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Parameter influence on the zeros of network determinants

Sven Feldmann ¢, Patrick Lang?, Dieter Priitzel-Wolters® !

?Department of Mathematics, University of Kaiserslautern
bInstitute for Industrial Mathematics, ITWM, Kaiserslautern

Abstract: To a network AN(g) with determinant A(s;q) depending on a parameter
vector ¢ € R? via identification of some of its vertices, a network N (q) is assigned. The
paper deals with procedures to find ./V(q), such that its determinant ﬁ(s;q) admits a
factorization in the determinants of appropriate subnetworks, and with the estimation
of the deviation of the zeros of A from the zeros of A. To solve the estimation problem
state space methods are applied.

Keywords: Networks, Equicofactor matrix polynomials, Realization theory, Matrix per-
turbation theory

1 Introduction

We consider determinants, which are generated through weighted undirected graphs con-
sisting of the vertices V' and the edges E:

Vie={l,...,n+1}, E:={(5) - (im jm)} S V>

The weight of every edge (i, ji) is given by a scalar polynomial. Let w : E — R[s] be the
corresponding weight function, which assigns every edge its polynomial weight. Then the
triple (V, E,w) =: N is said to be a network. In the case where all weights are constants,
w is said to be a length function, w(e) the length of the edge e € E, and N turns out to
be a network in the sense of [10]. The network N is parametrized via the coefficients of
the polynomials py := w(i, jx) collected in the vector g:

g=lq,. g €RE, pp(s) =[1,s,...,5%]q, g € R%T

For the assignment of a scalar polynomial A(s; ¢) to N'(¢), a matrix polynomial P(.;q) €
R DX+ [4] is generated according to

P(s;q) :== Adiag(pi(s), ... ,pm(s)) AT, (1)
where A € R®TD>*™ denotes the all vertex matriz of N'. Now we set

A(s;q) := |L(s;9)| := det L(s;q), L(s;q) := P11 (s;¢),

!This work has been supported by research project Realisierungs- und Approzimationstheorie fiir
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and call A the determinant of N'. Here P{"Hi} is obtained by deleting row i and column
j of P. The independence of A on 7,57 € V turns out to be a consequence of the

equicofactor property of P, which is an implication of the equivalence of all elements of
{PU})i,j eV}

The paper focuses on the influence of ¢ € R? on the zeros of A(.;¢) taking into account
the structure of N'(q).

In the sequel we denote this zero set by o(A(.;¢)). The elements of o(A(.;q)) are called
the finite eigenvalues of L(.;q). We further assume A(.;q) #Z 0 for at least one ¢ € Re.
Then L is said to be nonsingular, and it is well known, for example see [[8], chapter
8], that the eigenvalues of L determine the dynamics of the linear differential algebraic
equation (DAE) system

L(d/dt)v(t) = [(t), (2)
where f is a C"-valued function of the real variable t. Due to equation (1) the coefficients
of L are symmetric matrices. Vice versa, for every matrix polynomial Q € R"*"[s]
with symmetrical coefficients there exists a matrix polynomial P satisfying (1), such
that Q = PirtHn+1} Hence, the question for the parameter influence on the finite
eigenvalues of a matrix polynomial with symmetrical coefficients can be transformed into
the corresponding question for the zeros of a network determinant.

In the case where @ is quadratic, and its coefficients are symmetric Z-matrices with
positive main diagonal, the resulting network N is interpretable as an electrical circuit,
and the independence of A on 7,5 € V reflects the arbitrariness of defining the zero
potential. A large class of electrical circuits admits the description through DAE systems
of the form (2). Therefore, our results are convenient to discuss the influence of electrical
parameters on the oscillation behavior of electrical circuits. An excellent source for the
theory of Z-matrices can be found in [[9], chapter 2.5].

Our approach to deal with the above stated influence problem consists in the identification
of appropriate vertices of N with the intention to obtain an especially structured network
/\/ the determinant A of _which falls into a product A A2 of determinants of certain
subnetworks Ay. Then o(A) = o(A;) U (A,), and hence the dependency of o(A) on g
is given by the according dependencies of o(A;) and o(Ay), which are much more easier
to discuss as for o(A). Because N does not deviate very strongly from A/, it can be
expected, that 0(3) does not deviate very strongly from o(A). Via linearizations of A
and A by the Theorem of Bauer - Fike [[2], Theorem 7.2.2, p.342] an estimation of this
deviation is obtained.

With respect to this program, we examine factorization properties of A, which are pro-
vided by the network structure. We say that N is structured, if it is generated by
concatenation of similar or dual networks, or it is symmetric or cyclic. Of course com-
binations of such structures are allowed, too. For example, let N be given according
to

— N1 = (k2) = Ny = (k3) = N3 = (Ka) = Ny = (k1)

i (51)
N (r2) N, (154) ) (3)




Then N is structured in our sense, namely N can be seen as a connection of the subnet-
work N5 with the cyclical network N : (k1) — N7 — (k2) = Na— (k3) = N3 — (k1) = Na— (k1).
Since N, and A are connected in &, it is natural to call N cyclical. A different inter-
pretation of A/ as structured network is given by the representation in the cyclical form

(k1) = M1 = (K2) = N — (k) — Ni = (ka),
where Ny represents itself a cyclical network
(Hg) —NQ — (Fég) —Ng — (FL4) —N5 — (Hg).

It turns out, that the determinant A of a structured network can be represented as a
sum of products consisting of determinants generated through its subnetwork Ny. Under
certain symmetry conditions, such a representation falls into a product, that means A is
factorizable in the desired sense. Then we say that N possesses a factorizable structure.
To illustrate the strength of our vertex identification approach, we apply our results for
Darlington networks, that are networks of structure (3), where in addition some similarity
and duality assumptions concerning the subnetworks Ny are made. Such networks play
an important role in the realization of desired electrical voltage relations. For example, in
the case where N7 = N3 and Ny = Ny, the network (3) obtains a factorizable structure,
namely

A - 31(2A1A231 + 32A5), (4)

where Ay denotes the determinant of Ny, and 319 the determinant of a slight modified
appropriate subnetwork of V.

Let the distance € between o(A) =: {1, ..., pa} and o(A) =: {A1,..., Aa} be defined
by € = max{e,, ¢,}, where

ex =max{my,,...,mx,}, my, =min{|A\,— | : k=1,...,d}, (5)
€, =max{my,, ... ,myu,}, myu, =min{|p, — A\g| :k=1,...,d}.

That means for every A € o(A) (1 € o(A)) there exists at least one p € o(A) (A € o(A))
with a distance of at most e. Then € can be estimated by the Theorem of Bauer - Fike via
two matrices A and A, which are the main operators of minimal state space descriptions
of the strictly proper parts of L=! and L~!:

a<|THA- DT, e < IT7HA- AT,

Here, the matrix T () is chosen to diagonalize A (4), and ||. ||, denotes any p - matrix
norm. As main result we obtain, that by identification of two vertices, the difference
A— A admits the representation A — A= -U VT where U and V are appropriately chosen
vectors, and the equation deg A = degA is supposed. Consequently, for the 2-matrix
norm the deviations €, and ¢, are bounded through products of the Euclidean lengths of
certain vectors, namely

e < NTTUIRT V2, e < NTTURITT V. (6)



Since U and V' explicitly contain the network parameters, the influence of ¢ on € gets
more transparent.

The paper is organized as follows. In section 2 the network determinant concept is
introduced. Then formulas are provided, which express A through the determinants of
appropriate subnetworks. In section 3 the results of the previous section are applied to
structured networks. Subsequently the determinants of Darlington networks are treated.
In section 4 the inequalities (6) are derived. The construction of A and A is done
via classical realization theory exploiting natural given decomposition possibilities for
the coefficients of the underlying matrix polynomials. The existence of two vectors U
and V with A — A = UV7 is guaranteed as a consequence of the Sherman - Morrison
- Woodbury formula. Combination of this representation result with the Theorem of
Bauer - Fike yields our main result summarized in Theorem 2. A concluding example
illustrates both its feasibility and usefulness.

2 The determinant of N/

DEFINITION 1 Let a network N := (G, w) be given, where G := (V, E), and
Vi={1l,...,n+1}, E:={(i1,51), .. (imr jm)} C V?, w: E — R[s]. (7)
The all vertex matrix A of G is generated via £ according to
A:=le; —ej, ... e, —e€j ], (8)

where e; denotes the i-th unit vector of length n 4+ 1. Depending on the vertex sets

a:={i,...,i}, B:={j1,...,jr} CV

the restricted matrix polynomial P*? is defined by deleting the rows iy, ... ,i, and the
columns 7;,...,7, in
P = Adiag(w(iy, ji))i, AT € ReHxntD g (9)

For abbreviation we set A® := |P*?| and P := P* A® := A%, The determinant
(=1)*TP A% is said to be a cofactor of order r of P, where a + 8 = >, (ix + ji). If
a =V, then let A® =1.

The coeflicient of the weight polynomials py := w(ig, jx) play the role of the parameters
for A" and P, where ¢ :=[¢7,... ,¢L]T € R?, pp(s) = [s°, ..., s%]qk, qr € R,

A matrix polynomial P € R®+D*("+1) 5] is referred to as equicofactor, if all its first order
cofactors are equal [[6], chapter 26, more precisely if for all 4, j,k,¢ € V the equation
(—1)HALHI} = (—1)kAHS holds true. Two matrix polynomials P, and P, of the
same size are called equivalent, P, ~ Py, if P, = U, P,U, for some matrix polynomials Uy
with constant nonzero determinant.



To justify the network determinant concept we need Proposition 1.

