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Abstract

Two approaches for determining the Euler-Poincaré characteristic of a set observed
on lattice points are considered in the context of image analysis — the integral geometric
and the polyhedral approach. Information about the set is assumed to be available on
lattice points only. In order to retain properties of the Euler number and to provide a
good approximation of the true Euler number of the original set in the Euclidean space,
the appropriate choice of adjacency in the lattice for the set and its background is cru-
cial. Adjacencies are defined using tessellations of the whole space into polyhedrons. In
R?, two new 14 adjacencies are introduced additionally to the well known 6 and 26 adja-
cencies. For the Euler number of a set and its complement, a consistency relation holds.
Each of the pairs of adjacencies (14.1,14.1), (14.2,14.2), (6,26), and (26, 6) is shown
to be a pair of complementary adjacencies with respect to this relation. That is, the
approximations of the Euler numbers are consistent if the set and its background (com-
plement) are equipped with this pair of adjacencies. Furthermore, sufficient conditions
for the correctness of the approximations of the Euler number are given. The analysis
of selected microstructures and a simulation study illustrate how the estimated Euler
number depends on the chosen adjacency. It also shows that there is not a uniquely
best pair of adjacencies with respect to the estimation of the Euler number of a set in
Euclidean space.

1 Introduction

In statistical physics and in materials’ science the Euler number (or its density) is used as
a characteristic describing the connectivity of the components (constituents) of a composite
material or the pore space of a porous medium, see [18, 19] and [23].

From the mathematical point of view the Euler-Poincaré characteristic x(X), or Euler
number for short, of an n-dimensional set X in the Euclidean space R™ is a basic quantity
of integral geometry. By means of Crofton’s intersection formulae, the quermassintegrals
(Minkowski functionals or intrinsic volumes) can be expressed in terms of the Euler numbers
x* defined on sections of X with k-dimensional planes, k = 0,...,n — 1, see [28]. This
is a basis of the measurement of the quermassintegrals in image analysis. Definitions and
properties of the Euler number are recalled in Section 2.

In the context of image analysis it is usually assumed that the set X is observed on a
point lattice L™. The intersection X NL" is the mathematical expression for the observable
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information about X. In practical applications we consider the lattice L™ restricted to
a bounded window W C R"™. Let 1x denote the characteristic function of X. The set
{(z,1x(x)) : € WNL"} is said to be the (binary) image of X observed in W, and the
elements of the image are called pixels.

Figure 1: The microstructure of Fontainebleau sandstone. The XCT scan consists of 299 x
300 x 300 pixels arranged in a simple cubic lattice of spacing 7.5 pm. This visualization of
the 3d image shows the pore space.

There are two ways of considering such discretized images. One way is based on theoretical
foundation and development of formulae of discrete (lattice) geometry, in particular integral
geometry on the lattice and introduction of discrete Minkowski functionals; see [31], [18] (or
[19] for a short summary). In the present paper the alternative view is taken, namely that
the analysis of the discretized image aims of a good estimation of parameters or features of
the original (i.e. non-discretized) set in the Euclidean space. This aspect was introduced
systematically in [30].

In order to reconstruct or approximate the connectivity of the set or to measure the Euler
number, the crucial problem is the choice of the neighborhood graph which links lattice points
of " in an appropriate way. Consistency of the pair of estimators for the Euler numbers
of X and of its complement X¢ can only be achieved if the neighborhoods for object (i.e.
foreground) and background ‘fit’ according to Theorem 1 in Section 2. We call a pair of
adjacencies complementary if it provides a pair of consistent estimators.

In 2d, there are the (4,8), (8,4) and the (6,6) adjacencies as pairs of complementary
adjacencies. In this notation, the first component of a pair indicates the number of neighbors
a lattice point is connected to if this lattice point belongs to X (the object) and the second
component denotes the number of used connections to neighbors if the lattice point belongs



to the complement X¢ (the background). The (6,6) adjacency is of particular importance
since it is self-complementary in the sense that both object and background are treated the
same way. For an introduction of these 2d adjacencies see [30], [25], [23].

In 3d, the variety of reasonable pairs of adjacencies is much larger than in 2d and not
easy to survey. In image analysis, object and background are usually endowed with different
neighborhoods in order to ensure a digital Jordan surface theorem. Typical pairs are (6, 26)
and (6,18), see e.g. [11, 14, 16]. In [12], the 18 neighborhood is modified to yield a 14
neighborhood. An exception to the asymmetry is [9], where both object and background are
endowed with the same neighborhood but the neighborhood graph loses its invariance with
respect to the translation group of the lattice.

Most algorithms for determining the Euler number, see [11, Section 8] and [16, Section
3.1.2] for surveys, work for 6 connectivity of the object and 26 connectivity of the background
or vice versa. In [14], Lee, Poston, and Rosenfeld use algebraic topology to determine the
contribution to the Euler number of all possible 2 x 2 x 2 configurations (‘marching cube
algorithm’). The idea of this algorithm was published first by Serra, see [29]. Imiya and
Eckhardt’s [7] method is similar although with different theoretical background. Bieri and
Nef [1] deduce a recursive algorithm from Hadwiger’s recursive definition. This definition is
the starting point for our integral geometric approach, too, see Subsection 3.2. Our polyhedral
approach in Subsection 3.4 follows the setup suggested in [11, Section 8].

For n > 2, the neighborhood graph does not describe uniquely the connectivity within the
lattice cells. Thus, instead of neighborhood graphs, we use adjacency systems consisting of k-
faces, k =0,...,n. In Subsection 3.3, we reconsider the well known 6 and 26 adjacencies and
introduce two new 14 adjacencies in 3d using the new method of polyhedral tessellation of the
lattice cells. The 14 adjacencies are self-complementary which is proved in 3.5. In Section 4
we show how the choice of adjacency influences the measurement results. Simulation studies
show that using the 14 adjacencies can yield better results than (6,26) or (26,6) but that
there are also models where they behave worse. This phenomenon is due to tiny structures
in X or in X°¢, respectively, in the range of the lattice constant, i.e. in the range of the
resolution of the equipment used for discretization.

In this paper we focus on proving results in the 3d case. Basically, the approach for
n-dimensional lattices is the same.

2 The Euler number of a set and of its complement

Assume that X C R" is bounded and topologically closed, i.e. compact and that its Euler
number x"(X) is defined. As an important subclass of such sets the reader may have in
mind finite unions of compact convex sets (polyconvex sets). The set of all finite unions of
compact convex sets is called the convex ring.

A set X C R" is called topologically regular if X = (Xint), where X and X denote
the set of all interior points of X and the closure of X, respectively. Topological regularity
means that there are no isolated points or lower-dimensional parts (like fibers) in X. Notice
that also the empty set () is regular.

The complement X¢ = R® \ X of a bounded and topologically closed set X is unbounded
and topologically open. Furthermore, if X belongs to the convex ring, neither the complement
X°¢ nor the topological closure of the complement X¢ do belong to the convex ring. Hence
it is not obvious how to introduce the Euler number of the complement and to establish
relationships between x"(X) and x™(X¢).

Finally, we recall the terms ‘morphologically closed’ and ‘morphologically open’ (see e.g.
[30]): A set X is said to be morphologically closed with respect to a compact set B if



X e B = X where X « B = (X @ B) © B denotes the morphological closure of X, X @ B
and X © B are the (Minkowski) sum and the (Minkowski) difference, respectively, and B
is the reflection of B. The set X is said to be morphologically open with respect to B if
X oB = X where X o B = (X © B) ® B is called the morphological opening. We call a
set X to be morphologically reqular with respect to B if it is morphologically open as well as
morphologically closed with respect to B. Thus a morphologically regular set has no small
(compared to B) particles, no thin spikes or lamellae, no small holes.

2.1 Definition

There are several equivalent ways for the definition of the Euler number of a set, see the
books of Hadwiger [3], Matheron [17], Schneider [27], and Serra [30], cf. also [33].

In the case when X belongs to the convex ring, i.e. it can be represented as a finite
union X = U™, X; of compact convex sets X;, the Euler number can be defined using the
initial settings x™(#) = 0 and x™(Xo) = 1 for every compact convex set Xy # @ and the
inclusion-exclusion principle, i.e.

x"(X) =
> XX - DXMXNX) 4. ()Y <ﬂ XZ-) : (1)
i=1 i=1 j=i+1 i=1

The inclusion-exclusion principle is equivalent to the additivity of the functional x™, see [27].

For the Euler number of a polytope, i.e. the convex hull of a finite set of points, there is
an alternative definition in terms of the numbers of its lower-dimensional faces. Let P C R"
be a polytope. For k = 0,...,n denote by F¥(P) the set of all k-faces of P. In particular,
FO(P) is the set of vertices, F1(P) the set of edges, F"~1(P) the set of facets, and F"(P) is
the polytope itself, 7™ (P) = P. Furthermore, let #F%(P) be the cardinal number of F*(P).
Define the Euler number by

n

X'(P) = (~D)f#F (P). (2)

k=0

For a polytope, the Euler-Poincaré formula yields that the right hand side of (2) equals 1,
see [32, Theorem 3.5.1]. Using (1), formula (2) can be additively extended to the case when
P is a finite union of polytopes, i.e. when P is a polyhedron, see also [8, Section 4].

In the general case, when X belongs to the convex ring, x"(X) can be equivalently
introduced using Hadwiger’s recursive definition. Let £} be the set of all k-dimensional
subspaces of R”. For L € L} denote by L* the orthogonal space. Consider a pair (L, Ly cy)
of parallel hyperplanes with distance ¢ where L € L'_;, z € L+, u € Lt \ {0}, > 0, and
L, = L+ z. Starting with the initial setting x°(0) = 0 and x°({o}) = 1 in the zero-
dimensional case, the Euler number can be recursively defined for any dimension n > 0
by

X"(X) = gl_r% [Xn_l(X NLy)—x""1(XnN Lx+EU)] : (3)
zeLL
In (3), only finitely many items different from 0 occur. The limit differs from 0 when L, is
an ‘upper’ tangent hyperplane to X or a ‘lower’ tangent hyperplane to X¢. Notice that the
value of the sum does not depend on the direction of the hyperplane. Here, the assumption
that X is a topologically closed set is crucial. Note that (3) can also be applied to unbounded
sets whose complement is bounded.



If X belongs to the convex ring and both X and X¢ are morphologically closed (i.e. X
is morphologically regular) with respect to a segment [0, u] with u € L™\ {0}, then (3) can
be rewritten as

1 B .
1 B o
= ). XX ) = X" X ) N X ()] da (5)

with X,y = (XNL;)_, = X_,NL C L, see [24]. Roughly, the assumptions make sure that
the details of the structure in X and in X€ are not too tiny compared with the structuring
element [o,u], i.e. with respect to the distance of the pair of sweeping hyperplanes used in
(4) and (5). This guarantees that there is no doubt concerning the correct connectivities in
the set X. Equations (4) and (5) can be used to prove the correctness of approximations of
the Euler number based on local observations of discretized sets, see [22].

2.2 Consistency relation

In the 2d case, a geometric interpretation of the Euler number of a set is x> = ng — ny,
where ngy denotes the number of connected subsets (‘components’) and n; is the ‘number of
holes’. For the 3d case it is x> = ng + n1 — g, where ng is again the number of connected
components, and n; is the number of ‘cavities’. Here g is the genus of X. Heuristically,
the genus is the maximal number of non-separating cuts through the set not increasing the
number of connected components. Here a ‘cut’ must fully penetrate the set, see [16]. Hence,
the genus of a set is the same as the genus of the complement. We remark that the terms
‘1st Betti number’, ‘number of handles’, and ‘number of tunnels’ are used synonymously for
‘genus’. For a more thorough discussion of Betti numbers see [15].

