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Abstract

The Discrete Ordered Median Problem (DOMP) generalizes classical discrete
location problems, such as the N -median, N -center and Uncapacitated Facility Lo-
cation problems. It was introduced by Nickel [16], who formulated it as both a
nonlinear and a linear integer program. We propose an alternative integer linear
programming formulation for the DOMP, discuss relationships between both integer
linear programming formulations, and show how properties of optimal solutions can
be used to strengthen these formulations. Moreover, we present a specific branch
and bound procedure to solve the DOMP more efficiently. We test the integer linear
programming formulations and this branch and bound method computationally on
randomly generated test problems.

Keywords: Discrete Location, Integer Programming.

1 Introduction

Discrete location problems have been widely studied, not least because of their importance
in practical applications. A number of survey articles and textbooks have been written
on these problems, see, for example, [2, 4, 14], and references therein. Discrete location
problems typically involve a finite set of sites at which facilities can be located, and a
finite set of clients, which demand requests to be supplied from facilities. Even for the
simplest of such problems, such as the Capacitated or Uncapacitated Facility Location
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Problem, which are relatively tractable, new methods and results continue to emerge (see
for example [1, 15]) in an effort to solve larger problems, faster. Variations, such as hub
location, are much more challenging, and it is still difficult to solve even modest sized
problems to optimality (see for example [5, 6, 13]). Whilst many problem variations have
been considered in the literature, we will focus on problems in which a fixed number of
facilities must be located at sites chosen from among the given set of candidate sites, and
in which a given client can only be supplied from a single facility. For each client-site pair,
there is a given cost for meeting the demand of the client from a facility located at the
site.

An interesting feature of discrete location problems is the variety of objective functions
that have been considered. The median objective is to minimize the sum of the costs of
supplying all clients from the facilities at the selected sites. The center objective is to
minimize the maximum cost of supplying a client, from amongst the sites chosen, over all
clients. The centdian objective is a convex combination of the median and center objectives;
it aims to keep both the total cost and largest cost low. These are the three objectives
most frequently encountered in the literature. It is worth noting that every problem has
its own solution method, including its own algorithmic approach.

The increasing need for discrete location models in strategic supply chain planning,
see for example [9], has made it necessary to develop new and flexible location models.
To that end, [16] introduced a new type of objective function which generalized the most
popular objective functions mentioned above. This objective function applies a penalty to
the cost of supplying a client which is dependent on the position of that cost relative to
the costs of supplying other customers. For example, a different penalty might be applied
if the cost of supplying the client was the 5th-most expensive such cost rather than the
2nd-most expensive. This adds a “sorting” problem to the underlying facility location
problem, making formulation and solution much more challenging.

For planar and network location problems the generalized model was studied in [7], [17],
[18], [19], and [20]. In [16], a formulation of the discrete case, called the Discrete Ordered
Median Problem (DOMP), is discussed. A nonlinear integer programming formulation is
developed, and a linearization with number of variables and constraints proportional to
the number of sites, cubed, is proposed. However, no computation is attempted in [16],
and there is no attempt to determine how effective integer programming approaches can
be in solving the DOMP.

In this paper we develop two different integer linear programming (ILP) formulations
for this new location model, DOMP. Both have O(M2) constraints, but one uses O(M3)
variables, while the other uses only O(M2) variables, where M is the number of clients
(and sites). For hub location problems, it was found in [5] that using properties of optimal
solutions to eliminate variables and add constraints to the formulation could strengthen it
significantly. Here we are able to strengthen both formulations using properties of optimal
solutions. In order to compare the two formulations we generate test problems from eight
representative classes. These eight classes attempt to represent the variety of objective
functions possible for DOMP, for example, one of the classes uses a median objective while
another class uses a trimmed mean objective. By testing the performance of the two ILP
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formulations on problems from these eight classes, we can get some measure of the degree
of difficulty of the different classes and can compare the ILP formulations’ performance
on each class. Finally, we develop a branch and bound (B&B) algorithm designed using
the special structure of our model, using relatively simple lower bounds rather than lower
bounds determined by solving an LP. We test the B&B algorithm on a large battery of
problems, comparing its performance with that of the integer linear programming approach
using a standard solver.

Of the three approaches investigated, we would expect the O(M3) ILP formulation
would yield the strongest lower bounds, followed by the O(M2) ILP formulation, with the
easily calculated lower bounds used in the branch and bound procedure weakest. (In fact
this was not uniformly the case, as we report in detail in Section 5.) However the order
is reversed if we base it on least computational effort required to calculate the bound: the
branch and bound method requires only a very easy calculation, followed by the O(M2)
ILP formulation, with the O(M3) formulation requiring most effort. The three methods
thus explore the trade-off between the quality of bound and computational effort required
at each node of the branch and bound tree. In the context of hub location, it was found
in [5] that an intermediate position gave the best trade-off, but here that is not the case,
as we shall discuss in detail in Sections 5 and 7.

The remainder of the paper is organized as follows. In the next section, we present a
formal definition of the DOMP and review the nonlinear formulation of [16]. In Section 3 we
present the integer linear formulation already introduced in [16]. Moreover, we introduce
an alternative integer linear programming formulation for the DOMP. We go on in Section 4
to discuss properties of optimal solutions, which allow us to strengthen the formulations.
In Section 5 we describe our random problem generator, and test problem sets, and present
the results of computational experiments with all integer linear programming formulations.
A branch and bound method is introduced in Section 6 and numerical results comparing
two branching schemes are given. Further computational results for this method and
comparison of its performance with that of the integer programming linearizations are
given in Section 7. Finally, in Section 8, we summarize our conclusions and give suggestions
for further research.

2 Problem Definition and Review of Previous Work

Problem Definition

Let A denote the given set of M sites, and identify these with the integers 1, . . . , M , so
A = {1, . . . , M}. Let C = (cij)i,j=1,...,M be the given non-negative M × M cost matrix,
where cij denotes the cost of satisfying the demand of client i from a facility located at
site j. (As is customary for location problems, we assume without loss of generality that
the set of candidate sites is identical to the set of clients.) Let N ≤ M be the number of
facilities to be located, at N of the M candidate sites. A solution to the location problem
is given by a set of N sites; we use X ⊆ A with |X| = N to denote a solution. We assume
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that each client will be served by a facility located at a site which yields the cheapest cost
of satisfying demand, i.e. given a solution X, we assume that each client i will be supplied
from a site j ∈ X such that

cij = ci(X) := min
k∈X

cik. (1)

What distinguishes the DOMP from a usual single-supplier uncapacitated facility location
problem is its objective. This objective applies a linear cost, with coefficient λi ≥ 0, to the
ith cheapest cost of supplying a client, for each i = 1, . . . , M . So in order to calculate the
objective, the costs of supplying clients, c1(X), . . . , cM(X), must be ordered. We define σX

to be a permutation on {1, . . . , M} for which the inequalities

cσX(1)(X) ≤ cσX(2)(X) ≤ · · · ≤ cσX(M)(X) (2)

hold. We call any such permutation a valid permutation for X. For short we will denote
c≤(X) = (cσX(1)(X), . . . , cσX(M)(X)). Let λ = (λ1, . . . , λM) with λi ≥ 0, i = 1, . . . , M . The
Discrete Ordered Median Problem (DOMP) is defined as

min
X⊆A , |X|=N

M∑

i=1

λicσX (i)(X) .

Note that the linear representation of the DOMP is only pointwise defined, since cσX(i)(X)
depends on X.

For different choices of λ we obtain different types of objective functions. To see
that the DOMP objective generalizes well known location objectives, note that taking
λ = (1, 1, . . . , 1) makes the DOMP equivalent to the N -median problem; taking λ =
(0, 0, . . . , 0, 1) makes the DOMP equivalent to the N -center problem; taking
λ = (µ, µ, . . . , µ, 1) for 0 < µ < 1 leads to the µ-centdian problem, which is a convex combi-
nation of the median and the center objective functions; and taking λ = (0, . . . , 0, 1, . . . , 1),
where the first M − k entries are zero and the last k entries are one, leads to the k-centra
problem of minimizing the average cost of the k most expensive clients. Other objectives
may also be of practical interest. One example is to take λ = (0, . . . , 0, 1, . . . , 1, 0, . . . , 0),
where the first k1 and last k2 entries are zero, and the middle M−k1−k2 entries are one: this
leads to a problem in which the k1 smallest costs and the k2 largest costs are disregarded
and the average of the middle part, the so-called (k1+k2)-trimmed mean, which is a robust
statistic, is minimized. Another example would be to take λ = (1, . . . , 1, 0, . . . , 0, 1, . . . , 1),
where the first k1 entries are one, the next M − k1 − k2 entries are zero, and the last k2

entries are one: this leads to the problem of minimizing the sum of the k1 smallest costs and
the k2 largest costs; the corresponding DOMP searches for a set of N facilities minimizing
the average cost for the clients which are very close and very far away. A final example
would be to take λ = (2, 0, . . . , 0, 1): this leads to the problem of minimizing the sum of
the largest cost and the smallest cost (counted twice), with all other costs ignored. Clearly,
classical location problems can easily be modelled. Moreover, new meaningful objective
functions are easily derived, as shown above. An example presented by [16] shows the great
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impact that the choice of the objective function has on the optimal location of the new
facilities.

Observe that the DOMP belongs to the class of NP-hard problems, since it is a gener-
alization of the N -median problem, which is NP-hard (see [10]).

An Illustrative Example

Consider the DOMP with M = 5, N = 2, and the cost matrix below.

C =





0 4 5 3 3
5 0 6 2 2
7 3 0 5 1
7 3 3 0 5
1 3 2 4 0





We show how the objective function value for the case λ = (0, 0, 1, 1, 0), which yields the
(2+1)-trimmed mean problem, is calculated. The optimal solution has facilities located at
sites 1 and 4, with the demand of clients 1 and 5 satisfied by facility 1 and the demand
of the remaining clients satisfied by facility 4. The associated cost vector is (0, 2, 5, 0, 1).
The sorted cost vector is (0, 0, 1, 2, 5) and the optimal objective function value is thus
〈λ, (0, 0, 1, 2, 5)〉 = 0 × 0 + 0 × 0 + 1 × 1 + 1 × 2 + 0 × 5 = 3.

Formulation of the Problem

We now review the integer programming formulation for this problem given in [16]. This
nonlinear model is made up of two components. The first has variables and constraints
which correspond to the classical N -median location problem. We use the standard vari-
ables

yij =

{
1, if the demand of client i is satisfied by a facility at site j
0, otherwise

(3)

for i, j = 1, . . . , M and

xj =

{
1, if a facility is located at site j
0, otherwise

(4)

for j = 1, . . . , M , and write

N = {(x, y) ∈ BM × R
M2

:

M∑

j=1

xj = N,

M∑

j=1

yij = 1, ∀i = 1, . . . , M and

yij ≤ xj , ∀i, j = 1, . . . , M},
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where B = {0, 1}. The second component is used to sort the clients, in order of increasing
cost. Variables

sij =

{
1, if the cost of supplying client j is the ith cheapest such cost
0, otherwise,

(5)

for each i, j = 1, . . . , M , are used to indicate the ordering. To be a permutation, these
variables must satisfy assignment constraints. We let

P = {s ∈ BM2

:

M∑

i=1

sij = 1 ∀j = 1, . . . , M, and

M∑

j=1

sij = 1 ∀i = 1, . . . , M}

denote the set of all permutations. Of course, the permutation must be made to order
the clients in increasing cost of supply, and the DOMP objective must weight the cost of
this supply appropriately. This is accomplished via a nonlinear constraint and nonlinear
objective function, as follows.

(DOMP)

min
s∈P,(x,y)∈N

M∑

i=1

M∑

k=1

sik

(
M∑

j=1

ykjckj

)
λi

s.t.

M∑

k=1

sik

(
M∑

j=1

ykjckj

)
≤

M∑

k=1

si+1,k

(
M∑

j=1

ykjckj

)
∀i = 1, . . . , M − 1 (6)

3 Linearizations

First we recall the linearization given in [16] which is analogous to that of [12] for the
quadratic assignment problem. We use binary variables

zikj = sikykj i, j, k = 1, . . . , M, (7)

so zikj = 1 if client k is supplied by a facility located at site j and is the ith cheapest client
supplied; zikj = 0 otherwise. The linearization of the DOMP is thus as follows.
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min
s∈P,(x,y)∈N

M∑

i=1

M∑

k=1

M∑

j=1

λickjzikj

s.t.

M∑

k=1

M∑

j=1

ckjzikj ≤
M∑

k=1

M∑

j=1

ckjzi+1,kj ∀i = 1, . . . , M − 1 (8)

M∑

i=1

zikj = ykj ∀k, j = 1, . . . , M (9)

M∑

j=1

zikj = sik ∀i, k = 1, . . . , M (10)

M∑

k=1

M∑

i=1

M∑

j=1

zikj = M (11)

sik + ykj − 2zikj ≥ 0 ∀i, j, k = 1, . . . , M (12)

zikj ≥ 0 ∀i, j, k = 1, . . . , M

This linearization can be directly improved as follows: constraints (9) and (10) can be
used to eliminate the s and y variables respectively, resulting in an equivalent formulation
using only x and z variables. In the resulting formulation, the assignment constraints on
s, once s is substituted out using (10), imply the sum constraint (11), so this is omitted.
The formulation in x and z variables alone is thus as follows.

(LDOMP1)

min
x∈{0,1}M , z∈{0,1}M3

M∑

i=1

M∑

k=1

M∑

j=1

λickjzikj
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s.t.

M∑

i=1

M∑

j=1

zikj = 1 ∀k = 1, . . . , M (13)

M∑

k=1

M∑

j=1

zikj = 1 ∀i = 1, . . . , M (14)

M∑

k=1

M∑

j=1

ckjzikj ≤
M∑

k=1

M∑

j=1

ckjzi+1,kj ∀i = 1, . . . , M − 1 (15)

M∑

j=1

xj = N (16)

xj ≥
M∑

i=1

zikj ∀k, j = 1, . . . , M (17)

It is not difficult to show that (LDOMP1) is a valid integer linear programming model
of the DOMP. Note that (LDOMP1) has O(M3) variables and O(M2) constraints.

We develop an alternative linearization for (DOMP), which use O(M2) variables rather
than the O(M3) variables of (LDOMP1). Our linearization is inspired by the mixed integer
linear programming formulation of [11], for the quadratic assignment problem. Variables
are introduced which take on values of costs of supply; in a sense they absorb the objective
function.

We define M2 new real variables w′
ik by

w′
ik = sik

M∑

j=1

ckjykj i, k = 1, . . . , M,

so w′
ik is the cost of supplying client k if k is the ith client in order of cost of supply,

and zero otherwise. However, it is not necessary to include variables to record the cost of
supplying each client k; it suffices to record the ith smallest cost of supply alone. Hence
we may replace the variables w′

ik with variables wi defined by

wi =
M∑

k=1

w′
ik =

M∑

k=1

sik

M∑

j=1

ckjykj

for each i = 1, . . . , M , so wi represents the cost of supplying the client with the ith small-
est cost of supply. Using these variables, we get the following linearization of the DOMP,
where ck is the Nth largest entry of the cost matrix at row k, i.e. ck is the Nth largest
element of the set {ckj | j = 1, . . . , M}.
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(LDOMP2)

min
s∈P,(x,y)∈N ,w∈�M

+

M∑

i=1

λiwi

s.t.

wi ≤ wi+1 ∀i = 1, . . . , M − 1 (18)
M∑

i=1

wi =
M∑

j=1

M∑

k=1

ckjykj (19)

wi ≥
M∑

j=1

ckjykj − c̄k(1 − sik) ∀i, k = 1, . . . , M (20)

It is not hard to show that (LDOMP2) is a valid formulation of the DOMP.

4 Strengthening the Formulations

In this section we will present some results to improve the linearizations. These im-
provements consist of additional constraints, strengthened forms of original constraints,
or preprocessing steps, such as fixing some variables to zero, or relaxing integrality re-
quirements on some variables. These help to reduce the computing time required to solve
the DOMP, either by reducing the gap between the optimal objective function value and
the relaxed LP solution, or by reducing the number of variables for which integrality must
be ensured. For some of these properties, we will assume free self-service, i.e. we assume
cii = 0, ∀i = 1, . . . , M . For short we will denote this property by (FSS).

Our first strengthening idea makes use of an existing upper bound zUB on the value
of the DOMP, and has some resemblance to standard reduced cost variable fixing ideas.
Upper bounds are, of course, easy to come by; any set of N locations yields one. Good upper
bounds might be more difficult to obtain, but for our purposes here, we simply assume
that some upper bound is available. Consider a client k. Now either the cost of supplying
k is going to be among the largest M − m such costs, or the cost of supplying k is going
to be among the smallest m costs, in which case the objective value of the problem must

be at least
M∑

i=m

λi multiplied by the cost of supplying client k; this value is clearly a lower

bound. Obviously we are only interested in solutions to the problem with objective value
less than or equal to zUB, so we are only interested in solutions with either client k’s cost
ranked m + 1 or higher, or with k supplied from some location j with ckj

∑M
i=m λi ≤ zUB,

i.e. with ckj ≤ zUB/
∑M

i=m λi. We formalize this in the proposition below, in which we
make use of the following notation for the total cost of some set of sites X:

L(X) = 〈λ, c≤(X)〉 =
M∑

i=1

λicσX(i)(X)
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where σX is a valid permutation of X. We also write σ−1
X (k) to denote the rank of client k

in the cost ordering, so if σX(i) = k for some i, k ∈ {1, . . . , M} then σ−1
X (k) = i. Note that

we adopt the convention that if
M∑

i=m

λi = 0 then ckj ≤ zUB/
∑M

i=m λi = ∞ for all k and j.

Proposition 1 Given a value zUB, any set X of N locations having ordered cost L(X) ≤
zUB must have σ−1

X (k) ≥ m+1 for all clients k = 1, . . . , M and all ranks m = 1, . . . , M −1

for which ck(X) > zUB/
∑M

i=m λi.