PROPOSITION 1 Let P be of the form P = Apdiag(py,... ,pm) AL € ReADx(+D 1]
where Ay and Ag are the all vertexr matrices of two graphs Gy and Ggr. Then for all
i,j,k,0 € V the restricted matriz polynomials P13} and PWHE are equivalent, that
means in particular P is equicofactor.

Proof. Suppose that a matrix M fulfils the equations Mv = 0, v/’ M = 0, where v =
[1,..., 1. Then M{HI} is related to M+ according to MM} = U Mint1y;,
where

U €1, e €1, €541y s, —€1 — ... — €], J<n+1
' I, j=n+1"
er denotes the k-th unit vector of length n, and |U;| = (—1)""'7. Now, we have
vT[AL, Ag] = 0, hence P fulfils the assumptions made for M. d

Consequently, the following definition is natural.

DEFINITION 2 The first order cofactor A := |L|, L := P{!} is said to be the determinant
of N, and (—1)*"P A% a cofactor of N of order #a. For fixed ¢ € R we set o(N(q)) =
{A e C:A(N\q) =0}

Two networks Ny are said to be similar, N1 ~p Ny, if for a permutation matrix P the
equation P, = PT PP is fulfiled, that means one network is generated by the other only
by a new enumeration of the vertices. A and N, are said to be dual with respect to
o = {iy,is} and B := {jy, jo}, if for some ¢ € C\ {0} the equation cA®AL = AA, is
satisfied.

In the framework of realization theory dual networks admit the following interpretation,
supposed the realization problem is introduced as follows: for a given rational function A
find a network V and a vertex pair & with h = A%/A. In the case where P is quadratic, N
can be interpreted as an electrical circuit and A as the driving point impedance between
the terminal pair a. The following equivalence is evident: A; and N, are dual with
respect to o and 3, if and only if NV realizes h in a and N, realizes (hc)™! in .

For similar networks the coincidence of all its cofactors can be stated.

PROPOSITION 2 Let Ny ~p Ny and [my, ... ,mps1] = [1,... ,n+1]P. Then for all vertex
sets a, B, @ ={mi,...,m,}, B = {7y, .} we have AW = ASP,
Proof. For @ :=V \ o, and I, := [e;,, ... ,e; ] € R"TD*" one gets

P~ IR, — P PPL, — I~ 1
O

In order to express the determinant of N through the determinants of its subnetworks
Ny, cofactors of the form A§ are suitable.



PROPOSITION 3 Suppose that N is generated by identification of the ordered vertex sets
a of N1 and 8 of N, and let the identified vertices (ig, jo) be denoted by ry:

- (Hl) —

| : |
N ./\/1 (H@) - ./\/2 .

| : |

S €

Then for r =1, the equation A = A1 Ay, and for r = 2 the equation A = AlAg + ATA,
holds true.

Proof. Due to Proposition 2 w.l.o.g.{is,j;} = {n1 —r +£,¢}, £ = 1,...,r, can be
assumed, where ny denotes the total vertex number of My. Then with respect to (9) the
corresponding matrix polynomials P, Py, P, are related to each other according to

P = diag(Py, O, ,) + diag(O,, ,, P),

that means P has the form of a quasi block diagonal matrix consisting of two blocks,
which are overlapping in a (r X r) area. Immediately the equation

P{nl} = dlag(Pl{nl}a Onsz') + diag(OHI*TW P2{r})’

follows, that means for r = 1, P{™} is block diagonal and hence |P{"}| = |Pi"|| P,
With the equicofactor property of all involved matrix polynomials for » = 1 the statement
follows. To prove it for r = 2, one develops |P{"™}| into a sum of products, such that
every factor depends only on N; or only on N5:

A v A v b =x
Pird =1 2 a+b z :‘ |B|+|A|‘
w B z a w B

With the denotations introduced in Definition 1, the equation
(P = | PP [P B

follows. Referring to Proposition 1, the proof of the first statements becomes complete.
O

REMARK 1 Higher order cofactors A® of N” admit the interpretation as the determinant
of a restricted version of N: if A is generated by identifying all vertices of o with the
artificial vertex i and by deleting all edges (i,,i,) € o arising in the edge set E of N,
then A® = A. For example, for o = {iy, iy, i3} one obtains



p4

p5

=)

To illustrate the strength of the network determinant concept, we like to represent the
determinant Ag.s of a network Neys, which one obtains through connection of a struc-
tured network N with a current controlled voltage source (CCVS) in the vertex quadruple

a:={i,j},0:={k, (}:

| | | | |
NI Nl_(/{) (6)_./\/‘2, Mcvs: Nl_(k)_ CCVS _(6)_./\/’2 .

(10)

Here, P(s) denotes the matrix polynomial generated through N, v(s) the node potentials,
i(s) the current flowing through the CCVS from node £ to node ¢, I(s) the current, which
is injected from outside into the node pu, and is extracted from the node 7, and r € R the
resistance of the CCVS. By consideration of the last line of (10), obviously the potential
difference v;(s) — v;(s) is equal to the product ri(s). Now we are able to represent the
eigenfrequencies of such a circuit as the zeros of a linear combination of the determinant
of A/ and one of its second order cofactors.

LEMMA 1 Let P and Py be defined as in (9) and (10). Then Acews = 1A —d holds true,
where A denotes the determinant of N, and d its second order cofactor (—1)*tPA%P,

Proof. Using appropriate column and row permutations, o = 8 = {1,n + 1} can be
achieved. Then P is of the form as in Proposition 1. If one defines for * € {L, R} the all
vertex matrix A, according to

A*z[ A,

o €nt1 — Ent2

€1 = €py1 | €1 — Epy2

Y

} € RvH2)x(m+3)

then Puy = Up2QUL,,, where Q = A diag(ps, ... ,pm, —1,7 — 1,1)A%, U, = I, — erel.
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Hence, P = Unt2,4}QU, 5 () Where Uy, is obtained by deleting of row x in U. Now,
for (k,*) € {2,...,n+ 1} x {L, R}, the equation U, 41 {x}As = Upt14, (s} is evident,
consequently P = Up1QF UL, |, that means Pl L Qix},

ext

Ap and Ap are all vertex matrices, therefore () fulfils the assumption of Proposition 1.
Their application yields Qi*} ~ Q& for k,& € V' \ {1}, what implies pist o Pl for
k& €V \ {1}

In particular [P | = rA — |PULn+1} is valid. Finally, for k = 1 one obtains

{1 | =
|Pe{x1t}| — det [ PeT } €:+1 ] — A — |P{1}|€Z+1(P{l})_1€n+1 — A — |P{1,n+1}|'
“ En+l

O

Now we exploit the structure of N to express A..s through appropriate cofactors of Ny.
To do this we assume that Ny consists of ny vertices, « is formed through identification
of the vertex pair {n; — 1,n1} of N7 with the vertex pair {1,2} of M3, and f coincide
with vertex 1 of AV} and vertex ny of Ny:

(ng —1,1) M (M| N
| | El 1 1
N N (1) (n2) — Ny, l ng | n (11)
| | 7 ny — 1 1 ny — 1
(nb 2) J 1 2 1

Obviously, the total vertex number n of N' amounts n; + ny — 2. Table (11) shows the
enumeration of &, £, i, j with respect to N1, Ny, and A. Then combination of Proposition
3 and Lemma 1 yields with ) := {k, j}, B2 := {{, j} for A..s the representation

Acevs = (rA] — (=)™ AYPYAS + (rAy + (=1)"2 AP AL. (12)

Proof. Due to our enumeration assumption the matrix polynomials P, Py generated
through N, Ny, satisfy P = diag(P;, O,, ») + diag(O,,, 2, P»). According to the last
column of table (11) the cofactor d arising in Lemma 1 fulfils d = (—1)"A{bnbim=tn},
Now, the quasi block diagonal structure of P yields

d — (_l)n(Ail,nl}{nl71,n1}A§1,n2}{1,2} . Ail,nl71}{n171,n1}Aé2,n2}{1,2})‘ (13)

In general, the equations
Ailanl_l}y{nl_lynl} _ (_1)n1Ainl_1,nl} o Ailanl}{nl_lanl}’

14
AL Z(Cqymp {12 Aferedn2) (14)

hold true. Replacement of At thim=bmd g AfbmHL2E 4y (13) through the right
hand sides of (14) yields

d — (_l)nlAil,nl}{nlfl,nl}Aél,Z} _ (_1)n2A§2,n2}{1,2}A~1{n171,n1}.

Finally with Proposition 3 we get Agys = rAlAél’Q} + TAQAinl_l,nl} — d, and therefore
(12). O



3 Determinants of structured networks

We say that N possesses a structure, if it is generated by connection of similar or dual
networks or if it is symmetric or cyclic. In the following we show, how such structural
properties of the network lead to corresponding factorization properties of its determinan-
tal polynomial A. For symmetrical networks a surprising result is obtained, namely o (N)
contains elements, which are independent on the parameters located on the symmetry
axis.

DEFINITION 3 Let A be generated by identification of the ordered vertex sets o and 5 of
Ni and N,. Suppose that Ny ~p Ny, and let 8 = {7},,... 7.}, where [m,... T 1] =
[1,... , n+1P. f a = B, then « is said to be a symmetry axis of N, and N is said to
be symmetric.

LEMMA 2 Let N be generated by identification of the ordered vertex sets « and 8 of Ni
and N3, and suppose that N1 ~p No. Then the determinant A of N admits for r =1

the representation A = A2, and for r = 2 the representation A = Ay (A + A?), where g
is defined as above. In the case, that N is generated by reflection of N along its vertex
set a, we have A = 2""TA AL,

Proof. Due to Ni ~p N3, with respect to Proposition 2, the equations A; = A, and
Af = Ag hold. Hence,

A= AAL £ AN, = A (AZ + A) = A (A + AD).

