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Notation

In this work, the following notations are used—some of them without further defi-
nition.

(k,+) additive group of the field k
AF , AF (A) adele spaces of F
k algebraic closure of k
An alternating group of order 1

2n!
Aut(F/k) field automorphisms of F fixing k
Aut(G) automorphisms of G
|M | cardinality of the set M
char(k) characteristic of the field k
C complex numbers
Fk composite field of the fields F and k
ConF ′/F conorm of the function field extension F ′/F
Cn cyclic group of order n
d(P ′/P ) different exponent of the place P ′ lying over P
Diff(F ′/F ) different of the function field extension F ′/F
Dn dihedral group of order 2n
dimk(V ) dimension of a vector space over k
div(a, b) divisor defined by the polynomials a and b (Cantor representation)
a | b a is a divisor of b
a - b a is no divisor of b
CF divisor class group of F
DF divisor group of F
Cmp elementary abelian p-group of order mp
a ≡ b mod n n is a divisor of a− b
A∼B the divisors A and B are equivalent
FG fixed field of G≤Aut(F/k)
k̃ full constant field of a function field F/k
G≤G′ G is a subgroup of G′

GEG′ G is a normal subgroup of G′

Gal(F ′/F ) Galois group of the field extension F ′/F
(a, b) greatest common divisor of a and b
g, gF genus of the function field F
Fq Galois field, i.e. the finite field of cardinality q
GLn(k) general linear group over k
GLn(q) general linear group over Fq
Φ hyperelliptic involution
idF identity map on F
F ∼= F ′ F and F ′ are isomorphic
JF Jacobian of the function field F(
D
a

)
Jacobi symbol; determines, whether D is a square modulo a

Ker(ϕ) kernel of ϕ
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4 NOTATION

[k′ : k] degree of the field extension k′ ⊇ k
lct(f) the leading coefficient of the polynomial f with respect to the vari-

able t
bxc floor(x), largest integer < x
P ′ | P the place P ′ lies over the place P
(l · c) linear combination, cf. definition V.2
N nonnegative integers
N+ positive integers
O(f) O-estimation of f as is known from complexity theory
ord(g) order of a group or group element g
PGLn(k) projective general linear group over k
PGLn(q) projective general linear group over Fq
PF places of the function field F
pm ‖ n pm divides n, while pm+1 does not
(x)F∞ pole divisor of x ∈ F
(x)F principal divisor of x ∈ F
PF principal divisors of F
Pn(k) n-dimensional projective space over k
PSLn(k) projective special linear group over k
PSLn(q) projective special linear group over Fq
e(P ′/P ) ramification index of the place P ′ lying over P
f(P ′/P ) relative degree of the place P ′ lying over P
L(D) Riemann-Roch space of the divisor D
GoH semidirect product group
σ|F restriction of the function σ to F
SLn(k) special linear group over k
SLn(q) special linear group over Fq
〈g0, . . . , gn−1〉 span of g0, . . . , gn−1

supp(D) support of the divisor D
Sn symmetric group of order n!
UF (G) subgroup of Aut(F/k) if F is of type F[G, k], cf. definition V.1
F[G, k] type of a function field, cf. definition V.1
R∗ unit group of the ring R
vP valuation corresponding to the place P
OP valuation ring corresponding to the place P
ΩF , ΩF (A) Weil differentials of F
Z integers
(x)F0 zero divisor of x ∈ F



Introduction

Today, electronic data exchange is part of our everyday lives. Hence, it is essential
to protect valuable information against unauthorized access. To be able to do so,
cryptographic algorithms need to be researched continuously.

The most widely used public-key crypto system1 today is RSA ([RSA78]). Due to
the development of the number field sieve2, RSA can only assure a sufficient level
of security if very large keys are used. Elliptic curves3 are an alternative to RSA,
because they guarantee a high level of security even for small keys4. Therefore, they
are widely used on smart cards and in similar environments where storage space is
limited or expensive.

In 1989, Neal Koblitz suggested to use Jacobians of hyperelliptic curves for crypto-
graphic purposes ([Kob89]). These are a natural generalization of (groups of points
of) elliptic curves. Hence, they provide more flexibility at a level of security which
is at least as high as for elliptic curves, if the same key lengths are used. While
both elliptic and (Jacobians of) hyperelliptic curves are considered to be secure in
general, there are specific, insecure curves in both cases. To apply (hyper-)elliptic
curves in practice, methods are needed which identify insecure curves, allowing
users to generate secure ones using a trial-and-error strategy. While this problem is
solved for elliptic curves5, there is no efficient possibility known to find out whether
a general6 hyperelliptic curve has a secure Jacobian.