Proof.
Suppose there exist k ∈ {1, . . . , M} and m ∈ {1, . . . , M−1} such that ck(X) > zUB/

∑M
i=m λi

and σ−1
X (k) ≤ m. Then there exists r ≤ m such that σ−1

X (k) = r, i.e. k = σX(r). Now by
the definition of σX ,

cσX(M)(X) ≥ · · · ≥ cσX(m)(X) ≥ cσX(r)(X) = ck(X).

Since C and λ are both non-negative, we thus have

L(X) =

M∑

i=1

λicσX(i)(X) ≥
M∑

i=m

λicσX(i)(X) ≥
M∑

i=m

λick(X) = ck(X)

(
M∑

i=m

λi

)
> zUB.

We have proved the contrapositive of the lemma; the result follows. �

In the computational results presented in Section 5 this upper bound (zUB) is computed
by a heuristic method based on variable neighbourhood search, see [3].

We state without proof the following proposition, which will be of use later.

Proposition 2 If (FSS) holds then each open facility can satisfy its demand by itself, at
a cost of zero. Thus for any set X of N facilities, we have ci(X) = 0 for all i ∈ X.
Furthermore, there exists σX , a valid permutation for X, i.e. satisfying (2), that also
satisfies

{σX(i) : i = 1, . . . , N} = X. (21)

In other words, there exists σX a valid permutation for X such that the first N elements
are the open facilities. Consequently

0 = cσX (1)(X) = · · · = cσX(N)(X) ≤ cσX(N+1)(X) · · · ≤ cσX(M)(X). (22)

Notice that the proof is straightforward since we have assumed that costs are non-
negative, i.e. cij ≥ 0 for all i, j, so ci(X) ≥ 0 for all i ∈ A.

After stating these general properties we will show in the following subsections improve-
ments for the different linearizations introduced.
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Improvements for (LDOMP1)

In the following we will prove some properties which are fulfilled by optimal solutions of
(LDOMP1) and therefore, allow us to derive better formulations.

Lemma 1 Any optimal solution (x, z) for (LDOMP1) with objective value less than or
equal to zUB must satisfy

zmkj = 0 ∀m, k, j such that ckj >
zUB∑M
i=m λi

. (23)

Proof.
Suppose (x, z) is an optimal solution of (LDOMP1). Assume further that it has an objec-
tive value less than or equal to zUB; and there exist m, j′, k′ such that ck′j′ > zUB/

∑M
i=m λi

and zmk′j′ = 1. From the definition of zmk′j′, see (7), it follows that site j′ is in the solution
set of sites X induced by (x, z), and that client k′ is ranked at position m (i.e. σX(m) = k′).
Furthermore, client k′ is allocated to the site j′, thus ck′(X) = ck′j′ > zUB/

∑M
i=m λi. Fi-

nally, L(X) is the objective value of (x, z) in (LDOMP1), and so L(X) ≤ zUB. Hence by
Proposition 1, it must be that σ−1

X (k′) ≥ m+1. But σ−1
X (k′) = m, so this is a contradiction,

and the result is proved. �

Lemma 2 If (FSS) holds, then there exists an optimal solution (x, z) of (LDOMP1) sat-
isfying

N∑

i=1

zikk = xk, ∀k = 1, . . . , M. (24)

Proof.
Let (x, z′) be an optimal solution of (LDOMP1). Let X be the set of facilities induced by
x, i.e. X = {j ∈ A : xj = 1}. We have |X| = N by (16). Let σX be a valid permutation
for X, so σX satisfies (2). By Proposition 2, we may assume σX also satisfies (21), and
so σ−1

X (k) ∈ {1, . . . , N} for each k ∈ X. For each k ∈ A \ X, choose j(k) a minimizer
of min

j∈X
ckj. Observe that for each k ∈ X, by (FSS), k itself is a minimizer of min

j∈X
ckj: set

j(k) = k for all k ∈ X. Define z by zikj = 1 if j = j(k) and k = σX(i), and zikj = 0
otherwise, for each i, k, j ∈ A. By the validity of (LDOMP1), it must be that (x, z) is an
optimal solution of (LDOMP1). Now we consider two cases for (24).
Case 1: k ∈ X In this case j(k) = k and σ−1

X (k) ∈ {1, . . . , N}, so zσ−1
X (k)kk = 1 and zikk = 0

for all i ∈ {1, . . . , N}, i 
= σ−1
X (k). Thus

N∑

i=1

zikk = zσ−1
X (k)kk = 1 = xk as required.

Case 2: k 
∈ X In this case j(k) 
= k, since j(k) ∈ X by definition, so zikk = 0 for all i.

Thus

N∑

i=1

zikk = 0 = xk as required.

In either case, (24) is satisfied by (x, z), an optimal solution to (LDOMP1). �
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Corollary 1 If (FSS) holds, then there exists an optimal solution to (LDOMP1) satisfying
constraints (23) and (24).

Proof.
By Lemma 2 there exists an optimal solution (x, z) satisfying (24). By Lemma 1, every
optimal solution satisfies (23), so (x, z) does. Thus (x, z) exists satisfying both (23) and
(24). �

Proposition 3 Suppose (FSS) holds, and let (x, z) solve (LDOMP1) with integrality re-
laxed on all zikj variables with i ∈ {1, . . . , N} and j, k ∈ {1, . . . , M}, and with the additional
constraints (23) and (24). Then x induces an optimal solution to the DOMP.

Proof.
We will proceed by showing that there exists z′ such that (x, z′) is an optimal solution to
(LDOMP1). By the validity of (LDOMP1), we conclude that x must induce an optimal
solution to the DOMP.

We firstly let X be the set of facilities induced by x and let σX be a valid permutation
for X satisfying (21). (Such a permutation exists by Proposition 2.) By (21) it must be
that

xσX (1) = xσX (2) = · · · = xσX (N) = 1,

i.e. σ−1
X (j) ∈ {1, . . . , N} for all j ∈ X, and xj = 0 for all j ∈ {1, . . . , M} with σ−1

X (j) > N .
We now define z′ by

z′ikj =






zikj, i > N
1, i ≤ N, k = j = σX(i)
0, otherwise

for each i, k, j ∈ {1, . . . , M}.
We show that z′ is feasible for (LDOMP1), as follows.
To show z′ satisfies (13), we consider two cases.

Case 1: k ∈ X Since z satisfies (24) and in this case xk = 1, it must be that

N∑

i=1

zikk = 1.

Furthermore, z satisfies (13), and so it must be that
M∑

i=N+1

M∑

j=1

zikj = 0. Hence, and from

the definition of z′, we have

M∑

i=1

M∑

j=1

z′ikj =

N∑

i=1

M∑

j=1

z′ikj +

M∑

i=N+1

M∑

j=1

zikj

= z′
σ−1

X (k)kk
+ 0

= 1

as required.
Case 2: k 
∈ X We will begin by showing that

∑
j∈X zijj = 1 for all i ∈ {1, . . . , N}. Firstly,

12



we have from (24) that
∑N

i=1 zijj = 1 for all j ∈ X. Secondly, by (14), we know that∑
j∈X zijj ≤ 1 for all i ∈ {1, . . . , N}. Now suppose there exists i ∈ {1, . . . , N} with∑
j∈X zijj < 1. Then

N∑

i=1

∑

j∈X

zijj < N =
∑

j∈X

N∑

i=1

zijj

since |X| = N . This is obviously a contradiction, so it must be that
∑

j∈X zijj = 1 for all
i ∈ {1, . . . , N}. Therefore, by (14) again, it must be that zik′j = 0 for all i ∈ {1, . . . , N},
and all j, k′ ∈ A with k′ 
= j or j 
∈ X. Thus by (13), and since k 
∈ X, it must be that

M∑

i=N+1

M∑

j=1

zikj = 1.

To conclude, we observe that by the definition of z′, and since k 
∈ X, we have that z′ikj = 0
for all i ∈ {1, . . . , N} and all j ∈ A, so

M∑

i=1

M∑

j=1

z′ikj =

N∑

i=1

M∑

j=1

z′ikj +

M∑

i=N+1

M∑

j=1

zikj

=
N∑

i=1

M∑

j=1

0 + 1

= 1

as required.
To show that z′ satisfies (14) is much easier. For i > N , z′ikj = zikj for all j, k ∈ A, so

M∑

k=1

M∑

j=1

z′ikj =

M∑

k=1

M∑

j=1

zikj = 1

since z satisfies (14). For i ≤ N , z′ikj = 1 if k = j = σX(i), and z′ikj = 0 otherwise.
Therefore (14) must hold.

To show z′ satisfies (15) is similar. For all i > N , z′ikj = zikj for all j, k ∈ A, so the
results follows since z satisfies (15). For all i ≤ N ,

M∑

k=1

M∑

j=1

ckjz
′
ikj = cσX(i)σX (i) = 0

since (FSS) holds, so (15) holds.
Proving that z′ satisfies (17) is similar to showing z′ satisfies (13). We have the same

two cases.

Case 1: k ∈ X From earlier arguments, we have in this case that
M∑

i=N+1

M∑

j=1

zikj = 0. Hence

13



M∑

i=N+1

zikj = 0 for all j ∈ A. Now from the definition of z′, z′ikj = 1 for i ∈ {1, . . . , N} only

if j = k = σX(i), so we have that if j 
= k,

M∑

i=1

z′ikj =
N∑

i=1

z′ikj +
M∑

i=N+1

zikj

= 0 + 0 = 0 ≤ xj

while if j = k, then xj = 1 since j = k ∈ X, and we have

M∑

i=1

z′ikj =
N∑

i=1

z′ikj +
M∑

i=N+1

zikj

= z′
σ−1

X (k)kk
+ 0

= 1 = xj

as required.
Case 2: k 
∈ X In this case, we see from the definition of z′ that z′ikj = 0 for all i ∈
{1, . . . , N} and all j ∈ A. Thus

M∑

i=1

z′ikj =
N∑

i=1

z′ikj +
M∑

i=N+1

zikj

= 0 +
M∑

i=N+1

zikj

≤
M∑

i=1

zikj

≤ xj

since z satisfies (17), as required.
Obviously z′ is binary.
Thus z′ is feasible for (LDOMP1).
We now show that the objective value of z′ in (LDOMP1) is no more than that of z. It

is helpful to define that objective, via

ζi(z) =

M∑

k=1

M∑

j=1

ckjzikj

for each i, so the objective is
M∑

i=1

λiζi(z).

14



Now for i > N , z′ikj = zikj for all k, j, so

ζi(z
′) =

M∑

k=1

M∑

j=1

ckjz
′
ikj =

M∑

k=1

M∑

j=1

ckjzikj = ζi(z).

For i ≤ N , z′ikj = 1 only if j = k = σX(i), and z′ikj = 0 otherwise, so

ζi(z
′) =

M∑

k=1

M∑

j=1

ckjz
′
ikj = cσX(i)σX (i) = 0

by (FSS), and thus
ζi(z

′) = 0 ≤ ζi(z).

We have shown that ζi(z
′) ≤ ζi(z) for all i = 1, . . . , N . Since λ ≥ 0 is assumed, the

objective value of z′ in (LDOMP1) is

M∑

i=1

λiζi(z
′) ≤

M∑

i=1

λiζi(z), (25)

i.e. no more than the objective value of z.
To conclude, we observe that by Corollary 1, the objective value of z is a lower bound

on the value of (LDOMP1): (LDOMP1) with additional constraints (23) and (24) has
the same optimal objective value as (LDOMP1) alone, by Corollary 1, and (x, z) solves a
relaxation of (LDOMP1) with additional constraints (23) and (24). Since z′ is feasible for
(LDOMP1), the objective value of z′ is an upper bound on the optimal value of (LDOMP1).
But by (25), the value of z′ is no greater than that of z. Therefore the value of z′ must be
the optimal value of (LDOMP1) and (x, z′) must be an optimal solution. By the validity
of (LDOMP1), x must induce an optimal solution to DOMP. �

As a consequence of the results above if (FSS) holds we can add constraints (23) and
(24) to (LDOMP1). Moreover, we can replace constraints zikj ∈ {0, 1} by 0 ≤ zikj ≤ 1 for
all i = 1, . . . , N and all j, k = 1, . . . , M .

Improvements for (LDOMP2)

In the following we will prove some properties which are fulfilled by optimal solutions of
(LDOMP2).

Lemma 3 If (x, y, s, w) is an optimal solution for (LDOMP2) with objective value less
than or equal to zUB then

∑

j : ckj≤ zUB�M
i=m

λi

xj ≥
m∑

i=1

sik (26)

holds for all k, m = 1, . . . , M .
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Proof.
Let (x, y, s, w) be an optimal solution for (LDOMP2), with objective value less than or
equal to zUB. Let X be the set of facilities induced by x and let σX be the permutation of
{1, . . . , M} induced by s, i.e. let σX(i) = j if and only if sij = 1. Then since (LDOMP2)
is a correct formulation, |X| = N , σX is a valid permutation for X and L(X) is the
objective value of (x, y, s, w) in (LDOMP2), so L(X) ≤ zUB. Take any arbitrary k, m ∈
{1, . . . , M}. By the definition of P,

∑m
i=1 sik ∈ {0, 1}. Since x ≥ 0, (26) trivially holds

when
∑m

i=1 sik = 0. Thus, let us assume that
∑m

i=1 sik = 1. Therefore srk = 1 for some
1 ≤ r ≤ m, and so σX(r) = k and σ−1

X (k) = r ≤ m. Hence, by Proposition 1, we have

that ck(X) ≤ zUB/
∑M

i=m λi. By (1), the definition of ck(X), there must exist j ∈ X with

ckj = ck(X). Thus there exists j with xj = 1 and with ckj ≤ zUB/
∑M

i=m λi, and so

∑

j : ckj≤ zUB�M
i=m

λi

xj ≥ 1 =
m∑

i=1

sik

as required. �

Lemma 4 Any optimal solution (x, y, s, w) of (LDOMP2) satisfies

wi ≥
M∑

j=1

ckjykj − ck(1 −
i∑

l=1

slk), ∀i, k = 1, . . . , M (27)

where ck is the N th largest entry of the cost matrix at row k.

Proof.
Let (x, y, s, w) be an optimal solution of (LDOMP2) and let i, k ∈ {1, . . . , M}. Then by
constraints (18) and (20) we have for any l ∈ {1, . . . , i} that

wi ≥ wl ≥
M∑

j=1

ckjykj − ck(1 − slk). (28)

Now since s ∈ P we have to consider only two cases: either slk = 0 for all l ∈ {1, . . . , i},
or there exists l′ ∈ {1, . . . , i} such that sl′k = 1 and slk = 0 for all l ∈ {1, . . . , i} \ {l′}. In

both cases,
i∑

l=1

slk = sl′k for some l′ ∈ {1, . . . , i}, and by (28) with l = l′ we get that (27)

is satisfied, as required. �

Note that (27) is a direct strengthening of (20), and so the former can replace the latter
in the formulation of (LDOMP2).

In what follows, we find it convenient to define an (LDOMP2)-feasible point induced
by a set of facilities X ⊆ {1, . . . , M}.
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Definition 1 Assume (FSS) holds. We say that (x, y, s, w) is an (LDOMP2)-feasible point
induced by X if x, y, s and w are defined as follows. Let x binary be defined by xj = 1
if and only if j ∈ X, for each j ∈ {1, . . . , M}. Choose σX to be a valid permutation for
X satisfying (21). (Such a permutation exists by Proposition 2.) Let s binary be defined
by sik = 1 if and only if σX(i) = k, for each i, k ∈ {1, . . . , M}. For each k ∈ {1, . . . , M},
choose j(k) ∈ arg minj∈X ckj, and let binary y be defined by ykj = 1 if and only if j = j(k),
for each j ∈ {1 . . . , M}. Set wi = cσX (i)(X) for all i = 1, . . . , M .

Of course, to apply the definition, we require |X| = N . In this case, it is easy to
show that the name is justified, and that (x, y, s, w) must indeed be a feasible point for
(LDOMP2).

Lemma 5 If (FSS) holds then there exists an optimal solution (x, y, s, w) of (LDOMP2)
satisfying

w1 = w2 = · · · = wN = 0, (29)

N∑

i=1

sij = xj , ∀j = 1, . . . , M, (30)

and
wN+1 ≥ cxj∗ + d(1 − xj∗), (31)

where c = min
k,j=1,...,M,

k �=j

ckj = ck∗j∗ and d = min
k,j=1,...,M,

k �=j, j �=j∗
ckj.

Proof.
Let X be an optimal solution of DOMP and let (x, y, s, w) be an (LDOMP2)-feasible point
induced by X. Let σX be the permutation chosen in defining this (LDOMP2)-feasible
point. Now

M∑

i=1

λiwi =
M∑

i=1

λicσX(i)(X) = L(X)

so by the correctness of (LDOMP2), and since X is optimal for DOMP, it must be that
(x, y, s, w) is optimal for (LDOMP2). By (22), and since wi = cσX(i)(X) for all i = 1, . . . , M ,
by definition, we have that w1 = w2 = · · · = wN = 0, and (29) holds. Furthermore, by
(21), and the definition of s, we have, for each j = 1, . . . , M , that if xj = 1, so j ∈ X,
then sij = 1 if and only if i ∈ {1, . . . , N}, whilst if xj = 0, so j 
∈ X, then sij = 0 for all

i ∈ {1, . . . , N}. Thus, and since
∑M

i=1 sij = 1, it must be that (30) holds.
Now by (21), and since |X| = N , we have that σX(N + 1) 
∈ X. Now cσX(N+1)(X) =

cσX(N+1),j for some j ∈ X, by definition, and so it must be that σX(N + 1) 
= j. Thus
cσX(N+1)(X) ≥ c. Now wN+1 = cσX(N+1)(X), by definition of w, so we have wN+1 ≥
c. Thus (31) holds in the case xj∗ = 1. In the case xj∗ = 0, we have j∗ 
∈ X, and
cσX(N+1)(X) = cσX(N+1),j for some j 
= j∗, where of course j 
= σX(N + 1) as well. Thus
wN+1 = cσX (N+1)(X) ≥ d as required. �
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We now give our final result. Note that its proof makes use of a property of sorted
vectors. Since this property is quite general, we relegate its statement and proof to Ap-
pendix A (see Lemma 6).

