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1.1 Introduction

Planning means constructing a course of actions to achieve a specified set
of goals when starting from an initial situation. For example, determining a
sequence of actions (a plan) for transporting goods from an initial location to
some destination is a typical planning problem in the transportation domain.
Many planning problems are of practical interest.

The classical generative planning process consists mainly of a search
through the space of possible operators to solve a given problem. For most
practical problems this search is intractable. Therefore, case-based reason-
ing can be a good idea because it transfers previous solutions rather than
searching for it.

Since the space of possible plans is typically vast, it is extremely unlikely
that a case base contains a plan that can be reused without any modification.
First, modification has been addressed in CHEF (Hammond 1986), one of the
first case-based planners. It retrieves cooking recipes and adapts them to the
new problem by using domain specific knowledge. As experience has shown,
however, this kind of adaptation in realistic domains requires a large amount
of very specific domain knowledge and lacks flexibility.

Given that classical generative planning may engage in a very large search
effort and pure case-based planning may encounter insurmountable modifica-
tion needs, several researchers have pursued a synergistic approach of gener-
ative and case-based planning. In a nutshell, the case-based planner provides
plans previously generated for similar situations and the generative planner
is used as a source of modification. In this paper, we present four systems
that integrate generative and case-based planning: PRODIGY/ANALOGY de-
veloped at the CMU, CAPLAN/CBC and PARIs developed at the University
of Kaiserslautern, and ABALONE developed at the Universities of Saarbriicken
and Edinburgh. These systems are domain-independent case-based planners
that accumulate and use planning cases to control the search. In these sys-
tems, cases encode knowledge on why and which operators were used for
solving problems. In our synergistic systems the workload imposed on the
generative planner depends on the amount of modification that is required
to completely adapt a retrieved case.
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1.2 Generative Planning

Since the presented case-based planners are built on top of generative plan-
ners, we briefly introduce generative planning.

Together initial state and a set of goals form a planning problem. A plan-
ning task consists of finding a plan, which is sequence of actions that trans-
form the initial state, into a final state in which the goals hold. The plan is
a solution of the planning problem. Usually, a state is represented by a finite
collection of logical sentences. Actions are described by so-called operators.
Following the STRIPS representation of Fikes and Nilsson (1971), operators
are data structures that consist of preconditions and effects. A precondition
is a conjunctive formula that must hold in a current state for the operator to
be applicable. The effects describe how the state changes when the operator
is applied. For more detailed introduction to planning, see e.g., (Russell and
Norvig 1995).

1.2.1 The Logistics Transportation Domain

Let us illustrate these notions by an example from the logistics transportation
domain (Veloso 1994). In this domain, there are different sorts of locations
and means of transportation (see Figure 1.1). The initial state of a problem
describes a certain configuration of objects, locations, and transportation
means and a goal is to place certain objects at target locations. Figure 1.1
(a) shows an example of an initial state. There is a post office, p4, and an
airport a12. There are two transportation means: a truck, tr2, located at p4
and an airplane, p15, located at a12. Finally, there are two packages, 0b3 and
0b8. The first one is loaded in ¢r2 and the second one is located at p4. The
final state consist of two goals: 0b3 must be located in p12 and 0b8 must be
loaded in tr2

**Qperator: load-truck

Parameters:

p4 al2 (<obj> OBJECT)

m obs p1s (<tr> TRUCK)

-~ ob3 @ (<loc> LOCATION)

tr2 Preconditions:

at-obj(<obj> <loc>)
" at-truck(<tr> <loc>)

(a) Initial State Effocts:

add: in-truck(<obj> <tr>)

del: at-obj(<obj> <loc>)

(b) An operator

Fig. 1.1. Initial state of a problem and an operator in the logistics transportation
domain
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Figure 1.1 (b) shows an example of an operator, load-truck, loading the
object <obj> in <tr>. The preconditions state that <obj> and <tr> must
be in the same location, <loc>. Effects are divided into add and del lists indi-
cating literals added to and deleted from the state of the world, respectively.
Figure 1.2 shows a plan achieving the two goals. Initially, as both 0b8 and tr2
are located at p4, the preconditions of load-truck are met and this operator
is applied. ¢r2 is then moved to a12, where 0b3 is unloaded and loaded into
p12. After performing this plan, both goals are met.

load-truck(ob8,tr2)—move-truck(tr2,p4,al2)—unload-truck(ob3,tr2)—load-plane(ob8,pl5)

Fig. 1.2. A plan consisting of four actions

1.2.2 Why is Planning Difficult ?

Although the previous example may seem simple, in fact, planning is a very
difficult task. There may be several actions that can change the state of
world. In the state illustrated in Figure 1.1 (a), dropping 0b3 in p4 would
have been a valid action, but it does not contribute to achieving the goals
because an airplane cannot be moved to a post office. Typically, at any time
of the planning process, there are several applicable operators but only few
will lead to a solution. Even worse, it can happen that none of them might
be useful. In this situation, a state will be achieved in which no action can be
taken and backtracking is necessary to revise the actions taken previously. In
terms of computational complexity theory, the problem of finding a correct
plan for a given planning problem is an NP-complete problem (Bylander
1991). This results shows the intractability of the search involved in planning
and calls for ways to restrict the search space.

1.2.3 Approaches to Planning

Several approaches to planning have been developed since the early days
of STRIPS. Basically, all planners perform some kind of search; they differ,
however, in the space they are searching and in the search strategy they
use. The two dominant approaches search the state space and the plan space,
respectively.

Figure 1.3 (a) illustrates the search space in state-space planning. The
nodes represent the states of the world and the edges represent valid actions
transforming states of the world. That is, actions transform states into states.
From this point of view, the initial and final state are two nodes in the search
space and a solution is a directed path from the initial to the final state.

In plan-space planning, operations transform partially ordered plans into
partially ordered plans as illustrated in figure 1.3 (b). The initial plan is a
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Fig. 1.3. Search in the space of states and in the state of plans

partially ordered plan representing the problem. This plan must be trans-
formed into a solution plan. There are two types of operations transforming
plans: operations achieving goals and operations solving conflicts. To achieve
a goal, an action is introduced into the current partial plan. Actions are par-
tially ordered according to whether an action achieves a precondition of the
other action. Conflicts may occur due to the partial order between the plan
steps which can be solved by introducing additional ordering constraints into
the current plan. For example, in the logistics transportation domain differ-
ent steps may require a truck to be available. A conflict occurs when there
are not enough trucks available. To solve this conflict, some of the steps must
be ordered to ensure that every truck is used one at the time. In so-called
least-commitment planners an order between actions is introduced into the
plan only when necessary. This is advantageous because additional ordering
constraints can be introduced during planning.

Several studies have been made for indicating in which situations it is
better to search in the space of plans rather than in the space of states and
vice versa (Kambhampati et al. ; Veloso and Blythe 1994; Barrett and Weld
1994). Independent of the planning approach used, guidance is still needed
to navigate through the exponential search space. We will now see, how case-
based reasoning can provide this guidance.

1.3 Case-Based Planning

We now describe a general framework for case-based planning based on the
CBR process model by Aamodt and Plaza (1994). This covers most case-
based planning systems including those approaches developed at the CMU,
at the Universities of Kaiserslautern, and at the University of Saarbriicken
and Edinburgh.