In order to obtain secure Jacobians J it is necessary to prevent attacks7 like Pohlig-
Hellman’s ([PH78]), Frey-Rück’s ([FR94]) or Duursma-Gaudry-Morain’s attacks
([DGM99]). The latter is only feasible, if the Jacobian has an automorphism of
large order. Because each automorphism of the corresponding hyperelliptic function
field8 defines an automorphism of the Jacobian, at least the field’s automorphism
group ought to be small for secure Jacobians. To forestall the Pohlig-Hellman
attack, one needs to assert that the group order is almost prime, i.e. it ought to
contain a large prime factor p0. To prevent the Frey-Rück attack, p0 needs to
possess additional properties.

Therefore, one needs to know both the automorphism group of the function field
and the order of the Jacobian. Unfortunately, there is no efficient algorithm known

1Public-key cryptography has been invented by Diffie and Hellman, cf. [DH76].
2cf. [LL93]
3cf. e.g. [Sil86]
4Today, a key length of 256 bit provides security for elliptic curve crypto systems, while equally

secure RSA keys need to be 2048 bits long.
5The major problem is to avoid Pohlig-Hellman attacks (see chapter II), which can be done using
Satoh’s point counting algorithm ([Sat00], [FGH00]).
6Nevertheless, it is possible to construct secure curves of specific forms, cf. section II.3.
7cf. section II.2
8Each (hyper-)elliptic curve corresponds to a (hyper-)elliptic function field and vice versa. Hence,
we can also speak of the Jacobian JF of a hyperelliptic function field F instead of that of the

corresponding hyperelliptic curve. See chapter I for details.
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6 INTRODUCTION

to compute this order for arbitrary hyperelliptic curves. Only for specific types of
curves, divisor class counting9 is feasible for cryptographically relevant group sizes
(e.g. [SSI98], [GH00], cf. section II.3).

A theorem by Madan ([Mad70], cf. theorem II.1) implies that |JF | divides |JF ′ |
whenever F ⊆ F ′ is a finite Galois extension of hyperelliptic function fields. Thus,
a hyperelliptic function field with secure Jacobian will most likely have trivial au-
tomorphism group Aut(F/k) ∼= C2, generated by the hyperelliptic involution Φ,
only.

This leads us to the following idea of how test Jacobians for insecurity: We compute
the automorphism group of the corresponding hyperelliptic function field. If it is
non-trivial, we assume the Jacobian to be insecure. Otherwise, we hope it to be
secure and apply more expensive algorithms to check this supposition. Some of the
known algorithms to generate secure Jacobians as well as some attacks work over
constant field extensions10 of the corresponding hyperelliptic function field. Thus,
instead of considering the automorphism group of a function field F/k itself, we
compute that over the algebraic closure k and abandon all fields as being probably
insecure, where Aut(Fk/k) 6∼= C2.

In this thesis, an algorithm to compute the automorphism group Aut(Fk/k) is
developed. Let us outline this algorithm, briefly. It is well known that the auto-
morphism group of a hyperelliptic function field is finite (cf. [Sch38], remark I.52).
For each finite group, which can occur as subgroup of such an automorphism group,
Brandt has given a normal form for the corresponding hyperelliptic function fields
as well as explicit formulas for these automorphisms (cf. [Bra88], theorem V.6).
Brandt’s results only apply to function fields over algebraically closed constant
fields, which is no problem because we only wanted to compute over the algebraic
closure in the first place. Furthermore, it is also possible (but inefficient) to deter-
mine the automorphism group over k from that over k by explicitly computing the
generators of the latter11. Because of Brandt’s theorem, computing the automor-
phism group reduces to the problem of deciding, whether the function field has a
defining equation of a given form.

Consequently, given two defining equations u2 = Dt and y2 = Dx of hyperelliptic
function fields, we need to decide, whether k(t, u) = k(x, y). It can be shown12 that
this question is equivalent to asking whether two function fields k(t, u), u2 = Dt

and k(x, y), y2 = Dx are k-isomorphic. Because Brandt’s normal forms contain
parameters, this decision must even be possible, if some coefficients of Dt are un-
known.

To solve the above problem, we could possibly use results by Wulf-Dieter Geyer13,
which characterize the set of isomorphism classes of hyperelliptic function fields of
a given genus over an algebraically closed constant field: According to [Gey74],
this set is nothing but the spectre14 of a specific ring. But, it is not obvious from
Geyer’s paper how to check two fields to be elements of the same prime ideal—
especially since Dt may not be known, completely. Therefore, the author developed

9i.e. computation of the order of the Jacobian
10The constant field of a hyperelliptic function field is the same as the ground field of the cor-
responding hyperelliptic curve. Because of our cryptographic motivation, we will only consider

constant fields whose characteristic is an odd prime.
11cf. remark V.10, as well as sections IV.1.1 and IV.1.2.
12cf. section III.4
13The author thanks Arieh Cohen for referring him to this fact at the MEGA 2003 conference

shortly before the finishing of this thesis.
14i.e. the set of prime ideals
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an algorithm which can be used over both finite and algebraically closed constant
fields.