Proposition 4 Suppose (FSS) holds and let (x, y, s, w) solve (LDOMP2) with additional
constraints (29), (30) and (31), but with integrality relaxed on all variables sij with i ∈
{1, . . . , N} and j ∈ {1, . . . , M}. Then x induces an optimal solution to DOMP.

Proof.
Let (x, y, s, w) be an optimal solution of (LDOMP2), satisfying (29), (30) and (31), with
integrality relaxed on all variables sij with i ∈ {1, . . . , N} and j ∈ {1, . . . , M}. Let X be
the set of facilities induced by x, and choose σX to be a valid permutation for X satisfying
(22). (Such a permutation exists, by Proposition 2, and since (FSS) holds.) Also let
ŷ, ŝ and ŵ be constructed, using σX , so that (x, ŷ, ŝ, ŵ) is an (LDOMP2)-feasible point
induced by X. Now for i ∈ {N + 1, . . . , M}, if sij = 1 then it must be j 
∈ X, since if

j ∈ X then xj = 1, so by (30),
∑N

i=1 sij = 1, and hence
∑M

i=N+1 sij = 1 −∑N
i=1 sij = 0,

since s ∈ P. Furthermore, if j 
∈ X, then xj = 0, so by(30),
∑N

i=1 sij = 0, and hence∑M
i=N+1 sij = 1 −∑N

i=1 sij = 1, i.e. there is some i ∈ {N + 1, . . . , M} such that sij = 1.
Thus sij for i ∈ {N +1, . . . , M}, j ∈ {1, . . . , M}, binary, assigns a position in the ordering
of N + 1 or higher to each client j 
∈ X. Now {σX(i) : i = 1, . . . , N} = X, so σX assigns
a position in the ordering of N or lower for each j ∈ X. Thus setting

s′ij =






sij , i ≥ N + 1
1, i ≤ N and σX(i) = j
0, otherwise

for each i, j ∈ {1, . . . , M} must yield s′ ∈ P. Let σ be the permutation of {1, . . . , M}
induced by s′. Then for i ∈ {1, . . . , N}, σ(i) = σX(i) ∈ X, and for i ∈ {N + 1, . . . , M},
σ(i) = k if and only if sik = 1, in which case k 
∈ X. Now for each i = N + 1, . . . , M ,

wi ≥
M∑

j=1

cσ(i)jyσ(i)j by (20) and since siσ(i) = 1

=
∑

j∈X

cσ(i)jyσ(i)j since (x, y) ∈ N , so ykj ≤ xj for all k, j, and xj = 0 if j 
∈ X

≥ cσ(i)(X)
∑

j∈X

yσ(i)j since by definition, cσ(i)(X) ≤ cσ(i)j for all j ∈ X

≥ cσ(i)(X) since (x, y) ∈ N , so y ≥ 0 and
∑M

j=1 yσ(i)j = 1

= ŵσ−1
X (σ(i))

by the definition of ŵ. Also, for each i = 1, . . . , N , we have wi = 0, by (29), and σ(i) ∈ X,
so cσ(i)(X) = 0, as (FSS) holds. Thus

wi = 0 = cσ(i)(X) = ŵσ−1
X (σ(i)),
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again by the definition of ŵ. So

wi ≥ ŵσ−1
X (σ(i)), ∀i = 1, . . . , M.

Observe that w satisfies (45), since it satisfies (18), and that ŵ satisfies (46), by its def-
inition, and the definition of σX . Furthermore w and ŵ satisfy (47) for the permutation
σ−1

X σ. Thus the conditions of Lemma 6 (in Appendix A) are met, and we deduce that

ŵi ≤ wi, ∀i = 1, . . . , M.

Now we have (x, ŷ, ŝ, ŵ) feasible for (LDOMP2), with objective value

M∑

i=1

λiŵi ≤
M∑

i=1

λiwi,

since λ ≥ 0. But the optimal objective value of (LDOMP2) is equal to the optimal
objective value of (LDOMP2) with additional constraints (29), (30) and (31), by Lemma 5.
Since (x, y, s, w) solves a relaxation of this, it must be that the optimal objective value of
(LDOMP2) is no less than

∑M
i=1 λiwi. Therefore (x, ŷ, ŝ, ŵ) must be an optimal solution

of (LDOMP2), and so by the correctness of the formulation, x must induce an optimal
solution to DOMP. �

From the above results, we conclude that if (FSS) holds, then we can add constraints (26),
(29), (30) and (31) to (LDOMP2), and we can replace constraints (20) by (27). Moreover,
we can relax constraints sij ∈ {0, 1}, substituting them with 0 ≤ sij ≤ 1, for all i = 1, . . . , N
and all j = 1, . . . , M .

5 Comparing the Linearizations

In order to get a good comparison between the linearizations (LDOMP1) and (LDOMP2)
we have developed an experimental design with the following factors and levels:

• Size of the problem: As we have seen the number of sites, M , determines the dimen-
sions of the cost matrix (C) and the λ-vector. Moreover, it is an upper bound of the
number of facilities (N) to be located. For these reasons we consider M as a factor
in our design and we propose four levels: M = 8, 10, 12, 15.

• New facilities: N is the second factor with four levels. To obtain equivalent levels,
they are presented as proportions of the M values. These levels are: �M

4
�, �M

3
�,

�M
2
�, and �M

2
+ 1�. Therefore for M = 8 we consider N = 2, 3, 4, 5, for M = 10,

N = 3, 4, 5, 6, for M = 12, N = 3, 4, 6, 7 and finally for M = 15, N = 4, 5, 8, 9.

• Type of problem: Each λ-vector is associated with a different objective function,
i.e. it models different types of problems. As these problems are unlikely to have
the same difficulty of being solved, λ is also considered as a factor. Its levels were
constructed depending on the value of M as follows:
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1. T1: λ-vector corresponding to the N -median problem, i.e. λ = (1, . . . , 1︸ ︷︷ ︸
M

).

2. T2: λ-vector corresponding to the N -center problem, i.e. λ = (0, . . . , 0︸ ︷︷ ︸
M−1

, 1).

3. T3: λ-vector corresponding to the k-centra problem, i.e. λ = (0, . . . , 0, 1, . . . , 1︸ ︷︷ ︸
k

),

where k = 
M
3
�.

4. T4: λ-vector corresponding to the k1 + k2-trimmed mean problem, i.e. λ =
(0, . . . , 0︸ ︷︷ ︸

k1

, 1, . . . , 1, 0, . . . , 0︸ ︷︷ ︸
k2

), where k1 = N + �M
10
� and k2 = �M

10
�.

5. T5: λ-vector with binary entries alternating both values and finishing with
an entry equal to 1, i.e. λ = (0, 1, 0, 1, . . . , 0, 1, 0, 1) if M is even and λ =
(1, 0, 1, . . . , 0, 1, 0, 1) if M is odd.

6. T6: As T5, but finishing with an entry equal to 0, i.e. λ = (1, 0, 1, 0, . . . , 1, 0, 1, 0)
if M is even and λ = (0, 1, 0, . . . , 1, 0, 1, 0) if M is odd.

7. T7: λ-vector generated by the repetition of the sequence 0, 1, 1 from the end to
the beginning, i.e. λ = (. . . , 0, 1, 1, 0, 1, 1).

8. T8: λ-vector generated by the repetition of the sequence 0, 0, 1 from the end to
the beginning, i.e. λ = (. . . , 0, 0, 1, 0, 0, 1).

• Linearization: This factor has two levels corresponding to the two linearizations we
would like to test: (LDOMP1) and (LDOMP2).

In this way we have a linear model with four factors (M with four levels, N with four
levels, λ with eight levels and two linearizations) therefore, we get 256 different combina-
tions. For each combination we do 15 replications, thus this design leads to 3840 problems
to be solved. We have considered two dependent variables in the model: the integrality
gap and the computing time. All the factors were tested to be simultaneously meaning-
ful performing a multivariate analysis of the variance applied to the model. Additionally,
principal component analysis was also applied in order to check whether some factors may
be removed from consideration. Once more, we get the conclusion that none of them is
meaningless.

Numerical Comparisons

In this section we present computational results for solving the DOMP using either (LDOMP1)
or (LDOMP2). The DOMP was solved with the commercial package ILOG CPLEX 6.6
using the C++ modelling library ILOG Planner 3.3 (see [8]). These computational results
were obtained using a Pentium III 800 Mhz with 1 GB RAM. The upper bounds used
in constraints, as discussed in the previous section, were obtained by a heuristic method
based on variable neighbourhood search (see [3]).
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We first comment briefly on the effect of the improvements presented in Section 4
on the linear formulations. Both linearizations (LDOMP1) and (LDOMP2) are greatly
affected. Some small examples (M = 8) were tested to compare the performance of each
linearization, with and without the strengthening provided by results in Section 4. The
results are reported in Table 1. We found that for all types of problems (except type
T1, for which the bound was unaffected) the integrality gap provided by the improved
linearizations was significantly smaller than that given by the original formulation. The
effect was more pronounced for (LDOMP2), which had weaker bounds to begin with. The
gap for this formulation was reduced by a factor of up to more than twenty, (which was
achieved on type T2 problems), with the average reduction being a factor of around 4.6.
For (LDOMP1) the greatest reduction was observed on type T4 problems, with the gap
given by the improved formulation just over one eighth of the gap reported by the original
formulation, i.e. an improvement by a factor of almost eight. The average gap reduction
for (LDOMP1) across all problem types was by a factor of about 2.6. Improvements in
computing time were even more dramatic. Even for problems of type T1, for which no
improvement in root node bound was reported, the computing time was decreased by an
order of magnitude for (LDOMP1) and cut in about four for (LDOMP2). Indeed for every
problem type, the computing time for (LDOMP1) was reduced by at least one order of
magnitude, with a reduction of two orders of magnitude for two of the eight problem types.
For (LDOMP2), the computing time on all types of problems except T1 was reduced by at
least one order of magnitude, with two problem types showing reductions of two orders of
magnitude, and three types having computing time around three orders of magnitude less.
Thus we see that the strengthening provided by results in Section 4 are highly effective in
improving both formulations.
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Ratio Computing Ratio
Problem Gap (%) original/ Time (s) original/

Formulation Type original improved improved original improved improved
T1 0.71 0.71 1.00 0.63 0.07 9.00
T2 68.44 39.27 1.74 24.31 0.10 243.10
T3 63.05 13.88 4.54 15.93 0.10 159.30

(LDOMP1) T4 58.40 7.46 7.83 3.19 0.07 45.57
T5 20.90 15.92 1.31 1.69 0.12 14.08
T6 21.55 13.82 1.56 0.79 0.09 8.78
T7 18.36 9.22 1.99 1.10 0.13 8.46
T8 32.72 26.75 1.22 1.97 0.14 14.07
T1 0.71 0.71 1.00 0.40 0.11 3.64
T2 68.44 3.22 21.25 169.88 0.05 3397.60
T3 63.05 17.89 3.52 125.04 0.08 1563.00

(LDOMP2) T4 100 38.81 2.58 158.96 0.19 836.63
T5 20.90 12.69 1.65 6.71 0.15 44.73
T6 100 30.71 3.26 73.52 0.17 432.47
T7 18.36 11.65 1.58 2.98 0.15 19.87
T8 32.72 15.79 2.07 14.46 0.12 120.50

Table 1: Gaps and computing times for the (LDOMP1) and (LDOMP2) formulations, with
and without the improvements provided by Section 4, on problems with M = 8. Each row
of the table represents an average taken over problems with N = 2, 3, 4 and 5, where for
each value of N , fifteen instances of the stated problem type were solved and the results
averaged.

Our next step is to compare the two linearizations. To this end, we show the number
of nodes in the branch and bound tree, the gap between the optimal solution and the
linear relaxation objective function value, and the computing time in seconds. Each row
represents the result of 15 replications of each combination (M, N). For this reason we
compute the average, minimum and maximum of the number of nodes, integrality gap and
computing time. We first give detailed results of the experiments with problems having
M = 15, and then describe the results of our analysis for all 3840 test problems.

In Tables 2-9 we summarize the results of our experiments on problems with M = 15.
We denote as L1 and L2 the results corresponding to the linearization (LDOMP1) and
(LDOMP2), respectively.
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Example # nodes gap(%) CPU(s)
Lin M N aver min max aver min max aver min max
L1 15 4 697.53 166 1577 2.39 0.00 18.80 8.40 2.42 18.94

5 311.87 6 894 1.19 0.00 10.81 2.99 0.36 7.19
8 12.53 0 121 0.00 0.00 0.00 0.31 0.19 1.06
9 3.80 0 19 0.14 0.00 2.08 0.22 0.16 0.31

L2 15 4 2210.33 164 9350 2.39 0.00 18.80 25.41 5.03 114.16
5 727.40 92 2570 1.19 0.00 10.81 8.79 2.83 21.41
8 33.07 2 103 0.00 0.00 0.00 0.95 0.28 2.17
9 19.93 0 63 0.14 0.00 2.08 0.63 0.17 1.61

Table 2: Computational results corresponding to the T1 type problem.

Example # nodes gap(%) CPU(s)
Lin M N aver min max aver min max aver min max
L1 15 4 5107.20 548 12181 50.55 31.60 66.16 58.85 4.98 117.09

5 2242.07 114 8196 53.26 28.00 73.75 17.81 2.00 74.00
8 42.73 10 129 40.50 26.19 57.14 0.41 0.28 0.70
9 31.53 0 150 39.65 25.00 60.00 0.38 0.22 0.88

L2 15 4 1.20 0 7 16.21 0.00 40.72 1.03 0.61 1.59
5 2.67 0 15 16.61 0.00 59.92 0.84 0.23 1.69
8 0.00 0 0 0.00 0.00 0.00 0.26 0.08 0.41
9 0.40 0 2 12.06 0.00 45.45 0.29 0.09 0.61

Table 3: Computational results corresponding to the T2 type problem.

Example # nodes gap(%) CPU(s)
Lin M N aver min max aver min max aver min max
L1 15 4 2026.87 405 7079 32.25 16.86 50.00 22.54 3.72 96.09

5 976.93 138 4620 25.44 16.37 45.90 7.26 1.08 27.08
8 31.13 0 129 12.63 0.00 22.08 0.41 0.19 0.94
9 11.87 0 47 6.21 0.00 13.04 0.28 0.17 0.47

L2 15 4 544.40 91 1091 33.79 26.95 45.26 9.41 4.08 14.25
5 467.27 69 1570 28.90 20.37 43.48 6.51 2.39 14.50
8 100.60 11 358 13.55 4.76 19.19 1.55 0.53 3.86
9 64.73 5 188 8.11 4.44 13.62 0.98 0.33 1.95

Table 4: Computational results corresponding to the T3 type problem.
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Example # nodes gap(%) CPU(s)
Lin M N aver min max aver min max aver min max
L1 15 4 369.00 28 1054 12.47 1.08 17.29 4.37 1.13 10.92

5 108.73 12 385 12.77 5.10 19.20 1.70 0.53 5.17
8 1.67 0 7 10.32 0.00 26.67 0.32 0.20 0.44
9 1.60 0 5 10.83 0.00 33.33 0.30 0.19 0.39

L2 15 4 41956.87 271 178289 82.65 70.83 91.25 578.05 7.36 2168.08
5 4386.73 151 34872 76.62 53.85 87.76 63.86 6.22 472.94
8 34.47 2 209 50.25 25.00 76.92 1.55 0.28 3.72
9 8.53 0 26 34.51 0.00 75.00 0.62 0.19 1.89

Table 5: Computational results corresponding to the T4 type problem.

Example # nodes gap(%) CPU(s)
Lin M N aver min max aver min max aver min max
L1 15 4 2357.20 593 5758 13.26 7.46 26.15 17.35 3.66 45.47

5 1459.87 230 6206 12.15 4.41 26.67 9.04 1.59 37.64
8 36.67 0 125 8.33 0.00 18.18 0.37 0.22 0.94
9 37.73 0 147 12.32 0.00 29.17 0.36 0.17 0.70

L2 15 4 15986.47 166 46286 13.39 7.46 26.15 108.06 4.78 358.00
5 4810.87 85 28586 12.15 4.41 26.67 28.99 2.64 150.23
8 80.13 4 357 8.33 0.00 18.18 1.42 0.42 3.78
9 108.60 3 435 12.19 0.00 27.19 1.29 0.33 3.16

Table 6: Computational results corresponding to the T5 type problem.

Example # nodes gap(%) CPU(s)
Lin M N aver min max aver min max aver min max
L1 15 4 1097.73 51 3414 11.96 4.41 23.61 10.63 1.45 28.84

5 413.80 68 1727 12.03 4.29 20.97 3.62 0.98 10.20
8 32.73 0 160 12.32 0.00 29.17 0.58 0.25 1.27
9 5.67 0 13 8.06 0.00 21.43 0.26 0.14 0.41

L2 15 4 29733.13 894 93126 82.36 75.00 87.95 266.90 14.45 719.80
5 19748.87 612 115575 78.00 64.29 85.55 201.05 7.20 1304.75
8 261.80 37 785 62.63 25.00 81.25 4.62 1.52 12.42
9 35.47 0 149 44.73 0.00 70.00 1.37 0.08 3.02

Table 7: Computational results corresponding to the T6 type problem.
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Example # nodes gap(%) CPU(s)
Lin M N aver min max aver min max aver min max
L1 15 4 1564.67 320 3960 11.96 7.63 23.61 12.87 2.45 30.77

5 835.73 142 1744 12.15 5.21 20.83 5.04 1.22 9.66
8 36.20 0 108 9.95 0.00 15.48 0.37 0.16 0.72
9 22.13 0 93 9.41 0.00 21.48 0.31 0.19 0.56

L2 15 4 9981.33 225 86922 12.01 8.15 23.81 54.38 4.75 413.48
5 1692.80 205 9298 11.85 5.21 20.83 12.12 3.84 56.42
8 106.80 3 399 9.30 0.00 14.96 1.52 0.30 3.20
9 55.87 0 172 9.33 0.00 21.67 0.90 0.23 2.17

Table 8: Computational results corresponding to the T7 type problem.

