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Abstract

The question of how to model dependence structures between financial assets was
revolutionized since the last decade when the copula concept was introduced in
financial research. Even though the concept of splitting marginal behavior and
dependence structure (described by a copula) of multidimensional distributions
already goes back to Sklar (1955) and Hoeffding (1940), there were very little

empirical efforts done to check out the potentials of this approach.

The aim of this thesis is to figure out the possibilities of copulas for mod-
elling, estimating and validating purposes. Therefore we extend the class of
Archimedean Copulas via a transformation rule to new classes and come up with
an explicit suggestion covering the Frank and Gumbel family. We introduce a
copula based mapping rule leading to joint independence and as results of this
mapping we present an easy method of multidimensional y? testing and a new
estimate for high dimensional parametric distributions functions. Different ways
of estimating the tail dependence coefficient, describing the asymptotic probabil-
ity of joint extremes, are compared and improved. The limitations of elliptical
distributions are carried out and a generalized form of them, preserving their
applicability, is developed. We state a method to split a (generalized) elliptical
distribution into its radial and angular part. This leads to a positive definite ro-
bust estimate of the dispersion matrix (here only given as a theoretical outlook).
The impact of our findings is stated by modelling and testing the return distri-
butions of stock-, currency-, oil related commodities- and LME metal baskets;
showing the crash stability of real estate based firms and the existence of nonlin-

ear dependence in between the yield curve.
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Introduction

The copula concept goes back to Sklar (1955) and Hoeffding (1940). The idea
is to separate the univariate marginal behavior in each dimension, given by the
univariate distribution functions Fi,..., F,,, and the dependence structure of an
n-dimensional random vector X, given by a copula C'x. Sklar has shown that the
relation H(x) = Cx (Fy (21),..., F, (x,)) is fulfilled for all (z1,...,x,) in the
support of H, and for a (unique, if Fi, ..., F; are continuous) copula Cy. With
other words Cx can be defined as the distribution function of the n-dimensional
random variable (F} (X1),..., F, (X)), that has uniformly distributed margins
F; (X;) ~U(0,1).

Naturally the question ”What is the benefit of using copulas?” arises. Well,
roughly half a century later we are able to provide some answers. This thesis aims
to add some new ones, as well as to show how to take advantage in the use of
copulas for solving financial problems.

1. The copula theory provides a model kit for the construction of multivariate dis-
tribution functions. Suppose e.g. one wants to describe the 2-dimensional return
distribution of a portfolio consisting of a stock and a large credit basket. The log-
returns of the stock may assumed to be normal distributed, whereas the return
of the credit basket follows e.g. a normal-inverse distribution. Without copulas
it will be a hard task to couple these totally different univariate distributions to
a joint 2-dimensional one. However, assuming the dependence structure between
the stock and the credit basket to be normal, we can define as the joint return
distribution H (s, cb) := Cn (N(s), NID(cb)), where N, NID are the appropriate
normal, and normal-inverse distributions respectively and C'y denotes the normal
copula. So copulas help modelling financial problems.

2. Since we can split via copulas in marginal and dependence behavior, we can
also split the estimation of the parameters regarding the marginals and the ones
corresponding to the dependence structure. Suppose e.g. we have to estimate a
10-dimensional normal distribution. This leads to the estimation of 20 + 45 pa-
rameters. 20 for the location and scale of the margins, and 45 for the correlation
matrix. With the use of copulas we can first estimate 10 times 2 parameters of



every marginal and then use the pseudo observations (Z/\\fl (z1),...,N, (mn)> to
estimate C'y, what might have a stabilizing effect on the estimation. Furthermore,
having the copula as a dependence function, we can measure and estimate spe-
cial structures like e.g. the probability of joint extremes. So copulas can improve
estimating procedures.

3. Copulas can also play an important rule in testing and validating assumed dis-
tribution models. With copulas it is possible to test every marginal and copula
assumption independently. So we do not need to reject a complete model but can
identify the "worst” components to be exchanged.

Mostly every chapter has its own more detailed introduction and short con-
clusion. So here we give a brief scheme of the thesis. In Chapter 1 we introduce
an univariate smooth distribution function that allows for different tail indices
at the lower and upper tail. Surprisingly it seem that such an asymmetry is not
covered by the existing models like skewed t- or hyperbolic distribution.
Chapter 2 states the theoretical background about copulas as far as needed in this
framework. For a broader introduction into the subject, we refer to monographs
like Nelsen [92] and Joe [62].

The next two chapters outline the applicabilities and limitations of the most pop-
ular copula families. The elliptical one, i.e. the copulas of elliptical distributions,
and the Archimedean one, i.e. copulas that can be described by a one dimensional
function. Whereas Chapter 3 highlights the simplicity of multidimensional exten-
sion of elliptical copulas and show their nice analytical manner of presentation of
the tail dependence coefficient. It also mentions the drawback of the class being
restricted to rotationally symmetry C(u,v) = C(1 —u, 1 —v) and hence to equal
lower and upper tail dependence. The Archimedean copulas on the other side
can provide very flexible models as described in Chapter 4, where we introduce a
transformation rule extending this class. However, it is also remarked that there
is no easy canonical extension to multidimensional models. In fact we conclude
that this class is not appropriate for high dimensional problems.

Both, elliptical and Archimedean copulas, are symmetric in the sense
C(u,v) = C(v,u). In Chapter 5 we state for theoretical completion an asym-
metric copula family. However, in our financial applications we have not found
evidence for asymmetry in the former sense, but it may be of interest if coupling
default credit data, e.g. for default probabilities.

The next Chapter 6 concentrates on multivariate testing procedures. We state
some well known tests and give some numerical comments to them. The principal
part of this chapter is the introduction of a copula based mapping to multivariate
independence, that enables us to provide a simple method of high dimensional



x? testing. Further we are able to present a new method to estimate multidimen-
sional parametric models with an univariate maximum likelihood procedure.
Chapter 7 states the known estimation methods for the tail dependence coeffi-
cient (i.e. the probability of the joint occurrence of extremes) and provides some
refinements to them. The methods are compared in an extensive simulation study:.
The next four chapters build the empirical part of the thesis. First we fit different
elliptical and Archimedean copulas to stock indices, foreign exchange, LME metal
and oil related commodity baskets up to dimension four (Chapter 8). We are able
to show evidence for the existence of different upper and lower tail dependence
in financial data and therefore the need of non-elliptical models.

In Chapter 9 we apply the copula concept to measure the aggregate risk of port-
folios in terms of Value at Risk and Expected Shortfall. To outline the procedure
we use a two stock portfolio and exemplarily carry out all the steps from the
rare data sets over the fitted joint (log)return distribution to the calculated risk
measures.

With standard methods of univariate Extreme Value Theory and the use of the
tail dependence concept we are in Chapter 10 able to certify real estate based
firms (i.e. stock corporations that make their money by letting and reselling real
estates) a higher crash resistance than common stocks. Especially possible diver-
sification effects do not break down in crash situations as it can be observed for
common stock portfolios.

In the last empirical survey (Chapter 11) we show the existence of nonlinear de-
pendence structure in-between the USD yield curve. Therefore we utilize a two
factor Vasicek model to achieve two abstract yield factors. These we couple with
different copula models and check which of them reflect the pseudo observations
best.

The last Chapter 12 introduces an extension of the class of elliptical copulas to
a more generalized form. Precisely we allow the univariate random variable of
the radial part to depend on the n-dimensional random variable including the
directional information. Further a robust and always positive definite estimator
for the VCV matrix (up to scale) is stated. This last chapter is an outlook to the
forthcoming thesis of Gabriel Frahm, where further results will be given.



Chapter 1

A Probability Density Applying
to Asymmetric Pareto Type Talils

Whenever we are talking about copulas of random vectors (X1, ..., X,,) we need the univariate
marginal  distribution  functions  Fj,...,F, to achieve the random  vector
U= (F(X1),...,F, (X)) with uniformly distributed margins. The copula C' can be de-
fined as the distribution function of U. Later on in Chapter 2 we see that C' does not depend
on the Fi, ..., F},, but for empirics it is essential to guarantee for the estimated marginal models
ﬁi the convergence to the true marginals, i.e. ﬁl — F;foralli =1,...,n. Otherwise we would
not have F (Xi) ~ U(0,1) what is the key assumption in copula theory. See Subsection 7.3.3
for pitfalls under misspecified margins. For model or estimation purposes a solution can be to
use the empirical marginal distribution functions to achieve E — F; but for simulation and
stress test scenarios the use of parametric models has the favor of a (possibly) better description
of extremal events. This was the motivation to start a thesis about multivariate distribution
functions with a chapter on a univariate one. The content of this chapter is based on Junker
and Szimayer [68].

Standard distributions—Ilike normal or hyperbolic—are in some cases inadequate for describ-
ing financial data. Often heavy tailed distributions like the generalized Pareto distribution
(GPD) turn out to be more appropriate. The GPD is designed for tail approximation and
leads therefore to the problem of determining a threshold for both the left and the right tail.
In this chapter we introduce an alternative distribution function that fits the entire data set
and shows the behavior of a GPD in the tails. All parameters of the proposed distribution
can be estimated via maximum likelihood and there are no thresholds to define. Therefore,
the estimation algorithm yields a good computational tractability. To show the quality of the

proposed distribution function we present a Value-at-Risk forecast and a backtesting utility.



1.1 Introduction

Many empirical studies like Danielsson and De Vries [26], Frey and McNeil [52]
and Longin [79] have shown that empirical return distributions of market move-
ments are heavy tailed. This is illustrated in Figure 1, where the QQ-plot of the
empirical quantiles corresponding to 507 daily log-returns of IBM from Oct. 5,
1998 to Oct. 6, 2000 against standard normal quantiles is shown. Extreme losses

QQ-plot of IBM log-return quantiles versus Standard Normal quantiles
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Figure 1.1: QQ-plot of IBM log-return quantiles versus Standard Normal quan-
tiles.

and profits occur with higher probability than under the assumption of an under-
lying normal distribution. Common parametric distribution families like normal,
hyperbolic or student’s t have limited variability in describing the tail behavior
of some random variable X. Complementary, extremal events are covered by Ex-
treme Value Theory (EVT). As guidelines through EVT we refer to Resnick [100]
and Embrechts et al. [38]. Nevertheless, EVT is primarily an asymptotic theory
neglecting non-extremal events. Eberlein and Keller [36] propose the hyperbolic
Lévy distribution. They exhibit a good statistical fit to log returns of DA X-stocks,
but using the hyperbolic Lévy distribution they are limited to exponential tails.
For calculating the Value-at-Risk (VaR) it is essential to model the tails. To ac-
complish this, the underlying stochastic model should exhibit a wide range of
heavy tail behaviors. Frey and McNeil [52] suggest a method for estimating the
VaR describing the tail of the conditional distribution of a heteroscedastic finan-
cial return series. Their approach combines pseudo-maximum-likelihood fitting of
GARCH-models to estimate the current volatility, and EVT for estimating the



tail of the innovation distribution of the GARCH-model. For estimating the tails,
they use the POT-method where they choose an arbitrary threshold.

We propose a parametric distribution function on IR that incorporates EVT
in the tails. Thus, we take a linear convex combination of suitable transformed
generalized Pareto distributions. With such a construction, we get a flexible tail
behavior—including light, exponential and heavy tailedness. We model the log-
return series of financial data by applying the proposed distribution function
where we additionally permit conditional heteroscedasticity. The estimates are
used for Value-at-Risk forecasting. To examine the quality of the forecast, we
apply some backtesting procedure.

In Section 1.2, we introduce a smooth distribution function with Pareto like
tails and show some properties of this distribution function. In Section 1.3, we
specify time series models allowing for conditional heteroscedasticity, and in Sec-
tion 1.4 we apply the proposed distribution to financial datasets. The results of
the estimation are used in Section 1.5 for Value-at-Risk forecast and backtesting.

1.2 A smooth distribution with Pareto tails

In this section we construct a parametric distribution function with a high degree
of tail variability. To capture different types of tail behaviors, we use an appropri-
ately transformed generalized Pareto distribution that is well known from EVT
for describing extremal events. By this, we circumvent the drawback of most other
parametric distribution functions that are a priori limited to a certain class of tail
behavior. Tail variability plays a key role when measuring the risk of investments,
since the risk is situated in the loss tail of the investment’s distribution function.

For an overview about Extreme Value Theory we refer to Embrechts et al.
[38]. Here we only summarize the definitions needed. Some of the following results
are characterized by regularly varying functions with (tail)-index . A measurable
function f : IR, — IR, is called regularly varying (at oo) with (tail)-index ¢ € IR
if for any ¢t > 0

- fltr)
lim =, 1.2.1
2T @ (12
and it is called rapidly varying with index —oo if
0 of t>1
lim L0 _ of (1.2.2)
z——oc0 f(1) o if 0<t<l1



Now we recall the definition of the generalized Pareto distribution. The general-
ized Pareto distribution with parameters ¢ € IR, 3 > 0 is defined by

1—(1+%)_%, €40

e (—%) i (1.2.3)

Gep(z) =

Wherex20f0r520and0§x§—é—3 for £ < 0.

The shape parameter & models the tail behavior and is therefore called the
tail index. If £ > 0 we say the df G¢g is heavy tailed, for £ = 0 exponential
tailed, and § < 0 light tailed. If the scaling parameter 3 = 1, we write G¢ as an
abbreviation for G ;.

The mean excess function is defined by

e(u)=E[X —u| X >u], u€lR,

where X is a random variable (rv). If the law of X is GPD, the mean excess
function is linear.

The GPD is defined on the positive half axis. Often we need to shift the
distribution to some new starting point w that is called threshold. In general,
the GPD might only reflect the tail behavior of a given rv. In this case we can
determine the threshold u by graphical data analysis. We choose u such that
the empirical mean excess function €(z) is approximately linear for x > u, see
Embrechts et al. [39], pp. 352.

There are two main disadvantages following this approach.

e There is no estimator known for the threshold and therefore no sufficiently
manageable algorithm for determining the threshold, even if we are only
interested in the tails.

e Fitting a distribution on IR with GPD in the tails, we face the problem of
non differentiability of the density at the thresholds.

The GPD is designed for approximating a given distribution function in the
tail, say in the right tail. In contrast to tail approximation where a threshold is
chosen a priori or estimated, we extend the GPD support to IR by an appropriate
transformation h. Here, an appropriate transformation preserves the tail behavior
on the right tail and creates a light or exponential left tail of G¢ 30 h. The same
argument can be applied for modelling the left tail. In the end, we build a convex
linear combination of two G¢ 30 h terms. This results into a distribution function
on IR, where each tail is determined by a function G¢ g o h.

A natural requirement for the transformation h is that G¢ goh is a distribution
function on IR, i.e. h is an increasing function on IR and maps on IR". For the



maximum likelihood estimation we want G¢ go h € C* (IR, [0,1]), so G¢ 5 o h has
a two times continuously differentiable density function.
To preserve the limit behavior of the generalized Pareto distribution for G¢ goh

on the right tail we require
he Ry, (1.2.4)

where R is the class of regularly varying functions of index 1 at +oo.
To ensure that the right tail describing function G¢ g o h exhibits a light (or
exponential) left tail we demand the following.

heR-

—0Q ?

(1.2.5)

where RZ  is the class of rapidly varying functions at —oo.

Proposition 1.2.1. Let h € C (IR, IR") be an increasing function, h € R{ and
heR_,. Let X be a rvwith X ~ Ge¢goh for{ >0 and > 0. Then X is heavy
tailed on the right with tail index L, and light (or ezponential) tailed on the left,
1.€.

G&,ﬁ o h - Ri_l and Gf,,@ (¢] h € R:oo . (126)
£

Proof. With h € R{ and G¢ € R, we observe for ¢t > 0
g

1
- Ehtz)\ € N
. Gepohltr) : <1+ E ) e
h]fl Gjh() = ]_]11] 1 — ]_1]_11 W
roteo Gep o h(z rteo gh(@)\ "¢ T 14 a5
(1+ A ) 5
_1
Y _ghga:) ¢ Y h(tx) ~
= 1m = 11m
r—-+00 ghﬁ# r—-+00 h(x)
— (tl)_% = t_% ,

since h(z) — oo for x — co. The latter follows from h € R and Corollary A3.4
in Embrechts et al. [39], p. 566. With this we have shown G¢goh € RY,.
e

We proceed with the second statement G¢ goh € R__,. By elementary calcula-

tion we obtain lim, o G"’%(y) = % Furthermore, lim,_, ., h(z) = 0since h € RZ

with Theorem A3.12 (cf. Embrechts et al. [39], p. 570).



. Gg Jé] [©] h(tl’) . (Gf g(h(tx)) h(l’) h(tl’))
lim ———~ = lim :
v==o0 Geg o h(z) eomeo \ - h(t) - Gep(h(x)) h(z)
_ gy GeslhCz) o h(z) . h(t2)
g——co  h(tx) a——o0 G¢g(h(z)) a——c h(z)
= lim Gesly) lim lim lta)
N0y N0 Ge(y) em—oo h(z)
1 h(tx)
- 281
57 2 )
. h(tx)
= 1
ebo h(z)
and consequently G¢goh € R_, because h € R_ . O

Remark 1. (i) We can deduce the same result in the case & = 0. Here, the right
tail behavior will also be preserved, since the transformation h is in R{. The df
Gep o h is then exponentially tailed with Gegoh € RY .

(ii) For a light tailed df with & < 0, we face some technical problems because of
the compact support of a GPD with negative tail indez [0, —%} The transformation

h must not exceed the value —g, otherwise Ge¢ g o h is no longer a df. Later on,
we will show how to deal with that kind of problems.

Corollary 1.2.2. In the situation of Proposition 1.2.1, we find for X ~ Ge¢goh

" _ 1
E HX+| | < oo, ifr< £ (1.2.7)
K : 1
E[|XT]"] = oo, ifr> £ (1.2.8)
where X* = X o 11x>0y. For X~ = =X o I;x<py all power moments are finite.

Proof. The results follow directly from the previous Proposition 1.2.1, applying
Proposition A3.8 (d) on p. 568 for X and Remark 7) on p. 570 for X ~, Embrechts
et al. [39]. O

In the following, we propose a transformation h motivated by the considera-
tions above, i.e. h € Rf and h € RZ . Let hssp : IR — IR™ be defined by

o V) ()
i 2 (1 + exp (—5 g)) ’

where d, s and [ are positive real constants.

lw

(1.2.9)
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To fulfill the condition hss g € R, we make use of the fact that the following
function is approximately linear for large x

2 2
- i (Bz ! <B> z% (1.2.10)

On the left tail, hs 5 € R_,, is ensured by the function

1 T

(1 T exp (‘5 %)) o (5 B) ’ (1.2.11)

T —

that exhibits approximately an exponential decay for large negative x.

So hssp is a “minimal” transformation—minimal with respect to the num-
ber of parameters—that fulfills the requirements given in equations (1.2.4) and
(1.2.5).

transformed GPD Densities

0.5

0.4

Ge o h(z)

0.1

Figure 1.2: The transformation of a GPD density with £ = 0.5 and g = 1, where
the transformation hs s g is used with 6 = 0.1, s = 0.25 and 6 = 0.1, s = 0.5.

Figure 1.2 illustrates the effect of the transformation hs s g is illustrated. The
density of G¢ s is not differentiable in the threshold ¢ = 0. Even for small s, e.g.
s = 0.25, we have a C*-density of G¢ o hss g, that is very close to the original
density of G¢ . With increasing s, e.g. s = 0.5, the density function G¢ o hs s 3
becomes smoother.

Proposition 1.2.1 states that G¢ g determines the right tail of G¢ 3 o h, where

the tail index % is preserved by the transformation h. By symmetry we can use
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a second transformed GPD to describe the left tail. Gluing them together by
a convex linear combination, we end up with a distribution function with tail
variability in both tails.

Definition 1.2.3. Let Fy : IR — IR be a function with 0 = (&, 01, 51, 3, py &ry Opy Spy (1)
where &,&.,p € IR, 3,01,0,,58,8->0,0<a<1.
For &,& >0 and x € IR we define

Fy(w) = - (1= Gy (s (p — 2))) + (1= ) - Ge, (hs sl — p), (12.12)
where hs s g is given by Equation (1.2.9).
Remark 2. (i) In the case & < 0 the domain of the GPD is bounded above by

—% For technical reasons, we have to modify the transformation h to hj 5, :
IR — IR* given by

hossle), ©<hyly(=2),
_ZJ T > h;;g <_§> y
where s € <0, (%)) The corresponding modification of Fy is defined for x € IR
by

Fi(@) 1= a- (L= Gy (o p (o — ) + (1 —0) -G, (1, , e, (= p). (1.2.14)

(i) Suppose, we a priori have only one heavy tail, say the right tail. Then we are
free to choose another mizture of distributions, e.q.

(1.2.13)

Fy(x) == a- H(z) + (1 - a) - Ge(hss5(x)),
where H 1s some arbitrary continuous distribution.

The following proposition summarizes some properties of Fy. The proof is
given in Appendix A.

Proposition 1.2.4. Suppose Fy is given as in Definition 1.2.3. Then the follow-
ing properties hold.

(a) The function Fy is a continuous distribution function.

(b) For &,&. >0, we have Fy € C*(IR, [0, 1]).
If we at least have one negative &, i.e. & or & < 0, then the preceding dif-

erentiability statement holds for F} as well, except for x; = p—h; L (=2
9 SusLBN &

and x, = p+ h(;_ishﬁ(—g), respectively.



12

Remark 3. (i) For a more transparent interpretation of the smoothing param-
eter s, we introduce the following reparametrization. We define the parameters
€ (0,a) and ¢, € (0, 1 —a) by

a = Q/G&(h(slvszﬂ(o)) (1.2.15)

¢ = (1—a)-Gel(hs, s 500)). (1.2.16)
Hence, ¢, is the probability mass that is extracted by the transformation h from
the original domain [p, 00) of Ge¢g to (—o0, p|, where we assume without loss of
generality & > 0. The same argumentation holds for ¢;.

Solving equations (1.2.15) and (1.2.16) with respect to the smoothing param-
eters sy, sy, they can be replaced by

5 = 45—[6 ((1 _ %)_5’ _ 1) (1.2.17)

4P N
S5, = g((1—1_(%) —1). (1.2.18)

(ii) The parameter p describes the location of Fy and does not influence the
shape. Applying the reparametrization we get

a—cq+c, ac(0,1)
Fg(p): 1—61, a=1
Cr a=0.

The location parameter p is the median iff o = % and ¢; = ¢, or a € {0,1} and
= % and ¢, = %, respectively.

The distribution function Fjy is designed for capturing the tail behavior of both
tails. The tail indices & and &, describe the left and the right tail separately. With
this construction, we are no longer limited to some a priori given tail behavior.
Fy exhibits tail variability and also good numerical tractability, where the latter
is meant in the sense of smoothness. For estimation purposes, it is often useful
to have a density function which is at least two times differentiable. This allows
for a maximum likelihood estimation procedure.

Theorem 1.2.5. Let hy,h, € C(IR, IR") be increasing functions, hy, h, € R,
hi,he € R_y, and G, g,, Ge, 3. GPDs with &, 3, &,, B, > 0. Suppose, we are given
a rv X with X ~ F, where the df F' is defined by

F=aGegpoh+(1—a)Gep 0h,,

for some a € (0,1).
Then the tails are determined by the GPD’s tail indices &,&,, i.e.

FeR , and FeR', . (1.2.19)

5[ &r
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Proof. For proving the theorem, we define F; = G¢, g, 0 by and F, = Gg, g, o h,,
hence F' is the convex linear combination of F; and F,. given by

F=aF+(1-a)F,.

With Proposition 1.2.1 we conclude F; € RY , F;, € R™,, F, € R", and
o 3 &

&
F. € RZ . First, we take a look at the right tail of F'. The result for the left tail
then follows by symmetry. For ¢ > 0 we have

F(tx) 1 aF(tr) + (1 —a)F,(tr)
_ = m — —
=+ F(x) e+ a Fi(x) + (1 - a)Fy(x)
it E.(t
1€ VNS . 1) B
= Fila) + 2 (a) | are Fr@) + 12 Fi@)
The first expression is positive and bounded above by ﬁi—l(g)) F e Rt and
F. € R*',, hence % € RY, and
& r
F(t F(t
0< lim —F) < fim @ Al

— < lim —
vtoo i) + 150 Fp(x) T amtee 1 —a Fi()

by Lemma A.2.1 from the Appendix. Applying the same arguments to the second
expression, we find

lim — = lim

F(tx) , F,(tz)
S T@) e B+
t

F, I
= lim _r(m> (1 + l<x>>
Z—~+00 T(x) 1 —az—too F, (;]j)
— tE,
thus ' € R, and the proof is finished. O

&r

The previous theorem provides a very general statement. For the proposed
transformation h; s g and the df Fy, we deduce the following corollary.
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Corollary 1.2.6. Let X be a rv with df Fy. If § > 0 then Fy € R, and
&

E[|X’m < 00 f0'1“,'1<§l and EHX"R]ZOO fO?“/Q>l,
1 1

and for § < 0 all power moments of X~ exist and Fy € R_.
If& >0 then Fy e RY |, and

&
E[|X+m < oo for /i<€l and EHXJ“m = o0 for k> %,

and for & < 0 again all power moments of X+ exist and Fy € RT .

Proof. The corollary is a direct consequence of Theorem 1.2.5 and Corollary
1.2.2. O

Theorem 1.2.5 and Corollary 1.2.6 state that Fj is well defined, i.e. each
transformed GPD G¢ 3 o h describes its own tail and does not interfere with its
counterpart. With this, the desired tail variability of the parametric df Fj is
established. In the following, we apply Fj to financial data and measure the risk
of an investment. Hence the shape of the loss tail plays a crucial role.

1.3 Model Specification

In Section 1.2, we have constructed the parametric distribution function Fy. This
distribution function exhibits tail variability and, moreover, allows for different
tail behavior in the left and the right tail. It is well known that empirical distribu-
tions of log-returns of financial time series are asymmetric, especially in the tails.
Thus, Fy is apparently an appropriate choice for fitting financial data. We model
the log-return series of financial data by applying the proposed df Fjy, where we
additionally permit conditional heteroscedasticity.

The time-series (X;):>1 that is modelling the log-returns, is an autoregres-
sive process of order one with independent innovations that are described by a
GARCH(1,1) variance structure, see Bollerslev [13].

Xe=p+aX,1+oe fort>2, (1.3.1)

where © € IR and |a] < 1, and the innovations (g;);>2 are iid with expectation
zero and unit variance. The conditional heteroscedasticity is specified by

O't2 = Wy + w1 (O't_1€t_1)2 + Wwo O'tzfl for t > 2, (132)

where wy > 0, wy,ws > 0.
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The model described in Equation (1.3.1) and (1.3.2) is a common set-up for fi-
nancial time-series and especially for Value-at-Risk models. For example, Frey and
MecNeil [52] utilize this framework where they allow for heavy tailed innovations
(¢¢). They estimate the tails of the innovations by fitting a generalized Pareto
distribution to tails of the empirical innovations, i.e. the AR(1)-GARCH(1,1)
residuals. On this basis they perform VaR calculations.

Subsequently, we use a similar approach as Frey and McNeil [52]. However,
we do not reduce the examination to the lower and upper tail behavior of the
innovations, but estimate the entire distribution of the innovations by fitting
the proposed df Fy to the empirical innovations. Additionally, we investigate
the problem that GARCH-type models are overspecified when the data exhibits
no conditional homoscedasticity. For such data, exponential Lévy models are
applicable, see Eberlein and Keller [36].

May and Szimayer [87] furthermore show that GARCH models break down
when they are applied to conditional homoscedastic data. They suggest to test
the data for reduction to the white noise model, that is given by the equation

Xe=p+oeg fort>1, (1.3.3)

where p € IR, o > 0, and the innovations (e;);>; are iid with expectation zero and
unit variance. They consider pseudo-likelihood ratio test and provide the critical
values for this specific test, i.e. 3.80, 5.13, and 8.28 for significance levels of 90%,
95%, and 99%.

1.4 Estimation

In the previous section, we have specified a time-series setup to model the log-
returns of asset prices. We have included the effect of conditional heteroscedastic-
ity and we also have allowed for heavy tailed and possibly asymmetric innovations
by applying the df Fy proposed in Section 1.2. In the following, we carry out a
statistical data analysis for the daily log-returns of Allianz, BASF, VW, Apple,
IBM and Microsoft. The observed time period ranges from Oct. 5, 1998 to Oct. 6,
2000, including 510 data points for the German stocks and 507 for the US stocks,
respectively.

] data H Allianz ‘ BASF ‘ VW ‘ Apple | IBM ‘ Microsoft ‘
| dr [[37.70% | 2.73 [41.62* [ 148.32* | 3.48 | 32.92" |

Table 1.1: The deviance for the analysed data. */** denotes the significance of
the GARCH effects for the level of 90%/99%.



16

Along the lines of May and Szimayer [87] we test the considered data for
conditional heteroscedasticity, see Section 1.3 for details. Table 1.1 displays the
test results. The hypothesis of white noise is rejected for Allianz, VW, Apple
and Microsoft at the 99% significance level. For these log-return series GARCH
effects are of strong statistical evidence, and hence we have to apply the set-up
given by Equation (1.3.1) and (1.3.2). The BASF and IBM sample show hardly
any heteroscedasticity, and we can not reject the null hypothesis of white noise
even at the 90% level. For BASF and IBM data we use the white noise model in
Equation (1.3.3) and estimate Fy directly from the log-return series.

For both model specifications, the parameters are estimated where we apply
maximum likelihood. The white noise model/homoscedastic model is associated
with the df Fy, where we first simplify the parametrization. Via the approach
presented in Section 1.2, we are enabled to model a different behavior of the left
and the right tail. We accomplish this by tail indices & and &,.. The asymmetry in
the tail behavior is not affected by the constraint of a symmetric transformation
of the GPD’s, i.e. § = §; = ¢, and s = s; = s,.. Furthermore, we assume 0 = 1
what implies a uniform scaling in the transformation, see Equations (1.2.10)
and (1.2.11). With this specification for Fjy, we have to estimate the parameter
vector 0 = (&, 3, s, p, &, ) of dimension 6. For the conditional heteroscedastic
model/AR(1)-GARCH(1,1) model the reduced parametrization is applied to the
empirical innovations, i.e. AR(1)-GARCH(1,1) residuals.

The quality of the estimation is investigated, especially the fit of the df Fy
to data. We perform a x2-goodness-of-fit test where we follow Moore [88]. In
addition, we apply the integrated Anderson Darling test. The statistics is defined

by
v [ Bx) — By
A= Né Fy(x) (1~ Fol@))

ng(x),

where N is the number of observations and F denotes the empirical distribution
function (see also Chapter 6). The critical value for the significance level of 95%
is given by 2.49, see Giles [54].

1.4.1 The Homoscedasticity Model

The data showing no significant conditional heteroscedasticity are the BASF and
IBM log-return series. A maximum likelihood estimation is carried out. And be-
yond statistical significance, we illustrate the results by means of graphical tools.
We provide a QQ-plot of the estimated distribution and compare the empirical
and estimated density.
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QQ-plot of IBM log-return quantiles versus the quantiles of the estimate ﬁoh

empirical quantiles
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Figure 1.3: QQ-plot of IBM log-return quantiles versus the quantiles of ﬁgG.

The QQ-plot of the IBM log-returns against an estimated Fjy,-model is dis-
played in Figure 1.3, and demonstrates graphically the improvement of the model
fit compared to the normal distributed setup, see Figure 1.1. The impression given
by the QQ-plot is confirmed by the empirical density and the log-density of the
IBM data that are compared with the density of the estimated distribution func-
tion F\gm see Figure 1.4. The estimated density clearly reflects the behavior of the
data in the tails. This can be inferred by taking a look at the log-densities on
the right in Figure 1.4. Most other parametric distribution functions are limited
to an a priori given tail behavior. For a normal distribution, the log-density is
a parabola. In the case of the hyperbolic Lévy distribution, the log density is
approximately linear in the tails, since it is asymptotically exponential. Figure
1.4 clearly reflects that a parametrization with either normal or hyperbolic Lévy
can not capture the characteristics of the given data.

The estimation results are listed in Table 1.2. The location and the scaling
parameter of the distribution Fp, are given by p and . Since we analyze daily
log-returns of stock prices, a reasonable location is in the region around zero. In
our sample, p takes values of 0.0073 and 0.0042 for BASF and IBM, respectively.
The scaling parameter (§ corresponds to the standard deviation o for normal
distributions, and may be interpreted as “daily volatility”. For BASF and IBM
we find 0.0113 and 0.0126, both quite accurate estimated what is indicated by
t-values of 12.71 and 10.80. The transformation hs g is characterized by s, since
we choose a natural scaling with § = 1. The parameter s is estimated with 0.0746
and 0.0717 for BASF and IBM. The estimates are both in the same range and
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Figure 1.4: Empirical density and log-density of the IBM log-returns, compared
with the estimated Fy, density and log-density, respectively.

reveal statistical significance with t-values of 5.63 and 7.10. The weights of the
tails are described by «, where the parameter o € [0, 1] is the weight of the left
transformed GPD-tail and 1 — « the weight of the right tail. For both stocks,
a differs significantly from 0 and 1, i.e. we can not model the df with only one
single transformed GPD.

[ data [ & [ B8 | s | » | & [ a [&-& [ xds [AD]
BASF || -0.0468 | 0.0113 | 0.0746 | 0.0073 | -0.0483 | 0.2541 | 0.0015 | 19.22 | 0.17
s.e. (0.6096) | (0.0009) | (0.0133) | (0.0038) | (0.2161) | (0.1686) | (0.8257)

t-value || (-0.08) | (12.71) | (5.63) (1.93) (-0.22) (1.51) (0.00)

IBM 0.1942 | 0.0126 | 0.0717 | 0.0042 | 0.1529 | 0.3539 | 0.0413 | 15.83 | 0.13
s.e. (0.1011) | (0.0012) | (0.0101) | (0.0040) | (0.0935) | (0.1464) | (0.1946)

t-value || (1.92) | (10.80) | (7.10) (1.06) (1.64) (2.42) (0.21)

Table 1.2: Parameter estimates with standard errors (s.e.) and t-values in paren-
theses, and the estimated Y%s-statistics and Anderson Darling statistics for Fp,
and the log-returns of iid samples.

The tails of the distribution function Fjy are determined by & and &,.. The
estimates él and ér reflect the tail behavior what can be inferred from the empirical
log-density in Figure 1.4. For IBM we observe heavy tailed losses, whereas for
BASF the hypothesis of exponential tailed losses can not be rejected, since we
have a t-value of -0.08. On the right tail where the profits are situated, we find
similar results. Signifanctly heavy tailed gains of IBM with a t-value of 1.64 can
be observed, and exponential tailed gains for BASF. In terms of § — &, we can
not reject the hypothesis of £ = &, since the absolute t-values of & — &, are too
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small for statistical significance.

To evaluate the quality of the estimation, we perform a y2-goodness-of-fit
test on the estimated distribution functions and additionally we apply the An-
derson Darling test. For the y2-goodness-of-fit test the number of cells is set to
k = 25. The 95%-quantile of the y?-distribution with k& — 7 degrees of freedom
is X1s.005 = 28.87. Table 2 represents the results for the analyzed time series.
The test statistics ranging from 15.83 to 19.22 are around the expected value
of 18. The y*-test indicates a good fit of the estimated distribution Fy to the
given empirical data. These findings are strengthened by the Anderson Darling
test results. With values of 0.13 and 0.17 the statistics are clearly below 2.49
representing the critical value for a significance level of 95%. However, here we
have to be careful, since we had run the tests in sample. Due to a possible change
of the distribution of the statistics by in sample testing, test results should be
taken with caution. Especially the Anderson Darling test does not penalize the
number of used parameters.

1.4.2 The Conditional Heteroscedasticity Model

In this subsection we analyze the data showing conditional heteroscedasticity,
i.e. Allianz, VW, Apple and Microsoft. We use an AR(1)-GARCH(1,1) setup to
model the data, where the innovation process is described by the df Fj. This is
a similar approach as used by Frey and McNeil [52], but we model and estimate
the entire distribution of the innovations, whereas they apply the so-called peaks-
over-threshold (POT) method. The parameters of the AR(1)-GARCH model are
estimated by pseudo-maximum likelihood. We omit these results, since they are
quite standard and we want to emphasize on the innovations and their tail be-
havior.

The estimation results are summarized in Table 1.3. The particular estimates
provide information about the characteristics of the innovations of the AR(1)-
GARCH(1,1) model. Naturally, the innovations are expected to have zero mean
and unit variance. Asymmetry in the center of the distribution is primarily influ-
enced by the parameters p and « that are describing the location and the weights
of the tails. For Allianz and Microsoft p is estimated significantly larger than zero
indicating skewed innovations. The scaling parameter [ takes values around 0.5,
where the estimation in all cases is very accurate (all t-values larger than 10).
We remind that [ scales the distribution and usually does not equal the standard
deviation. The parameter s is smoothing the generalized Pareto distribution. For
the sample of this subsection we find estimates ranging from 2.48 to 3.21. These
values are quite significant what can be inferred from the t-values, but are of
different order compared to the results in the homoscedastic case. The reason is
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the parametrization of the transformation A given in Equation (1.2.9). For related
transformations/distributions we expect the ratio s/3 to be roughly in the same
range. All over the entire sample (including the homoscedastic model for BASF
and IBM), the ratio s/f is relatively stable with values in-between 5 and 7.

L data [ & [ B8 | 3 | p | & | a [&-& [ xds |AD]
Allianz 0.1505 | 0.4737 | 2.4759 | 0.0266 | 0.2315 | 0.3998 | -0.0810 | 17.35 | 0.18
s.e. (0.0969) | (0.0346) | (0.3693) | (0.0125) | (0.0704) | (0.0440) | (0.1673)

t-value (1.55) | (13.71) | (6.70) (2.12) (3.29) (9.09) (-0.48)

VW 0.0801 | 05751 | 3.1623 | 0.2721 | 0.0217 | 0.2389 | -0.1588 | 26.27 | 0.33
s.e. (0.1888) | (0.0550) | (1.0590) | (0.2518) | (0.0894) | (0.1033) | (0.2921)

t-value (0.42) | (10.45) | (2.99) (1.08) (0.24) (2.31) (-0.54)

Apple 0.2249 | 0.4417 | 3.2135 | -0.0343 | 0.1500 | 0.6041 | 0.0749 | 22.63 | 0.20
s.e. (0.0752) | (0.0338) | (0.2994) | (0.0306) | (0.0982) | (0.0450) | (0.1734)

t-value (2.99) | (13.05) | (10.73) | (-1.12) (1.53) | (13.41) | (0.43)

Microsoft || 0.2013 | 0.5058 | 3.1738 | 0.1604 | 0.0743 | 0.3744 | 0.1270 | 24.51 | 0.16
s.e. (0.1034) | (0.0449) | (0.3692) | (0.1000) | (0.0945) | (0.0812) | (0.1979)

t-value (1.95) | (11.26) | (8.60) (1.60) (0.79) (4.61) (0.64)

Table 1.3: Parameter estimates with standard errors (s.e.) and t-values in paren-
theses, and the estimated Y%s-statistics and Anderson Darling statistics for Fy,
and the GARCH residuals for the heteroscedastic samples.

The tail indices & and &, model the tail behavior and indicate possible asym-
metry in the tails. For Allianz and Apple we observe significantly heavy tailed
innovations, and there is also evidence for asymmetry in both cases. Neverthe-
less, for Allianz and Apple it is possible to suggest Student’s t-distribution, here
with 5 or 6 degrees of freedom, see Frey and McNeil [52] for discussion of this
specification. In contrast to the latter findings, the time series of VW exhibits
an exponential tail behavior. For the lower and upper tail the estimates of the
tail indices are not bounded away significantly from zero, and hence the null
hypothesis of exponential tails can not be rejected. The Microsoft data show an
ambiguous behavior in the tails. The lower tail is significant heavy tailed with
a t-value of 1.95, but the upper tail appears to be exponential (t-value of 0.79),
and the null hypothesis . = 0 can not be rejected at any usual significance level.
However, again we are not able to reject & = &, because of the low absolute
t-values.

The statistical quality of the estimation is examined by performing a
Y2-goodness-of-fit test for the entire distribution, and the Anderson Darling test,
see the homoscedastic model for details. The y2-test statistics are ranging from
17.35 to 26.27 and are below 28.87, representing the critical value for 95% sig-
nificance level. With a maximal value of 0.33 the Anderson Darling test is below
the critical value of 2.49, for 95% significance level (again this should be taken
with caution, since we had tested in sample). Both tests demonstrate that the
estimated distribution F\g fits very well to the nature of the innovations, and this
is once more strengthened by graphical evidence, see Figure 1.5.
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Figure 1.5: Empirical density and log-density of the Apple GARCH residuals,
compared with the estimated Fy, density and log-density, respectively.

In this section, we showed that the proposed df Fy fits very well to financial
data. Especially, Fyp captured possible asymmetry in the tail behavior of the
investigated time series, ranging from exponential to heavy tailedness for the loss
tail and the profit tail. With a reduced set of 6 parameters, the estimation results
revealed statistical significance. On the other hand it was not possible to reject
& = &,. Even we found evidence for & # &,., we were not able to attain statistical
significance in that point. The y?-goodness-of-fit test and the Anderson Darling
test were clearly accepted for all financial time series. In the next section, the
estimation results are used for Value-at-Risk forecasts and backtesting.

1.5 VaR and backtesting

For risk management purposes Value-at-Risk calculation and backtesting are es-
sential components. From the perspective of statistics, financial risk is situated
in the loss tail of a return distribution, i.e. in the left tail. We apply the df Fj
constructed in this chapter to the issues posed by risk management. Since we are
concerned with losses, the tail variability plays an important role in quantifying
and analyzing financial risk.

In the following, we compute VaR’s (estimated negative quantiles of the log-
returns time series) for the different stocks given in Section 1.4. For an overview
of Value-at-Risk, we refer to Duffie and Pan [34] and Jorion [63]. In addition,
we perform a standard backtest on the VaR calculated for IBM. The standard
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backtesting procedure is a criterion for measuring the quality of VaR predictions
imposed by the regulators. As guideline we refer to Cassidy and Gizycki [19].

The estimation procedure is based on the entire data of Allianz, BASF, VW,
Apple, IBM and Microsoft from Oct. 5, 1998 to Oct. 6, 2000. For the homoscedas-
tic time series of BASF and IBM, the calculation of the one-day v-VaR requires
the (1 — )-quantile of Fy. This is accomplished by numerical inversion of the
estimated E. Here, we use the estimated parameters of Fy given in Section 4 ap-
plied to the losses, i.e. the negative log-returns. The conditional heteroscedastic
model is applied to Allianz, VW, Apple and Microsoft. For this data, we follow
Jorion [63] and compute the so-called conditional Value-at-Risk. The conditional
VaR is the specific quantile of the one-day prediction conditioned on the entire
information. We use the variance forecast implied by the GARCH structure and
as well the statistical analysis of the residuals for the estimation of the distribu-
tion of the innovations, see e.g. Frey and McNeil [52] for details. The results for
various levels v are listed in Table 1.4.

| data | 95% VaR | 99% VaR [ 99.5% VaR | 99.9% VaR |

BASF | 0.0306 | 0.0472 0.0542 0.0706
IBM 0.0370 | 0.0612 0.0750 0.1206
Allianz | 0.0263 | 0.0420 0.0503 0.0772
VW 0.0369 | 0.0549 0.0630 0.0834
Apple | 0.0478 | 0.0853 0.1114 0.2043
Microsoft | 0.0357 | 0.0590 0.0724 0.1232

Table 1.4: The (conditional) VaR’s for different levels computed by applying ]396
and the AR(1)-GARCH(1,1) parameters.

The calculated VaR’s in Table 1.4 are closely connected to the estimation
results of Section 1.4, see Table 1.2 and Table 1.3. For the homoscedastic time
series the VaR predictions are primarily determined by 3 and &;. The scaling
parameter 3 has a linear influence on the VaR calculation. For IBM, [ is estimated
larger than for BASF. Accordingly, the VaR’s of IBM are higher than the VaR’s of
BASF, but the difference increases dramatically, when we look at more extreme
VaR’s like the 99.9% VaR. This rise results from the tail parameter & that is
estimated 0.1942 for IBM and -0.0468 for BASF. VaR calculation is more complex
for data that incorporates conditional heteroscedasticity. The parameters of the
AR(1)-GARCH(1,1) model have an effect on the VaR, the autoregressive part
influences the mean and the stochastic variance caused by the GARCH equation
determines the scale. The nature of the innovations becomes apparent when we
study the 99.5% and the 99.9% VaR. Here, the two time series with most heavy
tailed innovations (Apple and Microsoft) with & = 0.2249 and & = 0.2013 have
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clearly the highest VaR’s. Additionally, we observe that the 95% VaR of Microsoft
is below the one of VW, but the relation is turned around for the 99% VaR, what
can be explained by the heavy tailedness of the innovations of Microsoft compared
to the exponential tailed innovations of VW.

We perform a standard backtest for the IBM stock, where we use a 250-day
history for estimating the VaR. This is carried out for the last 250 days in our
sample. In Figure 1.6, the 95% and the 99% VaR of IBM are plotted against
time and furthermore, the negative log-returns are also added in this picture. An
exceedance occurs whenever a loss is larger than the predicted VaR. For the 99%
VaR, we expect 2.5 exceedances, since we have a sample size of 250. Here, we
observe 1 exceedances, and in the case of the 95% VaR we have 16 exceedances,
where the expected value is 12.5. To study the quality of the IBM backtest results,
we conduct Kupiec’s Proportion of Failures (POF) Test. The critical value of
LRpor for the 95% test level is given by 3.84, for further details see Kupiec (1995).
We have observed 1 exceedance for the 99% VaR implying LRpor = 1.18, and
16 exceedances for the 95% VaR, what results in LRpor = 0.95. So for both VaR
levels the statistics are well below the critical value and indicate an accurate VaR
estimation.

Estimated 0.95 and 0.99 VaR compared with observed negative log-returns

0.10 0.15
| |

0.05

Value at Risk
0.0
|
~

-0.05

-0.10

T T T T T T
o] 50 100 150 200 250

datapoint number

Figure 1.6: IBM backtesting result, where the upper line represents the estimated
99% VaR and the lower the 95% VaR respectively. The dots are the observed
negative log-returns.

The quality of VaR estimation depends highly on good predictions of extremal
events, since the VaR is calculated from the lowest returns. Naturally, the shape of
the loss-tail plays an important role for VaR estimates, especially for “extreme”
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VaR’s like the 99.5% or the 99.9%-VaR. As discussed in Section 1.4, the log-
density estimates given in Figure 1.4 and Figure 1.5 exhibit a good fit to the
observed data, particularly in the tails. This indicates a good quality of the VaR
prediction, what is validated by the backtesting procedure carried out for the
IBM stock. Furthermore, with an estimated one-day log-return distribution we are
enabled to calculate VaR’s for different time horizons like the 10-day VaR’s using a
Monte-Carlo-Simulation. This is an advantage compared to VaR calculations with
EVT (like the usual POT-method) where only the tail and scaling parameters
over some threshold are estimated and not the entire distribution.



Chapter 2

Copula Theory

In this chapter, partially based on Junker and May [67], we give a very brief introduction in
the copula theory. We state the basic definitions and well known results we will need in the
further chapters. Additionally we derive some smaller calculation tools for survival copulas.

For a detailed course about copulas and multivariate distribution functions we highly recom-

mend one of the recent monographs, e.g. Joe [62] and Nelsen [92]

2.1 The Copula Concept

The copula concept is based on a separate statistical treatment of dependence
and marginal behavior. The mathematical idea goes back to Sklar (1955) and
Hoeffding (1940).

Let X = (Xi,...,X,) be an n-dimensional random vector with joint distribution
function F' and continuous marginal distribution functions Fx,, ..., Fx,. A cop-
ula is a multivariate distribution function defined on the unit cube [0, 1]", with
uniformly distributed marginals. For shorter writing we will sometimes use the
notation Fx, (X;) = U; and Fx,(z;) = u;, analogously.

Definition 2.1.1. Let X = (X1,...,X,) be a random vector with multivariate
distribution F' and continuous marginals Fy, ..., Fy,. The copula of X (of the dis-
tribution F', respectively) is the multivariate distribution C' of the random vector

U= (F(X1),...,F.(X,).

Now the n-dimensional joint distribution function F' for (Xj,...,X,) can be
written as follows

F(xy,...,z,) =C(Fx, (z1),..., Fx, (zn)), (2.1.1)

and hence the copula C describes the dependence between the univariate ran-
dom variables X1, ..., X,,. Vice versa the copula of an n-dimensional distribution

25
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function F' with continuous marginals can be expressed in terms of

where
F~ (u;) == inf{z : F; (z) > w;}, i=1..,n

are the marginal quantile functions. Equations (2.1.1), (2.1.2) and Definition
2.1.1, respectively, is known in literature as Sklar’s Theorem and implies that
for continuous multivariate distribution functions the univariate marginals and
the dependence structure (encoded into the copula) can be separated in a unique
way. The definition of a copula can be extended to the case of non-continuous
marginals F7, ..., F,. Equations (2.1.1) and (2.1.2) remain true but we loose the
uniqueness of the copula and hence we are not able to define a copula like in
Definition 2.1.1. However, the more general definition needs the introduction of
further not needed concepts, and for most financial applications it is justified to
assume continuous marginals. So for the sake of simplicity we skip this point here
and refer the reader to the above stated monographs.

Note that for any n-dimensional copula each k-dimensional margin of the copula
is a k-dimensional copula itself (1 < k < n).

The set of copulas is convex in the sense that every convex linear combination
of copulas is a copula itself (Nelsen [92], Ex. 2.3, p. 12]).

Set II(u) = wjusg - - - uy,, then Il is a copula for all n > 2, the so called inde-
pendence copula. The function M (u) = min{uy,...,u,} is a copula for all n > 2,
whereas W (u) = max{u; +us +...u, —n+ 1,0} is a copula only for n = 2, but
not for n > 2. The functions W and M are known as Fréchet-Hoeffding bounds
since

W(u) < Clu) < M(w).
Note that both bounds are (pointwise) sharp.

2.1.1 Rotational and Permutational Symmetry

We start with proving some general results that will turn out to be useful in
practical work later on. By F: x +— P[X > x|, € IR" we denote the survival
function of F. Since C' is a distribution function itself, C' is defined analogously.
Furthermore, if C' denotes the copula belonging to F', we define the survival
copula C by

F(xy,...,2,) = O(F1(11), Fo(22), ..., Fu(xy)) . (2.1.3)

Note that C' is a copula, whereas C' is not.
The following proposition states the relationship between C' and C'.
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Proposition 2.1.1. Let C' be an n-copula, C its survival function, and C the
corresponding survival copula. Then

C(U17..., —1+Z | |O 11613(]_—Ul)—I—11¢p,...,1n€p<1—Un)—f—lngp)
PeP*
(2.1.4)
and B
C(l—u)=C(u) (2.1.5)

for all u = (uy,...,un) € [0,1]". Here P* is the set of nonempty subsets of
{1,..,n}, i.e. P* =P ({1,....,n})\ {0} and |P| is the cardinal number of P € P*.

Proof. Let F' be a distribution function with marginals Fi, ..., F;,. If C' is the
copula for F', the corresponding survival copula C fulfils

F (21,0, w0) = C (Fy(21) 4oy P (20))
According to standard literature, F can be written as

Fay,.zn) =1+ Y (-1)"1Fp (2, j€P).
Pep*

Here Fp denotes the | P|-marginals of F' belonging to the index sets in P. Writing
C (Liep (u1) + Ligp, - .-, Lnep (un) + logp) for the | P|-marginals of C' we calculate

F(x1,y @) = 14 pepe (D) Fp (2, j € P)
=14 2 pepe (=D)IPIC (Licp(Fi(21)) + Ligp, -+ -, Inep(Fu(@n)) + lngp)
=1+ pep (“D)IPIC (11ep(1 = Fi(z1)) 4 Ligp, ., Lnep(1 — Fu(2,)) + Logp) -

This proves (2.1.4). Equation (2.1.5) follows by

Clug,yun) = 143 pepe (“1)PIC(Licp(ur) + Tigp, - - Tnep(tn) + Ingp) =
14 Y pep (~DPC(Liep(L = (1= w)) + Ligps ., Luep(L = (1= un)) + Lugp)
= C(—up,..,l —uy,).

O
This implies the following result for copula densities.

Lemma 2.1.2. Let C' be an n-copula with density c, let ¢ be the density belonging
to the survival copula C. Then for all u € [0,1]" we have ¢(u) = ¢(1 — u).

Proof. Follows directly by equation (2.1.4) since

aC (Uy, ..., Uy,)
aU, --- 0,

c(ug, ... up) = (Up,y ..., Uy) .
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Let us approach Lemma 2.1.2 from a statistical point of view. Assume that
we want to estimate a survival copula 695 depending on a parameter vector ;. In
the light of the lemma, estimating 6, by maximum likelihood (ML) is equivalent
to ML fitting the original copula Cjy to the rotated dataset 1 —u for data u. This
is true since 0 = (/9\3 because optimization within an ML routine is based solely on
the density. Lemma (2.1.2) then yields ¢(u) = ¢(1 — u).

Definition 2.1.2. Let C' be an n-copula. We call C' radially symmetric if the

bozes [0, u1] X ... x[0,u,] and [1 — uq, 1] X ... X [1 = uy,, 1] have the same C-volume
for all w € [0,1]" and we call C permutational symmetric if
C (uq, .. ) = C (uﬂ(l), . ,u,r(n)) for all permutations = on (1,...,n) and
u= (ul, coup) €10, 1]

So if rotating the data set does not change the volume under C, the copula
and its survival copula are the same. (The following result is an n-dimensional
combination of Theorem 2.7.2 and Theorem 2.7.3 in Nelsen [92].)

Lemma 2.1.3. Let C' be an n-copula, then C is radially symmetric iff C = C.

Proof. Let  (uy,...,uy,) € [0,1]* arbitrary. The C-volume over
[0,u1] X ... % [0,u,] is simply C (uq,...,u,) what is assumed to be equal to the
C-volume over [1 —uq,1] X ... X [1 — uy,, 1]. But the latter is just the survival
probability of (1 —uy,...,1 —u,) and hence given by C (1 —uy,...,1 —u,) =
5(u1, ., Up) due to equation (2.1.5). The opposite direction follows by going
backwards through the proof. |

2.2 Dependence Concepts

The next two definitions recall global dependence concepts. Let
(X1,...,Xp) ~F=Col(Fy,..., F,) where F has a density f and C is a copula.

Definition 2.2.1. The copula C' is called positive upper orthant dependent
(short: PUOD) if

P(X;>z,j=1,...,n) > [[P(X; > 2)

k=1
for all z. If
P(X;<z,j=1,...,n) H (X; < 2),

C'is called positive lower orthant dependent (short: PLOD)
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Definition 2.2.2. A non-negative function x on IR™ is called multivariate totally
positive of order 2 (MTP2) if

k(max{z1,y1},..., max{z,, y,}) c(min{zy,y1 }, ..., min{z,, y,}) > &(z) k(y)

for all x,y € R™.
We say that a random vector X is MTPZ2 if its distribution function is MTP2.

We now assume that X and Y are distributed with the same copula and recall
common definitions for stochastic order for random vectors.