It is easy to see that for 2d sets the Euler number is equal to the negative Euler number
of the complement, and for the 3d case the Euler numbers of a set and its complement are
equal. In the following theorem, we prove this fact for arbitrary dimensions.

Theorem 1. (Consistency relation for the Euler number)

Assume that X C R"®, n > 1, permits a representation X = U™, X;, with compact convex
sets X; such that all X; and all intersections X;, N...N X;, for 1 <43 < ... < i < m and
k =2,...,m, are topologically regular. Then

XX = (=) (X). (6)

Sketch of the proof: By induction over the dimension n it can be shown easily that (6) is
true for all compact convex sets X with inner points (which implies topological regularity).
Although X°¢ is an unbounded set which does not belong to the convex ring, the sum in (3)
contains exactly one item different from zero. If X = X; U X, where X;, X5 are compact
convex sets and Xi, X2, Xy N X, fulfill the regularity condition, the additivity of x™ (the
inclusion-exclusion principle) (1) provides

X"(X1UXp) = x"(X1) +x"(X2) = X"(X1 N X>)
= (=1 [T + X" (X5) — (K1 1 Xe)°)]
= (=)™ ["(XF) + X"(X5) - X" (KT UXD)]
(—1)" " (X7 N X5)
= ()X U X))

ot



Induction over the number m of sets generating X completes the proof.
O
Remark 1. The regularity condition for all intersections X;, N...N X;, means that these sets
are either empty or have inner points, i.e., the sets X1, ..., X;;, may not ‘touch’ each other in
only one point or a set with a dimension less than n. It is obvious that without regularity
conditions there is no chance to establish a relation between x"(X) and x"(X¢). As an
example let X be a finite set of m isolated points. Then x™(X) = m and x"*(X¢) = x"(0) = 0.
An alternative proof of the consistency relation (6) can be given for those bounded sets
X for which both X N B and X¢ N B belong to the convex ring for all convex bodies B, see
[13, Appendix]. In this case the space R™ can be tessellated by convex bodies (e.g. cubes or
parallelohedrons), and the additivity (1) can be applied. In particular, this approach works
for bounded polyhedrons. We will use it for discretized sets.

3 Approximation of the Euler number of a set

3.1 General

The problem considered here is to find an appropriate approximation for the Euler num-
ber x"(X) based on the set X NIL™ of lattice points. Formally, for every set X find an
approximation x"(X NL") being close to the true value x™(X).

In order to describe approximation, we provide some concepts regarding homogeneous
lattices. A subset L™ of the linear space R" is called a homogeneous lattice if there exists
a base {u1,...,up,} of R” such that L" = {z € R : & = 1" | Njug, A; € Z} = UZ"™ with
the matrix U = (uq,...,uy), det(U) # 0, where Z denotes the set of integers. The |u;| are
the lattice spacings. Typical examples of homogeneous lattices are the cubic primitive lattice
L™ = cyZ™, ¢y > 0, and the orthorhombic primitive lattice L" = diagZ™ where diag is a
diagonal matrix with non-zero entries. We remark that the homogeneous lattices — in their
general setting — are known as the triclinic lattices. The unit cell C of " is the Minkowski
sum of the half-open segments [0,u;) = {pun : 0 < p < 1} between the origin o and the
lattice points u;; C = [0,u1) @ ... ® [0,uy). For more facts concerning lattices, see e.g. [2].

In this section, we present two approaches for the approximation of the Euler number.
First, in Subsection 3.2, we recall the integral geometric approach based on a discretization
of the recursive formulae (4) and (5).

Subsections 3.3 to 3.5 are devoted to the polyhedral approach. In image processing
the standard solution for measuring the Euler number is to fix an adjacency relation for
the lattice points and to determine the Euler number with respect to the corresponding
polyhedron. Usually, the Euler number is computed by means of the Euler-Poincaré formula
(2). This requires a clear and consistent definition of the k-faces to be counted. This definition
is not unique for all neighborhood graphs or adjacency relations. Therefore, it is more
precise to extend the neighborhood graph to the description of the whole adjacency system
corresponding to a polyhedral approximation of the set X.

Very generally, an adjacency is a system of k-faces, k = 0,...,n. One way of obtaining
an adjacency system is to use a tessellation G of R having the same translation group as the
lattice. Then the adjacency system with respect to G — in the following denoted by F = F(G)
— is the set of all k-faces, K =0, ...,n, of polytopes belonging to G.

Denote by FM X the union of all k-faces of G ‘restricted’ to X, k = 0,...,n (i.e. the
set of all k-faces of F for which all vertices belong to X; see also Section 3.4). This will be
understood as a discretization of X. In Subsection 3.4 the following scheme is suggested:

X xnLl S rEnx & rFnx) ~ M X).



For the complement X ¢ we chose another adjacency system F., and an approximation of the
Euler number of X¢ can be obtained analogously to the above scheme from

Xe = xenLr L nxe B gm0 X0 ~ (X0,

It is natural to use those pairs (I, F,) of adjacency systems for which the consistency relation
(6) in the form Y™ (F, M X¢) = (=1)"T1¢*(FNX) is fulfilled for all X. Examples of such pairs
are given in Subsection 3.5. Sufficient conditions for the correctness of the approximations
are given in Subsection 3.6.

3.2 The integral geometric approach

In [22] an approximation of the Euler number is given together with morphological regularity
conditions on X and X°¢ which are a consequence of the regularity conditions for (4) and
(5). To describe this approach more detailed, we introduce intersections of the lattice L"
with j-dimensional subspaces L € L. We consider only those subspaces L for which the
intersection L" N L forms a j-dimensional sublattice 1J. Let L%#(L") denote the set of all
homogeneous j-dimensional sublattices of L". The lattice (I/ )+ is the set of all points y € L+
with the property that L, NIL" is a lattice on L,. We call (I/)* the lattice orthogonal to
/. Note that (I/)* is not necessarily a sublattice of L.

Let L~ € £ (L") and let v, be the base of the orthogonal lattice (L"~1)L. Define
X = (X —iv,) NLP! e Xy is a discretization of the intersection (X — ivy,) N L. Then
from (4) and (5) we obtain

ALY = )R X U X ) = X (X )] (7)
IEZL

= > [T Xe) - XX G N X)) - (8)
IEZ

Recursive application of one of these formulae for decreasing dimension of the considered
spaces leads to an approximation x" (X NL") of x(X). Bieri and Nef’s [1] recursive algorithm
is deduced directly from (7).

Figure 2: Pixel configuration in a 3d image with a simple cubic lattice. The solid discs e
are assigned to the pixels covered by X whereas the circles o are the pixels that hit the
complement X°. If X is morphologically closed with respect to the edges and diagonals of
the lattice cell, then x(X) = 1 whereas (7) provides x"(X NL™) = 0. This difference is due
to the fact that X is not morphologically open with respect to space diagonals.

We recall from [22] the sufficient conditions for the correctness of the approximation. Let
C, denote the unit cell of the lattice L with base {v1,...,v,} where v,,...,v; are the bases
of the orthogonal lattices (L"~!)+, ... (L°)L used in the recursion.



Theorem 2. Let S, be the set of all closed segments that connect the vertices of the unit
cell Cy; Sy = {[z,9] : 7,y € F°(Cy), = #y, (x,y) C C,}. If X is morphologically regular
with respect to all segments of S, then ¥™(X N L") provides the exact value of the Euler
number, i.e. X"(X NL") = x"(X).

The proof follows from [22, Theorem 2], since L is by definition an orthorhombic primitive
lattice.

If the regularity assumptions for X are relaxed, then there may occur pixel configurations
where the true value x"(X) differs from x"(X N L") provided by (7) and (8), respectively,
see Figure 2.

3.3 Adjacencies, tessellations, and graphs

For sets X having a too tiny structure compared to the spacings of the observation lattice
L™, i.e. sets not being morphologically regular with respect to the edges and diagonals of the
cells of the lattice, one has to make guesses concerning the connectivity structure between
the isolated lattice points. In image analysis, this guess is usually based on neighborhood
graphs attached to the lattice.

We consider polyhedral approximations of the sets X and X°¢ rather than neighborhood
graphs. These approximations are based on adjacencies. We first give a very general definition
of adjacency:

Definition 1. An adjacency system F is a set of k-faces, F = UP_, F* with

(i) each k-face F € I is a subset of a (topologically closed) lattice cell and the vertices are
lattice points

(ii) F is invariant with respect to lattice translations, F + z = F for all z € L, and
(iii) the union of all polytopes of F is R”.

Adjacency systems can be constructed in various ways, for example using tessellations, col-
lections or superpositions of tessellations, or forming the convex hull. Meaningful adjacencies
are identified in Subsection 3.5 via the consistency relation (6). In this section we consider
adjacency based on a special class of tessellations — so-called admissible tessellations.

A convex tessellation G of R” is defined as a family {P;, P, ...} of polytopes (with inner
points) satisfying P/"* N Pj" = () for i # j, #{P € G : PN B # 0} < oo for all bounded
subsets B C R", and U; P; = R". In the following, we consider admissible tessellations only :

Definition 2. The tessellation G = {Py, P»,...} is called an admissible tessellation with
respect to the lattice L™ if

(i) the vertices of each tessellation cell are lattice points, i.e. F°(P) C L"*, P € g,
(ii) the tessellation is invariant with respect to lattice translations, i.e. G +z =G, = € L™,

(iii) the cells of the tessellation are subsets of the lattice cells, i.e., for every P € G there
exists a point x € " such that P C C' + z, and

(iv) the intersection of two tessellation cells is either empty or a face of these cells, i.e.,
P; N P; is an element of Uy (F*(P;) N F*(P;)) u {0}, P, P €G, i #j.



To be more flexible, we consider also the superposition G of admissible tessellations
Gi,...,Gm defined as

g:{PP:leQOQleglaanegm}amzla

see [20, Section 3.4]. Note that for m > 1, the superposition G is not necessarily an admissible
tessellation. In particular, there can exist vertices of cells of G that are not lattice points,
FG) oL

Now we introduce the systems F*(G) of the k-faces of the superposition G = {P;, P, ...}
in the following way: F*(G) = U2, F*(P;),k = 0,...,n. Obviously, admissible tessellations
and their superpositions yield adjacencies.

Definition 3. Let G be the superposition of admissible tessellations. Then the set F(G) =
uUn_,F*(G) is called the adjacency system with respect to G.

In order to link our polyhedral approach and the characterization of neighborhood usually
used in image processing, we introduce the neighborhood graph I' consisting of non-oriented
edges (z,y) that link lattice points z,y € L". Define the neighborhood relation for F as

v={(e.9) 12,y € FO), (a,) C C, [a,y] € [ JF € F/E)}} -

Then the neighborhood graph with respect to F can be described by v; I' = Ugep» (y+x). The
connectivity ¢ = ¢(I') of the neighborhood graph is the order of the nodes; ¢ = #{(z,y) €
I':y € L™} for every lattice point =. It is easy to see that ¢ = 2#+. In the literature,
adjacencies are usually called ¢ neighborhoods.

Consider the admissible tessellation Gy = {C + = : € L"} consisting of the lattice
cells. Then vo = {(o,u1),...,(0,u,)} is the generator of the neighborhood graph Iy of the
adjacency F(Gp), and the connectivity is ¢(Tg) = 2n. Since ¢(Tp) < ¢(T') for all adjacencies
F(G) with respect to an admissible tessellation G and with graph I'; the adjacency F(Gy ) is said
to be the minimal adjacency. The adjacency F(Gyax) with respect to the superposition Giax
of the set of all admissible tessellations is called the mazimum adjacency. Its neighborhood
graph I'jax is of order ¢(pax) = 3™ — 1.