1.3.1 Retrieval and Organization of the Case-Base

A case in case-based planning consists of a problem (initial and goals) and
its plan. Given a new problem, the objective of the retrieval phase is to select
a case from the case base whose problem description is most similar to the
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description of the new problem. Because of the usually needed adaptation in
case-based planning, the retrieval should select adaptable cases (Smyth and
Keane 1993). More precisely, the main goal of the similarity assessment is to
predict the effort required for reusing the solution to solve the new problem.
Therefore, a case should be considered very similar to the new problem, if
only little effort is required for adapting its solution to the needs of the target
and less similar if the adaptation is computationally expensive. In case-based
planning, the reusability of a case is strongly determined by the solution
contained in the case and not only by the problem description. Therefore,
the similarity assessment refers to the fragments of the problem description
which are relevant for successfully reusing the plan. One way to extract the
fragments is to compute the weakest preconditions of the plan. This com-
putation employs the domain knowledge about the available operators that
ensures that the plan can be successfully applied. The similarity will then
be assessed based on the fragment of the conditions that are satisfied in the
current problem to be solved.

As in case-based reasoning in general, computing the similarity assessment
may become very expensive when the case base has reached a considerable
size. In this case, a trade-off between the objective to find the best case and
the objective of minimizing the retrieval time exists as depicted in Figure 1.4.
As the number of cases visited during retrieval increases, more time must be
spent for retrieval (see curve 2) but better cases resulting in a shorter adapta-
tion time will be found (see curve 1). Up to a certain point (optimal point),
the total case-based planning time (retrieval+reuse, see curve 3) decreases
when more cases are visited during retrieval. However, beyond this point the
total planning time increases again if more cases are visited, because the pos-
sible gain through finding better cases does not outweigh the effort of finding
them.

Effort

A

high

1 Reuse effort
2 Retrieval effort
3 Total effort (1+2)

low : > Casesvisited during retrieval
afew cases many cases

Fig. 1.4. Trade-off between retrieval effort and reuse effort (adapted from Veloso)
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1.3.2 Reusing Previous Solutions

In case-based reasoning, at least two different kinds of approaches to reuse
can be distinguished: transformational adaptation and generative adaptation
(Carbonell 1983; Carbonell 1986). Transformational adaptation methods usu-
ally consist of a set of domain-dependent knowledge which directly modify
the solution contained in the retrieved case, based on the difference between
the problem descriptions in the case and of the current problem. While in
early case-based planning systems (e.g., in CHEF, Hammond 1986) only trans-
formational adaptation was used, most recent systems use generative adap-
tation. For generative adaptation, the integration of a case-based problem
solving strategy and a generative problem solver is central. The retrieved
solution is not modified directly, but is used to guide the generative prob-
lem solver to find a solution. A basic principle is the replay of decisions that
where made during the process of solving the problem recorded in the case.
When replaying the solution trace of a previous case, some decisions can be
reused, while the remaining decisions are taken by replaying another case or
by using a generative planner. The result of this reuse phase is either a cor-
rect solution (w.r.t. the domain model) or the indication of a failure in case
the problem could not be solved with allocated time resources. In different
case-based planners, the particular guidance that a case provides depends on
the type of generative problem solver that is used.

1.3.3 Revision of Solutions

The goal of the revision phase is to validate the computed solution in the
real world or in a simulation of it. Due to the correctness of the reuse-phase,
the resulting solutions are known to be correct w.r.t the domain model. Con-
sequently, the simulation of the solution cannot contribute to an additional
validation. Therefore, the solution must be validated in the real world. How-
ever, no methodological support of this kind is provided by today’s case-based
planning systems.

1.3.4 Retaining New Cases

In case-based planning, storing a new case in the case base requires far more
effort than case-based reasoning for analytic tasks. While the latter simply
stores a new case ”as it is”, case-based planning requires determining the
"right” goals to index the cases. Roughly speaking, the goals used for indexing
are those goals that are required for or affected by the taken decisions stored
in the case. Furthermore, the decisions taken by the generative problem solver
must be captured in stored cases.
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1.4 PRODIGY/ANALOGY

PRODIGY/ANALOGY was the first system that achieved a complete syn-
ergy between generative planning and case-based planning (Veloso 1994)
and used for the first time a full automation of the complete CBR-cycle.
PRODIGY/ANALOGY has been developed within the PRODIGY planning and
learning architecture (Carbonell et al. 1991). The generative planner is a
means-ends analysis backward-chaining nonlinear planner, performing state-
space search. The integration is based on the derivational analogy method
(Carbonell 1986). This is a reconstructive method by which lines of reasoning
are transferred and adapted to a new problem as opposed to transformational
methods that adapt directly final solutions. PRODIGY/ANALOGY was and
continues to be demonstrated in a variety of domains.

1.4.1 Retain: Generation of Planning Cases

A planning case to be stored consists of the successful solution trace aug-
mented with justifications, i.e., the derivational trace. The base-level PRODIGY4.0
reasons about multiple goals and multiple alternative operators relevant to
achieving the goals. This choice of operators amounts to multiple ways of
trying to achieve the same goal. PRODIGY/ANALOGY provides a language
to capture mainly three kinds of justifications for the decisions made during
problem solving: links among choices capturing the goal dependencies, records
of failed explored alternatives, and pointers to any external used guidance.
We discovered in PRODIGY/ANALOGY that the key feature of this language
is that it needs to be re-interpretable at planning replay time.

Automatic generation of the derivational planning episodes occurs by ex-
tending the base-level generative planner with the ability to examine its in-
ternal decision cycle, recording the justifications for each decision during its
search process.

1.4.2 Indexing and Retrieval of Cases

From the exploration of the search space and by following the subgoaling
links in the derivational trace of the plan generated (Carbonell 1986), the
system identifies, for each goal, the set of weakest preconditions necessary to
achieve that goal. The so called foot-print of a goal conjunct of the problem is
recursively created by doing goal regression, i.e. projecting back its weakest
preconditions into the literals in the initial state (Waldinger 1977). Goal
regression acts as an explanation of the successful path. The literals in the
initial state are therefore categorized according to the goal conjunct that
employed them in its solution.

The system automatically identifies the sets of interacting goals of a plan
by partially ordering the totally ordered solution found. The connected com-
ponents of the partially ordered plan determine the independent fragments of
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the case each corresponding to a set of interacting goals. Each case is multiply
indexed by these different sets of interacting goals.

When a new problem is presented to the system, the retrieval procedure
must match the new initial state and the goal statement against the indices
of the cases in the case library.

The retrieval algorithm focuses on retrieving past cases where the planner
experienced equivalent goal interactions and has a reasonable match between
initial states expecting therefore to achieve a large reduction in the new
planning search effort.

1.4.3 Reuse: Replay of Multiple Planning Episodes

PRODIGY/ANALOGY can construct a new solution from a set of guiding cases
as opposed to a single past case. Complex problems may be solved by resolv-
ing minor interactions among simpler past cases.

Consider the logistics transportation domain. In this domain packages are
to be moved among different places, by trucks and airplanes. The example
below is simple for the sake of a clear illustration of the replay procedure. Ex-
tensive empirical results on PRODIGY/ANALOGY have shown that the system
scales well in problem complexity (Veloso 1994).

Figure 1.5 shows a new problem and two past cases selected for replay.
The cases are partially instantiated to match the new situation. Further in-
stantiations occur while replaying.

77777777777777 Pastcases New problem

(goal (inside-airplane ob3 pl5)) (goal (inside-airplane ob3 pI5)
' (relevant-state (at-obj ob3 <ap3>) | (inside-truck ob8 tr2))
b (at-airplanepl5 al2)) (initial-state

g I ; (inside-truck ob3tr2)

. (goal (inside-truck ob8 tr2)) 5 (at-truck tr2 p4)

' (relevant-state (at-obj ob8 p4) (at-airplane pl5 al2)
S (at-truck tr2 <gp7>)) (at-0bj 0b8 p4))

Fig. 1.5. Instantiated past cases cover the new goal and partially match the new
initial state. Some of the case variables are not bound by the match of the goals
and state.

Figure 1.6 shows the replay episode to generate a solution to the new
problem. The new situation is shown at the right side of the figure and the
two past guiding cases at the left.