If NV is generated by reflection of N, along its vertex set «, then a = f)’\ and for r = 2
the last equations imply A = 2A; A, that means for r < 2 the second statement is true.
To prove it in the general case, the following fact from linear algebra can be applied: let
AeC BeC*, CeC*, DeC*. Then

A B

¢ 2 C|=2|] g‘|A|. (15)
B A
Now, let « = {n— (r—1),... ,n}, where n denotes the total vertex number of A/;. Then
the matrix polynomials P and @) generated through N and N; admit the partitions
Q* W a
pP=|Wr 20" wr |, Q= [I?/T CVQVQ} Ca={l,... sy, W=Tlwn,...,w)]
wooQ
Using formula (15) and the equation W= [wy, ... ,w, 1] one obtains
QW i
i - ~ @ w
P = W ague W = ‘|Qa| =27 1Q™] Q7).
w Q°*
Together with Proposition 1, the second statement follows. O

9



REMARK 2 Since the determinant of a symmetrical network A can be factorized accord-
ing to A = 2#2 LA} A¢ the zero set o(N) can be decomposed as o(N) = o(A;) Uo(AY).
Therefore with respect to Remark 1, the existence of elements in o(A'), which are inde-
pendent on the weights distributed on the symmetry axis «, follows.

Now we consider cyclical networks.

DEFINITION 4 The network N is said to be cyclic, if it is of the form
(K1) = N1 = (K2) = Ny — (K3) — ... = (Fp-1) — Nuo1 = (Kn) — N — (K1), (16)

where Ny represents a network in the sense of Definition 1.

LEMMA 3 Let N be cyclic. Then A =", NS [15=1 jui Ajy where fpyy = k.

Proof. Since N is cyclic, its determinant admits the representation

n—1
A=Al TT A+ AA,, (17)

i=1
where A denotes the determinant of the shortened network
N (k1) =Ny = (ka) = No — (k3) = N3 — (Ka) — +.. = (Fnet) — Nopoy — (1),
and the vertex k, of N,,_; is identified with the vertex x; of N;. Namely, if one sets
N o N = (k) = No — (k3) = N3 = (ka) oo (K1) = Nt
then N is generated by connection of A, with A in the vertex x; of A} and the vertex
ki of N,_1, and Proposition 3 implies A = AU * A 4 Afsimad A

Since N is generated by single vertex connections of N, ..., N,_i, its determinant ful-
fils A = H;;l A;. With respect to Remark 1 and to the construction of A, we have
Afrirnl — AL By induction starting from (17), the statement of the lemma follows. [

To illustrate the use of our representation formulas, we apply our results to Darlington
networks, which are obtained connecting three networks Ny in the following manner

(K1) = N1 — (K2) = No — (K3) = N1 — (Ka) — No — (K1) _

N (1) N (1)

(18)

Obviously, NV is a periodic cyclic network with a secant between ky and k4. Note however
that figure (18) does not uniquely define N'. Additionally we have to specify which

10



vertices of Ny are used to generate k¢. To fill this gap, let k¢ be formed by identification
of a:={iy,i2}, B := {J1,72}, v := {k1, k2} according to the table

Nl Nz Nl NZ NS
K1 |1 J1
Ko |12 | )1 k1
K3 J2 |1
K4 ia | Jo | ke

For example, x4 is formed by identification of 4, jo, ko of Nj, N, N3. A detailed de-
scription of the meaning of Darlington networks can be found in [[5], section 7]. Now,
suppose that N; and N3 realize the rational functions f and ¢ in « and -, respectively.
In the case that N realizes g?/f in 3, with the preceding results the equation

A= (A1 Q)" As(f* + ¢*)(f +9)°f (19)

for the determinant A of A can be proved. Obviously, if ¢ is a constant, then N; and
N, are dual to each other.

Proof of formula (19). Let AMcyq be defined by the cyclical component of N:
J\/::ycl (k1) = N = (K2) = N — (K3) = Ny — (k4) — N2 — (K1).
Then with respect to Proposition 3 the equation
A= Al 4 AR A, (20)

holds true. Corresponding to Lemma 3, the determinant A,y satisfies
Acyel = A Ag(AFFRE Ay 4 A AlRemsd A Alssma A Alsamidy
Replacement of k; according to the identification table yields
A = 20107, A= A%Ay + A AL (21)

The use of Proposition 3 backwards admits the interpretation of A as the determinant
of

— (i) ——
o |
N: Nl Nz
| o |
— (i2) ——
By identification of ky with k4, and referring to Remark 1, the coincidence of Ai';(fl’m‘}

with the determinant A of

(K1) = N1 — (K2) = Ny — (k3)

N ) = Ny — () = N — ()

11



is obtained. Obviously, N falls into two networks

(K1) — N1 — (K2) (K2) — Ny — (k3)
(k1) = No— (Kk2) 7 (ko) = Ny — (K3)

which are connected in the single vertex xo. Again with Proposition 3 we get
A = (A=A, 4 A AT Al A, 4 A Al
Replacement of k; according to the identification table yields

Alreral = X = A2, (22)

cycl

If one replaces in (20) the quantities Ay and Ai';gl’m‘} through the right hand sides of

(21) and (22), and {ka, K4} according to the identification table through ~, then one gets
A =201 AAAT + A%A; = A2A,AA] + AA).

(If one replaces Az by As and defines A; := A, A, := Al, then formula (4) arising in
the introduction is obtained. With respect to Remark 1, Ay can be interpreted as the
determinant of a network.)

Our realization assumption concerning N3 means g = A]/Aj. Therefore, A admits the
factorization

A = A(2A1 Mg + A)As. (23)

Our realization assumptions concerning A; and N yields A = A Ao (f2 + ¢2)f~, that
means

201 A0 + A = 201 M09 + A Ao (f2 4+ ¢%) f 7 = A Ao(f +9)2f L

If one inserts these equations in (23), finally formula (19) is obtained.

4 Disturbance of o(N) due to vertex identification

The question arises, what is the distance ¢ between (V) and o(N), if N is generated
by identification of two vertices of N, and ¢ is defined through (5). Let P be the matrix
polynomial generated by N consisting of n + 1 vertices. Due to Proposition 1 we know
that for two different vertices i and j the matrix polynomials P{# and PV} are equiva-
lent. Hence we suppress the superscript {+} and abbreviate P¥*} by L. Now, if L' is
represented as

Ls)=Q(s)+R(s), R(s) =C(sI—A)'B, QecR"™"[s], Ac R™ B C e R,

with minimal state space dimension d, then o(N) = o(A4). The arising matrix triple
Y = (4, B,C) is said to be a minimal realization of R. Note, that ¥ is not uniquely

12



determined by R, but for two different minimal realizations ¥y of the same rational matrix
function there exists a regular matrix 7" with A, = T *A,T, B, = T 1By, C; = C,T
For abbreviation we set

M(N) = M(L) := {A € R™Y3C, B" ¢ R"™ : R(s) = C(sIq — A)"'B}.

As a consequence of Proposition 1 we get the similarity of all elements of M(N). In
[1] for arbitrary nonsingular matrix polynomials L an iterative algorithm is provided to

compute a representative of M(L). Now let A € M(N) and Ac M(./T/') be of the same
size. Then the deviations €, and €, defined by (5) can be estimated by the Theorem of
Bauer-Fike [[2], Theorem 7.2.2, p.342].

THEOREM 1 [Bauer-Fike| If u is an eigenvalue of A and A = Tdiag(\g)d_, T, then
min{|p — M| [k =1,...,d} < ||T(A - A)T|,,

where ||.||, denotes any of the p-norms.

COROLLARY 1 The deviations ey and €, satisfy the inequalities € < ||T 1A - A\)T\Hp,
and €, < ||TY(A — A)T||,, where A = Tdiag(M)d_, T, and A = Tdiag(u)_,T .

Proposition 3 gives a hint, which vertices of N are convenient for identification to get a
network A" with factorizable structure. In the next lemma the identification process is
realized by border crossing.

LEMMA 4 Let N be of the form

N(@©): M po Ny, 6 €eR, peR[s,
_— (j17j2) -

and Ng be generated from Ny by identification of iy with jy generating the artificial vertex
i. Then lims_ e 0(N(8)) = o(N1) Uo(N2) Ua(p). In addition, if one sets

~ N = (i) = N,
N | (24)
p— ()

where j denotes a new vertez, then lims_,.o o(N'(8)) = o(N).

13



Proof. Application of Proposition 3 yields A = A+ 5{”1’”2}195, where A denotes the
determinant of

- (Hl) —

| |

N: M N, y K1 = (i17i2)7 Ko = (Ji;]é)-
| |

- (Hg) —

Corresponding to Remark 1, Al%1#2} coincides with the determinant of Ny — (i) — Nj.
Again with Proposition 3 we get Alrur2} — 3132, and hence A = (&6‘1 + 31321))6,
that means the first statement holds true. The use of Proposition 3 backwards, yields
the interpretation of A;Asp as the determinant of network (24). O

To get an upper bound for the distance € between o(N) and a(/(\/'), now A € M(N)
is constructed exploiting the all vertex matrix A of g where G := (V| E) represents
the underlying graph of A'. An element A of M(N ) is obtained by border crossing
within A. To do this, we introduce the rank defect numbers of a matrix polynomial

Q(s) = > /_, Qus”~t € R™"[s] according to
ry = rank QQ, Ty = rank [QQ,... ,Qg] — rank [QQ,... ,Qg_l], ! = ]_, , V

In particular, for nonsingular @), the equation ry + ...+ r, = n holds true.