Examples of 3d adjacencies. We consider the adjacencies in 3d which correspond to the
well known 6 and 26 neighborhoods. (For the 6 neighborhood each pixel is connected only by
the edges of the lattice cells with its neighbors, and in the case of 26 neighborhood the pixels
are connected by all edges, face diagonals and space diagonals of the cells.) Furthermore, we
introduce two — apparently new — 14 neighborhoods. In order to describe the corresponding
tessellations we introduce the vertices xg,...,x7 of C' given by xg = 0, ©1 = u1, T2 = us,
Tz = Uy + Uz, Ty = Uz, T5 = Uy + Uz, Tg = Uz + ug, and 7 = uy + us + ug, where {uy, us,us}
is the base of L?.

1. Clearly, for the 3d case the minimal adjacency F(Gg ) corresponds to the 6 neighborhood;
¢(I'p) = 6. The adjacency F(Go) is invariant with respect to rotation in the sense that
UMUF(Gy) = F(Gp) for every rotation M from the rotation group (Z3) of the
discrete space Z3. (2(Z3) is called the octaeder group.)

2. Consider the tessellation of the unit cell into the 6 tetrahedrons G, ...,Gs which are
convex hulls of vertices of C:

G = conv({zo, 1, x3,27}), G2 = conv({zo,r1,Ts5,27}),
Gz = conv({zo, T2, x3,27}), G4 = conv({zo,rs,Ts5,27}),
Gs = conv({zo, 4,26, 27}), Ge = conv({zo, 2,6, 27}),



Figure 3: The tessellation of the unit cell defining the 14.1 neighborhood.

see Figure 3. Let G; consist of all translations of the G;, G = {G;+z:i=1,...,6, €
[3}. Then G; is an admissible tessellation of R® with respect to L®. For the corre-
sponding adjacency F(G;), the set v consists of three edges of C, three face diagonals,
and one space diagonal, i.e. ¢(I') = 14. Hence F(G; ) has a 14 neighborhood. Note that
F(G1) is not invariant under rotation. But even besides its rotations there is a further
adjacency based on a tessellation of C' into 6 tetrahedrons. To indicate the difference
we call Fi41 = F(G) the 14.1 neighborhood.

Figure 4: The tessellation of the unit cell defining the 14.2 neighborhood.

3. Consider now the tetrahedrons

G1 =conv({zo,z1,23,25}), G2 = conv({zo,z2,zs3,27}),
G3z = conv({zo, T2, 4, 27}), G4 = conv({wo,rs,es5,27}),
G5 = conv({zo, 4, x5,27}), Ge = conv({w2,r4,Ts,27})

which tessellate the unit cell as shown in Figure 4. Again, the translations of the G; form
an admissible tessellation G», and the adjacency Fi40 = F(G2) is a 14 neighborhood,
too, in the following called the 14.2 neighborhood.

4. The neighborhood graph of the maximum adjacency is of order 26. Hence we write
Fys = F(Gmax ). The maximum adjacency Fa is invariant with respect to rotation (as
Fs).

3.4 The Euler number with respect to adjacency

The elements of F(G) are the geometric objects to be used for the discretization of the set X
and for the computation of its Euler number.

For simplicity we first consider the case when F(G) is an adjacency with respect to an
admissible tessellation. Then the set of the k-faces for which all vertices belong to X can be
formally introduced as F*(G) N X = {F € F*(G) : F°(F) C X}.
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If G is a superposition of admissible tessellations, there can occur difficulties with the
extra vertices F°(G) \ L" in which the set X is not observed. To overcome this problem,
we assume that a vertex z € F°(G) \ L" belongs to X if there is an edge (z,y) of I' with
z,y € X and z € [z,y]. That is, z lies on a segment between two neighboring nodes of the
neighborhood graph I'. In order to describe rigorously the discretization of X with respect
to F(G), we augment X by the additional vertices:

X*=XU{z € FG)\L" : there are z,y € Xwith (z,y) € Fand 2 € [z,y]}.

Now the discretization of the set X with respect to F(G) can be defined as follows:

Definition 4. Let 7*(G) M X denote the set of those k-faces for which all vertices belong to
X* and
FRG)NX ={F e F¥G) : FO(F) C X*}.

For a superposition G of admissible tessellations we call
F(G) NX = Ui FH (@) NnX
the discretization of X with respect to the adjacency F(G).

Notice that if X is a bounded subset of R™, its discretization is a polyhedron, i.e. a
finite union of polytopes. Thus the Euler-Poincaré formula (3) yields an easy formula for the
computation of the Euler number,

X(FG) NX) =) (~1F4(F () N X), (9)

k=0

see also [8, (4)].

For practical applications it is helpful to give also a ‘local version’ of this formula based on
‘local versions’ of the F*(G)MX. The approximation ¥"(F(G)MX) can be based on estimates
in each of the cells and their combination according to the inclusion-exclusion principle. In
order to ensure that each k-face is counted once only, we have to apply some kind of edge
correction. Here we choose weighting the k-faces with the reciprocal of the number of closed
lattice cells they intersect.

For ¢ > k let F¥ M X be the set of all k-faces F € F*(G) N X with:

(i) There is an [-face F; € F*(C) such that F C Fy and
(ii) there is no j-face F; € F/(C), j < ¢, such that F C Fj.
Then (9) can be rewritten as

n

CEG NX) =D Y (FDFY 2 (A X ). (10)

zel™ k=0 {=k

For the 3d case the interpretation of the weights is as follows: All vertices ]-'8 M X get weight
1/8. The edges f§1 nx, fé’2 MX, and fé’3 MX get 1/4,1/2, and 1, respectively. The faces
.7-'5’2 MX and .7-'5’ M X are equipped with 1/2 and 1, respectively, and all cells .7-'3’3 MX with
1.

Remark 2. The local version (10) of (9) is easy to apply for Fg,Fi41, and Fy4.2, but tedious
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for Fas. For Fyg, the set F§* M X_, can be obtained from the convex hull of the vertices of
C belonging to X.

Remark 3. Algorithmically, using the half open lattice cell C' is easier. Let FrnX =
{FeF*GNX :FNC #0, FCC}, k=0,...,n. Then (9) can be rewritten as
X(FG) N X) =3 cin hmo (DM #(FF N X ).

For n = 3 let xyp, - . ., x7 denote the vertices of the unit cell C' (defined as in the examples
of Section 3.3). Following the technique described in [16], we define a function

7
g(iL')ZZQZ]_X(:L'—f—QZZ), mELB:
=0

with integer values 0,...,255. This means that depending on whether the vertex z; hits
the object or the background it gets the weight 2¢ or 0, respectively, see also Figure 5a).
Furthermore, let W C R® be a compact window with X & C C W. We introduce a vector h
with coefficients

zel3nNW
where ¢ denotes Kronecker’s delta, d;(j) = 1 for i = j and 0;(j) = 0 otherwise. Then (10)
can be rewritten as

PG NX) = éhw, (11)

where w is given in Tables 1 and 2 for the adjacencies Fg,F14.1,F14.2, and Fag.

64 — 128
e —
16 T 32
4 J* 8
x x
N g b) ¢)
Figure 5: (a) Weights used for the coding of the pixel configurations of a 3d image , (b) and
(c) pixel configurations coded as g(x) = 62 and g(x) = 109, respectively. In these examples
the corresponding component w; of the vector w in (11) depends considerably on the chosen

adjacency. We get the values —3, —3, —7, and 1 for the configuration (b) and —1, —5, —1,
and 3 for (c), respectively, see also Table 1.

3.5 Pairs of complementary adjacencies

It is a usual requirement in image analysis that any adjacency for the ‘object’ X has to
be in coherence and consistency with an appropriate ‘complementary adjacency’ used for
the ‘background’ X¢. Usually, the criterion is some discrete Jordan surface theorem. Our
motivation is consistency (6) of the approximations of the Euler number.

Definition 5. The pair (F(G),F(G.)) of adjacency systems is complementary if for all
bounded sets X C R
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(i) FNE. =0 for all F € F(G) N X and F, € F(G.) N X¢ and
(ii) x"(F(G) NX) = (1" 1" (F(Ge) N X°).

Notice that (i) is a nontrivial requirement since it is not even allowed that the discretizations
of X and of X¢ — as topologically closed polyhedra — touch in any point. Also (ii) is not an
obvious consequence of (1) since the discretizations of X and X ¢ do not fill the space.

Rremark 4. Herman introduced in [5] the concept of Jordan pair. Two adjacencies are a Jor-
dan pair if endowing object and background with these adjacencies yields a digital Jordan
surface theorem. (Very roughly, a closed surface divides the space properly into two compo-
nents. Paradoxes as in [5, Proposition 3.1] are prevented.) In [5, 10, 12, 26] Jordan surface
theorems are proved for different concepts of digital surface and the pairs (6,26), (26, 6),
(6,18), and (18,6), in [12] also for (14,6), (6,14). The surface concept in [5, 12, 26] is mo-
tivated by surface rendering algorithms and not suitable in our context. However, provided
the right definition of a surface, we assume that a Jordan surface theorem holds for our
(14.1,14.1) and (14.2,14.2), too. However, this is beyond the scope of this paper and will be
investigated in a future paper.

An important consequence of (i) is that an edge of F and an edge of F. may either coincide
or meet in a lattice point or be disjoint, but never may intersect in a single point not being
a lattice point. This limits the choice of diagonals on the facets of the lattice cells as well
as of spatial diagonals through the cells. (In the 2d case the 8 neighborhood can only be
accompanied by the 4 neighborhood, since in the 8 neighborhood already both diagonals are
edges in the corresponding F.)

On the other hand, (ii) demands some kind of maximization of the sets of edges and of
the refinement of the tessellation of one of the adjacencies if the complementary one is given.
E.g. it has to be guaranteed that two points of the discretized set FI X are either connected
within this set or they are separated by the discretization F. MX¢ of the complement. (In the
2d case the 4 neighborhood has to be combined with the 8 neighborhood for the complement
in order to fulfill (ii).)

It is not yet clear whether there exists a complementary adjacency for every adjacency
and whether this would be unique. However, it is easy to see that if F(G.) is a complementary
adjacency of F(G) then also F(G) is complementary to F(G.). An adjacency system F(G) is
said to be self-complementary if x"(F(G) N X¢) = (—1)"T1x"(F(G) N X) for all X.

Theorem 3. The pair (IFg,F26) of adjacency systems is a pair complementary adjacency
systems, and (F26,Fg) is complementary, too.

Proof: In order to show (i) of Definition 5 note that (X NL3) N (X°NL3) = 0, i.e. the
sets of vertices of the discretizations of X and of X¢ are disjoint. Since the edges of Fg
either coincide or meet in an edge or are disjoint to all edges of Fys we can conclude that
the union of all edges of the discretization of X is disjoint to that of X°. From the fact that
the tessellations of Fag are refinements of the tessellation Gy one can now derive (i). Namely,
since each 2d face belonging to Fg is the union of 2d faces in Fag, it is clear that if a 2d
face belongs to Fg M X¢ then no subset of it (of any dimension) may belong to Fag M X°€.
Analogous arguments can be used for the 3d cells.

Due to the additivity of the Euler number it is sufficient to show that the consistency
condition (ii) in Definition 5 is fulfilled in each cell of the lattice. This can be checked
considering all 256 possible point configurations on the vertices of a cell. Of course, it has to
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be taken into account that each 2d facet of a cell belongs to two cells, each edge belongs to
four cells and each vertex belongs to 8 cells. We use the same edge correction as in (10).

