆]

Mit einem Petrolether/Toluol-Lösungsmittelgemisch im Verhältnis 50:1 gewinnt man die erste Fraktion als hellgrüne Lösung, die im ³¹P-NMR-Spektrum zwei Dubletts aufweist. Die Erhöhung der Polarität des Lösungsmittelgemisches auf ein Mischungsverhältnis von 20:1 liefert als zweite Fraktion eine orange Lösung, in der nur ein Singulett ³¹P-NMRspektroskopisch detektiert wird. Bei der Umsetzung des Selen-Derivates 7 kann noch eine dritte, rotbraune Fraktion mit einem Petrolether/Toluol-Gemisch von 10:1 eluiert werden. Das Phosphorresonanzspektrum zeigt hierfür ein Singulett bei $\delta = 143.3$ ppm.

3.2.1 Erste Säulenfraktion: $[{Cp'''Fe}_2(\mu_3-\eta^{4:4:1}-P_2X_2){W(CO)_5}]$ (9,10) (X = S, Se)

3.2.1.1 Eigenschaften und IR-Spektroskopie

Verbindung 9 und 10 bleiben nach dem Entfernen des Lösungsmittels am Ölpumpenvakuum als grüner Feststoff zurück. Dieser ist in allen gängigen Solventien gut bis sehr gut löslich und kann ohne sichtbare Zeichen der Zersetzung kurzzeitig an Luft gehandhabt werden. Auch die Lagerung unter Schutzgas ist über Monate hinweg problemlos möglich.

Das IR-Spektrum einer Toluollösung von 9 und 10 zeigt scharfe Banden im Bereich terminal koordinierter Carbonylliganden, die in *Tabelle 3.8* aufgelistet sind.

 Tabelle 3.8:
 IR-Absorptionsbanden von Verbindung 9 und 10 in Toluol

$[\{Cp'''Fe\}_2(\mu_3-\eta^{4:4:1}-P_2S_2)\{W(CO)_5\}] (9)$		$[\{Cp'''Fe\}_2(\mu_3-\eta^{4:4:1}-P_2Se_2)\{W(CO)_5\}] (10)$		
2069 (vs)	W(<u>CO</u>) ₅	2064 (s)	W(<u>CO</u>) ₅	
1956 (vs)	W(<u>CO</u>) ₅	1946 (vs)	W(<u>CO</u>) ₅	
1939 (s)	W(<u>CO</u>) ₅	1931 (vs)	W(<u>CO</u>) ₅	
1930 (vs)	W(<u>CO</u>) ₅			

3.2.1.2 NMR-Spektroskopie

Im Protonenresonanzspektrum von Komplex **9** und **10** werden drei Singuletts im Bereich von Alkylprotonen und zwei Singuletts bei etwas tieferem Feld detektiert. Die fünf Signale weisen ein Integrationsverhältnis von 9:9:9:1:1 auf und sind charakteristisch für den Tri*-tert*-butyl-Cyclopentadienylliganden in unsymmetrischer Umgebung.

Das ³¹P-NMR-Spektrum liefert für beide Verbindungen jeweils zwei intensitätsgleiche Dubletts zwischen $\delta = -90$ ppm und $\delta = -150$ ppm, die über eine ¹J_{P,P}-Kopplungskonstante von 296.07 Hz bzw. 309.73 Hz miteinander wechselwirken. Das Signal bei höherem Feld ist jeweils etwas verbreitert und wird daher dem komplexierten P-Atom zugeordnet.

Tabelle 3.9: NMR-spektroskopische Daten von $[{Cp'''Fe}_2(\mu_3-\eta^{4:4:1}-P_2X_2){W(CO)_5}]$ (9,10)(X = S, Se), 400.14 MHz und 161.97 MHz C₆D₆, 293 K

[{Cp'''Fe} ₂ (µ ₃ -η ^{4:4:1} -P ₂ S ₂){W(CO) ₅ }] (9)			$[\{Cp'''Fe\}_2(\mu_3-\eta^{4:4:1}-P_2Se_2)\{W(CO)_5\}] (10)$		
δ [ppm]		Zuordnung	δ [ppm]	Zuordnung	
¹ H	1.42 (s, 18 H)	$C(C\underline{H}_3)_3$, Cp ^{'''} -Ligand	1.34 (s, 18 H)	$C(C\underline{H}_3)_3$, Cp ^{'''} -Ligand	
	1.44 (s, 18 H)	$C(C\underline{H}_3)_3$, Cp ^{'''} -Ligand	1.37 (s, 18 H)	$C(C\underline{H}_3)_3$, Cp ^{'''} -Ligand	
	1.78 (s, 18 H)	$C(CH_3)_3$, Cp ^{'''} -Ligand	1.59 (s, 18 H)	$C(CH_3)_3$, Cp ^{'''} -Ligand	
	3.33 (s, 2 H)	Ringprotonen, Cp'''	3.28 (s, 2 H)	Ringprotonen, Cp'''	
	3.79 (s, 2 H)	Ringprotonen, Cp'''	3.59 (s, 2 H)	Ringprotonen, Cp'''	
³¹ P	-106.4 (d, 1 P)	P unkomplexiert	-98.1 (d, 1 P)	P unkomplexiert	
	-151.2 (d, 1 P)	P komplexiert	-125.87 (d, 1 P)	P komplexiert	
	${}^{1}J_{P,P} = 296.07 \text{ Hz}$		${}^{1}J_{P,P} = 309.73 \text{ Hz}$		

3.2.1.3 Massenspektrometrie

Durch die Abspaltung eines {W(CO)₅}-Übergangsmetall-Fragmentes erhält man sowohl für Verbindung **9** als auch für **10** im EI-Massenspektrum ein Fragmention der Zusammensetzung $[Cp'''_2Fe_2P_2X_2]^+$ (X = S, Se), das den Basispeak des Spektrums darstellt. Die Fragmentierung dieses Ions liefert unter anderem $[Cp'''FePX]^+$ bei m/z = 352.1 amu bzw. m/z = 399.0 amu. Es wird mit einer relativen Intensität von 21.17 % bzw. 10.01 % beobachtet. Weitere Fragmentionen von $[{Cp'''Fe}_2(\mu_3-\eta^{4:4:1}-P_2X_2){W(CO)_5}]$ (**9,10**) (X = S, Se) sind in *Tabelle 3.10* vergleichend gegenübergestellt.

Tabelle 3.10: Ausgewählte Fragmente aus den EI-Massenspektren von [{Cp'''Fe}₂(μ_3 - $\eta^{4:4:1}$ -P₂X₂){W(CO)₅}] (**9,10**) (X = S, Se) Trägergas = Isobutan, 70 eV, AT = 140 °C, QT = 200 °C.

[{Cp'''Fe}₂(μ₃-η	^{4:4:1} -P ₂ S ₂){W(CO)5}] (9)	$[{Cp'''Fe}_2(\mu_3-\eta^{4:4:1}-P_2Se_2){W(CO)_5}] (10)$		
Fragment	m/z [amu]	rel. Int. %	Fragment	m/z [amu]	rel. Int. %
$\left[Cp'''_2Fe_2P_2S_2W\right]^+$	888.1	1.81	$\left[Cp'''_2Fe_2P_2Se_2\right]^+$	798.1	100.00
$\left[Cp'''_2Fe_2P_2S_2\right]^+$	704.1	100.00	[Cp'''FePSe] ⁺	399.0	10.01
$[Cp'''FePS]^+$	352.1	21.17	$[Cp''']^+$	234.2	4.42
[^t Bu] ⁺	57.1	22.17	$[^{t}Bu]^{+}$	57.1	91.03

3.2.1.4 Strukturvorschlag für Verbindung 9 und 10

Ein Vergleich der ³¹P-NMR-spektroskopischen Daten mit den Signalen der Ausgangsverbindungen **6** und **7** führt zu der Annahme, daß eines der beiden Phosphoratome der P_2X_2 -Kette mit dem Übergangsmetall-Fragment [{W(CO)₅} komplexiert worden ist. Sowohl die Reduktion des A₂- zu einem AB-Spinsystem als auch die Hochfeldverschiebung der Phosphor-Signale um ca. 45 ppm sprechen für die Bildung des einfach komplexierten Adduktes. Dadurch sind zwei der drei Alkylgruppen am Cyclopentadienylring nicht mehr chemisch und magnetisch äquivalent, so daß jede *tert*-Butylgruppe einzeln in Resonanz tritt. Die CO-Banden im IR-Spektrum, die alle im Bereich terminaler Carbonylliganden auftreten und kennzeichnend für das {W(CO)₅}-Fragment sind, sowie das Fragmentierungsmuster des EI-Massenspektrums mit dem charakteristischen [Cp^{III}₂Fe₂P₂X₂]⁺-Ion unterstreichen diese Annahme noch. Aus diesem Grund wird für die Verbindungen **9** und **10** folgende Struktur vorgeschlagen:

Abb. 3.8 Strukturvorschlag für Verbindung 9 und 10

Sowohl von 9 als auch von 10 konnten Kristalle für eine röntgenstrukturanalytische Untersuchung erhalten werden. Das Ergebnis dieser Kristallstrukturanalysen deckt sich sehr gut mit obigem Strukturvorschlag, konnte aber aufgrund eines mehrfach auftretenden Verzwilligungsproblems nicht verfeinert und weiter ausgewertet werden. Der Strukturvorschlag zeigt eine gute Übereinstimmung mit dem in der Röntgenstrukturanalyse gefundenen Strukturmotiv. Auf eine Diskussion der Bindungslängen und –winkel in Komplex 9 und 10 muß an dieser Stelle jedoch verzichtet werden.

3.2.2 Zweite Säulenfraktion: $[Cp''_2Fe_2P_2X_2\{W(CO)_5\}_2]$ (11, 12) (X = S, Se)

3.2.2.1 Eigenschaften und IR-Spektroskopie

Sowohl der Schwefel-Komplex 11 als auch das Selen-Derivat 12 sind in unpolaren Solventien wie Pentan und Hexan nur mäßig löslich. Mit steigender Polarität des Lösungsmittels nimmt ihre Löslichkeit deutlich zu. Unter Schutzgas können beide Verbindungen mehrere Wochen
ohne sichtbare Zeichen der Zersetzung gelagert werden. $[Cp''_2Fe_2P_2X_2\{W(CO)_5\}_2]$ (11,12) (X = S, Se) sind nur begrenzt luftstabil.

Eine Toluollösung von 11 und 12 weist im IR-Spektrum mehrere scharfe Signale im Bereich terminaler Carbonylliganden auf, die auf ein oder mehrere $\{W(CO)_5\}$ -Fragmente zurückzuführen sind.

Tabelle 3.11: IR-Absorptionsbanden von $[Cp'''_2Fe_2P_2X_2\{W(CO)_5\}_2]$ (11,12) (X = S, Se) in
Toluol

$[Cp'''_{2}Fe_{2}P_{2}S_{2}\{W(CO)_{5}\}_{2}]$ (11)		$[Cp'''_{2}Fe_{2}P_{2}Se_{2}\{W(CO)_{5}\}_{2}]$ (12)	
2068 (s)	W(<u>CO</u>) ₅	2063 (s)	W(<u>CO</u>) ₅
1958 (vs)	W(<u>CO</u>) ₅	1959 (vs)	W(<u>CO</u>) ₅
1937 (s)	W(<u>CO</u>)5	1938 (vs)	W(<u>CO</u>)5

3.2.2.2 NMR-Spektroskopie

Im Protonenresonanzspektrum von **11** und **12** treten jeweils drei Singuletts bei $\delta = 1.40$ ppm, $\delta = 1.59$ ppm und $\delta = 4.31$ ppm bzw. bei $\delta = 1.22$ ppm, $\delta = 1.44$ ppm und $\delta = 4.28$ ppm in Resonanz. Sie weisen jeweils ein Integrationsverhältnis von 9:18:2 auf. Dieses Aufspaltungsmuster ist charakteristisch für den Tri-*tert*-butyl-Cyclopentadienylliganden in symmetrischer Umgebung.

Das ³¹P-NMR-Spektrum beider Komplexe zeigt für das Schwefel-Derivat **11** ein Singulett bei $\delta = 93.7$ ppm, während der Selen-Komplex **12** durch ein Signal bei $\delta = 82.3$ ppm gekennzeichnet ist. Selbst bei einer sehr hohen Anzahl von Scans ist das Signal-Rausch-Verhältnis für Verbindung **12** schlecht, so daß keine Aussagen über mögliche Phosphor-Selen- beziehungsweise Phosphor-Wolfram-Kopplungen gemacht werden können. Die chemische Verschiebung, bei der Komplex **12** in Resonanz tritt, liegt jedoch eindeutig im charakteristischen Bereich von Phosphor-Selen-Verbindungen, die zwischen $\delta = 0$ und 180 ppm relaxieren ^[27].

Tabelle 3.12:	¹ H- und ³¹ P-NMR-Daten von $[Cp''_2Fe_2P_2X_2\{W(CO)_5\}_2]$ (11,12) (X = S	, Se),
	400.14 MHz und 161.97 MHz, C ₆ D ₆ , 293 K	

	$[Cp'''_{2}Fe_{2}P_{2}S_{2}\{W(CO)_{5}\}_{2}] (11)$		$[Cp'''_{2}Fe_{2}P_{2}Se_{2}\{W(CO)_{5}\}_{2}]$ (12)	
	δ [ppm]	Zuordnung	δ [ppm]	Zuordnung
¹ H	1.40 (s, 18 H)	С(С <u>Н</u> ₃) ₃ , Ср'''	1.22 (s, 18 H)	С(С <u>Н</u> ₃) ₃ , Ср'''
	1.59 (s, 36 H)	С(С <u>Н</u> ₃) ₃ , Ср'''	1.44 (s, 36 H)	С(С <u>Н</u> ₃) ₃ , Ср'''
	4.31 (s, 4H)	Ringprotonen, Cp'''	4.28 (s, 4H)	Ringprotonen, Cp'''
³¹ P	93.7 (s, 2 P)		82.3 (2 P)	

3.2.2.3 Strukturvorschlag für Verbindung 11 und 12

Die bisher dargelegten analytischen Daten lassen nur wenig Rückschlüsse auf die mögliche Struktur von Verbindung **11** und **12** zu. Neben einer symmetrischen Anordnung der Gerüstatome und Liganden, die NMR-spektroskopisch eindeutig belegt werden kann, scheint eine Komplexierung aller Phosphoratome mit Wolframpentacarbonyl stattgefunden zu haben. Die IR-Absorptionbanden weisen die terminalen CO-Liganden im $\{W(CO)_5\}$ -Fragment nach. Den entscheidenden Hinweis auf die korrekte Struktur liefert jedoch erst die Röntgenstrukturanalyse, die für beide Komplexe angefertigt werden konnte und im Anschluß stellvertretend für die Schwefel-Verbindung **11** diskutiert wird.

3.2.2.4 Röntgenstrukturanalyse von [Cp¹¹₂Fe₂P₂S₂{W(CO)₅}₂] (11)

Durch Filtration einer gesättigten Hexanlösung von **11** über eine D3-Fritte und anschließende Abdiffusion des Lösungsmittels erhält man für die röntgenographische Strukturbestimmung geeignete Einkristalle. In *Abbildung 3.9* wird das Ergebnis dieser Kristallstrukturanalyse dargestellt. Zum besseren Verständnis wurden die zentrale Baueinheit im Molekül durchnummeriert und ausgewählte Strukturparameter in *Tabelle 3.13* zusammengefaßt. Die übrigen Kristallstrukturdaten befinden sich im Anhang.

Abb. 3.9: Molekülstruktur von [Cp^{III}₂Fe₂P₂S₂{W(CO)₅}₂] (11) im Kristall

Die Molekülstruktur von $[Cp''_2Fe_2P_2S_2\{W(CO)_5\}_2]$ (11) zeigt einen Eisen-Zweikern-Komplex mit einer stark verzerrten Anordnung der Gerüstatome im trigonal prismatischen Polyedergerüst. Die beiden Dreiecksflächen, die von je einem Eisen-, Phosphor- und Schwefelatom aufgespannt werden, weichen nur 1.4° von der Parallelität ab. Die größte Abweichung von der Planarität findet man für eine der drei Vierecksflächen, die die Eckpunkte Fe(1)-S(1)-Fe(1A)-S(1A) besitzt. Die Kantenlänge liegt für alle vier Bindungen zwischen 2.22 Å und 2.24 Å, so daß man von einer fast quadratischen Grundfläche ausgehen kann. Der Winkel an den Eisenatomen beträgt 96.1° und an den Schwefelatomen 80.2°, woraus eine Winkelsumme von 352.6° resultiert. Die Verzerrung kann größtenteils auf diese Abweichungen vom idealen 90°-Winkel im Quadrat zurückgeführt werden. Im strukturell ähnlichen Komplex $[Cp_2^4Ni_2P_4\{W(CO)_5\}_2\}]$ (13) mit einem Ni₂P₄-Prisma, der 1992 in unserem Arbeitskreis von *Braun* synthetisiert wurde, sind diese Abweichungen noch wesentlich ausgeprägter (113°, 63°), so daß in **13** sogar eine Rautenform bei den entsprechenden Vierecksflächen vorliegt ^[28].

Sowohl die Fe-S-Bindungslängen als auch die –winkel in Verbindung **11** stimmen sehr gut mit den Werten für die Vierecksflächen in den Fe₄S₄-Cubanen von *Dahl* ^[29,30,31,32] überein. In Abhängigkeit vom Liganden diskutiert er für den $[Cp^{R}_{4}Fe_{4}(\mu-S)_{4}(NO)_{4}]$ -Komplex einen bindenden Fe-Fe-Abstand von 2.65 Å, der durch einen Ligandenaustausch von NO gegen Kohlenmonoxid in $[Cp^{R}_{4}Fe_{4}(\mu-S)_{4}(CO)_{12}]$ auf eine nichtbindende Eisen-Eisen-Bindungslänge von 3.48 Å ansteigt. In Komplex **11** beträgt der Eisen-Eisen-Abstand 2.88 Å. Diese Metall-Bindung unterteilt die nicht exakt rechteckige Grundfläche in einen Bicyclus, der entlang der Fe-Fe-Kante einen Faltungswinkel von 27.1° aufweist und so eine Butterfly-Struktur annimmt. Die beiden Schwefelatome stellen die Flügelspitzen dar. Sie werden in Richtung der komplexierten Phosphoratome geschoben.

Abb. 3.10: Darstellung des verzerrt trigonal prismatischen $Fe_2P_2S_2$ -Atomgerüstes in [Cp'''_2Fe_2P_2S_2{W(CO)_5}_2](11)

Der Bindungsabstand in der P₂-Einheit beträgt 2.21 Å und ist damit fast identisch mit dem entsprechenden Wert im Ni₂P₄-Prisma (**13**) (2.22 Å), aber etwas kürzer als zwischen den beiden Brückenkopfatomen im [{Cp'''(OC)₂Fe}₂(μ - η ^{1:1}-P₄)]-Butterflykomplex (**2a**) von *Hilt* ^[1,2]. Vergleicht man diese Werte mit den theoretischen Berechnungen von *Hoffmann* aus der Arbeitsgruppe von *Schleyer* ^[23] an einem freien P₂S₂-Molekül in der Gasphase, so treten gewisse Abweichungen auf, die nicht nur auf die metallorganische Umgebung zurückzuführen sind. In einer Reihe von P₂S₂-Isomeren ist die S-P-P-S-Kette neben der Butterfly-Anordnung und dem planaren, rautenförmigen Vierring die am wenigsten Stabile Struktureinheit und muß daher komplexchemisch stabilisiert werden. *Kemény* ^[20,21] gelang dies bei seinen oxidierten Fe₄P₄-Dreiecksdodekaedern, wobei sowohl Bindungslängen als auch –winkel mit den berechneten Daten recht gut übereinstimmen. Der Einbau der S-P-P-S-Kette in das Prisma führt jedoch zu einer Verdrehung dieser Viererkette aus der planaren Anordnung heraus (transoide Struktur),

wodurch sich die Winkel an den P-Atomen gegenüber [$\{Cp'''Fe\}_2(\mu-\eta^{4:4}-P_2S_2)$] (6) um fast 30° auf annähernd 90° zuspitzen.

Der Unterschied in den P-S-Bindungslängen von 0.2 Å ist auf die veränderte Bindungsordnung zurückzuführen. Während der P-S-Abstand im Dreiecksdodekaeder mit 1.94 Å auf eine Doppelbindung hinweist, liegt der P-S-Abstand von 2.10 Å im Prisma eher im Einfachbindungsbereich. *Kemény* ^[20,21] konnte 1995 sogar alle vier P-Atome des [{CpFe₄}P₄] oxidieren, wodurch sich die Fe-Fe-Abstände um jeweils 0.1 Å verlängern und damit eher dem Wert in Komplex **11** entsprechen, der mit 2.88 Å verhältnismäßig lang erscheint.

Die Phosphor-Wolfram-Bindungslängen von 2.53 Å stimmen sehr gut mit denen im Ni-Zweikern-Komplex **13** (2.51 Å, 2.52 Å) überein. Der Diederwinkel an W(1)-P(1)-P(1A)-W(1A) beträgt 48°. Die Zählregeln nach *Wade* ^[8] und *Mingos* ^[13] ergeben für das Ni₂P₄-Prisma **13** eine VE-Zahl von 50 mit (n+3) = 9 GEP für n = 6, also ein arachno-Dreiecksdodekaeder mit zwei fehlenden Ecken. Auf das Fe₂P₂S₂-Prisma **11** trifft diese Beschreibung der Elektronenverhältnisse nicht zu. Es besitzt nur 48 VE und im Polyedergerüst (n+2) = 8 GEP für n = 6 und ist damit ein nido-Cluster.

Tabelle 3.13 Ausgewählte Strukturdaten von $[Cp''_2Fe_2P_2S_2{W(CO)_5}_2]$ (11)

Fe(1) - Fe(1A)	2.8761(19)
Fe(1) - S(1A)	2.243(2)
Fe(1) - S(1)	2.221(2)
Fe(1A) - S(1A)	2.221(2)
Fe(1A) - S(1)	2.243(2)
P(1) - P(1A)	2.210(4)
P(1) - S(1A)	2.096(3)
P(1A) - S(1)	2.096(3)

• Ausgewählte Bindungslängen in Å

Seite	32

P(1A) - W(1A)	2.534(2)
P(1) - W(1)	2.534(2)
$Fe(1) - Cp'''_{centr.}$	1.744
Fe(1A) – Cp''' centr	1.744

• Ausgewählte Bindungswinkel in Grad

$Cp'''_{centr.} - Fe(1) - Fe(1A)$	151.7	S(1A) - Fe(1) - S(1)	96.07 (8)
$Cp'''_{centr.} - Fe(1A) - Fe(1)$	151.7	S(1A) - P(1) - P(1A)	90.28 (11)
$\operatorname{Fe}(1) - \operatorname{S}(1A) - \operatorname{Fe}(1A)$	80.22 (8)	P(1A) - S(1) - Fe(1A)	64.37 (9)
Fe(1) - P(1) - S(1A)	60.89 (8)	s(1) - Fe(1A) - P(1A)	54.75 (11)

• Ebenendefinition und maximale Abweichung aus diesen Ebenen in Å

Ebene	Atome	Maximale Abweichung
E1	Fe(1A) - P(1A) - S(1)	-
E2	Fe(1) - P(1) - S(1A)	-
E3	S(1A) - Fe(1) - S(1) - Fe(1A)	0.1997
E4	Fe(1) - P(1) - P(1A) - S(1)	0.1049
E5	P(1) - S(1A) - Fe(1A) - P(1A)	0.1049
E6	Fe(1A) - Fe(1) - S(1)	-
E7	Fe(1A) - Fe(1) - S(1A)	-
E8	W(1) - P(1) - P(1A)	-
Е9	W(1A) - P(1A) - P(1)	

• Winkel zwischen den besten Ebenen in Grad

Ebenen	E1/E2	E6/E7	E8/E9
Winkel	1.4	27.1	48.0

3.2.3 Dritte Säulenfraktion: [Cp'''Fe(μ₄-η^{4:2:1:1}-P₂Se₂)Fe(CO) Cp''' {W(CO)₅}₂] (14)

Diese rotbraune Lösung erhält man nur bei der Umsetzung des Selen-Derivates [{Cp"'Fe}₂ (μ - $\eta^{4:4}$ -P₂Se₂)] (7) mit Wolframhexacarbonyl und kann daher vielleicht auf die bereits festgestellte Verunreinigung dieser Ausgangsverbindung zurückgeführt werden. Da eine säulenchromatografische Trennung von 7 und der bisher nicht charakterisierten Phosphorverbindung - mit einem Singulett als Signal im ³¹P-NMR-Spektrum - nicht möglich war, wurde das Substanzgemisch bei der Komplexierung eingesetzt. Damit stellt die Umsetzung mit [W(CO)₆] eine Möglichkeit zur Reinigung von 7 dar.

3.2.3.1 Eigenschaften und IR-Spektroskopie

Der rotbraune Feststoff, der nach dem Entfernen des Lösungsmittels am Ölpumpenvakuum anfällt, löst sich in unpolaren Solventien wie Hexan mäßig und in polaren Lösungsmitteln wie Dichlormethan oder Tetrahydrofuran sehr gut. Verbindung **14** ist begrenzt luftstabil und kann über Wochen ohne äußere Anzeichen von Zersetzung unter Argon gelagert werden.

Das IR-Spektrum einer Toluollösung von 14 weist vier Signale im klassischen Bereich terminaler CO-Liganden auf. Teilweise können diese Banden auf den Einbau des 16VE-Übergangsmetallfragments {W(CO)₅} zurückgeführt werden. Die mittelstarke Bande bei \overline{v} = 1981 cm⁻¹ weist jedoch auf eine weitere terminale CO-Gruppe hin.

Tabelle 3.14: IR-Absorptionsbanden für die Carbonylgruppen von Verbindung 14 in Toluol

$[Cp'''Fe(\mu_4-\eta^{4:2:1:1}-P_2Se_2)Fe(CO) Cp'''\{W(CO)_5\}_2] (14)$		
2070 (s)	W(<u>CO</u>) ₅	
1981 (m)	terminale CO-Gruppe	
1951 (vs)	W(<u>CO</u>) ₅	
1927 (vs)	W(<u>CO</u>) ₅	

3.2.3.2 NMR-Spektroskopie

Im Protonenresonanzspektrum erkennt man sechs Singuletts, von denen vier im klassischen Bereich für Alkylprotonen in Resonanz treten. Das Integrationsverhältnis von 18:9:18:9 weist eindeutig auf zwei Cp^{III}-Liganden hin, die sich in struktureller Hinsicht voneinander unterscheiden. Sie können weder durch eine Symmetrieoperation noch mittels uneingeschränkter Rotation im Molekül ineinander überführt werden. Ein Signalpaar ist um 0.6 ppm zu tieferem Feld verschoben. Die beiden aromatischen Ringprotonen werden bei $\delta = 3.70$ ppm und $\delta = 4.40$ ppm in einem Integralverhältnis von 2:2 detektiert.

Das Phosphorresonanzspektrum zeigt lediglich ein scharfes Singulett bei δ = 143.3 ppm, welches auf eine symmetrische Komplexierung der Phosphoratome hinweist.

Tabelle 3.15: NMR-spektroskopische Daten von Verbindung 14, 400.14 MHz, C₆D₆, 293 K

	$[Cp'''Fe(\mu_4-\eta^{4:2:1:1}-P_2Se_2)Fe(CO)Cp'''\{W(CO)_5\}_2] (14)$	
	δ [ppm]	Zuordnung
¹ H-NMR	1.53 (s, 9 H)	$C(C\underline{H}_3)_3$
	1.59 (s, 18 H)	$C(C\underline{H}_3)_3$
	2.24 (s, 9 H)	$C(C\underline{H}_3)_3$
	2.26 (s, 18 H)	$C(C\underline{H}_3)_3$
	3.70 (s, 2 H)	arom. Protonen
	4.40 (s, 2 H)	arom. Protonen
³¹ P-NMR	143.3 (s, 2 P)	

3.2.3.3 Strukturvorschlag für Verbindung 14

Die NMR-spektroskopischen Daten lassen deutliche Rückschlüsse auf die Symmetrieeigenschaften von Verbindung **14** zu. Zum einen sind zwei der drei *tert*-Butylgruppen chemisch und magnetisch äquivalent, zum anderen werden zwei Signalsätze für die beiden Cyclopentadienylliganden beobachtet, woraus eine abweichende chemische Umgebung hervorgeht. Das Singulett im ³¹P-NMR-Spektrum zeugt von einer hohen Symmetrie im Gesamtmolekül oder nur einem einzelnen Phosphoratom in Komplex **14**. Neben dem {W(CO)₅}-Fragment scheint eine weitere CO-Gruppe terminal koordiniert zu sein.

Eine eindeutige Aussage bezüglich der Struktur von 14 ist jedoch nur mittels der Röntgenstrukturanalyse möglich, die obige Annahmen größtenteils bestätigt.

3.2.3.4 Röntgenstrukturanalyse von [Cp'''Fe(μ₄-η^{4:2:1:1}-P₂Se₂)Fe(CO)Cp''' {W(CO)₅}₂] (14)

Eine gesättigte Hexanlösung wird zunächst durch Filtration über eine D3-Fritte von Schwebepartikeln befreit. Daraus erhält man innerhalb von drei Tagen durch Abdiffusion des Lösungsmittels bei Raumtemperatur für die Röntgenstrukturanalyse geeignete Einkristalle. In *Abbildung 3.11* ist die Molekülstruktur von **14** im Kristall dargestellt. Die Gerüstatome sind zum besseren Verständnis der anschließenden Diskussion durchnummeriert. Ausgewählte Bindungslängen und –winkel enthält *Tabelle 3.16*, die vollständige Auflistung der Strukturdaten befindet sich im Anhang.

Abb. 3.11: Molekülstruktur von $[Cp'''Fe(\mu_4-\eta^{4:2:1:1}-P_2Se_2)Fe(CO)Cp'''\{W(CO)_5\}_2]$ (14) im Kristall

Die Röntgenstrukturanalyse von 14 zeigt ein Ferradiphosphadiselenacyclopentadien, in dem das fast planare P_2Se_2 -Fragment zentrosymmetrisch von dem 13VE-Übergangsmetall-Fragment {Cp'''Fe} überkappt wird. Der heteronukleare η^4 -Ligand und der carbocyclische Fünfring am Fe(1)-Atom weichen nur 6.2° von einer parallelen Anordnung ab. Diese Strukturelemente stehen in Analogie zu dem "Tetraphosphaferrol" [Cp"Fe(μ - $\eta^{4:1:1}$ -P₄)Fe(CO)Cp"] (15), das *Schwarz* ^[6,7] 1995 ³¹P-NMR-spektroskopisch erstmals postulierte. Die entsprechenden Rhodium- bzw. Rutheniumtetraphosphacyclopentadiene (16,17) von *Swarowsky* ^[33] und *Müller* ^[34] – alle aus unserem Arbeitskreis - , lieferten den röntgenstrukturanalytischen Beweis dieser Verbindungsklasse. Auch sie konnten nachweisen, daß das Metallatom aus der planaren Fünfringebene nach unten wegklappt. Der Faltungswinkel entlang der Se-Se-Achse beträgt 39.5° und ist damit kleiner als im Rhodium- (55.5°) 16 und größer als im Ruthenium-Derivat 17 (25.3°).

Schwarz ^[6,7] postuliert zur Einhaltung der 18 VE-Regel am Übergangsmetall zwischen den beiden Eisenatomen eine Einfachbindung. In Komplex **14** beträgt der Fe-Fe-Abstand 3.62 Å, liegt also eindeutig im nichtbindenden Bereich. Die Erklärung hierfür liefert eine Betrachtung der elektronischen Verhältnisse im Polyedergerüst. Während das Tetraphosphaferrol von *Schwarz* 48 VE und (n+2) = 8 GEP aufweist, besitzt Verbindung **14** zwei Valenzelektronen (1 GEP) mehr. Dieser Elektronenüberschuß im Polyedergerüst kann das Fehlen einer Fe-Fe-Bindung kompensieren. Identische Elektronenverhältnisse treten im Rhodium-Derivat **16** auf, in dem ebenfalls keine Metall-Metall-Bindung beobachtet wird. Die Ruthenium-Struktur **17** dagegen entspricht dem "Tetraphosphaferrol" **15** von *Schwarz* mit 48 VE und einer Ru-Ru-Einfachbindung. Ein Unterschied liegt in der Anordnung der Liganden am Fe(2)bzw. Ru(2)-Atom. Während sich im Eisen-Komplex **14** der Fünfring teilweise "unter" die P₂Se₂-Vierringebene erstreckt und die CO-Gruppe nach "oben" in Richtung {MCp^R}-Fragment weist, ist die Anordnung im Rhodium-Komplex **16** gerade entgegengesetzt.

Die Bindungsabstände zwischen Eisen und dem Carbonyl-Kohlenstoff bzw. den Kohlenstoffcentroiden entsprechen mit 1.76 Å und 1.72 Å sehr gut den Werten im $[{Cp''(OC)_2Fe}_2(\mu-\eta^{1:1}-P_4)]$ -Butterflykomplex (**2a**) von *Hilt* (terminale CO: d = 1.73 Å) und im *pseudo*-Tripeldecker $[{Cp'''Fe}_2(\mu-\eta^{4:4}-P_4)]$ (**8a**) $(Cp'''_{centr.}$ -Fe: d = 1.74 Å) ^[1,2].

Eine gute Übereinstimmung liefert auch ein Vergleich der Fe(1)-Se-Bindungsabstände (2.44 Å, 2.45 Å) mit den Werten im Fe₄Se₄-Cuban von *Dahl* (Fe-Se: d = 2.44 Å) ^[29]. Sie sind deutlich länger als in den oxidierten Dreiecksdodekaedern von *Kemeny* ^[20,21] (Fe-Se: d = 2.10 Å) oder im [{Cp"Co}₃(μ_3 -P)(μ_3 -PSe)]-Komplex von *Weigel* ^[22,35,36] mit 2.09 Å für den P=Se-Liganden.

Der P-P-Abstand liegt mit 2.12 Å etwas unterhalb der Einfachbindungslänge im Tetraedergerüst des weißen Phosphors ^[37] und entspricht genau dem Abstand im Ruthenium-Komplex von *Müller* ^[34]. Die Winkel an den Phosphoratomen betragen 102.3° und 103.1° und weichen damit von einer idealen rechteckigen Anordnung der Atome ab. Dadurch stehen die beiden Se-Atome in einem weiteren Abstand von 3.10 Å zueinander. Dies entspricht jedoch einer nichtbindenden Wechselwirkung.

Die Metall-Phosphor- und Metall-Selen-Bindungsabstände unterstreichen die NMRspektroskopisch nachgewiesene Symmetrie in Komplex **14** (Fe-P = 2.31 Å und 2.32 Å), Fe(1)-Se = 2.45 Å und 2.44 Å), (Se-P = 2.22 Å und 2.23 Å) und (Fe(2)-Se = 2.37 Å und 2.36 Å). Auch der Abstand der Wolframatome zum Metall liegt mit d = 2.51 Å im erwarteten Bereich.

Tabelle 3.16Ausgewählte Strukturdaten von $[Cp'''Fe(\mu_4-\eta^{4:2:1:1}-P_2Se_2)Fe(CO)Cp'''
<math>\{W(CO)_5\}_2]$ (14)

• Ausgewählte Bindungslängen in Å

Fe(1) - Fe(2)	3.623
Se(1) - Se(2)	3.103
Se(1) - P(1)	2.2234 (15)
Se(2) - P(2)	2.2323 (15)
P(1) - P(2)	2.123 (2)
$\operatorname{Se}(1) - \operatorname{Fe}(1)$	2.4556 (9)
$\operatorname{Se}(2) - \operatorname{Fe}(1)$	2.4427 (10)
Se(1) - Fe(2)	2.3749 (10)
$\operatorname{Se}(2) - \operatorname{Fe}(2)$	2.3597 (9)
Fe(1) - P(1)	2.3058 (17)
Fe(1) - P(2)	2.3210 (17)
P(1) - W(1)	2.5142 (14)
P(2) - W(2)	2.5092 (15)
$Fe(1) - Cp'''_{centr.}$	1.722
Fe(2) – Cp''' centr	1.726

• Ausgewählte Bindungswinkel in Grad

P(2) - P(1) - Se(1)	102.31 (7)
Se(2) - P(2) - P(1)	103.06 (7)
P(1) - Se(1) - Fe(2)	115.69 (5)

P(2) - Se(2) - Fe(2)	114.54 (5)
Se(1) - Fe(2) - Se(2)	81.89 (3)
W(2) - P(2) - P(1)	136.13 (7)
W(1) - P(1) - P(2)	129.41 (8)

• Ebenendefinition und maximale Abweichung aus diesen Ebenen in Å

Ebene	Atome	Maximale Abweichung
E1	C(1) - C(2) - C(3) - C(4) - C(5)	-
E2	C(6) - C(7) - C(8) - C(9) - C(10)	-
E3	Se(1) - P(1) - P(2) - Se(2)	0.1997
E4	$\operatorname{Se}(1) - \operatorname{Se}(2) - \operatorname{Fe}(2)$	0.1049
E5	$\operatorname{Se}(1) - \operatorname{Se}(2) - \operatorname{Fe}(1)$	0.1049

• Winkel zwischen den besten Ebenen in Grad

Ebenen	E1/E2	E1/E3	E3/E4	E4/E5
Winkel	27.3	6.2	39.5	20.7

3.3 Photolyse von [{Cp'''Fe}₂(μ-CO)(μ-η^{2:2}-P₂)] (1) und dessen anschließende Umsetzung mit Chalkogenen

Unter Photolyse-Bedingungen spaltet das Tetrahedran [{Cp'''Fe}₂(μ -CO)(μ - $\eta^{2:2}$ -P₂)] (1) seine verbrückende Carbonylgruppe ab und man erhält das von *Eichhorn* ^[11,38] aus unserem Arbeitskreis bereits vollständig charakterisierte Decarbonylierungsprodukt [{Cp'''Fe}₂(μ -P)₂] (18) des Tetrahedrans 1 (siehe *Abbildung 3.12*). Die P-P-Bindung im Edukt bricht auf und es entsteht ein Fe₂P₂-Bicyclus mit einem delokalisierten π -Elektronensystem. Solche gewinkelt verbrückenden Pnicogenido (E³⁻)-Liganden konnten bisher nur ein weiteres Mal im Komplex [{ArO₂}W}(μ -P){PC^tBuP(OAr)₂}] beobachtet werden ^[39]. Das Besondere an Verbindung 18 ist die extreme Tieffeldverschiebung des ³¹P-NMR-Signales, das bei δ = 1406 ppm detektiert wird.

Abb. 3.12: Kristallstruktur des [$\{Cp'''Fe\}_2(\mu-P)_2$]-Bicyclus (18)

Das Tetrahedran [{Cp'''Fe}₂(μ -CO)(μ - $\eta^{2:2}$ -P₂)] (1) wird deshalb zunächst in wenig Toluol gelöst und anschließend in einer Tauchlampenapparatur so lange bestrahlt, bis keine Eduktcarbonylbanden mehr im IR-Spektrum der Rohlösung detektierbar sind. Die gelbgrüne Lösung wird daraufhin am Ölpumpenvakuum getrocknet und ³¹P-NMR-spektroskopisch vermessen. Das Spektrum zeigt nur ein einzelnes Singulett bei δ = 1406 ppm. Der erhaltene Feststoff wird danach in wenig Hexan gelöst und durch Filtration über eine D3-Fritte von unlöslichen Verbindungen abgetrennt. Nach dem Entfernen des Lösungsmittels am Ölpumpenvakuum nimmt man den Rückstand in Toluol auf und versetzt die gelbliche Lösung mit einem sechs- bis achtfachen Überschuß an Chalkogen (Schwefel oder Selen). Danach wird das Reaktionsgemisch zwei Tage bei Raumtemperatur gerührt. Das ³¹P-NMR-Rohlösungsspektrum zeigt nach dieser Zeit jeweils ein Signal bei $\delta = -111$ ppm bzw. für die Umsetzung mit Selen bei $\delta = -86$ ppm. Beide Signale waren zuvor bei der Umsetzung von [{Cp'''Fe}₂(μ -CO)(μ - $\eta^{2:2}$ -P₂)] (1) mit Schwefel und Selen beobachtet worden (siehe *Kapitel 3.1.2*). Die säulenchromatographische Aufarbeitung an Kieselgel bei –20 °C führt daher wenig überraschend bei einem Lösungsmittelgemisch aus Petrolether und Toluol im Verhältnis 20:1 zu einer grünen Fraktion, die das Phosphorsignal enthält. Die zweite, orange Fraktion, die bei einer Polarität der beiden Lösungsmittel von 1:1 eluiert wird, ist phosphorfrei und wurde nicht weiter untersucht.

Ein zweites Singulett bei höherem Feld, das ausgehend von den Ergebnissen in *Kapitel 3.2* einer Ferradiphosphadichalkogencyclopentadien-Vorstufe zugeordnet werden kann, wurde in keinem der beiden Rohlösungsspektren oder den gewonnen Fraktionen beobachtet, so daß man von zwei möglichen Reaktionswegen für die Synthese von [{Cp'''Fe}₂(μ - η ^{4:4}-P₂X₂)] (6,7) (X = S, Se) ausgehen kann.

Abb. 3.13: Mögliche Reaktionswege für die Synthese von $[{Cp'''Fe}_2(\mu-\eta^{4:4}-P_2X_2)]$ (6,7) (X = S, Se) aus dem Tetrahedran 1

Die CO-Abspaltung kann demnach sowohl vor als auch nach der Oxidation mit Schwefel bzw. Selen stattfinden. In jedem Fall führt sie zu einem thermodynamisch stabilen Endprodukt, das zahlreiche Übereinstimmungen mit dem *pseudo*-Tripeldeckerkomplex [{Cp"'Fe}₂(μ - $\eta^{4:4}$ -P₄)] (**8a**) aufweist. Die Zwischenstufen weichen dagegen stark voneinander ab. Das Ferradiphosphadichalkogencyclopentadien ist vergleichbar mit dem Komplex von *Schwarz* ^[6,7] und damit eine Vorstufe bei der Generierung von [{Cp^RFe}₂(μ - $\eta^{4:4}$ -P₄)] (**8**) durch sukzessive CO-Eliminierung aus dem [{Cp^R(OC)₂Fe}₂(μ - $\eta^{1:1}$ -P₄)]-Butterflykomplexe (**2**).

Der Bicyclus stellt eine eher ungewöhnliche und seltene Struktur-Einheit dar, die sich wesentlich stärker umorientieren muß, um die Bindungsverhältnisse im *pseudo*-Tripeldeckerkomplex **6** oder **7** anzunehmen. Es müssen wesentlich mehr Bindungen aufgebrochen und wieder neu geknüpft werden. Der Vorteil ist, daß auf diesem Weg das Nebenprodukt [Cp"'Fe(μ_4 - $\eta^{4:2:1:1}$ -P₂Se₂)Fe(CO)Cp'''{W(CO)₅}₂] (**14**) und damit die Konkurrenzreaktion bei der Bildung von **6** und **7** von vornherein unterbunden wird. Außerdem kann die problematische Trennung der Komplexe **6** bzw. **7** von [Cp'''Fe(μ - $\eta^{4:2}$ -P₂Se₂)Fe(CO)Cp'''] umgangen werden. Man erhält die *pseudo*-Tripeldeckerkomplexe [{Cp'''Fe}₂(μ - $\eta^{4:4}$ -P₂X₂)] (**6**,**7**) so analysenrein.

3.4 Komplexierung von $[{Cp'''Fe}_2(\mu-\eta^{4:4}-P_4)]$ (8a) mit $[W(CO)_6]$

Schon 1995 hat *Schwarz* versucht, das Cp"-Derivat **8d** mit dem 16VE-Übergangsfragment $\{W(CO)_5\}$ zu komplexieren ^[6]. Mit einem 2-3 fachen Überschuß an $[W(CO)_6]$ gelang es ihm, bei Raumtemperatur nach ca. 24 Stunden eine Verbindung zu isolieren, die er ³¹P-NMR-spektroskopisch anhand eines ABMN-Spinsystems eindeutig als zweifach komplexierte P₄-Kette nachweisen konnte. Die Komplexfragmente sollen dabei an zwei P-Atome der Kette koordiniert sein. Der röntgenstrukturanalytische Nachweis gelang jedoch nicht.

In der jüngeren Vergangenheit hat sich gezeigt, daß gerade der sterisch aufwendige Tri-*tert*butyl-Cyclopentadienylligand sehr gute Kristallisationseigenschaften aufweist. *Hilt* ^[1,2] gelang damit die röntgenografische Strukturbestimmung der P₄-Butterflykomplexe, an der zuvor zahlreiche andere Arbeitskreise über zehn Jahre hinweg scheiterten.

Der *pseudo*-Tripeldeckerkomplex **8a** wird mit einem vierfachen, molaren Überschuß an einer frisch bereiteten [W(CO)₅·thf]-Lösung in wenig Tetrahydrofuran umgesetzt. Nach 24 Stunden Rühren des rotbraunen Reaktionsgemisches bei Raumtemperatur wird das Lösungsmittel am Ölpumpenvakuum entfernt und der Rückstand ³¹P-NMR-spektroskopisch vermessen. Das Spektrum zeigt eine Vielzahl komplexer Signale im Bereich zwischen $\delta = +300$ ppm und $\delta = -250$ ppm, die auch nach säulenchromatographischer Trennung an Kieselgel bei –20 °C nur versuchsweise einzelnen Substanzen zugeordnet werden können.

$$[\{Cp'''Fe\}_{2}(\mu-\eta^{4:4}-P_{4})] \xrightarrow{[W(CO)_{5}\cdot thf]} [\{Cp'''Fe\}_{2}(\mu_{4}-\eta^{4:4:1:1}-P_{4})\{W(CO)_{5}\}_{2}]$$
(8a)
(19a)
$$Cp''' = C_{5}H_{2}^{t}Bu_{3}-1,2,4$$

Abb. 3.14: Reaktionsbedingungen bei der Komplexierung von $[{Cp'''Fe}_2(\mu-\eta^{4:4}-P_4)]$ (8a) mit $[W(CO)_6]$

Ein Lösungsmittelgemisch aus Petrolether und Toluol im Verhältnis 50:1 liefert eine schwarzbraune Fraktion, die einige der Phosphorsignale enthält. Die zweite, grüne Fraktion kann mit einem Petrolether/Toluol-Gemisch der Polarität 20:1 schnell eluiert werden, weist jedoch im Phosphorresonanzspektrum keine Signale auf. Jede weitere Erhöhung der Polarität des Lösungsmittelgemisches bis hin zu reinem Toluol führt zu keinen weiteren Fraktionen.

3.4.1 Erste Säulenfraktion: $[{Cp'''Fe}_2(\mu_4-\eta^{4:4:1:1}-P_4){W(CO)_5}_2]$ (19a)

3.4.1.1 Eigenschaften und IR-Spektroskopie

Nach dem Entfernen des Lösungsmittels am Ölpumpenvakuum fällt **19a** als braunes, kristallines Pulver an, das – wie schon das Edukt – kurzzeitig an Luft gehandhabt werden kann und ohne sichtbare Zeichen der Zersetzung über Monate hinweg unter Schutzgas lagerbar ist. Die Löslichkeit in unpolaren Solventien wie Pentan und Hexan ist gut, in polaren Lösungsmitteln sehr gut.

Das IR-Spektrum einer Toluollösung von **19a** weist eine schmale Bande bei $\overline{v} = 2064 \text{ cm}^{-1}$ und zwei sehr breite Signale bei $\overline{v} = 1946 \text{ cm}^{-1}$ und $\overline{v} = 1929 \text{ cm}^{-1}$ auf. Diese sind charakteristisch für die terminalen CO-Gruppen im {W(CO)₅}-Fragment.

Tabelle 3.17: IR-Absorptionsbanden der {W(CO)₅}-Fragmente in Verbindung 19a

[{Cp'''Fe} ₂ (μ ₄ -η ^{4:4:1:1}	-P ₄){W(CO) ₅ } ₂] (19a)
2064 (s)	W(<u>CO</u>)5
1946 (m)	W(<u>CO</u>) ₅
1929 (m)	W(<u>CO</u>)5

3.4.1.2 NMR-Spektroskopie

Das Protonenresonanzspektrum bei Raumtemperatur zeigt das klassische Aufspaltungsmuster des Cp^{III}-Liganden in symmetrischer Umgebung bei freier Rotation um die Fe-Cp^{III}_(centr.)-Achse. Es ist gekennzeichnet durch drei Singuletts bei $\delta = 1.19$ ppm, $\delta = 1.38$ ppm und $\delta = 3.61$ ppm in einem Integrationsverhältnis von 9:18:2. Die Messung der Protonenresonanz bei tiefer Temperatur (190 K) zeigt, daß die anfänglich drei Signale in fünf Singuletts aufspalten, da die Rotation um die Metall-Cyclopentadienyl-Achse meßbar gehemmt ist. Dabei ändert sich das Integrationsverhältnis auf 9:9:9:1:1. Die dazu gehörigen chemischen Verschiebungen sind in *Tabelle 3.18* aufgelistet.

Tabelle 3.18:	¹ H-NMR-Daten	von	[{Cp'''Fe} ₂ ($\mu_4-\eta^{4:4:1:1}$	$-P_4$ {W(CO) ₅ } ₂]	(19a(A)),	400.14
	MHz, 295 K (C ₆)	D_6) u	nd bei 190 K	(C_7D_8)			

	$[{Cp'''Fe}_2(\mu_4-\eta^{4:4:1:1}-P_4){W(CO)_5}_2] (19a(A))$		
	δ [ppm]	Zuordnung	
¹ H-NMR	1.19 (s, 18 H)	$C(C\underline{H}_3)_3$	
(295 K)	1.38 (s, 36 H)	$C(C\underline{H}_3)_3$	
	3.61 (s, 4 H)		
¹ H-NMR	1.21 (s, 18 H)	$C(C\underline{H}_3)_3$	
(190 K)	1.25 (s, 18 H)	$C(C\underline{H}_3)_3$	
	1.46 (s, 18 H)	$C(C\underline{H}_3)_3$	
	3.62 (s, 2 H)	arom. Ringprotonen	
	3.84 (s, 2 H)	arom. Ringprotonen	

Im ³¹P-NMR-Spektrum von **19a(A)** wird bei 295 K neben dem Multiplett bei δ = -188.6 ppm ein weiteres Multiplett bei δ = 304.1 ppm detektiert. Die beiden Signale weisen ein Integralverhältnis von 1:1 auf. Dieser Signalsatz ähnelt sehr dem Aufspaltungsmuster eines A₂X₂-Spinsystems, das normalerweise aus sechs Linien in Form von zwei Tripletts und einer J_{A,X}-Kopplungskonstante besteht ^[40].

Abb. 3.15: ³¹P-NMR-Spektrum von [{Cp'''Fe}₂(μ_4 - $\eta^{4:4:1:1}$ -P₄){W(CO)₅}₂] (19a(A)) nach der fraktionierenden Kristallisation bei 295 K

Ein Absenken der Temperatur auf 190 K führt zur Verdopplung der Signale und man erhält ein ABMN-Spinsystem mit zwei stark verbreiterten Dubletts bei $\delta = 301.6$ ppm und $\delta = 209.9$ ppm beziehungsweise zwei dublettierte Dubletts bei einer chemischen Verschiebung von $\delta = -136.2$ ppm und $\delta = -199.1$ ppm.

Abb. 3.16: ³¹P-NMR-Spektrum von $[{Cp'''Fe}_2(\mu_4-\eta^{4:4:1:1}-P_4){W(CO)_5}_2]$ (19a(A)) nach der fraktionierenden Kristallisation bei 190 K

Durch die Temperaturerniedrigung tritt eine Veränderung der Symmetrieeigenschaften von Verbindung **19a(A)** auf. Die chemische und magnetische Äquivalenz von jeweils zwei Phosphoratomen ist bei 190 K aufgehoben, da sowohl die temperaturabhängige Bindungsfluktuation ^[6] innerhalb der P₄-Kette als auch die Rotation der sterisch aufwendigen Cp'''-Liganden bei tiefen Temperaturen gehindert ist. Ähnliche Beobachtungen konnte *Berg* ^[41] aus unserem Arbeitskreis 1995 bei der ligandgesteuerten P₂-Verknüpfung zu einem acyclischen P₄-Liganden in Komplex [{Cp'''Co}₂(μ_4 - $\eta^{4:4:1:1}$ -P₄){W(CO)₅}₂] **20** machen. Ein Vergleich der ³¹P-NMR-spektroskopischen Daten des literaturbekannten vierkernigen Kobaltkomplexes **20** mit den Werten von **19a(A)** zeigt eine sehr gute Übereinstimmung^[41].

Tabelle 3.19: ³¹ P-NMR-Daten von $[{Cp'''Fe}_2(\mu_4-\eta^{4:4:1:1}-P_4){W(CO)_5}_2]$ (19a(A)) in V	Ver-
gleich zu [{Cp'''Co} ₂ (μ_4 - $\eta^{4:4:1:1}$ -P ₄){W(CO) ₅ } ₂] 20 , 161.97 MHz, C ₇ D ₈	

	19a(A) δ [ppm]	20 δ [ppm]
³¹ P-NMR	304.09 (m, 2 P _A)	- 56.0 (m, 2 P _A)
(295 K/300 K)	-188.62 (m, 2 P _X)	-127.0 (m, 2 P _B)
³¹ P-NMR	301.55 (d, br, 1 P _A)	- 31.3 (d, br, 1 P _A)
(190 K/210 K)	${}^{1}J_{(P,P)} = -483.81 \text{ Hz}$	${}^{1}J_{(P,P)} = -407 \text{ Hz}$
	209.92 (d, br, 1 P _B)	- 86.8 (d, 1 P _B)
	${}^{1}J_{(P,P)} = -466.45 \text{ Hz}$	${}^{1}J_{(P,P)} = -485 \text{ Hz}$
	-136.15 (dd, 1 P _M)	-119.8 (dd, 1 P _C)
	${}^{1}J_{(P,P)} = -287.81, -483.81 \text{ Hz}$	${}^{1}J_{(P,P)} = -313, -485 \text{ Hz}$
		${}^{1}J_{(P,W)} = 242 \text{ Hz}$
	-199.09 (dd, 1 P _N)	-143.7 (dd, 1 P _D)
	${}^{1}J_{(P,P)} = -287.81, -466.45 \text{ Hz}$	${}^{1}J_{(P,P)} = -313, -407 \text{ Hz}$

Vor der fraktionierenden Kristallisation zeigt das Phosphorresonanzspektrum dieser ersten Fraktion noch vier weitere Signale. Zwei davon treten als Multipletts bei $\delta = 317.5$ ppm und $\delta = 240.5$ ppm in Resonanz, während die beiden anderen Multipletts bei höherem Feld relaxieren.

Abb. 3.17: ³¹P-NMR-Spektrum von $[{Cp'''Fe}_2(\mu_4-\eta^{4:4:1:1}-P_4){W(CO)_5}_2]$ (19a(A)) und 19a(B) vor der fraktionierenden Kristallisation bei 295 K

Diese Daten stimmen dagegen sehr gut mit den literaturbekannten Werten von *Schwarz* für den zweifach komplexierten *pseudo*-Tripeldeckerkomplex [{Cp"Fe}₂(μ_4 - $\eta^{4:4:1:1}$ -P₄) {W(CO)₅}₂] (**19d**) überein ^[6]. Im Gegensatz zu *Berg* postuliert er eine η^1 -Koordination der beiden endständigen Phosphoratome der P₄-Kette, konnte diese Struktur jedoch nicht belegen, während *Berg* die Röntgenstrukturanalyse für den komplexierten Kobaltkomplex **20** lieferte ^[6,41].

Tabelle 3.20: Vergleich der ³¹P-NMR-Daten von Verbindung **19a(B)** und **19d**, 161.97 MHz, C₆D₆, 293 K

$[{Cp'''Fe}_2(\mu_4-\eta^{4:4:1:1}-P_4){W(CO)_5}_2] (19a(B))$		[{Cp''Fe} ₂ (μ ₄ -η ^{4:4:}	^{1:1} -P ₄){W(CO) ₅ } ₂] (19d) ^[6]
δ [ppm]		δ [ppm]	
317.5 (m, P _A)	-119.7 (m, P _M)	241.0 (m, P _A)	-197.3 (m, P _M)
240.5 (m, P _B)	-144.6 (m, P _N)	188.6 (m, P _B)	-224.7 (m, P _N)

Sowohl das Aufspaltungsmuster als auch die Signallage der vier Multipletts weisen auf eine identische Struktur beider Komplexe hin. Lediglich der Tieffeldshift von ungefähr 70 ppm bei allen vier Signalen des Cp^{III}-Derivates **19a(B)** gegenüber dem Di-*tert*-butyl-substituierten Komplex **19d** fällt auf.

3.4.1.3 Strukturvorschlag für Verbindung 19a

Bei der Komplexierung des *pseudo*-Tripeldeckerkomplexes **8a** mit Wolframpentacarbonyl werden im Gegensatz zu *Berg* und *Schwarz* beide Konstitutionsisomere **19a(A)** und **19a(B)** gebildet, wie ein Vergleich der Phosphorresonanzspektren zeigt. Sie unterscheiden sich in der Anordnung der beiden 16 VE-Übergangsmetallfragmente entlang der P₄-Kette.

Abb. 3.18: Darstellung der komplexierten P₄-Kette der Strukturisomeren 19a(A) und 19a(B)

Durch fraktionierende Kristallisation kann das Strukturisomer **19a(A)** analysenrein erhalten werden. Es liefert bei Raumtemperatur aufgrund der nur schwach gehinderten Rotation der Cp^{III}-Liganden und der Bindungsfluktuation der P₄-Einheit nahezu ein A_2X_2 -Spinsystem, das bei tiefen Temperaturen in ein ABMN-Spinsystem aufspaltet. Das zweite Strukturisomere **19a(B)** dagegen weist schon bei Raumtemperatur die vier Multipletts eines ABMN-Spinsystems auf.

Von **19a(A)** konnten röntgentaugliche Einkristalle erhalten werden, die den endgültigen Strukturbeweis liefern. Das IR-Spektrum von **19a(A)**, das zwei { $W(CO)_5$ }-Fragmente nachweist, sowie eine stimmige Elementaranalyse unterstreichen dieses Ergebnis.

3.4.1.4 Röntgenstrukturanalyse von [{Cp'''Fe}₂(μ₄-η^{4:4:1:1}-P₄){W(CO)₅}₂] (19a(A))

Eine gesättigte Hexanlösung von **19a(A)** wird zunächst durch Filtration über eine D3-Fritte von Schwebstoffen befreit. Die langsame Abdiffusion des Lösungsmittels bei Raumtemperatur liefert daraus die geeigneten Einkristalle für die Röntgenstrukturanalyse. *Abbildung 3.19* zeigt das Ergebnis dieser Untersuchung im Kristall inklusive der Nummerierung der zentralen Baueinheit. Ausgewählte Bindungslängen und –winkel sowie beste Ebenen und Winkel zwischen diesen Ebenen sind in *Tabelle 3.21* aufgelistet. Die übrigen Strukturdaten und Meßparameter befinden sich im Anhang.

Abb. 3.19: Molekülstruktur von [$\{Cp'''Fe\}_2(\mu_4-\eta^{4:4:1:1}-P_4)\{W(CO)_5\}_2$] (19a(A)) im Kristall

Die Kristallstrukturanalyse weist Verbindung **19a(A)** als Komplexierungsprodukt des bereits von *Hilt* ^[1,2] 1999 vollständig charakterisierten *pseudo*-Tripeldeckerkomplexes [{Cp"'Fe}₂(μ - $\eta^{4:4}$ -P₄)] (**8a**) mit zwei η^1 -koordinierten {W(CO)₅}-Fragmenten an P(2) und P(4) in einem Abstand von 2.57 Å bzw. 2.52 Å aus. Diese Werte liegen im charakteristischen Bereich von Phosphor-Wolfram-Einfachbindungen, wie sie schon in mehreren Komplexen in unserem Arbeitskreis beobachtet wurden, auch im zweifach komplexierten Kobaltkomplex [{Cp"'Co}₂(μ_4 - $\eta^{4:4:1:1}$ -P₄){W(CO)₅}₂] **20** von *Berg* ^[38,41]. Eine Newman-Projektion der Liganden entlang der Fe-Fe-Bindungsachse gibt Aufschluß über die räumliche Anordnung der sperrigen Liganden. Die Kohlenstoffatome der beiden η^5 -koordinierten Carbocyclen, deren Anordnung um 14.8° von der Parallelität abweicht, stehen genau ekliptisch zueinander, so daß die *tert*-Butylgruppen ebenfalls zur Deckung kommen. In den Lücken zwischen den Alkylgruppen sind die beiden {W(CO)₅}-Fragmente an die freien Elektronenpaare am Phosphor koordiniert. Die P-Atome in der trapezoiden P₄-Kette liegen damit genau in der radial nach außen gerichteten Verlängerung der Kohlenstoffatome (siehe *Abbildung 3.20*).

Abb. 3.20: Newman-Projektion der Molekülstruktur von 19a entlang der Fe-Fe-Bindungsachse

Insgesamt ist die Struktur von **19a(A)** immer noch leicht gewinkelt, obwohl die Abweichungen der drei Decks von der Parallelität zueinander sich im Vergleich zum unkomplexierten Derivat **8a** fast halbiert haben (E1/E2: 8.2°, E1/E3: 13.6°, E2/E3: 21.7°)^[1,2]. Ansonsten ist der Einfluß der beiden Wolfram-Komplexfragmente auf die Bindungslängen und –winkel in Komplex **19a(A)** nur sehr gering, wie ein Vergleich der entsprechenden Werte mit denen des Eduktes **8a** zeigt (siehe *Tabelle 3.21*).

Innerhalb der P₄-Kette sind die P-P-Bindungsabstände nahezu identisch geblieben, so daß man auch weiterhin nicht von einem closo-Polyeder mit oktaedrischem Grundgerüst sprechen kann, auch wenn die Anzahl der Gerüstelektronenpaare mit (n+1) = 7 GEP für n = 6 dies fordert. Ähnliche P-P- und P-W-Bindungsabstände weist der analoge Kobaltkomplex **20** von *Berg* mit Längen zwischen P(1) – P(2) von 2.07 Å, P(2) – P(3) von 2.28 Å und P(3) – P(4) von 2.09 Å auf. Auch die Winkel an den Phosphoratomen mit 101.8° und 97.3° weichen nur wenig vom Eisen-Analogon ab. Die Cp'''-Decks sind nur um 0.01 Å weiter auseinander gedrückt, während die Winkel an Fe(1) und Fe(2) mit den Fünfringcentroiden mit 171° und 172° betragen.

Die alternierend angeordneten {W(CO)₅}-Fragmente eliminieren die vertikale Spiegelebene senkrecht zur Cp^{'''}-Ebene, wodurch die Symmetrie in Komplex **19a(A)** gegenüber dem Edukt **8a** stark reduziert ist. Die NMR-Spektroskopie zeigt diese Tatsache sehr deutlich.

Tabelle 3.21 Ausgewählte Strukturdaten von [{Cp'''Fe}2($\mu_4-\eta^{4:4:1:1}-P_4$){W(CO)5}2] (19a(A))im Vergleich zu [{Cp'''Fe}2($\mu-\eta^{4:4}-P_4$)] (8a) [9]

[{Cp'''Fe} ₂ (µ ₄ -η ^{4:4:1:1} -P ₄){W(CO) ₅ } ₂] (19a(A))		[{Cp ^{'''} Fe} ₂ (µ-η ^{4:4} -P ₄)] (8a)	
P(1) - P(2)	2.092(2)	P(1) - P(2)	2.0949(13)
P(2) - P(3)	2.338(2)	P(2) - P(3)	2.3678(13)
P(3) - P(4)	2.105(2)	P(3) - P(4)	2.0873(15)
P(1) P(4)	3.539	P(1) P(4)	3.5520
Fe(1) - Fe(2)	2.6802(11)	Fe(1) - Fe(2)	2.6537(7)
Fe(1) - P(1)	2.2889(17)	Fe(1) - P(1)	2.2747(10)
Fe(1) - P(2)	2.2989(19)	Fe(1) - P(2)	2.3440(11)
Fe(1) - P(3)	2.3630(18)	Fe(1) - P(3)	2.3241(9)
Fe(1) - P(4)	2.2641(17)	Fe(1) - P(4)	2.2715(9)
Fe(2) - P(1)	2.2641(17)	Fe(2) - P(1)	2.2718(9)
Fe(2) - P(2)	2.3085(17)	Fe(2) - P(2)	2.3308(11)
Fe(2) - P(3)	2.3670(16)	Fe(2) - P(3)	2.3537(10)

• Ausgewählte Bindungslängen von **19a(A)** und **8a** in Å

Fe(2) - P(4)	2.2666(17)	Fe(2) - P(4)	2.2611(10)
$Fe(1) - Cp'''_{centr.}$	1.755	$Fe(1) - Cp'''_{centr.}$	1.746
$Fe(2) - Cp'''_{centr.}$	1.753	$Fe(2) - Cp'''_{centr.}$	1.740
$Fe(1) - P_4$ centr.	1.428	$Fe(1) - P_4$ centr.	1.423
$Fe(2) - P_4$ centr.	1.437	$Fe(2) - P_{4 centr.}$	1.424
W(1) - P(4)	2.5682(15)		
W(2) - P(2)	2.5245(16)		

• Ausgewählte Bindungswinkel von 19a(A) im Vergleich zu 8a in Grad

[{Cp'''Fe} ₂ (µ ₄ -η ^{4:4:1:1} -P ₄){W(CO) ₅ } ₂]		$[{Cp'''Fe}_2(\mu-\eta^{4:4}-P_4)] (8a)$	
(19a(A))		
P(1) - P(2) - P(3)	109.04(9)	P(1) - P(2) - P(3)	106.56(5)
P(4) - P(3) - P(2)	104.24(8)	P(4) - P(3) - P(2)	106.23(5)
$Cp'''_{centr.} - Fe(1) - Fe(2)$	171.1	$Cp''_{centr.} - Fe(1) - Fe(2)$	170.2
$Cp'''_{centr.} - Fe(2) - Fe(1)$	171.8	$Cp''_{centr.} - Fe(2) - Fe(1)$	167.2
$Fe(1) - P_{4 centr.} - Fe(2)$	138.5	$Fe(1) - P_4$ centr. $- Fe(2)$	137.5

• Ebenendefinition und maximale Abweichung aus diesen Ebenen in Å für 8a

Ebene	Atome	Maximale Abweichung
E1	P(1) - P(2) - P(3) - P(4)	0.0121
E2	C(1) - C(2) - C(3) - C(4) - C(5)	0.0076
E3	C(6) - C(7) - C(8) - C(9) - C(10)	0.0045

• Winkel zwischen den besten Ebenen in Grad für 8a

Ebenen	E1/E2	E2/E3	E1/E3
Winkel	8.2	21.7	13.6

<u>3 Eigene Ergebnisse</u>

Ebene	Atome	Maximale Abweichung
E1	P(1) - P(2) - P(3) - P(4)	0.0007
E2	Cp''' _{centr.} – C _{1,2,3,4,5}	0.0091
E3	Cp''' _{centr.} - C _{6,7,8,9,10}	0.0140

• Ebenendefinition und maximale Abweichung aus diesen Ebenen in Å für 19a(A)

• Winkel zwischen den besten Ebenen in Grad für 19a(A)

Ebenen	E1/E2	E2/E3	E1/E3
Winkel	7.9	14.8	6.9

3.5 Umsetzung des [{In''(OC)₂Fe}₂(μ - $\eta^{1:1}$ -P₄)] (2b) mit [{Cp'''Fe(CO)₂}₂] (21a)

Dass der *pseudo*-Tripeldeckerkomplex [{ $Cp^{R}Fe$ }₂(μ - $\eta^{4:4}$ - P_{4})] (**8**) das thermodynamisch stabilste Decarbonylierungsprodukt der P₄-Butterflykomplexe darstellt, ist schon seit *Schwarz* ^[6] und *Hilt* ^[1,2] bekannt. Desweiteren konnten *Hilt* und *Eichhorn* nachweisen, daß die Tetraphosphabicyclobutan-Komplexe auch als alternative P_n-Quelle bei der Synthese von Polyphospholyl-Komplexen Anwendung finden ^[1,38,42].

Inwieweit ein zweites Edukt, das sowohl die Carbonylgruppen als auch das Übergangsmetall Eisen zur Verfügung stellt, jedoch einen anderen Cyclopentadienylliganden aufweist, unter Thermolyse-Bedingungen Einfluß auf diese Reaktion nimmt, zeigt folgende Umsetzung.