Definition 2.2.3. We say that random vectors X and Y are stochastically or-
dered if and only if Ef(X) < Ef(Y) holds for all increasing functions f. We
write for short X <4 Y. If the same relation holds for all convex f we call X
and Y convex ordered and write X <. Y.

By using stochastic ordering, we can define another form of positive depen-
dence. We refer to Miiller and Stoyan [90], p. 125 for the notation and the next
2 definitions. If X and Y are m-dimensional random vectors, X is said to be
stochastically increasing in Y (X T4 Y for short) if the conditional distribution
of X given Y = y is increasing in y with respect to the stochastic order <.

Definition 2.2.4. A random vector X = (Xi,...,X,) is called conditionally
increasing (short: CI) if X; 1 (X, j € J) for alli € {1,...,n} and all subsets
JcCA{L,...,n}.

So the random vector X is considered as positively dependent in the sense that
the conditional distribution of a component given the knowledge of some other
components, is stochastically increasing in the components that are known.

Remark 4. For the bivariate case, the following relations can be shown.
e MTP2 implies PUOD. (see Joe [62] Theorem 2.3, p. 26)
e [f a bivariate random vector X is MTP2, one can show that X is CI, too.

Definition 2.2.5. If C and Cy are copulas, we say Cy is smaller than Cy (or
Cy is larger than Cy), and write C; < Cy (or Cy > C1) if Ci(u,v) < Cy(u,v) for
all (u,v) € [0, 1]2. This order is called concordance order. We call a parametric
family of copulas positively ordered with respect to the parameter 0, if 61 < 0,
implies Cy, < Cy, for all 6,65 and negatively ordered, if Cy, = Cy, analogously.

This order can help to compare the diversification of different portfolios.
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2.2.1 Measures of Dependence

Let us turn towards an investigation how the dependence structure in F' can be
measured. In this subsection we will recall the definitions of the two most popular
dependence measures (besides the correlation of course). In later chapters we will
make extensive use of them.

Kendall’s 7 is an appropriate dependence measure for monotonic dependence.

Definition 2.2.6. [Kendall’s T/Let the bivariate random wvector (X,?) be an
independent copy of (X,Y). Kendall’s T is defined as

7(X,Y) ::P((X—X)(Y/—Y) > o) —P((X—Xm?—Y) <o).
Since Kendall’s 7 is a rank correlation,
T(X)Y) =7 (Fx (X),Fy (Y))

holds, i.e. Kendall’s 7 is completely determined by the copula of (X,Y)" and so
it depends only on the copula parameters of the distribution of (X, Y)". Now let
(wi,9i), (x;,y;) be realisations of a random vector (X,Y’). The pairs (z;,y;) and
(xj,y;) are concordant if (x; < x; and y; < y;) or (z; > z; and y; > y;) and they
are discordant if (z; < z; and y; > y;) or (x; > x; and y; < y;).

So Kendall’s 7 can be interpreted as the probability for an observation of (X,Y)
to be concordant minus the probability to be discordant. For a sample
{(z1,91),- ., (xn,yn)} of observations from a continuous (X, Y), a sample version
of Kendall’s Tau can be estimated due to

_c—d c—d

()

where ¢ is the number of concordant pairs and d the number of discordant pairs.

(2.2.1)

Kendalls 7 avoids some of the pitfalls known for the correlation in a non elliptical
framework. Especially, we have the relation 7xy = 1 iff X,Y are comonotone,
Txy = —1 iff XY are countermonotone, is generally not true for the correlation
measure. See, e.g., Embrechts et al. [42].

In addition to monotonic dependence, which is measured by rank correla-
tion, financial data are likely to exhibit lower tail dependence, resulting in a high
probability of extreme simultaneous losses. Tail-dependence definitions for ran-
dom vectors are mostly related to their bivariate marginal distribution functions.
Loosely speaking, tail dependence describes the limiting proportion of one margin
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exceeding a certain threshold given that the other margin has already exceeded
that threshold. The following approach (Joe [62], p. 33) represents one of many
possible definitions of tail dependence. See Schmidt and Stadtmiiller [106] for a
generalization to multivariate tail dependence.

Definition 2.2.7. Let X = (X1, X5) be a 2-dimensional random vector with joint
distribution function F' and marginal distribution functions Fy and Fy. We say
that (X1, X2) is (bivariate) upper tail-dependent if

Ap = lim Ay(v) = lim P(X; > F; (v) | Xo > Fy (v)) > 0, (2.2.2)
v—1— v—1—

in case the limit exists. Here Fy~ and F;~ denote the generalized inverse distribu-
tion functions of X1, Xo. Consequently, we say (X1, X3) is upper tail-independent
if \u equals 0. Further, we call Ay the upper tail-dependence coefficient (TDC).

Similarly, we define the lower tail-dependence coefficient by
AL = 1im+P(X1 < F(v) | Xo < Fy (v)). (2.2.3)

v—0
For the sake of simplicity we write A for the TDC whenever A;, = \yy. The tail-
dependence concept can be embedded within the copula theory in the following
sense. Thus many copula features transfer to the tail-dependence coefficient, for
example the invariance under strictly increasing transformations of the marginals.
If (X1, X3) is a continuous bivariate random vector, then

1—2v+C(v,v)

A = lim e (2.2.4)
where C' denotes the copula of (X7, X5). Analogously,
C
A = Tim S0 (2.2.5)
v—0t v

holds for the lower tail-dependence coefficient.
Since tail dependence is defined by means of copula, beside Kendall’s 7 also
A, and Ay depend only on copula parameters.

2.3 Parametric Copula Classes

We now introduce two standard classes of copulas, which will be used later on.
We start with the class of elliptical copulas which are often used as bench-
mark models. Here, by elliptical copulas we simply mean the copulas of elliptical
distributions, e.g. given by Equation (2.1.2) with F' being elliptical. In particular,
this includes the copula of the Student-t and the normal distribution function.
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Example 1. Ezamples of elliptical copulas are given by:
(a) The t-copula C} is given by
Ci(u,v) =T, (T, (v), T, (v)), (2.3.1)

where T}, , is the bivariate standardized Student-t distribution function with
v degrees of freedom and correlation p, while 7, denotes the univariate
standardized Student-t distribution function. The upper and lower tail de-
pendence parameter A for v > 2 is (see Embrechts et al. [41])

)

A=2(1-T, v+1 . 2.3.2
(1= T (VT2 (232
Obviously, the tail dependence parameter depends on p, and if p = 0 the
tail dependence is restricted by A < 0.5 (v — 0) and A < 0.1817 (v = 2),
respectively. (Note that the above expression for A even holds in the case

0 < v < 2 with a different interpretation of p.)
(b) For v — oo the t-copula degenerates to the copula of the normal distribution
O, 0) = N, (N=(u), N=(v) (2.3.3)

where N,(-) and N(-) denote the standard bivariate and the standard uni-
variate normal distribution functions, respectively. From Equation (2.3.2),
it is obvious that the normal copula reveals no tail dependence, i.e. A = 0.

In general, elliptical copulas cannot be expressed in closed form and are re-
stricted to permutational and radial symmetry. For a detailed discussion about
limitations see Frahm et al. [50], and Chapter 3.

Secondly, we introduce the class of Archimedean copulas. These copulas can
be described by a one-dimensional function called generator. We start with the
two dimensional case and generalize it to arbitrary high dimensions afterwards
in Chapter 4.

Proposition 2.3.1. Let ¢ : [0, 1] — [0, o] be continuous and strictly decreasing
with p(1) = 0. The function C : [0, 1]> — [0, 1] given by

Clu,v) =" (¢ (u) + ¢ (v)) (2.34)
15 a copula if and only if ¢ is conver.

Here ¢~ : [0, oo] — [0, 1] denotes the generalized inverse of ¢. The copula
constructed by (2.3.4) is called Archimedean. The function ¢ is called generator
of the copula. A generator ¢ is called strict if p(0) = oo and in this case it is
invertible, i.e. = = 1.
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Example 2. Ezamples of Archimedean copulas are given by:

(a)

The independence copula with generator ¢r(q) = —Ing and
Ch (u,v) = uv. (2.3.5)

The independence copula exhibits neither lower nor upper tail dependence,
ie. )\L = )\U = 0.

The Gumbel copula with generator ¢ (q) = (—Ing)° where § € [1, c0) and
Ce (u,v) = exp (— [(— Inu)’ + (—In v)é] 6) . (2.3.6)

The Gumbel copula is upper tail dependent with \yy = 2 — 25 but has no
lower tail dependence.

e a1

—5— Where

The Frank copula with generator ¢pr(q) = —In
¥ € (—o0, 00) \ {0} and

Cr (u,v) = —gln (1 + (=)™ - 1)> . (2.3.7)

The Frank copula shows neither upper nor lower tail dependence

The Clayton copula with generator pc(q) = % (q_5 — 1) where § > 0 and

(SO

Cor(u,v) = (u+v " —1)" (2.3.8)

The Clayton copula has lower tail dependence with tail dependence param-
eter A\p, = 2-% and no upper tail dependence, Ay = 0.

We would like to mention that the Clayton copula is sometimes called
Cook-Johnson copula and is also mentioned in Joe [62], p. 141 as Family
B4, introduced by Kimeldorf and Sampson (1975).

We will concentrate on Archimedean copulas and their properties in Chapter 4,
where in Chapter 3 we will focus on elliptical copulas.

2.4 Pitfalls in Copula Theory

At the end of this chapter we will outline that the belief in copulas as a tool

that can describe any dependence structure between random variables is, unfor-

tunately, unjustified. Suppose e.g. Microsoft and a small enterprize testing the
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prototype software for Microsoft. If the request for Microsoft products is high,
there is a good chance for new releases and products developed by Microsoft,
that have to be tested. If everyone switches to use Linux instead of Windows,
there will be not enough work for the small enterprize to survive. So it is obvious
that the fortune of the test company highly depends on the market conditions for
Microsoft. Vice versa, the financial welfare of the test company has only little or
in fact no influence on Microsoft at all. Economically, we can say that Microsoft is
described by a real subset of the risk factors that can describe the test company.
The resulting copula will be a linear combination of the total positive dependence
copula (events that drive Microsoft and hence the small company, too) with the
independence copula (events that drive the small company but has no effect on
Microsoft).

Even if we see total dependence in an e.g. bivariate random vector (U, V), it is
(economically) only ensured that one variable is a strict monotone function of the
other. Mathematically, we have of course V' = F(U) what implies U = F*~ (V)
but to conclude that the dependence of U from V is as strong as the one of V/
from U is economically questionable. As an example we see in Figure 2.1 the

Fx rates ARS (black) and USD (grey) in EUR
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Figure 2.1: Fx rates ARS (black) and USD (grey) in EUR (upper plot), copula
pseudo observations of the (ARS,USD) GARCH innovation portfolio during Jan-
uary 1999 - January 2002 (lower left plot), and during February 2002 - June 2003
(lower right plot), respectively.
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scatterplot of the copula pseudo observations of the foreign exchange rate of the
Argentinean peso (ARS) and the USD, both with respect to the EUR. For the
mapping to uniformity we have used the empirical distribution functions of the
GARCH innovations. For the left lower plot the observation period was January
1999 - January 2002, where the peso was by Argentinean law coupled to the USD.
Due to economic pressure the coupling had to be resigned in January 2002. The
right lower plot shows the observations from February 2002 - June 2003. As we
can see from the left plot, either the Argentinean peso or the USD highly depend
on the other currency. The problem is that from the copula solely we are not able
to identify which one is the dominant factor. Of course we just know that the
Argentinean peso was connected to the USD during the observation period. The
upper plot shows the fx rate to the EUR of both currencies. It is obvious that
the Argentinean crisis has not effected the USD in a significant way. In the right
plot we are able to identify the dominance of the USD, because of the slightly
observable asymmetry (C(u,v) # C(v,u)) for extremal loss events.

To summarize, whenever there is directional (or causal) dependence in-between
the components of a random vector X in the sense that some X; depends on
X, j # 1, in an other way than X, on X;, the copula may fail to incorporate the
directional information. We are probably able to determine the existence of such
dependence with copulas, but we are not able to derive the direction without
further information that is not provided by the copula.

(close, close) (same date) (close previous date, open)

08 10

Hang Seng
06
Hang Seng

04

02

00

S&P 500 S&P 500

Figure 2.2: Pseudo copula observations of a (S&P 500, Hang Seng) GARCH
innovation portfolio. Left plot shows scatterplot with observations created by
(close, close) quotes of the same date, whereas in the right plot they are created
by (close previous day, open) quotes.

Another pitfall is not to take caution of possible time lags in-between the
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elements of multidimensional observations. For example, Figure 2.2 shows the
scatterplots of the copula pseudo observations (po) of the GARCH innovations
of an index-portfolio containing the S&P 500 and the Hang Seng stock indices,
as quoted in New York and Hong Kong, respectively. The left plot shows the
(close,close) pos of the same date. Since the New York stock exchange closes at
16:00 h (local time!) and the Hong Kong exchange at 15:30 h (local time!) the real
time lag in-between the univariate observations is 13.5 hours. Coupling the close
pos of S&P 500 of the previous day with the open pos of the Hang Seng leads to
the right plot. With an opening time at 10:00 h (local time) of the Hong Kong
exchange, this procedure minimizes the real time lag in-between the observations
to 5 hours. Remark that New York and Hong Kong time is also separated by
the international date line. However, it is obvious that there is a big difference
between the two plots. Whereas the left one (big time lag) manifests only weak
dependence, the right one (minimized time lag) shows evidence for significant
positive dependence.

So copulas (especially their estimation) are very sensitive for time lags in-between
the univariate elements of the multivariate observations. Hence, of course the
estimation is also very sensitive for shift errors in data.



Chapter 3

Elliptical Copulas: Applicability
and Limitations

In this chapter (based on Frahm et al. [50]), we study copulas generated by elliptical distri-
butions. We show that their tail dependence can simply be computed with default routines
on Student’s t-distribution given Kendall’s 7 and the tail index. The copula family generated
by the sub-Gaussian a-stable distribution is unable to cover the magnitude of tail dependence

observed in financial data.

3.1 Introduction

Elliptical distribution families are widely applied in statistics and econometrics,
especially in finance. For example, Owen and Rabinovitch [94] discuss the impact
of elliptical distributions on portfolio theory, and Kim [72] studies the CAPM
for this class of distributions. The normal distribution is the archetype of ellipti-
cal distributions in finance. Besides this distribution family, in recent time other
elliptical distribution families became more important. Student’s ¢-distribution
is emphasized, e.g., by Blattberg and Gonedes [11]. The sub-Gaussian a-stable
distribution is a special case of the extensive stable distribution class discussed
in Rachev and Mittnik [99]. Portfolio selection with sub-Gaussian a-stable dis-
tributed returns is analyzed by Ortobelli et al. [93].

In this chapter we study the dependence structure generated by elliptical
distributions. We focus on the multivariate Student’s ¢-distribution and the mul-
tivariate sub-Gaussian a-stable distribution since these distribution families are
frequently applied for modelling financial data. This subject is relevant with re-
spect to risk analysis in finance. Here, the probability of joint extremal events
has to be determined because the aggregate portfolio risk increases seriously in
case of noticeable dependence of the particular assets in crash situations. There-
fore, besides rank correlation measures, like Kendall’s 7 (see Definition 2.2.6), the
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concept of tail dependence is of main interest. The copula concept is utilized to
extract the dependence structure of a given distribution by the copula function.
Thus, it is obtained a separation of the marginal distributions of the particular
random components and the dependence structure that is contained in the cop-
ula. Recent developments on elliptical distributions concerning the dependence
structure can be found in Hult and Lindskog [60], and Schmidt [104].

For copulas generated by elliptically distributed random vectors we discuss a
general relationship between Kendall’s 7, the tail index of the underlying elliptical
distribution, and the tail dependence of the generated copula. Given Kendall’s 7
and the tail index (, the tail dependence can simply be computed with default
routines on Student’s t-distribution. Applying these results we find that sub-
Gaussian a-stable copulas are not suitable for modelling the dependence structure
of financial risk. Empirical investigations have shown that the tail dependence of
stocks is smaller than those provided by the sub-Gaussian a-stable distribution
assumption.

3.2 Copula and Marginal Parameters

An axiomatic definition of copulas is to be found in Joe [62] and Nelsen [92]. For
a short introduction see Chapter 2.

In general, a multivariate distribution F' contains parameters that do not
affect the copula of F', whereas other parameters affect the copula and possibly
the marginals. We want to call the latter type of parameters “copula parameters”.

Let @ € IR" be a parameter vector and F (-;6#) a continuous multivariate
distribution with copula C (-;0). Let I C I = {1,...,n} be an index-set that
contains all k for which at least one u € [0,1]* exists, such that

oC (u; 0)

o0, 7V

So I contains all copula parameter indices.

Suppose a d-dimensional distribution family is generated by a multivariate
distribution F* (-;6p) with continuous marginals Fy (-;60),..., F (-;6p)
and d continuous and strictly monotone increasing marginal transformations

hy(+;01), ..., ha (- ;04), where the parameters 6y, 01, ..., 0, may be some real-valued
vectors:

F (ZEl, ey Iy 9) = F* (hl (1'1; 91) ey hd ([L’d; Qd) ; 90) s (321)
with

0 = (60,01,....00).
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Lemma 3.2.1. Only the vector 6y contains copula parameters.

Proof. The lemma follows from the fact that any copula is invariant under strictly
monotone increasing transformations hy (-;61), ..., hq (- ;64). Thus also the param-
eters 61, ...,0; can not affect the copula. |

So the parameters 6, ..., 84 are canceled down through copula separation and
0y still remains. We call the distribution F* (-;6p) the “underlying distribution”
of C'(-;0),and C (-;0) the “copula generated” by ™ (-;6). That is we use Equa-
tion (2.1.1) (Sklar’s Theorem) to extract a copula from a known multidimensional
distribution function. In particular, the copula generated by an elliptical distri-
bution will be called “elliptical copula”.

Affine marginal transformations are often applied for constructing distribution
families, more precisely location-scale-families. The location-scale-family gener-
ated by the multivariate distribution F™* contains all distributions

T, — Tq—
(1, 0y Tq) — F (a1, ..., 2q;0) = F* ( : 'ul,..., d 'ud;QO) ,
01 04
with given parameter vector 6, variable location parameters py, ..., ug and scale
parameters oy, ..., 04. So this distribution family is generated by affine marginal
transformations and the location and scale parameters are not copula parameters.

3.3 Elliptical Distributions

3.3.1 Characterizations

Definition 3.3.1. The d-dimensional random vector X has an elliptical distri-
bution if and only if the characteristic function t — E (exp (it'X)) with t € IR?
has the representation

t — @y (t; u, 3,09) = exp (it' ) - g ('St 9).

Here g(-;9) : [0,00[ — IR, ¥ € R™, p € IR, and X is a symmetric positive
semidefinite dx d-matriz.

The parameter vector u is a location parameter, and the matrix > determines
the scale and the correlation of the random variables X7, ..., X;. The function
g (+;0) constitutes the distribution family and is called “characteristic generator”,
whereas 1) is a parameter vector that determines the shape, in particular the tail
index of the distribution.



40

For example the characteristic function of the sub-Gaussian a-stable distri-
bution (Ortobelli et al. [93]) is

a/2
1
t — exp (it'p) - exp (— (g-t'Zt) ), 0<a<2,

so the characteristic generator is x +— exp (— (% . m)a/ 2) with shape parameter «.
Now let
[0, 0 0 ]
011+ 0Oud . P11 - Piud
0 09 .
E = y [ s p =
Od1 **° 0dd ' o Pd1 - Pdd
0 e o
with
0; ‘= \/0jj, Z:L ,d
and
piii= 9 i=1,...d (3.3.1)
1] O',Lo'j’ 9 ) Y Y

so that ¥ = opo and ¢, (-; 1, X,9) = ¢, (- i, 0, p, V). Consider the multivari-
ate elliptical distribution Fy (-; p, 1) corresponding to the characteristic function
¢4 (30,1, p, V). The characteristic function corresponding to the multivariate dis-

tribution
T — Tq—
($1,...,xd)/»—>Fg*( L 'ul,..., d Md;p,ﬂ)
01 (oF}

with u € IR? and o4, ...,04 > 0 is

t s exp (it'p) - ¢g (04,0, 1, p,9) = exp (it'n) - g (1) p (o) ;9)
= exp (it'p) - g (t' (opo) ;9)
= ¢g (t, /1’7 27{19) *

Thus the location-scale-family generated by a standard elliptical distribution is
elliptical, too. This is emphasized by a stochastic representation of the elliptical
class which is stated by the following theorem:

Theorem 3.3.2 (Fang et al. [45]). The d-dimensional random vector X is
elliptically distributed with characteristic function ¢4 (-;p, X,9) and rank (X) =
r < d if and only if there exists an r-dimensional random vector U, uniformly
distributed on the unit sphere

{ue [-11]": flull =1},
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a nonnegative random variable R independent of U, and a d x r-matriz VX with
\/fx/f/ = Y., such that
XL u+RVIU (3.3.2)

Due to the transformation matrix v'X the uniform random vector U pro-
duces elliptically contoured density level surfaces, whereas the “generating ran-
dom variable” R (Schmidt [104], p. 6) gives the distribution shape, in particular
the tailedness of the distribution.

With the reparametrization (3.3.1) the equation /¥ = o4/p holds, and so

XLu+0RpU.

3.3.2 Dependence Structure

The standard density of the d-dimensional sub-Gaussian a-stable distribution
can be obtained through multivariate Fourier-transformation (see Appendix B.1)

and is
1 .
f;,p (z) = (o) : /¢stab1e (t:0,1, p, @) - exp (—it'z) dt’
e’ J

1 1 / a/2 / !/
:(27r)d‘ exp | — §-tpt -cos (t'x)dt’, 0<a<2.
R4

The copula generated by a d-dimensional sub-Gaussian a-stable distribution is

Co(ug, ... ,ug) = Fof’p (F;”l_ (uy),... ,F;T (ud)) ,

where F} is the multivariate standard distribution function
Fop@) = [ g
]—o00,2]

with |—o0, 2] := |—00, 1] X+ - - X ] =00, 74], and F;7T is the inverse of the univariate
standard distribution function

F&mz/ﬁﬂwm.

The standard density of the d-dimensional multivariate Student’s ¢-distribution
with v degrees of freedom is

1‘\ v+d 1 1 ;-1 v+d
fi(x) = (12/) /|p|~exp<—§-log<1+x'0 :v) , v>0.
= 14
2
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For continuous elliptical distributions there is a straight link between Kendall’s
7 and Pearson’s p:

Theorem 3.3.3 (Lindskog et al. [77]). Let X be an elliptically distributed
random wvector with characteristic function ¢4 (-;p, 0, p,¥). For two continuous
components of X, say X; and X;, Kendall’s T is

2
T (X, Xj) = — arcsin (p;;) - (3.3.3)

This is to say Kendall’'s 7 depends only on p, and neither the characteristic
generator nor the shape of the distribution affect the rank correlation (see also
Fang et al. [44]).

We know that the specified distributions are heavy tailed, i.e. the marginal
survival functions F; exhibit a power law with tail index ¢ > 0:

Fi(x) =X\ (x) 275, x>0, (3.3.4)

for i = 1,...,d. Here Ay, ..., Ay are slowly varying functions. Note that elliptically
contoured distributions are symmetric (heavy) tailed, i.e. the tail indices for the
upper tail F; and the lower tail F} coincide.

For the multivariate Student’s t-distribution the tail index corresponds to
the number of the degrees of freedom v, and for the multivariate sub-Gaussian
a-stable distribution the tail index equals «. Furthermore, in the elliptical frame-
work the lower tail dependence is equal to the upper tail dependence. The fol-
lowing theorem connects the tail index with the tail dependence of elliptical
distributions.

Theorem 3.3.4 (Schmidt [104]). Let X be an elliptically distributed random
vector with characteristic function ¢, (-; p, o, p, ) and tail index ¢. For two com-
ponents of X, say X; and X, the tail dependence is

Of(pij) \/3211 du 1+ pyj
AMX, X5 G pig) = = c (20 flpg) =5 (335)

fo\/%du

So the tail dependence for elliptical copulas is a function ps——A, where the

tail index ( of the underlying elliptical distribution family results from the char-
acteristic generator g and the shape parameter ©J. Given the matrix p the tail
dependence is a function (,——A, and due to Theorem 3.3.3 also the relation
(A holds for a given matrix of Kendall’s 7.

Remark 5. The tail index is a property of the elliptical distribution family from
which the copula is extracted from, whereas the tail dependence concerns the cop-
ula itself. By Sklar’s Theorem (Nelsen [92]), it is possible to construct new multi-
variate distributions with arbitrary marginals, providing a specific copula. In this
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case C is generally not the tail index of the proposed marginal distributions but
still a copula parameter.

Substituting the integration variable u in equation (3.3.5) by cos (v) leads to
the following equivalent representation (see B.2) of the tail dependence of two
elliptically distributed random variables X; and X; (Hult and Lindskog [60]):

/2
[7° cos® (v) dv 1 i
A X, X5 G, pij) = g(ﬂ%) , g (pij) = arccos T’ .
Jo % cos< (v) dv

0

Due to relation, (3.3.3) we can substitute p;; by sin (TU . %), and thus get

fh(m cos® (v) dv

fOW/QCOSC( ) dv’

)\<Xz7 C?TZ])

h(rg) =2 (1_2—”>  (336)

Hence for the limiting case ¢ = 0, the tail dependence is an affine function of
Kendall’s 7:

]-‘I’Tij

lim A\ (X;, Xj; ¢, mj) = 5

3.3.7
Jimy (3:3.7)

Remark 6. Since every random variable X1, ..., X4 has, as a component of X,
the same tail index ( which is given by the generating random variable R, the tail
dependence \;; of each bivariate combination (Xi,Xj)/ 18 uniquely determined by
Tij- Thus modelling the tail dependence structure of elliptical copulas especially for
higher dimensions is restricted by the set {(\,7) € [0,1] x [-1,1] : A= X ((,7)}

giwen the tail index parameter .

The tail dependence of a bivariate t-distributed random vector (X,Y)" with
v degrees of freedom can be obtained by computation of (2.2.3) and is

_ 1—
A=2-T, (\/u 1 H—”) (3.3.8)

), v >0,

where t,, is the survival function of the univariate Student’s ¢t-distribution with
v+ 1 degrees of freedom (see, e.g., Embrechts et al. [41]).

Since Equation (3.3.8) holds for all v > 0, where v corresponds to the tail
index ¢ of X and Y, and Theorem 3.3.4 states that the tail dependence of two
elliptically distributed random variables depends only on p;; and ¢, Equation

1 —sm
1—|—sm

~—

MI:\ l\?I:]
—

=2- tVJrl (\/V+ \/
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(3.3.5) can be replaced by

Nj=2Ten <\/§+ 1 -,/i—?) (3.3.9)
=21 (\/C—F \/ —sin T” ) . (>0.

1+ sin 7'”
Student’s t-distribution is a default routine in statistics software and is tabulated

~—

l\')|>-! w|=1
~—

in many textbooks (Johnson et al. [61]). So it is more convenient to use formula
(3.3.9) than (3.3.5). In Figure 3.1 we plot the barriers of tail dependence as a
function of p for any elliptical copula allowing for ( > 0. The range of possible
tail dependence in the special case ( < 2, which holds for the sub-Gaussian
a-stable copula, is marked explicitly.

An investigation of several stocks from the German and the US market shows
that the lower tail dependence ranges from 0 to 0.35, whereas Kendall’s 7 takes
values in between 0 to 0.4, approximately (Junker [64]). With formula (3.3.6) we
can plot the tail dependence barriers as a function of Kendall’s 7, see Figure 3.2.
Note that for the limit case ( = 0 the tail dependence is an affine function of 7, as
stated by (3.3.7). We see that the sub-Gaussian a-stable copula restricts the scope
of possible tail dependence too much. The dependence structure generated by
the multivariate sub-Gaussian a-stable distribution is not suitable for modelling
financial risk because the provided range of A has only a small intersection with
the empirical results.
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Figure 3.1: Range of possible tail dependence as a function of the correlation p.
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Figure 3.2: Range of possible tail dependence as a function of Kendall’s 7.



Chapter 4

Archimedean Copulas-
2-dimensional Flexibility,
Multidimensional Complexity

This chapter is partially taken out of Junker and May [67]. First we give a brief summary
of well known results in the Archimedean class and show that this world is not closed with
respect to convex linear combinations. We will further state a transformation rule for generators
that extend the family of Archimedean copulas to new classes. Finally we come up with a
special model that allows for different lower and upper tail dependence and contains the Frank
and Gumbel copula as limit cases. The last section outlines the restrictions in constructing
multidimensional models based on Archimedean copulas, and derives some of the resulting

limitations.

4.1 Properties

Recall from Chapter 2 that a bivariate Archimedean copula C' is completely
described by a continuous, strictly decreasing and convex generator function ¢ :
0, 1] — 0, oo with
(1) = 0 via the relation

Clu,v) =1 (0 (u) + ¢ (v)) - (4.1.1)

The next proposition summarizes some of the properties of Archimedean copulas.
A function g is m-monotone if all derivatives up to m exist and (—1)k% g(t) >0
for all £t and all £k = 0,1,...,m. For m = oo, all higher derivatives exists, and g
is called completely monotone.

Proposition 4.1.1. Let C' be an Archimedean copula with generator . Then
C' is permutational symmetric, i.e. C(uy,uz) = C(ug,uy) and associative, i.e.
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C(C(ug,ug),uz) = C(uy, C(ug,usz)). For any constant o > 0, the scalar multiple
ap is a generator of C.

If the inverse generator ¢~ is completely monotonic on [0, 00), then the den-
sity of C' is totally positive of order 2, hence C' is M'TP2 implying positive quadrant
dependence.

Since a completely monotonic inverse generator implies a totally positive den-
sity ¢ of the copula C', a random vector U distributed via C' has the property
CL

For the multivariate case n > 2 we define an Archimedean n-copula

Clut, - un) = o p(wr) + -+ p(un)) -

This yields a copula if and only if ¢~ is completely monotone on [0, 00).

Even though the class of copulas is closed under taking the survival copula
and under convex linear combinations, we cannot transfer this nice properties to
the class of Archimedean copulas.

We recall the class of Frank copulas that first appeared in Frank [51] in an
algebraic context. In the bivariate case, Frank [51] shows that the Frank copula
is the only Archimedean copula that has an Archimedean survival copula. Fur-
thermore, the Frank copula satisfies C=C , 1.e. it is the only radially symmetric
one (Frank [51], Theorem 4.2, p. 218).

This enables us to show that neither the class of Archimedean copulas nor
the Frank subfamily is closed under linear convex combinations. Further we can
extend Frank’s result to n dimensions.

Lemma 4.1.2. The survival copula C of an Archimedean n-copula C' is Archime-
dean if and only if C' is the Frank copula and hence C' = C' (i.e. C is rotationally
symmetric).

The convex linear combination of two Archimedean copulas needs not to be
Archimedean.

Proof. For the first statement we use the associativity of Archimedean copulas
and carry out complete induction over the dimension n. For n = 2, Theorem 4.2
in Frank [51] proves the result. Now assume the statement to be true up ton > 2.

—~—

Cn—i—l (Ul, e ,un+1) = Cn+1 <U,1, .. ,Un+1)

~ [~ 4.1.2
CQ <Cn (ul, Ce ,'Lbn) ,un+1) CQ (Cn (Ul, Ce ,un) ,un+1) ( )

where C; denotes the i-copula corresponding to C'. The second relation is equiv-
alent to the first by associativity and symmetry of Archimedean copulas (see
Nelsen [92] p. 121). Equation 4.1.2 has to be fulfilled for all u € [0, 1]"! espe-

cially for all u € [0,1]" x 1. So from the second line we can conclude C,, = C,,.
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By the induction hypothesis we have é’vn to be an n-dimensional Frank copula.
Furthermore 4.1.2 has to be fulfilled for all u € 1, x [0,1] so we can conclude

Cy = Cy and by Frank [51], Theorem 4.2 that Cy has to be the 2-dimensional
Frank copula. So we have finally (), to be an n + 1-dimensional Frank copula.

For the second statement let Cp, and Cy, be copulas from the Frank family
with 0; # 6. For 0 < A < 1 let C*(u,v) = ACy, (u,v) + (1 — N)Cy,(u,v). As
members of the Frank family, Cy, and Cy, are radially symmetric so we know
that Cy, (u,v) = Cfgj(u,v) =u+v—1+Cp,(1—u,1—v)for j =1,2. We use this
relation to compute the survival copula

C*u,v) = u+v—1+4ACo(1—u,1—v)+(1—NCo(1—u1—0)
= Mu+v—14+Cyp(1—u,1—0))
+(1-=MN(u+v—14Cyp(l —u,1—v))
= ACy, (u,0) + (1= \)Co, (u,v)
= C"(u,v).

This implies that C* must be a member of the Frank family, or else can not be
Archimedean according to Frank [51].
To construct a contradiction we fix some parameter vector (6;,62,\) and
compute
Cloy 0,0 (U, v) = (4.1.3)

A (1) e -)] _ 1 (e=020-1) (e=%2°—1)
_a h] |:1 + 111 — w hl |:1 + 0211

Assume that C* falls into the Frank family. Then in the light of Equa-
tion (4.1.3) there exists 6 such that

* 1 efeu -1 6791} 1

for all (u,v) € [0,1]%. Now take A = 0.5,0; = 1 and 6, = 10. For this choice of pa-
rameters we compute 6(u,v). This yields 6(0.1,0.1) =~ 4.74 but
0(0.5,0.5) ~ 3.89 so since 6 depends on (u,v) the copula C* cannot belong to the
Frank family which contradicts the statement above. |

We conclude the section by stressing that associativity and the property
C(u,u) < u characterize Archimedean copulas (Nelsen [92], p. 93). Many ar-
guments concerning Archimedean copulas are in fact based on associativity.

4.2 A Transformation Rule for Generators

We briefly summarize what we have learned about the theoretical properties
of Archimedean copulas: They are completely determined by a one dimensional
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generator, and they show flexibility in modelling the dependence structure. For
bivariate cases, asymmetry in the tails is possible. Listing the drawbacks, the
structural permutational symmetry of an Archimedean copula must be reflected
in the data which is certainly the case in most financial data sets. When con-
structing new copulas from known ones, one must take into account that the
subclass of Archimedean copulas is not closed under linear convex combinations
(see 4.1.2). But the existence of a generator gives rise to a different approach that
does not rely on this property. Here we introduce a generator based transforma-
tion rule for Archimedean copulas that enables us to construct new copulas from
Archimedean ones.

Proposition 4.2.1. Let ¢ be a generator and g : [0, 1] — [0, 1] a strictly in-
creasing, concave function with g(1) =1, then p o g is a generator.

Let f : [0, oo] — [0, o0] be a strictly increasing, convex function with f(0) = 0,
then f o @ is a generator.

Proof. The composition of two strictly monotone functions—one increasing, the
other decreasing—is strictly monotone decreasing. Furthermore, p o g and f o ¢
are convex functions, since for all A € (0, 1) and z,y € [0, 1] we compute

gz +(1=XNy) > Aglx)+ (1 -\ g(y)
=pogMz+(1-=XNy) < ¢eglz)+ 1=\ gly))
< Apog(x)+ (1= A)pog(y),
and
eAz+(1=XNy) < dp(z)+ (1=N)e(y)
= fopMz+(1-Ny) < fQo@)+(1-X)e(y))
< Afop(x)+ (1 =) fow(y).
Together with ¢ o g(1) = f o p(1) = 0, the proposition follows. O

Remark 7. The proposition generalizes the transformation rule for the o and (3
family in Nelsen [92], where g(t) = tV, v € (0, 1] and f(¢) = ¢°, § € [1, 00).
Since a sum of generators is a generator itself, and products of a generator with
a strictly positive scalar lead to a generator of the same copula, every polynomial
of generators

P(p) = Z ai@i,
i=1

with a; > 0 and at least one a; > 0, is a generator.

It 1s easy to construct transformation functions g and f when using piecewise
strictly increasing, concave and convex functions that analytically depend on a
parameter. The parameter is then used to fulfill the conditions, i.e. transformation
of support and range and normalization at 1. Examples are given by
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Remark 8. For the bivariate case we conclude that fg o Il yields the generator
of the Gumbel copula, whereas Il o g3 is the generator of the Frank copula.

The transformation rule ¢ o g is closely related to the transformation rule ~
introduced by Durrleman et al. [35]. In their case the tail dependence is preserved
under such transformation. (Durrleman et al. [35], Theorem 12.) In the following
we will show that this is not the case if we change the generator ¢ to f o .

4.2.1 A family covering the Gumbel and Frank families

Throughout this thesis we use the generator of the Frank copula

e 0t _1
@ank(t) =—1In ﬁ——l’ RS (—OO, OO) \ {O} (4.2.1)
and transform it by
0o = (Prrans)’,  w = (6,0) € (=00, 00) \ {0} x [1, o0). (4.2.2)

Remark 9. Since the generator of the Frank copula is strict and twice differen-
tiable, @, is strict, i.e. ¢ = o', and twice differentiable.

If we set ) = 1, we have the generator of the Frank copula and hence all the
properties of a Frank copula are fulfilled.

The resulting Archimedean copula given by (2.3.4) and (4.2.2) is

1
—aln

L4 (e — 1) exp [_ ((_m [%_—11])6 + (—1n [ee_"f:llbé) é”
(



o1

with corresponding density
P (Co(u,v)) g, (u) gy, (v)
(¢l (Co(u, )’

The following result shows the relation between the transformed copula and
the Gumbel copula.

Col(u,v) =

Lemma 4.2.2. Let C,, be the transformed copula from (4.2.3) with parameters
0 and 9, then for a fized & we have the following limit behavior

hm Ow = 05 Gumbel
6—0

Proof. We prove the Lemma by showing that the generators of the two copulas
coincide. This writes by using standard calculus

—0t __ 1 6 -6t 1 J
lim —ln6 = |—In lime
0—0 e ¥ —1 0—0 e~ — 1
0t 4
= [— In (lim ZL)]
—0e ¥ —1

= [_ 1n<t):|6 = SO(SGumbel

O]

Remark 10. In terms of generators, Lemma 4.2.2 yields if p9g — —Int, then
3096 — P5Gumbel -

We state that with the result of Lemma 4.2.2 the transformed copula C,
includes two widely used copulas—the Frank and the Gumbel—as special cases
and gives a common analytical form for them.

Lemma 4.2.3. Let @1, ps generators of Archimedean copulas Cy, and Cy re-
spectively. Let further Cys, Cys be the Archimedean copulas generated by the
transformed generators ¢S, @5 with § > 1.

a) If £L is nondecreasing on (0,1), then Cy < Cy (Corollary 4.4.5 in Nelsen [92])
and further C 5 < Cay.

b) If o1 and @y are continuously differentiable on (0,1), and ifi—:l 1s nondecreasing
2
on (0,1), then Cy < Cy (Corollary 4.4.6 in Nelsen [92]) and further Cy 5 < Cas.

5
Proof. If % is nondecreasing on (0, 1), so is i—i = (%) . Part a) of the lemma
2

follows now by Corollary 4.4.5 in Nelsen [92], p. 110. Part b) follows by Corollary

é
4.4.6 in Nelsen [92], p. 111 and the fact that Ewig,
Y2

(0, 1), since £! is nondecreasing on (0,1) and ¢ > 1. O

N
= <%) is nondecreasing on
2
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The following proposition summarizes some dependence properties of C,,.

Proposition 4.2.4. (a) C,, has no lower tail dependence but is upper tail de-
pendent with tail dependence parameter Ay = 2 — 25 .

(b) Let 6 > 0, then @' is completely monotonic on [0, 0o), and hence the
density c,, s totally positive of order 2.

(c) C,, is positively ordered with respect to the concordance order and the pa-
rameters 0,8, i.e. 01 < 0y = Cp, (u,v) < Cy,(u,v) for all (u,v) € [0, 1]°.

Proof.  (a) For the tail dependence we have to calculate the limits

N, = lim S
u—0 u Co ()
. . 1-2u+Cy, (u,u

Ay = lim -

Using L’ Hospital’s rule we get A\, =0 and A\y =2 — 25.

(b) To show the complete monotonicity of ¢ ! we use Lemma 4.6.4 in Nelsen
[92], p. 123, where it is shown that for a strict generator ¢ with a completely
monotonic inverse on [0, 0o), the transformation ¢?, § > 1, leads to a
generator with a completely monotonic inverse on [0, co). For 6 > 0, the
Frank generator @p,qni is strict and its inverse is completely monotonic on
0, 00).

(¢) The concordance ordering property follows directly from Lemma 4.2.3 and
Theorem 4.5.2 in Nelsen [92], p. 114.
O

In the next section we will state a more general result.

Remark 11. (a) Further transformations of the generator o, yield new depen-
dence structures. As an example we take the generator ¢, (), v € (0, 1]
that allows for negative dependence in one tail (see Figure 4.1).

The Gumbel copula which has the generator p(t) = (—1n(t))?, 6 > 1, leads
to the same upper tail dependence as C,,. Nevertheless, C,, is not an extreme
value copula, i.e. C(u",v") = C*(u,v) is not true for all k > 0.

(b) Since the inverse generator ' is completely monotonic, the copula density

is TP2, hence a C,, distributed random vector is conditionally increasing.

We will now analyze some limit cases, and show that all boundary cases—
totally positive and negative dependence as well as independence—are covered
by C,. Recall that the Fréchet-Hoeffding bounds W (u,v) = max{u +v — 1,0}
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Density of C,, (v, v”)'l'

-

density of Cu (0 v”)

Figure 4.1: Density of C., (u”,v”)% with 6 = =5, = 1,v = 0.2.

and M (u,v) = min{u, v}, representing totally negative and totally positive de-

pendence respectively, are boundaries in the sense that for all copulas C' it holds
W(u,v) < C(u,v) < M(u,v).

Proposition 4.2.5. Let C,, be the copula defined by Equation (4.2.3), with w =

(0,9), then
élim C, = M,
elim C, = M,
lim C, = wu-v=II,
6=1,0—0
lm C, = W.
6=1,0——0c0

Proof. The first limit follows by Theorem 4.5.4 in Nelsen [92], p. 115 and the last
two are just limit cases of the Frank copula.

To analyze limg_.o, C,, we substitute t = e = 6 = —1In(t) and get
. . In [1_6)(1{_((_ln[l_tu})é—f—(—ln[l—t”])‘s)%H
lim C,(u,v) = limmax ™G .0
0—o0 t—0 n
nl1—exp|—(—1n[1—¢min{u,v}
= max ljm1 [1—exp[( 11 ([tl) ¢ DH,O}
t—0 n
o X ln[tmin{u,v}]
Il P AT

= min{u,v} = M(u,v).
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O]

To catch asymmetry in the tails we take a convex linear combination of the
proposed copula C, and a survival copula 6w5 out of the same family. Here
ws = (05, ds) is the parameter vector of the survival copula. Hence we define for
« € [0, 1] the copula

Colu,v) == a-C,,(u,0)+ (1 —a)-C,(u,v)

(4.2.4)
= a- (u+v—-14+C,,(1—u,1—=0))+ (1 —a)-C,(u,v).

Proposition 4.2.6. Let Cy, Cy be 2-copulas with tail dependence parameters
AL, Auy and Ap,, A\u,, respectively. Denote A, Ay the lower and upper tail de-
pendence of C. Further let C* = aCy + (1 — a)Csy, with a € [0,1], be the copula
resulting from the linear convexr combination of Cy and Cy. Then it holds

(a) A =Av, dv = Ag
(b) Xj = aAr, + (1 —a)\,, and the same holds for \};.
Proof. The first statement is proved through

1—-2u/+C(u' u')

A= lim Sl — gy 2O
u—0 Y u'=(1-u)—1 v

—~ i 1—2 ~ . (a)! ay!

Ay = lim 7?0("’“) = lim W —
u—1 —u w=(1—-u)—0

The second statement follows directly from a), since all tail dependence parame-
ters are bounded, hence the corresponding limits exist and we can use the addi-
tivity of limits. O
Corollary 4.2.7. Cq is lower tail dependent with A\, = « (2 — 2i> and upper

tail dependent with A\y = (1 — «) (2 - 2%>. Therefore the tail dependence of Cg
15 restricted by A\p, + A\p < 1.

Proof. The corollary follows directly by Propositions 4.2.4 and 4.2.6 by setting
02 - Cl. D

Corollary 4.2.8. Let Cq be the copula defined by Equation (4.2.4), then

lim Co = M,
§,05s—00
im Cq = M,
6,0s—00

lim Cq = u-v=II,
5=05=1,0,0s—0

lim CQ =
6=05=1,0,0s——0c0
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Proof. We only want to sketch the ideas behind the calculations exemplarily for
the first limit.

lim Co(u,v) = a lim C,,(u,v)+ (1 —a) 5lim Co(u,v)

§,05—00 05—
= a(u+v—1+min{l —u,1—v})+ (1 —a)min{u,v}
= min{u,v} = M(u,v).

O]

We now turn to the extension of Archimedean copulas to multidimensional
models.

4.3 The multidimensional case

A multivariate Archimedean copula can be defined using the following proposition
(see Theorem 4.6.2. in Nelsen [92], p. 122.).

Proposition 4.3.1. Let ¢ be a continuous, strictly decreasing function from [0, 1]
to [0, oo] such that ©(0) = oo and (1) = 0, and let o~ denote the inverse of .
The function C'% from [0, 1]¢ to [0, 1] given by

Cll(u) = ™" (o (w) + ... + ¢ (ua) (4.3.1)

1

is a d-copula for all d > 2 if and only if =" is completely monotonic on [0, co).

In Nelsen or other standard literature it is stated that the Gumbel and Clayton
copula families are directly extendable to their multivariate version given by
Equation 4.3.1, whereas the Frank family only has an extension if the parameter
is restricted to 6 € (0,00] (see Example 4.22 in Nelsen [92]). One of the main
disadvantages of Archimedean copulas is expressed by the following corollary (see
e.g. Nelsen [92] Corollary 4.6.3).

Corollary 4.3.2. If the inverse ¢! of a strict generator ¢ of an Archimedean
copula C' is completely monotonic, then C' > 1I.

In other words the corollary states that every multidimensional Archimedean
copula can only describe positive dependence structures.
Since in most financial applications the dependence structure is either positive or
negative, a possible solution to deal with the restriction given by Corollary 4.3.2
is sketched out in the following example. Suppose a portfolio of two stocks and
a government bond. In a normal market it is assumed that the two univariate
stochastic random variables driving the stock returns Sy, Sy are positively depen-
dent and both negatively dependent to the stochastic random variable driving the
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bond returns B. So we end up with a 3-dimensional random vector (S, Sa, B).
We can now model the dependence structure of (S, S2, —B) (that is by our as-
sumptions a positive one) with a 3-dimensional Archimedean copula and run a
Monte Carlo Simulation to achieve some realizations (s1, $2, —b) that can easily
be backtransformed to observations (s1, s, b) of our portfolio innovations. Hence
we are able to use Archimedean copulas and Monte Carlo Simulation methods to
model multidimensional portfolios with negative and positive bivariate marginals.
To check how the transformation rule 4.2.1 influences the multidimensional ex-
tensibility, and hence the completely monotonicity of the generator, we state the
following proposition, also stated on p. 123 in Nelsen [92].

Proposition 4.3.1. Let ¥ be an m-monotonic function, f a function with range
in the domain of ¥ and g a function with domain in the range of V.

(a) If (=17 Lr@t)y > 0 for all t and j = 0,1,...,m, then U o f is

dti
m-monotonic.

(b) If %g(t) >0 forallt and 7 =0,1,...,m, then go WV is m-monotonic.

The first result were already given by Feller [46] and the second one by Widder
[111]. Since the proof of the first result is a bit sloppy in Feller [46], we state here
our own version of a proof, utilizing the following lemma.

Lemma 4.3.2. Let n,k be integers with k > n. If a sequent of nonnegative

integers (a;);en fulfills Y~ a; =n and Y i-a; = k then a; = 0 for alli > 14+k—n.
i=1 i=1

Proof. The proof is trivial for n = 0, so in the following we assume n > 1 and
proof the lemma by contradiction.

Suppose there exists at least one a; > 1,7 > 2+ k —n. Now we can use the
following minorizing

k= > i-a,+7-q,

i) i=1

> diraita;+(j—1)
i#j,i=1

> n+(1+k—n)

v

what lead to the contradiction & > k + 1. In the first inequality we used a; > 1

and in the second > i-a;+a; > > a;and j > 2+ k —n. O
i i=1 i=1

Now we can proof Proposition 4.3.1.
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Proof. (a) For m-monotonicity of Wo f we have to show that (—1)’“%—2 (Fof)>0

forall k =1,...,m. For kK =0 we have ¥ o f > 0 due to the m-monotonicity of
V. Applying the multidimensional chain rule (see e.g. Bodewadt [12]) we achieve

g kg Lik-n j—;f ai

_ — . | _ i

At (\Ijof)_z;dtng’ (z): w 11 ol \ ’
n= a)#0 1=

where the sum runs over all nontrivial sequences fulfilling the conditions of Lemma
4.3.2. According to the condition on f given in Proposition 4.3.1 (a) and with
use of Lemma 4.3.2 we derive

1+k—n

i a; 1+k—n
1 [ Lf > (i+1)a;
| at’ _(_ = _(__1\kin
sgn (E#Ok. || o ( i > =(-1) = =(-1)

i—1

Together with the m-monotonicity of ¥ we have

d* . .
T (Wof)y=2 (-1)"(=1)""
n=1
where the r,, are some nonnegative real numbers, and hence
dk k k
1\ _ _1\k(_1\n(_1\k+n | o 1)\ 2(k4n) |
(=1) dtk(\IJof)_;( DF(=1)"(-1) Tn—;( 1) rn, >0, Vk,n

what finishes part (a).
(b) We have to show that (—1)¥%; (go W) >0 for all k=1,...,m. For k = 0 we

dtk
have goW > 0 due to g > 0. Analogously to part (a) we use the multidimensional

chain rule and the m-monotonicity of ¥ to get

Likon o d g\
i n k
sgn Z k! H o (dtl'l ) = (1)"(-1)
(@#0 =1 " '
and hence
dk k k
k _ k k _ 2%k
(1) g 90 0) = 3D 1) 1 = U™ 70 20, Vi

where the r,, are again some nonnegative real numbers. |

We are now able to come back to our transformation rules and provide in
the following corollary further conditions on the transformation to guarantee
multidimensional extensibility of the resulting Archimedean copulas.
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Corollary 4.3.3. Let ¢ be a generator of an Archimedean d-copula with d > 2.
Let further g, f be functions as given in Proposition 4.2.1. Then the following
holds:

a) ¢ o g ia a generator of an Archimedean d-copula iff g~
monotonic, and the latter is true if %g >0,V;=0,1,...

b) f o is a generator of an Archimedean d-copula iff ¢~ o f1 is completely

monotonic, and the latter is true if (—1)j+1c‘l%f >0,Vj=0,1,...

Lo o=t is completely

Proof. The corollary follows directly by Theorem 4.6.2 in Nelsen [92] and Propo-
sition 4.3.1. O

Corollary 4.3.3 generalizes Lemma 4.6.4 in Nelsen [92]. Remark that for the

inverse of f(t) = t°,§ > 1 the condition of Corollary 4.3.3 is fulfilled since
4 f1(¢) = 1571 and L — 1 < 0. Hence especially the generator (¢g)° of C,, de-
fined by Equation (4.2.3) has a multidimensional extension according to (4.3.1)
if and only if 6 > 0.
Despite the fact that the d-dimensional form (4.3.1) is restricted to positive de-
pendence, it further restricts all k-marginals to have the same copula, and hence
the same dependence structure. That means for example that in a portfolio every
pair of assets has to have the same dependence. If dependence is e.g. measured
by correlation, then the correlation matrix of the portfolio is assumed to have
the same entries outside the diagonal. This does in no way appeal a very realis-
tic assumption, and hence we conclude that (4.3.1) is not an appropriate choice
to model higher dimensional financial problems. In the next subsection we state
alternative multidimensional extension rules. For the sake of more flexibility we
have to leave the Archimedean world and deal with highly complicated derived
boundary conditions on the parameters.

4.3.1 More multidimensional extension rules

Equation (4.3.1) gives the general form for a multivariate Archimedean copula
depending on one generator. More general types of dependence can be achieved
when each bivariate margin is supposed to have its own generator, each of the
form (2.3.4). Nesting them together, this leads for the trivariate case d = 3

@3 " (920 01 (r1(ur) + p1(u2)) + @2 (us)) (4.3.2)
or in terms of copulas
ol (u1, uz, uz) = Co(Cy(u1, ug), us) .

For higher dimensions d there are many possible nestings. Since our empirical
analysis will deal with dimension d = 4, we restrict our discussion further on this
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case. In 4 dimensions there are two distinct possibilities to generate a copula from
its bivariate marginals, given by the following equations (see also Joe [62] p. 89)

CH](“la S 7U4) = 9051 [903(9051 (902 © SOII<301(U1) + 901(U2)) + 902(U3)) 7u4>}
= Cj (02 (01 (U1, U?) ,U3) ,U4)
(4.3.3)

Clll(uy, ... ,us) = @3" (p3(o7 [e1(wr) + @1 (u2)]) + @3(93 2 (us) + a(ua)])
= C5(C1 (u1,uz),Cs (us,uy))

(4.3.4)
We will refer to (4.3.3) by calling it model a) and to (4.3.4) by calling it
model b). For both models all trivariate marginals have the form (4.3.2) and
all bivariate ones the Archimedean structure (2.3.4).
If all generators are the same in the above nesting constructions, we end up
with the multidimensional Archimedean form given by (4.3.1) as a special case.
Hence the first natural condition for the construction algorithm to
generate copulas by nesting, is that all generators have to be strict
with completely monotone inverse. For the the further conditions we
introduce some notations about Laplace transforms. Let
Lo = {01 0,00) — [0,1] | ¥(0) = 1,limy o to(t) = 0,(~1)kpp® > 0,(vk € )}
denote the set of Laplace transforms with value 0 at co. So Laplace transforms can
be characterized as completely monotone functions on IRT with
value 1 in 0. Hence the inverses of strict generators for copulas are
Laplace transforms in L, and vice versa. A related set is
L = {w: [0,00) = [0,00) | @w(0) = 0,w(limy_s0) = 00, (=1} 1wl > 0, (¥j € IN)},
the class of infinitely differentiable increasing functions of IR — IR™ with alter-
nating sign for the derivatives.
The further condition that has to be fulfilled to guarantee the outputs of (4.3.2),
(4.3.3), (4.3.4) and other nesting constructions for higher dimensions, being d-
copulas, is @;41 0 ;b € L, for all levels of nesting, i.e. for all i = 1,...,n — 2.
Remark that for ¢; = ¢; for all ¢,7 = 1,...,n — 1 we end up again with the
multidimensional Archimedean case (4.3.1) and ;41 o ;' is the identity and
hence trivially in £ . So we have the conditions:

Condition a):
Model a) (4.3.3) is a copula if and only if p3 0@, ' € £ and py0 ;' € LF,
Condition b):
Model b) (4.3.4) is a copula if and only if 3 0 p,* € £ and @30 ;' € LF,
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Remark that the copulas created via (4.3.2), (4.3.3), (4.3.4) or higher dimen-
sional nestings, are generally not permutational symmetric anymore and hence
have left the Archimedean world. There is still some partial exchangeability in
the variables, what yields one of the big restrictions of these types of copulas.
More precisely, we formulate for the models a) and b) the following lemma.