The transfer occurs by interleaving the two guiding cases, performing
any additional work needed to accomplish remaining subgoals, and skipping
past work that does not need to be done. In particular, the case nodes ¢n3’
through cnb’ are not reused, as there is a truck already at the post office in the
new problem. The nodes n9-14 correspond to unguided additional planning
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Fig. 1.6. Derivational replay
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done in the new episode.! At node n7, PRODIGY/ANALOGY prunes out an
alternative operator, namely to load the truck at any airport, because of the
recorded past failure at the guiding node ¢n2’. The recorded reason for that
failure, namely a goal-loop with the (inside-truck ob8 tr2), is validated in
the new situation, as that goal is in the current set of open goals, at node
n6. Note that the two cases are merged using a bias to postpone additional
planning needed. Different merges are possible.

1.5 CAPLAN/CBC : Plan Reuse in the Space of Plans

CAPLAN/CBC (Muiioz-Avila et al. ) is a generic case-based reasoning sys-
tem built on top of CAPLAN (Weberskirch 1995), a plan-space planner
(McAllester and Rosenblitt ). CAPLAN/CBC is motivated in developing
techniques for case-based planning in complex domains such as the domain
of process planning for manufacturing workpieces. CAPLAN/CBC focuses
on developing techniques for retrieval in technical domains and for reuse in
plan-space planners.

1.5.1 Process Planning for Manufacturing Mechanical Workpieces

At the beginning of the manufacturing process a piece of raw material and
the description of a workpiece are given. Descriptions of the cutting tools
and clamping material available are given as well. The problem is to remove
layers of raw material in order to obtain the workpiece. Typically, the piece
of raw material is clamped on a lathe machine that rotates at a very high
speed. A cutting tool is used to remove layers of raw material. The process
continues by replacing the cutting tool or changing the clamping position to
process areas of the workpiece. Figure 1.7 shows an intermediate stage during
this process. The grid area corresponds to the portion of raw material that
still needs to be removed. The parts presented there correspond to the two
sides of a workpiece, two ascending outlines and a so-called undercut.

} i
Sidel
b

| Side2 Fig. 1.7. Half display of a

SR workpiece and two cutting
u-cutl u-cut2 tools

! Note that extra steps may be inserted at any point, interrupting and interleaving
the past cases, and not just at the end of the cases.
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Each goal of a problem corresponds to machining an area of a given work-
piece. The initial state is a symbolic description of the geometry of the pro-
cessing areas, the cutting tools and the clamping material available. There
are different types of areas. For each type, there is at least one operator indi-
cating the conditions that must be met to machine it. Typically, a clamping
position on the workpiece must be determined. Also, according to the clamp-
ing position and the type of area a certain kind of cutting tool must be held.
Other operators represent different clamping operations and regulate the use
of the cutting tools. A basic restriction regarding the clamping and hold-
ing operations is that at any time of the machining process the workpiece is
clamped from at most one position and a limited number of cutting tools is
being held.

1.5.2 Dependency-Driven Case Retrieval

In the domain of process planning, it is possible to predetermine restrictions
on the order for manufacturing certain parts of the workpiece. These order-
ing restrictions are determined based on the geometry of the workpiece and
are independent of the cutting tools available. For example, at the beginning
of the manufacturing process of the workpiece depicted in Figure 1.7, the
undercut was covered by the area intermediate (not shown in Figure 1.7).
Clearly, the area intermediate must be processed before the undercut. Thus,
for any plan manufacturing this workpiece, the goal corresponding to pro-
cessing intermediate is achieved before the goal achieving the undercut. In
CAPLAN/CBC these ordering restrictions are computed by a geometrical
reasoner (Mufioz-Avila and Hiillen ; Mufloz-Avila and Weberskirch ). In a
more general context there are three possible sources for these ordering re-
strictions, which we denote by <:

— A domain specific reasoner. A typical example is the geometrical reasoner.
— The user. The user may specify additional restrictions because of quality
considerations that are not explicitly represented in the domain theory.

— Static analysis. In principle, the domain theory can be analyzed to prede-

termine some ordering restrictions (Etzioni 1993).

We call dependencies to the ordering restrictions between the goals of a
solution plan motivated in the domain of process planning, were the way a
processing area is manufactured depends on how previous processing areas are
manufactured. The initial situation, the goals, and the ordering restrictions
form extended problem descriptions (Mufioz-Avila and Hiillen ; Mufioz-Avila
and Weberskirch ). For a case to be retrieved, the dependencies in the case
(i.e., the ordering in which the goals are achieved), denoted by —, must
be consistent with the ordering restrictions of the problem. That is, if two
goals in the new problem g;, go have the ordering restriction g; < g2, then,
for the corresponding goals in the source case, g}, g5, the relation g} — g
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must not hold. An architecture of the case base has been developed that
allows to find cases whose dependencies are consistent with the ordering
restrictions of new problem in an efficient way. The dependencies are the
main criterion to discriminate cases in the case base. We called this retrieval
strategy dependency-driven as a clear contrast to other case-based planners
where cases are retrieved based on the goals that they achieved (i.e., goal-
driven). The dependency-driven retrieval strategy is adequate for domains in
which a partial order between the goals can be predetermined. See (Mufioz-
Avila and Hiillen ) for further details.

1.5.3 Adaptation with Complete Decision Replay

The adaptation method conceived and implemented in CAPLAN/CBC is
called complete decision replay. This method is fundamented on the way the
base-level planner CAPLAN is built (Weberskirch 1995). To represent knowl-
edge about plans and contingencies that occur during planning, CAPLAN is
built on the generic REDUX architecture (Petrie 1991). The REDUX archi-
tecture represents relations between goals and operators and between oper-
ators and subgoals. In the parlance of REDUX a decision is made when an
operator is applied to achieve a goal. Decisions are represented as a subtree
in the goal graph. It represents basic dependencies between goals and sub-
goals as well as between subgoals and decisions. A key aspect in CAPLAN is
that the justifications of all decisions (valid and not valid) are always main-
tained. A justification has the form {ai,as,...,a,}, where q; is a ordering or
a variable constraint. For example, consider a decision corresponding to the
application of an operator that requires X =Y to be true, where X and Y
are variables. If the decision is valid, an example of a possible justification
is {X =1,Y = 1}. An example of a justification if the decision is invalid is
{X =1,Y =0}.

The complete decision replay method consists of reconstructing the goal
graph relative to the new situation. The validity of a decision (i.e., if the deci-
sion failed or not) is stated if it’s justifications can be reconstructed relative to
the new situation. The partial solution represented in the reconstructed goal
graph is then completed by first principles planning. Three major advantages
can be observed as a result of this process:

1. The user may interact during the completion process. The user may prune
parts of the replayed case or neglect the validity of certain problem con-
ditions. Because CAPLAN/CBC reconstructs the goal graph, the func-
tionality of the base-level planner CAPLAN is preserved. Thus, a plan
can be generated by modifying the current plan without having to plan
from the scratch.

2. Powerful backtracking methods can be used. CAPLAN performs dependency-
directed backtracking based on the goal graph reconstructed by CA-
PLan/CBC.
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3. CAPLAN does not explore failed attempts. Having found that the justi-
fications for a failed decision can be reconstructed in the new situation
CAPLAN/CBC prunes completion possibilities that otherwise could have
been explored during the completion process.

The principle of considering the failed attempts during reuse is illustrated
by continuing with the example depicted in Figure 1.7. This figure depicts an
intermediate stage during this process in which the undercut has not been
processed. Undercuts always can be decomposed in two parts (labeled u-cutl
and u-cut2). In this figure a left and a right cutting tools are also shown,
labeled A and B respectively. For manufacturing the undercut the workpiece
needs to be clamped from an ascending outline, for example Ascend-1. The
left tool is used for removing the left part (i.e., u-cutl). For removing the
right part (i.e., u-cut2) there are three possibilities: (1) to use the right tool,
(2) to clamp the workpiece from the outline Ascend-2 and use the same left
tool again or (3) to clamp the workpiece from Side2 and use the left tool.
The last possibility requires that there is a perforation on Side2. Since in the
example there is only a perforation on Sidel, it will be discarded if considered
by the planner.