Example # nodes gap(%) CPU(s)
Lin M N aver min max aver min max aver min max
L1 15 4 5000.20 493 21037 21.81 13.77 32.14 46.95 2.52 162.47

5 1400.93 233 3861 21.13 7.84 34.34 7.75 1.22 30.31
8 66.33 0 263 16.88 0.00 29.17 0.50 0.20 1.22
9 43.40 0 142 19.13 0.00 39.74 0.37 0.22 0.70

L2 15 4 18360.47 235 134087 21.85 14.49 31.91 104.12 4.31 654.41
5 2366.33 131 10157 20.66 7.84 31.31 18.40 3.20 68.56
8 59.87 6 264 15.54 0.00 22.22 1.39 0.42 3.33
9 43.53 0 301 17.50 0.00 39.74 0.76 0.13 2.64

Table 9: Computational results corresponding to the T8 type problem.

Finally, our statistical analysis for all 3840 test problems is as follows. The comparison
between (LDOMP1) and (LDOMP2) was made in two steps. First, we compare the results
within each type of problem to test whether the integrality gap and/or the computing
time show a statistically similar behavior in (LDOMP1) and (LDOMP2). To perform this
test we use the Mann-Whitney U statistic. With respect to the gap, all types of problems
but T1 are different under (LDOMP1) and (LDOMP2) with a confidence level above 90%.
For the computing time, all types of problems are different with a confidence level above
88%. Second, we check which linearization performs better in each problem using robust
statistics (trimmed mean) and confidence intervals for the mean value. The conclusions,
calculated using all four levels of M , are:

T1 T2 T3 T4 T5 T6 T7 T8
L1 vs L2 p-value 1.000 0.000 0.001 0.000 0.097 0.000 0.091 0.000

L1 trimmed mean 0.443 43.922 16.736 9.987 13.875 12.743 10.484 23.558
L2 trimmed mean 0.443 1.892 20.700 49.266 12.511 52.763 11.413 18.639

Table 10: p-values and trimmed means obtained for the integrality gap.
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T1 T2 T3 T4 T5 T6 T7 T8
L1 vs L2 p-value 0.000 0.000 0.011 0.000 0.000 0.000 0.000 0.115

L1 trimmed mean 0.519 5.481 0.951 0.348 1.020 0.688 0.977 1.461
L2 trimmed mean 1.147 0.223 1.020 6.173 2.453 6.799 1.602 2.092

Table 11: p-values and trimmed means obtained for the computing time.

From Table 10 we observe that (LDOMP1) provides stronger lower bounds for (DOMP),
for problem types T3, T4, T6, T7 and (LDOMP2) bounds are stronger for T2, T5, T8.

The behaviour of the computing time is substantially different. From Table 11 we
can observe that the computing time needed for solving the problem using (LDOMP1)
is significantly shorter than using (LDOMP2). Only for T2 does (LDOMP2) solve the
problem faster.

As we can see from the computational experiments, large problems with smaller num-
bers of facilities cannot be solved to optimality. Therefore, we develop a branch and bound
(B&B) algorithm that takes advantage of the structure of the problem.

6 A Branch and Bound Method

The driving variables for the DOMP are the binary xj variables, indicating which sites
have been selected for facility location. Once these are known, the objective value is easy
to calculate. All the other variables are in the integer linear programming formulations
to enable the costs to be calculated. It thus makes sense to build a branch and bound
(B&B) method based entirely on the xj variables, i.e. on decisions of whether or not a site
is selected for facility location.

We develop a B&B in which each node represents a disjoint pair of sets of sites: a set of
sites at which facilities will be opened and a set of sites at which facilities will not be opened.
We refer to these as the set of open and closed sites respectively. Recall A = {1, . . . , M}
denotes the set of sites. For a given node, we may let F ⊆ A denote the set of open sites
and F ⊆ A \ F denote the set of closed sites. We refer to the sites indexed by A \ (F ∪F )
as undecided. The node in the B&B tree is represented by the pair (F, F ). Of course, the
node is a leaf node if either |F | ≥ N or |F | ≥ M − N . Otherwise, we calculate a lower
bound on the cost function of the problem defined by (F, F ). Our lower bound is relatively
simple to calculate; it does not require solution of a linear program. We discuss our lower
bound in detail in Section 6.1.

Because of the nature of the cost function, making the decision to open a facility gives
us very little information which could impact on a lower bound. It is only making the
decision not to open a facility which restricts choices and forces the objective up. We thus
develop a branching rule which is strong, and which ensures that on each branch some site
is closed. We discuss our branching rule in detail in Section 6.2.

In Section 6.3 we compare the performance of our B&B method with that of the best
integer linear programming formulation computationally.
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6.1 Combinatorial Lower Bounds

A node in our B&B tree is represented by the disjoint pair of sets (F, F ) of sites open and
closed, respectively. At each node which is not a leaf node of the B&B tree, we need to
calculate a lower bound on the value of the cost function. Let F̂ = A \F denote the set of
sites which are either open, or undecided.

For any set of sites R ⊆ {1, . . . , M} we define L(R) to be the cost of having facilities
open at precisely those sites. So if we define

ci(R) = min
j∈R

cij (32)

to be the minimum cost assignment for a customer at site i to a facility in R, and define
σR to be a permutation of 1, . . . , M such that

cσR(1)(R) ≤ · · · ≤ cσR(M)(R)

then we have that

L(R) =

M∑

i=1

λi cσR(i)(R). (33)

This notation is identical to that defined earlier for a set of sites X, with |X| = N ; it is
obviously not difficult to extend these definitions to arbitrary sets of sites.

We now derive two lower bounds, based on somewhat different ideas. The second only
applies in the case self-service is cheapest (or free). As we show with an example, either
one can be stronger, depending on the problem data. As both bounds are very easy to
calculate, the lower bound we use in our B&B method is the maximum of the two.

In the following proposition we present a lower bound on the objective function value
of any feasible solution having facilities in F ⊆ A closed.

Proposition 5 Given F ⊆ A a set of closed sites with |F | < M − N , let S be any set of
N facilities not intersecting facilities in F , i.e. let S ⊆ F̂ and |S| = N , where F̂ = A \ F .
Then

L(S) ≥ L(F̂ ),

i.e. L(F̂ ) is a lower bound on the objective function value of any feasible solution having
facilities in F closed.

Proof.

We know from (33) that L(S) =

M∑

i=1

λi cσS(i)(S) and L(F̂ ) =

M∑

i=1

λi cσF̂ (i)(F̂ ). Since we

assume λ ≥ 0, we just have to show that cσS(i)(S) ≥ cσF̂ (i)(F̂ ) for all i = 1, . . . , M to show

that L(S) ≥ L(F̂ ).
Observe that by (32), and since S ⊆ F̂ , it must be that ci(S) ≥ ci(F̂ ) for all i =

1, . . . , M . Taking r = s = M , pi = ci(S) and qi = ci(F̂ ) for all i = 1, . . . , M , σP = σS
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and σQ = σF̂ , we see that Theorem 1 (Appendix A) may be applied to deduce that
pσP (i) = cσS(i)(S) ≥ qσQ(i) = cσF̂ (i)(F̂ ) for all i = 1, . . . , M , as required. �

Observe that if the self-service is free (FSS), i.e. cii = 0, for all i ∈ A, this lower bound
is likely to be very weak, unless |F̂ | is not too much greater than N , i.e. unless a relatively
large number of facilities have been closed by branching. This will not occur until relatively
deep in the B&B tree, which closes one more site at each level (see Section 6.2 for details
of our branching rule). Thus, if (FSS) holds, we consider another lower bound, which may
be somewhat more effective higher in the tree. In fact, the lower bound we propose applies
more generally to the case that self-service is cheapest, i.e. cii ≤ cij , for all i, j = 1, . . . , M
with j 
= i. This condition, which we refer to as cheapest self-service, or (CSS), can be
assumed in most of the facility location problems without any capacity constraint.

The idea is that for any feasible set of columns S ⊆ F̂ , the feasible cost vector will
consist of N diagonal elements and M −N off-diagonal row minima, taken over S. Hence,
using the vector consisting of the N smallest diagonal elements and the M − N smallest
off-diagonal row minima, taken over F̂ ⊇ S, we obtain a sorted cost vector which is in
every component no more than the sorted cost vector given by S, and therefore provides
a valid lower bound.

To introduce this lower bound, we define DF̂ to be the vector of diagonal elements of
the cost matrix, taken over columns in F̂ , and let d1, . . . , dN be the N smallest elements
in DF̂ , ordered so that

d1 ≤ · · · ≤ dN . (34)

Furthermore, we define the vector H F̂ ∈ R
M via

H F̂
i = min

j∈F̂ , j �=i
cij , ∀i ∈ A, (35)

to be the vector of cheapest off-diagonal elements in each row, over the columns in F̂ , and
let h1, . . . , hM−N be the M − N smallest elements in H F̂ ordered so that

h1 ≤ · · · ≤ hM−N . (36)

Finally, we define the vector K F̂ = (d1, . . . , dN , h1, . . . , hM−N) and let k1, . . . , kM be the M

elements of K F̂ ordered so that
k1 ≤ · · · ≤ kM . (37)

Now we define

B(F̂ ) =

M∑

i=1

λi ki. (38)

Note that if self-service is in fact free, i.e. if (FSS) holds, then d1 = · · · = dN = 0, ki = 0
for i = 1, . . . , N and ki = hi−N for i = N + 1, . . . , M , and thus

B(F̂ ) =
M−N∑

i=1

λN+i hi. (39)
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In the proposition below, we prove that B(F̂ ) is a valid lower bound on the objective
value L(S) for any feasible set S ⊆ F̂ with |S| = N , if (CSS) holds. Note that the proof
relies on a relatively simple, general result concerning sorted vectors: a vector of r real
numbers that is componentwise no less than r elements chosen from a vector Q of s real
numbers, s ≥ r, is, when sorted, no less than (componentwise) the vector of the r smallest
real numbers in Q, sorted. This general result is given in Appendix A, Lemma 7.

Proposition 6 Given F ⊆ A a set of closed sites with |F | < M − N , let S be any set of
N facilities not intersecting facilities in F , i.e. let S ⊆ F̂ and |S| = N , where F̂ = A \ F .
Then, if (CSS) holds,

L(S) ≥ B(F̂ ),

i.e. B(F̂ ) is a lower bound on the objective function value of any feasible solution having
facilities in F closed.

Proof.

From (33) we know that L(S) =
M∑

i=1

λi cσS(i)(S). Thus, since λ ≥ 0 is assumed, to show

that B(F̂ ) is a lower bound on the objective function value of any feasible solution having
facilities in F closed, we only need to show that cσS(i)(S) ≥ ki, for all i = 1, . . . , M . To do
this, we need to consider diagonal and off-diagonal costs separately.

Firstly, we observe that the cost ci(S) is the diagonal cost matrix element in row i
if i ∈ S; otherwise it is an off-diagonal element in a column in S, in row i. Thus the
vector of all costs ci(S), i = 1, . . . , M , which we denote by c(S), has N elements which
are diagonal cost matrix elements and M −N elements which are off-diagonal cost matrix
elements, and where every elements is taken from a column of the cost matrix which is in
S. Let DS ∈ R

N be the vector consisting of the N diagonal cost elements of c(S), sorted
in increasing cost order, i.e. chosen so that

DS
1 ≤ · · · ≤ DS

N .

Since S ⊆ F̂ , for all j = 1, . . . , N there exists a unique i(j) ∈ F̂ such that DS
j = DF̂

i(j).

Then by Lemma 7 (in Appendix A) we have that DS
j ≥ dj for all j = 1, . . . , N .

Similarly, if we let HS ∈ R
M−N be the vector consisting of the M −N off-diagonal cost

elements of c(S), sorted in increasing cost order, i.e. chosen so that

HS
1 ≤ · · · ≤ HS

M−N ,

then for each j = 1, . . . , M − N there must exist a unique i(j) ∈ F̂ such that HS
j ≥ H F̂

i(j).

To see this, we note that for each j = 1, . . . , M −N there must exist a unique i(j) ∈ A \S
such that HS

j = ci(j)(S), by the definition of HS. Now since S ⊆ F̂ and i(j) 
∈ S we know

that ci(j)(S) = mini′∈S ci(j)i′ ≥ mini′∈F̂ , i′ �=i(j) ci(j)i′ = H F̂
i(j) by the definition of H F̂ , and so

HS
j ≥ H F̂

i(j) as required. Then by Lemma 7 we have that HS
j ≥ hj for all j = 1, . . . , M −N .
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Now we define KS = (DS
1 , . . . , DS

N , HS
1 , . . . , HS

M−N) and observe that we have shown

KS is (componentwise) no less than K F̂ , i.e. KS
j ≥ K F̂

j for all j = 1, . . . , M . (This is

obvious, since if j ≤ N then KS
j = DS

j and K F̂
j = dj , and we have shown above that

DS
j ≥ dj . Similarly if j > N then KS

j = HS
j−N and K F̂

j = hj−N , and we have shown above
that HS

j−N ≥ hj−N .) Note also that KS is simply a permutation of c(S) and hence the
ith component of KS when sorted must be cσS(i)(S). Thus by Theorem 1 it must be that
cσS(i)(S) ≥ ki for all i = 1, . . . , M , (recall that ki is, by definition, the ith component of

K Ŝ when sorted), as required.
Thus, as a consequence, since we assume λ ≥ 0, we have that B(F̂ ) is a lower bound

on the cost of any feasible solution having facilities in F closed. �

The following example illustrates the two lower bounds, and demonstrates that their
relative strength depends not only on how many sites have been closed by branching, but
also on the value of λ.

Example 6.1 Let A = {1, . . . , 5} be the set of sites and assume that we are interested in
building N = 2 new facilities. Let the cost matrix be as follows:

C =





0 4 5 6 4
5 0 6 2 2
7 1 0 5 1
7 4 3 0 5
1 3 5 4 0




.

Suppose we are at a node of the branch and bound tree represented by the pair (F, F )
with F = ∅ and F = {1}. So site 1 has been closed by branching and F̂ = {2, 3, 4, 5}.
Observe that (FSS), and hence (CSS), holds in this example, since cii = 0 for all i ∈ A.
Therefore both C(F̂ ) and B(F̂ ) are lower bounds on the value of the (DOMP) at this node.

To calculate the bound C(F̂ ) we determine the vector of row minima over columns in
F̂ , (ci(F̂ ) for all i ∈ A), to be (4, 0, 0, 0, 0) yielding the sorted vector (0, 0, 0, 0, 4).

To calculate B(F̂ ), we have to determine the off-diagonal cost matrix row minima over

columns in F̂ , i.e. we calculate H F̂ = (4, 2, 1, 3, 3). Thus the M − N = 3 smallest off-
diagonal row minima are h1 = 1, h2 = 2 and h3 = 3, and, since the diagonal costs are all
zero, we get a lower bound based on the cost vector k = (0, 0, 1, 2, 3).

Which of C(F̂ ) or B(F̂ ) yields the better bound depends on the value of λ. For instance,
λ = (1, 0, 0, 0, 1) means that C(F̂ ) = 0 + 4 = 4 is better than B(F̂ ) = 0 + 3 = 3. However
λ = (0, 0, 1, 1, 1) implies B(F̂ ) = 1 + 2 + 3 = 6 which is better than C(F̂ ) = 0 + 0 + 4 = 4.

Notice that both lower bounds can easily be computed. Hence, we propose when (CSS)
holds, and in particular when (FSS) holds, we use the lower bound given by

max{C(F̂ ), B(F̂ )} (40)

at a node in the B&B tree identified by sets F and F , with F̂ = A \ F .
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Observe that this lower bound is not trivial at the root node, represented by the pair
(∅, ∅) giving F̂ = A, so we can compute a gap between the optimal objective function value
(z ∗) and max{C(A), B(A)} at the root node as follows:

gap at root node =
z ∗ − max{C(A), B(A)}

z ∗ × 100. (41)

In calculating the lower bound, we may have an opportunity to find a feasible solution
of the same value, and so be able to prune the node. In calculating C(F̂ ), the row minimum
was found for each row, over columns in F̂ : let m(i) ∈ F̂ denote the column in which the
row minimum for row i was found. In case of a tie with a row minimum occurring in a
column in F , m(i) is chosen to be in F . Let V (F, F ) = {m(i) : i ∈ A} \ F be the set of
columns in which the selected row minima occur, outside of F . Now if |V (F, F )|+|F | ≤ N ,
then any set S ⊆ F̂ with |S| = N and S ⊇ V (F, F ) ∪ F must be an optimal set for the
subproblem at that node, and the lower bound C(F̂ ) will be equal to the upper bound
obtained from S. In this case, either the value of S is better than the current upper bound,
which can thus be updated to the value of S, or the lower bound (equal to the value of S)
is not better than the current upper bound; in either case the node can be pruned.

Similarly, in calculating B(F̂ ) in the case that (CSS) holds, the off-diagonal row mini-
mum was found for each row, over columns in F̂ : let o(i) ∈ F̂ denote the column in which
the off-diagonal row minimum for row i was found. In case of a tie with a row minimum
occurring in a column in F , o(i) is chosen to be in F . Let V ′(F, F ) = {o(i) : i ∈ A\F}\F
be the set of columns in which off-diagonal row minima occur, outside of F , for rows not in
F . Now if |V ′(F, F )| + |F | ≤ N , then any set S ⊆ F̂ with |S| = N and S ⊇ V ′(F, F ) ∪ F
must be an optimal set for the subproblem at that node, and the lower bound B(F̂ ) will
be equal to the upper bound obtained from S, the node can be pruned and if the value
B(F̂ ) is better than the current upper bound, the upper bound can be set to this value.