Für die Synthese des Eisen-Dimer-Komplex 21a nach der Literaturvorschrift von Hilt^[1,2] wurde der 1,2,4-Tri-*tert*-butyl-cyclopentadienylligand verwendet, während der P₄-Butterflykomplex 2b mit dem noch relativ unbekannten Di-tert-butyl-Indenylligand hergestellt wurde. Dies war in guten Ausbeuten möglich. Der ungewöhnliche Cyclopentadienylligand mit einem kondensierten Sechsring wurde erst vor kurzem im Arbeitskreis Sitzmann ^[43,44] synthetisiert und verschiedentlich eingesetzt. Seine komplexchemischen Eigenschaften bezüglich sterischer Abschirmung und Stabilisierung von Komplexen haben sich bisher als sehr gut erwiesen. Das phosphorhaltige Edukt wird in doppelt so großer molarer Menge wie 21a in Toluol gelöst, mit dem phosphorfreien Eisen-Zweikern-Komplex 21a versetzt und so lange am Rückfluß erhitzt, bis keine Edukt-Carbonylbanden im IR-Spektrum der Rohlösung mehr beobachtet werden. Nach etwa fünf Stunden ist das Reaktionsende erreicht und das Lösungsmittel wird am Ölpumpenvakuum entfernt. Der schwarzrote Rückstand weist im Phosphorresonanzspektrum neben mehreren Singuletts noch intensitätsschwache Signale auf, die einem Spektrum höherer Ordnung entsprechen. Daher schließt sich eine säulenchromatographische Aufarbeitung des Rückstandes an Kieselgel bei -20 °C an.

Abb. 3.21: Reaktionsbedingungen und –produkte bei der Umsetzung von [{In"(OC)₂Fe}₂ $(\mu-\eta^{1:1}-P_4)$] (2b) mit [{Cp"'Fe(CO)₂}₂] (20a)

Zunächst erhält man mit einem Petrolether/Toluol = 50:1-Gemisch eine grüne Lösung von $[In"_2Fe]$ (22), wie ein Vergleich der ¹H-NMR-spektroskopischen Daten mit den von *Wallasch* aus der Arbeitsgruppe *Sitzmann* ^[44] erhaltenen zeigt. Ändert man das Lösungsmittelgemisch auf 20:1, dann eluiert man eine zweite, rot-orange Fraktion, welcher nach der Erhöhung der Polarität des Lösungsmittelgemisches auf ein 10:1-Gemisch eine dunkelrote Fraktion folgt. Mit einem Petrolether/Toluol-Gemisch im Verhältnis 5:1 eluiert man eine ebenfalls rot-orange Lösung, an die sich in einigen Fällen noch eine letzte leuchtend orange Fraktion an-schließt, die nicht umgesetztes Edukt [{In"(OC)₂Fe}₂(μ - η ^{1:1}-P₄)] (2b) enthält.

3.5.1 Zweite Säulenfraktion: $[{Cp'''Fe}_2(\mu-\eta^{4:4}-P_4)]$ (8a)

3.5.1.1 Eigenschaften und IR-Spektroskopie

Nach dem Entfernen des Lösungsmittels am Ölpumpenvakuum bleibt ein rot-oranges, feines Pulver zurück. Sein Löslichkeitsverhalten ist in polaren Solventien wie Dichlormethan ebenso gut wie in unpolaren. Unter Schutzgas kann Verbindung **8a** mehrere Monate ohne Anzeichen der Zersetzung aufbewahrt werden und ist außerdem begrenzt luftstabil. Das IR-Spektrum einer Toluollösung von **8a** weist keine Banden im charakteristischen Bereich für Carbonylliganden auf.

3.5.1.2 NMR-Spektroskopie

Art und Anzahl der Signale im Protonenresonanzspektrum lassen eindeutig auf den Tri-*tert*butyl-Cyclopentadienylliganden in symmetrischer Umgebung schließen. Die drei Singuletts bei $\delta = 1.13$ ppm, $\delta = 1.25$ ppm und $\delta = 3.99$ ppm stehen in einem Integralverhältnis von 9:18:2 zueinander.

Das Phosphorresonanzspektrum spricht ebenfalls für eine symmetrische Verbindung, da nur ein Singulett bei $\delta = 92.5$ ppm detektiert werden kann. Die starke Verbreiterung des Signals weist auf dynamische Effekte innerhalb des Phosphorgerüstes hin. Dieses Phänomen wird bei den *pseudo*-Tripeldeckerkomplexen vom Typ [{Cp^RFe}₂(μ - $\eta^{4:4}$ -P₄)] (8) in den NMR-Spektren beobachtet (temperaturabhängig).

Tabelle 3.22: ¹H- und ³¹P-NMR-Daten von $[{Cp''Fe}_2(\mu-\eta^{4:4}-P_4)]$ (8a), 400.14 MHz und 161.97 MHz, C₆D₆, 293 K

	[{Cp'''Fe} ₂ (μ-η ^{4:4} -P ₄)] (8a)		
	δ [ppm]	Zuordnung	
¹ H-NMR	1.13 (s, 18 H)	$C(C\underline{H}_3)_3$	
	1.25 (s, 36 H)	$C(C\underline{H}_3)_3$	
	3.99 (s, 4 H)	arom. Ringprotonen	
³¹ P-NMR	92.5 (s, br, 4 P)		

3.5.1.3 Strukturvorschlag für Verbindung 8a

Basierend auf den ³¹P-NMR-spektroskopischen Parallelen zwischen **8a** und den literaturbekannten Verbindungen [{Cp["]Fe}₂(μ - $\eta^{4:4}$ -P₄)] (**8d**) von *Schwarz* ^[6] und [{Cp^RFe}₂(μ - $\eta^{4:4}$ -P₄)] (**8**) (Cp^R = Cp["], Cp⁴, Cp⁵) von *Hilt* ^[1,2], die in *Tabelle 3.23* aufgeführt sind, kann folgender Strukturvorschlag für Komplex **8a** hergeleitet werden.

	$[{Cp^{R}Fe}_{2}(\mu-\eta^{4:4}-P_{4})] (8)$		
Ligand	δ [ppm]	Literatur	
Cp*	126.6 (s, br, 4 P)	[45]	
Cp"	83.0 (s, br, 4 P)	[6]	
Ср'''	91.0 (s, br, 4 P)	[1,2]	
Cp ⁴	101.5 (s, br, 4 P)	[1,2]	
Cp ⁵	98.3 (s, br, 4 P)	[1,2]	

Tabelle 3.23: ³¹P-NMR-Daten von [{ $Cp^{R}Fe$ }₂(μ - $\eta^{4:4}$ -P₄)] (8), 161.97 MHz, C₆D₆, 293 K

Es handelt sich um den bereits kristallstrukturanalytisch nachgewiesenen *pseudo*-Tripeldeckerkomplex [{ $Cp^{"}Fe$ }₂(μ - $\eta^{4:4}$ -P₄)] (**8a**) mit einer P₄-Kette in cisoider Anordnung als Mitteldeck, die von zwei 13VE { $Cp^{R}M$ }-Fragmenten jeweils η^{4} -artig überkappt wird

3.5.2 Dritte Säulenfraktion: [{In''Fe}{(μ-η^{4:4}-P₄)] (8c)

3.5.2.1 Eigenschaften und IR-Spektroskopie

Der dunkelrote, mikrokristalline Feststoff **8c** ist in unpolaren Lösungsmitteln wie Pentan und Hexan gut und in polaren Solventien sehr gut löslich. Zeichen der Zersetzung treten auch nach mehrmonatiger Lagerung unter Schutzgas nicht auf. Außerdem kann **8c** kurzzeitig an Luft gehandhabt werden.

Im IR-Spektrum einer Toluollösung von **8c** werden keine Signale im Bereich terminal oder verbrückend koordinierter CO-Liganden detektiert.

3.5.2.2 NMR-Spektroskopie

Neben den drei charakteristischen Signalen des Cp^{III}-Liganden in symmetrischer Umgebung treten noch vier weitere Signale im ¹H-NMR-Spektrum von Verbindung **8c** auf. Zwei davon liegen im Aromatenbereich bei $\delta = 6.88$ ppm und $\delta = 7.33$ ppm und weisen gleiche Intensitäten auf. Mit einem Integralverhältnis von 18:2:2:1 für ein Singulett, zwei Multipletts und noch ein weiteres Singulett können diese Signale auf den Di-*tert*-butyl-Indenylliganden zurückgeführt werden. Die Phosphoratome in Verbindung **8c** treten bei $\delta = 99.5$ ppm als scharfes Singulett in Resonanz. Dieses Signal ist gegenüber dem Singulett für den *pseudo*-Tripeldeckerkomplex [{Cp["]Fe}₂(μ - $\eta^{4:4}$ -P₄)] (**8a**) lediglich um 7 ppm zu tieferem Feld verschoben.

Tabelle 3.24: ¹H- und ³¹P-NMR-Daten von [{In"Fe}{ $Cp^{"}Fe}(\mu-\eta^{4:4}-P_4)$] (8c), 400.14 MHz und 161.97 MHz, C₆D₆, 293 K

	[{In''Fe}{C	[{In''Fe}{Cp ^{'''} Fe}(µ-η ^{4:4} -P ₄)] (8c)		
	δ [ppm]	Zuordnung		
¹ H-NMR	1.23 (s, 9 H)	C(C <u>H</u> ₃) ₃ , Cp'''		
	1.24 (s, 18 H)	$C(C\underline{H}_3)_3$, In"		
	1.43 (s, 18 H)	C(C <u>H</u> ₃) ₃ , Cp'''		
	4.50 (s, 1 H)	arom. Ringprotonen, In"		
	4.61 (s, 2 H)	arom. Ringprotonen, Cp'"		
	6.88 (m, 2 H)	arom. Ringprotonen, In"		
	7.33 (m, 2 H)	arom. Ringprotonen, In"		
³¹ P-NMR	99.5 (s, br, 4 P)			

3.5.2.3 Strukturvorschlag für Verbindung 8c

Aufgrund der geringen Unterschiede zwischen den ³¹P-NMR-Signalen für das Cp^{III}-Derivat **8a** und **8c** kann man von einer annähernd identischen Struktur der beiden Komplexe ausgehen. Den einzigen Unterschied liefert das ¹H-NMR-Spektrum, das einen η^5 -koordinierten In^{III}-Carbocyclus und einen Tri-*tert*-butyl-Cyclopentadienylliganden aufweist. Die Röntgenstrukturanalyse von **8c** und eine korrekte Elementaranalyse bestätigen diesen Strukturvorschlag.

3.5.2.4 Röntgenstrukturanalyse von [{In''Fe}{Cp^{'''}Fe}(µ-η^{4:4}-P₄)] (8c)

Zur Röntgenstrukturanalyse geeignete Einkristalle von $[{In"Fe} {Cp"Fe}(\mu-\eta^{4:4}-P_4)]$ (8c) erhält man durch langsame Abdiffusion des Lösungsmittels aus einer gesättigten Hexanlösung bei Raumtemperatur. Schwebepartikel werden vorher mittels Filtration über eine D3-Fritte entfernt. In *Abbildung 3.22* ist die Molekülstruktur von 8c im Kristall mit der Nummerierung der zentralen Baueinheit wiedergegeben. *Tabelle 3.25* beinhaltet eine Auswahl von wichtigen Bindungslängen und –winkeln, die dem Cp"'-Derivat vergleichend gegenübergestellt werden.

Abb. 3.22: Molekülstruktur von [$\{In"Fe\} \{Cp^{"Fe}\}(\mu-\eta^{4:4}-P_4)$] (8c) im Kristall

Die Röntgenstrukturanalyse von $[{In"Fe} {Cp"Fe}(\mu-\eta^{4:4}-P_4)]$ (8c) zeigt einen gewinkelten *pseudo*-Tripeldeckerkomplex, in dem die Anordnung von Ober- und Unterdeck um 21.3° von der Parallelität abweichen. Der Cp"'-Ligand umschließt mit den beiden Eisenatomen einen Winkel von 168.5°, der In"-Ligand von 168.9°. Die Abweichung von der Linearität ist mit 170.2° größer als im reinen Cp"'-Derivat.

Das Mitteldeck bildet die P₄-Kette im Zentrum von Verbindung **8c**. Die Anordnung der vier Phosphoratome entspricht einer trapezoiden Form mit Winkeln von 106° an P(2) und P(3), einer langen P-P-Bindung zwischen P(2) und P(3) und zwei kurzen Phosphorbindungen an den Seiten, die mit jeweils 2.09 Å für einen Mehrfachbindungsanteil sprechen. Die Ebene, die von den vier Phosphoratomen aufgespannt wird, kann bei einer maximalen Abweichung von 0.0196 Å aus der Ebene als annähernd planar angesehen werden.

Eine Newman-Projektion entlang der Fe-Fe-Einfachbindungsachse mit einer Länge von 2.64 Å zeigt die sterisch günstige Stellung der drei Decks zueinander.

Abb. 3.23: Molekülstruktur als Newman-Projektion entlang der Fe-Fe-Bindungsachse von $[{In"Fe} {Cp""Fe}(\mu-\eta^{4:4}-P_4)]$ (8c) im Kristall

Die Kohlenstoffatome in den beiden Fünfringen nehmen eine fast ekliptische Anordnung zueinander an, so daß jeweils zwei *tert*-Butylgruppen paarweise annähernd zur Deckung kommen. Die dritte *tert*-Butylgruppe des Cp^{III}-Liganden und der kondensierte Sechsring des Indenylsystems weisen gerade entgegengesetzt in die beiden großen Lücken dazwischen. Ansonsten ist der Unterschied in den Bindungslängen und –winkeln von Verbindung **8c** zu dem "reinen" Cp^{III}-Derivat **8a** so gering, daß der Ligandenaustausch an nur einem der beiden Metallatome scheinbar keinen Einfluß auf die Verhältnisse im Polyedergerüst nimmt, wie *Tabelle 3.25* deutlich zeigt. **Tabelle 3.25** Ausgewählte Strukturdaten von [{In"Fe} {Cp["]Fe}(μ - $\eta^{4:4}$ -P₄)] (8c) im Vergleichzu [{Cp["]Fe}₂(μ - $\eta^{4:4}$ -P₄)] (8a)

[{In''Fe}{Cp ^{'''} Fe}(μ-η ^{4:4} -P ₄)] (8c)		[{Cp ^{'''} Fe} ₂ (µ-η ^{4:4} -P ₄)] (8a) ^[9]	
P(1) - P(2)	2.0911(15)	P(1) - P(2)	2.0949(13)
P(2) - P(3)	2.3731(15)	P(2) - P(3)	2.3678(13)
P(3) - P(4)	2.0883(14)	P(3) - P(4)	2.0873(15)
P(1) P(4)	3.5198	P(1) … P(4)	3.5520
Fe(1) - Fe(2)	2.6408(7)	Fe(1) - Fe(2)	2.6537(7)
Fe(1) - P(1)	2.2712(10)	Fe(1) - P(1)	2.2747(10)
Fe(1) - P(2)	2.3185(10)	Fe(1) - P(2)	2.3440(11)
Fe(1) - P(3)	2.3419(9)	Fe(1) - P(3)	2.3241(9)
Fe(1) - P(4)	2.2496(9)	Fe(1) - P(4)	2.2715(9)
Fe(2) - P(1)	2.2448(10)	Fe(2) - P(1)	2.2718(9)
Fe(2) - P(2)	2.3249(11)	Fe(2) - P(2)	2.3308(11)
Fe(2) - P(3)	2.3034(10)	Fe(2) - P(3)	2.3537(10)
Fe(2) - P(4)	2.2722(9)	Fe(2) - P(4)	2.2611(10)
$Fe(1) - Cp'''_{centr.}$	1.737	$Fe(1) - Cp'''_{centr.}$	1.746
$Fe(2) - In''_{centr.}$	1.755	$Fe(2) - Cp'''_{centr.}$	1.740
$Fe(1) - P_4$ centr.	1.417	$Fe(1) - P_{4 centr.}$	1.423
$Fe(2) - P_4$ centr.	1.402	$Fe(2) - P_4$ centr.	1.424

• Ausgewählte Bindungslängen von **8a** und **8c** im Vergleich in Å

• Ausgewählte Bindungswinkel von 8c im Vergleich zu 8a in Grad

[{In''Fe}{Cp ^{'''} Fe}(µ-η ^{4:4} -P ₄)] (8c)		[{Cp ^{'''} Fe} ₂ (µ-η ^{4:4} -P ₄)] (8a) ^[9]	
P(1) - P(2) - P(3)	105.87(5)	P(1) - P(2) - P(3)	106.56(5)
P(4) - P(3) - P(2)	105.98(5)	P(4) - P(3) - P(2)	106.23(5)
$Cp'''_{centr.} - Fe(1) - Fe(2)$	168.50	$Cp'''_{centr.} - Fe(1) - Fe(2)'$	170.2
$In''_{centr.} - Fe(2) - Fe(1)$	168.90	$\operatorname{Cp'''_{centr.}} - \operatorname{Fe}(2) - \operatorname{Fe}(1)$	167.2
$Fe(1) - P_4$ centr. $- Fe(2)$	139.10	$Fe(1) - P_4$ centr. $- Fe(2)$	137.5

3 Eigene Ergebnisse

Ebene	Atome	Maximale Abweichung
E1	P(1) - P(2) - P(3) - P(4)	0.0196
E2	Cp''' _{centr.} – C _{1,2,3,4,5}	0.0046
E3	$In''_{centr.} - C_{6,7,8,9,10}$	0.0098

• Ebenendefinition und maximale Abweichung aus diesen Ebenen in Å für 8c

• Winkel zwischen den besten Ebenen in Grad für 8c

Ebenen	E1/E2	E2/E3	E1/E3
Winkel	11.4	21.3	9.9

• Ebenendefinition und maximale Abweichung aus diesen Ebenen in Å für 8a

Ebene	Atome	Maximale Abweichung
E1	P(1) - P(2) - P(3) - P(4)	0.0121
E2	C(1) - C(2) - C(3) - C(4) - C(5)	0.0076
Е3	C(6) - C(7) - C(8) - C(9) - C(10)	0.0045

• Winkel zwischen den besten Ebenen in Grad für 8a

Ebenen	E1/E2	E2/E3	E1/E3
Winkel	8.2	21.7	13.6

3.5.3 Vierte Säulenfraktion: $[{In''Fe}_2(\mu-\eta^{4:4}-P_4)]$ (8b)

3.5.3.1 Eigenschaften und IR-Spektroskopie

Nach dem Entfernen des Lösungsmittels am Ölpumpenvakuum erhält man einen rotbraunen, pulvrigen Feststoff, der auch nach mehreren Monaten unter Inertgasatmosphäre keine sichtbaren Zeichen der Zersetzung aufweist. Gegenüber Luftsauerstoff ist **8b** begrenzt stabil und kann in unpolaren Solventien wie Hexan und Pentan gut und in polaren sehr gut gelöst werden. Die IR-spektroskopische Untersuchung einer Toluollösung von **8b** liefert keine Hinweise auf terminale oder verbrückende Carbonylliganden. In diesem charakteristischen Bereich des Spektrums sind keine Signale zu beobachten.

3.5.3.2 NMR-Spektroskopie

Im Gegensatz zu den ¹H-NMR-Spektren aus den *Abschnitten 3.5.1.2* und *3.5.2.2* zeigt dieses Protonenresonanzspektrum nun vier Signale in einem Integralverhältnis von 18:1:2:2. Zwei davon sind Singuletts bei $\delta = 1.33$ ppm und $\delta = 4.45$ ppm, während die intensitätsgleichen Multipletts im Aromatenbereich detektiert werden. Dies entspricht dem Aufspaltungsmuster eines Di-*tert*-butyl-Indenylliganden in symmetrischer Umgebung.

Das einzelne, breite Singulett im ³¹P-NMR-Spektrum von **8b** bei δ = 105.7 ppm ist gegenüber den beiden anderen Spektren noch etwas weiter zu tieferem Feld verschoben, weist aber auf eine strukturell ähnliche Verbindung wie **8c** und **8a** hin.

Tabelle 3.26: ¹H- und ³¹P-NMR-Daten von [{In"Fe}₂(μ - η ^{4:4}-P₄)] (**8b**), 400.14 MHz und 161.97 MHz, C₆D₆, 293 K

	[{In''Fe} ₂ (µ-η ^{4:4} -P ₄)] (8b)		
	δ [ppm]	Zuordnung	
¹ H-NMR	1.33 (s, 36 H)	$C(C\underline{H}_3)_3$	
	4.45 (s, 2 H)	arom. Ringprotonen,	
	6.83 (m, 4 H)	arom. Ringprotonen,	
	7.27 (m, 4 H)	arom. Ringprotonen,	
³¹ P-NMR	105.7 (s, br, 4 P)		

3.5.3.3 Strukturvorschlag für Verbindung [$\{In''Fe\}_2(\mu-\eta^{4:4}-P_4)\}$ (8b)

Das Signal im ³¹P-NMR-Spektrum weist auf die schon mehrfach beobachtete P₄-Kette in einem *pseudo*-Tripeldeckerkomplex vom Typ [{Cp^RFe}₂(μ - η ^{4:4}-P₄)] (8) hin, wie ein Vergleich der ³¹P-NMR-Daten aus diesen drei Fraktionen zeigt.
Tabelle 3.27: ³¹P-NMR-Vergleich der drei Fraktionen [{Cp["]Fe}₂(μ - η ^{4:4}-P₄)] (8a)[{In"Fe} {Cp["]Fe}(μ - η ^{4:4}-P₄)] (8c) und [{In"Fe}₂ (μ - η ^{4:4}-P₄)] (8b), 400.14 MHzund 161.97 MHz, C₆D₆, 293 K

Verbindung	δ [ppm]
$[\{Cp^{'''}Fe\}_2(\mu-\eta^{4:4}-P_4)](8a)$	92.5 (s, br, 4 P)
$[{In"Fe} {Cp""Fe}(\mu-\eta^{4:4}-P_4)]$ (8c)	99.5 (s, br, 4 P)
$[{In"Fe}_2 (\mu-\eta^{4:4}-P_4)] (\mathbf{8b})$	105.7 (s, br, 4 P)

Das Protonenresonanzspektrum spricht in diesem Fall für zwei In"-Liganden als η^5 -koordiniertes Ober- beziehungsweise Unterdeck.

3.5.3.4 Röntgenstrukturanalyse von [$\{In''Fe\}_2(\mu-\eta^{4:4}-P_4)$] (8b)

Geeignete Einkristalle für die röntgenographische Strukturbestimmung erhält man durch langsame Abdiffusion des Lösungsmittels aus einer gesättigten Hexanlösung von **8b** bei Raumtemperatur, die zuvor mittels Filtration über eine D3-Fritte von Schwebepartikeln gereinigt wurde. Ausgewählte Bindungswinkel und –längen werden in *Tabelle 3.28* den analytischen Daten von **8c** vergleichend gegenübergestellt, während *Abbildung 3.24* die Molekülstruktur von **8b** mit der Nummerierung des zentralen Polyedergerüstes zeigt.

Abb. 3.24: Molekülstruktur von [$\{In"Fe\}_2(\mu-\eta^{4:4}-P_4)$] (8b) im Kristall

Die Röntgenstrukturanalyse von Verbindung **8b** zeigt einen leicht gewinkelten *pseudo*-Tripeldeckerkomplex mit einer trapezoiden P₄-Kette als Mitteldeck, die von je einem 13VE {In"Fe}-Fragment zweifach η^4 -artig überkappt ist. Ober- und Unterdeck weichen um 20.7° von einer parallelen Anordnung ab, die Abweichung zur zentralen P₄-Einheit beträgt dagegen nur 10.5° beziehungsweise 10.3°. Dadurch ergibt sich an Fe(1) und Fe(2) jeweils ein Winkel von 169°, in dem sich die beiden Carbocyclen in Richtung der geöffneten P(1) … P(4)-Kante einander zuneigen. Eine Newman-Projektion entlang dieser Fe-Fe-Bindungsachse, die eine Länge von 2.64 Å aufweist, zeigt die Lage der Fünfringe und des P₄-Mitteldecks zueinander. Die Kohlenstoffatome sind nahezu ekliptisch angeordnet, ein Paar der vier *tert*-Butylgruppen kommt zur Deckung, während das zweite Paar ekliptisch zu P(2) und P(3) angeordnet ist. Die beiden kondensierten Sechsringe des Indenylsystems sind entgegengesetzt in die Lücken zwischen den Alkylgruppen gerichtet. Dadurch behindern sie sich möglichst wenig, so daß der Winkel zwischen den beiden Carbocyclen entlang der C-C-Bindungsachse bei 1.9° beziehungsweise 1.1° liegt.

Abb. 3.25: Molekülstruktur als Newman-Projektion entlang der Fe-Fe-Bindungsachse von $[\{In"Fe\}_2(\mu-\eta^{4:4}-P_4)] (8b) \text{ im Kristall}$

Ansonsten werden die gleichen Bindungsverhältnisse wie in den vorher besprochenen *pseudo*-Tripeldeckerkomplexen **8a** und **8c** beobachtet. Die Unterschiede in den Bindungslängen und -winkeln sind so gering, daß keine Tendenzen ableitbar sind. **Tabelle 3.28** Ausgewählte Strukturdaten von [{In"Fe}₂(μ - $\eta^{4:4}$ -P₄)] (**8b**) im Vergleich zu[{In"Fe}{Cp["]Fe}(μ - $\eta^{4:4}$ -P₄)] (**8c**)

[{In''Fe} ₂ (µ-η ^{4:4} -P ₄)] (8b)		[{In''Fe}{Cp ^{'''} Fe}(µ-η ^{4:4} -P ₄)] (8c)	
P(1) - P(2)	2.099(3)	P(1) - P(2)	2.0911(15)
P(2) - P(3)	2.350(2)	P(2) - P(3)	2.3731(15)
P(3) - P(4)	2.102(3)	P(3) - P(4)	2.0883(14)
P(1) P(4)	3.520	P(1) P(4)	3.5198
Fe(1) - Fe(2)	2.6390(11)	Fe(1) - Fe(2)	2.6408(7)
Fe(1) - P(1)	2.279(2)	Fe(1) - P(1)	2.2712(10)
Fe(1) - P(2)	2.322(2)	Fe(1) - P(2)	2.3185(10)
Fe(1) - P(3)	2.351(2)	Fe(1) - P(3)	2.3419(9)
Fe(1) - P(4)	2.230(2)	Fe(1) - P(4)	2.2496(9)
Fe(2) - P(1)	2.235(2)	Fe(2) - P(1)	2.2448(10)
Fe(2) - P(2)	2.280(2)	Fe(2) - P(2)	2.3249(11)
Fe(2) - P(3)	2.314(2)	Fe(2) - P(3)	2.3034(10)
Fe(2) - P(4)	2.280(2)	Fe(2) - P(4)	2.2722(9)
$Fe(1) - In''_{centr.}$	1.756	$Fe(1) - Cp'''_{centr.}$	1.737
Fe(2) – In" centr.	1.757	Fe(2) – In" centr.	1.755
$Fe(1) - P_4$ centr.	1.418	$Fe(1) - P_{4 centr.}$	1.417
$Fe(2) - P_4$ centr.	1.417	$Fe(2) - P_4$ centr.	1.402

• Ausgewählte Bindungslängen von **8b** und **8c** im Vergleich in Å

• Ausgewählte Bindungswinkel von **8b** im Vergleich zu **8c** in Grad

[{In''Fe} ₂ (μ-η ^{4:}	⁴ -P ₄)] (8b)	[{In''Fe}{Cp ^{'''} Fe}(µ	ι-η ^{4:4} -P ₄)] (8c)
P(1) - P(2) - P(3)	106.19(11)	P(1) - P(2) - P(3)	105.87(5)
P(4) - P(3) - P(2)	106.23(11)	P(4) - P(3) - P(2)	105.98(5)
$In''_{centr.} - Fe(1) - Fe(2)$	168.8	$Cp'''_{centr.} - Fe(1) - Fe(2)$	168.50
$In''_{centr.} - Fe(2) - Fe(1)$	168.6	$\operatorname{In''_{centr.}} - \operatorname{Fe}(2) - \operatorname{Fe}(1)$	168.90
$Fe(1) - P_4$ centr. $- Fe(2)$	137.1	$\operatorname{Fe}(1) - \operatorname{P}_{4 \operatorname{centr.}} - \operatorname{Fe}(2)$	139.10

Ebene	Atome	Maximale Abweichung
E1	P(1) - P(2) - P(3) - P(4)	0.0315
E2	C(1) - C(2) - C(3) - C(4) - C(5)	0.0137
E3	C(11) - C(12) - C(13) - C(14) - C(15)	0.0074
E4	C(5) - C(6) - C(7) - C(8) - C(9) - C(1)	0.0050
E5	C(15) - C(16) - C(17) - C(18) - C(19) - C(11)	0.0080

• Ebenendefinition und maximale Abweichung aus diesen Ebenen in Å für **8b**

• Winkel zwischen den besten Ebenen in Grad für **8b**

Ebenen	E1/E2	E1/E3	E2/E3	E2/E4	E3/E5
Winkel	10.5	10.3	20.7	1.9	1.1

• Ebenendefinition und maximale Abweichung aus diesen Ebenen in Å für 8c

Ebene	Atome	Maximale Abweichung
E1	P(1) - P(2) - P(3) - P(4)	0.0196
E2	C(1) - C(2) - C(3) - C(4) - C(5)	0.0046
E3	C(6) - C(7) - C(8) - C(9) - C(10)	0.0098

• Winkel zwischen den besten Ebenen in Grad für **8**c

Ebenen	E1/E2	E2/E3	E1/E3
Winkel	11.4	21.3	9.9

3.6 Orientierender Versuch zur Synthese des [{Cp'''Ru(CO)₂}₂] (23a) als Ausgangsverbindung für P₄-Butterflykomplexe des Rutheniums

In Analogie zu den bisherigen Kenntnissen über die Reaktivität der Eisen-Dimer-Komplexe vom Typ [$\{Cp^RFe(CO)_2\}_2$] (21) gegenüber weißem Phosphor besteht die Annahme, dieses Reaktionsverhalten auch auf das schwerere Homologe, das Ruthenium, übertragen zu können. Sowohl die Synthese der Pentaphosphametallocene als auch die Darstellung der phosphorfreien Metallocene liefert Eisen- und Ruthenium-Derivate in guten Ausbeuten ^[34,46,47].

Weitere, interessante Ergebnisse auf dem Gebiet der Ruthenium-Phosphor-Chemie erzielte *Koch* ^[48,49] aus unserem Arbeitskreis bei der Umsetzung von $[Cp^*Fe(\eta^5-P_5)]$ mit dem Cp''-Ruthenium-Dimer **23d**. Sie erhielt dabei heterotri- und tetrametall-Eisen-Ruthenium-Cluster mit dreiecksdodekaedrischem Polyedergerüst. In jüngster Zeit gelang *Müller* ^[34] aus unserer Arbeitsgruppe die Synthese von Ruthenium-Verbindungen mit nackten P₄-Liganden analog den Eisen-Komplex von *Schwarz* ^[6,7].

Aus diesem Grund löst man entsprechend der Literaturvorschrift von *Huttner*^[50] das Ruthenium-Carbonyl Ru₃(CO)₁₂ in Heptan und versetzt das Gemisch mit einem großen Überschuß (sieben- bis achtfach) an Tri-*tert*-butyl-Cyclopentadien. Das Lösungsmittel wird anschließend am Rückfluß erhitzt, wobei sich eine klare, rote Lösung bildet, die man weitere 24 Stunden bei dieser Temperatur rührt. Die IR-Kontrollmessungen der Rohlösung zeigt das Auftreten neuer Banden im Bereich terminaler CO-Gruppen, die dem instabilen Ruthenium-Hydrid [Cp"'Ru(CO)₂H] zugeordnet werden. Daraufhin wird für etwa fünf Minuten über ein Glasrohr Druckluft in einem gleichmäßigen Strom durch das Reaktionsgemisch geleitet. Die Farbe der Lösung schlägt nach schwarzbraun um und am Rand setzt sich ein dunkler Niederschlag ab. Das Lösungsmittel wird am Ölpumpenvakuum entfernt und der leicht ölige Rückstand säulenchromatographisch an Kieselgel aufgearbeitet.

$$Ru_{3}(CO)_{12} + HCp''' \xrightarrow{\text{Heptan, 98 °C, 24 h}}_{\text{danach Luft, 5 min}} > [{Cp'''Ru}_{2}(\mu-CO)(\mu-O)]$$

$$(24)$$

$$Cp''' = C_{5}H_{2}^{t}Bu_{3}-1,2,4$$

Ein Petrolether/Diethylether-Lösungsmittelgemisch im Verhältnis 50:1 liefert zunächst eine grünbraune Fraktion. Erst bei einer Polarität des Gemisches von 10:1 erhält man die zweite, orangerote Fraktion, der direkt eine violette Phase folgt. Mit reinem Tetrahydrofuran kann letztendlich eine orangebraune Fraktion von der Säule eluiert werden.

3.6.1 Erste Säulenfraktion

3.6.1.1 Eigenschaften und Analytik

Der gelbbraune, ölige Feststoff, den man nach dem Entfernen des Lösungsmittels am Ölpumpenvakuum erhält, löst sich in unpolaren Solventien nur mäßig, in polaren Lösungsmitteln wie Dichlormethan dagegen sehr gut. Er kann monatelang unter Schutzgas aufbewahrt werden und ist begrenzt luftstabil

Das IR-Spektrum einer Petroletherlösung diese Verbindung weist zahlreiche starke Banden im Bereich terminaler und verbrückender CO-Liganden auf, die teilweise auf das Edukt zurückgeführt werden können.

Tabelle 3.29: IR-Absorptionsbanden für die Carbonylgruppen der unbekannten Verbindung

Erste Fraktion		
2030 (m)	terminale CO-Gruppe	
2001 (vs)	terminale CO-Gruppe	
1955 (vs)	terminale CO-Gruppe	
1934 (s)	terminale CO-Gruppe	
1777 (vs)	verbrückende CO-Gruppe	

Da im Protonenresonanzspektrum nur sehr viele kleine Signale im Bereich zwischen $\delta = 0.7$ ppm und $\delta = 1.5$ ppm detektiert werden, die den Cp^{'''}-Liganden anhand seines charakteristischen Aufspaltungsmuster nicht eindeutig nachweisen können, muß man hier von einem Substanzgemisch ausgehen. Diese Fraktion konnte bisher nicht weiter aufgetrennt werden. Aus diesem Grund wird auf eine weitere Untersuchungen verzichtet.

3.6.2 Zweite Säulenfraktion

3.6.2.1 Eigenschaften und Analytik

Die orange Lösung liefert nach dem Entfernen des Lösungsmittels ein orange-braunes Pulver, das sich mehrere Wochen ohne sichtbare Zeichen der Zersetzung unter Schutzgas aufbewahren läßt. Die Löslichkeit in unpolaren Solventien wie Pentan und Hexan ist gut und nimmt mit steigender Polarität des Lösungsmittels deutlich zu.

Das IR-Spektrum einer Petroletherlösung dieser Verbindung weist zwei breite Banden bei \overline{v} = 1955.5 cm⁻¹ und \overline{v} = 1777.4 cm⁻¹ auf. Mehrere schwächere Signale im Bereich terminaler CO-Gruppen können teilweise auf das Edukt Ru₃(CO)₁₂ zurückgeführt werden.

Tabelle 3.30: IR-Absorptionsbanden für die Carbonylgruppen der unbekannten Verbindung

Gemisch aus Ru ₃ (CO) ₁₂ und zweiter Fraktion		
2073 (m)	$Ru_3(\underline{CO})_{12}$	
2041 (vs)	Ru ₃ (<u>CO</u>) ₁₂	
2009 (vs)	Ru ₃ (<u>CO</u>) ₁₂	
1955 (s)	terminale CO-Gruppe	
1777 (vs)	verbrückende CO-Gruppe	

Die Vielzahl der Signale im Protonenresonanzspektrum und ihre Aufspaltungsmuster sprechen für das Vorliegen eines Substanzgemisches innerhalb dieser zweiten Fraktion. Die chemischen Verschiebungen, bei denen die Protonen in Resonanz treten, und die Intensitäten der Peaks lassen Rückschlüsse auf das Vorhandensein des Cp^{III}-Liganden zu. Trotzdem muß hier von zusätzlichen Verunreinigungen oder Produktgemischen ausgegangen werden.

Eine weitere Auftrennung in analysenreine Verbindungen mit anderen Lösungsmittelgemischen war auch hier nicht möglich.

3.6.3 Dritte Fraktion: [{Cp'''Ru}₂(μ-CO)(μ-O)] (24)

3.6.3.1 Eigenschaften und IR-Spektroskopie

Das violette, mikrokristalline Pulver, das als Rückstand nach dem Entfernen des Lösungsmittels am Ölpumpenvakuum zurückbleibt, kann in sehr guten Ausbeuten gewonnen werden und ist über Monate unter Inertgasatmosphäre problemlos lagerbar. Gegenüber Luftsauerstoff ist die Empfindlichkeit von 24 deutlich herabgesetzt, die somit eine kurzzeitig Handhabung an Luft ermöglicht. 24 ist sowohl in unpolaren als auch in polaren Solventien gut löslich.

Im IR-Spektrum einer Petroletherlösung von 24 wird lediglich ein scharfes Singulett bei \overline{v} = 1771.9 cm⁻¹ beobachtet.

Tabelle 3.31: IF	R-Absorptionsbande v	/on [{Cp"'Ru}2(µ-	-CO)(μ-O)] (24)	in Petrolether
------------------	----------------------	-------------------	------------------	----------------

[{Cp'''Ru} ₂ (μ-CO)(μ-O)] (24)		
$\overline{\nu}$ [cm ⁻¹]	Zuordnung	
1771.9	verbrückende CO-Gruppe	

3.6.3.2 NMR-Spektroskopie

Der charakteristische Signalsatz von Verbindung **24** im Protonenresonanzspektrum - bestehend aus drei Singuletts bei $\delta = 1.05$ ppm, $\delta = 1.45$ ppm und $\delta = 4.93$ ppm in einem Integralverhältnis von 9:18:2 - weist den Cp^{'''}-Liganden in symmetrischer Umgebung zweifelsfrei nach.

Im {¹H}-entkoppelten ¹³C-NMR-Spektrum tritt ein Signal bei δ = 149.6 ppm auf, das auf ein Carbonyl-Kohlenstoffatom hindeutet. Die drei Singuletts bei δ = 86.2 ppm, δ = 104.6 ppm und δ = 109.1 ppm sprechen für die teilweise chemisch und magnetisch äquivalenten C-Atome der Fünfringe. Die tertiären C-Atome der Alkylgruppen werden bei δ = 33.7 ppm und δ = 31.8 ppm detektiert, während die Methyl-Kohlenstoffe der neun CH₃-Gruppen bei δ = 27.2 ppm in Resonanz treten.

¹H-NM

³C-NN

	[{Cp'''Ru} ₂ (μ-CO)(μ-O)] (24)		
	δ [ppm]	Zuordnung	
R	1.05 (s, 18 H)	$C(C\underline{H}_3)_3$	
	1.45 (s, 36 H)	$C(C\underline{H}_3)_3$	
	4.93 (s, 4 H)	arom. Ringprotonen	
IR	27.2 (s, 18 C)	$C(\underline{C}H_3)_3$	
	31.8 (s, 4 C)	<u>C</u> (CH ₃) ₃	
	33.7 (s, 2 C)	<u>C</u> (CH ₃) ₃	
	86.2 (s, 4 C)	$\underline{C}_5 H_2^{t} Bu_3$, ohne ^t Bu-Gruppe	

 $\underline{C}_5H_2^{T}Bu_3$ mit ^TBu-Gruppe

 $\underline{C}_5 H_2^{t} Bu_3$ mit ^tBu-Gruppe

CO

Tabelle 3.32:	NMR-spektroskopische	Daten von	$[{Cp'''Ru}_2(\mu-C)]$	CO)(µ-O)] (24) in (C_6D_6 be
	293 K					

3.6.3.3 Strukturvorschlag für Verbindung 24

104.6 (s, 2 C)

109.1 (s, 4 C)

149.6 (s, 1 C)

Der Nachweis einer verbrückenden CO-Gruppe im IR-Spektrum läßt auf einen Ruthenium-Zweikern-Komplex schließen, der jedoch nicht in Analogie zu den $[{Cp^RFe(CO)_2}_2]$ -Dimeren (**21**) steht. Dazu fehlen die Signale für die terminalen CO-Gruppen und eine zweite verbrükkende Bande. Die Symmetrie von Verbindung **24** wird von den Signalsätzen in den jeweiligen NMR-Spektren eindeutig bestätigt. Sowohl die Protonen der Alkylgruppen als auch verschiedene Kohlenstoffatome können durch Symmetrieoperationen ineinander überführt werden, wodurch sie chemisch äquivalent sind.

Eine endgültige Aussage über die Struktur von 24 ist jedoch nur über die Röntgenstrukturanalyse möglich.

3.6.3.4 Röntgenstrukturanalyse von [{Cp'''Ru}₂(μ-CO)(μ-O)] (24)

Durch Abdiffusion des Lösungsmittels aus einer gesättigten Hexanlösung bei Raumtemperatur erhält man für die Röntgenstrukturanalyse geeignete Einkristalle von 24. In *Abbildung 3.27* wird die Struktur von 24 im Kristall dargestellt mit der Nummerierung der zentralen Baueinheit. Ausgewählte Bindungslängen und –winkel sind in *Tabelle 3.33* aufgelistet. Die übrigen Strukturdaten und Meßparameter können dem Anhang entnommen werden.

Abb. 3.27: Molekülstruktur von $[{Cp'''Ru}_2(\mu-CO)(\mu-O)]$ (24) im Kristall

Die Kristallstrukturanalyse zeigt einen symmetrischen Ruthenium-Dimer-Komplex, ähnlich den zweikernigen Ruthenium- und Eisen-Verbindungen vom Typ [$\{Cp^RM(CO)_2\}_2$] (M = Fe, Ru), jedoch mit nur einer verbrückenden CO-Gruppe und dafür einem zweifach verbrückenden Sauerstoffatom. Die beiden Rutheniumatome werden in einem Abstand von 1.83 Å und 1.82 Å von je einem Tri-*tert*-butyl-Cyclopentadienylliganden η^5 -koordiniert, deren Anordnung zueinander nur 11.1° von der Parallelität abweicht.

Der Abstand der Metall-Atome beträgt 2.54 Å und kann damit am ehesten einer Ru-Ru-Dreifachbindung zugeordnet werden, wie sie *Suzuki* ^[51] zum Beispiel im [{Cp*Ru}₂(μ -H₄)] mit 2.46 Å findet. Der Ru-Ru-Einfachbindungsabstand liegt im Bereich zwischen 2.72 Å ^[34] und 3.00 Å ^[48,49] und wird neben dem Ru₃(CO)₁₂ (2.85 Å) ^[52] in den heterobinuklearen Dreiecksdodekaedern von *Koch* ^[48,49], im [{Cp*Ru}₂(μ -PPhenyl₂)(μ -H)(μ - η ^{2:2}-C₆H₆)] ^[53] und im *pseudo*-Tripeldeckerkomplex [{Cp=Ru}₂(μ - η ^{2:2}-P₂)₂] von *Müller* ^[34] beobachtet. Dieser postuliert für [{Cp=Ru(μ -CO)}₂{Cp=Ru(CO)H}] einen Metall-Bindungsabstand von 2.66 Å als Ruthenium-Doppelbindung, was gut mit der 18 VE-Regel am Metall übereinstimmt. Die Aufweitung der Metall-Metall-Bindung in **24** im Vergleich zum Hydrido-Komplex [{Cp*Ru}₂(μ -H₄)] könnte auf die sterisch anspruchsvolleren CO-und O-Liganden zurückgeführt werden. Durch eine Dreifachbindung zwischen Ru(1) und Ru(2) wird außerdem die 18 VE-Regel an beiden Metall-Kernen erfüllt.

Die beiden zweifach verbrückenden Lignaden bilden zusammen mit den Ru-Atomen jeweils eine Dreiecksfläche in einem Winkel von 77.98° beziehungsweise 84.11°, die wiederum einen Diederwinkel von 2.2° einschließen. Die Ru-C- und die Ru-O-Abstände sind mit 2.03 Å/2.02 Å und 1.90 Å/1.91 Å in etwa gleich lang, wodurch alle drei verbrückenden Atome auf einer Geraden liegen, die die Ru-Dreifachbindung symmetrisch durchtrennt. Die NMRspektroskopischen Daten belegen diese Symmetrieeigenschaften von **24**.

Eine Newman-Projektion entlang der Metall-Achse läßt eine ekliptische Anordnung der Kohlenstoffatome beider Carbocyclen erkennen, wodurch die Alkylgruppen paarweise zur Deckung kommen.

Abb. 3.28: Molekülstruktur als Newman-Projektion entlang der Ru-Ru-Bindungsachse von [{Cp'''Ru}₂(μ-CO)(μ-O)] (24) im Kristall

Die Fünfringcentroiden bilden mit den jeweiligen Ru-Atomen einen Winkel von 173.2° und 173.0°. Dadurch ist das Molekül ein wenig in Richtung des Carbonylliganden geneigt.

Tabelle 3.33 Ausgewählte Strukturdaten von [{Cp'''Ru}₂(µ-CO)(µ-O)] (24)

$\operatorname{Ru}(1) - \operatorname{Ru}(2)$	2.5484(6)
Ru(1) - O(1)	1.910(4)
Ru(2) - O(1)	1.895(4)
Ru(1) - C(11)	2.018(5)
Ru(2) - C(11)	2.032(5)
C(11) – O(11)	1.181(6)
$Ru(1) - Cp'''_{centr.}$	1.826
$Ru(2) - Cp'''_{centr.}$	1.822

• Ausgewählte Bindungslängen in Å

• Ausgewählte Bindungswinkel in Grad

$Cp'''_{centr.} - Ru(1) - Ru(2)$	173.2	Ru(1) - O(1) - Ru(2)	84.11(14)
$Cp'''_{centr.} - Ru(2) - Ru(1)$	173.0	Ru(1) - C(11) - O(11)	141.8(4)
Ru(1) - C(11) - Ru(2)	77.98(18)	Ru(2) - C(11) - O(11)	140.2(4)

• Ebenendefinition und maximale Abweichung aus diesen Ebenen in Å

Ebene	Atome	Maximale Abweichung
E1	C(1) - C(2) - C(3) - C(4) - C(5)	0.0117
E2	Ru(1) - C(11) - Ru(2)	-
E3	Ru(1) - O(1) - Ru(2)	-
E4	C(6) - C(7) - C(8) - C(9) - C(10)	0.0146

• Winkel zwischen den besten Ebenen in Grad

Ebenen	E1/E2	E1/E3	E1/E4	E2/E3
Winkel	89.6	89.8	11.1	2.2

3.6.4 Vierte Fraktion

3.6.4.1 Eigenschaften und Analytik

Die vierte Fraktion führt nach dem Entfernen des Lösungsmittels am Ölpumpenvakuum zu einem orange-braunen, öligen Rückstand, der in unpolaren sowie in polaren Solventien gut löslich ist. Die Lagerfähigkeit scheint nahezu unbegrenzt, da Zeichen der Zersetzung in diesem dunklen Öl nur schwer zu erkennen sind.

Aufgrund der unübersichtlichen IR- und NMR-Spektren, die diese Fraktion aufweist, geht man von einer Vielzahl von Substanzen bzw. Verunreinigungen aus, die nicht mehr weiter aufgetrennt werden konnten.

3.7 Orientierender Versuch zur Reaktivität von [{Cp'''Ru}₂(μ-CO)(μ-O)] (24) gegenüber weißem Phosphor

Der violette Feststoff [{Cp'''Ru}₂(μ -CO)(μ -O)] (**24**) wird in Toluol gelöst und mit äquimolaren Mengen an frisch getrocknetem weißem Phosphor umgesetzt. Das Reaktionsgemisch wird dann so lange am Rückfluß gerührt, bis im IR-Spektrum der Rohlösung das charakteristische Edukt-Signal für die verbrückende CO-Gruppe verschwunden ist. Das Reaktionsende ist nach vier bis fünf Stunden erreicht, woraufhin das Lösungsmittel am Ölpumpenvakuum entfernt wird. Das ³¹P-NMR-Spektrum des Rückstandes zeigt neben dem Singulett bei δ = -519.8 ppm für nicht umgesetzten weißen Phosphor ein intensitätsstarkes Singulett bei δ = 2.8 ppm und zahlreiche kleinere Signale. Aus diesem Grund wird der Rückstand säulenchromatographisch an Kieselgel bei tiefen Temperaturen aufgearbeitet.

$$[\{Cp'''Ru\}_{2}(\mu-CO)(\mu-O)] \xrightarrow{P_{4}, 110 \circ C} [\{Cp'''Ru\}_{2}(\mu-\eta^{4:4}-P_{4})\}$$
(24)
(25)
$$Cp''' = C_{5}H_{2}^{t}Bu_{3}-1,2,4$$

Abb. 3.29: Reaktionsbedingungen bei der Umsetzung von [$\{Cp''Ru\}_2(\mu-CO)(\mu-O)$] (24) mit P₄

Ein Petrolether/Toluol-Gemisch im Verhältnis 10:1 liefert als erste Fraktion eine hellbraune Lösung, die nur das einzelne Singulett bei $\delta = 2.8$ ppm im Phosphorresonanzspektrum aufweist. Die schwarzbraune Tetrahydrofuran-Lösung, die als einzige weitere Fraktion von der Säule eluiert werden kann, zeigt eine Vielzahl von Signalen, die eindeutig auf ein Produktgemisch hinweisen.

3.7.1 Erste Säulenfraktion: [{Cp'''Ru}₂(μ-η^{4:4}-P₄)] (25)

3.7.1.1. Eigenschaften und IR-Spektroskopie

Durch das Entfernen des Lösungsmittels am Ölpumpenvakuum ergibt sich für Verbindung **25** ein hellbrauner Feststoff, der sich in unpolaren Lösungsmitteln wie Pentan und Hexan mäßig, in polaren Solventien dagegen sehr gut löst. **25** ist begrenzt luftstabil und kann mehrere Wochen unter Schutzgas gelagert werden, ohne das Zersetzung eintritt.

Im IR-Spektrum einer Toluollösung von **25** wird kein Signal im Bereich terminaler oder verbrückender CO-Liganden beobachtet.

3.7.1.2 NMR-Spektroskopie

Im Protonenresonanzspektrum erkennt man die drei charakteristischen Singuletts des Tri-*tert*butyl-Cyclopentadienylliganden bei $\delta = 1.26$ ppm, $\delta = 1.33$ ppm und $\delta = 5.11$ ppm in einem Integralverhältnis von 9:18:2.

Das ³¹P-NMR-Spektrum zeigt nur ein einzelnes, scharfes Singulett bei $\delta = 2.8$ ppm für Verbindung **25**. Dies führt zu der Annahme, daß **25** eine sehr hohe Symmetrie mit äquivalenten Phosphoratomen aufweist.

Tabelle 3.34: ¹H- und ³¹P-NMR-Daten von $[{Cp''Ru}_2(\mu-\eta^{4:4}-P_4)]$ (25), 400.14 MHz und161.97 MHz, C6D6, 293 K

	$[\{Cp'''Ru\}_2(\mu-\eta^{4:4}-P_4)] (24)$		
	δ [ppm]	Zuordnung	
¹ H-NMR	1.26 (s, 18 H)	$C(C\underline{H}_3)_3$	
	1.33 (s, 36 H)	$C(C\underline{H}_3)_3$	
	5.11 (s, 4 H)	arom. Ringprotonen	
³¹ P-NMR	2.8 (s, 4 P)		

Ein Vergleich der ³¹P-NMR-Daten mit den Werten literaturbekannter Ruthenium-Phosphor-Verbindungen zeigt ein Signal bei $\delta = 15.6$ ppm für den zweikernigen Ruthenium-"Tripeldeckerkomplex" [{Cp⁼Ru}₂(μ - $\eta^{2:2}$ -P₂)₂] (**26**) mit zwei getrennten P₂-Einheiten als "Mitteldeck" von *Müller* ^[34]. Diesen P₂-Ligand konnte schon *Swarowsky* 1988 ^[33] bei ihren Untersuchungen bezüglich der P₄-Einheit am Beispiel des [{Cp^RRh}₂(μ - $\eta^{2:2}$ -P₂)₂] (**27**) beobachten und davor wurde in unserem Arbeitskreis am Beispiel des [Cp^{*}(CO)MoP₂{Cr(CO)₅}]₂ ein trapezförmiger (P₂)₂-Ligand röntgenstrukturanalytisch nachgewiesen ^[54,55]. Eine weitere Möglichkeit stellt auch die Anordnung der Phosphoratome in einer P₄-Kette dar, wie man es von den *pseudo*-Tripeldeckerkomplexen [{Cp^RFe}₂(μ - $\eta^{4:4}$ -P₄)] (**8**) des Eisens kennt. Der Übergang vom Eisen zum schwereren Homologen Ruthenium verursacht im Phosphorreso-

nanzspektrum einen Hochfeldshift von ungefähr 60-70 ppm, der im ³¹P-NMR-Spektrum der Pentaphosphametallocene von Eisen und Ruthenium zu beobachten ist ^[46,47].

3.7.1.4 Röntgenstrukturanalyse von [{Cp'''Ru}₂(μ - η ^{4:4}-P₄)] (25)

Für die röntgenographische Strukturbestimmung geeignete Einkristalle von **25** erhält man durch Abdiffusion des Lösungsmittels aus einer gesättigten Hexanlösung bei Raumtemperatur. Zuvor wurden störende Schwebepartikel über eine D3-Fritte abfiltriert. *Abbildung 3.30* zeigt das Ergebnis der Kristallstrukturanalyse mit der Nummerierung der zentralen Baueinheit. In *Tabelle 3.35* ist eine Auswahl an interessanten Bindungslängen und –winkeln aufgelistet, weitere Strukturdaten und Meßparameter können dem Anhang entnommen werden.

Abb. 3.30: Molekülstruktur von $[{Cp''Ru}_2(\mu-\eta^{4:4}-P_4)]$ (25) im Kristall

 $[\{Cp^{''}Ru\}_2(\mu-\eta^{4:4}-P_4)] \quad (25)$ Molekülplot von erkennt man einen pseudo-Im Tripeldeckerkomplex mit einem zentralen P₄-Mitteldeck. Nach Wade^[8] und Mingos^[13,56] erhält man für 25 sieben Gerüstelektronenpaare und mit (n+1) = 7 für n = 6, was formal einer closo-Struktur entspricht. Der Abstand von P(1) zu P(4) liegt mit 3.73 Å eindeutig im nichtbindenden Bereich, weshalb eine cyclo-P₄-Einheit als Mitteldeck ausgeschlossen werden kann. Die maximale Abweichung dieser P₄-Einheit von der Planarität beträgt lediglich 0.0072 Å. Die übrigen Phosphor-Phosphor-Abstände liefern eine gute Übereinstimmung mit den Vergleichsdaten sowohl unter der Annahme einer P₄-Kette in trapezoider Anordnung als auch für die Aufteilung in zwei separate P2-Liganden, wie man sie von Ruthenium-Komplexen dieser Art kennt ^[34]. Entscheidend ist hierfür der Abstand zwischen P(2) und P(3). Verbindung 25 liegt mit einer P-P-Bindungslänge von 2.44 Å zwischen den Werten für die Eisen*pseudo*-Tripeldeckerkomplexe vom Typ [{ $Cp^{R}Fe$ }₂(μ - $\eta^{4:4}$ -P₄)] (8) mit einer P₄-Kette (2.33 Å) ^[1,2] und für die Ruthenium-(P₂)₂-Verbindungen (2.66 Å) ^[34]. Die längste bislang diskutierte P-P-Einfachbindung von *Ginsberg* mit 2.46 Å in Verbindung $[(Ph_3P)Cl_2Rh(\eta^2-P_4)]^{[57]}$ und die 2-Zentren-1-Elektron Phosphor-Phosphor-Wechselwirkung von Bertrand mit 2.63 Å^[58] unterschreitet 25 um mindestens 0.02 Å, was für eine lange Einfachbindung spricht. Damit entspräche das Mitteldeck in Komplex **25** eher einer P_4 -Kette. Die übrigen Daten liefern keine zusätzlichen Erkenntnisse, da in beiden Fällen zwei kurze P-P-Bindungen an den Seiten auftreten, die in einem Bereich zwischen 2.07 Å und 2.09 Å liegen und somit Mehrfachbindungscharakter besitzen.

Die beiden Rutheniumatome weisen einen Abstand von 2.76 Å auf. Dieser Wert stimmt sehr gut mit dem Metallabstand überein, der in $[{Cp^{=}Ru}_{2}(\mu-\eta^{2:2}-P_{2})_{2}]$ (26) gefunden wird (2.72 Å) und kann einer Ru-Ru-Einfachbindung zugeschrieben werden ^[34].

Der Bindungsabstand zwischen dem Zentrum der beiden Carbocyclen und den Ru-Atomen ist mit 1.88 Å und 1.89 Å genau identisch mit den Werten in Verbindung **25**. Auch die Winkel an P(2) und P(3) weichen mit 107.9° und 108.0° nur geringfügig von denen in [{Cp⁼Ru}₂((μ - $\eta^{2:2}$ -P₂)₂] (**26**) (103.9° und 104.4°) ab. Die Winkel zwischen den Fünfringcentroiden und den Rutheniumatomen sind mit 163.4° und 162.9° nur um 5° kleiner als im (P₂)₂-Komplex **26**. Aufgrund des großen Unterschieds in der P(2) – P(3) Bindungslänge (2.44 Å) ist eine P₄-Kettenanordnung wahrscheinlicher.

Die gewinkelte Struktur von **25** führt dazu, daß die drei Ebenen des *pseudo*-Tripeldeckers stark von einer parallelen Anordnung abweichen (16.5°, 16.2°, 32.7°). Die C-Atome der Cyclopentadienylringe sind dadurch ein wenig gegeneinander verdreht, wodurch die Konformation nicht mehr genau ekliptisch ist, die *tert*-Butylgruppen jedoch annähernd zur Deckung kommen. Ein Paar weist auf die geöffnete P(1) – P(4)-Kante, die beiden anderen sind rechts und links davon in Höhe der seitlichen Bindungen der P₄-Einheit ausgerichtet. Diese Symmetrie spiegelt sich in den NMR-Daten von **25** wieder, wobei das Singulett im ³¹P-NMR-Spektrum eher für eine Anordnung der vier P-Atome in Form zweier P₂-Liganden spricht, während die Bindungsverhältnisse bezüglich der P – P – Abstände im Mitteldeck auf eine Kettenform hinweisen.

Eine eindeutige Entscheidung, welche der beiden Strukturen nun wirklich vorliegt, ist daher nur schwer möglich. Das selbe Problem tritt auch in Verbindung $[(\eta^5-C_5Me_5)Co(P_4)Co(\eta 5-C_5Me_5)]$ auf, für die zwei P₂-Liganden oder eine cyclo-P₄-Einheit diskutiert werden ^[59,60].

Tabelle 3 35	Ausgewählte Strukturdaten vor	1 [{Cn [‴] Ru}₂(⊔-r	$(25)^{4:4} - P_4 (25)$
Tabelle 5.55	Ausgewählte Strukturuaten vor	$\Gamma_{1} C p K u_{2} (\mu - 1)$	$\begin{bmatrix} -1 4 \end{bmatrix} \begin{bmatrix} 2 3 \end{bmatrix}$

P(1) - P(2)	2.074(3)
P(2) - P(3)	2.444(3)
P(3) - P(4)	2.084(3)
P(1) … P(4)	3.729
Ru(1) - P(1)	2.348(2)
Ru(1) - P(2)	2.4423(18)
Ru(1) - P(3)	2.4275(17)
Ru(1) - P(4)	2.3525(18)
Ru(2) - P(1)	2.3647(18)
Ru(2) - P(2)	2.4290(17)
Ru(2) - P(3)	2.4286(19)
Ru(2) - P(4)	2.347(2)
$\operatorname{Ru}(1) - \operatorname{Ru}(2)$	2.7622(8)
$Ru(1) - Cp'''_{centr.}$	1.882
$Ru(2) - Cp'''_{centr.}$	1.887
$Ru(1) - P_{4 \text{ centr.}}$	1.505
$Ru(1) - P_{4 centr.}$	1.504

• Ausgewählte Bindungslängen in Å

• Ausgewählte Bindungswinkel in Grad

P(1) - P(2) - P(3)	107.97(10)	Ru(1) - P(1) - Ru(2)	71.76(6)
P(2) - P(3) - P(4)	108.03(10)	Ru(1) - P(2) - Ru(2)	69.09(5)
$Cp'''_{centr.} - Ru(1) - Ru(2)$	163.4	Ru(1) - P(3) - Ru(2)	69.33(5)
$Cp'''_{centr.} - Ru(2) - Ru(1)$	162.9	$\operatorname{Ru}(1) - \operatorname{P}(4) - \operatorname{Ru}(2)$	71.99(6)

• Ebenendefinition und maximale Abweichung aus diesen Ebenen in Å

Ebene	Atome	Maximale Abweichung
E1	C(1) - C(2) - C(3) - C(4) - C(5)	0.0036
E2	P(1) - P(2) - P(3) - P(4)	0.0072
Е3	C(6) - C(7) - C(8) - C(9) - C(10)	0.0085

<u>3 Eigene Ergebnisse</u>

• Winkel zwischen den besten Ebenen in Grad

Ebenen	E1/E2	E2/E3	E1/E3
Winkel	16.5	16.2	32.7

4 Experimenteller Teil

4.1 Analysemethoden und -geräte

Die Elementaranlysen wurden von *Frau Biehl* und *Frau Menendez-Perez* mit Hilfe der C,H,N-Analyzer 240 bzw. 400 des Herstellers Perkin-Elmer nach den im Fachbereich Chemie der Universität Kaiserslautern üblichen Standards durchgeführt.

Die Aufnahme der Infrarot-Spektren erfolgte an einem Perkin-Elmer 16 PC FT-IR-Spektrometer, die Substanzen wurden im jeweils angegebenen Lösungsmittel gelöst und in Natriumchlorid-Küvetten der Schichtdicke 0.2 mm bei Raumtemperatur gegen das reine Lösungsmittel vermessen.

Die Kernresonanzspektren wurden an den FT-NMR-Geräten DPX 200 bzw. DPX 400 der Firma Bruker unter Verwendung von unter Schutzgas abgefüllten Lösungen der zu vermessenden Substanzen in den jeweils angegebenen Lösungsmitteln bei 298 K aufgenommen, sofern nicht anders angegeben.

Die Angabe der chemischen Verschiebungen erfolgt nach der δ -Skala in ppm, die Kopplungskonstanten sind in Hertz angegeben. Die folgenden Standards und Meßfrequenzen wurden verwendet:

- ³¹P: 81.02 MHz bzw. 161.97 MHz, 85 %-ige H₃PO₄ (extern)
- ¹H: 200.13 MHz bzw. 400.14 MHz, als interner Standard wurden die Signale der in den deuterierten Lösungsmitteln vorhandenen, nicht vollständig deuterierten Moleküle verwendet; dabei wurde folgende Zuordnung getroffen: $\delta(C_6D_5H) = 7.20$ ppm.

Die Signalaufspaltungen werden durch folgende Abkürzungen beschrieben:

s = Singulett, d = Dublett, dd = dublettiertes Dublett, t = Triplett, pt = *pseudo*-Triplett, sept = Septett, etc.

Die Massenspektren wurden von Frau *Dr. G. Hornung* an einem MAT 90-Gerät des Herstellers Finnigan angefertigt.

Die Röntgenstrukturanalysen wurden von Herrn *Dr. G. Wolmershäuser* an den Geräten Stoe IPDS und Siemens P4 durchgeführt. Zur Lösung der Datensätze wurden die Programme SIR92 (Giacovazzo et al., 1993) und SHELXL-97 (Sheldrick, 1990) verwendet.

4.2 Ausgangsverbindungen

Die folgenden Ausgangsverbindungen wurden nach den angegebenen Literaturstellen synthetisiert:

	Literatur
Tri- <i>tert</i> -butyl-Cyclopentadien; HCp'''	61
Di- <i>tert</i> -butyl-Inden; HIn"	62
$[{Cp}^{R}Fe(CO)_{2}]_{2}]$	63,64
$\{Cp^{R}Fe(CO)_{2}\}_{2}(\mu-\eta^{1:1}-P_{4})], Cp^{R} = Cp''', In''$	1,2
Silyliertes Kieselgel	65

Alle übrigen Ausgangsverbindungen waren im Labor vorrätig oder wurden käuflich erworben.

4.3 Versuchsbeschreibungen

Sämtliche nachfolgend beschriebenen Versuche wurden unter Inertgasatmosphäre (Argon, 99.998 % der Firma Messer, Griesheim) in ausgeheizten, mehrfach evakuierten und mit Argon gespülten Reaktionsgefäßen durchgeführt. Die verwendeten Lösungsmittel wurden vor Gebrauch absolutiert (Toluol, Dekalin, C_6D_6 : Na-Metall; THF: K-Metall; n-Hexan, n-Pentan, Petrolether: Na/K-Legierung; Dichlormethan: P_4O_{10} ;).

Das als Säulenmaterial verwendete Kieselgel (0.06-0.02 mm, Firma Merck) wurde zwölf Stunden bei 200 °C im Ölpumpenvakuum ausgeheizt und nach dem Abkühlen mit zwei Prozent destilliertem und entgastem Wasser desaktiviert (Aktivitätsstufe II) und unter Inertgas aufbewahrt.

Die Entfernung der Lösungsmittel erfolgte am Ölpumpenvakuum bei ca. $1 \cdot 10^{-3}$ mbar. Weißer Phosphor wurde vor Gebrauch ca. 10 min am Vakuum getrocknet.

4.3.1 Umsetzung von [{Cp'''Fe}₂(μ -CO)(μ - $\eta^{2:2}$ -P₂)] (1) mit [W(CO)₆]

360 mg (1.04 mmol) kristallines [W(CO)₆] werden in einer Tauchlampenapparatur in ca. 100 ml Tetrahydrofuran gelöst und anschließend unter Wasserkühlung 45 Minuten bestrahlt. Die so bereitete, intensiv gelbe [W(CO)₅·thf]-Lösung gibt man danach direkt in einen 250 ml-Einhalskolben mit Hahn, in dem bereits 90 mg (0.13 mmol) [{Cp'''Fe}₂(μ -CO)(μ - η ^{2:2}-P₂)] (1) vorgelegt wurden. Die gelbgrüne Reaktionslösung wird 24 Stunden bei Raumtemperatur gerührt, bevor man das Lösungsmittel am Ölpumpenvakuum entfernt und den schmutzig gelben Rückstand säulenchromatographisch aufarbeitet.

Dazu wird der Feststoff in wenig Dichlormethan gelöst, mit ca. 3 g silyliertem Kieselgel versetzt und am Ölpumpenvakuum bis zur feinen Rieselfähigkeit getrocknet. Das Pulver trägt man dann auf eine mit Kieselgel und Petrolether gefüllte Säule (20x1.5 cm, -20 °C Kryostat) auf. Ein Petrolether/Toluol-Gemisch im Verhältnis 20:1 liefert zunächst einen gelben Vorlauf von nicht umgesetztem [W(CO)₅·thf], dem eine zweite, grüngelbe Fraktion folgt. Sie bleibt nach dem Entfernen des Lösungsmittels am Ölpumpenvakuum als grünes Pulver zurück und weist im ³¹P-NMR-Spektrum zwei miteinander wechselwirkende Dubletts auf. Lösungsmittelgemische steigender Polarität liefern keine weiteren Fraktionen.

Ansatz:90 mg (0.13 mmol) [{Cp'''Fe}_2(\mu-CO)(\mu-\eta^{2:2}-P_2)] (1)360 mg (1.04 mmol) [W(CO)_6]Ausbeute:50 mg (0.05 mmol) [{Cp'''Fe}_2(\mu-CO)(\mu_3-\eta^{2:2:1}-P_2){W(CO)_5}] (3) \equiv 38.46 % bezogen auf 1Elementaranlyse:C₄₀H₅₈Fe₂O₆P₂W(M = 992.38 g/mol)ber.C: 48.41 %H: 5.89 %gef.C: 46.75 %H: 5.63 %

4.3.2 Umsetzung von [{Cp'''Fe}₂(μ -CO)(μ - η ^{2:2}-P₂)] (1) mit den Chalkogenen S₈ und Se_{grau}

In einem 100 ml-Einhalskolben mit Hahn werden 80 mg (0.12 mmol) [{Cp'''Fe}₂(μ -CO)(μ - $\eta^{2:2}$ -P₂)] (1) in 50 ml Toluol gelöst und mit 70 mg (0.27 mmol) Schwefel (S₈) bzw. 130 mg (1.65 mmol) grauem Selen umgesetzt. Dieses grüne Reaktionsgemisch wird anschließend unter Lichtausschluß 72 Stunden bei Raumtemperatur gerührt. Danach ist die Carbonylbande von 1 im IR-Spektrum der Rohlösung nicht mehr zu beobachten. Das Lösungsmittel wird am Ölpumpenvakuum entfernt und der Rückstand in 25 ml Dichlormethan gelöst. Diese Lösung versetzt man mit 3 g silyliertem Kieselgel, trocknet das Gemisch am Ölpumpenvakuum und befüllt damit eine Chromatographie-Säule (20x1.5 cm, PE, SiO₂ (II), -20 °C, Kryostat). Beide Trennverfahren liefern jeweils nur eine einzige, phosphorhaltige Fraktion, die mit einem Petrolether/Toluol-Gemisch im Verhältnis 20:1 als grüne bzw. gelbgrüne Lösung eluiert

 $[{Cp'''Fe}_2(\mu-\eta^{4:4}-P_2S_2)]$ (6):

werden kann.