The left side of Figure 1.8 outlines a plan for manufacturing the work-
piece shown in Figure 1.7, under the supposition that there is a left and a
right cutting-tools available. Dashed boxes represent plan-steps and the arcs
pointing downwards indicate the partial-order for performing them. This plan
states that for removing u-cut!, the workpiece must be clamp from Ascend-1
and the left tool must be used. After that, u-cut2 is removed by using the
right tool. This plan contains also the information that clamping from Side2
failed because it does not have any perforation (node labeled R).

Suppose that a new problem is given that consists of the same workpiece,
but this time there is only a left tool available. For solving this problem the
plan obtained with the two tools will be reused, as illustrated in Figure 1.8.
The horizontal arrows show the decisions of the case that are replayed in the
new situation. Particularly the decisions concerning the manufacturing of u-
cutl can be replayed in the new situation. However, the decision concerning
the manufacturing of u-cut2 cannot be replayed, since in the new situation
there is no right tool available. As a result, a rejected decision is created (node
labeled S). The rejection of the operator clamping from Side-2 is replayed
(node labeled R’), as in the new situation Side-2 has no perforation.

Once the replay of cases is finished, the remaining goals need to be solved
by the generative planner. As stated before, the key issue is the generative
planner (CAPLAN) will avoid performing unnecessary backtracking. Partic-
ularly, for solving the goal corresponding to manufacturing u-cut2, CAPLAN
will not pursue to use the right tool, neither to clamp from Side2. Instead,
it will select to clamp the workpiece from Ascend-2 (arc labeled P), which is
the right choice.
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Retrieved Case Replay Current Situation
L
! dlamp-from Ascend-1 use left tool damp-from Ascend-1 use left tool
-
\/ \7
P outvat P Sewen
clamp-from Ascend-2
777777777777777777777 _userighttool S
P <rejected: constraint failed>
o No right tool available
,,,,,,,,,,,,,,,,,,, - prem et clamp-from Side-2 R’
i 3 clamp-from Side-2 R ' : . > "
out u-cut? : <rejected: premise failed> ! cut u-cut2 : <rejected: premise failed>
,,,,,,,,,,,,,,,,,,, ! Side2 has o perforation R i ERRERER b Side-2 has no perforation

Fig. 1.8. Example of replay in CAPLAN/CBC.

1.6 Summary of Theoretical and Experimental Results

CAPLAN/CBC has been evaluated in the domain of process planning as
defined in Mufoz-Avila and Weberskirch (1996). This specification consists
of 33 types of objects and 27 operators. We formally prove in Munoz-Avila
and Weberskirch (1996) that this specification meets the conditions stated
in Kambhampati et al. () and Barrett and Weld (1994). These conditions
state situations in which using a plan-space planner is better than a state-
space planner. As a result we conclude that planning with this specification is
more adequate with a plan-space planner like CAPLAN. Given that the first-
principles planner plays an important role with reuse by complete decision
replay, this result supports the use of a case base planning in CAPLAN.

Experiments suggest that dependency-driven retrieval increase the accu-
racy of the retrieval (Mufioz-Avila and Hiillen ) and reduce the effort of the
first-principles planner to complete the partial solution obtained after replay.
As a result, the performance of the overall case-based planning process is
increased (Mufioz-Avila and Weberskirch ).

Finally, the experiments performed show that the time taken by the first-
principles planner to complete the partial solution obtained after replay is
reduced when performing complete decision replay (Mufioz-Avila and We-
berskirch ).
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1.7 PARIS: Flexible Reuse of Cases at Different Levels
of Abstraction

Traditionally, case-based reasoning approaches retrieve, reuse, and retain
cases given in a single, concrete representation. PARIS? (Bergmann 1996;
Bergmann and Wilke 1995a) is a domain independent case-based planning
system that differs from this traditional approach in that it introduces ab-
straction techniques into the case-based reasoning process. PARIS retrieves,
reuses and retains cases at different (higher) levels of abstraction.

In a nutshell, PARIS works as follows. Available planning cases given at
the concrete level are abstracted to several levels of abstraction which leads
to a set of abstract cases that are stored in the case-base. Case abstraction is
done automatically in the retain phase of the CBR-cycle. When a new prob-
lem must be solved, an abstract case is retrieved whose abstract problem
description matches the current problem at an abstract level. In the subse-
quent reuse phase, the abstract solution is refined, i.e., the details that are
not contained in the abstract case are added to achieve a complete solution
of the problem. This refinement is done by a generative planner that per-
forms a forward directed state space search. Figure 1.9 shows an overview
of the whole system and its components. Besides case abstraction and re-
finement, PARIS also includes an explanation-based approach for generalizing
cases during learning and for specializing them during problem solving. This
technique allows to further increase the flexibility of reuse.

The PARIS-System

Learning Problem Solving

Refinement

Evaluation/
Indexing

Abstraction

< New Problem

Domain Description

Concrete Domain,
Abstract Domain,

Generic Abstraction Theory

Available Cases Solved Problem

Fig. 1.9. Architecture of the PARIS system

The PARIS system benefits from using abstract cases in several ways
(Bergmann and Wilke 1996):

— Abstraction reduces the complexity of a case, i.e., it simplifies its repre-
sentation, e.g. by reducing the number of predicates, relations, constraints,
operators, etc.

2 Plan Abstraction and Refinement in an Integrated System.
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— Cases at higher levels of abstraction can be used as a kind of prototype,
which can be used as indexes to a larger set of related, more detailed cases.

— Cases at higher levels of abstraction can be used as a substitute for a set
of concrete cases, thereby reducing the size of the case base.

— Abstraction increases the flexibility of reuse. Adapting abstract solutions
contained in cases at higher levels of abstraction leads to abstract solutions
suitable for a large spectrum of concrete problems.

— Abstraction and refinement, on their own, can be used as a method for
solution adaptation.

These advantages are particularly valuable in case-based planning, since
usually a large number of complex cases must be considered, the similarity
assessment, is very expensive, and since flexible adaptation is required because
of the vast solution space.

We now explain the approach followed in PARIS in more detail.

1.7.1 Different Levels of Abstraction and Abstract Cases

While cases are usually represented and reused on a single level, abstraction
techniques enable a CBR system to reason with cases at several levels of
abstraction. Firstly, this requires the introduction of several distinct levels of
abstraction. Each level of abstraction allows the representation of problems,
solutions, and cases as well as the representation of general knowledge that
might be required in addition to the cases. Usually, levels of abstraction are
ordered (totally or partially) through an abstraction-relation, i.e., one level
is called more abstract than another level.

A more abstract level is characterized through a reduced level of detail
in the representation, i.e., it usually consists of less features, relations, con-
straints, operators, etc. Moreover, abstract levels model the world in a less
precise way, but still capture certain important properties.

In traditional hierarchical problem solving (e.g., ABSTRIPS (Sacerdoti
1974)), abstraction levels are constructed by simply dropping certain fea-
tures of the more concrete representation levels. However, it has been shown
that this view of abstraction is too restrictive and representation dependent
to make full use of the abstraction idea (Bergmann and Wilke 1995b; Holte
et al. 1995). Therefore, PARIS enables different levels of abstraction to have
different representation languages. That is, abstract properties can be ex-
pressed in completely different terms than concrete properties which enables
the representation of meaningful abstractions in planning domains. There-
fore, PARIS assumes that in addition to the concrete planning domain, an
abstract planning domain composed of abstract operators is part of the gen-
eral knowledge. The general knowledge also contains a set of abstraction rules
that describe different ways of abstracting concrete states. For example in the
domain of planning rotary symmetric workpieces, the concrete domain con-
tains operators and predicates to describe the detailed contour of workpieces
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and individual cut operations that must be performed. The abstract domain
abstracts from the detailed contour and represents larger units, called com-
plex processing areas, together with the status of their processing (see also
Figure 1.10).