It is sufficient for the validity of the consistency relation (ii) that wz(»a) = wg?s)fi for

1=1,...,128, see Tables 1 and 2. |
i |(a) (b) (¢) (d) i |(a) (b) (¢) (d) i |(a) (b) (¢) (d) i |(a) (b) (¢) (d)
0 0 0 0 O 32 1 1 1 1 64 1 1 1 1 96 2 2 2-2
1 1 1 1 1 33 2 -2 -2 -2 65 2 -2 2 -2 97 3 -5 -1-1
2 1 1 1 1 34 0 0 0 O 66 2 2 2 -6 98 1 1 1-3
3 0 0 0 O 35| -1 -1 -1 -1 67 1 -3 1 -3 99 0 4 00
4 1 1 1 1 36 2 2 2 -6 68 0 0 0 O 100 1 1 1-3
) 0 0 0 O 37 1 -3 -3 -3 69 | -1 -1 -1 -1 101 0 4 -40
6 2 2 2 -2 38 1 1 1 -3 70 1 1 1 -3 102 0 0 00O
71-1 -1 -1 -1 39| -2 -2 -2 -2 71| -2 -2 -2 -2 103 | -3 3 -3 1
8 1 1 1 1 40 2 2 -2 -2 72 2 2 2 -2 104 3 3 -1-1
9 2 -2 -2 -2 41 3 -5 -1 -1 73 3 -5 -1 -1 105 4 -8 0 4
10 0 0 0 O 42 | -1 -1 -1 -1 74 1 1 1 -3 106 0 0 00
1] -1 -1 -1 -1 43 | -2 -2 -2 -2 75 04 0 0 107 | -1 -5 -1 3
12 0 0 0 O 44 1 1 -3 -3 76 | -1 -1 -1 -1 108 0 040
13]-1 -1 -1 -1 45 04 0 0 7|2 -2 -2 -2 109 | -1 -5 -1 3
4] -1 -1 -1 -1 46 | -2 -2 -2 -2 8| -2 -2 -2 -2 110 | -3 -3 -3 1
15 0 0 0 O 471 -1 -1 -1 -1 9(-1 -1 -1 -1 111 | -2 -2 -2 2
16 1 1 1 1 48 0 0 0 O 80 0 0 0 O 112 | -1 -1 -1-1
17 0 0 0 O 49 | -1 -1 -1 -1 81 | -1 -1 -1 -1 113 | -2 -2 -2-2
18 2 2 2 -2 50 -1 -1 -1 -1 82 1 1 1 -3 114 | -2 -2 -2-2
191 -1 -1 -1 -1 51 0 0 0 O 83 | -2 -2 -2 -2 115 | -1 -1 -1-1
20 2 2 -2 -2 52 1 1 -3 -3 84 | -1 -1 -1 -1 116 | -2 -2 -2 -2
21 (-1 -1 -1 -1 53 | -2 -2 -2 -2 85 0 0 0 O 117 | -1 -1 -1-1
22 3 3 -1 -1 54 0 0-4 0 86 0 0 0 O 118 | -3 -3 3 1
23 | -2 -2 -2 -2 5 -1 -1 -1 -1 87 -1 -1 -1 -1 119 0 0 00
24 2 2 2 -6 56 1 1 -3 -3 88 1 1 1 -3 120 0 040
25 1 -3 -3 -3 o7 0 -4 0 O 89 0 4 -4 0 121 | -1 -5 -1 3
26 1 1 1 -3 58 | -2 -2 -2 -2 90 0 0 0 O 122 | -3 -3 31
27 | -2 -2 -2 -2 59 ( -1 -1 -1 -1 91 (-3 -3 3 1 123 | -2 -2 -2 2
28 1 1-3 -3 60 0 0 -8 0 92 | -2 -2 -2 -2 124 | -3 -3 -7 1
209 | -2 -2 -2 -2 61 -3 -3 1 1 93 (-1 -1 -1 -1 125 | -2 -2 2 2
30 0 0-4 0 62 | -3 -3 -7 1 94| -3 -3 -3 1 126 | 6 -6 -6 2
31 (-1 -1 -1 -1 63 0 0 0 O 95 0 0 0 O 127 1 1 11
Table 1: The components w;, ¢ = 0,...,127, of the vector w: column (a) for the adjacency

Fs, (b) for Fy4.1, (c) for Fi4.0, and (d) for Fag.

Theorem 4. The pairs (Fi4.1,F14.1) and (Fi4.2,F14.2) are complementary pairs of adjacency
systems.

Proof: Condition (i) of Definition 5 can be proved using the same arguments as for the (6, 26)
neighborhood. To prove the consistency (ii), we consider the possible point configurations in
single cells as in the proof for the (6, 26) adjacencies. The evaluations in columns (b) and (c)

of Tables 1 and 2 show that wl(-b) = wg&_i for Fy4 1 and wl(.c) = wé%_i for Fiy . O
Intuitively, the reason for the self-complementarity of Fi4; as well as of Fy4 5 is the fact

that a tetrahedral tessellation cannot be further refined and that also the induced tessellations
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on the 2d facets of the cells are translation invariant, i.e. the tessellations on the contact faces
of adjacent cells coincide. This is not true for all tetrahedral tessellations. A counterexample
is, for instance, any tessellation containing the tetrahedron with the vertices xg, 3, 5, 6.

i |(a) (b) (¢) (d) i@ ®) () if(@®) () i|()b)()(d)

135 -4 0 167}(-3 1 1 1 19|-3 1 -3 1 231| -6 2 2 2
136 o 0 168}-1-1-1 -1 20 (-1 -1 -1 -1 232 -2 -2 -2 -2
137 1 -3 -3 -3 169 0 0 0 0 201 0 0-4 0 233|-1 3 -1 3
138 | -1 -1 -1 -1 170 0 00 0 202|-2-2-2-2 234]|-1-1-1-1
39-2-2-2-2 17m|-1 -1-1 -1 203|-3 1-3 1 23| -2 2 -2 2
140 | -1 -1 -1 -1 172 | -2 -2 -2 -2 204 0 00 0 236|-1-1-1 -1
141 (-2 -2 -2 -2 173|-3 1 1 1 206|-1 -1-1-1 237 |-2 2 2 2
142 | -2 -2 -2 -2 174 -1 -1 -1 -1 206 | -1 -1 -1 -1 238 0 0 0 O
143 | -1 -1 -1 -1 175 0 0 0 0 207 0 0 0 0 239 1 1 1 1
144 2 -2-2 -2 176|-1 -1-1 -1 208 ]| -1 -1 -1 -1 240 0 0 0 O

128 1 1 1 1 160 0 0 0 0 192 0 00 0 224|-1 -1-1 -1
129 2 6 -6 -6 161 1 -3 -3 -3 193 1 -3 -7 -3 225 0 0 -4 0
130 2 -2 2 -2 162 | -1 -1 -1 -1 194 1 -3 1 -3 226 | -2 -2 -2 -2
131 1 -3 -7 -3 163 | -2 -2 -2 -2 19 0 0-8 0 227 -3 1-3 1
132 2 -2 -2 -2 164 1 -3-3 -3 19%|-1 -1-1-1 228 -2 -2 -2 -2
133 1 -3 -3 -3 165 o 00 0 197|-2 -2-2 -2 229|-3 1 1 1
134 3 -5 -1 -1 166 0 -4 -4 0 198 0-4 0 0 20|-3 -3 -3 1

0 0

0 0

145 1 -3 -3 -3 177 -2 -2 -2 -2 209|-2 -2 -2 -2 24| -1 -1 -1 -1
146 3 -5 -1 -1 178 | -2 -2 -2 -2 210 04 0 0 242 | -1 -1 -1 -1
147 0 0 -4 0 179 { -1 -1 -1 -1 211 (-3 1 -3 1 243 0 0 0 O
148 3 -5 -1 -1 180 0 -4 0 0 212|-2 -2 -2 -2 244 -1 -1 -1 -1
149 0 0 0 O 81 (-3 1 1 1 213 -1 -1 -1 -1 245 0 0 0 O
150 4 -8 0 4 182 | -1 5 -1 3 214 -1 -5 -1 3 246 | -2 -2 -2 2
51 -1 3 -1 3 183 | -2 2 2 2 216 | -2 2 -2 2 247 1 1 1 1
152 1 -3 -3 -3 184 | -2 -2 -2 -2 216 | -2 -2 -2 -2 248 | -1 -1 -1 -1
153 0 0 0 O 8% (-3 1 1 1 217(-3 1 1 1 249 | -2 2 2 2
154 0 4 -4 0 186 | -1 -1 -1 -1 218 | -3 -3 -3 1 250 0 0 0 O
55| -3 1 1 1 187 0 0 0 0 219 -6 2 2 2 251 1 1 1 1
156 0 -4 0 0 88 (-3 3 1 1 220 -1 -1 -1 -1 252 0 0 0 O
57 (-3 1 1 1 189 | -6 2 2 2 221 0 0 0 0 253 1 1 1 1
158 | -1 -5 -1 3 190 | -2 -2 2 2 222 | -2 -2 -2 2 254 1 1 1 1
159 | -2 2 2 2 191 1 1 1 1 223 1 1 1 1 255 0 0 0 O
Table 2: The components w;, i = 128, ...,255, of the vector w: column (a) for the adjacency

Fs, (b) for Fi4.1, (c) for Fi4.0, and (d) for Fag.

3.6 Sufficient conditions for correct approximation

Consider a pair (F(G),F(G.)) of adjacencies with respect to the superpositions of admissible
tessellations G and G, respectively. Let S(G) denote the set of all segments [z, y] for which
the edge (x,y) belongs to the neighborhood graph I' of F(G).

Theorem 5. Let (F(G),F(G.)) be one of the four pairs of complementary adjacencies
(Fs,Fa6), (Fo6,Fs), (Fra.1,F14.1) and (Fi4.2,F1402). If X is morphologically closed with re-
spect to all segments of S(G), and its complement X ¢ is morphologically closed with respect
to all segments of S(G.) then the approximation Y*(F(G) M X) is correct for x3(X), i.e.
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X (E(G) NX) = x*(X).

The proof will be given for F(G) = Fi4.1, Fi4.0 and Fag respectively. The case F(G) = Fg can
be reduced to F(G) = Fas for the complement with the help of the consistency relation (6).
We write UF(G) N X = J{F € F(G) N X} for short. Due to the additivity of the Euler
number, it is sufficient to prove Y¥(X N P) = Y*(UR(G) N X NP), k=0,...3, where P is an
arbitrary tetrahedron of the tessellation according to the 14.1 or 14.2 adjacency, or a lattice
cell C 4z, x € L? if F = Fyq is regarded, or a k-face of the mentioned polytope, respectively.
In the following let P be one of these particular polytopes of dimension k.
As a preliminary step we prove the following assertion.

Lemma 1. Under the assumptions of Theorem 5 we have
XNP=0) < XnNnF'(P)=0 (12)
and
XNF(P)#0 < XFUFG)NXNP)=1. (13)

Proof: The nontrivial part of (12) can be shown by induction over the dimension j of the
faces of P. If X N FY(P) = 0, i.e. F°(P) C X¢, then the morphological closure with the
edges of P yields F*(P) C X¢. For those particular polytopes P which are considered, this
procedure of morphological closing can be iterated to show P C X°¢.

The equivalence (13) is a consequence of UF(G) M X NP = conv(F°(P)N X), the convex hull
of the vertices belonging to X. (Notice that this is true for Fi4.1, Fi4.2, Fas but not for Fg.)

O

Proof of Theorem 5: Regarding the lemma above, it is sufficient to show that
P(XNP)=1 <= XNP#I. (14)

This can be done with Hadwiger’s recursive formula (3). The crucial point is that for any
j-dimensional plane L7 parallel to a j-dimensional face of P and any (j — 1)-dimensional
plane L C LI (L can be regarded as a linear subspace in L7) parallel to a (j — 1)-dimensional
face of P
Y(XNPNL) =
S lim [;zf*l(XumLw) —xjfl(XumLHw)] =1 (15)

zeLinpi €0

ifXNPNL #0, withue L*NL/and j=1,...,k.
This formula will now be shown in the following parts (a) to (d).