Lemma 4.3.4. Let X = (X4, Xa, X3, X4) be a 4-dimensional rv with copula ct
(model a)), and C™1 (model b)), respectively. Then the following holds for copulas
of the bivariate marginals under model a)

Cx;x; = Cxox5 N Cxyx, = Cxy x, = Cxy xy

and under model b)

Cx,x5 = Cxy x5 = Cxy 3 = Cxy x4 -

Proof. The copula of (X;, X;) is just the projection of the copula of X in the (i, j)
plane. The projection is carried out by setting every component of Cx to 1 except
for i and j. Recalling that C'(uq,...,ux = 1,...,uq) = C(uq, ..., Ug_1, Ugs1,- - -, Uq)
for all d-copulas C finishes the proof. |

Remark 12. The equality of the biwariate marginal copulas stated in Lemma
4.3.4 implies the equality of all dependence measures like Kendall’s T and the
lower and upper tail dependence coefficient of these bivariate marginals. If we
e.g. assume model b), we deduce directly Apijy = Ar k), Avj) = vkl and
Tag) = T(ky) with 1,k =1,2, 7,1 =3,4.

So again we face the drawback of inflexibility. It improves (4.3.1), but in the
sense of the previous example we have now assumed a correlation matrix with
areas of same entries (if dependence measured in terms of correlation).

If we now check the parameter boundary conditions for some explicit models,
the following well known theorem from the theory of Laplace transforms will help.

Theorem 4.3.5. Let i) € L, a Laplace transform. Then 1Y% is completely mono-
tone for all o > 0 if and only if —In(y) € LY.

Lemma 4.3.6. (a) Let @5, s, be generators of the Clayton type (see 2.3.8),
then Psy © ngll < ,CZO Zf (52 < (51 fO’l” (5172 >0

(b) Let ps,, s, be generators of the Gumbel type (see 2.5.6), then gs,0p;5" € L,
Zf (52 < (51 fOT 5172 >1

(c) Let g, , o, be generators of the Frank type (see 2.3.7), then @y, 0909_11 e Ll
Zf@g < 91 fO?“ 9172 >0



61

Proof. a) The generator for the Clayton copula is ¢¢(t) = t% — 1 with
§ > 0. The functional inverse is given by @5l (s) = (14 )7, § > 0. Obviously,
v(s) = —In(pg (s)) = tIn(1 + s) and v € L, for § > 0. We now assume that
d1 > 09 and compute v(s) = 8001,2(9051171(3)) = por2((1+ s)ﬁ) = (1+5)%/% Now
g—f—1<0andhenceyeﬁfx).

For the proof of b) and ¢) we refer to Joe [62], p. 375. O

Together with Conditions a) and b) the lemma leads directly to the boundary
conditions on the parameters of several copula families as summarized in the next
lemma.

Lemma 4.3.7. (a) Let s, vs,, 05, be generators of the Clayton type
(i.e. 0123 > 0), then model a) (4.3.3) is a copula if §3 < dy < 01 and
model b) (4.8.4) is a copula if 05 < §; and d3 < 0.

(b) Let @s,, ©s,, ps, be generators of the Gumbel type (i.e. 6123 > 1), then model
a) (4.3.3) is a copula if 05 < 6o < 01 and model b) (4.3.4) is a copula if
03 < 01 and 03 < 7.

(c) Let @q,, oy, po, be generators of the Frank type, then model a) (4.5.3) is a
copula if 05 < 0y < 0y and 0123 > 0 and model b) (4.3.4) is a copula if
93 < 91 and 93 < 91 and 917273 >0

We now come back to the transformed Frank copula introduced in Subsection
4.2.1. We derive the following sufficient conditions via numerical simulation.

Lemma 4.3.8. Let CY be a function following model a) with transformed Frank
generators. If 63 < 09 < 01 and 03 < 0y < 0y for 6; > 1 and 0; >0 for j =1,2,3
then CE] 15 a copula.
Let CI e q function following model b) with transformed Frank generators. If
03 < 02 and 03 < 01 and 03 < Oy and 03 < 0y for 6; > 1 and 0; > 0 for j =1,2,3
then CI is a copula.

We are not able to give a proof of Lemma 4.3.8, what will be subject of fur-
ther research. The intuition is that we combine the parameter conditions of the
two limit cases of C,,, that is of the Gumbel and Frank copula, given by Lemma
4.3.7. For a numerical crosscheck we restricted the parameter space to be finite
and sampled ten million parameter vectors according to the conditions of Lemma
4.3.8 with 61235 € [1,5] and 61235 € (0,10]. As we will see in Chapter 8 these
vectors broadly cover the parameter range of empirical interest. For every of the
10 million parameter vectors we had run a Monte Carlo Simulation over 1 million
points in [0,1]* and evaluated the supposed densities of O and CI at these
points. There were no negative values detected. So the extensive numerical check
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gives no suspicion about the assumption that Lemma 4.3.8 is true. Remark that
all other conditions for C and CI¥/ being copulas (other than being d-increasing
or equivalent having a positive density since we are grounded) are trivially ful-
filled since the 2-dimensional C,, is a copula and the construction algorithm is
based on the bivariate form.

Because of the restrictions that we had sketched here for the 4-dimensional
case in the Conditions a) and b) and Lemma 4.3.4, the model choice depends
crucial on the ordering of the variables. Both the decision concerning an appro-
priate model and the choice of the variables uy, us, ..., uq are responsible for the
optimal fit of the model. In Chapter 8 we check for the 4-dimensional case if the
restrictions are relevant for financial applications.



Chapter 5

An asymmetric Extreme Value
Copula

This chapter is based on Junker [65].

All well known and widely used copula functions are permutational symmetric, like e.g. the
members of the elliptical and Archimedean families. Here we introduce a new family of copulas
allowing for asymmetry and upper tail dependence. It is shown that the Gumbel copula arises

as a special case of this family.

5.1 An Asymmetric extreme value copula

Pickands [98] had developed an asymmetric extreme value distribution given by

F2,y) = exp (4 (2, ) = exp (— (% + 5) A (w . y)) | (5.1.1)

where p is called the exponent measure and A : [0,1] — [0,1] is called the
dependence function. Here we will restrict to the asymmetric logistic model as
introduced in Kliippelberg and May [73], i.e.

=

A ={a-0r 0}’ +1-00-1) -t (5.1.2)

where 0 < ¢ <1,0<60<1,6 > 1.
We now can derive the copula of (5.1.1) with A given by (5.1.2) and call it the
asymmetric logistic copula, defined by

63
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Car (u,v) = exp(=p(F (u), F (v)))

B -1 oo AR @)+ loF @)}
- W T F ) F~(u) F~ (v)

() (a)] )

where F : R — [0, 1] denotes an arbitrary univariate strictly monotone continuous

=yl 019 exp | —

distribution  function. Assuming F being Fréchet distributed, i.e.

F = Fp(t) = exp (—1) with inverse F = F'(t) = —ﬁ, we get

Car (u,v) = u' 0% exp (— {(—01n (1))’ + (—¢In (v))‘s}%) . (5.1.3)

For 6 = 1 we calculate Cyp (u,v) = II(u,v) = wv, i.e., the random variables X
and Y are independent.

In Figure 5.1 we have plotted 5000 realizations of Cyp with # = 0.8,¢ = 0.2, = 4
(left picture) and 0 = 0.2,¢ = 0.8,0 = 4 (right picture) respectively. As seen we
have a “convex” asymmetry if 6 > ¢ and a “concave” one if 6 < ¢.

Clorr with 0 = 0.8, ¢p = 0.2,6 = 4 Clorr with 0 = 0.2, ¢p = 0.8,5 = 4
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Figure 5.1: 5000 simulations of Cyr with 6 = 08,¢ = 02,0 = 4 and
0 =0.8,¢=0.2,0 =4 respectively

Lemma 5.1.1. Cyp is an extreme value copula, i.e. Coyp(u”,v") = C¥ p(u,v).
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Proof.
Carler. ") = “Wl9””“@6“3(—{<—6hwu0y’+<—¢hmvmf}§>
= oo (~ {(-ovm ) + Cormo)} )
= (T exp (—V {(=0m (@) + (~om @))5}%)

= aVlF(u7 U)
[]
If = ¢ := 0" we are in the symmetric case C}p (u,v) = CFp (v, u) and can
express Crp in terms of Archimedean copulas. Therefore we define
©* (t) := (=0*In(t))’. Since ¢t — —In(t) is the generator of the independence
copula, the class of generators is closed under multiplication with positive con-
stants, and the power of a generator with an exponent 6 > 1 is also still a

generator, ¢* is the generator of an Archimedean copula Cy+ (see Junker and
May [67] or Chapter 4). Straight forward calculation yields

Cp (w,0) =TT (u,0)7 Cn (u, )7

a

For § = ¢ = 1 we achieve the well known Gumbel copula given by equation
(2.3.6). The next proposition states the tail dependence properties of Cyp.

Proposition 5.1.2. Let Cyr be a copula as in equation (5.1.3). Then Cyp has
no lower tail dependence, but is upper tail dependent with

AMr=0+p0—(0°+¢°)° <1
Proof. We first calculate the upper tail dependence,
1—2u+ C(u,u)

Au = 11}—{% 1—u
1
1 —2u+u>%exp (— {(—91n(u))5 + (—¢ln(u))6} 6)
= lim
u—1 1— u
1
1—2u+u?%%exp (ln(u) (95 + ¢6) 5)
= lim
u—1 1—u
1
1—2u+ uZ_(”_d’u(96+¢6)3
= lim
u—1 1— u

= 0+o— (0 +¢)°,
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where we have applied ['Hospital’s rule in the last step. Now
1
0+¢—(05+¢5)5<1,since

0+ 6—1<min(0,9) < 2} min (6,0) < (0°+ 6"

for all 0,¢ € [0,1] and 1 < § < oo. The lower tail dependence can be achieved
again by the use of ’'Hospital and A\y < 1

AL = limM _ u1—9_¢+(96+¢5>%
u—0 U
— limuiN =
u—0
]
So for 8,0 — 0 we have \y — 0 and for § = ¢ = 6* one calculate

Ay = 0* (2 — 2%>, i.e, the upper tail dependence is 8* times the upper tail de-
pendence of the Gumbel copula.

The special form seen in Figure 5.1 may be of interest if modelling joint default
probabilities. Suppose e.g. U representing the default probability (dp) (mapped
to uniformity) of a small feeder plant for Daimler Chrysler, whose mapped dp is
represented by V. We argue that the feeder plant is very sensible for a deterio-
rating dp of Daimler Chrysler, whereas Daimler is more robust against the dp
changes of the feeder plant. We end up with a scenario represented in the left
plot of Figure 5.1.



Chapter 6

Multidimensional
Goodness-of-Fit Tests

This chapter, partially covered by Junker and May [67], gives an overview over different test
procedures that allow to compare the in-sample and out of sample fit for parametric distribution
models. We introduce a copula based mapping rule leading to joint uniform independence and
as results of this mapping we present an easy method of multidimensional x? testing and a
new estimate for high dimensional parametric distribution functions. Further we summarize
the multivariate test statistics of some well known tests like Anderson Darling and Aikaike and

Bayesian Information Criterion, and give some finite sample refinements.

6.1 Multidimensional \? tests

In the first step we recall the x? test in a multivariate setting. We will give a special
formulation that enables us to perform a goodness-of-fit test for any parametric
distribution function without need of thinking how to divide the testspace in
cells.

Let X = (Xi,...,X4) be a d-dimensional random vector with marginales
X;, 1 = 1,...,d, and absolutely continuous parametric distribution function
Fp: D — [0,1], D C IR? with parameter vector 6. By 27 = (ﬁ”,...,ﬂ”) we
denote the d-dimensional observations numbered with 7 = 1,..., m. The empiri-
cal distribution function based on the m-sample of observations is then defined

as follows .

Eo (1, ..., 14) = %Z | 1{x5j>gxi} (Vz € D). (6.1.1)

7j=1 i=1
We want to test the hypothesis Fy = F},, i.e. we ask whether the sample comes
from a population distributed with Fy. As in the well-known univariate y? test
we have to divide the test space into regions (classes, cells) of known (mostly

67
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equal) probability. The statistics is given by

& N . 2
Y2 = }: Er, (cl)—#{xm, j=1,...,m:z0 Gcl} (6.1.2)
« =1 Er, (a) ’ o

with Ep, (¢;) denoting the number of expected observations in a cell ¢; under the
model Fy. The statistics follows asymptotically a y?-distribution with k — 1 — p
degrees of freedom (df), where p is the length of 4, i.e. the number of parameters.
In the next subsection we derive a way how the class separation can easily be
done in a multivariate setting.

6.1.1 A mapping rule leading to joint uniform indepen-
dence

We first transform our data into uniformly distributed ones. Let T" be a transfor-
mation that maps the univariate marginals X; onto uniformly distributed random
variables on [0, 1]9. Transformations with these properties have been subject to
investigations already in the thirties of the last century (e.g. Lévy [1930]). We
refer to Rosenblatt [102] for a concise presentation of the idea behind.

For the univariate marginals X;, j = 1,...,d, let F, denote the univariate
distribution function of the j-th margin. Define the transformation
T:R*—[0,1]" with T(zy,...,24) = (21, .., 24) via

z = P[Xi <m] = Fx, (1)

zo = P[Xy < x| Xy = 1] = Fix, x, (v2]11)
za = PlXg<ag|Xy=21,..., Xg1 = Tq-1]
= Fxxi,..x,, (@adz1,. .. 2a-1).

Then the random variables Z; = T'(X;), j = 1,...,d, are independent and the
random vector Z = (Zy,...,2Z,) is uniformly distributed on [0,1]%. So testing
whether zU) is distributed with F is equivalent to testing on Z ~ II where

d
O(z1, ..., 240) = ] %
j=1
We now formulate things in terms of copulas. Let C' be a copula such that
F(ai,...,24) = C(Fx,(21), .., F,(za))).

The following Proposition 6.1.1 is a copula version based on the idea in Diebold
et al. [29].
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., Uy be U(0,1) random variables and C € C? a
,Ug) is C, the d-dimensional random

Proposition 6.1.1. Let Uy,
c ey Ud_1)> ~ H

d-copula. If the joint distribution of (Uy,

vector
18 distributed like the d-dimensional independence copula 11. Here,
E=1,...

(Uy, Co(Us | Uy), ..., Cy(Uq | Uy, Uy,
. d

.,uk,l,...,l),

sug) = Clug, . .
., ug) and the conditional distribution of Uy

Ok (Uh PN
., Uy) is expressed by

denote the k-marginals of C(uy,
given the values of the first k-1 components of (Uy,
ug—1) = PlUy < |Up=us,..., Up_y = g1
) 8k_le,1(u1 ,,,,,
8%1..‘811%71

Crlug | ug, ..

Proof. By using the algorithm for random number generation from the copula C,

we derive an alternative representation by
(V.G (Vo | Va), o O (Va | Vi, G5 (Ve | W), )

(Uy,...,Us) 2
~ C
where the Vi,...,Vy are iid U(0, 1) random variables. A componentwise com-
parison gives Uy 4 Vi, Us 4 Cot(Va | Uh), ..., Uy 4 Cd_l(‘/;i | Uy, Uz, ..., Ugq).

If we iteratively plug this in we get U < i,
Co(Uy | Uh) = Co(C ' (Vo | Unh) | Uh) = Va, ..., Ca(Uq | Uy, Us, ..., Usgey) =
Cd<Cd_1(Vd ‘ Ul, UQ, ceey Udfl) ’ Ul, UQ, ey Udfl) = ‘/d So we have

"'7Ud—1)) i (Viaa‘/cl)
~ 1II, (6.1.3)
O

(UlacQ(UQ | Ul))' . '7Cd(Ud | U17U27

and the proof is finished.
6.1.2 ? test with class separation
,ud)(i) for i = 1,...,m be m realizations of a d-dimensional uniform
random vector. Due to Proposition 6.1.1, the following two hypotheses are equiv-

Let (Ul, e
Hypothesis A: The (uy, ..., uq)? are realizations of the copula C.
- ug_1))® are realizations

alent:
Hypothesis B: (u1, Co(ug | u1), ..., Cq(ug | ui, ug,
of the d-dimensional independence copula II.

Under B, the testspace [0, 1]¢ can easily be separated into d-dimensional
cuboids, since the expected number of realizations in each cuboid is directly

proportional to its volume.
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Remark 13. If the copula under one of the equivalent hypotheses A or B is
Archimedean with a strict generator ¢, the test becomes even more easy because
of

P () + -+ p(u))

Cu(u ULy ooy Up—1) = — ’
k(g | w k1) oty (p(ur) + ...+ p(up_1))

where ¢; ' = %g&‘l.

Since any multidimensional continuous distribution function F can be writ-
ten as F(xq,...,2q) = C(Fx,(21), ..., Fx,(xq)), where the Fx, are the marginal
distribution functions and C' the copula representing the dependence structure of
F', the Proposition 6.1.1 also provides an easy method for testing arbitrary mul-
tidimensional distributions.

Using Proposition 6.1.1 we can write the random variables 7, for 2 < k < d
using the conditional distributions of the k-copula C},

Zy = ColFx (Xo)|Fx, (X1), -+, Fx,  (Xi1)). (6.1.4)

Breymann et al. [14] now use the following idea.

Observe that (Fx, (X1), Fx,(Xa),..., Fx,(X4)) ~ C. Then ®~'(Z;) ~ N(0,1)
iid for i = 1,...,d. It follows that 3¢, (®71(Z))” has a x2 distribution with
d degrees of freedom. The summation over all dimensions yields of course to a
lack of multivariate information. Moreover —and a real drawback with respect
to asymmetric dependent data (in the sense C' # 5)— the test favors ellipti-
cal distributions (more precisely, generalized elliptical distributions as defined in
Chapter 12) since there is no test on spherical uniformity of U in | Z|| = v/I-U. We
remark that this radial test coincides with a multidimensional test with further
mapping to independent normal and spherical annuli (radial intervals) separa-
tion. The separation is done in a way that all annuli have equal mass under the
hypothesis. Equivalently, the expected value for the radius of a point measured in
Ly norm is constant for all annuli. (Here we assume the biggest radius to be cc.)
This one-sided class separation can not test the sample for spherical uniformity.

Next we illustrate the power of the multivariate test with cubic separation af-
ter applying the mapping rule 6.1.1 compared to the above radial test for different
scenarios.

The left picture in Figure 6.1 shows the average p-value for the test with cubic
class separation (solid line) and radial test (Breymann et al., dotted line). The
average is taken over the tests based on 100 simulated bivariate standard normal
distributed samples with zero correlation and sample size 2000. The hypothe-
sis is “X ~ N(0,p)” (z-axis), where we have taken p € [—0.5,0.5] at 100 dis-
cretized equidistant points. The range for which the hypothesis can not be rejected
on the 95% level, is —0.15 < p < 0.12 for cubic class separation and



71

—0.33 < p < 0.32 for radial separation. From maximum likelihood theory we
deduce that the asymptotic 95% confidence interval for 2000 data points for an
ML estimator of p is [—0.09,0.09]. So both tests can not be viewed as optimal
since the region of acceptance is too large compared to the included confidence
interval.

The right plot in Figure 6.1 shows again the average p-values for 100 simu-
lated samples of size 1000 from a survival copula of Gumbel type 50,5 where the
parameter was chosen as 0 = 3. As hypothesis we test here

1 _
X ~ 5 (C(;((;) + Cg(5)> , (6.1.5)

that is the linear combination of a Gumbel copula with parameter § and its
corresponding survival copula. Remark that under this hypothesis we have a
symmetric model whereas the true model is highly asymmetric. The region where
the hypothesis can not be rejected on the 95% level, is here computed as 1.31 <
0 < 1.52 for the radial test whereas the hypothesis can not be accepted on any
of the usual levels if the cubic class test is performed (maximal p value is below

0.0001.) The average ML estimated value under the hypothesis is § = 1.47 and for
the mean standard error we compute G5 = 0.0343. Thus the estimated asymptotic
95% confidence interval is [1.41,1.54], i.e. there is some evidence that a parameter
estimated under the wrong hypothesis model falls into the region where the radial
test can not reject the hypothesis.

For both plots we had run the tests over 100 cells.

Figure 6.2 shows the deviations from the theoretical expected value 220

100
each of the 100 test cells in a sample from the survival Gumbel copula of size 2000

for

data points. Here we performed the mapping using the model % (CG,(; + 5(;,5)

where 0 = 1.4. The data were first mapped applying (6.1.5) onto a uniformly iid
sample (left plot), in a second step onto bivariate standard normal distributed
data (right plot). Bright colors show the tendency for underestimating, dark colors
are a sign for overestimating.

As seen, the greyscale of the cubic separation (left plot) has a significant larger
range compared to the radial separation (right plot), indicating the higher power
of the cubic test.

Figure 6.3 shows the scatterplot representation of Figure 6.2. The right plot
shows that the points are not likely to be (approximately) standard normally
distributed. Despite of this fact, the radial test over 100 radial classes gives a
p-value of 0.08. The plot shows every fifth disk segment, i.e. under the hypoth-
esis there are 100 points between 2 radii. This is still satisfied under the wrong
hypothesis (6.1.5).
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IN(p—o> tested for NV, 6(5:3) tested for model 6.1.5 (5)

prale [
3
pe {]

Figure 6.1: p-values for the tests with cubic (solid line) and radial (dotted line)
testeells. To the left the hypothesis is “standard normal with different p” and we
sampled standard normal data with p = 0. In the right plot the test runs on the
symmetric hypothesis (6.1.5) with different ¢, where we sampled survival Gumbel
copulas with § = 3.

toestaell deviatiorn with class tost toestaell deviatiorn with racdial test

Figure 6.2: Deviation of the number of expected points in the testcells after ap-
plying the mapping rule from 6.1.1 on a survival Gumbel sample with hypothesis
6.1.5 and 0 = 1.4 for the class and radial test. Bright colors indicate underesti-
mation, dark overestimation.
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7 CO. 1D rmapsrrinege with culbic testaells NV rmnmagsiringe with racddial testooells

2= ==--7 =

Figure 6.3: Standard uniform mapped sample with cubic testcells (left) and stan-
dard normal mapped sample with radial testcells (right). Both mapped under
hypothesis (6.1.5).

The examples given showed clearly the better power of the cubic test in com-
parison to the radial test.

For high dimensions the cubic separation is in practise not possible any more,
since we have at least 2 classes what for large d grows fast to a greater number
than the number of observations m. Changing to cuboid separation makes things
a lot more complicated. A possible solution is the radial test since here we only
have to separate the one dimensional radial space R, but we face the weaker
power as showed above. If the sample mapped to independent normal (under the
hypothesis) is tested both for y4-distribution of the radius and for radial symme-
try, or spherical uniformity of the scaled sample X/|| X (see e.g. Mardia [85]), we
will get extra information about the plausibility of the hypothesis. Unfortunately
it is not clear how to combine both test results into one test.

The further mapping to independent normal may still be a benefit, since the sepa-
ration in spherical annuli and spherical segments avoid the stated power problem
by giving broader opportunities for class separation.

However, in the next subsection we will give an alternative and new approach
that overcomes the drawback of separation preserving the multidimensional res-
olution.

6.1.3 Estimation and y? testing using the distribution of
differences

As  before, we start with a  d-dimensional random = vector
(Uy,...,Uy) ~ C. The mapping described above yields a uniformly distributed



74

random vector ((71, cee ﬁd) ~ II with independent marginals. The transformed
vector Z = (®~Y(U,),...,®71(U,)) is multivariate normally distributed. We ob-

serve that Z = || Z|| - V with R e | Z]| ~ +/x2 and V uniformly distributed on
the n — 1 dimensional unit sphere S"~!.

Lemma 6.1.2. Let Y = || Z; — Z;||* for all i,j and independent normally dis-
tributed Z;, Z; ~ N(0,1). Then the distribution function of Y writes as follows

P » (RP+Ry—0) 1 n—1
Y T w R~ AR [T ARPR: 2 2 '
def

Proof. Set without loss of generality 5 ||Z1 ZI? =Y, Ry = ||Z1],

R, || Z2|| and discuss the triangle with wedges || Z1]|, || Z2]|, 0. By trigonometric

arguments, we compute § = || Z1 — Za||> = | 21|12+ || Z2||> = 2|| Z1 || || Z2]| cos o where
—0+R2+R3
2R, ks

vector (Ry, Ry, ). Write e.g. fg, for the corresponding univariate density and
note that f(gr, r,.a) = fr,fR,fa because the independence of Ri, Ry, . We now
apply the transformation rule to the conditional density fs(r, ro)=(r1,r2)

a = «a(d) = arccos ( > Let f(r, ,rs,a) denote the density of the random

f5|(R1,R2)=(T1,Tz)((S) = le Ra,a (rla T, |(63_(()§é (7"1, 7"2)|

f(é) = fffa 7’1,7”2)| 'le (7’1) ng (7”2) dridry
f(9) = ERl o~ (agag) [ (@) |55 (Ry Re)]

In the next step we calculate the derivative and derive from Theorem 12.3.1,
where it is stated that a ~ § + 1 sign (a — %) - Fj (cos?(a), 3, %5), the density
of a.

- n—2

i 2 2 2\ 2
2R1R2F(%)J(RI;§;% 6) (1— (Rl;;fgigfs) )

f(5) — ER1 Ro)~ (m@) (R§+R§ns)2
P30 (o) (o) ooy - LEEE)

n—3
(R%+R§—6)2 E
ﬂ) 1= 4RI RZ
— — dd
( 2 ) \/RlRQ

R3+R3 (
r

PO = B (VN | o ey T

R%+R§ —2R1Ro

0 F(vz—l_,’_l) 1 __1
= E ——2 2t (1=t dt
(R1,R2) (\/X_n \/;) (R2+1;£5)2 r %)F(nT_l) ( )

2Rp2
4R1R2

(R#+R%2-6)2

1 n—1
- ER1R2) (\/x_n\/;>[ < ARZRZ ’E’Tﬂ
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Here we have wused in the second step the correspondence of
0 € [Ri+ R} — 2R Ry, R} + R3] with a € [0,%] and in the third the substi-

2
(R2+R3-06)? _ ]

tution t = IRZ I

Let () denote an observation in the n-dimensional m-sample. Applying the
construction of Y from Lemma 6.1.2 we derive () squared differences ||z — 27|
for 1,7 = 1,...,m with 5 < 7. Note that these are not independent. Suppose
e.g. m = 3, than given two differences v/9; and /9, the third one has to fulfil
Vo3 € H\/a — V03| , /81 + /3] and hence depends on 6y, 5. One possibility to

achieve independent distances is to fix a point, e.g. 2!, and take only the m — 1

differences to this fixed point. That is ||z! — 27||? for j = 2,..., m. Translate the
origin to z!' to show that we then have the same situation as in the radial test,
and hence would lose multidimensional information. The following remark states
an algorithm to overcome such problems.

Remark 14. Draw m times without replacement from the pseudo observations

2t ..., 2™ and denote the new series by Z%,...,Z™. Now form the LmJ squared

2
differences y* & |Z-1_F%(2 Kk =1,.. ., | 2], where | | are the gaussian brack-
ets. The hypothesis that the sample 9 comes from Fy-distributed data (where Fy
denotes the multivariate parametric distribution function as usual) can be tested
by applying a one-dimensional x* test to the transformed data y*. In contrast to
the above radial method the proposed approach makes use of the full multivariate

information and is space covering.

Furthermore, Lemma 6.1.2 yields a new ML estimation method for the param-

eters of Iy based on the log-likelihood function ktflj In f(y*). Remark therefore
that the differences y* depend on the parameter vector 6.

To summarize: We presented a procedure that is based on a univariate x? test,

i.e. no intersection in classes is necessary. By transforming the data, the volume

of the data changes from m d-dimensional data to L%

differences whereas Breymann et al. can deal with m univariate radial data. An
advantage of this the procedure is that it yields an explicit univariate distribu-

tion function and an ML estimation procedure for the parameters of the joint

J univariate independent

distribution function.

The properties of this ML estimate and the corresponding x? test will be subject
of forthcoming work. Here we also have to check if one can take benefit from the
fact that there are m!/ 2L %] different admissible series T

Another estimation method can be derived by taking the differences in the
uniform space after applying the mapping 6.1.1. Suppose we have X ~ Fj and
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map X = (Xq,...,Xy) to U = ([71,...,(761) ~ II. Let @', ..., u™ be m indepen-

dent realizations of U. We can calculate the differences ||ai —27||,i # j and denote
them by A;, i1=1,...,m, 5 =1,...,m — 1 where A; is the distance between
%' and its j** next neighbor. We denote the expected value under the hypothesis
(and hence independent of the supposed ) with A; “g [A;] . Note that the A,

only depend on j,d, m but not on ¢, since U ~ II.
Having observations z!,..., 2™ of X we can compute the m(m — 1) differences
A () and estimate 6 via the following least square equation

g %t arg mgin Z (A% (0) — Aj)2

In the following we use this approach to achieve start estimators for the usual ML
estimation methods stated in Subsection 7.3.1. The A; are derived by a preciding
Monte Carlo Simulation.

6.2 More goodness-of-fit tests

We now turn to different criteria and methods that allow for ordering differ-
ent parametric models with respect to its goodness-of-fit. We briefly discuss the
limitations when using the single methods.

Let us again assume that the data are d-dimensional, X = (Xi,..., X,) and
that 2/ = (x{, ...,xé) denotes the d-dimensional observations numbered by j =
1,...,m.

Here, we fit parametric models that depend on p parameters, say, i.e. let
denote the parameter vector of length p. We assume that the model is described
by a parametric distribution function Fy : S — [0, 1] with density fp and support
S. We write ML f for the log likelihood function

MLf (fo; 2, ...,2™) = Zln (fo (7)) (6.2.1)

and denote by 0 the ML estimated parameter vector.

A good hint on the goodness-of-fit related to the number of model parameters
is given by Akaike’s Information Criterion (AIC) or the Bayesian Information
Criterion (BIC),

AIC (fg;xl,...,xm) = —2MLf (fg; xl,...,xm) +2p

B[C(fA-xl xm) = —2MLf (f”l’l xm)‘i‘ 1 (6.2.2)
0’ g ey 0 PR p nm’
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Both criteria measure the probability of the observations for the different
models with respect to the number of parameters used. So overparametrization
is penalized by adding p to the ML-Function, and the BIC puts more penalty
on the number of parameters (for m > 7) than the Akaike criterion. This is of
special importance if 8 is a ML estimator and the p degrees of freedom are then
used to maximize (6.2.1)

The measures have their origin in the time series analysis where they are used
to estimate the order of ARMA processes. In general they do not really have a
clear interpretation but are still popular as a of thumb comparison. Lower values
indicate a better fit but obviously the values do highly depend on the data. To
be on the safe side we will further claim to have both criteria ordered in the same
direction (i.e. both smaller or both larger), otherwise no deduction will be made.

The entropy is focused more on the model and hence gains more independence
from the data sample. The definition is as follows

Entropy (f;) = E|[-In(f;(X))] = —gln (f; (2)) dFy ()

(6.2.3)
= —k!ln (fg(m)) - fo(x) do.

Note that the last expression in equation (6.2.3) is only defined if f; exists.
The entropy is based on the expected value of the negative log-likelihood function
(6.2.1) with sample size m = 1. Throughout our considerations, we will use the
integral form of the entropy whereas other authors take the mean over the pseudo
observations In (f;(z7)), j = 1,...,m only. So the information content of the
different models is measured in means of the log likelihood function. This is to
say that the entropy measures the probability that the model is the correct one.
This contrasts to the AIC' and BIC because due to the restriction to the expected
value the outcome does not depend (directly) on the data.

The x? test in contrast measures so to say differences in the densities whereas
alternative goodness-of-fit tests like the Kolmogorov-Smirnov or the von Mises,
rely on distances between the empirical and the parametric distribution function.
(Recall that in the case d > 2 the Kolmogorov-Smirnov statistics is not the same
for all continuous F; the same holds for the von Mises statistics.) Since conver-
gence must coincide for the empirical and the theoretical distribution function in
both tails, their representation of fit in the tails is weak and thus the tests are
not as powerful as the y? test. A test statistics which is superior in this respect
dates back to Anderson and Darling [2]. The Anderson and Darling test uses
relative instead of absolute deviations between the distribution functions and
thereby gives a better representation of the fit in the tails. Mainly there are two
types of Anderson Darling statistics in use, the supremum version SAD, and the
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integrated version AD, respectively, both summarized in the following equations

SAD (Fy 2t ..., 2™m) = [P @) FA( )l
( 0 ) \/_CL‘ES \/F
m Fm( )-F (x) ’
(Fn FA(:Jc )2
= m [ ~——"0 . fi(zr)dr,
g (1-Fy(x)) 70

where the last line only holds if f; exists. Note that SAD is —on account
of the supremum— sensitive to single “bad” observation whereas the integrated
version is more robust because of the integration. In the following we relate on
the AD results only.

In our empirical work we make use of a conditioned form of the AD test
because we only take points that lie beyond a multidimensional quantile curve.
This is due to the fact that for sampling we want to have /m points at most
to guarantee the convergence of F,, — F at the lower tail. So the integral in
(6.2.4) is computed with respect to this condition only, and we will refer to that
by calling AD the conditional Anderson Darling statistics.

The drawback of the AD tests is some smoothing effect due the cumulative
character of distribution functions, especially at the upper tail. This is in contrast
to the y? test discussed in the beginning of this chapter, that can be interpreted
to measure differences in the densities (for sufficient large number of classes and
observations) and hence does not have such a smoothing effect due to accumu-
lation. Since we are interested in testing models that are designed for flexible fit
even in the tails this is a severe drawback for our purpose.

We therefore present a related version of the AD statistics that is tailor made
for our situation and is more precise with respect to the upper tail than (6.2.4).
The idea is to reformulate the Anderson Darling setting in terms of survival func-
tions. For completeness, Equation (6.2.5) lists both forms (i.e. the supremum and
integrated version) but for further work we will again restrict on the integrated

form only.
SADS (Fg; 't ,xm) = /nsup |fm(r)—FE(x)\
wes yFo(o)(1-Fa() (6.2.5)
ADS (Fza!,...a™) = nf (_Fm(x)Fg(x))) dF ()

m d
_ 1
Fon (21,1, 70) = — Z H Losar} V2 € 5. (6.2.6)
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A copula based notation of these statistics can be achieved
by  replacing  Fy(xq,...,2q) = Cop (Fo, 1 (1) 5oy Fopa (24)) and
fo(xy,...,zq) = Hle fo.i (@) coo (w1, ..., xq), where 0 = (0c, 04, ...,04) and Fy,
are the marginal distribution functions, and fy, ; the marginal density functions
respectively. To compare different parametric copula models, we assume the es-
timated uniform realizations by using the univariate empirical distribution func-
tions, to be true observations of a d-dimensional uniform random variable U ~ C,
distributed with an unknown copula C. So we have Fy = Cy, fy = ¢y and
S =[0,1]% in the above equations. Note that this is different from the assumption
that the uniform mapping was done with no mistakes, i.e. that we had used the
true marginal distributions.

Finally we introduce a measure that is closely related to the AD test. We write
PD for the relative probability deviation, and PDS for the relative probability
deviation of the survival function, respectively. PD measures the relative devia-
tion of the empirical distribution to the hypothetical distribution at a point rep-
resenting a region that tightly covers the lower tail. Analogously, PD.S measures
the relative deviation of the empirical survival distribution to the hypothetical
survival distribution at a point representing a region that close cover the upper
tail. More precisely: For 0 < p < 1 we fix a point on the "ridge” of the copula
density of the hypothetical model, ¢ = q(p) = CRy_(p) € [0, 1] where we denote
by CRy_, the inverse of the "ridge” section of the copula function Cy., that is
p=CRy.(q1,..,qn) = Co. (q1,--.,qn) With (¢, ..., ¢qn) is a point on the "ridge”
of the copula Cy,,. For permutational symmetric copulas (i.e. C(u,v) = C(v,u))
the "ridge” is just the diagonal and hence ¢, = ¢o = ... = ¢,. Analogously,
we define ¢gs = g¢s(p) = CRS;_(p) € [0,1]" with p = CRSp. (¢51,.-.,q5,) =
Co. (gs1, - .- ,qsy,) With (gsq,...,¢s,) is a point on the "ridge” of the copula Cy,..
We now define PD and PDS by the following equations

PD =
PDS =

(Fo (Fyo1 (@1) 5+ Fy, 0 (an)) — )
(Fm (F;J (gs1),- .- ,F;_mn (qsn)) — p)

Note that the way we defined here PD and PDS makes only sense when the
hypothetical model has a positive dependence structure, otherwise it is not clear

(6.2.7)

1
p
1
p

what means "ridge”.



Chapter 7

Estimating the Tail-Dependence
Coefficient

This chapter is mainly based on Frahm et al. [49]. The concept of tail dependence describes the
amount of asymptotic dependence in the lower-left-quadrant tail or upper-right-quadrant tail
of a bivariate distribution. An important measure for tail dependence is given by the so-called
tail-dependence coefficient. In this chapter various parametric and nonparametric estimators for
the tail-dependence coefficient are introduced and investigated. After presenting the statistical
properties we provide a detailed simulation study which compares and illustrates the advantages

and disadvantages of all estimators under consideration.

7.1 Introduction

During the last decade, dependencies between financial assets have increased due
to globalization effects and relaxed market regulation. However, traditional de-
pendence measures like the linear correlation-coefficient are not always suited
for a proper understanding of dependency in financial markets (Embrechts et
al. [42]). In particular dependencies of extreme events like, e.g., large credit-
portfolio losses, cause the need of new dependence measures to support powerful
asset-allocation strategies. Recently, several empirical surveys like Junker and
May [66], Kiesel and Schmidt [71], Ané and Kharoubi [3], and Malevergne and
Sornette [83] exhibited that the concept of tail dependence is a useful tool to de-
scribe extreme-dependence phenomena in financial data. Moreover, they showed
that especially during volatile and bear markets tail dependence plays an in-
creasing role. Therefore robust and efficient estimation methods are required to
measure tail dependence. The tail-dependence coefficient (TDC) represents the
most common measure of tail dependence.

The main difficulty in estimating the TDC arises in the limited availability

80
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of extreme data. Therefore we suggest several parametric and nonparametric es-
timators ascribed either to the entire data set or to a subset of extreme data.
Regarding the latter, the extreme value theory is the natural choice for infer-
ences on extreme events of random vectors or the tail behavior of probability
distributions. Usually one approximates the tail of a probability distribution by
an appropriate extreme value distribution. In the one-dimensional setting the
class of extreme value distributions has a solely parametric representation, so it
suffices to apply parametric estimation methods. By contrast, multi-dimensional
extreme-value distributions are characterized by a parametric and a nonparamet-
ric component. This leads to more complicated estimation methods. Parametric
estimation methods have the advantage of being efficient given that the model
is true whereas nonparametric estimation avoids model-misclassifications. There-
fore we provide both types of estimators either based on extreme-value theory or
based on other distributional assumptions like elliptically contoured laws.

First of all this workout serves as a summary of various estimators for the
tail-dependence coefficient. Statistical methods testing for tail dependence or tail
independence go beyond the scope of this work, for that we refer the reader to
Ledford and Tawn [75] and Draisma et al. [30].

After providing the necessary basic definitions in Section 7.2 we present vari-
ous estimation methods for the tail-dependence coefficient in Section 7.3. Thereby
we distinguish between parametric and nonparametric estimators as well as esti-
mation methods based on the entire data sample or based on extreme data. We
present various statistical and empirical properties of the estimators and discuss
their prospective application fields. Section 7.3.1 and 7.3.2 consider the impor-
tant class of elliptically contoured distributions and their ability to model tail
dependence. Finally, Section 7.4 presents an extensive simulation study where we
analyze and discuss the introduced estimators regarding their applicability. Fur-
ther, we illustrate some of the statistical properties established in the previous
sections.

7.2 Basic definitions

For the definition of tail dependence see Chapter 2, especially Equations (2.2.3)
and (2.2.2).

Recently, there is an increasing interest in the class of elliptically contoured
distributions for financial and actuarial data modelling (Bingham and Kiesel [§],
Embrechts et al. [40], Bingham et al. [9]), which inherit appealing estimation, sim-
ulation and modelling properties. Thus an investigation of the tail dependence
property for this class is justified. For the definition of elliptically contoured dis-
tributions (briefly: elliptical distributions) see 3.3.1.
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In this chapter we will use the following notations. Let Eg4(u, 3, ®) denote the
class of elliptically contoured distributions with parameters p (location), 3 (dis-
persion), and ® (characteristic generator). The density function, if existent, of an
elliptically contoured distribution has the following form:

flx) =2 2g((x = )82 — ), =€ R (7.2.1)

for some function g : IRy — IR§, which we call the density generator. Observe
that the name ”elliptically contoured” distribution is related to the elliptical con-
tours of the latter density. For a more detailed treatment of elliptical distributions
see the monographs of Fang et al. [45] or Cambanis et al. [17].

Here we recall the stochastic representation of Section 3.3, that turns out to
be useful. Let X be a d-dimensional elliptically distributed random vector, i.e.
X € Ey(p, 2, @), with parameters 1 and symmetric positive semi-definite matrix
¥ € R™? rank(X) = m, m < d. Then

XL+ R,AU™, (7.2.2)

where A’A = ¥ and the univariate random variable R,, > 0 is independent of
the m-dimensional random vector U . The random vector U is uniformly
distributed on the unit hypersphere S7"~! in IR™. In detail, R,, represents the
radial part and U™ represents an angle of the corresponding elliptical random
vector X. We will call R,,, the generating variate of X.

However, elliptical copulas are restricted to rotationally symmetry. So they
never can be appropriate if A\ # A\y. It is empirically stated that sets of financial
data exist where usually there is only one TDC significant greater than zero. Such
an asymmetry is observed e.g. in Junker and May [67] for oil related products
(see Chapter 8) or in Junker et al. [69] for USD yields (see Chapter 11). For this
reason, we also use the class of Archimedean copulas (see Chapter 4), on which
the threshold approach in Section 7.3.2 is based.

An example is given by the Frank copula that is neither lower nor upper tail
dependent, i.e. we have: A\, = Ay = 0. Frank [51] has shown that the Frank
copula is the only rotationally symmetric Archimedean copula. So there is no
Archimedean copula with A\, = Ay > 0 and C (u,v) = C' (1 —u,1 —v) what is
an important special case that is often realized in financial data. Take e.g. foreign
exchange rates, then the hypothesis of the elliptically ¢t-copula dependency with
A > 0 can not be rejected (see Breymann et al. [14] or Junker and May [67], and
Chapter 8, respectively).

Hence it is important to consider both —methods based on elliptical and on
Archimedean dependency.
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Some of the following results are characterized by regularly varying functions.
For a definition see (1.2.1). Moreover, one may generalize regular variation and
the (tail)-index for multivariate random vectors and their distribution functions
(see Schmidt [104] for more details).

7.3 Estimation methods for the tail-dependence
coefficient

According to Equation (2.2.5) the tail-dependence coefficients A\, and Ay are
copula-properties, thus we may write A, = A (C) (Ay = Ag(C)) or A, = AL(6)
(Av = Ap(0)) if C'is a member of a parametric copula-family Cy with parameter
vector 6.

7.3.1 Estimation from the entire sample

In this section the lower and upper TDC are estimated from the entire distribution
or sample size.

The (semi-)parametric method

One approach to model tail dependence is to choose a parametric copula family Cy
allowing for tail dependence and being appropriate to describe the data. Then the
lower and upper TDC is estimated by some functional estimator N = /):n = /\(é\n)
Starting from a random sample XM ..., X with common distribution function
F, we may first estimate the marginal distribution functions Fi, ..., Fy in order
to obtain approximate realizations of the copula Cy:

U= (ﬁl,...,f@ — (ﬁl (X1), ... B (Xd)> .

Parametric and nonparametric procedures are distinguished to estimate the mar-
ginal distribution functions Fi,..., F;. Regarding the parametric procedure we
assume that d parameter vectors my, ..., my determine the marginals F,..., Fj.
In the semiparametric case all marginal distribution functions are substituted by
their empirical counterpart.

Another approach to model tail dependence is to choose a semi-parametric
copula allowing for tail dependence and to estimate the upper and lower TDC
via the limiting relation (2.2.5) and (2.2.4), respectively.

Parametric estimation — One-step estimate. Within the one-step es-
timate the parameters 6,mq,...,mg are estimated in one step by maximum
likelihood (ML) methods. Under the usual regularity conditions for asymptotic
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ML-theory (see e.g. Casella and Berger [18], p. 516) the functional estimator
A = A(#) represents an ML estimate of A. Hence, consistency and asymptotic
normality are given, i.e.,

ﬁ(Xn—)\)&ZwN(O,ai) as n — oo.

In case A(+) is a continuous differentiable function in 6 = (6, . .., 6,,) the standard
error o5 can be approximated by the linear part of the corresponding Taylor

5 (A Y
O’%\:Z (8—9)\1 <91>) UZAZ_, (7.3.1)

i=1

expansion, i.e.,

where o5, @ = 1,...,m denotes the standard error of the corresponding ML
estimate of 6;, 1 =1,...,m.

Parametric estimation - Two-step estimate. One of the advantages of
the copula concept is the preservation of good statistical estimation properties
while estimating the parameters 8, my, ..., my in two steps. Here we assume that
the copula parameter 6 belongs only to the copula function Cy and is independent
of the marginal distribution functions. Thus we first estimate the marginal pa-
rameters mq, ..., my and fit the marginal distributions Fi, ..., Fj; to the observed
realization (:c;l), o ,x§")), j=1,...,d, of the random sample XM . . X

In the second step the copula parameter 6 is estimated from the approximate
realizations (ﬁgl), o ,ﬁgn)), j =1,...,d, with ﬁgi) = ij(xg.i)), j=1,...,d,
i =1,...,n. Denote & := (aM,... 4™) as the matrix of normalized observa-
tions. Joe [62] Chapter 10 provides the asymptotic distribution and asymptotic
covariance matrix. Note, this method is also referred to as pseudo maximum like-
lihood. Joe [62] also carried out some simulation studies that stated that there
is not much difference in estimating the TDC parametric either in two or in one
step. However, the two-step approach simplifies the numerics of the parameter es-
timation magnificently. Even for high-dimensional data sets the TDC estimation
becomes a relief.

Semi-parametric estimation - Two-step estimate. To avoid misiden-
tifications of the marginal distribution functions the marginals Fi,..., Fy are
now estimated nonparametrically by their empirical distribution functions. In a
second step the copula parameter # is estimated from the normalized realiza-
tions @ via an ML-estimator, i.e., § = 6(a). As shown e.g. by Genest et al. [53],
the resulting estimator is consistent and asymptotically normal distributed, i.e.,
Vn(0— @\n(ﬁ)) L7~ N(0,Y). For the covariance matrix and its estimate from a
finite data sample, we refer to Genest et al. [53]. In case A() is a smooth function
the estimator A = )\(é) turns out to be also consistent and asymptotic normal.
In Section 7.4 our simulation study carries out that the relative efficiency, which
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is defined as the ratio of mean-squared errors (MSE) of the semiparametric two-
step ML estimator to the one-step parametric ML estimator, comes close to 1.
Thus there is not much difference in estimating the TDC either with empirical
marginals in two steps or purely parametric in one step. The latter semiparamet-
ric two-step estimator is favorably used in many recent empirical investigations,
e.g., Ané and Kharoubi [3], and Junker and May [67].

On the other hand, marginal distributions are often better known than the depen-
dence function. For instance for many financial models it is appropriate to assume
Gaussian marginal innovations, whereas the dependence structure does not seem
to be obvious at all. Therefore another semi-parametric method is provided by
specifying the parametric marginal distributions in a first step and estimating the
related copula via some nonparametric estimator in a second step. For instance

we utilize an ML-estimator for the parameters my, ..., my of the marginal distri-
butions Fi, ..., F,; at a first stage, and at a second stage the copula C'is estimated
via Craymiy = Fu(F5, ... B ), where F, denotes the multivariate empirical

distribution function of F. Under suitable regularity conditions the process

A

converges to a Gaussian limit (cf. Fermanian et al. [47]).

The parametric method for elliptically contoured distributions

In this section we assume that the observed data follow an elliptically-contoured
random sample X, XM . X® If not stated otherwise we assume
X € E4(p, X, ®) with positive-definite dispersion matrix ¥. Then a nonsingu-
lar matrix v/2 exists, i.e. the Cholesky root of ¥ with inverse \/i_l. According
to (7.2.2) the random vector X possesses the stochastic representation

XL u+RNETUD. (7.3.2)

Schmidt [104] shows essentially that the TDC of two components of an ellip-
tical random vector X, say X; and X, depends only on the tail index of the
corresponding density-generator or generating distribution function, if they are
regularly varying (see (1.2.1)), and the correlation-coefficient p;; between X; and
Xj. Observe that the correlation-coefficient p;; may not exist; in that case we
refer to p;; as some dependence parameter. However, if not stated otherwise p;;
is always denoted as the correlation-coefficient for notational convenience. For
elliptical random vectors X a regularly varying density generator is equivalent to
regular variation of X (Schmidt [104]). Thus in the following we always refer to
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the tail index of X. Moreover (see Frahm et al. [50]), the TDC corresponds to

L+ pi

. 1— py;
/\ij:2-t<+1<\/§—|—1~ ﬂ) ¢>0, (7.3.3)

where #¢41 denotes the survival function of the univariate Student’s ¢-distribution
with ¢ + 1 degrees of freedom. Thus given estimates for both, the tail index
¢ and the correlation matrix p, the TDC between the random components X;
and X; can be estimated by formula (7.3.3). Note that the tail index of the
generating variate R, corresponds to the tail index ( of the elliptical random
vector X (Schmidt [104]). In the following, a method for estimating both the
distribution function of the generating variate R4 and the correlation matrix p
will be presented. Once given an estimate for the generating distribution function,
an appropriate model for R4 can be fitted.
Due to the stochastic representation (7.3.2) the inverse relation

RUD L3 (X — p)

holds. Hence

SORLUD L 50VE (X =) =T (X —p), 650, [:=s0VS
(7.3.4)
where ¢ denotes an arbitrary scaling constant and O may be any orthogonal
matrix.
Given the location parameter vector pu and the inversion matrix I we can
observe the realizations of the spherical random vector I' (X — p) and sieve the
realizations of the rescaled generating variate dR, since

IT (X = w)lly £ |JORUD |, = 6Ry - ||OUD |, = 0Ra=: Ry (7.3.5)

Lindskog [76] shows that the heavier the tails of the one-dimensional marginals of
X the less is Pearson’s standard covariance estimator suitable for estimating the
dispersion matrix X and therefore also the correlation matrix p. The covariance-
matrix of X may even be infinite if the tail index ¢ of X is smaller than 2. In
that case Pearson’s covariance estimator is vulnerable to contaminated and outlier
data. Moreover, even the sample-mean vector is also no appropriate estimator for
w1 in case ¢ < 1 as the mean does not exist. Hence robust estimation methods
for both, the location parameter p and the inversion matrix I' are required. This
task is tackled by the following.

Since elliptical distributions are symmetric, the median vector pugs corre-
sponds to the location p. Further, under some technical condition given in Biining
and Trenkler [16], p. 61, the sample-median Ty 5 is a consistent estimator for p.
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So 1 = To5 is an appropriate estimator for p.
For the estimation of I' we will follow an approach introduced by Frahm and
Junker [48] (see Chapter 12). If u = 0, then

VIU 4 RVIU 4 X

o], T, P
2

2

Now I' can be estimated via maximum likelihood, where the log-likelihood func-
tion is given by

log (L(T;8.1,....8.,)) cxn-log(det (I'T)) — d - Zlog (s.T'Ts;),  (7.3.6)
j=1

with
I‘.j

S = j=1..n.

E1PY
Since the log-likelihood function (7.3.6) is invariant under linear transformations
of I, a constraint must be considered to get a unique solution for the maximum

likelihood. Here we will use ]

H?:Q N7 7
so that the determinant of I' is always 1. If furthermore the constraint I';; # 0
(t=1,...,d) is met in each iteration, the existence and positive definiteness of
S* = (I'T) " is guaranteed.
Let I be the ML-estimator of I', i.e. I'* := argmaxlog (L (I';-)). The ML-
estimator of the dispersion matrix 3 corresponds (up to scale) to

I

- s/ — 1 J

Yg:= ([T = ﬁE, (7.3.7)
where 3 is the virtual estimator of ¥. Let the correlation matrix of X be defined
as p = [Eij / EiiEjj} even if the second moment of the generating variate R is
infinite. Note that ¥;; > 0 for every ¢ = 1,...,d since X is positive definite. The
correlation matrix can be estimated by

A P ZS’ZJ
ps = | = ,
\ s - s,

robustly. We call both S and ps ‘spectral estimators’, respectively.
For the theoretical details of this procedure we refer to Frahm and Junker [48].

(7.3.8)
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There are a lot of other robust estimation methods for the correlation matrix
of elliptical random vectors. For an overview see Lindskog [76], for instance. The
minimum volume estimator, for instance, minimizes the volume of the ellipsoid
generated by the Mahalanobis distance, i.e.

{xEBd: \/(a;—m’ﬁ—l(x—ﬁ)gM},

covering a certain number of data points m < n. The problem is to find the
“right” m (or equivalent the right positive ”threshold” M). If the number of cov-
ered data points is too large extreme values lead to high variance, and if m is too
small the same results due to data reduction. Although a lot of robust estimation
methods are based on the Mahalanobis distance this approach is very sensitive
to outliers. But separating the correlation structure and the radial part of ellip-
tically distributed random vectors like presented before enables us to eliminate
extremes without reducing data and therefore to obtain more efficient correlation
estimators. Notice that the latter correlation estimate is always positive definite;
this is an important advantage as erroneous transformations can be avoided.

Due to equation (7.3.5) we are able to estimate the realizations of the rescaled
generating variate R = 0Rq,

Indeed the random variable R}, has not the same distribution as R4, but the
tail index of R, is invariant under scale transformations. So it is sufficient to fit
an appropriate univariate model Fy to the realizations 77 (i = 1,...,n). Since the
tail index is generally a function of #, determined by the law Fjy, an appropriate
estimate for ¢ can be derived from ¢ (5)

7.3.2 Estimation from the distribution’s tail or extreme
sample

The threshold method

Parametric threshold methods. As in Section 7.3.1 we may choose a para-
metric copula family allowing for tail dependence and estimate the TDC X via
a function of the inferred distribution parameters. Of course we can distinguish
here again between the use of empirical or parametric marginal models. How-
ever, we only believe the underlying model to be appropriate for the joint ex-
tremes and not for the entire data sample. Hence we choose a lower and upper
2-dimensional threshold and investigate only data below the threshold (¢hl) and
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above the threshold (thu), respectively. The lower and upper TDC are achieved
by the estimated parameter vector estimates chl and chu respectively.