Based on the level of abstraction, we can distinguish between two kinds of
cases: concrete cases and abstract cases. A concrete case is a case located at
the lowest available level of abstraction. An abstract case is a case represented
at a higher level of abstraction.

1.7.2 Case Abstraction

Case abstraction means reducing the level of detail contained in the problem
description and in the solution of a case, i.e., an abstract case contains less
operators and less states than the concrete case. Furthermore, abstract op-
erators and states are described using more abstract terms which typically
require a reduced number of predicates.

Available Concrete Case Abstract Case Adapted Case

Case Abstraction Case Refinement

® ® - -
@ € raw & fine |

Fig. 1.10. Example
of generating and re-
fining abstract cases.

Figure 1.10 presents an example of the relationship between a concrete
case and an abstract case. The left side shows a section of a concrete case,
depicting how a step-like contour with two grooves is manufactured by a
sub-plan consisting of 6 steps. The abstract case, shown in the middle of this
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figure, abstracts from the detailed contour and just represents a complex pro-
cessing area named A that includes raw and fine elements. The corresponding
abstract plan contains 2 abstract steps: processing in a raw manner and pro-
cessing in a fine manner. The arrows between the concrete and the abstract
case show how concrete and abstract states correspond. Each abstract state
is derived from one of the existing concrete states (state abstraction). How-
ever, not all concrete states are abstracted. Some concrete states are skipped
because they are considered an irrelevant detail. As a byproduct of this state
abstraction, a sequence of concrete operators is abstracted to a single ab-
stract operator. Note that the above explained kind of case abstraction is
performed by an automatic procedure in PARIS as part of the retain-phase
of the CBR~cycle (see Bergmann and Wilke (1995a); Bergmann and Wilke
(1995b) for details). Abstract and concrete cases are then stored in the case
base for reuse.

1.7.3 Reuse of Abstract Cases

When a new problem must be solved, an abstract (or concrete) case is selected
which matches the current problem at the respective level. If several matching
cases are contained in the case-base, the retrieval procedure selects the case
that is located at the lowest level of abstraction. The motivation for this
preference is that for more concrete cases, less effort has to be spent during
refinement to achieve a complete solution. This corresponds to a similarity
measure that ranks two cases more similar, the lower the level of abstraction
is, on which the problems are identical (Bergmann et al. 1993).

During the reuse phase, the abstract solution contained in the retrieved
case must be refined to become a fully detailed complete solution. The right
side of Figure 1.10 shows an example of such a refinement. While the con-
tour of the two workpieces differs drastically at the concrete level, the abstract
problem matches exactly because the 5 atomic contour elements in the new
problem can be abstracted to a complex processing area with raw and fine
elements. The abstract operators of the abstract case are then used to guide
the state space planner to find a refined solution to the problem. Each ab-
stract state is used as a sub-goal in the planning process. In the portion of
the case shown in Figure 1.10, the abstract operator process raw A is refined
to a sequence of four concrete steps which manufacture area 1 and 2. The
next abstract operator is refined to a four-step sequence which manufactures
the grooves 3, 4, and 5.

Note that PARIS allows the reuse of problem decompositions at different
levels of abstraction. Abstract plans decompose the original problem into a set
of much smaller subproblems. These subproblems are solved by a search-based
problem solver. The problem decomposition leads to a significant reduction
of the overall search that must be performed to solve the problem. With pure
search the worst-case time complexity for finding the required solution by
search is O(b™), where n is the length of the solution and b is the average
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branching factor. If the problem is decomposed by an abstract solution into
k subproblems, each of which requires a solution of length n;, ..., ng, respec-
tively, with n; +n2+ - - - +ny = n, the worst-case time complexity for finding
the complete solution is O(b™ 4 b"2 4 - - -+ b™) which is Q(b™e®(M1:n25-1k),
So, if the sub-problems are small enough and mostly independent from each
other, the underlying planner is able to solve them without stepping into the
intractability problem.

1.7.4 Organization of the Case Base

As introduced in Section 1.3.1, the organization of the case base plays an
important role in case-based planning. In PARIS abstract cases located at
different levels of abstraction are used as hierarchical indexes to those con-
crete (or abstract) cases that contain the same kind of information but at a
more detailed level. For this purpose, an abstraction hierarchy is constructed
during the retain phase, in which abstract cases at higher levels of abstraction
are located above abstract cases at lower levels. The leaf nodes of this hierar-
chy contain concrete cases (see Fig. 1.11). During retrieval, this hierarchy is
traversed top-down, following only those branches in which abstract cases are
sufficiently similar to the current problem. This kind of memory organization
is similar to the memory organization packets (MOPs) of Schank (1982).

Abstraction hierarchy

high
A
Abstract
level of Cases
abstraction
v Conrete Fig. 1.11. Abstraction hier-
low L L J ] e

archy for indexing cases.

An important advantage of such an abstraction hierarchy is that it pro-
vides a frame for realizing case deletion policies (Smyth and Keane ). Cases
deletion is particularly important to avoid the utility problem® (Tambe and

3 The utility problem in CBR is also called swamping problem by Francis and
Ram.
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Newell 1988; Francis and Ram 1993) that occurs when case bases grow very
large. When reusing abstract cases for indexing and reuse, case deletion can
be efficiently realized through a pruning of the abstraction hierarchy, i.e.
deleting some branches of the tree. If a certain branch of the tree is removed
(together with the respective concrete and possibly abstract cases) the ab-
stract cases that remain accessible can still cover the set of target problems
previously covered by the deleted case. However, not all details are present
any more. During reuse they must therefore be reconstructed by the gen-
erative planner. Consequently, pruning of the abstraction hierarchy has two
contrary effects on the overall problem solving time:

— Since the detailed parts of the solution are not available any more, the
reuse effort increases because these details must be reconstructed by the
planner.

— Since the number of cases that must be inspected during retrieval is re-
duced, the retrieval effort is reduced.

The PARIS system makes use of an elaborated cost model for determining
the expected cost or benefit (retrieval effort + reuse effort) of removing cer-
tain parts of the abstraction hierarchy (and the case base) (Bergmann 1996).
Based on this model, an optimization algorithm computes a pruned abstrac-
tion hierarchy and thereby the related fragment of the case base that leads
to the lowest expected overall cost for solving a new planning problem.

1.7.5 Summary of Experimental Results

The PARIS system was evaluated in extensive empirical studies using the
domain of manufacturing planning. A detailed description of this domain can
be found in Bergmann and Wilke (1995a); empirical results are presented in
(Bergmann 1996; Bergmann and Wilke 1995b; Bergmann and Wilke 1995a;
Bergmann and Wilke 1996). The most important results of these studies can
be summarized as follows. For the used domain representation and case base
it could be shown that:

— The case-based planning approach followed in PARIS leads to significantly
shorter problem solving time than a pure generative planner.

— The reuse of abstract cases leads to a significant increase in the flexibility of
reuse (number of new problems for which a case can be efficiently reused).

— Organizing the case-base using an abstraction hierarchy leads to a signifi-
cant reduction of the retrieval time compared to a linear retrieval approach.