6.2 Branching

Since the lower bound presented in the previous section is based on row minima of the
cost matrix calculated over columns corresponding to open or undecided sites, making the
decision to open a site will not affect the lower bound. Closing a site, however, would be
likely to increase the lower bound. We thus design a branching rule so that a (different)
site is closed on each branch. We also ensure that the branching is strong, i.e. partitions
the solution space.

We begin by describing the generic form of the branching rule, which assumes that an
ordering of the undecided sites is given. We then describe two different orderings, and
compare the two computationally.

Consider a node of the branch and bound tree, defined by the pair of sets (F, F ) with
|F | < N and |F | < M − N . We may also assume that |V (F, F )| > N − |F | and, if
(CSS) holds, that |V ′(F, F )| > N − |F |; otherwise the node would have been pruned, as
discussed at the end of the previous section. Set F̂ = A \ F . Suppose an ordering is
given for the undecided sites, defined to be U = F̂ \ F . Say β : {1, . . . , |U |} → U defines
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the given ordering, so β(i) is the index of the ith undecided site in the order. Note that
|U | = M −|F |− |F | > N −|F | since |F | < M −N . Our branching rule creates child nodes
with the ith child node having site β(i) closed and sites β(1), . . . , β(i − 1) open. Now a
node with more than N sites open is infeasible, so at most N −|F |+1 child nodes need be
created. Furthermore |U | > N−|F | and so N−|F |+1 child nodes can be created. In other

words, the child nodes are defined by the pairs of sets (F i, F
i
) for i = 1, . . . , N − |F | + 1,

where F
i
= F ∪ {β(i)} and F i = F ∪ {β(1), . . . , β(i − 1)}, with F 1 = F .

We now describe the two orderings we considered. The first is simply the site index
ordering, i.e. we take β so that

β(1) ≤ · · · ≤ β(N − |F | + 1).

We refer to the resulting branching rule as the index-order branching rule. The second
ordering attempts to maximize the impact of the branching on the lower bound, and is
much more complicated.

Recall |V (F, F )| > N − |F |. We wish to branch in a way which will have the most
impact on the lower bound. We can do this by “eliminating” the column which will have the
biggest impact on a row minima. Arguably, this will be a column containing the smallest
row minimum. Thus we define for each j ∈ V (F, F ) the set of rows which have their row
minimum in column j to be W (j) = {i ∈ A : m(i) = j}, (where m(i) is as defined at the
end of the previous section), and define the smallest row minimum in column j to be

vj = min
i∈W (j)

cij.

Let σV denote a permutation of V (F, F ) which sorts the vector v in increasing order, i.e.
such that

vσV (1) ≤ vσV (2) ≤ · · · ≤ vσV (|V (F,F )|).

Observe that when the self-service is free, i.e. (FSS) holds, there is little or nothing
to differentiate the v values, unless |F̂ | is not too much greater than N , i.e. unless a
relatively large number of facilities have been closed by branching. This will not occur
until relatively deep in the B&B tree. Thus, a secondary key could be used in sorting, such
as the second-smallest row costs. For each row i, let ui denote the second-smallest cost
over columns in F̂ , and let wj denote the largest difference between the second-smallest
and smallest row element in W (j), i.e. set

wj = max
i∈W (j)

(ui − cij)

for each j ∈ V (F, F ). Now we may choose σV so that whenever vσV (j) = vσV (j′) for j < j′

it must be that wσV (j) ≥ wσV (j′).
In either case, we take β(i) = σV (i) for i = 1, . . . , N −|F |+1 to be the second ordering

we consider. A similarly ordering can be used if the lower bound was achieved by B(F̂ ), in
the case that (CSS) holds. The only difference would be that everything should be based
on off-diagonal row minima rather than row minima.
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The branching rule resulting from this second ordering can be viewed as seeking to
close sites in order of decreasing “maximum regret”, i.e. maximizing the cost impact of
the decision. Thus we refer to it as the max-regret branching rule. The example below
illustrates the use of this rule.

Example 6.2 Consider the data presented in Example 6.1. Assume that the current node
is defined by F = {4} and F = {1}, and so F̂ = {2, 3, 4, 5}. Note that we expect to have
N − |F | + 1 = 2 − 1 + 1 = 2 branches from this node.

On the one hand, if the lower bound is given by C(F̂ ), we have to focus on the row
minima. These are achieved in columns m(1) = 2, m(2) = 2, m(3) = 3, m(4) = 4,
m(5) = 5, so V (F, F ) = {2, 3, 5}, W (2) = {1, 2}, W (3) = {3} and W (5) = {5}, with
v2 = v3 = v5 = 0. Note that, in this case, we need the secondary key for sorting. The
second-smallest cost over columns in F̂ , for rows not in F , are u1 = 4, u2 = 2, u3 = 1 and
u5 = 3. Then w2 = max{u1−c12, u2−c22} = max{4−4, 2−0} = 2, w3 = u3−c33 = 1−0 = 1
and w5 = u5 − c55 = 3 − 0 = 3. Therefore σV (1) = 5, σV (2) = 2 and σV (3) = 3. Thus the
two child nodes are defined by the pairs ({4}, {1, 5}) and ({4, 5}, {1, 2}).

On the other hand, if the lower bound is achieved by B(F̂ ), now we have to focus on
the off-diagonal row minima. These are achieved in columns o(1) = 2, o(2) = 4, o(3) = 2,
o(4) = 3, o(5) = 2, so V ′(F, F ) = {2, 3}, W (2) = {1, 3, 5} and W (3) = {4}, with v2 = 1
and v3 = 3. Therefore σV (1) = 2 and σV (2) = 3 and the secondary key is not required.
Thus the two child nodes are defined by the pairs ({4}, {1, 2}) and ({4, 2}, {1, 3}).

6.3 Numerical Comparison of the Branching Rules

We implemented the B&B method using the programming language C++, with the upper
bound initialized by a heuristic method based on variable neighbourhood search (see [3]).
In both cases, the tree search strategy used was best bound. The method was run on a
Pentium III 800 Mhz with 1 GB RAM, and tested on problem instances with the structure
described in Section 5. As will be reported in more detail in Section 7, the B&B method
performed very well, and much larger instances could be solved. Here we show the results of
running the B&B algorithm using each branching rule on problems with M = 30, averaged
over fifteen instances for each value of N = 8, 10, 15, 16. All cost matrices were randomly
generated so that (FSS) holds. The results are presented in Table 12.
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# of Ratio Computing Ratio
Problem B& B Nodes i.-ord./ Time (s) i.-ord./

Type index-order max-regret max-r. index-order max-regret max-r.
T1 1727594.63 578787.85 2.99 912.34 235.92 3.87
T2 156211.15 17841.50 8.76 82.51 7.44 11.09
T3 772448.15 265769.78 2.91 417.62 107.04 3.90
T4 2774061.28 840401.43 3.30 1640.40 339.68 4.83
T5 1306657.1 428017.95 3.05 704.83 179.73 3.92
T6 2093979.28 633977.18 3.30 1143.49 256.07 4.47
T7 1388014.55 463225.33 3.00 730.87 190.62 3.83
T8 981157.38 310314.05 3.16 517.87 129.53 4.00

Average 1400015.44 442291.88 3.81 768.74 180.75 4.99

Table 12: Numbers of B&B nodes and computing times for the B&B method using
either the index-order or max-regret branching rule on problems with M = 30 and
N = 8, 10, 15, 16, for which (FSS) holds. Results are averages taken over fifteen prob-
lem instances for each value of N .

As can be seen from the table, using the max-regret branching rule reduces the number
of B&B nodes by a factor of about 3.8 on average and reduces the computing time by a
factor of about 5. The effect was more pronounced for problems of type T2 (i.e. N -center
problems) for which the number of nodes required by the B&B algorithm with the max-
regret rule was less than one eighth of the number of nodes provided by the algorithm with
the intuitive branching rule. Furthermore, for this type of problems the computing time
was decreased by an order of magnitude.

It is clear that the more sophisticated max-regret rule is much more effective than the
simple index-order rule. Furthermore, the computing time for solving the instances with
M = 30 is 180.75 seconds on average, and so problems with even more sites could be
expected to be solved. However, after attempting problems with M = 35, we found that
although problems could be solved to optimality, the computing times were in most cases
around a factor of ten more than for M = 30. This indicates that the B&B method is not
going to be particularly effective for problems much bigger than those with M = 35.

7 Computational Results

In this section we compare the computational performance of the B&B method described in
Section 6, with the max-regret branching rule, with that of the best linearization (for type
T2 problems this is (LDOMP2) and for all other problem types it is (LDOMP1)). Again
all codes were run on a Pentium III 800 Mhz with 1 GB RAM, and tested on problem
instances with the structure described in Section 5. Upper bounds for the B&B method
were initialized by a heuristic method based on variable neighbourhood search (see [3]).
The same upper bounds were used, where needed, in constraints defining the linearizations.

The performance of the B&B method was consistently better than that of the best
linearization, with the former out-performing the latter by a significant margin. To illus-
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trate the type of performance we observed, we give results for problems with M = 18 and
N = 5, as well as N = 10, in Table 13. We give results for these extreme values of N as
the performance of the linearizations generally improved as N increased; the performance
of the B&B method was, by contrast, relatively consistent. Intermediate results values of
N can be roughly interpolated between these extremes.

Problem Best Linearization B&B Method
N Type gap(%) # nodes CPU(s) gap(%) # nodes CPU(s)
5 T1 2.8 1999.1 40.77 48.4 2102.5 0.57

T2 24.6 3.8 3.37 54.4 473.0 0.13
T3 34.2 17469.6 370.32 51.7 1477.3 0.40
T4 12.1 3568.2 53.76 39.5 916.4 0.25
T5 11.1 19169.1 187.03 49.0 2054.3 0.56
T6 10.9 12797.7 190.53 44.8 1419.5 0.38
T7 10.5 24350.6 289.50 49.2 1723.7 0.56
T8 16.0 36343.93 408.60 49.0 1723.7 0.47

10 T1 0.0 42.1 0.75 20.4 1395.2 0.33
T2 17.0 0.73 0.95 29.3 222.4 0.05
T3 11.3 90.8 1.16 22.3 1030.3 0.24
T4 9.8 11.1 0.64 14.3 1760.5 0.42
T5 10.2 318.9 1.75 22.7 968.8 0.23
T6 7.8 38.2 0.99 14.3 1124.5 0.27
T7 7.9 63.1 0.81 21.2 1107.0 0.26
T8 17.8 421.1 1.99 23.6 819.5 0.19

Table 13: Numerical results for problems with M = 18 and the extreme values of N tested.
All results are averages taken over 15 problem instances.

We see that the B&B method always requires less CPU time than using the best
linearization, and for some of the N = 5 problems more than two orders of magnitude
less. The B&B method shows less variation in the number of nodes needed across problem
type, and across different values of N . We report the average (root node) gap, but note
that whilst this may be indicative of the quality of an integer programming formulation, it
is less meaningful for the B&B method, where the bounds are very weak high in the tree
but improve rapidly deeper in the tree.

To demonstrate that the B&B method can solve larger problems, we also provide de-
tailed numerical results for problems with M = 30, in Table 14. As in Sections 5 and
6.3, each row of the tables contains results averaged over fifteen instances having the same
parameter values.

8 Conclusions

We have presented two integer linear programming formulations for the DOMP, one having
O(M3) variables and the other having O(M2) variables (both have O(M2) constraints).
We go on to prove a variety of properties of optimal solutions, which allow us to strengthen
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Problem # nodes gap(%) CPU(s)
Type N aver min max aver min max aver min max
T1 8 376661.7 90639 920625 50.8 40.4 58.3 167.19 40.92 408.73

10 698401.1 50974 1678543 43.1 31.8 51.8 303.11 21.75 762.08
15 710577.9 71558 1444065 28.2 15.2 38.2 274.74 28.03 562.25
16 529510.7 107189 1112917 25.0 12.9 36.7 198.65 41.19 417.09

T2 8 30463.8 5043 100375 55.9 36.4 66.7 13.54 2.14 44.19
10 15012.3 2565 38291 47.0 22.2 62.5 6.39 1.06 16.59
15 12473.1 0 37005 37.2 0.0 50.0 4.81 0.00 14.84
16 13416.8 275 35905 35.9 0.0 60.0 5.03 0.09 14.23

T3 8 195498.0 87519 447017 54.1 43.5 65.8 86.44 39.11 197.08
10 275646.3 58988 867397 45.6 28.3 55.6 117.02 25.20 370.39
15 326233.7 38961 630901 32.3 13.8 44.8 125.19 15.36 246.95
16 265701.1 56589 585759 28.7 11.5 42.3 99.51 21.83 217.92

T4 8 124932.5 11396 275910 44.9 30.5 54.3 56.37 5.06 125.25
10 354196.3 5306 1108572 36.7 20.5 47.8 154.46 2.31 476.23
15 1606801.0 52119 3474800 21.3 7.1 33.3 649.56 20.81 1457.81
16 1275675.9 110028 3970039 18.6 6.3 33.3 498.32 42.88 1460.81

T5 8 351434.6 98789 729440 51.8 42.0 60.0 160.75 45.42 332.02
10 550405.8 58142 1364222 43.8 30.6 52.6 242.00 25.72 601.64
15 533272.8 38551 1279337 28.9 14.3 40.9 209.68 15.55 502.16
16 276958.6 47709 606337 26.4 12.5 40.0 106.49 18.88 239.69

T6 8 292640.9 34600 597933 48.3 35.7 54.3 131.82 15.64 272.22
10 582688.3 29094 1265889 40.7 28.1 48.6 253.11 12.58 561.84
15 839755.2 65764 1927705 26.4 12.5 40.0 327.44 26.34 777.64
16 820824.3 50294 2022796 22.0 9.1 35.7 311.89 19.88 792.27

T7 8 380210.3 89852 825887 51.8 41.8 58.3 170.57 40.69 368.23
10 625290.4 36296 1621612 43.1 30.4 53.3 269.65 15.44 712.63
15 466872.1 31681 1160957 28.9 13.0 40.0 179.30 12.47 442.06
16 380528.5 75834 809368 25.8 13.6 38.1 142.95 29.02 313.39

T8 8 337418.9 85926 710147 52.0 41.7 59.0 151.38 38.84 328.09
10 436277.5 26389 1174336 42.5 28.0 51.7 188.97 11.33 503.84
15 263030.8 2277 1139116 28.9 11.1 40.0 101.19 0.91 436.17
16 204529.0 47135 479781 25.8 9.1 36.4 76.59 18.30 173.09

Table 14: Computational results for the B&B method with the max-regret branching rule
for problems with M = 30.
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the formulations, via either additional constraints or preprocessing (in particular, fixing
the values of some variables). After defining eight problem classes, according to objective
function, we compare the performance of the two formulations computationally. From our
statistical study of the results, we can observe that in all but one of the eight problem
classes, the O(M3) formulation performs better; only on the problem class correspond-
ing to the N -center problem is the O(M2) formulation better. We believe the success of
the O(M3) formulation is in part due to the fact that many of the properties of optimal
solutions found could be implemented in this formulation using preprocessing, whereas
additional constraints were needed to implement the same properties in the O(M2) formu-
lation.

Even when using the better formulation, solution times for problems with M much
larger than 20 were prohibitive. Thus we developed a specialized branch and bound
method, based on combinatorial lower bounds that were very quick to calculate. We
found that a “max-regret” branching rule performed very substantially better than a naive
branching rule, and the resulting branch and bound method outperformed the integer pro-
gramming approaches by a substantial margin. Problems with M smaller than or equal to
35 can be solved in reasonable time using this method.

We note that the aim of the DOMP is not only to unify all classical discrete facility
location problems but also to model new problems not previously formulated as integer
programs (e.g. the k1 +k2 trimmed mean problem). Our objective is to develop a common
solution method for all these problems, not to develop a method which competes against
other well-known approaches for specific discrete location problems. Thus we do not nec-
essarily expect any of the methods we present here to outperform specialized methods
already developed for some of the special cases of the DOMP. Nevertheless, we believe our
general approaches could be improved, as we discuss below.

In future work, we plan to develop a hybrid branch and bound method, that makes
use of the strengths of both the integer programming and branch and bound approaches
we have developed. The integer programming formulations would provide lower bounds
and preprocessing information high in the tree, (where they are clearly stronger than
the combinatorial bounds), combinatorial lower bounds would be used lower in the tree,
(to speed up the solution process), branching would be based only on the facility location
variables, (as is the case in our branch and bound method), and the “max-regret” branching
rule together with the ideas we present for detecting feasible solutions and early pruning of
nodes in the branch and bound method would be used throughout. We believe this hybrid
method would capitalize on the strengths of the methods we have presented here.

We also believe that more needs to be understood about the less well-known special
cases of the DOMP objective. There is a vast literature on N-median problems, but very
little is known about other instances of discrete location models presented in this paper.
Our work here goes some way to classifying some key problem classes, and assessing their
relative difficulty, for example we find that the N-median problem class is far from the
hardest. But it is obvious much more can be done in this direction.

It should be noted that some of the ideas we present have the potential to be applied
in other discrete location contexts, such as hub location or QAP.
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Cutting planes are another avenue for future research. With respect to polyhedral
analysis, it is interesting that the DOMP includes as special cases both the N -median
problem, which is known to be “integer-friendly”, and the N -center problem, for which
not much is known about its facets. DOMP formulations could provide a helpful bridge in
the study of such polyhedra.