The Gumbel copula as an extreme-value copula (see Joe [62]) seems to be
one natural choice. The truncated Gumbel copula for the upper tail, and the
truncated form for the lower tail respectively, are given by equation (7.3.9).

u C Ca(u,thu)—Cg(thu,v)+Cgq(thu,thu
Cd (u,v) = Caletl Gl( 2thu)+Cs((thu th)u) ol LV (u,v) > (thu, thu)
Cthl ( ) _ Ce(l—u,1—v)—Cg(1—u,1—thl)—Cg(1—thl,1—v)+Cqg(1—thl,1—thl)
- 1-2(1—thl)+Cqg(1—thl,1—thl) ’

Y (u,v) < (thl,thl)
(7.3.9)
A parametric threshold method for Archimedean copulas For bi-
variate Archimedean copulas, Juri and Wiithrich [70] have shown a useful limit
behavior of the bivariate excesses. Denote by Fj, the conditional distribution
function

Fip, =PlU<u|U<thV<th],0<u<l.

Then the extreme tail dependence copula of a copula C, with threshold th is
given by

Cin (u,v) =PU < F, (u),V < F;, (v) | U<th,V <th]. (7.3.10)

If C'is now an Archimedean copula generated by a regularly varying differentiable

generator oo € R_,, 0 < a < 00, i.e. limy o+ ”ngg = k™%, then

lim Cy, (u,v) = Cey (u,v), (7.3.11)

th—0t

for all 0 < wu,v < 1, where Cg is the Clayton copula with generator

¢ == (t7* — 1), a > 0 and hence given by

_1
Cer (u,v) = 05 (i (u) + e (V) = (U™ +07%) @

Now we can achieve the lower and upper tail dependence coefficient by fit-
ting a Clayton copula to the pseudo observations of (Fy—n (4), Fipem (v)),
w,v € [0,thl]?* and (Fy—i_thy (1 — ), Fypm1—ghu (1 = 0)), u,v € [thu,1]? respec-
tively. Let ayp and Ay, be the estimates of the Clayton copula parameter, then

~ 1
At (& = 2 &
o <f'”) L (7.3.12)
/\thu (athu> = 2 %hu

Of course one can utilize the above approach, probably ignoring that C' has to
be Archimedean, and try to fit other parametric copulas allowing for lower tail
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dependence to (7.3.10). A possible candidate is the survival Gumbel copula given
by

CN’G75(u, v)=u+v—1+exp (— ((— log (1))’ + (—log (u))5> g) , 0> 1.
The TDC estimates in analogy to (7.3.12) are

Aehi <5thl) — 227w
. . e (7.3.13)
Athu <5thu> = 2 — 2%hu

In Section 7.4.1 we check the finite sample properties of the limit behavior
(7.3.11), i.e. what happens if it is not possible to choose an arbitrary small thresh-
old. Furthermore we check out the robustness of the result if applied to a non
Archimedean dependence structured sample.

A test for TDC asymmetry. In case of an a priori assumption of radial sym-
metry and hence Ay = Ay, one only has to determine one threshold th and can
use all data points below th and above 1—th. For example we can mirror the lower
and upper joint extreme-values of the copula by (u1, us) — (1 — ug, 1 — ug) to the
upper right and lower left corner and use the union set of original and mirrored
data. Now we introduce a heuristic for TDC asymmetry, i.e. A\; # \,, based on
Akaike’s (AIC) and the Bayesian (BIC) information criterion. Let (up, ven) be
the observations below thl and (up., Viny) the ones above thu. Further we define

n
L(O,n,u,v) = Z log (CC*(@))
i=1
1 A A
Losy = 3 (L <0thl7 Nla”thla”thl) + L (9thu, Nu, 1 — ttpy, 1 — vthu))
1 . .
Lsym = Z (2Lasy +L <0thm NI, ugpy, Uthl) +L <0thl7 Nu, 1 — uspy, 1 — vthu))

where NI is the number of observations below thl, Nu is the number of observa-
tions above thu and cg«(g) is the density of the copula with parameter vector ¢
used to model the excesses or the limit copula (7.3.11) in the later approach.

Under the assumption of symmetric TDC’s, Oy = 0w should hold for
Nl — oo, Nu — oo and thl — 0,thu — 0. Hence Ly, = L. For finite
samples one still should have Ly, ~ L, for sufficiently small (big) thresholds
under symmetric TDC’s. However, an asymmetric TDC assumption costs one
more parameter for the description of \; # \,, what is the motivation for the
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following AIC and BIC based definitions

AlCsym = —2Lgym +2p
AlCuy = —2Lagy +4p
BIC,,, = —2Lsym—|—§(log (N1) + log (Nu))
BICusy = —2Lgsy+ p(log(NI) +log (Nu)),

where p is the number of parameters of Cex(p). We will call a sample TDC asym-
metric if AICqs, < AlCy, and BIC.s, < BIC;,. If a sample is not TDC
asymmetric we call it TDC symmetric and can take

. 1 /. .
Athithu = 3 </\thl + )\thu>

for the reduction of the estimators volatility.

Non- and semiparametric threshold methods. At the end of Section 7.3.1
we outlined that it is possible to use parametric marginals and the empirical
copula function to model multidimensional data. However, no matter how the
estimates for the pseudo observations @ were achieved, using the empirical copula
to estimate Az, leads to an approximation of the limit (2.2.5) by

~

. C(thi,thl)

thl = R (7.3.14)

where ' is the empirical copula. Of course we wish to choose thl as small as
possible, but to guarantee C'(thl, thl) — C(thl,thl) there have to be enough data

below thl. To estimate Ay we mirror the data to 1 — u and estimate C. Now we

set thl = 1 — thu in Equation (7.3.14) and get the estimate Nihy = W

The parametric method for elliptical distributions

Recall from Section 7.3.1, that for regularly varying elliptical random vectors
X the tail-dependence coefficient A\ was given via a function of the tail index
¢ which has been estimated from the entire data-sample. Alternatively, the tail
index ( is now estimated from extreme value sample realizations. The estimation
reduces again to a one-dimensional problem as the random variables Ry, || X2
possesses the same tail index ¢ (Schmidt [104]). Hence we estimate the tail index
of R4 with standard methods from univariate extreme value theory utilizing the
extreme-value realizations of ||.X||s.

In Section 7.3.1 a method for separating the correlation structure and the
random variate R, of an elliptically distributed random vector was introduced;
to be precise, we obtained a rescaled random variate Rj;. Thus, alternatively,
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the tail index ¢ can be estimated from R} as the rescaling has non influence on
the tail index {. However, assuming a non trivial dispersion matrix (i.e. X # I),
|| X|]2 can also be interpreted as a rescaled version of R,4. But in contrast to R
the scaling factor is not a constant, i.e. two independent realisations of ||.X||2
have almost surely a different scale. This might have some influence regarding
the finite sample estimation, what we have checked in Section 7.4.1.

Different methods for univariate tail index estimation are discussed e.g. in
Embrechts et al. [38]. In contrast to the peaks over threshold and the block max-
ima approach, estimation methods based on upper order statistics (e.g. the Hill-
estimator) do not require an estimate for the scale parameter of the generalized
Pareto distribution or the generalized extreme value distribution, respectively.
For our purpose a Hill-type estimator with optimal sample fraction proposed by
Drees and Kaufmann [31] turns out to be satisfying.

The nonparametric methods

In this section we drop any assumption on the marginal distributions and the
copula function, and provide two nonparametric estimators for the lower and
the upper TDC, respectively. Further, results concerning the strong consistency
and the asymptotic normality of the introduced estimators are provided. Non-
parametric estimation methods prevent wrong specifications of the underlying
distribution or copula and thus avoid misidentifications of the upper or lower
TDC. Suppose again that (X1, X5), (X7, X{M), . (X™, x{") are iid bivariate
random vectors with distribution function F' and copula C.

The following two nonparametric estimators for the lower and the upper TDC,
A, and Ay, are proposed. Let (), be the empirical copula defined by

(u,v) — Cy(u,v) = F,(Fy, (u), F5, (v)), (7.3.15)
with F,, F}, and F3, denoting the empirical distribution functions corresponding

to F,Fy and Fy. Let RY) and RY be the ranks of X\ and X, j =1,...,n,
respectively. The first set of estimators is motivated by the TDC-definition (2.2.2):

. k k
bty = 20n((1- 1) x (1- )
1 n
2 2 U kn sy 1Sk S, (7.3.16)
j=1

where C,((a,b] x (¢,d]) denotes the empirical copula-measure on the interval
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(a,b] x (c,d], and thus the estimator writes

)

J=1

(k) =

= 3

with k = k(n) — oo and k/n — 0 as n — 0.

The second set of estimators is motivated by the TDC-representation (2.2.4)
and by techniques from extreme value theory. In particular, the relationship be-
tween the so-called dependence function of a bivariate extreme value distribution
(see Huang [59] for a definition) and the tail-dependence coefficient is utilized.
Notice that the limiting relation (2.2.4) can be rewritten in the form

ho = Jim Sl gy 22 iy il
— 9 _ ljm =G (7.3.18)
v—1— l—v -~

Therefore we propose

MVI(R) = 2-2-(1-Cu(1-51-1))

= 921

i (7.3.19)
E et LR sy RSy

1 <k<n,

with £ = k(n) — oo and k/n — 0 as n — oo. The estimator S\EZT is defined
analogously. The optimal choice of k is related to the usual variance-bias prob-
lem known from tail index estimations of regular varying distribution functions,
and will be addressed in a forthcoming work. The following strong consistency
and asymptotic normality properties of the introduced estimators are proven in
Schmidt and Stadtmiiller [106]. The proof of asymptotic normality is accom-
plished in two steps. In the first step the marginals F; and F, are assumed to
be known and an asymptotic normality result is derived. In the second step the
marginal distribution functions F; and F;, are assumed to be unknown and the
asymptotic result is proven by utilizing a particular version of the functional delta
method. See also Schmidt [104] for related results in the case of elliptically con-
toured distributions and elliptical copulas. In this context the result of asymptotic
normality is only given for the TDC-estimator A Lon-

Let F' be a bivariate distribution function with continuous marginal distri-
bution functions F} and F5. Under some technical conditions regarding the local
behavior of the convergence (2.2.2) towards the TDC, like a second order condi-
tion (see Schmidt and Stadtmiiller [106] for more details), and A, > 0 we obtain

\/E{S\L,n - )\L} i) G)\La
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with G, being centered and normally distributed, i.e. Gy, ~ N(0,0%) with

o = A+ (a%AL(l, 1))2 + <8%AL(1, 1))2

+ 2AL<<8%AL(1, 1) — 1) (%AL(L 1) — 1) - 1),

where the function (x,y) — Ap(x,y) is specified in Schmidt and Stadtmiiller
[106]. Further strong consistency holds if k/loglogn — oo as n — oo. Similar
results hold for Ay, and AZV7.

Another nonparametric estimator is motivated by the limiting relation (7.3.18).
If the diagonal section v +— C(v,v) is differentiable in the interval (1 — ¢, 1) for

some € > 0, then
1- d 1
i L= G . dCwy) . logCv,v) (7.3.20)
v—1- 1 —w v—1- v v—1-  logw
holds (see Coles et al. [22]). Therefore we can provide an estimator for the upper
tail-dependence coefficient by

~ lo Cn ";7";
Mooy - 2 Gl )
’ log =2
log <%'ZT~L:11 G) e n R <y )
- d 1{ngfk FA s < <, (7.3.21)
og —

n

with k = k(n) — oo and k/n — 0 as n — oo. If the bivariate data is either
comonotonic or stochastically independent this estimator is appropriate for all k,
because in the former case C'(v,v) = v and thus

log C(v,v) logv

ANg=2— ———>- =2 =1 W 0,1 7.3.22
U IOgU 10gU 9 U€(7 )7 ( )

whereas in the latter case C'(v,v) = v* and hence

1 log v2 1
Ny —o— oeClow) ) losvt o o lsv oy e 0.1), (7.3.23)
log v log v log v

That is to say the tail-dependence coefficient is given exactly at each point on
the logarithm of the diagonal section if it follows a power law which indeed is the
case for comonotonicity and independence. Since this is not true for the EVT-
estimator defined by (7.3.19) we favor the log-estimator and compare it with the
one defined by (7.3.16). Notice that if C(v,v) = v*, forallv € (1—¢,1), @ € [1, 2]
then A\ =2 — «a.



95

A similar result for the lower tail-dependence coefficient is motivated by Equa-
tion (2.2.5). It can be shown that

i dC(v,v) 9 m log (1 —2v + C’(v,v))7
v—0t v v—0t log (1 — ?))

(7.3.24)

if the diagonal section v — C(v,v) is differentiable in the interval (0,¢) for some
e > 0. Therefore an estimator for the lower tail-dependence coefficient Ay is
provided by

Xf%G(k:) _ 9 10g0”(<§’1] ~ (g’lb

log 2%

log+- >0 11, 0 ()
_ 9 ! 11 P 2B 28 - ) < k<, (7.3.25)
og =k

n

with k = k(n) — oo and k/n — 0 asn — oco. Also if 1 —2v+ C(v,v) = (1 —v)%,
for all v € (0,¢), a € [1,2] then A\, = 2 — a. Moreover, for the identity copula
( = 1) and the product copula (o = 2) the latter estimator fulfills the same
stability properties as derived for the log-estimator (7.3.21).

In the pre-simulation Section 7.4.1 we have checked the finite sample proper-
ties of the direct estimation over the slope of the secant and the log-estimator.
Regarding the statistical properties of the log-estimators (7.3.21) and (7.3.25),
strong consistency holds if k/loglogn — oo as n — oo. This can be deduced
from the strong consistency result of the nonparametric estimators S\U,n and \ Lon-
Asymptotic normality will be discussed in a forthcoming work.

7.3.3 A final remark about pitfalls

We would like to point out, that one can not be completely sure from a finite
iid sample observation {z!,... 2"} of some d-dimensional random vector X =
(X1,...,X,) whether X is tail dependent or not. As for tail index estimation one
can find certain model specifications which produce finite samples pretending fat
tails, even for large sample sizes. For example Figure 7.1 shows the scatterplot of
realizations from a copula corresponding to a mixture distribution of two different
bivariate Gaussian distributions, namely:

vt ([0 T D) (2] [ o)),

On the first glance the scatterplot reveals upper tail dependence although the
N M distribution is tail-independent. The message is that one must be careful by
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10000 realizations of the NM copula

0.2

Figure 7.1: Scatterplot of simulated data from a normal mixture distribution
NM.

inferring tail dependence from a finite random sample. The best way to protect
against misidentifications is the application of several estimators, test or plots to
the same data set.

The use of parametric marginal models instead of empirical ones contains
the risk of misspecification and therefore the pitfall of wrong uniform map-
ping and wrong interpretation of the dependence structure. As example we had
simulated 3000 realizations of a 2-dimensional random vector distributed like
H (z,y) = Cgy=2 (tu=3 (z) ,t,=3 (v)), where t, denotes the univariate standard t-
distribution with v degrees of freedom. We then mapped the marginals with their
empirical uniform distribution to achieve the 2-dimensional uniform sample Ue,,,,.
This one is compared with the 2-dimensional sample U,,,,.,, realised by fitting uni-
variate normal distributions to the marginals, given by
Unorm = {(NX (x;) ,]Vy (yl)>} Figure 7.2 clearly shows that U, is reflect-
ing the simulated dependence of a Gumbel copula whereas U,,,,.,, has nearly lost
all appearance for upper tail dependence and shows evidence for a sort of “linear”
dependence. Seeing a scatterplot of U,,., one probably gets the feeling that a
t-copula is an appropriate model. Remark that of course the hypothesis of uniform
marginals (what is the constraint for calibrating a copula) would be rejected for
U,orm- Here we have shown that not testing or ignoring the quality of the marginal
fit can cause dramatic misinterpretation of the underlying dependence structure.
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Figure 7.2: Comparison of empirical marginal mapping with misspecified marginal
mapping.

7.4 Simulation Study

In order to compare the qualities and properties of the introduced tail-dependence
estimators we run an extensive simulation study. Each simulated data set consists
of 1000 independent copies of n realizations from a random sample X, ..., X®
having one particular distribution out of four. Three different sample sizes n are
considered for each data set: n = 250, 1000, 5000. The four different distributions
under consideration are denoted by H, T, F and G. For example the data set
5250 is defined by

5250 :{{XW) W) : XGD o HA=1,a=1,p=05),j = 1,...,250} L= 1,...,1000},
where H (A =1,a=1,p=0.5) denotes the standard bivariate symmetric gen-
eralized hyperbolic distribution with correlation coefficient p = 0.5 as defined
in Hrycej et al. [58]. Distribution 7" corresponds to the Student’s t-distribution
with v = 1.5 degrees of freedom and p = 0.5. Another elliptical distribution F' is
characterized by the random variate R and scaling matrix

1 05
5 = :
(0.5 1 )
1 1 2
R ~ (5-LN(M:1,0:0.01)+§-GPD(§:g,ﬁzl)),

i.e., R is the mixture of a lognormal distribution and a generalized Pareto distri-
bution.
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The last distribution function G is characterized by
G(x1,22) = Coy (P (21), @ (22))

where ® denotes the univariate standard normal distribution and Cy, is an
Archimedean copula achieved by a transformed Frank copula with generator

e —1\"
Qpﬂ,w(t) = (Smenk(t)yy = (_ log m) ) U#0,7 <1,

introduced by Junker and May [67]. We choose ¥ = 1.56 and v = —0.76.

Note that H is elliptically distributed but has no tail dependence. The cor-
responding data sets are used to control the stability of the utilized estimation
procedures under absence of tail dependence. In contrast, T and F' are ellipti-
cal distributions with parameters p = 0.5 and tail index ¢ = 1.5 possessing tail
dependence. The tail-dependence coefficient is obtained by the relation

A=2Tcp (\/gﬁ \/%) : (7.4.1)

Observe that the copula Cy , is lower tail-independent but upper tail-dependent,

e, \¢ =0and \§ =2— 95 . In order to provide comparability of the estimation
results of the different models T, F, and G the parameterization is chosen such
that AT = N = A = \E = 2§ = 0.4406 and 77 = 77 = 7F' = 7¢ = 0.3. Note
that Kendall’s 7 for elliptical copulas can be obtained via the relation
2 .

T = _-arcsin (p). (7.4.2)
Figure 7.3 illustrates the different tail-behavior of the H, T, F' and G distribution
by presenting the scatterplots of the respective simulated data-sample with sam-
ple size n = 5000 together with the corresponding empirical copula-density. For
the copula-mapping we utilize the marginal empirical distribution functions.

7.4.1 Pre-simulation

The properties of the two-step estimate (empirical marginals and ML estimation
of 6 (u)) in contrast to the one-step estimate (ML estimation of #) is compared for
the SH% data set with parameters v = 1.5 and p = 0.5. We denote the parameters
of the one-step ML estimator by é\T,ML := (Umr, pur) and the parameters of the
two-step estimator by §T,a := (v, p) . Comparing the empirical means

~

Orarz = (1.5364,0.5000) , Oz = (1.5388,0.5004) ,
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Figure 7.3: Scatterplots of the simulated distributions and corresponding empir-
ical copula densities.

the medians fo.s (5T7ML) — (1.5003,0.5001), 105 @m) — (1.5242,0.5005) and

the standard deviations o (§T,ML) — (0.3562,0.0293), o (ém> — (0.1447,0.0316)
we conclude that there is almost no difference for estimating p. However, the stan-
dard deviations of 7y, and 7 differ significantly as a result of upper outliers of vy,
(Even though there are no remarkable lower outliers they do not effect the stan-
dard deviation in the same way as upper outliers). Another statistical measure is

provided by the ratio of the mean squared errors M SE (§T ML) /MSE <§Tg> =

(5.71,0.86) . The ratio approves the worse estimation of 7y, compared to 7 and
a similar estimation of the correlation coefficient. Therefore the two-step estima-
tion is to recommend.

In what follows we compare the correlation-coefficient estimator for elliptical
random vectors introduced in Section 7.3.1 (denoted by p;) with the correlation-
coefficient estimator introduced by Lindskog et al. [77] (denoted by p,) which
is based on Kendall’s 7. This is of interest because the tail-dependence coef-
ficient for elliptical distributions depends heavily on the correlation-coefficient
estimate due to equation (7.3.3). In Figure 7.4 we see that the bias of both

<0.5 — 0,05 — E) = (0.0004, —0.0012) is negligible in the case of estimating the

correlation  coefficient  from  SP%  and the standard deviations
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Comparison of 5, and S.

<= =

Figure 7.4: Comparison of p, and ps. (The black line relates to the theoretical
value.)

(o (pr),o (ps)) = (0.0326,0.0335) are of comparable size. The mean square er-
ror ratio MSE (p,) /MSE (ps) = 0.95 indicates a very small favor for p, as the
result of its slightly lower volatility. However, note that the estimate p, yields
immediately a correlation matrix for higher dimensions, whereas the estimator
p- has to be adjusted to guarantee the resulting correlation matrix to be positive
semi definite. Furthermore in high dimensions the calculation of the correlation
matrix via Kendall’s 7 becomes a computational extensive task.

As mentioned above there are two possibilities that yield an estimate of the tail
index of an elliptical distributed random vector X. We can use the realizations of
| X ||, as sketched in Section 7.3.2 or the estimates of R} like outlined in Section
7.3.1. To check the possible influence on the tail index estimation with finite
samples, we compare in Figure 7.5 the mean excess plots for the || X]||, and the
estimated R} realizations of one element of S3%%. It turns out that the slope of a
linear regression line for the points above a realistic chosen thresholds, is the same
for both procedures. Hence the tail index will be estimated to nearly the same
value. Nevertheless || X, and R} have of course different distribution functions
what is expressed by Figure 7.6 showing the empirical survival distributions of
the realizations.

In Section 7.3.2 we stated the limit result (7.3.11) of Juri and Wiitherich [70].
A recent empirical study about the TDC’s of high frequency data (Breymann et
al. [14]) also investigated the modelling of the limit copula (7.3.10) with other
parametric copula families than the Clayton one. They found that the best adap-
tion over several thresholds measured by an AIC criterion is best for the Clayton
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Mean Excess plot for || X||, Mean Excess plot for R}
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Figure 7.5: Mean Excess Plots for a realization of ||.X||, and R}

copula. However, here we are rather interested in a good estimation of the TDC
than in a good fit of the limit copula (7.3.10). Of course we argue that there is a
high coincidence between these goals. In Figure 7.7 we used the Clayton and the
survival Gumbel copula to model the limit copula 7.3.10.

Plotted with ¢ (Clayton) and g (Gumbel) are the means of the /):thu esti-
mations over the 1000 elements of S} (left picture) and S (right picture).
Furthermore the lines represent the observed 95% confidence bands of the Clay-
ton (solid) and survival Gumbel (dashed) /):thu-

Not surprisingly the range of the estimates decreases for increasing thresholds. In
the case of the Archimedean samples in SFPY the bias of the Clayton Xt,w is rather
small, whereas using the survival Gumbel causes in a significant underestimation.
On the other side the confidence bands of the survival Gumbel are significantly
smaller; so one has the old trade off between bias and variance. Under violation of
the assumption that the observations are samples of an Archimedean dependence
structure, like it is the case for the S samples, both copula models especially
the Clayton one, result in significant overestimation. Also here the variance of
the survival Gumbel based estimator is slightly lower.

A remarkable result for both models and samples is the stability of the mean
estimate over the thresholds. This stability gives us the justification of using ker-
nel type estimates, e.g. taking the mean of estimates over a grid of a threshold
interval. Such procedures can gain drastic volatility reduction.
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Survival functions of || X ||, and R}
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Figure 7.6: Survival function of || X ||, (solid line) and R} (dashed line).

The differences in the finite sample properties of the secant and log-estimator
introduced in Section 7.3.2 are illustrated in Figure 7.8. The upper picture shows
the upper TDC estimates for different k£ of an independent normal distributed
sample. The lower one is a t-distributed sample out of SHF%. The black lines
indicate the true values. Note that the smoothing effect of the logarithm causes a
decreasing bias even in the case of independence, i.e. in a special case of Ay = 0.
The log-estimator is much more robust against the choice of k. So one can take a
benefit from the homogenous property of the log-estimator by using kernel type
estimates over k£ to reduce the estimators variance.

7.4.2 Simulation and estimation

For comparison of the different estimation methods we calculate the mean Xn, the

-~

finite sample standard deviation o (\,) and the approximate asymptotic standard

deviation of /n (Xn — /\> , if possible. The root mean square-error

RMSE (Xn) - |1 3 (Xn - A)2 (7.4.3)
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Figure 7.7: TDC mean estimates for the SP% (left plot) and the S}°% samples
(right plot) over several thresholds. The Clayton copula is marked with ¢ (solid
line 95% confidence interval), the survival Gumbel with g (dashed line 95% con-
fidence interval).

allows to observe the bias-variance trade-off for the different sample sizes and
estimation procedures. We introduce another statistical quantity

RMSE (Xn)
7 (%)

which measures the distance of the standard error o (A,) to the bias due to

model misidentification. We call MESE the mean error of the standard error.

~

MESE (A\,) —n_oc 0 if the estimator of A is unbiased, since in that case

o~

RMSE (\,) —n—o 0(Ay). For every biased estimation the RMSE is bounded
away from zero and therefore the latter MESE-limit diverges to infinity.

MESE (Xn) = 1, (7.4.4)

Estimation from the entire sample
Specifying a parametric copula

This section relates to Section 7.3.1. For the elliptical data sets Sy, St, and Sg
we fit a t-copula, since this seems to be a realistic choice by looking only at the
scatterplots in Figure 7.3. However, the empirical copula density of these data
sets indicate that the t-copula may not be suitable for Sg. Although not fitting
the true copula-model we estimate the tail-dependence coefficient via the relation
(7.4.1). In Figure C.1 the 3 x 1000 consecutive estimates corresponding to St are
presented.
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Figure 7.8: Secant estimator and log-estimator for an independent normal sample
(upper picture) and for a t-sample out of S7°% (lower picture).
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In the following we will plot the estimates for the data set St under differ-
ent estimation procedures and summarize the figures in Appendix C. For easy
comparison we fix the range of the plots. Regarding the data set Sq, we fit a
Gumbel-copula which seems to be the true underlying model according to Figure
7.3 and estimate the upper tail-dependence coefficient via X[G] —2_ 95,

The estimation results for all data sets are summarized in Table 7.1.

Estimation from extreme samples

The threshold method

In the pre-simulation Section 7.4.1 we have seen that the use of the Clayton cop-
ula for the threshold approach as introduced in Section 7.3.2, can cause drastic
overestimation in the case of violation of the Archimedean dependence assump-
tion. Since we assume a threshold procedure should require as weak assumptions
as possible, we use the survival Gumbel copula that is not best in the case of
Archimedean dependence, but also not worst if the archimedean assumption does
not hold.

As outlined in Section 7.4.1 we can use kernel type estimates to reduce the vari-
ance. Here we just take the mean of estimations over an equidistant grid of

10 thresholds in the interval [%, #} and [1 — #, 1 - ﬁ respectively. So

Aenl = 1—10 Zgl Atni; and Ay, analogously.
Whenever the asymmetry test introduced in Section 7.3.2 rejects asymmetry for
more than half of the pairs (A, Adtha,; ), We state Aiprthu, €lse Aipy.

The statistical figures corresponding to the data sets Sy, S7,5F and S are
provided in Table 7.1. Figure C.4 gives a graphical survey, again for the set St.

The parametric method for elliptical distributions

For the data sets Sy, St and Sp we estimated the correlation matrix and the
tail index by the method presented in Section 7.3.1 and provide the estimates for
the tail-dependence coefficient via relation (7.4.1). Additionally, for the data set
St the tail index is estimated via ||.X||, and the correlation matrix via Kendall’s
7 and the results are summarized in Figure C.2. In Figure C.3 the estimates of
both the tail index and the correlation matrix are derived utilizing the separation
algorithm described in Section 7.3.1.

Obviously the data in Sg is not elliptical, so here it is not possible to make
use of this method. For the numerical evaluations see again the table at the end
of this chapter.
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The nonparametric approach

For the data sets Sy, St,SFr and Sg the statistical figures of the nonparametric
estimator (7.3.16) and the log-estimator (7.3.21) introduced in Section 7.3.2 are
provided in Table 7.2. Again for the data set S, Figure C.5 and Figure C.6 give
a graphical view of both procedures.

The plateaus are chosen by a heuristic plateau finding algorithm that first
smoothes the plateau-plot by a simple box kernel with ”"bandwidth” bd, i.e. the
mean of bd + 1 successive points of the plateau-plot vector (Aq, ..., A,) leads to a
new point of the smoothed plateau A = (A1, ..., A\y_pq)-

Here we have taken bd = |0.005 - n|. In a second step, a plateau of length m,
here m = L\/n — de, is defined as a vector (A, Ait1, o Nitm_1),
i € {1,...,n —bd} belonging to elements of A. The algorithm takes the first
plateau k for £ = 1,....m — bd — m + 1 whose elements fulfil the condition
Zfi,:”_l Ak — Ai| < 20 (A). If such a plateau does not exist, the TDC is
set to zero, otherwise let {Ag«, ..., \prim—1} be the appointed plateau, and set
N = % ?:]1 Ak i
As seen from the pre-simulation Section 7.4.1 we may choose a greater bandwidth
bd for the log-estimator to reduce the variance of the estimation. However, for
better comparison between the two types, we do not take this opportunity here.

7.4.3 Discussion of the results

The parametric method 7.3.1 has mostly the lowest standard error for the used
data sets (see Table 7.1). This is because here we have the strongest model
assumptions and hence the lowest degree of freedom within the compared ap-
proaches. On the other side the observed bias is not such bad, surprisingly even
in the case of misspecified dependence models. Together this leads to the lowest
root mean square error for the most samples. However, if the chosen model was
not the true one (i.e. for all except the Sr samples), the mean error of the stan-
dard error is significantly high, often the worst. So the standard error is too low
to be a reliable measure for the estimation error.

If there is a well founded suspicion of the sample being generated by an ellipti-
cal distribution, we recommend the use of one of the elliptical methods introduced

in Section 7.3.1. One benefit is that there are well known methods to test the
X

X1l

or the observations of X for elliptical symmetry (see e.g. Manzotti et al. [84]).

pseudo observations of for uniformity on the sphere (see e.g. Mardia [85])
In Table 7.1 we see that the bias for both subtypes is of comparable small size,
where the standard errors are also comparable and with exception of the Sy data
of "realistic error size” as indicated by the very low MESE. Here it is hard to
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indicate a favor, either for the ||X||, or the R}, approach. As mentioned in Sec-
tions 7.3.1 and 7.4.1, for higher dimensions the use of Kendall’s 7 to achieve the
correlation matrix is complicated if positive definiteness is to be guaranteed. So
for multivariate tasks the estimation via R} is in some sense the favorable method.

As seen in the pre-simulation Section 7.4.1, the threshold method in Section
7.3.2 with use of the Clayton copula in (7.3.11) is a really good choice, if there
is a strong evidence for the assumption of being in an Archimedean world. This
is strengthend if using a kernel type estimator over different thresholds for the
reduction of noise. In Table 7.2 the results for the more robust use (against non
Archimedean dependence) of the Gumbel copula in 7.3.11 are stated. The lower
index gives the number (in percentage of the 1000 data sets) that are found to be
TDC asymmetric as defined in Section 7.3.2. The introduced test seemed to work
quite well. In all TDC symmetric data (Sg, Sr, Sr) there were only a few sets
declared to have different TDC’s, whereas for the S data the number of detected
asymmetric TDC samples increases rapidly with the increase of sample length.
The upper index gives the mean number of observations that was used for the esti-
mation. For the elliptical data the TDC was significantly overestimated, whereas
for the Archimedean samples in S we observe significant underestimation, what
reflects the bias observed in the pre-simulation 7.4.1. The underestimation may
probably also be caused by the fact that we take the average whenever the hy-
pothesis of symmetry could not be rejected. The hope using not the entire data
set is always to yield a better bias, mostly with the cost of higher variance. Here
the bias and the variance are mostly the worst over all methods. So of course is
the RMSE. So as an approach that should not make any a priori assumptions
about the dependence structure, it has not much to recommend on. Remark that
the use of the Clayton copula will even worsen the findings for the elliptical data,
as it is seen in the pre-simulation. Again, like stated above, in an Archimedean
world everything is fine if the Clayton copula is used.

The nonparametric methods in Section 7.3.2 lead to the estimates given in Ta-
ble 7.2. These procedures have no assumption beside the one that the investigated
sample has a TDC greater zero. So for the Sy data sets where this assumption is
violated, the bias is worst with respect to the other methods. This can be fixed by
testing for strict positive TDC before running the estimation. For a description
of such tests see Ledford and Tawn [75]. The TDC’s of other data were captured
quite well. Of course the variance is here bigger than under the methods requiring
distributional assumptions, and the bias can not be as low as in the data where
given restrictions are fulfilled. But for example the S; data are estimated here
with the lowest bias. Also for the case Sg the bias can partly beat the one of
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the semiparametric method of Section 7.3.1. The comparison of both submeth-
ods established a small benefit of using the proposed log-estimator, since here the
variances are overall slightly smaller, as expected from the pre-simulation Section
7.4.1, even though we have taken the same bandwidth for the kernel procedure
introduced in Section 7.4.2. This causes in smaller RMSE’s.

7.5 Conclusion

We found that there is not the one TDC estimation method. The semiparametric
method 7.3.1, that is specifying a parametric copula model, is quite acceptable.
Even in the case of misidentification the results are not too badly biased, but
one has to be careful not to misinterpret the very low standard error as a sign of
excellent estimation.

On the other side we have the completely nonparametric approach 7.3.2 that has
the typical bias variance trade-off compared to the former method. Taking the
logarithm of the diagonal section causes in slightly better root mean square errors
than observing the diagonal section directly. Utilizing the observed homogeneity
of the log-estimator by taking broader bandwidth in the kernel estimation will
lead to further variance reduction.

A good compromise seems to be the methods with weak assumptions about the
underlying dependence structure. For the elliptical case we observed low bias
and low variance for the methods that separate the estimation of the correlation
matrix and the estimation of the tail index of the radial random variable (see
Section 7.3.1). In the case of Archimedean dependency, the threshold method
of Section 7.3.2 with the fit of a Clayton copula to the extreme value copula
achieves nearly unbiased results, where the variance can be reduced by kernel
type estimators over several thresholds.
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Method Dataset | Ay | BIAS (XU) o (XU) RMSE (XU) MESE
t/Gumbel copula and S0 0.1618 | 0.1618" 0.0817 0.18127F 1.21847
empirical marginals ST0001°0.1698 0.1698 0.0413 0.1747 3.2315
cf. Section 7.3.1 S0 10.1739 0.1739 0.01877F 0.1749 8.3676~
and 7.4.2 5250104281 | -0.0125 | 0.0403F 0.04227F 0.0463
SI00 104374 | -0.0032 | 0.0204F 0.0206 " 0.0098

S20001°0.4400 | -0.0006F | 0.0092% 0.0092" 0.0000"

5250 10.4873 0.0467 0.0316F 0.0564F 0.7831~

SO0 10.4940 0.0534 0.0150" 0.0555" 2.6862

S000 - 10.4946 0.0540 0.0065" 0.0544F 7.3265-

5250 10.3905 | -0.0501 | 0.0437F 0.0664 " 0.5214~

SO0 103922 | -0.0484 | 0.0212% 0.0529" 1.4914-

S0 10.3919 | -0.0487— | 0.0097F 0.0497 41237

Elliptical approach 52501 0.2031 0.2031 0.0588F 0.2114 2.5959
via [ X[, S0 10.1815 0.1815 0.0377" 0.1854 3.9171

cf. Section 7.3.2 SP000 - 10.1575 0.1575 0.0220 0.1590 6.2286
and 7.4.2 5250104379 | -0.0027F | 0.0465 0.0466 0.00127F
SH000 104432 | 0.0026T 0.0242 0.0243 0.0054F

S2090 10.4437 | 0.0031 0.0109 0.0113 0.0398

S250 1 0.4712 0.0306 0.1228 0.1265 0.0302

SI000 10,4122 | -0.0284F | 0.0955~ 0.0996 0.0428F

S000 104298 | -0.0108 0.0450 0.0463 0.0277

Elliptical approach S0 0.1865 0.1865 0.0660 0.1978 1.9970
via R}, SH00 101675 | 0.1675T 0.0388 0.1719F 3.4304

cf. Section 7.3.2 S2000 101424 | 0.1424F 0.0235 0.1444" 5.1447
and 7.4.2 5250104374 | -0.0032 0.0491 0.0492 0.0020
SI000 - 1°0.4435 0.0029 0.0235 0.0237 0.0085

S2000°1°0.4440 0.0034 0.0113 0.0118 0.0442

S0 0.4483 | 0.0077T 0.1412 0.1413 0.0004 "

S0 104033 | -0.0373 0.0916 0.0988 0.0786

S0 1704394 | -0.0012F | 0.0327 0.0327F 0.0000T

Table 7.1: Statistical figures for various parametric, semi-parametric and non-
parametric estimation methods. Best values over the different methods are ticked
with a plus, worst ones with a minus sign behind.
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Method Dataset | Ay | BIAS(Au) | o (W) | RMSE(Xy) | MESE
Threshold method | SZH° 0.24623% 0.2462 0.1177- 0.2729 1.3186
cf. Section 7.3.2 51000 0.20407° 0.2040 0.0789~ 0.2187 1.7719F
and 7.4.2 S2000 1 0.18857 0.1885 0.0510 0.1953 2.8294
S250 0.471535 0.0309 0.1159~ 0.1199~ 0.0345

STO0010.483477, | 0.0428~ | 0.0659~ 0.0786 0.1927

SF90010.49003%2 | 0.0494~ 0.0346 0.0603~ 0.7428~

SZ0 10537635, | 0.0970~ | 0.1013~ 0.1403~ 0.3850

STO00 10,5218 0.0812 0.0559 0.0986 0.7639

S3000 10512655 | 0.0720 0.0321 0.0788 1.4548

5250 170.343635 , | -0.0970— | 0.1512~ 0.1796~ 0.1878

SEP0010.3594%5 5 | -0.0812~ | 0.1169~ 0.1422~ 0.2164

S2000170.392588% | -0.0481 | 0.0634~ 0.0796~ 0.2555

Nonpara. method 5250 0.3636 0.3636~ 0.1016 0.3775~ 2.7158
emp. copula est. S000 0.3056 0.3056~ 0.0717 0.3139 3.3779
cf. Section 7.3.2 53000 0.2390 0.2390 0.0932~ 0.2565 1.7525F
and 7.4.2 5250 0.4681 0.0275 0.0800 0.0845 0.0574

S X000 0.4587 0.0181 0.0513 0.0545 0.0606

55000 0.4463 0.0057 | 0.0431~ 0.0435 0.0087

S0 0.5326 0.0920 0.0758 0.1192 0.5718

51000 0.5326 0.0920~ 0.0554 0.1074~ 0.9386

53000 0.4880 0.0474 0.0694~ 0.0841~ 0.2113

SZ50 0.4841 0.0435 0.0796 0.0907 0.1397

SLo00 0.4650 0.02447F 0.0482 0.0541 0.1208F

000 0.4453 0.0047F 0.0603 0.0605 0.0030"

Nonpara. method S0 0.3144 0.3144 0.0828 0.3251 2.9263~
log estimator 51000 0.2893 0.2893 0.0539 0.2943 4.4601~
cf. Section 7.3.2 57000 0.2567 0.2567 0.0377 0.2595~ 5.8833
and 7.4.2 5250 0.3951 -0.0455~ | 0.0727 0.0857 0.1788~

S 1000 0.4132 -0.0274 0.0491 0.0562 0.1446~

5000 0.4240 -0.0166 0.0352 0.0389 0.1051

5250 0.4228 -0.0178 0.0913 0.0930 0.0186

51000 0.4932 0.0526 0.0612 0.0807 0.3186

S3000 0.4802 0.0396 0.0406 0.0567 0.3966

5250 0.4016 -0.0390F | 0.0719 0.0818 0.1377F

SEo00 0.4098 -0.0308 0.0448 0.0544 0.2121

52000 0.4229 -0.0177 0.0233 0.0293F 0.2575

Table 7.2: Statistical figures for various parametric, semi-parametric and non-
parametric estimation methods. Best values over the different methods are ticked
with a plus, worst ones with a minus sign behind.



Chapter 8

Copula Estimations for Risk
Factor Portfolios

This chapter is based on the empirical results of Junker and May [67]. We observe the copulas
of different risk factor portfolios, namely stock indices, fx rates, oil related commodities and
MLE metals. We will discuss the bivariate portfolios as well as the corresponding multivariate
portfolios up to dimension 4. The modelling is based on the new copula family combining the
Frank and Gumbel one, as presented in Subsection 4.2.1. For running the goodness-of-fit tests
we utilize the mapping rule to independent uniformity and the resulting x? test as introduced

in Subsection 6.1.2. We further use some other test diagnostics as outlined in Section 6.2.

8.1 Pre-considerations

Recent studies which apply copula functions in finance such as for example Ané
and Kharoubi [3] and Scaillet [103] indicate that the concept appeals in mod-
elling complex dependence structures. Malevergne and Sornette [83] argue that
the hypothesis of the normal copula cannot be rejected for a variety of financial
returns, including stock and exchange rate returns. However, this finding may
relate to the amount of data available and to issues of power of the testing proce-
dures (They used the radial class test with the drawbacks presented in Subsection
6.1.2.). Indeed, the authors also find that alternative copula models cannot be
rejected either. Breymann et al. [14] fitted different copula models to high fre-
quency fx data, where they used several other diagnostics beside the radial class
test. Within this literature, there is an ongoing debate which copula models are
most appropriate. In the next subsection we will discuss our model choices.

111
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8.1.1 Pre-selection of the models

There are no hints concerning an asymmetric dependence structure with re-
spect to permutational symmetry in most financial data sets. So the class of
Archimedean copulas seems to be a natural choice for our setting in the sense
that the restriction to permutational symmetric models seemed to be uncritical.
Moreover, this class contains many tractable parametric families and has a one
dimensional generator. One important special case in financial dependence struc-
ture is the rotational symmetric case like it is assumed e.g. in a normal or more
general in an elliptical world. As mentioned in Chapter 4 the only rotational
symmetric Archimedean copula family is the Frank family. Furthermore from the
survey of Ané and Kharoubi [3] one can deduce from the tables, that the Frank
copula fits the data (here stock indices) better than the normal copula. On the
other hand tail dependence is an important stylized fact of financial data (or at
least a concentration of the dependence in the tail region, if one does not believe
in the asymptotic concept of tail dependence). Ané and Kharoubi [3] found the
Clayton family to be best to cover lower tail dependence. Despite the fact that
they missed to compare there results with the survival Gumbel copula, other au-
thors considering the survival Gumbel as benchmark model like e.g. Breymann et
al. [14], came to the same conclusion. So a model that covers the Frank and Clay-
ton families would be optimal. Unfortunately, it was not possible to join both
families with the transformation rule introduced by Proposition 4.2.1. As seen
in Subsection 4.2.1 we are able to combine the Frank and the Gumbel families,
whereas the latter one is mostly stated as the second best choice for describing
tail dependence. From the pre-simulation (see Subsection 7.4.1) for the threshold
method for TDC estimation, we also see that the Gumbel copula is probably
more robust against different underlying true models. However, the convex linear
combination of the transformed Frank copula (4.2.3) with a survival transformed
Frank copula, as given by equation (4.2.4) will be our favored model in the next
chapters.

As benchmark models we take the convex linear combination of a Clayton
copula with a survival Clayton copula and denote it by C¢

Co(u,v) = a- Coi(u,v) + (1 —a) - Coys, (u,v) with 0 <a <1, (8.1.1)

where 9, 05 > 0. Due to Corollary 4.2.7, C¢ is lower tail dependent with parameter
A = a- 275 and upper tail dependent with Ay = (1—-a)- 973 . The big dis-
advantage in using the Clayton copula is that in the absence of tail dependency,
i.,e. 0 — 0, we in the limit end up with the independence copula Cp. Hence, the
Clayton model and with it C¢, can not adapt any dependency in the absence of
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tail dependency.
Further we investigate the t-copula Cy, given by

Coltr, - ) = Tyt (1), -ty (1)) | (8.1.2)

where T, , is the multivariate standard Student’s ¢-distribution with v degrees
of freedom and correlation matrix p, and ¢, is the univariate standard Student’s
t-distribution. CY is upper and lower tail dependent with TDC given by equation
(2.3.2).

So we have for 2-dimensions the 4 parameter model Cq, the 3 parameter model
Cc and the 2 parameter model C;. Remark that we have covered the Frank,
Gumbel, survival Gumbel, Clayton, survival Clayton and normal Copula as spe-
cial cases of our three models.

For the 4-dimensional case we have two possibilities to construct the multi-
dimensional extensions of Cq and C¢ that we have called model a) (4.3.3) and
model b) (4.3.4). In both cases, the modelling is done on 3 planes, where the
third plane in model b)—in contrast to model a)—is very restrictive. We stress
that model a) is in a sense a more probable (and flexible) choice since less joint
equality is proposed (3 identical pairs vs. 4 identical pairs), see also Lemma 4.3.4
for that. In terms of entropy, model a) has intuitively the higher entropy and so
is capable for the higher mixture of states. When taking the expected value for
the (negative) entropy over the admissible parameter space (see Lemma 4.3.7) we
compute e.g. for the Clayton type copulas C[él] (03 < 09 < 61) and ngll]] (03 < 6y
and 63 < d;)

oo 01 o0

/ / / logcCl(ul,uQ,ug,u4))chl(u1,uz,U3,u4)df(51,52,53) (8.1.3)
0 83 0 [0,1]4

oo 01 01
/// /(—logc[([ﬁ”(ul,u%ug,,u4))dc[([;”(u1,ug,ug,u4)df(51,52,53), (8.1.4)
0 0 0 [0

where f is the density of the distribution of the parameter vectors. Because of
¢(u) = ¢(1 — u), the entropy of the survival copula coincides with the entropy
for the copula. In general, the above equations read Epuam(E.(—logc,)) and
Eparam (Eyw(—logey)). Of course we can in the same way derive the entropy for the
t-copula model. If now a researcher has an intuition about what parameter vec-
tors are likely to be realized under the different choices of models, he or she can
specify the distribution density of the parameter vectors, calculate the negative
model entropies and take the model with the lowest one. Here we do not have



114

such an intuition and therefore provide a second way how to choose the model.

The above model choice over the model entropy is only possible if one feels
inclined to choose a priori a distribution of the parameter vectors. Despite this
fact we further need to choose the order of the variables for the multidimensional
” Archimedean” case, see Subsection 4.3.1. When mapping the risk factors (assets)
to the variables, the order in which this is done makes a difference in the quality
of the multivariate fit. In the following we show how bivariate results may help for
the right model and order choice. First we summarize the parameter conditions
for the C’g], C(%M” and C’Eﬂ, C’[C[fl” models according to Lemmas 4.3.4 and 4.3.7.
Therefore we remark that in 4 dimensions we have 6 bivariate marginals (projec-
tions) and we will denote them by the indices (i,7), i < 7,1 =1,2,3, j = 2,3, 4.
So if we e.g. model the (7,7) bivariate margin with a Clayton copula, i.e. we
suppose the copula of (X;, X;) to be a Clayton copula, we will achieve the pa-
rameter J(; ;) and have the bivariate projection to be lower tail dependent with

1

ALg, = 2 °G.0) . Further recall from Subsection 4.3.1 that for e.g. C’gﬂ and C&[]M”
all bivariate marginals have the form Cj,.

Lemma 8.1.1. The parameters of Cg] (model a)) have to fulfill all of the follow-
g conditions.

°* a=au2 =003 =1 = Qeg) = Qe =z € [0,1],

® 03 =0(14) = O2,4) = O3,4) < 02 =0(1,3) = 0(2,3) < 01 =d12),

® 03, = 04). = O24), =03y, < 02, =0(13), = 023, < O, = ().
For C’g’q we have additionally

o 03 =004 =004 =034 < 0=0013 =003 < 01 =0412).
The parameters of C’gllﬂ (model b)) have to fulfill,

* a=au2) T auy) T auy = aey) = Qe = apg € [0,1];

® 03 =0(13) =014 =023 =024) < 01 =012 A 03 < 02 =0(34),

® 03, =013), =014), =023), = 024), < 01, =012, N 03, < 2, =034),-
For C’gﬂ we have additionally

o 03 =003 =000 =023 =0ey < =002 A 0 <0h=0a.
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So one can estimate the parameters of the 2-dimensional models of all (here 6)
bivariate marginals (7, j) in a first step and then check whether the conditions of
model a) or model b) are better satisfied. As a thumb rule we can say, when one
of the bivariate pairs is dominant (in the sense of positive dependence), model
a) is a good choice, whereas model b) fits well when 2 dominant bivariate pairs
are present. Here we are mainly interested in a good tail adaption and since
for Co and Cg the tail dependence coefficients are functions of a,d and «,d,,
respectively, we will couple their impact in terms of the TDCs. The boundary
regions of the TDCs are summarized by the next lemma and follow directly from
Lemma 8.1.1 and Corollary ?7.

Lemma 8.1.2. For a copula in dimension 4 the following restrictions must hold.

(a) The tail dependence coefficients of the bivariate projections of the models of
type a) C’g] and C'[é], are restricted by:

Cl]) )\L(I,2) + )\U<172) < 1,
CLQ) )\L3 = )\L(i,4) < )\L2 = )\L(j,s) < )\L1 = )\L(1,2) fO?“i = 1,2,3 and] = 1,2,
)\U3 = )\U(i,4) < )\U2 = )‘U(j,:a) < )\U1 = >\U(1,2) fOT‘i =1,2,3 and j =1,2,

)\(L,U)(i,4) == )\(LaU)(kA)’ fOT’ i, k= 1, 2, 3, 4, and A(L,U)(j,g) == >\(L7U)([y3), fOT’
g, 0 =1,2

(b) The tail dependence coefficients of the bivariate projections of the models of
type b) C’gm and C[[4]], are restricted by:

b]) )\L(I,2) + /\U(L?) S 1 and )\L(3,4) + )\U(3’4> S 1,

bg) >\L3 = )\L(iﬂ') < )\L1 = )\L<1,2); )\U3 = )\U(z}j) < )\U1 = )\U(1,2) and
)\L3 = AL(M’) < )\L2 = )\L(3,4); )\U3 = )\U(i,j) < )\U2 = )\U(374)’ fOTi =1,2
and j = 3,4,
)\(LvU)(i,j) = /\(L,U)(k,ey fOT i, k= 1,2 and j,g = 3,4

From al) and a2) and from b1) and b2) we deduce A\ x+Avp < 1 fork=1,...,4.

Remark that the first condition is naturally fulfilled due to the restrictions of
the convex linear combination construction of the bivariate Cc and Cgq, as stated
in Corollary 4.2.7. Remark further, that the é\(i,j) should not systematically inter-
fere with the estimates of &, jy, since we had set 6 = 6, because of the rotational
symmetric impact of the ”Frank parameter” 6.

Later on we will use the bivariate information in terms of the estimated parame-
ters 0; ;) and the estimated TDCs Az 1) i to choose the model and to enumerate
the assets in an optimal way.
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For the limitations of the 4-dimensional t-copula see Chapter 3, for the re-
strictions of possible TDCs of the bivariate projections see Remark 6.
Regardless of wether we choose model a) or model b) we will end up for our
4-dimensional models with a 10 parametric Cq, type, a 7 parametric C'c type and
the 7 parametric t-copula.

8.1.2 Estimation method

As already mentioned in Section 7.3.1 the copula concept allows for the splitting
of the estimation of the marginal parameters and the copula parameters. Here we
will follow such a two step estimation, where we model the univariate marginals by
their empirical distribution functions and use the estimated pseudo observations
4 to estimate the copula parameters by a maximum likelihood procedure. So we
end up with the ”Semi-parametric estimation - Two-step estimate” of Section
7.3.1. Copula densities often show numerical critical behavior in the lower and
upper corners, sometimes, e.g. for the Gumbel copula, the densities have here
singularities. To avoid numerical problems we transfer the ML estimation to a
unimodal density with no singularities. This is done by fitting a distribution with
standard normal marginals and the copula model to be estimated, to the pseudo
observations (® (4y),..., 9" (4,)), where & is the inverse of the univariate
standard normal distribution. Since the ML functions of this and the ”Semi-
parametric estimation - Two-step estimate” are only differing by a constant not
depending on the parameters of the copula model, both estimates are theoretical
the same. This procedure also leads to a better graphical interpretation of copula
scatterplots. As seen in Figure 8.1 the asymmetric tail behavior is much better to
figure out in the right plot, representing the pseudo observations of a distribution
with the copula of Nasdaq - S&P 500 and standard normal marginals, than in the
left one representing the scatterplot of the pseudo copula observations directly.

To achieve a start estimator we used the Least Square method introduced
at the end of Subsection 6.1.3, where the number of runs of the Monte Carlo
Simulation to determine the expected distances were set to 10,000. Furthermore
we restricted the estimation to the deviations from the next neighbor distances
to the corresponding expected value. Remark that one can adapt the number
of runs to the length of the used data set, since the variance of the distances
decreases with the number of data m.

8.1.3 Diagnostics

To validate and to compare our estimated models we use several goodness-of-fit
tests as presented in Chapter 6. These are the x? test (with cubic class separation
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Figure 8.1: Scatterplot of the Nasdaq - S&P 500 copula pseudo observations (left
plot) and scatterplot of the pseudo observations of a distribution with standard
normal marginals and the copula of Nasdaq - S&P 500 (right plot).

according to Subsection 6.1.2), the AIC, BIC criterions (see equations (6.2.2), the
Entropy statistics (6.2.3), the conditional integrated Anderson Darling statistics
and the corresponding survival form (6.2.4) and (6.2.5) and finally the probability
deviation measure PD and the survival form PDS given by equation 6.2.7. Here
the x? test runs over 81 cells and the integrals for the Entropy and Anderson
Darling statistics in Equations (6.2.3), (6.2.4) and (6.2.5) are solved numerically
by Monte Carlo integration over 100,000 points. For an overview of Monte Carlo
integration we refer to Sobol’ [108]. The PD and PDS statistics were calculated
for p = 0.01, i.e. under the hypothesis we have 1% of the data set in the lower
tail covering region and 1% in the upper tail covering region, respectively.

From Section 7.3.1 we recall that the used two step approach does not lead to
real ML estimates. We stated that Genest et al. [53] has shown that the estimates
are still asymptotically normal distributed, with a VCV matrix given by a mixture
of the ML copula VCV matrix with the VCV matrix representing the fluctuations
of the empirical univariate uniform estimates. For details we refer to Genest
et al. [53]. In this thesis we stated the standard errors and resulting t-values
calculated by the approach of Genest et al.. For the TDC estimates as functions
of the parameter estimates we face the problem that the distribution of the TDC
estimate can not concluded to be normal, since the parameter estimates are not
true ML estimates. The standard errors are here calculated by a Taylor expansion
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of first order. To achieve some significance statements for the TDC estimates we
use a Monte Carlo simulation over the estimated asymptotic normal distribution
of the parameter estimates with 1 million runs, and achieve 1 million pseudo
realizations of lower and upper TDC estimates. Instead of a t-value we state now
the empirical probability of the TDC Monte Carlo observations, to be greater
than zero. We denote this probability by p; for the estimated lower TDC and by
pu for the upper, respectively. If 0 < pr gy < 1 there is evidence for A\p,y = 0,
contrary % < pruv < 1 indicates a significant lower (upper) tail dependence. To
check the observed portfolios for TDC asymmetry we run like above a Monte

Carlo simulation to generate pseudo observations of Agig = AL, — Ay. We now

define pqsy = 2 |P()\diff >0) — % . Remark that p,, is only the probability of
TDC asymmetry, but not the probability of TDC asymmetry in the estimated
direction. If pqsy is close to 0 there is no significant TDC asymmetry, whereas for
values close to 1 we conclude evidence for TDC asymmetry. We further define
Dasy.real = PLPUPasy, What measures the probability of asymmetric significant
TDCs. Whenever pggy.rea is small compared to p,s, we can argue that probably
the convex linear combination in the models Cq, C¢ is not necessary and either
C,, C¢y or their survival forms would have been also proper models to describe
the tail dependence behavior.