— The case deletion policy (pruning of the abstraction hierarchy) leads to a
significant reduction of the overall problem solving time.
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1.8 ABALONE: Analogy in Proof Planning

Proof planning is an alternative to traditional methods in theorem proving
that employs operators that represent chunks of a proof rather than low-level
inference steps such as resolution. Proof planning is Al-planning in a rather
complicated domain in which goals and state descriptions consist of compli-
cated first-order or even higher-order sequents (axioms, lemmata, theorems,
proof conjectures) rather than literals. In this domain, the enormous search
spaces can be handled only by user-interaction or by very elaborate control
knowledge. Often control knowledge that avoids extensive search is not avail-
able, and therefore, case-based planning is a possible strategy to overcome
the control problems.

The proof planner CITAM (Bundy et al. 1991) on top of which the anal-
ogy procedure ABALONE is implemented, has successfully been applied to
theorem proving by induction. As known from Peano induction for natural
numbers, inductive proofs have base-case and step-case subproofs. The latter
has the subgoal (IH — IC) for an induction hypothesis I H and an induction
conclusion IC' and this subproof aims at rewriting the induction conclusion
until the induction hypothesis is applicable.

For instance, in planning the theorem lenapp: Va,b. len(app(a,b)) =
len(app(b,a)),* the operator INDUCTION computes the induction schema
(here, induction on lists®) and outputs the base-case and the step-case sub-
goal (IH F IC) for the induction hypothesis IH

len(app(a, b)) = len(app(b, a)) (1.1)

and the induction conclusion IC

len(app(:: (h,a),b)) = len(app(d, :: (h,a))) (1.2)

which is depicted as a tree in Figure 1.12(A). (The underlines mark the differ-
ences between IC' and I H (contexts) that are shown as circles in the figure.)
The operator WAVE applies rewrite-rules to subgoals, and three applications
of WAVE reduce the goal TH + IC to

IH I s(len(app(a,b))) = s(len(app(b, a)))- (1.3)

This subgoal is represented by a tree in Figure 1.12(B). The operator FER-
TILIZE uses the induction hypothesis to rewrite the current goal. Hence, FER-
TILIZE reduces the subgoal (1.3) to the subgoal

H - s(len(app(b, a))) = s(len(app(b, a))) (1.4)

4 app,len, :: denote the list functions append, length, cons. s is the successor func-
tion on natural numbers.
5 with the successor :: (h,z) of z,
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which can be removed by the operator ELEMENTARY. The whole step-case
proof plan of lenapp is depicted in the lhs of Figure 1.13.

The control in CIAM bases on the rippling heuristic that guides the rewrit-
ing of the induction conclusion in a systematic way that reduces the differ-
ences (context) between IC and I H. From an abstract point of view, rippling
removes contexts or moves them to the top of the theorem tree (the term tree
representation of a theorem) as shown in Figure 1.12, where the bold paths
are those on which the contexts are moved. As soon as the contexts sit in
the top position, FERTILIZE can be applied. Rippling is a powerful search

| \Ien | 9 QIen f/ \half
I A
\b b/au%\@a a \b b/ag\a a/ \b b/ \a

(A) ©) ©
Fig. 1.12. Term trees (A) of the induction hypothesis of 1lenapp, (B) of the solved
lenapp, and (C) of halfplus — with rippling paths in bold and ovals for contexts
(omitted in C)

heuristic, but even with such a heuristic fully automated proof planning can
fail because the control heuristics can be too restrictive, the default set of
operators can be too restrictive, or the search for lemmata that are missing in
the target becomes intractable. Using analogy as a control strategy in proof
planning can help in these situations, see (Melis and Whittle 1997). It can
replay existing proof plans with the purpose to

— suggest operators rather than searching for them,

— override the default control and default configurations,

— replace search-intensive subtasks (such as finding an induction schema),
— suggest target lemmata, and to

— avoid user interaction.

1.8.1 Analogy-Driven Proof Plan Construction

According to the model of analogy-driven proof plan construction in (Melis a)
that is supported by empirical observations on human theorem proving (Melis
1994), ABALONE works at the proof plan level. Analogically replaying high-
level plans is more robust than analogically replaying, e.g., resolution steps
because, while for many problems the exact replay of resolution steps fails, the
replay of higher-level proof plan operators may succeed. ABALONE analogi-
cally transfers a source plan produced by CIAM to a plan for the target prob-
lem. The transfer is done on the basis of second-order mappings, presented
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in the following subsection, that can map function and relation symbols. The
replay of the source plan is made node by node. As in PRODIGY/ANALOGY,
at each node in the source plan justifications are stored and during the re-
play, these justifications are reinterpreted as described below. Of course, the
actual justifications are specific for theorem proving, e.g., capturing the ex-
istence of a lemma needed in the proof, the identity of function occurrences
in a formula. A source node is only replayed if its justifications still hold in
the target or if the justification can be established. This serves two purposes.
First, it guarantees the correctness of target operator applications. Second,
it provides a way of transferring only part of the source plan in some cases:
if justifications cannot be established in the target, a gap is left in the target
plan. In this way, it is only this part of the source that is not transferred,
whereas the replay of the rest of the source plan can still be attempted.

Sometimes a node by node replay as described above is insufficient be-
cause the source and target plans differ in a significant respect. An example
might be if the source and target plans have different induction schemes or
operators have to be duplicated or replaced. Rather than failing, ABALONE is
equipped with a number of reformulations introduced in (Melis a) and (Melis
and Whittle ). which make additional changes in the target plan. These re-
formulations are triggered by peculiarities of the mappings and justifications
and are applied before the replay. Figure 1.13 shows an example of an ana-
logical replay. The equations displayed in the source plan are justifications
explained in section 1.8.3.

The main steps in the analogy-driven proof plan construction (Melis a)
can be summarized as:

— Retrieve a source problem.
— Find a second-order mapping m; from the source theorem to the target
theorem.
— Extend m; to a mapping m,. from source rules to target rules.
— Decide about the reformulations to be applied. The need for a reformulation
is triggered by patterns in my or me.
— Following the source plan, analogically replay the operators by
— Apply reformulations
— if operator justifications hold, then apply operator in target,
else try to establish justification.
— if justification cannnot be established, then leave gap in target plan.

Second-order mappings and matching are those that can send function sym-
bols to function terms. Pure object-level syntactic similarity measures do not
work for the retrieval and the mapping of proof plans because small changes
of the problems can cause tremendous changes in proof plans. Therefore,
ABALONE employs proof-relevant LF-abstractions, explained below , to re-
strict the retrieval, mapping, and adaptation . The restrictions derived from
the abstractions guarantee the replayed (step-case) plan to be a correct plan
for the target problem.



24

SOURCE PLAN

len(app(::5 (h, a), b)) = len(app(b, ::5 (h, a)))

WAVE (app2)

len(:ig (h, app(a, b)) = len(app(b, 5 (h, a)))

WAVE (len2)

s1(len(app(a, b)) = Len(app(b, ::5 (h, a)))

p=iig

wavE (lenapp2)

sy(len(app(a, b))) = sy(len(app(b, a)))

FERTILIZE

sy (len(app(b, a))) = SQ(IEH(GPP(”: a)))

8] = sg

ELEMENTARY

true

Fig. 1.13. Step-case replay
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TARGET PLAN

half(+(s(s(a)), b))

half(s(+(s(a), b)))

half(s(s(+(a, b))))

s(half(+(a, b)) =

s(half(+(a, b)) =

s(half(+(b, a))) =

= half(+(b, s(s(a))))
wave (plus2)

= half(+(b, s(s(a))))
wave (plus2)

= half(+(b, s(s(a))))
wave (half3)

hal f(+(b, s(s(a))))
waAvE (lemma)
s(hal f(+(b, a)))
FRRTILIZE
s(half(+(b, a)))

ELEMENTARY

true
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1.8.2 Retrieving Adaptable Cases

In the retrieval, second-order mappings are used to map the source theorem
to the target theorem and source rules to target rules. First, a constrained
basic mapping my is constructed that maps the source theorem with indexed
function symbols to the given target theorem. my is then augmented by an
extended mapping m,. which maps the source to the target rewrite-rules.
my is restricted to essentially preserve the abstractions explained next. This
constraint guarantees a successful step-case target plan.