Since the matrix polynomial L(s) =: >_,_, Lys”~* is generated through the restriction of
a matrix polynomial (9), its coefficients admit factorizations of the form

- Aldlag(qu) A{J A@ [Ula"' Jve ]7 q= [qAOJ"' 7@1/]T S RQJ

myg

where A, represents an appropriate section of the restricted all vertex matrix Ay,;. Due
to the definition of r,, w.0.l.g. the rank equations

rank [A, ..., A =rank [0, ... 02| Jof . 0b] 0=0,... 0,

] Te

can be assumed. The (n x n) matrix Aeg = [0f, ..., 02 ]...|v},... v

canonical extension of Ay. In particular, |L| #Z 0 implies |Aeyxt| # 0.

v

v | is said to be a

In order to construct A € M(N) we need the concept of a column reduced matrix
polynomial @, and its Schur complement S,(Q), which is defined as usual for » = 0 by
So(Q) = Q, and for r > 0, and |Qq| # 0, where Q@ = [Q;;]7;—, € R™"[s], Qa2 € R™"[s],
by the rational matrix function S,(Q) = Q11 — Q12Q% Qa1 € R""*1=1) (g),

DEFINITION 5 Let the nonsingular matrix polynomial ) € R"*"[s] be represented in
the form Q(s) = Qucdiag(s™,... s) + [v1(5),... ,0.(5)], Que € RV™, v; € R"[s],
degv;(s) < k;. Then the integers k; are said to be the column degrees, and Q. the
highest column degree coefficient matriz of (). The matrix polynomial @) is said to be
column reduced if |Que| # 0. Since |Q(s)| = |Quc|s¥ -+ + ... +|Q(0)], Q is column
reduced if and only if deg |Q(s)| = k1 + ...+ k. To our knowledge the first introduction
of this concept is due to Wedderburn, [[7], chapter 4].

14



PROPOSITION 4 Let L(s) = >,_, A¢diag(q,) AT's"* € R™"[s], g = [G2,...,¢L]" € Re,
be generated through a network N, and Aeq be a canonical extension of Ag. Then
for almost every q the matriz polynomial P := = ALLAZY is column reduced, its Schur
complement P := S, (P ) exists, and turns out to be a column reduced matriz polynomial
as well.

Proof. Since A,y is constructed by appropriate chosen columns of the restricted all vertex
matrix Ay, the matrix polynomial L admits the representation

L:Aextdia‘g(p(l)J"' 7p807"' JPIIJ"' JPTV)AZ;(t Y

where degpt = v — ¢, p, € w(E) C R[s], and r9,...,r, are the rank defect numbers of
L. Hence, the inequality Y24~ 7¢(v — £) < deg|L| = deg |P| is obtained for almost every
coefficient vector ¢q. Due to the construction of A.,; we have

P(s) = diag(Py, On—yp,)s” + diag(Py, On_py_r,)s" " + ... + diag(Py_1, Oy, )s + Py, (25)

for appropriately chosen matrices P, € R(ro+-tre)x(rot4re) - that means the column
degrees k; of P satisfy

k1, ... ki) =[v,...,v,v—1,...,v—1,...,1,...,1,0,...,0].
T0 T1 Tv—1 Tv
Therefore, deg |P| < d := ki + ... + ky vy 7e(v — ). Combination with the first
inequality yields deg |P| =d for almost every ¢, that means P is column reduced for

almost every gq.

In order to prove the existence of the Schur complement P, we consider the triangular
structure of B.:

POO POI PR POU
~ PH Pl,/ -
By = . : , Py e Re™"e,
O PI/V

Since P is column reduced, ﬁhc is regular, that means the regularity of all main diagonal
blocks Py. Since the right lower (r, x r,) corner of P coincides with P,,, the existence
of P is proved. Explicitly, from (25) we get

]5(3) = diag(Po, Op_ry_r,)s” + diag(Py, On,ro,rl,”)sl”1 +...4+P, 15+ 5, (P,).

Therefore, P is a matrix polynomial, and immediately the coincidence of its column
degrees with the column degrees of P follows. Finally, with |P| = |P,,||P| the column
reducedness of P is obtained. U

Now, all quantities are available to construct A € M(N):
1. Let n+ 1 be the vertex number of A/, and n :=n — r,,.
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2. Let P be defined as in Proposition 4, and the vector polynomials Vj, € R"[s] by its
columns:

P=[Vi,.. .Vl Vils) = Vitsh e+ Vs + V), Vi ERY, Vi #o.
3. Let the matrices ®, ©, J, and ¥ be defined by

o=PleRV Q= [V VLT VO e R,

(26)
J = diag(Ji,, ... , Jy,) € R4 ¥ = diag(e™, ... M) € RV,
0 1
1 0 0
where d =k + ...+ k,, Jp = o eRF b= | e RE.
1 0 0

4. Let A be defined by A := J — UV®O € RIx4,

Then A € M(N).

This construction receipt is an adapted version of the general receipt to obtain a minimal
state space description for the inverse of a column reduced matrix polynomial. A detailed
description can be found in [[4], section 6.4].

In order to find vectors U, V € R? for (A4, A) € M(N) x M(N), such that A— A = UV7,
we return to the representation of L in the form

L(s;q) = Y Acdiag (o) A7s"“, = 1[dg - 45" € R,
(=0

Consequently, a disturbance 0 of an arbitrary component of ¢ can be represented accord-
ing to

L(s;q + ex0) = L(s;q) + v(0s")v”, v € R". (27)

Here, e, denotes the x-th unit vector of length p. That means such a disturbance can
be described simply through the addition of a rank 1 matrix. Now it turns out that
this option stays valid, if one passes over from L € R"*"[s] to A € M(N). The proof
is essentially based on the Sherman - Morrison - Woodbury formula [[2], p.51]: Let
A e C™ UV e C¥ and suppose the existence of A=t and H := (I, + VTA U) L.
Then A + UV7 is invertible and satisfies

(A+UVvH) 7t =A"t - AT 'UHVT AT

PROPOSITION 5 Let L be generated through a network N, and let r, be the last rank
defect number of L. Then with respect to every parameter q, of L there exists a canonical
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extension Aeg of Ao, such that for almost every ¢ € R the Schur complement P
S,,(P), P:= AZLLAZY, exists and satisfies

ext

P(s;q + exd) = P(s; q) + u(q)h(q, 6)s*u(q)", u(q) € R,

where h is of the form h(q,0) = { o0+ ald) ()S Zi%

Proof. Because L is generated by a network the disturbance of an parameter ¢, can be
described through (27). If the power k of s is positive, then for all canonical extensions
Aext of Ay we have

S0 . T Pi1(s;q) + uds*u™  Piy(q) wol
P(5>Q+€n ) AextL(5=Q+€n )Aext = [P21(q) ng(q) o | T ext U

where v € R 7)x(=m)  With respect to Proposition 4 we know that P is column
reduced for almost every ¢, that means in particular the matrix Py is invertible for
almost every ¢, and hence

P(s;q + ex0) = Py1(s;q) + Pia(q) Pya(q) ' Poi(q) + udsfu® = P(s;q) + uds*u®

Now, for £ = 0 we have to distinguish between two cases: either v is a linear combination
of the first n — r, columns of A, or v can be used to generate the last r, columns of a
canonical extension A of Agp. In the first case one can argue as in in the case k£ > 0.
For the second case we assume that v arises as one of the last r, columns of A.. Then

we have
P11(S§ CI) P12(Q)
PQl(q) P22(q) + 6]'(56?

With the Sherman - Morrison - Woodbury formula one obtains
P(s;q+ €x6) = Pui(s;q) — Pi2(q)(Pa2(q) + e50¢) ) " Par(q) = P(s;9) + u(q)h(q, 6)u(q)”,

where u := PiyPylej, h:=0/(1+4 c16), and ¢; := el Py'e;. O

P(s;q+ ) =

Moreover, the statement of Proposition 5 transfers to an analog statement for A € M(N).

PROPOSITION 6 Let A € M(N). Then A(q+ e.d) = A(q) + U(q)H(q,0)V(q)", where
U,V € RY, and H is of the form H = h/(1 + coh), where h is defined as in Proposition
D.

Proof. Let L be generated through N, and A be a canonical extension of Ay, such
that Proposition 5 can be applied, and let via the Schur complement P the matrices ®,
©, J, ¥ be constructed as in (26). Then Proposition 5 provides the representations

(g + e.0) " = D(q) " + ulq)h(g, 0)v(q)", Og+ e.d) = O(q) + u(g)h(g, d)w(q)".
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Suppose coh # —1, where ¢3(q) = v(q)T®(q)u(q), and set H = h/(1 + cyh). Then with
the Sherman - Morrison - Woodbury formula one obtains

D(q + exd) = (q) — D(q)ulq)H(q,6)v(q)" ®(q).

Due to the similarity of all elements of M(N), A = J — U®O can be assumed. Conse-
quently, omitting the arguments ¢ and d, one obtains

A(g+esd) =J—VP(q+e.0)0(q+ed) =J— V(P — duHvT®)(O + uhw?)
= A —Vou((1 — Hey)hw? — HuT $0O).

The definition of H yields (1 — Hep)h = H, what implies

A(q+ ex0) = Aq) + ¥(q)u(q)H(g, 6)(v(q)"®(q)O(q) — w(g)").

Hence, setting

Ulg) == ¥@(q)ulq), V(g):=0O(q)" 2(q)"v(q) — w(q) € RY, (28)

the statement of the proposition follows. O

COROLLARY 2 The matriz A(q) = lims_,eo A(q + €,0) emists if and only if H(q) :=
lims o0 H(q,9) exists. Let N and N be as in Lemma 4, and suppose the existence of A.

-~

If #0(A) = d, then A € M(N).

Combination of the Theorem of Bauer - Fike with Lemma 4, Proposition 6, and Corollary
2 yields our main result.