In the multivariate context we derive the significance of the chosen model —
a) or b)— by observing e.g. d3 — d3. Remark that our estimates of d3,dy are
asymptotically normal distributed according to Genest et al. [53], hence their
difference is too. So we can indicate the significance of the estimated model by
checking the conditions of Lemma 8.1.1 due the calculated t-values of e.g. 3 — d.
If they and the corresponding differences are all significant lower than zero, then
we call the model significant. If the differences are only significant for certain
planes or parameters, we call it partially significant in the corresponding plane
and parameter (e.g. if only d3 — J is significant lower zero for C’g], the model is
J significant in the (1,2,3) - 4 planes).

8.1.4 Data sets, data preparation and filtering

The Anderson Darling and probability deviation statistics does not allow for pe-
nalizing an overparameterized model. It is natural that the AD, ADS, PD and
PDS statistics will be better the more parameters the hypothesis model has, if
the test runs over the same data as the parameters were estimated from. So at
least these statistics should be calculated out of sample on a so called test set.
Also the statistics having a correction term for in sample tests, are more powerful
if derived out of sample. For this reason we divided in our investigations the data
sets in a trainings (estimation) set and a testset. However the above statement
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is of course only true, if trainings and testset are samples of the same stochastic
process, i.e. there were no change points during the observation time. Unfortu-
nately this is not the case for all of our data sets. Whenever a remarkable high
increase of the e.g. x? statistic can be observed for all models when changing
from the trainings to the testset, one should be alarmed that the iid assumption
of the multivariate innovations should be rejected. For such cases the only reliable
conclusions can be made with the help of the x2?, AIC and BIC statistics. As an
example Figure 8.2 shows the copula pseudo observations of the innovations of
the HKD-YEN portfolio on the trainings set (left) and on the test set (right).
Obviously there has been a dependence change point from weak to significant
high positive dependence.

Testset HKD-YEN copula observations Trainingsset HKD-YEN copula observations
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<=
i
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08
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YEN
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Figure 8.2: Testset and trainingsset of the HKD-YEN copula observations.

Time interdependence of the univariate time series (the dependence struc-
ture is assumed to be constant in time) is detected via plotting the autocor-
relation function (ACF) of the log-returns against the time lags to check for
autocorrelation, and by plotting the ACF for the squared log-returns to check for
heteroscedasticity. Weekend effects were neglected. In the following we look at
the pseudo-observations resulting from a time-interdependence filter (e.g. AR(1)-
GARCH(1,1)) as innovations. It is common practise to handle these innovations
as true observations, i.e. to ignore estimation errors of the filter. Using this ap-
proach we further neglect the error influences on the test statistics and estimation
procedures of the joint innovations distribution.

All used data are daily quoted and adjusted for non trading days. Here for every
portfolio a non trading day is defined as a day where at least one of the assets in
the portfolio was not traded. We now come to the data itself.
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The stock indices are adjusted with respect to dividend payments and splits.
The Nasdaq and S&P 500 are observed at the New York stock exchange, the
Nikkei quotes are from Tokyo and the Hang-Seng quotes from Hong Kong. Ac-
cording to Section 2.4 we minimized the time gap in-between the components of
the multidimensional observations by joining the close quotes in New York of the
previous day with the open quotes in Asia. All indices show heteroscedasticity
but no autocorrelation. Hence the log-returns were filtered by a GARCH(1,1) pro-
cess. The testset covers the time 01.01.1993 - 30.09.1996 what gives, depending on
the country, 870-950 points. The trainingsset covers the time period 01.10.1996
- 30.06.2000 with 870-950 points (depending on the country). The data are pro-
vided by Thompson Financial data stream.

The foreign exchange (fx) rates of the Australian dollar (AUD), the Singapore
dollar (SGD), the Hong Kong dollar (HKD) and the Yen (YEN) are measured
in EUR and were downloaded from www.markt-daten.de/daten. They show het-
eroscedasticity but no autocorrelation, hence we used a GARCH(1,1) filter again.
Testset: 01.01.1993 - 31.12.1997 (1289 points); trainingsset: 01.01.1998 - 31.12.2002
(1279 points).

The metal (cash (spot)) prices of aluminium (Al), copper (Cu), lead (Pb) and
zinc (Zn) are stated in USD per tonne and were quoted at the London Metal Ex-
change (LME). They were downloaded from www.lme.co.uk before the relaunch
of the webside (now these data are not available in the used form anymore).
The data show heteroscedasticity and autocorrelation. To filter the autocorrela-
tion we used an autoregressive process (AR) of order one (the order were chosen
by an AIC criterium) and for the heteroscedasticity we utilized a GARCH(1,1)
filter. Testset: 01.01.1990 - 31.12.1995 (1513 points); trainingsset: 01.01.1996 -
31.12.2002 (1764 points).

The (cash (spot)) prices of the oil related commodities, kerosine, diesel, heating-
oil and gasoline, are quoted in US cent per gallon in New York. All data show
heteroscedasticity (again we use a GARCH(1,1) filter). In addition, diesel and
gasoline follow an AR(1) process, where the heatingoil log-return series follows
an AR(4) process. Testset: 01.01.1996 - 30.06.1999 (874 points); trainingsset:
01.07.1999 - 31.12.2002 (873 points)

8.2 Estimation results and discussion

The computational estimation and testing routines were written in S-Plus version
5.1. In the next two subsections we state our empirical findings for the described
bivariate and 4-dimensional portfolios.
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8.2.1 2-dimensional data

Table D.1 to D.7 in the Appendix show the empirical results for the bivariate
portfolios. For each of the 4 classes of portfolios with different risk factors we
show in a first table the estimated parameters with standard error and t-value
(estimated on the trainingsset). A second table shows the results of the different
goodness-of-fit tests (tested over the trainingsset and testset). The best values
are bold typed.

All sums A, + Ay were well below 1, even if we add as a puffer 2 times the
standard error we only achieve max {\; + Ay +2 - s.e.} = 1.0128 ~ 1 for the C¢
model and the (heatingoil,diesel) portfolio. We conclude that the restriction from
Corollary 4.2.7 for the application of the convex linear combination, seems not
to be of empirical evidence.

All observed bivariate dependence structures show positive dependence, at least
independence. So we have no doubt in using the PD and PDS statistics as de-
fined in Chapter 6. Especially there is no a priori objection against the direct use
of the multidimensional ” Archimedean” models.

Table D.14 summarizes the minimum and maximum values of pas, and pPasy.rear-
We use this information when discussing now the TDC and TDC asymmetry
properties of the different risk factors.

For the stock indices portfolios we have not surprisingly the strongest depen-

dence for the only one country portfolio Nasdaq - S&P 500 (see Table D.1). Here
we also detect the highest upper and especially lower tail dependence. This pair
reveals significant asymmetric TDCs under the Cg model, beside the Nasdaq -
Hang Seng and S&P 500 - Hang Seng pairs that show evidence for TDC asymme-
try (see Table D.14). Surprisingly the later two (USA - Asia) pairs show stronger
dependence than the Asian market pair of Hang Seng - Nikkei.
The TDC asymmetry is generally smaller under the Cc model, causing in the
lag of mass in the middle of the distribution. However, all ”Frank contributions”
of the Cn models were estimated quite low for all portfolios, indicating that the
dependence is mainly driven by the tails. Observing the test statistics in Table
D.2, none of the models can really be rejected. For the TDC asymmetric Nasdaq
- S&P 500 there is a favor for the Cg model, whereas for the other portfolios the
results are rather mixed. Here the smaller asymmetries do not justify the two
more parameters of Cg compared to C;. The degrees of freedom of the estimated
t-copulas are (despite of the Nasdaq - S&P 500 pair) quite large, indicating that
the portfolios are not too far away from normal dependence, what confirms the
results of Malevergne and Sornette [83].
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The analysis of the portfolio with fx rates shows hardly TDC asymmetry in
the data (see Table D.14). Only for the pair HKD - SGD there is some evidence for
TDC asymmetry. The survey of Malevergne and Sornette [83] concluded that fx
rates can be modelled by the normal copula (using the radial test as diagnostic).
In contrast to them we have to neglect the normal hypothesis since all degrees
of freedom of the estimated t-copulas are quite low and significant. Furthermore
under all models the TDCs are significantly above zero (see Table D.3). Follow-
ing the diagnostics of Table D.4 all models can cover the dependence structure.
Hence the Cq model here has the disadvantage of too many parameters, that are
consequently not or weakly significant according to the observed t-values. Only
for the HKD-SGD and SGD-YEN portfolios we have a significant ”Frank con-
tribution” of the Cq models, that in the HKD-SGD case leads to a rejected Ce
model (on a 95% level) with respect to the x*-test. Unfortunately, there seemed
to be a dependence change point between trainings and testset, inferring that it
is not possible to derive reliable out-of-sample statistics. At least we can say for
the above two portfolios that the in sample statistics (especially PD and PDS)
do not contradict the hypothesis of better tail adaption of Cg,.

Overall we conclude again that the ¢t-copula is an appropriate choice for modelling
fx risk factor dependence. These findings coincide with the results of Breymann
et al. [14] for a daily tick.

For bivariate MLE metal portfolios Malevergne and Sornette [83] were able to
show that the normal copula is not an appropriate model to describe the depen-
dence structure. In our survey we observed from the diagnostics of Table D.6 that
also the t-copula is not a perfect choice. Since the estimated degrees of freedom
are quite large (hence C} is close to the normal copula) and the calculated TDCs
are of moderate size under the C; and Cq model, this is in line with the findings
of Malevergne and Sornette [83] (see Table D.5). Overall the C model seemed
to be the favorite. The observed TDC asymmetry is of minor, mostly negligible
size (see Table D.14). So the Cq model displays here over parametrization in the
tails, as seen by the low t-values of the estimates of d, and . That it is even the
best choice, may lie in the significant high estimated ” Frank contribution”, repre-
sented by the parameter 6. This is a good example that even for non asymmetric
data the behavior of the data need not necessarily be elliptical, as already men-
tioned in Subsection 8.1.1. The Cx model is missing such a term describing the
"middle region” dependence and is therefore penalized in the goodness-of-fit tests.

For the portfolio with oil products the data show very clear lower tail depen-
dence under all models, where the upper tail dependence is only significant for the
Cc model and of course due symmetry for the t-copula (see Table D.7). For the
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Cq model we see that all § are estimated to the lower boundary of 1 and hence all
upper TDCs Ay are estimated zero. So probably the reduced 2 parameter model
of the survival transformed Frank copula @J would be sufficient. Consequently,
we see under the Cp model in Table D.14 strong TDC asymmetry indicated in
Dasy ~ 1, whereas the pysyrear values are not significant. The asymmetry is still
present under the Cx model, but here of smaller size. The reason is that the 6’s
of Cq and the correlations of C; are estimated quite large, indicating a high pos-
itive ”global” dependence. The C¢ model is missing a parameter describing such
dependence and can only capture it with the joint increase of d, and §, what has
the effect of a joint increase of Ay, and Ay. In the case of the e.g. kerosine - diesel
portfolio this can even lead to a turn around of the TDC asymmetry direction.
However, the diagnostics in Table D.8 elect the Cn model as the winner. The t-
copula is penalized for the missing possibility of asymmetric tails, the C¢ copula
for the missing ”global” dependence structure.

8.2.2 4-dimensional data

We now turn to the discussion of the 4-dimensional portfolios. Before starting
the estimation we show first how to derive the model choice —a) or b)— from
the bivariate findings, and how to map the risk factors (assets) to the variables.

Model choice

Under the models a) and b) we have different boundary conditions for the pa-
rameters as outlined by Lemma 8.1.1. As mentioned in Subsection 8.1.1 we will
use the bivariate information about the estimated 0 ;) and TDCs Av),,, to
choose our model and to achieve the order in which the assets contribute to the
model.

For the portfolio with stock indices we choose
wy . S&P500 uy : Nasdaq

uz : Hang— Seng wuy : Nikkei.

Model b) is inappropriate because of the dominance of the pair Nasdaq - S&P
500. The order is the more or less best possible for the Cg] and 0[04] model, but
still it is a problem to match the conditions in the (1,2,3) - 4 planes. However,
from the bivariate findings we are not able to conclude a better arrangement.

For the portfolio with fx rates we choose

w : HKD w, : SGD

us : YEN wuy : AUD.



124

The application of model b)—even with different ordering of the variables—
fails because of the dominance of Hong Kong and Singapure Dollar (see Table
D.3). For the above order, model b) is inhibited by the fact that A, is very
large compared to Ar, ,, and A, >> AL, , respectively. So model a) is chosen
for both, the Cq copula and the C'¢ copula.

For the portfolio with metals we choose

w : Al uy : Cu

us : Zn us : Pb.

For the C¢ copula this order turns out to be best. For the Cq copula the
above order is good with respect to A but is suboptimal with respect to 6 where
equality turns out to be the problem in the condition. One could try the order
Cu, Zn, Al, Pb instead with the result that now the condition is perfect for 6 but
bad in A. So it is not clear what the optimal choice for the Cq copula should be.
For model b) other choices are worse with respect to 6, but still this order has a
problem with the matching of Zn. We will continue to work with model a) and
the above order for both models.

For the portfolio with oil products we choose

uy : heatingoil wus : diesel

us : kerosine uy : gasoline.

Here model a) fulfils the conditions for both § and A very well, so the order
will be applied for the C copula. The above order is applicable for the C'c copula
as well. Model b) fails because of the dominance of the pair (heating oil, diesel).

The discussion shows that in general model a) is the best choice for our data.

Estimation

The empirical results are listed in the Appendix, Table D.9 to D.12. The test
statistics are summarized in Table D.13 and Table D.15 state the values pgs,
and Pesy.rea for the bivariate projections. The interpretation of the results for the
different risk factors is as follows:

As seen from the model checks, the models Cg] and C’g‘} are only partially
significant in the (1,2)-3 plane, earlier one is also there missing model significance
in the @ parameter (see Table D.9). The diagnostics consequently reject both the
Cq and the C¢ copula (see Table D.13). Only the ¢ copula is clearly accepted by
our diagnostics. Also when looking at the results for PD, PDS the restriction of
the "archimedean” models are clearly shown. Having a look at the TDCs of the
bivariate projections we see that under the models Cg] and C’[Ciq the 1-2 plane is
nearly unchanged (from theory we have here unrestricted choice of the TDCs).
In the (1,2)-3 plane especially the lower TDCs of the projections are estimated
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significant smaller than under the bivariate models.

For the portfolio with fx rates, none of the proposed models is accepted by
the diagnostics (see Table D.13). Again the t-copula is the best model with re-
spect to the gof tests. This is in line with the bivariate findings, where we could
not find strong evidence for TDC asymmetry and had no objection against the
choice of the bivariate t-copula. The TDC estimates of the bivariate projections
of the estimated t-copula show mostly reasonable small deviations compared to
the bivariate survey. Only for A4y, the projection on AUD-SGD, we detect a
significant deviation (see Table D.10). In contrast to that the TDCs of the bi-
variate projections of Cg land C’gﬂ differ remarkable from the bivariate findings.
The models turned out to have significantly higher upper TDCs and smaller lower
TDCs compared to the bivariate findings. Surprisingly, the somehow unrestricted
)‘(L:U)u,z) corresponding to the HKD-SGD plane, exhibit the largest deviations.

Model Cg] reveals significance, whereas Cg] is only significant in 9.

Based on the diagnostics, the t-copula approach leads the best fit for the
metal portfolio among the three models (see Table D.13). Despite that fact also
the other models perform much better than in the former two cases. Unfortu-
nately there is a dependence change point between traings and testset, otherwise
probably the Cg J model could had score points in the Anderson Darling and PD,
PDS statistics as argued by the in-sample tests. Corresponding to the bivariate
findings the projections do not show any significant TDC asymmetry. Hence C([;l ]
can only achieve weak model significance, since the freedom of §; # ¢ is unneces-
sarily. C’gq is model significant (the "missing” 6 leads to more significant ds, §).
Compared to the size of the standard errors the TDCs of the bivariate projections
of all models do not significantly differ from the corresponding bivariate estimates.

For the oil product portfolio no model can be accepted, but from the statis-
tics Cg] performs clearly best (see Table D.13). As already seen in the bivariate
survey, the data exhibit strong tail asymmetry, that can not be captured by the
t-copula. Here the impact is such strong that the statistics for the estimated C}
model is significantly the worst. Even though the flexibility of the Cq model is
needed here with respect to asymmetry in the tails, there is no statistical fit of
the model to the data. So in contrast to the bivariate case, the flexibility to fit
the model to data with real asymmetry does not yield to an accepted model for
higher dimension. The 0[64} model is significant, whereas Cg] is not significant
in 0 (no significant uppgli/tail dependence). So analogously to the bivariate case

a reduced 6 parameter C'l,, model would probably be sufficient. Under the Cg]
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model the TDCs of the projections are, within the region of their standard errors,
equivalent to the bivariate TDC estimates. For the 0[04} model there are smaller
TDC estimate deviations, for the C; model significant ones.

8.3 Conclusion

In a 2-dimensional framework we were able to prove the existence of tail depen-
dence asymmetry in stock indices portfolios, fx-rate and especially in oil related
commodity baskets. For MLE metal portfolios we have seen that even in a rota-
tional symmetric world, the Archimedean shape of a ”Frank contribution” may
be a better choice than the use of elliptical models. Despite these facts the t-
copula, taken all aspects into account, is in most cases an appropriate model.
The flexibility of the proposed Cq copula is only needed (in terms of gof-tests) in
highly asymmetric data like the oil related commodities. Later on in Chapter 11
we will see that also the asymmetry of interest rate data justify the use of C.,.
When modelling more than 2 dimensions working with Archimedean copulas
shows some difficulties that are hard to overcome. The models turn out to be
very restrictive, and a lot of knowledge about the correct choice of the order of
the assets is necessary. The t-copula is the clear favorite for not too asymmetric
multidimensional data. Despite its easy multidimensional extension, the restric-
tion to rotationally symmetry seemed not to be as relevant as the restrictions
of the ” Archimedean” type copulas Cg[;l ], Cg] as seen from several goodness-of-fit
tests. So in contrast to the bivariate case, the use of such complex models is hard
to justify. We stress that for data with real asymmetry in the tails (as the oil
commodities) the diagnostics still allow for the conclusion that there is a better
fit in this region but the overall goodness-of-fit test does not accept any model
here.

In general we end up with the conclusion that the flexibility of Archimedean
models is important to model bivariate asymmetric complex dependence struc-
tures, but their complexity and restrictions in multidimensional settings make
them hard to handle, if not inappropriate to model multidimensional data. To
capture asymmetry also for high dimensional data a generalized form of elliptical
distributions, as later introduced in Chapter 12, is probably an alternative.



Chapter 9

Measurement of Aggregate Risk
with Copulas

In this chapter, based on Junker and May [66], we apply the copula concept to Risk Management
and quantify financial risk by standard risk measures like Value at Risk. For this purposes we
show the typical procedure exemplarily for a portfolio of two stocks, namely Hoechst and

Volkswagen.

9.1 Copula specification

The observed time period for our two stocks (Hoechst and Volkswagen) ranges
from Oct. 23, 1989 to Sep. 29, 2000. This yields 2701 data points. Figure 9.1
shows a scatterplot representation for the GARCH innovations of the two stock
portfolio, with it’s empirical copula and standard normal margins. The plot indi-
cate a possible TDC asymmetry, since joint losses occurred more often than joint
gains.

We now use the two step approach with empirical margins (see Subsection
8.1.2) to achieve the copula estimates of our introduced standard models, i.e. of
the linear convex combined transformed Frank copula (equation (4.2.4)), the lin-
ear convex combined Clayton copula (equation (8.1.1)) and the ¢-copula (equation
(8.1.2)). The copula parameter estimates and x? tests over 196 cells are summa-
rized in Table 9.1 and approve our suspicion of lower tail dependence. The y?
test indicate the Cq model to be a good choice, but it hasn’t enough power to
reject the other models. However, in Figure 9.2 we see the absolute errors, i.e.
the model probability to be in a test cell minus the empirical probability mass of
this cell, over 196 cells for the estimated Hoechst-Volkswagen 69 and (Z copula.
The left errorplot (69) indicates that there is no specific model error, whereas for
the symmetric C, copula (right plot) the overestimated upper tail is remarkable
visible. Another graphical method to examine the quality of the fit is given by

127
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empirical copula with standard normal margins

Volkswagen (automobile)
.2, D
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Figure 9.1: A scatterplot representation of the empirical Hoechst-Volkswagen
copula with standard normal margins.

copula Q s 0 ) AL AU X3o1
Ca 0.4924 1.6841 1.5573 1.0000 0.2417 0 176.74
s.e. / p-value | (0.0876) | (0.1183) | (0.3258) | (0.0395) | (0.0457) | (0.0194) | (76.25)
t-value (5.62) (5.78) (4.78) - (5.29) -
a J ds AL Au Xio2
Cec 0.5546 1.3048 0.5282 0.3260 0.1199 197.49
s.e. / pvalue | (0.0442) | (0.1431) (0.1008) | (0.0322) | (0.0323) | (37.77)
t-value (12.54) | (9.12) (5.24) | (10.13) | (3.71)
df cor AL = Ay Xo3
Cy 5.9776 0.4805 0.1618 208.67
s.e. / p-value (0.7510) | (0.0157) (0.0184) (20.88)
t-value (6.63) (30.68) (8.82)

Table 9.1: Parameter estimates for the different copula models (fitted to the
hoechst volkswagen sample), with resultant tail dependence parameters with
standard errors (s.e.) and t-values in parantheses, and the y?-statistics with the
appendant p-values (in parantheses) in percentage.
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Figure 9.2: Absolute error of the estimated Hoechst-Volkswagen copula (6’9 left
plot, C; right plot) in percentage.

Figure 9.3, where the contourlines of the empirical copula are compared with
the ones of the estimated 69, 60 and t-copula. In contrast to the 59 and @
copulas which do not show a significant divergence to the empirical contourlines,
the spaced dotted line of the (70 copula clearly points out the problems of the
missing flexibility in modelling uniform dependencies, leading to overestimated
(0,1) and (1,0) corners.

In Figure 9.4, the estimated density of the 69 copula of the Hoechst-Volkswagen
portfolio, clearly marks out the asymmetry of the tail dependencies.

9.2 Value at Risk calculation under different dis-
tribution assumptions

In this section we quantify the risk of a portfolio under different joint distribution
assumptions. As risk measures we choose the Value at Risk (VaR) and Expected
Shortfall, both widely used in practice. For a numerical example, we will come
back to our equally weighted stock portfolio Hoechst-Volkswagen, i.e. the portfolio
is assumed to contain the same amount of money in each risk factor (stock).

We start by presenting the profit and loss (P&L) distribution of a portfolio
in a copula setting.

The portfolio wealth at time t 4 1 is given by
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Figure 9.3: Contourlines of the Hoechst-VW empirical copula (solid line) com-

pared with the contourlines of the estimated 69 copula (dotted line), 60 copula
(spaced dotted) and the C; (dashed line).
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Figure 9.4: Estimated 69 density of the Hoechst Volkswagen portfolio.
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where m is the number of assets (risk factors) in the portfolio, a; stands for the
percentage of asset i in the portfolio, and R; are the (log)returns of asset i. With
our model assumption, this leads to R;(t + 1) = u;(t, Ri(t)) + oi(t, Ri(t))gi 141
The portfolio return Rp is now given by

Rp(t+1) = V(H D Zaz

As a useful result, we show that the scenarios leading to a given Rp can be
expressed explicitly.

Remark 15. Let Rp be fized. Then the respective scenarios can be represented
as points on an m — 1 dimensional hyperplane H in [0, 1]™

Let {(u1, s Upm—1, U (O, Rp, 1, ooy Up—1)) | (U1, ooy tpeq) € 0, 171} = H,
where © contains all parameters of the marginals. Then H s determinded by
the following formulae:

= gm - Tm Oé'm Z (/J/’L + UZSZ) - /‘Lm)

- [ (R—P ’”z <t ouF () = i )|

The percentile of Rp is the volume of the copula density over the m dimen-
sional plane

Hy(0, Rp) == cl{(u1,..,un) € [0, 1] x [0, u,(©, Rp,ur, ..., up—1)] },
so the P&L distribution is given by

|w;

= HUm + OmEm

PL(Rp) = / (U, ey Upy) dty...ditlyy, . (9.2.1)
Hm(0,Rp)
The VaR can now be calculated by solving 9.2.1 numerically.
With S = {(u1, ..., um) | 21", i F (u;) < VaR}, the Expected Shortfall reads

ES:MPJF/ (ZaiaiFi )Hfsz Fo (w)) et ooy ) duy...dtty,
=1

S
(9.2.2)

where pp = Z:’ll a;pt; is the expected portfolio return.
When the R; are log-returns, we have to transform the equations (9.2.1) and
(9.2.2), respectively to

PL(exp (Rp) — 1) = / (i, oty st (9.2.3)

H’m(®7RP)
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and
ES = up—i—/ <Z exp azazF, uZ —1 )H FH uZ (UL vy Upy) duy...dtiyy,
g i=1 =1
(9.2.4)
where this time S = {(u1, e Um) | Do P () < VQRLR}7 and

VaRpr =In(VaR) + 1

If it is easy to generate random numbers from the assumed joint distribution of
the portfolio, then it can be more efficient to use a Monte Carlo Method instead of
numerically solving (9.2.1) and (9.2.2) respectively, to obtain VaR and Expected
Shortfall.

We show some numerical results for a portfolio with equally weighted Hoechst
and Volkswagen shares. In Table 9.2 we summarize the mean adjusted conditional
VaR and conditional ES under different marginal distribution and copula assump-
tions. The stated empirical result means that we use the empirical distribution
function to describe the innovations distribution and state the conditional ”em-
pirical” VaR and ES in that sense. Furthermore, the x? statistics are given. Junker
and Szimayer [68] propose an asymmetric univariate distribution function allow-
ing for heavy tails. We used this distribution function F—obtained by a linear
combination of transformed generalized pareto distributions—for the marginal
fit. For the definition see 1.2.3, where here we have used the 6 parameter version.
For more details see Chapter 1.

For an interpretation of Table 9.2, we first have a look at the x? statistics
under the different joint models. Independently from the marginal assumption,
the proposed Cq copula shows the best results, whereas the normal copula Cy
is worst. As a result of the joint parameter estimation for marginals and copula,
the use of Fy or Student’s t-distribution yields a better fit than the empirical
marginals. This states the crucial role of heavy tailed marginals that improve the
quality of the fit even though the copula choice is not the optimal one. If one
compares different copulas, the statistics worsen if we do not allow for asymmetric
tail dependency, i.e. C; instead of Cq, or tail dependency itself, i.e. Cy instead of
C;. So it seems to be as important to allow for tail dependency, as for asymmetric
tail dependency. To give a brief summary: The joint fit can be improved by the
use of marginal models that allow for heavy tails. In the sense of goodness of the
fit, the possibility of asymmetric tails in the marginals has only minor influence.

Recall from Remark 11 that Cy, is conditionally increasing. Then the following
Theorem holds for Cq distributed random vectors. Miiller and Scarsini [89]: If
X; <¢ Y; then the affine combination reads Y | & X; <c; >..; o;Y; for all non-
negative coefficients aq, ..., a,. In a portfolio setting, this means that for assets
that have a common Cq copula the inequality for the single assets is transferred
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Marginals | Copula | x?-Statistic (p-value) | 99% & 1% VaR | 99% & 1% ES

-3.05% 3.00% | -3.53% 3.43%
Cy 328.47 (0.00 -3.10% 3.19% | -3.58% 3.72%
Cc 369.45 (0.00 -3.19% 3.10% | -3.73% 3.59%
Cn 392.81 (0.00) -2.92% 3.00% | -3.32% 3.44%

normal Cq 286.44 (0.00

empirical model - -3.33% 3.01% | -4.47% 3.73%
empirical Cq 176.74 (0.76) -3.28% 3.11% | -4.48% 3.75%
C 508.67 (0.21) 3.33% 3.33% | -4.56% 4.12%
Cc 197.49 (0.38) -3.31% 3.12% | -4.67% 3.81%
Cn 247.13 (0.01) -3.30% 3.24% | -4.41% 3.94%
pareto-like (Fp) Co 179.53 (0.47) -3.30% 3.17% | -4.62% 3.81%
C, 203.84 (0.12) "3.28% 3.50% | -4.37% 4.43%
Cco 204.30 (0.10) -3.50% 3.23% | -4.93% 3.98%
Cn 217.03 (0.04) -3.19% 3.35% | -4.20% 4.11%
t-distribution Cq 188.77 (0.41) -3.25% 3.22% | -4.15% 4.03%
Cy 212.39 (0.10) -3.32% 3.43% | -4.28% 4.50%
Cco 211.98 (0.09) -3.41% 3.32% | -4.43% 4.38%
Cn 218.04 (0.07) -3.20% 3.31% | -4.00% 4.21%

(0.00)

(0.00)

(0.00)

Table 9.2: Mean adjusted VaR and ES under different marginal distribution and
copula assumptions for the 99% and 1% level respectively.

on a portfolio level.

We now turn to the question of accuracy in VaR estimation. The empirical
VaR will be taken as a benchmark model. As a general result, we obtain from
Table 9.2 that the tail dependence is the driving factor for the parameter esti-
mates. Here the lower tail shows more mass and is hence fitted in a more accurate
way whereas in contrary the less dependent (here: upper) tail shows greater de-
viation. This effect is most drastically shown when using parametric models in
the marginals because some extremes are taken away by a cut in the empirical
marginals.

In coincidence with our expectation, the normal copula overestimates the
correlation and subsequently the win tail. The t-copula improves the fit in the
loss tail but widely overestimates the win tail. The Clayton model overestimates
both tails and provides no fit in the middle of the distribution.

When talking about Expected Shortfall as a more sensible risk measure, we
also notice a not negligible effect of asymmetric tails in the margins if we com-
pare e.g. the pairs (Fp,Cq) and (t,,Cq). When talking about estimation error,
we end up with the same result than in the VaR case. For example, under the
naive normal assumption (®,Cy) the 99% ES is 25.7%, and the 1% ES is 7.8%
underestimated, while under the more sophisticated model (Fp, Cq) the 99% ES
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is 3.7%, and the 1% ES is 2.1% overestimated. The overestimated tail dependen-
cies under the Cc model (see also Chapter 8 on this subject) lead to significantly
overestimated VaRs and Expected Shortfalls. This effect can compensate a mis-
specification in the marginals.

Note that we have stated the VaR and Expected Shortfall in the return world.
In the log-return world, the symmetric models constructed by the C; and Cy
copula with either normal or ¢-distributed marginals would lead to identically
absolute values of the 99% and 1% VaR, and Expected Shortfall respectively.

In Figure 9.5 we have plotted the contourlines of the estimated (Fy,Cgq)
joint GARCH innovations density on the scatterplot of the Hoechst Volkswa-
gen GARCH Residuals. One can clearly identify the impacts of fat lower tails in
the marginals and the lower tail dependence.

Contourlines of estimated Hoechst-Volkswagen density

Volkswagen GARCH residuals

Hoechst GARCH residuals

Figure 9.5: Contourlines of the estimated (Fy, Cq) joint GARCH innovations den-
sity on the scatterplot of the Hoechst Volkswagen GARCH Residuals.

We follow equation (9.2.1) and compute the P&L-distribution under the dif-
ferent models. Figure 9.6 shows QQ-plots for some jointly modeled P&L’s against
the empirical P&L. For better comparison of the different tail adaption we stay
here in the log-return world. Here, the (Fp, Cq) model indicates only minor de-
viations, whereas the case (Fp,Cc¢) is clearly influenced by the overestimated
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-8 6 4 2 0 2 4

P&L quantiles of Cq with pareto marginals

empirical P&L quantiles
2

empirical P&L quantiles
2

-8 6 4 2 0 2 4

P&L quantiles of Cc with pareto marginals

-4 2 0 2 4

P&L quantiles of Cy and Student’s ¢-distribution

empirical P&L quantiles
2

empirical P&L quantiles
2

-3 2 -1 0 1 2 3

P&L quantiles of Cy and normal distribution

Figure 9.6: QQ-plots in the log-return world for the portfolio P& L’s; empirical
vs. different joint models.
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tails.

The assumption of a Student’s t-distribution leads to a significant overes-
timation in the win tail, since the lower tail dependence drives the parameter
estimation and the symmetry of the model. The normal model lacks heavy tails
in the margins, and together with the missing tail dependency this leads to a
significant underestimation of the loss tail, whereas the win tail is adapted quite
well. Here it seems that the overestimated correlation just covers the lag of slightly
heavy win tails in the margins.



Chapter 10

European Real Estate Firms in
Crash Situations

In this chapter, that is a copy of Junker [64], we analyse the crash behaviour of major European
real estate firms in comparison to blue chips. The single asset risk characteristics in terms of
volatility, heavy tailedness and Value-at-Risk are investigated via an extreme value theory
approach. First we filter the data with a GARCH model to capture heteroscedasticity effects,
then we measure the tail fatness of the residuals by adjusting a generalised Pareto distribution.
The diversification effects of the admixture of real estate firms to stock portfolios are observed
by correlation, Kendall’s 7 and tail dependence. To obtain an estimate for the tail dependence
we fit a transformed Frank copula. We conclude that real estate firms generally show lighter
tails than stocks and that their admixture in portfolios can gain a high diversification for daily

returns, that even does not break down in crash situations.

10.1 Introduction

During the last years, incorporated real estate firms (REFs) in Europe have at-
tracted growing attention. One reason is the breakdown of inter-generation con-
tract based retirement pay, demanding state-aided, private retirement insurance,
e.g., the Riester Rente in Germany, and giving banks and financial service com-
panies the opportunity to establish large pension funds. Here the requirement of
crash stability plays a leading role. Furthermore, insurance companies may have
the same interest in order to obtain crash resistant investment strategies for their
reserves. Whenever the focus is on portfolio diversification and crash stability,
real estate based stocks are of increasing interest, since there is hope of gaining
the liquidity and tractability of stocks combined with diversification and stabil-
ity effects of real estates. Recent work has been done to analyse if this aspiration
holds.

In Maurer and Sebastian [86] a portfolio of German REFs is compared to
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the German stock index DAX, the German bond index REXP and a portfolio of
German real estate funds. They observed an only slightly lower volatility of the
REFs with respect to the DAX in contrast to a significantly lower volatility of
the real estate funds. Furthermore, they found a significantly high correlation of
the REFs with the DAX whereas there was no correlation with the real estate
funds. These findings correspond to empirical studies done for US equity real
estate trusts (EREITSs), that are probably the best analogue to the European
REF. Giliberto [55] also observed a high correlation between EREITs and stocks
and no correlation of EREITSs compared to real estates. By using the residuals
of a linear regression he removed the market effects of stock and bond returns
on the EREIT returns and showed that there is a significant positive correlation
between the regression residuals and real estate returns. This enabled him to infer
the existence of a common factor moving EREIT and real estate returns. Myer
and Webb [91] extended this approach by using a vector autoregressive model
and running a Granger causality test with the outcome that EREIT returns can
Granger cause real estate returns. Furthermore, they analysed the stylized facts
of some single EREIT returns and ran different tests of normality. It turned out
that the normal hypothesis can not be discarded under most tests and only few
data showed significant skewness and kurtosis.

In this paper, we focus on the behaviour of REFs in crash situations and
compare them to blue chips. We investigate the single asset attributes as well as
the effect of REF admixture to common stock portfolios. It is well known and
examined that stock returns have the stylized fact of heavy tails, especially at the
loss end. See, e.g., Danielsson and De Vries [26], Frey and McNeil [52] and Longin
[79]. The findings by Myer and Webb [91] give a first hint that this is not true for
EREIT returns. We use Extreme Value Theory (EVT) to proof that intuition.
As guidelines to EVT, we refer to Resnick [100] and Embrechts et al. [39].

The unexpected high correlation with common stocks and the absence of
correlation with real estates found in the references above are a drawback in
the effort of using REFs as a diversification tool in common stock portfolios.
However, we will not find such high correlation in our studies and the common
factor driving the EREIT and real estate returns mentioned above is an indicator
that there should be a diversification effect. Since we are mainly interested in the
crash behaviour, we emphasize the dependence of extreme events and measure
it using tail dependence. For example Ané and Kharoubi [3] and Junker and
May [66] have observed that portfolios of common stocks tend to be lower tail
dependent; i.e., a possible existing diversification effect breaks down if extreme
losses occurs. For benchmark reasons we also investigate pure blue chip and REF
portfolios.
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The chapter is organized as follows: In Section 10.2 we present the mathemati-
cal concepts needed and summarize facts and definitions about EVT and copulas.
Section 10.3 is devoted to the analysis of financial data and the question of param-
eter estimation. For single assets, we focus on log-returns of blue chips and Euro-
pean REF's and apply a GARCH-type model to capture conditional heteroskedas-
ticity effects. For each time series, the loss tails of the innovations are fitted by a
generalised Pareto distribution (GPD) to obtain a tail index and to get an accu-
rate Value-at-Risk (VaR) and Expected Shortfall estimator as measures of risk.
On the aggregated (portfolio) level, the joint distribution function is established
along the lines of Junker and May [66] by a copula function based on a trans-
formed Frank copula. Here we operate on the innovations of the univariate time-
series, modeled by their empirical distribution function and yield an estimator for
the tail dependence. The quality of the estimation is examined by performing a
x? goodness-of-fit (gof) test.

10.2 Mathematical Framework

For an overview about univariate extreme value theory we refer to Embrechts et
al. [39]. Basic definitions can be found in Chapter 1, e.g. the definition of the
generalized Pareto distribution (equation (1.2.3)) or the mean excess function
(equation (1.2)).

The GPD is defined on the positive half axis. Often, we need to shift the
distribution to some new starting point u that is called threshold. In general, the
GPD might only reflect the tail behaviour of a given random variable. In this
case we can determine the threshold u by graphical data analysis. We choose u
such that the empirical mean excess function

1 N
ez) = N@) ;xil{xizx}

of the observed sample {z1,...,xy}, with N(z) = {z; |z; >z, i=1,...,N}|,
is approximately linear for x > u, see Embrechts et al. [39], pp.352. An estimator
for a p%-quantile T, > u is attained by inverting the GPD

@,:u+§:<<%<1—p)>_5—1>. (10.2.1)

Since we are particularly interested in extreme values and their joint occur-
rence, we will use the asymptotic measure for tail dependence as defined by
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equations (2.2.5) and (2.2.4). For the calculation we will fit the copula Cq as
introduced in Chapter 4 to the data sets. For further details we refer to Junker
and May [66] or Chapter 4.

10.3 Empirical studies

We now turn to the question of empirical evidence for a different crash behaviour
for REFs with respect to common stocks. For this purpose we investigate the
15 biggest European REFs ranked by market capitalisation (see Table 10.1) and
compare them with 15 blue chips (see Table 10.2), primarily taken from the
FEuropean market. The data analysed here are daily log-returns in an observed

company market capitalisation | number of zero-returns
[in Mill. EUR] [in % of samplesize]
Land Securities, GB 6.9 2.57
Canary Wharf Finance, GB 4.5 14.73
British Land Company Plc, GB 4.1 2.63
Rodamco CE, NL 3.2 10.48
Unibail, F 2.7 8.26
Hammerson Plc, GB 2.3 11.59
Slough Estates, GB 2.2 11.49
Simco, F 2.1 10.01
Liberty, GB 2.0 23.79
Gecina, F 1.8 15.43
Corio, NL 1.7 17.40
IVG, D 1.4 9.04
Klépierre, F 1.4 12.91
Vallehermoso, E 1.1 4.73
Drott, S 1.0 13.70

Table 10.1: European REF's ranked by their market capitalisation.

time period ranging from Jan. 1997 to Jan. 2002 for the REFs, and from Oct.
1989 to Oct. 2000 for the blue chips respectively. As a lower bound measure
for liquidity for the REFs, we give in Table 10.1 the number of observed zero
log-returns in percentage of the sample size.

All datasets used show heteroskedasticity and some turn out to be autocor-
related. To deal with these effects, we describe the mean by an AR(1) model,
and the volatility of the log-returns by a GARCH(1,1) model, i.e. we model the
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log-returns denoted by R;, via

Ry = py+ o0&

pe = p+ ol

of = w+ Pl 07 +y07

where a = 0 for the log-returns that do not show autocorrelation. For a related
model approach we refer to Frey and McNeil [52].

10.3.1 Single asset studies

In the following we want to investigate some attributes, like volatility and heavy
tailedness, of the REF log-returns. Since we want to compare them with common
stocks we only use data here in the joint observed time period ranging from Jan.
1997 to Oct. 2000.

We use a maximum likelihood estimator to get the parameters of a GPD
describing the loss tail of the innovations. To examine the quality of the fit we
perform a x? goodness-of-fit test based on the data below the chosen thresholds
and the GPD parameter estimates. In Table 10.2 the results for the blue chips
are summarized. The tail index ¢ measures the innovation risk, the unconditional
volatility ¢® =, /l_g_7 of the GARCH(1,1) process gives the volatility risk, and
the 99% VaR and 99% Expected Shortfall (ES), both calculated with the fitted
GPD, quantify the total single asset risk. Here the Expected Shortfall is obtained
by a Monte Carlo Simulation with ten thousand runs. The unconditional mean

return p® = ;%= contains the payed risk premium. Here we will state the risk and
performance measures with respect to the log-returns rather than the real returns.
However, this chapter focuses more on qualitative and comparative analysis than
on exact quantitative results. Furthermore, the transformation (R = exp(LR)—1)
from the log-returns LR to the real returns R is strictly monotone (increasing).
Hence we have no doubt about using the following results. There are 10 of the 15
blue chips heavy tailed with 80% significance and 3 with 95% significance. There
is no significant light tailed blue chip. The p-values' of the y? goodness-of-fit
tests against the hypothesis of GPD distributed data over the chosen thresholds
indicates satisfying loss tail approximations with exception of BP and Aventis;
but even here the hypothesis can not be rejected on an 99% level. Table 10.3
contains the results for the REFs. Here it seemed to be less usual to observe
heavy tailed losses, since only 5 (3) of 15 have a positive estimated tail index £
with a significance of 80% (95%) and the real estate firm Drott is the only asset
with a light tail in our studies. Also the mean of the estimated tail indices is

!The hypothesis of the test can not be rejected for levels higher than 1 — p.
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companies fA /./LE o° 99% VaR | 99% ES ﬁA—z p-value
[in %) [in %] [in %] [in %] [in %] | [in %]
BP, GB 0.0667 | 0.0609 | 1.9809* 4.56 5.40 3.08 1.77
Reuters, GB 0.1784* | 0.0915 | 4.3202* 10.86 14.61 2.12 49.50
Lloyds, GB 0.0352 | 0.0841 | 2.5226° 5.92 7.28 3.33 83.01
Aventis, F 0.4128° | 0.1275° | 2.6231* 6.25 8.62 4.86° 2.21
Totalfina, F 0.2832° | 0.0951° | 2.4501* 5.95 7.54 3.88° 13.55
Allianz, D 0.2894* | 0.0721 | 2.4899* 6.22 9.04 2.90 89.57
BASF, D 0.3002° | 0.0567 | 2.0187* 4.88 6.47 2.81 96.68
Deutsche
Telekom, D 0.1965° | 0.1178° | 3.5110* 8.54 11.11 3.35 21.92
Hoechst, D 0.0592 | 0.0381 | 5.1417* 13.74 17.62 0.74 42.99
VW, D 0.1001° | -0.0134 | 2.4111* 6.43 8.41 -0.56 82.88
Nestlé, CH -0.0039 | 0.1027* | 1.5222* 4.13 5.08 6.75° 18.48
Exxon, US 0.2037° | 0.0634 | 1.7731° 4.08 5.13 3.57 95.98
IBM, US 0.2626* | 0.1333° | 2.4300* 6.29 8.95 5.49° 61.53
Microsoft, US | 0.2019° | 0.1097° | 2.5458* 6.49 8.77 4.31° 91.73
SUN, US -0.0233 | 0.4250* | 3.3762* 8.53 9.86 12.59* | 84.91

Table 10.2: Estimates for the blue chips with the p-values for the fitted GPD
model. Values marked with a o, (x), are significant on a 80%-level (95%-level).

with 0.0733 for the REFs less than half as big than the 0.1708 mean of the blue
chips. Furthermore, the amount of zero-returns in Table 10.1 indicates a potential
illiquidity risk for the REFs. In contrast none of the blue chips has more than 3%
zero-returns during the observed time period. Usually, such illiquidity of moderate
size results in more heavy tailed returns, so the conclusion that REFs tend to
have less fat tailed innovation distributions than common stocks, is not affected.

The mean unconditional daily volatility of the REFs (1.59%) is 72% lower as
for the blue chips (2.74%), even the estimated volatility of illiquid assets is usually
higher than the true one. Since we do not cover any illiquidity risk in our Value-at-
Risk or Expected Shortfall calculation, the lower volatility and less heavy tailed
innovations of the REFs results directly to a lower 99%- average VaR (4.16%) and
Expected Shortfall (5.41%) with respect to the blue chips (6.86% VaR and 8.93%
Expected Shortfall). Comparing the estimated quotients 5—2 we have a mean value
of 1.83% for the REF's and 3.95% for the blue chips and additionally only 3 of the
15 single REFs can beat the equally weighted blue chip portfolio in that sense.
This indicates that there is a certain risk premium payed for the common stocks.
Hence the market realizes the higher innovation and volatility risk for the blue
chips and prices it higher than an eventual illiquidity risk for the REFs. This
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companies 5 ;/F o° 99% VaR | 99% ES % p-value
[in %) [in %) [in %] [in %] | [in %] | [in %]
Land Securities, GB | 0.2348* | -0.0044 | 1.4920* 3.75 5.11 -0.29 22.96
Canary Wharf
Finance, GB 0.1982° | 0.0526 | 2.4925* 6.85 9.84 2.11 73.14
British Land
Company Plc, GB -0.0745 | 0.0195 | 2.0411* 5.18 6.18 0.96 19.13
Rodamco CE, NL 0.0145 | -0.0480 | 1.3571* 3.66 4.67 -3.53 12.30
Unibail, F 0.0954 | 0.0652° | 1.5000* 3.98 5.15 4.35° 63.97
Hammerson Plc, GB | -0.0348 | 0.0385 | 1.2709* 3.35 4.12 3.03 48.04
Slough Estates, GB -0.0133 | 0.0150 | 1.1701* 2.98 3.68 1.28 51.08
Simco, F -0.0106 | 0.0038 | 1.4155* 3.65 4.53 0.27 39.40
Liberty, GB -0.0427 | 0.0085 | 1.1271* 3.00 3.72 0.76 1.89
Gecina, F 0.0947° | 0.0345 | 1.1625* 3.28 4.33 2.97 10.07
Corio, NL 0.3159* | 0.0009 | 0.9466* 2.82 4.52 0.10 40.68
IVG, D 0.1138 0.0357 | 1.9163* 4.73 6.17 1.86 87.39
Klépierre, F 0.2373* | 0.0913* | 1.5196* 4.37 6.39 6.01* 33.12
Vallehermoso, E 0.1411 0.0566 | 2.0265* 4.56 5.58 2.80 94.25
Drott, S -0.1702* | 0.1131° | 2.3612* 6.23 7.19 4.79° 56.10

Table 10.3: Estimates for the REFs and the p-values for the fitted GPD model.
Values marked with a o, (%), are significant on a 80%-level (95%-level).

observation is in line with Glascock and Davidson IIT [56], who found for the
US market that, on average, real estate firm returns are lower than a benchmark
return based on common stocks. They concluded that REFs underperform the
market, even on a Sharpe and Treynor risk adjusted basis. However, a Sharpe
and Treynor risk adjustment does not cover the observed higher innovation risk
for common stocks. So an investment in REFs may still be fair.

10.3.2 Portfolio investigations

There were no obvious change points in the analyzed REFs and blue chips. So
the GARCH residuals are iid samples and hence it is possible to compare the
innovation distributions, even if they are generated from different time intervals.
This enables us to use the maximal time interval for each investigated portfolio,
e.g., Oct. 1989 to Oct. 2000 for the blue chips, Jan. 1997 to Oct. 2000 for the
mixed portfolios and Jan. 1997 to Jan. 2002 for the pure REF portfolios.

The lower tail dependencies Ay, as measures of crash diversification of the in-
vestigated portfolios, are obtained by fitting the copula given by Equation (2.5)
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and applying Corollary 4.2.7. Furthermore, the estimated correlation p and the
sample version of Kendall’'s 7, are stated as general diversification measures,
where one should remember the pitfalls of using correlation mentioned above and
in, e.g., Embrechts et al. [42]. Table 10.4 summarises the results for the blue chip
portfolios as benchmark portfolios. We concentrate on country portfolios. All of

portfolio ‘ AL ‘ p ‘ T ‘ p-value [in %] ‘
BP Lloyds | 0.0706** | 0.2131 | 0.1661 73.50
Reuters | 0.1093* | 0.2663 | 0.1808 92.23
Lloyds Reuters | 0.1074* | 0.2228 | 0.1731 59.26
| Aventis | Totalfina | 0.1522" [ 0.2978 | 0.1966 |  98.58
Allianz BASE | 0.2615™ | 0.4983 | 0.3664 41.39
D. Telek. | 0.1972* | 0.3659 | 0.2593 76.01
Hoechst | 0.3071* | 0.4686 | 0.3546 90.40
VW 0.1766™ | 0.4688 | 0.3527 29.85
BASF | D. Telek. | 0.1013* | 0.2876 | 0.2001 54.53
Hoechst | 0.3310* | 0.6584 | 0.5241 27.88
VW 0.2809* | 0.5331 | 0.3980 11.46
D. Telek. | Hoechst | 0.2166* | 0.2923 | 0.2058 11.28
VW 0.2063* | 0.2579 | 0.1772 52.23
Hoechst VW 0.2417 | 0.4752 | 0.3592 76.25
IBM Microsoft | 0.1733** | 0.3691 | 0.2545 76.85
Sun 0.0507 | 0.3573 | 0.2451 52.98
Microsoft Sun 0.1652* | 0.4196 | 0.2914 94.74
Allianz BP 0.0607 | 0.1262 | 0.0959 73.11
Nestlé | 0.1091* | 0.2959 | 0.2283 28.19
Microsoft | 0.0731** | 0.0925 | 0.0513 84.44

Table 10.4: Estimated lower tail dependency /):L, correlation p and samples
Kendall’s Tau 7 for the blue chip portfolios, and the p-values of the fitted copula
model with respect to a x? goodness-of-fit test. All Ay values marked with a %*
are significant on a 99% level.

the 20 observed portfolios, even the few international ones, show lower tail depen-
dency on a 99% significance level in addition to BASF-Deutsche Telekom where
it is the 95% level. All levels of the TDC estimates were achieved by the delta
method, i.e. by a first order Taylor approximation of the distribution of A as a
function of the copula parameter estimates (which are random variables). This
indicates the tendency of common stock portfolios to have a minor diversification
effect in extreme loss situations, as probably expected from their correlation or
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Kendall’s 7. The mean size of the lower tail dependency is XL = 0.17. These
findings are in line with the studies of Ané and Kharoubi [3] and Junker and
May [66]. The p-values of the fitted copula model with respect to a performed y?
goodness-of-fit test indicate that the data are well adapted. Table 10.5 contains
the results for the mixed portfolios, i.e. containing a common stock and a REF.

Here we also concentrate on country portfolios. There is only one portfolio
(British Land-Reuters) estimated with a moderate high and significant lower
tail dependence of XL = (0.12. All the other 28 investigated mixed portfolios have
lower tail dependencies well below 0.1. So the mean size of the lower tail depen-

dency is with /):L = 0.03 on a 99% level significantly lower than for the blue chip
portfolios. The computed correlations and Kendall’s 7’s are for almost all mixed
portfolios lower than for the blue chip portfolios, and hence the mean correla-
tion and Kendall’s 7 are with p = 0.10 and 7 = 0.07 71% and 72% lower than
the corresponding values p = 0.35 and 7 = 0.25 for the common stock portfo-
lios. So there is a high diversification effect of REFs compared to stocks. This
is in contrast to Giliberto [55] and Maurer and Sebastian [86] who found high
correlation of EREITs and REFs, respectively, with common stocks. Both did
not use any heteroscedasticity filter what can cause an overestimated correlation
in the absence of homoscedasticity. Furthermore, they studied monthly returns,
whereas we here investigate daily log-returns. Together with the result of Liu
and Mei [78] who found that EREIT returns show a high predictability com-
pared with stocks and bonds, our differing findings may indicate a time shifted
co-movement of the REFs with the common stocks or the existence of a sys-
tematic dependence that is suppressed by a dominating white noise dependence
for high frequency data. Hence the observed diversification effects may be of no
benefit for a buy and hold strategy. Therefore we compute the correlation and
Kendall’s 7 for the mixed portfolios with lags up to 60 days (1 quarter), i.e.,
we calculate corr(Xp, . n—k41]; Yk,..,n)) Where XY are the innovation time series
of the portfolio assets, N the series length and k£ = 1,...60 the lags. We could
not find any remarkable and significant lagged correlation or Kendall’s 7, see,
e.g., the correlation plot of Land Securities versus British Petrolium in Figure
10.1. So we can neglect a time shifted co-movement. To investigate if there is
a systematic dependence, we in Table 10.6 give the correlation and Kendall’s
7 for the mixed portfolios with a 1,...,4 week log-return frequency. We can
not extend this survey to the tail dependence, since the observed time horizon
is not long enough to guarantee a satisfactory estimator :\\L. For all portfolios,
except for Land Securities-Reuters, the maximum of the log-return correlations
and Kendall’'s 7s occur for middle frequency, mostly for the 3 and 4 week fre-
quency. The scale of the maxima is of the same size as the results of Giliberto
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Correlation of Land Securities and BP for different lags
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Figure 10.1: Correlation of Land Securities with British Petrolium for different
lags.

[55] and Maurer and Sebastian [86]. We can not conclude a long term and system-
atic dependency, since for half of the investigated portfolios the correlation and
Kendall’s 7 are already decreasing for the 4 week frequency. A long term study
should be subject of further research to become certainty in this point. However,
at this point we can come up with the result of a high diversification effect of
REFs for daily frequency, which, in contrast to common stock portfolios, even in
crash situations does not break down.

For completeness we have a look on pure REF portfolios in Table 10.7. The
results are here somehow mixed. In the main country portfolios, the mean cor-
relation and Kendall’s 7 are with p = 0.18 and 7 = 0.10 in-between the range
of common stock and mixed portfolios. There are 3 of the 17 portfolios with a
significant and moderate high lower tail dependence, whereas the others have an
estimated /):L well below 0.1. With /):L = 0.06 the tail dependence parameters are
very low compared to the blue chip portfolios. These findings are remarkable,
since at least all REFs are in the same business line of real estates.