(a) The assumption that X ¢ is morphologically closed with respect to all segments in S(G.)
implies:

For all y € X and all F € §(G,) there exists a t € R® with
ye(F+1)CX, (16)

and analogously, if X is morphologically closed with respect to all segments in S(G),
then

for all y € X¢ and all F € S(G) there exists a t € R® with
ye(F+t)Cxe, a7)
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see [30], IL.D., relations between morphologically closed and open sets and the charac-
terization of morphologically open sets.

Let L7 and L be the same as used in (15) and x;,xs, 2 € L* N L. If PN L,, # ) and
PN L,, #0 then

XNPNLy, =0ANXNPNL,, =0 =
XNPnNL, =0 forall L, between L,,,L,,. (18)

Assume XNPNL, #0,ie. thereisay € XNPNL,. Then (16) provides that there
is a segment y € (F +t) C X. This segment can be chosen as a translate of an edge
of P which hits L,, and L,,. Hence (F + t) hits at least one of the sets L,, N P or
L., N P. This contradicts the assumption, and thus (18) is shown.

With the same notation as in (b) and analogously to (18)

XNPNLy, Z0NXNPNL,, #0 =
XNPNL, #0 for all L, between Ly, , L,,. (19)

Let yy €e XNPNL,, y2p€ XNPNLy,,.

Firstly consider the case that L,,,L,, C L? are lines. Let S C P be the smallest
triangle in the plane L? with y» as one vertex and y; an element in the opposite edge,
say Fs which is parallel to an edge F' € S(G.), and all edges of S parallel to one of
the segments in S(G). (Notice that it is not a misprint that once the index ¢ occurs
and once not. This distinction is important for the pair of adjacencies (26,6).) Then,
according to (16) there is a translated segment F' 4+ ¢ C X through y;. Since Fyg is
not longer than F', the translate F' + ¢ hits at least one of the endpoints of Fs, say ys.
Since X is assumed to be morphologically closed with respect to all segments in S(G),
also the segment [y2,ys] C X since this is not longer than the parallel segment from
S(G). Thus it is shown that the points y; and y» are connected by a chain of segments
[y1,ys] and [ys,y2] which belong to X N P. This yields (19).

If L,,, L,, are planes, then a minimal tetrahedron S exists with y» as one vertex and
y1 in the opposite facet of S, and all edges parallel to appropriate segments in S(G).
With an iterated application of the same ideas and arguments as they were used for
the triangle above, it is possible to show the existence of a sequence of segments inside
X N P which connects y; and y,.

Summarizing (b) and (c) implies that {z € LY*NLJ : XNPNL, # 0} is a closed convex
set, i.e. a segment on the line L+ N L7. Hence, if X N PN L7 # (), the sum in (15) has
exactly one item different from 0, and its value is 1. Induction over j =1,...,k yields
(15) and the proof of (14) is complete.

O

If nothing can be assumed about the regularity of X or X¢, both X NL" and X°¢NL"
should be treated equally. In particular, self-complementary adjacencies can be a good choice.
On the other hand, our simulation studies in Section 4 illustrate that the self-complementary
14.1 and 14.2 adjacencies can induce a considerably large approximation error.

Assume now for example that X is a finite union of compact and convex sets X;, i =

1,...

,m, having smooth surfaces. If the X; are morphologically open with respect to the

segments of S(G.) then their union X = U™, X; is morphologically open with respect to these
segments, too. But X ¢ is not necessarily open with respect to the elements of S(G.). As a
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consequence, the pair (Fg,Fa6) of adjacency systems is the best choice for the measurement
of x"(X); i.e. x"(Fg MX) is ‘better’ than the approximation of x"(X) with respect to a
self-complementary adjacency system.

The following lemma states that, if both X and X°¢ are ‘regular enough’, their Euler
number is independent of the choice of the adjacency system.

Lemma 2. Let X be a compact set which is morphologically open and morphologically
closed with respect to all segments [z,y] with z,y € F°(C), ¢ # y, and (x,y) C C. Then
X"(F(G) N X) = x™(X) for all superpositions of admissible tessellations G.

Proof: Notice that the set of segments mentioned in this lemma is equivalent to S(Gpmaz)-
The proof follows from Theorem 5, since S(G) C S(Gmaz)- O

Figure 6: The microstructure of an open nickel foam. The XCT scan consists of 341 x320x511
pixels (simple cubic lattice, |u| = 10 pm).

4 Applications and a simulation study

As applications we consider the microstructures of three porous materials: a Fontainebleau
sandstone, an open nickel foam, and an autoclaved aerated concrete (AAC). Samples of these
microstructures are given as 3d images. For visualizations of the data see Figures 1, 6, and
7, respectively. The Fontainebleau sandstone is a standard example in papers on simulation
of fluid flow through porous media. (Notice that different data sets are used.) The three
microstructures are given as 3d images obtained by X-ray microtomography.
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Figure 7: The microstructure of an autoclaved aerated concrete (AAC). The XCT scan
consists of 320 x 330 x 330 pixels (simple cubic lattice, |u| = 31.3 um).

Each component of the considered microstructures can be modeled as a macroscopically
homogeneous random set = as described in [23]. More precisely, we assume that with prob-
ability one the random set =N W belongs to the convex ring (for every compact set W with
nonempty interior), and the distribution law of Z is invariant with respect to translations
x € R". Then the density of the Euler number (which is also called the connectivity density)
is given by
X" (FN(EneWw))

)= 1 20
xv(8) = lim Bid (20)
Here | - | denotes n-dimensional volume. The density of the Euler number can be estimated

from the set = observed in a compact window W using

n

1 n
wE) = ———— —1)FN 2ty (FR N E), 21
WG =z A ZWZ::( DI CAUES (21)

where Wy is the reduced window, Wy = W © C. Notice that #(L" N Wy) |C| ~ |[Wo.
Furthermore, we remark that the estimator xy(Z) may be biased but it is free of edge
effects.

Table 3 shows that experimental values for yy (Z) can depend highly on the chosen ad-
jacency. Differences in the measurement values are a consequence of the irregularity of the
microstructures. It is an obvious consequence of Theorem 5 and Lemma 2 that the con-
stituents of the microstructures are not morphologically regular with respect to the edges,
face diagonals, and space diagonals of C'.
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microstructure/ geometric model Fg Fig1 Fi4.0 Fs6 true value
Fontainebleau sandstone, Figure 1 -198 -273 -366 -369 unknown
open nickel foam, Figure 6 -105 -105 -106 -113 unknown
AAC, Figure 7 4.65 5.46 5.09 6.21 unknown
Boolean model, A = 500 mm 3 50 -46 -108 -76 107
Boolean model, A = 1000 mm™3 -308 -515 -679 -592 -188
Boolean model, A = 2000 mm 3 -861 -1079 -1420 -979 -970
Boolean model, A = 4000 mm 3 -365 -261 -579 240 -603

Table 3: Experimental data for the density yy of the Euler number with respect to the
adjacencies Fg, F14.1, Fi14.2, and Fog for some microstructures and realizations of Boolean
models. The data are given in mm~3. For the microstructures the true values are unknown.
For the Boolean models the true values (expectations) were determined from the model
parameters using Miles’ formulae.

In the first example we consider the Fontainebleau sandstone shown in Figure 1. The 3d
data are equivalent to that considered in [6]. In particular, for these data our algorithm leads
to large differences between the estimates and, hence, they are only of low value for practical
use. Obviously, the lateral resolution in the image is not sufficient for an accurate analysis
of this very ‘tiny’ microstructure, i.e. the regularity conditions formulated in Theorem 5 are
not fulfilled. In this case the image acquisition (i.e. the discretization) induced a certain loss
of information with considerable consequences for the measurement of the Euler density.

For the open foam shown in Figure 6 the differences between the estimates are small.
Since these differences are neglectable, one can believe that the foam is morphologically
regular with respect to segments of lengths close to the lattice spacings. Thus we can also
expect low bias of the estimates, i.e. the measurement values are assumed to be close to the
true Euler density xv (Z).

Additionally to the analysis of these sample data we performed a simulation study. To
compare theoretical (true) values of the density of the Euler number with estimates, we
consider particular Boolean models in the Euclidean space for which the theoretical values
can be computed from the model parameters using Miles’ formulae, see [21],[30, p. 495], or [28,
p. 217]. The Boolean models were simulated with balls of constant diameter d = 100 pm and
the densities A = 500mm~2, 1000 mm 2, 2000mm 3, and 4000 mm 2 of the corresponding
Poisson fields of germs. The corresponding realizations are observed on a simple cubic lattice
with uniform spacings |u| = 10 pm. The experimental data were computed form 32 images
(i.e. discretizations of simulated Boolean models) where each image was of size 512x 512 x 512
pixels (i.e. each sampling window was a cube of volume 134.2 mm?). The experimental values
given in Table 3 are mean values taken over 32 images (realizations). The standard deviation
of the means was less than 1.6 mm—2. This means that the distances of each experimental
value from the corresponding true value can be considered as the bias of estimation. Notice
that for large sampling windows, the estimation variance of the Euler-Poincaré characteristic
of Boolean models can also be computed by formulae given in [4].

This simulation study shows that there can be a considerable bias in the estimates caused
by discretization. It is perhaps surprising that a large bias can even occur in cases when the
primary grains are much larger than the lattice cells. Notice that in our example the balls’
diameter is d = 10|u|. Thus the bias is mainly due to tiny structure in the complement X°
when balls are very close together without overlapping.

Depending on the point density A, the minimal bias is obtained for different adjacencies:
Fs for A = 500mm—2,1000mm 3, Fas for A = 2000mm—2, and Fi4» for A = 4000 mm—3.
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That means, there is no clear advantage of one adjacency over the others and without further
knowledge about the geometry of =, an appropriate choice of F seems to be impossible.

In practical applications, the Euler number should be measured with respect to several
adjacencies. Then the differences between the results provides an impression of the bias of
the measurements. Of course, other adjacencies could be useful besides the four examples
suggested in Subsection 3.3. Admissible tessellations and their superpositions yield a wide
variety of adjacencies. A constructive method for finding complementary adjacencies has yet
to be found.

Acknowledgements

The authors thank the editors for valuable hints on a first draft of this paper. We are indebted
to Prof E. Schlegel for supplying the AAC specimen shown in Figure 7, S. Gondrom for
scanning the nickel foam and the AAC, R. Hilfer for providing the data of the Fontainebleau
sandstone, and H. Seibert for some ideas and helpful comments. The authors J.O and K.S.
are grateful to the Stiftung Rheinland-Pfalz fiir Innovation for financial support.

References

[1] Bieri, H., W. Nef (1984): ‘Alogorithms for the Euler Characteristic and Related Additive
Functionals of Digital Objects’. Comput. Vision Graphics Image Process. 28, pp. 166—
175

[2] Gruber, P. M. (1993): ‘Geometry of numbers’. In: Handbook of convex geometry, edited
by P. M. Gruber, J. M. Wills (North Holland, Amsterdam), pp. 739-763

[3] Hadwiger, H. (1957): Vorlesungen iber Inhalt, Oberfliche und Isoperimetrie (Springer,
Heidelberg)

[4] Heinrich, L. (2002) ‘Asymptodic normality of the Euler-Poincaré characteristic of
Boolean models in large sampling windows.” Report No. 247, Universitit Augsburg,
Institut fiir Mathematik.

[5] Herman, G. T. (1992): ‘Discrete Multidimensional Jordan Surfaces’. Graph. Mod. Image
Proc. 54, pp. 507-515

[6] Hilfer, R. (2000): ‘Local porosity theory and stochastic reconstruction’. In: Statistical
Physics and Spatial Statistics, edited by K. R. Mecke, D. Stoyan (Springer, Heidelberg),
pp- 203241

[7] Imiya, A., U. Eckhardt (1997): ‘The Euler Characteristic of Discrete Object’. Discrete
Geometry for Computer Imagery , pp. 163-174

[8] Jernot, J. P., P. Jouannot-Chesney, C. Lantuéjoul (2001): ‘Determination of the con-
nectivity number of a set using a tessellation’. Manuscript.