<u>Ansatz:</u>	80 mg (0.12 mmol) [{Cp'''Fe} ₂ (μ -CO)(μ - η ^{2:2} -P ₂)] (1) 70 mg (0.27 mmol) S ₈			
<u>Ausbeute:</u>	30 mg (0.04 mmol) [{Cp'''Fe} ₂ (μ - $\eta^{4:4}$ -P ₂ S ₂)] (6) = 33.29 % bezogen auf 1			
Elementaranalyse:	$C_{34}H_{58}Fe_2P_2S_2$		(M = 704.59 g/mol)	
	ber.	C: 57.96 %	H: 8.30 %	
	gef.	C: 55.73 %	H: 8.27 %	
$[{Cp'''Fe}_2(\mu-\eta^{4:4}-P_2Se_2)]$ (7):				
<u>Ansatz:</u>	80 mg (0.12 mmol) [{Cp'''Fe} ₂ (μ -CO)(μ - η ^{2:2} -P ₂)] (1)			
	130 mg (1.65 mmol) Se			
Ausbeute:	20 mg (0.03 mmol) [{Cp'''Fe} ₂ (μ - $\eta^{4:4}$ -P ₂ Se ₂)] (7)			
	$\equiv 24.38$ % bezogen auf 1			
Elementaranalyse:	$C_{34}H_{58}Fe_2P_2Se_2$		(M = 798.38 g/mol)	
	ber.	C: 51.15 %	H: 7.32 %	
	gef.	C: 50.49 %	H: 7.34%	

4.3.3 Komplexierung der Chalkogen-Produkte [$\{Cp'''Fe\}_2(\mu-\eta^{4:4}-P_2X_2)$] (6,7) (X = S, Se) mit [W(CO)₆]

In einer Tauchlampenapparatur werden dazu 40 mg (0.11 mmol) kristallines $[W(CO)_6]$ in ungefähr 50 ml Tetrahydrofuran gelöst. Unter Wasserkühlung bestrahlt man dieses Reaktionsgemisch 45 Minuten. In dieser Zeit färbt sich die Lösung durch das entstandene [W(CO)₅·thf] intensiv gelb. Sie wird direkt in einen 100 ml-Einhalskolben mit Hahn gegeben, in den zuvor 20 mg (0.03 mmol) [{Cp''Fe}₂(μ - $\eta^{4:4}$ -P₂S₂)] (6) eingewogen wurden. Das grüne Reaktionsgemisch rührt man über Nacht bei Raumtemperatur weiter, entfernt das Lösungsmittel am Ölpumpenvakuum und erhält ein gelbgrünes Pulver. Dieses wird in wenig Dichlormethan gelöst, mit ca. 3 g silvliertem Kieselgel versetzt und am Ölpumpenvakuum bis zur feinen Rieselfähigkeit getrocknet. Den Feststoff gibt man auf eine mit Petrolether und Kieselgel befüllte Säule (20x1.5 cm, -20 °C) und erhält mit einem Petrolether/Toluol-Lösungsmittelgemisch im Verhältnis 50:1 als erste Fraktion eine hellgrüne Lösung, aus der nach dem Entfernen des Lösungsmittels am Ölpumpenvakuum ein pulvriger Feststoff von $[{Cp'''Fe}_2(\mu_3-\eta^{4:4:1}-P_2S_2)W(CO)_5]$ (9) zurückbleibt. Ein Lösungsmittelgemisch der gleichen Solventien 20:1 das zweifach komplexierte Produkt von liefert $[{Cp'''Fe}_2P_2S_2{W(CO)_5}_2]$ (11) als orange Lösung.

- <u>Ansatz:</u> 20 mg (0.03 mmol) [{Cp''Fe}₂(μ - $\eta^{4:4}$ -P₂S₂)] (6) 40 mg (0.11 mmol) [W(CO)₆]
- <u>Ausbeute:</u> 10 mg (0.009 mmol) [{Cp'''Fe}₂(μ_3 - $\eta^{4:4:1}$ -P₂S₂) {W(CO)₅}] (9) $\equiv 29.03 \%$ bezogen auf 6 20 mg (0.014 mmol) [{Cp'''Fe}₂P₂S₂{W(CO)₅}₂] (11) $\equiv 46.67 \%$ bezogen auf 6

Elementaranalyse:	11:	C ₄₄ H	$_{58}$ Fe ₂ O ₁₀ P ₂ S ₂ W	(M = 1352.41 g/mol)
		ber.	C: 38.96 %	H: 4.61 %
		gef.	C: 36.91 %	H: 4.51 %

9:
$$C_{39}H_{58}Fe_2O_5P_2S_2W_2$$
 (M = 1028.51 g/mol)

Die Umsetzung von 7 mit [W(CO)₆] verläuft völlig analog der voranstehend beschriebenen Reaktion. Die säulenchromatographische Aufarbeitung liefert jedoch noch eine dritte Fraktion. Man eluiert sie mit einem 10:1-Gemisch der beiden oben genannten Solventien als rotbraune Lösung, die den Komplex [Cp'''Fe(μ_4 - $\eta^{4:2:1:1}$ -P₂Se₂)Fe(CO) Cp'''{W(CO)₅}₂] (14) enthält.

<u>Ansatz:</u>	40 mg (0.05 mmol) [{Cp'''Fe} ₂ (μ - $\eta^{4:4}$ -P ₂ Se ₂)] (7)] (7)		
	70 mg (0	0.20 mmol) [W(CO) ₆]				
Ausbeute:	10 mg (() 009 mmol) [{Cp'''Fe	$\frac{1}{2} (u_2 - n^{4:4:1} - P_2 S)$	Sea) $\{W(CO)_{s}\}$ (10)		
<u>rubbouto:</u>	= 17.82% bezogen auf 7					
	$30 \text{ mg} (0.021 \text{ mmol}) [Cp'''_2Fe_2P_2Se_2{W(CO)_5}_2] (12)$					
	≡ 41.49	% bezogen auf 7				
	10 mg (0.007 mmol) [Cp'''Fe(μ_4 - $\eta^{4:2:1:1}$ -P ₂ Se ₂)Fe(CO) Cp'''{W(CO) ₅ } ₂]					
	(14)					
	≡ 13.57 9	% bezogen auf 7				
Elementaranalyse: 12:	12:	C44H58Fe2O10P2Se2V	<i>W</i> ₂	(M = 1446.20 g/mol)		
		ber. C: 36.54 %	H: 4.04 %			
		gef. C: 37.91 %	H: 4.21 %			
	10 :	$\mathrm{C}_{39}\mathrm{H}_{58}\mathrm{Fe}_{2}\mathrm{O}_{5}\mathrm{P}_{2}\mathrm{Se}_{2}\mathrm{W}$	⁷ 2	(M = 1122.29 g/mol)		
	14 :	$C_{45}H_{58}Fe_2O_{11}P_2Se_2V_{11}P_2Se_2$	V_2	(M = 1474.21 g/mol)		

4.3.4 Photolyse von [{Cp'''Fe}₂(μ-CO)(μ-η^{2:2}-P₂)] (1) und anschließende Umsetzung mit den Chalkogenen Schwefel und Selen

Zunächst werden 90 mg (0.13 mmol) [{Cp'''Fe}₂(μ -CO)(μ - $\eta^{2:2}$ -P₂)] (1) in einer Tauchlampenapparatur in ca. 100 ml Toluol gelöst und fünf Stunden unter Wasserkühlung photolysiert. Das Lösungsmittel wird am Ölpumpenvakuum entfernt und der gelbgrüne Rückstand in wenig Hexan gelöst. Aus dieser Lösung entfernt man unlösliche Feststoffe über eine D3-Fritte, bevor man erneut das Solvens am Ölpumpenvakuum entfernt und den so erhaltenen Rückstand in 100 ml Toluol in einem 250 ml-Einhalskolben mit Hahn mit 140 mg (0.54 mmol) Schwefel versetzt. Dieses Reaktionsgemisch wird anschließend zwei Tage bei Raumtemperatur gerührt, bevor man das Lösungsmittel am Ölpumpenvakuum entfernt und den Rückstand säulenchromatographisch an Kieselgel aufarbeitet. Dazu wird der Feststoff nach dem Auflösen in Dichlormethan mit ca. 3 g silyliertem Kieselgel versetzt und am Ölpumpenvakuum bis zur feinen Rieselfähigkeit getrocknet. Dieses Pulver trägt man auf eine mit Petrolether und Kieselgel befüllte Säule (20x1.5 cm, -20 °C, Kryostat) auf.

Ein Lösungsmittelgemisch bestehend aus Petrolether und Toluol im Verhältnis 20:1 liefert eine grüne Lösung, die den Komplex [$\{Cp'''Fe\}_2(\mu-\eta^{4:4}-P_2S_2)$] (6) enthält. Eine orangebraune, zweite Fraktion erhält man mit einem 1:1-Petrolether/Toluol-Gemisch. Sie enthält keinen Phosphor (NMR).

Ansatz:90 mg (0.13 mmol) [{Cp'''Fe}_2(\mu-CO)(\mu-\eta^{2:2}-P_2)] (1)140 mg (0.54 mmol) S_8Ausbeute:20 mg (0.02 mmol) [{Cp'''Fe}_2(\mu-\eta^{4:4}-P_2S_2)] (6)
$$\equiv 21.83$$
 % bezogen auf 1.

6: $C_{34}H_{58}Fe_2P_2S_2$ (M = 704.59 g/mol)

Die Reaktionsbedingungen für die Umsetzung des Photolyse-Produktes mit Selen und die säulenchromatographischen Aufarbeitung sind genau identisch mit den oben beschriebenen. Man erhält in Analogie zum Schwefel-Ansatz das[{Cp'''Fe}₂(μ - η ^{4:4}-P₂Se₂)] (7).

Ansatz:	130 mg (0.19 mmol) [{Cp'''Fe} ₂ (μ -CO)(μ - η ^{2:2} -P ₂)] (1)
	130 mg (1.65 mmol) Se
<u>Ausbeute:</u>	35 mg (0.04 mmol) [{Cp'''Fe} ₂ (μ - $\eta^{4:4}$ -P ₂ Se ₂)] (7) = 23.07 % bezogen auf 1 .

7:
$$C_{34}H_{58}Fe_2P_2Se_2$$
 (M = 798.38 g/mol)

4.3.5 Komplexierung von [{Cp'''Fe}₂(μ-η^{4:4}-P₄)] (8a) mit [W(CO)₆]

In einer Tauchlampenapparatur werden 360 mg (1.02 mmol) kristallines $[W(CO)_6]$ in ca. 150 ml Tetrahydrofuran gelöst und unter Wasserkühlung 45 Minuten photolysiert. Schon nach kurzer Zeit färbt sich das Reaktionsgemisch leuchtend gelb. Diese Lösung gibt man danach direkt in einen 250 ml-Einhalskolben mit Hahn, in den zuvor 360 mg (0.51 mmol) $[{Cp''Fe}_{2}(u-n^{4:4}-P_{4})]$ (8a) eingewogen wurden. Die rotbraune Reaktionslösung wird zwei Tage bei Raumtemperatur gerührt, bevor man das Lösungsmittel am Ölpumpenvakuum entfernt und den Rückstand ³¹P-NMR-spektroskopisch untersucht. Aufgrund der Vielzahl von Signalen wird der Rückstand säulenchromatographisch an Kieselgel aufgearbeitet. Dazu löst man den schwarzbraunen Feststoff in ca. 30 ml Dichlormethan, versetzt die Lösung mit 3 g silvliertem Kieselgel und trocknet am Ölpumpenvakuum zur feinen Rieselfähigkeit. Das Pulver wird dann auf eine mit Kieselgel und Petrolether gefüllte Säule (20x1.5 cm, -20 °C) aufgetragen. Ein Lösungsmittelgemisch von Petrolether und Toluol im Verhältnis 50:1 liefert zunächst eine schwarzbraune Fraktion, die den zweifach komplexierten pseudo-Tripeldeckerkomplex [{Cp"'Fe}₂(μ_4 - $\eta^{4:4:1:1}$ -P₄){W(CO)₅}₂] (**19a**) enthält. Die zweite, grüne Fraktion eluiert man mit einem Gemisch der gleichen Solventien im Verhältnis 20:1. In ihr werden keine Phosphorsignale NMR-spektroskopisch nachgewiesen.

<u>Ansatz:</u> 360 mg (0.51 mmol) [{Cp'''Fe}₂(μ - η ^{4:4}-P₄)] (8a) 360 mg (1.02 mmol) [W(CO)₆]

<u>Ausbeute:</u> 370 mg (0.27 mmol) [{Cp'''Fe}₂(μ_4 - $\eta^{4:4:1:1}$ -P₄){W(CO)₅}₂] (19a) = 53.73 % bezogen auf 8a

Elementaranalyse:	$C_{44}H_{58}Fe_2O_{10}P_4W_2$	(M = 1350.25 g/mol)	
	ber. C: 39.14 %	H: 4.33 %	
	gef. C: 36.74 %	H: 3.85 %	

4.3.6 Umsetzung von [{In''(OC)₂Fe}₂(μ - η ^{1:1}-P₄)] (2b) mit [{Cp'''Fe(CO)₂}₂] (21a)

In einem 250 ml-Zweihalskolben mit Hahn und Rückflußkühler werden 0.43 g (0.54 mmol) [{In"(OC)₂Fe}₂(μ - η ^{1:1}-P₄)] (**2b**) in 100 ml Toluol gelöst und mit 0.17 g (0.25 mmol) der Eisen-Dimer-Verbindung **21a** versetzt. Das rot-orange Reaktionsgemisch wird solange am Rückfluß erhitzt, bis keine Edukt-Carbonylbanden im IR-Spektrum der Rohlösung mehr beobachtet werden. Das Reaktionsende ist nach fünf Stunden erreicht, woraufhin das Lösungsmittel am Ölpumpenvakuum entfernt wird. Den Rückstand löst man in wenig Dichlormethan, gibt ca. 3 g silyliertes Kieselgel dazu und trocknet das Gemisch am Ölpumpenvakuum zur feinen Rieselfähigkeit. An einer mit Kieselgel und Petrolether gefüllten Säule (20x1.5 cm) erfolgt die Trennung des Substanzgemisches bei –20 °C. Die erste rot-orange Fraktion gewinnt man mit einem Petrolether/Toluol-Lösungsmittelgemisch im Verhältnis 20:1. Sie enthält den *pseudo*-Tripeldeckerkomplex [{Cp"'Fe}₂(μ - η ^{4:4}-P₄)] (**8a**). Verbindung **8c** mit je einem η ⁵-koordinierten Cp"'- und einem In"-Liganden liefert ein Lösungsmittelgemisch der gleichen Solventien im Verhältnis 10:1 als rote Lösung. Mit einem Petrolether/Toluol-Gemisch der Zusammensetzung 5:1 gewinnt man den Komplex [{In"Fe}₂(μ - η ^{4:4}-P₄)] (**8a**) als dunkelrote Lösung.

90 mg (0.13 mmol) [{Cp'''Fe}{In''Fe}(μ - η ^{4:4}-P₄)] (8c)

 \equiv 24.07 % bezogen auf 1b.

160 mg (0.23 mmol) [{In"Fe}₂(μ - $\eta^{4:4}$ -P₄)] (**8b**)

 \equiv 42.59 % bezogen auf 1b.

Elementaranalyse:**8b**:
$$C_{34}H_{46}Fe_2P_4$$
 (M = 689.99 g/mol)
ber. C: 59.14 %
gef. C: 59.14 %
H: 6.72 %
gef. C: 56.80 %
H: 6.74 %**8c**: $C_{34}H_{52}Fe_2P_4$ (M = 696.03 g/mol)
ber. C: 58.62 %
gef. C: 59.58 %
H: 7.51 %

4.3.7 Orientierender Versuch zur Synthese von [{Cp'''Ru(CO)₂}₂] (23a) als Ausgangsverbindung für die Synthese von P₄-Butterflyverbindungen

1.2 g (1.87 mmol) Ru₃(CO)₁₂ werden in einem 250 ml-Dreihalkolben mit Hahn und Rückflußkühler in ca. 150 ml Heptan suspendiert und mit 3.52 g (15 mmol) Cp"'H versetzt. Mit einem Ölbad erhitzt man das Reaktionsgemisch zum Rückfluß des Lösungsmittels, wobei nach kurzer Zeit eine klare rote Lösung entsteht, da alles Ruthenium-Carbonyl gelöst wurde. Nach 24 Stunden Rühren bei dieser Temperatur hat sich ein Farbwechsel nach rotbraun vollzogen. Daraufhin wird über ein Glasrohr, das durch einen Quickfit-Kern in die Lösung ragt, für ca. fünf Minuten Druckluft durch die Reaktionslösung geleitet. Dabei entsteht eine schwarzbraune Suspension, aus der das Lösungsmittel am Ölpumpenvakuum entfernt wird. Der ölige Rückstand, den man so erhält, wird in ca. 30 ml Dichlormethan gelöst, mit 3 g silyliertem Kieselgel versetzt und bis zur feinen Rieselfähigkeit am Ölpumpenvakuum getrocknet. Dieses schwarzbraune Pulver gibt man auf eine mit Kieselgel und Petrolether gefüllte Säule (20x1.5 cm, -20 °C) und eluiert mit einem Lösungsmittelgemisch von Petrolether und Diethylether im Verhältnis 50:1 eine braun-grüne Lösung. Ein Gemisch der gleichen Solventien der Zusammensetzung 10:1 liefert zunächst eine orange Lösung, die von einer großen, violetten Fraktion gefolgt wird. Aus dieser kann Verbindung [$\{Cp'''Ru\}_2(\mu-CO)(\mu-O)$] (24) als kristallines Pulver gewonnen werden. Mit reinem Tetrahydrofuran erhält man noch eine vierte und letzte Fraktion als orange-braune Lösung.

<u>Ansatz:</u>	1.2 g (1.87 mmol) Ru ₃ (CO) ₁₂
	3.52 g (15 mmol) Cp"'H

<u>Ausbeute:</u> 300 mg (0.42 mmol) [{Cp'''Ru}₂(μ -CO)(μ -O)] (24) = 22.50 % bezogen auf Ru₃(CO)₁₂

Elementaranalyse:	$C_{35}H_{58}O_2Ru_2$		(M = 712.98 g/mol)
	ber.	C: 58.96 %	H: 8.19 %
	gef.	C: 57.13 %	H: 8.16 %

4.3.8 Orientierender Versuch zur Umsetzung von [{Cp'''Ru}₂(μ-CO)(μ-O)] (24) mit P₄

In einem 100 ml-Zweihalskolben mit Hahn und Rückflußkühler wird eine Lösung von 160 mg (0.22 mmol) [{Cp'''Ru}₂(μ -CO)(μ -O)] (24) und 50 ml Toluol mit 31 mg (0.25 mmol) frisch getrocknetem weißen Phosphor umgesetzt und so lange am Rückfluß gekocht, bis die charakteristische Edukt-Carbonylbande im IR-Spektrum der Rohlösung verschwunden ist. Das Reaktionsende ist nach vier Stunden erreicht. Das Lösungsmittel wird daraufhin am Ölpumpenvakuum entfernt, der Rückstand in wenig Dichlormethan aufgenommen und mit 3 g silyliertem Kieselgel versetzt. Am Ölpumpenvakuum trocknet man das Gemisch zur feinen Rieselfähigkeit und trägt das Pulver anschließend auf eine mit Kieselgel und Petrolether gepackte Säule (20x1.5 cm, -20 °C). Man erhält nur eine einzige, hellbraune Fraktion mit einem Lösungsmittelgemisch der Solventien Petrolether und Toluol im Verhältnis 10:1.

<u>Ansatz:</u> 160 mg (0.22 mmol) [{Cp'''Ru}₂(μ -CO)(μ -O)] (24) 31 mg (0.25 mmol) P₄

<u>Ausbeute:</u> 30 mg (0.04 mmol) [{Cp'''Ru}₂(μ - η ^{2:2}-P₄)] (**25**) = 17.20 % bezogen auf (**24**).

Elementaranalyse:	$C_{34}H_{58}P_4Ru_2$		(M = 792.87 g/mol)
	ber.	C: 51.51 %	H: 7.33 %
	gef.	C: 52.32 %	H: 6.97 %

5 Zusammenfassung

Die enorme Reaktivität des Tetrahedrans [{Cp'''Fe}₂(μ -CO)(μ - $\eta^{2:2}$ -P₂)] (1) gegenüber Licht und Luftsauerstoff wird durch die Komplexierung eines der beiden Phosphoratome mit dem 16VE-Übergangsmetall-Fragment {W(CO)₅} deutlich reduziert. Die Umsetzung der Reaktionspartner bei Raumtemperatur liefert schon nach 36 Stunden den Komplex [{Cp'''Fe}₂(μ ₃-CO)(μ - $\eta^{2:2}$ -P₂){W(CO)₅}] (3) in guten Ausbeuten.

Die Oxidation von [{Cp'''Fe}₂(μ -CO)(μ - $\eta^{2:2}$ -P₂)] (1) mit Schwefel und Selen führt bereits bei Raumtemperatur unter Decarbonylierung der CO-Gruppe zu den *pseudo*-Tripeldeckerkomplexen vom Typ [{Cp'''Fe}₂(μ - $\eta^{4:4}$ -P₂X₂)] (**6**,7) mit einem P₂X₂-Mitteldeck (X = S, Se). Die vier Hauptgruppenelemente liegen als trapezoid angeordnete Kette vor (RSA), ähnlich der P₄-Kette in den Komplexen vom Typ [{Cp^RFe}₂(μ - $\eta^{4:4}$ -P₄)] (**8**). Aufgrund

der veränderten Valenzelektronenzahlen in 6 und 7 wird im Gegensatz zu 8 keine Bindung zwischen den Eisenatomen mehr beobachtet

Unter Photolyse-Bedingungen erhält man durch Abspaltung der verbrückenden CO-Gruppe aus 1 den bereits von *Eichhorn* ^[11,38] charakterisierten Bicyclus [{Cp'''Fe}₂(μ -P)₂] (18), der in situ mit Schwefel und Selen zu den selben Oxidationsprodukten 6 beziehungsweise 7 reagiert (vgl. voranstehend).

Die Komplexierung beider Phosphoratome in den *pseudo*-Tripeldeckerkomplexen 6 und 7 mit $[W(CO)_6]$ ist möglich, wobei die einfach komplexierte Verbindung $[\{Cp'''Fe\}_2(\mu_3-\eta^{4:4:1}-P_2X_2)\{W(CO)_5\}]$ (9,10) (X = S, Se) die P₂X₂-Struktureinheit des Eduktes beibehält, während bei der Zweifachkomplexierung ein stark verzerrtes trigonales Prisma entsteht. Die beiden $\{W(CO)_5\}$ -Fragmente sind in $[Cp'''_2Fe_2P_2X_2\{W(CO)_5\}_2]$ (11,12) (X = S, Se) symmetrisch an dieses Polyedergerüst koordiniert.

Im Fall des Selens entsteht noch eine dritte Verbindung, deren zentrales Strukturelement ein P₂Se₂Fe-Fünfring ist, in welchem das Fe-Atom etwas nach unten abknickt und neben einem η^5 -koordinierten Cp'''-Ring eine terminale CO-Bindung aufweist. In Verbindung [Cp'''Fe(μ_4 - $\eta^{4:2:1:1}$ -P₂Se₂)Fe(CO) Cp'''{W(CO)₅}] (14) sind die beiden Phosphoratome zusätzlich komplexiert.

Die Langzeitthermolyse des [{In"(OC)₂Fe}₂(μ - $\eta^{1:1}$ -P₄)]-Butterfly-Komplexes (**2b**) mit dem zweikernigen [{Cp"'Fe(CO)₂}₂] (**21a**) liefert drei strukturell sehr ähnliche Phosphorverbindungen. Sie unterscheiden sich nur in den Cyclopentadienylliganden, die η^5 -artig an die Eisenatome der *pseudo*-Tripeldeckerkomplexe **8a,b** und **c** koordiniert sind. **8a** entsteht dabei nur in geringen Ausbeuten, da seine Bildung vermutlich auf eine P₄-Übertragung vom Butterfly-komplex **2b** auf den Eisen-Zweikern-Komplex **21a** zurückgeführt wird. Das Tetraphosphabicyclobutan **2b** tritt also nur in einer Nebenreaktion als alternative P_n-Quelle auf. Der Einfluß der unterschiedlichen Liganden auf die Bindungsverhältnisse in den Polyedergerüsten ist sehr gering, wie die Röntgenstrukturanalysen von [{In"Fe}{Cp["]Fe}(μ - $\eta^{4:4}$ -P₄)] (**8b**) zeigen.

Bei der Umsetzung des Cp^{III}-Derivates **8a** mit [W(CO)₆] können zwei strukturisomere Komplexierungsprodukte ³¹P-NMR-spektroskopisch nachgewiesen werden. Die säulenchromatographische Auftrennung der beiden Isomeren ist jedoch nicht möglich, lediglich durch frak-

tionierende Kristallisation gelangt man zu einer analysenreinen Substanz, die röntgenstrukturanalytisch als der alternierend koordinierte Komplex **19a(A)** charakterisiert werden kann.

Bei dem Versuch, ein Ruthenium-Dimer vom Typ $[{Cp^{R}Ru(CO)_{2}}_{2}]$ (23) mit dem Tri-*tert*butyl-Cyclopentadienylliganden zu synthetisieren, erhält man nur Verbindung $[{Cp'''Ru}_{2}(\mu$ -CO)(μ -O)] (24), dessen thermische Umsetzung mit weißem Phosphor zu einem weiteren *pseudo*-Tripeldeckerkomplex mit einem P₄-Mitteldeck führt 25. Die Anordnung der vier Atome als trapezoide Kette oder in Form von zwei separaten P₂-Einheiten läßt sich letztendlich auch mittels der Röntgenstrukturanalyse nicht eindeutig klären. Die P-P-Bindungsabstände innerhalb der P₄-Ebene sprechen jedoch eher für die Kettenform.

6 Literaturverzeichnis

- 1 T. Hilt, *Dissertation*, Universität Kaiserslautern **1999**.
- 2 O. J. Scherer, T. Hilt, G. Wolmershäuser, *Organometallics* **1998**, *17*, 4110-4112.
- 3 T. Brück, *Dissertation*, Universität Kaiserslautern **1989**.
- 4 P. Jutzi, S. Opiela, J. Organomet. Chem. 1992, 431, C 29-C 32.
- 5 L. Weber, U. Sonnenberg, *Chem. Ber.* **1991**, *124*, 725-728.
- 6 G. Schwarz, *Dissertation*, Universität Kaiserslautern **1995**
- O. J. Scherer, G. Schwarz, G. Wolmershäuser, Z. Anorg. Allg. Chem. 1996, 622, 951-957.
- 8 K. Wade, Adv. Inorg. Radiochem. 1976, 18, 1-66.
- 9 T. Sögding, *Diplomarbeit*, Universität Kaiserslautern 2000.
- 10 C. Eichhorn, *Diplomarbeit*, Universität Kaiserslautern 2000.
- O. J. Scherer, C. Eichhorn, T. Sögding, G. Wolmershäuser, *Angew. Chem.* 2001, *113*, 2944-2945
- 12 A. S. Foust, M. S. Foster, L. F. Dahl, J. Am. Chem. Soc., 1969, 91, 5633.
- 13 D. M. P. Mingos, Acc. Chem. Res. 1984, 17, 311-319.
- 14 J. F. Halet, J. Y. Saillard, J. Organomet. Chem. 1987, 327, 365-377.
- 15 F. A. Cotton, J. D. Jammerson, B. R. Stults, J. Am. Chem. Soc. 1976, 98, 1774-1779
- R. Hoffmann (Nobelvortrag), Angew. Chem. 1982, 94, 725-739; Angew. Chem. Int.
 Ed. Engl. 1982, 21, 711
- 17 A. Vizi-Orosz, G. Pályi, L. Markó, J. Organomet. Chem. 1973, 60, C25-C26.
- 18 O. J. Scherer, J. Braun, P. Walther, G. Heckmann, G. Wolmershäuser, *Angew. Chem.*1991, 103, 861-863; *Angew. Chem. Int. Ed. Engl.* 1991, 30, 852.
- O. J. Scherer, C. Vondung, G. Wolmershäuser, Angew. Chem. 1997, 109, 1360-1362;
 Angew. Chem. Int. Ed. Engl. 1997, 21, 773-783.
- 20 G. Kemény, *Dissertation*, Universität Kaiserslautern 1994.
- 21 O. J. Scherer, G. Kemény, G. Wolmershäuser, Chem. Ber. 1995, 128, 1145-1148.
- 22 S. Weigel, *Dissertation*, Universität Kaiserslautern 1999
- 23 R. P. von Schleyer, M. Hofmann, unveröffentlichte Ergebnisse
- 24 B. T. Sterenberg, L. Scoles, A. J. Carty, Coord. Chem. Rev. 2002, 231, 183-197.
- H. Lang, G. Huttner, L. Zsolnai, G. Mohr, B. Sigwarth, U. Weber, O. Oramar, I. Jibril,
 J. Organomet. Chem. 1986, 304, 157-179.
- 26 H. Vahrenkamp, D. Wolters, *Angew. Chem.* **1983**, *95*, 152-153.

- S. Berger, S. Braun, H.-O. Kalinowski, *NMR-Spektroskopie von Nichtmetallen*, Band
 3, 1993, Georg Thieme Verlag Stuttgart · New York
- O. J. Scherer, J. Braun, P. Walther und G. Wolmershäuser, *Chem. Ber.* 1992, 125, 2661-2665
- 29 R. S. Gall, N. G. Connelly and L. F. Dahl, J. Am. Chem. Soc. 1974, 96, 4017-4023
- L. L. Nelson, F. Yip-Kwai Lo, A. David Rae and L. F. Dahl, J. Organomet. Chem.
 1982, 225(1), 309-329.
- 31 C. Ting-Wah Chu, F. Yip-kwai Lo and L. F. Dahl, *J. Am. Chem. Soc.* **1982**, *104*, 3409-3422.
- 32 T. H. Lemmen, J. A. Kocal, F. Yip-Kwai Lo, M. W. Chen and L. F. Dahl, *J. Am. Chem. Soc.* **1981**, *103*, 1932-1941.
- 33 O. J. Scherer, M. Swarowsky und G. Wolmershäuser, *Angew. Chem.* 1988, 100, 738-739.
- 34 C. Müller, *Dissertation*, Universität Kaiserslautern 2002.
- S. Weigel, G. Wolmershäuser und O. J. Scherer, Z. anorg. allg. Chem. 1998, 624, 559 560
- 36 O. J. Scherer, S. Weigel and G. Wolmershäuser, *Heteroatom Chemistry* 1999, 10, 622-626.
- 37 D. E. C. Corbridge, *The Structural Chemistry of Phosphorus* **1974**, *23*, Elsevier Scientific Puplishing Company Amsterdam.
- 38 C. Eichhorn, *Dissertation*, Universität Kaiserslautern 2003.
- 39 P. Kramkowski, M. Scheer, Angew. Chem. 2000, 112, 959-962.
- 40 H. Günther, *NMR-Spektroskopie* **1983**, 2., verbesserte Auflage, Georg Thieme Verlag Stuttgart.
- 41 O. J. Scherer, G. Berg, G. Wolmershäuser, *Chem. Ber.* **1995**, *128*, 635-639.
- 42 O. J. Scherer, T. Hilt, G. Wolmershäuser, Angew. Chem. Int. Ed. 2000, 39, 1425-1427.
- 43 F. Weber, *Dissertation*, Universität Kaiserslautern 2001.
- 44 M. Wallasch, *Dissertation*, Universität Kaiserslautern 2002.
- 45 L. F. Dahl, M. E. Barr, Organometallics 1991, 10, 3991-3996.
- 46 O. J. Scherer, T. Brück, G. Wolmershäuser, *Chem. Ber.* **1988**, *121*, 935-938.
- 47 O. J. Scherer, T. Brück, Angew. Chem. 1987, 99, 59. Angew. Chem. Int. Ed. Engl. 1987, 26, 59.
- 48 B. Koch, *Dissertation*, Universität Kaiserslautern 2001.

1802.

49

- 50 I. Jibril, F. T. Esmadi, H. Al-Masri, L. Zsolnai, G. Huttner, *J. Organomet. Chem.* **1996**, *510*, 109-116.
- 51 H. Suzuki, H. Omori, D. H. Lee, Y. Yoshida, Y. Moro-oka, *Organometallics* **1988**, *7*, 2243-2245.
- 52 M. R. Churchill, F. J. Hollander, J. P. Hutchinson, Inorg. Chem. 1977, 16, 2655.
- 53 H. Omori, H. Suzuki, Y. Take, Y. Moro-oka, Organometallics 1989, 8, 2270-2272.
- 54 O. J. Scherer, H. Sitzmann, G. Wolmershäuser, *Angew. Chem.* **1985**, *97*, 358; *Angew. Chem. Int. Ed. Engl.* **1985**, *24*, 351.
- 55 O. J. Scherer, H. Sitzmann, G. Wolmershäuser, J. Organomet. Chem. 1986, 309, 77.
- 56 R. L. Johnston, D. M. P. Mingos, J. Chem. Soc. Dalton Trans. 1987, 647-656.
- 57 A. P. Ginsberg, W. E. Lindsell, K. J. McCullough, C. R. Sprinkle, A. J. Welch, *J. Am. Chem. Soc.* **1986**, *108*, 403-416.
- 58 Y. Canac, D. Bourissou, A. Baceiredo, H. Gornitzka, W. W. Schoeller, G. Bertrand, *Science* **1985**, *279*, 2080-2082.
- 59 O. J. Scherer, *Comments Inorg. Chem.* **1987**, *6*, 1-22.
- 60 O. J. Scherer, I. Bach, J. Schwalb, H. Sitzmann, G. Wolmershäuser, W. Kaim und R. Groß, *Phosphorus and Sulfur*, **1987**, *30*, 269.
- 61 K. Mast, *Diplomarbeit*, Universität Kaiserslautern 1996.
- 62 H. Sitzmann, F. Weber, unveröffentlichte Ergebnisse
- 63 T. Dezember, *Dissertation*, Universität Kaiserslautern 1996
- H. Sitzmann, T. Dezember, W. Kaim, F. Baumann, D. Stalke, J. Kärcher, E. Dormann,
 H. Winter, C. Wachter, M. Kelemen, *Angew. Chem.* 1996, 108, 3013-3016; *Angew. Chem. Int. Ed. Engl.* 1996, 35, 2872.
- 65 W. Towae, *Dissertation*, Universität Kaiserslautern 1979.

7. Anhang

Tabelle 7.1.1 Kristalldaten und Strukturverfeinerung für [{Cp'''Fe}₂(μ-CO)(μ₃-η^{2:2:1}-P₂){W(CO)₅}] (3).

Summenformel	$C_{40}H_{58}Fe_2O_6P_2W$	
Molmasse	992.35	
Temperatur	293(2) K	
Strahlung	ΜοΚα	
Wellenlänge	0.71073 Å	
Scanmodus	Phi-Oszillation	
Kristallsystem	Triklin	
Raumgruppe	PĪ	
Zelldimensionen	a = 11.5194(8) Å	$\alpha = 71.095(8)^{\circ}$
	b = 12.0874(10) Å	$\beta = 85.999(8)^{\circ}$
	c = 17.7026(11) Å	$\gamma = 68.104(8)^{\circ}$
Zellvolumen	$2160.1(3) \text{ Å}^3$	
Formeleinheiten pro Zelle Z	2	
Berechnete Dichte	1.526 Mg/m^3	
Absorptionskoeffizient	3.434 mm ⁻¹	
Kristallgröße	0.30 x 0.25 x 0.23 mm	
Gemessener θ-Bereich	2.84 bis 25.68°	
Anzahl der gemessenen Reflexe	27596	
Unabhängige Reflexe	7678 (Rint = 0.0709)	
Absorptionskorrektur	Empirisch (MULABS/PLATON 9	98)
Max. und min. Transmission	0.503966 und 0.432077	
Diffraktometer	Stoe IPDS	
Strukturlösung	Direkte Methoden	
Strukturlösungsprogramm	SIR97 (Giacovazzo et al., 1997)	_
Strukturverfeinerung	Vollmatrix Least-Squares gegen H	2
Strukturverfeinerungsprogramm	SHELXL-97 (Sheldrick, 1997)	
Daten / Restraints / Parameter	7678 / 81 / 509	
Endgültige R-Werte $[I \ge 2\sigma(I)]$	R1 = 0.0416, $wR2 = 0.0899$	
R-Werte (alle Daten)	R1 = 0.0774, wR2 = 0.0983	
Wichtungsschema	$w=1/[\sigma^{2}(Fo^{2})+(0.0490P)^{2}+0.0000$	P] mit P=(Fo ² +2Fc ²)/3
GooF (alle Daten)	0.873	
Größtes Maximum und Minimum	0.814 und -0.740 eÅ ⁻³	

Verfeinerung nach F^2 mit ALLEN Reflexen. Die gewichteten R-Werte wR2 und alle GooF's basieren auf F^2 . Die konventionellen R-Werte R1 basieren auf F, wobei F für negative F^2 gleich Null gesetzt wird. Das Ablehnungskriterium $F^2 > 2\sigma(F^2)$ wird nur zum Berechnen von R(obs) etc. verwendet. Zur Verfeinerung wurden alle Reflexe herangezogen. Grundsätzlich gilt: Auf F^2 bezogene R-Werte sind statistisch etwa doppelt so groß wie die auf F basierenden. Auf ALLE Reflexe bezogene R-Werte sind noch größer.

Eine der *t*-Bu-Gruppen ist rotationsfehlgeordnet. Die Wasserstoffatome wurden geometrisch lokalisiert. Für die Verfeinerung wurde ein Reitermodell angenommen. Als Temperaturfaktor wurde der 1.5-fache Wert (CH₃-Gruppen) bzw. der 1.2-fache Wert (Cp-H) des äquivalenten isotropen Temperaturfaktors desjenigen C-Atoms eingesetzt, an welches das jeweilige H-Atom gebunden ist.

Einzelheiten können dem Handbuch für das Verfeinerungsprogramm SHELXL entnommen werden.

$$wR_{2} = \sqrt{\frac{\sum \left[w\left(F_{o}^{2} - F_{c}^{2}\right)^{2}\right]}{\sum \left[w\left(F_{o}^{2}\right)^{2}\right]}}$$
$$GooF = \sqrt{\frac{\sum \left[w\left(F_{o}^{2} - F_{c}^{2}\right)\right]}{(n-p)}} \quad n = Zahl der R$$

$$R_1 = \frac{\sum \left\| F_o \right\| - \left| F_c \right\|}{\sum \left| F_o \right|}$$

= Zahl der Reflexe; p = Zahl der verfeinerten Parameter

Tabelle 7.1.2 Atomkoordinaten [x 10⁴] und äquivalente isotrope Auslenkungsparameter [Å² x 10³] für 3. U(eq) wird berechnet als ein Drittel der Spur des orthogonalisierten U_{ij} -Tensors.

	х	У	Z	U(eq)
W(1)	5051(1)	6275(1)	6416(1)	50(1)
Fe(1)	8250(1)	6304(1)	7798(1)	25(1)
Fe(2)	8956(1)	4201(1)	7718(1)	25(1)
P(1)	7186(1)	5754(1)	7037(1)	30(1)
P(2)	8840(1)	5915(1)	6616(1)	29(1)
O(1)	9692(5)	4332(4)	9226(3)	49(1)
0(2)	2446(6)	7042(9)	5577(4)	111(3)
O(3)	5998(6)	7473(7)	4735(4)	89(2)
O(4)	3779(6)	8969(6)	6621(5)	88(2)
O(5)	4107(5)	5092(7)	8096(4)	76(2)
0(6)	5732(7)	3722(7)	6053(5)	103(3)
C(1)	7948(6)	8279(5)	7289(4)	34(2)
C(2)	8941(6)	7646(5)	7922(4)	32(1)
C(3)	8390(6)	7149(6)	8628(4)	33(1)
C(4)	7103(6)	7418(6)	8485(4)	32(1)
C(5)	6871(6)	8101(6)	7654(4)	35(2)
C(6)	10643(5)	2587(5)	7796(4)	31(1)
C(7)	9859(5)	2821(5)	7115(4)	29(1)
C(8)	8698(6)	2754(5)	7421(4)	32(1)
C(9)	8716(6)	2452(5)	8263(4)	37(2)
C(10)	9908(6)	2375(5)	8474(4)	36(2)
C(11)	7790(6)	9266(5)	6435(4)	38(2)
C(12)	7292(9)	10550(7)	6571(5)	66(2)
C(13)	6778(8)	9240(7)	5933(4)	60(2)
C(14)	8933(8)	9134(7)	5948(5)	57(2)
C(15)	3395(7)	6762(9)	5884(5)	64(2)
C(16)	5680(7)	7057(8)	5332(5)	54(2)
C(17)	4290(7)	8000(8)	6562(5)	53(2)
C(18)	4452(7)	5507(8)	7506(5)	50(2)
C(19)	5551(8)	4594(9)	6194(6)	65(2)
C(21)	10306(6)	7577(6)	7955(4)	44(2)
C(22)	10320(9)	8875(8)	7834(6)	78(3)
C(23)	11096(7)	7033(9)	7327(5)	68(2)
C(24)	10967(8)	6712(10)	8768(5)	78(3)
C(41)	6144(6)	7231(7)	9089(4)	43(2)
C(42)	5662(8)	8401(9)	9343(6)	73(3)
C(43)	5092(8)	7070(12)	8731(6)	88(3)
C(44)	6753(8)	6104(8)	9836(5)	68(2)
C(61)	12018(6)	2421(6)	7896(5)	46(2)
C(62)	12293(7)	3606(8)	7492(6)	77(3)
C(63)	12416(8)	2011(10)	8780(5)	80(3)
C(64)	12886(7)	1328(7)	7595(6)	67(3)
C(71)	10111(6)	2910(6)	6234(4)	36(2)
C(72)	8890(7)	3593(7)	5713(4)	46(2)
C(73)	11007(6)	3568(7)	5850(4)	45(2)
C(74)	10635(9)	1548(7)	6215(5)	63(2)
C(91)	7757(6)	2134(6)	8828(4)	49(2)
C(92)	6681(11)	2154(14)	8339(7)	74(5)
C(93)	7162(12)	3153(12)	9221(8)	69(5)
C(94)	8319(13)	864(11)	9436(9)	100(7)
C(95)	6455(11)	2930(2)	8512(15)	91(13)
C(96)	8000(2)	2280(3)	9630(9)	68(10)
C(97)	8000(2)	736(14)	9004(15)	55(9)
C(99)	9204(6)	4742(6)	8578(4)	36(2)

1.547(9)1.416(8) 1.422(9) 1.510(9) 1.429(9) 1.445(8) 1.537(8) 1.429(9) 1.543(9) 1.415(9) 1.410(9) 1.511(9)1.508(10) 1.529(10) 1.533(10) 1.526(10) 1.520(11) 1.544(11) 1.506(10) 1.518(11) 1.532(10) 1.519(11) 1.528(11) 1.558(10) 1.527(9) 1.525(9)1.539(9) 1.477(12) 1.489(10) 1.526(10) 1.550(11) 1.534(12) 1.545(13)

Tabelle 7.1.3 Bindungslängen [Å] und -winkel [⁰] für 3.

W(1)-C(15)	1.981(7)	C(2)-C(21)
W(1)-C(18)	2.048(9)	C(3) - C(4)
W(1)-C(17)	2.034(9)	C(4)-C(5)
W(1)-C(19)	2.055(10)	C(4)-C(41)
W(1)-C(16)	2.059(9)	C(6)-C(10)
W(1)-P(1)	2.5365(15)	C(6)-C(7)
Fe(1)-C(99)	1.912(6)	C(6)-C(61)
Fe(1)-C(3)	2.088(6)	C(7)-C(8)
Fe(1)-C(5)	2.105(6)	C(7)-C(71)
Fe(1)-C(4)	2.134(6)	C(8)-C(9)
Fe(1)-C(2)	2.129(6)	C(9)-C(10)
Fe(1)-C(1)	2.160(6)	C(9)-C(91)
Fe(1)-P(1)	2.2745(17)	C(11)-C(14)
Fe(1)-P(2)	2.2940(18)	C(11)-C(13)
Fe(1)-Fe(2)	2.4123(12)	C(11)-C(12)
Fe(2)-C(99)	1.917(7)	C(21)-C(24)
Fe(2)-C(10)	2.086(5)	C(21)-C(22)
Fe(2)-C(8)	2.105(6)	C(21)-C(23)
Fe(2)-C(9)	2.133(6)	C(41)-C(43)
Fe(2)-C(6)	2.153(6)	C(41)-C(42)
Fe(2)-C(7)	2.169(6)	C(41)-C(44)
Fe(2)-P(1)	2.2704 (16)	C(61)-C(62)
Fe(2)-P(2)	2.3082(17)	C(61)-C(63)
P(1)-P(2)	2.051(2)	C(61)-C(64)
O(1)-C(99)	1.180(7)	C(71)-C(72)
O(2)-C(15)	1.137(8)	C(71)-C(73)
O(3)-C(16)	1.116(9)	C(71)-C(74)
O(4) - C(17)	1.134(9)	C(91) - C(95)
O(5) - C(18)	1.119(9)	C(91) - C(94)
O(6) - C(19)	1.103(10)	C(91) - C(93)
C(1) - C(5)	1.414(9)	C(91) - C(92)
C(1) - C(2)	1.456(8)	C(3T) - C(3L)
C(1) - C(11)	1.565(9)	C(91)-C(96)
C(2) - C(3)	1.419(9)	

C(15)-W(1)-C(18)	91.4(3)
C(15) - W(1) - C(17)	84.1(3)
C(18) - W(1) - C(17)	89.6(3)
C(15) - W(1) - C(19)	87.1(3)
C(18) - W(1) - C(19)	90.0(4)
C(17) - W(1) - C(19)	171.2(3)
C(15) - W(1) - C(16)	89.7(3)
C(18) - W(1) - C(16)	178.7(3)
C(17) - W(1) - C(16)	89.9(3)
C(19) - W(1) - C(16)	90.7(4)
C(10) W(1) P(1)	$\pm 70.0(3)$
C(18) - W(1) - P(1)	91.38(18)
C(17) - W(1) - P(1) C(19) - W(1) - D(1)	94.42(19)
C(15) - W(1) - P(1)	97.46(19)
$C(99) - F_{P}(1) - C(3)$	86 1 (3)
C(99) - Fe(1) - C(5)	143.5(3)
C(3) - Fe(1) - C(5)	64.4(2)
C(99) - Fe(1) - C(4)	104.3(3)
C(3) - Fe(1) - C(4)	39.2(2)
C(5) - Fe(1) - C(4)	39.2(2)
C(99) - Fe(1) - C(2)	105.6(2)
C(3) - Fe(1) - C(2)	39.3(2)
C(5)-Fe(1)-C(2)	65.4(2)
C(4) - Fe(1) - C(2)	66.8(2)
C(99)-Fe(1)-C(1)	145.3(3)
C(3) - Fe(1) - C(1)	65.6(2)
C(5) - Fe(1) - C(1)	38.7(3)
C(4) - Fe(1) - C(1)	66.6(2)
C(2) - Fe(1) - C(1)	39.7(2)
C(99) - Fe(1) - P(1)	104.1(2)
C(3) - Fe(1) - P(1)	153.89(18)
C(5) - Fe(1) - P(1) C(4) = Fo(1) - P(1)	95.68(18)
C(4) - Fe(1) - P(1) C(2) - Fe(1) - D(1)	114.70(17) 1/8.69(17)
$C(1) - F_{P}(1) - P(1)$	110 13(16)
C(99) - Fe(1) - P(2)	102.5(2)
C(3) - Fe(1) - P(2)	148.60(19)
C(5) - Fe(1) - P(2)	113.87(18)
C(4) - Fe(1) - P(2)	152.80(16)
C(2) - Fe(1) - P(2)	109.77(18)
C(1) - Fe(1) - P(2)	93.28(18)
P(1) - Fe(1) - P(2)	53.34(6)
C(99)-Fe(1)-Fe(2)	51.0(2)
C(3) - Fe(1) - Fe(2)	137.16(16)
C(5) - Fe(1) - Fe(2)	152.42(18)
C(4) - Fe(1) - Fe(2)	140.85(18)
C(2) - Fe(1) - Fe(2) C(1) = Fo(1) = Fo(2)	141.50(10) 151.72(10)
C(1) - Fe(1) - Fe(2) D(1) - Fo(1) - Fo(2)	131.72(10) 57.96(5)
P(2) - Fe(1) - Fe(2) P(2) - Fe(1) - Fe(2)	58 67 (5)
C(99) - Fe(2) - C(10)	86.0(3)
C(99) - Fe(2) - C(8)	145.0(3)
C(10) - Fe(2) - C(8)	64.2(2)
C(99)-Fe(2)-C(9)	106.1(3)
C(10) -Fe(2) -C(9)	39.0(2)
C(8)-Fe(2)-C(9)	39.0(2)
C(99)-Fe(2)-C(6)	103.6(2)
C(10)-Fe(2)-C(6)	39.4(2)
C(8) - Fe(2) - C(6)	65.3(2)
C(9) - Fe(2) - C(6)	66.7(2)
C(99) - Fe(2) - C(7)	142.6(2)
C(10) - FE(2) - C(7)	65.0(2)
C(0) - Fe(2) - C(7)	37.U(Z)
C(3) = F = (2) = C(7) C(6) = F = (2) = C(7)	39 0(2)
C(99) - Fe(2) - P(1)	104 04 (18)
C(10) - Fe(2) - P(1)	151.31(19)
C(8) - Fe(2) - P(1)	95.53 (17)
C(9)-Fe(2)-P(1)	112.55(18)
C(6)-Fe(2)-P(1)	151.21(17)

C(7) - Fe(2) - P(1) C(99) - Fo(2) - P(2)	112.74(16)
C(10) - Fe(2) - P(2)	151.8(2)
C(8) - Fe(2) - P(2)	113.06(18)
C(9) - Fe(2) - P(2) C(6) - Fe(2) - P(2)	112.64(18)
C(7) - Fe(2) - P(2)	94.79(17)
P(1) - Fe(2) - P(2)	53.21(6)
C(99) - Fe(2) - Fe(1) C(10) - Fe(2) - Fe(1)	50.85(18) 136.79(19)
C(8) -Fe(2) -Fe(1)	152.84(17)
C(9) - Fe(2) - Fe(1)	140.89(18)
C(0) - Fe(2) - Fe(1) C(7) - Fe(2) - Fe(1)	141.24(17) 152.18(17)
P(1) - Fe(2) - Fe(1)	58.03(5)
P(2) - Fe(2) - Fe(1) P(2) - P(1) - Fe(2)	58.10(5) 64 34(6)
P(2) - P(1) - Fe(1)	63.82(7)
Fe(2) - P(1) - Fe(1)	64.11(5)
P(2) - P(1) - W(1) Fe(2) - P(1) - W(1)	145.91(8)
Fe(1)-P(1)-W(1)	144.34(7)
P(1) - P(2) - Fe(1) P(1) - P(2) - Fe(2)	62.84(7)
Fe(1) - P(2) - Fe(2) Fe(1) - P(2) - Fe(2)	63.22(5)
C(5) - C(1) - C(2)	105.5(5)
C(5) - C(1) - C(11) C(2) - C(1) - C(11)	118.9(5) 133.9(6)
C(5) - C(1) - Fe(1)	68.6(3)
C(2) - C(1) - Fe(1)	69.0(3)
C(11) - C(1) - Fe(1) C(3) - C(2) - C(1)	137.4(4) 106.3(5)
C(3)-C(2)-C(21)	120.6(5)
C(1) - C(2) - C(21) C(3) - C(2) - Fe(1)	132.6(6) 68.8(3)
C(1) - C(2) - Fe(1)	71.3(3)
C(21) - C(2) - Fe(1)	129.8(4)
C(2) - C(3) - E(4) C(2) - C(3) - Fe(1)	71.9(3)
C(4)-C(3)-Fe(1)	72.2(3)
C(3) - C(4) - C(5) C(3) - C(4) - C(41)	103.9(6) 128.3(5)
C(5) - C(4) - C(41)	127.0(5)
C(3) - C(4) - Fe(1)	68.7(3)
C(5) - C(4) - Fe(1) C(41) - C(4) - Fe(1)	69.3(4) 133.0(5)
C(4) - C(5) - C(1)	112.4(5)
C(4) - C(5) - Fe(1)	71.5(3)
C(10) - C(6) - C(7)	105.6(5)
C(10) - C(6) - C(61)	121.1(5)
C(7) - C(6) - C(61) C(10) - C(6) - Fe(2)	133.0(6) 67.8(3)
C(7) - C(6) - Fe(2)	71.1(3)
C(61) - C(6) - Fe(2)	129.7(4)
C(8) - C(7) - C(71)	119.5(5)
C(6) - C(7) - C(71)	133.4(5)
C(8) - C(7) - Fe(2) C(6) - C(7) - Fe(2)	68.1(3) 69.9(3)
C(71) - C(7) - Fe(2)	133.9(4)
C(9) - C(8) - C(7)	111.7(6)
C(7) - C(8) - Fe(2)	72.9(3)
C(10) - C(9) - C(8)	104.1(6)
C(10) - C(9) - C(91)	126.8(6) 128.8(6)
C(10) -C(9) -Fe(2)	68.7(3)
C(8) - C(9) - Fe(2)	69.4(3)
C(9) -C(10) -C(6)	112.3(5)

C(6) - C(10) - Fe(2) $C(14) - C(11) - C(13)$ $C(14) - C(11) - C(12)$ $C(13) - C(11) - C(1)$ $C(13) - C(11) - C(1)$ $C(12) - C(11) - C(1)$ $C(2) - C(15) - W(1)$ $C(2) - C(16) - W(1)$ $C(2) - C(21) - C(22)$ $C(24) - C(21) - C(23)$ $C(24) - C(41) - C(42)$ $C(43) - C(41) - C(42)$ $C(43) - C(41) - C(44)$ $C(42) - C(41) - C(44)$ $C(42) - C(41) - C(44)$ $C(42) - C(41) - C(44)$ $C(62) - C(61) - C(63)$ $C(6) - C(61) - C(63)$ $C(6) - C(61) - C(64)$ $C(63) - C(61) - C(64)$ $C(7) - C(71) - C(73)$ $C(72) - C(71) - C(73)$ $C(72) - C(71) - C(74)$ $C(72) - C(71) - C(74)$ $C(73) - C(71) - C(74)$ $C(73) - C(71) - C(74)$ $C(72) - C(71) - C(74)$ $C(73) - C(71) - C(74)$ $C(72) - C(71) - C(74)$ $C(73) - C(71) - C(74)$ $C(73) - C(71) - C(74)$ $C(72) - C(91) - C(92)$ $C(94) - C(91) - C(92)$ $C(94) - C(91) - C(92)$ $C(93) - C(91) - C(92)$ $C(94) - C(91) - C(97)$ $C(92) - C(91) - C(97)$ $C(92) - C(91) - C(97)$ $C(93) - C(91) - C(97)$ $C(93) - C(91) - C(96)$ $C(94) - C(91) - C(96$	$\begin{array}{c} 72.9(3)\\ 106.8(6)\\ 110.4(6)\\ 107.2(6)\\ 117.4(5)\\ 109.7(5)\\ 105.0(6)\\ 179.9(8)\\ 178.0(7)\\ 174.6(6)\\ 178.9(6)\\ 174.8(7)\\ 110.7(6)\\ 110.3(6)\\ 107.6(7)\\ 112.3(6)\\ 106.3(7)\\ 109.5(7)\\ 111.3(6)\\ 111.0(7)\\ 105.6(6)\\ 110.4(8)\\ 111.0(6)\\ 107.3(7)\\ 114.4(5)\\ 106.1(7)\\ 110.6(6)\\ 107.3(7)\\ 114.4(5)\\ 106.1(7)\\ 110.6(6)\\ 105.2(6)\\ 110.8(5)\\ 115.7(5)\\ 107.2(5)\\ 106.1(5)\\ 106.9(6)\\ 109.8(6)\\ 132.3(12)\\ 68.2(12)\\ 111.5(8)\\ 112.9(9)\\ 111.4(7)\\ 109.8(6)\\ 39.1(12)\\ 108.9(8)\\ 106.1(7)\\ 108.9(8)\\ 106.1(7)\\ 108.9(6)\\ 110.9(10)\\ 36.6(10)\\ 138.5(10)\\ 108.1(9)\\ 76.3(10)\\ 110.4(10)\\ 70.8(10)\\ 45.5(10)\\ 107.8(9)\\ 140.1(11)\\ 106.4(9)\\ 140.7(5)\\ 141.2(5)\\ 78.1(2)\\ \end{array}$
--	---

	$U_{_{11}}$	$U_{_{22}}$	$U_{_{33}}$	$U_{_{23}}$	$U_{_{13}}$	$U_{_{12}}$
	20(1)			0.4.(1)	0 (1)	10(1)
$W(\perp)$ $E_{O}(1)$	38(1)	65(L) 24(1)	46(1) 19(1)	-24(1)	-2(1)	-12(1)
$F \in (1)$ $F \cap (2)$	20(1) 29(1)	24(1) 22(1)	19(1) 19(1)	-5(1)	2(1) 3(1)	-4(1) -5(1)
P(1)	29(1) 28(1)	29(1)	28(1)	-11(1)	-1(1)	-5(1)
P(2)	36(1)	26(1)	20(1)	-7(1)	6(1)	-7(1)
0(1)	75(3)	34(3)	24(3)	-7(2)	-15(2)	-3(2)
0(2)	49(3)	214(9)	76(5)	-72(5)	-10(3)	-32(4)
0(3)	63(4)	135(6)	52(4)	-16(4)	14(3)	-33(4)
0(4)	67(4)	69(4)	112(6)	-51(4)	-12(4)	12(3)
O(5)	62(4) 01(F)	109(5)	48(4)	-8(4) 75(5)	5(3)	-39(3)
O(6)	91(5)	86 (5) 24 (2)	156(8)	- / 5 (5)	-8(5)	-2/(4)
C(1)	39(3)	29(3)	29(4)	-14(3)	1 (J) 5 (J)	-12(3)
C(2)	41(3)	33(3)	22(3)	-13(3)	-2(3)	-8(3)
C(4)	36(3)	35(3)	20(3)	-14(3)	6(3)	-3(3)
C(5)	38(3)	35(4)	27(4)	-16(3)	3 (3)	-3(3)
C(6)	33(3)	24(3)	28(3)	-7(3)	2(3)	-2(2)
C(7)	33(3)	23(3)	32(4)	-11(3)	8(3)	-10(2)
C(8)	40(3)	26(3)	31(4)	-11(3)	8(3)	-13(3)
C(9)	52(4)	26(3)	30(4)	-8(3)	18(3)	-15(3)
C(10)	45(4) 52(4)	22(3)	26(3)	L(3)	-2(3)	-2(3)
C(11) C(12)	52 (4) 99 (6)	22(3) 36(4)	58(6)	-3(3)	4(3)	-0(3)
C(12) C(13)	79(5)	48(5)	39(4)	3(4)	-18(4)	-19(4)
C(14)	78(5)	51(5)	37(4)	-5(4)	9(4)	-27(4)
C(15)	44 (4)	119(8)	42(5)	-46(5)	11(4)	-27(5)
C(16)	35(4)	77(6)	46(5)	-22(4)	-1(4)	-14(4)
C(17)	37(4)	63(5)	53(5)	-21(4)	-4(4)	-11(4)
C(18)	37(4)	70(5)	46(5)	-24(4)	-5(4)	-17(4)
C(19)	52(5)	66 (6)	83(7)	-35(5)	-9(5)	-16(4)
C(21)	42 (4) 80 (6)	43 (4) 64 (6)	42(4)	-23(5)	-4(3)	-18(3)
C(22) C(23)	37(4)	90(6)	72(6)	-27(5)	9(4)	-17(4)
C(24)	51(5)	112(8)	59(6)	1(5)	-15(4)	-38(5)
C(41)	40(3)	58(4)	29(4)	-23(3)	13(3)	-11(3)
C(42)	73(6)	81(6)	57(6)	-37(5)	27(5)	-11(5)
C(43)	67(6)	180(11)	57(6)	-60(7)	37(5)	-77(7)
C(44)	73 (5)	70(6)	44(5)	-11(4)	22(4)	-16(4)
C(61)	29(3)	39(4)	58(5)	-14(3)	-4(3)	0(3)
C(62)	41(4) 51(5)	/L(6) 110(9)	118(9)	-28(6)	U(5) 10(5)	-23(4)
C(63)	51(5) 11(1)	56(5)	64(6) 79(7)	-38(6)	-18(2)	-2(5) 11(4)
C(71)	55(4)	30(3)	30(4)	-13(3)	13(3)	-22(3)
C(72)	67(5)	58(5)	23(4)	-18(3)	11(3)	-32(4)
C(73)	51(4)	44(4)	35(4)	-13(3)	24(3)	-17(3)
C(74)	93(6)	49(5)	53(5)	-34(4)	19(5)	-20(4)
C(91)	61(4)	38(4)	36(4)	-1(3)	23(4)	-18(3)
C(92)	77(8)	94(10)	72(9)	-30(8)	40(7)	-58(8)
C(93)	83(9)	78(9)	61(9)	-37(7)	46(7)	-41(7)
C(94)	0/(LU) 62/15)	ου(LU) g5(10)	ジ⊥(⊥∠) 77(10)	3∪(8) 1g(12)	∠/(9) /1 (1/)	-3/(8) _19/12\
C(95)	74 (16)	63(16)	58(16)	-21(12)	48(13)	-23(12)
C(97)	67(15)	50(14)	45(15)	1(11)	18(12)	-37(11)
C (99)	37(3)	31(3)	37(4)	-14(3)	5(3)	-7(3)

Tabelle 7.1.4Anisotrope Auslenkungsparameter [Ų x 10³] für 3.Der Exponent des anisotropen Auslenkungsfaktors hat die Form: $-2\pi^2$ [(ha*) $^2U_{11}$ + ... + 2hka*b*U_{12}]

	x	У	Z	U(eq)
н(3)	8821	6701	9125	39
H(5)	6098	8396	7381	42
H(8)	8013	2891	7105	39
H(10)	10185	2206	8995	43
H(12A)	7872	10571	6925	99
H(12B)	6494	10678	6805	99
H(12C) $U(12\lambda)$	1197	11203	6068 5406	99
H(13R)	5993	9463	6181	90
H(13C)	7008	8409	5899	90
H(14A)	9260	8311	5892	86
H(14B)	9559	9246	6214	86
H(14C)	8706	9761	5429	86
H(22A)	9902	9444	7328	117
H(22B)	11171	8824	7843	117
H(22C) H(22A)	9896	91/9	8255	
н(23A) н(23B)	11864	7183	7409	102
H(23C)	10634	7435	6818	102
H(24A)	10519	7023	9181	118
H(24B)	11807	6691	8780	118
H(24C)	10990	5877	8855	118
H(42A)	5251	9125	8891	109
H(42B)	6352	8503	9549	109
H(42C) U(42A)	5078	8315	9752	109
H(43R)	4509	6931	9131	132
H(43C)	5427	6361	8540	132
H(44A)	6123	5992	10205	102
H(44B)	7368	6254	10085	102
H(44C)	7150	5358	9686	102
H(62A)	11832	4049	6984	115
H(62B)	13174	3382	7415	115
H(63A)	13271	1931	8831	120
H(63B)	12343	1215	9054	120
H(63C)	11886	2630	9011	120
H(64A)	12714	1547	7031	100
H(64B)	12734	574	7874	100
H(64C)	13747	1189	7693	100
H(/2A) U(72P)	8354	3121	5884	69
н(726) н(72С)	9070 8477	4416	5763	69
H(73A)	10684	4412	5872	67
H(73B)	11089	3592	5302	67
H(73C)	11813	3115	6133	67
H(74A)	11415	1089	6529	95
H(74B)	10770	1553	5673	95
H(74C) $U(92\lambda)$	LUU4 /	1152	6433 8676	95 111
H(92R)	6981	1450	8141	111
H(92C)	6394	2923	7897	111
H(93A)	6747	3947	8817	103
H(93B)	7801	3214	9508	103
H(93C)	6563	2940	9586	103
H(94A)	7711	472	9556	151
н (94В) ц (94С)	8571 5007	947	9914 0000	151 151
$H(95\Delta)$	62.94	2773	8039	136
H(95B)	6337	3800	8384	136
H(95C)	5887	2731	8909	136
H(96A)	8264	2985	9527	102
H(96B)	8652	1530	9946	102
H(96C)	7250	2430	9914	102

Tabelle 7.1.5 H-Atomkoordinaten [x 10⁴] und äquivalente isotrope Auslenkungsparameter [Å² x 10³] für 3.

7 Anhang					
H(97A)	7356	530	9328	82	
H(97B)	8801	232	9285	82	
H(97C)	7986	570	8510	82	

Summenformel	$C_{34}H_{58}Fe_2P_2S_2$	
Molmasse	704.56	
Temperatur	293(2) K	
Strahlung	ΜοΚα	
Wellenlänge	0.71073 Å	
Scanmodus	Φ -Rotation	
Kristallsystem	Monoklin	
Raumgruppe	$P2_1/m$	
Zelldimensionen	a = 10.6795(11) Å	$\alpha = 90^{\circ}$
	<i>b</i> = 13.7699(9) Å	$\beta = 103.796(12)^{\circ}$
	c = 13.0902(14) Å	$\gamma = 90^{\circ}$
Zellvolumen	$1869.5(3) \text{ Å}^3$	·
Formeleinheiten pro Zelle Z	2	
Berechnete Dichte	1.252 Mg/m^3	
Absorptionskoeffizient	0.994 mm^{-1}	
Kristallgröße	0.30 x 0.08 x 0.04 mm	
Gemessener θ-Bereich	2.82 bis 25.68°	
Anzahl der gemessenen Reflexe	26242	
Unabhängige Reflexe	3688 (Rint = 0.0918)	
Absorptionskorrektur	Empirisch (MULABS/PLATON	98)
Max. und min. Transmission	0.925022 und 0.825899	
Diffraktometer	Stoe IPDS	
Strukturlösung	Direkte Methoden	
Strukturlösungsprogramm	SHELXS-97 (Sheldrick, 1990)	2
Strukturverfeinerung	Vollmatrix Least-Squares gegen I	72
Strukturverfeinerungsprogramm	SHELXL-97 (Sheldrick, 1997)	
Daten / Restraints / Parameter	3688 / 1 / 218	
Endgültige R-Werte $[I \ge 2\sigma(I)]$	R1 = 0.0439, $wR2 = 0.1014$	
R-Werte (alle Daten)	R1 = 0.0739, wR2 = 0.1092	
Wichtungsschema	$w=1/[\sigma^2(Fo^2)+(0.0600P)^2]$ mit P=	$(Fo^{2}+2Fc^{2})/3$
GooF (alle Daten)	0.952	
Größtes Maximum und Minimum	$0.514 \text{ und } -0.502 \text{ e}^{-3}$	

Tabelle 7.2.1	Kristalldaten und	Strukturverfeinerung	für [{Cı	n'''Fe} ₂ (u -n ^{4:4}	-P ₂ S ₂)1 (6).
1 abelle 7.2.1	KI Istanuaten unu	Sti uktui vei leinei ung	iui _{[{} C]	p re ₃₂ (µ-ij	-1 202)] (0).

Verfeinerung nach F² mit ALLEN Reflexen. Die gewichteten R-Werte wR2 und alle GooF's basieren auf F². Die konventionellen R-Werte R1 basieren auf F, wobei F für negative F² gleich Null gesetzt wird. Das Ablehnungskriterium $F^2 > 2\sigma(F^2)$ wird nur zum Berechnen von R(obs) etc. verwendet. Zur Verfeinerung wurden alle Reflexe herangezogen. Grundsätzlich gilt: Auf F² bezogene R-Werte sind statistisch etwa doppelt so groß wie die auf F basierenden. Auf ALLE Reflexe bezogene R-Werte sind noch größer.

Die P₂S₂-Einheit ist fehlgeordnet. Eines der P-Atome liegt auf einer kristallographischen Spiegelebene. Die anderen Positionen der P₂S₂-Einheit sind jeweils halb populiert. Die Wasserstoffatome wurden geometrisch lokalisiert. Für die Verfeinerung wurde ein Reitermodell angenommen. Als Temperaturfaktor wurde der 1.5fache Wert (CH₃-Gruppen) bzw. der 1.2-fache Wert (Cp-H) des äquivalenten isotropen Temperaturfaktors desjenigen C-Atoms eingesetzt, an welches das jeweilige H-Atom gebunden ist.