THEOREM 2 (Main Theorem) Let N and Ny be as in Lemma 4, o(N) = {1, ..., Aa},
and p € o(N1)Uo(Ny) U{0}. Let A € M(N), and suppose the existence of the limit H.
If A=Tdiag(\p)2_, T, and U,V are defined as in (28), then

min{[Ay — pl, o [Aa = ul} S NT7HU N [HINTT V2.

Proof. By construction we have o(A(q + ex0)) = 0(A(.; ¢ + e.0)). Hence, with respect
to Lemma 4 the equation o(A) = o(A;) U o(Ay) U {0} follows. If yu € o(A), then
with Theorem 1 one obtains min{|A; — p,...,|[Aa — p|} < ||T*1(121\— A)T|y, where T
diagonalizes A. Because of Proposition 6 and Corollary 2 we have

TYA- AT =T 'UHV"T.

Finally, since ||M||y coincides with the maximal singular value of the matrix M, the
estimation holds true. O

Coming to the end, we like to illustrate Theorem 2 by an example. Let the network A
be given by

(1) = pa(s) — (Ka) — pals) — (k) — pa(s) — (ka) — pals) — (1)
N (1) b () ’
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with the edge weights pi(s) = s* — qu, pa(s) = s — q9, p3(s) = s*> — g3, and the parameter
vector ¢ = [¢7,0]F, ¢ = [q1, @2, q3]*. Definition 1 yields

P(S) = Adiag(p17p27p37p27 68) AT: A - [61 — €2, — €3,€63 — €4,€1 — €4,Co — 64]7
and for the determinant A of A the scalar polynomial

Asig)= (0+2)5°
+2(0+1 — go)s*
+(0(1 — g5 — 1 — 22) — 2(2¢2 + 1 + q3))s°
+(2(q192 + 0203 + 43) — @1 — g3 — 0(q3 + 2¢2 + 1)) s*
+(0(q1g2 + @103 + &5 + @2a3) + 2(103 + 142 + 4203))s
— 3505 — (1G5 — 2914243

According to Definition 2 we have o(N) = o(A). Obviously it is quite difficult to exploit
this representation of A for further investigations of the influence of g on o(N'). Regarding
the structure of N this influence can be discussed using the adjoined networks

-~

Ni: (K1) = pi(s) = (k2) — pa(s) — (K3) — p3(s) — (Ka) — p2(s) — (k1)

o (m) = (p1(s) + p2(s)) = (1) — (p2(s) +ps(s)) — (w3)
NQ . |
s —(j)

Here, N corresponds with 6 = 0, and N, with § = co. The construction receipt after
the proof of Proposition 4 makes A € M(N) available:

-1 2¢1+¢ 0 -1 02 -1
1 2 0 0 0 0 0 5
A= 3 -1 Q2 2¢ —1 Q2 + 1 4+26[1,—QQ,—2QQ,—1,—QQ].
—1 ¢ 0 -1 g2+ 2¢; I [~~~
0 0 0 1 0 0| HO

Because of the minimality of A, for all ¢ € R?, excepted the case § = —2, the equation
o(N) = o(A) holds true. Due to H = lims_, H(§) = 1/2, the matrix A := A([g, >])
exists. From Lemma 3 and 4 we know, that

-~

U(/\Afl) = 0(4([@, 0])) = o(pip2ps + p1p2p2 + P1P3P2 + P2psP2),
o(N2) = o(A) = o(p1 + p2) Uo(py + p3) U{0}.

The dependency of U(/\72) on ¢ can be described easily, namely
o(pi+p) = {(-15 VI 40+ 0))/2}, o(ps+ps) = { (-1 £ VI+ 402 + ))/2} .

To get a control over o(N;), we observe that o(N;) = o(py) U o (p), where

p(s;9) = 2p1(s)ps(s) + (pr(s) + p3(s))p2(s)
=2(s"+5%) = 2(q1 + @2 + q3)5* — (@1 + q3)s + (1 + 43) @2 + 2165.
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Simple calculation shows that

2((s +1/4)° = a)((s + 1/4)* — q5) =

3 1 1
2(s* + 5°) + <Z —2(q1 + Q3)> s+ <§ — (1 + Q3)> s+ (@ — (1 +g3)q2 + QQ1Q3> :

Under the condition |¢2| < |¢1], |¢3|, comparison with the coefficients of p yields o(p) ~
{—1/4 + \/q_l} U {—1/4 + \/q_g} . Summing up the following approximations

o(Ni(@) = {g}U{-1/4+ ya}u{-1/4+ /5},
oc(Na (@) ~ {0tu{-1/2+ @i} u{-1/2+ /g}

can be stated. The right hand side defines the 5 intervals [go, 0], and
=124+ Va, =1/4+ Va |, [-1/2 = vV, =1/4 = V|,
[=1/2+ Vs, —1/4 + Va5 ], [=1/2 = Va5, —=1/4 — /a5 ]

Consequently it is to expect, that by the made assumption |g»| < |¢1],]¢s], and by
variation of § in [0, o], the 5 zeros of N are moving close to these 5 intervals. Concretely,
for ¢ = =100, ¢ = —4, g3 = —200, and 0, = k/10, k =1,...,1000, the following figure
visualizes the error estimates obtained by Theorem 2 for the deviation of U(/%) from

o(N):

ah
b
2 ¥
1

L L L L L ! T T T
0 100 200 300 400 500 600 700 800 900 1000

The solid (dotted) line represents the estimate for the deviation of o(N7) (0(N3)) from
o(N).
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1. D. Hietel, K. Steiner, J. Struckmeier

A Finite - Volume Particle Method for
Compressible Flows

We derive a new class of particle methods for conserva-
tion laws, which are based on numerical flux functions to
model the interactions between moving particles. The
derivation is similar to that of classical Finite-Volume
methods; except that the fixed grid structure in the Fi-
nite-Volume method is substituted by so-called mass
packets of particles. We give some numerical results on a
shock wave solution for Burgers equation as well as the
well-known one-dimensional shock tube problem.

(19°S., 1998)

2. M. Feldmann, S. Seibold

Damage Diagnosis of Rotors: Application
of Hilbert Transform and Multi-Hypothesis
Testing

In this paper, a combined approach to damage diagnosis
of rotors is proposed. The intention is to employ signal-
based as well as model-based procedures for an im-
proved detection of size and location of the damage. In a
first step, Hilbert transform signal processing techniques
allow for a computation of the signal envelope and the
instantaneous frequency, so that various types of non-
linearities due to a damage may be identified and classi-
fied based on measured response data. In a second step,
a multi-hypothesis bank of Kalman Filters is employed for
the detection of the size and location of the damage
based on the information of the type of damage provid-
ed by the results of the Hilbert transform.

Keywords:

Hilbert transform, damage diagnosis, Kalman filtering,
non-linear dynamics

(23'S., 1998)

3. Y. Ben-Haim, S. Seibold

Robust Reliability of Diagnostic Mullti-
Hypothesis Algorithms: Application to
Rotating Machinery

Damage diagnosis based on a bank of Kalman filters,
each one conditioned on a specific hypothesized system
condition, is a well recognized and powerful diagnostic
tool. This multi-hypothesis approach can be applied to a
wide range of damage conditions. In this paper, we will
focus on the diagnosis of cracks in rotating machinery.
The question we address is: how to optimize the multi-
hypothesis algorithm with respect to the uncertainty of
the spatial form and location of cracks and their resulting
dynamic effects. First, we formulate a measure of the
reliability of the diagnostic algorithm, and then we dis-
cuss modifications of the diagnostic algorithm for the
maximization of the reliability. The reliability of a diagnos-
tic algorithm is measured by the amount of uncertainty
consistent with no-failure of the diagnosis. Uncertainty is
quantitatively represented with convex models.
Keywords:

Robust reliability, convex models, Kalman filtering, multi-
hypothesis diagnosis, rotating machinery, crack diagnosis
(24 °S., 1998)

4. FE-Th. Lentes, N. Siedow

Three-dimensional Radiative Heat Transfer
in Glass Cooling Processes

For the numerical simulation of 3D radiative heat transfer
in glasses and glass melts, practically applicable mathe-
matical methods are needed to handle such problems
optimal using workstation class computers. Since the
exact solution would require super-computer capabilities
we concentrate on approximate solutions with a high
degree of accuracy. The following approaches are stud-
ied: 3D diffusion approximations and 3D ray-tracing
methods.

(23S., 1998)

5. A Klar, R. Wegener

A hierarchy of models for multilane
vehicular traffic
Part I: Modeling

In the present paper multilane models for vehicular traffic
are considered. A microscopic multilane model based on
reaction thresholds is developed. Based on this model an
Enskog like kinetic model is developed. In particular, care
is taken to incorporate the correlations between the vehi-
cles. From the kinetic model a fluid dynamic model is
derived. The macroscopic coefficients are deduced from
the underlying kinetic model. Numerical simulations are
presented for all three levels of description in [10]. More-
over, a comparison of the results is given there.

(23'S., 1998)

Part Il: Numerical and stochastic
investigations

In this paper the work presented in [6] is continued. The
present paper contains detailed numerical investigations
of the models developed there. A numerical method to

treat the kinetic equations obtained in [6] are presented
and results of the simulations are shown. Moreover, the
stochastic correlation model used in [6] is described and
investigated in more detail.

(17 S., 1998)

6. A. Klar, N. Siedow

Boundary Layers and Domain Decomposi-
tion for Radiative Heat Transfer and Diffu-
sion Equations: Applications to Glass Manu-
facturing Processes

In this paper domain decomposition methods for radia-
tive transfer problems including conductive heat transfer
are treated. The paper focuses on semi-transparent ma-
terials, like glass, and the associated conditions at the
interface between the materials. Using asymptotic analy-
sis we derive conditions for the coupling of the radiative
transfer equations and a diffusion approximation. Several
test cases are treated and a problem appearing in glass
manufacturing processes is computed. The results clearly
show the advantages of a domain decomposition ap-
proach. Accuracy equivalent to the solution of the global
radiative transfer solution is achieved, whereas computa-
tion time is strongly reduced.