[9] Khalimsky, E., R. Kopperman, P. Meyer (1990): ‘Computer Graphics and connected
topologies on finite ordered sets’. In: Topology and its Application, vol. 36 (Elsevier
Science Publisher B.V), pp. 1-17

[10] Kong, T. Y., A. W. Roscoe (1985): ‘Continuous analogs of axiomatized digital surfaces’.
Comput. Vision Graphics Image Process. 29, pp. 60-86

21



[11] Kong, T.Y., A. Rosenfeld (1989): ‘Digital Topology: Introduction and Survey’. Comput.
Vision Graphics Image Process. 48, pp. 357-393

[12] Kong, T. Y., J. K. Udupa (1992): ‘A justification of a fast surface tracking algorithm’.
CVGIP: Graph. Models Image Process. 54, pp. 162-170

[13] Lang, C., J. Ohser, R. Hilfer (2001): ‘On the analysis of spatial binary images’. J.
Microsc. 202, pp. 1-12

[14] Lee, C., T. Poston, A. Rosenfeld (1991): ‘Winding and Euler Numbers for 2D and 3D
Digital Images’. CVGIP: Graph. Models Image Process. 53(6), pp. 522-537

[15] Lee, C., T. Poston, A. Rosenfeld (1993): ‘Holes and Genus of 2D and 3D Digital Images’.
CVGIP: Graph. Models Image Process. 55(1), pp. 2047

[16] Lohmann, G. (1998): Volumetric Image Analysis (Wiley-Teubner, Chichester, New
York)

[17] Matheron, G. (1975): Random Sets and Integral Geometry (Wiley, New York)

[18] Mecke, K. R. (1993): Integralgeometrie in der Statistischen Physik (Harri Deutsch,
Frankfurt a. M.)

[19] Mecke, K. R. (2000): ‘Additivity, convexity, and beyond: applications of Minkowski
functionals in statistical physics’. In: Statistical Physics and Spatial Statistics, edited
by K. R. Mecke, D. Stoyan (Springer, Heidelberg), pp. 111-184

ecke, J., R. G. Schneider, D. Stoyan, W. R. R. Wel : Stochastische Geometrie
20] Mecke, J., R. G. Schneider, D. S W. R. R. Weil (1990): Stochastische G ]
(Birkhuser, Basel, Boston, Berlin)

[21] Miles, R. (1976): ‘Estimating aggregate and overall characterictics from thick sections
by transmission microscopy’. J. Microscopy 107, pp. 227-233

[22] Nagel, W., J. Ohser, K. Pischang (2000): ‘An integral-geometric approach for the Euler-
Poincaré characteristic of spatial images’. J. Microsc. 189, pp. 5462

[23] Ohser, J., F. Miicklich (2000): Statistical Analysis of Materials Structures (J Wiley &
Sons, Chichester, New York)

[24] Ohser, J., W. Nagel (1996): ‘The estimation of the Euler-Poincaré characteristic from
observations on parallel sections’. J. Microsc. 184, pp. 117-126

[25] Rosenfeld, A., A. Kak (1979): Digital Picture Processing (Academic Press, New York)

[26] Rosenfeld, A., T. Y. Kong, A. Y. Wu (1991): ‘Digital surfaces’. CVGIP: Graph. Models
Image Process. 53, pp. 305-312

[27] Schneider, R. (1993): Convex Bodies: The Brunn-Minkowski Theory, vol. 44 of Ency-
clopedia of Mathematics and Its Application (Cambridge University Press, Cambridge)

[28] Schneider, R., W. Weil (2000): Stochastische Geometrie (Teubner, Stuttgart)

[29] Serra, J. (1969): Introduction d la Morphologie Mathématique, (Cahiers du Centre de
Morphologie Mathématique, Booklet No. 3, E.N.S.M.P., Paris)

[30] Serra, J. (1982): Image Analysis and Mathematical Morphology, vol. 1 (Academic Press,
London)

22



[31] Voss, K. (1993): Discrete Images, Objects, and Functions in Z™ (Springer-Verlag, New
York)

[32] Webster, R. J. (1994): Convezity (Oxford University Press, New York)

[33] Weil, W. (2000): ‘Mixed measures and homogeneous Boolean models’. In: Statistical
Physics and Spatial Statistics, edited by K. R. Mecke, D. Stoyan (Springer, Heidelberg),
pp- 95-110

23



Bisher erschienene Berichte
des Fraunhofer ITWM

Die PDF-Files der folgenden Berichte
finden Sie unter:
www.itwm.fhg.de/zentral/berichte.html

1. D. Hietel, K. Steiner, J. Struckmeier

A Finite - Volume Particle Method for
Compressible Flows

We derive a new class of particle methods for conserva-
tion laws, which are based on numerical flux functions to
model the interactions between moving particles. The
derivation is similar to that of classical Finite-Volume
methods; except that the fixed grid structure in the Fi-
nite-Volume method is substituted by so-called mass
packets of particles. We give some numerical results on a
shock wave solution for Burgers equation as well as the
well-known one-dimensional shock tube problem.

(19°S., 1998)

2. M. Feldmann, S. Seibold

Damage Diagnosis of Rotors: Application
of Hilbert Transform and Multi-Hypothesis
Testing

In this paper, a combined approach to damage diagnosis
of rotors is proposed. The intention is to employ signal-
based as well as model-based procedures for an im-
proved detection of size and location of the damage. In a
first step, Hilbert transform signal processing techniques
allow for a computation of the signal envelope and the
instantaneous frequency, so that various types of non-
linearities due to a damage may be identified and classi-
fied based on measured response data. In a second step,
a multi-hypothesis bank of Kalman Filters is employed for
the detection of the size and location of the damage
based on the information of the type of damage provid-
ed by the results of the Hilbert transform.

Keywords:

Hilbert transform, damage diagnosis, Kalman filtering,
non-linear dynamics

(23'S., 1998)

3. Y. Ben-Haim, S. Seibold

Robust Reliability of Diagnostic Mullti-
Hypothesis Algorithms: Application to
Rotating Machinery

Damage diagnosis based on a bank of Kalman filters,
each one conditioned on a specific hypothesized system
condition, is a well recognized and powerful diagnostic
tool. This multi-hypothesis approach can be applied to a
wide range of damage conditions. In this paper, we will
focus on the diagnosis of cracks in rotating machinery.
The question we address is: how to optimize the multi-
hypothesis algorithm with respect to the uncertainty of
the spatial form and location of cracks and their resulting
dynamic effects. First, we formulate a measure of the
reliability of the diagnostic algorithm, and then we dis-
cuss modifications of the diagnostic algorithm for the
maximization of the reliability. The reliability of a diagnos-
tic algorithm is measured by the amount of uncertainty
consistent with no-failure of the diagnosis. Uncertainty is
quantitatively represented with convex models.
Keywords:

Robust reliability, convex models, Kalman filtering, multi-
hypothesis diagnosis, rotating machinery, crack diagnosis
(24 °S., 1998)

4. FE-Th. Lentes, N. Siedow

Three-dimensional Radiative Heat Transfer
in Glass Cooling Processes

For the numerical simulation of 3D radiative heat transfer
in glasses and glass melts, practically applicable mathe-
matical methods are needed to handle such problems
optimal using workstation class computers. Since the
exact solution would require super-computer capabilities
we concentrate on approximate solutions with a high
degree of accuracy. The following approaches are stud-
ied: 3D diffusion approximations and 3D ray-tracing
methods.

(23S., 1998)

5. A Klar, R. Wegener

A hierarchy of models for multilane
vehicular traffic
Part I: Modeling

In the present paper multilane models for vehicular traffic
are considered. A microscopic multilane model based on
reaction thresholds is developed. Based on this model an
Enskog like kinetic model is developed. In particular, care
is taken to incorporate the correlations between the vehi-
cles. From the kinetic model a fluid dynamic model is
derived. The macroscopic coefficients are deduced from
the underlying kinetic model. Numerical simulations are
presented for all three levels of description in [10]. More-
over, a comparison of the results is given there.

(23'S., 1998)

Part Il: Numerical and stochastic
investigations

In this paper the work presented in [6] is continued. The
present paper contains detailed numerical investigations
of the models developed there. A numerical method to

treat the kinetic equations obtained in [6] are presented
and results of the simulations are shown. Moreover, the
stochastic correlation model used in [6] is described and
investigated in more detail.

(17 S., 1998)

6. A. Klar, N. Siedow

Boundary Layers and Domain Decomposi-
tion for Radiative Heat Transfer and Diffu-
sion Equations: Applications to Glass Manu-
facturing Processes

In this paper domain decomposition methods for radia-
tive transfer problems including conductive heat transfer
are treated. The paper focuses on semi-transparent ma-
terials, like glass, and the associated conditions at the
interface between the materials. Using asymptotic analy-
sis we derive conditions for the coupling of the radiative
transfer equations and a diffusion approximation. Several
test cases are treated and a problem appearing in glass
manufacturing processes is computed. The results clearly
show the advantages of a domain decomposition ap-
proach. Accuracy equivalent to the solution of the global
radiative transfer solution is achieved, whereas computa-
tion time is strongly reduced.

(24 S., 1998)

7. 1. Choquet

Heterogeneous catalysis modelling and
numerical simulation in rarified gas flows
Part I: Coverage locally at equilibrium

A new approach is proposed to model and simulate nu-
merically heterogeneous catalysis in rarefied gas flows. It
is developed to satisfy all together the following points:
1) describe the gas phase at the microscopic scale, as
required in rarefied flows,

2) describe the wall at the macroscopic scale, to avoid
prohibitive computational costs and consider not only
crystalline but also amorphous surfaces,

3) reproduce on average macroscopic laws correlated
with experimental results and

4) derive analytic models in a systematic and exact way.
The problem is stated in the general framework of a non
static flow in the vicinity of a catalytic and non porous
surface (without aging). It is shown that the exact and
systematic resolution method based on the Laplace trans-
form, introduced previously by the author to model colli-
sions in the gas phase, can be extended to the present
problem. The proposed approach is applied to the mod-
elling of the Eley-Rideal and Langmuir-Hinshelwood re-
combinations, assuming that the coverage is locally at
equilibrium. The models are developed considering one
atomic species and extended to the general case of sev-
eral atomic species. Numerical calculations show that the
models derived in this way reproduce with accuracy be-
haviors observed experimentally.

(24's., 1998)

8. J. Ohser, B. Steinbach, C. Lang
Efficient Texture Analysis of Binary Images

A new method of determining some characteristics of
binary images is proposed based on a special linear filter-
ing. This technique enables the estimation of the area
fraction, the specific line length, and the specific integral
of curvature. Furthermore, the specific length of the total
projection is obtained, which gives detailed information
about the texture of the image. The influence of lateral
and directional resolution depending on the size of the
applied filter mask is discussed in detail. The technique
includes a method of increasing directional resolution for
texture analysis while keeping lateral resolution as high
as possible.