Einzelheiten können dem Handbuch für das Verfeinerungsprogramm SHELXL entnommen werden.

$$GooF = \sqrt{\frac{\sum \left[w\left(F_o^2 - F_c^2\right)\right]}{(n-p)}}$$
 n = Zahl der Reflexe

e; p = Zahl der verfeinerten Parameter

Tabelle 7.2.2 Atomkoordinaten [x 10⁴] und äquivalente isotrope Auslenkungsparameter [Å² x 10³] für 6. U(eq) wird berechnet als ein Drittel der Spur des orthogonalisierten U_{ij} -Tensors.

	х	У	Z	U(eq)
Fe(1)	3815(1)	2500	-10(1)	34(1)
Fe(2)	4451(1)	2500	2463(1)	32(1)
S(1)	4286(1)	1320(1)	1210(1)	43(1)
S(2)	2816(1)	1819(1)	1200(1)	43(1)
P(1)	4615(2)	1255(1)	1260(1)	44(1)
P(2)	5743(1)	2500	1263(1)	71(1)
C(1)	2520(2)	3028(2)	-1345(2)	39(1)
C(4)	4606(3)	2500	-1339(2)	38(1)
C(5)	3818(2)	3315(2)	-1326(2)	40(1)
C(6)	3821(2)	3029(2)	3744(2)	36(1)
C(9)	5944(3)	2500	3837(2)	35(1)
C(10)	5132(2)	3316(2)	3803(2)	36(1)
C(21)	1461(2)	3808(2)	-1496(2)	55(1)
C(22)	2011(3)	4806(2)	-1219(3)	82(1)
C(23)	501(4)	3680(3)	-829(5)	175(2)
C(24)	785(5)	3814(4)	-2665(4)	211(2)
C(31)	5973(3)	2500	-1495(3)	51(1)
C(32)	5836(5)	2500	-2692(3)	93(2)
C(33)	6717(3)	3408(2)	-1024(3)	70(1)
C(41)	2805(2)	3795(2)	3827(2)	58(1)
C(42)	1498(3)	3649(3)	3059(6)	191(4)
C(43)	2689(5)	3815(3)	4958(3)	180(2)
C(44)	3234(3)	4803(2)	3589(3)	69(1)
C(51)	7402(3)	2500	4059(3)	45(1)
C(52)	7909(2)	3408(2)	3632(2)	65(1)
C(53)	7902(4)	2500	5274(3)	66(1)

Tabelle 7.2.3 Bindungslängen [Å] und -winkel [⁰] für 6.

$\begin{array}{rcrcrcr} Fe(1) -C(5) \#1 & 2. \\ Fe(1) -C(1) \#1 & 2. \\ Fe(1) -C(1) \#1 & 2. \\ Fe(1) -C(1) & 2. \\ Fe(1) -C(4) & 2. \\ Fe(1) -S(1) \#1 & 2. \\ Fe(1) -S(1) \#1 & 2. \\ Fe(1) -S(2) \#1 & 2. \\ Fe(1) -F(2) & 2. \\ Fe(1) -P(2) & 2. \\ Fe(1) -P(1) \#1 & 2. \\ Fe(1) -P(1) \#1 & 2. \\ Fe(2) -C(10) \#1 & 2. \\ Fe(2) -C(10) \#1 & 2. \\ Fe(2) -C(6) \#1 & 2. \\ Fe(2) -S(1) \#1 & 2. \\ Fe(2) -S(2) \#1 & 2. \\ Fe(2) -S(2) \#1 & 2. \\ Fe(2) -P(1) & 2. \\ Fe(2) -P(1) & 2. \\ S(1) -P(2) & 2. \\ S(2) -P(1) & 2. \\ S(2) -P(1) & 2. \\ \end{array}$	057 (2) 057 (2) 084 (2) 084 (2) 108 (3) 2500 (14) 2500 (14) 3086 (13) 3086 (13) 3086 (13) 3188 (11) 3982 (18) 063 (2) 063 (2) 063 (2) 063 (2) 081 (2) 100 (3) 2858 (15) 2859 (15) 2991 (12) 2991 (12) 3256 (12) 3624 (18) 3625 (18) 7109 (19) 2400 (15) 875 (3) 056 (2)	$\begin{array}{c} P(1) - P(2) \\ P(2) - P(1) \# 1 \\ P(2) - S(1) \# 1 \\ C(1) - C(5) \\ C(1) - C(1) \# 1 \\ C(1) - C(21) \\ C(4) - C(5) \\ C(4) - C(5) \# 1 \\ C(4) - C(5) \# 1 \\ C(4) - C(31) \\ C(6) - C(10) \\ C(6) - C(10) \\ C(6) - C(41) \\ C(9) - C(10) \\ C(9) - C(10) \# 1 \\ C(9) - C(10) \\ C(21) - C(22) \\ C(21) - C(22) \\ C(21) - C(23) \\ C(21) - C(23) \\ C(31) - C(33) \# 1 \\ C(31) - C(33) \\ C(31) - C(33) \\ C(31) - C(32) \\ C(41) - C(42) \\ C(41) - C(42) \\ C(51) - C(52) \# 1 \\ C(51) - C(53) \\ \end{array}$	$\begin{array}{c} 2.0945(19)\\ 2.0945(19)\\ 2.2399(15)\\ 1.436(3)\\ 1.455(5)\\ 1.538(3)\\ 1.405(3)\\ 1.405(3)\\ 1.520(5)\\ 1.440(3)\\ 1.456(5)\\ 1.535(3)\\ 1.413(3)\\ 1.413(3)\\ 1.413(3)\\ 1.514(4)\\ 1.507(6)\\ 1.529(5)\\ 1.530(4)\\ 1.539(6)\\ 1.515(5)\\ 1.517(4)\\ 1.527(5)\\ 1.521(4)\\ 1.522(5)\\ \end{array}$	
C(5) #1-Fe(1) -C(5) C(5) #1-Fe(1) -C(1) #1 C(5) -Fe(1) -C(1) C(5) -Fe(1) -C(1) C(5) -Fe(1) -C(1) C(1) #1-Fe(1) -C(4) C(5) +Fe(1) -C(4) C(5) +Fe(1) -C(4) C(1) #1-Fe(1) -C(4) C(1) +Fe(1) -C(4) C(5) #1-Fe(1) -S(1) #1 C(5) -Fe(1) -S(1) #1 C(1) -Fe(1) -S(1) #1 C(1) -Fe(1) -S(1) #1 C(5) +Fe(1) -S(1) #1 C(5) -Fe(1) -S(1) C(1) +Fe(1) -S(1) C(1) +Fe(1) -S(1) C(1) +Fe(1) -S(1) C(1) +Fe(1) -S(1) C(1) +Fe(1) -S(2) C(1) #1-Fe(1) -S(2) C(1) +Fe(1) -S(2) C(1) +Fe(1) -S(2) C(1) +Fe(1) -S(2) C(1) +Fe(1) -S(2) C(1) -Fe(1) -S(2) C(1) +Fe(1) -S(2) C(1) +Fe(1) -S(2) C(1) +Fe(1) -S(2) C(1) +Fe(1) -S(2) #1 C(1) -Fe(1) -S(2) #1 C(1) +Fe(1) -S(2) #1 C(1) -Fe(1) -S($\begin{array}{c} 66.12(14) \\ 40.58(9) \\ 67.75(9) \\ 67.75(9) \\ 40.58(9) \\ 40.85(13) \\ 39.40(8) \\ 39.40(8) \\ 67.93(10) \\ 67.92(10) \\ 160.73(8) \\ 98.96(8) \\ 146.99(7) \\ 109.54(7) \\ 121.35(6) \\ 98.96(8) \\ 160.72(8) \\ 109.53(7) \\ 146.99(7) \\ 121.35(6) \\ 92.51(7) \\ 116.51(8) \\ 152.80(7) \\ 96.34(7) \\ 113.20(7) \\ 155.22(4) \\ 82.43(5) \\ 44.06(5) \\ 152.80(7) \\ 96.34(7) \\ 113.20(7) \\ 16.51(8) \\ 113.20(7) \\ 155.22(4) \\ 82.43(5) \\ 44.06(5) \\ 152.2(4) \\ 44.06(5) \\ 82.43($	C (5) #1-Fe (1) -P(2 C (5) -Fe (1) -P(2) C (1) #1-Fe (1) -P(2) C (1) #1-Fe (1) -P(2) C (4) -Fe (1) -P(2) S (1) #1-Fe (1) -P(2) S (2) -Fe (1) -P(2) S (2) #1-Fe (1) -P(2) S (2) #1-Fe (1) -P(1) C (5) -Fe (1) -P(1) # C (5) -Fe (1) -P(1) # C (1) #1-Fe (1) -P(1) # C (1) -Fe (1) -P(1) # S (1) #1-Fe (1) -P(1) # S (2) #1-Fe (1) -P(1) # S (2) #1-Fe (1) -P(1) # S (2) #1-Fe (1) -P(1) # C (5) #1-Fe (1) -P(1) # C (5) #1-Fe (1) -P(1) # C (5) =Fe (1) -P(1) # C (5) =Fe (1) -P(1) # C (5) =Fe (1) -P(1) = C (1) =Fe (1) -P(1) = C (1) =Fe (1) -P(1) = C (1) =Fe (1) -P(1) = S (1) =Fe (1) -P(1) = S (2) =Fe (1) -P(1) = P (1) #1-Fe (2) -C(0) = C (10) #1-Fe (2) -C(6) = C (10) =Fe (2) -C (6) =C (2) =Fe (2) =C (6) =C (2) =Fe (2	<pre>2) 2) 2) 2) 2) 3) 3) 3) 3) 41 51 51 51 51 51 51 51 51 51 51 51 51 51</pre>	$\begin{array}{c} 115.03(7)\\ 115.02(7)\\ 154.20(7)\\ 154.20(7)\\ 97.52(9)\\ 58.69(4)\\ 89.08(4)\\ 89.08(4)\\ 89.08(4)\\ 154.01(8)\\ 96.84(8)\\ 152.37(8)\\ 112.78(8)\\ 112.78(8)\\ 115.18(7)\\ 7.91(6)\\ 92.41(5)\\ 87.79(6)\\ 51.76(5)\\ 52.69(4)\\ 96.84(8)\\ 152.37(8)\\ 115.18(7)\\ 92.41(5)\\ 87.79(6)\\ 51.76(5)\\ 52.69(4)\\ 96.84(8)\\ 152.37(8)\\ 115.18(7)\\ 92.41(5)\\ 7.91(6)\\ 51.76(5)\\ 87.79(6)\\ 52.69(4)\\ 91.23(8)\\ 65.95(13)\\ 67.78(9)\\ 40.64(8)\\ 40.65(8)\\ 67.78(9)\\ 40.62(12)\\ \end{array}$

$C(10) \# 1 - E_{O}(2) - C(9)$	29 66 (7)	$D(1) = C(2) = E_{O}(2)$	65 12(6)
C(10) #1 - FE(2) - C(3)	39.00(7)	F(1) - S(2) - Fe(2)	05.42(0)
C(10) - Fe(2) - C(9)	39.66(7)	S(1) - S(2) - Fe(1)	66.15(6)
C(6) - Fe(2) - C(9)	68.61(10)	S(2)#1-S(2)-Fe(1)	66.04(3)
C(6)#1-Fe(2)-C(9)	68.62(10)	P(1)-S(2)-Fe(1)	66.37(6)
C(10)#1-Fe(2)-S(1)#1	161.45(7)	Fe(2)-S(2)-Fe(1)	86.09(4)
C(10) - Fe(2) - S(1) # 1	100.02(7)	S(2) - P(1) - P(2)	102.88(9)
$C(6) = F_{2}(2) = C(1) \# 1$	110 18(7)	C(2) = C(2) = C(2) $C(2) = D(1) = F_{C}(2)$	62 26 (6)
C(0) = E(2) = D(1) + 1 C(0) = E(2) = C(1) + 1	147, 20(7)	D(2) - P(1) - PC(2) D(2) - D(1) - EC(2)	(2.20(0))
C(6) #1 - Fe(2) - S(1) #1	147.38(7)	P(2) - P(1) - Fe(2)	62.56(6)
C(9)-Fe(2)-S(1)#1	121.83(6)	S(2)-P(1)-Fe(1)	61.87(6)
C(10)#1-Fe(2)-S(1)	100.02(7)	P(2)-P(1)-Fe(1)	61.71(6)
C(10)-Fe(2)-S(1)	161.45(7)	Fe(2)-P(1)-Fe(1)	82.69(6)
C(6) - Fe(2) - S(1)	147,38(7)	P(1) #1 - P(2) - P(1)	109.83(10)
$C(6) \#1 - F_{2}(2) - C(1)$	110 18(7)	D(1) # 1 - D(2) - C(1) # 1	8 51 (6)
C(0) = C(2) = C(1)	121 02(C)	F(1) + F(2) - G(1) + 1	101.4C(7)
C(9) - Fe(2) - S(1)	121.83(6)	P(1) - P(2) - S(1) + 1	101.46(7)
S(1) #1-Fe(2) - S(1)	90.65(7)	P(1) #1 - P(2) - S(1)	101.45(7)
C(10)#1-Fe(2)-S(2)#1	152.47(7)	P(1) - P(2) - S(1)	8.51(6)
C(10)-Fe(2)-S(2)#1	116.29(7)	S(1)#1-P(2)-S(1)	93.05(8)
C(6)-Fe(2)-S(2)#1	95.80(7)	P(1)#1-P(2)-Fe(1)	65.60(5)
$C(6) \pm 1 - Fe(2) - S(2) \pm 1$	$112 \ 72(7)$	P(1) = P(2) = Fe(1)	65 60 (5)
C(0) = C(2) =	155 16(4)	$G(1) \# 1 - D(2) - E_O(1)$	59.00(3)
C(3) = E(2) = S(2) + E(3)		S(1) + T - F(2) - F = (1)	59.12(4)
S(1) #1 - Fe(2) - S(2) #1	43.82(5)	S(1) - P(2) - Fe(1)	59.12(4)
S(1)-Fe(2)-S(2)#1	81.86(5)	P(1)#1-P(2)-Fe(2)	64.37(6)
C(10)#1-Fe(2)-S(2)	116.29(7)	P(1)-P(2)-Fe(2)	64.37(6)
C(10)-Fe(2)-S(2)	152.48(7)	S(1)#1-P(2)-Fe(2)	60.05(5)
C(6) - Fe(2) - S(2)	112 72(7)	S(1) = P(2) = Fe(2)	60 05 (5)
$C(6) \#1 - F_0(2) - C(2)$	$95 \ 90 \ (7)$	$E_{0}(1) = D(2) = E_{0}(2)$	95 25 (1)
C(0) #I - FE(2) - S(2)	95.00(7)	P(1) - P(2) - P(2)	
C(9) - Fe(2) - S(2)	155.16(4)	C(5) - C(1) - C(1) + 1	105.95(14)
S(1)#1-Fe(2)-S(2)	81.86(5)	C(5) - C(1) - C(21)	119.2(2)
S(1)-Fe(2)-S(2)	43.82(5)	C(1)#1-C(1)-C(21)	134.30(13)
S(2)#1-Fe(2)-S(2)	48.13(7)	C(5)-C(1)-Fe(1)	68.68(12)
C(10) #1 - Fe(2) - P(2)	115 38(7)	C(1) # 1 - C(1) - Fe(1)	69 57 (7)
$C(10) = F_{0}(2) = P(2)$	$115 \ 37(7)$	$C(21) - C(1) - F_{0}(1)$	132 22 (17)
C(10) = FC(2) = F(2)	1 = 4 = 7 (C)	C(21) - C(1) - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -	100 0(2)
C(6) - Fe(2) - P(2)	154.47(6)	C(5) - C(4) - C(5) # L	106.0(3)
C(6) #1-Fe(2) -P(2)	154.47(6)	C(5) - C(4) - C(31)	126.75(14)
C(9)-Fe(2)-P(2)	97.30(9)	C(5)#1-C(4)-C(31)	126.75(14)
S(1)#1-Fe(2)-P(2)	58.11(4)	C(5)-C(4)-Fe(1)	68.32(16)
S(1) - Fe(2) - P(2)	58,11(4)	C(5) #1 - C(4) - Fe(1)	68, 32 (16)
$S(2) \pm 1 - Fe(2) - P(2)$	89 14 (4)	C(31) - C(4) - Fe(1)	134 2(2)
C(2) = C(2) = C(2)	00.11(1)	C(31) C(1) C(1)	111 0(2)
S(2) - FE(2) - F(2)	09.14(4)	C(4) - C(5) - C(1)	
C(10) #1 - Fe(2) - P(1) #1	153.43(7)	C(4) - C(5) - Fe(1)	72.28(16)
C(10)-Fe(2)-P(1)#1	96.01(8)	C(1) -C(5) -Fe(1)	70.73(13)
C(6)-Fe(2)-P(1)#1	111.91(8)	C(10)-C(6)-C(6)#1	105.93(13)
C(6)#1-Fe(2)-P(1)#1	151.70(8)	C(10) - C(6) - C(41)	120.1(2)
C(9) - Fe(2) - P(1) # 1	114,16(7)	C(6) # 1 - C(6) - C(41)	133,42(13)
$G(1) \#1 - F_{\Theta}(2) - D(1) \#1$	8 50 (6)	$C(10) = C(6) = F_{0}(2)$	69 00 (12)
D(1) = (2) = (1) = (1)	0.30(0)	C(10) = C(0) = PC(2)	(0, 0, 0, 0, 0)
S(1) - Fe(2) - P(1) + I	92.45(5)	C(6) #I - C(6) - Fe(2)	69.54(6)
S(2)#1-Fe(2)-P(1)#1	52.32(5)	C(41) - C(6) - Fe(2)	131.80(17)
S(2)-Fe(2)-P(1)#1	88.88(5)	C(10)-C(9)-C(10)#1	105.3(3)
P(2)-Fe(2)-P(1)#1	53.07(5)	C(10)-C(9)-C(51)	126.95(13)
C(10)#1-Fe(2)-P(1)	96.01(8)	C(10) # 1 - C(9) - C(51)	126.95(13)
C(10) - Fe(2) - P(1)	153 43 (7)	C(10) - C(9) - Fe(2)	68 78 (14)
$C(E) = E_{0}(2) = D(1)$	$153 \cdot 15 (7)$ $151 \cdot 70 (9)$	$C(10) \# 1 - C(9) - F_0(2)$	60.70(11)
C(0) = E(2) = F(1)	111 01 (0)	C(10) #1 - C(3) - Fe(2)	124 5 (2)
C(6) #I - Fe(2) - P(1)	111.91(8)	C(51) - C(9) - Fe(2)	134.5(2)
C(9) - Fe(2) - P(1)	114.16(7)	C(9) - C(10) - C(6)	111.4(2)
S(1)#1-Fe(2)-P(1)	92.45(5)	C(9)-C(10)-Fe(2)	71.56(15)
S(1)-Fe(2)-P(1)	8.50(6)	C(6)-C(10)-Fe(2)	70.36(12)
S(2) #1 - Fe(2) - P(1)	88,88(5)	C(22) - C(21) - C(23)	104.4(3)
$S(2) = F_{O}(2) = D(1)$	52, 32(5)	C(22) - C(21) - C(24)	107.4(3)
D(2) = P(2) = P(1)	52.52(5)	C(22) = C(21) = C(24)	110 0(2)
P(2) - Fe(2) - P(1)	53.07(5)	C(23) - C(21) - C(24)	110.9(3)
P(1) #1-Fe(2) - P(1)	93.02(9)	C(22) - C(21) - C(1)	112.0(2)
S(2)-S(1)-P(2)	109.74(8)	C(23) - C(21) - C(1)	115.1(3)
S(2)-S(1)-Fe(1)	69.79(6)	C(24) - C(21) - C(1)	106.8(3)
P(2)-S(1)-Fe(1)	62.19(5)	C(4)-C(31)-C(33)#1	111.6(2)
S(2) - S(1) - Fe(2)	68 50(7)	C(4) - C(31) - C(33)	111 + 6(2)
$D(2) = C(1) = E_{2}(2)$	61 02 (1)	C(23) #1 - C(21) - C(22)	100 c(2)
$\mathbf{F}(\mathbf{Z}) = \mathbf{O}(\mathbf{I}) = \mathbf{F}\mathbf{C}(\mathbf{Z})$ $\mathbf{F}\mathbf{O}(\mathbf{I}) = \mathbf{O}(\mathbf{Z})$	01.03(4)	C(33) # T = C(32) = C(33)	102.0(3)
re(1) - S(1) - re(2)	0/./9(5)	C(4) = C(3L) = C(3L)	LUD.U(3)
S(1) - S(2) - S(2) # 1	113.71(6)	C(33)#1-C(31)-C(32)	108.9(2)
S(1)-S(2)-P(1)	2.25(8)	C(33)-C(31)-C(32)	108.9(2)
S(2)#1-S(2)-P(1)	112.19(6)	C(43) - C(41) - C(44)	106.4(3)
S(1) - S(2) - Fe(2)	67.68(6)	C(43) - C(41) - C(42)	111.8(4)
$S(2) \pm 1 - S(2) - Fe(2)$	65 93 (3)	C(44) - C(41) - C(42)	105 0(3)
$O(2) \pm O(2) = O(2)$			T00.0(0)

C(43)-C(41)-C(6)	107.8(3)
C(44) - C(41) - C(6)	111.2(2)
C(42)-C(41)-C(6)	114.4(3)
C(9)-C(51)-C(52)#1	111.66(17)
C(9)-C(51)-C(52)	111.66(17)
C(52)#1-C(51)-C(52)	110.6(3)
C(9)-C(51)-C(53)	106.5(3)
C(52)#1-C(51)-C(53)	108.11(19)
C(52)-C(51)-C(53)	108.11(19)

Symmetrietransformationen für die äquivalenten Atome:

#1 x,-y+1/2,z

	U ₁₁	U ₂₂	U ₃₃	U ₂₃	U ₁₃	U ₁₂
Fe(1)	31(1)	36(1)	34 (1)	0	5(1)	0
Fe(2)	30(1)	31(1)	34(1)	0	6(1)	0
S(1)	57(1)	31(1)	39(1)	1(1)	5(1)	-1(1)
S(2)	36(1)	52(1)	41(1)	-3(1)	7(1)	-7(1)
P(1)	44(1)	44(1)	43(1)	-1(1)	6(1)	10(1)
P(2)	34(1)	138(1)	41(1)	0	7(1)	0
C(1)	40(1)	40(1)	33(1)	1(1)	2(1)	3(1)
C(4)	42(2)	40(2)	33(2)	0	8(1)	0
C(5)	46(1)	36(1)	37(1)	2(1)	8(1)	-3(1)
C(6)	35(1)	38(1)	35(1)	-3(1)	10(1)	2(1)
C(9)	31(1)	41(2)	30(1)	0	3(1)	0
C(10)	36(1)	33(1)	39(1)	-6(1)	7(1)	-3(1)
C(21)	44(1)	47(2)	66(2)	-7(1)	-1(1)	10(1)
C(22)	69(2)	45(2)	126(3)	17(2)	10(2)	18(2)
C(23)	144(2)	63(3)	379(6)	14(3)	184(3)	26(2)
C(24)	243(4)	176(4)	133(3)	-71(3)	-119(3)	159(3)
C(31)	45(2)	58(2)	56(2)	0	24(2)	0
C(32)	87(3)	141(5)	62(2)	0	41(2)	0
C(33)	52(1)	66(2)	99(2)	-2(2)	33(1)	-15(1)
C(41)	47(1)	46(2)	85(2)	-8(1)	26(1)	9(1)
C(42)	47(2)	69(3)	410(10)	-49(4)	-37(4)	23(2)
C(43)	332(4)	95(3)	188(3)	34(2)	210(3)	89(3)
C(44)	68(2)	45(2)	95(2)	-6(2)	23(2)	18(1)
C(51)	31(2)	50(2)	49(2)	0	4(1)	0
C(52)	37(1)	75(2)	81(2)	13(2)	10(1)	-10(1)
C(53)	45(2)	94(3)	51(2)	0	-5(2)	0

Tabelle 7.2.4 Anisotrope Auslenkungsparameter [Ų x 10³] für 6.Der Exponent des anisotropen Auslenkungsfaktors hat die Form: $-2\pi^2$ [(ha*) $^2U_{11}$ + ... + 2hka*b*U_{12}]

Seite 119

х	У	Z	U(eq)
4101	3955	-1307	48
5410	3956	3816	44
1322	5271	-1322	123
2578	4969	-1663	123
2484	4816	-497	123
952	3573	-111	262
-41	3131	-1078	262
-20	4254	-873	262
430	4447	-2860	317
104	3342	-2798	317
1395	3658	-3073	317
5508	1883	-2978	139
6663	2613	-2838	139
5250	3004	-3009	139
6243	3977	-1313	105
7546	3413	-1189	105
6829	3404	-274	105
1150	3030	3187	286
1602	3670	2351	286
919	4155	3157	286
3534	3841	5420	270
2254	3240	5102	270
2206	4377	5068	270
2557	5260	3595	104
3425	4805	2909	104
3991	4983	4113	104
7665	3398	2878	97
8831	3427	3866	97
7549	3973	3884	97
7467	2003	5571	99
7734	3121	5548	99
8813	2377	5455	99
	$\begin{array}{c} x \\ 4101 \\ 5410 \\ 1322 \\ 2578 \\ 2484 \\ 952 \\ -41 \\ -20 \\ 430 \\ 104 \\ 1395 \\ 5508 \\ 6663 \\ 5250 \\ 6243 \\ 7546 \\ 6829 \\ 1150 \\ 1602 \\ 919 \\ 3534 \\ 2254 \\ 2206 \\ 2557 \\ 3425 \\ 3991 \\ 7665 \\ 8831 \\ 7549 \\ 7467 \\ 7734 \\ 8813 \\ \end{array}$	xy 4101 3955 5410 3956 1322 5271 2578 4969 2484 4816 952 3573 -41 3131 -20 4254 430 4447 104 3342 1395 3658 5508 1883 6663 2613 5250 3004 6243 3977 7546 3413 6829 3404 1150 3030 1602 3670 919 4155 3534 3841 2254 3240 2206 4377 2557 5260 3425 4805 3991 4983 7665 3398 8831 3427 7549 3973 7467 2003 7734 3121 8813 2377	xyz4101 3955 -1307 5410 3956 3816 1322 5271 -1322 2578 4969 -1663 2484 4816 -497 952 3573 -111 -41 3131 -1078 -20 4254 -873 430 4447 -2860 104 3342 -2798 1395 3658 -3073 5508 1883 -2978 6663 2613 -2838 5250 3004 -3009 6243 3977 -1313 7546 3413 -1189 6829 3404 -274 1150 3030 3187 1602 3670 2351 919 4155 3157 3534 3841 5420 2254 3240 5102 2206 4377 5068 2557 5260 3595 3425 4805 2909 3991 4983 4113 7665 3398 2878 8831 3427 3866 7549 3973 3884 7467 2003 5571 7734 3121 5548 8813 2377 5455

Tabelle 7.2.5H-Atomkoordinaten [x 10⁴] und äquivalente isotrope Auslenkungsparameter [Å² x 10³] für 6.

Summenformel	$C_{34}H_{58}Fe_{2}P_{2}Se_{2}$	
Molmasse	798.36	
Temperatur	293(2) K	
Strahlung	ΜοΚα	
Wellenlänge	0.71073 Å	
Scanmodus	Phi- Rotation	
Kristallsystem	Monoklin	
Raumgruppe	$P2_1/m$	
Zelldimensionen	a = 10.6750(10) Å	$\alpha = 90^{\circ}$
	b = 13.7681(9) Å	$\beta = 103.931(12)^{\circ}$
	c = 13.1329(13) Å	$\gamma = 90^{\circ}$
Zellvolumen	$1873.4(3) Å^3$	1
Formeleinheiten pro Zelle Z	2	
Berechnete Dichte	1.415 Mg/m^3	
Absorptionskoeffizient	2.823 mm ⁻¹	
Kristallgröße	0.30 x 0.20 x 0.10 mm	
Gemessener θ-Bereich	2.82 bis 25.68°	
Anzahl der gemessenen Reflexe	26118	
Unabhängige Reflexe	3605 (Rint = 0.1135)	
Absorptionskorrektur	multi-scan (MULABS/PLATON))
Max. und min. Transmission	0.73661 und 0.48148	
Diffraktometer	Stoe IPDS	
Strukturlösung	Direkte Methoden	
Strukturlösungsprogramm	SHELXS-97 (Sheldrick, 1990)	
Strukturverfeinerung	Vollmatrix Least-Squares gegen F	22
Strukturverfeinerungsprogramm	SHELXL-97 (Sheldrick, 1997)	
Daten / Restraints / Parameter	3605 / 1 / 218	
Endgültige R-Werte $[I \ge 2\sigma(I)]$	R1 = 0.0559, wR2 = 0.1197	
R-Werte (alle Daten)	R1 = 0.1192, wR2 = 0.1435	
Wichtungsschema	$w=1/[\sigma^{2}(Fo^{2})+(0.0624P)^{2}+1.4739$	P] mit P=(Fo ² +2Fc ²)/3
GooF (alle Daten)	1.008	
Größtes Maximum und Minimum	0.536 und -0.500 eÅ ⁻³	

Tabelle 7.3.1 Kristalldaten und Strukturverfeinerung für [{Cp^{'''}Fe}₂(μ-η^{4:4}-P₂Se₂)] (7).

Verfeinerung nach F^2 mit ALLEN Reflexen. Die gewichteten R-Werte wR2 und alle GooF's basieren auf F^2 . Die konventionellen R-Werte R1 basieren auf F, wobei F für negative F^2 gleich Null gesetzt wird. Das Ablehnungskriterium $F^2 > 2\sigma(F^2)$ wird nur zum Berechnen von R(obs) etc. verwendet. Zur Verfeinerung wurden alle Reflexe herangezogen. Grundsätzlich gilt: Auf F^2 bezogene R-Werte sind statistisch etwa doppelt so groß wie die auf F basierenden. Auf ALLE Reflexe bezogene R-Werte sind noch größer.

Fehlordnung im Bereich der P- und Se-Atome. Die Wasserstoffatome wurden geometrisch lokalisiert. Für die Verfeinerung wurde ein Reitermodell angenommen. Als Temperaturfaktor wurde der 1.5-fache Wert (CH₃-Gruppen) bzw. der 1.2-fache Wert (Cp-H) des äquivalenten isotropen Temperaturfaktors desjenigen C-Atoms eingesetzt, an welches das jeweilige H-Atom gebunden ist.

Einzelheiten können dem Handbuch für das Verfeinerungsprogramm SHELXL entnommen werden.

$$wR_{2} = \sqrt{\frac{\sum \left[w(F_{o}^{2} - F_{c}^{2})^{2}\right]}{\sum \left[w(F_{o}^{2})^{2}\right]}}}$$

$$R_{1} = \frac{\sum \left\|F_{o}\right| - \left|F_{c}\right\|}{\sum \left|F_{o}\right|}$$

$$GooF = \sqrt{\frac{\sum \left[w(F_{o}^{2} - F_{c}^{2})\right]}{(n - p)}}$$

$$n = Zahl der Reflexe; p = Zahl der verfeinerten Parameter$$

Tabelle 7.3.2 Atomkoordinaten [x 10⁴] und äquivalente isotrope Auslenkungsparameter [Å² x 10³] für 7. U(eq) wird berechnet als ein Drittel der Spur des orthogonalisierten U_{ij} -Tensors.

	х	У	Z	U(eq)
Fe(1)	3779(1)	2500	-23(1)	34(1)
Fe(2)	4400(1)	2500	2472(1)	33(1)
Se(1)	4248(1)	1242(1)	1212(1)	41(1)
Se(2)	2610(1)	1828(1)	1184(1)	48(1)
P(1)	4618(3)	1217(2)	1252(2)	37(1)
P(2)	5703(2)	2500	1271(1)	60(1)
C(1)	2515(4)	3029(3)	-1369(3)	37(1)
C(4)	4627(6)	2500	-1327(4)	39(2)
C(5)	3820(4)	3319(3)	-1327(3)	41(1)
C(6)	3801(4)	3033(3)	3761(3)	38(1)
C(9)	5907(6)	2500	3834(4)	35(1)
C(10)	5101(4)	3316(3)	3801(3)	37(1)
C(21)	1444(5)	3804(3)	-1558(4)	53(1)
C(22)	1994(6)	4802(3)	-1273(5)	80(2)
C(23)	463(7)	3674(5)	-918(8)	178(4)
C(24)	813(8)	3804(6)	-2712(6)	198(4)
C(31)	6001(6)	2500	-1451(5)	46(2)
C(32)	5902(9)	2500	-2641(7)	102(3)
C(33)	6745(5)	3400(4)	-961(5)	68(2)
C(41)	2781(5)	3788(3)	3861(4)	58(1)
C(42)	1477(6)	3658(5)	3119(10)	199(6)
C(43)	2741(9)	3816(5)	4999(6)	189(3)
C(44)	3208(6)	4800(3)	3609(5)	74(2)
C(51)	7368(6)	2500	4056(5)	45(2)
C(52)	7874(5)	3407(4)	3616(5)	68(2)
C(53)	7881(7)	2500	5239(5)	63(2)

Tabelle 7.3.3 Bindungslängen [Å] und -winkel [⁰] für 7.