10.4 Conclusion

We use extreme value theory to examine the crash behaviour in means of heavy
tailedness of single asset REFs. In comparison to blue chips they turn out to have
less heavy tailed GARCH residuals and hence a lower innovation risk. With an
observed lower unconditional volatility, this results in a lower Value-at-risk and
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Expected Shortfall. A criticism is that we have stated the risk and performance
measures with respect to the log-returns rather than the real returns. However,
this chapter focused more on qualitative and comparative analysis than on exact
quantitative results.

The concept of lower tail dependence allows us to survey dependence effects
in crash situations. We conclude that in the sense of correlation and Kendall’s 7,
REFs can gain high diversification effects as admixture in common stock port-
folios. In contrast to pure blue chip portfolios this diversification even does not
break down in crash situations, indicated by a very small, in fact not present,
lower tail dependence. These findings are for a daily frequency of the observed
log-returns, and hence give a benefit for a buy and sell strategy and a one day
risk management improvement. To come up with a statement for a buy and
hold framework, further research should be carried out to examine the long term
dependence structure of REFs with common stocks.
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portfolio AL p T ‘ p-value [in %) ‘
Land Securities BP 0.0137** | 0.1698 | 0.1202 97.90
Lloyds 0.0000 | 0.1681 | 0.1092 97.39
Reuters | 0.0244* | 0.1727 | 0.1363 43.46
British Land BP 0.0537 | 0.1821 | 0.1241 31.81
Lloyds 0.0137 | 0.1309 | 0.0946 96.62
Reuters | 0.1221* | 0.1083 | 0.0942 36.73
Hammerson BP 0.0306 | 0.0789 | 0.0517 27.24
Lloyds 0.0137 | 0.0762 | 0.0468 39.67
Reuters | 0.0710 | 0.1004 | 0.0740 92.31
Slough Estates BP 0.0449 | 0.0822 | 0.0411 68.20
Lloyds | 0.0325° | 0.0702 | 0.0319 19.29
Reuters | 0.0229° | 0.0398 | 0.0227 48.11
Liberty BP 0.0000 | 0.0923 | 0.0553 86.91
Lloyds | 0.0241** | -0.0005 | -0.0073 82.93
Reuters | 0.0136™ | 0.0470 | 0.0483 96.08
Unibail Aventis | 0.0135 | 0.0304 | 0.0325 86.24
Totalfina | 0.0531** | 0.0640 | 0.0614 89.90
Simco Aventis | 0.0136 | 0.0537 | 0.0584 66.30
Totalfina | 0.0137 | 0.0102 | 0.0347 94.84
Klépierre Aventis 0.0008 | 0.0379 | 0.0222 99.82
Totalfina | 0.0515** | 0.0181 | 0.0116 35.10
IVG Allianz 0.0611* | 0.1420 | 0.0911 91.11
BASF 0.0000 | 0.1621 | 0.1099 45.30
D. Telek. | 0.0332* | 0.1498 | 0.1000 97.32
Hoechst | 0.0000 | 0.1412 | 0.0949 79.20
VW 0.0000 | 0.1552 | 0.1041 97.60
IVG BP 0.0434° | 0.1226 | 0.0819 37.82
Nestlé 0.0649 | 0.1417 | 0.0957 98.94
Microsoft | 0.0240 | 0.0445 | 0.0293 95.33

Table 10.5: Estimated lower tail dependency /):L, correlation p and samples
Kendall’s Tau 7 for the mixed portfolios, and the _p-values of the fitted cop-
ula model with respect to a x? goodness-of-fit test. Az values marked with a o,
(%), (>*) are significant on a 80%, (95%), (99%) level.
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portfolio p1 t1 to i3 tq
Land Securities BP 0.1446 0.1119 0.2080 0.1301 0.3388 0.2115 0.3312 0.2192
Lloyds 0.2483 0.1793 0.3115 0.2253 0.3954 0.2737 0.3955 0.2483
Reuters 0.1086 0.1112 0.0333 0.0119 0.0682 0.0445 -0.1744 -0.1249
British Land BP 0.1455 0.1275 0.3090 0.2359 0.4517 0.3159 0.4800 0.3228
Lloyds 0.3030 0.2266 0.02511 0.1828 0.5065 0.3744 0.2771 0.2092
Reuters 0.1187 0.0811 0.1344 0.0803 0.1589 0.0957 -0.0236 -0.0305
Hammerson BP 0.1620 0.0834 0.3977 0.2437 0.4514 0.2965 0.5725 0.3765
Lloyds 0.2143 0.1737 0.3125 0.1985 0.4715 0.3072 0.3318 0.2126
Reuters 0.1494 0.1242 0.1802 0.1000 0.1566 0.0558 -0.0254 -0.0583
Slough Estates BP 0.0483 0.0129 0.3038 0.1869 0.3006 0.2227 0.3181 0.1693
Lloyds 0.1809 0.0991 0.1509 0.0864 0.3304 0.2159 0.2803 0.1497
Reuters 0.0854 0.0536 0.1163 0.0798 0.1609 0.0374 -0.0096 0.0638
Liberty BP 0.2443 0.1576 0.4041 0.2546 0.4305 0.3333 0.4138 0.2821
Lloyds 0.1597 0.1017 0.3240 0.2459 0.3235 0.2438 0.4045 0.2993
Reuters -0.0207 0.0221 0.0665 0.0343 0.1527 0.0865 -0.1372 -0.1397
Unibail Aventis 0.0829 0.0639 0.1634 0.1149 0.0690 0.0544 0.0821 0.0846
Totalfina 0.1440 0.0611 0.1089 0.0831 0.1990 0.1315 0.0777 0.0021
Simco Aventis 0.1164 0.0831 0.1508 0.0914 0.2276 0.1584 0.1726 0.0655
Totalfina 0.1956 0.1062 0.1878 0.1170 0.1919 0.1303 0.1766 0.1924
Klépierre Aventis 0.0564 0.0550 0.0419 0.04911 0.1112 0.0883 0.1907 0.1163
Totalfina -0.0539 -0.0822 -0.0953 -0.1259 0.0472 -0.0029 -0.0212 0.0085
IVG Allianz 0.2943 0.1572 0.3279 0.1791 0.1488 0.0650 0.1898 0.0731
BASF 0.2444 0.1548 0.2817 0.1801 0.2485 0.1572 0.3397 0.1230
D. Telek. 0.1665 0.0348 0.1741 0.1238 0.1112 0.0353 0.1292 0.1082
Hoechst 0.1515 0.1020 0.0978 0.0158 0.2010 0.1459 0.2782 0.1915
VW 0.3216 0.1467 0.2968 0.2249 0.1217 0.1183 0.3399 0.2488
VG BP 0.2667 0.2058 0.1984 0.1459 0.2743 0.1867 0.3800 0.2734
Nestlé 0.2695 0.1757 0.2377 0.1216 0.2230 0.2110 0.3714 0.2537
Microsoft 0.1204 0.0599 0.0618 0.0417 0.1285 0.1164 0.2686 0.1919

Table 10.6: Correlation and Kendall’s 7 for 1,...,4 week log-return frequencys,
where the relativ maximal value is in bold style.
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‘ p-value [in %) ‘

portfolio AL p
Land Securities | British Land | 0.1048 | 0.4125 | 0.2785 19.39
Hammerson 0.0279 | 0.1686 | 0.1038 54.77
Slough Estates | 0.0000 | 0.2029 | 0.1151 69.37
Liberty 0.0000 | 0.0863 | 0.0651 57.28
British Land Hammerson 0.0331 | 0.2224 | 0.1322 98.02
Slough Estates | 0.0330 | 0.2196 | 0.1160 96.85
Liberty 0.0325 | 0.1308 | 0.0827 62.24
Hammerson Slough Estates | 0.0611 | 0.3573 | 0.2236 44.74
Liberty 0.1416™ | 0.1803 | 0.0972 85.44
Slough Estates Liberty 0.1339** | 0.1549 | 0.0774 77.44
Unibail Simco 0.0611* | 0.1386 | 0.0606 61.85
Klépierre 0.0669 | 0.1263 | 0.0734 84.59
Simco Klépierre 0.0820 | 0.1387 | 0.0608 79.18
IVG Land Securities | 0.0501° | 0.0536 | 0.0355 51.14
Corio 0.0001 | 0.0981 | 0.0455 82.25
Unibail, F 0.0320 | 0.0757 | 0.0383 64.74
Vallehermoso 0.0887 | 0.1759 | 0.0753 87.29

Table 10.7: Estimated lower tail dependency /)\\L, correlation p and samples
Kendall’s 7 T for the REF portfolios, and the p-values of the fitted copula model
with respect to a x? goodness-of-fit test. Ay values marked with a o, (x), (%*) are
significant on a 80%, (95%), (99%) level.



Chapter 11

Nonlinear Term Structure
Dependence

This chapter, based on Junker et al. [69]', documents nonlinear cross-sectional dependence in
the term structure of U.S. Treasury yields and points out risk management implications. The
analysis is based on a Kalman filter estimation of a two-factor affine model which specifies the
yield curve dynamics. We then apply a broad class of copula functions for modelling dependence
in factors spanning the yield curve. Our sample of monthly yields in the 1982 to 2001 period
provides evidence of upper tail dependence in yield innovations; i.e., large positive interest rate
shocks tend to occur under increased dependence. In contrast, the best fitting copula model
coincides with zero lower tail dependence. This asymmetry has substantial risk management
implications. We give an example in estimating bond portfolio loss quantiles and report the

biases which result form an application of the normal dependence model.

11.1 Introduction

The class of affine term structure models (ATSMs) as proposed by Duffie and Kan
[33] and further characterized by Dai and Singleton [24], has recently become a
benchmark in modelling the term structure of default-free interest rates. Within
the model class, the term structure is characterized by the current realizations
as well as the dynamics of a set of state variables. Logarithmic bond prices are
then affine functions of these state variables. The class appeals by its analytical
tractability and contains the well-known models by Vasicek [109], Cox et al. [23],
Chen and Scott [21], and Longstaff and Schwartz [80], for example. However,
recent empirical evidence indicates that term structure data do not fully confirm
the ATSM class. A series of articles document distinct nonlinearities e.g. in the

LA first draft of that paper was written and the dataset was obtained while the third author
Niklas Wagner was visiting Stanford GSB. Additional data were kindly provided by David Tien.
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drift and volatility function of the short-rate, particularly implying that mean-
reversion in the short-rate depends on its level; see for example Ait-Sahalia [1] and
Stanton [107]. Ang and Bekaert [4] focus on these findings and develop a Marko-
vian switching-model which captures such nonlinearities. Also, empirical results
on one- and two-factor ATSMs by Duan and Simonato [32] indicate a rejection of
the affine model assumption when tested against local alternatives.? In general,
findings of nonlinearity in the term structure of interest rates are important for
at least three reasons. First, only an exact assessment of state variable dynam-
ics and their dependence allows for an accurate modelling of the term structure.
Second, derivatives pricing is frequently based on assumptions imposed by the
class of ATSMs. And lastly, effective bond portfolio risk management builds upon
models which give reliable risk implications.

While previous empirical studies have focused on time-series nonlinearities
and discontinuities in the process dynamics, this paper analyzes nonlinear cross-
sectional dependence between factors that span the yield curve. We show that
the dependence structure of the long and short end of the yield curve exhibits
nonlinearity which can be characterized under a particular focus on extremal
dependence. The starting point of our model is the benchmark-class of ATSMs.
Based on this theory, the term structure dynamics in our study are given by a
Gaussian two-factor generalized Vasicek model. This model was applied for ex-
ample by Babbs and Nowman [6] who find that the two-factor approach provides
a good description of the yield curves for a broad sample of mature bond mar-
kets. Formulating a discrete time model in state-space representation allows for
parameter estimation. We then focus on cross-sectional dependence in the term
structure by modelling general forms of dependence in discrete factor innovations
by a broad choice of copula functions. While a Gaussian factor model allows
for correlated factors only, copula functions as outlined in Joe [62] and Nelsen
[92], generalize the dependence concept by separating the treatment of depen-
dence and marginal behavior. Based on the model, it is possible to characterize
dependence in the center of the distribution independently from dependence in
the distribution tails. Hence, we can impose various combinations of symmetric
as well as asymmetric tail dependence on the factor innovations. Recent studies
which apply copula functions in finance such as for example Ané and Kharoubi [3]
and Scaillet [103] as discussed in Chapter 8, indicate that the concept is useful in

20Other specifications of the term structure include Ahn et al. [5] as well as alternative
formulations of the short rate e.g. by Chan et al. [20] and Ait-Sahalia [1]. For an extense
survey of models see also Dai and Singleton [25]. Besides the linear structure, the distributional
assumptions imposed by ATSMs is critical: Bjork et al. [10] extend the diffusion driven ATSMs
by allowing for jumps. Eberlein and Raible [37] study term structure models driven by general
Lévy processes.
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modelling complex dependence structures. Conditional copula functions are stud-
ied by Patton [95] who models conditional dependence in U.S.-Dollar exchange
rate returns and by Rockinger and Jondeau [101] who examine conditional de-
pendence in international stock market returns. To our knowledge, no evidence
for the dependence structure within the term structure of interest rates has yet
been provided.

In our empirical investigation we focus on the term structure of U.S.-Treasuries
which represent the largest government bond market worldwide. We use a sample
of monthly yield curve observations as in the empirical studies for example by
Ang and Bekaert [4] and De Jong [27]. The sample covers the 20-year period
from October 1982 to December 2001. We form two 10-year subsamples in order
to check for the robustness of the empirical results. The empirical investigation
in the paper is then organized in two steps. In the first step, we use the class of
affine term structure models to specify the yield curve dynamics. In particular, we
choose a two-factor generalized Vasicek model characterized by a jointly normal
bivariate factor process. We then extract factors representing yields, namely the
interest rates on zero-coupon bonds with one year and five years to maturity. The
model parameters are estimated by Kalman filtering as supported by maximum
likelihood arguments; this was also done in previous studies such as for example
Lund [81], Duan and Simonato [32], and Dewachter et al. [28]. In the second step,
we model the dependence structure within the yield curve. We thereby focus on
the dependence relation between short-term and long-term interest rates as rep-
resented by the two yield factors. To this aim, a broad set of different copula
functions is used.

Based on our empirical findings, we show that the class of rotationally sym-
metric elliptical copula functions —including copulas such as the normal and the
Student ¢— has characteristics which violate the observed complex dependence
structure. Hence, the yield factor dependence cannot be characterized by a cor-
relation coefficient as in the normal model nor with a rotationally symmetric
Student t-model. While the copula function of the normal distribution does not
allow for dependence in the tails, the Student ¢-copula does not allow for asym-
metric tail dependence. However, dependence models contained in the class of
Archimedean copulas can indeed capture dependence in the yield curve which is
characterized by distinct asymmetry and upper tail dependence. The Gumbel as
well as a transformed Frank copula turn out to be more suitable choices than the
Student t-copula. Considering all candidate models used in our study, we find
the transformed Frank copula to be the most appropriate model. Moreover, the
goodness-of-fit tests for the two subsamples indicate that our main conclusions
are robust within the observation period.
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Given our empirical findings, we demonstrate the risk management implica-
tions in a bond portfolio setting. Based on the affine model of factor dynamics
and the alternative copula models of factor dependence, we study the pricing ef-
fects of nonlinear dependence in the yield factors. Particularly, we use the ATSM
implication that bond prices are exponential affine functions of the state vari-
ables. By sampling from one year and five year yield factors under the fitted
copula functions we then estimate loss quantiles for bond portfolios with alterna-
tive durations. Our analysis highlights that the normal copula function —which
is implied by the assumption of linear dependence in affine term structures—
yields a substantial bias in the assessment of portfolio risk. When compared to
the transformed Frank copula which captures the asymmetric dependence in the
data, we report a bias structure in the upper and lower bond portfolio loss quan-
tiles which yields values as high as 6 percent as compared to the normal model.

The remainder of this paper is organized as follows. In the next section, we
outline the model used in the analysis. Term structure time series dynamics are
given with the class of ATSMs. Cross-sectional dependence in bivariate term
structure innovations is modeled by two candidate classes of copula functions. The
empirical investigation and the estimation results are given in Section 11.3. The
application to bond portfolio risk management which points out risk implications
of nonlinear factor dependence is given in Section 11.4. Section 11.5 concludes.

11.2 The Term Structure Model

The starting point of our model is the class of benchmark ATSMs. We model
the term structure time series dynamics within a continuous time two-factor
generalized Vasicek model. A state-space representation allows for observational
noise and prepares estimation based on a discrete time vector autoregressive
version of the model. We then focus on cross-sectional dependence in the term
structure by modelling dependence in factor innovations by copula functions. The
functions stem from two wide classes of copula functions. Based on the copula
model, we can impose various combinations of symmetric as well as asymmetric
tail dependence on the factor innovations.

11.2.1 Term Structure Dynamics

Affine Term Structure Models

The affine term structure model is a class of models in which the yields to maturity
are affine functions of some state variable vector. The state vector X is assumed
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to obey the following dynamics
dX(t) = k(0 — X(t))dt + X~/ S(t) dW (1), (11.2.1)

where W is a d-dimensional standard Brownian motion, 6 is a d-vector, x and
¥ are d x d matrices, and S(t) is a d x d diagonal matrix with diagonal elements
which are affine functions of the state vector X. Provided that a parameterization
is admissible, the price of a zero bond P(t¢,7) in time ¢ with time to maturity 7
can be expressed as

P(t,7) =exp (A(T) + B(1)" X (1)), (11.2.2)

where A is a scalar function, and B is a d-dimensional vector function. The
instantaneous interest rate is, as usual, defined as

(11.2.3)

Duffie and Kan [33] show that P(,-) is generically exponential affine, i.e. in the
form of equation (11.2.2), if and only if the mean and variance in equation (11.2.1),
and the short rate r are affine functions in the state variable X. Moreover, A and
B in equation (11.2.2) are obtained as solutions to ordinary differential equations.
Let R(t, ) denote the time-t continuously compounded yield on a zero bond with
maturity 7. The yield to maturity of this bond is

R(t,T) = —M. (11.2.4)

-
The Two-Factor Affine Model
The special case of the two-factor generalized Vasicek model is given by
r(t) = Ro + Xi(t) + Xa(t),
dX(t) = -k X(t)dt + X dW (t), (11.2.5)

where W is a 2-dimensional standard Brownian motion, and

k1 O 4y ozl 0
K= , an = )
0 Ko poa \/1—=p?oy

The parameter Ry is the mean level of the instantaneous rate r, the state processes
X, and X5 fluctuate around zero with mean reversion rates k1, ko, and diffusion
coefficients o, 09, and correlation p. Details on the functions A and B describing
the term structure implied by the two-factor model are given in Duffie and Kan
[33] and Babbs and Nowman [6]; see also Appendix E.1.
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State-Space Representation

Estimation of the above term structure model can be carried out via transfor-
mation to state-space representation; see for example Babbs and Nowman [6],
[7] and Duan and Simonato [32] for term structure estimation applications and
Harvey [57] for a general treatment of state-space models.

Assume that the yields for different maturities are observed with error. After
the addition of measurement error, the yield to maturity, using the bond pricing
formula (11.2.2), can be written as

Rt - A0 _B(T)TTX(LL)

+e(t, 7), (11.2.6)

where ¢(t, 7) is assumed to be a normally distributed error term with mean zero
and standard deviation o._. Hence, given that N bond yields for different matu-
rities are observed, the N corresponding yields have the following representation:

—A(T —B(m1)"
R(t, 1) —o e e(t, 1)
: — : + : X(t)+ : . (11.2.7)
R(t,7n) #:V) % e(t, 7n)

In terms of the state-space model, this equation is referred to as the measure-
ment equation. To obtain the transition equation for the state-space model, the
expressions for the conditional mean and variance for the unobserved state vari-
able process over a discrete time interval of length h have to be derived. Define
m(X(t);h) = E{X(t+h)|X(t)} and ®(X(t); h) = Var(X(t+h)|X(t)), then the
transition equation reads

X(t+h) =m(X(t);h) + B(X(t); R)?*n(t, h), (11.2.8)

where 7(t, h) is a d-vector of Gaussian white noise with ®(X (¢); h)/? denoting
the Cholesky decomposition of ®(X(¢);h).

The two-factor model (11.2.5) defines the state variables as Gauss-Markov
processes and thus the conditional mean and the conditional variance are:

0 e r2 h

e~mh 0
m(x; h) = (m?’j)gxg T = z, (11.2.9)

—02 —zk o1 0 (k1K
@(x-h)—(cph) _ 2,;(1—6 2 1h) Zli—mjﬂ_e (k1+ z)h)
) - 3.7)2x2 — "2 )
N %(1 — e_(:‘il-l—fm) h) ﬁ(l —e 252}1)

(11.2.10)

Given observations of the yield vector in (11.2.6) and under a discrete sampling
scheme with interval h, the exact likelihood function can be established based on
the Kalman filter estimate of the unobservable state variable process X.
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11.2.2 Nonlinear Term Structure Dependence
The Discrete-Time Factor Process

Section above outlined the two-factor affine term structure model which we apply
in our study for capturing the term structure dynamics. The generalized Vasicek
model (11.2.5) is based on continuous time factor dynamics dX driven by two-
dimensional Brownian motion.

The factor process given by transition equation (11.2.8) is linear in the drift
and non-stochastic in the diffusion coefficient. Hence, given (11.2.9) and (11.2.10),
a discrete-time sample of X under h = 1, dropping h superscripts, is given by a
vector autoregressive process of order one

Xig=my1 X141+ (q)1/2)1,1771,t + (‘D1/2)1,27]2,t,

Xoyp =moo Xy 1 + (q)1/2)2,1771,t + (‘I)l/2)2,2772,t, (11.2.11)

with ¢ = 0, 1, ..., T. The variables 7;;, ¢ = 1,2 are uncorrelated iid standard
normal innovations. In this setting, factor dependence is completely characterized
by the correlation coefficient p. Generalizing the above model, we now rewrite the
discrete-time factor dynamics as

Xig=mig X1+ Zig,
XQ’t = m272 X27t_1 + Zgyt, (11212)

and assume that the innovations (Z;4, Z¢) are iid vectors with common joint
distribution function H(z1, z2). This relaxes the assumption of joint normality as
imposed by the class of ATSMs.

Copula Functions

Based on (11.2.12), copula functions allow us to treat general versions of factor
dependence in the two-factor generalized Vasicek model (11.2.5). For the present
application, we restrict the exposition to the two-dimensional case, and will model
the joint distribution of Z; and Z,.

Let F, and Fy, denote the continuous marginal distribution functions of Z;
and Zy, i.e. H(z,00) and H (00, z3), respectively. By transformation we obtain
uniform random variables as U = F, (Z;) and V = F,(Z5). The copula function
C :[0,1]*> — [0, 1] for the bivariate random vector (7, Z,) is defined as the joint
distribution function of the uniform random vector (U, V') = (Fz,(Z1), Fz,(Z2)),
that is, C'(u,v) = P[U < u,V < v]. Hence, it follows

H(Zl,ZQ) = O(FZl(Zl),FZQ(ZQ)), (11213)
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which is known as Sklar’s Theorem, see also Chapter 2.

In the following we will use elliptical copulas as outlined by Chapter 3, namely
the t-copula (see equation (2.3.1)) and the normal copula (see equation (2.3.3)),
and Archimedean copulas, namely the Gumbel copula (see equation (2.3.6))
and the transformed Frank copula C,, as introduced in Chapter 4 (see equation
(4.2.3)).

11.3 Empirical Analysis of Nonlinear Term Struc-
ture Dependence

Our program for the empirical analysis is as follows. First we briefly introduce
the zero-coupon yield dataset. We then estimate the term structure parameters
of the two-factor model based on Kalman filter approach as outlined in Section
11.2.2. The empirical analysis of dependence between unpredictable innovations
in the long end and the short end of the yield curve is based on an examination
of our different parametric copula functions (normal-copula, ¢-copula, Gumbel
copula and transformed Frank copula). We argue that the theoretical properties
of the copula functions given above, together with careful empirical testing, allow
us to identify a suitable model which is consistent with the dependence in the
yield structure.

11.3.1 The Sample

As pointed out in the introduction, our empirical analysis of the U.S.-Treasury
term structure is based on a sample of monthly zero-coupon yields. The yield
observations are obtained from the refined Fama-Bliss zero-coupon yield dataset
as introduced in Fama and Bliss [43]. The maturities range from one to five years.
The sample covers the period October 1982 to December 2001 with 231 monthly
observations. Of course, the amount of sample information comes with a trade-off
concerning stationarity. We did therefore not extend the sample back to periods
in the early eighties where much different economic and economic policy regimes
prevailed. Still, with the given dataset covering nearly twenty years, a check of
robustness of the empirical results with respect to sample choice is important. We
hence form two subsamples covering the October 1982 to December 1991 and the
January 1992 to December 2001 period, which yields 111 monthly observations
and 120 monthly observations, respectively.

In the following, we consider the monthly zero-coupon yields R(t,T;),
t =0, ..., 230 with 7; denoting the i-year to maturity bond with ¢ =1, 2, 3, 4, 5.
All yields are given on an annualized continuously compounded basis. We express
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all maturities in months and the parameter estimates can interpreted as monthly
values; (annualized values can be calculated from these given for reasons of com-
parison). The length of the discrete sampling interval, h, equals 1 month. Table
1 reports summary statistics for the entire sample period as well as for the two
subperiods.

October 1982 to December 2001

Maturity Mean Std. Dev. Autocorr.
1 year 0.0638 0.0201 0.9852
2 years 0.0675 0.0206 0.9859
3 years 0.0701 0.0204 0.9854
4 years 0.0721 0.0205 0.9851
5 years 0.0732 0.0205 0.9858

October 1982 to December 1991

Maturity Mean Std. Dev. Autocorr.
1 year 0.0794 0.0157 0.9641
2 years 0.0837 0.0165 0.9707
3 years 0.0863 0.0165 0.9709
4 years 0.0886 0.0166 0.9696
5 years 0.0897 0.0167 0.9708

January 1992 to December 2001

Maturity Mean Std. Dev. Autocorr.
1 year 0.0494 0.0109 0.9712
2 years 0.0526 0.0098 0.9581
3 years 0.0550 0.0088 0.9447
4 years 0.0569 0.0082 0.9371
5 years 0.0579 0.0080 0.9387

Table 11.1: Summary statistics (sample mean, sample standard deviation, and first
order sample autocorrelation) for the monthly U.S. Treasury zero-coupon yield data.
Sample period 1982 to 2001 and subsamples 1982 to 1991 and 1992 to 2001.

The statistics in Table 11.1 exhibit an on average increasing yield curve. The
sample autocorrelation coefficients indicate typical first order linear dependence
in monthly bond yields. Comparing the results for the subsamples with those for
the entire period indicates lower levels of interest rates together with lower levels
of volatility in yield changes for the second subsample.
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11.3.2 Term Structure Model Estimation

This section presents the term structure estimation results based on Kalman
filtering as outlined in Section 11.2.2. In general, the application of the Kalman
filter requires the state process X to have normally distributed innovations which
is typically violated in estimation applications. This means that the parameter
estimation approach is based on a quasi-likelihood function.?

Based on the Kalman filter approach, maximum likelihood (ML) estimation
yields an estimate of the parameter vector ¢ = (Rg, k1, k2, V1, V2, 01, 02, p) of the
two-factor generalized Vasicek model (11.2.5). As additional parameters to those
previously introduced, we estimate v, and 7, which denote the risk premiums for
the first and the second factor, respectively (see Appendix E.1). We assume a
diagonal covariance structure of the measurement errors (¢, 7) in (11.2.7) where
the diagonal elements are denoted by ¢Z. The estimation results are given in
Table 11.2. All parameter estimates contained in 1 turn out to be significantly
different from zero at usual confidence levels. The estimates of v, are negative
throughout and significantly different from zero for the second subsample, in-
dicating a negative premium in yield curve shifts. The significant estimates of
~9 indicate a positive risk premium on shifts in yield curve steepness. The esti-
mates of the correlation coefficient p reveal a typical negative linear dependence
between the two yield factors. The estimated standard errors o., are relatively
homogeneous for all maturities with a slight tendency for larger measurement
error variability for the 1-year maturity yields.

11.3.3 Derivation of Term Structure Innovations

Given the estimate of ¢ in Table 11.2, we can derive unpredictable innovations
for our term structure sample. By choosing two observable yields, namely the
short end 7,-year and the long end 7-year maturity yield, R(¢,7s) and R(t, ),
the dynamics of the two-dimensional yield factor X can be expressed in terms
of the estimated term structure parameters; see Appendix E.2 for details on the

3Inference based on the Kalman iteration and likelihood maximization faces two specification
issues. Firstly, the Kalman Filter estimates of X; do not exactly correspond to the conditional
expectations given the observed yields since the filter relies on a linear projection. Secondly, in a
non-Gaussian model, the filtering errors —the differences between X; and the linear projections—
are not normally distributed. Brandt and He [15] discuss the first-order approximation for non-
normalities introduced by affine factor dynamics. Duan and Simonato [32] discuss the estimation
of square-root models by Kalman filtering and show in a simulation study that the biases are
small, and, as also the results in Lund [81] indicate, economically insignificant.
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Kalman Filter Estimates

Parameters Oct. 82 to Dec. 01

Oct. 82 to Dec. 91

Jan. 92 to Dec. 01

R, 0.0589
(0.0291)
K, 0.0691
(0.0227)
o, 0.0203
(0.0034)
v, -0.1850
(0.1400)
K, 0.3719
(0.0413)
o, 0.0188
(0.0033)
%, 1.3358
(0.1838)
p -0.7807
(0.0797)
o, 0.0014
(0.0001)
o, 0.0004
(0.0001)
0., 0.0006
(0.0001)
0., 0.0006
(0.0001)
0., 0.0005
(0.0001)

0.0637
(0.0254)
0.1225
(0.0285)
0.0260
(0.0048)
-0.0465
(0.1696)
0.4954
(0.0610)
0.0230
(0.0047)
1.4057
(0.2509)
-0.8199
(0.0774)
0.0008
(0.0002)
0.0006
(0.0001)
0.0007
(0.0001)
0.0008
(0.0001)
0.0006
(0.0001)

0.0286
(0.0176)
0.1918
(0.0143)
0.2402
(0.0151)
-0.4359
(0.1465)
0.2131
(0.0162)
0.2385
(0.0158)
1.5395
(0.2310)
-0.9991
(0.0001)
0.0014
(0.0001)
0.0002
(0.0001)
0.0003
(0.0001)
0.0002
(0.0001)
0.0005
(0.0001)

Table 11.2: Estimation results for the two-factor generalized Vasicek model with

monthly observations on 1, 2, 3, 4 and 5 year maturity yields. Sample period 1982
to 2001 and subsamples 1982 to 1991 and 1992 to 2001. Kalman filter recursions are
initialized with the values of the stationary mean and variance of the unobserved state

variables. Maximization of the log-likelihood function is based on a sequential quadratic

programming algorithm. Heteroskedasticity-consistent standard errors of the parameter

estimates given in parenthesis.
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yield factor representation. From the affine structure, it follows

( Bt 7 ) — A+ BX, = ( AT ) + ( B /. ) X,.
R(t,ﬂ) —A(Tl)/Tl —B(Tl)T/Tl

Due to the autoregressive structure of X in (11.2.12) this results in

( Bt ) ) = (L, —BAB ") A+BAB™! ( Blt=1,m) ) +B ( Frot ) .
R(t,7) R(t—1,7) Lot

In short, this can be rewritten as

( R(t,T) ) it Ap ( R(t - 1,7 ) n ( €rs.t ) , (11.3.1)
R(t,Tﬂ R<t - 177-l> €7t

Note that the common joint distribution function G(e,,,€,,) of the innovations
is completely determined by H(z,,,2,,) and B, i.e. the distribution of (e,, 4, €;,+)
follows from that of (Z.,+, Z, ;) via scaling with a constant.

In the following we choose the one-year and the five-year maturity yield,
R(t, 1) and R(¢,5), to represent the short and the long yield factor, respectively.
Based on the Kalman filter estimate w, we can derive the estimates fip and AR
The time ¢ — 1 conditional expectation E, , ; is defined by equation (11.3.1). We
then obtain the sequence of bivariate empirical yield innovations as

€1 _ R(t,1) — Et—lnﬂ{R(t’ D} t=1....T (11.3.2)
G R(t,5) - E,_, {R(t,5)} ) o -

with T' = 230.

11.3.4 Analysis of the Term Structure Innovations

Estimation of the copula parameter vector based on sample innovations is widely
used in empirical research. Given the parameter estimates for the term structure
dynamics above, the empirical marginal distribution functions are determined for
each component of the bivariate yield innovation series (11.3.2). We thereby check
for the joint normality assumption which is imposed by the ATSM. In the second
step, parametric estimation of the copula functions is carried out. The copula
functions introduced in Section 11.2.2 are our respective candidate dependence
models for the bivariate yield innovation series.

Distributional Properties of the Term Structure Innovations

The Kalman filtering estimates of Section 11.3.2 result in the bivariate yield
innovation series (€y 4, €54)i=1,. 7 as defined by equation (11.3.2).
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Figure 11.1: QQ-plots of the marginal distributions of €; and €5 each against the
standard normal distribution. Sample period 1982 to 2001.

a) Univariate Properties
Closer inspection of the series’ univariate distributional properties reveals that
the assumption of uncorrelated normally distributed innovations appears to be a
suitable approximation.
The empirical marginal (univariate) distribution functions F.  are determined
for each component separately. They are given as

1 T
For(r) = o thl 1i,<a)- (11.3.3)

Figure 11.1 shows QQ-plots of the marginal distributions of the innovations where
the quantiles of the empirical distributions are plotted against those of the stan-
dard normal distribution. The two plots indicate a reasonably good approxima-
tion by the normal distribution, where the fit in the lower tail is better for the
long maturity factor innovations. Additional results from the univariate y2-test
over 17 cells indicate that fitted normality models (with mean zero) cannot be
rejected with p-values of 0.40 for € and 0.15 for €5. We next consider the in-
novations’ time-series properties. Figure 11.2 shows the sample autocorrelation
functions for the univariate and the squared univariate series with lags up to
order 23. The estimated autocorrelations for the raw innovations stay within the
95% confidence intervals with one exception in the €;-plot which is an expected
violation under the given confidence level. For the squared innovations we find six
coefficients to exceed the 95% confidence interval in both plots. These irregular
exceedances are evidence of some heteroskedasticity in both series, though they
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Figure 11.2: Plots of the autocorrelations of the innovations €; and the squared
innovations €z. The dotted straight line indicates the 95% confidence interval
under the Null of uncorrelatedness. Sample period 1982 to 2001.
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are weak as compared to what is otherwise typically observed for financial return
series.

b) Multivariate Properties
While the above results support the marginal model assumptions of the affine
model, a brief graphical analysis of the joint distribution of the factor innovations
in Figure 11.3 casts doubt on the assumption of joint normality of the factor
innovations.
Figure 11.3 gives a scatterplot representation of the joint density of the yield
innovations for the overall sample and the two subsamples. Apart from standard
scatterplot representations of (€4, €5), the figure contains plots of the mapped

observations
(€10 €5, ) =1, 7+ (Us, Vp)e=1,r = (Feyr (€14) , Fer (654)) ey - (11.34)

As an empirical application of Sklar’s theorem (11.2.13), the mapped observations
are defined on the uniform space [0, 1] x [0, 1] = [0, 1]*>. The (€;, €5,)-plots in the
figure reveal a somewhat stronger uniform (e.g. linear) factor dependence during
the second subsample period. All three (uy,v;)-plots reveal some clustering of
observations in the upper right-hand corner of [0,1]? which indicates upper tail
dependence. In contrast, graphical inspection gives little evidence of lower tail
dependence as would be indicated by clustering in the lower left-hand corners
of the plots. In the next three paragraphs, we estimate our parametric copula
functions and analyze which models may capture the observed factor dependence.

Copula Estimation Methodology

Given the above results supporting the univariate model assumptions of the affine
model, we assume in the following that the marginal distributions of the yield
innovations are normal with mean zero and variances O'i, and a?)f, respectively.

Hence, we can write Sklar’s Theorem (11.2.13) as
G. (61, 65) =C (N (61/0’1’.> s N (65/0’57.)) s (1135)

where the notation ‘ - " indicates the choice of one of the respective copula func-
tions Cy, C'y, C, and Cg. For the different copula functions, the parameter vec-
tors are given as wy = (p,v), wy = (p), wo = (9,9), and wg = (J). We use
ML-estimation to obtain simultaneous estimates of the parameters (w.,01,.,05,.)
of the joint distribution function G.. Note that these estimates are optimal for
the overall joint distributional assumption imposed by G., which includes the
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Figure 11.3: Scatterplot representation of the yield innovations and the yield
innovation copula densities. Sample period 1982 to 2001 and subsamples 1982 to

1991 and 1992 to 2001.
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marginal distributions as well as the dependence structure. With the joint den-
sity function g¢.(e1, €5) derived from (11.3.5) the log likelihood function reads

InL. (w~7 01,,05,.5 €1t 65,15) =

&
01,05,

= In { ! (N (e14/01.), N(ess/05.)) N'(ery/o1.) N(ess/os.)]|,
(11.3.6)

where N’ denotes the density of the standard normal distribution and ¢. is one
of our respective copula densities. As the estimates of the copula parameters Wr
will have ML-properties (ignoring the time interdependence filtering impacts),
the estimates of the tail dependence parameters, A\p = A(@r) will be consistent
and normally distributed with

VT(\r =) £ N (0,02). (11.3.7)

Given that A (-) are suitably smooth functions, the variance o3 above can be
approximated by a first order Taylor series expansion of the form

p ~ 2
8)\(wT)
2 2
95 = Z ( Ow; ) %>

i=1

where p = #{w} denotes the number of parameters of the copula model and o,
denotes the ML standard errors of the respective copula parameter estimates.

Diagnostics for the Estimated Copula Models

Based on our estimates of the parametric copulas, we compare the in-sample
model fit based on a set of different goodness-of-fit test procedures. These include
seven statistics which are given as follows.

A general goodness-of-fit test as introduced in Chapter 6 given by equation
(6.1.2) and determined by the mapping rule (6.1.1). Based on a grid of 6 x 6 = 36
cells of identical size for the overall sample, this implies 32 degrees of freedom for
the normal and the Gumbel copula and 31 degrees of freedom for the t-copula
and the transformed Frank copula. For the two subsamples, we use a grid of
4 x 4 = 16 cells of identical size and adjust the degrees of freedom accordingly.

Three additional tests of the overall model fit are based on the maximized log-
likelihood function In L. . These include the Akaike information criterion (AIC),
the Bayesian information criterion (BIC) and the Entropy EN, all introduced
in Chapter 6. To calculate the latter we had run a Monte Carlo simulation.
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Furthermore we use the integrated version of an Anderson and Darling test
(see Anderson and Darling [2] and Chapter 6).

Our last goodness-of-fit diagnostics particularly focuses on the fit in the dis-
tribution tails. The AD statistics, due to its use of the cumulative distribution
function, has the drawback of a smoothing effect particularly present in the up-
per tail. When considering model fit in the tails, we therefore apply a diagnostics
which is based not on the overall probability deviations, but on the probability
deviations at a particular quantile of the joint distribution function. Let C7 de-
note the empirical copula function and C'r the empirical survival copula function,
as defined in Chapter 6 by equations (6.1.1) and (6.2.6). With these empirical
copulas we measure deviations at the upper and the lower tail independently. The
relative lower tail probability deviation PD, is defined as the deviation of the
model probabilities from the empirical probabilities measured at a point (g, ¢) in
the lower corner of the set [0,1]%. Here, ¢ = Ci7 (p), 0 < p < 1 and C5 is the
inverse of the diagonal section of the empirical copula function Cr. The relative
lower tail probability deviation PD), is given as

Pp, - G (Fr (Cy (p) 7pF;;T (Cr () —P (11.3.8)

Based on survival functions, the upper tail relative probability deviation is defined
by the survival probability deviation PDS, at the point (g, q) in the upper right
corner of [0, 1]2. Tt is given as

— —— ——

G.(For (Cr @), For (Cr @) —»
p

PDS, = (11.3.9)
Setting p equal to a small positive value, the probability deviations PD, and
PDS, allow us to measure deviations in the tails. Note that pT" observations are
available for the calculation of the empirical distribution function and —given
that pT" is sufficiently large— ensure convergence towards the true distribution
function.

Note that here we have used a different definition of PD, and PD.S respectively,
as in Chapter 6. Here p is the empirical probability for a point to be in the lower
and upper corner, respectively. In equations (6.2.7) it is the probability under
the hypothesis, i.e. under the assumed distribution model. However, here we are
forced to follow such a data adaptive approach since the lack of enough data.
Using the definitions (11.3.8) and (11.3.9) instead, enables us to force to have
an absolute minimum of data for the calculation of the empirical distribution
functions.
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‘ October 1982 to December 2001

T = 230 51 5s. A D Y o
C, 3.4291E-3  3.4730E-3  0.8556  10.2957 0.3681  0.3681
s.e. (0.1806E-3)  (0.1701E-3) (0.0196) (7.6051) (0.1716) (0.1716)

t-value (18.99) (20.42) (43.76)  (1.35)  (2.14)  (2.14)
Cn 34517E-3  3.4510E-3  0.8537 - 0 0
s.e. (0.1845E-3)  (0.1679E-3)  (0.0190) - - -
t-value (18.71) (20.55) (44.97) - - -
(/7\17. (/7\27. Y ) >\L )\U
C., 3.4152E-3  3.4738E-3  4.1759  1.8101 0 0.5334
s.e. (0.17785E-3)  (0.1665E-3)  (1.1523) (0.2463) - (0.0764)
t-value (19.20) (20.86) (3.62)  (3.29) - (6.98)
Ce: 3.5237E-3  3.5433E-3 - 2.8805 0 0.7279
s.e. (0.18045E-3)  (0.16912E-3) - (0.2047) - (0.0218)
t-value (19.53) (20.95) - (9.19) - (33.46)

Table 11.3: Parametric ML-estimates of the joint distribution function G under the
alternative copula models. Standard errors and t-values of the parameter estimates
given in parenthesis. Sample period 1982 to 2001.

Copula Estimation Results

Tables 11.3, 11.4 and 11.5 give the estimation results for the overall sample 1982-
2001 and the two subsamples 1982-1991 and 1992-2001, respectively. We give
the standard deviation estimates for the marginal distributions as well as the
estimates of the parameters in the copula parameter vectors w;, wy, w,, and wg.
In Table 11.6 we compare the goodness-of-fit for the competing copula models
for the overall sample as well as for the two subsamples. For the evaluation we
use the seven statistics x?, AIC, BIC, EN, AD, PD and PDS as defined above.

Table 11.3 summarizes the estimation results for the joint distribution func-
tions in the overall sample period. The normal copula yields an estimate of the
correlation coefficient of 0.85 which indicates a quite strong positive linear depen-
dence in the yield factors. The subsample results in Tables 11.4 and 11.5 indicate
comparable linear dependence, with an estimate of 0.89 in the first and 0.79 in
the second subsample. The results also show that the estimates of the standard
deviations for the marginal distributions vary somewhat depending on the cop-
ula model, where the Gumbel copula assigns the largest standard deviations to
the marginals. Considering the subsamples, makes obvious that the standard de-
viations in the yield factor realizations were higher in earlier subsample period
1982-1991 than in the later 1992-2001 period. This is also notable in the plots of
Figure 11.3. A graphical illustration of the estimated 1982-2001 joint distribution
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October 1982 to December 1991

T =110 51. 5o, 5 D N v
C, 42012E-3  4.0293E-3  0.8871  27.6529  0.2008  0.2008
s.e. (0.2740E-3)  (0.2684E-3) (0.0206) (77.8816) (0.6241) (0.6241)

t-value (15.33) (15.01)  (43.13)  (0.36)  (0.32)  (0.32)
Cn 42051E-3  4.0202E-3  0.8868 - 0 0
s.e. (0.2746E-3)  (0.2627E-3)  (0.0202) - - -
t-value (15.31) (15.31)  (43.79) - - -
(/7\1,. 82’. 0, ) >\L /\U
C., 4.1678E-3  4.0233E-3  1.9274  2.6545 0 0.7016
s.e. (0.2619E-3)  (0.2596E-3) (1.8253)  (0.6329) - (0.0808)
t-value (15.91) (15.50) (1.06)  (2.61) - (8.68)
Co 4.2200E-3  4.0745E-3 - 3.2772 0 0.7645
s.e. (0.2507E-3)  (0.2526E-3) - (0.3146) - (0.0251)
t-value (16.83) (16.13) - (7.24) - (30.48)

Table 11.4: Parametric ML-estimates of the joint distribution function G under the
alternative copula models. Standard errors and t-values of the parameter estimates
given in parenthesis. Sample period 1982 to 1991.

‘ January 1992 to December 2001 ‘

T =119 51. 5. P D Y o
C, 2.5580E-3  2.9075E-3  0.8148  6.2034  0.4188  0.4188
s.e. (1.8802E-3) (0.1980E-3) (0.0342) (3.1757) (0.1185) (0.1185)

t-value (13.60) (14.68)  (23.83)  (1.95)  (3.53)  (3.53)
Cn 2.5634E-3  2.7780E-3  0.7886 - 0 0
s.e. (0.1864E-3)  (0.1686E-3)  (0.0366) - - -
t-value (13.75) (16.48)  (21.52) - - -
6’17. (/7\27. 0, ) >\L )\U
C., 2.5364E-3  2.8771E-3  5.8523  1.3362 0 0.3201
s.e. (0.1847E-3)  (0.1764E-3) (2.7736) (0.3693) - (0.2408)
t-value (13.73) (16.31) (2.11)  (0.91) (1.33)
Ce 2.5802E-3  2.9629E-3 - 2.4207 0 0.6684
s.e. (0.1895E-3)  (0.1963E-3) - (0.2360) - (0.0372)
t-value (13.62) (15.09) - (6.02) - (17.98)

Table 11.5: Parametric ML-estimates of the joint distribution function G under the
alternative copula models. Standard errors and t-values of the parameter estimates
given in parenthesis. Sample period 1992 to 2001.
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functions under the different copula functions is given in Figure 11.4. The plotted
joint density contour lines visualize the dependence implications of the different
copulas, while the plotted yield innovations allow for a first visual inspection of
model fit.

We next turn to the goodness-of-fit tests in Table 11.6. Given the size of the
data set we have to point out that it is impossible to strictly reject any of the
copula models. However, it turns out that the transformed Frank copula shows
best overall fit and never obtains one of the worst diagnostics results in one of
the two subsamples.

Starting with the overall sample, our results clearly indicate that the trans-
formed Frank copula is the superior dependence model. All seven statistics includ-
ing those which penalize the number of model parameters (x?, AIC and BIC)
happen to favour the C,-model where the second best model follows with some
diagnostic distance. Considering the symmetric models, the Student’s t-model
shows advantages in the y? and the entropy statistics, but not for AIC and
BIC. It is remarkable that the AD test always shows very high deviation values
for the Student’s t-model as compared to the other models. Considering Figure
11.4, an explanation for this finding is that the contours of the Student’s ¢-model
gather quickliest in the overall region of the lower left quadrant [—oo, 0] x [—00, 0]
of the joint distribution function causing large relative deviations in the empirical
versus theoretical distributions for moderate negative values. Additionally, due
to the sample size, the AD statistics should be interpreted with some caution;
the number of 230 observations may not fully guarantee convergence of the em-
pirical distribution functions, which is a requirement for the AD statistics. For
the probability deviations in the tails, PD and PD.JS, we choose p = 0.05 which
yields 11 observations for the calculation of the marginal distribution function.
The PD and PDS results indicate that the transformed Frank copula has lowest
deviations from the empirical observations in the upper as well as in the lower
tail. The symmetric models tend to overestimate the probability of observations
in the lower tail, which is demonstrated by large positive values for PD. The
Gumbel copula shows a tendency to overestimate the probability of observations
in the upper tail showing a large deviation PD.S; note that the Gumbel copula
models overall dependence and upper tail dependence jointly via the § parameter
which implies strong upper tail dependence under strong uniform dependence,
and vice versa.

We next turn to the subsamples, i.e. the 1982-1991 and 1992-2001 subsample
results. Note that the PD and PD.S statistics are now based on p = 0.1 which
under a subsamples’ size of roughly 7'/2, implies a number of tail observations
roughly equal to these for the full sample diagnostics. For the subsamples, the
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Figure 11.4: Contourlines of the estimated densities under the different copula
assumptions with normal marginals. Sample period 1982 to 2001.
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‘ October 1982 to December 2001

T = 230 Cy Cn Cy Ca
X313 (P-value) 0.34 0.25~ 0.90" 0.30
AIC -4204.30  -4204.24 -4215.34"  -4203.88~
BIC -4188.54~  -4191.93 -4199.58"  -4191.57
EN -9.15 -9.15 -9.19% -9.14~
AD 21.61° 0.69 0.52% 0.63
PDy—005 22.58%  20.26%  6.19%" 9.67%
PDS,—005 -4.08%  -721%  -3.67%T  21.76%
’ October 1982 to December 1991 ‘
T =110 Cy Cy C, Ca
X712 (p-value) 0.65 0.73" 0.47 0.37~
AIC -1954.917  -1956.80 -1960.44 -1961.27%
BIC 1942117 -1946.70 -1947.64 -1951.17%
EN -8.92 8917 -8.967 -8.94
AD 14.6768~  0.6751  0.61347  0.6489
PDp—o1 7.25%  6.36% -0.91%"  -1.86%
PDS,01 0.57%  0.40%*"  7.66% = 14.29%
| January 1992 to December 2001
T =119 Cy Cn Cy Ca
X112 (p-value)  0.86T 0.78 0.76 0.12~
AIC -2267.39%7  -2255.23  -2265.22  -2254.10"
BIC -2244.28  -2244.89 -2252.10" -2243.76~
EN -9.49 -9.51 -9.56" -9.47
AD 6.0714~  0.2756"  0.3732 0.2796
PD,_o1 0.72%*T  -9.81% -7.35%  -12.81%
PDS,—1 4.35%  -5.68%  0.41%"  16.22%"

Table 11.6: Goodness-of-fit statistics for the ML-estimates of the joint distribution
function G under the alternative copula models. Tindicates best model fit for a given
statistics, ~indicates worst model fit for a given statistics. Sample period 1982 to 2001

and subsamples 1982 to 1991 and 1992 to 2001.
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assignment of the best goodness-of-fit statistics in Table 11.6 shows notable vari-
ations across the models. This is due to the substantial decrease in sample size,
which makes the interpretation of the results less conclusive than for the over-
all sample. However, the transformed Frank copula still obtains the best results
when evaluated by the number of best fit-results among all models. Also, the C,,-
copula function is never assigned one of the worst-fit results, what does not hold
for the other models. Given a smaller data set, the statistics x2, AIC and BIC
considerably penalize the two-parameter copula functions. At the same time, the
C; parameter estimate of v in Table 11.4 as well as the C,, parameter estimate of
0 in Table 11.5, exhibit high standard errors with corresponding low respective
t-values. A relatively stable pattern in Table 11.6 is provided by the PD.S statis-
tics; high deviations for the overall sample as well as for the subsamples point
out that a drawback of the Gumbel copula is its tendency to overestimate the
upper tail.

Turning to the first subsample, 1982-1991, C,, shows the best fit according to
the EN, AD and PD statistics. The one-parameter copula models Cy and Cg
also perform relatively well. The normal model even gives best fit according to
the chi-square test statistics. In the second subsample, 1992-2001, as mentioned
above, we report lower estimates of the volatility in the marginal distributions.
However, our results do not indicate that the dependence structure is much dif-
ferent in the two subsamples. The C,-copula again yields results better than for
the other models with best fit as measured by the BIC, the EN and the upper
tail fit PDS. The Student’s t-model has the second worst BIC' and worst AD
statistics; still it has the best fit according to the x? and AIC measures. The
normal copula performs reasonably well having the best AD statistics and the
worst BIC'. To summarize the subsample comparison results, we can state that
—given a high variability in the statistics— the Gumbel copula provides a second
best fit in the first subperiod while the normal copula provides a second best fit
in the second subperiod. In both subperiods however, the statistics indicate that
the transformed Frank copula has best overall fit.

11.4 Application: Measuring Bond Portfolio Risk

Based on the affine term structure model of Section 11.2.1, the term structure
of interest rates is completely described by two risk factors. Clearly, the depen-
dence characteristics of the joint distribution of the 1-year yield and the 5-year
yield influences the risk measurement of portfolios. In this section we analyze the
different distributional specifications’ impact on risk management decisions.

We start with a graphical illustration of the copula function estimation results
of Section 11.3. Figure 11.5 contains four plots of the fitted conditional densities of
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the 5-year yield given a fixed realization of the 1-year yield. Each plot represents
one of the four different copula models. As can be seen, the conditional densities
show large structural differences especially including the probability of joint upper
or lower tail events. For example, given a negative shock to the short rate of —
0.02 in the transformed Frank model, the conditional density for the five year
yield has high variance while, given a positive shock, the conditional density has
low variance. As illustrated, the structure looks much different for the symmetric
models.

We next apply the estimated dependence structures to quantify the risk of
different bond portfolios and compare the results. We consider portfolios which
invest in the 1-year zero bond at price P(t,1) and the 5-year zero bond at price
P(t,5) and then study the return of this investment after 1 month of time. Denote
by R the return of the portfolio which has initial portfolio duration A. As a risk
measure ¢ we utilize Value-at-Risk (VaR), i.e. the quantile of the profit-and-loss
distribution of the portfolio. When adjusted for the expected portfolio return
VaR is

0= Fg,(a) — E{Ry},

where « is the confidence level and FF, is the cumulative distribution function of
RA. We introduce the superscript ‘+’ to the risk measure o when measuring the
risk of a long position, and the superscript ‘—’ for measuring the risk of a short
position, respectively. Additionally, the subscript at the risk measure p indicates
the copula applied for defining the dependence structure. The confidence levels
we discuss are @ = 99% and o = 99.9% for which the VaR numbers o}, o/, of,
of, and oy, 0r , 0g, 0, are calculated.

We compare the risk measures o by fixing the risk measure induced by the
normal copula which is the standard risk measure, and calculate the relative
deviations from this measure. The relative deviations are

A — 0. — ON
ON

Y

b

indicates the choice of one of the three copula functions Cy, C,,, and
Cg. The relative deviations A. for long and short bond portfolio holdings as a

where* -

function of the initial duration A are plotted in Figure 11.6.

The results for holding a long position in the interest rate portfolio A are
displayed in Figure 11.6 (upper plots). The results for the t-copula model A} are
indicated by the solid line. As can be seen in the upper left plot, the t-copula
produces VaR numbers which are close to the normal copula model for the 99%
confidence level. When increasing the confidence level to 99.9% in the upper
right plot, the maximum relative deviation increases from 0.2% to 3% which
reflects the property of the ¢-copula to adopt to the (upper) tail dependence
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existing in our data set. A similar pattern is observed for the model given by
transformed Frank copula (see the dashed line). The relative deviation A} takes
a maximum value of approximately 4% for the 99.9% confidence level, and the
VaR is persistently larger than the numbers based on the t-copula model. The
Gumbel copula (dashed-dotted line) generates the highest VaR. The maximum
relative deviation A} is 2.5% for the 99% confidence level, and around 4.5% for
the 99.9% confidence level, respectively.