(17 °S., 1998)

9. J. Orlik

Homogenization for viscoelasticity of the
integral type with aging and shrinkage

A multi-phase composite with periodic distributed inclu-
sions with a smooth boundary is considered in this con-
tribution. The composite component materials are sup-
posed to be linear viscoelastic and aging (of the
non-convolution integral type, for which the Laplace
transform with respect to time is not effectively applica-
ble) and are subjected to isotropic shrinkage. The free
shrinkage deformation can be considered as a fictitious
temperature deformation in the behavior law. The proce-
dure presented in this paper proposes a way to deter-
mine average (effective homogenized) viscoelastic and
shrinkage (temperature) composite properties and the
homogenized stress-field from known properties of the



components. This is done by the extension of the asymp-
totic homogenization technique known for pure elastic
non-homogeneous bodies to the non-homogeneous
thermo-viscoelasticity of the integral non-convolution
type. Up to now, the homogenization theory has not
covered viscoelasticity of the integral type.
Sanchez-Palencia (1980), Francfort & Suquet (1987) (see
[2], [9]) have considered homogenization for viscoelastici-
ty of the differential form and only up to the first deriva-
tive order. The integral-modeled viscoelasticity is more
general then the differential one and includes almost all
known differential models. The homogenization proce-
dure is based on the construction of an asymptotic solu-
tion with respect to a period of the composite structure.
This reduces the original problem to some auxiliary
boundary value problems of elasticity and viscoelasticity
on the unit periodic cell, of the same type as the original
non-homogeneous problem. The existence and unique-
ness results for such problems were obtained for kernels
satisfying some constrain conditions. This is done by the
extension of the Volterra integral operator theory to the
Volterra operators with respect to the time, whose 1 ker-
nels are space linear operators for any fixed time vari-
ables. Some ideas of such approach were proposed in
[11] and [12], where the Volterra operators with kernels
depending additionally on parameter were considered.
This manuscript delivers results of the same nature for
the case of the space-operator kernels.

(20°S., 1998)

10. J. Mohring
Helmholtz Resonators with Large Aperture

The lowest resonant frequency of a cavity resonator is
usually approximated by the classical Helmholtz formula.
However, if the opening is rather large and the front wall
is narrow this formula is no longer valid. Here we present
a correction which is of third order in the ratio of the di-
ameters of aperture and cavity. In addition to the high
accuracy it allows to estimate the damping due to radia-
tion. The result is found by applying the method of
matched asymptotic expansions. The correction contains
form factors describing the shapes of opening and cavity.
They are computed for a number of standard geometries.
Results are compared with numerical computations.
(21°S., 1998)

11. H. W. Hamacher, A. Schobel
On Center Cycles in Grid Graphs

Finding "good" cycles in graphs is a problem of great
interest in graph theory as well as in locational analysis.
We show that the center and median problems are NP
hard in general graphs. This result holds both for the vari-
able cardinality case (i.e. all cycles of the graph are con-
sidered) and the fixed cardinality case (i.e. only cycles
with a given cardinality p are feasible). Hence it is of in-
terest to investigate special cases where the problem is
solvable in polynomial time.

In grid graphs, the variable cardinality case is, for in-
stance, trivially solvable if the shape of the cycle can be
chosen freely.

If the shape is fixed to be a rectangle one can analyze
rectangles in grid graphs with, in sequence, fixed dimen-
sion, fixed cardinality, and variable cardinality. In all cases
a complete characterization of the optimal cycles and
closed form expressions of the optimal objective values
are given, yielding polynomial time algorithms for all cas-
es of center rectangle problems.

Finally, it is shown that center cycles can be chosen as

rectangles for small cardinalities such that the center cy-
cle problem in grid graphs is in these cases completely
solved.

(15°S., 1998)

12. H. W. Hamacher, K.-H. Kufer

Inverse radiation therapy planning -
a multiple objective optimisation approach

For some decades radiation therapy has been proved
successful in cancer treatment. It is the major task of clin-
ical radiation treatment planning to realize on the one
hand a high level dose of radiation in the cancer tissue in
order to obtain maximum tumor control. On the other
hand it is obvious that it is absolutely necessary to keep
in the tissue outside the tumor, particularly in organs at
risk, the unavoidable radiation as low as possible.

No doubt, these two objectives of treatment planning -
high level dose in the tumor, low radiation outside the
tumor - have a basically contradictory nature. Therefore,
it is no surprise that inverse mathematical models with
dose distribution bounds tend to be infeasible in most
cases. Thus, there is need for approximations compromis-
ing between overdosing the organs at risk and underdos-
ing the target volume.

Differing from the currently used time consuming itera-
tive approach, which measures deviation from an ideal
(non-achievable) treatment plan using recursively trial-
and-error weights for the organs of interest, we go a
new way trying to avoid a priori weight choices and con-
sider the treatment planning problem as a multiple ob-
jective linear programming problem: with each organ of
interest, target tissue as well as organs at risk, we associ-
ate an objective function measuring the maximal devia-
tion from the prescribed doses.

We build up a data base of relatively few efficient solu-
tions representing and approximating the variety of Pare-
to solutions of the multiple objective linear programming
problem. This data base can be easily scanned by physi-
cians looking for an adequate treatment plan with the
aid of an appropriate online tool.

(14 's., 1999)

13. C. Lang, J. Ohser, R. Hilfer
On the Analysis of Spatial Binary Images

This paper deals with the characterization of microscopi-
cally heterogeneous, but macroscopically homogeneous
spatial structures. A new method is presented which is
strictly based on integral-geometric formulae such as
Crofton’s intersection formulae and Hadwiger’s recursive
definition of the Euler number. The corresponding algo-
rithms have clear advantages over other techniques. As
an example of application we consider the analysis of
spatial digital images produced by means of Computer
Assisted Tomography.

(20°S., 1999)

14. M. Junk

On the Construction of Discrete Equilibrium
Distributions for Kinetic Schemes

A general approach to the construction of discrete equi-
librium distributions is presented. Such distribution func-
tions can be used to set up Kinetic Schemes as well as
Lattice Boltzmann methods. The general principles are
also applied to the construction of Chapman Enskog dis-
tributions which are used in Kinetic Schemes for com-

pressible Navier-Stokes equations.
(24's., 1999)

15. M. Junk, S. V. Raghurame Rao

A new discrete velocity method for Navier-
Stokes equations

The relation between the Lattice Boltzmann Method,
which has recently become popular, and the Kinetic
Schemes, which are routinely used in Computational Flu-
id Dynamics, is explored. A new discrete velocity model
for the numerical solution of Navier-Stokes equations for
incompressible fluid flow is presented by combining both
the approaches. The new scheme can be interpreted as a
pseudo-compressibility method and, for a particular
choice of parameters, this interpretation carries over to
the Lattice Boltzmann Method.

(20°S., 1999)

16. H. Neunzert
Mathematics as a Key to Key Technologies

The main part of this paper will consist of examples, how
mathematics really helps to solve industrial problems;
these examples are taken from our Institute for Industrial
Mathematics, from research in the Technomathematics
group at my university, but also from ECMI groups and a
company called TecMath, which originated 10 years ago
from my university group and has already a very success-
ful history.

(39 S. (vier PDF-Files), 1999)

17. J. Ohser, K. Sandau

Considerations about the Estimation of the
Size Distribution in Wicksell’s Corpuscle
Problem

Wicksell's corpuscle problem deals with the estimation of
the size distribution of a population of particles, all hav-
ing the same shape, using a lower dimensional sampling
probe. This problem was originary formulated for particle
systems occurring in life sciences but its solution is of
actual and increasing interest in materials science. From a
mathematical point of view, Wicksell's problem is an in-
verse problem where the interesting size distribution is
the unknown part of a Volterra equation. The problem is
often regarded ill-posed, because the structure of the
integrand implies unstable numerical solutions. The accu-
racy of the numerical solutions is considered here using
the condition number, which allows to compare different
numerical methods with different (equidistant) class sizes
and which indicates, as one result, that a finite section
thickness of the probe reduces the numerical problems.
Furthermore, the relative error of estimation is computed
which can be split into two parts. One part consists of
the relative discretization error that increases for increas-
ing class size, and the second part is related to the rela-
tive statistical error which increases with decreasing class
size. For both parts, upper bounds can be given and the
sum of them indicates an optimal class width depending
on some specific constants.

(18'S., 1999)



18. E. Carrizosa, H. W. Hamacher, R. Klein,
S. Nickel

Solving nonconvex planar location problems
by finite dominating sets

It is well-known that some of the classical location prob-
lems with polyhedral gauges can be solved in polynomial
time by finding a finite dominating set, i. e. a finite set of
candidates guaranteed to contain at least one optimal
location.

In this paper it is first established that this result holds for
a much larger class of problems than currently considered
in the literature. The model for which this result can be
proven includes, for instance, location problems with at-
traction and repulsion, and location-allocation problems.
Next, it is shown that the approximation of general gaug-
es by polyhedral ones in the objective function of our
general model can be analyzed with regard to the subse-
quent error in the optimal objective value. For the approx-
imation problem two different approaches are described,
the sandwich procedure and the greedy algorithm. Both
of these approaches lead - for fixed epsilon - to polyno-
mial approximation algorithms with accuracy epsilon for
solving the general model considered in this paper.
Keywords:

Continuous Location, Polyhedral Gauges, Finite Dominat-
ing Sets, Approximation, Sandwich Algorithm, Greedy
Algorithm

(19 °S., 2000)

19. A. Becker
A Review on Image Distortion Measures

Within this paper we review image distortion measures.
A distortion measure is a criterion that assigns a “quality
number” to an image. We distinguish between mathe-
matical distortion measures and those distortion mea-
sures in-cooperating a priori knowledge about the imag-
ing devices ( e. g. satellite images), image processing al-
gorithms or the human physiology. We will consider rep-
resentative examples of different kinds of distortion
measures and are going to discuss them.

Keywords:

Distortion measure, human visual system
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20. H. W. Hamacher, M. Labbé, S. Nickel,
T. Sonneborn

Polyhedral Properties of the Uncapacitated
Multiple Allocation Hub Location Problem

We examine the feasibility polyhedron of the uncapaci-
tated hub location problem (UHL) with multiple alloca-
tion, which has applications in the fields of air passenger
and cargo transportation, telecommunication and postal
delivery services. In particular we determine the dimen-
sion and derive some classes of facets of this polyhedron.
We develop some general rules about lifting facets from
the uncapacitated facility location (UFL) for UHL and pro-
jecting facets from UHL to UFL. By applying these rules
we get a new class of facets for UHL which dominates
the inequalities in the original formulation. Thus we get a
new formulation of UHL whose constraints are all facet-
defining. We show its superior computational perfor-
mance by benchmarking it on a well known data set.
Keywords:

integer programming, hub location, facility location, valid
inequalities, facets, branch and cut

(21S., 2000)

21. H. W. Hamacher, A. Schoébel

Design of Zone Tariff Systems in Public
Transportation

Given a public transportation system represented by its
stops and direct connections between stops, we consider
two problems dealing with the prices for the customers:
The fare problem in which subsets of stops are already
aggregated to zones and “good” tariffs have to be
found in the existing zone system. Closed form solutions
for the fare problem are presented for three objective
functions. In the zone problem the design of the zones is
part of the problem. This problem is NP hard and we
therefore propose three heuristics which prove to be very
successful in the redesign of one of Germany’s transpor-
tation systems.

(30S.,2001)

22. D. Hietel, M. Junk, R. Keck, D. Teleaga:

The Finite-Volume-Particle Method for
Conservation Laws

In the Finite-Volume-Particle Method (FVPM), the weak
formulation of a hyperbolic conservation law is dis-
cretized by restricting it to a discrete set of test functions.
In contrast to the usual Finite-Volume approach, the test
functions are not taken as characteristic functions of the
control volumes in a spatial grid, but are chosen from a
partition of unity with smooth and overlapping partition
functions (the particles), which can even move along pre-
scribed velocity fields. The information exchange be-
tween particles is based on standard numerical flux func-
tions. Geometrical information, similar to the surface
area of the cell faces in the Finite-Volume Method and
the corresponding normal directions are given as integral
quantities of the partition functions.

After a brief derivation of the Finite-Volume-Particle
Method, this work focuses on the role of the geometric
coefficients in the scheme.