Finally, it is obvious that good heuristics will be necessary if large DOMPs are to be
tackled. Although a variable neighbourhood search, presented in [3], has been found to be
effective, there is clearly room for more exploration in this direction.
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Appendix A

The idea that sorting preserves isotonicity, i.e. that if p and q are two vectors with p ≥ q
(componentwise) then the sorted vector p is also (componentwise) at least as big as the
sorted vector q, is a powerful and useful idea in location problems generally, as other
authors have noted. A result of this kind is given in Theorem 1 in [7], in which the function
defined on the vector space to return the jth-largest element of its operand is shown to
be isotone (non-decreasing). We make use of this idea in strengthening the integer linear
programming formulations, via Proposition 4, and in deriving combinatorial lower bounds,
via Propositions 5 and 6. Although these applications could be proved as corollaries of
Theorem 1 in [7], the approach is unnecessarily complicated for our purposes; we provide
short, direct proofs of the results we need.
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Theorem 1 Let p = (p1, . . . , pr) ∈ R
r and q = (q1, . . . , qs) ∈ R

s be two vectors of real
numbers with r ≤ s. Let σP and σQ denote a permutation of 1, . . . , r and 1, . . . , s, respec-
tively, such that

pσP (1) ≤ · · · ≤ pσP (r), (42)

and
qσQ(1) ≤ · · · ≤ qσQ(s). (43)

Then, if
pk ≥ qk, ∀k = 1, . . . , r, (44)

it holds that
pσP (k) ≥ qσQ(k), ∀k = 1, . . . , r.

Proof.
Consider k ∈ {1, . . . , r}. We use the fact that because σP and σQ are permutations, the
set {σP (1), . . . , σP (k)} consists of k distinct elements and the set {σQ(1), . . . , σQ(k − 1)}
consists of k−1 distinct elements, where if k = 1 the the latter set is simply taken to be the
empty set. Thus there must exist m ∈ {1, . . . , k} such that σP (m) 
∈ {σQ(1), . . . , σQ(k−1)}.
(If k = 0 simply take m = 1.) Now by (43), it must be that qσQ(k) ≤ qσP (m). Furthermore,
by (44), we have qσP (m) ≤ pσP (m) and by (42) we have pσP (m) ≤ pσP (k). Hence qσP (k) ≤
pσQ(k), as required. �

The following corollary to Theorem 1 shows that if two sorted vectors are given, and
a permutation can be found to ensure one vector is (componentwise) no greater than
the other, then the former vector in its original sorted state must also be no greater
(componentwise) than the latter. This result is used in Proposition 4, to validate the
strengthenings we apply to the (LDOMP2) formulation.

Lemma 6 Suppose w, ŵ ∈ R
M satisfy

w1 ≤ w2 ≤ · · · ≤ wM , (45)

ŵ1 ≤ ŵ2 ≤ · · · ≤ ŵM , (46)

and
ŵσ(i) ≤ wi, ∀i = 1, . . . , M (47)

for some σ a permutation of {1, . . . , M}. Then

ŵi ≤ wi, ∀i = 1, . . . , M. (48)

Proof.
It is a corollary of Theorem 1. This can be seen by setting w′

i = ŵσ(i) for all i = 1, . . . , M ,
and by taking r = s = M , p = (w1, . . . , wM), q = (w′

1, . . . , w
′
M), σP to be the identity

permutation and σQ = σ−1, the inverse permutation of σ. Note that in this case wσP (i) = wi

for all i = 1, . . . , M , and furthermore

w′
σQ(i) = w′

σ−1(i) = ŵσ(σ−1(i)) = ŵi, ∀i = 1, . . . , M. (49)
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It is obvious from (45) that the elements of p form an increasing sequence under the
permutation σP . It is also obvious from (46) and (49) that the elements of q form an
increasing sequence under the permutation σQ. Thus the first two conditions of Theorem 1
are met. From (47) and the definition of w′, we have that wi ≥ w′

i for all i = 1, . . . , M
and the final condition of Theorem 1 is met. From Theorem 1 we thus deduce that
wσP (i) ≥ w′

σQ(i) for all i = 1, . . . , M . Now for all i = 1, . . . , M we have that wσP (i) = wi

and w′
σQ(i) = ŵi, so ŵi ≤ wi as required. �

The following corollary to Theorem 1 shows that a vector of r real numbers that is
componentwise no less than r elements chosen from a vector Q of s real numbers, s ≥ r,
is, when sorted, no less than (componentwise) the vector of the r smallest real numbers in
Q, sorted. This result is used in Proposition 6, to validate the lower bound we use in our
B& B method when cheapest self-service applies.

Lemma 7 Let T = (t1, . . . , ts) be a vector of s ≥ 1 real numbers with

t1 ≤ · · · ≤ ts.

Let r ∈ {1, . . . , s} and let S ∈ R
r be a vector with elements no less, componentwise, than

r of the elements of T , say S = (t′1, . . . , t
′
r) where for all j = 1, . . . , r there exists a unique

i(j) ∈ {1, . . . , s} such that t′j ≥ ti(j), with

t′1 ≤ · · · ≤ t′r.

Then
t′j ≥ tj , ∀j = 1, . . . , r.

Proof.
The claim follows from Theorem 1, as follows. Take r and s as given. Take qj = ti(j) for
all j = 1, . . . , r and define qr+1, . . . , qs to be the components from the vector T which do
not have index in {i(j) : j = 1, . . . , r}. Note there is a one-to-one correspondence between
the elements of T and q, i.e. q is a permutation of T . Take pj = t′j for all j = 1, . . . , r, so
pj = t′j ≥ ti(j) = qj for all j = 1, . . . , r. Also take σP to be the identity permutation, and
note that σQ can be taken so that that qσQ(i) = ti for all i = 1, . . . , s, by the definition of
T and since q is a permutation of T . Now by Theorem 1 (Appendix A) it must be that for
all j = 1, . . . , r, pσP (j) ≥ qσQ(j) = tj , and so pj = t′j ≥ tj , as required. �
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1.  D. Hietel, K. Steiner, J. Struckmeier

A Finite - Volume Particle Method for 
Compressible Flows

We derive a new class of particle methods for con-
 ser va tion laws, which are based on numerical fl ux 
functions to model the in ter ac tions between moving 
particles. The der i va tion is similar to that of classical 
Finite-Volume meth ods; except that the fi xed grid 
structure in the Fi nite-Volume method is sub sti tut ed 
by so-called mass pack ets of par ti cles. We give some 
numerical results on a shock wave solution for Burgers 
equation as well as the well-known one-dimensional 
shock tube problem.
(19 pages, 1998)

2.  M. Feldmann, S. Seibold

Damage Diagnosis of Rotors: Application 
of  Hilbert Transform and Multi-Hypothe-
sis Testing

In this paper, a combined approach to damage diag-
nosis of rotors is proposed. The intention is to employ 
signal-based as well as model-based procedures for an 
im proved detection of size and location of the damage. 
In a fi rst step, Hilbert transform signal processing tech-
 niques allow for a computation of the signal envelope 
and the in stan ta neous frequency, so that various types 
of non-linearities due to a damage may be identifi ed 
and clas si fi ed based on measured response data. In a 
second step, a multi-hypothesis bank of Kalman Filters 
is employed for the detection of the size and location 
of the damage based on the information of the type 
of damage pro vid ed by the results of the Hilbert trans-
form. 
Keywords: Hilbert transform, damage diagnosis, Kal-
man fi ltering, non-linear dynamics
(23 pages, 1998)

3.  Y. Ben-Haim, S. Seibold

Robust Reliability of Diagnostic Multi-
Hypothesis Algorithms: Application to 
Rotating Machinery

Damage diagnosis based on a bank of Kalman fi l-
ters, each one conditioned on a specifi c hypothesized 
system condition, is a well recognized and powerful 
diagnostic tool. This multi-hypothesis approach can 
be applied to a wide range of damage conditions. In 
this paper, we will focus on the diagnosis of cracks in 
rotating machinery. The question we address is: how to 
optimize the multi-hypothesis algorithm with respect 
to the uncertainty of the spatial form and location of 
cracks and their re sult ing dynamic effects. First, we 
formulate a measure of the re li abil i ty of the diagnos-
tic algorithm, and then we dis cuss modifi cations of 
the diagnostic algorithm for the max i mi za tion of the 
reliability. The reliability of a di ag nos tic al go rithm is 
measured by the amount of un cer tain ty con sis tent with 
no-failure of the diagnosis. Un cer tain ty is quan ti ta tive ly 
represented with convex models. 
Keywords: Robust reliability, convex models, Kalman 
fi l ter ing, multi-hypothesis diagnosis, rotating machinery, 
crack di ag no sis
(24 pages, 1998)

4.  F.-Th. Lentes, N. Siedow

Three-dimensional Radiative Heat Transfer 
in Glass Cooling Processes

For the numerical simulation of 3D radiative heat trans-
 fer in glasses and glass melts, practically applicable 
math e mat i cal methods are needed to handle such 
prob lems optimal using workstation class computers. 
Since the ex act solution would require super-computer 
ca pa bil i ties we concentrate on approximate solu-
tions with a high degree of accuracy. The following 
approaches are stud ied: 3D diffusion approximations 
and 3D ray-tracing meth ods. 
(23 pages, 1998)

5.  A. Klar, R. Wegener

A hierarchy of models for multilane 
vehicular traffi c 
Part I: Modeling

In the present paper multilane models for vehicular 
traffi c are considered. A mi cro scop ic multilane model 
based on reaction thresholds is developed. Based on 
this mod el an Enskog like kinetic model is developed. 
In particular, care is taken to incorporate the correla-
tions between the ve hi cles. From the kinetic model a 
fl uid dynamic model is de rived. The macroscopic coef-
fi cients are de duced from the underlying kinetic model. 
Numerical simulations are presented for all three levels 
of description in [10]. More over, a comparison of the 
results is given there.
(23 pages, 1998)

Part II: Numerical and stochastic 
investigations

In this paper the work presented in [6] is continued. 
The present paper contains detailed numerical inves-
tigations of the models developed there. A numerical 
method to treat the kinetic equations obtained in [6] 
are presented and results of the simulations are shown. 
Moreover, the stochastic correlation model used in [6] 
is described and investigated in more detail.
(17 pages, 1998)

6.  A. Klar, N. Siedow

Boundary Layers and Domain De com po s-
i tion for Radiative Heat Transfer and Dif fu -
sion Equa tions: Applications to Glass Man u -
fac tur ing Processes

In this paper domain decomposition methods for 
ra di a tive transfer problems including conductive heat 
transfer are treated. The paper focuses on semi-trans-
parent ma te ri als, like glass, and the associated condi-
tions at the interface between the materials. Using 
asymptotic anal y sis we derive conditions for the cou-
pling of the radiative transfer equations and a diffusion 
approximation. Several test cases are treated and a 
problem appearing in glass manufacturing processes is 
computed. The results clearly show the advantages of a 
domain decomposition ap proach. Accuracy equivalent 
to the solution of the global radiative transfer solu-
tion is achieved, whereas com pu ta tion time is strongly 
reduced.
(24 pages, 1998)

7.  I. Choquet

Heterogeneous catalysis modelling and 
numerical simulation in rarifi ed gas fl ows
Part I: Coverage locally at equilibrium 

A new approach is proposed to model and simulate 
nu mer i cal ly heterogeneous catalysis in rarefi ed gas 
fl ows. It is developed to satisfy all together the follow-
ing points: 
1) describe the gas phase at the microscopic scale, as 
required in rarefi ed fl ows, 
2) describe the wall at the macroscopic scale, to avoid 
prohibitive computational costs and consider not only 
crystalline but also amorphous surfaces, 
3) reproduce on average macroscopic laws correlated 
with experimental results and 
4) derive analytic models in a systematic and exact 
way. The problem is stated in the general framework 
of a non static fl ow in the vicinity of a catalytic and 
non porous surface (without aging). It is shown that 
the exact and systematic resolution method based 
on the Laplace trans form, introduced previously by 
the author to model col li sions in the gas phase, can 
be extended to the present problem. The proposed 
approach is applied to the mod el ling of the Eley Rideal 
and Langmuir Hinshel wood re com bi na tions, assuming 
that the coverage is locally at equilibrium. The models 
are developed con sid er ing one atomic species and 
extended to the general case of sev er al atomic species. 
Numerical calculations show that the models derived in 
this way reproduce with accuracy be hav iors observed 
experimentally.
(24 pages, 1998)

8.  J. Ohser, B. Steinbach, C. Lang

Effi cient Texture Analysis of Binary Images

A new method of determining some characteristics 
of binary images is proposed based on a special linear 
fi l ter ing. This technique enables the estimation of the 
area fraction, the specifi c line length, and the specifi c 
integral of curvature. Furthermore, the specifi c length 
of the total projection is obtained, which gives detailed 
information about the texture of the image. The 
in fl u ence of lateral and directional resolution depend-
ing on the size of the applied fi lter mask is discussed in 
detail. The technique includes a method of increasing 
di rec tion al resolution for texture analysis while keeping 
lateral resolution as high as possible.
(17 pages, 1998)

9.  J. Orlik

Homogenization for viscoelasticity of the 
integral type with aging and shrinkage

A multi phase composite with periodic distributed 
in clu sions with a smooth boundary is considered in this 
con tri bu tion. The composite component materials are 
sup posed to be linear viscoelastic and aging (of the 
non convolution integral type, for which the Laplace 
trans form with respect to time is not effectively ap pli -
ca ble) and are subjected to isotropic shrinkage. The 
free shrinkage deformation can be considered as a fi cti-
tious temperature deformation in the behavior law. The 
pro ce dure presented in this paper proposes a way to 
de ter mine average (effective homogenized) viscoelastic 
and shrinkage (temperature) composite properties and 
the homogenized stress fi eld from known properties 
of the components. This is done by the extension of 
the as ymp tot ic homogenization technique known for 
pure elastic non homogeneous bodies to the non homo-
geneous thermo viscoelasticity of the integral non con-



volution type. Up to now, the homogenization theory 
has not covered viscoelasticity of the integral type.
Sanchez Palencia (1980), Francfort & Suquet (1987) (see 
[2], [9]) have considered homogenization for vis coelas -
tic i ty of the differential form and only up to the fi rst 
de riv a tive order. The integral modeled viscoelasticity 
is more general then the differential one and includes 
almost all known differential models. The homogeni-
zation pro ce dure is based on the construction of an 
asymptotic so lu tion with respect to a period of the 
composite struc ture. This reduces the original problem 
to some auxiliary bound ary value problems of elastic-
ity and viscoelasticity on the unit periodic cell, of the 
same type as the original non-homogeneous problem. 
The existence and unique ness results for such problems 
were obtained for kernels satisfying some constrain 
conditions. This is done by the extension of the Volterra 
integral operator theory to the Volterra operators with 
respect to the time, whose 1 ker nels are space linear 
operators for any fi xed time vari ables. Some ideas of 
such approach were proposed in [11] and [12], where 
the Volterra operators with kernels depending addi-
tionally on parameter were considered. This manuscript 
delivers results of the same nature for the case of the 
space operator kernels.
(20 pages, 1998)

10.  J. Mohring

Helmholtz Resonators with Large Aperture

The lowest resonant frequency of a cavity resona-
tor is usually approximated by the clas si cal Helmholtz 
formula. However, if the opening is rather large and 
the front wall is narrow this formula is no longer valid. 
Here we present a correction which is of third or der 
in the ratio of the di am e ters of aperture and cavity. In 
addition to the high accuracy it allows to estimate the 
damping due to ra di a tion. The result is found by apply-
ing the method of matched asymptotic expansions. The 
correction contains form factors de scrib ing the shapes 
of opening and cavity. They are computed for a num-
ber of standard ge om e tries. Results are compared with 
nu mer i cal computations.
(21 pages, 1998)

11.  H. W. Hamacher, A. Schöbel

On Center Cycles in Grid Graphs

Finding “good” cycles in graphs is a problem of great 
in ter est in graph theory as well as in locational analy-
sis. We show that the center and median problems are 
NP hard in general graphs. This result holds both for 
the vari able cardinality case (i.e. all cycles of the graph 
are con sid ered) and the fi xed cardinality case (i.e. only 
cycles with a given cardinality p are feasible). Hence 
it is of in ter est to investigate special cases where the 
problem is solvable in polynomial time. In grid graphs, 
the variable cardinality case is, for in stance, trivially 
solvable if the shape of the cycle can be chosen freely. 
If the shape is fi xed to be a rectangle one can ana-
lyze rectangles in grid graphs with, in sequence, fi xed 
di men sion, fi xed car di nal i ty, and vari able cardinality. 
In all cases a complete char ac ter iza tion of the optimal 
cycles and closed form ex pres sions of the optimal 
ob jec tive values are given, yielding polynomial time 
algorithms for all cas es of center rect an gle prob lems. 
Finally, it is shown that center cycles can be chosen as 
rectangles for small car di nal i ties such that the center 
cy cle problem in grid graphs is in these cases com-
 plete ly solved.
(15 pages, 1998)

12.  H. W. Hamacher, K.-H. Küfer

Inverse radiation therapy planning - 
a multiple objective optimisation ap proach

For some decades radiation therapy has been proved 
successful in cancer treatment. It is the major task of 
clin i cal radiation treatment planning to realize on the 
one hand a high level dose of radiation in the cancer 
tissue in order to obtain maximum tumor control. On 
the other hand it is obvious that it is absolutely neces-
sary to keep in the tissue outside the tumor, particularly 
in organs at risk, the unavoidable radiation as low as 
possible. 
No doubt, these two objectives of treatment planning 

- high level dose in the tumor, low radiation outside the 
tumor - have a basically contradictory nature. Therefore, 
it is no surprise that inverse mathematical models with 
dose dis tri bu tion bounds tend to be infeasible in most 
cases. Thus, there is need for approximations com-
 pro mis ing between overdosing the organs at risk and 
un der dos ing the target volume. 
Differing from the currently used time consuming 
it er a tive approach, which measures de vi a tion from an 
ideal (non-achievable) treatment plan us ing re cur sive ly 
trial-and-error weights for the organs of in ter est, we 
go a new way trying to avoid a priori weight choic es 
and con sid er the treatment planning problem as a mul-
tiple ob jec tive linear programming problem: with each 
organ of interest, target tissue as well as organs at risk, 
we as so ci ate an objective function measuring the maxi-
mal de vi a tion from the prescribed doses. 
We build up a data base of relatively few effi cient 
so lu tions rep re sent ing and ap prox i mat ing the variety 
of Pare to solutions of the mul ti ple objective linear 
programming problem. This data base can be easily 
scanned by phy si cians look ing for an ad e quate treat-
ment plan with the aid of an appropriate on line tool.
(14 pages, 1999)