$\begin{array}{c c c c c c c c c c c c c c c c c c c $						
$ \begin{split} & \text{Pe}(1) - C(1) \# 1 & 2.080(4) \\ & \text{Pe}(1) - C(1) \# 1 & 2.080(4) \\ & \text{Pe}(1) - C(1) & 2.080(4) \\ & \text{Pe}(1) - C(1) & 2.080(4) \\ & \text{Pe}(1) - C(1) & 2.080(4) \\ & \text{Pe}(1) - C(2) & 1.438(6) \\ & \text{Pe}(1) - P(2) & 2.330(2) \\ & \text{Pe}(1) - C(2) & 1.540(6) \\ & \text{Pe}(1) - 2(2) & 2.330(2) \\ & \text{Pe}(1) - 2(2) & 1.540(6) \\ & \text{Pe}(1) - 2(2) & 2.330(2) \\ & \text{Pe}(1) - 2(2) & 1.540(6) \\ & \text{Pe}(1) - 2(2) & 2.433(10) \\ & \text{Pe}(1) - 2(2) & 1.540(6) \\ & \text{Pe}(1) - 2(2) & 2.433(10) \\ & \text{Pe}(1) - 2(2) & 2.433(10) \\ & \text{Pe}(1) - 2(2) & 2.4345(13) \\ & \text{Pe}(1) - 2(2) & 1.540(6) \\ & \text{Pe}(1) - 2(1) & 2.450(3) \\ & \text{Pe}(1) - 2(1) & 1.441(6) \\ & \text{Pe}(1) - 2(1) & 2.450(3) \\ & \text{Pe}(1) - 2(1) & 1.440(6) \\ & \text{Pe}(1) - 2(1) & 2.450(3) \\ & \text{Pe}(2) - C(10) & 1.4410(5) \\ & \text{Pe}(2) - C(10) & 2.459(4) \\ & \text{Pe}(2) - C(10) & 1.551(6) \\ & \text{Pe}(2) - C(10) & 1.550(3) \\ & \text{Pe}(2) - C(10) & 2.059(4) \\ & \text{Pe}(2) - C(2) & 1.550(3) \\ & \text{Pe}(2) - C(10) & 2.059(4) \\ & \text{Pe}(2) - C(10) & 1.550(3) \\ & \text{Pe}(2) - C(10) & 1.550(3) \\ & \text{Pe}(2) - C(10) & 1.550(3) \\ & \text{Pe}(2) - C(1) & 2.302(1) \\ & \text{Pe}(2) - 2(2) & 1.550(6) \\ & \text{Pe}(2) - 2(2) & 2.340(2) \\ & \text{Pe}(2) - 2(2) & 1.550(6) \\ & \text{Pe}(2) - 2(2) & 2.340(2) \\ & \text{Pe}(2) - 2(2) & 1.550(6) \\ & \text{Pe}(2) - 2(2) & 2.340(2) \\ & \text{Pe}(2) - 2(2) & 1.550(9) \\ & \text{Pe}(2) - 2(2) & 2.340(2) \\ & \text{Pe}(2) - 2(2) & 1.550(9) \\ & \text{Pe}(2) - 2(2) & 2.340(2) \\ & \text{Pe}(2) - 2(2) & 1.550(9) \\ & \text{Pe}(2) - 2(2) & 2.340(3) \\ & \text{Pe}(2) - 2(2) & 1.550(9) \\ & \text{Pe}(2) - 2(2) & 2.340(3) \\ & \text{Pe}(1) - 2(2) & 1.550(9) \\ & \text{Pe}(2) - 2(1) & 2.249(3) \\ & \text{Pe}(1) - 2(2) & 1.550(9) \\ & \text{Pe}(2) - 2(2) & 1.550(9) \\ & \text{Pe}(2) - 2(2) & 1.550(9) \\ & \text{Pe}(1) - 2(2) & 1.550(9) \\ & \text$	Fe(1)-C(5)#1	2.059(4)		P(1)-P(2)	2.108(3)	
$\begin{split} & \text{P(1)}-C(1) + 1 & 2.080(4) & \text{P(2)}-8c(1) + 1 & 2.315+(16) \\ & \text{P(1)}-C(4) & 2.100(6) & \text{C(1)}-C(1) + 1 & 1.455(8) \\ & \text{P(1)}-Pc(1) & 2.333(2) & \text{C(1)}-C(1) + 1 & 1.455(8) \\ & \text{P(1)}-Pc(1) & 2.333(2) & \text{C(4)}-C(5) + 1 & 1.419(6) \\ & \text{P(1)}-Sc(2) & 2.333(2) & \text{C(4)}-C(5) + 1 & 1.419(6) \\ & \text{P(1)}-Sc(2) & 2.4345(13) & \text{C(4)}-C(5) & 1.419(6) \\ & \text{P(1)}-Sc(2) & 2.4345(13) & \text{C(6)}-C(10) & 1.431(6) \\ & \text{P(1)}-P(1) & 2.450(3) & \text{C(6)}-C(10) & 1.431(6) \\ & \text{P(1)}-P(1) & 2.450(3) & \text{C(6)}-C(10) & 1.431(6) \\ & \text{P(1)}-P(1) & 2.450(3) & \text{C(6)}-C(10) & 1.431(6) \\ & \text{P(2)}-C(10) & 1 & 2.059(4) & \text{C(9)}-C(10) & 1 & 1.410(5) \\ & \text{P(2)}-C(10) & 1 & 2.059(4) & \text{C(9)}-C(10) & 1 & 1.410(5) \\ & \text{P(2)}-C(10) & 1 & 2.059(4) & \text{C(9)}-C(10) & 1 & 1.410(5) \\ & \text{P(2)}-C(6) & 2.082(4) & \text{C(9)}-C(21) & 1.531(6) \\ & \text{P(2)}-C(2) & 2.340(2) & \text{C(21)}-C(22) & 1.533(10) \\ & \text{P(2)}-C(2) & 2.340(2) & \text{C(21)}-C(23) & 1.536(6) \\ & \text{P(2)}-2C(2) & 2.340(2) & \text{C(31)}-C(33) & 1 & 1.528(6) \\ & \text{P(2)}-2C(2) & 2.400(12) & \text{C(31)}-C(33) & 1 & 1.528(6) \\ & \text{P(2)}-2C(1) & 2.333(3) & \text{C(41)}-C(44) & 1.552(6) \\ & \text{P(2)}-2C(1) & 2.333(3) & \text{C(41)}-C(44) & 1.552(6) \\ & \text{P(2)}-2C(1) & 2.333(3) & \text{C(41)}-C(43) & 1.558(6) \\ & \text{P(2)}-2C(1) & 2.333(3) & \text{C(41)}-C(43) & 1.558(6) \\ & \text{S(2)}-2C(5) & 1.538(6) \\ & \text{S(2)}-2C(1) & 1.538(6) \\ & \text{S(3)}-C(5) & -1.528(6) \\ & \text{S(2)}-2C(1) & 1.538(6) \\ & \text{S(2)}-2C(1) & 2.384(3) \\ & \text{C(5)}-2C(1) & -2C(2) & 1.5.68(6) \\ & \text{S(6)}+2C(2) & 1.5.68(6) \\ & \text{S(6)}+1-2C(1) & 40.65(17) & C(5) & -1.528(6) \\ & \text{S(6)}+1-2C(1) & 40.65(17) & C(5) & -1.528(6) \\ & \text{S(1)}+2C(1)-2C(1) & 40.65(17) & C(5) & -1.528(6) \\ & \text{S(1)}+2C(1)-2C(1) & 40.65(17) & C(5) & -1.528(6) \\ & \text{S(1)}+2C(1)-2C(1) & 40.65(17) & C(5) & -1.528(6) \\ & \text{S(1)}+2C(1)-2C(1) & 40.65(17) & C(5) & -1.528(6) \\ & \text{S(1)}+2C$	Fe(1)-C(5)	2.059(4)		P(2)-P(1)#1	2.108(3)	
$ \begin{split} & \text{Pe}(1) - C(1) & 2280(4) & \text{C1} - C(5) & 1438(6) \\ & \text{Pe}(1) - P(2) & 2330(2) & \text{C1} 1 - C(1) & 1455(8) \\ & \text{Pe}(1) - P(2) & 2333(10) & \text{C4} 1 - C(5) & 1419(6) \\ & \text{Pe}(1) - Se(1) & 2333(10) & \text{C4} 1 - C(5) & 1419(6) \\ & \text{Pe}(1) - Se(1) & 2452(5) & \text{C6} 1 - C(6) & 1457(8) \\ & \text{Pe}(1) - P(1) & 2452(5) & \text{C6} 1 - C(6) & 1457(8) \\ & \text{Pe}(1) - P(1) & 2452(5) & \text{C6} 1 - C(6) & 1457(8) \\ & \text{Pe}(1) - P(1) & 2455(3) & \text{C6} 0 - C(10) & 1410(5) \\ & \text{Pe}(2) - C(1) & 1252(4) & \text{C9} 0 - C(10) & 1410(5) \\ & \text{Pe}(2) - C(1) & 1252(4) & \text{C9} 0 - C(10) & 1410(5) \\ & \text{Pe}(2) - C(1) & 1252(4) & \text{C9} 0 - C(10) & 1410(5) \\ & \text{Pe}(2) - C(6) & 2082(4) & \text{C9} 0 - C(10) & 1410(5) \\ & \text{Pe}(2) - C(6) & 2082(4) & \text{C2} (2) - C(22) & 1503(10) \\ & \text{Pe}(2) - C(6) & 2082(4) & \text{C2} (2) - C(22) & 1503(6) \\ & \text{Pe}(2) - Se(1) & 23733(11) & \text{C1} (3) - C(33) & 1528(6) \\ & \text{Pe}(2) - Se(1) & 23733(11) & \text{C1} (3) - C(33) & 1528(6) \\ & \text{Pe}(2) - Se(1) & 23733(11) & \text{C1} (3) - C(33) & 1528(6) \\ & \text{Pe}(2) - Se(2) & 12433(3) & \text{C1} (4) - C(43) & 1506(9) \\ & \text{Pe}(2) - P(1) & 2433(3) & \text{C1} (4) - C(43) & 1506(9) \\ & \text{Pe}(2) - P(1) & 2433(3) & \text{C1} (4) - C(43) & 1506(9) \\ & \text{Se}(1) - Se(2) & 1328(6) \\ & \text{Se}(1) - Se(2) & 1328(6) \\ & \text{Se}(1) - Se(2) & 1328(6) \\ & \text{Se}(2) - P(2) & 23155(16) & \text{C1} (1) - \text{Pe}(1) - Se(2) & 1542(1) \\ & \text{C1} Sh - Pe(1) - C(1) & \text{H} & 4065(17) & \text{C1} Sh - Pe(1) - Se(2) & 1542(6) \\ & \text{Se}(2) - P(1) & 2284(3) \\ & \text{C1} Sh - Pe(1) - C(1) & \text{H} & 4065(17) & \text{C1} Sh - Pe(1) - Se(2) & 1528(6) \\ & \text{Se}(2) - P(1) & 2284(3) & \text{C1} - PE(1) - Se(2) & 1528(6) \\ & \text{Se}(2) - P(1) & 2284(3) & \text{C1} H - Pe(1) - Se(2) & 1528(6) \\ & \text{Se}(2) - P(1) & 2284(3) & \text{C1} H - Pe(1) - Se(2) & 1528(6) \\ & \text{Se}(2) - P(1) & 2284(3) & \text{C1} H - Pe(1) - Se(2) & 1528(6) \\ & \text{Se}(1) + Pe(1) - C(1) & \text{H} & 4065(17) & \text{C1} H - Pe(1) - Se(2) & 1538(6) \\ & \text{C1} S$	Fe(1)-C(1)#1	2.080(4)		P(2)-Se(1)#1	2.3154(16)	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Fe(1) - C(1)	2.080(4)		C(1) - C(5)	1.438(6)	
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	Fe(1) - C(4) Fe(1) - D(2)	2.120(6)		C(1) - C(1) # I C(1) - C(21)	1.455(8)	
$ \begin{split} & (1) - (2) +$	Fe(1) - F(2) $Fe(1) - Se(1) \pm 1$	2.330(2) 2 3432(10)		C(1) = C(21) $C(4) = C(5) \pm 1$	1.540(6) 1 419(6)	
$\begin{split} & [1] - Se(2) \\ & [1] - Se(2) \\ & [2] - 2(24245(13)) \\ & [2] - 2(24245(13)) \\ & [2] - 2(10) - 2(2) \\ & [2] - 2(10) \\ & [2] - 2(10) - 2(2) \\ & [2] - 2(10) \\ & [2] - 2(10) - 2(2) \\ & [2] - 2(10) \\ & [2] - 2(10) - 2(2) \\ & [2] - 2(10) \\ & [2] - 2(10) - 2(2) \\ & [2] - 2(10) - 2(2) \\ & [2] - 2(10) - 2(2) \\ & [2] - 2(10) - 2(2) \\ & [2] - 2(10) - 2(2) \\ & [2] - 2(10) - 2(2) \\ & [2] - 2(10) - 2(2) \\ & [2] - 2(10) - 2(2) \\ & [2] - 2(10) - 2(2) \\ & [2] - 2(10) - 2(2) \\ & [2] - 2(10) - 2(2) \\ & [2] - 2(10) - 2(2) \\ & [2] - 2(10) - 2(2) \\ & [2] - 2(10) - 2(2) \\ & [2] - 2(10) - 2(2) \\ & [2] - 2(10) - 2(2) \\ & [2] - 2(10) - 2(2) \\ & [2] - 2(10) - 2(2) \\ & [2] - 2(10) - 2(10) \\ & [2] - 2(10) - 2(10) \\ & [2] - 2(10) - 2(10) \\ & [2] - 2(10) - 2(10) \\ & [2] - 2(10) - 2($	Fe(1) - Se(1)	2.3433(10)		C(4) - C(5)	1.419(6)	
$\begin{split} & \text{Pe}(1) - \text{Pe}(1) + 2, 430 (3) & \text{C(6)} - \text{C(10)} & 1, 431 (6) \\ & \text{Pe}(1) - P_1(1) & 2, 450 (3) & \text{C(6)} - \text{C(6)} + 11, 1.534 (6) \\ & \text{Pe}(1) - P_1(1) & 2, 059 (4) & \text{C(9)} - \text{C(10)} + 1, 410 (5) \\ & \text{Pe}(2) - \text{C(10)} + 1, 2, 059 (4) & \text{C(9)} - \text{C(10)} + 1, 410 (5) \\ & \text{Pe}(2) - \text{C(16)} + 1, 2, 052 (4) & \text{C(9)} - \text{C(10)} + 1, 410 (5) \\ & \text{Pe}(2) - \text{C(6)} + 1, 2, 052 (4) & \text{C(21)} - \text{C(22)} + 1, 503 (10) \\ & \text{Pe}(2) - \text{C(6)} + 1, 2, 052 (4) & \text{C(21)} - \text{C(22)} + 1, 503 (10) \\ & \text{Pe}(2) - \text{C(1)} + 1, 2, 303 (11) & \text{C(31)} - \text{C(23)} + 1, 1536 (8) \\ & \text{Pe}(2) - \text{Se}(1) + 1, 2, 3733 (11) & \text{C(31)} - \text{C(23)} + 1, 1528 (6) \\ & \text{Pe}(2) - \text{Se}(2) + 1, 2, 433 (3) & \text{C(41)} - \text{C(42)} + 1, 556 (9) \\ & \text{Pe}(2) - \text{Se}(2) + 1, 2, 433 (3) & \text{C(41)} - \text{C(42)} + 1, 556 (9) \\ & \text{Pe}(2) - \text{P}(1) + 1, 2, 433 (3) & \text{C(41)} - \text{C(42)} + 1, 556 (9) \\ & \text{Pe}(2) - \text{P}(1) + 1, 2, 433 (3) & \text{C(41)} - \text{C(42)} + 1, 558 (7) \\ & \text{Se}(1) - \text{Se}(2) + 1, 2, 433 (3) & \text{C(41)} - \text{C(41)} + 1, 528 (6) \\ & \text{Se}(2) - \text{Se}(2) + 1, 2, 433 (3) & \text{C(41)} - \text{C(42)} + 1, 528 (6) \\ & \text{Se}(2) - \text{Se}(2) + 1, 2, 439 (5 (15) & \text{C(51)} - \text{C(52)} + 1, 1, 528 (6) \\ & \text{Se}(2) - \text{Se}(2) + 1, 2, 284 (3) \\ & \text{Se}(2) - \text{P}(1) - \text{C(1)} + 1, 40, 65 (17) & \text{C(51)} - \text{P}(1) - \text{Se}(2) & 116, 88 (12) \\ & \text{C(5)} + \text{Te}(1) - \text{C(1)} + 1, 40, 65 (17) & \text{C(6)} + \text{P}(1) - \text{Se}(2) & 116, 88 (12) \\ & \text{C(5)} + \text{Te}(1) - \text{C(1)} + 1, 40, 65 (17) & \text{C(4)} + \text{Fe}(1) - \text{Se}(2) & 11, 43 (6) \\ & \text{C(5)} + \text{Te}(1) - \text{C(1)} + 1, 40, 65 (17) & \text{C(4)} + \text{Fe}(1) - \text{Se}(2) & 11, 43, 46 (7) \\ & \text{C(5)} + \text{Te}(1) - \text{C(1)} + 1, 40, 65 (17) & \text{C(4)} + \text{Fe}(1) - \text{Se}(2) & 14, 43 (6) \\ & \text{C(5)} + \text{Te}(1) - \text{C(1)} + 1, 40, 40, 65 (17) & \text{C(4)} + \text{Fe}(1) - \text{Se}(2) & 14, 43 (6) \\ & \text{C(5)} + \text{Te}(1) - \text{C(1)} + 1, 40, 40, 65 (17) & \text{C(6)} + \text{Fe}(1) - \text{Se}(2) & 14, 43 (6) \\ & \text{C(5)} + \text{Te}(1) - \text{C(1)} + 1, 40, 40, 65 (17) & \text{C(6)} + \text{Fe}(1) - \text{Fe}(1) - \text{Se}(2) & 14, 43 (6) \\ & \text{C(5)} + \text{Te}(1$	Fe(1)-Se(2)#1	2.4245(13)		C(4)-C(31)	1.514(9)	
$\begin{split} & \text{Pe}(1) - P(1) \# 1 & 2.450(3) & \text{C(6)} - C(6) \# 1 & 1.467(8) \\ & \text{Pe}(1) - P(1) & 2.450(3) & \text{C(6)} - C(41) & 1.534(6) \\ & \text{Pe}(2) - C(10) \# 1 & 2.059(4) & \text{C(9)} - C(10) \# 1 & 1.410(5) \\ & \text{Pe}(2) - C(6) \# 2 & 0.082(4) & \text{C(9)} - C(10) \# 1 & 1.410(5) \\ & \text{Pe}(2) - C(6) \# 2 & 0.082(4) & \text{C(9)} - C(21) & 1.516(9) \\ & \text{Pe}(2) - C(6) \# 2 & 0.082(4) & \text{C(21)} - C(23) & 1.503(10) \\ & \text{Pe}(2) - C(9) & 2 & 2.039(5) & \text{C(21)} - C(23) & 1.503(6) \\ & \text{Pe}(2) - S(1) \# 1 & 2.0733(11) & \text{C(31)} - C(33) & 1.528(6) \\ & \text{Pe}(2) - Se(1) \# 1 & 2.3733(11) & \text{C(31)} - C(33) & 1.528(6) \\ & \text{Pe}(2) - Se(1) \# 1 & 2.433(3) & \text{C(41)} - C(43) & 1.506(9) \\ & \text{Pe}(2) - P(1) \# 1 & 2.433(3) & \text{C(41)} - C(43) & 1.506(9) \\ & \text{Pe}(2) - P(1) \# 1 & 2.433(3) & \text{C(41)} - C(43) & 1.528(6) \\ & \text{Se}(1) - Se(2) & 1.348(5(19) & \text{C(51)} - C(53) & 1.538(9) \\ & \text{Se}(1) - P(2) & 2.3355(16) & \text{C(51)} - C(53) & 1.538(6) \\ & \text{Se}(2) - P(1) & 2.284(3) & \text{C(51)} - C(52) & 11.528(6) \\ & \text{Se}(2) - P(1) & 2.284(3) & \text{C(51)} - C(52) & 116.68(12) \\ & \text{C(5)} \# 1 - \text{Pe}(1) - C(1) \# 1 & 40.65(17) & \text{C(5)} - \text{Pe}(1) - Se(2) & 116.68(12) \\ & \text{C(5)} \# 1 - \text{Pe}(1) - C(1) & 41.0(2) & \text{Pe}(2) - \text{Pe}(1) - Se(2) & 116.08(12) \\ & \text{C(5)} \# 1 - \text{Pe}(1) - C(1) & 43.06(14) & \text{Se}(1) \# 1 - \text{Pe}(1) - Se(2) & 116.08(12) \\ & \text{C(5)} \# 1 - \text{Pe}(1) - C(4) & 39.66(14) & \text{Se}(1) \# 1 - \text{Pe}(1) - Se(2) & 116.08(12) \\ & \text{C(5)} \# 1 - \text{Pe}(1) - C(4) & 68.28(19) & \text{Se}(2) \# 1 - \text{Pe}(1) - Se(2) & 116.08(12) \\ & \text{C(5)} \# 1 - \text{Pe}(1) - C(4) & 68.28(19) & \text{Se}(1) \# 1 - \text{Pe}(1) - Se(2) & 116.08(12) \\ & \text{C(5)} \# 1 - \text{Pe}(1) - C(4) & 68.28(19) & \text{Se}(1) \# 1 - \text{Pe}(1) - Se(2) & 116.08(12) \\ & \text{C(5)} \# 1 - \text{Pe}(1) - C(4) & 68.28(19) & \text{Se}(1) \# 1 - \text{Pe}(1) - Se(2) & 116.08(12) \\ & \text{C(5)} \# 1 - \text{Pe}(1) - P(1) \# 1 & 152.70(13) \\ & \text{C(5)} \# 1 - \text{Pe}(1) - C(4) & 68.28(19) & \text{Se}(1) \# 1 - \text{Pe}(1) - Se(2) & 47.38(4) \\ & \text{C(1)} \# 1 - \text{Pe}(1) - C(4) & 68.28(19) & \text{Se}(1) \# 1 - \text{Pe}(1) - P(1) \# 1 & 152.70(13) \\ & \text{C(5)} \# 1 - \text{Pe}(1)$	Fe(1)-Se(2)	2.4245(13)		C(6)-C(10)	1.431(6)	
$\begin{split} & \text{Pe}(1) - P(1) & 2.459(3) & \text{C}(6) - \text{C}(41) & 1.534(6) \\ & \text{Fe}(2) - \text{C}(10) & 1.2059(4) & \text{C}(9) - \text{C}(10) & 1.410(5) \\ & \text{Fe}(2) - \text{C}(6) & 2.062(4) & \text{C}(9) - \text{C}(10) & 1.410(5) \\ & \text{Fe}(2) - \text{C}(6) & 2.062(4) & \text{C}(9) - \text{C}(10) & 1.410(5) \\ & \text{Fe}(2) - \text{C}(6) & 2.062(4) & \text{C}(2) - \text{C}(23) & 1.503(10) \\ & \text{Fe}(2) - \text{C}(6) & 2.099(5) & \text{C}(221) - \text{C}(23) & 1.503(10) \\ & \text{Fe}(2) - \text{Se}(1) & 1.2373(11) & \text{C}(31) - \text{C}(33) & 1.528(6) \\ & \text{Fe}(2) - \text{Se}(1) & 1.2373(11) & \text{C}(31) - \text{C}(33) & 1.528(6) \\ & \text{Fe}(2) - \text{Se}(1) & 2.433(3) & \text{C}(41) - \text{C}(42) & 1.505(9) \\ & \text{Fe}(2) - \text{Fe}(1) & 2.433(3) & \text{C}(41) - \text{C}(42) & 1.505(9) \\ & \text{Fe}(2) - \text{Fe}(1) & 2.433(3) & \text{C}(41) - \text{C}(42) & 1.528(6) \\ & \text{Se}(2) - \text{Se}(1) & 1.233(3) & \text{C}(41) - \text{C}(43) & 1.528(6) \\ & \text{Se}(2) - \text{Se}(2) & 1.9171(15) & \text{C}(51) - \text{C}(53) & 1.518(9) \\ & \text{Se}(1) - \text{Fe}(2) & 2.3155(16) & \text{C}(51) - \text{C}(53) & 1.518(9) \\ & \text{Se}(1) - \text{Fe}(2) & 2.3155(16) & \text{C}(51) - \text{C}(52) & 1.528(6) \\ & \text{Se}(2) - \text{Se}(2) + 1 & 1.8495(19) & \text{C}(51) - \text{C}(2) & 11.528(6) \\ & \text{Se}(2) - \text{Se}(2) + 1 & 1.8495(19) & \text{C}(51) - \text{C}(2) & 115.528(6) \\ & \text{Se}(2) - \text{Se}(1) - \text{C}(1) & 41.065(17) & \text{C}(6) - \text{Fe}(1) - \text{Se}(2) & 156.42(10) \\ & \text{C}(5) + \text{He}(1) - \text{C}(1) & 41.062(1) & \text{Se}(2) & 116.88(12) \\ & \text{C}(5) + \text{He}(1) - \text{C}(1) & 41.062(1) & \text{Se}(2) & 47.38(4) \\ & \text{C}(1) + \text{Fe}(1) - \text{C}(1) & 41.062(1) & \text{Se}(2) & 47.38(4) \\ & \text{C}(1) + \text{Fe}(1) - \text{C}(1) & 41.062(1) & \text{Se}(2) & 47.38(4) \\ & \text{C}(1) + \text{Fe}(1) - \text{C}(1) & 41.02(2) & \text{P}(2) - \text{Fe}(1) - \text{Se}(2) & 47.38(4) \\ & \text{C}(1) + \text{Fe}(1) - \text{C}(4) & 68.28(19) & \text{C}(5) + \text{Fe}(1) - \text{C}(1) + 11 & 152.27(13) \\ & \text{C}(5) + \text{He}(1) - \text{C}(4) & 68.28(19) & \text{C}(5) + \text{He}(1) - \text{C}(1) + 11 & 152.27(13) \\ & \text{C}(5) + \text{He}(1) - \text{C}(2) & 114.55(13) & \text{C}(1) + \text{Fe}(1) - \text{C}(1) + 11 & 152.27(13) \\ & \text{C}(5) + \text{He}(1) - \text{C}(1) + 11 & 132.67(12) \\ & \text{C}(5) + \text{He}(1) - \text{C}(1) + 11 & 132.27(12) \\ & \text{C}(5) + \text{He}(1) - \text{P}(1) + 11 & $	Fe(1)-P(1)#1	2.450(3)		C(6)-C(6)#1	1.467(8)	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Fe(1) - P(1)	2.450(3)		C(6) - C(41)	1.534(6)	
$ \begin{array}{c} P(2) - C(10) \# 1 & 2.103 (Y) \\ P(2) - C(10) \# 1 & 2.103 (Y) \\ P(2) - C(10) \# 1 & 2.103 (Y) \\ P(2) - C(2) & 2.099 (5) \\ C(21) - C(23) & 1.503 (10) \\ P(2) - P(2) & 2.099 (5) \\ C(21) - C(24) & 1.503 (8) \\ P(2) - Se(1) \# 1 & 2.3733 (11) \\ C(31) - C(33) \# 1 & 1.528 (6) \\ P(2) - Se(1) \# 2 & 2.3733 (11) \\ C(31) - C(33) \# 1 & 1.528 (6) \\ P(2) - Se(1) \# 2 & 2.3733 (11) \\ C(31) - C(33) \# 1 & 1.528 (6) \\ P(2) - Se(1) \# 2 & 2.4108 (12) \\ C(41) - C(42) & 1.505 (9) \\ P(2) - P(1) \# 1 & 2.433 (3) \\ C(41) - C(44) & 1.528 (7) \\ Se(1) - Se(2) & 2.4108 (12) \\ C(51) - C(52) \# 1 & 2.433 (3) \\ C(41) - C(44) & 1.528 (7) \\ Se(1) - Se(2) & 1.5171 (15) \\ Se(1) - Se(2) & 1.5171 (15) \\ Se(1) - Se(2) & 1.5171 (15) \\ Se(2) - Se(2) & 2.3155 (16) \\ C(5) \# 1 - P(1) - C(1) & 1.695 (17) \\ C(5) - P(1) - Se(2) & 1.528 (6) \\ Se(2) - Se(2) \# 1 & 1.6495 (19) \\ Se(2) - Se(2) - 2.284 (3) \\ \end{array} $	Fe(2) - C(10) Fe(2) - C(10) + 1	2.059(4)		C(9) - C(10)	1.410(5) 1.410(E)	
$\begin{array}{llllllllllllllllllllllllllllllllllll$	Fe(2) = C(10) #1 Fe(2) = C(6)	2.039(4) 2.082(4)		C(9) = C(10) #1 C(9) = C(51)	1,410(3) 1,516(9)	
$\begin{split} & \text{Fe}(2) - \text{P}(2) & 2.099(\text{S}) & \text{C}(21) - \text{C}(22) & 1.506(\text{T}) \\ & \text{Fe}(2) - \text{Fe}(1) + \text{P}(2) & 2.340(2) & \text{C}(21) - \text{C}(22) & 1.503(\text{R}) \\ & \text{Fe}(2) - \text{Se}(1) & 2.3733(11) & \text{C}(33) - \text{C}(33) & 1.528(\text{G}) \\ & \text{Fe}(2) - \text{Se}(2) & 1.2,373(11) & \text{C}(33) - \text{C}(33) & 1.528(\text{G}) \\ & \text{Fe}(2) - \text{Se}(2) & 1.2,373(11) & \text{C}(33) - \text{C}(33) & 1.528(\text{G}) \\ & \text{Fe}(2) - \text{Se}(1) & 2.433(3) & \text{C}(41) - \text{C}(42) & 1.505(9) \\ & \text{Fe}(2) - \text{P}(1) & 2.433(3) & \text{C}(41) - \text{C}(42) & 1.505(9) \\ & \text{Fe}(2) - \text{P}(1) & 2.433(3) & \text{C}(41) - \text{C}(43) & 1.508(9) \\ & \text{Se}(1) - \text{Fe}(2) & 2.3155(16) & \text{C}(51) - \text{C}(53) & 1.518(9) \\ & \text{Se}(1) - \text{Se}(2) & 1.9171(15) & \text{C}(51) - \text{C}(53) & 1.518(9) \\ & \text{Se}(2) - \text{Se}(1) - \text{Se}(2) & 11.6489(12) \\ & \text{Se}(1) - \text{Se}(2) & \text{Se}(1) - \text{Se}(2) & 116.88(12) \\ & \text{C}(5) + \text{Te}(1) - \text{C}(1) & 1 & 40.65(17) & \text{C}(1) + \text{Te}(1) - \text{Se}(2) & 150.42(13) \\ & \text{C}(5) + \text{Te}(1) - \text{C}(1) \# 1 & 67.93(16) & \text{C}(1) \# 1 + \text{Fe}(1) - \text{Se}(2) & 150.42(13) \\ & \text{C}(5) - \text{Fe}(1) - \text{C}(1) & 1 & 10.62(2) & 156.32(2) \\ & \text{C}(5) - \text{Fe}(1) - \text{C}(2) & 153.88(12) & \text{C}(5) - \text{Fe}(1) - \text{Se}(2) & 156.34(24) \\ & \text{C}(5) + \text{Te}(1) - \text{C}(1) & 41.0(2) & \text{P}(2) - \text{Fe}(1) - \text{Se}(2) & 47.38(4) \\ & \text{C}(1) + \text{Te}(1) - \text{C}(1) & 43.06(14) & \text{Se}(1) + \text{Te}(1) - \text{Se}(2) & 47.38(4) \\ & \text{C}(1) + \text{Te}(1) - \text{C}(1) & 43.66(14) & \text{Se}(1) + \text{Te}(1) - \text{Se}(2) & 47.38(4) \\ & \text{C}(1) + \text{Te}(1) - \text{C}(1) & 41.0(2) & \text{P}(2) - \text{Fe}(1) - \text{P}(1) + 11 152.20(12) & 47.38(4) \\ & \text{C}(1) + \text{Te}(1) - \text{C}(1) & 41.0(2) & \text{P}(2) - \text{Fe}(1) - \text{P}(1) + 11 152.20(1) & 126(1) + 16(1) - 16(1) + 11(1)(1)(1)(2)(2)(1) + 16(1) - 16(1)(1)(1)(2)(2)(1)(1)(1)(2)(2)(2)(1)(1)(1)(2)(2)(2)(2)(2)(2)(2)(2)(2)(2$	Fe(2) - C(6) #1	2.082(4)		C(21) - C(23)	1.503(10)	
$\begin{split} & \text{Fe}(2) - \text{Fe}(1) & 2.340(2) & \text{C}(21) - \text{C}(24) & 1.503(6) \\ & \text{Fe}(2) - \text{Se}(1) & 2.3733(11) & \text{C}(33) - \text{C}(33) & 1.528(6) \\ & \text{Fe}(2) - \text{Se}(2) & 12.4107(12) & \text{C}(31) - \text{C}(33) & 1.528(6) \\ & \text{Fe}(2) - \text{Se}(2) & 2.4108(12) & \text{C}(41) - \text{C}(42) & 1.505(9) \\ & \text{Fe}(2) - \text{Fe}(1) & 2.433(3) & \text{C}(41) - \text{C}(43) & 1.528(7) \\ & \text{Se}(1) - \text{Fe}(2) & 2.4108(12) & \text{C}(51) - \text{C}(53) & 1.518(9) \\ & \text{Se}(1) - \text{Fe}(2) & 2.1355(16) & \text{C}(51) - \text{C}(53) & 1.518(9) \\ & \text{Se}(1) - \text{Se}(2) & 1.9171(15) & \text{C}(51) - \text{C}(53) & 1.518(9) \\ & \text{Se}(1) - \text{Fe}(2) & 2.1355(16) & \text{C}(51) - \text{C}(52) & 11 & 1.528(6) \\ & \text{Se}(2) - \text{Se}(2) + 1 & 1.8495(19) & \text{C}(51) - \text{C}(52) & 11 & 1.528(6) \\ & \text{Se}(2) - \text{Se}(1) - \text{C}(1) & 1 & 67.93(16) & \text{C}(1) & \text{H} - \text{Fe}(1) - \text{Se}(2) & 116.48(12) \\ & \text{C}(5) & \text{H} - \text{Fe}(1) - \text{C}(1) & 1 & 67.93(16) & \text{C}(1) & \text{H} - \text{Fe}(1) - \text{Se}(2) & 116.48(12) \\ & \text{C}(5) & \text{H} - \text{Fe}(1) - \text{C}(1) & 41.0(2) & \text{Fe}(2) - \text{Se}(2) & 91.642(10) \\ & \text{C}(5) - \text{Fe}(1) - \text{C}(1) & 40.65(17) & \text{C}(4) - \text{Fe}(1) - \text{Se}(2) & 116.48(12) \\ & \text{C}(5) - \text{Fe}(1) - \text{C}(1) & 40.65(17) & \text{C}(4) - \text{Fe}(1) - \text{Se}(2) & 116.48(12) \\ & \text{C}(5) - \text{Fe}(1) - \text{C}(1) & 40.65(17) & \text{C}(4) - \text{Fe}(1) - \text{Se}(2) & 116.48(12) \\ & \text{C}(5) - \text{Fe}(1) - \text{C}(4) & 39.66(14) & \text{Se}(1) + \text{H} - \text{Fe}(1) - \text{Se}(2) & 14.3(6) \\ & \text{C}(5) - \text{Fe}(1) - \text{C}(4) & 39.66(14) & \text{Se}(1) + \text{Fe}(1) - \text{Se}(2) & 44.84(5) \\ & \text{C}(1) + \text{T} - \text{Fe}(1) - \text{Se}(2) & 47.38(4) \\ & \text{C}(1) + \text{T} - \text{Fe}(1) - \text{C}(4) & 48.28(19) & \text{C}(5) + \text{T} - \text{Fe}(1) - \text{Fe}(1) - \text{Se}(2) & 47.38(4) \\ & \text{C}(1) + \text{T} - \text{Fe}(1) - \text{C}(1) + 1 & 152.36(12) \\ & \text{C}(5) + \text{T} - \text{Fe}(1) - \text{P}(1) + 1 & 152.36(12) \\ & \text{C}(5) + \text{T} - \text{Fe}(1) - \text{P}(1) + 1 & 152.36(12) \\ & \text{C}(5) + \text{T} - \text{Fe}(1) - \text{P}(1) + 1 & 132.27(12) \\ & \text{C}(5) + \text{T} - \text{Fe}(1) - \text{P}(1) + 1 & 132.27(12) \\ & \text{C}(5) + \text{T} - \text{Fe}(1) - \text{P}(1) + 1 & 132.27(12) \\ & \text{C}(5) + \text{T} - \text{Fe}(1) - \text{Se}(1) + 1 & 152.36(12) \\ & \text{C}(5) + \text{T} $	Fe(2)-C(9)	2.099(5)		C(21)-C(22)	1.506(7)	
$\begin{split} & \text{Fe}(2) - \text{Se}(1) \# 1 & 2.3733 (11) \\ & \text{Fe}(2) - \text{Se}(2) \# 1 & 2.4107 (12) \\ & \text{Fe}(2) - \text{Se}(2) \# 1 & 2.4107 (12) \\ & \text{Fe}(2) - \text{Se}(2) & 2.4108 (12) \\ & \text{Fe}(2) - \text{Se}(2) & 2.4108 (12) \\ & \text{Fe}(2) - \text{Fe}(1) - \text{C}(3) & 1.506 (9) \\ & \text{Fe}(2) - \text{Fe}(1) \# 1 & 2.433 (3) \\ & \text{C}(41) - \text{C}(42) & 1.505 (9) \\ & \text{Fe}(2) - \text{Fe}(1) & 2.433 (3) \\ & \text{C}(41) - \text{C}(42) & 1.528 (7) \\ & \text{Se}(1) - \text{Se}(2) & 1.947 (15) \\ & \text{Se}(1) - \text{Se}(2) & 1.947 (15) \\ & \text{Se}(1) - \text{Se}(2) & 1.9485 (19) \\ & \text{Se}(2) - \text{Se}(2) & 1.9485 (19) \\ & \text{Se}(2) - \text{Se}(2) & 1.18485 (19) \\ & \text{Se}(2) - \text{Se}(2) & 1.18485 (19) \\ & \text{Se}(2) - \text{Se}(2) & 1.18485 (19) \\ & \text{Se}(2) - \text{Fe}(1) - \text{C}(5) & 66.4 (2) \\ & \text{C}(5) \# - \text{Fe}(1) - \text{Se}(2) & 115.848 (6) \\ & \text{Se}(2) - \text{Se}(2) & 11.48495 (19) \\ & \text{C}(5) \# - \text{Fe}(1) - \text{C}(1) \# 1 & 40.65 (17) \\ & \text{C}(5) - \text{Fe}(1) - \text{Se}(2) & 115.848 (6) \\ & \text{C}(5) \# - \text{Fe}(1) - \text{C}(1) & 40.65 (17) \\ & \text{C}(5) - \text{Fe}(1) - \text{Se}(2) & 116.88 (12) \\ & \text{C}(5) \# - \text{Fe}(1) - \text{C}(1) & 41.065 (17) \\ & \text{C}(5) \# - \text{Fe}(1) - \text{Se}(2) & 114.36 (6) \\ & \text{C}(1) \# - \text{Fe}(1) - \text{Se}(2) & 114.36 (6) \\ & \text{C}(1) \# - \text{Fe}(1) - \text{Se}(2) & 114.36 (6) \\ & \text{C}(1) \# - \text{Fe}(1) - \text{Se}(2) & 114.36 (6) \\ & \text{C}(1) \# - \text{Fe}(1) - \text{Se}(2) & 14.36 (6) \\ & \text{C}(5) \# - \text{Fe}(1) - \text{C}(4) & 39.66 (14) & \text{Se}(1) \# - \text{Fe}(1) - \text{Se}(2) & 44.84 (5) \\ & \text{C}(1) - \text{Fe}(1) - \text{C}(4) & 68.28 (19) & \text{C}(5) \# - \text{Fe}(1) - \text{Se}(2) & 44.84 (5) \\ & \text{C}(5) \# - \text{Fe}(1) - \text{C}(2) & 114.55 (13) & \text{C}(5) \# - \text{Fe}(1) - \text{P}(1) \# 1 & 52.36 (13) \\ & \text{C}(5) \# - \text{Fe}(1) - \text{P}(2) & 114.55 (13) & \text{C}(5) \# - \text{Fe}(1) - \text{P}(1) \# 1 & 52.36 (13) \\ & \text{C}(5) \# - \text{Fe}(1) - \text{P}(2) & 114.55 (13) & \text{C}(5) \# - \text{Fe}(1) - \text{P}(1) \# 1 & 152.36 (13) \\ & \text{C}(5) \# - \text{Fe}(1) - \text{P}(2) & 114.55 (13) & \text{C}(1) \# - \text{Fe}(1) - \text{P}(1) \# 1 & 52.36 (13) \\ & \text{C}(5) \# - \text{Fe}(1) - \text{P}(1) \# 1 & 152.36 (13) \\ & \text{C}(5) \# - \text{Fe}(1) - \text{P}(1) \# 1 & 152.36 (13) \\ & \text{C}(5) \# - \text{Fe}(1) - \text{P}(1) \# 1 & 152.36 (13) \\ & \text{C}(5) \# $	Fe(2)-P(2)	2.340(2)		C(21)-C(24)	1.503(8)	
$\begin{split} & \text{Pe}(2) - \text{Se}(1) & 2.3733(11) \\ & \text{Pe}(2) - \text{Se}(2) & 2.4108(12) \\ & \text{Pe}(2) - \text{Se}(2) & 2.4108(12) \\ & \text{Pe}(2) - \text{P}(1) & 1.2433(3) \\ & \text{C}(41) - \text{C}(42) & 1.550(9) \\ & \text{Pe}(2) - \text{P}(1) & 2.433(3) \\ & \text{C}(41) - \text{C}(42) & 1.528(6) \\ & \text{Se}(1) - \text{Se}(2) & 1.9171(15) \\ & \text{Se}(1) - \text{Se}(2) & 1.9171(15) \\ & \text{Se}(1) - \text{Se}(2) & 1.518(4) \\ & \text{Se}(1) - \text{Se}(2) & 1.518(5) \\ & \text{Se}(2) - \text{Se}(2) & 1.255(16) \\ & \text{C}(51) - \text{C}(52) & 1.518(6) \\ & \text{Se}(2) - \text{Se}(2) & 1.258(6) \\ & \text{Se}(2) - \text{Se}(2) & 1.2355(16) \\ & \text{C}(51) - \text{C}(52) & 1.528(6) \\ & \text{Se}(2) - \text{Se}(2) & 1.284(3) \\ & \text{Se}(1) - \text{Pe}(1) - \text{C}(1) & 1.4495(19) \\ & \text{C}(5) \# 1 - \text{Fe}(1) - \text{Se}(2) \\ & \text{II.528(6)} \\ & \text{Se}(2) - \text{Se}(1) - \text{C}(1) & \text{II.4495(19)} \\ & \text{C}(5) \# 1 - \text{Fe}(1) - \text{Se}(2) \\ & \text{II.528(6)} \\ & \text{Se}(2) - \text{Se}(1) - \text{C}(1) & \text{II.4495(19)} \\ & \text{C}(5) \# 1 - \text{Fe}(1) - \text{Se}(2) \\ & \text{II.528(6)} \\ & \text{Se}(2) - \text{Se}(1) - \text{C}(1) & \text{II.4495(17)} \\ & \text{C}(5) \# 1 - \text{Fe}(1) - \text{Se}(2) \\ & \text{II.50.42(13)} \\ & \text{C}(5) \# 1 - \text{Fe}(1) - \text{C}(1) & \text{II.678(11)} \\ & \text{Se}(2) \\ & \text{II.51.78(1)} \\ & \text{C}(1) \# 1 - \text{Fe}(1) - \text{Se}(2) \\ & \text{II.438(4)} \\ & \text{C}(5) \# 1 - \text{Fe}(1) - \text{C}(4) \\ & \text{II.51.78(11)} \\ & \text{Se}(1) \# 1 - \text{Fe}(1) - \text{Se}(2) \\ & \text{II.438(4)} \\ & \text{C}(5) \# 1 - \text{Fe}(1) - \text{C}(4) \\ & \text{II.455(13)} \\ & \text{C}(1) \# 1 - \text{Fe}(1) - \text{Se}(2) \\ & \text{II.438(4)} \\ & \text{C}(1) - \text{Fe}(1) - \text{C}(1) + \text{II.152.70(13)} \\ & \text{C}(1) \# 1 - \text{Fe}(1) - \text{C}(1) \# 1 \\ & \text{II.22.70(13)} \\ & \text{C}(1) + \text{Te}(1) - \text{P}(2) \\ & \text{II.455(13)} \\ & \text{C}(1) - \text{Fe}(1) - \text{C}(1) \# 1 \\ & \text{II.22.70(13)} \\ & \text{C}(1) - \text{Fe}(1) - \text{C}(1) \# 1 \\ & \text{II.22.70(13)} \\ & \text{C}(1) - \text{Fe}(1) - \text{C}(1) \# 1 \\ & \text{II.22.70(13)} \\ & \text{C}(1) + \text{Te}(1) - \text{P}(1) + \text{II.122.70(13)} \\ & \text{C}(1) - \text{Fe}(1) - \text{P}(1) + \text{II.112.2.70(13)} \\ & \text{C}(1) - \text{Fe}(1) - \text{C}(1) \# 1 \\ & \text{II.22.70(13)} \\ & \text{C}(1) - \text{Fe}(1) - \text{C}(1) + \text{II.1112.2.70(13)} \\ & \text{C}(1) - \text{Fe}(1) - \text{P}(1) + \text{II.112.2.70(13)} \\ & \text{C}(1) - \text{Fe}(1) - \text{C}(1) + II.1111$	Fe(2)-Se(1)#1	2.3733(11)		C(31)-C(33)	1.528(6)	
$\begin{array}{llllllllllllllllllllllllllllllllllll$	Fe(2) - Se(1)	2.3733(11)		C(31) - C(33) #1	1.528(6)	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Fe(2) - Se(2) # I Fo(2) - So(2)	2.4107(12)		C(31) = C(32) C(41) = C(42)	1.541(10) 1 505(9)	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Fe(2) - Fe(2) Fe(2) - P(1) #1	2.433(3)		C(41) - C(42) C(41) - C(43)	1.505(9) 1.506(9)	
$\begin{split} & se(1) - Se(2) & 1.9171(15) \\ & Se(1) - P(2) & 2.3155(16) \\ & Se(2) - Se(2) \# 1 & 1.8495(19) \\ & Se(2) - Se(2) \# 1 & 1.8495(19) \\ & Se(2) - Se(2) \# 1 & 1.8495(19) \\ & Se(2) - Se(2) \# 1 & 1.8495(19) \\ & Se(2) - Se(2) \# 1 & 1.8495(19) \\ & Se(2) - Se(2) \# 1 & 1.8495(19) \\ & Se(2) - Se(2) \# 1 & 1.6495(19) \\ & Se(2) - Se(1) - C(1) \# 1 & 40.65(17) \\ & C(5) - Fe(1) - C(1) \# 1 & 40.65(17) \\ & C(5) - Fe(1) - C(1) \# 1 & 40.65(17) \\ & C(5) - Fe(1) - C(1) & 41.65(17) \\ & C(5) - Fe(1) - C(1) & 40.65(17) \\ & C(5) - Fe(1) - C(1) & 40.65(17) \\ & C(5) - Fe(1) - C(1) & 40.65(17) \\ & C(5) - Fe(1) - C(1) & 41.0(2) \\ & C(5) - Fe(1) - C(4) & 39.66(14) \\ & Se(1) + Fe(1) - Se(2) & 47.38(4) \\ & C(1) - Fe(1) - C(4) & 39.66(14) \\ & Se(1) + Fe(1) - Se(2) & 47.38(4) \\ & C(1) - Fe(1) - C(4) & 68.28(19) \\ & Se(2) \# 1 - Fe(1) - Se(2) & 47.38(4) \\ & C(1) - Fe(1) - C(4) & 68.28(19) \\ & Se(2) \# 1 - Fe(1) - P(1) \# 1 & 152.32(15) \\ & C(5) - Fe(1) - P(2) & 114.55(13) \\ & C(5) - Fe(1) - P(1) - Fe(1) - P(1) \# 1 & 152.70(13) \\ & C(5) - Fe(1) - P(2) & 153.88(12) \\ & C(1) - Fe(1) - P(2) & 153.88(12) \\ & C(1) - Fe(1) - P(2) & 153.88(12) \\ & C(1) - Fe(1) - P(1) - P(1) \# 1 & 152.70(13) \\ & Se(1) \# 1 - Fe(1) - P(1) \# 1 & 152.50(13) \\ & Se(1) \# 1 - Fe(1) - P(1) \# 1 & 152.30(15) \\ & C(5) - Fe(1) - Se(1) \# 1 & 40.646(12) \\ & Se(2) \# 1 - Fe(1) - P(1) \# 1 & 52.38(12) \\ & C(1) - Fe(1) - Se(1) \# 1 & 40.84(11) \\ & C(5) - Fe(1) - P(1) \# 1 & 55.3(13) \\ & C(1) - Fe(1) - Se(1) \# 1 & 40.84(11) \\ & C(5) - Fe(1) - P(1) = 11 & 55.3(13) \\ & C(1) - Fe(1) - Se(1) \# 1 & 40.84(11) \\ & C(1) - Fe(1) - P(1) = 11 & 55.3(13) \\ & C(1) - Fe(1) - Se(1) \# 1 & 40.84(11) \\ & C(1) - Fe(1) - P(1) = 11 & 55.3(13) \\ & C(1) - Fe(1) - Se(1) \# 1 & 40.84(11) \\ & C(1) - Fe(1) - P(1) = 11 & 55.3(13) \\ & C(1) - Fe(1) - Se(1) \# 1 & 108.84(11) \\ & C(1) - Fe(1) - P(1) = 10 & 32.3(12) \\ & C(1) + Fe(1) - Se(1) & 109.3(13) \\ & C(1) - Fe(1) - Se(1) & 109.3(13) \\ & C(1) - Fe(1) - Se(1) & 109.3(13) \\ & C(1) - Fe(1) - Se(1) & 109.3(13) \\ & C(1) - Fe(1) - Se(1) & 109.3(13) \\ & C(1) - Fe(1) - Se(1) & 109.4$	Fe(2) - P(1)	2.433(3)		C(41) - C(44)	1.528(7)	
$\begin{split} & (2) - P(2) & 2.3155(16) & C(51) - C(52) & 1.528(6) \\ & (2) - Se(2) \# 1 & 1.8495(19) & C(51) - C(52) \# 1 & 1.528(6) \\ & (2) - P(1) & 2.284(3) & C(51) - C(52) \# 1 & 1.528(6) \\ & (2) - P(1) & 2.284(3) & C(51) - C(52) \# 1 & 1.528(6) \\ & (2) - P(1) - C(1) \# 1 & 40.65(17) & C(5) - Fe(1) - Se(2) & 150.42(13) \\ & (2) - Fe(1) - C(1) \# 1 & 67.93(16) & C(1) \# 1 - Fe(1) - Se(2) & 150.42(13) \\ & (2) - Fe(1) - C(1) \# 1 & 67.93(16) & C(1) \# 1 - Fe(1) - Se(2) & 150.42(13) \\ & (2) - Fe(1) - C(1) \# 1 & 67.94(16) & C(1) - Fe(1) - Se(2) & 150.49(6) \\ & (2) - Fe(1) - C(1) & 40.65(17) & C(4) - Fe(1) - Se(2) & 91.43(6) \\ & (2) - Fe(1) - C(1) & 41.0(2) & P(2) - Fe(1) - Se(2) & 91.43(6) \\ & (2) - Fe(1) - C(4) & 39.66(14) & Se(1) \# 1 - Fe(1) - Se(2) & 41.48(6) \\ & (2) - Fe(1) - C(4) & 68.28(19) & Se(2) \# 1 - Fe(1) - Se(2) & 44.84(5) \\ & (2) - Fe(1) - C(4) & 68.28(19) & C(5) - Fe(1) - P(1) \# 1 & 152.32(15) \\ & (2) - Fe(1) - P(2) & 114.55(13) & C(5) - Fe(1) - P(1) \# 1 & 152.70(13) \\ & (2) - Fe(1) - P(2) & 153.88(12) & C(1) - Fe(1) - P(1) \# 1 & 152.70(13) \\ & (2) - Fe(1) - P(2) & 153.88(12) & C(1) - Fe(1) - P(1) \# 1 & 112.26(12) \\ & (2) - Fe(1) - P(2) & 153.88(12) & C(1) - Fe(1) - P(1) \# 1 & 113.27(12) \\ & (2) - Fe(1) - P(2) & 153.88(12) & C(1) - Fe(1) - P(1) \# 1 & 113.27(12) \\ & (2) - Fe(1) - Se(1) \# 1 & 159.50(13) & Se(1) + Fe(1) - P(1) \# 1 & 152.86(7) \\ & (5) - Fe(1) - Se(1) \# 1 & 199.50(13) & Se(1) + Fe(1) - P(1) \# 1 & 152.86(7) \\ & (2) - Fe(1) - Se(1) \# 1 & 199.50(13) & C(1) - Fe(1) - P(1) \# 1 & 152.86(7) \\ & (2) - Fe(1) - Se(1) \# 1 & 199.50(13) & C(1) + Fe(1) - P(1) \# 1 & 153.86(8) \\ & (2) - Fe(1) - Se(1) \# 1 & 199.50(13) & C(1) + Fe(1) - P(1) \# 1 & 89.37(8) \\ & (2) - Fe(1) - Se(1) \# 1 & 199.50(13) & C(1) - Fe(1) - P(1) \# 1 & 89.37(8) \\ & (2) - Fe(1) - Se(1) \# 1 & 199.50(13) & C(1) - Fe(1) - P(1) & 152.23(17) \\ & (2) - Fe(1) - Se(1) & 113.95.50(13) & C(1) - Fe(1) - P(1) & 132.70(13) \\ & (2) - Fe(1) - Se(1) & 113.95.50(13) & C(1) - Fe(1) - P(1) & 132.70(13) \\ & (2) - Fe(1) - Se(1) & 113.95.50(13) & C(1) - Fe(1) - P(1) & 152.23(7$	Se(1)-Se(2)	1.9171(15)		C(51)-C(53)	1.518(9)	
$\begin{split} & \text{Se}\left(2\right) - \text{Se}\left(2\right) + \text{H}\left(1\right) - \text{C}\left(5\right) & 1 & 1.6495 (19) \\ & \text{Se}\left(2\right) - \text{P}\left(1\right) & 2.284 (3) \\ \\ & \text{C}\left(5\right) + \text{H}_{1} - \text{Fe}\left(1\right) - \text{C}\left(5\right) & 66.4 (2) \\ & \text{C}\left(5\right) + \text{H}_{1} - \text{Fe}\left(1\right) - \text{Se}\left(2\right) & 116.88 (12) \\ & \text{C}\left(5\right) + \text{H}_{1} - \text{Fe}\left(1\right) - \text{C}\left(1\right) + 1 & 40.65 (17) \\ & \text{C}\left(5\right) - \text{Fe}\left(1\right) - \text{C}\left(1\right) + 1 & 67.93 (16) \\ & \text{C}\left(1\right) + \text{H}_{1} - \text{Fe}\left(1\right) - \text{Se}\left(2\right) & 150.42 (13) \\ & \text{C}\left(5\right) + \text{Fe}\left(1\right) - \text{C}\left(1\right) & 67.94 (16) \\ & \text{C}\left(1\right) + \text{Te}\left(1\right) - \text{Se}\left(2\right) & 150.42 (13) \\ & \text{C}\left(5\right) + \text{Fe}\left(1\right) - \text{C}\left(1\right) & 41.0 (2) \\ & \text{P}\left(2\right) - \text{Fe}\left(1\right) - \text{Se}\left(2\right) & 150.43 (14) \\ & \text{Se}\left(1\right) + \text{Fe}\left(1\right) - \text{Se}\left(2\right) & 150.43 (14) \\ & \text{Se}\left(1\right) + \text{Fe}\left(1\right) - \text{Se}\left(2\right) & 150.43 (14) \\ & \text{C}\left(5\right) + 1 - \text{Fe}\left(1\right) - \text{C}\left(4\right) & 40.65 (17) \\ & \text{C}\left(4\right) + \text{Fe}\left(1\right) - \text{Se}\left(2\right) & 114.35 (14) \\ & \text{Se}\left(1\right) + \text{Fe}\left(1\right) - \text{Se}\left(2\right) & 143.86 (14) \\ & \text{Se}\left(1\right) + \text{Fe}\left(1\right) - \text{Se}\left(2\right) & 43.84 (4) \\ & \text{C}\left(1\right) + \text{Fe}\left(1\right) - \text{C}\left(4\right) & 68.28 (19) \\ & \text{C}\left(5\right) + 1 - \text{Fe}\left(1\right) - \text{P}\left(1\right) + 1 & 152.32 (15) \\ & \text{C}\left(5\right) + 1 - \text{Fe}\left(1\right) - \text{P}\left(2\right) & 144.55 (13) \\ & \text{C}\left(5\right) - \text{Fe}\left(1\right) - \text{P}\left(1\right) + 1 & 152.7 (13) \\ & \text{C}\left(1\right) - \text{Fe}\left(1\right) - \text{P}\left(2\right) & 114.55 (13) \\ & \text{C}\left(1\right) - \text{Fe}\left(1\right) - \text{P}\left(1\right) + 1 & 152.7 (12) \\ & \text{C}\left(1\right) - \text{Fe}\left(1\right) - \text{P}\left(2\right) & 153.88 (12) \\ & \text{C}\left(1\right) - \text{Fe}\left(1\right) - \text{P}\left(1\right) + 1 & 122.2 (17) \\ & \text{C}\left(1\right) - \text{Fe}\left(1\right) - \text{P}\left(2\right) + 1 & 153.8 (12) \\ & \text{C}\left(1\right) - \text{Fe}\left(1\right) - \text{P}\left(1\right) + 1 & 13.27 (12) \\ & \text{C}\left(1\right) - \text{Fe}\left(1\right) - \text{Se}\left(1\right) + 1 & 153.38 (12) \\ & \text{C}\left(1\right) - \text{Fe}\left(1\right) - \text{P}\left(1\right) + 1 & 13.27 (12) \\ & \text{C}\left(1\right) - \text{Fe}\left(1\right) - \text{Se}\left(1\right) + 1 & 153.3 (11) \\ & \text{Se}\left(1\right) - \text{Fe}\left(1\right) - \text{P}\left(1\right) + 1 & 153.3 (12) \\ & \text{C}\left(1\right) - \text{Fe}\left(1\right) - \text{P}\left(1\right) + 1 & 153.3 (12) \\ & \text{C}\left(1\right) - \text{Fe}\left(1\right) - \text{P}\left(1\right) + 1 & 153.3 (12) \\ & \text{C}\left(1\right) - \text{Fe}\left(1\right) - \text{P}\left(1\right) + 1 & 153.3 (12) \\ & \text{C}\left(1\right) - \text{Fe}\left(1\right) - \text{P}\left(1\right) + 1 & 153.3 (13) \\ & \text{Se}\left(2\right) + 1 - \text{Fe}\left(1\right) - \text{P}\left(1\right) + 1 & 153.3 (13) \\ & \text{Se}\left(1$	Se(1)-P(2)	2.3155(16)		C(51)-C(52)	1.528(6)	
$\begin{split} & Se(2) - P(1) & 2.284(3) \\ & C(5) \#1 - Fe(1) - C(5) & 66.4(2) & C(5) \#1 - Fe(1) - Se(2) & 116.88(12) \\ & C(5) \#1 - Fe(1) - C(1) \#1 & 40.65(17) & C(5) - Fe(1) - Se(2) & 150.42(13) \\ & C(5) - Fe(1) - C(1) & 40.65(17) & C(1) - Fe(1) - Se(2) & 150.42(13) \\ & C(5) - Fe(1) - C(1) & 40.65(17) & C(4) - Fe(1) - Se(2) & 150.43(16) \\ & C(1) \#1 - Fe(1) - C(1) & 41.0(2) & P(2) - Fe(1) - Se(2) & 156.19(6) \\ & C(5) + Fe(1) - C(1) & 41.0(2) & P(2) - Fe(1) - Se(2) & 91.43(6) \\ & C(5) + Fe(1) - C(4) & 39.66(14) & Se(1) + Fe(1) - Se(2) & 47.38(4) \\ & C(5) + Fe(1) - C(4) & 68.28(19) & Se(2) \#1 - Fe(1) - Se(2) & 44.84(5) \\ & C(1) + Fe(1) - C(4) & 68.28(19) & Se(2) \#1 - Fe(1) - Se(2) & 44.84(5) \\ & C(1) + Fe(1) - C(4) & 68.28(19) & Se(2) \#1 - Fe(1) - P(1) \#1 & 152.32(15) \\ & C(5) + Fe(1) - P(2) & 114.55(13) & C(5) + Fe(1) - P(1) \#1 & 152.32(15) \\ & C(5) + Fe(1) - P(2) & 114.55(13) & C(1) + Fe(1) - P(1) \#1 & 152.70(13) \\ & C(5) + Fe(1) - P(2) & 153.88(12) & C(1) - Fe(1) - P(1) \#1 & 152.70(13) \\ & C(1) - Fe(1) - P(2) & 96.69(16) & P(2) - Fe(1) - P(1) \#1 & 152.22(87) \\ & C(5) - Fe(1) - Se(1) \#1 & 159.50(13) & Se(1) \#1 - Fe(1) - P(1) \#1 & 52.28(7) \\ & C(5) + Fe(1) - Se(1) \#1 & 108.44(11) & Se(2) - Fe(1) - P(1) \#1 & 55.88(13) \\ & C(1) - Fe(1) - Se(1) \#1 & 109.50(13) & C(1) \#1 - Fe(1) - P(1) \#1 & 55.88(13) \\ & C(1) - Fe(1) - Se(1) \#1 & 109.50(13) & C(1) \#1 - Fe(1) - P(1) \#1 & 55.38(13) \\ & C(4) - Fe(1) - Se(1) \#1 & 109.50(13) & C(1) \#1 - Fe(1) - P(1) \#1 & 55.38(13) \\ & C(4) - Fe(1) - Se(1) \#1 & 109.50(13) & C(1) + Fe(1) - P(1) \#1 & 55.38(13) \\ & C(5) + Fe(1) - Se(1) \#1 & 109.50(13) & C(1) + Fe(1) - P(1) & 152.70(13) \\ & C(1) - Fe(1) - Se(1) & 110.59.50(13) & C(1) + Fe(1) - P(1) & 152.70(13) \\ & C(1) - Fe(1) - Se(1) & 106.44(11) & C(4) - Fe(1) - P(1) & 152.70(13) \\ & C(1) - Fe(1) - Se(1) & 106.44(12) & P(2) - Fe(1) - P(1) & 152.70(13) \\ & C(1) - Fe(1) - Se(1) & 106.44(12) & P(2) - Fe(1) - P(1) & 152.70(13) \\ & C(1) - Fe(1) - Se(1) & 106.44(12) & P(2) - Fe(1) - P(1) & 105.23(16) \\ & C(5) + Fe(1) - Se(2) \#1 & 150.43(13) & Se(2) - Fe(1) $	Se(2)-Se(2)#1	1.8495(19)		C(51)-C(52)#1	1.528(6)	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Se(2) - P(1)	2.284(3)				
$\begin{array}{llllllllllllllllllllllllllllllllllll$	C(5)#1-Fe(1)-C(5)		66.4(2)	C(5)#1-Fe(1)-Se	(2)	116.88(12)
$\begin{array}{llllllllllllllllllllllllllllllllllll$	C(5) #1-Fe(1) -C(1)	#1	40.65(17)	C(5) - Fe(1) - Se(2))	150.42(13)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(5) - Fe(1) - C(1) # I	L	67.93(16)	C(1) #I - Fe(1) - Se C(1) Fe(1) Ce(2)	(2)	95.23 (12)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(5) = Fe(1) = C(1)		40, 65(17)	C(1) - Fe(1) - Se(2) C(4) - Fe(1) - Se(2))	110.98(13) 156 19(6)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(1) #1-Fe(1) -C(1)		41.0(2)	P(2) - Fe(1) - Se(2))	91.43(6)
$\begin{array}{llllllllllllllllllllllllllllllllllll$	C(5) #1-Fe(1) -C(4)		39.66(14)	Se(1)#1-Fe(1)-Se	e(2)	83.49(4)
$\begin{array}{llllllllllllllllllllllllllllllllllll$	C(5)-Fe(1)-C(4)		39.66(14)	Se(1)-Fe(1)-Se(2	2)	47.38(4)
$\begin{array}{llllllllllllllllllllllllllllllllllll$	C(1) #1-Fe(1) -C(4)		68.28(19)	Se(2)#1-Fe(1)-Se	e(2)	44.84(5)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(1) - Fe(1) - C(4) C(F) = Fe(1) - C(4)		68.28(19)	C(5) #I - Fe(1) - P(1)	L) #L 41	152.32(15)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(5) = Fe(1) = P(2) C(5) = Fe(1) = P(2)		114.55(13) 114.55(13)	C(3) = Fe(1) = P(1) =	+⊥ 1 \	35.55(13) 152 70(13)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(1) #1-Fe(1) -P(2)		153.88(12)	C(1) = Fe(1) = P(1)	±/ #± #1	112.60(12)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(1)-Fe(1)-P(2)		153.88(12)	C(4) -Fe(1) -P(1)	#1	113.27(12)
$\begin{array}{llllllllllllllllllllllllllllllllllll$	C(4)-Fe(1)-P(2)		96.69(16)	P(2)-Fe(1)-P(1);	#1	52.28(7)
$\begin{array}{llllllllllllllllllllllllllllllllllll$	C(5) #1-Fe(1) -Se(1)	L)#1	159.50(13)	Se(1)#1-Fe(1)-P	(1)#1	8.93(8)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(5) - Fe(1) - Se(1) =	‡1	97.33(11)	Se(1) - Fe(1) - P(1))#1 (1)//1	94.44(7)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$C(1) = T_{C}(1) = S_{C}(1) + S_{C}(1) = S_{C}(1) + S_{C}(1) = S_{C}(1) + S_$	L) #⊥ +1	146.46(12) 109 44(11)	Se(2) #I - Fe(1) - P So(2) - Fo(1) - D(1)	(⊥)#⊥ \#1	55.88(8) 00 27(0)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(4) - Fe(1) - Se(1) =	+⊥ ±1	119.85(9)	C(5) #1 - Fe(1) - P(1)	/ # 1)	95,53(13)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	P(2) - Fe(1) - Se(1) =	;_ ‡1	59.41(4)	C(5) - Fe(1) - P(1)		152.32(15)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(5) #1-Fe(1) -Se(1	L)	97.33 (12)	C(1) #1-Fe(1) -P(2	1)	112.60(12)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(5) - Fe(1) - Se(1)		159.50(13)	C(1)-Fe(1)-P(1)		152.70(13)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(1)#1-Fe(1)-Se(1	L)	108.44(11)	C(4) - Fe(1) - P(1)		113.27(12)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(1) - Fe(1) - Se(1)		146.46(12)	P(2) - Fe(1) - P(1)	(1)	52.28(7)
1(2) $1(2)$ $1(2$	C(4) - re(1) - Se(1) D(2) - Fe(1) - Ce(1)		119.00(9) 59 41 (4)	Se(I) = Fe(I) = P(I)	(<i>⊥)</i>	94.44(/) 8 92(9)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Se(1) #1-Fe(1) - Se(1)	(1)	95.29(5)	Se(2) #1 - Fe(1) - P(1)	, (1)	89,36(8)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(5) #1-Fe(1)-Se(2)	(_, 2)#1	150.43(13)	Se(2) - Fe(1) - P(1))	55.88(8)
C(1) #1-Fe(1)-Se(2)#1 $110.98(13)$ $C(10)-Fe(2)-C(10)#1$ $66.2(2)$ $C(1)-Fe(1)-Se(2)#1$ $95.23(12)$ $C(10)-Fe(2)-C(6)$ $40.42(16)$ $C(4)-Fe(1)-Se(2)#1$ $156.19(6)$ $C(10)#1-Fe(2)-C(6)$ $67.86(16)$ $P(2)-Fe(1)-Se(2)#1$ $91.42(6)$ $C(10)-Fe(2)-C(6)#1$ $67.86(16)$ $Se(1)#1-Fe(1)-Se(2)#1$ $47.38(4)$ $C(10)#1-Fe(2)-C(6)#1$ $40.42(16)$ $Se(1)-Fe(1)-Se(2)#1$ $83.49(4)$ $C(6)-Fe(2)-C(6)#1$ $41.2(2)$	C(5)-Fe(1)-Se(2) #	‡ 1	116.88(12)	P(1) #1-Fe(1) -P(1)	92.23 (13)
C(1) - Fe(1) - Se(2) # 1 $95.23(12)$ $C(10) - Fe(2) - C(6)$ $40.42(16)$ $C(4) - Fe(1) - Se(2) # 1$ $156.19(6)$ $C(10) # 1 - Fe(2) - C(6)$ $67.86(16)$ $P(2) - Fe(1) - Se(2) # 1$ $91.42(6)$ $C(10) - Fe(2) - C(6) # 1$ $67.86(16)$ $Se(1) # 1 - Fe(1) - Se(2) # 1$ $47.38(4)$ $C(10) # 1 - Fe(2) - C(6) # 1$ $40.42(16)$ $Se(1) - Fe(1) - Se(2) # 1$ $83.49(4)$ $C(6) - Fe(2) - C(6) # 1$ $41.2(2)$	C(1) #1-Fe(1) -Se(2	2)#1	110.98(13)	C(10)-Fe(2)-C(10)#1	66.2(2)
C(4) - Fe(1) - Se(2) # 1 $156.19(6)$ $C(10) # 1 - Fe(2) - C(6)$ $67.86(16)$ $P(2) - Fe(1) - Se(2) # 1$ $91.42(6)$ $C(10) - Fe(2) - C(6) # 1$ $67.86(16)$ $Se(1) # 1 - Fe(1) - Se(2) # 1$ $47.38(4)$ $C(10) # 1 - Fe(2) - C(6) # 1$ $40.42(16)$ $Se(1) - Fe(1) - Se(2) # 1$ $83.49(4)$ $C(6) - Fe(2) - C(6) # 1$ $41.2(2)$	C(1)-Fe(1)-Se(2)	‡1	95.23(12)	C(10) - Fe(2) - C(6))	40.42(16)
F(2) - Fe(1) - Se(2) # 1 $91.42(6)$ $C(10) - Fe(2) - C(6) # 1$ $67.86(16)$ $Se(1) # 1 - Fe(1) - Se(2) # 1$ $47.38(4)$ $C(10) # 1 - Fe(2) - C(6) # 1$ $40.42(16)$ $Se(1) - Fe(1) - Se(2) # 1$ $83.49(4)$ $C(6) - Fe(2) - C(6) # 1$ $41.2(2)$	C(4) - Fe(1) - Se(2) =	‡1	156.19(6)	C(10) #1-Fe(2) -C	(6) \	67.86(16)
Se(1) -Fe(1) -Se(2) #1 $83.49(4)$ C(6) -Fe(2) -C(6) #1 40.42 (10) Se(1) -Fe(2) -C(6) = 1 41.2 (2)	F(2) - Fe(1) - Se(2) = Se(1) = $Fe(1) - Se(2) =$	∓⊥ (つ)#1	91.42(6) 47 38(1)	C(10) - Fe(2) - C(6) C(10) + 1 - Fo(2) - C(6)	/ #⊥ (6) #1	6/.86(16) 40 /2(16)
	Se(1) - Fe(1) - Se(2)	∠/#± #1	83.49(4)	C(6) - Fe(2) - C(6)	() # <u>-</u> #1	41.2(2)

C(10) = C(2) = C(0)	20 (2)(14)	$D(1) C_{2}(2) E_{2}(2)$	(2) 2(7)
C(10) = Fe(2) = C(9)	39.63 (14)	P(1) - Se(2) - Fe(2)	02.30(7)
C(10)#1-Fe(2)-C(9)	39.63(14)	Se(2)#1-Se(2)-Fe(1)	67.58(2)
C(6) - Fe(2) - C(9)	68 24 (19)	Se(1) - Se(2) - Fe(1)	64 09(4)
C(0) = C(2) = C(3)	00.24(1))	D(1) D(2) T(1)	
C(6) #I - Fe(2) - C(9)	68.24(19)	P(1) - Se(2) - Fe(1)	62.62(8)
C(10)-Fe(2)-P(2)	114.67(12)	Fe(2)-Se(2)-Fe(1)	82.34(4)
$C(10) \# 1 - F_{\Theta}(2) - P(2)$	114 67(12)	$P(2) = P(1) = G_{P}(2)$	101 52(12)
C(10) #1 - Fe(2) - F(2)	114.07(12)	F(2) - F(1) - Be(2)	101.52(12)
C(6)-Fe(2)-P(2)	153.73(12)	P(2)-P(1)-Fe(2)	61.55(9)
$C(6) \pm 1 - Fe(2) - P(2)$	153 73(12)	$S_{P}(2) = P(1) = F_{P}(2)$	61 37(8)
C(0) = (0) D(0)		D(2) = 1(1) = (1)	
C(9) - Fe(2) - P(2)	96.69(18)	P(2) - P(1) - Fe(1)	60.92(9)
C(10) - Fe(2) - Se(1) # 1	98,20(11)	Se(2) - P(1) - Fe(1)	61,49(7)
C(10) #1 = C(2) = C(1) #1	1E0.00(12)	$E_{O}(2) D(1) E_{O}(1)$	$01 \ 27 \ (0)$
C(10) #1 - Fe(2) - Se(1) #1	159.09(12)	Fe(2) - P(1) - Fe(1)	01.37(0)
C(6)-Fe(2)-Se(1)#1	109.08(11)	P(1)#1-P(2)-P(1)	113.75(17)
$C(6) \# 1 - F_{2}(2) - S_{2}(1) \# 1$	1/7 23 (12)	$D(1) \# 1 - D(2) - G_{0}(1) \# 1$	8 52 (8)
C(0) = 1C(2) C(1) = 1		$\Gamma(1) = \Gamma(2) = O(1) = 1$	0.52(0)
C(9) - Fe(2) - Se(1) #1	120.28(10)	P(1) - P(2) - Se(1) # 1	105.29(11)
P(2) - Fe(2) - Se(1) # 1	58,84(4)	P(1) #1 - P(2) - Se(1)	105.29(11)
C(10) = C(2) = C(1)	1 = 0, 0 = (1, 2)	(1) (2) (2) (2)	
C(10) - Fe(2) - Se(1)	159.89(12)	P(1) - P(2) - Se(1)	8.52(8)
C(10)#1-Fe(2)-Se(1)	98.20(11)	Se(1) #1-P(2) -Se(1)	96.81(9)
$C(6) = F_{2}(2) = S_{2}(1)$	117 23 (12)	$D(1) \# 1 - D(2) - F_{D}(1)$	66 80 (8)
C(0) = C(2) = DC(1)		1(1) = 1(2) = 1(1)	00.00(0)
C(6) #1-Fe(2) -Se(1)	109.08(11)	P(1) - P(2) - Fe(1)	66.80(8)
C(9) - Fe(2) - Se(1)	120.28(10)	Se(1) # 1 - P(2) - Fe(1)	60.59(5)
D(2) = C(2) = C(2)		$C_{2}(1) = (2) = (2)(2)$	CO = O(E)
P(2) - Fe(2) - Se(1)	58.84(4)	Se(1) - P(2) - Fe(1)	60.59(5)
Se(1)#1-Fe(2)-Se(1)	93.71(5)	P(1)#1-P(2)-Fe(2)	66.07(10)
$C(10) - Fe(2) - Se(2) \pm 1$	116 76(11)	$P(1) - P(2) - F_{P}(2)$	66 07(10)
C(10) 1 = (0) = C(2) 1	150.25(10)	1(1) 1(2) 10(2)	
C(10) #1 - Fe(2) - Se(2) #1	150.35(12)	Se(1) #1 - P(2) - Fe(2)	61.29(5)
C(6) - Fe(2) - Se(2) # 1	95.09(11)	Se(1) - P(2) - Fe(2)	61.29(5)
C(c) #1 = C(2) = C(2) #1	111 04(12)	$E_{0}(1) D(2) E_{0}(2)$	
C(6) #I - Fe(2) - Se(2) #I	111.04(12)	Fe(1) - P(2) - Fe(2)	85.94(7)
C(9)-Fe(2)-Se(2)#1	156.03(6)	C(5)-C(1)-C(1)#1	106.1(2)
$P(2) = F_{2}(2) = G_{2}(2) \#1$	91 51 (5)	C(5) = C(1) = C(21)	1193(1)
F(Z) = FC(Z) = DC(Z) + T		C(J) = C(I) = C(ZI)	
Se(1) #1-Fe(2) - Se(2) #1	47.24(4)	C(1) #1 - C(1) - C(21)	133.9(2)
Se(1) - Fe(2) - Se(2) #1	83,16(4)	C(5) - C(1) - Fe(1)	68.9(2)
Q(10) = Q(2) = Q(2)		Q(1) = Q(1) = Q(1)	(2, 5)
C(10) - Fe(2) - Se(2)	150.35(12)	C(1) #1 - C(1) - Fe(1)	69.52(II)
C(10) #1-Fe(2) -Se(2)	116.76(11)	C(21)-C(1)-Fe(1)	133.2(3)
$C(6) = F_{2}(2) = S_{2}(2)$	111 04(12)	C(5) # 1 - C(4) - C(5)	105 2(5)
C(0) = Ie(2) = De(2)		C(3) + 1 - C(4) - C(3)	105.2(5)
C(6) #1-Fe(2) -Se(2)	95.09(11)	C(5) #1-C(4) -C(31)	127.1(3)
C(9) - Fe(2) - Se(2)	156.03(6)	C(5) - C(4) - C(31)	127.1(3)
D(2) = D(2) = D(2)		$Q(\Gamma) = Q(A) = Q(A)$	
P(2) - Fe(2) - Se(2)	91.51(5)	C(5) # I - C(4) - F e(1)	67.9(3)
Se(1) #1-Fe(2) -Se(2)	83.16(4)	C(5)-C(4)-Fe(1)	67.9(3)
$S_{P}(1) = F_{P}(2) = S_{P}(2)$	47 24(4)	$C(31) - C(4) - F_{P}(1)$	134 4 (4)
G(2) = (2) = (2)		C(31) $C(1)$ $C(1)$	111 0(4)
Se(2) #1-Fe(2) -Se(2)	45.11(5)	C(4) - C(5) - C(1)	111.2(4)
C(10) - Fe(2) - P(1) # 1	95,12(13)	C(4) - C(5) - Fe(1)	72.5(3)
C(10) #1 = C(2) = D(1) #1	1E1 02(12)	$C(1) C(5) E_0(1)$	70.4(2)
C(10) #1 - Fe(2) - F(1) #1	101.02(13)	$C(\mathbf{I}) = C(\mathbf{S}) = \mathbf{F}\mathbf{e}(\mathbf{I})$	70.4(2)
C(6)-Fe(2)-P(1)#1	112.13(13)	C(10)-C(6)-C(6)#1	105.8(2)
$C(6) \pm 1 - Fe(2) - P(1) \pm 1$	152 63(13)	C(10) - C(6) - C(41)	1209(4)
C(0) = 1C(2) = (1) = 1	110 70 (10)	C(10) C(0) C(11)	
C(9) - Fe(2) - P(1) #T	112.72(12)	C(6) #I - C(6) - C(4I)	132.7(2)
P(2)-Fe(2)-P(1)#1	52.38(8)	C(10)-C(6)-Fe(2)	68.9(2)
$C_{0}(1) \# 1 = C_{0}(2) = D(1) \# 1$	0.16(7)	$C(c) #1 C(c) E_{c}(2)$	(0, 20, (11))
Se(1) #1 - re(2) - r(1) #1	9.10(7)	C(0) #1 - C(0) - Fe(2)	09.30(II)
Se(1)-Fe(2)-P(1)#1	94.12(7)	C(41) - C(6) - Fe(2)	132.2(3)
Se(2)#1-Fe(2)-P(1)#1	56.27(7)	C(10) - C(9) - C(10) # 1	105.7(5)
$G_{2}(2) = (2) D(1) = (2)$		Q(10) = Q(0) = Q(10)	1007(0)
Se(2) - Fe(2) - P(1) # 1	90.09(7)	C(10) - C(9) - C(51)	126.7(2)
C(10)-Fe(2)-P(1)	151.82(13)	C(10)#1-C(9)-C(51)	126.7(2)
$C(10) \pm 1 - Fe(2) - P(1)$	95 12(13)	C(10) - C(9) - Fe(2)	68 7 (3)
$C(\pm 0) \oplus T(C(2)) = (\pm 1)$	150 (2)(12)		60.7(5)
C(6) - Fe(2) - P(1)	152.63(13)	C(10) #1 - C(9) - Fe(2)	68.7(3)
C(6)#1-Fe(2)-P(1)	112.13(13)	C(51)-C(9)-Fe(2)	134.9(4)
$C(9) = E_{P}(2) = D(1)$	110 70 (10)	C(9) - C(10) - C(6)	111 3 (1)
C(9) - Fe(2) - P(1)	112.72(12)	C(9) = C(10) = C(0)	111.3(4)
P(2)-Fe(2)-P(1)	52.38(8)	C(9)-C(10)-Fe(2)	71.7(3)
Se(1) # 1 - Fe(2) - P(1)	94 12(7)	C(6) - C(10) - Fe(2)	70 6(2)
$G_{2}(1) = (2) = (1)$		a(22) $a(21)$ $a(22)$	104 ()
Se(1) - Fe(2) - P(1)	9.15(7)	C(23) = C(21) = C(22)	104.6(5)
Se(2)#1-Fe(2)-P(1)	90.09(7)	C(23)-C(21)-C(1)	114.7(4)
$S_{O}(2) = F_{O}(2) = D(1)$	F(-27(7))	C(22) = C(21) = C(1)	111 2 (1)
$D \subset \{\Delta\} = \Gamma \subset \{\Delta\} = \Gamma \subset \{\Delta\}$	$ \exists \forall \cdot \angle I \setminus I) $	C(22) = C(21) = C(1)	
P(1)#1-Fe(2)-P(1)	93.07(14)	C(23) - C(21) - C(24)	111.1(6)
Se(2) - Se(1) - P(2)	106.69(6)	C(22) - C(21) - C(24)	107.6(5)
$C_{0}(2)$ $C_{0}(1)$ $T_{0}(1)$		C(22), C(21), C(21)	
5e(2)-5e(1)-Fe(1)	68.53(5)	C(1) - C(21) - C(24)	T01.3(2)
P(2)-Se(1)-Fe(1)	60.00(5)	C(4)-C(31)-C(33)	112.0(4)
$S_{0}(2) - S_{0}(1) = S_{0}(2)$	67 A1 (E)	C(A) = C(21) = C(22) + 1	112 0(4)
	0/.41(3)		112.0(4)
P(2)-Se(1)-Fe(2)	59.87(5)	C(33)-C(31)-C(33)#1	108.4(5)
Fe(1) - Se(1) - Fe(2)	84,89(3)	C(4) - C(31) - C(32)	106.1(5)
$a_{2}(2) = a_{2}(2) = a_{2}(2) = a_{2}(2)$		a(22) a(21) a(22)	100.2(4)
Se(2) #I - Se(2) - Se(1)	114.89(4)	C(33) - C(31) - C(32)	109.2(4)
Se(2)#1-Se(2)-P(1)	111.60(8)	C(33)#1-C(31)-C(32)	109.2(4)
$S_{P}(1) = S_{P}(2) = D(1)$	3 15 (9)	C(42) = C(41) = C(42)	112 9(7)
$D \subset (\pm) = D \subset (\Delta) = (\Delta)$	3.43(0)	C(T2) = C(T2) = C(T2)	
Se(2)#1-Se(2)-Fe(2)	67.44(2)	C(42)-C(41)-C(6)	115.4(5)
Se(1) - Se(2) - Fe(2)	65,36(4)	C(43) - C(41) - C(6)	107.0(4)
		\Box	

C(42) - C(41) - C(44)	104.2(5)
C(43)-C(41)-C(44)	105.9(5)
C(6) - C(41) - C(44)	110.2(4)
C(9)-C(51)-C(53)	107.3(5)
C(9)-C(51)-C(52)	111.6(3)
C(53)-C(51)-C(52)	108.3(4)
C(9)-C(51)-C(52)#1	111.6(3)
C(53)-C(51)-C(52)#1	108.3(4)
C(52)-C(51)-C(52)#1	109.5(6)

Symmetrietransformationen für die äquivalenten Atome:

#1 x,-y+1/2,z

	U ₁₁	U ₂₂	U ₃₃	U ₂₃	U ₁₃	U ₁₂
 Fe(1)	34(1)	35(1)	33(1)	0	6(1)	0
Fe(2)	32(1)	32(1)	34(1)	0	6(1)	0
Se(1)	53(1)	29(1)	39(1)	2(1)	7(1)	5(1)
Se(2)	43(1)	59(1)	43(1)	-3(1)	8(1)	-9(1)
P(1)	30(1)	42(1)	38(1)	-2(1)	5(1)	21(1)
P(2)	39(1)	98(1)	42(1)	0	7(1)	0
C(1)	41(2)	41(2)	28(2)	0(2)	5(2)	5(2)
C(4)	43(4)	46(3)	26(3)	0	5(2)	0
C(5)	44(3)	38(2)	41(2)	0(2)	9(2)	-2(2)
C(6)	40(2)	39(2)	34(2)	-5(2)	8(2)	2(2)
C(9)	29(3)	44(3)	30(3)	0	1(2)	0
C(10)	36(2)	37(2)	38(2)	-5(2)	9(2)	-2(2)
C(21)	43(3)	45(2)	67(3)	-9(2)	4(2)	4(2)
C(22)	66(4)	49(3)	115(5)	16(3)	4(3)	15(3)
C(23)	131(5)	58(4)	407(11)	14(5)	188(5)	24(4)
C(24)	233(7)	172(6)	113(5)	-64(5)	-106(5)	146(5)
C(31)	38(4)	55(3)	50(4)	0	20(3)	0
C(32)	86(6)	159(9)	74 (5)	0	47(4)	0
C(33)	51(3)	57(3)	102(4)	-3(3)	32(3)	-9(2)
C(41)	50(3)	47(2)	82(3)	-9(2)	28(2)	6(2)
C(42)	40(4)	60(4)	447(18)	-47(6)	-39(7)	14(3)
C(43)	348(7)	108(5)	186(5)	43(4)	212(5)	103(5)
C(44)	79(4)	44(3)	103(4)	-4(3)	28(3)	20(3)
C(51)	38(4)	51(3)	40(3)	0	2(3)	0
C(52)	42(3)	70(3)	96(4)	10(3)	23(3)	-11(2)
C(53)	42(4)	88(5)	51(4)	0	-5(3)	0

Tabelle 7.3.4Anisotrope Auslenkungsparameter [Ų x 10³] für 7.Der Exponent des anisotropen Auslenkungsfaktors hat die Form: $-2\pi^2$ [(ha*) $^2U_{11}$ + ... + 2hka*b*U_{12}]

	x	У	Z	U(eq)
H(5)	4099	3960	-1304	49
H(10)	5379	3957	3804	44
H(22A)	1306	5270	-1398	120
H(22B)	2586	4959	-1695	120
H(22C)	2439	4815	-546	120
H(23A)	850	3824	-197	267
H(23B)	166	3013	-973	267
H(23C)	-254	4101	-1176	267
H(24A)	383	3195	-2903	296
H(24B)	1457	3895	-3102	296
H(24C)	195	4323	-2867	296
H(32A)	5286	2980	-2973	152
H(32B)	5627	1871	-2924	152
H(32C)	6730	2648	-2767	152
H(33A)	6297	3973	-1270	102
H(33B)	7594	3391	-1088	102
H(33C)	6811	3402	-219	102
H(42A)	1243	2983	3088	298
H(42B)	1511	3877	2432	298
H(42C)	847	4030	3362	298
H(43A)	2247	4367	5121	283
H(43B)	3604	3866	5429	283
H(43C)	2348	3232	5173	283
H(44A)	3355	4802	2916	111
H(44B)	3991	4973	4108	111
H(44C)	2547	5263	3643	111
H(52A)	7602	3399	2864	102
H(52B)	8800	3415	3827	102
H(52C)	7539	3976	3879	102
H(53A)	7635	3093	5524	95
H(53B)	8805	2450	5408	95
H(53C)	7527	1957	5535	95

Tabelle 7.3.5H-Atomkoordinaten [x 10⁴] und äquivalente isotrope Auslenkungsparameter [Å² x 10³] für 7.

Summenformel	$C_{34}H_{46}Fe_2P_4$	
Molmasse	690.29	
Temperatur	293(2) K	
Strahlung	ΜοΚα	
Wellenlänge	0.71073 Å	
Scanmodus	Phi-Oszillation	
Kristallsystem	Monoklin	
Raumgruppe	$P2_1/c$	
Zelldimensionen	a = 15.4303(10) Å	$\alpha = 90^{\circ}$
	b = 18.9706(17) Å	$\beta = 96.131(7)^{\circ}$
	c = 11.4587(6) Å	$\gamma = 90^{\circ}$
Zellvolumen	$3335.0(4) Å^{3}$	•
Formeleinheiten pro Zelle Z	4	
Berechnete Dichte	1.375 Mg/m^3	
Absorptionskoeffizient	1.084 mm^{-1}	
Kristallgröße	0.16 x 0.16 x 0.08 mm	
Gemessener θ-Bereich	2.79 bis 25.68°	
Anzahl der gemessenen Reflexe	46410	
Unabhängige Reflexe	6067 (Rint = 0.2424)	
Absorptionskorrektur	Analytical	
Max. und min. Transmission	0.91987 und 0.85286	
Diffraktometer	Stoe IPDS	
Strukturlösung	Direkte Methoden	
Strukturlösungsprogramm	SHELXS-97 (Sheldrick, 1990)	
Strukturverfeinerung	Vollmatrix Least-Squares gegen I	r^{2}
Strukturverfeinerungsprogramm	SHELXL-97 (Sheldrick, 1997)	
Daten / Restraints / Parameter	6067 / 0 / 373	
Endgültige R-Werte $[I \ge 2\sigma(I)]$	R1 = 0.0392, $wR2 = 0.0581$	
R-Werte (alle Daten)	R1 = 0.1516, $wR2 = 0.0748$	
Wichtungsschema	$w=1/[\sigma^{2}(Fo^{2})+(0.0014P)^{2}+0.0000$	P] mit P= $(Fo^2+2Fc^2)/3$
GooF (alle Daten)	0.588	. ,
Größtes Maximum und Minimum	0.358 und -0.324 eÅ ⁻³	

Taballa 7 4 1	Knistalldatan und	Strukturgenfeinerung	fin [(In!	$(110)^{4:4}$	$\mathbf{D} \to \mathbf{U}$	QL)
1 abene 7.4.1	Kristanuaten unu	Strukturverleinerung		re}2(μ-η	- F 4)] ((ovj.

Verfeinerung nach F^2 mit ALLEN Reflexen. Die gewichteten R-Werte wR2 und alle GooF's basieren auf F^2 . Die konventionellen R-Werte R1 basieren auf F, wobei F für negative F^2 gleich Null gesetzt wird. Das Ablehnungskriterium $F^2 > 2\sigma(F^2)$ wird nur zum Berechnen von R(obs) etc. verwendet. Zur Verfeinerung wurden alle Reflexe herangezogen. Grundsätzlich gilt: Auf F^2 bezogene R-Werte sind statistisch etwa doppelt so groß wie die auf F basierenden. Auf ALLE Reflexe bezogene R-Werte sind noch größer.

Die Wasserstoffatome wurden geometrisch lokalisiert. Für die Verfeinerung wurde ein Reitermodell angenommen. Als Temperaturfaktor wurde der 1.5-fache Wert (CH₃-Gruppen) bzw. der 1.2-fache Wert (Cp-H oder Ar-H) des äquivalenten isotropen Temperaturfaktors desjenigen C-Atoms eingesetzt, an welches das jeweilige H-Atom gebunden ist.

Einzelheiten können dem Handbuch für das Verfeinerungsprogramm SHELXL entnommen werden.

Tabelle 7.4.2 Atomkoordinaten [x 10⁴] und äquivalente isotrope Auslenkungsparameter [Å² x 10³] für 8b. U(eq) wird berechnet als ein Drittel der Spur des orthogonalisierten U_{ij} -Tensors.

	x	У	Z	U(eq)
	2016(1)	420(1)	1120(1)	21 (1)
Fe(1) Fo(2)	2916(1)	438(1) 571(1)	1138(1)	$3 \perp (\perp)$ $2 \perp (1)$
P(1)	2001(1) 1479(1)	210(1)	- 903 (1) 603 (2)	42(1)
P(2)	1845(1)	1276(1)	637(2)	45(1)
P(3)	3165(1)	1332(1)	-208(2)	45(1)
P(4)	3512(1)	284(1)	-533(2)	42(1)
C(1)	2750(4)	-84(3)	2802(6)	37(2)
C(2)	3379(4)	-457(3)	2181(5)	34(2)
C(3)	4046(5)	54(3)	2090(6)	36(2)
C(4)	3847(4)	731(3)	2541(5)	31(2)
C(5)	3023(4)	638(3)	3005(5)	32(2)
C(6)	2471(4)	1100(3)	3586(6)	42(2)
C(7)	1736(5)	851(4)	3956(6)	47(2)
C(8)	1471(5)	141(4)	3773(6)	48(2)
C(9)	1951(4)	-322(3)	3224(6)	40(2)
C(11)	2000(4)	983(3)	-2756(5)	29(2)
C(12)	1186(4)	1031(3)	-2274(5)	34(2)
C(13)	949(5)	322(3)	-2039(6)	34(2)
C(14)	1578(4)	-157(3)	-2309(6)	35(2)
C(15)	2244(4)	249(3)	-2780(6)	31(2)
C(16)	3040(4)	52(3)	-3249(6)	40(2)
C(17)	3544(5)	569(4)	-3624(6)	44(2)
C(18)	3309(4)	1292(3)	-3562(6)	45(2)
C(19)	2591(4)	1501(3)	-3164(5)	39(2)
C(31)	3459(5)	-1239(3)	1970(6)	41(2)
C(32)	3730(6)	-1575(3)	3171(7)	75(3)
C(33)	2601(5) 412C(F)	-1560(4)	1465(8)	73(3)
C(34)	4126(5)	-1389(4)		66(Z) 21(1)
C(41)	4482(4)	1335(3)	2719(5)	31(1) FF(2)
C(42)	4978(4)	1251(4) 2057(2)	3948(0)	55 (Z)
C(43)	4055(4) E120(E)	2057(5) 1212(2)	2041(7) 1022(6)	55(2)
C(44) C(51)	5130(5)	1515(3) 1660(3)	1033(0)	47(Z) 25(2)
C(51)	-102(4)	1009(3) 1547(3)	-2200(0) -1450(7)	55(2)
C(52)	152(5)	17/3(3)	-35/2(6)	55(2)
C(53)	1048(4)	2356(3)	-1913(6)	50(2)
C(51)	1462 (5)	-962(3)	-2351(6)	39(2)
C(62)	769(5)	-1178(3)	-1616(8)	63 (2)
C(63)	1184 (6)	-1162(4)	-3634(6)	72(3)
C(64)	2304 (5)	-1350(4)	-1942(8)	68(2)
- (0 - /	2001(0)	2000(1)	(0)	00(2)

Tabelle 7.4.3 Bindungslängen [Å] und -winkel [⁰] für 8b.