(16 S.,2001)

23. T. Bender, H. Hennes, J. Kalcsics,
M. T. Melo, S. Nickel

Location Software and Interface with GIS
and Supply Chain Management

The objective of this paper is to bridge the gap between
location theory and practice. To meet this objective focus
is given to the development of software capable of ad-
dressing the different needs of a wide group of users.
There is a very active community on location theory en-
compassing many research fields such as operations re-
search, computer science, mathematics, engineering,
geography, economics and marketing. As a result, people
working on facility location problems have a very diverse
background and also different needs regarding the soft-
ware to solve these problems. For those interested in
non-commercial applications (e. g. students and re-
searchers), the library of location algorithms (LoLA can be
of considerable assistance. LoLA contains a collection of
efficient algorithms for solving planar, network and dis-
crete facility location problems. In this paper, a detailed
description of the functionality of LoLA is presented. In
the fields of geography and marketing, for instance, solv-
ing facility location problems requires using large
amounts of demographic data. Hence, members of these
groups (e. g. urban planners and sales managers) often
work with geographical information too s. To address the
specific needs of these users, LoLA was inked to a geo-

graphical information system (GIS) and the details of the
combined functionality are described in the paper. Finally,
there is a wide group of practitioners who need to solve
large problems and require special purpose software with
a good data interface. Many of such users can be found,
for example, in the area of supply chain management
(SCM). Logistics activities involved in strategic SCM in-
clude, among others, facility location planning. In this
paper, the development of a commercial location soft-
ware tool is also described. The too is embedded in the
Advanced Planner and Optimizer SCM software devel-
oped by SAP AG, Walldorf, Germany. The paper ends
with some conclusions and an outlook to future activi-
ties.

Keywords:

facility location, software development, geographical
information systems, supply chain management.
(48s.,2001)

24. H. W. Hamacher, S. A. Tjandra

Mathematical Modelling of Evacuation
Problems: A State of Art

This paper details models and algorithms which can be
applied to evacuation problems. While it concentrates on
building evacuation many of the results are applicable
also to regional evacuation. All models consider the time
as main parameter, where the travel time between com-
ponents of the building is part of the input and the over-
all evacuation time is the output. The paper distinguishes
between macroscopic and microscopic evacuation mod-
els both of which are able to capture the evacuees’
movement over time.

Macroscopic models are mainly used to produce good
lower bounds for the evacuation time and do not consid-
er any individual behavior during the emergency situa-
tion. These bounds can be used to analyze existing build-
ings or help in the design phase of planning a building.
Macroscopic approaches which are based on dynamic
network flow models (minimum cost dynamic flow, maxi-
mum dynamic flow, universal maximum flow, quickest
path and quickest flow) are described. A special feature
of the presented approach is the fact, that travel times of
evacuees are not restricted to be constant, but may be
density dependent. Using multicriteria optimization prior-
ity regions and blockage due to fire or smoke may be
considered. It is shown how the modelling can be done
using time parameter either as discrete or continuous
parameter.

Microscopic models are able to model the individual
evacuee’s characteristics and the interaction among evac-
uees which influence their movement. Due to the corre-
sponding huge amount of data one uses simulation ap-
proaches. Some probabilistic laws for individual evacuee’s
movement are presented. Moreover ideas to model the
evacuee’s movement using cellular automata (CA) and
resulting software are presented.

In this paper we will focus on macroscopic models and
only summarize some of the results of the microscopic
approach. While most of the results are applicable to
general evacuation situations, we concentrate on build-
ing evacuation.

(44's.,2001)



25. J. Kuhnert, S. Tiwari
Grid free method for solving the Poisson
equation

A Grid free method for solving the Poisson equation is
presented. This is an iterative method. The method is
based on the weighted least squares approximation in
which the Poisson equation is enforced to be satisfied in
every iterations. The boundary conditions can also be
enforced in the iteration process. This is a local approxi-
mation procedure. The Dirichlet, Neumann and mixed
boundary value problems on a unit square are presented
and the analytical solutions are compared with the exact
solutions. Both solutions matched perfectly.

Keywords:

Poisson equation, Least squares method,

Grid free method
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26. T. Gotz, H. Rave, D. Reinel-Bitzer,
K. Steiner, H. Tiemeier
Simulation of the fiber spinning process

To simulate the influence of process parameters to the
melt spinning process a fiber model is used and coupled
with CFD calculations of the quench air flow. In the fiber
model energy, momentum and mass balance are solved
for the polymer mass flow. To calculate the quench air
the Lattice Boltzmann method is used. Simulations and
experiments for different process parameters and hole
configurations are compared and show a good agree-
ment.

Keywords:

Melt spinning, fiber model, Lattice Boltzmann, CFD
(19°S.,2001)

27. A. Zemitis
On interaction of a liquid film with an
obstacle

In this paper mathematical models for liquid films gener-
ated by impinging jets are discussed. Attention is stressed
to the interaction of the liquid film with some obstacle.
S. G. Taylor [Proc. R. Soc. London Ser. A 253, 313 (1959)]
found that the liquid film generated by impinging jets is
very sensitive to properties of the wire which was used as
an obstacle. The aim of this presentation is to propose a
modification of the Taylor’s model, which allows to simu-
late the film shape in cases, when the angle between jets
is different from 180°. Numerical results obtained by dis-
cussed models give two different shapes of the liquid
film similar as in Taylors experiments. These two shapes
depend on the regime: either droplets are produced close
to the obstacle or not. The difference between two re-
gimes becomes larger if the angle between jets decreas-
es. Existence of such two regimes can be very essential
for some applications of impinging jets, if the generated
liquid film can have a contact with obstacles.

Keywords:

impinging jets, liquid film, models, numerical solution,
shape

(22 °S.,2001)

28. . Ginzburg, K. Steiner

Free surface lattice-Boltzmann method to
model the filling of expanding cavities by
Bingham Fluids

The filling process of viscoplastic metal alloys and plastics
in expanding cavities is modelled using the lattice Boltz-
mann method in two and three dimensions. These mod-
els combine the regularized Bingham model for visco-
plastic with a free-interface algorithm. The latter is based
on a modified immiscible lattice Boltzmann model in
which one species is the fluid and the other one is con-
sidered as vacuum. The boundary conditions at the
curved liquid-vacuum interface are met without any geo-
metrical front reconstruction from a first-order Chapman-
Enskog expansion. The numerical results obtained with
these models are found in good agreement with avail-
able theoretical and numerical analysis.

Keywords:

Generalized LBE, free-surface phenomena, interface
boundary conditions, filling processes, Bingham visco-
plastic model, regularized models
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29. H. Neunzert

»Denn nichts ist fiir den Menschen als Men-
schen etwas wert, was er nicht mit Leiden-
schaft tun kann«

Vortrag anlasslich der Verleihung des Akademie-
preises des Landes Rheinland-Pfalz am
21.11.2001

Was macht einen guten Hochschullehrer aus? Auf diese
Frage gibt es sicher viele verschiedene, fachbezogene
Antworten, aber auch ein paar allgemeine Gesichtspunk-
te: es bedarf der »Leidenschaft« fur die Forschung (Max
Weber), aus der dann auch die Begeisterung fur die Leh-
re erwachst. Forschung und Lehre gehdren zusammen,
um die Wissenschaft als lebendiges Tun vermitteln zu
konnen. Der Vortrag gibt Beispiele dafur, wie in ange-
wandter Mathematik Forschungsaufgaben aus prakti-
schen Alltagsproblemstellungen erwachsen, die in die
Lehre auf verschiedenen Stufen (Gymnasium bis Gradu-
iertenkolleg) einflieBen; er leitet damit auch zu einem
aktuellen Forschungsgebiet, der Mehrskalenanalyse mit
ihren vielfaltigen Anwendungen in Bildverarbeitung,
Materialentwicklung und Strémungsmechanik tber, was
aber nur kurz gestreift wird. Mathematik erscheint hier
als eine moderne Schlusseltechnologie, die aber auch
enge Beziehungen zu den Geistes- und Sozialwissen-
schaften hat.

Keywords:

Lehre, Forschung, angewandte Mathematik, Mehrskalen-
analyse, Stromungsmechanik

(185S.,2001)

30. J. Kuhnert, S. Tiwari

Finite pointset method based on the projec-
tion method for simulations of the incom-
pressible Navier-Stokes equations

A Lagrangian particle scheme is applied to the projection
method for the incompressible Navier-Stokes equations.
The approximation of spatial derivatives is obtained by
the weighted least squares method. The pressure Poisson
equation is solved by a local iterative procedure with the
help of the least squares method. Numerical tests are
performed for two dimensional cases. The Couette flow,
Poiseuelle flow, decaying shear flow and the driven cavity

flow are presented. The numerical solutions are obtained
for stationary as well as instationary cases and are com-
pared with the analytical solutions for channel flows.
Finally, the driven cavity in a unit square is considered
and the stationary solution obtained from this scheme is
compared with that from the finite element method.
Keywords:

Incompressible Navier-Stokes equations, Meshfree
method, Projection method, Particle scheme, Least
squares approximation

AMS subject classification:
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31. R. Korn, M. Krekel
Optimal Portfolios with Fixed Consumption
or Income Streams

We consider some portfolio optimisation problems where
either the investor has a desire for an a priori specified
consumption stream or/and follows a deterministic pay in
scheme while also trying to maximize expected utility
from final wealth. We derive explicit closed form solu-
tions for continuous and discrete monetary streams. The
mathematical method used is classical stochastic control
theory.

Keywords:

Portfolio optimisation, stochastic control, HJB equation,
discretisation of control problems.
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32. M. Krekel
Optimal portfolios with a loan dependent
credit spread

If an investor borrows money he generally has to pay
higher interest rates than he would have received, if he
had put his funds on a savings account. The classical
model of continuous time portfolio optimisation ignores
this effect. Since there is obviously a connection between
the default probability and the total percentage of
wealth, which the investor is in debt, we study portfolio
optimisation with a control dependent interest rate. As-
suming a logarithmic and a power utility function, re-
spectively, we prove explicit formulae of the optimal con-
trol.

Keywords:

Portfolio optimisation, stochastic control, HJB equation,
credit spread, log utility, power utility, non-linear wealth
dynamics
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33.J. Ohser, W. Nagel, K. Schladitz
The Euler number of discretized sets - on the
choice of adjacency in homogeneous lattices

Two approaches for determining the Euler-Poincaré char-
acteristic of a set observed on lattice points are consid-
ered in the context of image analysis { the integral geo-
metric and the polyhedral approach. Information about
the set is assumed to be available on lattice points only.
In order to retain properties of the Euler number and to
provide a good approximation of the true Euler number
of the original set in the Euclidean space, the appropriate
choice of adjacency in the lattice for the set and its back-
ground is crucial. Adjacencies are defined using tessella-
tions of the whole space into polyhedrons. InR 3, two
new 14 adjacencies are introduced additionally to the



well known 6 and 26 adjacencies. For the Euler number
of a set and its complement, a consistency relation holds.
Each of the pairs of adjacencies (14:1; 14:1), (14:2; 14:2),
(6; 26), and (26; 6) is shown to be a pair of complemen-
tary adjacencies with respect to this relation. That is, the
approximations of the Euler numbers are consistent if the
set and its background (complement) are equipped with
this pair of adjacencies. Furthermore, sufficient condi-
tions for the correctness of the approximations of the
Euler number are given. The analysis of selected micro-
structures and a simulation study illustrate how the esti-
mated Euler number depends on the chosen adjacency. It
also shows that there is not a uniquely best pair of adja-
cencies with respect to the estimation of the Euler num-
ber of a set in Euclidean space.

Keywords: image analysis, Euler number, neighborhod
relationships, cuboidal lattice

(32°S.,2002)
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