Labeled fragments (LFs), introduced in Hutter (1994), are an abstrac-
tion of annotated rewrite-rules obtained by removing the structure of the
contexts and those parts of the rules not affected by contexts. For each func-
tion/relation symbol occurring in the source and target theorem LFs corre-
sponding to the rewrite-rules that belong to the source and target problem,
respectively, are automatically computed. Take, for instance, the rewrite-rule
app2: app(:: (X,Y), Z) = :: (X,(app(Y, Z))). Note that in the lhs of app2 the
context is situated at the left argument of app and how it moves to the top
of app in the rhs of app2. This situation is reflected in the most right labeled
fragment of app as shown in Figure 1.14.

N R PO P O S

len —= len hff% half + =

] AT A AR

Fig. 1.14. Labeled fragments

The rippling paths in a theorem tree abstractly encode the step-case proof,
in particular, the consecutive application of the WAVE operator in proof plans.
In turn, the LFs determine the rippling paths. Therefore, LFs provide a
proof-relevant abstraction of problems to be proved by induction. In the
example, the WAVE operators (Figure 1.13) apply rewrite-rules, such as app2,
that move the context as abstractly shown in Figure 1.14. First WAVE(app2)
is applied and then wAvVE(len2) which corresponds to the (abstract) rippling
path of lenapp in Figure 1.12(B) which, in turn, is determined by the LFs in
Figure 1.14. Based on corresponding LFs (Figure 1.14), the rippling path of
lenapp equal those of halfplus in Figure 1.12(C) and hence the proof plan
will be very similar.

With the help of LFs, the case base can be pre-structured into classes of
cases. The elements of a class can be further distinguished by their rewrite-
rules. This makes the retrieval a two-stage process with a first cheap step
that retrieves the source class and a second, more expensive step that tries
to second-order map the rewrite-rules of each case of that class rewrite-rules
of the target problem. A class of source cases contains all cases with identical
rippling paths. A class is represented by a theorem tree whose nodes on
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rippling paths are annotated with the common LFs. The nodes occurring
outside of rippling paths in any of the cases are abstracted to meta-variables
in the class representation because they are irrelevant for the abstraction.
The first stage tries to approximately match the target theorem with one of
the class representatives and checks the LF's in this process as well. It chooses
the class with the fewest differences in rippling paths that are predefined by
the available reformulations.

The second stage chooses the best case from the retrieved class by trying
to second-order map the target-rules (lemmata) with the rules of the cases
in the retrieved class. Second-order mapping is decidable but can be expen-
sive, in particular with many rules involved. The heuristics in Whittle (1995)
support choosing reasonable mappings.

1.8.3 Analogical Replay

During the planning of the source theorem, justifications, i.e. reasons for
the application of an operator, are stored at each source plan node. As op-
posed to PRODIGY/ANALOGY, ABALONE’s justifications consist of certain
operator preconditions and of C-equations: Such a precondition of the WAVE
operator is the existence of a rewrite-rule that matches the current goal.
C(onstraint)-equations are justifications that are due to the use of indexed
functions. ABALONE is able to map a function symbol at different positions
in the source to different target images. For this reason, source function sym-
bols at different positions are differentiated by indices. During the source
planning, constraints of the form f; = f;, called C-equations, may be placed
on these functions. In Figure 1.13.% for instance, ::p=::3 states that the func-
tion ::2 in the subgoal is equal to the function ::3 in the rewrite-rule len2
employed by WAVE in the source. In the target this justification requires the
identity of the images of mapping ::2 and ::3 to target functions. Note how the
C-equations in Figure 1.13 arise in the source: When WAVE(app2) is applied,
the lhs of app2 matches with the lhs of the current goal —i.e. app(::; (X,Y), Z)
matches with app(::5 (h,a),b) requires that ::5=:1. These C-equations form
an additional source justification the image of which must be satisfied in the
target for a successful replay.

Deviations from a Simple Replay. As already described briefly, the main
body of the analogical procedure replays the source plan node by node, check-
ing justifications at each stage. There are three occasions when ABALONE
deviates from this simple node by node replay and performs different types
of adaptation:

First, peculiarities of the mappings trigger reformulations (Melis a) of the
source plan. These reformulations are needed because sometimes the map-
pings alone are not sufficient to produce a correct plan proving the target

6 We have omitted some irrelevant indices from Figure 1.13 for the sake of clarity.
In general, however, all function symbols are indexed.
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theorem. Reformulations do more than just map symbols. In general, refor-
mulations may insert, replace or delete operators or may change operators,
sequents and justifications of proof plan nodes in a substantiated rather than
in an ad hoc way. In the example, a reformulation duplicates the WAVE (app2)
before actually replaying it to WAVE(plus?2) because a C-equation failed in a
particular way.

Secondly, in the situation that a justification does not hold in the target,
ABALONE will try to establish the justification. Its exact action will depend
on the type of justification:

— If the failed justification is associated with WAVE, and the situation is such
that a source rewrite-rule has no corresponding rule in the target, then
ABALONE speculates a target rewrite-rule. It does this by applying ms, me,
and C-equations to the source rewrite-rule. In the example in Figure 1.13,
the justification at the wavE(lenapp2) node fails because there is no target
image for the source rewrite-rules lenapp2. The appropriate action is to
suggest a target rewrite-rules lemma by using the mappings and the C-
equations to suggest a target rule. In the example, it uses the mappings
51— s(wy), 15— s(s(ws)), and the C-equations sy = s1 and ::4=::5 to come
up with the target rewrite-rule lemma: hal f (X +s(s(Z2))) = s(hal f(X+2))

— A justification may fail because some side-condition does not hold. Whereas
the side-condition may trivially hold in the source, the mapped version in
the target may not hold trivially. Hence, ABALONE will set up the target
side-condition as a lemma.

If a justification does not hold and cannot be established, then ABALONE
produces a target plan node that has an empty operator slot and a subgoal
that contains gap variables ?7;. The gap variable is a place holder for the
unknown subexpression of the sequent in the (current) target node that cor-
responds to the source subexpression that was changed by the source operator
which could not be transferred.

Thirdly, after the replay open goals are treated by the generative proof
planner CIAM .

1.8.4 Summary and Results

ABALONE replays source decisions, among them decisions as difficult as the
choice of induction schemes and induction variables for the INDUCTION op-
erator. By replaying justifications, the system is flexible enough to suggest
lemmata, override heuristics, and to override the default configuration of the
generative planner.

ABALONE is implemented in Quintus Prolog as an extension to CIAM.
It has been tested on a wide range of examples. It can plan several theo-
rems that could not otherwise be planned in CIAM or in other provers fully
automatically, see e.g., Melis and Whittle ().
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Analogy-driven proof plan construction uses an extended derivational
analogy and, in this sense, is similar to Prodigy/Analogy and PARIS.
ABALONE’s use of abstraction differs from other systems. It uses abstrac-
tions at the meta-level only (Melis b). That is, the abstraction is used to
restrict choises in the analogy process, and the retrieved cases are not ab-
stracted, whereas in PARIS abstract cases are stored, retrieved and refined.
As opposed to most CBR. systems, ABALONE uses reformulations that are
determined during the retrieval.

1.9 Summary and Related Work

On the one hand the four systems presented in this chapter have in common
the synergistic integration of planning from first principles with a case-based
reasoner. On the other hand they differ in many respects because of different
motivations and mechanism.