Fe(1)-C(3)	2.086(6)	C(4)-C(41)	1.509(8)	
Fe(1)-C(4)	2.113(6)	C(5)-C(6)	1.435(9)	
Fe(1) - C(2)	2.154(6)	C(6) - C(7)	1.339(9)	
Fe(1) - C(5) Fe(1) - C(1)	2.162(6) 2.188(7)	C(7) - C(8) C(8) - C(9)	1.418(9)	
Fe(1) - P(4)	2.230(2)	C(11) - C(19)	1.452(8)	
Fe(1) - P(1)	2.279(2)	C(11) - C(12)	1.428(9)	
Fe(1)-P(2)	2.322(2)	C(11)-C(15)	1.443(8)	
Fe(1)-P(3)	2.351(2)	C(12)-C(13)	1.427(8)	
Fe(1) - Fe(2)	2.6390(11)	C(12) - C(51)	1.536(8)	
Fe(2) - C(13) Fe(2) - C(12)	2.070(7) 2.102(6)	C(13) - C(14) C(14) - C(15)	1.388(9)	
Fe(2) - C(14)	2.136(6)	C(14) - C(61)	1.538(7)	
Fe(2)-C(11)	2.168(6)	C(15)-C(16)	1.442(9)	
Fe(2)-C(15)	2.187(7)	C(16) - C(17)	1.350(9)	
Fe(2) - P(1)	2.235(2)	C(17) - C(18)	1.423(9)	
Fe(2) - P(4) Fe(2) - P(3)	2.280(2)	C(18) - C(19) C(31) - C(34)	1.304(8) 1 $478(10)$	
Fe(2) = P(3) Fe(2) = P(2)	2.348(2)	C(31) - C(33)	1.516(9)	
P(1)-P(2)	2.099(3)	C(31) -C(32)	1.534(9)	
P(2)-P(3)	2.350(2)	C(41)-C(43)	1.519(8)	
P(3) - P(4)	2.102(3)	C(41) - C(44)	1.508(9)	
C(1) - C(9)	1.444(9)	C(41) - C(42) C(51) - C(52)	1.538(8)	
C(1) - C(2)	1 449(9)	C(51) - C(52) C(51) - C(54)	1.508(9) 1 534(8)	
C(2) - C(3)	1.425(9)	C(51) - C(53)	1.519(8)	
C(2)-C(31)	1.509(8)	C(61) -C(62)	1.488(10)	
C(3)-C(4)	1.430(8)	C(61)-C(64)	1.523(9)	
C(4)-C(5)	1.440(9)	C(61)-C(63)	1.534(9)	
C(3)-Fe(1)-C(4)	39.8(2)	P(2)-Fe(1)-P(3)		60.36(6)
C(3) - Fe(1) - C(2)	39.2(2)	C(3) - Fe(1) - Fe(2)		144.5(2)
C(4) - Fe(1) - C(2) C(3) - Fe(1) - C(5)	68.1(2) 64 7(3)	C(4) - Fe(1) - Fe(2) C(2) - Fe(1) - Fe(2)		134.32(17) 133 41(16)
C(4) - Fe(1) - C(5)	39.3 (2)	C(5)-Fe(1)-Fe(2)		150.77(16)
C(2)-Fe(1)-C(5)	66.6(2)	C(1)-Fe(1)-Fe(2)		139.02(17)
C(3) - Fe(1) - C(1)	63.6(3)	P(4) - Fe(1) - Fe(2)		55.08(6)
C(4) - Fe(1) - C(1) C(2) - Fe(1) - C(1)	65.7(2) 39.0(2)	P(1) - Fe(1) - Fe(2) P(2) - Fe(1) - Fe(2)		53.44(6)
C(2) = Fe(1) = C(1) C(5) = Fe(1) = C(1)	38.8(2)	P(3) - Fe(1) - Fe(2)		54.90(5)
C(3)-Fe(1)-P(4)	90.3(2)	C(13)-Fe(2)-C(12	2)	40.0(2)
C(4)-Fe(1)-P(4)	112.3(2)	C(13)-Fe(2)-C(14	1)	38.5(2)
C(2) - Fe(1) - P(4)	103.35(18)	C(12) - Fe(2) - C(14)	<u>1</u>)	66.9(2)
C(5) - Fe(1) - P(4) C(1) - Fe(1) - P(4)	1/1 91 (18)	C(13) - Fe(2) - C(1) C(12) - Fe(2) - C(1)	L)	64.8(Z) 39.1(2)
C(3) - Fe(1) - P(1)	144.07(19)	C(12) = Fe(2) = C(12) C(14) = Fe(2) = C(12)	L)	65.6(2)
C(4)-Fe(1)-P(1)	144.8(2)	C(13)-Fe(2)-C(15	5)	64.0(2)
C(2)-Fe(1)-P(1)	104.83(17)	C(12) - Fe(2) - C(15)	5)	65.6(2)
C(5) - Fe(1) - P(1)	105.58(18)	C(14) - Fe(2) - C(15)	5)	38.7(2)
P(1) - Fe(1) - P(1) P(4) - Fe(1) - P(1)	86.99(18) 102 90(8)	C(11) - Fe(2) - C(12) C(13) - Fe(2) - D(1)) 	38.7(2)
C(3) - Fe(1) - P(2)	154.35(18)	C(12) - Fe(2) - P(1)		113.6(2)
C(4)-Fe(1)-P(2)	114.56(17)	C(14) - Fe(2) - P(1)		103.29(19)
C(2) - Fe(1) - P(2)	149.59(19)	C(11) - Fe(2) - P(1)		152.30(17)
C(5) - Fe(1) - P(2)	95.81(16)	C(15) - Fe(2) - P(1)		141.23(17)
P(4) - Fe(1) - P(2)	103 03 (2)	C(13) - FC(2) - P(4) C(12) - FC(2) - D(4)		143 7(2)
P(1) - Fe(1) - P(2)	54.27(7)	C(14) - Fe(2) - P(4)		106.02(19)
C(3)-Fe(1)-P(3)	114.1(2)	C(11) -Fe(2) -P(4)		104.77(17)
C(4) - Fe(1) - P(3)	99.43 (17)	C(15)-Fe(2)-P(4)		86.55(17)
C(2) - Fe(1) - P(3)	149.87(19)	P(1) - Fe(2) - P(4)		102.70(7)
C(3) - Fe(1) - P(3) C(1) - Fe(1) - P(3)	160 11(17)	C(13) - Fe(2) - P(3) C'(12) - Fe(2) - D(3)		113 85(1A)
P(4) - Fe(1) - P(3)	54.56(7)	C(14) - Fe(2) - P(3)		150.3(2)
P(1)-Fe(1)-P(3)	100.51(8)	C(11)-Fe(2)-P(3)		95.84(16)

C(15)-Fe(2)-P(3)	112.59(17)	C(12) - C(11) - C(15)	108.2(5)
P(1)-Fe(2)-P(3)	102.99(8)	C(19) -C(11) -Fe(2)	124.8(4)
P(4)-Fe(2)-P(3)	54.46(7)	C(12)-C(11)-Fe(2)	68.0(4)
C(13)-Fe(2)-P(2)	113.56(19)	C(15)-C(11)-Fe(2)	71.4(4)
C(12)-Fe(2)-P(2)	100.00(18)	C(11) - C(12) - C(13)	105.4(5)
C(14)-Fe(2)-P(2)	148.8(2)	C(11) - C(12) - C(51)	127.9(5)
C(11)-Fe(2)-P(2)	122.51(16)	C(13) - C(12) - C(51)	125.1(6)
C(15) - Fe(2) - P(2)	161.13(17)	C(11) - C(12) - Fe(2)	73.0(4)
P(1) - Fe(2) - P(2)	54.44(7)	C(13) - C(12) - Fe(2)	68.8(4)
P(4) - Fe(2) - P(2)	100.69(8)	C(51) - C(12) - Fe(2)	133.9(4)
P(3) - Fe(2) - P(2)	60.51(7)	C(14) - C(13) - C(12)	112.1(6)
C(13) - Fe(2) - Fe(1)	144 62 (19)	C(14) - C(13) - Fe(2)	73 3(4)
C(12) - Fe(2) - Fe(1)	155 13(17)	C(12) - C(13) - Fe(2)	71 2 (4)
C(14) - Fe(2) - Fe(1)	134,24(16)	C(13) - C(14) - C(15)	106.2(5)
C(11) - Fe(2) - Fe(1)	150 58(15)	C(13) - C(14) - C(61)	125 1(6)
C(15) - Fe(2) - Fe(1)	138 23 (16)	C(15) - C(14) - C(61)	127.4(7)
P(1) - Fe(2) - Fe(1)	54,99(6)	C(13) - C(14) - Fe(2)	68.2(4)
P(4) - Fe(2) - Fe(1)	53 31 (6)	C(15) - C(14) - Fe(2)	72 6(3)
P(3) - Fe(2) - Fe(1)	56, 22(5)	C(61) - C(14) - Fe(2)	134 1 (5)
P(2) - Fe(2) - Fe(1)	55,13(5)	C(16) - C(15) - C(14)	132.4(6)
P(2) - P(1) - Fe(2)	65,54(8)	C(16) - C(15) - C(11)	119.4(5)
P(2) - P(1) - Fe(1)	63 93 (8)	C(14) - C(15) - C(11)	108 2(6)
Fe(2) - P(1) - Fe(1)	71,56(7)	C(16) - C(15) - Fe(2)	127.7(4)
P(1) - P(2) - Fe(1)	$61 \ 80 \ (8)$	C(14) - C(15) - Fe(2)	68 7 (4)
P(1) - P(2) - Fe(2)	60 02 (8)	C(11) - C(15) - Fe(2)	69 9(4)
$F_{P}(1) - P(2) - F_{P}(2)$	68, 80 (6)	C(17) - C(16) - C(15)	118 1 (6)
P(1) - P(2) - P(3)	106 19(11)	C(16) - C(17) - C(18)	121.8(7)
$F_{D}(1) = D(2) = D(3)$	60.43(7)	C(19) = C(18) = C(17)	122.0(7) 122.8(6)
$F_{P}(2) = P(2) = P(3)$	59 03 (8)	C(19) - C(10) - C(17) C(18) - C(19) - C(11)	122.0(0) 119 5(6)
P(4) = P(2) = F(3)	55.05(0)	C(10) = C(11) = C(11) C(24) = C(21) = C(2)	111.2(6)
P(4) - P(3) - P(2)	106 22(11)	C(34) - C(31) - C(2)	1099(6)
F(4) - F(3) - F(2) $F_{2}(2) - D(3) - D(2)$	60.46(7)	C(34) - C(31) - C(33)	100.0(0)
P(4) = P(2) = F(2)	50.40(7)	C(2) = C(31) = C(33)	109.7(6)
F(4) - F(3) - FO(1) FO(2) - FO(2) - FO(1)	59.70(0)	C(34) - C(31) - C(32) C(2) - C(21) - C(32)	109.7(0) 106.5(5)
P(2) = P(3) = Fe(1) P(2) = P(3) = Fe(1)	59, 21(7)	C(2) - C(31) - C(32)	108.5(5)
P(2) = P(3) = P(1) $P(2) = P(4) = F_{2}(1)$	55.21(7)	C(33) = C(31) = C(32) C(43) = C(41) = C(4)	112 9(5)
P(3) - P(4) - FO(1)	63.60(8)	C(43) - C(41) - C(4)	107 9(5)
F(3) = F(4) = Fe(2) Fe(1) = D(4) = Fe(2)	71 61 (7)	C(43) = C(41) = C(44) C(4) = C(41) = C(44)	107.0(3) 111.2(5)
C(9) = C(1) = C(5)	119 2 (6)	C(43) - C(41) - C(42)	$108 \in (5)$
C(9) = C(1) = C(3)	130 8 (6)	C(43) = C(41) = C(42) C(4) = C(41) = C(42)	107.3(5)
C(5) = C(1) = C(2)	110 1 (6)	C(41) - C(41) - C(42)	107.3(5) 108.0(5)
$C(9) - C(1) - E_{2}(1)$	$128 \ 1 \ (4)$	C(12) - C(51) - C(52)	109.8(5)
C(5) = C(1) = Fe(1) C(5) = C(1) = Fe(1)	59.6(4)	C(12) - C(51) - C(52) C(12) - C(51) - C(54)	102.0(5)
C(2) - C(1) - Fe(1)	69.2(4)	C(52) - C(51) - C(54)	107 1(5)
C(2) = C(2) = C(1)	103.3(5)	C(12) - C(51) - C(53)	107.1(5) 106.5(5)
C(3) - C(2) - C(31)	125 8 (6)	C(52) - C(51) - C(53)	100.0(5)
C(1) = C(2) = C(31)	129.0(6)	C(54) - C(51) - C(53)	109.3(5)
C(3) - C(2) - E(31) $C(3) - C(2) - E_{2}(1)$	67 8 (3)	C(52) - C(51) - C(14)	100.0(5)
$C(1) = C(2) = F_{2}(1)$	71 8 (3)	C(62) = C(61) = C(64)	100.1(0) 109.5(6)
$C(2) = C(2) = E_{0}(1)$	135 5(4)	C(14) - C(61) - C(64)	112 2(6)
C(2) - C(3) - C(4)	113 6 (6)	C(62) - C(61) - C(63)	109 3 (6)
$C(2) - C(3) - E_{2}(1)$	72 9(4)	C(14) - C(61) - C(63)	107.1(6)
C(2) = C(3) = Fe(1) C(4) = C(2) = Fo(1)	$72.7(\pm)$	C(4) = C(0) = C(0)	107.1(0) 109.6(6)
C(5) = C(3) = C(3)	104.8(5)	C(04) - C(01) - C(03)	100.0(0)
C(5) = C(4) = C(5) C(5) = C(4) = C(41)	129.1(6)		
C(3) - C(4) - C(41)	124.7(6)		
C(5) - C(4) - C(41) $C(5) - C(4) = E_{0}(1)$	124.7(0)		
C(3) - C(4) - Fe(1)	72.2(3)		
C(3) - C(4) - Fe(1)	69.1(3)		
C(41) - C(4) - Fe(1)	133.0(4)		
C(6) - C(5) - C(4)	133.4(6)		
C(0) = C(0) = C(1) C(4) = C(0) = C(1)	100 1 (C)		
C(4) = C(5) = C(1) $C(6) = C(5) = E_{2}(1)$	100.1(0) 105 5(A)		
C(0) = C(0) = FE(1) C(4) = C(5) = Fo(1)			
C(4) = C(5) = FE(1) $C(1) = C(5) = F_{5}(1)$	00.0(4)		
C(T) = C(S) = FE(T) C(T) = C(S) = C(T)	/L.0(4) 110.0(7)		
C(7) = C(0) = C(0) C(6) = C(7) = C(0)			
C(0) - C(1) - C(0)	$ \begin{array}{c} \bot \angle \bot \cdot \Im (1) \\ 1 \\ 1 \\ \end{array} $		
C(3) = C(0) = C(1) C(0) = C(0) = C(1)	121.0(1)		
C(0) = C(2) = C(1) C(10) = C(11) = C(12)	122 E/E/		
C(12) - C(11) - C(12)	110 2/C		
C(13) - C(11) - C(13)	TT0.3(0)		

	U ₁₁	U ₂₂	U ₃₃	U ₂₃	U ₁₃	U ₁₂
Fe(1)	30(1)	36(1)	28(1)	1(1)	3(1)	1(1)
Fe(2)	32(1)	34(1)	27(1)	2(1)	3(1)	0(1)
P(1)	34(1)	60(1)	34(1)	5(1)	3(1)	-1(1)
P(2)	53(1)	45(1)	35(1)	-4(1)	1(1)	16(1)
P(3)	50(1)	47(1)	37(1)	7(1)	-3(1)	-13(1)
P(4)	30(1)	61(1)	34(1)	1(1)	5(1)	3(1)
C(1)	46(4)	40(4)	25(4)	4(3)	\perp (3)	6(3)
C(2)	$3 \perp (3)$	44(4)	25(4)	-2(3)	-1(3)	-1(3)
C(3)	35(4) 21(4)	42 (4) 25 (4)	30(4) 27(4)	3(3)	3(3)	4 (3) 5 (2)
C(4) C(5)	27(4)	33(4) 37(4)	27(4) 31(4)	7(3)	1(3)	2(3)
C(5)	20(4)	45(4)	39(5)	0(3)	2(3)	$\frac{2}{7}(3)$
C(0)	45(5)	72 (5)	25(5)	-2(3)	16(3)	21(4)
C(8)	45(4)	57(5)	41(5)	6(4)	5(3)	-4(4)
C(9)	35(4)	44(4)	40(4)	14(3)	8(3)	-3(3)
C(11)	30(3)	30(3)	25(4)	-3(3)	-2(3)	1(3)
C(12)	44(4)	36(4)	22(4)	-6(3)	3(3)	-9(3)
C(13)	45(4)	31(3)	28(4)	-3(3)	13(3)	4(3)
C(14)	36(4)	34(3)	32(4)	1(3)	-1(3)	-6(3)
C(15)	28(4)	40(4)	25(4)	-2(3)	-1(3)	-5(3)
C(16)	41(4)	37(4)	44(5)	-2(3)	9(3)	4(3)
C(17)	39(4)	58(5)	34 (4) 40 (E)	0(4)	11(3)	-3(4)
C(18)	50(4) 54(4)	44 (4) 25 (4)	42(5)	-2(3)	10(3)	-8(3)
C(1)	45(4)	35(4)	43(5)	1(3)	-4(3)	5(3)
C(32)	115(7)	44(4)	61(6)	18(4)	-11(5)	9(4)
C(33)	65(6)	45(4)	104(8)	-16(4)	-4(5)	-16(4)
C(34)	75(6)	45(4)	82(7)	-12(4)	32(5)	6(4)
C(41)	26(3)	37(3)	31(4)	2(3)	-1(3)	-5(3)
C(42)	61(5)	58(4)	43(5)	0(4)	-11(4)	-12(4)
C(43)	51(5)	40(4)	73(6)	-6(4)	0(4)	-5(3)
C(44)	47(4)	52(4)	43 (5)	-2(4)	9(3)	-5(3)
C(51)	34(4)	29(3)	41(4)	1(3)	-6(3)	5(3)
C(52)	43(4)	52(4)	68(6) F7(C)	$\perp (4)$	26(4)	8(3)
C(53)	81(6) 40(4)	56 (5) 27 (4)	57(6)	∠ (4) E (2)	-22(4)	23(4)
C(54) C(61)	49(4) 47(4)	27(4) 28(3)	04(0) 42(5)	-4(3)	0 (4) 4 (3)	o(3) -4(3)
C(62)		35(4)	92(7)	0(4)	19(5)	-13(4)
C(63)	110(7)	50(5)	52(6)	-5(4)	-13(5)	-21(4)
C(64)	75(6)	38(4)	93 (7)	11(4)	10(5)	10(4)

Tabelle 7.4.4Anisotrope Auslenkungsparameter [Ų x 10³] für 8b.Der Exponent des anisotropen Auslenkungsfaktors hat die Form: $-2\pi^2$ [(ha*) $^2U_{11}$ + ... + 2hka*b*U_{12}]

H(3) H(6) H(7) H(8) H(9) H(13) H(16) H(17) H(18) H(19) H(32A) H(32B) H(32C) H(33A) H(33B) H(33C) H(34A) H(34B) H(34C) H(42A) H(42B) H(42C) H(43A) H(43B) H(43C) H(44A) H(44B) H(44C) H(52A) H(52B) H(52C) H(53A) H(53B)

H(53C)

H(54A)

H(54B)

H(54C)

H(62A)

H(62B)

H(62C)

H(63A)

H(63B)

H(63C)

H(64A)

H(64B)

H(64C)

-172

1405

1407

628

929

701

228

659

2542

2716

2185

1082 1637 1324

2282

2719

2497

-1035

-1681

-1660

-1035

-914

-1168

-1283

-1844

-957

х	У	Z	U(eq)
4561	-44	1767	43
2624	1570	3706	50
1389	1154	4345	56
953	-10	4039	57
1770	-787	3117	47
434	196	-1741	41
3203	-419	-3292	48
4058	450	-3932	52
3683	1630	-3815	54
2458	1979	-3142	47
3891	-2058	3066	113
3251	-1554	3640	113
4218	-1322	3558	113
2353	-1281	815	109
2207	-1573	2059	109
2700	-2031	1201	109
3950	-1185	413	98
4186	-1890	1086	98
4674	-1191	1483	98
5362	1645	4111	83
5313	823	3977	83
4570	1231	4522	83
3592	2060	2008	83
4478	2408	2501	83
3818	2159	3365	83
4844	1380	1060	71
5427	864	1874	71
5560	1681	2002	71
-383	1102	-1619	79
-530	1917	-1539	79
174	1546	-659	79
596	1812	-4057	101
-235	2141	-3596	101

-3766

-1184

-1813 -2505

-818

-1648 -1907

-3689

-4107

-3909

-1194

-2503

-1870

101

75

75

75

95

95

95

108

108

108

103

103

103

Tabelle 7.4.5 H-Atomkoordinaten [x 10⁴] und äquivalente isotrope Auslenkungsparameter [Å² x 10³] für 8b.

Summenformel	$C_{34}H_{52}Fe_2P_4$	
Molmasse	696.34	
Temperatur	293(2) K	
Strahlung	ΜοΚα	
Wellenlänge	0.71073 Å	
Scanmodus	Phi-Oszillation	
Kristallsystem	Monoklin	
Raumgruppe	$P2_1/c$	
Zelldimensionen	a = 12.1580(8) Å	$\alpha = 90^{\circ}$
	b = 20.9948(15) Å	$\beta = 113.245(7)^{\circ}$
	c = 14.7982(11) Å	$\gamma = 90^{\circ}$
Zellvolumen	$3470.7(4) \text{ Å}^3$	•
Formeleinheiten pro Zelle Z	4	
Berechnete Dichte	1.333 Mg/m^3	
Absorptionskoeffizient	1.042 mm^{-1}	
Kristallgröße	0.80 x 0.20 x 0.16 mm	
Gemessener θ -Bereich	2.83 bis 25.68°	
Anzahl der gemessenen Reflexe	29077	
Unabhängige Reflexe	6183 (Rint = 0.0936)	
Absorptionskorrektur	Analytical (STOE/XRED)	
Max. und min. Transmission	.9347 und .8218	
Diffraktometer	Stoe IPDS	
Strukturlösung	Direkte Methoden	
Strukturlösungsprogramm	SIR97 (Giacovazzo et al., 1997)	2
Strukturverfeinerung	Vollmatrix Least-Squares gegen F	72
Strukturverfeinerungsprogramm	SHELXL-97 (Sheldrick, 1997)	
Daten / Restraints / Parameter	6183 / 0 / 376	
Endgültige R-Werte $[I \ge 2\sigma(I)]$	R1 = 0.0399, wR2 = 0.0960	
R-Werte (alle Daten)	R1 = 0.0624, wR2 = 0.1039	
Wichtungsschema	$w=1/[\sigma^{2}(Fo^{2})+(0.0611P)^{2}+0.0000$	P] mit P=(Fo ² +2Fc ²)/3
GooF (alle Daten)	0.927	
Größtes Maximum und Minimum	0.408 und -0.350 eÅ ⁻³	

Tabelle 7.5.1 Kristalldaten und Strukturverfeinerung für [[{Cp'''Fe}{In''Fe}(μ-η^{4:4}-P₄)] (8c).

Verfeinerung nach F^2 mit ALLEN Reflexen. Die gewichteten R-Werte wR2 und alle GooF's basieren auf F^2 . Die konventionellen R-Werte R1 basieren auf F, wobei F für negative F^2 gleich Null gesetzt wird. Das Ablehnungskriterium $F^2 > 2\sigma(F^2)$ wird nur zum Berechnen von R(obs) etc. verwendet. Zur Verfeinerung wurden alle Reflexe herangezogen. Grundsätzlich gilt: Auf F^2 bezogene R-Werte sind statistisch etwa doppelt so groß wie die auf F basierenden. Auf ALLE Reflexe bezogene R-Werte sind noch größer.

Die Wasserstoffatome wurden geometrisch lokalisiert. Für die Verfeinerung wurde ein Reitermodell angenommen. Als Temperaturfaktor wurde der 1.5-fache Wert (CH₃-Gruppen) bzw. der 1.2-fache Wert (Cp-H oder Ar-H) des äquivalenten isotropen Temperaturfaktors desjenigen C- Atoms eingesetzt, an welches das jeweilige H-Atom gebunden ist.

Einzelheiten können dem Handbuch für das Verfeinerungsprogramm SHELXL entnommen werden.

Tabelle 7.5.2 Atomkoordinaten [x 10⁴] und äquivalente isotrope Auslenkungsparameter [Å² x 10³] für 8c. U(eq) wird berechnet als ein Drittel der Spur des orthogonalisierten U_{ij} -Tensors.

	х	У	Z	U(eq)
Fe(1)	1105(1)	3993(1)	7335(1)	31(1)
Fe(2)	3131(1)	3717(1)	7162(1)	32(1)
P(1)	2920(1)	3858(1)	8588(1)	50(1)
P(2)	2120(1)	3036(1)	7809(1)	56(1)
P(3)	1288(1)	3334(1)	6126(1)	52(1)
P(4)	1607(1)	4310(1)	6096(1)	44(1)
C(1)	-166(3)	3849(1)	7985(2)	38(1)
C(2)	-771(3)	3938(L)	6924(2)	35(1) 24(1)
C(3)	-428(3)	4555(L) 40(1(1)	6725(2)	34(1) 27(1)
C(4)	347(3) E09(3)	4861(1)	7594(2)	37(1)
C(5)	4075(3)	4422(1) 3429(2)	6256(2)	37(1) 39(1)
C(0)	4075(3)	3429(2) 3114(1)	7189(2)	33(1) 41(1)
C(8)	4977(3)	3604(1)	7909(2)	38(1)
C(9)	4766(3)	4217(1)	7458(2)	37(1)
C(10)	4224(3)	4103(1)	6428(2)	38(1)
C(11)	3865(3)	4522(2)	5595(3)	54(1)
C(12)	3378(4)	4276(2)	4681(3)	70(1)
C(13)	3214(4)	3618(3)	4520(3)	72(1)
C(14)	3548(4)	3199(2)	5259(3)	58(1)
C(21)	-295(3)	3376(2)	8731(2)	48(1)
C(22)	-459(6)	2688(2)	8441(4)	92(2)
C(23)	792(5)	3411(2)	9710(3)	85(2)
C(24)	-1369(5)	3600(3)	8944(4)	98(2)
C(31)	-1758(3)	3568(2)	6100(2)	42(1)
C(32)	-1575(4)	2854(2)	6080(3)	72(1)
C(33)	-2945(4)	3707(2)	6193(3)	73(1)
C(34)	-1881(4)	3816(2)	5096(2)	61(1)
C(41)	675(3)	5563(1)	7716(2)	45(1) 00(1)
C(42)	-385(4)	5908(2)	7815(4)	80(1) CE(1)
C(43)	$\perp / / / (4)$	50/5(2)	8004(3) 6040(3)	65(1)
C(44) C(51)	009(4) 4770(4)	2406(2)	0040(J) 7202(2)	67(1) 61(1)
C(51)	5138(5)	2400(2)	8476(4)	92(2)
C(52) C(53)	5814(5)	2238(2)	7089(5)	100(2)
C(54)	3693(4)	1986(2)	6797(4)	79(1)
C(61)	5259(3)	4845(2)	7977(3)	49(1)
C(62)	5786(5)	4744(2)	9087(3)	90(2)
C(63)	6276(4)	5062(2)	7689(4)	70(1)
C(64)	4288(4)	5351(2)	7708(4)	85(2)
Tabelle 7.5.3 Bindungslängen [Å] und -winkel [^o] für 8c.

Fe(1) - C(3) Fe(1) - C(5) Fo(1) - C(2)	2.086(3) 2.107(3) 2.118(3)	C(4) - C(41) C(6) - C(7) C(6) - C(14)	L.519(4) L.432(4)
Fe(1) - C(2) Fe(1) - C(1) Fe(1) - C(4) Fe(1) - P(4)	2.1139(3) 2.143(3) 2.2496(9)	C(6) - C(124) C(6) - C(10) C(7) - C(8) C(7) - C(51)	L.436 (4) L.426 (4) L.520 (4)
Fe(1) - P(1) Fe(1) - P(2) Fo(1) - P(2)	2.2712 (10) 2.3185 (10) 2.3185 (10)	C(8) - C(9) C(9) - C(10) C(9) - C(10)	1.320(4) 1.426(4) 1.422(4) 1.524(4)
Fe(1) - Fe(3) Fe(1) - Fe(2) Fe(2) - C(8) Fe(2) - C(7)	2.6408 (7) 2.087 (3) 2.108 (3)	C(10)-C(11) C(11)-C(12) C(12)-C(13)	L. 327 (4) L. 436 (4) L. 347 (5)
Fe(2) - C(9)	2.135 (3)	C(13) - C(14)	L.336 (6)
Fe(2) - C(6)	2.166 (3)	C(21) - C(22)	L.498 (5)
Fe(2) - C(10)	2.177 (3)	C(21) - C(22)	L.532 (6)
Fe(2) - P(1)	2.2448 (10)	C(21) -C(23)	L.529 (6)
Fe(2) - P(4)	2.2722 (9)	C(31) -C(32)	L.517 (5)
Fe(2) - P(3)	2.3034 (10)	C(31) -C(34)	L.526 (5)
Fe(2)-P(2)	2.3249(11)	C(31) -C(33)	L.530 (6)
P(1)-P(2)	2.0911(15)	C(41) -C(44)	L.517 (5)
P(2)-P(3)	2.3731(15)	C(41) -C(42)	L.534 (6)
P(3)-P(4)	2.0883(14)	C(41) -C(43)	L.527 (5)
C(1)-C(5)	1.434(4)	C(51) -C(52)	L.527 (6)
C(1)-C(2)	1.460(4)	C(51) -C(54)	L.532 (6)
C(1) - C(21)	1.539(4)	C(51)-C(53)	L.535(7)
C(2) - C(3)	1.427(4)	C(61)-C(64)	L.518(6)
C(2) - C(31)	1.542(4)	C(61)-C(63)	L.527(6)
C(3) - C(4)	1.413(4)	C(61)-C(62)	L.524(6)
C(4)-C(5)	1.402(4)		
$\begin{array}{c} C(3) -Fe(1) -C(5) \\ C(3) -Fe(1) -C(2) \\ C(5) -Fe(1) -C(2) \\ C(3) -Fe(1) -C(1) \\ C(5) -Fe(1) -C(1) \\ C(2) -Fe(1) -C(4) \\ C(5) -Fe(1) -C(4) \\ C(2) -Fe(1) -C(4) \\ C(2) -Fe(1) -C(4) \\ C(3) -Fe(1) -P(4) \\ C(3) -Fe(1) -P(4) \\ C(3) -Fe(1) -P(4) \\ C(2) -Fe(1) -P(4) \\ C(2) -Fe(1) -P(4) \\ C(3) -Fe(1) -P(4) \\ C(3) -Fe(1) -P(1) \\ C(2) -Fe(1) -P(1) \\ C(2) -Fe(1) -P(1) \\ C(2) -Fe(1) -P(1) \\ C(2) -Fe(1) -P(1) \\ C(3) -Fe(1) -P(2) \\ C(2) -Fe(1) -P(2) \\ C(2) -Fe(1) -P(2) \\ C(4) -Fe(1) -Fe(1) \\ C(4) \\ C(4) -Fe(1) \\ C(4) \\ C$	64.39(11) 39.66(12) 66.06(12) 66.09(12) 39.47(12) 40.11(11) 39.01(11) 38.52(11) 66.91(12) 66.57(12) 87.88(9) 137.26(9) 112.91(8) 152.22(9) 99.69(9) 146.96(8) 88.21(9) 144.77(8) 104.89(9) 107.95(8) 102.32(4) 154.10(9) 116.52(8) 115.10(9) 97.73(8) 153.97(8)	$\begin{array}{c} P(2) -Fe(1) -P(3) \\ C(3) -Fe(1) -Fe(2) \\ C(5) -Fe(1) -Fe(2) \\ C(2) -Fe(1) -Fe(2) \\ C(1) -Fe(1) -Fe(2) \\ P(4) -Fe(1) -Fe(2) \\ P(4) -Fe(1) -Fe(2) \\ P(4) -Fe(1) -Fe(2) \\ P(2) -Fe(1) -Fe(2) \\ P(3) -Fe(1) -Fe(2) \\ P(3) -Fe(2) -C(7) \\ C(8) -Fe(2) -C(7) \\ C(8) -Fe(2) -C(9) \\ C(7) -Fe(2) -C(9) \\ C(7) -Fe(2) -C(6) \\ C(7) -Fe(2) -C(6) \\ C(9) -Fe(2) -C(6) \\ C(9) -Fe(2) -C(10) \\ C(7) -Fe(2) -C(10) \\ C(9) -Fe(2) -C(10) \\ C(9) -Fe(2) -C(10) \\ C(9) -Fe(2) -C(10) \\ C(9) -Fe(2) -P(1) \\ C(7) -Fe(2) -P(1) \\ C(6) -Fe(2) -P(1) \\ C(10) -Fe(2) -P(4) \\ \end{array}$	$\begin{array}{c} 61.22(4)\\ 142.20(8)\\ 139.40(9)\\ 154.14(8)\\ 151.63(8)\\ 133.43(9)\\ 54.67(3)\\ 53.75(3)\\ 55.45(3)\\ 54.67(3)\\ 39.73(12)\\ 39.46(12)\\ 67.23(12)\\ 64.85(12)\\ 39.13(12)\\ 65.59(12)\\ 64.31(12)\\ 65.59(12)\\ 38.49(12)\\ 38.62(12)\\ 38.62(12)\\ 90.85(9)\\ 116.87(10)\\ 100.64(9)\\ 154.70(9)\\ 137.61(9)\\ 147.34(9)\end{array}$
P(4) -Fe(1) -P(2)	102.66(4)	C(7) -Fe(2) -P(4) $C(9) -Fe(2) -P(4)$ $C(6) -Fe(2) -P(4)$ $C(10) -Fe(2) -P(4)$ $P(1) -Fe(2) -P(4)$ $C(8) -Fe(2) -P(3)$	140.67(10)
P(1) -Fe(1) -P(2)	54.20(4)		108.15(9)
C(3) -Fe(1) -P(3)	109.96(8)		102.09(9)
C(5) -Fe(1) -P(3)	163.60(10)		86.63(8)
C(2) -Fe(1) -P(3)	99.47(8)		102.44(4)
C(1) -Fe(1) -P(3)	124.31(9)		150.82(9)
C(4) -Fe(1) -P(3)	144.70(8)	C(7) -Fe(2) -P(3)	111.64 (9)
P(4) -Fe(1) -P(3)	54.06(4)	C(9) -Fe(2) -P(3)	152.97 (9)
P(1) -Fe(1) -P(3)	101.25(4)	C(6) -Fe(2) -P(3)	96.01 (9)

C(10)-Fe(2)-P(3)	115.03(9)	C(8)-C(7)-Fe(2)	69.34(18)
P(1) - Fe(2) - P(3)	103.27(4)	C(6) - C(7) - Fe(2)	72,64(18)
$D(A) = E_{O}(2) = D(3)$	54 31(4)	$C(51) = C(7) = E_{C}(2)$	133 2 (3)
P(4) = P(2) = P(3)	JIO 15 (0)	C(31) = C(7) = FC(2)	133.2(3)
C(8) - Fe(2) - P(2)	110.15(9)	C(9) - C(8) - C(7)	110.9(3)
C(7) - Fe(2) - P(2)	100.14(9)	C(9) - C(8) - Fe(2)	72.11(18)
C(9)-Fe(2)-P(2)	144.96(9)	C(7)-C(8)-Fe(2)	70.93(18)
C(6) - Fe(2) - P(2)	125,37(9)	C(10) - C(9) - C(8)	105.7(3)
C(10) = Fe(2) = P(2)	163 88 (9)	C(10) - C(9) - C(61)	127.6(3)
D(1) = (2) D(2)	103.00(9)		127.0(3)
P(1) - Fe(2) - P(2)	54.43(4)	C(8) - C(9) - C(61)	125.7(3)
P(4) - Fe(2) - P(2)	101.76(4)	C(10) - C(9) - Fe(2)	72.32(18)
P(3)-Fe(2)-P(2)	61.69(4)	C(8)-C(9)-Fe(2)	68.43(18)
C(8)-Fe(2)-Fe(1)	145.35(9)	C(61)-C(9)-Fe(2)	132.7(2)
C(7) - Fe(2) - Fe(1)	155 06 (9)	C(9) - C(10) - C(11)	132 3 (3)
$C(9) = E_0(2) = E_0(1)$	124 49(9)	C(9) - C(10) - C(6)	109.2(2)
C(3) = Fe(2) = Fe(1)	140 56(9)	C(3) = C(10) = C(0)	109.2(3)
C(6) - Fe(2) - Fe(1)	149.76(8)	C(11) - C(10) - C(6)	118.5(3)
C(10)-Fe(2)-Fe(1)	138.01(8)	C(9)-C(10)-Fe(2)	69.19(18)
P(1)-Fe(2)-Fe(1)	54.68(3)	C(11) -C(10) -Fe(2)	128.2(2)
P(4) - Fe(2) - Fe(1)	53,87(3)	C(6) - C(10) - Fe(2)	70.30(18)
P(3) - Fe(2) - Fe(1)	56 04 (3)	C(12) = C(11) = C(10)	119 4 (4)
$P(2) = F_0(2) = F_0(1)$	55,01(3)	C(11) - C(12) - C(12)	121 7(1)
P(2) - Fe(2) - Fe(1)	55.22(5)	C(11) = C(12) = C(13)	121.7(4)
P(2) - P(1) - Fe(2)	64.74(4)	C(14) - C(13) - C(12)	122.2(4)
P(2)-P(1)-Fe(1)	64.06(4)	C(13) - C(14) - C(6)	119.1(4)
Fe(2)-P(1)-Fe(1)	71.57(3)	C(22) - C(21) - C(24)	109.0(4)
P(1) - P(2) - Fe(1)	61.75(4)	C(22) - C(21) - C(1)	117.2(3)
$D(1) = D(2) = E_{0}(2)$	60 92 (1)	C(24) = C(21) = C(1)	106 c(2)
$F(L) = F(Z) = FE(Z)$ $E_{C}(1) = F(Z) = FE(Z)$	(0.03(4))	C(24) = C(21) = C(1)	100.0(3)
FO(1) - F(2) - FO(2)	67.32(3)	C(22) - C(21) - C(23)	106.5(4)
P(1) - P(2) - P(3)	105.87(5)	C(24) - C(21) - C(23)	106.2(4)
Fe(1)-P(2)-P(3)	59.88(3)	C(1)-C(21)-C(23)	110.8(3)
Fe(2)-P(2)-P(3)	58.71(4)	C(32)-C(31)-C(34)	106.0(3)
P(4) - P(3) - Fe(2)	62 09(4)	C(32) - C(31) - C(33)	110 0(3)
$D(4) D(2) E_0(1)$	60.71(2)	C(34) $C(31)$ $C(33)$	1060(3)
P(4) - P(3) - P(1)	60.71(3)	C(34) = C(31) = C(33)	100.0(3)
Fe(2) - P(3) - Fe(1)	69.29(3)	C(32) - C(31) - C(2)	116.0(3)
P(4)-P(3)-P(2)	105.98(5)	C(34)-C(31)-C(2)	110.1(3)
Fe(2)-P(3)-P(2)	59.60(4)	C(33)-C(31)-C(2)	107.5(3)
Fe(1) - P(3) - P(2)	58,90(3)	C(4) - C(41) - C(44)	112.6(3)
$P(3) - P(4) - F_{P}(1)$	65 22 (4)	C(4) - C(41) - C(42)	106 1 (3)
P(3) = P(4) = P(2)	(3).22(4)	C(4) = C(41) = C(42)	100.1(3)
P(3) - P(4) - Pe(2)	63.61(4)	C(44) - C(41) - C(42)	109.7(3)
Fe(1) - P(4) - Fe(2)	71.46(3)	C(4) - C(41) - C(43)	110.7(3)
C(5)-C(1)-C(2)	105.5(3)	C(44)-C(41)-C(43)	109.8(3)
C(5) - C(1) - C(21)	118.5(3)	C(42) - C(41) - C(43)	107.8(3)
C(2) - C(1) - C(21)	134 8(3)	C(7) - C(51) - C(52)	1097(3)
$C(5) - C(1) - E_0(1)$	69.06(19)	C(7) = C(51) = C(52)	112 E(2)
C(3) - C(1) - Fe(1)	(9.00(10))	C(7) = C(31) = C(34)	100 - 5(4)
C(2) - C(1) - Fe(1)	69.17(18)	C(52) - C(51) - C(54)	108.5(4)
C(21)-C(1)-Fe(1)	135.2(2)	C(7)-C(51)-C(53)	106.9(3)
C(3) - C(2) - C(1)	105.9(3)	C(52)-C(51)-C(53)	109.1(4)
C(3) - C(2) - C(31)	119.6(2)	C(54) - C(51) - C(53)	109.0(4)
C(1) - C(2) - C(31)	133 7 (3)	C(64) - C(61) - C(9)	111 2(3)
$C(2) = C(2) = E_0(1)$	69 94 (19)	C(61) = C(61) = C(62)	110 E(2)
C(3) - C(2) - FE(1)	50.94(10)	C(64) = C(61) = C(63)	10.5(3)
C(1) - C(2) - Fe(1)	70.72(18)	C(9) - C(61) - C(63)	T08.2(3)
C(31) - C(2) - Fe(1)	132.0(2)	C(64) - C(61) - C(62)	109.4(4)
C(4) - C(3) - C(2)	111.7(2)	C(9)-C(61)-C(62)	109.7(3)
C(4)-C(3)-Fe(1)	72.70(17)	C(63)-C(61)-C(62)	107.4(4)
C(2) - C(3) - Fe(1)	$71 \ 40(17)$		
C(5) = C(4) = C(2)	105 0(2)		
C(3) = C(4) = C(3)	105.0(3)		
C(5) - C(4) - C(41)	126.6(3)		
C(3) - C(4) - C(41)	126.8(3)		
C(5)-C(4)-Fe(1)	69.35(17)		
C(3) - C(4) - Fe(1)	68,28(16)		
$C(41) - C(4) - F_{2}(1)$	137 3 (3)		
C(4) = C(5) = C(1)	111 0/2)		
C(4) = C(5) = C(1)			
C(4) - C(5) - Fe(1)	72.14(17)		
C(1)-C(5)-Fe(1)	71.47(17)		
C(7) - C(6) - C(14)	132.8(3)		
C(7) - C(6) - C(10)	108.1(3)		
C(14) - C(6) - C(10)	119 1 (3)		
C(12) = C(2) = C(10) C(2) = C(2) $E_{12}(2)$	LTT (2) CO 00 (10)		
C(1) = C(0) = FE(2)			
C(14) - C(6) - Fe(2)	126.7(3)		
C(10)-C(6)-Fe(2)	71.07(18)		
C(8)-C(7)-C(6)	106.0(3)		
C(8) - C(7) - C(51)	125.3(3)		
C(6) - C(7) - C(51)	127 3 (3)		
	1 · J \ J		

	U ₁₁	U ₂₂	U ₃₃	U ₂₃	U ₁₃	U ₁₂
Fe(1)	31(1)	31(1)	32(1)	1(1)	13(1)	3(1)
Fe(2)	29(1)	31(1)	36(1)	2(1)	12(1)	2(1)
P(1)	38(1)	76(1)	32(1)	9(1)	11(1)	8(1)
P(2)	52(1)	38(1)	91(1)	22(1)	42(1)	12(1)
P(3)	35(1)	59(1)	60(1)	-28(1)	18(1)	-5(1)
P(4)	40(1)	59(1)	34(1)	10(1)	17(1)	15(1)
C(1)	37(2)	40(2)	41(2)	5(1)	22(1)	10(1)
C(2)	33(2)	39(2)	37(2)	1(1)	19(1)	6(1)
C(3)	31(2)	37(2)	33(1)	3(1)	14(1)	6(1)
C(4)	38(2)	38(2)	34(1)	0(1)	14(1)	9(1)
C(5)	39(2)	42(2)	31(1)	-2(1)	14(1)	9(1)
C(6)	27(2)	45(2)	50(2)	-5(1)	21(1)	2(1)
C(7)	26(2)	36(2)	63(2)	3(1)	18(2)	2(1)
C(8)	29(2)	40(2)	44 (2)	7(1)	13(1)	2(1)
C(9)	32(2)	33(1)	47(2)	0(1)	18(1)	-2(1)
C(10)	31(2)	40(2)	47(2)	5(1)	22(1)	4(1)
C(11)	49(2)	57(2)	63(2)	18(2)	32(2)	11(2)
C(12)	63(3)	109(4)	47(2)	26(2)	31(2)	26(3)
C(13)	64(3)	$\perp \perp \perp (4)$	42(2)	-6(2)	22(2)	19(3)
C(14)	45(2)	69(2)	63(2)	-22(2)	25(2)	6(2)
C(21)	52(2)	52(2)	49(2)	13(2)	$3 \perp (2)$	10(2)
C(22)	100(4)	50(2)	92(3) EE(2)	15(2)	72(3)	-7(3)
C(23)	100(4)	93(3) 120(E)	55(2) 102(4)	33(∠) E2(2)	23(2) 71(2)	-9(3)
C(24) C(31)	91(4)	129(5)	103(4)	-5(3)	71(3) 15(1)	-1(3)
C(32)	72(2)	52(2)	$\frac{1}{72}(2)$	-8(2)	B(2)	- - - - (-)
C(32)	42(3)	96(3)	81(3)	-23(2)	25(2)	-13(2)
C(34)	50(3)	80(3)	41(2)	-7(2)	7(2)	-18(2)
C(41)	51(2)	36(2)	44(2)	-4(1)	15(2)	5(2)
C(42)	78(3)	50(2)	113(4)	-17(2)	38(3)	15(2)
C(43)	70(3)	55(2)	63 (2)	-15(2)	17(2)	-9(2)
C(44)	98(4)	38(2)	64(2)	1(2)	31(2)	-8(2)
C(51)	43(2)	31(2)	111(3)	14(2)	33(2)	3(2)
C(52)	73 (3)	58(3)	127(4)	51(3)	22(3)	12(2)
C(53)	68(3)	37(2)	221(6)	9(3)	84(4)	10(2)
C(54)	62(3)	31(2)	149(4)	-7(2)	46(3)	-3(2)
C(61)	39(2)	41(2)	71(2)	-13(2)	26(2)	-9(2)
C(62)	93(4)	96(4)	74(3)	-42(3)	24(3)	-37(3)
C(63)	57(3)	48(2)	114(3)	-17(2)	45(2)	-15(2)
C(64)	62(3)	46(2)	151(5)	-31(3)	47(3)	-5(2)

Tabelle 7.5.4Anisotrope Auslenkungsparameter [Ų x 10³] für 8c.Der Exponent des anisotropen Auslenkungsfaktors hat die Form: $-2\pi^2$ [(ha*) $^2U_{11}$ + ... + 2hka*b*U_{12}]

	x	У	Z	U(eq)
Н(З)	-682	4734	6100	40
H(5)	995	4492	9006	45
H(8)	5354	3534	8582	46
H(11)	3968	4960	5685	64
H(12)	3145	4549	4143	84
H(13)	2861	3468	3878	86
H(14)	3442	2764	5132	70
H(22A)	-502	2440	8971	137
H(22B)	207	2546	8300	137
H(22C)	-1186	2637	7867	137
H(23A)	6/9	3126	10174	127
H(23B) H(22C)	08Z	3030	9960	127
H(23C) $H(24\Lambda)$	-2094	35230	8378	146
H(24R)	-1294	4047	9090	146
H(24C)	-1391	3369	9497	146
H(32A)	-2141	2682	5474	107
H(32B)	-1690	2659	6622	107
H(32C)	-776	2770	6130	107
H(33A)	-3583	3491	5677	109
H(33B)	-3093	4157	6140	109
H(33C)	-2904	3559	6819	109
H(34A)	-1136	3761	5024	91
H(34B)	-2085	4260	5043	91
H(34C)	-2499	3584	4589	91
H(42A)	-1079	5868	7211	120
H(42B)	-193	6350	7953	120
H(42C) H(42D)	-547	5720	0216	120
H(43R)	1967	6121	9210	98
H(43C)	2443	5442	8638	98
H(44A)	1552	5615	6788	100
H(44B)	1066	6278	6950	100
H(44C)	185	5772	6258	100
H(52A)	5864	2493	8848	138
H(52B)	5267	1819	8592	138
H(52C)	4516	2406	8676	138
H(53A)	5573	2302	6395	150
H(53B)	6034	1800	7248	150
H(53C)	6486	2506	7442	150
H(54A)	3044	2080	6992	119
H(54B)	3911	1546	6927	119
H(54C) H(52D)	3447	2070	61U8 0/11	125
H(62R)	6416	2421	9260	135
H(62C)	5172	4595	9289	135
H(63A)	5955	5181	7007	104
H(63B)	6836	4719	7793	104
H(63C)	6676	5420	8085	104
H(64A)	4037	5459	7025	127
H(64B)	4596	5723	8103	127
H(64C)	3617	5189	7825	127

Tabelle 7.5.5H-Atomkoordinaten [x 10⁴] und äquivalente isotrope Auslenkungsparameter [Å² x 10³] für 8c.

Summenformel	$C_{50}H_{72}Fe_{2}O_{10}P_{2}S_{2}W_{2}$	
Molmasse	1438.54	
Temperatur	293(2) K	
Strahlung	ΜοΚα	
Wellenlänge	0.71073 Å	
Scanmodus	Phi-Oszillation	
Kristallsystem	Orthorhombisch	
Raumgruppe	P2 ₁ 2 ₁ 2	
Zelldimensionen	a = 13.3475(9) Å	$\alpha = 90^{\circ}$
	b = 18.6560(10) Å	$\beta = 90^{\circ}$
	c = 11.7820(10) Å	$\gamma = 90^{\circ}$
Zellvolumen	$2933.8(4) Å^3$	1
Formeleinheiten pro Zelle Z	2	
Berechnete Dichte	1.628 Mg/m^3	
Absorptionskoeffizient	4.568 mm^{-1}	
Kristallgröße	0.20 x 0.16 x 0.06 mm	
Gemessener θ-Bereich	2.79 bis 25.68°	
Anzahl der gemessenen Reflexe	41328	
Unabhängige Reflexe	5565 (Rint = 0.1721)	
Absorptionskorrektur	Analytisch (ABST/PLATON)	
Max. und min. Transmission	0.76442 und 0.49121	
Diffraktometer	Stoe IPDS	
Strukturlösung	Direkte Methoden	
Strukturlösungsprogramm	SIR97 (Giacovazzo et al., 1997)	
Strukturverfeinerung	Vollmatrix Least-Squares gegen I	²
Strukturverfeinerungsprogramm	SHELXL-97 (Sheldrick, 1997)	
Daten / Restraints / Parameter	5565 / 7 / 302	
Endgültige R-Werte $[I \ge 2\sigma(I)]$	R1 = 0.0325, $wR2 = 0.0504$	
R-Werte (alle Daten)	R1 = 0.0828, $wR2 = 0.0572$	
Absolutstrukturparameter	-0.019(9)	
Wichtungsschema	$w=1/[\sigma^{2}(Fo^{2})+(0.0000P)^{2}+0.0000P)^{2}$	P] mit P= $(Fo^2+2Fc^2)/3$
GooF (alle Daten)	0.670	
Größtes Maximum und Minimum	0.497 und -0.592 eÅ ⁻³	

Tabelle 7.6.1 Kristalldaten und Strukturverfeinerung für [Cp^{'''}₂Fe₂P₂S₂{W(CO)₅}₂] (11).

Verfeinerung nach F^2 mit ALLEN Reflexen. Die gewichteten R-Werte wR2 und alle GooF's basieren auf F^2 . Die konventionellen R-Werte R1 basieren auf F, wobei F für negative F^2 gleich Null gesetzt wird. Das Ablehnungskriterium $F^2 > 2\sigma(F^2)$ wird nur zum Berechnen von R(obs) etc. verwendet. Zur Verfeinerung wurden alle Reflexe herangezogen. Grundsätzlich gilt: Auf F^2 bezogene R-Werte sind statistisch etwa doppelt so groß wie die auf F basierenden. Auf ALLE Reflexe bezogene R-Werte sind noch größer.

Das Molekül liegt auf einer zweizähligen Achse. Ebenfalls auf einer zweizähligen Achse befindet sich ein Hexanmolekül. Die Wasserstoffatome wurden geometrisch lokalisiert. Für die Verfeinerung wurde ein Reitermodell angenommen. Als Temperaturfaktor wurde der 1.5-fache Wert (CH₃-Gruppen) bzw. der 1.2-fache Wert (Cp-H) des äquivalenten isotropen Temperaturfaktors desjenigen C-Atoms eingesetzt, an welches das jeweilige H-Atom gebunden ist.

Einzelheiten können dem Handbuch für das Verfeinerungsprogramm SHELXL entnommen werden.

$$wR_{2} = \sqrt{\frac{\sum \left[w\left(F_{o}^{2} - F_{c}^{2}\right)^{2}\right]}{\sum \left[w\left(F_{o}^{2}\right)^{2}\right]}}$$

$$R_1 = \frac{\sum \left\|F_o\right| - \left|F_c\right|}{\sum \left|F_o\right|}$$

 $GooF = \sqrt{\frac{\sum \left[w\left(F_o^2 - F_c^2\right)\right]}{(n-p)}} \quad n = \text{Zahl der Reflexe; } p = \text{Zahl der verfeinerten Parameter}$

Tabelle 7.6.2 Atomkoordinaten [x 10⁴] und äquivalente isotrope Auslenkungsparameter [Å² x 10³] für 11. U(eq) wird berechnet als ein Drittel der Spur des orthogonalisierten U_{ij} -Tensors.

	x	У	Z	U(eq)
W(1)	9373(1)	8640(1)	1664(1)	45(1)
Fe(1)	8940(1)	9862(1)	-1741(1)	37(1)
S(1)	9765(1)	10874(1)	-1402(2)	40(1)
P(1)	9503(2)	9526(1)	40(2)	38(1)
0(50)	9410(6)	7501(3)	3634(5)	82(2)
0(51)	11612(5)	8935(4)	2352(7)	97(3)
0(52)	8524(8)	9668(5)	3586(8)	135(4)
0(53)	7112(5)	8286(4)	1022(6)	87(3)
0(54)	10224(5)	7419(4)	40(7)	85(3)
C(1)	7951(6)	10345(5)	-2879(7)	44(2)
C(2)	7445(5)	10203(5)	-1794(8)	40(2)
C(3)	7465(5)	9434(4)	-1616(9)	45(2)
C(4)	7911(6)	9095(6)	-2579(7)	44(3)
C(5)	8228 (5)	9665(4)	-3338(9)	44(2)
C(21)	8014(7)	10988(6)	-3681(7)	55(3)
C(22)	7121(6)	10938(6)	-4522(8)	80(3)
C(23)	7982(7)	11742(5)	-3144(10)	72(3)
C(24)	8977(7)	10948(5)	-4394(7)	74(3)
C(31)	6853(7)	10673(6)	-988(8)	59(3)
C(32)	7429(6)	11301(6)	-500(7)	73 (3)
C(33)	5909(6)	10942(5)	-1655(11)	93 (3)
C(34)	6522(7)	10215(6)	24(9)	76(3)
C(41)	7909(7)	8305(6)	-2829(8)	52(3)
C(42)	6821(8)	8149(6)	-3234(15)	139(6)
C(43)	8064(8)	7876(5)	-1805(12)	101(4)
C(44)	8661(9)	8084(6)	-3719(10)	119(5)
C(50)	9372(9)	7911(5)	2910(8)	57(3)
C(51)	10806(9)	8862(5)	2090(8)	63(3)
C(52)	8854(8)	9314(6)	2869(9)	66(3)
C(53)	7940(9)	8410(5)	1230(8)	68(3)
C(54)	9913(8)	7867(6)	588(8)	60(3)
C(60)	5439(11)	9762(6)	3140(2)	310(13)
C(61)	5220(2)	9114(12)	3830(2)	420(2)
C(62)	2018(10)	8498(11)	3330(2)	293(9)

Tabelle 7.6.3 Bindungslängen [Å] und -winkel [^o] für 11.

$W(1) -C(50) W(1) -C(51) W(1) -C(51) W(1) -C(52) W(1) -C(52) W(1) -C(53) W(1) -P(1) Fe(1) -C(2) Fe(1) -C(1) Fe(1) -C(3) Fe(1) -C(3) Fe(1) -C(4) Fe(1) -S(1) #1 Fe(1) -P(1) #1 S(1) -P(1) #1 S(1) -Fe(1) #1 P(1) -S(1) #1 P(1) -S(1) #1 P(1) -P(1) #1 O(50) -C(50) O(51) -C(51) O(52) -C(52) \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	$\begin{array}{c} 2.002(10)\\ 2.021(12)\\ 2.051(12)\\ 2.019(12)\\ 2.025(12)\\ 2.534(2)\\ 2.095(7)\\ 2.095(7)\\ 2.087(8)\\ 2.129(8)\\ 2.129(8)\\ 2.140(9)\\ 2.215(9)\\ 2.221(2)\\ 2.243(2)\\ 2.315(3)\\ 2.8761(19)\\ 2.096(3)\\ 2.243(2)\\ 2.096(3)\\ 2.210(4)\\ 1.147(9)\\ 1.127(10)\\ 1.158(11)\end{array}$	O(53) -C(53) O(54) -C(54) C(1) -C(5) C(1) -C(2) C(2) -C(3) C(2) -C(3) C(2) -C(3) C(4) -C(5) C(4) -C(41) C(21) -C(22) C(21) -C(23) C(21) -C(23) C(21) -C(24) C(31) -C(32) C(31) -C(34) C(31) -C(33) C(41) -C(43) C(41) -C(42) C(60) -C(61) C(60) -C(60) #2 C(61) -C(62)	$\begin{array}{c} 1.157(10)\\ 1.136(11)\\ 1.428(10)\\ 1.428(10)\\ 1.528(11)\\ 1.528(11)\\ 1.528(11)\\ 1.516(11)\\ 1.429(12)\\ 1.453(12)\\ 1.504(11)\\ 1.552(11)\\ 1.552(11)\\ 1.552(11)\\ 1.514(12)\\ 1.538(11)\\ 1.514(12)\\ 1.567(12)\\ 1.462(14)\\ 1.509(12)\\ 1.556(12)\\ 1.484(14)\\ 1.470(18)\\ 1.395(18)\end{array}$	
$\begin{array}{c} C(50) - W(1) - C(51) \\ C(50) - W(1) - C(54) \\ C(51) - W(1) - C(52) \\ C(51) - W(1) - C(52) \\ C(51) - W(1) - C(52) \\ C(50) - W(1) - C(53) \\ C(51) - W(1) - C(53) \\ C(52) - W(1) - C(53) \\ C(52) - W(1) - P(1) \\ C(52) - W(1) - P(1) \\ C(51) - W(1) - P(1) \\ C(52) - W(1) - P(1) \\ C(52) - W(1) - P(1) \\ C(52) - W(1) - P(1) \\ C(53) - W(1) - P(1) \\ C(52) - W(1) - P(1) \\ C(53) - W(1) - P(1) \\ C(53) - W(1) - P(1) \\ C(52) - Fe(1) - C(3) \\ C(1) - Fe(1) - C(3) \\ C(1) - Fe(1) - C(5) \\ C(2) - Fe(1) - C(4) \\ C(3) - Fe(1) - C(4) \\ C(5) - Fe(1) - S(1) \\ C(2) - Fe(1) - S(1) \\ C(3) - Fe(1) - S(1) \\ C(3) - Fe(1) - S(1) \\ C(4) - Fe(1) - S(1) \\ \# \\ C(3) - Fe(1) - S(1) \\ \# \\ C(2) - Fe(1) - P(1) \\ C(3) - Fe(1) - P(1) \\ C(3) - Fe(1) - P(1) \\ C(4) - Fe(1) - P(1) $	$\begin{array}{c} 87.5(4)\\ 88.6(3)\\ 88.0(4)\\ 84.6(4)\\ 91.3(4)\\ 173.2(4)\\ 92.3(4)\\ 179.5(4)\\ 91.5(4)\\ 89.2(4)\\ 175.6(3)\\ 89.4(2)\\ 88.2(3)\\ 98.6(3)\\ 90.7(3)\\ 41.1(3)\\ 67.7(4)\\ 66.6(3)\\ 39.5(3)\\ 65.6(4)\\ 65.9(3)\\ 65.6(4)\\ 65.9(3)\\ 66.4(3)\\ 38.3(3)\\ 38.9(3)\\ 102.7(2)\\ 93.5(2)\\ 139.8(2)\\ 121.6(2)\\ 159.4(3)\\ 1\\ 157.7(3)\\ 1\\ 150.1(2)\\ 1\\ 118.1(2)\\ 1\\ 113.2(2)\\ 1\\ 99.3(2)\\ 1\\ 96.07(8)\\ 114.7(3)\\ 154.8(2)\\ 97.8(3)\\ 153.5(2)\\ 115.5(3)\\ \end{array}$	$\begin{split} & S(1) \# 1 - Fe(1) - P(1) \\ & C(2) - Fe(1) - Fe(1) \\ & C(3) - Fe(1) - Fe(1) \\ & C(5) - Fe(1) - Fe(1) \\ & C(5) - Fe(1) - Fe(1) \\ & C(4) - Fe(1) - Fe(1) \\ & S(1) \# 1 - Fe(1) - Fe(1) \\ & S(1) \# 1 - Fe(1) - Fe(1) \\ & P(1) \# 1 - S(1) - Fe(1) \\ & P(1) \# 1 - S(1) - Fe(1) \\ & Fe(1) - S(1) - Fe(1) \\ & S(1) \# 1 - P(1) - Fe(1) \\ & S(1) \# 1 - P(1) - Fe(1) \\ & S(1) \# 1 - P(1) - Fe(1) \\ & Fe(1) - S(1) - Fe(1) \\ & Fe(1) - P(1) - W(1) \\ & C(5) - C(1) - C(21) \\ & C(2) - C(1) - C(21) \\ & C(2) - C(1) - Fe(1) \\ & C(2) - C(1) - Fe(1) \\ & C(2) - C(1) - Fe(1) \\ & C(3) - C(2) - Fe(1) \\ & C(3) - C(4) - C(3) \\ & C(3) - C(4) - C(4) \\ & C(5) - C(4) - Fe(1) \\ & C(4) - C(5) - Fe(1) \\ & C(4) - C($	1))#1)#1)#1)#1)#1)#1 1) #1 1) #1)#1 1)))	54.75(8) 151.9(2) 123.0(2) 167.6(2) 117.9(2) 136.5(2) 50.22(6) 49.56(6) 74.28(6) 94.26(10) 64.37(9) 80.22(8) 90.28(11) 60.89(8) 88.77(7) 114.31(11) 124.25(8) 146.97(10) 106.7(8) 116.6(8) 134.8(8) 72.3(5) 69.7(5) 134.5(6) 107.2(8) 19.4(8) 132.8(8) 71.2(4) 69.1(4) 130.8(6) 109.3(9) 74.1(5) 68.7(4) 106.6(5) 67.7(5) 136.2(7) 110.0(8) 68.3(5) 72.2(5) 72.2(5) 72.2(5) 72.2(5) 72.2(5) 74.1(5) 74.1(5) 74.1(5) 68.7(4) 106.6(9) 126.7(8) 67.6(5) 67.7(5) 136.2(7) 110.0(8) 68.3(5) 72.2(5) 72

C(1)-C(21)-C(22)	107.8(7)
C(1)-C(21)-C(23)	117.4(8)
C(22)-C(21)-C(23)	107.1(8)
C(1) - C(21) - C(24)	110.2(8)
C(22)-C(21)-C(24)	106.9(7)
C(23)-C(21)-C(24)	106.9(8)
C(32)-C(31)-C(2)	114.9(8)
C(32)-C(31)-C(34)	106.4(8)
C(2)-C(31)-C(34)	108.3(8)
C(32)-C(31)-C(33)	110.6(8)
C(2)-C(31)-C(33)	106.9(8)
C(34)-C(31)-C(33)	109.7(8)
C(43)-C(41)-C(44)	109.3(9)
C(43)-C(41)-C(4)	112.0(9)
C(44) - C(41) - C(4)	113.8(8)
C(43)-C(41)-C(42)	106.4(10)
C(44)-C(41)-C(42)	110.9(10)
C(4) - C(41) - C(42)	104.2(8)
O(50)-C(50)-W(1)	177.3(11)
O(51)-C(51)-W(1)	174.9(9)
O(52)-C(52)-W(1)	176.0(11)
O(53)-C(53)-W(1)	177.5(9)
O(54)-C(54)-W(1)	176.5(9)
C(61)-C(60)-C(60)#2	109.5(17)
C(62)-C(61)-C(60)	111.5(17)

Symmetrietransformationen für die äquivalenten Atome:

$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	#X+Z,-Y+Z,Z #Z -X-	·⊥,-y+∠,	Z
---	--------------------	----------	---

	U ₁₁	U ₂₂	U ₃₃	U ₂₃	U ₁₃	U ₁₂
W(1)	58(1)	38(1)	38(1)	2(1)	6(1)	-7(1)
Fe(1)	45(1)	31(1)	35(1)	-3(1)	-2(1)	-3(1)
S(1)	49(1)	29(1)	41(1)	2(1)	-4(1)	-2(1)
P(1)	43(2)	35(1)	37(1)	2(1)	1(1)	-3(1)
O(50)	106(5)	80(5)	60(5)	42(4)	-6(5)	-14(5)
O(51)	59(5)	112(8)	120(6)	7(5)	-22(5)	-9(5)
O(52)	239(11)	89(8)	77(7)	-26(5)	56(7)	5(7)
O(53)	70(5)	109(7)	81(5)	-9(4)	1(4)	-33(5)
O(54)	112(7)	51(5)	94(6)	-8(4)	27(5)	21(4)
C(1)	42(5)	41(6)	51(6)	-16(5)	-13(4)	-6(4)
C(2)	33(4)	45(6)	41(5)	-6(5)	2(5)	-3(4)
C(3)	56(5)	49(7)	30(5)	-13(6)	-4(5)	-2(4)
C(4)	34(5)	57(8)	43(6)	-19(5)	-13(4)	2(5)
C(5)	50(5)	44(6)	37(4)	-6(6)	-3(5)	3(4)
C(21)	62(7)	56(8)	48(7)	5(5)	-21(5)	-4(5)
C(22)	85(8)	76(9)	79(8)	9(6)	-51(6)	-5(6)
C(23)	93(8)	37(7)	87(10)	4(7)	-23(7)	6(6)
C(24)	118(10)	58(7)	47(6)	11(5)	-11(6)	-13(6)
C(31)	63(7)	48(7)	65(7)	-20(6)	3(6)	-6(5)
C(32)	67(6)	72(8)	79(7)	-25(7)	4(5)	3(7)
C(33)	67(7)	66(7)	146(9)	-9(9)	-40(9)	15(5)
C(34)	78(7)	75(9)	75(7)	-25(7)	25(6)	0(6)
C(41)	73(8)	29(6)	53(6)	-10(5)	-8(5)	-18(5)
C(42)	101(9)	75(10)	241(18)	-76(13)	-88(12)	2(7)
C(43)	160(10)	42(7)	102(10)	-33(8)	2(10)	-18(6)
C(44)	183(13)	55(8)	120(12)	-42(8)	69(10)	-9(8)
C(50)	61(6)	57(7)	53(6)	-13(5)	18(6)	-16(7)
C(51)	87(8)	36(7)	66(6)	9(4)	-1(7)	0(6)
C(52)	84(8)	63(8)	51(7)	16(6)	7(5)	10(7)
C(53)	105(9)	53 (9)	47(6)	0(5)	6(6)	-9(7)
C(54)	74(7)	63(8)	45(6)	24(6)	14(5)	-3(6)

Tabelle 7.6.4 Anisotrope Auslenkungsparameter [Å² x 10³] für 11.Der Exponent des anisotropen Auslenkungsfaktors hat die Form: $-2\pi^2$ [$(ha^*)^2 U_{11} + ... + 2hka^*b^*U_{12}$]

	x	У	Z	U(eq)
H(3)	7225	9199	-976	54
H(5)	8562	9598	-4022	53
H(22A)	7152	10491	-4923	120
H(22B)	7157	11327	-5053	120
H(22C)	6503	10965	-4108	120
H(23A)	7365	11801	-2735	108
H(23B)	8023	12098	-3731	108
H(23C)	8536	11797	-2633	108
H(24A)	9538	10854	-3906	111
H(24B)	9078	11396	-4779	111
H(24C)	8917	10570	-4942	111
H(32A)	8021	11128	-127	109
H(32B)	7016	11550	37	109
H(32C)	7615	11621	-1101	109
H(33A)	5820	11446	-1526	139
H(33B)	5327	10688	-1396	139
H(33C)	6002	10857	-2451	139
H(34A)	7100	10072	453	114
H(34B)	6178	9796	-247	114
H(34C)	6080	10489	498	114
H(42A)	6807	7702	-3637	208
H(42B)	6601	8527	-3726	208
H(42C)	6385	8121	-2588	208
H(43A)	8320	7413	-2011	152
H(43B)	7438	7819	-1414	152
H(43C)	8534	8114	-1317	152
H(44A)	9308	8029	-3374	179
H(44B)	8695	8445	-4298	179
H(44C)	8459	7636	-4050	179
H(60A)	5601	9624	2370	372
H(60B)	6012	10011	3459	372
H(61A)	5493	9173	4583	505
H(61B)	4496	9059	3899	505
H(62A)	5247	8381	2659	439
H(62B)	5576	8106	3860	439
H(62C)	6307	8581	3139	439

Tabelle 7.6.5H-Atomkoordinaten [x 10⁴] und äquivalente isotrope Auslenkungsparameter [Å² x 10³] für 11.

Summonformal	C H Eq O D So W	
Malmaga	$C_{45}\Pi_{58}\Gamma e_2 O_{11}\Gamma_2 S e_2 W_2$	
Tomporatur	14/4.1/ 202(2) V	
	293(2) K	
Strahlung	Μοκα	
Wellenlänge	0.71073 A	
Scanmodus	Phi-Oszillation	
Kristallsystem	Monoklin	
Raumgruppe	$P2_1/n$	
Zelldimensionen	a = 15.5484(10) Å	$\alpha = 90^{\circ}$
	b = 15.8386(9) Å	$\beta = 99.123(8)^{\circ}$
	c = 21.8487(14) Å	$\gamma = 90^{\circ}$
Zellvolumen	$5312.5(6) Å^3$	
Formeleinheiten pro Zelle Z	4	
Berechnete Dichte	1.843 Mg/m^3	
Absorptionskoeffizient	6.335 mm^{-1}	
Kristallgröße	0.40 x 0.20 x 0.14 mm	
Gemessener θ-Bereich	2.74 bis 25.68°	
Anzahl der gemessenen Reflexe	73840	
Unabhängige Reflexe	9667 (Rint = 0.0629)	
Absorptionskorrektur	Semi-empirisch aus Äquivalenten	
Max. und min. Transmission	0.45264 und 0.21171	
Diffraktometer	Stoe IPDS	
Strukturlösung	Direkte Methoden	
Strukturlösungsprogramm	SHELXS-97 (Sheldrick, 1990)	
Strukturverfeinerung	Vollmatrix Least-Squares gegen F	2
Strukturverfeinerungsprogramm	SHELXL-97 (Sheldrick, 1997)	
Daten / Restraints / Parameter	9667 / 0 / 595	
Endgültige R-Werte $[I \ge 2\sigma(I)]$	R1 = 0.0331, $wR2 = 0.0734$	
R-Werte (alle Daten)	R1 = 0.0499, wR2 = 0.0773	
Wichtungsschema	$w=1/[\sigma^{2}(Fo^{2})+(0.0430P)^{2}+0.0000]$	P] mit P=(Fo ² +2Fc ²)/3
GooF (alle Daten)	0.962	- ` /
Größtes Maximum und Minimum	0.855 und -0.743 eÅ ⁻³	

Tabelle 7.7.1	Kristalldaten und Strukturverfeinerung für	$[Cp'''Fe(\mu_4-\eta^{4:2:1:1}-P_2Se_2)Fe(CO)Cp'''{$	$W(CO)_{5}_{2}$] (14).

Verfeinerung nach F^2 mit ALLEN Reflexen. Die gewichteten R-Werte wR2 und alle GooF's basieren auf F^2 . Die konventionellen R-Werte R1 basieren auf F, wobei F für negative F^2 gleich Null gesetzt wird. Das Ablehnungskriterium $F^2 > 2\sigma(F^2)$ wird nur zum Berechnen von R(obs) etc. verwendet. Zur Verfeinerung wurden alle Reflexe herangezogen. Grundsätzlich gilt: Auf F^2 bezogene R-Werte sind statistisch etwa doppelt so groß wie die auf F basierenden. Auf ALLE Reflexe bezogene R-Werte sind noch größer.

Die Wasserstoffatome wurden geometrisch lokalisiert. Für die Verfeinerung wurde ein Reitermodell angenommen. Als Temperaturfaktor wurde der 1.5-fache Wert (CH₃-Gruppen) bzw. der 1.2-fache Wert (Cp-H) des äquivalenten isotropen Temperaturfaktors desjenigen C-Atoms eingesetzt, an welches das jeweilige H-Atom gebunden ist.

Einzelheiten können dem Handbuch für das Verfeinerungsprogramm SHELXL entnommen werden.

Tabelle 7.7.2 Atomkoordinaten [x 10⁴] und äquivalente isotrope Auslenkungsparameter [Å² x 10³] für 14. U(eq) wird berechnet als ein Drittel der Spur des orthogonalisierten U_{ij} -Tensors.

	x	У	Z	U(eq)
W(1)	-323(1)	4697(1)	1838(1)	49(1)
W(2)	2203(1)	7165(1)	1748(1)	49(1)
Se(1) Ce(2)	-1019(1)	6829(1) 0007(1)	2/23(1)	38(1) 20(1)
Se(2)	220(1) 010(1)	8297(1)	2507(1) 1752(1)	39(1)
Fe(1) Fo(2)	-819(1) -215(1)	7529(1) 7867(1)	1/52(1)	36(1) 25(1)
P(2)	-315(1)	6249(1)	3410(1)	35(1)
P(2)	-200(1)	7242(1)	1955(1)	41(1)
C(1)	-1221(4)	8540(4)	1148(3)	43(1)
C(2)	-1122(4)	7779(4)	787(3)	46(1)
C(3)	-1714(4)	7184(4)	970(3)	44(1)
C(4)	-2184 (4)	7519(4)	1409(3)	44(1)
C(5)	-1859(4)	8345(4)	1535(3)	44(1)
C(6)	389(4)	7048(3)	4111(3)	39(1)
C(7)	-378(4)	7408(4)	4312(3)	43(1)
C(8)	-252(4)	8306(4)	4304(2)	41(1)
C(9)	527(4)	8521(4)	4091(3)	41(1)
C(10)	912(4)	7735(3)	3975(3)	40(1)
C(11)	-1229(4)	8531(4)	3223(3)	49(2)
C(21)	-902(4)	9460(4)	1100(3)	53(2)
C(22)	-1225(6)	10014(5)	1599(4)	73(2)
C(23)	-1335(6)	9814(5) 0502(5)	466(4)	(2)
C(24)	93 (5) 694 (E)	9582(5) 7566(5)	11/2(4)	69(2) E6(2)
C(32)	-1374(5)	7500(5)	222(3)	20(2)
C(32) C(33)	132(6)	8083(6)	157(4)	77(2)
C(34)	-421(6)	6639(5)	243(4)	75(2)
C(41)	-3004(4)	7128(4)	1605(3)	50(2)
C(42)	-3175(5)	7438(5)	2232(4)	66(2)
C(43)	-2965(5)	6164(4)	1611(4)	59(2)
C(44)	-3743(5)	7408(6)	1093(4)	75(2)
C(51)	771(4)	6152(4)	4109(3)	48(1)
C(52)	1418(5)	6088(4)	3650(3)	57(2)
C(53)	106(5)	5445(4)	3955(4)	59(2)
C(54)	1282(5)	6003(5)	4761(3)	65(2)
C(61)	-1158(4)	7044(4)	4577(3)	50(2)
C(62)	-1/21(6)	//42(5)	4 / / 6 (4)	79(3)
C(63)	-823(5) 1760(E)	6511(5)	5158(3)	(2)
C(64) C(71)	-1780(5) 930(4)	0490(5) 9399(4)	4105(4)	50(2)
C(72)	1689(5)	9430(5)	3743(4)	76(2)
C(73)	248(6)	10052(5)	3842(4)	79(2)
C(74)	1280(7)	9593(5)	4782(4)	83(3)
C(80)	-461(6)	3448(5)	1658(4)	77(2)
C(81)	-1197(5)	4655(4)	2445(3)	56(2)
C(82)	-1292(6)	4855(5)	1101(4)	68(2)
C(83)	596(5)	4765(5)	1271(4)	66(2)
C(84)	635(5)	4367(4)	2555(4)	65(2)
C(90)	3468(5)	7115(5)	1672(4)	68(2)
C(91)	1901(5)	6620(5)	891(4)	63(2)
C(92)	2320(5)	6008(5)	2170(4)	67(2)
C(93)	2579(5) 2149(5)	//14(5)	2394(4) 1224(4)	64 (Z) 65 (2)
O(11)	∠⊥4J(J) -1820(A)	0343(3) 8978(3)	1) 1) 1) 1) 1) 1)	00(Z) 77(0)
O(80)	-529(6)	2770(3)	1551(4)	125(3)
0(81)	-1661(4)	4657(3)	2795(3)	76(2)
0(82)	-1837(5)	4886(5)	689(4)	104(2)
0(83)	1098(4)	4774(4)	949(3)	96(2)
0(84)	1125(4)	4118(4)	2948(3)	94 (2)
0(90)	4186(3)	7093(4)	1652(4)	103(2)
0(91)	1790(4)	6321(4)	415(3)	90(2)
0(92)	2412(5)	5376(4)	2411(3)	98(2)

7 Anhang					
O(93)	2813(4)	7998 (5)	3061(3)	99(2)	
0(94)	2168(4)	8962(4)	1092(3)	96(2)	

Tabelle 7.7.3 Bindungslängen [Å] und -winkel [⁰] für 14.