13.  C. Lang, J. Ohser, R. Hilfer

On the Analysis of Spatial Binary Images

This paper deals with the characterization of mi cro -
scop i cal ly heterogeneous, but macroscopically homo-
geneous spatial structures. A new method is presented 
which is strictly based on integral-geometric formulae 
such as Crofton’s intersection formulae and Hadwiger’s 
recursive defi nition of the Euler number. The corre-
sponding al go rithms have clear advantages over other 
techniques. As an example of application we consider 
the analysis of spatial digital images produced by 
means of Computer Assisted Tomography.
(20 pages, 1999)

14.  M. Junk

On the Construction of Discrete Equilibrium 
Distributions for Kinetic Schemes

A general approach to the construction of discrete 
equi lib ri um distributions is presented. Such distribution 
func tions can be used to set up Kinetic Schemes as 
well as Lattice Boltzmann methods. The general prin-
ciples are also applied to the construction of Chapman 
Enskog dis tri bu tions which are used in Kinetic Schemes 
for com press ible Navier-Stokes equations.
(24 pages, 1999)

15.  M. Junk, S. V. Raghurame Rao

A new discrete velocity method for Navier-
Stokes equations

The relation between the Lattice Boltzmann Method, 
which has recently become popular, and the Kinetic 
Schemes, which are routinely used in Computational 
Flu id Dynamics, is explored. A new discrete veloc-
ity model for the numerical solution of Navier-Stokes 
equa tions for incompressible fl uid fl ow is presented by 
com bin ing both the approaches. The new scheme can 
be interpreted as a pseudo-compressibility method and, 
for a particular choice of parameters, this interpretation 
carries over to the Lattice Boltzmann Method.
(20 pages, 1999)

16.  H. Neunzert

Mathematics as a Key to Key Technologies

The main part of this paper will consist of examples, 
how mathematics really helps to solve industrial prob-
 lems; these examples are taken from our Institute for 
Industrial Mathematics, from research in the Tech no-
math e mat ics group at my university, but also from 
ECMI groups and a company called TecMath, which 
orig i nat ed 10 years ago from my university group and 
has already a very suc cess ful history.
(39 pages (4 PDF-Files), 1999)

17.  J. Ohser, K. Sandau

Considerations about the Estimation of the 
Size Distribution in Wicksell’s Corpuscle 
Prob lem

Wicksell’s corpuscle problem deals with the estima-
tion of the size distribution of a population of particles, 
all hav ing the same shape, using a lower dimensional 
sampling probe. This problem was originary formulated 
for particle systems occurring in life sciences but its 
solution is of actual and increasing interest in materials 
science. From a mathematical point of view, Wicksell’s 
problem is an in verse problem where the interest-
ing size distribution is the unknown part of a Volterra 
equation. The problem is often regarded ill-posed, 
because the structure of the integrand implies unstable 
numerical solutions. The ac cu ra cy of the numerical 
solutions is considered here using the condition num-
ber, which allows to compare different numerical meth-
ods with different (equidistant) class sizes and which 
indicates, as one result, that a fi nite section thickness 
of the probe reduces the numerical problems. Fur-
thermore, the rel a tive error of estimation is computed 
which can be split into two parts. One part consists 
of the relative dis cret i za tion error that increases for 
in creas ing class size, and the second part is related 
to the rel a tive statistical error which increases with 
decreasing class size. For both parts, upper bounds 
can be given and the sum of them indicates an optimal 
class width depending on some specifi c constants.
(18 pages, 1999)

18.  E. Carrizosa, H. W. Hamacher, R. Klein, 
S. Nickel

Solving nonconvex planar location prob-
lems by fi nite dominating sets

It is well-known that some of the classical location 
prob lems with polyhedral gauges can be solved in 
poly no mi al time by fi nding a fi nite dominating set, i. e. 
a fi nite set of candidates guaranteed to contain at least 
one op ti mal location. 
In this paper it is fi rst established that this result holds 



for a much larger class of problems than currently con-
 sid ered in the literature. The model for which this result 
can be prov en includes, for instance, location prob lems 
with at trac tion and repulsion, and location-al lo ca tion 
prob lems. 
Next, it is shown that the ap prox i ma tion of general 
gaug es by polyhedral ones in the objective function of 
our gen er al model can be analyzed with re gard to the 
sub se quent error in the optimal ob jec tive value. For 
the ap prox i ma tion problem two different ap proach es 
are described, the sand wich procedure and the greedy 
al go rithm. Both of these approaches lead - for fi xed 
epsilon - to polyno mial ap prox i ma tion algorithms with 
accuracy epsilon for solving the general model con-
 sid ered in this paper.
Keywords: Continuous Location, Polyhedral Gauges, 
Finite Dom i nat ing Sets, Approximation, Sandwich Al go -
rithm, Greedy Algorithm
(19 pages, 2000)

19. A. Becker

A Review on Image Distortion Measures

Within this paper we review image distortion measures. 
A distortion measure is a criterion that assigns a “qual-
ity number” to an image. We distinguish between 
math e mat i cal distortion measures and those distortion 
mea sures in-cooperating a priori knowledge about 
the im ag ing devices ( e. g. satellite images), image pro-
cessing al go rithms or the human physiology. We will 
consider rep re sen ta tive examples of different kinds of 
distortion mea sures and are going to discuss them.
Keywords: Distortion measure, human visual system
(26 pages, 2000)

20. H. W. Hamacher, M. Labbé, S. Nickel, 
T. Sonneborn

Polyhedral Properties of the Uncapacitated 
Multiple Allocation Hub Location Problem 

We examine the feasibility polyhedron of the un ca -
pac i tat ed hub location problem (UHL) with multiple 
al lo ca tion, which has applications in the fi elds of air 
passenger and cargo transportation, telecommuni-
cation and postal delivery services. In particular we 
determine the di men sion and derive some classes of 
facets of this polyhedron. We develop some general 
rules about lifting facets from the uncapacitated facility 
location (UFL) for UHL and pro ject ing facets from UHL 
to UFL. By applying these rules we get a new class of 
facets for UHL which dom i nates the inequalities in the 
original formulation. Thus we get a new formulation of 
UHL whose constraints are all facet–defi ning. We show 
its superior computational per for mance by benchmark-
ing it on a well known data set.
Keywords: integer programming, hub location, facility 
location, valid inequalities, facets, branch and cut
(21 pages, 2000)

21. H. W. Hamacher, A. Schöbel

Design of Zone Tariff Systems in Public 
Trans por ta tion

Given a public transportation system represented by its 
stops and direct connections between stops, we con-
sider two problems dealing with the prices for the cus-
tomers: The fare problem in which subsets of stops are 
already aggregated to zones and “good” tariffs have 
to be found in the existing zone system. Closed form 
solutions for the fare problem are presented for three 
objective functions. In the zone problem the design 
of the zones is part of the problem. This problem is NP 

hard and we there fore propose three heuristics which 
prove to be very successful in the redesign of one of 
Germany’s trans por ta tion systems.
(30 pages, 2001)

22. D. Hietel, M. Junk, R. Keck, D. Teleaga:

The Finite-Volume-Particle Method for 
Conservation Laws

In the Finite-Volume-Particle Method (FVPM), the weak 
formulation of a hyperbolic conservation law is dis cretized 
by restricting it to a discrete set of test functions. In 
con trast to the usual Finite-Volume approach, the test 
func tions are not taken as characteristic functions of the 
con trol volumes in a spatial grid, but are chosen from a 
par ti tion of unity with smooth and overlapping partition 
func tions (the particles), which can even move along 
pre - scribed velocity fi elds. The information exchange 
be tween particles is based on standard numerical fl ux 
func tions. Geometrical information, similar to the sur-
face area of the cell faces in the Finite-Volume Method 
and the cor re spond ing normal directions are given as 
integral quan ti ties of the partition functions. After a 
brief der i va tion of the Finite-Volume-Particle Meth od, 
this work fo cus es on the role of the geometric coeffi -
cients in the scheme.
(16 pages, 2001)

23. T. Bender, H. Hennes, J. Kalcsics, 
M. T. Melo, S. Nickel

Location Software and Interface with GIS 
and Supply Chain Management

The objective of this paper is to bridge the gap 
between location theory and practice. To meet this 
objective focus is given to the development of soft-
ware capable of ad dress ing the different needs of a 
wide group of users. There is a very active commu-
nity on location theory en com pass ing many research 
fi elds such as operations re search, computer science, 
mathematics, engineering, geography, economics and 
marketing. As a result, people working on facility loca-
tion problems have a very diverse background and also 
different needs regarding the soft ware to solve these 
problems. For those interested in non-commercial 
applications (e. g. students and re search ers), the library 
of location algorithms (LoLA can be of considerable 
assistance. LoLA contains a collection of effi cient algo-
rithms for solving planar, network and dis crete facility 
location problems. In this paper, a de tailed description 
of the func tion al ity of LoLA is pre sent ed. In the fi elds 
of geography and marketing, for in stance, solv ing facil-
ity location prob lems requires using large amounts of 
demographic data. Hence, members of these groups 
(e. g. urban planners and sales man ag ers) often work 
with geo graph i cal information too s. To address the 
specifi c needs of these users, LoLA was inked to a 
geo graph i cal information system (GIS) and the details 
of the com bined functionality are de scribed in the 
paper. Fi nal ly, there is a wide group of prac ti tio ners 
who need to solve large problems and require special 
purpose soft ware with a good data in ter face. Many of 
such users can be found, for example, in the area of 
supply chain management (SCM). Lo gis tics activities 
involved in stra te gic SCM in clude, among others, facil-
ity lo ca tion plan ning. In this paper, the development of 
a com mer cial location soft ware tool is also described. 
The too is em bed ded in the Ad vanced Planner and 
Op ti miz er SCM software de vel oped by SAP AG, Wall-
dorf, Germany. The paper ends with some conclusions 
and an outlook to future ac tiv i ties.
Keywords: facility location, software development, 

geo graph i cal information systems, supply chain man-
 age ment.
(48 pages, 2001)

24. H. W. Hamacher, S. A. Tjandra

Mathematical Mod el ling of Evacuation 
Problems: A State of Art

This paper details models and algorithms which can 
be applied to evacuation problems. While it con cen -
trates on building evac u a tion many of the results are 
ap pli ca ble also to regional evacuation. All models 
consider the time as main parameter, where the travel 
time between com po nents of the building is part of the 
input and the over all evacuation time is the output. The 
paper dis tin guish es between macroscopic and micro-
scopic evac u a tion mod els both of which are able to 
capture the evac u ees’ move ment over time. 
Macroscopic models are mainly used to produce good 
lower bounds for the evacuation time and do not con-
 sid er any individual behavior during the emergency 
sit u a tion. These bounds can be used to analyze exist-
ing build ings or help in the design phase of planning a 
build ing. Mac ro scop ic approaches which are based on 
dynamic network fl ow models (min i mum cost dynamic 
fl ow, max i mum dynamic fl ow, universal maximum 
fl ow, quickest path and quickest fl ow) are described. A 
special feature of the presented approach is the fact, 
that travel times of evacuees are not restricted to be 
constant, but may be density dependent. Using mul ti -
cri te ria op ti mi za tion pri or i ty regions and blockage due 
to fi re or smoke may be considered. It is shown how 
the modelling can be done using time parameter either 
as discrete or con tin u ous parameter. 
Microscopic models are able to model the individual 
evac u ee’s char ac ter is tics and the interaction among 
evac u ees which infl uence their move ment. Due to the 
cor re spond ing huge amount of data one uses sim u -
la tion ap proach es. Some probabilistic laws for indi-
vidual evac u ee’s move ment are presented. Moreover 
ideas to mod el the evacuee’s movement using cellular 
automata (CA) and resulting software are presented. 
In this paper we will focus on macroscopic models and 
only summarize some of the results of the microscopic 
approach. While most of the results are applicable to 
general evacuation situations, we concentrate on build-
 ing evacuation. 
(44 pages, 2001)

25. J. Kuhnert, S. Tiwari

Grid free method for solving the Poisson 
equa tion

A Grid free method for solving the Poisson equation 
is presented. This is an it er a tive method. The method 
is based on the weight ed least squares approximation 
in which the Poisson equation is enforced to be satis-
fi ed in every iterations. The boundary conditions can 
also be enforced in the it er a tion process. This is a local 
ap prox i ma tion procedure. The Dirichlet, Neumann and 
mixed boundary value problems on a unit square are 
pre sent ed and the analytical so lu tions are compared 
with the exact so lu tions. Both solutions matched per-
fectly.
Keywords: Poisson equation, Least squares method, 
Grid free method
(19 pages, 2001)



26.  T. Götz, H. Rave, D. Rei nel-Bitzer, 
K. Steiner, H. Tiemeier

Simulation of the fi ber spinning process

To simulate the infl uence of pro cess parameters to the 
melt spinning process a fi ber model is used and coupled 
with CFD calculations of the quench air fl ow. In the fi ber 
model energy, momentum and mass balance are solved 
for the polymer mass fl ow. To calculate the quench air 
the Lattice Bolt z mann method is used. Sim u la tions and 
ex per i ments for dif fer ent process parameters and hole 
con fi g u ra tions are com pared and show a good agree-
 ment.
Keywords: Melt spinning, fi ber mod el, Lattice 
Bolt z mann, CFD
(19 pages, 2001)

27. A. Zemitis 

On interaction of a liquid fi lm with an 
obstacle 

In this paper mathematical models for liquid fi lms 
gen er at ed by impinging jets are discussed. Attention 
is stressed to the interaction of the liquid fi lm with 
some obstacle. S. G. Taylor [Proc. R. Soc. London Ser. 
A 253, 313 (1959)] found that the liquid fi lm gener-
ated by impinging jets is very sensitive to properties 
of the wire which was used as an obstacle. The aim of 
this presentation is to propose a modifi cation of the 
Taylor’s model, which allows to sim u late the fi lm shape 
in cases, when the angle between jets is different from 
180°. Numerical results obtained by dis cussed models 
give two different shapes of the liquid fi lm similar as 
in Taylors experiments. These two shapes depend on 
the regime: either droplets are produced close to the 
obstacle or not. The difference between two re gimes 
becomes larger if the angle between jets de creas es. 
Existence of such two regimes can be very essential for 
some applications of impinging jets, if the generated 
liquid fi lm can have a contact with obstacles.
Keywords: impinging jets, liquid fi lm, models, numeri-
cal solution, shape
(22 pages, 2001)

28.  I. Ginzburg, K. Steiner

Free surface lattice-Boltzmann method to 
model the fi ll ing of expanding cavities by 
Bingham Fluids

The fi lling process of viscoplastic metal alloys and plas-
tics in expanding cavities is modelled using the lattice 
Bolt z mann method in two and three dimensions. These 
mod els combine the regularized Bingham model for 
vis co plas tic with a free-interface algorithm. The latter 
is based on a modifi ed immiscible lattice Boltzmann 
model in which one species is the fl uid and the other 
one is con sid ered as vacuum. The boundary conditions 
at the curved liquid-vac u um interface are met without 
any geo met ri cal front re con struc tion from a fi rst-order 
Chapman-Enskog expansion. The numerical results 
obtained with these models are found in good agree-
ment with avail able theoretical and numerical analysis. 
Keywords: Generalized LBE, free-surface phenomena, 
interface bound ary conditions, fi lling processes, Bing-
 ham vis co plas tic model, regularized models
(22 pages, 2001)

29. H. Neunzert

»Denn nichts ist für den Menschen als Men-
 schen etwas wert, was er nicht mit Leiden-
 schaft tun kann«

Vortrag anlässlich der Verleihung des Akademie-
preises des Landes Rheinland-Pfalz am 21.11.2001

Was macht einen guten Hochschullehrer aus? Auf 
diese Frage gibt es sicher viele verschiedene, fach-
bezogene Antworten, aber auch ein paar allgemeine 
Ge sichts punk te: es bedarf der »Leidenschaft« für 
die Forschung (Max Weber), aus der dann auch die 
Begeiste rung für die Leh re erwächst. Forschung und 
Lehre gehören zusammen, um die Wissenschaft als 
lebendiges Tun vermitteln zu kön nen. Der Vortrag gibt 
Beispiele dafür, wie in an ge wand ter Mathematik Forsc-
hungsaufgaben aus prak ti schen Alltagsproblemstellun-
gen erwachsen, die in die Lehre auf verschiedenen 
Stufen (Gymnasium bis Gra du ier ten kol leg) einfl ießen; 
er leitet damit auch zu einem aktuellen Forschungs-
gebiet, der Mehrskalenanalyse mit ihren vielfälti-
gen Anwendungen in Bildverarbeitung, Material ent-
wicklung und Strömungsmechanik über, was aber nur 
kurz gestreift wird. Mathematik erscheint hier als eine 
moderne Schlüssel technologie, die aber auch enge 
Beziehungen zu den Geistes- und So zi al wis sen schaf ten 
hat.
Keywords: Lehre, Forschung, angewandte Mathematik, 
Mehr ska len ana ly se, Strömungsmechanik
(18 pages, 2001)

30. J. Kuhnert, S. Tiwari

Finite pointset method based on the pro jec -
tion method for simulations of the in com -
press ible Navier-Stokes equations

A Lagrangian particle scheme is applied to the pro-
jection method for the incompressible Navier-Stokes 
equations. The approximation of spatial derivatives is 
obtained by the weighted least squares method. The 
pressure Poisson equation is solved by a local iterative 
procedure with the help of the least squares method. 
Numerical tests are performed for two dimensional 
cases. The Couette fl ow, Poiseuelle fl ow, decaying 
shear fl ow and the driven cavity fl ow are presented. 
The numerical solutions are ob tained for stationary as 
well as instationary cases and are com pared with the 
analytical solutions for channel fl ows. Finally, the driven 
cavity in a unit square is con sid ered and the stationary 
solution obtained from this scheme is compared with 
that from the fi nite element method.
Keywords: Incompressible Navier-Stokes equations, 
Mesh free method, Projection method, Particle scheme, 
Least squares approximation 
AMS subject classifi cation: 76D05, 76M28
(25 pages, 2001)