Relative deviation from the n-copula model Relative deviation from the n-copula model
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Figure 11.6: Relative deviation of the risk measures from the normal copula
model. Upper pictures A1 for the a = 99% quantile (left), and o = 99.9%
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quantile (right) respectively. Lower pictures A~ for the & = 99% quantile (left),
and a = 99.9% quantile (right) respectively. The solid line belongs to the t-
copula, the dashed-dotted line to the Gumbel copula, and the dashed line to the
transformed Frank copula. Sample period 1982 to 2001.

Figure 11.6 (lower plots) show the results A~ for a short position in bond
portfolios with initial duration A. The relative deviation of the ¢-copula model
A; has similar characteristics as in the case of the long position. The VaR turns
out to be relatively close to the VaR given under the normal copula, where the
positive deviations tend to become overall larger when the confidence level is
increased from 99% to 99.9%. The t-copula quantiles exceed the normal ones be-
cause the t-copula features lower tail dependence which is not present in the data.
In contrast to the t-copula, the transformed Frank copula and the Gumbel copula
both produce negative relative deviations of the VaR measures when compared
to the normal copula. The maximum relative deviation is around 3% for the 99%
confidence level and around 6% for the 99.9% confidence level.

The above findings can be interpreted as follows. In Section 11.3.4, the trans-
formed Frank copula proved to be the dependence model which reflects the ob-
served dependence structure in the most appropriate way. Assuming that the data
are generated by a joint distribution with normal marginals and a transformed
Frank copula then implies that the normal copula produces a systematic bias in
measured VaR.

For long bond portfolio positions, the normal copula tends to underestimate
VaR where the lack in risk capital may approximately amount to up to 4% in
our example. Clearly, the negative bias in VaR produced by the normal copula
is related to the upper tail dependence which is present in the data but not a
characteristic of the normal dependence model. The t-copula results in VaR num-
bers which are much closer to the transformed Frank numbers than the normal
numbers with a maximum deviation of approximately 1%. This finding is due
to the upper tail dependence which is incorporated in the ¢-copula. The Gumbel
copula features characteristics which are present in the analyzed data set: upper
tail dependence and asymmetry. The VaR numbers are of reasonable quality es-
pecially for the high confidence levels of 99.9%. For the 99% confidence level, the
Gumbel copula produces the maximum relative deviation to transformed Frank
numbers. For this particular case, the Gumbel copula performs poorly compared
to the alternative dependence models (Figure 11.6 upper left plot).

For short bond portfolio positions, the normal copula overestimates VaR. The
maximal relative deviation takes a value around 6%. Though the data were not
found to show lower tail dependence in Section 11.3.4, which is in accordance with
the normal copula, bias is again present but with opposite sign. The explanation
for this finding is reasonably simple. As the upper and lower tail of the normal
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copula are estimated simultaneously, the realized estimate is a balanced result of
both shortcomings of the normal copula, namely its lack of tail dependence and its
symmetric characteristic. Also, due to its symmetric structure, the absolute biases
generated by the t-copula are high when compared to the transformed Frank
model. Hence, the t-copula turns out to produce overestimated VaR numbers for
short positions. As it turns out, even for moderate confidence levels of 99%, the
copula functions’ ability to reproduce a complex observed dependence structure
becomes important: The Gumbel copula is a parsimoniously parameterized model
which captures upper tail dependence. The relative deviations for the best-fitting
transformed Frank model indicate that the normal model can produce VaR biases
of up to 6% in the given example.

11.5 Conclusion

As is well-known, the concept of linear dependence breaks down under non-
normality. However, as the present investigation documents, statistical theory
offers more flexible models of dependence which are relevant to financial mod-
elling.

Based on the benchmark model given by the affine class of term structures
which assumes joint normality in yield innovations, this paper analyses cross-
sectional nonlinearity in the term structure of U.S.-Treasury yields. The nonlin-
earities documented in the data represent a profound statistical characteristic
which is shown to be of economic significance as well. Deviations from linear
dependence have implications on risk management when financial risk is for ex-
ample measured by the commonly used VaR methodology. Most strikingly, we
conclude that the normal copula as a benchmark model of dependence imposes
two main problems, namely absence of tail dependence and symmetry, which pre-
vent accurate risk measurement. Our findings are not limited to bond pricing and
bond portfolio VaR applications. The model bias due to the normality assump-
tion should be even more pronounced when the pricing implications for nonlinear
contracts, i.e. for interest rate derivatives, are considered.



Chapter 12

Generalized Elliptical Distributions
- Models and Estimation

This chapter, covered by Frahm and Junker [48], generalizes the class of multivariate ellipti-
cal distributions, allowing for asymmetry but preserving all the ordinary components, i.e. the
generating variate, the location vector, and the dispersion matrix. Furthermore, some of the
limitations mentioned in the former chapters can be avoided. A positive definite ML-estimator
for the dispersion matrix which does not require any assumption about the generating distri-
bution function is derived. Even though the estimator recognizes all the available data points it
is robust within the class of generalized elliptical distributions. Given robust estimates both for
the location and the scatter it is shown how the generating distribution function can robustly
be estimated, too. Finally, some generalized elliptical distribution models are presented.

Here we will only give a theoretical outlook. Further results and empirics about the proposed

approaches will be given in the forthcoming doctoral thesis by Gabriel Frahm.

12.1 Motivation

Every d-dimensional elliptical random vector X can be represented by
x4 p+RVEU, where € R, /S € R¥F, \/i\/il =: 3, U is a k-dimensional
random vector uniformly distributed on the unit hypersphere, and R is a nonneg-
ative random variable independent of U (Cambanis et al. [17]). The covariance
matrix of X corresponds to E (R?) /k - X, provided the second moment of R is
finite (Fang et al. [45]). But estimating the covariance matrix of elliptical ran-
dom vectors via the method of moments, especially the correlation matrix by
Pearson’s correlation coefficient is dangerous when the underlying distribution is
not normal (Lindskog [76]). This is because Pearson’s correlation coefficient is
very sensitive to outliers and the smaller the tail index of R is the higher is the
estimator’s variance. Indeed, there are a lot of robust techniques to insulate its
estimation from the ‘bad influence’ of outliers (Pena and Prieto [96]). All these

180
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methods principally fall back on the Mahalanobis distance of the observed data
points and one either has to detect the outliers so as to eliminate them or to
specify another more subtle penalty function applying to extreme realizations.
But from the viewpoint of extreme value theory this has the annoying effect of
neglecting useful information contained in the extremes. In particular, estimating
the tail index of R is impossible without outliers.

In this article the class of multivariate elliptical distributions is generalized
to allow for asymmetry. Nevertheless, all the ordinary components of elliptical
distributions, i.e. the generating variate R, the location vector 1 and the disper-
sion matrix ¥ remain for this new class of ‘generalized elliptical distributions’.
We introduce an ML-estimator for X, recognizing all the available data points.
Positive definiteness is guaranteed and the estimator is robust since it does not
require any assumption about the cumulative density function (c.d.f.) of R, i.e.
the generating distribution function of the generalized elliptical random vector.
Hence it is not disturbed by outliers. Furthermore, given the estimates of location
and scatter the empirical generating distribution function can be extracted even
preserving the outliers. Hence the tail index of the generating variate R can be
estimated using standard methods from extreme value theory (Embrechts et al.
[38]). For the special case of an elliptical random vector X also the tail-dependence
coefficient (Joe [62]) of two arbitrary components of X can be estimated given
the estimates for the tail index and the dispersion matrix (Frahm et al. [50]).

12.2 Generalized Elliptical Distributions

12.2.1 Definition

Definition 12.2.1. The d-dimensional random vector X is said to be ‘generalized
elliptically distributed’ if and only if there exist a k-dimensional random vector
U, uniformly distributed on the unit hypersphere

Sti={reR": ||z|,=1},

a nonnegative random variable R, a vector p € IRY, and a matriz VS € IR¥F,
such that
XL u+RVEU. (12.2.1)

In contrast to elliptical distributions the generating variate R may depend
stochastically on the direction determined by U. Hence the dependence structure
of R and U constitutes the multivariate c.d.f. of X essentially. In particular, X
does not need to be symmetrically distributed anymore, and its covariance matrix
is not necessarily equal to E (R?) /k - X.
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Remark 16. A d-dimensional random vector X is elliptically distributed if and
only if there exist a vector u € IRY, a positive semidefinite matriz ¥ € IR,
and a function ¢ such that the characteristic function of X — u can be rep-
resented by t — ¢ (t'St) (see, e.g., Cambanis et al. [17]). The function ¢ is
called the ‘characteristic generator’ of X (Fang et al. [45]). Note that in Defini-
tion 12.2.1 it is not presumed that rank (X) = k. Nevertheless, if R and U are
stochastically independent, the characteristic function of X — p corresponds to
t = ¢ ((VE)HVI)) = ¢ ('St), where t — ¢ (t't) is the characteristic func-
tion of RU. Conversely, if a random vector X is elliptically distributed then X
1s always representable as in Definition 12.2.1, with R and U being independent
(Cambanis et al. [17]). Hence the class of generalized elliptical distributions in-
cludes the class of elliptical distributions.

Remark 17. From Remark 16 we see that the dispersion of an elliptically dis-
tributed random vector is uniquely defined via the matrixz 33, i.e. the particular ma-
triz decomposition is irrelevant. Intuitively speaking, this is because (under some
conditions concerning /% ) the linear transformation u — VS u (u € S*~1) gen-
erates an ellipsoid which is invariant under different decompositions of X2, and R
does not depend on the realization of U. But for generalized elliptical distributions
this is not true and /X must be —in general— specified.

Now we will give some remarks on the numerical simulation of generalized
elliptical random vectors.
Remark 18. The k-dimensional random vector X ~ N (0, Iy) has the stochas-
tic representation X L VX2U, where U is uniformly distributed on S*' and
stochastically independent of \/x3. Since the relation

U as RU
U1, — IRUI,

vl

U a.:s.

holds for any positive random wvariable R, we can always use X/|X|2 with
X ~ N (0, 1) to simulate the random vector U.

Remark 19. A d-dimensional generalized elliptically distributed random vec-
tor X can be simulated after specifying a location vector p € IR, a matriz
VY € R™* and the conditional distribution functions r +— Friy—, (r) =
P (R <r|U =u) for every u € S¥=1. Using the conditional quantile functions

pr— Friy—u (p) = inf{r: Frig=y (1) ZP}7 0<p<l,
the random vector X results from

X i=p+Fyy_5(2)VEU,

where U is uniformly distributed on S¥* and can be simulated as described in
Remark 18, and Z ~ U (0,1) being stochastically independent of U.
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Theorem 12.2.2. Let X be a d-dimensional generalized elliptical random vector
with p € R and VY € R™? with det(vV'E) # 0. Further, let the joint c.d.f. of
R and U be absolutely continuous. Then the probability density function (p.d.f.)
of X 1is given by

z— fx (2) = det (E71) - g (o —p) 27 (@ —p)u),  x#p,
where u = V3 w) /(@ —p) 21 (z — p),
r(5)

omd/2

t—g(t;u) =

. \/Ei(dil) fRIU=u (\/Z) ; t >0,

and friu=u ts the conditional p.d.f. of R under U =u € St

Proof. Since the joint c.d.f. of R and U is absolutely continuous the joint p.d.f.
(r,u) — fruy (r,u) exists. Consider the conditional density function of R, i.e.

r = friu=u(r) = fru) (r,u) /fu (u) (r>0), where fy(u) =T (g) /(27%?) is
the uniform density on the unit hypersphere S%! (Fang et al. [45]). Thus the
joint p.d.f. of R and U corresponds to

d
(r,u) — Jro) (r,u) = —d2/2 - fRIU=u (r), r > 0.

21

To get the density of RU =: Y we define the transformation
h:]0,00[ x 841 — RN {0}, (r,u) — ru =: y. Note that h is injective and
the p.d.f. of Y is given by

yr—fr ) = forey (B W) - 14T,y A0,
where Jj, is the Jacobian determinant of dru/0 (r,u)". Let
Sti={zeR": |z|,=r>0}

be the hypersphere with radius r. Since the partial derivative 0 ru/Jr has unit
length and is orthogonal to each tangent plane dru/0u’ on S¢~! which has only
d — 1 topological dimensions, the Jacobian determinant of d7ru/0 (r,u)" is given

by
1 0’
A (A B e

Further, h=' (y) = (|lyll,, v/ llyll,) and so the p.d.f. of Y corresponds to

y— fv ) = fr) Uyl 9/ lyla) - lyll; ™"

I (¢ e
DO e (). w0,
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where u = y/||y||,- Now we define the transformation ¢: R {0} — R\ {u},
y +— pu+ /3y =: z. The Jacobian determinant of d(u + v/ y)/dy’ corresponds
to J, = det(vY), and thus the p.d.f. of X := pu+ VXY = pu+ RVIU is given
by
w— fx (@)= fv (¢ (@) - 1T
-1
—f (V2 @ m) Jdet(VE)T A

Since | det(\/_ )| = det(v/Z /) = /det(¥) and hence
| det(v/2 = y/det(X71), the p.d.f. of X becomes

= fx (@) = Vdet(S): ()nf (2= ) I3 e (VS (= 0)1)

2rd/2
with .
_VE (x—p)
= — 7
IVE (@ =),
and x # p. This is equivalent to the formula given in Theorem 12.2.2. |

12.2.2 Spectral Density

Definition 12.2.3. Let VS € RF with det(vEVE') = det (X) # 0. We call
the random vector
VI U

S = —
=T VR U,

the ‘unit random vector generated by v/3 .

(12.2.2)

Remark 20. Let X be a d-dimensional generalized elliptically distributed random
vector with 1 = 0, VI defined as in Definition 12.2.3, and let the generating
variate R be positive. Then

g _as RVEU 4 X
VETORVEUL,  IXDL

which neither depends on the particular c.d.f. of R nor on the dependence struc-

ture of R and U.

(12.2.3)

Note that S 5 does not have a density in the Lebesgue sense but a spectral
density on the unit hypersphere.

Theorem 12.2.4. The spectral density function of the d-dimensional unit ran-
dom vector generated by /X corresponds to

d
s 1 (s) = 12175}/2 etz - VeE s L se sttt (12.2.4)
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Proof. Due to the invariance property described in Remark 20 it can be assumed

w.lo.g. that X < VEVEU ~ N(0,%) (see also Remark 18). The p.d.f. of X
under the condition || X||, =7 is

x— . (T) ::C,Tl-gox(x), xESf_l,

where @ x is the Gaussian p.d.f. of X and ¢, := defl vx (x) dz. To get the spectral

density of
St X X ~N(0,%)
R X s

we define the transformation h: R {0} — S, z +— z/|z||, =: s. Further,
let 1, be defined as the p.d.f. of the random vector h (X) = X/ || X||, under the
condition || X[, =7 >0, i.e.

s (s) =@ (W1 (5) - [ = 61 ox () - ||, s €8T

Here Jj,-1 is the Jacobian determinant of dh~!/ds’ for a given radius r, i.e.

ors
-1 = det )
Jh (§] (83’)

Since the tangent plane on the hypersphere S¢! has only d — 1 dimensions (see
also the proof of Theorem 12.2.2) J,-1 is given by

thl = det (T . Id—l) = T’d_l.

Now the p.d.f. of S s is

o0

s (s /% crdr:/gpx (rs) - 141 dr

/ 1 /det (sr) = (sr)) T,

Substituting r by /2t/s'%~1s yields to

B r /det(Z—l).eX B d-2 sy
Sr—>w(s)_/ 7(2@6[ p(=t) V2t Vs'% dt

VAUET) gt s /exp(—t) el
T \/_

0
Vaet(2) Ve iy < ) , s e S

7Td/2
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Remark 21. If & = I, then ¢ (s) = T'(d/2)/ (2n%?) for every s € S* .
Thus the unit random vector generated by I; is uniformly distributed on S
and 272 T (d/2) is the surface area of S4*.

Remark 22. The spectral density function v is invariant under linear transfor-
mations X +— o, o > 0, since

and
—d

—d

s(on) s = o2V/s'E s
Remark 23. The unit random vector S s is generalized elliptically distributed,
since S, 5 L+ RYEU, with 1 =0 and R = IVEU|3!. Anyhow, the distribu-

tion of S /5 does not depend on the particular matriz decomposition ¥ = \/i\/i/
(see Remark 17).

12.2.3 Estimation

In the following we will derive some robust estimation methods for the loca-
tion vector u, the dispersion matrix ¥, and the generating distribution function
r +— Fg(r) := P(R <r), assuming that the d-dimensional random vector X
is generalized elliptically distributed. The sample realizations of n independent
copies of X are denoted by

Ti1 T12 - Tin
X211
€Tr .= Xq1 Tog - T = .
i mdl ... . .. l‘dn ]
Remark 24. Let hy, ..., hg be some continuous and strictly monotone increasing

functions. If Y ~ F, where F is some multivariate generalized elliptical c.d.f.,
then x — G (x) := F (hy (z1) ..., ha (xq)) is the multivariate c.d.f. of the random
vector X := (hy (Y1),..., hy (Ya)). This can be used for modelling new distribu-
tion functions based on the class of generalized elliptical distributions. Conversly,
if X is not generalized elliptically distributed, one possibly could nevertheless find
some strictly monotone increasing functions hy, ..., hq such that the random vec-
tor h(X) :== (h1 (X1),...,hq(Xa)) is generalized elliptically distributed. Then the
multivariate c.d.f. of X is given by x +— G (z) = F (h(x)), where F is the multi-
variate generalized elliptical c.d.f. of h(X). This can be used for pre-processing,
i.e. the estimation methods for generalized elliptical distributions are to be ap-
plied on the transformed data h(x.;) (j =1,...,n) so as to obtain F' and thus

G=Foh.
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Hence the following estimation methods can be applied even if the observed
data are not generalized elliptically distributed provided the transformations
hi,...,hg are known. Suppose that both the marginal distributions Gy, ..., Gy
of X and the marginal distributions Fi,..., F; of Y are continuous and that
the copula C' of X is generated by Y, i.e. P(G1(X1) <uq,...,Gq(Xg) <wug) =
P(Fy (Y1) <wu,...,Fy(Yy) < uyg) for all (ug, ..., ug) € [0,1]%. Then the transfor-
mations hy, ..., hq are given by h; = F o G; (i = 1,...,d) since the multivariate
c.d.f. of X corresponds to

C(Gy(21),...,Gq(zq))
P(Gy (X)) <Gy (x1),-..,Ga(Xa) < Gylzq))
= P(F, (Y1) <Gy (21),...,Fi(Yy) < Gq(x4))
P Yy < Fy (Gi(21)),...,Ya < Fy (Ga(a)))
F(F(Gi(21)), .- Fy (Ga(za))),

where Fy~,..., F; are the marginal quantile functions of F, i.e. p — F/~ (p) :=
inf{z; : F;(z;) >p},pel0,1] (i=1,...,d). The c.d.f. G is said to be a ‘meta-
elliptical distribution function’ (Fang et al. [44]).

Estimating the dispersion matrix X

First, we assume that the assumptions of Remark 20 are fulfilled. Then the disper-
sion matrix ¥ of X can be estimated up to a linear transfomation by maximizing
the log-likelihood function

log (E (i (5., sn)> x n -log (det(i’1)> —d- ]Zi;log (sfjifls.j> , (12.2.5)

where
flf.j

S.j 1= 7=1..n.
T fagly Y

Even though this is a true ML-procedure there is no need for information about
the generating distribution function. In particular, the estimator does not depend
of the moments of X being finite and not even on their existence. This is due to
the separation of the radial and the angular part of X caused by relation (12.2.3).

Proposition 12.2.5. If ¥ = \/E\/EI, then det (X) # 0 if and only if ¥ is
positive definite.

Proof. 1f det (X) # 0 then rank (\/il) = d, implying that ||\/§/x||2 > ( for every
x # 0. Hence 0 < (\/E/x’)(\/i/x) = VEVE ' = 'S (V2 #0). The ‘if’ is

obvious. M
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Since det (X)) # 0 the matrix > must be positive definite and we can apply
the Cholesky decomposition > = LI/, where L is a real-valued lower triangu-
lar matrix. Thus ! = (LL)™" = (LY L' = I'T, with I := L~! being a
lower triangular matrix, too. Instead of the log-likelihood function (12.2.5) the
reparametrized form

log (L (T';5.4,....5.)) o< n-log (det (I'T)) —d - > log (s,I'Ts;)  (12.2.6)

J=1

is proposed for two reasons. Firstly, if the function (12.2.6) is maximized numer-
ically the algorithm does not have to calculate the inverse of ¥ anymore which
prevents suboptimal solutions due to 3 being close to singularity. Secondly, it is
casy to control the positive definiteness of 3 by means of I' which is shown by
the following proposition.

Proposition 12.2.6. Let I' € IR be a lower triangular matriz. The matriz
(FT)_1 is positive definite if and only if T'y; #£ 0 for alli =1, ...,d.

Proof. Since the determinant of any triangular matrix corresponds to the product
of the entries on its main diagonal, det (I') # 0 if and only if I';; # 0 for all ¢ =
1,...,d. This is equivalent to the existence of I'"! and thus of (I'T") ™" = I~V
Since I'"! is nonsingular the positive definiteness follows directly from Proposition
12.2.5. [

Remark 25. When the constraint I'y; # 0 (i =1,...,d) is fulfilled in each it-
eration, the existence and positive definiteness of ¥ = (F’F)_l 1S guaranteed.
Conversely, since every admissible S is positive definite there is one and only
one lower triangular matriz L such that LL' =% and det(X) = det?>(L) > 0, i.e.
the matriz L must be nonsingular. Then the inverse L~ exists and corresponds
to I'. That is to say each matrix Y has a unique representation in L', and vice
versa. So the reparametrized log-likelihood function (12.2.6) must lead to the same
mazimum as the original one (12.2.5).

Remark 26. The log-likelihood function (12.2.6) is invariant under linear trans-
formations of I' (see also Remark 22). Thus another constraint must be considered
to get a unique solution for the mazimum likelihood. A simple straight forward
one is given by I'y ; = 1. An alternative constraint is given by

- 1
H?:Z Lii ’

so that the determinant of T is always 1 what is equivalent to det(X) = 1.

I'ia
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Let I'* be the ML-estimator of I', i.e. I'* := argmaxlog (£ (I';-)). Due to
the equivariance property of I'* discussed in Remark 25 the ML-estimator of the
dispersion matrix 3 corresponds (up to scale) to

~

Sg = (T =03, (12.2.7)

where ¥ is the virtual estimator of ¥ and ¢ > 0 is an unknown scaling constant.
Let the correlation matrix of X be defined as p := [Eij / EiiEjj] even if the
second moment of the generating variate R is infinite. Note that X;; > 0 for every

1=1,...,d since ¥ is positive definite. The correlation matrix can be estimated
by
ps = | ——— |, (12.2.8)
28,0+ 28,55

robustly. We call both f]s and pg ‘spectral estimators’, respectively.

Estimating the location vector p

Now let 1 be an arbitrary real-valued location vector, i.e. p € IR?. If 1 is known,
we can apply the spectral estimator simply on

x.j—,u

S, = —
T e —uly

j=1..n.

Otherwise, the location vector must be substituted by an adequate estimate /.

Definition 12.2.7. Let F~ be the i-th marginal quantile function (for the defini-
tion see Remark 24) of an arbitrary d-dimensional random vector X (i =1,...,d).
The median of X 1is defined as the vector

ros = |5 (B (057) + F (057))].

If F=(0.57) = F7(0.5%) for alli = 1,...,d, then we say that X has a ‘strict
median’.

Proposition 12.2.8. Let the random wvector X be generalized elliptically dis-
tributed with location . If X has a strict median, then u corresponds to the
median of X.

Proof. Because the median of X is strict, it is sufficient to prove that

P(X;<p)>05 A P(X;<p)<05  i=1,...4d (12.2.9)
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Let V := v/ U and V; be the i-th component of V. Since X; 2 ;i +RV;, assertion
(12.2.9) is equivalent to
P(RV;<0)>05 A P(RV;<0)<0.5, 1=1,...,d.
Obviously, P (V; < 0) = 0.5. Furthermore,
PRV, <0) = / P (Rv; < 0|V, = v;) dFy. (v1)

—00
0

> /P(Rvi§O|Vi:vi)dFVi(vi):O.5, i1, .d

since P (Rv; <0|V;=wv;) = 1 for P-almost all w € Q with V; (w) = v; < 0,
1=1,...,d. Otherwise

[e.e]

0
since P (Rv; < 0|V; =wv;) = 0 for P-almost all w € Q with V; (w) = v; > 0,
1=1,....,d. |
Let z},..., 2z}, be apermutation of the i-th component realizations z;1, . .., T,

such that zj; <... <uz},,i=1,...,d. Further, let z7; be the j-th column vector

m)

of the matrix z* := [:cfj} The sample median

~ ) % : (xio.f)-n + mio.s-ml) »  neven,
Zo5mn = .

L. 0.5-(n+1) n odd,
is proposed as a robust estimator for x4 due to its persistence against non existing
higher moments. That is to say the sample median is not disturbed by outliers.

Remark 27. Since we presume that X has a strict median, the sample me-
dian converges strongly to the theoretical one (Pestman, [97]). Due to Proposition
12.2.8 this is equivalent to Tos,, —** @ asn — oo.

Now the spectral estimator can be applied on
T — Tos

B B
|25 — Zosl,’ U

S.j =

where Zo5 1= Zo5,, for a given sample size n. Hence the spectral estimator be-
comes pseudo-ML.



191

Estimating the Generating Distribution Function

For estimating the generating distribution function we require additionally that
=d, i.e. VI € R™ being nonsingular. Then, due to the stochastic represen-
tation (12.2.1) of generalized elliptical random vectors the radial variable R is
given by
a.s. d -1
RE RUJ, = IVE (X = p) |,

This is equivalent to the Mahalanobis distance of X because

VE (X~ )], = J(@l (X =) (VET (X =) = (X =) 51 (X — ).

Thus, having the spectral estimate 5 g of the dispersion matrix Y, the realizations
of Ry,..., R, can be estimated by

5.
—= =1,...
N

up to an unknown scale parameter o > 0, too. Here ﬁj symbolizes the virtually

7%5,3' = \/(939 - 30.5)I§§1 (. —2o5) = , M, (12.2.10)

estimated realization of R;, i.e.

A~

7/?\,3' = \/(Z‘] — §0.5)/ -1 (ZE.]‘ — 33\0.5), ] = ]_, oo, n.

Obviously, igl in Eq. (12.2.10) can be replaced by I'T™* from Eq. (12.2.7), i.e.

R = \/(% = To5) TT* (25 — Bos) = [T (w5 = Tos) |, J=1,....n.

Remark 28. Suppose that the survival function of R is regqularly varying with
tail index o > 0 (Resnick [100]), i.e.

Fr(z)=L(z) 279 x>0,

where L is a positive, Lebesque measurable function on 10,00 with
L(tx) /L (z) — 1, x — oo, for every t > 0. Then the survival function of R/\/o
1s reqularly varying with the same tail index. Hence for estimating the tail index
it 1s sufficient to observe R merely up to scale.

Remark 29. Suppose that the random vector X s elliptically distributed with
R possessing a reqularly varying survival function with tail index o > 0. The
tail-dependence coefficient (Joe [62]) of two arbitrary components of X, say X,
and X, corresponds to

M = lim 2w

ij_u\O u 1—|—,0U

i 1— py;
— 2. T <\/a 1. ﬂ) , (12.2.11)
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where C' is the copula of (X;, X;) and toyy is the survival function of Student’s
univariate t-distribution with o+ 1 degrees of freedom (Frahm et al. [50] in con-
gunction with Schmidt [104]). Let as be an estimate of the tail index based on
7%5,1,7%5,2, o ,ﬁgm gwen by Eq. (12.2.10). Further, let ps;; be the spectral esti-
mate of the correlation coefficient of X; and X;. Then the tail-dependence coef-
ficient can be estimated coherently by substituting o and p;; in Eq. (12.2.11) by
their corresponding spectral estimates Qg and pg ;.

12.3 Models

If the radial variable R is stochastically independent of the direction vector U,
then the well investigated traditional class of multivariate elliptically contoured
distributions emerges (see Cambanis et al. [17], as well as Fang et al. [45]). This
class contains a lot of well-known multivariate distributions like, e.g., the Gaus-
sian distribution, the sub-Gaussian a-stable distribution, the symmetric general-
ized hyperbolic distribution, Student’s t-distribution, etc. Note that every ellip-
tical distribution is symmetric. To allow for asymmetry R must depend in some
way on U. In the following we will develop a feasible method for the modelling
of asymmetric generalized elliptical distributions.

Let vy,...,v, be some fixed ‘reference vectors’ on the unit hypersphere.
We assume that the conditional c.d.f. of R is a function of some ‘distances’
0 (u,v1),...,0 (u,v,) between u and the reference vectors vy, ..., v, i.e.

rl—)FR‘U:u(T):H(T,(S(U,Ul),--'75(uavm));

where H (+,01,...,0m) is a c.d.f. for all (6y,...,6,,), with H (r,d1,...,9,,) = 0 for
every r < 0.

For an adequate definition of the reference vectors vy, ...,v,, we diagonalize
the dispersion matrix ¥, i.e. ¥ = VAV’ where V is the orthonormal basis of the
eigenvectors and A is the diagonal matrix of the eigenvalues of ¥. Hence we obtain
the diagonal root V¥ = VV/A of ¥. Let Y := VARU, then X = 1+ VY. Now
we can interpret the components of Y = (Y;,...,Yy) as the ‘driving factors’ of X,
each factor having another variance determined by the corresponding eigenvalue,
and direction determined by its eigenvector. Note that the eigenvectors are de-
termined only up to sign. That is to say if w is an eigenvector of > then w can be
substituted by its negative conjugate —w. Now we define both the eigenvectors
vy, ... ,v:{ and their negative conjugates vy ,...,v, as reference vectors.

The next goal is an adequate definition of the distance between two vectors
on the unit hypersphere.
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Theorem 12.3.1. Let the d-dimensional random wvector U be uniformly dis-
tributed on the unit hypersphere. The c.d.f. of the angle £ (U,v) between U and
a given reference vector v € ST s

1 1 T 1 d-—1
P(A(U,U)Sa):§+§-sgn<a—§> - FBeta (COSQ(G);??)a

where a € [0,7], d > 1, £(-,v) := arccos ((-,v)), and

. _ F(ﬁl +52) 1B _ \Pe-1
FBeta(x761762)_/P<ﬁl)l—\(62) t 1(1 t) dt, 0<x< 1;

0

1s the Beta distribution function with parameters 31, 3 > 0.

Proof. Since U = (Uy, ..., Uy) is uniformly distributed on S¢! it can be assumed
w.l.o.g. that v = (—1,0,...,0). Thus £ (U,v) = arccos ((U,v)) = arccos (—U;) =
m — arccos (Uy) and

P(L(Uwv)<a)=PU, <cos(m—a))=P (U <—cos(a)).

The p.d.f. of Uy corresponds to
(2 o
fw) =" -(1-v") % —l<u<l,
rG)T ()
see Fang et al. [45]. If 0 < a < 7/2, after substituting u by —+v/t we get

—cos(a) cos?(a)

P (U, < —cos(a)) = / f(u)du = / f(—ﬂ)-(—%)-t%‘ldt

_ . / f(_\/i)-t%—ldt

cos?(a)

1 L, 1d-1
—5 <1_FBeta <COS (a),g,T)> .

Similarly, if 7/2 < a < 7 we set u = v/t so that

—cos(a cos?(a)

(a)
P(Ulg—cos(a)):%vL / f(u)du:%nL / f(\/%)-%-t%_ldt
1

1

1 d-1
:§+§.FBeta (0032 (a);5,7>.
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Now we define
d (u,v) = P (L (U,v) < £ (u,v))
= % — % -sgn ((u,v)) - Fieta ((u, v)?; %, %) , u,v e ST

and propose it as a distance measure taking the number of dimensions adequately
into consideration. Note that ¢ (u,v) € [0,1] is the area of the spherical cap on
84! spanned by u and v divided by the surface area of S ! (see Remark 21).
For d = 2 the distance ¢ (u,v) becomes simply arccos (u,v) /7, for instance. So
one can interpret 0 as a probabilistic generalization of the radian measure for d
dimensions.

There is an interesting relationship between the tail-dependence coefficient A
of elliptical random pairs and the distance measure ¢ stated as follows.

Corollary 12.3.2. Consider Student’s univariate t-distribution with v degrees of
freedom, 1i.e.

t, (z) __ér(g)r(g) NG (1+V) dt, > 0. (12.3.1)

For x <0 the univariate t-distribution can be represented by

1 — 22 1 v x2
=_.F - - — —|=P <
tu(x) 9 Beta <x2+1/’2’2> (i(U/U)_aI'CCOS .%‘2+V>’

where U is uniformly distributed on the unit hypersphere S¥, v > 0. Further,
let the random wvector X be elliptically distributed satisfying the conditions of
Remark 29. Then the tail-dependence coefficient of two arbitrary components of
X corresponds to

1— py
Aij=2-P <A{ (U,v) < arccosy/%) oy e [=L]L

where U is uniformly distributed on the unit hypersphere ST,

Proof. Substituting ¢ in Eq. (12.3.1) by —\/l/ (1- u)t — 1) (0 < u < 1) leads to

by (x)

— F(%l)_i A 1 . —u)? du
wo= [ et v 00" () e e

1

i L y
— 2t (1—w)2 du
)T ( %

(NN

) _p <4 (U,v) < arccos /1, (@) )
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where . )
I, () :=1— 5 = f : x <0,
1+% T+ v

and U is uniformly distributed on &%, v > 0. Further, the tail-dependence coeffi-
cient (see Remark 29) corresponds to

Nij =2 toy1(2) =2 toy1(—2)=2-P <i (U,v) < arccos \/lo+1 (—z)> ,

where U is uniformly distributed on S*!, and

L — pij
= +1' ]7 1 11
s=vVar [T el

such that .
(a+1) . 22 1
lay1(—2) = 1 L 2
(04+1)'1+Z”—|—a+1 2
Note that if p;; = —1 the tail-dependence coefficient always corresponds to 0
(Frahm et al. [50]). O

With the definitions above we now can give some examples for generalized
elliptical distributions.

Example 1. Let the conditional c.d.f. of R be r — P(R<r|U=u) =
P (¢ (u)-R* <r), where

¢o+; (\\F o > Zz;ﬂz (\\/_ o > (12.3.2)

with o9 > 0, aq,...,qq,B1,...,04 >0, 01,...,94,01,...,05 > 0. Further, R* is
a positive random variable possessing a p.d.f. and being stochastically indepen-
dent of U. Hence friy=u (-) = fr= (/¢ (u)) /¢ (u) and due to Theorem 12.2.2 the

multivariate p.d.f. of the random vector X is given by

fr (o) = VERET] - 07 0) g (1 E;f”” e

o2

where g is the density generator corresponding to R*, and o (x) is the conditional

scaling factor, i.e. X
o(x):=¢ (\/ii (x — u)) :

Note that for the degenerate case au, ..., aq, B, ..., Bqs = 0 the resulting distribu-
tion becomes elliptical.

Example 2. If R*/d ~ F,,, where Fy, is the F-distribution with d and
v degrees of freedom, then R is the generating variate of Student’s d-variate
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t-distribution with v degrees of freedom (Hult and Lindskog [60]). Let the con-
ditional c.d.f. of R be r — P(R<r| U=u) = P(R*/d<r?/d|U =u) =
Fy s (r?/d), where ¢ is the positive scaling function (12.3.2) defined in Ezample
1. Similarly to the p.d.f. of Student’s multivariate t-distribution the p.d.f. of X
s given by

F<W> det(2-1) (r— p) S (- ) saya
fx () = 6 .m.<1+ ZEs u) |

where © # p and v (x) = o (x). For the degenerate case o, ..., g, B1,...,0;=0
we get Student’s d-variate t-distribution with location p, dispersion > and ¢q
degrees of freedom. Moreover, for ¢g — oo the d-variate Gaussian distribution
N (1, %) appears.

In Figure 12.1 we see some density contour lines of Example 1 (left hand)
and of Example 2 (right hand) where d = 2, p = 0, 313 = 39 = 1, and
Y192 = Y91 = 0.5. The density generator of Example 1 corresponds to the density
generator of Student’s bivariate t-distribution with 100 degrees of freedom. For
each example there is only one reference vector, more precisely
v{ = (cos(m/4),sin(m/4)) for Example 1 and v; = (—cos(n/4),—sin (7/4))
for Example 2. The parameters are ¢g = 1, ay = 0.25, and vy = 1, as well as
oo = 2, By = 98, and #; = 2, respectively. All remaining parameters are set
to zero, i.e. f; = 0 in Example 1 and oy = 0 in Example 2, and especially
as = B3 = 0 in both examples. The dashed contour lines symbolize the density of
Student’s bivariate ¢t-distribution with 100 degrees of freedom with the location
and dispersion given above. This corresponds to the degenerate cases a; = 0, and
oo = 100, B, = 0, respectively.

Figure 12.1: Density contours of Example 1 (left hand) and of Example 2 (right
hand). The degenerate cases are represented by the dashed contour lines.



Conclusion

There was a lot to do.
We have done a lot.

Now there is a lot to do!
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Appendix A

A Probability Density Applying to Asymmetric
Pareto Type Tails

A.1 Proof of Proposition 1.2.4:

To show (a) we need to calculate the first derivative of hss 5. For 2 € R we have

Bl +exp(=0-3)]-[1+ =] +dexp(—=d-3) - [z + Vs + 22

2-[1+exp(—d-3))? ‘

:5,3,,6 (ZE) -

From §,s,8 > 0 we conclude || < Vs? 422, o+ s+ 22 > 0 and 1 +

Jaz > 0. Hence hs.5 > 0, ie. hssp is strictly increasing. So the functions Fy

and Fy are increasing and continuous, since hss g, by, 5. and Ge g are increasing
and continuous on their support. Fy is a df as a convex linear combination of two
dfs.

To show (b), let &§,& > 0, then Fy € C®(R, |0, 1]), since hssp and G¢ are

compositions of C*®-functions. In particular, the density of Fy is given by

fo(z) = afy(z) + (1 — @) f5 (x), (A.11)

where
folx) = R g 5(p =) - ge(hs .8 (p — @) (A.1.2)
fo(x) = h5 . 5.(x—p)-ge(hs 5.5 (T —p)), (A.1.3)

and ge g denotes the density of Ge.
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If & < 0or & <0, then the preceding differentiability statement holds except

for x; and z,, respectively. In this cases, we find for the density of Fy

Lz, 00) () aufg(x) + (1 — @) f5 (), §<0,& >0
filx) = ¢ afi(@) + Lcwan (@) (1 — @) ff(2), §>0,6 <0

Ly, 0) () @ f3 (%) + 1(—o0, 20 () (1 — @) f5 (x), &, & <O.
(A.1.4)

Note that due to the conditions on s, s,., we have z; < p < x,.. Furthermore,

f4 is not defined in x; and z,. O

A.2 Lemma A.2.1

Lemma A.2.1. Let g € RY, and h € RY,, where v,9 > 0. Then { € RY_ .
If v = co and ¥ > 0, then § € R* .. Moreover, if v > 9 or v = oo then

limy— oo % = 0.

Proof. For v < co we find

lim (tx)/h( z) —  lim g(tx) lim h(z)
T—+00 g( )/h( ) T—+00 g(x) T—+00 h(tl‘)
= 7 = gt

hence ¢ € R+7 4y If v = 00, the result follows in an analogous way.

For 19 <y < o0, we have ¥ € RT where —y+19 < 0. By Corollary A3.4 in

=Y+
Embrechts et al. [39] we find lim, . « % = 0. If v = 0o, we have £ € R . By

application of Theorem A3.12 (b) in Embrechts et al. [39] the result is shown. O



Appendix B

Elliptical Copulas: Applicability and Limitations

B.1 Multidimensional Sub-Gaussian Standard Density

The standard characteristic function of the d-dimensional sub-Gaussian «a-stable

distribution is

2

a/2
1
Gstable (1; 0,1, p, a) = exp <— (— . t,ot’) ) , t=(t1,...,ta) . (B.1.1)

Hence ¢giaple is an even function due to the quadratic form contained in (B.1.1).

Furthermore, the integral

foo (- (30) )

R4

converges absolutely, that is to say the Fourier-transform
1 1 a2
fo, (@) = = - /exp — (— : t,ot’) -exp (—itx') dt
e 2
R

At first, we consider the bivariate case. Since

exists.

exp (—itz") = exp (—it121) - exp (—itoxs)
= (cos (tyx1) — isin (t1x1)) (cos (taxa) — isin (tazs))

= (cos (tlxl) CcoSs (t2$2) —sin (tlxl) sin (t2372))

(B.1.2)

— i (cos (ty1) sin (tews) + sin (t121) cos (taxs)) ,
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the real part of exp (—itz’) is an even function whereas its imaginary part is an
odd function of t = (¢1,t3). Because the characteristic function is even also the

real part of the integrand

1 /2
exp [ — (5 : tpt’) -exp (—itx')

is even, and the imaginary part remains odd, too. Hence the imaginary part can

be eliminated from the Fourier-transform (B.1.2), and with the addition formula

cos (¢ £ 0) = cos (¢) cos (0) F sin (¢) sin () . (B.1.3)

fi, (@) = (271?)2 - R/ exp <— (% -tpt’> m) - cos (ta) dt.

This can be extended analogously for d > 2 dimensions.

we get

B.2 Equivalent Representation of Equation (3.3.5)

We recall Equation (3.3.5) is

f() pZ]) u; u 1 +p
AXG, X5 Cpig) = f TR N ¢ >0, f(pij) =/ T”
0

\/u271

Substituting u by cos (v) leads to

farCCOS(f(Pij)) _cosS(v) (— sin (U)) dv

arccos(0) cos2(v)—1

MNXG, X5 ¢ pig) =

arccos(l)  cosC(v) .
farccos(O) /cos?(v)—1 ( S (U)) dv

arccos(f(pij)) ¢ (v) .
- fW/Q I Nty =) COS—I merl (—sin (v)) dv

cos$ (v) o
f”/zx/_\/m (—sin (v)) dv

Since /1 — cos? (v) = sin (v),

i Jm/2 arccos(f(pij))
’ ’ -2 f:/z cos¢ (v) dv fOW/Q cosS (v) dv

_ 1 parccos(F(pig) oC (v) dv fﬁ/z cos® (v) dv
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Now p;; is substituted by sin (T,-j : g) which leads to the lower limit

arccos (f (pi;)) = arccos <f (sin (Tij . g)))  arccos \/1 + Sin2(7'7jj -1

We consider the addition formula
sin (¢ £ 0) = sin (¢) cos (0) % cos (¢) sin () . (B.2.1)

Since sin (7 - Z) =sin (2 — (1 — 7) %) it follows from (B.2.1) that

sin <7' : g) = sin (g) cos ((1 —7) g)—cos <g> sin ((1 —7) g) = cos ((1 —7) g) :

Now we are looking for a function h that fulfills

h (1) = arccos \/M = arccos \/1+COS((1_7)5) 7

2 2

but without trigonometric components. That is to say

cos ((1 —7) g) = 2cos” (h (7)) =1 = cos® (h (1)) — (1 — cos® (h (7))

= cos? (h (1)) — sin® (h (7)), Vr1el-1,1].
For ¢ = 6 formula (B.1.3) becomes cos (2p) = cos? (¢) — sin? (¢), and thus

cos <(1 —7) g) =cos(2-h(1)).

Hence

and thus

COSC ) dv R
(XZ7 Ca Zj> fhﬂ_/ h(sz) - z (177_”> .
Jo " cosS (v Ydv 2 2




Appendix C

Estimating the Tail-Dependence Coefficient

Figure C.
empirical

X yield by a t-copula fit to S250, S1000  45q 5000

o ‘55‘?%)“ 1000 ’;‘?Rﬁ) 2000 Ag_;z(())((,)() 3000
1: Estimated A from SZY S1900° and S99 utilizing a t-copula and

marginals, cf. Section 7.3.1. (The black line indicates the true value.)

X (]| X ||ls) for the elliptical parametric approach on 5280, 1000  and 55000

08

02
1

T
29% S50 2868 3000
SF 55 S5

Figure C.2: Estimated A from 520 S1900 and S2°9 where the tail index is
estimated via || X|, and the correlation is estimated via Kendall’s 7. (The black
line indicates the true value.)
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X (|| 2]]) for the elliptical parametric approach on S250, S1000  and S5000

= - .
=
=
o 50 1000 1500 2000 2500 3000
292, 2388, 2589

Figure C.3: Estimated A from S2°°, S10% and S2°% with the elliptical parametric
approach of Section 7.3.1, where the tail index is estimated via R};. (The black
line indicates the true value.)

X for the threshold approach on S2°0, S1000, 52000

and S

T
00 1500 2000
5350 51000

3000

A0
20
o}

O

5

N

>
B¢

Figure C.4: Estimated A from S0 S1900 and S2°% with the threshold approach,
cf. Section 7.3.2. (The black line indicates the true value.)
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A for the nonparametric estimator (7.3.16) on .S7°°, S1000 and S2°0°

=
S 4 - - - - - -
T T T T T T T
o 500 1000 1500 2000 2500 3000
5350 57600 55000

Figure C.5: Estimated A from S7°°, S}° and S79°° with the nonparametric
estimator (7.3.16). (The black line indicates the true value.)

X for the log-estimator (7.3.21) on S250, S1000  and G5000

9% L2088 2255 3000
525 S S5

Figure C.6: Estimated A from SZ° S0 and S2°° with the log-estimator
(7.3.21). (The black line indicates the true value.)



Appendix D

Copula estimations for risk factor portfolios

On the next pages, we summarize the estimation and test results for the bivariate
and 4-dimensional portfolios of our risk factors. For all estimates we state the
standard error and the corresponding t-value. For the TDC estimates we give
instead of a t-value (since asymptotic normality can not be guaranteed) the py
and py probabilities as described in Subsection 8.1.3. In the test statistic tables
the best values under the trainings and testset over the different models are
marked bold for each portfolio. Under the y? column we stated the p-value of the
test in percentage. The PD and PD.S values are also given in percentage.

Table D.14 present the bivariate portfolios under which the models Cg and C¢o
have the maximal and minimal value of p,s, (as defined in Subsection 8.1.3). Here
we used the abbreviations Nasdaq (NAS), S&P 500 (SP), Nikkei (NIK), kerosine
(ker), gasoline (gas), diesel (die) and heating oil (hea). Analogously Table D.15
states the pysy and pasy.rear values for the bivariate projections of the 4-dimensional

portfolios.

217



[ NAS-SP | | SP-NIK
Q| a ds 0 é AL Au Q| « ds 0 é AL AU
est. | 0.8043 | 2.1597 | 1.7065 1.9135 | 0.4999 | 0.1103 est. | 0.1363 1.3313 | 0.8760 1.0247 | 0.0432| 0.0286
s.e. | 0.1290 | 0.3067 | 1.1630 0.5155 | 0.0948 | 0.0777 s.e. | 0.3656 | 0.9602 | 0.4735 0.0461 | 0.1444 | 0.0531
t-value | 6.2300 | 3.7800 1.4700 1.7700 | 0.9999 | 0.9058 t-value | 0.3700 | 0.3400 1.8500 0.5300 | 0.2839 | 0.6953
Cc « 4 53 )\L )\U CC o) 4 (53 )\L )\U
est. | 0.6057 | 2.8137 2.6986 | 0.4734 | 0.3050 est. | 0.3365 | 0.6101 0.1875 | 0.1081 | 0.0165
s.e. | 0.0532 | 0.2531 0.3267 | 0.0429 | 0.0422 s.e. | 0.1879 | 0.3926 0.0802 | 0.0994 | 0.0264
t-value | 11.3900 | 11.1200 8.2600 1.0000 | 1.0000 t-value | 1.7900 | 1.5500 2.3400 | 0.8961 | 0.9808
t-Copula df p A t-Copula df p A
est. 7.2720 | 0.8156 0.3853 est. 24.7419 | 0.2191 0.0004
s.e. 2.0427 | 0.0118 0.0642 s.e. 21.8524 | 0.0328 0.0023
t-value 3.5600 | 68.9500 1.0000 t-value 1.1300 | 6.6900 1.0000
‘ NAS-NIK | | SP-Hang
Q « 55 0 4 )‘L )‘U Q e 65 0 4 )\L )‘U
est. | 0.2855 1.1348 | 0.8841 1.0223 | 0.0451 | 0.0214 est. | 0.8987 | 1.2243 1.0448 3.3670 | 0.2143 | 0.0781
s.e. | 1.2302 | 0.6440 | 0.4905 0.0738 | 0.2665 | 0.0782 s.e. | 0.0695 | 0.0879 | 0.6268 1.5879 | 0.0664 | 0.0550
t-value | 0.2300 | 0.2100 1.8000 0.3000 | 0.1778 | 0.3653 t-value | 12.9200 | 2.5500 1.6700 1.4900 | 0.9947 | 0.8600
Co | a é [ AL AU Co | a é ds AL AU
est. | 0.3429 | 0.5239 0.2046 | 0.0913 | 0.0222 est. | 0.6134 | 0.8722 0.9806 | 0.2771 | 0.1907
s.e. | 0.1967 | 0.3361 0.0897 | 0.0936 | 0.0336 s.e. | 0.0844 | 0.1576 0.2400 | 0.0551 | 0.0531
t-value | 1.7400 | 1.5600 2.2800 | 0.8920 | 0.9790 t-value | 7.2700 | 5.5300 4.0900 | 1.0000 | 1.0000
t-Copula df p A t-Copula df p A
est. 47.4151 | 0.2190 0 est. 8.5274 | 0.4736 0.0963
s.e. 81.5157 | 0.0322 0 s.e. 3.2116 | 0.0288 0.0599
t-value 0.5800 | 6.7900 0.8132 t-value 2.6600 16.4300 1.0000
[ NAS-Hang | | Hang-NIK
Q| « [ 0 § AL AU Q| a ds 0 é AL AU
est. | 0.7105 1.3732 | 0.2267 1.2710 | 0.2440 | 0.0795 est. | 1 1.0560 | 0.9299 — 0.0721| 0
s.e. | 0.2236 | 0.1790 | 0.7582 0.3123 | 0.1091 | 0.0909 s.e. | — 0.3848 | 0.5122 — — -
t-value | 3.1800 | 2.0900 | 0.3000 0.8700 | 0.9808 | 0.7109 t-value | — 0.1500 1.8200 — — -
Co | a é Ss AL AU Co | a é Os AL AU
est. | 0.5882 | 0.8135 0.5708 | 0.2509 | 0.1223 est. | 0.7780 | 0.2765 0.4539 | 0.0634 | 0.0482
s.e. | 0.1113 | 0.1741 0.1769 | 0.0659 | 0.0566 s.e. | 0.1942 | 0.0925 0.4586 | 0.0555 | 0.0855
t-value | 5.2900 | 4.6700 3.2300 1.0000 | 0.9989 t-value | 4.0100 | 2.9900 0.9900 | 0.9971 | 0.7005
t-Copula df p A t-Copula df p A
est. 13.7396 | 0.4215 0.0273 est. 23.1097 | 0.2253 0.0007
s.e. 8.5623 | 0.0307 0.0465 s.e. 20.3950 | 0.0329 0.0036
t-value 1.6000 13.7300 1.0000 t-value 1.1300 | 6.8500 1.0000

Table D.1: Estimation results for the bivariate stock index portfolios.
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[NAS-SP |
X2 AIC BIC Entropy | AD ADS PD PDS
Q.est | 99.33 -1043.53 | -1024.12 | -53.18 0.0628 | 0.0774 | -1.72 | -7.78
Cc.est | 57.18 | -981.03 | -966.48 | -47.98 0.2290 | 0.3398 | -10.11 | -17.67
t-Copula.est | 89.44 | -1040.32 | -1030.61 | -55.45 | 0.0936 | 0.1165 | -6.43 | 20.94
Q.test | 0.00 | -631.00 | -611.59 | -53.18 1.4313 | 1.3671 | 14.49 | -3.66
Cc.test | 0.00 | -611.03 | -596.47 | -47.98 0.7682 | 0.7228 | 6.78 | -8.29
t-Copula.test | 0.00 | -626.88 | -617.18 | -55.45 | 1.2576 | 1.4086 | 9.76 85.87
| SP-NIK |
X2 AIC BIC Entropy | AD ADS PD PDS
Q.est | 80.96 | -36.50 -17.33 -2.17 0.2058 | 0.2144 | -13.84 | 10.02
Cc.est | 95.67 -37.09 -22.71 -2.46 0.2213 | 0.2019 | -5.37 | 12.64
t-Copula.est | 93.29 | -40.56 | -30.98 | -2.60 0.2727 | 0.2415 | -11.82 | 39.76
Q.test | 49.10| -3.88 15.33 -2.17 0.6695 | 0.6426 | -13.38 | 25.01
Cc.test | 62.81) -6.75 7.66 -2.46 0.4629 | 0.4430 | -3.77 | 28.62
t-Copula.test | 61.33| -11.47 | -1.86 -2.60 0.6473 | 0.4261 | -7.76 | 28.60
| NAS-NIK |
X2 AIC BIC Entropy | AD ADS PD PDS
Q.est | 54.95| -34.04 -14.87 -2.69 0.2352 | 0.3697 | -15.18 | 3.76
Cc.est | 69.58 -36.13 -21.75 -2.79 0.2605 | 0.3414 | -4.93 | 10.58
t-Copula.est | 54.30 | -39.89 | -30.30 | -2.23 0.2227| 0.3512 | -8.87 | 10.88
Q.test | 36.18 | 2.17 21.38 -2.69 0.6704 | 0.6868 | 18.52 | 14.34
Cc.test | 59.35 0.79 15.19 -2.79 0.5111 | 0.5425 | 23.49 | 14.08
t-Copula.test | 52.64 | -1.90 7.70 -2.23 0.6120 | 0.6522 | 19.81 | 13.60
| SP-Hang |
X2 AIC BIC Entropy | AD ADS PD PDS
Q.est | 91.74| -235.40 | -216.20 | -13.93 0.0985 | 0.1250 | -0.6 -6.81
Cc.est | 64.50| -233.40 | -219.00 | -14.06 | 0.1083 | 0.1098 | 3.64 12.65
t-Copula.est | 96.83 -230.08 | -220.48 | -13.87 0.2319 | 0.2021 | -9.16 18.38
Q.test | 10.20 | -108.33 | -89.09 -13.93 1.0314 | 1.0975 | 16.3 14.13
Cco.test | 29.74 -114.78 | -100.35 | -14.06 | 0.8554 | 0.9976 | 17.31 | 26.25
t-Copula.test | 20.38 | -122.18 | -112.56 | -13.87 0.6742 | 1.5568 | 12.52 | 48.11
‘ NAS-Hang ’
% AIC BIC Entropy | AD ADS PD PDS
Q.est | 92.50 -176.16 | -156.96 | -10.64 | 0.0952 | 0.1146 | -5.78 | 3.06
Cc.est | 88.83| -175.19 | -160.79 | -9.57 0.1236 | 0.1301 | -12.67 | 3.15
t-Copula.est | 31.76 | -177.78 | -168.18 | -10.07 0.2271 | 0.1590 | -32.01 | 22.84
Q.test | 67.55| -64.71 -45.46 -10.64 | 0.8526 | 0.7871 | 40.04 | 7.57
Cc.test | 69.93| -67.59 -53.16 -9.57 0.6457 | 0.5665 | 38.22 | 7.26
t-Copula.test | 86.28 -74.41 | -60.78 | -10.07 0.8115 | 0.9861 | 14.39 | 33.17
| Hang-NIK |
X2 AIC BIC Entropy | AD ADS PD PDS
Q.est | 99.14 | -38.00 -18.92 -2.88 0.1249 | 0.1893 | -16.93 | 12.63
Cc.est | 99.98 -39.54 -25.23 -2.61 0.1679 | 0.1804 | -2.23 | -5.98
t-Copula.est | 99.41| -41.75 | -32.21 | -2.90 0.1889 | 0.3075 | -19.09 | 25.02
Q.test | 94.93| 2.40 21.53 -2.88 0.7232 | 0.8222 | -2.72 | 37.69
Cco.test | 97.17 -5.49 8.86 -2.61 0.5115 | 0.5384 | 6.66 38.01
t-Copula.test | 85.21| -4.35 5.22 -2.90 0.6706 | 0.7542 | -2.50 | 45.30

Table D.2: Test results for the bivariate stock index portfolios.