$\begin{split} & \text{W}(1) - \text{C}(80) \\ & \text{W}(1) - \text{C}(83) \\ & \text{W}(1) - \text{C}(82) \\ & \text{W}(1) - \text{C}(81) \\ & \text{W}(1) - \text{C}(81) \\ & \text{W}(1) - \text{P}(1) \\ & \text{W}(2) - \text{C}(90) \\ & \text{W}(2) - \text{C}(91) \\ & \text{W}(2) - \text{C}(91) \\ & \text{W}(2) - \text{C}(92) \\ & \text{W}(2) - \text{P}(2) \\ & \text{Se}(1) - \text{P}(1) \\ & \text{Se}(1) - \text{Fe}(1) \\ & \text{Se}(2) - \text{Fe}(2) \\ & \text{Se}(2) - \text{Fe}(1) \\ & \text{Fe}(1) - \text{C}(5) \\ & \text{Fe}(1) - \text{C}(3) \\ & \text{Fe}(1) - \text{C}(3) \\ & \text{Fe}(1) - \text{C}(3) \\ & \text{Fe}(1) - \text{C}(2) \\ & \text{Fe}(1) - \text{C}(4) \\ & \text{Fe}(1) - \text{P}(1) \\ & \text{Fe}(2) - \text{C}(10) \\ & \text{Fe}(2) - \text{C}(6) \\ & \text{P}(1) - \text{P}(2) \\ & \text{C}(1) - \text{C}(2) \\ & \text{C}(2) - \text{C}(3) \\ & \text{C}(2) - \text{C}(3) \\ & \text{C}(2) - \text{C}(3) \\ \\ & \text{C}(4) \\ & \text{C}(4) \\ & \text{C}(4) \\ \hline \end{split}$	2.023 (7) 2.037 (7) 2.040 (10) 2.047 (7) 2.051 (9) 2.5142 (14) 2.001 (7) 2.048 (8) 2.043 (8) 2.047 (8) 2.049 (8) 2.049 (8) 2.5092 (15) 2.2234 (15) 2.3749 (10) 2.4556 (9) 2.4356 (9) 2.4257 (10) 2.066 (6) 2.098 (6) 2.107 (5) 2.123 (6) 2.136 (6) 2.3058 (17) 2.3210 (17) 1.763 (7) 2.061 (5) 2.093 (6) 2.111 (6) 2.118 (5) 2.166 (6) 2.123 (2) 1.436 (8) 1.436 (8) 1.418 (8) 1.539 (8) 1.399 (8) 1.414 (0)	$\begin{array}{c} C(4) - C(41) \\ C(6) - C(10) \\ C(6) - C(7) \\ C(6) - C(51) \\ C(7) - C(8) \\ C(7) - C(61) \\ C(8) - C(9) \\ C(9) - C(10) \\ C(9) - C(71) \\ C(11) - O(11) \\ C(21) - C(22) \\ C(21) - C(22) \\ C(21) - C(22) \\ C(21) - C(23) \\ C(31) - C(33) \\ C(31) - C(32) \\ C(31) - C(33) \\ C(41) - C(42) \\ C(41) - C(42) \\ C(41) - C(42) \\ C(41) - C(43) \\ C(51) - C(53) \\ C(51) - C(52) \\ C(51) - C(52) \\ C(51) - C(52) \\ C(51) - C(52) \\ C(61) - C(62) \\ C(61) - C(62) \\ C(61) - C(63) \\ C(71) - C(73) \\ C(71) - C(73) \\ C(71) - C(74) \\ C(71) - C(72) \\ C(80) - O(80) \\ C(81) - O(81) \\ C(82) - O(82) \\ C(83) - O(83) \\ C(84) - O(84) \\ C(90) - O(90) \\ C(91) - O(91) \\ C(92) - O(92) \\ C(93) - O(93) \\ C(94) - O(94) \\ \end{array}$	$\begin{array}{c} 1.538(8)\\ 1.418(8)\\ 1.418(8)\\ 1.453(8)\\ 1.538(8)\\ 1.538(8)\\ 1.535(8)\\ 1.408(8)\\ 1.524(8)\\ 1.524(8)\\ 1.524(8)\\ 1.524(8)\\ 1.543(10)\\ 1.543(10)\\ 1.543(10)\\ 1.543(10)\\ 1.543(10)\\ 1.523(11)\\ 1.535(10)\\ 1.535(10)\\ 1.525(9)\\ 1.537(10)\\ 1.525(9)\\ 1.535(10)\\ 1.525(9)\\ 1.535(10)\\ 1.525(9)\\ 1.535(10)\\ 1.526(10)\\ 1.526(10)\\ 1.526(10)\\ 1.524(10)(10)(10)\\ 1.524(10)(10)(10)(10)(10)(10)(10)(10)$	
C(80) -W(1) -C(83) C(80) -W(1) -C(82) C(83) -W(1) -C(82) C(83) -W(1) -C(81) C(83) -W(1) -C(81) C(82) -W(1) -C(81) C(82) -W(1) -C(84) C(83) -W(1) -C(84) C(83) -W(1) -C(84) C(82) -W(1) -C(84) C(80) -W(1) -P(1) C(80) -W(1) -P(1) C(82) -W(1) -P(1) C(82) -W(1) -P(1) C(81) -W(1) -P(1) C(81) -W(1) -P(1) C(81) -W(1) -P(1) C(81) -W(1) -P(1) C(90) -W(2) -C(93) C(90) -W(2) -C(93) C(90) -W(2) -C(92) C(91) -W(2) -C(92) C(91) -W(2) -C(92) C(90) -W(2) -C(94) C(91) -W(2) -C(94) C(92) -W(2) -C(94)	$\begin{array}{c} 89.8 (3) \\ 85.6 (3) \\ 90.9 (3) \\ 91.9 (3) \\ 176.9 (3) \\ 91.8 (3) \\ 86.6 (3) \\ 89.1 (3) \\ 172.2 (3) \\ 88.4 (3) \\ 177.5 (2) \\ 92.6 (2) \\ 93.8 (2) \\ 85.75 (18) \\ 93.95 (19) \\ 89.6 (3) \\ 87.0 (3) \\ 176.6 (3) \\ 89.0 (3) \\ 91.5 (3) \\ 88.9 (3) \\ 88.3 (3) \\ 89.3 (3) \\ 90.1 (3) \\ 177.2 (3) \end{array}$	$\begin{array}{c} C(90) -W(2) -P(2) \\ C(91) -W(2) -P(2) \\ C(93) -W(2) -P(2) \\ C(92) -W(2) -P(2) \\ C(94) -W(2) -P(2) \\ P(1) -Se(1) -Fe(1) \\ Fe(2) -Se(1) -Fe(1) \\ Fe(2) -Se(2) -Fe(1) \\ Fe(2) -Se(2) -Fe(1) \\ Fe(2) -Se(2) -Fe(1) \\ C(5) -Fe(1) -C(3) \\ C(5) -Fe(1) -C(3) \\ C(5) -Fe(1) -C(2) \\ C(3) -Fe(1) -C(2) \\ C(3) -Fe(1) -C(2) \\ C(3) -Fe(1) -C(4) \\ C(3) -Fe(1) -C(4) \\ C(1) -Fe(1) -C(4) \\ C(2) -Fe(1) -P(1) \\ C(3) -Fe(1) -P(1) \\ C(3) -Fe(1) -P(1) \\ C(2) -Fe(1) -P(1) \\ \end{array}$))	174.4(3) 95.7(2) 87.75(19) 88.9(2) 93.6(2) 115.69(5) 58.80(4) 97.17(3) 114.54(5) 59.33(5) 97.93(3) 65.3(2) 40.2(2) 66.1(2) 67.2(2) 39.3(2) 40.5(2) 39.3(2) 38.6(2) 66.8(2) 66.5(2) 152.95(17) 102.34(17) 158.69(17) 119.39(18)

C(4) - Fe(1) - P(1)	116,15(17)	C(3) - C(2) - Fe(1)	69,4(3)
$C(5) = E_{0}(1) = D(2)$	152 05 (17)	$C(1) - C(2) - F_{2}(1)$	69.2(3)
C(3) = PC(1) = P(2)	107.00(17)	C(1) - C(2) - PC(1)	
C(3) - Fe(1) - P(2)	127.98(17)	C(31) - C(2) - Fe(1)	134.4(5)
C(1)-Fe(1)-P(2)	117.09(16)	C(4) - C(3) - C(2)	112.0(5)
C(2)-Fe(1)-P(2)	106.47(17)	C(4)-C(3)-Fe(1)	72.2(3)
C(4)-Fe(1)-P(2)	165.19(17)	C(2)-C(3)-Fe(1)	71.3(4)
P(1) - Fe(1) - P(2)	54 63 (5)	C(3) - C(4) - C(5)	1060(5)
C(E) = C(1) = C(2)	104 64 (19)	C(3) C(4) C(3)	100.0(5)
C(5) = FE(1) = SE(2)		C(3) - C(4) - C(41)	125.0(0)
C(3) - Fe(1) - Se(2)	164.15(17)	C(5) - C(4) - C(41)	127.2(5)
C(1)-Fe(1)-Se(2)	98.21(17)	C(3)-C(4)-Fe(1)	69.2(3)
C(2)-Fe(1)-Se(2)	126.61(17)	C(5)-C(4)-Fe(1)	67.7(3)
C(4) - Fe(1) - Se(2)	138,97(17)	C(41) - C(4) - Fe(1)	136.6(4)
$D(1) = F_{0}(1) = S_{0}(2)$	91 78 (5)	C(4) - C(5) - C(1)	110 1 (5)
$P(2) = P(1) C_2(2)$	51.70(5)	C(4) $C(5)$ $C(1)$	110.1(0)
P(2) - Fe(1) - Se(2)	55.82(4)	C(4) - C(5) - FE(1)	73.0(3)
C(5) - Fe(1) - Se(1)	106.21(16)	C(1) - C(5) - Fe(1)	71.4(3)
C(3) - Fe(1) - Se(1)	115.31(16)	C(10)-C(6)-C(7)	106.7(5)
C(1)-Fe(1)-Se(1)	144.96(16)	C(10) - C(6) - C(51)	118.3(5)
C(2) - Fe(1) - Se(1)	154,56(17)	C(7) - C(6) - C(51)	134.3(5)
$C(4) = E_{2}(1) = S_{2}(1)$	92 58 (16)	$C(10) = C(6) = E_{0}(2)$	68 6 (3)
$D(1) = D(1) C_0(1)$	52.50(10)	C(10) C(0) IC(2) $C(7) C(C) E_{2}(2)$	(0.0(3))
P(1) - Fe(1) - Se(1)	55.57(4)	C(7) - C(6) - FE(2)	00.4(3)
P(2) - Fe(1) - Se(1)	90.24(5)	C(51) - C(6) - Fe(2)	134.7(4)
Se(2)-Fe(1)-Se(1)	78.61(3)	C(8)-C(7)-C(6)	105.3(5)
C(11)-Fe(2)-C(8)	86.2(3)	C(8)-C(7)-C(61)	119.6(5)
C(11) - Fe(2) - C(9)	105.1(3)	C(6) - C(7) - C(61)	134.7(5)
$C(8) = F_{2}(2) = C(9)$	39 6 (2)	$C(8) - C(7) - F_{2}(2)$	67.8(3)
C(0) = PE(2) = C(0)	144 C(2)	C(0) = C(7) = Fe(2)	07.0(3)
C(11) - Fe(2) - C(10)	144.6(3)	C(6) - C(7) - FE(2)	72.0(3)
C(8) - Fe(2) - C(10)	65.0(2)	C(61) - C(7) - Fe(2)	129.5(5)
C(9)-Fe(2)-C(10)	39.5(2)	C(9)-C(8)-C(7)	111.7(5)
C(11)-Fe(2)-C(7)	105.4(3)	C(9)-C(8)-Fe(2)	71.4(3)
C(8) - Fe(2) - C(7)	40.2(2)	C(7) - C(8) - Fe(2)	72.0(3)
$C(9) = F_{0}(2) = C(7)$	68 0(2)	C(8) - C(9) - C(10)	104 8(5)
C(10) = E(2) - C(7)	(0.0(2))	C(0) - C(0) - C(10)	104.0(5)
C(10) - Fe(2) - C(7)	66.0(2)	C(8) - C(9) - C(71)	126.0(5)
C(11) - Fe(2) - C(6)	145.0(2)	C(10) - C(9) - C(71)	128.3(5)
C(8)-Fe(2)-C(6)	65.8(2)	C(8)-C(9)-Fe(2)	68.9(3)
C(9)-Fe(2)-C(6)	66.8(2)	C(10)-C(9)-Fe(2)	70.9(3)
C(10) - Fe(2) - C(6)	38.7(2)	C(71) - C(9) - Fe(2)	132.4(4)
$C(7) = F_{0}(2) = C(6)$	39 6 (2)	C(6) - C(10) - C(9)	111 3(5)
C(11) = C(2) = C(0)	55.0(2)	C(0) = C(10) = C(0)	111.3(3)
C(11) - Fe(2) - Se(2)	90.7(2)	C(6) - C(10) - Fe(2)	12.1(3)
C(8) - Fe(2) - Se(2)	136.50(16)	C(9) - C(10) - Fe(2)	69.6(3)
C(9)-Fe(2)-Se(2)	100.83(15)	O(11) -C(11) -Fe(2)	175.6(6)
C(10)-Fe(2)-Se(2)	96.42(15)	C(24) - C(21) - C(1)	116.0(5)
C(7) - Fe(2) - Se(2)	162,17(18)	C(24) - C(21) - C(22)	106.9(6)
$C(6) = E_0(2) = G_0(2)$	122 02(14)	C(1) - C(21) - C(22)	110 1 (5)
C(0) = PE(2) = SE(2) $C(11) = E_2(2) = C_2(1)$		C(1) = C(21) = C(22) C(24) = C(21) = C(22)	100.1(3)
C(11) - Fe(2) - Se(1)	89.6(2)	C(24) = C(21) = C(23)	109.4(6)
C(8) - Fe(2) - Se(1)	141.34(16)	C(1) - C(21) - C(23)	107.6(6)
C(9)-Fe(2)-Se(1)	165.02(17)	C(22)-C(21)-C(23)	106.4(6)
C(10)-Fe(2)-Se(1)	125.79(16)	C(34) - C(31) - C(32)	108.4(7)
C(7) - Fe(2) - Se(1)	105,42(17)	C(34) - C(31) - C(2)	109.7(6)
C(6) = Fe(2) = Se(1)	99 37 (15)	C(32) - C(31) - C(2)	106.7(6)
C(0) = C(2) = C(1)		C(34) $C(31)$ $C(22)$	107.2(6)
Se(2) - Fe(2) - Se(1)	81.89(3)	C(34) = C(31) = C(33)	107.2(6)
P(2) - P(1) - Se(1)	102.31(7)	C(32) - C(31) - C(33)	T08.9(7)
P(2)-P(1)-Fe(1)	63.05(6)	C(2)-C(31)-C(33)	115.7(6)
Se(1)-P(1)-Fe(1)	65.63(4)	C(42)-C(41)-C(43)	109.1(6)
P(2) - P(1) - W(1)	136.13(7)	C(42) - C(41) - C(44)	110.2(6)
Se(1) - P(1) - W(1)	120 65 (6)	C(43) - C(41) - C(44)	1085(6)
$E_{\rm D}(1) = (1) = W(1)$	141 22 (0)	C(42) C(41) C(44)	112 2(0)
Fe(1) - P(1) - W(1)	141.33(8)	C(42) = C(41) = C(4)	113.2(6)
P(1) - P(2) - Se(2)	103.06(7)	C(43) - C(41) - C(4)	TTT'8(2)
P(1)-P(2)-Fe(1)	62.32(6)	C(44) - C(41) - C(4)	103.7(5)
Se(2)-P(2)-Fe(1)	64.85(5)	C(53)-C(51)-C(52)	107.4(5)
P(1) - P(2) - W(2)	129,41(8)	C(53)-C(51)-C(54)	109.0(6)
Se(2) - P(2) - W(2)	121 23 (7)	C(52) - C(51) - C(54)	107 4(6)
$E_{\Delta}(1) = D(2) = W(2)$		C(52) = C(51) = C(51)	
$\mathbf{F} = (\mathbf{I}) - \mathbf{F} (\mathbf{Z}) - \mathbf{W} (\mathbf{Z})$		C(53) = C(51) = C(6)	
C(5) - C(1) - C(2)	LOP.3(2)	C(52) - C(51) - C(6)	TT0.8(2)
C(5)-C(1)-C(21)	120.1(5)	C(54)-C(51)-C(6)	106.4(5)
C(2) - C(1) - C(21)	132.7(5)	C(62)-C(61)-C(7)	111.2(5)
C(5)-C(1)-Fe(1)	68.3(3)	C(62)-C(61)-C(64)	106.3(6)
C(2) - C(1) - Fe(1)	70 4 (3)	C(7) - C(61) - C(64)	113 8(5)
$C(21) = C(1) = E_{2}(1)$	100 0/5	C(62) = C(61) = C(62)	107 2(c)
C(21) = C(1) = FC(1)	105 5 (5)	C(02) = C(01) = C(03)	$\pm 07.3(0)$
C(3) = C(2) = C(1)		C(1) - C(01) - C(03)	T03.2(0)
C(3) - C(2) - C(31)	118.1(6)	C(64)-C(61)-C(63)	108.6(6)
C(1) - C(2) - C(31)	135.3(6)	C(73)-C(71)-C(9)	110.6(6)

C(73)-C(71)-C(74)	110.4(6)
C(9)-C(71)-C(74)	106.6(5)
C(73)-C(71)-C(72)	109.4(6)
C(9)-C(71)-C(72)	111.7(5)
C(74)-C(71)-C(72)	108.1(7)
O(80)-C(80)-W(1)	178.7(8)
O(81)-C(81)-W(1)	177.1(6)
O(82) - C(82) - W(1)	175.5(7)
O(83)-C(83)-W(1)	177.6(7)
O(84) - C(84) - W(1)	173.9(7)
O(90)-C(90)-W(2)	177.5(8)
O(91)-C(91)-W(2)	175.5(7)
O(92)-C(92)-W(2)	177.7(8)
O(93)-C(93)-W(2)	177.4(7)
O(94)-C(94)-W(2)	175.6(7)

0(94)

74(4)

81(4)

128(6)

35(4)

1(4)

-17(3)

Ū₁₃ U₁₁ U₂₂ U,, U23 U₁₂ W(1) 50(1) 40(1)55(1) -8(1)6(1)-1(1)W(2) 39(1) 58(1) 53(1) -8(1)13(1)-3(1)Se(1) 36(1) 39(1) 37(1) -1(1) 4(1)-3(1)Se(2) 42(1) 39(1) 37(1) -1(1) 5(1) -5(1)Fe(1) 34(1) 39(1) 35(1) 1(1) 2(1) -1(1) Fe(2) 36(1) 36(1) 34(1) -1(1)4(1)0(1)P(1) 38(1) 40(1)39(1) -3(1) 4(1)1(1)46(1) 40(1) P(2) 37(1) -4(1) 5(1) -3(1)C(1) 38(3) 44(3) 42(3) 13(2) -3(3) 3(2) C(2) 34(3) 36(3) 65(4) 0(3) -5(3) -5(3) C(3) 43(3) 49(3) 36(3) -1(3)-6(3) -2(3)38(3) C(4) 55(3) -9(3) 32(3) 6(3) 0(2) C(5) 40(3) 44(3) 47(4) 5(3) 5(3) 7(2) C(6) 27(3) 4(2) 41(3) 46(3) -2(3) 0(2) C(7) 52(4) 46(3) 31(3) 2(2) 5(3) 2(3) C(8) 45(3) 51(3) 27(3) -6(2) 5(3) 2(3) C(9) 49(3) 39(3) 35(3) -1(2) 2(3) -1(2) 0(2) C(10) 35(3) 47(3) 37(3) 0(3) 0(2) C(11) 49(4)48(3) 50(4) -8(3) 7(3) 1(3)C(21) 47(4)56(4) 55(4) 12(3) 3(3) -6(3) C(22) 11(4) 83(6) 53(4) 83(6) 8(5) -4(4)77(5) C(23) 64(5)82(6) 22(4) -7(5) -7(4) 15(4)C(24) 66(4) 75(5) 8(4) 63(5) -17(4)C(31) 48(4) 78(5) 41(4)-3(3) 4(3) -1(3)C(32) 79(6) 145(9)41(4)-4(5) 0(5) -4(6) 72(5) 55(5) 4(4)25(4) -5(4) C(33) 108(6) 78(5) 93(6) 60(5) -19(4) 26(5) 1(4) C(34) 61(4) C(41) 35(3) 54(4) 9(3) 1(3) -2(3)C(42) 59(4) 60(4)85(6) -8(4) 28(4)-4(3)C(43) 52(4) 58(4) 67(5) 0(3) 6(4) -17(3)C(44) 38(4) 103(6) 79(6) 28(5) -6(4) -2(4) C(51) -7(3) 47(4) 47(3) 44(4) 2(3) 1(3) C(52) 58(4) 55(4) 58(4) -6(3) 5(4) 10(3) C(53) 69(5) 42(3) 62(4) 3(3) -2(4) 0(3) -7(4) 7(3) C(54) 75(5) 59(4) 55(4) 11(4)59(4) 38(3) 13(3) C(61) 55(4)3(3) -7(3)C(62) 75(5) 83(6) 94(6) 4(4)55(5) -8(4) 75(5) 10(4) C(63) 85(5) 53(4) 15(4)-13(4)C(64) 49(4) 88(5) 69(5) 4(4) 12(4) -14(4) C(71) 57(4) 44(3) 50(4) -8(3) 4(3) -11(3)C(72) 80(5) 63(4) 90(6) -13(4) 33(5) -38(4)C(73) 47(4) 97(7) 89(6) 7(4) -1(5) 0(4) C(74) 109(7)72(5) 62(5) -11(4)-8(5) -27(5)C(80) 96(6) 46(4) 91(6) -14(4) 26(5) -10(4)C(81) 57(4) 49(3) 63(4)-3(3)11(4)-11(3)71(5) C(82) 70(5) 59(4) -19(4) 2(5)2(4)-17(4)C(83) 66(5) 65(4)70(5) 18(4)1(4)C(84) 67(5) 47(4)78(6) -8(3) 1(5)15(3) C(90) 52(4) 66(4) 90(6) -14(4) 23(4) -5(3)C(91) 54(4) 74(5) 64(5) -11(4) 16(4) -8(3) 67(5) 71(5) C(92) 66(5) -2(4) 22(4) 6(4) 45(4)87(5) -9(4) C(93) 60(5) 11(4)1(3)C(94) 47(4)71(5) 75(5) 0(4) 5(4) -13(3) 0(11) 67(3) 77(3) 81(4) -7(3)-3(3)35(3) 37(3) O(80) 199(9) 147(7)-33(3) 55(6) -28(4)85(4) O(81) 72(3) 78(3) -12(3)35(3) -20(3)0(82) 93 (5) 115(5)89(5) -34(4) -37(5)15(4)109(5) -27(4) 56(4) 0(83) 91(4) 102(5) -13(4)77(4) O(84) 97(5) 94(5) 3(3) -24(4)44(3) 0(90) 37(3) 116(5)164(7)-24(4)40(4)-5(3) 0(91) 107(5)108(5) 61(4) -39(3)29(4) -25(4)0(92) 114(5) 75(4) 114(5) 25(4) 45(4) 26(4) 0(93) -43(4) -6(4) 84(4) 145(6) 61(4) -1(4)

Tabelle 7.7.4Anisotrope Auslenkungsparameter $[Å^2 \times 10^3]$ für 14.

Der Exponent des anisotropen Auslenkungsfaktors hat die Form: $-2\pi^2 [(ha^*)^2 U_{11} + ... + 2hka^*b^* U_{12}]$

	x	У	Z	U(eq)
Н(З)	-1782	6637	816	53
H(5)	-2033	8709	1826	53
H(8)	-639	8697	4425	49
H(10)	1439	7679	3829	48
H(22A)	-993	9802	2003	110
H(22B)	-1850	10000	1543	110
H(ZZC)	-1033	10402	1561	
H(23A)	-1200	10403	442	115
H(23C)	-1118	9515	422	115
H(24A)	347	9504	1598	103
H(24B)	219	10142	1042	103
H(24C)	334	9176	920	103
H(32A)	-1134	7563	-721	134
H(32B)	-1546	8292	-378	134
H(32C)	-1873	7361	-332	134
H(33A)	526	8075	542	115
H(33B)	-33	8655	51	115
H(33C)	412	7843	-163	115
H(34A)	-933	6293	214	113
H(34B)	-45	6524	626	113
H(34C)	-120	6516	-98	113
H(42A)	-3/53	1218	2289	99
H(42B)	-3123	8042 7190	2251	99
H(42C) H(42C)	-2/59	5982	1888	89
H(43R)	-2937	5962	1201	89
H(43C)	-3477	5944	1749	89
H(44A)	-4274	7131	1149	112
H(44B)	-3598	7259	695	112
H(44C)	-3818	8008	1114	112
H(52A)	1616	5516	3634	86
H(52B)	1907	6451	3783	86
H(52C)	1137	6259	3246	86
H(53A)	-234	5548	3555	88
H(53B)	-270	5427	4263	88
H(53C)	404	4915	3948	88
H(54A)	891 1710	6024	5059	97
H (54B) H (F4C)	1 / 1 9	6433 E460	4833	97
H(54C)	-1380	8081	4///	97 119
H(62B)	-2202	7498	4940	119
H(62C)	-1938	8089	4425	119
H(63A)	-426	6842	5443	106
H(63B)	-529	6019	5038	106
H(63C)	-1307	6341	5353	106
H(64A)	-2182	6224	4328	102
H(64B)	-1422	6075	3947	102
H(64C)	-2054	6843	3790	102
H(72A)	1476	9346	3310	114
H(72B)	2099	8994	3889	114
H(72C)	T969	9971	3802	114
н(/3А) ц(72р)	60	9943 10607	341U 2004	110
н(/зб) Н(720)	470 _010	10015	2024 1050	110
$H(74\Delta)$	1523	10151	4814	125
H(74R)	1724	9190	4936	125
H(74C)	814	9558	5021	125
/				-

Tabelle 7.7.5H-Atomkoordinaten [x 10⁴] und äquivalente isotrope Auslenkungsparameter [Å² x 10³] für 14.

Summenformel	$C_{37,60}H_{52}Fe_{1,60}O_8P_{3,20}W_{1,60}$	
Molmasse	1114.62	
Temperatur	293(2) K	
Strahlung	ΜοΚα	
Wellenlänge	0.71073 Å	
Scanmodus	Phi-Oszillation	
Kristallsystem	Monoklin	
Raumgruppe	I2/a	
Zelldimensionen	a = 25.2175(16) Å	$\alpha = 90^{\circ}$
	b = 12.2547(7)Å	$\beta = 100.014(8)^{\circ}$
	c = 36.029(3) Å	$\gamma = 90^{\circ}$
Zellvolumen	$10964.6(12) \text{ Å}^3$	
Formeleinheiten pro Zelle Z	10	
Berechnete Dichte	1.688 Mg/m^3	
Absorptionskoeffizient	4.868 mm ⁻¹	
Kristallgröße	0.70 x 0.16 x 0.08 mm	
Gemessener θ-Bereich	2.73 bis 25.68°	
Anzahl der gemessenen Reflexe	44575	
Unabhängige Reflexe	10072 (Rint = 0.0734)	
Absorptionskorrektur	Empirisch (MULABS/PLATON 9	98)
Max. und min. Transmission	0.708306 und 0.180694	
Diffraktometer	Stoe IPDS	
Strukturlösung	Direkte Methoden	
Strukturlösungsprogramm	SHELXS-97 (Sheldrick, 1990)	2
Strukturverfeinerung	Vollmatrix Least-Squares gegen F	52
Strukturverfeinerungsprogramm	SHELXL-97 (Sheldrick, 1997)	
Daten / Restraints / Parameter	10072 / 5 / 590	
Endgültige R-Werte $[I \ge 2\sigma(I)]$	R1 = 0.0336, $wR2 = 0.0672$	
R-Werte (alle Daten)	R1 = 0.0641, wR2 = 0.0720	
Wichtungsschema	$w=1/[\sigma^{2}(Fo^{2})+(0.0300P)^{2}+0.0000]$	P] mit P=(Fo ² +2Fc ²)/3
GooF (alle Daten)	0.844	
Größtes Maximum und Minimum	$1.215 \text{ und } -0.867 \text{ e}^{-3}$	

Tabelle 7.8.1 Kristalldaten und Strukturverfeinerung f [{C]	p'''Fe}₂(μ₄-η ^{4:4:1:1} -P₄	4){W(CO) ₅ } ₂] (19a(A)).
---	--------------------------------------	--

Verfeinerung nach F^2 mit ALLEN Reflexen. Die gewichteten R-Werte wR2 und alle GooF's basieren auf F^2 . Die konventionellen R-Werte R1 basieren auf F, wobei F für negative F^2 gleich Null gesetzt wird. Das Ablehnungskriterium $F^2 > 2\sigma(F^2)$ wird nur zum Berechnen von R(obs) etc. verwendet. Zur Verfeinerung wurden alle Reflexe herangezogen. Grundsätzlich gilt: Auf F^2 bezogene R-Werte sind statistisch etwa doppelt so groß wie die auf F basierenden. Auf ALLE Reflexe bezogene R-Werte sind noch größer.

Die Wasserstoffatome wurden geometrisch lokalisiert. Für die Verfeinerung wurde ein Reitermodell angenommen. Als Temperaturfaktor wurde der 1.5-fache Wert (CH₃-Gruppen) bzw. der 1.2-fache Wert (Cp-H) des äquivalenten isotropen Temperaturfaktors desjenigen C-Atoms eingesetzt, an welches das jeweilige H-Atom gebunden ist.

Einzelheiten können dem Handbuch für das Verfeinerungsprogramm SHELXL entnommen werden.

Tabelle 7.8.2

Atomkoordinaten [x 10⁴] und äquivalente isotrope Auslenkungsparameter [Å² x 10³] für 19a(A). U(eq) wird berechnet als ein Drittel der Spur des orthogonalisierten U_{ij} -Tensors.

	x	У	Z	U(eq)
W(1)	934(1)	1075(1)	1901(1)	52(1)
W(2)	2323(1)	6809(1)	1383(1)	47(1)
Fe(1)	896(1)	4695(1)	1572(1)	36(1)
Fe(2)	1392(1)	3633(1) 5142(1)	1079(1)	37(1)
P(1) = P(2)	1597(1)	5368(1)	1309(1)	45(1)
P(3)	1757(1)	3890(1)	1724(1)	43(1)
P(4)	1077(1)	2886(1)	1574(1)	43(1)
C(1)	80(2)	4906(4)	1661(2)	39(1)
C(2)	298(2)	5958(4)	1589(1)	40(1)
C(3)	765(Z) 835(2)	6105(5) 5226(5)	18/4(1) 2128(2)	40(1) 42(1)
C(5)	413(2)	4491(5)	1988(2)	41(1)
C(6)	1432(3)	3591(5)	482(2)	42(1)
C(7)	1163(3)	2618(5)	587(2)	44(2)
C(8)	1541(3)	2100(4)	865(2)	43(2)
C(9)	2034(3)	2674 (5)	940(2)	44(2)
C(10) C(11)	1952(3) -455(3)	3612(4) 4344(5)	/13(2) 1502(2)	42(1) 50(2)
C(12)	-493(3)	3241(6)	1698(2)	83(3)
C(13)	-921(3)	5029(7)	1582(3)	85(3)
C(14)	-512(4)	4088(7)	1082(2)	86(3)
C(15)	77(3)	6965(5)	1353(2)	51(2)
C(16)	-296(3)	6739(6)	977(2)	74(2)
C(17)	-259(3)	7623(6) 7708(5)	1280(2)	76 (Z) 64 (2)
C(18) C(19)	1197(3)	5197(5)	2506(2)	52(2)
C(20)	864(4)	5710(8)	2778(2)	94(3)
C(21)	1338(4)	4037(7)	2631(2)	83(3)
C(22)	1709(3)	5849(7)	2511(2)	77(2)
C(30)	1322(3)	4365(5)	137(2)	58(2)
C(31)	1642(4) 1551(4)	3780(6)	222(2) -176(2)	80(2)
C(33)	732(4)	4672(7)	-9(2)	87(3)
C(34)	637(3)	2035(6)	415(2)	60(2)
C(35)	127(4)	2713(9)	409(4)	135(5)
C(36)	672(5)	1611(8)	25(2)	115(4)
C(37)	558(4)	1027(8)	639(2) 1146(2)	122(4)
C(40)	2948(3)	3196(7)	1294(3)	91 (3)
C(41)	2506(3)	1502(7)	1464(2)	82(3)
C(42)	2817(4)	1601(8)	861(3)	102(3)
C(50)	555(3)	1728(6)	2301(2)	66(2)
C(51)	1275(3)	198(5)	1535(2)	64(2)
C(52) C(53)	1671(4) 863(3)	1329(6) -312(6)	2232(2) 2171(2)	71(2) 68(2)
C(54)	212(4)	795(5)	1577(2)	66(2)
C(60)	2017(3)	7673 (5)	1782(2)	58(2)
C(61)	2720(3)	6092(5)	1000(2)	57(2)
C(62)	1845(3)	7619(5)	960(2)	58(2)
C(63)	2854(3)	7990(6)	1403(2)	67(2)
C(64)	2786(3)	5993(6) 1999(5)	1820(2) 2534(2)	64 (Z) 94 (2)
0(51)	1462(3)	-361(4)	1335(2)	90(2)
0(52)	2074(3)	1462(5)	2420(2)	106(2)
0(53)	817(3)	-1123(4)	2325(2)	92(2)
O(54)	-194(3)	591(5)	1390(2)	91(2)
O(60)	1886(2) 2859(2)	8199(4)	2008(2)	85(2) 79(2)
O(62)	1581 (3)	8058(4)	719(2)	87(2)
0(63)	3158(3)	8708(5)	1410(2)	100(2)
O(64)	3045(3)	5594 (5)	2071(2)	97(2)

7 Anhang				
C(71)	2195(1)	9041(18)	3(2)	318(13)
C(72)	1895(3)	8468(15)	-353(6)	293 (12)
C(73)	1310(4)	8880(18)	-439(6)	310(12)

Tabelle 7.8.3 Bindungslängen [Å] und -winkel [°] für 19a(A).

$W(1) -C(53) \\W(1) -C(51) \\W(1) -C(50) \\W(1) -C(50) \\W(1) -C(52) \\W(1) -P(4) \\W(2) -C(63) \\W(2) -C(63) \\W(2) -C(62) \\W(2) -C(61) \\W(2) -C(61) \\W(2) -C(61) \\W(2) -P(2) \\Fe(1) -C(3) \\Fe(1) -C(3) \\Fe(1) -C(4) \\Fe(1) -C(4) \\Fe(1) -C(2) \\Fe(1) -P(4) \\Fe(1) -P(2) \\Fe(1) -P(2) \\Fe(1) -P(2) \\Fe(1) -P(2) \\Fe(1) -P(2) \\Fe(1) -P(2) \\Fe(2) -C(8) \\Fe(2) -C(8) \\Fe(2) -C(8) \\Fe(2) -C(7) \\Fe(2) -C(6) \\Fe(2) -C(9) \\Fe(2) -C(6) \\Fe(2) -P(4) \\Fe(2) -P(2) \\Fe(2) -P(3) \\P(1) -P(2) \\Fe(2) -P(3) \\P(3) -P(4) \\C(1) -C(5) \\C(1) -C(3) \\C(2) -C(15) \\C(3) -C(4) \\C(4) -C(5) \\C(4) $	1.981(8) 2.007(8) 2.025(9) 2.013(9) 2.050(10) 2.5682(15) 1.964(8) 2.030(8) 2.041(8) 2.040(8) 2.049(9) 2.5245(16) 2.098(6) 2.104(6) 2.136(5) 2.152(6) 2.168(6) 2.2641(17) 2.2811(17) 2.2811(17) 2.2989(19) 2.3630(18) 2.6802(11) 2.089(5) 2.093(6) 2.130(6) 2.158(5) 2.171(5) 2.2666(17) 2.2878(18) 2.3085(17) 2.3670(16) 2.092(2) 2.338(2) 2.105(2) 1.416(8) 1.431(8) 1.547(8) 1.404(8) 1.419(8)	$\begin{array}{c} C(4) - C(19) \\ C(6) - C(10) \\ C(6) - C(7) \\ C(6) - C(30) \\ C(7) - C(8) \\ C(7) - C(8) \\ C(7) - C(34) \\ C(8) - C(9) \\ C(9) - C(10) \\ C(9) - C(10) \\ C(9) - C(10) \\ C(9) - C(13) \\ C(11) - C(14) \\ C(11) - C(13) \\ C(11) - C(12) \\ C(15) - C(16) \\ C(15) - C(16) \\ C(15) - C(17) \\ C(19) - C(22) \\ C(19) - C(22) \\ C(19) - C(21) \\ C(30) - C(31) \\ C(30) - C(31) \\ C(30) - C(32) \\ C(30) - C(33) \\ C(34) - C(36) \\ C(34) - C(36) \\ C(34) - C(35) \\ C(39) - C(40) \\ C(39) - C(41) \\ C(39) - C(42) \\ C(50) - O(50) \\ C(51) - O(51) \\ C(52) - O(52) \\ C(53) - O(53) \\ C(54) - O(54) \\ C(60) - O(60) \\ C(61) - O(61) \\ C(62) - O(62) \\ C(63) - O(63) \\ C(64) - O(64) \\ C(71) - C(72) \\ C(71) - C(71) \#1 \\ C(72) - C(73) \\ \end{array}$	$\begin{array}{c} 1.503(8)\\ 1.427(8)\\ 1.454(8)\\ 1.551(8)\\ 1.406(8)\\ 1.540(9)\\ 1.414(9)\\ 1.403(8)\\ 1.503(9)\\ 1.528(9)\\ 1.512(10)\\ 1.528(9)\\ 1.512(10)\\ 1.535(9)\\ 1.515(10)\\ 1.529(10)\\ 1.529(10)\\ 1.529(10)\\ 1.529(10)\\ 1.529(10)\\ 1.529(10)\\ 1.528(12)\\ 1.524(10)\\ 1.528(12)\\ 1.524(10)\\ 1.510(9)\\ 1.528(12)\\ 1.524(10)\\ 1.510(9)\\ 1.510(9)\\ 1.528(12)\\ 1.524(10)\\ 1.510(9)\\ 1.510(9)\\ 1.510(9)\\ 1.510(9)\\ 1.510(9)\\ 1.528(12)\\ 1.52(10)\\ 1.121(8)\\ 1.132(9)\\ 1.132(8)\\ 1.132(9)\\ 1.5409(10)\\ 1.5409(12)\\ \end{array}$	
C(53) - W(1) - C(51) C(53) - W(1) - C(50) C(51) - W(1) - C(50) C(51) - W(1) - C(54) C(51) - W(1) - C(54) C(50) - W(1) - C(52) C(51) - W(1) - C(52) C(51) - W(1) - C(52) C(53) - W(1) - C(52) C(53) - W(1) - C(52) C(53) - W(1) - P(4) C(51) - W(1) - P(4) C(52) - W(2) - C(60) C(63) - W(2) - C(61) C(62) - W(2) - C(61) C(63) - W(2) - C(64) C(62) - W(2) - C(64)	$\begin{array}{c} 87.1(3)\\ 84.0(3)\\ 170.9(3)\\ 89.4(3)\\ 88.6(3)\\ 89.4(3)\\ 89.8(3)\\ 90.8(3)\\ 91.1(3)\\ 178.9(3)\\ 176.9(2)\\ 92.88(18)\\ 96.11(19)\\ 93.77(19)\\ 87.12(19)\\ 87.12(19)\\ 88.8(3)\\ 86.1(3)\\ 91.6(3)\\ 86.0(3)\\ 90.0(3)\\ 171.9(3)\\ 92.2(3)\\ 178.1(3)\\ \end{array}$	$\begin{array}{c} C(60) -W(2) -C(64) \\ C(61) -W(2) -C(64) \\ C(63) -W(2) -P(2) \\ C(62) -W(2) -P(2) \\ C(60) -W(2) -P(2) \\ C(61) -W(2) -P(2) \\ C(61) -W(2) -P(2) \\ C(64) -W(2) -P(2) \\ C(3) -Fe(1) -C(5) \\ C(3) -Fe(1) -C(4) \\ C(5) -Fe(1) -C(4) \\ C(5) -Fe(1) -C(1) \\ C(5) -Fe(1) -C(1) \\ C(5) -Fe(1) -C(1) \\ C(5) -Fe(1) -C(2) \\ C(5) -Fe(1) -C(2) \\ C(5) -Fe(1) -C(2) \\ C(5) -Fe(1) -C(2) \\ C(4) -Fe(1) -C(2) \\ C(1) -Fe(1) -P(4) \\ C(4) -Fe(1) -P(4) \\ C(4) -Fe(1) -P(4) \\ C(2) -Fe(1) -P(4) \\ C(2) -Fe(1) -P(4) \\ C(3) -Fe(1) -P(1) \end{array}$		$\begin{array}{c} 86.9(3)\\ 91.6(3)\\ 175.2(2)\\ 86.4(2)\\ 94.6(2)\\ 93.40(19)\\ 92.6(2)\\ 64.3(2)\\ 38.7(2)\\ 39.1(2)\\ 65.4(2)\\ 38.8(2)\\ 66.3(2)\\ 39.2(2)\\ 64.7(2)\\ 66.0(2)\\ 39.0(2)\\ 148.74(15)\\ 91.31(16)\\ 110.04(16)\\ 108.34(15)\\ 147.13(17)\\ 108.97(15)\\ \end{array}$

C(5)-Fe(1)-P(1)	142.45(17)	P(1)-Fe(2)-Fe(1)	53.97(5)
C(4)-Fe(1)-P(1)	147.68(16)	P(2)-Fe(2)-Fe(1)	54.26(5)
C(1) - Fe(1) - P(1)	103.75(15)	P(3) - Fe(2) - Fe(1)	55.41(5)
C(2) - Fe(1) - P(1) D(4) = Fe(1) - P(1)	86.83 (14)	P(2) - P(1) - Fe(1)	63.26(7)
P(4) - Fe(1) - P(1) C(2) - Fo(1) - D(2)	102.28(6)	P(2) - P(1) - Fe(2) Fo(1) - D(1) - Fo(2)	63.44(7) 71 92(5)
C(5) - Fe(1) - F(2) C(5) - Fe(1) - P(2)	156 61 (16)	P(1) - P(2) - Fe(2)	62 39(7)
C(4) - Fe(1) - P(2)	117.51(18)	P(1) - P(2) - Fe(2)	62.43(6)
C(1) - Fe(1) - P(2)	147.39(15)	Fe(1) - P(2) - Fe(2)	71.14(5)
C(2) - Fe(1) - P(2)	110.12(16)	P(1) - P(2) - P(3)	109.04(9)
P(4)-Fe(1)-P(2)	100.56(7)	Fe(1)-P(2)-P(3)	61.26(6)
P(1)-Fe(1)-P(2)	54.35(7)	Fe(2)-P(2)-P(3)	61.24(6)
C(3)-Fe(1)-P(3)	116.43(16)	P(1) - P(2) - W(2)	135.31(9)
C(5) - Fe(1) - P(3)	114.08(17)	Fe(1) - P(2) - W(2)	143.45(7)
C(4) - Fe(1) - P(3) C(1) = Fe(1) - P(3)	97.03(17)	Fe(2) - P(2) - W(2)	142./1(8)
C(1) - Fe(1) - P(3) C(2) - Fe(1) - P(3)	151.62(15) 155.12(16)	P(3) - P(2) - W(2) D(4) - D(3) - D(2)	104 24 (8)
P(4) - Fe(1) - P(3)	54 06(6)	P(4) - P(3) - Fe(1)	60 57 (6)
P(1) - Fe(1) - P(3)	102.03(7)	P(2) - P(3) - Fe(1)	58,55(6)
P(2)-Fe(1)-P(3)	60.19(6)	P(4) - P(3) - Fe(2)	60.58(6)
C(3)-Fe(1)-Fe(2)	151.30(17)	P(2)-P(3)-Fe(2)	58.76(5)
C(5)-Fe(1)-Fe(2)	143.96(16)	Fe(1)-P(3)-Fe(2)	69.03(5)
C(4)-Fe(1)-Fe(2)	152.44(16)	P(3) - P(4) - Fe(1)	65.37(6)
C(1) - Fe(1) - Fe(2)	136.52(15)	P(3) - P(4) - Fe(2)	65.45(6)
C(2) - Fe(1) - Fe(2) D(4) = Fe(1) = Fe(2)	140.57(14)	Fe(1) - P(4) - Fe(2) P(2) - P(4) - W(1)	72.54(5)
P(4) - Fe(1) - Fe(2) D(1) - Fe(1) - Fe(2)	54 20(5)	F(3) - F(4) - W(1) $F_{\Theta}(1) - D(4) - W(1)$	124.10(0) 143.45(7)
P(2) - Fe(1) - Fe(2)	54.20(5) 54.59(5)	Fe(2) - P(4) - W(1)	143.49(7) 143.80(7)
P(3) - Fe(1) - Fe(2)	55.55(4)	C(5) - C(1) - C(2)	106.3(5)
C(8)-Fe(2)-C(10)	64.7(2)	C(5) - C(1) - C(11)	120.4(5)
C(8)-Fe(2)-C(9)	39.1(2)	C(2) - C(1) - C(11)	132.2(5)
C(10)-Fe(2)-C(9)	38.8(2)	C(5) - C(1) - Fe(1)	68.8(3)
C(8) - Fe(2) - C(7)	38.6(2)	C(2) - C(1) - Fe(1)	71.1(3)
C(10) - Fe(2) - C(7)	65.8(2)	C(11) - C(1) - Fe(1) C(2) - C(2) - C(1)	133.7(4)
C(9) - Fe(2) - C(7) C(8) - Fe(2) - C(6)	66.1(2)	C(3) - C(2) - C(1) C(3) - C(2) - C(15)	100.0(5) 117.8(5)
C(10) - Fe(2) - C(6)	39.0(2)	C(1) - C(2) - C(15)	134.4(6)
C(9)-Fe(2)-C(6)	65.5(2)	C(3) - C(2) - Fe(1)	67.8(3)
C(7)-Fe(2)-C(6)	39.2(2)	C(1)-C(2)-Fe(1)	69.9(3)
C(8)-Fe(2)-P(4)	92.11(16)	C(15)-C(2)-Fe(1)	137.7(4)
C(10) - Fe(2) - P(4)	148.95(16)	C(4) - C(3) - C(2)	111.4(5)
C(9) - Fe(2) - P(4)	110.28(16)	C(4) - C(3) - Fe(1)	72.1(3)
C(7) - Fe(2) - P(4) C(6) - Fo(2) - D(4)	109.42(17) 148 50(16)	C(2) - C(3) - Fe(1) C(3) - C(4) - C(5)	/3.1(3) 104 7(5)
C(0) = Fe(2) = F(4) C(8) = Fe(2) = P(1)	140.30(10) 142.34(17)	C(3) - C(4) - C(3) C(3) - C(4) - C(19)	104.7(5) 126.7(6)
C(10) - Fe(2) - P(1)	108.96(16)	C(5) - C(4) - C(19)	127.3(5)
C(9)-Fe(2)-P(1)	147.73 (16)	C(3) - C(4) - Fe(1)	69.2(3)
C(7)-Fe(2)-P(1)	103.84(17)	C(5) - C(4) - Fe(1)	69.2(3)
C(6)-Fe(2)-P(1)	87.18(16)	C(19) - C(4) - Fe(1)	135.4(4)
P(4) - Fe(2) - P(1)	101.99(7)	C(1) - C(5) - C(4)	111.5(5)
C(8) - Fe(2) - P(2)	156.53 (19)	C(1) - C(5) - Fe(1)	72.4(3)
C(10) - Fe(2) - P(2) C(0) = Fe(2) - P(2)	95.94(17) 117.40(18)	C(4) - C(5) - Fe(1)	/L./(3) 106.6(E)
C(9) - Fe(2) - F(2) C(7) - Fe(2) - P(2)	146 79(17)	C(10) - C(6) - C(7)	100.0(5) 118 5(5)
C(6) - Fe(2) - P(2)	109.35(16)	C(7) - C(6) - C(30)	133.2(6)
P(4) - Fe(2) - P(2)	100.20(6)	C(10) - C(6) - Fe(2)	67.5(3)
P(1)-Fe(2)-P(2)	54.14(6)	C(7) - C(6) - Fe(2)	69.9(3)
C(8) - Fe(2) - P(3)	114.65(17)	C(30) - C(6) - Fe(2)	138.3(4)
C(10) - Fe(2) - P(3)	115.36(18)	C(8) - C(7) - C(6)	105.5(5)
C(9) - Fe(2) - P(3)	96.97(16)	C(8) - C(7) - C(34)	120.4(5)
C(1) - Fe(2) - F(3) C(6) - Fe(2) - F(3)	152.21(17)	C(8) = C(7) = C(34)	133.1(5) 60 0(2)
P(4) - Fe(2) - P(3)	53 97(K)	C(6) - C(7) - Fe(2) C(6) - C(7) - Fe(2)	00.0(3) 70 9(3)
P(1) - Fe(2) - P(3)	101.71(6)	C(34) - C(7) - Fe(2)	133.3(4)
P(2)-Fe(2)-P(3)	60.00(6)	C(7) - C(8) - C(9)	112.0(5)
C(8)-Fe(2)-Fe(1)	144.66(17)	C(7)-C(8)-Fe(2)	73.4(3)
C(10)-Fe(2)-Fe(1)	150.09(16)	C(9) - C(8) - Fe(2)	72.0(3)
C(9) - Fe(2) - Fe(1)	152.27(16)	C(10) - C(9) - C(8)	105.1(5)
C(7) - Fe(2) - Fe(1) C(6) - Fo(2) = Fo(1)	137.29(18)	C(10) - C(3) - C(39)	125.9(6)
U(0) - Fe(2) - Fe(1) D(4) - Fe(2) - Fe(1)	14U.86(16) 53 69(1)	C(0) - C(3) - C(33) $C(10) - C(0) - E_{0}(2)$	121.1(5) 69 2(2)
$r(\underline{a}) = r\underline{c}(\underline{a}) = r\underline{c}(\underline{1})$	JJ. (J) (4)	C(IO) = C(J) = IC(Z)	09.2(3)

C(8) - C(9) - Fe(2)	68.9(3)
C(39)-C(9)-Fe(2)	136.0(4)
C(9) - C(10) - C(6)	110.6(5)
C(9)-C(10)-Fe(2)	72.0(3)
C(6) - C(10) - Fe(2)	73,4(3)
C(14) - C(11) - C(1)	112 9(5)
C(14) = C(11) = C(12)	112.0(5)
C(14) - C(11) - C(13)	100.0(6)
C(1) - C(11) - C(13)	109.9(6)
C(14) - C(11) - C(12)	105.8(6)
C(1) - C(11) - C(12)	110.1(5)
C(13) - C(11) - C(12)	106.7(6)
C(18) - C(15) - C(2)	111.2(5)
C(18) - C(15) - C(16)	108.6(6)
C(2)-C(15)-C(16)	116.7(5)
C(18)-C(15)-C(17)	106.9(6)
C(2) - C(15) - C(17)	106.4(5)
C(16)-C(15)-C(17)	106.6(6)
C(4) - C(19) - C(22)	112.3(5)
C(4) - C(19) - C(20)	104.8(6)
C(22) - C(19) - C(20)	109.7(6)
C(4) - C(19) - C(21)	111.5(5)
C(22) - C(19) - C(21)	109.7(6)
C(20) - C(19) - C(21)	109.7(6)
C(20) = C(20) = C(21)	106.9(6)
C(31) - C(30) - C(6)	110.0(5)
C(32) = C(30) = C(0)	10.0(5)
C(32) = C(30) = C(0)	109.4(5)
C(31) - C(30) - C(33)	100.0(0) 100.2(6)
C(32) - C(30) - C(33)	109.2(6)
C(6) - C(30) - C(33)	104 5 (7)
C(36) - C(34) - C(37)	104.5(7)
C(36) - C(34) - C(7)	110.4(6)
C(37) - C(34) - C(7)	110.4(6)
C(36) - C(34) - C(35)	110.9(8)
C(37) - C(34) - C(35)	105.3(8)
C(7) - C(34) - C(35)	114.7(6)
C(9) - C(39) - C(40)	112.4(6)
C(9)-C(39)-C(41)	112.2(6)
C(40)-C(39)-C(41)	109.7(7)
C(9)-C(39)-C(42)	106.5(6)
C(40) -C(39) -C(42)	109.1(7)
C(41)-C(39)-C(42)	106.6(6)
O(50)-C(50)-W(1)	173.6(6)
O(51)-C(51)-W(1)	175.9(6)
O(52) - C(52) - W(1)	178.5(8)
O(53)-C(53)-W(1)	179.3(7)
O(54) - C(54) - W(1)	177.2(7)
O(60) - C(60) - W(2)	174.3(6)
O(61) - C(61) - W(2)	175.2(6)
O(62) - C(62) - W(2)	178 6(6)
O(63) - C(63) - W(2)	178 2 (8)
O(64) - C(64) - W(2)	176.2(0)
C(72) = C(71) = C(71) + 1	100.3(7)
C(72) = C(72) = C(72) + C(72)	109.49(10)
C(12) = C(12)	エレン・モン(エム)

Symmetrietransformationen für die äquivalenten Atome:

#1 -x+1/2,y,-z

	U ₁₁	U ₂₂	U ₃₃	U ₂₃	U ₁₃	U ₁₂
W(1)	63(1)	45(1)	49(1)	7(1)	13(1)	-2(1)
w(∠) Fe(1)	44(1) 34(1)	48(1) 43(1)	49(1) 30(1)	-3(1) 0(1)	5(1)	-4(1) 1(1)
Fe(2)	38(1)	42(1)	31(1)	-1(1)	7(1)	2(1)
P(1) P(2)	43(1)	47(1)	46(1)	-6(1)	13(1)	-4(1)
P(3)	40(1)	51(1)	37(1)	1(1)	1(1)	4(1)
P(4) C(1)	48(1) 36(4)	44(1) 44(3)	38(1) 38(3)	4(1) 0(2)	10(3)	5(1) 2(3)
C(2)	42 (4)	46(3)	31(3)	5(2)	8(3)	8 (3)
C(3) C(4)	39(4) 40(4)	43(3) 53(3)	37(3) 35(3)	-2(3) -1(3)	5(3) 12(3)	-3(3) 8(3)
C(5)	42 (4)	48(3)	35(3)	1(2)	11(3)	0(3)
C(6)	40(4) 46(4)	53(3) 50(3)	35(3) 35(3)	-6(2) -7(3)	8(3) 5(3)	1(3)
C(8)	56(5)	35(3)	40(3)	1(2)	11(3)	-2(3)
C(9)	56(5)	43(3)	35(3)	-1(2)	15(3)	6(3)
C(10) C(11)	29(4)	67(4)	55(4)	0(3)	8(3)	-4(3)
C(12)	56(6)	76(5)	114(7)	18(5)	-1(5)	-26(4)
C(13) C(14)	36(6) 74(7)	107(7)	77(5)	-30(5)	10(4)	-3(4) -27(5)
C(15)	51(5)	52(4)	48(4)	4(3)	4(3)	5(3)
C(16) C(17)	88(7) 81(7)	66(4) 66(5)	64 (5) 86 (6)	15(4) 0(4)	-⊥(4) 28(5)	8(4) 26(4)
C(18)	66 (6)	56(4)	73 (5)	18(3)	15(4)	4 (4)
C(19) C(20)	46(5) 78(7)	75(4) 160(9)	31(3) 44(4)	-5(3) -30(5)	-3(3) 8(4)	6(3) 24(6)
C(21)	87(7)	105(6)	46(4)	25(4)	-14(4)	10(5)
C(22)	70(6) 71(6)	104(6) 65(4)	49(4) 38(3)	-8(4) 11(3)	-8(4) 11(3)	-21(5) 8(4)
C(31)	120(8)	61(4)	48(4)	13(3)	12(4)	-8(4)
C(32)	107(8)	91(6) 103(6)	43 (4) 68 (5)	4(4) 26(5)	21(4)	4(5) 17(5)
C(34)	59(5)	69(4)	50(4)	-7(3)	3(3)	-10(4)
C(35)	52(8) 144(10)	115(8)	231(14)	-49(8)	8(7) 12(6)	-19(6)
C(30) C(37)	122(10)	148(9)	81(6)	27(6)	-25(6)	-88(8)
C(39)	41(5)	61(4)	60(4)	6(3)	7(3)	10(3)
C(40) C(41)	47(6) 63(6)	92(6) 101(6)	80(6)	1(5) 36(4)	-12(5) 4(4)	3 (5) 22 (4)
C(42)	98 (8)	115(7)	100(7)	1(5)	34(6)	60(6)
C(50) C(51)	83(6) 83(6)	59(4) 42(4)	55(4) 68(5)	7(3) 15(3)	6(4) 15(4)	-11(4) -9(4)
C(52)	71(7)	64 (5)	80(6)	25(4)	16(5)	7(4)
C(53) C(54)	89(6) 69(6)	71(5) 53(4)	44(4) 81(5)	-7(3) 5(4)	14(4) 26(5)	2(4) -6(4)
C(60)	54(5)	52(4)	63(4)	4(3)	0(4)	-5(3)
C(61)	57(5) 63(6)	54(4) 50(4)	59(4) 68(5)	1(3) -4(3)	9(4) 26(4)	-8(4) -4(3)
C(63)	68(6)	86(5)	47(4)	-3(4)	13(4)	-7(4)
C(64)	54 (5) 117 (6)	75(5) 107(5)	70(5) 70(4)	-12(4)	28(4) 52(4)	-8(4)
O(50) O(51)	136(6)	48(3)	100(4)	-1(3)	60(4)	12(3)
0(52)	79(5)	116(5)	109(5)	28(4)	-24(4)	-11(4)
0(53)	137(6) 72(5)	95(4)	100(5)	-10(3)	1(4)	-19(3)
0(60)	107(5)	79(4)	77(4)	-24(3)	37(3)	11(3)
O(61) O(62)	107(5)	89(4) 85(4)	84(4) 67(3)	-20(3) 17(3)	40(3) 9(3)	2(3) 27(3)
0(63)	104(5)	93 (4)	102(4)	-2(3)	16(4)	-64(4)
0(64)	74(5)	133(5)	78(4)	37(4)	-3(3)	15(4)

Tabelle 7.8.4Anisotrope Auslenkungsparameter [Ų x 10³] für 19a(A).Der Exponent des anisotropen Auslenkungsfaktors hat die Form: $-2\pi^2$ [(ha*) $^2U_{11}$ + ... + 2hka*b*U_{12}]

	X	y	Z	U(eq)
				· · · ·
(-)				
H(3)	992	6707	1889	48
H(5) U(9)	361 1474	3821 1456	2097	49
н(8) н(10)	2203	4170	985 714	52
H(12A)	-827	2893	1594	125
H(12B)	-477	3356	1963	125
H(12C)	-199	2784	1659	125
H(13A)	-952	5672	1427	128
H(13B)	-858	5238	1842	128
H(13C)	-1248	4613	1526	128
H(14A) H(14B)	-458	4/42	947	129
H(14C)	-249	3553	1043	129
H(16A)	-442	7415	870	111
H(16B)	-583	6267	1018	111
H(16C)	-94	6395	806	111
H(17A)	-27	7884	1820	114
H(17B)	-531	7160	1670	114
H(17C)	-426	8231	1456	114
H(18A) U(10D)	111	/99/	1515 1110	97
н(18C)	780	0290 7298	1161	97
H(20A)	760	6436	2695	142
H(20B)	1075	5738	3027	142
H(20C)	547	5278	2782	142
H(21A)	1022	3678	2687	124
H(21B)	1611	4046	2853	124
H(21C)	1468	3651	2434	124
H(22A)	1885	5608	2310	115
H(22B) H(22C)	1944	5743	2/48	115
H(31A)	2019	5256	2479	115
H(31B)	1533	5781	433	115
H(31C)	1575	5892	6	115
H(32A)	1495	4223	-399	120
H(32B)	1371	3093	-229	120
H(32C)	1929	3659	-95	120
H(33A)	584	5020	188	130
H(33B) H(33C)	530	4024	-89	130
H(35A)	60	3141	182	202
H(35B)	173	3188	624	202
H(35C)	-173	2235	416	202
H(36A)	1002	1213	34	173
H(36B)	664	2214	-146	173
H(36C)	372	1138	-60	173
H(37A)	217	701	539	183
H(3/B) H(37C)	565 9/1	1223 515	898	102
H(3/C) H(40A)	3019	3633	1087	137
H(40B)	3280	2899	1427	137
H(40C)	2785	3640	1463	137
H(41A)	2400	1910	1667	123
H(41B)	2842	1143	1552	123
H(41C)	2235	967	1375	123
H(42A)	2552		729	154
п(42В) П(42С)	311/ 2920	2001 TTAN	602 771	154 15/
н (час) Н (71Д)	2939 2126	2004 8662	226	382
H(71B)	2068	9785	12	382
H(72A)	1899	7684	-313	352
H(72B)	2075	8620	-564	352
H(73A)	1080	8380	-337	465
H(73B)	1196	8932	-707	465

Tabelle 7.8.5H-Atomkoordinaten [x 10⁴] und äquivalente isotrope Auslenkungsparameter [Å² x 10³] für 19a(A).

7 Anhang					Seite	161
H(73C)	1288	9587	-328	465		

Summenformel	$C_{35}H_{58}O_2Ru_2$	
Molmasse	712.95	
Temperatur	293(2) K	
Strahlung	ΜοΚα	
Wellenlänge	0.71073 Å	
Scanmodus	Φ -Oszillation	
Kristallsystem	Monoklin	
Raumgruppe	$P2_1/n$	
Zelldimensionen	a = 11.8685(19) Å	$\alpha = 90^{\circ}$
	b = 10.3508(14) Å	$\beta = 91.34(3)^{\circ}$
	c = 28.589(8) Å	$\gamma = 90^{\circ}$
Zellvolumen	3511.2(12)Å ³	1
Formeleinheiten pro Zelle Z	4	
Berechnete Dichte	1.349 Mg/m^3	
Absorptionskoeffizient	0.887 mm^{-1}	
Kristallgröße	0.56 x 0.38 x 0.08 mm	
Gemessener θ-Bereich	2.70 bis 25.68°	
Anzahl der gemessenen Reflexe	29577	
Unabhängige Reflexe	6394 (Rint = 0.0599)	
Absorptionskorrektur	Analytisch (STOE/XRED)	
Max. und min. Transmission	.9163 und .7595	
Diffraktometer	Stoe IPDS	
Strukturlösung	Direkte Methoden	
Strukturlösungsprogramm	SIR97 (Giacovazzo et al., 1997)	_
Strukturverfeinerung	Vollmatrix Least-Squares gegen H	²
Strukturverfeinerungsprogramm	SHELXL-97 (Sheldrick, 1997)	
Daten / Restraints / Parameter	6394 / 0 / 370	
Endgültige R-Werte $[I \ge 2\sigma(I)]$	R1 = 0.0463, $wR2 = 0.1132$	
R-Werte (alle Daten)	R1 = 0.0574, $wR2 = 0.1185$	
Wichtungsschema	$w=1/[\sigma^{2}(Fo^{2})+(0.0597P)^{2}+7.2883$	P] mit P= $(Fo^2+2Fc^2)/3$
GooF (alle Daten)	1.037	
Größtes Maximum und Minimum	1.838 und -1.051 eÅ ⁻³	

Tabelle 7.9.1	Kristalldaten und	Strukturverfeinerung	für [{Cp'	"Ru}2(µ-CO)(μ-O)] (24).
---------------	-------------------	----------------------	-----------	--------------	-------------

Verfeinerung nach F^2 mit ALLEN Reflexen. Die gewichteten R-Werte wR2 und alle GooF's basieren auf F^2 . Die konventionellen R-Werte R1 basieren auf F, wobei F für negative F^2 gleich Null gesetzt wird. Das Ablehnungskriterium $F^2 > 2\sigma(F^2)$ wird nur zum Berechnen von R(obs) etc. verwendet. Zur Verfeinerung wurden alle Reflexe herangezogen. Grundsätzlich gilt: Auf F^2 bezogene R-Werte sind statistisch etwa doppelt so groß wie die auf F basierenden. Auf ALLE Reflexe bezogene R-Werte sind noch größer.

Die Wasserstoffatome wurden geometrisch lokalisiert. Für die Verfeinerung wurde ein Reitermodell angenommen. Als Temperaturfaktor wurde der 1.5-fache Wert (CH₃-Gruppen) bzw. der 1.2-fache Wert (Cp-H) des äquivalenten isotropen Temperaturfaktors desjenigen C-Atoms eingesetzt, an welches das jeweilige H-Atom gebunden ist.

Einzelheiten können dem Handbuch für das Verfeinerungsprogramm SHELXL entnommen werden.

Tabelle 7.9.2

Atomkoordinaten [x 10⁴] und äquivalente isotrope Auslenkungsparameter [Å² x 10³] für 24. U(eq) wird berechnet als ein Drittel der Spur des orthogonalisierten U_{ij} -Tensors.

	У	Z	U(eq)
Ru (1) $2839(1)$ Ru (2) $4902(1)$ O(1) $3892(3)$ O(11) $3820(4)$ C(1) $1523(4)$ C(2) $1672(4)$ C(3) $1391(4)$ C(4) $1113(4)$ C(5) $1159(4)$ C(6) $6620(4)$ C(7) $6562(4)$ C(8) $6261(4)$ C(10) $6357(4)$ C(11) $3834(4)$ C(22) $776(9)$ C(23) $1519(11)$ C(24) $2843(10)$ C(31) $1898(5)$ C(32) $2926(9)$ C(33) $2050(15)$ C(34) $879(7)$ C(41) $712(5)$ C(42) $-552(8)$ C(43) $915(14)$ C(44) $1303(10)$ C(51) $6922(5)$ C(52) $6409(7)$ C(53) $8201(6)$ C(54) $6459(7)$ C(61) $6880(4)$ C(62) $6969(8)$ C(63) $5968(6)$ C(64) $8014(6)$ C(71) $5827(4)$ C(72) $6959(6)$	$\begin{array}{c} & y \\ & 3555(1) \\ 4237(1) \\ 3778(4) \\ 4238(4) \\ 2162(4) \\ 2155(5) \\ 3411(5) \\ 4211(4) \\ 3431(4) \\ 3859(4) \\ 3688(4) \\ 4904(4) \\ 5819(4) \\ 5177(4) \\ 4083(5) \\ 1141(5) \\ 118(9) \\ 1739(8) \\ 1739(8) \\ 1601(10) \\ 198(7) \\ 563(13) \\ 1069(6) \\ 266(14) \\ 1601(10) \\ 198(7) \\ 5598(5) \\ 5562(9) \\ 16274(9) \\ 16323(8) \\ 2952(5) \\ 3479(7) \\ 2934(8) \\ 1581(6) \\ 2553(4) \\ 3047(7) \\ 1496(5) \\ 1977(7) \\ 7242(4) \\ 7956(6) \\ \end{array}$	z 1321(1) 1354(1) 1830(1) 381(1) 1497(2) 982(2) 820(2) 1201(2) 1610(2) 1598(2) 1086(2) 888(2) 1249(2) 1685(2) 791(2) 1894(3) 1838(3) 2372(3) 1917(5) 628(2) 751(6) 149(4) 598(3) 1172(2) 1068(6) 1634(4) 792(5) 2013(2) 2472(2) 2090(3) 1952(3) 760(2) 254(2) 745(3) 902(3) 187(2) 1192(3)	U(eq) $34(1)$ $32(1)$ $52(1)$ $60(1)$ $42(1)$ $44(1)$ $43(1)$ $40(1)$ $42(1)$ $34(1)$ $31(1)$ $31(1)$ $31(1)$ $31(1)$ $31(1)$ $31(1)$ $31(1)$ $31(1)$ $31(1)$ $31(1)$ $32(1)$ $34(1)$ $31(1)$ $32(2)$ $40(1)$ $122(2)$ $31(2)$ $72(2)$ $31(2)$ $43(1)$ $85(2)$ $68(2)$ $73(2)$ $42(1)$ $76(2)$

Tabelle 7.9.3 Bindungslängen [Å] und -winkel [^o] für 24.