31.  R. Korn, M. Krekel

Optimal Portfolios with Fixed Consumption 
or Income Streams

We consider some portfolio op ti mi s a tion problems 
where either the in ves tor has a desire for an a priori 
spec i fi ed consumption stream or/and follows a de ter -
min is tic pay in scheme while also trying to max i mize 
expected utility from fi nal wealth. We derive explicit 
closed form so lu tions for continuous and discrete mon-
 e tary streams. The math e mat i cal method used is clas-
 si cal stochastic control theory. 
Keywords: Portfolio optimisation, stochastic con trol, 
HJB equation, discretisation of control problems.
(23 pages, 2002)

32.  M. Krekel

Optimal portfolios with a loan dependent 
credit spread

If an investor borrows money he generally has to pay 
high er interest rates than he would have received, if he 
had put his funds on a savings account. The classical 
mod el of continuous time portfolio op ti mi s a tion ignores 
this effect. Since there is ob vi ous ly a connection between 
the default prob a bil i ty and the total percentage of wealth, 
which the investor is in debt, we study portfolio optimisa-
tion with a control dependent in ter est rate. As sum ing a 
logarithmic and a power utility func tion, re spec tive ly, we 
prove ex plic it formulae of the optimal con trol. 
Keywords: Portfolio op ti mi s a tion, sto chas tic control, 
HJB equation, credit spread, log utility, power utility, 
non-linear wealth dynamics
(25 pages, 2002)

33.  J. Ohser, W. Nagel, K. Schladitz

The Euler number of discretized sets - on 
the choice of adjacency in homogeneous 
lattices 

Two approaches for determining the Euler-Poincaré 
char ac ter is tic of a set observed on lattice points are 
con sid ered in the context of image analysis { the inte-
gral geo met ric and the polyhedral approach. Informa-
tion about the set is assumed to be available on lattice 
points only. In order to retain properties of the Euler 
number and to provide a good approximation of the 
true Euler number of the original set in the Euclidean 
space, the ap pro pri ate choice of adjacency in the lat-
tice for the set and its back ground is crucial. Adjacen-
cies are defi ned using tes sel la tions of the whole space 
into polyhedrons. In R 3 , two new 14 adjacencies 
are introduced additionally to the well known 6 and 
26 adjacencies. For the Euler num ber of a set and its 
complement, a consistency re la tion holds. Each of the 
pairs of ad ja cen cies (14:1; 14:1), (14:2; 14:2), (6; 26), 
and (26; 6) is shown to be a pair of com ple men ta ry 
adjacencies with respect to this relation. That is, the 
approximations of the Euler numbers are consistent if 
the set and its background (complement) are equipped 
with this pair of adjacencies. Furthermore, suffi cient 
con di tions for the correctness of the ap prox i ma tions 
of the Euler number are given. The analysis of selected 
mi cro struc tures and a simulation study illustrate how 
the es ti mat ed Euler number depends on the cho sen 
adjacency. It also shows that there is not a unique ly 
best pair of ad ja cen cies with respect to the estimation 
of the Euler num ber of a set in Euclidean space.
Keywords: image analysis, Euler number, neighborhod 
relationships, cuboidal lattice
(32 pages, 2002)

34.  I. Ginzburg, K. Steiner 

Lattice Boltzmann Model for Free-Surface 
fl ow and Its Application to Filling Process in 
Casting 

A generalized lattice Boltzmann model to simulate free-
surface is constructed in both two and three di men -
sions. The proposed model satisfi es the interfacial 
bound ary conditions accurately. A distinctive feature 
of the model is that the collision processes is carried 
out only on the points occupied partially or fully by the 
fl uid. To maintain a sharp interfacial front, the method 
in cludes an anti-diffusion algorithm. The unknown 
dis tri bu tion functions at the interfacial region are con-
structed according to the fi rst order Chapman-Enskog 
analysis. The interfacial bound ary conditions are satis-



fi ed exactly by the co ef fi  cients in the Chapman-Enskog 
expansion. The dis tri bu tion functions are naturally 
expressed in the local in ter fa cial coordinates. The mac-
roscopic quantities at the in ter face are extracted from 
the least-square so lu tions of a locally linearized system 
obtained from the known dis tri bu tion functions. The 
proposed method does not require any geometric front 
construction and is robust for any interfacial topology. 
Simulation results of realistic fi lling process are pre-
sented: rectangular cavity in two di men sions and Ham-
mer box, Campbell box, Shef fi eld box, and Motorblock 
in three dimensions. To enhance the stability at high 
Reynolds numbers, various upwind-type schemes are 
developed. Free-slip and no-slip boundary conditions 
are also discussed. 
Keywords: Lattice Bolt z mann models; free-surface 
phe nom e na; interface bound ary conditions; fi lling 
processes; injection molding; vol ume of fl uid method; 
interface bound ary conditions; ad vec tion-schemes; 
upwind-schemes
(54 pages, 2002)

35. M. Günther, A. Klar, T. Materne, 
R. We ge ner 

Multivalued fundamental diagrams and 
stop and go waves for continuum traffi c 
equa tions 

In the present paper a kinetic model for vehicular traf-
fi c leading to multivalued fundamental diagrams is 
de vel oped and investigated in detail. For this model 
phase transitions can appear depending on the local 
density and velocity of the fl ow. A derivation of asso-
ciated mac ro scop ic traffi c equations from the kinetic 
equation is given. Moreover, numerical experiments 
show the ap pear ance of stop and go waves for high-
way traffi c with a bottleneck. 
Keywords: traffi c fl ow, macroscopic equa tions, kinetic 
derivation, multivalued fundamental di a gram, stop and 
go waves, phase transitions
(25 pages, 2002)

36. S. Feldmann, P. Lang, D. Prätzel-Wolters 

Parameter infl uence on the zeros of net-
work  determinants

To a network N(q) with determinant D(s;q) depend-
ing on a parameter vector q Î Rr via identifi cation of 
some of its vertices, a network N^ (q) is assigned. The 
paper deals with procedures to fi nd N^ (q), such that 
its determinant D^  (s;q) admits a factorization in the 
determinants of appropriate subnetworks, and with 
the estimation of the deviation of the zeros of D^   from 
the zeros of D. To solve the estimation problem state 
space methods are applied. 
Keywords: Networks, Equicofactor matrix polynomials, 
Realization theory, Matrix perturbation theory
(30 pages, 2002)

37. K. Koch, J. Ohser, K. Schladitz 

Spectral theory for random closed sets and 
estimating the covariance via frequency 
space

A spectral theory for stationary random closed sets 
is developed and provided with a sound mathemati-
cal ba sis. Defi nition and proof of existence of the 
Bartlett spec trum of a stationary random closed set as 
well as the proof of a Wiener-Khintchine theorem for 
the power spectrum are used to two ends: First, well 
known sec ond order characteristics like the covariance 

can be es ti mat ed faster than usual via frequency space. 
Second, the Bartlett spectrum and the power spectrum 
can be used as second order characteristics in fre-
quency space. Examples show, that in some cases infor-
mation about the random closed set is easier to obtain 
from these char ac ter is tics in frequency space than from 
their real world counterparts.
Keywords: Random set, Bartlett spectrum, fast Fourier 
transform, power spectrum
(28 pages, 2002)

38. D. d’Humières, I. Ginzburg

Multi-refl ection boundary conditions for 
lattice Boltzmann models

We present a unifi ed approach of several boundary 
con di tions for lattice Boltzmann models. Its general 
frame work is a generalization of previously introduced 
schemes such as the bounce-back rule, linear or qua-
 drat ic interpolations, etc. The objectives are two fold: 
fi rst to give theoretical tools to study the existing 
bound ary conditions and their corresponding accu-
racy; sec ond ly to design formally third- order accurate 
boundary conditions for general fl ows. Using these 
boundary con di tions, Couette and Poiseuille fl ows are 
exact solution of the lattice Boltzmann models for a 
Reynolds number Re = 0 (Stokes limit). 
Numerical comparisons are given for Stokes fl ows in 
pe ri od ic arrays of spheres and cylinders, linear peri-
odic array of cylinders between moving plates and for 
Navier-Stokes fl ows in periodic arrays of cylinders for 
Re < 200. These results show a signifi cant improve-
ment of the over all accuracy when using the linear 
interpolations instead of the bounce-back refl ection 
(up to an order of mag ni tude on the hydrodynam-
ics fi elds). Further im prove ment is achieved with the 
new multi-refl ection bound ary con di tions, reaching a 
level of accuracy close to the qua si-analytical reference 
solutions, even for rath er mod est grid res o lu tions and 
few points in the nar row est chan nels. More important, 
the pressure and velocity fi elds in the vicinity of the 
ob sta cles are much smoother with multi-refl ection 
than with the other boundary con di tions. 
Finally the good stability of these schemes is high-
 light ed by some sim u la tions of moving obstacles: a cyl-
 in der be tween fl at walls and a sphere in a cylinder.
Keywords: lattice Boltzmann equation, boudary condis-
 tions, bounce-back rule, Navier-Stokes equation
(72 pages, 2002)

39. R. Korn

Elementare Finanzmathematik

Im Rahmen dieser Arbeit soll eine elementar gehaltene 
Einführung in die Aufgabenstellungen und Prinzipien 
der modernen Finanzmathematik gegeben werden. 
Ins be son dere werden die Grundlagen der Modellierung 
von Aktienkursen, der Bewertung von Optionen und 
der Portfolio-Optimierung vorgestellt. Natürlich können 
die verwendeten Methoden und die entwickelte Theo-
rie nicht in voller Allgemeinheit für den Schuluntericht 
ver wen det werden, doch sollen einzelne Prinzipien so 
her aus gearbeitet werden, dass sie auch an einfachen 
Beispielen verstanden werden können.
Keywords: Finanzmathematik, Aktien, Optionen, Port-
folio-Optimierung, Börse, Lehrerweiterbildung, Math e -
ma tikun ter richt
(98 pages, 2002)

40. J. Kallrath, M. C. Müller, S. Nickel

Batch Presorting Problems:
Models and Complexity Results

In this paper we consider short term storage sys-
tems. We analyze presorting strategies to improve the 
effi ency of these storage systems. The presorting task 
is called Batch PreSorting Problem (BPSP). The BPSP is a 
variation of an assigment problem, i. e., it has an assig-
ment problem kernel and some additional constraints.
We present different types of these presorting prob-
lems, introduce mathematical programming formula-
tions and prove the NP-completeness for one type 
of the BPSP. Experiments are carried out in order to 
compare the different model formulations and to inves-
tigate the behavior of these models.
Keywords: Complexity theory, Integer programming, 
Assigment, Logistics
(19 pages, 2002)

41. J. Linn

On the frame-invariant description of the 
phase space of the Folgar-Tucker equation 

The Folgar-Tucker equation is used in fl ow simula-
tions of fi ber suspensions to predict fi ber orientation 
depending on the local fl ow. In this paper, a complete, 
frame-invariant description of the phase space of this 
differential equation is presented for the fi rst time. 
Key words: fi ber orientation, Folgar-Tucker equation, 
injection molding
(5 pages, 2003)

42. T. Hanne, S. Nickel 

A Multi-Objective Evolutionary Algorithm 
for Scheduling and Inspection Planning in 
Software Development Projects 

In this article, we consider the problem of planning 
inspections and other tasks within a software develop-
ment (SD) project with respect to the objectives quality 
(no. of defects), project duration, and costs. Based on a 
discrete-event simulation model of SD processes com-
prising the phases coding, inspection, test, and rework, 
we present a simplifi ed formulation of the problem as 
a multiobjective optimization problem. For solving the 
problem (i. e. fi nding an approximation of the effi cient 
set) we develop a multiobjective evolutionary algo-
rithm. Details of the algorithm are discussed as well as 
results of its application to sample problems. 
Key words: multiple objective programming, project 
management and scheduling, software development, 
evolutionary algorithms, effi cient set
(29 pages, 2003)

43. T. Bortfeld , K.-H. Küfer, M. Monz, 
A. Scherrer, C. Thieke, H. Trinkaus

Intensity-Modulated Radiotherapy - A 
Large Scale Multi-Criteria Programming 
Problem -

Radiation therapy planning is always a tight rope walk 
between dangerous insuffi cient dose in the target 
volume and life threatening overdosing of organs at 
risk. Finding ideal balances between these inherently 
contradictory goals challenges dosimetrists and physi-
cians in their daily practice. Today’s planning systems 
are typically based on a single evaluation function that 
measures the quality of a radiation treatment plan. 
Unfortunately, such a one dimensional approach can-



not satisfactorily map the different backgrounds of 
physicians and the patient dependent necessities. So, 
too often a time consuming iteration process between 
evaluation of dose distribution and redefi nition of the 
evaluation function is needed. 
In this paper we propose a generic multi-criteria 
approach based on Pareto’s solution concept. For 
each entity of interest - target volume or organ at risk 
a structure dependent evaluation function is defi ned 
measuring deviations from ideal doses that are calcu-
lated from statistical functions. A reasonable bunch of 
clinically meaningful Pareto optimal solutions are stored 
in a data base, which can be interactively searched by 
physicians. The system guarantees dynamical planning 
as well as the discussion of tradeoffs between different 
entities. 
Mathematically, we model the upcoming inverse prob-
lem as a multi-criteria linear programming problem. 
Because of the large scale nature of the problem it is 
not possible to solve the problem in a 3D-setting with-
out adaptive reduction by appropriate approximation 
schemes. 
Our approach is twofold: First, the discretization of the 
continuous problem is based on an adaptive hierarchi-
cal clustering process which is used for a local refi ne-
ment of constraints during the optimization procedure. 
Second, the set of Pareto optimal solutions is approxi-
mated by an adaptive grid of representatives that are 
found by a hybrid process of calculating extreme com-
promises and interpolation methods. 
Keywords: multiple criteria optimization, representa-
tive systems of Pareto solutions, adaptive triangulation, 
clustering and disaggregation techniques, visualization 
of Pareto solutions, medical physics, external beam 
radiotherapy planning, intensity modulated radio-
therapy
(31 pages, 2003)

44. T. Halfmann, T. Wichmann

Overview of Symbolic Methods in Industrial 
Analog Circuit Design 

Industrial analog circuits are usually designed using 
numerical simulation tools. To obtain a deeper circuit 
understanding, symbolic analysis techniques can addi-
tionally be applied. Approximation methods which 
reduce the complexity of symbolic expressions are 
needed in order to handle industrial-sized problems. 
This paper will give an overview to the fi eld of symbolic 
analog circuit analysis. Starting with a motivation, the 
state-of-the-art simplifi cation algorithms for linear as 
well as for nonlinear circuits are presented. The basic 
ideas behind the different techniques are described, 
whereas the technical details can be found in the cited 
references. Finally, the application of linear and non-
linear symbolic analysis will be shown on two example 
circuits. 
Keywords: CAD, automated analog circuit design, sym-
bolic analysis, computer algebra, behavioral modeling, 
system simulation, circuit sizing, macro modeling, dif-
ferential-algebraic equations, index
(17 pages, 2003)

45. S. E. Mikhailov, J. Orlik

Asymptotic Homogenisation in Strength 
and Fatigue Durability Analysis of 
Composites

Asymptotic homogenisation technique and two-scale 
convergence is used for analysis of macro-strength 
and fatigue durability of composites with a periodic 
structure under cyclic loading. The linear damage 

accumulation rule is employed in the phenomenologi-
cal micro-durability conditions (for each component 
of the composite) under varying cyclic loading. Both 
local and non-local strength and durability conditions 
are analysed. The strong convergence of the strength 
and fatigue damage measure as the structure period 
tends to zero is proved and their limiting values are 
estimated. 
Keywords: multiscale structures, asymptotic homogeni-
zation, strength, fatigue, singularity, non-local condi-
tions
(14 pages, 2003)

46. P. Domínguez-Marín, P. Hansen, 
N. Mladenovi ́c , S. Nickel

Heuristic Procedures for Solving the 
Discrete Ordered Median Problem

We present two heuristic methods for solving the 
Discrete Ordered Median Problem (DOMP), for which 
no such approaches have been developed so far. The 
DOMP generalizes classical discrete facility location 
problems, such as the p-median, p-center and Unca-
pacitated Facility Location problems. The fi rst proce-
dure proposed in this paper is based on a genetic algo-
rithm developed by Moreno Vega [MV96] for p-median 
and p-center problems. Additionally, a second heuristic 
approach based on the Variable Neighborhood Search 
metaheuristic (VNS) proposed by Hansen & Mladenovic 
[HM97] for the p-median problem is described. An 
extensive numerical study is presented to show the effi -
ciency of both heuristics and compare them.
Keywords: genetic algorithms, variable neighborhood 
search, discrete facility location
(31 pages, 2003)

47. N. Boland, P. Domínguez-Marín, S. Nickel, 
J. Puerto

Exact Procedures for Solving the Discrete 
Ordered Median Problem

The Discrete Ordered Median Problem (DOMP) gener-
alizes classical discrete location problems, such as the 
N-median, N-center and Uncapacitated Facility Loca-
tion problems. It was introduced by Nickel [16], who 
formulated it as both a nonlinear and a linear integer 
program. We propose an alternative integer linear 
programming formulation for the DOMP, discuss rela-
tionships between both integer linear programming 
formulations, and show how properties of optimal 
solutions can be used to strengthen these formulations. 
Moreover, we present a specifi c branch and bound 
procedure to solve the DOMP more effi ciently. We test 
the integer linear programming formulations and this 
branch and bound method computationally on ran-
domly generated test problems.
Keywords: discrete location, Integer programming
(41 pages, 2003)
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