1.9.1 Retain

Once a plan has been generated, each system performs different steps during
the storage phase. In PRODIGY/ANALOGY, an analysis of the solution is
made relative to the problem description. Based on the partially ordered
solution plan, connected components are determined and the corresponding
interacting goals are identified to index independent subparts of the case. In
addition, a goal regression process is performed to discriminate the initial
state features relevant to the particular plan found. This process, known as
the foot-printing process, ensures that only relevant features of the state
cases are taken into account during retrieval. In PRODIGY/ANALOGY, a case
consists of a compression of the planning search episode. The case includes
justifications of failed decisions taken during problem solving.

CAPLAN/CBC computes the dependencies of the obtained solution. That
is, the partial order in which the goals were achieved relative to the particular
solution are computed and used as top indexing criteria of the new case. In
addition, the complete goal graph structure is stored including valid and
invalid decisions and their justifications.

PARIS computes several abstractions of the found solution. These abstrac-
tions are stored as cases in the case base. The rationale behind storing several
abstractions of the same solution is based on two facts: first, an abstracted so-
lution at a higher level represents more concrete solutions than an abstracted
solution at a lower level. Refining an abstract solution is more expensive the
higher the level of the abstract solution. By storing several abstractions of
the same solution PARIS finds a balance between these two opposite facts.

In ABALONE, the proof of a theorem is stored together with a description
of the theorem which is abstracted to rippling paths representing a class of
theorems having similar proofs.
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1.9.2 Retrieval

PRODIGY/ANALOGY supports multi-case retrieval; cases covering disjoint
subsets of the goals of the new problem are retrieved. The structure of the
case-base in PRODIGY/ANALOGY reflects this principle by discriminating
cases by the interacting top level goals. When matching the initial states
of the candidate cases and the problem, only relevant features are taken into
account. That is, only features that contribute to the particular solution of
the case are considered as the relevance of a feature depends on the particular
solution found. Retrieval is bounded to finding a case with a ”reasonable”
partial match.

In CAPLAN/CBC a dependency-driven retrieval strategy is performed.
The idea is to consider interactions between the goals of the new problem,
called dependencies. CAPLAN/CBC retrieves cases by considering the depen-
dencies between the goals, first. This is reflected in the structure of the case
base, as cases are discriminated by their dependencies at the top level. This
strategy is adequate for domains, like process planning, in which interactions
between the goals can be predetermined.

In PARIS a case corresponding to an abstract plan is retrieved. This plan
solves the abstracted problem description of the current problem. The struc-
ture of the case base allows PARIS to find an appropriate abstract case at
the lowest possible level of abstraction. In this way the adaptation costs are
considered during retrieval as the lower the level is, the less effort is required
for the refinement of the abstract case. Furthermore, PARIS makes use of a
case deletion policy in order to avoid swamping of the case base.

In ABALONE, retrieval is a two-stage process. In the first stage the abstrac-
tion of source theorems is matched with the target theorem. An abstraction
represents a whole class of theorems. In the second stage an element is re-
trieved from the class selected in stage one. This is done by searching for a
second-order match between rules of the target problem with rules of source
problems from the class. The search is supported by heuristic preference cri-
teria. The second stage is comparable to searching for a case by matching the
initial states.

1.9.3 Adaptation

PRODIGY/ANALOGY annotates the derivational trace of the cases with justi-
fications. During replay, these justifications are verified in the new situation.
In this way, the first-principles reasoner will not make decisions known from
the case to be wrong. The justifications are expressed in a language describing
situations occurring in state-space planning. A similar principle is followed
in CAPLAN/CBC and ABALONE. However, given that their first-principles
planners are different, the way the justifications are expressed and handled
is different.
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A case in CAPLAN/CBC contains the goal graph expressing the relations
between goals and decisions (valid and invalid). Justifications are expressed
in these graphs and can be interpreted in terms of plan-space planning. When
the goal graph is reconstructed relative to the new situation, the justifications
are checked. The result, as in PRODIGY/ANALOGY is that decisions known to
be invalid from the case are not explored. However, by reconstructing the goal
graph, CAPLAN/CBC enables the user to interact with the first-principles
planner CAPLAN after replay has taken place.

ABALONE’s justifications formalize concepts in theorem proving such as
identity of sorts, identity of function occurrences, and the existence of lem-
mata to be used. A singularity of the justifications in ABALONE is that the va-
lidity of a justification can be possibly achieved by reformulations or by intro-
ducing new subgoals (lemmata). This is different from PrRODIGY/ANALOGY
and CAPLAN/CBC, where their justifications are matched directly in the
current situation. nother unique ingredient of analogy-driven proof plan con-
struction is reformulations that can be applied to enable a match of problems
in the first place. These reformulations change a problem and its proof plan
at the same time.

A case in PARIS is an abstraction of a plan. As a result, there are no
justifications because the search space of cases are expressed from the search
space of the first-principles planners. In this context, adaptation refines the
retrieved, abstract case to a solution at the concrete planning level.

1.9.4 Revise

Another common characteristic of the four case-based reasoners presented
this chapter is that they are based on a first-principles reasoner that ensures
that the plans obtained are always correct with respect to the domain theory.
This contrasts to, say, CHEF were the obtained solutions need to be revised
as there is no guarantee of their validity.

1.9.5 Related Case-Based Planning Systems

Several other case-based planning systems have been developed in the USA
and in Europe.

PRIAR (Kambhampati 1994) reuses plans produced by a generative non-
linear hierarchical planner. Following the derivational analogy philosophy,
PRIAR uses the validation structure of a plan, which represents the dependen-
cies among the plan steps, for retrieval and reuse of planning cases, but ad-
ditionally employs domain independent strategies for plan adaptation. How-
ever, PRIAR does not address the problem of how to organize a case base
efficiently.

Within a deductive framework for planning, Koéhler (1996) developed an
approach to reuse plans. Her work concentrates on the retrieval process and
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used description logics as query languages for the plan library. In contraposi-
tion to the systems presented here, her MRL system requires the domain to
be represented in formal logic. Further, for indexing the cases a formalization
in terminological logic is also required.

The adaptation approaches described by Smyth and Keane (1993) and
Lieber and Napoli () are similar to the use of reformulations in ABALONE. The
closest related system in theorem proving, PLAGIATOR (Kolbe and Walther
), differs from ABALONE in many respects. Its pure transformational reuse
produces a set of target assumptions rather than a target proof plan. For
additional discussion of the differences see Melis and Whittle ().

MPA is a case-based planner performing multi-plan adaptation of partial-
order plans (Francis and Ram 1995). Adaptation is made by transforming the
derivational trace of the retrieved cases with a generic procedure instead of a
generic planner as in the systems presented here. This procedure, however, is
based on a careful study of the way the first-principles planner SNLP works.
Thus, the procedure subsumes the work done by the generic planner.

1.10 Conclusion and Future Tasks

Several case-based planning systems (including the ones reported here) ad-
dress important problems that occur in real planning applications. Experi-
mental investigations have shown a drastic speedup (factor 1000 and more)
of problem solving through case-based planning compared to pure generative
planning approaches in many domains. However, several important questions
have to be investigated in the future:

— knowledge engineering for case-based planning,

— user interaction, particularly during the reuse phase,

— maintaining the quality of plans (e.g., the cost and resource usage during
plan execution) during reuse, and finally

— the integration of a case-based planner into an industrial environment.

We think that further, basic research in the area of case-based planning
should try to overcome the following limiting assumptions because in several
real world applications they do not hold.

— All required knowledge (e.g., operators, problem description, ...) is available
prior to the planning process.

— Planning and execution are separated, i.e., first a plan is constructed and
then the plan is executed.

Consider, for example, the task of planning an information gathering pro-
cess from different sources. In this situation, several actions (e.g., operators
for obtaining some information) must be executed prior to completing the
plan. That is, it is necessary to produce a preliminary partial plan before all
required information is available and to execute parts of the plan in order
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to get the information for completing the plan. First steps towards a model
of planning that goes into this direction can be found in (Etzioni and Weld
1994; Knoblock ).
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