(24 S., 1998)

7. 1. Choquet

Heterogeneous catalysis modelling and
numerical simulation in rarified gas flows
Part I: Coverage locally at equilibrium

A new approach is proposed to model and simulate nu-
merically heterogeneous catalysis in rarefied gas flows. It
is developed to satisfy all together the following points:
1) describe the gas phase at the microscopic scale, as
required in rarefied flows,

2) describe the wall at the macroscopic scale, to avoid
prohibitive computational costs and consider not only
crystalline but also amorphous surfaces,

3) reproduce on average macroscopic laws correlated
with experimental results and

4) derive analytic models in a systematic and exact way.
The problem is stated in the general framework of a non
static flow in the vicinity of a catalytic and non porous
surface (without aging). It is shown that the exact and
systematic resolution method based on the Laplace trans-
form, introduced previously by the author to model colli-
sions in the gas phase, can be extended to the present
problem. The proposed approach is applied to the mod-
elling of the Eley-Rideal and Langmuir-Hinshelwood re-
combinations, assuming that the coverage is locally at
equilibrium. The models are developed considering one
atomic species and extended to the general case of sev-
eral atomic species. Numerical calculations show that the
models derived in this way reproduce with accuracy be-
haviors observed experimentally.

(24's., 1998)

8. J. Ohser, B. Steinbach, C. Lang
Efficient Texture Analysis of Binary Images

A new method of determining some characteristics of
binary images is proposed based on a special linear filter-
ing. This technique enables the estimation of the area
fraction, the specific line length, and the specific integral
of curvature. Furthermore, the specific length of the total
projection is obtained, which gives detailed information
about the texture of the image. The influence of lateral
and directional resolution depending on the size of the
applied filter mask is discussed in detail. The technique
includes a method of increasing directional resolution for
texture analysis while keeping lateral resolution as high
as possible.

(17 °S., 1998)

9. J. Orlik

Homogenization for viscoelasticity of the
integral type with aging and shrinkage

A multi-phase composite with periodic distributed inclu-
sions with a smooth boundary is considered in this con-
tribution. The composite component materials are sup-
posed to be linear viscoelastic and aging (of the
non-convolution integral type, for which the Laplace
transform with respect to time is not effectively applica-
ble) and are subjected to isotropic shrinkage. The free
shrinkage deformation can be considered as a fictitious
temperature deformation in the behavior law. The proce-
dure presented in this paper proposes a way to deter-
mine average (effective homogenized) viscoelastic and
shrinkage (temperature) composite properties and the
homogenized stress-field from known properties of the



components. This is done by the extension of the asymp-
totic homogenization technique known for pure elastic
non-homogeneous bodies to the non-homogeneous
thermo-viscoelasticity of the integral non-convolution
type. Up to now, the homogenization theory has not
covered viscoelasticity of the integral type.
Sanchez-Palencia (1980), Francfort & Suquet (1987) (see
[2], [9]) have considered homogenization for viscoelastici-
ty of the differential form and only up to the first deriva-
tive order. The integral-modeled viscoelasticity is more
general then the differential one and includes almost all
known differential models. The homogenization proce-
dure is based on the construction of an asymptotic solu-
tion with respect to a period of the composite structure.
This reduces the original problem to some auxiliary
boundary value problems of elasticity and viscoelasticity
on the unit periodic cell, of the same type as the original
non-homogeneous problem. The existence and unique-
ness results for such problems were obtained for kernels
satisfying some constrain conditions. This is done by the
extension of the Volterra integral operator theory to the
Volterra operators with respect to the time, whose 1 ker-
nels are space linear operators for any fixed time vari-
ables. Some ideas of such approach were proposed in
[11] and [12], where the Volterra operators with kernels
depending additionally on parameter were considered.
This manuscript delivers results of the same nature for
the case of the space-operator kernels.

(20°S., 1998)

10. J. Mohring
Helmholtz Resonators with Large Aperture

The lowest resonant frequency of a cavity resonator is
usually approximated by the classical Helmholtz formula.
However, if the opening is rather large and the front wall
is narrow this formula is no longer valid. Here we present
a correction which is of third order in the ratio of the di-
ameters of aperture and cavity. In addition to the high
accuracy it allows to estimate the damping due to radia-
tion. The result is found by applying the method of
matched asymptotic expansions. The correction contains
form factors describing the shapes of opening and cavity.
They are computed for a number of standard geometries.
Results are compared with numerical computations.
(21°S., 1998)

11. H. W. Hamacher, A. Schobel
On Center Cycles in Grid Graphs

Finding "good" cycles in graphs is a problem of great
interest in graph theory as well as in locational analysis.
We show that the center and median problems are NP
hard in general graphs. This result holds both for the vari-
able cardinality case (i.e. all cycles of the graph are con-
sidered) and the fixed cardinality case (i.e. only cycles
with a given cardinality p are feasible). Hence it is of in-
terest to investigate special cases where the problem is
solvable in polynomial time.

In grid graphs, the variable cardinality case is, for in-
stance, trivially solvable if the shape of the cycle can be
chosen freely.

If the shape is fixed to be a rectangle one can analyze
rectangles in grid graphs with, in sequence, fixed dimen-
sion, fixed cardinality, and variable cardinality. In all cases
a complete characterization of the optimal cycles and
closed form expressions of the optimal objective values
are given, yielding polynomial time algorithms for all cas-
es of center rectangle problems.

Finally, it is shown that center cycles can be chosen as

rectangles for small cardinalities such that the center cy-
cle problem in grid graphs is in these cases completely
solved.

(15°S., 1998)

12. H. W. Hamacher, K.-H. Kufer

Inverse radiation therapy planning -
a multiple objective optimisation approach

For some decades radiation therapy has been proved
successful in cancer treatment. It is the major task of clin-
ical radiation treatment planning to realize on the one
hand a high level dose of radiation in the cancer tissue in
order to obtain maximum tumor control. On the other
hand it is obvious that it is absolutely necessary to keep
in the tissue outside the tumor, particularly in organs at
risk, the unavoidable radiation as low as possible.

No doubt, these two objectives of treatment planning -
high level dose in the tumor, low radiation outside the
tumor - have a basically contradictory nature. Therefore,
it is no surprise that inverse mathematical models with
dose distribution bounds tend to be infeasible in most
cases. Thus, there is need for approximations compromis-
ing between overdosing the organs at risk and underdos-
ing the target volume.

Differing from the currently used time consuming itera-
tive approach, which measures deviation from an ideal
(non-achievable) treatment plan using recursively trial-
and-error weights for the organs of interest, we go a
new way trying to avoid a priori weight choices and con-
sider the treatment planning problem as a multiple ob-
jective linear programming problem: with each organ of
interest, target tissue as well as organs at risk, we associ-
ate an objective function measuring the maximal devia-
tion from the prescribed doses.

We build up a data base of relatively few efficient solu-
tions representing and approximating the variety of Pare-
to solutions of the multiple objective linear programming
problem. This data base can be easily scanned by physi-
cians looking for an adequate treatment plan with the
aid of an appropriate online tool.

(14 's., 1999)

13. C. Lang, J. Ohser, R. Hilfer
On the Analysis of Spatial Binary Images

This paper deals with the characterization of microscopi-
cally heterogeneous, but macroscopically homogeneous
spatial structures. A new method is presented which is
strictly based on integral-geometric formulae such as
Crofton’s intersection formulae and Hadwiger’s recursive
definition of the Euler number. The corresponding algo-
rithms have clear advantages over other techniques. As
an example of application we consider the analysis of
spatial digital images produced by means of Computer
Assisted Tomography.

(20°S., 1999)

14. M. Junk

On the Construction of Discrete Equilibrium
Distributions for Kinetic Schemes

A general approach to the construction of discrete equi-
librium distributions is presented. Such distribution func-
tions can be used to set up Kinetic Schemes as well as
Lattice Boltzmann methods. The general principles are
also applied to the construction of Chapman Enskog dis-
tributions which are used in Kinetic Schemes for com-

pressible Navier-Stokes equations.
(24's., 1999)

15. M. Junk, S. V. Raghurame Rao

A new discrete velocity method for Navier-
Stokes equations

The relation between the Lattice Boltzmann Method,
which has recently become popular, and the Kinetic
Schemes, which are routinely used in Computational Flu-
id Dynamics, is explored. A new discrete velocity model
for the numerical solution of Navier-Stokes equations for
incompressible fluid flow is presented by combining both
the approaches. The new scheme can be interpreted as a
pseudo-compressibility method and, for a particular
choice of parameters, this interpretation carries over to
the Lattice Boltzmann Method.

(20°S., 1999)

16. H. Neunzert
Mathematics as a Key to Key Technologies

The main part of this paper will consist of examples, how
mathematics really helps to solve industrial problems;
these examples are taken from our Institute for Industrial
Mathematics, from research in the Technomathematics
group at my university, but also from ECMI groups and a
company called TecMath, which originated 10 years ago
from my university group and has already a very success-
ful history.