[ AUD-HKD | | AUD-SGD
Q| a ds 0 é AL Au Q| « ds 0 é AL AU
est. | 0.3225 1.4604 | 0.7120 1.2750 | 0.1266 | 0.1882 est. | 0.6193 1.2771 | 0.3201 1.7850 | 0.1729 | 0.2000
s.e. | 0.1632 | 0.2586 | 0.6884 0.1233 | 0.0775 | 0.0763 s.e. | 0.1069 | 0.1236 | 0.7350 0.2224 | 0.0634 | 0.0624
t-value | 1.9800 | 1.7800 1.0300 2.2300 | 0.9386 | 0.9871 t-value | 5.7900 | 2.2400 | 0.4400 3.5300 | 0.9876 | 0.9996
Cc « 4 53 )\L )\U CC o) 4 (53 )\L )\U
est. | 0.4361 | 0.8493 0.8415 | 0.1928 | 0.2475 est. | 0.5746 | 0.7533 1.2847 | 0.2290 | 0.2480
s.e. | 0.0679 | 0.1663 0.1281 | 0.0430 | 0.0430 s.e. | 0.0600 | 0.1082 0.2113 | 0.0386 | 0.0413
t-value | 6.4300 | 5.1100 6.5700 1.0000 | 1.0000 t-value | 9.5700 | 6.9600 6.0800 1.0000 | 1.0000
t-Copula df p A t-Copula df p A
est. 7.8943 | 0.4605 0.1037 est. 8.5732 | 0.4864 0.1003
s.e. 2.3388 | 0.0245 0.0488 s.e. 2.5016 | 0.0239 0.0475
t-value 3.3800 18.8300 1.0000 t-value 3.4300 | 20.3800 1.0000
[ AUD-YEN | [ HKD-SGD
Q « 55 0 4 )‘L )‘U Q e 65 0 4 )\L )‘U
est. | 0.3304 | 1.4892 | 0.2999 1.1932 | 0.1346 | 0.1422 est. | 0.4946 | 4.0933 | 2.2987 1.5392 | 0.4033 | 0.2179
s.e. | 0.1640 | 0.2483 | 0.6226 0.0893 | 0.0783 | 0.0626 s.e. | 0.0578 | 0.4409 | 0.7291 0.1439 | 0.0483 | 0.0417
t-value | 2.0100 | 1.9700 | 0.4800 2.1600 | 0.9536 | 0.9847 t-value | 8.5600 | 7.0200 | 3.1500 3.7500 1.0000 | 0.9999
Co | a é [ AL AU Co | a é ds AL AU
est. | 0.6181 | 0.3777 1.1193 | 0.0987 | 0.2056 est. | 0.4232 | 4.1743 2.9919 | 0.3584 | 0.4575
s.e. | 0.0817 | 0.0762 0.2513 | 0.0388 | 0.0524 s.e. | 0.0369 | 0.3035 0.1682 | 0.0315 | 0.0299
t-value | 7.5700 | 4.9600 4.4500 1.0000 | 1.0000 t-value | 11.4700 | 13.7500 17.7900 | 1.0000 | 1.0000
t-Copula df p A t-Copula df p A
est. 6.1886 | 0.3659 0.1094 est. 2.4037 | 0.8452 0.6261
s.e. 1.3377 | 0.0269 0.0364 s.e. 0.3295 | 0.0108 0.0229
t-value 4.6300 13.5900 1.0000 t-value 7.2900 | 77.9100 1.0000
[ HKD-YEN | | SGD-YEN
Q| « [ 0 § AL AU Q| a ds 0 é AL AU
est. | 0.3835 | 2.3951 | 0.0417 1.2059 | 0.2548 | 0.1377 est. | 0.4138 | 2.0716 | 2.0376 1.1968 | 0.2494 | 0.1263
s.e. | 0.0769 | 0.2519 | 0.6972 0.0881 | 0.0534 | 0.0491 s.e. | 0.1182 | 0.2358 | 0.6866 0.0965 | 0.0746 | 0.0551
t-value | 4.9800 | 5.5400 | 0.0600 2.3400 1.0000 | 0.9902 t-value | 3.5000 | 4.5400 | 2.9700 2.0400 | 0.9998 | 0.9794
Co | a é Ss AL AU Co | a é Os AL AU
est. | 0.3637 | 2.1206 0.5503 | 0.2623 | 0.1806 est. | 0.5033 1.6568 1.4872 | 0.3312| 0.3117
s.e. | 0.0543 | 0.3798 0.0750 | 0.0420 | 0.0346 s.e. | 0.0453 | 0.1580 0.1437 | 0.0326 | 0.0317
t-value | 6.7000 | 5.5800 7.3400 1.0000 | 1.0000 t-value | 11.1200 | 10.4900 10.3500 | 1.0000 | 1.0000
t-Copula df p A t-Copula df p A
est. 4.1532 | 0.4809 0.2351 est. 4.9698 | 0.6430 0.2984
s.e. 0.6814 | 0.0248 0.0363 s.e. 0.9441 | 0.0181 0.0435
t-value 6.1000 19.3800 1.0000 t-value 5.2600 | 35.4500 1.0000

Table D.3: Estimation results for the bivariate fx portfolios.
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| AUD-HKD |
X2 AIC BIC Entropy | AD ADS PD PDS
Q.est | 99.08 -315.18 | -294.57 | -12.45 0.0938 | 0.1073 | 20.87 | -0.96
Cec.est | 95.89| -315.64 | -300.18 | -12.27 0.1299 | 0.1299 | 23.79 | 6.35
t-Copula.est | 98.85| -317.56 | -307.26 | -12.61 0.1276 | 0.1272 | 27.16 | -2.19
Q.test | 84.09| -210.48 | -189.83 | -12.45 0.9965 | 0.7356 | 8.03 | -11.90
Cc.test | 87.28 -213.10 | -197.61 | -12.27 0.7316 | 0.5392 | 21.27 | -4.76
t-Copula.test | 68.77| -208.26 | -197.93 | -12.61 1.1529 | 0.6739 | 37.84 | -13.18
[AUD-SGD |
X2 AIC BIC Entropy | AD ADS PD PDS
Q.est | 96.82| -358.81 | -338.20 | -14.11 0.1024 | 0.1191 | 8.60 2.00
Cco.est | 99.42 -361.02 | -345.56 | -13.81 0.0982 | 0.1233 | 5.19 5.77
t-Copula.est | 95.76 | -353.26 | -342.95 | -13.76 0.1020 | 0.1312 | 2.30 5.96
Q.test | 0.02 | -116.62 | -95.97 -14.11 2.8173 | 2.0736 | 56.41 | -31.05
Cec.test | 0.01 | -106.49 | -91.01 -13.81 2.7395 | 2.0297 | 55.55 | -16.51
t-Copula.test | 0.03 | -126.36 | -116.03 | -13.76 2.5660 | 2.1426 | 49.64 | -14.82
| AUD-YEN |
X2 AIC BIC Entropy | AD ADS PD PDS
Q.est | 37.67| -193.30 | -172.69 | -8.01 0.3481 | 0.2945 | -3.66 | -7.79
Cc.est | 34.43| -189.50 | -174.04 | -7.52 0.3693 | 0.3222 | -7.02 | -6.07
t-Copula.est | 41.16/ -206.75 | -196.44 | -8.00 0.3305 | 0.3202 | 4.14 -6.58
Q.test | 0.00 | 11.86 32.51 -8.01 3.1345 | 3.2811 | 24.75 | 90.07
Cc.test | 0.02 | 18.04 33.52 -7.52 2.7664 | 2.8488 | 22.59 | 102.69
t-Copula.test | 0.01 | -7.55 2.77 -8.00 3.0464 | 2.8282 | 34.63 | 86.42
[HKD-SGD |
X2 AIC BIC Entropy | AD ADS PD PDS
Q.est | 50.85| -1648.75 | -1628.13 | -65.85 0.1818 | 0.1541 | -3.62 | -7.60
Cc.est | 1.47 | -1582.27 | -1566.81 | -60.21 0.3483 | 0.2510 | -17.89 | -9.23
t-Copula.est | 57.29 -1656.66 -1646.35 -70.17 0.2212 | 0.2532 | 11.66 | 5.31
Q.test | 0.00 | -2201.76 | -2181.11 | -65.85 0.9046 | 0.7741 | -20.65 | -27.62
Ce.test | 0.00 | -2039.12 | -2023.64 | -60.21 1.9574 | 1.4018 | -36.68 | -28.71
t-Copula.test | 0.00 | -2193.42 | -2183.10 | -70.17 0.9138 | 0.8061 | -3.65 | -9.28
| HKD-YEN |
% AIC BIC Entropy | AD ADS PD PDS
Q.est | 86.89 -378.17 | -357.55 | -14.28 0.1703 | 0.1107 | -10.94 | 8.80
Cg.est | 72.70| -365.79 | -350.33 | -14.52 0.1932 | 0.1354 | -13.16 | -8.37
t-Copula.est | 54.43| -375.15 | -364.85 | -15.97 | 0.2458 | 0.1550 | -4.07 | 8.83
Q.test | 0.00 | 159.54 180.19 -14.28 8.8686 | 9.0277 | 207.90| 248.87
Cc.test | 0.00 | 173.91 189.39 -14.52 8.4361 | 8.6109 | 206.07| 232.60
t-Copula.test | 0.00 | 147.75 | 158.08 | -15.97 9.3842 | 8.3506 | 205.83 370.39
| SGD-YEN |
X2 AIC BIC Entropy | AD ADS PD PDS
Q.est | 81.72 -697.53 | -676.91 | -28.08 0.1096 | 0.1146 | 4.40 | -8.13
Cc.est | 80.37| -681.78 | -666.32 | -26.44 0.1913 | 0.1541 | 11.40 | -8.52
t-Copula.est | 73.39| -695.21 | -684.90 | -27.32 0.2348 | 0.2444 | 13.64 | 13.49
Q.test | 0.00 | 330.72 351.37 -28.08 | 16.9586 | 16.3207 | 157.85 287.12
Ce.test | 0.00 | 346.40 361.89 -26.44 15.0874 14.3958 187.09| 394.03
t-Copula.test | 0.00 | 314.21 | 324.53 | -27.32 15.8523 | 14.6341| 226.01 | 430.60

Table D.4: Test results for the bivariate fx portfolios.



[ Al-Cu | | Al-Pb
Q| «a ds 0 o AL AU Q| a ds 0 6 AL AU
est. | 0.6687 | 1.4268 | 2.4111 1.3284 | 0.2505 | 0.1043 est. | 0.9277 | 1.1158 | 1.6738 1.2980 | 0.1288 | 0.0213
s.e. | 0.1629 | 0.1678 | 0.6029 0.2268 | 0.0871 | 0.0715 s.e. | 0.2772 | 0.0646 | 0.4073 1.3249 | 0.0731 | 0.1057
t-value | 4.1000 2.5400 4.0000 1.4500 0.9945 | 0.9051 t-value | 3.3500 1.7900 4.1100 0.2200 0.9632 | 0.2097
Cc « 4 53 )\L )\U CC o) 4 (53 )\L )\U
est. | 0.5125 | 1.6777 1.5205 | 0.3390 | 0.3090 est. | 0.6111 | 0.6797 0.7336 | 0.2204 | 0.1512
s.e. | 0.0426 | 0.1593 0.1434 | 0.0312 | 0.0301 s.e. | 0.0725 | 0.1028 0.1690 | 0.0429 | 0.0433
t-value | 12.0300 | 10.5300 10.6000 | 1.0000 | 1.0000 t-value | 8.4300 | 6.6100 4.3400 | 1.0000 | 1.0000
t-Copula df p A t-Copula df p A
est. 12.0079 | 0.6542 0.1231 est. 17.2522 | 0.4043 0.0122
s.e. 3.4060 | 0.0137 0.0516 s.e. 7.1999 | 0.0202 0.0176
t-value 3.5300 | 47.7800 1.0000 t-value 2.4000 | 20.0300 1.0000
‘ Al-Zn | | Cu-Pb
Q « 55 0 4 )‘L )‘U Q e 65 0 4 )\L )‘U
est. 0.4708 1.2222 2.4401 1.1302 0.1115 | 0.0813 est. | 0.5989 1.1794 2.0042 1.0000 0.1198 | 0.0000
s.e. | 0.4050 | 0.2390 | 0.4548 0.1438 | 0.1329 | 0.0984 s.e. | 0.5340 | 0.1883 | 0.4169 0.0807 | 0.1471 | 0.0449
t-value | 1.1600 | 0.9300 | 5.3700 0.9100 | 0.7012 | 0.7217 t-value | 1.1200 | 0.9500 | 4.8100 0.0000 | 0.6987 | 0.4053
Co | a o ds AL AU Co | a B ds AL AU
est. | 0.4629 | 1.2840 0.8405 | 0.2698 | 0.2355 est. | 0.5816 | 0.7463 0.6935 | 0.2297 | 0.1540
s.e. | 0.0538 | 0.1652 0.0959 | 0.0365 | 0.0324 s.e. | 0.0694 | 0.1109 0.1396 | 0.0419 | 0.0402
t-value | 8.6000 | 7.7700 8.7600 | 1.0000 | 1.0000 t-value | 8.3800 | 6.7300 4.9700 | 1.0000 | 1.0000
t-Copula df p A t-Copula df p A
est. 23.8716 | 0.5286 0.0105 est. 16.0341 | 0.4148 0.0167
s.e. 11.7977 | 0.0167 0.0187 s.e. 6.8586 | 0.0199 0.0226
t-value 2.0200 31.6500 1.0000 t-value 2.3400 20.8800 1.0000
[ Cu-Zn | [ Pb-Zn
Q| « ds 0 & AL AU Q| a ds 0 6 AL AU
est. 0.4081 1.1829 2.7461 1.1536 0.0830 | 0.1044 est. | 0.7362 1.1443 2.3837 1.2470 0.1232 | 0.0677
s.e. | 0.5518 | 0.3154 | 0.4445 0.1738 | 0.1603 | 0.1379 s.e. | 0.3476 | 0.1046 | 0.4378 0.4029 | 0.0947 | 0.1216
t-value | 0.7400 | 0.5800 | 6.1800 0.8800 | 0.4895 | 0.6696 t-value | 2.1200 | 1.3800 | 5.4500 0.6100 | 0.8990 | 0.5074
Co | a o ds AL AU Co | a 6 ds AL AU
est. | 0.4805 | 1.1281 1.1418 | 0.2600 | 0.2831 est. | 0.5498 | 0.8963 1.1306 | 0.2537 | 0.2439
s.e. | 0.0524 | 0.1386 0.1214 | 0.0345 | 0.0339 s.e. | 0.0534 | 0.1019 0.1517 | 0.0332 | 0.0352
t-value | 9.1600 | 8.1400 9.4100 | 1.0000 | 1.0000 t-value | 10.3000 | 8.8000 7.4500 | 1.0000 | 1.0000
t-Copula df p A t-Copula df p A
est. 27.3156 | 0.5565 0.0083 est. 24.0897 | 0.5209 0.0094
s.e. 8.5599 | 0.0160 0.0100 s.e. 13.3425 | 0.0171 0.0194
t-value 3.1900 | 34.8600 1.0000 t-value 1.8100 | 30.4200 1.0000
Table D.5: Estimation results for the bivariate metal portfolios.
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[AlCu |
X2 AIC BIC Entropy | AD ADS PD PDS
Q.est | 93.65 -989.08 | -967.17 | -28.34 0.1049 | 0.1208 | -7.38 -4.15
Cec.est | 18.79| -955.69 | -939.26 | -27.74 0.2011 | 0.2797 | 0.29 11.67
t-Copula.est | 87.48 | -977.82 | -966.87 | -27.30 0.1583 | 0.2493 | 0.19 12.75
Q.test | 0.00 | -191.95 | -170.66 | -28.34 5.5882 | 4.4046 | 79.64 | 53.93
Cco.test | 0.00 | -213.66 | -197.70 | -27.74 4.2047 | 3.3834 | 93.73 | 59.51
t-Copula.test | 0.00 | -186.50 | -175.86 | -27.30 5.0847 | 3.6564 | 89.24 | 60.33
[AL-PH |
X2 AIC BIC Entropy | AD ADS PD PDS
Q.est | 93.76/ -315.76 | -293.86 | -8.40 0.1470 | 0.1835 | 7.19 -64.94
Cco.est | 62.82] -306.50 | -290.07 | -8.63 0.2691 | 0.2931 | 28.09 | -2.52
t-Copula.est | 85.67 | -308.33 | -297.38 | -9.46 0.2622 | 0.4160 | 3.66 4.09
Q.test | 95.19| -177.22 | -155.93 | -8.40 0.7587 | 0.5237 | 8.73 -9.69
Ceo.test | 91.40| -169.17 | -153.20 | -8.63 0.5661 | 0.3161 | 24.11 | 25.66
t-Copula.test | 97.45 -187.75 | -177.11 | -9.46 0.4379 | 0.5437 | 8.84 32.46
| Al-Zn |
X2 AIC BIC Entropy | AD ADS PD PDS
Q.est | 89.200 -573.02 | -551.12 | -17.04 0.1258 | 0.1195 | 20.93 | -8.9
Cec.est | 28.48| -539.97 | -523.54 | -14.77 0.4408 | 0.3916 | 38.96 | 6.90
t-Copula.est | 71.91| -570.14 | -559.19 | -16.55 0.2481 | 0.3161 | 35.69 | 6.39
Q.test | 0.47 | -196.97 | -175.68 | -17.04 2.5721 | 1.8695 | 12.11 | 33.8
Co.test | 23.92 -186.13 | -170.17 | -14.77 1.6595 | 1.2309 | 35.39 | 101.38
t-Copula.test | 0.41 | -176.16 | -165.52 | -16.55 2.2213 | 1.4268 | 18.94 | 96.64
[Cu-Pb |
X2 AIC BIC Entropy | AD ADS PD PDS
Q.est | 61.17 -340.82 | -318.92 | -9.05 0.0941 | 0.1132 | -2.22 | -97.28
Cco.est | 43.61| -318.77 | -382.34 | -10.48 | 0.4439 | 0.4699 | 17.33 | 43.90
t-Copula.est | 52.98 | -324.85 | -313.90 | -9.65 0.2819 | 0.5292 | 1.12 12.16
Q.test | 35.26 -208.05 | -186.76 | -9.05 0.6899 | 0.4714 | 11.19 | -15.51
Ce.test | 23.92| -189.96 | -173.99 | -10.48 0.5443 | 0.3837 | 69.68 | 12.42
t-Copula.test | 10.48 | -206.71 | -196.07 | -9.65 0.5535 | 0.2402 | 50.23 | 14.11
[CuZn |
% AIC BIC Entropy | AD ADS PD PDS
Q.est | 26.75| -647.17 | -625.27 | -18.95 0.1334 | 0.1176 | -6.16 | -2.71
Cc.est | 0.45 | -603.77 | -587.35 | -18.47 0.4782 | 0.4457 | 17.65 | 19.80
t-Copula.est | 30.50 -644.58 | -633.63 | -18.01 0.3145 | 0.3503 | 15.18 | -20.17
Q.test | 5.76 | -259.88 | -238.59 | -18.95 1.8050 | 1.5993 | 42.70 | 57.98
Co.test | 17.78 -250.72 | -234.76 | -18.47 1.1832 | 1.1866 | 54.12 | 121.21
t-Copula.test | 2.65 | -220.17 | -209.52 | -18.01 1.8905 | 1.2066 | 65.26 | 104.91
[Pb-Zn |
X2 AIC BIC Entropy | AD ADS PD PDS
Q.est | 93.98 -558.38 | -536.48 | -16.44 0.1446 | 0.1510 | -10.02 | 3.95
Cec.est | 22.28| -527.77 | -511.35 | -16.19 0.5069 | 0.6442 | 14.39 | 22.99
t-Copula.est | 70.84 | -551.32 | -540.37 | -16.95 0.3082 | 0.4851 | 2.14 16.15
Q.test | 9.86 | -317.77 | -296.48 | -16.44 0.9750 | 0.8186 | -23.25 | 9.64
Cc.test | 40.56| -315.54 | -299.58 | -16.19 0.4409 | 0.4286 | -7.93 | 36.41
t-Copula.test | 4.67 | -304.55 | -293.90 | -16.95 | 0.8556 | 0.6247 | -16.87 | 20.59

Table D.6: Test results for the bivariate metal portfolios.



[ kerosine-heating oil

| | kerosine-gasoline

Q| a ds 0 é AL Au Q| « ds 0 é AL Au
est. | 0.7708 | 4.2218 | 6.3789 1.0000 | 0.6333 | 0.0000 est. | 0.7109 1.9211 1.9210 1.0000 | 0.4020 | 0.0000
s.e. | 0.0406 | 0.6945 1.3868 0.1866 | 0.0414 | 0.0593 s.e. | 0.1157 | 0.1776 | 0.7663 0.1071 0.0737 | 0.0429
t-value | 18.9900 | 4.6400 | 4.6000 0.0000 1.0000 | 0.4995 t-value | 6.1400 | 5.1900 | 2.5100 0.0000 1.0000 | 0.4995
Cc « 4 53 )\L )\U CC o) 4 (53 )\L )\U
est. | 0.4672 | 3.6750 14.103 | 0.3869 | 0.5073 est. | 0.6149 1.9342 1.2280 | 0.4297 | 0.2190
s.e. | 0.0378 | 0.2138 1.186 0.0316 | 0.0361 s.e. | 0.0526 | 0.1789 0.1633 | 0.0394 | 0.0341
t-value | 12.3500 | 17.1900 11.890 1.0000 | 1.0000 t-value | 11.6900 | 10.8100 7.5200 1.0000 | 1.0000
t-Copula df p A t-Copula df p A
est. 1.5220 | 0.9449 0.8095 est. 4.1705 | 0.6573 0.3470
s.e. 0.2046 | 0.0054 0.0129 s.e. 0.7146 | 0.0199 0.0396
t-value 7.4400 176.0900 1.0000 t-value 5.8400 | 33.0300 1.0000
‘ kerosine-diesel | | heating oil-gasoline
Q « 55 6 4 )‘L )‘U Q (0% 65 % 4 )\L )‘U
est. | 0.7696 | 3.6289 | 5.0746 1.0000 | 0.6076 | 0.0000 est. | 0.7765 1.7234 | 2.2748 1.0000 | 0.3920 | 0.0000
s.e. | 0.0338 | 0.4532 1.0740 0.1272 | 0.0347 | 0.0406 s.e. | 0.1423 | 0.1740 | 0.7530 0.1542 | 0.0859 | 0.0478
t-value | 22.7600 | 5.8000 | 4.7200 0.0000 1.0000 | 0.4999 t-value | 5.4600 | 4.1600 | 3.0200 0.0000 1.0000 | 0.4984
Co | a é ds AL AU Co | a 6 ds AL Au
est. | 0.4633 | 3.5216 8.2662 | 0.3806 | 0.4935 est. | 0.6495 1.8080 1.5211 0.4427 | 0.2222
s.e. | 0.0382 | 0.2131 0.6918 | 0.0317 | 0.0353 s.e. | 0.0550 | 0.1665 0.2207 | 0.0406 | 0.0378
t-value | 12.1300 | 16.5200 11.9500 | 1.0000 | 1.0000 t-value | 11.8100 | 10.8600 6.8900 1.0000 | 1.0000
t-Copula df p A t-Copula df p A
est. 1.7959 | 0.9170 0.7524 est. 5.6490 | 0.6738 0.2943
s.e. 0.2195 | 0.0069 0.0150 s.e. 1.3387 | 0.0188 0.0544
t-value 8.1800 132.5100 1.0000 t-value 4.2200 | 35.7800 1.0000
[ heating oil-diesel | | gasoline-diesel
Q| a ds 0 é AL Au Q| « ds 0 é AL Au
est. | 0.8544 | 4.607 5.1644 1.0000 | 0.7157 | 0.0000 est. | 0.6879 1.9538 | 2.3030 1.0000 | 0.3949 | 0.0000
s.e. | 0.0242 | 0.727 1.3861 0.1503 | 0.0311 | 0.0303 s.e. | 0.1137 | 0.2056 | 0.7759 0.1071 0.0748 | 0.0463
t-value | 35.2600 | 4.960 3.7300 0.0000 1.0000 | 0.5001 t-value | 6.0500 | 4.6400 | 2.9700 0.0000 1.0000 | 0.5002
Co | a é Ss AL AU Co | a é ds AL Au
est. | 0.5079 | 5.9320 11.1621 | 0.4519 | 0.4625 est. | 0.6648 | 2.0740 1.4023 | 0.4759 | 0.2045
s.e. | 0.0379 | 0.3358 0.7329 | 0.0339 | 0.0357 s.e. | 0.0503 | 0.1911 0.2166 | 0.0389 | 0.0344
t-value | 13.4000 | 17.6600 15.2300 | 1.0000 | 1.0000 t-value | 13.2000 | 10.8500 6.4800 1.0000 | 1.0000
t-Copula df p A t-Copula df p A
est. 1.5086 | 0.9553 0.8290 est. 4.8127 | 0.6804 0.3348
s.e. 0.2167 | 0.0047 0.0124 s.e. 1.1179 | 0.0192 0.0528
t-value 6.9600 | 205.3300 1.0000 t-value 4.3100 | 35.5000 1.0000

Table D.7: Estimation results for the bivariate oil product portfolios.
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| kerosine-heating oil

X2 AIC BIC Entropy | AD ADS PD PDS
Q.est | 4.33 | -2048.52 -2029.44| -119.77 0.1106 | 0.1043 | 5.17 -13.64
Cc.est | 0.0 -1881.04 | -1866.72 | -106.94 | 0.2969 | 0.4028 | -7.35 | -17.80
t-Copula.est | 0.01 | -1996.15 | -1986.61 | -123.13 | 0.1205 | 0.1231 | 14.20 | 14.31
Q.test | 0.0 | -1257.74 -1238.65 -119.77 | 0.9637 | 0.9425 | 33.99 | 17.34
Cc.test | 0.0 | -1114.91 | -1100.59 | -106.94 | 0.5379 | 0.5139 | 3.36 | -1.37
t-Copula.test | 0.0 | -1239.67 | -1230.12 | -123.13 | 0.8570 | 0.8206 | 43.17 | 45.35
| kerosine-gasoline |
X2 AIC BIC Entropy | AD ADS PD PDS
Q.est | 77.04 -509.35 | -490.26 | -31.66 | 0.1199| 0.1317 | -9.51 | 3.59
Cc.est | 44.87| -473.21 | -458.89 | -27.18 0.2083 | 0.2404 | -8.47 | -3.60
t-Copula.est | 66.99 | -487.11 | -477.57 | -31.64 0.2501 | 0.4147 | -11.13 | 30.17
Q.test | 92.18 -464.63 | -445.54 | -31.66 | 0.0798 | 0.1153 | 61.05 | 6.99
Cc.test | 40.12| -450.37 | -436.05 | -27.18 0.1227 | 0.2050 | 68.78 | -0.81
t-Copula.test | 89.19 | -463.60 | -454.06 | -31.64 0.1254 | 0.2635 | 52.66 | 79.00
| kerosine-diesel |
X2 AIC BIC Entropy | AD ADS PD PDS
Q.est | 56.65 -1671.71 -1652.63 -97.36 0.0863 | 0.0993 | 5.10 | -11.63
Cc.est | 0.00 | -1525.50 | -1511.18 | -87.23 0.2149 | 0.2494 | -15.20 | -16.38
t-Copula.est | 4.98 | -1626.04 | -1615.50 | -100.71 | 0.1588 | 0.1485 | 19.51 | 5.41
Q.test | 0.17 | -1291.33 -1272.24 -97.36 0.4047 | 0.3996 | 19.34 | 8.43
Ce.test | 4.70 | -1217.00 | -1202.69 | -87.23 0.2054 | 0.2130 | -8.02 | 7.36
t-Copula.test | 0.00 | -1271.86 | -1262.32 | -100.71 | 0.4062 | 0.3791 | 36.89 | 33.92
| heating oil-gasoline |
X2 AIC BIC Entropy | AD ADS PD PDS
Q.est | 99.94 -540.18 | -521.10 | -33.09 | 0.0620 | 0.0913 | -17.77| -6.01
Cc.est | 83.04| -514.58 | -500.26 | -30.59 0.1596 | 0.2115 | -37.10 | -5.83
t-Copula.est | 83.86| -516.83 | -507.28 | -30.34 0.2409 | 0.3780 | -18.95 | 27.27
Q.test | 92.69 -552.20 | -533.11 | -33.09 | 0.0873 | 0.1246 | 16.80 | 11.08
Ce.test | 15.99| -539.81 | -525.49 | -30.59 0.2007 | 0.3324 | 21.55 | 10.09
t-Copula.test | 92.32| -558.55 | -549.01 | -30.34 0.1610 | 0.2641 | 9.83 | 40.98
| heating oil-diesel |
X2 AlC BIC Entropy | AD ADS PD PDS
Q.est | 56.04 | -2232.84 -2213.75 -131.27 | 0.0709 | 0.0682 | -5.84 | -9.20
Cc.est | 0.00 | -2054.98 | -2040.66 | -113.36 | 0.2413 | 0.2866 | -26.17 | -16.70
t-Copula.est | 66.99 -2193.92 | -2184.38 | -133.71 | 0.1059 | 0.1147 | 6.42 19.02
Q.test | 3.02 | -1955.50 | -1936.41 | -131.27 | 0.1944 | 0.1987 | -0.27 | 8.25
Cc.test | 0.66 | -1874.18 | -1859.86 | -113.36 | 0.3279 | 0.4175 | -17.78 | -11.05
t-Copula.test | 25.17 -1968.03 -1958.48 -133.71 | 0.1565 | 0.1600 | 7.23 35.38
| gasoline-diesel |
X2 AIC BIC Entropy | AD ADS PD PDS
Q.est | 60.87| -564.29 | -545.21 | -32.66 0.1037 | 0.1538 | -13.56 | 7.72
Cc.est | 82.62 -541.22 | -526.90 | -33.84 | 0.1180 | 0.1512 | -3.50 | -6.46
t-Copula.est | 14.71| -528.81 | -519.27 | -32.81 0.3059 | 0.5327 | -14.14 | 34.27
Q.test | 55.88| -530.14 | -511.04 | -32.66 0.0996 | 0.1209 | 21.17 | 3.39
Ce.test | 3.21 | -509.60 | -495.28 | -33.84 | 0.1558 | 0.2679 | 38.25 | 1.13
t-Copula.test | 91.81] -546.08 | -536.54 | -32.81 0.1509 | 0.2275 | 19.66 | 49.04

Table D.8: Test results for the bivariate oil product portfolios.



stock portfolio C}f ]

parameter estimates | « 01, 01 01 02, 02 02 03, 03 03
est. | 0.6396 | 2.3447 1.4574 | 1.9540 1.1125 | 0.6203 | 1.2270 | 1.1125 0.6203 | 1.2269
s.e. | 0.1107 | 0.3614 1.3857 | 0.4357 0.0597 | 0.5504 | 0.1837 | 0.0541 0.3657 | 0.1154
t-value | 5.78 3.72 1.05 2.19 1.88 1.13 1.24 2.08 1.70 1.97
model check 525 - 515 92 — 91 52 — 51 (535 — 525 93 - 92 53 — (52
est. -1.2322 -0.8371 | -0.7270 0.0000 0.0000 | 0.0000
s.e. 0.3663 1.4910 | 0.4729 0.0806 0.6608 | 0.2169
t-value -3.36 -0.56 -1.54 0.00 0.00 0.00
A estimates /\L1 )\U1 /\L2 /\U2 /\L3 )\U3
est. 0.4196 0.2070 0.0866 0.0867 | 0.0866 0.0867
s.e. 0.0825 0.0754 0.0426 0.0599 | 0.0391 0.0429
pL,.U 0.9999 0.9938 0.9658 0.9628 | 0.9812 0.9748
stock portfolio 0[04}
parameter estimates | « 01 01, 02 02, 03 3,
est. | 0.5926 | 2.7766 2.3740 0.4796 0.3473 | 0.4796 0.3473
s.e. | 0.0545 | 0.3300 0.3411 0.1276 0.1539 | 0.0686 0.0858
t-value | 10.87 8.41 6.96 3.76 2.26 6.99 4.05
model check 52 — 51 525 — 515 (53 — 52 535 — (525
est. -2.2970 -2.0268 0.0000 0.0000
s.e. 0.3538 0.3742 0.1449 0.1761
t-value -6.49 -5.42 0.00 0.00
A estimates AL, Aty AL, AU, ALs AU,
est. 0.4617 0.3042 0.1397 0.0554 | 0.1397 0.0553
s.e. 0.0446 0.0427 0.0552 0.0495 | 0.0316 0.0283
pL.U 1.0000 1.0000 1.0000 0.9991 | 1.0000 0.9999
‘ stock portfolio Cy
parameter estimates df P2 | PA3) P4 | P@3) P(2,4) P(3.4)
est. 12.0597 0.8196 | 0.2100 0.4144 | 0.2054 | 0.4689 | 0.2259
s.e. 2.4495 0.0113 | 0.0360 0.0332 | 0.0346 | 0.0288 | 0.0351
t-value 4.92 72.35 5.83 12.47 5.93 16.27 6.44
A estimates )\(172) )\(1,3) )\(114) )\(273) )\(2’4) )\(3,4)
est. 0.2756 | 0.0119 0.0368 | 0.0116 | 0.0488 | 0.0130
s.e. 0.0493 | 0.0086 0.0194 | 0.0084 | 0.0231 | 0.0092
pLU 1.0000 | 1.0000 1.0000 | 1.0000 | 1.0000 | 1.0000

Table D.9: Estimation results for 4-dimensional stock indices portfolios.
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fx-rate portfolio C'g[;l ]

parameter estimates | « 01, 01 01 02, 02 02 03, 03 03
est. | 0.3270 | 1.0334 3.5593 | 3.0581 1.0301 | 1.4486 | 1.7064 | 1.0300 1.3869 | 1.2745
s.e. | 0.0392 | 0.1396 0.9350 | 0.2830 0.1004 | 0.5854 | 0.1079 | 0.0612 0.3643 | 0.0582
t-value | 8.34 0.24 3.81 7.27 0.30 2.47 6.55 0.49 3.81 4.72
model check 525 - 515 92 — 91 52 — 51 (535 — 525 93 - 92 53 — (52
est. -0.0033 -2.1106 | -1.3517 0.0000 -0.0617 | -0.4320
s.e. 0.1719 1.1032 | 0.3028 0.1176 0.6895 | 0.1226
t-value -0.02 -1.91 -4.46 0.00 -0.09 -3.52
A estimates /\L1 )\U1 /\L2 /\U2 /\L3 )\U3
est. 0.0145 0.5018 0.0131 0.3358 | 0.0131 0.1866
s.e. 0.0580 0.0342 0.0421 0.0325 | 0.0257 0.0308
pL,.U 0.6588 1.0000 0.7003 1.0000 | 0.6886 1
fx-rate portfolio O[cé‘l]
parameter estimates | « 01 01, 02 02, 03 3,
est. | 0.4462 | 4.1378 2.7416 1.2984 0.9825 | 0.7571 0.6394
s.e. | 0.0350 | 0.4144 0.2031 0.1695 0.1043 | 0.1055 0.0600
t-value | 12.74 9.99 13.50 7.66 9.42 7.18 10.66
model check 52 — 51 525 — 515 (53 — 52 535 — (525
est. -2.8394 -1.7591 -0.5412 -0.3430
s.e. 0.4477 0.2283 0.1996 0.1204
t-value -6.34 -7.70 -2.71 -2.85
A estimates AL, Aty AL, AU, ALs AU,
est. 0.3774 0.4301 0.2616 0.2735 | 0.1786 0.1873
s.e. 0.0303 0.0284 0.0275 0.0268 | 0.0268 0.0224
pL.U 1.0000 1.0000 1.0000 1.0000 | 1.0000 1.0000
‘ fx-rate portfolio C;
parameter estimates df P2 | PA3) P4 | P@3) P(2,4) P(3.4)
est. 5.0402 0.8507 | 0.5098 0.4650 | 0.6463 | 0.4734 | 0.3370
s.e. 0.4860 0.0074 | 0.0234 0.0258 | 0.0172 | 0.0257 | 0.0284
t-value 10.37 114.94 | 21.75 18.00 37.60 18.43 11.87
A estimates )\(172) )\(1,3) )\(114) )\(273) )\(2’4) )\(3,4)
est. 0.5112 | 0.2106 0.1877 | 0.2978 | 0.1918 | 0.1339
s.e. 0.0214 | 0.0235 0.0229 | 0.0247 | 0.0231 | 0.0198
pLU 1.0000 | 1.0000 1.0000 | 1.0000 | 1.0000 | 1.0000

Table D.10: Estimation results for 4-dimensional fx-rate portfolios.
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metal basket C’g ]

parameter estimates | « 01, 01 01 02, 02 0o J3. 03 03
est. | 0.4492 | 1.3669 2.9168 | 1.2838 1.1896 | 2.5220 | 1.1427 | 1.1265 2.2452 | 1.0805
s.e. | 0.0680 | 0.1613 0.6851 | 0.1123 0.0972 | 0.4498 | 0.0663 | 0.0631 0.2957 | 0.0435
t-value | 6.61 2.27 4.26 2.53 1.95 5.61 2.15 2.00 7.59 1.85
model check 525 — 515 92 — 01 52 — 51 (538 — 525 93 — 92 (53 — (52
est. -0.1733 -0.3948 | -0.1410 -0.0631 -0.2768 | -0.0622
s.e. 0.1883 0.8195 | 0.1305 0.1159 0.5382 | 0.0793
t-value -0.94 -0.48 -1.08 -0.54 -0.51 -0.78
A estimates AL, AU, AL, AU, ALs AU,
est. 0.1525 0.1565 0.0940 0.0914 | 0.0673 0.0554
s.e. 0.0502 0.0487 0.0409 0.0373 | 0.0304 0.0278
pPL.U 0.9983 0.9990 0.9959 0.9927 | 0.9776 0.9680
metal basket C’gl]
parameter estimates | « 01 01, 02 02, 03 3,
est. | 0.5473 | 1.5673 1.6477 0.9401 1.0255 | 0.7255 0.8053
s.e. | 0.0310 | 0.1599 0.1852 0.0990 0.1190 | 0.0564 0.0714
t-value | 17.64 9.80 8.90 9.50 8.62 12.86 11.28
model check 52 — 51 5QS — 515 (53 — 52 (533 — (525
est. -0.6272 -0.6222 -0.2147 -0.2202
s.e. 0.1880 0.2202 0.1139 0.1388
t-value -3.34 -2.83 -1.88 -1.59
A estimates >\L1 )\U1 >\L2 /\U2 >\L3 )\U3
est. 0.3517 0.2972 0.2618 0.2303 | 0.2105 0.1914
s.e. 0.0255 0.0248 0.0252 0.0240 | 0.0197 0.0196
pL.U 1.0000 1.0000 1.0000 1.0000 | 1.0000 1.0000
’ metal basket C4
parameter estimates df P2 | PA3) P4 | P23) P(2,4) P(3.4)
est. 20.9773 0.6545 | 0.5272 0.4045 | 0.5581 | 0.4162 | 0.5233
s.e. 3.9844 0.0132 | 0.0171 0.0205 | 0.0159 | 0.0199 | 0.0171
t-value 5.26 49.42 30.79 19.74 35.10 20.89 30.60
)\ estimates )\(1’2) )\(1’3) )\(1’4) )\(2’3) )\(2’4) )\(374)
est. 0.435 0.0161 0.0058 | 0.0205 | 0.0064 | 0.0156
s.e. 0.0200 | 0.0101 0.0047 | 0.0120 | 0.0050 | 0.0098
pLU 1.0000 | 1.0000 1.0000 | 1.0000 | 1.0000 | 1.0000

Table D.11: Estimation results for

4-dimensional metal baskets.
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oil related commodity basket C’gl ]

parameter estimates | « 01, 01 01 02, 02 02 03, 03 03
est. | 0.7948 | 4.9276 5.2819 | 1.1841 3.6752 | 5.2819 | 1.0000 | 1.6289 2.4552 | 1.0000
s.e. | 0.0232 | 0.6468 1.4847 | 0.1930 0.5720 | 1.4618 | 0.1807 | 0.1349 0.6599 | 0.0877
t-value | 34.26 6.07 3.56 0.95 4.68 3.61 0.00 4.66 3.72 0.00
model check 525 - 515 92 — 91 52 — 51 (535 — 525 93 - 92 53 — (52
est. -1.2524 0.0000 | -0.1841 -2.0463 -2.8267 | 0.0000
s.e. 0.8634 2.0835 | 0.2644 0.5876 1.6038 | 0.2008
t-value -1.45 0.00 -0.70 -3.48 -1.76 0.00
A estimates /\L1 )\U1 /\L2 /\U2 /\L3 )\U3
est. 0.6747 0.0419 0.6298 0.0000 | 0.3732 0.0000
s.e. 0.0259 0.0355 0.0336 0.0514 | 0.0442 0.0250
pL,.U 1.0000 0.8830 1.0000 0.4995 | 1.0000 0.5005
oil related commodity basket C’gl]
parameter estimates | « 01 01, 02 02, 03 3,
est. | 0.5083 | 5.3700 11.4860 3.7669 8.9926 | 1.6357 1.2933
s.e. | 0.0353 | 0.5322 0.8882 0.4457 0.5301 | 0.1749 0.1154
t-value | 14.40 10.09 12.93 8.45 16.96 9.35 11.21
model check 52 — 51 525 — 515 (53 — 52 535 — (525
est. -1.6031 -2.4933 -2.1312 -7.6993
s.e. 0.6941 1.0344 0.4788 0.5425
t-value -2.31 -2.41 -4.45 -14.19
A estimates AL, Aty AL, AU, ALs AU,
est. 0.4467 0.4629 0.4229 0.4552 | 0.3327 0.2877
s.e. 0.0315 0.0333 0.0308 0.0327 | 0.0276 0.0248
pL.U 1.0000 1.0000 1.0000 1.0000 | 1.0000 1.0000
‘ oil related commodity basket C
parameter estimates df P2 | PA3) P4 | P@3) P(2,4) P(3.4)
est. 4.9457 0.7905 | 0.7552 0.3945 | 0.6628 | 0.4155 | 0.3652
s.e. 0.5827 0.0263 | 0.0296 0.0603 | 0.0460 | 0.0598 | 0.0577
t-value 8.49 30.09 25.50 6.54 14.39 6.94 6.33
A estimates )\(172) )\(1,3) )\(114) )\(273) )\(2’4) )\(3,4)
est. 0.4365 | 0.3979 0.1597 | 0.3146 | 0.1686 | 0.1479
s.e. 0.0390 | 0.0395 0.0334 | 0.0445 | 0.0345 | 0.0311
pL,U 1.0000 | 1.0000 1.0000 | 1.0000 | 1.0000 | 1.0000

Table D.12: Estimation results for 4-dimensional oil related commodity basket.
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| stock indices

x2-statistic AlC BIC Entropy | AD ADS PD PDS
(p-value[%])
Q.est | 115.04 (0.06) | -578.74 | -521.05 | -0.7068 0.7028 0.6956 -35.00 | 13.52
Ce.est | 126.20 (0.01) | -557.38 | -516.99 | -0.6046 | 0.9865 1.1934 7.71 -12.89
t-Copula.est | 78.40 (31.16)| -614.03 | -573.64 | -0.7337 | 0.5019 | 0.3507 | -7.53 2.69
Q.test | 137.71 (0.00) | -329.63 | -271.80 | -0.7068 2.2417 2.7507 32.21 125.30
Cco.test | 101.39 (1.56) | -336.18 | -295.70 | -0.6046 | 171.20 1.3999 | 30.61 | 37.92
t-Copula.test | 92.76 (5.92) | -367.63 | -327.14 | -0.7337 | 1.9155 | 2.9954 33.69 108.01
| fx-rates
x2-statistic AIC BIC Entropy | AD ADS PD PDS
(p-value|%)])
Q.est | 224.03 (0.00) | -1288.18 | -1226.65 | -1.0441 0.6668 0.5123 -22.82 | 6.98
Ce.est | 229.35 (0.00) | -1228.33 | -1185.25 | -0.9565 | 0.9468 1.0297 -4.52 | -16.37
t-Copula.est | 109.91 (0.34)| -1354.72 -1311.64 -1.1236 | 0.3932 | 0.3640 | 15.27 -5.53
Q.test | 437.14 (0.00)| -981.81 | -920.20 | -1.0441 11.2573 | 12.8212 | 29.14 | 186.54
Ceo.test | 474.46 (0.00) | -926.29 | -883.16 | -0.9565 371.8833 | 8.0041 | 40.99 87.62
t-Copula.test | 459.26 (0.00) | -960.93 | -917.80 | -1.1236 | 10.4183| 11.8035 | 65.12 146.11
| metal basket
x2-statistic AIC BIC Entropy | AD ADS PD PDS
(p-value[%])
Q.est | 95.33 (2.38) -1166.42 | -1101.66 | -0.6666 0.3696 | 0.3579 | 4.69 -1.35
Cec.est | 108.46 (0.44) | -1112.02 | -1066.70 | -0.6589 1.9696 2.4132 30.09 20.67
t-Copula.est | 59.38 (69.53)| -1180.05 -1134.72 -0.6763 | 0.5582 1.0503 22.24 20.79
O.test | 124.19 (0.01) | -492.17 | -428.95 | -0.6666 6.7884 4.1303 29.31 18.10
Cco.test | 124.61 (0.02)| -469.00 | -424.75 | -0.6589 325.9473 | 2.1571 | 95.85 20.34
t-Copula.test | 123.97 (0.01) | -466.20 | -421.94 | -0.6763 | 5.8653 | 3.0023 63.93 20.91
| oil related commodity basket
x2-statistic AlIC BIC Entropy | AD ADS PD PDS
(p-value[%])
Q.est | 122.95 (0.01)| -2415.60 -2357.88 -2.8604 | 0.1458 | 0.2043 | -22.52 | -8.52
Ce.est | 178.52 (0.01) | -2201.11 | -2160.71 | -2.4864 1.1695 1.1501 -27.69 | -3.86
t-Copula.est | 1357.79 (0.00) | -1740.87 | -1700.47 | -1.1017 | 30.5945 | 28.9588 | -57.86 | -47.67
O.test | 102.07 (0.74)| -1947.45 -1889.72 -2.8604 | 0.4662 | 0.5282 | 32.35 -5.31
Cco.test | 108.57 (0.44) | -1824.40 | -1783.99 | -2.4864 | 106.42 0.6348 -0.99 | -0.17
t-Copula.test | 667.78 (0.00) | -1643.13 | -1602.72 | -1.1017 | 26.3588 | 24.8209 | -53.43 | -48.85

Table D.13: Test results for the 4-dimensional portfolios.




231

| Dasy | portfolio \ Pasy.real \ portfolio
stock indices
max Cq | 0.9791 NAS-SP 0.8868 NAS-SP
max C¢o | 0.9675 NAS-SP 0.9675 NAS-SP
min Cq | 0.6205 SP-NIK 0.0479 NAS-NIK
min Ce | 0.3529 NAS-NIK 0.3082 NAS-NIK
fx rates
max Cq | 0.9792 HKD-SGD 0.9791 | HKD-SGD
max C¢c | 0.8952 HKD-SGD 0.8952 | HKD-SGD
min Cq | 0.1611 AUD-YEN 0.1513 | AUD-YEN
min Cc | 0.2380 AUD-SGD 0.2380 | AUD-SGD
metal baskets
max Cq | 0.8760 Al-Pb 0.7147 Al-Cu
max C¢ | 0.8751 Cu-Pb 0.8751 Cu-Pb
min Cq | 0.0823 Al-Zn 0.0416 Al-Zn
min C¢ | 0.1700 Pb-Zn 0.1700 Pb-Zn
oil related commodities

max Cq | 1.0000 | ker-hea, ker-die, hea-die | 0.5001 hea-die
max C¢c | 0.9999 gas-die 0.9999 gas-die
min Cq | 0.9966 hea-gas 0.4967 gas-die
min C¢ | 0.1220 hea-die 0.1220 hea-die

Table D.14: Bivariate portfolios with the maximal and minimal values of pgs,
under the Cq and C¢ model, together with the corresponding values of pgs, and

Pasy.real -

portfolio model plane 1-2 plane (1,2)-3 plane (1,2,3)-4
DPasy Pasy.real DPasy Pasy.real DPasy Pasy.real

stock indices Ca 0.8703 | 0.8648 | 0.0141 | 0.0131 | 0.0975 | 0.0933
Cc 0.9544 | 0.9544 | 0.7884 | 0.7877 | 0.9431 | 0.9430

fx-rates Cao 1.0000 | 0.6588 | 1.0000 | 0.7003 | 1.0000 | 0.6886

Cc 0.6384 | 0.2082 | 0.1911 | 0.6384 | 0.2082 | 0.1911

metal basket Cq 0.0352 | 0.0351 | 0.0458 | 0.0453 | 0.2567 | 0.2429
Cec 0.5392 | 0.5328 | 0.0768 | 0.5392 | 0.5328 | 0.0768

oil related Co 1.0000 | 0.8830 | 1.0000 | 0.4995 | 1.0000 | 0.5005
commodity basket Cc 0.5896 | 0.7376 | 0.7939 | 0.5896 | 0.7376 | 0.7939

Table D.15: pusy and pasyrear values for the bivariate projections of the 4-
dimensional portfolios.



Appendix E

Nonlinear Term Structure Dependence

E.1 Affine Models

We briefly review the concept of ATSMs following Duffie and Kan [33], and
Dai and Singleton [24]. In contrast to the considerations above, we start with
an equivalent martingale measure (), and later on we work out the link to the
real world under the so-called physical measure P. In the absence of arbitrage
opportunities, the price at time ¢ of a zero-coupon bond that matures at time

t + 7, denoted P(t,7), is given by

P(t,7) = EQ {exp (— /t " Rs) ds> } | (B.1.1)

where E? { -} denotes the conditional expectation under the risk neutral measure
Q. A d-factor affine term structure model is obtained under the assumption that
the instantaneous short rate R is an affine function of a d-dimensional vector

process of state variables X = (X7, ..., Xy):
R(t) = Ro+ a1 X1 (1) + ... + agXq(t) = Ry +a' X(1), (E.1.2)
and that X follows an affine diffusion:
dX (1) = k(B — X (1)) dt + $\/S(t) dW(t), (E.1.3)

where Wy, is a d-dimensional standard Brownian motion under the measure @),

b is a d-vector, kg and X are d x d matrices, and S(t) is a d x d diagonal matrix
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with the ith diagonal element:
{S(t)}i = agi + ﬁs*z'TX(t)- (E.1.4)
Provided that a parameterization is admissible, we know from Duffie and Kan [33]:
P(t,7) =exp (A(T) + B(1)" X (1)) , (E.1.5)

where A and B satisfy the ordinary differential equations:

U

dA(T)
dr

1
= OgrgB(T) + 3 [=TB(r)] as: — R, (E.1.6)
=1

7

dB(r
dr

~—

[TB()]? Bsi —a. (E.1.7)

DN | —
=

= —/ﬁlgB(T) +

=1

The particular specification of the @-dynamics of X in Equation (E.1.3) and the
definition of R in Equation (E.1.2) allow the exponential affine representation
of the bond prices in Equation (E.1.5). It is well known that the measure @ is
generated by a change of measure with respect to the empirical /physical measure
P that describes the behavior of the stochastic factors in the “real world”. To
obtain an affine structure for X under both measures P and @), we restrict the

measure change in terms of the market price of risk A to:
A(t) =/ SN, (E.1.8)

where ) is a d-vector of constants. Thus, the P-dynamics of the state process X
is:

dX (1) = w(0 — X(8)) dt + D\/S() dW (1), (E.1.9)

where W is a d-dimensional standard Brownian motion under P and:

Kk = Kg—xVU, (E.1.10)
0 = k' (kgbg + X0). (E.1.11)

The ith row of the d x d matrix ¥ is filled in by X\;3s; " and ¢ is a d-vector whose

1th element is given by A\;as;. The functions A and B describing the two-factor
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generalized Vasicek model of Babbs and Nowman [6] are given by the parameters

Ry € R, Ky, ke,01,090 € RT p €] —1,1[, and A\, A2 € R in the following way:
2

Alr) = E:fwM&ﬁ%Hﬁ—ZiBmf}—RM+AAﬂ,mlmn

%

i=1,2
T — 1 e 1\ '
B(r) = (Bi(7),By(7))' = ( : ) : (E.1.13)
R1 K2
where v, = UZ—IM - %, P == (pAﬁml_pZ 2 %, and:

Ay =22 {iwl(r) 1)+ S (By(r) +7) — Bu(r) Bm} (B114)

K1+ Ko | K1 Ko
E.2 Yield-Factor Representation

A distinct feature of ATSM framework is that the latent state variables can be
transferred to an appropriate set of yields, see Duffie and Kan [33]. Moreover,
the affine structure of the latent variables is preserved for the yields, and the
yields can be viewed at as a new set of state variables provided some technical
conditions hold. Given a d-factor ATSM with state variable X = (X1, ..., X,)".
For a set of maturities (7, ...,74) the corresponding yields Y = (Y},...,Yy)" are

given by Equation (E.1.5):

Y(t) = A+ BX(1), (E.2.1)
where
_A(m) _Bi(m) _ Bg(m1)
1 T e 1
A= , B= . . (E.2.2)
_A(ma) _ Bi(ma) __ Bgy(7a)
Td Td Td

Provided B is non-singular, we can state the analogue of Equation (E.1.9), i.e.

the state equation for the yield vector Y:

dY (t) = #(0 — Y (t)) dt + S/ S(t) dW (t) (B.2.3)

F=BrkB™', §=BO+A, ©=BY%, and S{t)={a;+ 53 Y}, (E.2.4)
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and &; = ag; — Bs;' B~YA, and 3 = B~ Bg;. We briefly discuss the yield
dynamics implied by the two-factor generalized Gaussian model. Here, we find
0 = 0, and S(t) = I; what results into # = BkB™, 6§ = A, ¥ = BY, and
S(t) =1

dY(t)=BxkB ' (A-Y () dt + BXdW(t), (E.2.5)

where B x B~! describes the mean reversion including cross-dependencies be-

tween Y; and Y5, and the covariance is given by BY X" BT,
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