Ru (1) $-O$ (1) Ru (1) $-C$ (11) Ru (1) $-C$ (5) Ru (1) $-C$ (4) Ru (1) $-C$ (1) Ru (1) $-C$ (2) Ru (1) $-C$ (2) Ru (1) $-C$ (3) Ru (1) $-Ru$ (2) Ru (2) $-O$ (1) Ru (2) $-C$ (11) Ru (2) $-C$ (10) Ru (2) $-C$ (6)	1.910(4) 2.018(5) 2.179(5) 2.177(5) 2.193(5) 2.212(5) 2.216(5) 2.5484(6) 1.895(4) 2.032(5) 2.179(5) 2.175(4)		C(6) -C(7) $C(6) -C(51)$ $C(7) -C(8)$ $C(7) -C(61)$ $C(8) -C(9)$ $C(9) -C(10)$ $C(9) -C(71)$ $C(21) -C(24)$ $C(21) -C(23)$ $C(21) -C(22)$ $C(31) -C(33)$ $C(31) -C(32)$	1.475(6) $1.548(6)$ $1.422(6)$ $1.552(6)$ $1.419(6)$ $1.442(6)$ $1.514(6)$ $1.500(10)$ $1.518(11)$ $1.517(10)$ $1.491(12)$ $1.511(11)$	
Ru $(2) - C(3)$ Ru $(2) - C(7)$ Ru $(2) - C(8)$ O(11) - C(11) C(1) - C(5) C(1) - C(2) C(1) - C(2) C(2) - C(3) C(2) - C(3) C(2) - C(3) C(3) - C(4) C(4) - C(5) C(4) - C(41) C(6) - C(10)	2.104 (4) 2.204 (4) 1.181 (6) 1.422 (6) 1.487 (8) 1.558 (8) 1.418 (7) 1.540 (7) 1.413 (7) 1.412 (7) 1.422 (7) 1.514 (6) 1.423 (6)		C(31) - C(34) $C(41) - C(43)$ $C(41) - C(44)$ $C(41) - C(42)$ $C(51) - C(54)$ $C(51) - C(53)$ $C(51) - C(52)$ $C(61) - C(64)$ $C(61) - C(63)$ $C(61) - C(62)$ $C(71) - C(73)$ $C(71) - C(72)$ $C(71) - C(74)$	$\begin{array}{c} 1.510(8)\\ 1.510(12)\\ 1.507(11)\\ 1.523(11)\\ 1.529(9)\\ 1.559(8)\\ 1.559(8)\\ 1.518(8)\\ 1.539(8)\\ 1.542(8)\\ 1.542(8)\\ 1.522(8)\\ 1.522(8)\\ 1.534(8)\\ 1.540(7)\end{array}$	
O(1) -Ru(1) -C(11) O(1) -Ru(1) -C(5) C(11) -Ru(1) -C(5) O(1) -Ru(1) -C(4) C(11) -Ru(1) -C(4) C(5) -Ru(1) -C(4) O(1) -Ru(1) -C(1) C(1) -Ru(1) -C(1) C(1) -Ru(1) -C(1) C(1) -Ru(1) -C(2) C(1) -Ru(1) -C(3) C(1) -Ru(1) -C(3) C(1) -Ru(1) -C(3) C(1) -Ru(1) -C(3) C(2) -Ru(1) -C(3) C(1) -Ru(1) -Ru(2) C(2) -Ru(1) -Ru(2) C(1) -Ru(1) -Ru(2) C(1) -Ru(1) -Ru(2) C(2) -Ru(1) -Ru(2) C(1) -Ru(1) -Ru(2) C(1) -Ru(1) -Ru(2) C(1) -Ru(2) -C(10) C(11) -Ru(2) -C(10) C(11) -Ru(2) -C(6) C(10) -Ru(2) -C(6) C(10) -Ru(2) -C(9) C(10) -Ru(2) -C)	98.92(17) 107.85(18) 149.0(2) 132.80(18) 111.20(19) 38.11(19) 111.21(18) 141.5(2) 37.98(17) 64.49(17) 143.57(18) 102.7(2) 63.84(18) 63.80(18) 39.5(2) 169.87(17) 89.5(2) 62.6(2) 37.53(19) 63.82(19) 37.34(18) 47.69(11) 51.25(14) 152.76(14) 145.00(12) 149.59(13) 142.04(12) 140.55(14) 98.94(18) 107.99(17) 148.47(18) 107.99(17) 148.47(18) 109.17(17) 143.45(19) 38.14(16) 135.00(16) 109.96(18) 38.60(16) 65.01(16)	C(11) - Ru(2) - C(7) $C(10) - Ru(2) - C(7)$ $C(6) - Ru(2) - C(7)$ $O(1) - Ru(2) - C(8)$ $C(11) - Ru(2) - C(8)$ $C(10) - Ru(2) - C(8)$ $C(9) - Ru(2) - C(8)$ $C(9) - Ru(2) - C(8)$ $C(7) - Ru(2) - C(8)$ $O(1) - Ru(2) - Ru(1)$ $C(11) - Ru(2) - Ru(1)$ $C(10) - Ru(2) - Ru(1)$ $C(6) - Ru(2) - Ru(1)$ $C(7) - Ru(2) - Ru(1)$ $C(6) - Ru(2) - Ru(1)$ $C(5) - C(1) - C(2)$ $C(5) - C(1) - C(21)$ $C(5) - C(1) - C(21)$ $C(5) - C(1) - Ru(1)$ $C(2) - C(1) - Ru(1)$ $C(3) - C(2) - C(31)$ $C(3) - C(2) - Ru(1)$ $C(3) - C(2) - Ru(1)$ $C(2) - C(3) - Ru(1)$ $C(3) - C(2) - Ru(1)$ $C(4) - C(3) - Ru(1)$ $C(5) - C(4) - C(41)$ $C(3) - C(4) - Ru(1)$ $C(4) - C(4) - Ru(1)$	<pre>/) /) /) /) /) /) /) /) /) /) /) /) /) /</pre>	104.53(19) 63.90(17) 39.36(17) 64.02(15) 170.79(16) 89.87(18) 62.80(16) 63.97(16) 37.53(16) 37.44(15) 48.19(11) 50.77(14) 152.99(12) 145.45(12) 141.43(11) 145.45(12) 141.43(11) 140.63(11) 84.11(14) 105.9(4) 119.5(5) 134.6(4) 70.5(3) 71.0(3) 122.5(4) 106.7(4) 119.8(5) 132.9(5) 71.5(3) 69.6(3) 130.5(4) 110.0(5) 71.2(3) 69.7(3) 107.2(4) 126.1(5) 126.3(5) 71.0(3) 72.7(3) 126.7(4)

C(4) - C(5) - C(1)	110.1(4)
C(4) - C(5) - Ru(1)	70.9(3)
C(1) - C(5) - Ru(1)	71.5(3)
C(10) - C(6) - C(7)	106.3(4)
C(10)-C(6)-C(51)	119.8(4)
C(7) - C(6) - C(51)	133.8(4)
C(10) - C(6) - Ru(2)	71.1(3)
$C(7) - C(6) - R_{11}(2)$	71 4(2)
C(51) - C(6) - Bu(2)	123 6 (3)
C(8) - C(7) - C(6)	107 2(4)
C(8) - C(7) - C(61)	1196(4)
C(6) - C(7) - C(61)	132 8(4)
C(0) - C(7) - C(01)	132.0(4)
C(6) - C(7) - Ru(2)	(2.1(2))
C(0) - C(7) - Ru(2)	120 E(2)
C(61) - C(7) - Ru(2)	129.5(3)
C(7) - C(8) - C(9)	109.9(4)
C(7) - C(8) - RU(2)	70.4(2)
C(9) - C(8) - RU(2)	69.6(2)
C(8) - C(9) - C(10)	106.7(4)
C(8) - C(9) - C(71)	126.8(4)
C(10) - C(9) - C(71)	126.0(4)
C(8)-C(9)-Ru(2)	72.8(2)
C(10) - C(9) - Ru(2)	70.5(2)
C(71) - C(9) - Ru(2)	128.0(3)
C(6) - C(10) - C(9)	109.7(4)
C(6) - C(10) - Ru(2)	70.8(3)
C(9)-C(10)-Ru(2)	70.9(2)
O(11) -C(11) -Ru(1)	141.8(4)
O(11) - C(11) - Ru(2)	140.2(4)
Ru(1) - C(11) - Ru(2)	77.98(18)
C(24) - C(21) - C(23)	105.1(9)
C(24) - C(21) - C(22)	112.0(8)
C(23) - C(21) - C(22)	105.9(7)
C(24) - C(21) - C(1)	113.5(6)
C(23) - C(21) - C(1)	111.3(5)
C(22) - C(21) - C(1)	108 8(6)
C(33) - C(31) - C(32)	107.6(10)
C(33) - C(31) - C(34)	106 4 (8)
C(32) - C(31) - C(34)	1090(8)
C(33) - C(31) - C(2)	111 2(6)
C(32) - C(31) - C(2)	113 6(6)
C(32) = C(31) = C(2)	1088(5)
C(34) = C(31) = C(34)	100.0(3)
C(43) = C(41) = C(41)	100.4(5)
C(43) = C(41) = C(4)	111 1 (5)
C(42) = C(41) = C(42)	109 = (0)
C(43) = C(41) = C(42)	100.3(9)
C(44) = C(41) = C(42)	1072(5)
C(4) - C(41) - C(42) C(54) - C(51) - C(52)	107.2(3)
C(54) - C(51) - C(53)	111.0(5)
C(54) - C(51) - C(6)	113.6(5)
C(53) - C(51) - C(6)	109.2(5)
C(54) - C(51) - C(52)	105.9(5)
C(53) - C(51) - C(52)	106.8(5)
C(6) - C(51) - C(52)	110.1(4)
C(64) - C(61) - C(63)	110.3(5)
C(64) - C(61) - C(62)	107.5(5)
C(63) - C(61) - C(62)	105.8(5)
C(64) - C(61) - C(7)	111.4(4)
C(63) - C(61) - C(7)	112.0(4)
C(62) - C(61) - C(7)	110.6(4)
C(73) - C(71) - C(9)	112.0(4)
C(73) - C(71) - C(72)	108.4(5)
C(9) - C(71) - C(72)	107.0(4)
C(73) - C(71) - C(74)	109.6(5)
C(9) - C(71) - C(74)	110.3(4)
C(72)-C(71)-C(74)	109.5(5)

Ru (1) $26(1)$ $33(1)$ $43(1)$ $0(1)$ $4(1)$ $1(1)$ Ru (2) $25(1)$ $34(1)$ $37(1)$ $1(1)$ $0(1)$ $2(1)$ $0(1)$ $38(2)$ $76(3)$ $42(2)$ $1(2)$ $3(2)$ $-7(2)$ $0(11)$ $50(3)$ $88(3)$ $42(2)$ $13(2)$ $-4(2)$ $-15(2)$ $C(1)$ $28(3)$ $32(2)$ $66(3)$ $3(2)$ $10(2)$ $1(2)$ $C(2)$ $27(3)$ $38(2)$ $68(3)$ $-12(2)$ $4(2)$ $-4(2)$ $C(3)$ $34(3)$ $48(3)$ $48(3)$ $0(2)$ $-2(2)$ $-3(2)$ $C(4)$ $23(3)$ $38(2)$ $57(3)$ $0(2)$ $0(2)$ $1(2)$ $C(5)$ $28(3)$ $43(3)$ $54(3)$ $-1(2)$ $8(2)$ $2(2)$ $C(6)$ $24(2)$ $34(2)$ $43(2)$ $3(2)$ $-3(2)$ $4(2)$ $C(7)$ $21(2)$ $29(2)$ $44(2)$ $-1(2)$ $1(2)$ $4(2)$ $C(8)$ $26(2)$ $30(2)$ $35(2)$ $1(2)$ $2(2)$ $1(2)$ $C(9)$ $28(2)$ $31(2)$ $39(2)$ $-1(2)$ $-2(2)$ $-1(2)$	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1)
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1)
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	2)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2)
(1(9) - 28(2) - 31(2) - 39(2) - 1(2) - 2(2) - 1(2)	2)
	2)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2)
C(11) 30(3) 44(2) 46(3) 6(2) -3(2) -2(2	2)
C(21) 46(4) 49(3) 92(5) 23(3) 17(3) 8(2	2)
C(22) 155(10) 84(6) 122(7) 34(5) 24(7) -56(6	5)
C(23) = 204(12) = 89(6) = 68(5) = 27(4) = -26(6) = -46(6)	5)
C(24) 136(10) 219(14) 292(18) 199(14) 122(11) 130(1	LU)
C(31) 45(4) 53(3) 86(4) -32(3) 7(3) -7(2 C(22) 02(10) 02(10) 102(3)	2)
C(32) = 93(8) = 238(14) = 308(19) = -223(15) = -93(10) = 103(9)	J) 10)
C(33) = 390(2) = 95(7) = 112(8) = -60(6) = 144(12) = -91(12)	10)
C(34) $OL(5)$ $/L(4)$ $LUL(6)$ $-3U(4)$ $-5U(4)$ $-24(4)$	±/ つ \
C(41) = 41(3) = 30(3) = 07(4) = 0(3) = 5(3) = 9(2)	2) =)
C(42) = 20(0) = 07(0) = 323(13) = 27(3) = -10(0) = 34(3)))
C(43) = 300(13) = 05(5) = 143(10) = -40(0) = -40(11) = 79(0)	5) C)
$C(51)$ $A(3)$ $S(3)$ $Z_{12}(3)$ $I_{3}(7)$ $S_{10}(10)$ $+9(0)$	2) 2)
C(51) $+O(5)$ $SO(5)$ $+Z(5)$ $15(2)$ $-S(2)$ $1+(2)$	1)
C(52) = 57(4) = 16(5) = 74(4) = 29(4) = -14(3) = 19(4)	±) 4)
C(53) = 55(4) = 76(4) = 22(3) = -4(4) = 22(3)	±/ ২)
C(61) $43(3)$ $36(2)$ $50(3)$ $-7(2)$ $2(2)$ $6(2)$	2)
C(62) = 143(8) = 65(4) = 47(3) = -13(3) = 19(4) = 21(4)	1)
C(63) = 62(4) = 44(3) = 99(5) = -21(3) = 0(4) = -1(3)	3)
C(64) = 51(4) = 81(4) = 86(5) = -25(4) = 3(3) = 22(3)	3)
C(71) 43(3) 30(2) 51(3) -2(2) -5(2) 5(2)	2)
C(72) 59(4) 43(3) 124(6) 6(3) -14(4) -9(3)	3)
C(73) 98(6) 60(4) 74(4) -7(3) 14(4) 27(4	4)
C(74) 80(5) 42(3) 61(4) 5(2) -15(3) 14(3)	3)

Tabelle 7.9.4Anisotrope Auslenkungsparameter [Ų x 10³] für 24.Der Exponent des anisotropen Auslenkungsfaktors hat die Form: $-2\pi^2$ [(ha*) $^2U_{11}$ + ... + 2hka*b*U_{12}]

	х	У	Z	U(eq)
TT (2)	1000	2670	500	50
H(3)	1390	3670	508	52
H(5)	978	3710	1908	50
H(8) H(10)	6190	5074	569 1070	37
H(10) H(227)	0300	2057 205	1978	43
H(22A) H(22B)	849	-305	1050	180
H(22B)	857	-506	2085	180
H(23D)	1556	1076	2607	181
H(23R)	796	2154	2378	181
H(23C)	2100	2366	2433	181
H(24A)	3394	1241	1926	321
H(24B)	2953	35	1645	321
H(24C)	2923	42	2193	321
H(32A)	3090	-298	495	321
H(32B)	2784	-239	1025	321
H(32C)	3558	825	811	321
H(33A)	2724	2112	145	297
H(33B)	1413	2130	63	297
H(33C)	2109	902	-70	297
H(34A)	239	682	484	126
H(34B)	727	-140	902	126
H(34C)	1022	-503	387	126
H(42A)	-950	5673	1354	237
H(42B)	-751	4746	930	237
H(42C)	-751	6246	855	237
H(43A)	1708	6279	1709	261
H(43B)	522	5825	1875	261
H(43C)	644	7146	1613	261
H(44A)	994	7177	765	228
H(44B)	1199	5875	500	228
H(44C)	2093	6378	869	228
H(52A)	5605	3542	2433	109
H(52B)	6715	4319	2540	109
H(52C)	6590	2903	2726	109
H(53A)	8391	2394	2353	122
H(53B)	8465	3796	2149	122
H(53C)	8551	2601	1815	122
H(54A)	6780	1191	1681	114
H(54B)	5654	1615	1912	114
H(54C)	6651 7526	1078	2224	114
H(62A) H(62B)	7536	3700	242	
н (626) н (62С)	0250	2244	T2T	127
н (62С) н (63Л)	6211	2344	553	102
H(63B)	5279	1849	617	102
H(63C)	5843	1188	1056	102
H(64A)	7975	1622	1211	102
H(64B)	8581	2638	897	109
H(64C)	8204	1306	685	109
H(72A)	6828	8871	1196	113
Н(72B)	7366	7731	917	113
H(72C)	7393	7713	1466	113
H(73A)	4424	7305	1594	116
H(73B)	4979	8667	1533	116
H(73C)	5531	7655	1876	116
H(74A)	4510	7001	708	92
H(74B)	5669	7197	465	92
H(74C)	5046	8383	682	92

Tabelle 7.9.5H-Atomkoordinaten [x 10⁴] und äquivalente isotrope Auslenkungsparameter [Å² x 10³] für 24.

Summenformel	Co.H. P. Ruo		
Molmasse	707.87		
Temperatur	203(2) K		
Strohlung	295(2) K MoVo		
Suamung Wallanlänge	MOKO 0.71072 Å		
	0./10/3 A		
Scanmodus	Φ-Oszillation		
Kristallsystem	Monoklin		
Raumgruppe	P2/n		
Zelldimensionen	a = 20.3567(19) Å	$\alpha = 90^{\circ}$	
	b = 15.1484(9) Å	$\beta = 108.841(11)^{\circ}$	
	$c = 25.127(2)$ Å $\gamma = 90$) ^o	
Zellvolumen	7333.2(11)Å ³		
Formeleinheiten pro Zelle Z	8		
Berechnete Dichte	1.436 Mg/m^3		
Absorptionskoeffizient	1.020 mm ⁻¹		
Kristallgröße	0.48 x 0.20 x 0.16 mm		
Gemessener θ-Bereich	2.62 bis 25.68°		
Anzahl der gemessenen Reflexe	92380		
Unabhängige Reflexe	13513 (Rint = 0.1203)		
Absorptionskorrektur	Analytical		
Max. und min. Transmission	0.86168 und 0.78776		
Diffraktometer	Stoe IPDS		
Strukturlösung	Direkte Methoden		
Strukturlösungsprogramm	SHELXS-97 (Sheldrick, 1990)		
Strukturverfeinerung	Vollmatrix Least-Squares gegen F ²		
Strukturverfeinerungsprogramm	SHELXL-97 (Sheldrick, 1997)		
Daten / Restraints / Parameter	13513 / 0 / 757		
Endgültige R-Werte $[I \ge 2\sigma(I)]$	R1 = 0.0394, $wR2 = 0.0728$		
R-Werte (alle Daten)	R1 = 0.1039, $wR2 = 0.0817$		
Wichtungsschema	$w=1/[\sigma^{2}(Fo^{2})+(0.0300P)^{2}+0.0000P]$ mit P=(Fo^{2}+2Fc^{2})/3		
GooF (alle Daten)	0.762	- ` ` /	
Größtes Maximum und Minimum	1.276 und -0.423 eÅ ⁻³		

Tabelle 7.10.1 Kristalldaten und Strukturverfeinerung für [{Cp'''Ru}₂(µ-η^{4:4}-P₄)] (25).

Verfeinerung nach F^2 mit ALLEN Reflexen. Die gewichteten R-Werte wR2 und alle GooF's basieren auf F^2 . Die konventionellen R-Werte R1 basieren auf F, wobei F für negative F^2 gleich Null gesetzt wird. Das Ablehnungskriterium $F^2 > 2\sigma(F^2)$ wird nur zum Berechnen von R(obs) etc. verwendet. Zur Verfeinerung wurden alle Reflexe herangezogen. Grundsätzlich gilt: Auf F^2 bezogene R-Werte sind statistisch etwa doppelt so groß wie die auf F basierenden. Auf ALLE Reflexe bezogene R-Werte sind noch größer.

Die Wasserstoffatome wurden geometrisch lokalisiert. Für die Verfeinerung wurde ein Reitermodell angenommen. Als Temperaturfaktor wurde der 1.5-fache Wert (CH₃-Gruppen) bzw. der 1.2-fache Wert (Cp-H) des äquivalenten isotropen Temperaturfaktors desjenigen C-Atoms eingesetzt, an welches das jeweilige H-Atom gebunden ist.

Einzelheiten können dem Handbuch für das Verfeinerungsprogramm SHELXL entnommen werden.

Tabelle 7.10.2 Atomkoordinaten [x 10⁴] und äquivalente isotrope Auslenkungsparameter [Å² x 10³] für 25. U(eq) wird berechnet als ein Drittel der Spur des orthogonalisierten U_{ij} -Tensors.

	Х	У	Z	U(eq)
Ru (1)	2957(1)	781(1)	4609(1)	31(1)
$R_{11}(2)$	2977(1)	205(1)	5657(1)	31(1)
D(1)	2757(1)	-674(1)	1941(1)	J = (1)
F(I)	2757(1)		4041(1)	40(1) F2(1)
P(Z)	3784(1)	-285(2)	5187(1)	53(1)
P(3)	3796(1)	1249(2)	5492(1)	54(1)
P(4)	2771(1)	1658(1)	5319(1)	47(1)
C(1)	3085(3)	662(5)	3755(2)	33(2)
C(2)	3216(3)	1568(4)	3948(2)	34(2)
C(3)	2590(3)	1900(5)	4015(2)	34(2)
C(4)	2063 (3)	1226 (5)	3859(2)	34(2)
C(5)	2373(3)	493 (4)	3711(2)	32(1)
C(6)	3259(3)	-575(5)	6462(2)	35(2)
C(0)	2120(2)	272 (5) 229 (E)	$6 \pm 02(2)$	20(2)
C(7)	5120(3)	320(3)	(2)(2)	30(2)
C(8)	2415(3)	497(5)	6262(2)	34(2)
C(9)	2097(3)	-252(5)	5962(2)	36(2)
C(10)	2616(3)	-901(5)	6073(2)	38(2)
C(11)	3489(3)	-19(4)	3525(2)	37(2)
C(12)	3599(3)	366(5)	3000(3)	47(2)
C(13)	4174(3)	-354(5)	3943(3)	56(2)
C(14)	3040(3)	-851(5)	3329(3)	52(2)
C(15)	3819(3)	2219(5)	3995(3)	42(2)
C(15)	1531(3)	1800(5)	A172 (3)	57(2)
C(10)	4334(3)		41/2(3)	(2)
C(17)	3655(3)	2655(5)	3412(3)	63(Z)
C(18)	3834(3)	2942(5)	4421(3)	56(2)
C(19)	1296(3)	1381(5)	3754(3)	42(2)
C(20)	1151(3)	1983(7)	4180(3)	78(3)
C(21)	1013(3)	1843(6)	3180(3)	71(3)
C(22)	912(3)	502(6)	3712(4)	73(3)
C(31)	3843(3)	-1239(5)	6718(2)	42(2)
C(32)	3705(4)	-1661(6)	7220(3)	67(2)
C(33)	4566(3)	-833(5)	6905(3)	59(2)
C(34)	38/1(3)	-1962(5)	6296(3)	55(2)
$C(3\pm)$	2EE4(2)	1010(5)	7012(3)	51(2)
C(35)	3554(3)		7012(3)	SI(Z)
C(36)	3685(4)	643(6)	7604(2)	68 (Z)
C(37)	3124(4)	1852(6)	6976(3)	68(2)
C(38)	4240(3)	1311(6)	6934(3)	64(2)
C(39)	1329(3)	-368(5)	5660(3)	45(2)
C(40)	974(4)	510(7)	5476(5)	105(4)
C(41)	1025(4)	-790(7)	6071(4)	89(3)
C(42)	1187(3)	-999(7)	5161(3)	83(3)
Ru (3)	2099(1)	-4188(1)	4371(1)	32(1)
R11 (4)	2115(1)	-4766(1)	5416(1)	31(1)
P(5)	2390(1)	-3332(1)	5198(1)	46(1)
D(G)	12/2(1)	-2641(1)	1969(1)	50(1)
P(0)	1342(1)	-3641(1)	4000(1)	50(1)
P(7)	1254(1)	-5194(2)	4539(1)	49(1)
P(8)	2264(1)	-5655(L)	4693(1)	45(L)
C(51)	1796(3)	-3424(5)	3570(2)	36(2)
C(52)	1918(3)	-4333(5)	3445(2)	34(2)
C(53)	2632(3)	-4507(4)	3748(2)	33(1)
C(54)	2965(3)	-3760(5)	4044(2)	36(2)
C(55)	2438(3)	-3088(5)	3937(2)	35(2)
C(56)	1955(3)	-4675(5)	6260(2)	34(2)
C(57)	1841 (3)	-5574(5)	6069(2)	40(2)
C(58)	2/82(3)	-5884 (5)	6006(2)	38(2)
C(50)	2702(3)	_5025(5)	6161(2)	36(2)
C(59)	2990(3) 2670(2)		$C \rightarrow U \rightarrow $	20(2)
C(60)	20/0(3)	-4491(5)	$(2) \land (2)$	5/(2)
C(61)	1191(3)	-2//0(5)	3314(2)	41(2)
C(62)	472(3)	-3178(5)	3156(3)	63(2)
C(63)	1309(4)	-2333(6)	2803(3)	66(2)
C(64)	1210(4)	-2024(5)	3731(3)	61(2)
C(65)	1488(3)	-5015(5)	3015(2)	45(2)
C(66)	826(3)	-5328(6)	3102(3)	66(2)

C(67)	1930(4)	-5854(5)	3042(3)	63(2)
C(68)	1345(4)	-4640(6)	2422(3)	61(2)
C(69)	3743(3)	-3613(5)	4321(2)	44(2)
C(70)	4106(4)	-4492(6)	4507(4)	95(3)
C(71)	4020(3)	-3192(6)	3884(3)	72(3)
C(72)	3900(3)	-2966(7)	4806(4)	100(4)
C(81)	1527(3)	-4026(5)	6478(3)	49(2)
C(82)	1403(4)	-4403(6)	7000(3)	67(2)
C(83)	1954(4)	-3167(5)	6675(3)	65(2)
C(84)	837(4)	-3719(6)	6042(3)	72(2)
C(85)	1248(3)	-6242(5)	6000(3)	47(2)
C(86)	1254(4)	-6967(5)	5567(3)	66(2)
C(87)	528(3)	-5845(6)	5811(3)	62(2)
C(88)	1384(4)	-6699(6)	6563(3)	75(3)
C(89)	3769(3)	-5349(5)	6267(2)	41(2)
C(90)	4069(4)	-5787(7)	6834(3)	89(3)
C(91)	4119(4)	-4464(6)	6281(4)	89(3)
C(92)	3887(3)	-5949(7)	5821(4)	86(3)
Tabelle 7.10.3 Bindungslängen [Å] und -winkel [[°]] für 25.

Ru(1)-C(3)	2.224(6)		Ru(3)-C(55)	2.219(6)	
Ru(1) - C(5)	2.228(5)		Ru(3) -C(53)	2.226(6)	
Ru(1) - C(2)	2.242(6)		Ru(3)-C(51)	2.229(6)	
Ru(1) - C(1)	2.251(5)		Ru(3) - C(52)	2.247(5)	
Ru(1) - C(4)	2.259(5)		Ru(3) - C(54)	2.266(6)	
Ru(1) - P(4)	2.3525(18)		Ru(3) - P(8)	2.352(2)	
Ru(1) - P(1)	2.348(2)		Ru(3) - P(5)	2.3567(18)	
Ru(1) - P(3)	2.4275(17)		Ru(3) - P(6)	2.4208(18)	
RU(1) - P(2)	2.4423(18)		Ru(3) - P(7)	2.4343(19)	
Ru(1) - Ru(2) Ru(2) = C(0)	2.7622(8)		Ru(3) - Ru(4) Ru(4) - C(E0)	2.7587(8)	
Ru(2) = C(0) Ru(2) = C(10)	2.222(0)		Ru(4) = C(50) Ru(4) = C(60)	2.213(6)	
Ru(2) = C(10) Pu(2) = C(7)	2.220(6) 2.249(6)		Ru(4) = C(60) Pu(4) = C(57)	2.210(5)	
$R_{11}(2) = C(6)$	2.249(0) 2.251(6)		Ru(4) = C(57) Ru(4) = C(56)	2.252(6)	
$R_{11}(2) = C(9)$	2.231(0) 2.273(6)		Ru(4) = C(50) Ru(4) = C(59)	2 251 (5)	
$R_{11}(2) - P(4)$	2.347(2)		Ru(4) - P(5)	2.352(2)	
Ru(2) - P(1)	2.3647(18)		Ru(4) - P(8)	2.3595(18)	
Ru(2) - P(2)	2.4290(17)		Ru(4) - P(7)	2.4200(16)	
Ru(2)-P(3)	2.4286(19)		Ru (4) - P (6)	2.4231(18)	
P(1)-P(2)	2.074(3)		P(5)-P(6)	2.077(2)	
P(2)-P(3)	2.444(3)		P(6)-P(7)	2.480(3)	
P(3)-P(4)	2.084(3)		P(7)-P(8)	2.086(3)	
C(1)-C(5)	1.440(7)		C(51)-C(55)	1.427(7)	
C(1) - C(2)	1.451(9)		C(51)-C(52)	1.452(9)	
C(1) - C(11)	1.544(8)		C(51)-C(61)	1.550(8)	
C(2) - C(3)	1.430(8)		C(52)-C(53)	1.430(7)	
C(2) - C(15)	1.548(8)		C(52) - C(65)	1.545(8)	
C(3) - C(4)	1.441(8)		C(53) - C(54)	1.403(9)	
C(4) - C(5) C(4) - C(10)	1.386(8) 1 E1C(7)		C(54) - C(55) C(54) - C(55)	1.439(8) 1 E26(7)	
C(4) = C(19) C(6) = C(10)	1,010(7)		C(54) = C(59) C(56) = C(57)	1,320(7)	
C(6) - C(10)	1,443(8) 1 444(9)		C(56) - C(57)	1,433(9)	
C(6) - C(31)	1,532(9)		C(56) - C(81)	1,526(9)	
C(7) - C(8)	1,436(8)		C(57) - C(58)	1,442(8)	
C(7) - C(35)	1.553(9)		C(57) -C(85)	1.541(9)	
C(8)-C(9)	1.400(9)		C(58)-C(59)	1.399(9)	
C(9)-C(10)	1.405(8)		C(59)-C(60)	1.428(9)	
C(9)-C(39)	1.511(8)		C(59)-C(89)	1.514(7)	
C(11)-C(12)	1.523(8)		C(61)-C(63)	1.531(9)	
C(11)-C(14)	1.541(9)		C(61)-C(62)	1.519(8)	
C(11) - C(13)	1.536(8)		C(61)-C(64)	1.535(9)	
C(15) - C(16)	1.516(8)		C(65) - C(67)	1.547(10)	
C(15) - C(18) C(15) - C(17)	1.524(9) 1 544(0)		C(65) - C(66)	1.508(9)	
C(13) = C(17) C(19) = C(20)	1.544(9) 1.505(9)		C(65) = C(66) C(69) = C(72)	1.552(9)	
C(19) = C(20)	1.505(5)		C(69) = C(72) C(69) = C(71)	1,528(9)	
C(19) - C(21)	1.538(9)		C(69) - C(70)	1.522(11)	
C(31) - C(34)	1.523(9)		C(81) -C(82)	1.525(9)	
C(31)-C(33)	1.523(8)		C(81)-C(83)	1.556(10)	
C(31)-C(32)	1.519(8)		C(81)-C(84)	1.546(9)	
C(35)-C(37)	1.522(10)		C(85)-C(88)	1.518(9)	
C(35)-C(36)	1.532(9)		C(85)-C(87)	1.512(8)	
C(35)-C(38)	1.538(9)		C(85)-C(86)	1.548(10)	
C(39)-C(40)	1.513(11)		C(89)-C(91)	1.514(11)	
C(39) - C(41)	1.509(10)		C(89)-C(90)	1.509(9)	
C(39)-C(42)	1.527(9)		C(89)-C(92)	1.522(10)	
$C(3) = D_{11}(1) = C(E)$		(1, 0, (2))	$C(2) = D_{11}(1) = C(4)$		62 77 (10)
C(3) = Ru(1) = C(3)		37.4(2)	C(2) = Ru(1) = C(4) C(1) = Ru(1) = C(4)		62.77(13)
C(5) - Ru(1) - C(2)		62.0(2)	$C(3) - R_1(1) - P(4)$		88,68(16)
C(3) - Ru(1) - C(1)		62.5(2)	C(5) - Ru(1) - P(4)		135.65(16)
C(5) - Ru(1) - C(1)		37.50(19)	C(2) - Ru(1) - P(4)		113.30(17)
C(2) - Ru(1) - C(1)		37.7(2)	C(1) - Ru(1) - P(4)		149.89(18)
C(3) - Ru(1) - C(4)		37.5(2)	C(4) - Ru(1) - P(4)		100.39(17)
C(5)-Ru(1)-C(4)		36.0(2)	C(3) - Ru(1) - P(1)		146.58(15)

C(5)-Ru(1)-P(1)	89.38(18)	P(1)-Ru(2)-Ru(1)	53.85(5)
C(2) - Ru(1) - P(1)	141.66(18)	P(2) -Ru(2) -Ru(1)	55.69(4)
C(1) - Ru(1) - P(1)	104.15(19)	P(3) - Ru(2) - Ru(1)	55.31(4)
C(4) - Ru(1) - P(1) D(4) - P(1) - D(1)	109.22(18)	P(2) - P(1) - Ru(1) P(2) - P(1) - Ru(2)	66.71(8)
P(4) - Ru(1) - P(1) C(3) - Pu(1) - P(3)	104.99(7) 112 05(16)	P(2) - P(1) - Ru(2) Ru(1) - D(1) - Ru(2)	71 76 (6)
C(5) = Ru(1) = P(3)	166 04 (16)	P(1) - P(2) - Ru(2)	62, 77(7)
C(2) - Ru(1) - P(3)	104.88(15)	P(1) - P(2) - Ru(1)	62.02(7)
C(1) - Ru(1) - P(3)	129.10(14)	Ru(2) - P(2) - Ru(1)	69.09(5)
C(4) - Ru(1) - P(3)	144.54(19)	P(1) - P(2) - P(3)	107.97(10)
P(4) - Ru(1) - P(3)	51.67(7)	Ru(2) - P(2) - P(3)	59.79(6)
P(1) - Ru(1) - P(3)	100.08(7)	Ru(1) - P(2) - P(3)	59.58(6)
C(3) - Ru(1) - P(2)	157.03(14)	P(4) - P(3) - Ru(1)	62.31(6)
C(5) - Ru(1) - P(2)	120.85(17)	P(4) - P(3) - Ru(2)	62.14(7)
C(2) - RU(1) - P(2) C(1) - Pu(1) - D(2)	120.65(15) 104.15(16)	RU(1) - P(3) - RU(2) D(4) - D(3) - D(3)	69.33(5) 109.03(10)
C(4) - Ru(1) - P(2)	155 21(19)	P(4) = P(3) = P(2) P(1)(1) = P(3) = P(2)	60 18(6)
P(4) - Ru(1) - P(2)	99.87(6)	Ru(2) - P(3) - P(2)	59,80(7)
P(1) - Ru(1) - P(2)	51.26(7)	P(3) - P(4) - Ru(2)	66.16(8)
P(3)-Ru(1)-P(2)	60.24(8)	P(3) - P(4) - Ru(1)	66.02(7)
C(3)-Ru(1)-Ru(2)	141.20(15)	Ru(2) - P(4) - Ru(1)	71.99(6)
C(5) - Ru(1) - Ru(2)	138.01(16)	C(5) - C(1) - C(2)	105.4(5)
C(2) - Ru(1) - Ru(2)	160.01(15)	C(5) - C(1) - C(11)	119.8(6)
C(1) - Ru(1) - Ru(2)	155.99(18)	C(2) - C(1) - C(11)	134.0(5)
C(4) - RU(1) - RU(2) D(4) - Pu(1) - Pu(2)	130.50(14) 53.92(5)	C(5) - C(1) - Ru(1) C(2) - C(1) - Pu(1)	70.4(3)
P(1) - Ru(1) - Ru(2)	53.52(5) 54 40(4)	C(1) - C(1) - Ru(1)	1305(4)
P(3) - Ru(1) - Ru(2)	55.35(5)	C(3) - C(2) - C(1)	107.3(5)
P(2)-Ru(1)-Ru(2)	55.23(4)	C(3) - C(2) - C(15)	118.8(6)
C(8)-Ru(2)-C(10)	60.5(2)	C(1) - C(2) - C(15)	133.1(5)
C(8) - Ru(2) - C(7)	37.5(2)	C(3) - C(2) - Ru(1)	70.6(3)
C(10) - Ru(2) - C(7)	62.2(2)	C(1) - C(2) - Ru(1)	71.5(3)
C(8) - RU(2) - C(6)	61.8(2)	C(15) - C(2) - Ru(1)	130.7(4)
C(10) - Ru(2) - C(6) C(7) - Ru(2) - C(6)	37.00(19) 37.4(2)	C(4) - C(3) - C(2) C(4) - C(3) - But(1)	109.4(6) 72.6(4)
C(8) - Ru(2) - C(9)	36 3 (2)	C(2) - C(3) - Ru(1)	72.0(4) 72.0(3)
C(10) - Ru(2) - C(9)	36.4(2)	C(5) - C(4) - C(3)	106.0(5)
C(7)-Ru(2)-C(9)	62.4(2)	C(5) - C(4) - C(19)	127.6(6)
C(6)-Ru(2)-C(9)	62.4(2)	C(3) - C(4) - C(19)	124.9(6)
C(8) - Ru(2) - P(4)	89.39(18)	C(5) - C(4) - Ru(1)	70.8(3)
C(10) - Ru(2) - P(4)	146.07(16)	C(3) - C(4) - Ru(1)	69.9(3)
C(7) - RU(2) - P(4) C(6) - Pu(2) - D(4)	104.15(19) 141.29(19)	C(19) - C(4) - Ru(1) C(4) - C(5) - C(1)	134.3(4)
C(0) = Ru(2) = P(4) C(0) = Ru(2) = P(4)	109 82(18)	C(4) - C(5) - E(1) C(4) - C(5) - Ru(1)	73 2(3)
C(8) - Ru(2) - P(1)	135.26(16)	C(1) - C(5) - Ru(1)	72.1(3)
C(10) - Ru(2) - P(1)	89.07(17)	C(10) - C(6) - C(7)	106.1(5)
C(7)-Ru(2)-P(1)	150.09(19)	C(10) - C(6) - C(31)	118.1(6)
C(6) - Ru(2) - P(1)	113.91(18)	C(7) - C(6) - C(31)	134.8(5)
C(9) - Ru(2) - P(1)	99.87(17)	C(10) - C(6) - Ru(2)	70.0(3)
P(4) - Ru(2) - P(1)	104.63(7)	C(7) - C(6) - RU(2) C(21) - C(6) - RU(2)	$/ \bot . \angle (3)$
C(0) - Ru(2) - P(2) C(10) - Ru(2) - P(2)	112 11(17)	C(51) - C(6) - Ru(2) C(6) - C(7) - C(8)	105.9(5)
$C(7) - R_1(2) - P(2)$	129.75(16)	C(6) - C(7) - C(35)	133.2(6)
C(6) - Ru(2) - P(2)	105.11(16)	C(8) -C(7) -C(35)	120.4(6)
C(9)-Ru(2)-P(2)	143.29(19)	C(6) -C(7) -Ru(2)	71.3(3)
P(4) - Ru(2) - P(2)	100.40(7)	C(8) - C(7) - Ru(2)	70.2(3)
P(1) - Ru(2) - P(2)	51.25(7)	C(35) - C(7) - Ru(2)	129.4(4)
C(8) - Ru(2) - P(3)	121.40(18)	C(9) - C(8) - C(7)	111.4(6)
C(10) - Ru(2) - P(3) C(7) - Pu(2) - P(3)	157.09(14) 104 50(17)	C(9) - C(8) - Ru(2) C(7) - C(8) - Pu(2)	73.8(3) 72 3(3)
C(7) = Ru(2) = P(3) C(6) = Ru(2) = P(3)	$120 \ 41(15)$	C(7) - C(8) - Ru(2) C(8) - C(9) - C(10)	105 8(5)
C(9) - Ru(2) - P(3)	156.29(19)	C(8) - C(9) - C(39)	126.1(6)
P(4) - Ru(2) - P(3)	51.71(7)	C(10) -C(9) -C(39)	127.4(6)
P(1)-Ru(2)-P(3)	99.58(7)	C(8)-C(9)-Ru(2)	69.9(3)
P(2) - Ru(2) - P(3)	60.41(8)	C(10) - C(9) - Ru(2)	69.8(3)
C(8) - Ru(2) - Ru(1)	137.50(16)	C(39) - C(9) - Ru(2)	131.8(4)
C(10) - KU(2) - KU(1)	141.34(16)	C(9) - C(10) - C(6)	110.8(6)
C(1) = Ru(2) = Ru(1) C(6) = Ru(2) = Ru(1)	160 K3(1K)	C(3) = C(10) = RU(2) C(6) = C(10) = RU(2)	13.0(4) 72 2(2)
C(9) - Ru(2) - Ru(1)	130.32(14)	C(12) - C(11) - C(14)	105.9(5)
P(4) - Ru(2) - Ru(1)	54.09(4)	C(12) -C(11) -C(13)	111.3(5)

C(14) - C(11) - C(13)	105.3(6)	C(53) - Ru(3) - Ru(4)	137.88(16)
C(12) - C(11) - C(1)	108.2(5)	C(51) - Ru(3) - Ru(4)	159.93(16)
C(14) - C(11) - C(1) C(13) - C(11) - C(1)	109.5(5)	C(52) - RU(3) - RU(4) C(54) - Pu(3) - Pu(4)	131 62(13)
C(15) - C(11) - C(1) C(16) - C(15) - C(18)	107 2(5)	P(8) - Ru(3) - Ru(4)	54 29(4)
C(16) - C(15) - C(2)	114.7(6)	P(5) - Ru(3) - Ru(4)	54.06(5)
C(18) -C(15) -C(2)	110.3(5)	P(6) - Ru(3) - Ru(4)	55.32(4)
C(16)-C(15)-C(17)	110.5(5)	P(7) - Ru(3) - Ru(4)	55.12(4)
C(18) -C(15) -C(17)	107.9(6)	C(58) - Ru(4) - C(60)	60.7(2)
C(2) - C(15) - C(17)	106.1(5)	C(58) - Ru(4) - C(57)	37.6(2)
C(20) = C(19) = C(4) C(20) = C(19) = C(22)	113.4(5)	C(60) - Ru(4) - C(57) C(58) - Pu(4) - C(56)	61.6(2)
C(20) = C(12) = C(22) C(4) = C(19) = C(22)	110 6(6)	C(50) - Ru(4) - C(50) C(60) - Ru(4) - C(56)	37 7(2)
C(20) - C(19) - C(21)	106.9(6)	C(57) - Ru(4) - C(56)	37.2(2)
C(4) - C(19) - C(21)	106.6(5)	C(58)-Ru(4)-C(59)	36.5(2)
C(22)-C(19)-C(21)	107.7(6)	C(60) - Ru(4) - C(59)	37.3(2)
C(34) - C(31) - C(33)	106.8(5)	C(57) - Ru(4) - C(59)	62.8(2)
C(34) - C(31) - C(32)	100 5 (5)	C(56) - Ru(4) - C(59)	63.6(2)
C(33) - C(31) - C(32) C(34) - C(31) - C(6)	109.5(5)	C(50) - Ru(4) - P(5) C(60) - Ru(4) - P(5)	89 05 (19)
C(33) - C(31) - C(6)	114.0(6)	C(57) - Ru(4) - P(5)	143.53(19)
C(32)-C(31)-C(6)	107.4(5)	C(56) - Ru(4) - P(5)	106.33(19)
C(37)-C(35)-C(36)	106.4(6)	C(59) - Ru(4) - P(5)	107.41(19)
C(37) -C(35) -C(38)	106.3(7)	C(58)-Ru(4)-P(8)	88.80(17)
C(36) -C(35) -C(38)	110.5(5)	C(60) - Ru(4) - P(8)	138.01(16)
C(37) - C(35) - C(7) C(36) - C(25) - C(7)	109.7(5)	C(57) - Ru(4) - P(8) C(56) - Pu(4) - D(8)	111.94(19)
C(38) - C(35) - C(7) C(38) - C(35) - C(7)	115 5(5)	C(50) - Ru(4) - P(8) C(59) - Ru(4) - P(8)	140.00(19) 101 14(17)
C(40) - C(39) - C(41)	108.7(7)	P(5) - Ru(4) - P(8)	104.36(7)
C(40)-C(39)-C(9)	111.4(6)	C(58)-Ru(4)-P(7)	113.14(17)
C(41)-C(39)-C(9)	106.9(5)	C(60) - Ru(4) - P(7)	163.78(16)
C(40) - C(39) - C(42)	110.8(7)	C(57) - Ru(4) - P(7)	103.94(16)
C(41) - C(39) - C(42)	106.7(7)	C(56) - Ru(4) - P(7)	126.32(15)
C(9) - C(39) - C(42) C(55) - Bu(3) - C(53)	112.1(5) 61 2(2)	C(59) - Ru(4) - P(7) P(5) - Ru(4) - P(7)	145.26(19)
C(55) - Ru(3) - C(51)	37.42(19)	P(8) - Ru(4) - P(7)	51.73(7)
C(53) -Ru(3) -C(51)	62.2(2)	C(58) - Ru(4) - P(6)	159.13 (15)
C(55)-Ru(3)-C(52)	62.5(2)	C(60)-Ru(4)-P(6)	118.11(18)
C(53)-Ru(3)-C(52)	37.28(19)	C(57)-Ru(4)-P(6)	121.83(16)
C(51) - Ru(3) - C(52)	37.9(2)	C(56) - Ru(4) - P(6)	103.17(17)
C(55) - Ru(3) - C(54) C(53) - Pu(3) - C(54)	37.4(2) 36 4(2)	C(59) - Ru(4) - P(6) $P(5) - P_1(4) - P(6)$	153.1(2) 51 54(7)
C(51) - Ru(3) - C(54)	62.93(19)	P(8) - Ru(4) - P(6)	100.65(6)
C(52) - Ru(3) - C(54)	62.6(2)	P(7) - Ru(4) - P(6)	61.61(7)
C(55)-Ru(3)-P(8)	147.74(16)	C(58)-Ru(4)-Ru(3)	140.99(16)
C(53)-Ru(3)-P(8)	89.35(18)	C(60) - Ru(4) - Ru(3)	139.22(18)
C(51) - Ru(3) - P(8)	140.19(18)	C(57) - Ru(4) - Ru(3)	159.17(17)
C(52) - Ru(3) - P(8) C(54) - Pu(3) - P(8)	102.75(19) 110.69(17)	C(56) - RU(4) - RU(3) C(59) - Pu(4) - Pu(3)	130 73 (15)
C(55) - Ru(3) - P(5)	89.46(16)	P(5) - Ru(4) - Ru(3)	54.21(4)
C(53)-Ru(3)-P(5)	134.29(15)	P(8) - Ru(4) - Ru(3)	54.03 (5)
C(51)-Ru(3)-P(5)	115.33(18)	P(7)-Ru(4)-Ru(3)	55.61(5)
C(52) - Ru(3) - P(5)	151.37(18)	P(6) -Ru(4) -Ru(3)	55.24(4)
C(54) - Ru(3) - P(5)	99.10(17)	P(6) - P(5) - Ru(4)	65.99(8)
P(8) - Ru(3) - P(5) C(55) - Pu(3) - D(6)	104.45(7)	P(6) - P(5) - RU(3) $P_{11}(4) - D(5) - P_{11}(3)$	65.84(7) 71 72(6)
C(53) - Ru(3) - P(6)	166 57(16)	P(5) - P(6) - Ru(3)	62 65(7)
C(51) - Ru(3) - P(6)	104.61(17)	P(5) - P(6) - Ru(4)	62.47(7)
C(52)-Ru(3)-P(6)	130.51(16)	Ru(3) - P(6) - Ru(4)	69.43(5)
C(54)-Ru(3)-P(6)	142.00(19)	P(5)-P(6)-P(7)	107.56(10)
P(8) - Ru(3) - P(6)	100.94(7)	Ru(3) - P(6) - P(7)	59.55(6)
P(5) - Ru(3) - P(6)	51.52(6)	Ru(4) - P(6) - P(7)	59.14(6)
C(55) = KU(3) = P(7) $C(53) = P_{11}(3) = D(7)$	121,09(14) 121,18 <i>(</i> 17)	P(0) - P(1) - KU(4) $P(8) - D(7) - D_{11}(2)$	62,64(6) 62 15(7)
C(51) - Ru(3) - P(7)	118,47(15)	$R_{11}(4) - P(7) - R_{11}(3)$	69.26(5)
C(52) - Ru(3) - P(7)	103.26(16)	P(8) - P(7) - P(6)	107.15(9)
C(54)-Ru(3)-P(7)	156.56(19)	Ru(4) - P(7) - P(6)	59.26(6)
P(8) - Ru(3) - P(7)	51.64(7)	Ru(3) - P(7) - P(6)	59.01(6)
P(5) - Ru(3) - P(7)	100.51(7)	P(7) - P(8) - Ru(3)	66.22(8)
P(6) - KU(3) - P(7)	61.44(7)	P(7) - P(8) - Ru(4)	65.63(7)
$C(33) - \pi u(3) - \pi u(4)$	142.10(15)	RU(3) = P(0) = RU(4)	17.00(0)

C(55) - C(51) - C(52)	107.1(5)
C(55) - C(51) - C(61) C(52) - C(51) - C(61) C(55) - C(51) - Bu(3)	133.2(5)
C(52) - C(51) - Ru(3) C(52) - C(51) - Ru(3)	71.7(3)
C(51) = C(51) = Id(5) C(53) = C(52) = C(51) C(53) = C(52) = C(51)	105.9(5)
C(53) - C(52) - C(65) C(51) - C(52) - C(65) C(52) - C(52)	133.4(5)
C(53) - C(52) - Ru(3) C(51) - C(52) - Ru(3) C(55) - C(52) - Ru(3)	70.6(3)
C(52) - C(52) - Ru(3)	130.9(4)
C(54) - C(53) - C(52)	111.7(6)
C(54) - C(53) - Ru(3) C(52) - C(53) - Ru(3)	73.4(3)
C(53) - C(54) - C(55)	105.5(5)
C(53) - C(54) - C(69)	127.7(6)
C(55) - C(54) - C(69)	125.7(6)
C(53) - C(54) - Ru(3)	70.2(3)
C(55) - C(54) - Ru(3)	69.5(3)
C(69) - C(54) - Ru(3)	133.7(4)
C(54)-C(55)-C(51)	109.9(6)
C(54)-C(55)-Ru(3)	73.1(4)
C(51) -C(55) -Ru(3)	71.6(3)
C(57) -C(56) -C(60)	105.3(5)
C(57)-C(56)-C(81)	132.9(6)
C(60)-C(56)-C(81)	121.0(6)
C(57)–C(56)–Ru(4)	71.6(3)
C(60)–C(56)–Ru(4)	69.9(3)
C(81)-C(56)-Ru(4)	130.5(4)
C(58)-C(57)-C(56)	107.0(5)
C(58)-C(57)-C(85)	118.4(6)
C(56)-C(57)-C(85)	134.1(6)
C(58)-C(57)-Ru(4)	69.7(3)
C(56)-C(57)-Ru(4)	71.2(3)
C(85)-C(57)-Ru(4)	130.0(4)
C(59)-C(58)-C(57)	111.4(6)
C(59)-C(58)-Ru(4)	73.1(4)
C(57)-C(58)-Ru(4)	72.7(3)
C(60)-C(59)-C(58)	104.8(5)
C(60)-C(59)-C(89)	126.3(6)
C(58)-C(59)-C(89)	127.7(6)
C(60)-C(59)-Ru(4)	70.1(3)
C(58)-C(59)-Ru(4)	70.4(3)
C(89)-C(59)-Ru(4)	133.4(4)
C(59)-C(60)-C(56)	111.5(6)
C(59)-C(60)-Ru(4)	72.6(3)
C(56)-C(60)-Ru(4)	72.5(3)
C(63)-C(61)-C(51)	107.8(5)
C(63)-C(61)-C(62)	110.8(5)
C(51)-C(61)-C(62)	114.8(6)
C(63)-C(61)-C(64)	106.2(6)
C(51)-C(61)-C(64)	110.2(5)
C(62)-C(61)-C(64)	106.8(5)
C(67)-C(65)-C(66)	105.6(6)
C(67) -C(65) -C(68)	105.8(6)
C(66) -C(65) -C(68)	111.1(5)
C(67)-C(65)-C(52)	109.1(5)
C(66)-C(65)-C(52)	116.2(5)
C(68)-C(65)-C(52)	108.5(6)
C(72)-C(69)-C(71)	106.1(7)
C(72)-C(69)-C(54)	112.3(5)
C(71)-C(69)-C(54)	107.6(5)
C(72)-C(69)-C(70)	111.4(7)
C(71)-C(69)-C(70)	109.2(6)
C(54)-C(69)-C(70)	110.1(6)
C(56)-C(81)-C(82)	109.8(6)
C(56) -C(81) -C(83)	109.1(5)
C(82) -C(81) -C(83)	105.7(6)
C(56) - C(81) - C(84)	115.7(5)
C(82) - C(81) - C(84)	110.9(6)

C(83)-C(81)-C(84)	105.1(6)
C(88)-C(85)-C(87)	109.9(5)
C(88)-C(85)-C(57)	107.1(5)
C(87)-C(85)-C(57)	114.7(6)
C(88)-C(85)-C(86)	107.0(7)
C(87)-C(85)-C(86)	106.7(6)
C(57)-C(85)-C(86)	111.2(5)
C(91)-C(89)-C(90)	108.9(6)
C(91)-C(89)-C(92)	111.1(7)
C(90)-C(89)-C(92)	108.7(7)
C(91)-C(89)-C(59)	110.9(6)
C(90)-C(89)-C(59)	107.3(5)
C(92)-C(89)-C(59)	109.9(5)

C(68)

77(5)

61(6)

39(4)

-8(4)

9(3)

-11(4)

Ū₁₃ U₁₁ U₂₂ U,, U23 U₁₂ 37(1) Ru(1) 29(1)25(1)0(1)7(1)1(1)Ru(2) 30(1) 38(1) 24(1)-1(1) 7(1)-1(1)1(1) P(1) 65(1) 41(1) 34(1) -4(1) 16(1) P(2) 46(1)74(2) 38(1) 14(1)16(1) 26(1) P(3) 48(1) 73(2) 34(1) -2(1) 5(1) -23(1)P(4) 70(1) 37(1) 36(1) -5(1) 20(1) 1(1)C(1) 29(3) 48(5) 19(3) 2(3) 3(2) 5(3) 35(3) 0(3) 35(5) C(2) 28(3) 3(3) 6(2) C(3) 40(3) 34(5) 26(3) 4(3) 8(2) 2(3) -7(3) C(4) 29(3) 45(5)29(3) -6(3) 9(2) C(5) 37(3) 32(4) 21(3) -1(3) 3(2) 2(3) C(6) 43(5) 23(3) 11(2) 39(3) 1(3) -8(3) 46(4) C(7) 37(5) 34(3) -4(3) 17(3)-3(3)C(8) 27(3) 42(3) 34(5) 0(3) 12(2) -1(3) 37(3) C(9) 40(5) 36(3) 7(3) 18(3) 1(3) C(10) 40(3) 40(5) 33(3) 4(3) 11(3) 1(3) C(11) 40(3) 30(3) 10(2) 40(5) 2(3) 8(3) C(12) 57(4) 54(6) 37(4) -7(3) 26(3) -2(3) 47(4) -9(4) C(13) 70(6) 53(4) 18(3) 14(4) C(14) 68(4)39(5) 56(4) -9(4) 31(3) -1(4)-2(3) C(15) 41(3) 39(5) 44(4)13(3) -6(3) C(16) 38(3) 60(6) 73(5) -15(4)20(3) -6(3)14(4) C(17) 64(4)60(6) 65(5) 20(4)-16(4)C(18) 54(4) 38(5) 80(5) -10(4) 26(4) -9(3)C(19) 36(3) 45(5)44(4)2(3) 13(3) 3(3) -25(5) 108(9) 84(6) 15(4)C(20) 40(4) 16(4) 47(4) 99(8) 60(5) 5(3) C(21) 10(5) 15(4)C(22) 42(4) 75(7) 103(7) 0(5) 24(4) -6(4) C(31) 34(3) 50(5) 37(3) 17(3) 7(3) 6(3) 22(4) C(32) 66(4) 75(7) 60(5) 36(5) 3(4) C(33) 1(3) 43(4) 70(6) 55(4) 11(4)4(4)-4(4) 71(5) C(34) 51(4) 51(6) 3(3) 9(4) C(35) 62(4) -14(4) 17(3) -9(4)54(6) 38(4) C(36) 90(5) 86(7) 19(3) -1(4) 5(3) -6(5)17(4) C(37) 87(5) 59(7) 53(4) -21(4) -8(5) 73(7) 48(4)9(3) C(38) 63(4)-10(4)-31(4)C(39) 34(3) 54(6) 46(4) -5(4) 10(3) 1(3) C(40) 77(8) 172(10)6(7) 38(4) -5(5) 14(4)C(41) 56(5) 123(9) 90(6) -6(6) 27(4) -29(5)-50(6) C(42) 39(4) 115(9) 85(6) 7(4) -13(4)36(1) 25(1) Ru(3) 31(1) 1(1)6(1) 2(1)37(1) 25(1) Ru(4) 30(1) 1(1) 8(1) 2(1)68(1) 37(1) 32(1) -4(1)16(1) P(5) -4(1)49(1) P(6) 60(2) 42(1) 9(1) 17(1)22(1)P(7) 43(1) 64(2) 35(1) 0(1)6(1)-17(1)P(8) 66(1) 36(1) 38(1) 0(1) 23(1) 5(1) 29(3) C(51) 36(3) 39(5) 5(3) 7(2) -5(3) C(52) 38(3) 42(5) 22(3) 0(3) 10(2) -7(3)C(53) 29(4)29(3) -5(3) 13(2) 0(3) 41(3) C(54) 33(3) 40(5) 31(3) 14(3) 6(2) 10(3) C(55) 39(3) 29(3) 5(3) 8(2) 36(5) -6(3) 39(3) 24(3) 13(2)C(56) 40(5)4(3)1(3) C(57) 37(3) 56(6) 24(3) 13(3) 7(2) 3(3) C(58) 37(3) 38(5) 37(3) 9(3) 11(3) 5(3) 7(3) C(59) 40(3) 45(5) 22(3) 4(3) 7(2) 7(2) 41(5) C(60) 44(3) 23(3) 1(3) 4(3) C(61) 40(3) 33(5) 43(4) 9(3) 5(3) 4(3) 71(5) 6(4) C(62) 37(4) 69(6) 0(3) 1(3)C(63) 65(4) 69(7)61(5) 31(4) 14(4)6(4) 70(5) 65(5) 6(4) C(64) 40(6) 11(4)20(4)C(65) 60(4)46(6) 29(3) 0(3) 11(3) -10(3)C(66) 57(4) 70(7) 60(5) -15(4) 2(3) -28(4) C(67) 101(6) 32(6) 52(4) -15(4) 18(4) -5(4)

Tabelle 7.10.4Anisotrope Auslenkungsparameter [Ų x 10³] für 25.

Der Exponent des anisotropen Auslenkungsfaktors hat die Form: $-2\pi^2 [(ha^*)^2 U_{11} + ... + 2hka^*b^* U_{12}]$

C(69)	39(3)	54(6)	34(3)	-5(3)	3(3)	-2(3)
C(70)	43(4)	78(8)	143(9)	39(6)	-1(5)	15(4)
C(71)	48(4)	99(8)	70(5)	20(5)	20(4)	-3(4)
C(72)	39(4)	156(11)	92(6)	-63(7)	5(4)	-21(5)
C(81)	58(4)	47(6)	42(4)	-1(4)	17(3)	10(3)
C(82)	79(5)	86(7)	49(4)	9(4)	38(4)	8(4)
C(83)	91(5)	53(6)	64(5)	-5(4)	44(4)	21(4)
C(84)	78(5)	79(7)	73(5)	13(5)	42(4)	41(5)
C(85)	47(4)	45(5)	56(4)	12(4)	28(3)	2(3)
C(86)	63(4)	55(6)	86(6)	-10(5)	34(4)	-17(4)
C(87)	43(4)	76(7)	74(5)	5(5)	26(3)	-1(4)
C(88)	81(5)	85(8)	66(5)	44(5)	32(4)	4(5)
C(89)	31(3)	48(5)	41(3)	0(3)	7(3)	4(3)
C(90)	46(4)	146(10)	62(5)	33(6)	-2(4)	18(5)
C(91)	42(4)	77(8)	143(9)	15(6)	22(5)	-8(4)
C(92)	42(4)	129(10)	90(6)	-25(6)	26(4)	17(5)

	x	У	Z	U(eq)
Н(З)	2532	2464	4139	40
H(5)	2149	-43	3597	38
H(8)	2194	1036	6256	41
н(10) н(12д)	2555	-1403	2830	45
H(12B)	3898	871	3102	71
H(12C)	3160	540	2738	71
H(13A)	4436	-655	3742	84
H(13B)	4077	-753	4205	84
H(13C)	4438	138	4144	84
H(14A) H(14B)	2010	-693	3040	78
H(14C)	3289	-1272	3182	78
H(16A)	4875	2243	4186	85
H(16B)	4548	1353	3905	85
H(16C)	4630	1537	4537	85
H(17A)	4023	3054	3415	95
H(17C)	3227	2975	3325 3132	95
H(18A)	3916	2683	4785	84
H(18B)	3396	3244	4310	84
H(18C)	4198	3353	4436	84
H(20A)	1313	1711	4544	117
H(20B)	661	2087	4077	117
H(20C)	1388 526	2534 1959	4190	
H(21R)	1080	1469	2894	107
H(21C)	1255	2390	3191	107
H(22A)	1076	201	4067	110
H(22B)	996	144	3426	110
H(22C)	423	611	3618	110
H(32A)	3263	-1954	7097	100
н (326) Н (32C)	4063	-2084	7490	100
H(33A)	4905	-1285	7063	89
H(33B)	4595	-388	7184	89
H(33C)	4655	-572	6587	89
H(34A)	3914	-1704	5971	92
H(34B)	3402	-2262	6186	92
H(34C) H(36A)	4206 3947	-2376	6466 7878	92 102
H(36B)	3940	102	7643	102
H(36C)	3249	533	7663	102
H(37A)	2728	1721	7091	102
H(37B)	2971	2065	6596	102
Н(37С) Ц(20Л)	3402	2295	7220	102
н(зоя) н(зав)	4143	801	6884	96
H(38C)	4512	1632	7260	96
H(40A)	480	432	5362	157
H(40B)	1102	736	5166	157
H(40C)	1116	920	5783	157
H(41A)	1043	-379	6367	133
н(410) Н(410)	120/ 551	-1309 -951	5880	122 122
H(42A)	698	-1108	5008	124
H(42B)	1427	-1545	5284	124
H(42C)	1348	-739	4877	124
H(53)	2848	-5048	3749	39
H(55)	2505	-2520	4085	42
H(58) H(60)	2544	-6444	5878	45
н (60) Н (62А)	2009 128	-2719	6439 3060	40 95
H(62B)	429	-3511	3468	95

Tabelle 7.10.5H-Atomkoordinaten [x 10⁴] und äquivalente isotrope Auslenkungsparameter [Å² x 10³] für 25.

H(62C)	403	-3563	2839	95
H(63A)	1764	-2076	2912	99
H(63B)	967	-1881	2659	99
H(63C)	1269	-2769	2517	99
H(64A)	1648	-1722	3824	92
H(64B)	1155	-2267	4067	92
H(64C)	841	-1615	3565	92
H(66A)	566	-5678	2785	99
H(66B)	555	-4828	3138	99
H(66C)	937	-5679	3438	99
H(67A)	2043	-6113	3410	95
H(67B)	2350	-5700	2968	95
H(67C)	1672	-6271	2765	95
H(68A)	1774	-4455	2376	92
H(68B)	1037	-4144	2370	92
H(68C)	1135	-5087	2150	92
H(70A)	4584	-4389	4720	143
H(70B)	4080	-4841	4181	143
H(70C)	3884	-4802	4735	143
H(71A)	3747	-2682	3726	108
H(71B)	3993	-3610	3591	108
H(71C)	4495	-3019	4060	108
H(72A)	4387	-2834	4935	149
H(72B)	3771	-3221	5108	149
H(72C)	3641	-2432	4682	149
H(82A)	1095	-4900	6895	101
H(82B)	1199	-3958	7169	101
H(82C)	1837	-4589	7264	101
H(83A)	2393	-3311	6948	98
H(83B)	1704	-2776	6840	98
H(83C)	2030	-2883	6358	98
H(84A)	935	-3329	5776	109
H(84B)	564	-3414	6232	109
H(84C)	585	-4223	5848	109
H(86A)	1699	-7251	5679	98
H(86B)	1167	-6703	5203	98
H(86C)	900	-7395	5550	98
H(8/A)	189	-6309	5729	94
H(8/B)	466	-5497	5479	94
H(8/C)	4/2	-54//	6104	94
H(88A)	1361	-6274	6840	112
H(88B)	1836	-6964	6675	112
H(88C)	1040	- / 148	6529	124
H(90A)	4557	-5882	6910	134
H(90B)	3842	-6343	0032	134
п(90С) ц(о1л)	3770	- 5414 / 1 1 1	1119	134
п(ЭТН) п(отр)	4U50 2015	-4147 -4167	5079 5070	134 134
п (этр) п (отс)	2772	-4167 -4550	5740 6745	134 134
П (ЭТС) П (ЭЛС)	4000	-4004 -5700	0343 5155	100
п (ЭZА) Ц (дрр)	2600 2001	-5703	5455	129
ц(дрс) ц(дрс)	5055 1976	-0525	5045	122
11()20)	- J / U	- 0 2 2 2	200T	129

Dank

Mein Dank gilt all denen, die zum Gelingen dieser Arbeit beigetragen haben. Besonders bedanken möcht ich mich bei:

- Herrn Dr. G. Wolmershäuser für die Anfertigung der Röntgenstrukturanalysen, für seine große Hilfsbereitschaft bei der Strukturauflösung, seine Bemühungen mich in die Geheimnisse der Röntgenstrukturanalyse einzuweihen und besonders für seine Vertretung von Prof. Dr. O. J. Scherer
- Frau Dr. G. Hornung für die Aufnahme der Massenspektren
- Frau H. Ruzek, Frau Dr. B. Koch, Frau Dr. C. Eichhorn, Herrn J. Ertl, Herrn Dr. F. Fuchs, Herrn Dr. J. Meiers und Herrn Dr. G. Schmitt f
 ür die Aufnahme zahlreicher NMR-Spektren
- Herrn Dr. U. Gumsheimer und Frau Dr. C. Eichhorn für das gewissenhafte Korrekturlesen dieser Arbeit
- Herrn C. Rauber und Frau S. Fritzen für die engagierte und gute Zusammenarbeit im Rahmen des AC II (Teil II)-Praktikums
- bei den Mitarbeiterinnen und Mitarbeitern der Arbeitskreise Scherer und Sitzmann für das äußerst angenehme Arbeitsklima
- und bei Christine einfach für alles.

<u>Lebenslauf</u>

Persönliche Daten:

Name, Vorname:	Sögding, Thorsten
Geburtsdatum:	29. Oktober 1970
Geburtsort:	Landau
Nationalität:	deutsch
Familienstand:	ledig
Eltern:	Horst Sögding, KFZ-Meister
	Ellen Sögding geb. Ranck, Einzelhandelskauffrau
Anschrift:	Speyerer Strasse 2
	76829 Landau

Schulbildung:

01.08.1977 bis 31.07.1981:	Grundschule Dammheim
01.08.1981 bis 31.05.1990:	Eduard-Spranger-Gymnasium Landau, Allgemeine Hochschulreife

Hochschulausbildung:

01.10.1991 bis 14.11.1995:	Grundstudium Chemie mit Vordiplom an der Universität Kaiserslautern
15.11.1995 bis 30.06.2000:	Hauptstudium Chemie mit Diplom an der Universität Kaiserslautern
01.07.2000 bis 21.05.2003:	Promotion im Arbeitskreis von Prof. Dr. O. J. Scherer