(39 S. (vier PDF-Files), 1999)

17. J. Ohser, K. Sandau

Considerations about the Estimation of the
Size Distribution in Wicksell’s Corpuscle
Problem

Wicksell's corpuscle problem deals with the estimation of
the size distribution of a population of particles, all hav-
ing the same shape, using a lower dimensional sampling
probe. This problem was originary formulated for particle
systems occurring in life sciences but its solution is of
actual and increasing interest in materials science. From a
mathematical point of view, Wicksell's problem is an in-
verse problem where the interesting size distribution is
the unknown part of a Volterra equation. The problem is
often regarded ill-posed, because the structure of the
integrand implies unstable numerical solutions. The accu-
racy of the numerical solutions is considered here using
the condition number, which allows to compare different
numerical methods with different (equidistant) class sizes
and which indicates, as one result, that a finite section
thickness of the probe reduces the numerical problems.
Furthermore, the relative error of estimation is computed
which can be split into two parts. One part consists of
the relative discretization error that increases for increas-
ing class size, and the second part is related to the rela-
tive statistical error which increases with decreasing class
size. For both parts, upper bounds can be given and the
sum of them indicates an optimal class width depending
on some specific constants.

(18'S., 1999)



18. E. Carrizosa, H. W. Hamacher, R. Klein,
S. Nickel

Solving nonconvex planar location problems
by finite dominating sets

It is well-known that some of the classical location prob-
lems with polyhedral gauges can be solved in polynomial
time by finding a finite dominating set, i. e. a finite set of
candidates guaranteed to contain at least one optimal
location.

In this paper it is first established that this result holds for
a much larger class of problems than currently considered
in the literature. The model for which this result can be
proven includes, for instance, location problems with at-
traction and repulsion, and location-allocation problems.
Next, it is shown that the approximation of general gaug-
es by polyhedral ones in the objective function of our
general model can be analyzed with regard to the subse-
quent error in the optimal objective value. For the approx-
imation problem two different approaches are described,
the sandwich procedure and the greedy algorithm. Both
of these approaches lead - for fixed epsilon - to polyno-
mial approximation algorithms with accuracy epsilon for
solving the general model considered in this paper.
Keywords:

Continuous Location, Polyhedral Gauges, Finite Dominat-
ing Sets, Approximation, Sandwich Algorithm, Greedy
Algorithm

(19 °S., 2000)

19. A. Becker
A Review on Image Distortion Measures

Within this paper we review image distortion measures.
A distortion measure is a criterion that assigns a “quality
number” to an image. We distinguish between mathe-
matical distortion measures and those distortion mea-
sures in-cooperating a priori knowledge about the imag-
ing devices ( e. g. satellite images), image processing al-
gorithms or the human physiology. We will consider rep-
resentative examples of different kinds of distortion
measures and are going to discuss them.

Keywords:

Distortion measure, human visual system

(26 °S., 2000)

20. H. W. Hamacher, M. Labbé, S. Nickel,
T. Sonneborn

Polyhedral Properties of the Uncapacitated
Multiple Allocation Hub Location Problem

We examine the feasibility polyhedron of the uncapaci-
tated hub location problem (UHL) with multiple alloca-
tion, which has applications in the fields of air passenger
and cargo transportation, telecommunication and postal
delivery services. In particular we determine the dimen-
sion and derive some classes of facets of this polyhedron.
We develop some general rules about lifting facets from
the uncapacitated facility location (UFL) for UHL and pro-
jecting facets from UHL to UFL. By applying these rules
we get a new class of facets for UHL which dominates
the inequalities in the original formulation. Thus we get a
new formulation of UHL whose constraints are all facet-
defining. We show its superior computational perfor-
mance by benchmarking it on a well known data set.
Keywords:

integer programming, hub location, facility location, valid
inequalities, facets, branch and cut

(21S., 2000)

21. H. W. Hamacher, A. Schoébel

Design of Zone Tariff Systems in Public
Transportation

Given a public transportation system represented by its
stops and direct connections between stops, we consider
two problems dealing with the prices for the customers:
The fare problem in which subsets of stops are already
aggregated to zones and “good” tariffs have to be
found in the existing zone system. Closed form solutions
for the fare problem are presented for three objective
functions. In the zone problem the design of the zones is
part of the problem. This problem is NP hard and we
therefore propose three heuristics which prove to be very
successful in the redesign of one of Germany’s transpor-
tation systems.

(30S.,2001)

22. D. Hietel, M. Junk, R. Keck, D. Teleaga:

The Finite-Volume-Particle Method for
Conservation Laws

In the Finite-Volume-Particle Method (FVPM), the weak
formulation of a hyperbolic conservation law is dis-
cretized by restricting it to a discrete set of test functions.
In contrast to the usual Finite-Volume approach, the test
functions are not taken as characteristic functions of the
control volumes in a spatial grid, but are chosen from a
partition of unity with smooth and overlapping partition
functions (the particles), which can even move along pre-
scribed velocity fields. The information exchange be-
tween particles is based on standard numerical flux func-
tions. Geometrical information, similar to the surface
area of the cell faces in the Finite-Volume Method and
the corresponding normal directions are given as integral
quantities of the partition functions.

After a brief derivation of the Finite-Volume-Particle
Method, this work focuses on the role of the geometric
coefficients in the scheme.

(16 S.,2001)

23. T. Bender, H. Hennes, J. Kalcsics,
M. T. Melo, S. Nickel

Location Software and Interface with GIS
and Supply Chain Management

The objective of this paper is to bridge the gap between
location theory and practice. To meet this objective focus
is given to the development of software capable of ad-
dressing the different needs of a wide group of users.
There is a very active community on location theory en-
compassing many research fields such as operations re-
search, computer science, mathematics, engineering,
geography, economics and marketing. As a result, people
working on facility location problems have a very diverse
background and also different needs regarding the soft-
ware to solve these problems. For those interested in
non-commercial applications (e. g. students and re-
searchers), the library of location algorithms (LoLA can be
of considerable assistance. LoLA contains a collection of
efficient algorithms for solving planar, network and dis-
crete facility location problems. In this paper, a detailed
description of the functionality of LoLA is presented. In
the fields of geography and marketing, for instance, solv-
ing facility location problems requires using large
amounts of demographic data. Hence, members of these
groups (e. g. urban planners and sales managers) often
work with geographical information too s. To address the
specific needs of these users, LoLA was inked to a geo-

graphical information system (GIS) and the details of the
combined functionality are described in the paper. Finally,
there is a wide group of practitioners who need to solve
large problems and require special purpose software with
a good data interface. Many of such users can be found,
for example, in the area of supply chain management
(SCM). Logistics activities involved in strategic SCM in-
clude, among others, facility location planning. In this
paper, the development of a commercial location soft-
ware tool is also described. The too is embedded in the
Advanced Planner and Optimizer SCM software devel-
oped by SAP AG, Walldorf, Germany. The paper ends
with some conclusions and an outlook to future activi-
ties.

Keywords:

facility location, software development, geographical
information systems, supply chain management.
(48s.,2001)

24. H. W. Hamacher, S. A. Tjandra

Mathematical Modelling of Evacuation
Problems: A State of Art

This paper details models and algorithms which can be
applied to evacuation problems. While it concentrates on
building evacuation many of the results are applicable
also to regional evacuation. All models consider the time
as main parameter, where the travel time between com-
ponents of the building is part of the input and the over-
all evacuation time is the output. The paper distinguishes
between macroscopic and microscopic evacuation mod-
els both of which are able to capture the evacuees’
movement over time.

Macroscopic models are mainly used to produce good
lower bounds for the evacuation time and do not consid-
er any individual behavior during the emergency situa-
tion. These bounds can be used to analyze existing build-
ings or help in the design phase of planning a building.
Macroscopic approaches which are based on dynamic
network flow models (minimum cost dynamic flow, maxi-
mum dynamic flow, universal maximum flow, quickest
path and quickest flow) are described. A special feature
of the presented approach is the fact, that travel times of
evacuees are not restricted to be constant, but may be
density dependent. Using multicriteria optimization prior-
ity regions and blockage due to fire or smoke may be
considered. It is shown how the modelling can be done
using time parameter either as discrete or continuous
parameter.

Microscopic models are able to model the individual
evacuee’s characteristics and the interaction among evac-
uees which influence their movement. Due to the corre-
sponding huge amount of data one uses simulation ap-
proaches. Some probabilistic laws for individual evacuee’s
movement are presented. Moreover ideas to model the
evacuee’s movement using cellular automata (CA) and
resulting software are presented.

In this paper we will focus on macroscopic models and
only summarize some of the results of the microscopic
approach. While most of the results are applicable to
general evacuation situations, we concentrate on build-
ing evacuation.

(44's.,2001)



25. J. Kuhnert, S. Tiwari
Grid free method for solving the Poisson
equation

A Grid free method for solving the Poisson equation is
presented. This is an iterative method. The method is
based on the weighted least squares approximation in
which the Poisson equation is enforced to be satisfied in
every iterations. The boundary conditions can also be
enforced in the iteration process. This is a local approxi-
mation procedure. The Dirichlet, Neumann and mixed
boundary value problems on a unit square are presented
and the analytical solutions are compared with the exact
solutions. Both solutions matched perfectly.

Keywords:

Poisson equation, Least squares method,

Grid free method

(19°S.,2001)

26. T. Gotz, H. Rave, D. Reinel-Bitzer,
K. Steiner, H. Tiemeier
Simulation of the fiber spinning process

To simulate the influence of process parameters to the
melt spinning process a fiber model is used and coupled
with CFD calculations of the quench air flow. In the fiber
model energy, momentum and mass balance are solved
for the polymer mass flow. To calculate the quench air
the Lattice Boltzmann method is used. Simulations and
experiments for different process parameters and hole
configurations are compared and show a good agree-
ment.

Keywords:

Melt spinning, fiber model, Lattice Boltzmann, CFD
(19°S.,2001)

27. A. Zemitis
On interaction of a liquid film with an
obstacle

In this paper mathematical models for liquid films gener-
ated by impinging jets are discussed. Attention is stressed
to the interaction of the liquid film with some obstacle.
S. G. Taylor [Proc. R. Soc. London Ser. A 253, 313 (1959)]
found that the liquid film generated by impinging jets is
very sensitive to properties of the wire which was used as
an obstacle. The aim of this presentation is to propose a
modification of the Taylor’s model, which allows to simu-
late the film shape in cases, when the angle between jets
is different from 180°. Numerical results obtained by dis-
cussed models give two different shapes of the liquid
film similar as in Taylors experiments. These two shapes
depend on the regime: either droplets are produced close
to the obstacle or not. The difference between two re-
gimes becomes larger if the angle between jets decreas-
es. Existence of such two regimes can be very essential
for some applications of impinging jets, if the generated
liquid film can have a contact with obstacles.

Keywords:

impinging jets, liquid film, models, numerical solution,
shape

(22 °S.,2001)

28. . Ginzburg, K. Steiner

Free surface lattice-Boltzmann method to
model the filling of expanding cavities by
Bingham Fluids

The filling process of viscoplastic metal alloys and plastics
in expanding cavities is modelled using the lattice Boltz-
mann method in two and three dimensions. These mod-
els combine the regularized Bingham model for visco-
plastic with a free-interface algorithm. The latter is based
on a modified immiscible lattice Boltzmann model in
which one species is the fluid and the other one is con-
sidered as vacuum. The boundary conditions at the
curved liquid-vacuum interface are met without any geo-
metrical front reconstruction from a first-order Chapman-
Enskog expansion. The numerical results obtained with
these models are found in good agreement with avail-
able theoretical and numerical analysis.

Keywords:

Generalized LBE, free-surface phenomena, interface
boundary conditions, filling processes, Bingham visco-
plastic model, regularized models

(22 °S.,2001)

29. H. Neunzert

»Denn nichts ist fiir den Menschen als Men-
schen etwas wert, was er nicht mit Leiden-
schaft tun kann«

Vortrag anlasslich der Verleihung des Akademie-
preises des Landes Rheinland-Pfalz am
21.11.2001

Was macht einen guten Hochschullehrer aus? Auf diese
Frage gibt es sicher viele verschiedene, fachbezogene
Antworten, aber auch ein paar allgemeine Gesichtspunk-
te: es bedarf der »Leidenschaft« fur die Forschung (Max
Weber), aus der dann auch die Begeisterung fur die Leh-
re erwachst. Forschung und Lehre gehdren zusammen,
um die Wissenschaft als lebendiges Tun vermitteln zu
konnen. Der Vortrag gibt Beispiele dafur, wie in ange-
wandter Mathematik Forschungsaufgaben aus prakti-
schen Alltagsproblemstellungen erwachsen, die in die
Lehre auf verschiedenen Stufen (Gymnasium bis Gradu-
iertenkolleg) einflieBen; er leitet damit auch zu einem
aktuellen Forschungsgebiet, der Mehrskalenanalyse mit
ihren vielfaltigen Anwendungen in Bildverarbeitung,
Materialentwicklung und Strémungsmechanik tber, was
aber nur kurz gestreift wird. Mathematik erscheint hier
als eine moderne Schlusseltechnologie, die aber auch
enge Beziehungen zu den Geistes- und Sozialwissen-
schaften hat.

Keywords:

Lehre, Forschung, angewandte Mathematik, Mehrskalen-
analyse, Stromungsmechanik

(185S.,2001)

30. J. Kuhnert, S. Tiwari

Finite pointset method based on the projec-
tion method for simulations of the incom-
pressible Navier-Stokes equations

A Lagrangian particle scheme is applied to the projection
method for the incompressible Navier-Stokes equations.
The approximation of spatial derivatives is obtained by
the weighted least squares method. The pressure Poisson
equation is solved by a local iterative procedure with the
help of the least squares method. Numerical tests are
performed for two dimensional cases. The Couette flow,
Poiseuelle flow, decaying shear flow and the driven cavity

flow are presented. The numerical solutions are obtained
for stationary as well as instationary cases and are com-
pared with the analytical solutions for channel flows.
Finally, the driven cavity in a unit square is considered
and the stationary solution obtained from this scheme is
compared with that from the finite element method.
Keywords:

Incompressible Navier-Stokes equations, Meshfree
method, Projection method, Particle scheme, Least
squares approximation

AMS subject classification:

76D05, 76M28

(25S.,2001)

31. R. Korn, M. Krekel
Optimal Portfolios with Fixed Consumption
or Income Streams

We consider some portfolio optimisation problems where
either the investor has a desire for an a priori specified
consumption stream or/and follows a deterministic pay in
scheme while also trying to maximize expected utility
from final wealth. We derive explicit closed form solu-
tions for continuous and discrete monetary streams. The
mathematical method used is classical stochastic control
theory.

Keywords:

Portfolio optimisation, stochastic control, HJB equation,
discretisation of control problems.

(23S.,2002)

32. M. Krekel
Optimal portfolios with a loan dependent
credit spread

If an investor borrows money he generally has to pay
higher interest rates than he would have received, if he
had put his funds on a savings account. The classical
model of continuous time portfolio optimisation ignores
this effect. Since there is obviously a connection between
the default probability and the total percentage of
wealth, which the investor is in debt, we study portfolio
optimisation with a control dependent interest rate. As-
suming a logarithmic and a power utility function, re-
spectively, we prove explicit formulae of the optimal con-
trol.

Keywords:

Portfolio optimisation, stochastic control, HJB equation,
credit spread, log utility, power utility, non-linear wealth
dynamics

(25S.,2002)

33.J. Ohser, W. Nagel, K. Schladitz
The Euler number of discretized sets - on the
choice of adjacency in homogeneous lattices

Two approaches for determining the Euler-Poincaré char-
acteristic of a set observed on lattice points are consid-
ered in the context of image analysis { the integral geo-
metric and the polyhedral approach. Information about
the set is assumed to be available on lattice points only.
In order to retain properties of the Euler number and to
provide a good approximation of the true Euler number
of the original set in the Euclidean space, the appropriate
choice of adjacency in the lattice for the set and its back-
ground is crucial. Adjacencies are defined using tessella-
tions of the whole space into polyhedrons. InR 3, two
new 14 adjacencies are introduced additionally to the



well known 6 and 26 adjacencies. For the Euler number
of a set and its complement, a consistency relation holds.
Each of the pairs of adjacencies (14:1; 14:1), (14:2; 14:2),
(6; 26), and (26; 6) is shown to be a pair of complemen-
tary adjacencies with respect to this relation. That is, the
approximations of the Euler numbers are consistent if the
set and its background (complement) are equipped with
this pair of adjacencies. Furthermore, sufficient condi-
tions for the correctness of the approximations of the
Euler number are given. The analysis of selected micro-
structures and a simulation study illustrate how the esti-
mated Euler number depends on the chosen adjacency. It
also shows that there is not a uniquely best pair of adja-
cencies with respect to the estimation of the Euler num-
ber of a set in Euclidean space.

Keywords: image analysis, Euler number, neighborhod
relationships, cuboidal lattice

(32°S.,2002)

34. 1. Ginzburg, K. Steiner

Lattice Boltzmann Model for Free-Surface
flow and Its Application to Filling Process in
Casting

A generalized lattice Boltzmann model to simulate free-
surface is constructed in both two and three dimensions.
The proposed model satisfies the interfacial boundary
conditions accurately. A distinctive feature of the model
is that the collision processes is carried out only on the
points occupied partially or fully by the fluid. To maintain
a sharp interfacial front, the method includes an anti-
diffusion algorithm. The unknown distribution functions
at the interfacial region are constructed according to the
first order Chapman-Enskog analysis. The interfacial
boundary conditions are satisfied exactly by the coeffi-
cients in the Chapman-Enskog expansion. The distribu-
tion functions are naturally expressed in the local interfa-
cial coordinates. The macroscopic quantities at the inter-
face are extracted from the least-square solutions of a
locally linearized system obtained from the known distri-
bution functions. The proposed method does not require
any geometric front construction and is robust for any
interfacial topology. Simulation results of realistic filling
process are presented: rectangular cavity in two dimen-
sions and Hammer box, Campbell box, Sheffield box, and
Motorblock in three dimensions. To enhance the stability
at high Reynolds numbers, various upwind-type schemes
are developed. Free-slip and no-slip boundary conditions
are also discussed.

Keywords: Lattice Boltzmann models, free-surface phe-
nomena, interface boundary conditions; filling processes;
injection molding; volume of fluid method; interface
boundary conditions; advection-schemes, upwind-
schemes

(54 S.,2002)

35. M. Gunther, A. Klar, T. Materne, R. Wegener
Multivalued fundamental diagrams and stop
and go waves for continuum traffic equa-
tions

In the present paper a kinetic model for vehicular traffic
leading to multivalued fundamental diagrams is devel-
oped and investigated in detail. For this model phase
transitions can appear depending on the local density
and velocity of the flow. A derivation of associated mac-
roscopic traffic equations from the kinetic equation is
given. Moreover, numerical experiments show the ap-
pearance of stop and go waves for highway traffic with a
bottleneck.

Keywords: traffic flow, macroscopic equations, kinetic
derivation, multivalued fundamental diagram, stop and
go waves, phase transitions
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36. S. Feldmann, P. Lang, D. Pratzel-Wolters
Parameter influence on the zeros of network
determinants

To a network A{g) with determinant A(s;q) depending
on a parameter vector ¢ € R* via identification of some
of its vertices, a network \(g) is assigned. The paper
deals with procedures to find AV(g), such that its determi-
nant A(s;q) admits a factorization in the determinants of
appropriate subnetworks, and with the estimation of the
deviation of the zeros of A from the zeros of A. To solve
the estimation problem state space methods are applied.
Keywords: Networks, Equicofactor matrix polynomials,
Realization theory, Matrix perturbation theory
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