The main ingredient of this algorithm is theorem III.18. It states that two hyper-
elliptic function fields F1 = k(t, u) and F2 = k(x, y) are equal, iff x is a fraction
of linear polynomials in k[t] and y is a k(t)-multiple of u, where the factor y

u is
given up to its sign by the relation of x and t. This condition can be checked using
Gröbner basis techniques, as is described in chapter IV as well as in [Göb03a].
Theorem III.18 is also of theoretical interest, as we will see for example in chap-
ter VI.

This thesis is structured as follows: In chapter I, we present fundamental facts and
definitions related to hyperelliptic function fields. Chapter II is concerned with
our cryptographic motivation. We discuss hyperelliptic crypto systems, methods
to construct secure Jacobians, attacks and the aforementioned theorem by Madan.
The question whether two hyperelliptic function fields are equal or isomorphic is
dealt with in chapter III. How to turn the resulting theory into efficient algorithms
is the major topic of chapter IV, where we also develop a normal form for hyperel-
liptic function fields and methods to compute it. We state Brandt’s theorem and
describe our algorithm to compute automorphism groups in chapter V. We con-
clude the chapter presenting Stoll’s algorithm. Chapter VI concentrates on aspects
of the authors implementation of the above algorithms. We compute automorphism
groups in order to see whether our initial goal of identifying insecure Jacobians can
be fulfilled. This involves the computation of fixed fields, which is done both theo-
retically and computationally in section VI.3. Finally, we investigate the efficiency
of our algorithms and compare it to that of Stoll’s algorithm. Because of the large
number of examples15, most of them are listed in the appendix or can be found
in [Göb03b]. Our main results are summarized in the conclusion.
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CHAPTER I

Hyperelliptic Function Fields

Most of the notations as well as many facts stated in this chapter are taken from
[Sti93]. Readers familiar with Stichtenoth’s book and hyperelliptic function fields
should understand the remainder of my thesis without perusing this chapter. Nev-
ertheless, starting with section 4 some facts are stated, which are not taken from
the common literature.

1. Elementary Notations

Conforming to DIN 1302 (“Deutsches Institut für Normung”, German standard-
ization institute) the natural numbers N start at zero, i.e. N := {0, 1, 2, . . . }.
We adopt this standard. Furthermore, the set of positive integers is denoted by
N+ := {1, 2, . . . }.

2. Algebraic Function Fields

Definition I.1. Let k be a field. A field F ⊇ k is called an algebraic function field
or a function field over k, if there is some t ∈ F such that t is transcendental over
k and F is a finite algebraic extension of k(t). To mark that F is a function field
over k, we also denote it by F/k.

We call k the constant field of F . The field k̃ of all x ∈ F which are algebraic over
k is called the full constant field of F . We will always assume k = k̃.

A function field k(x), where x is transcendental is called a rational function field.

Definition I.2. Let F/k be a function field. A surjective mapping v : F → Z∪{∞}
is called valuation if the following holds.

(1) v(x) = ∞ iff x = 0.
(2) v(xy) = v(x) + v(y) for all x, y ∈ F .
(3) v(x+ y) ≥ min(v(x), v(y)) for all x, y ∈ F .
(4) v(x) = 0 for all x ∈ k∗.

Definition I.3. Let F/k be a function field and v a valuation of F . Then the set

P := {x ∈ F | v(x) > 0}

is called the place associated with v. We also denote v as vP . The set

OP := {x ∈ F | v(x) ≥ 0}

is called the valuation ring of P . The set of all places of F is denoted by PF .

The following remark shows the connection between places, valuations and valua-
tion rings. The corresponding proofs can be found in [Sti93, section I.1].

9



10 I. HYPERELLIPTIC FUNCTION FIELDS

Remark I.1. Let v be a valuation of F , and P the place associated with v. Then
OP really is a valuation ring, i.e. OP ( F is a subring such that k ( OP and for
each x ∈ F we have x ∈ OP or x−1 ∈ OP .

The place P is the maximal ideal of OP . Thus it is also possible to define a place to
be the maximal ideal of a valuation ring. It can also be proved that P is a principal
ideal in OP , i.e. P = tOP for some t ∈ OP . Such a t is called a prime element or
a prime for P . Using t we can define a valuation w of F : We set w(0) := ∞. For
x ∈ F ∗ we write x = tny with n ∈ Z and y ∈ OP ∗. Then we set w(x) := n. The
valuation w defined in this way equals vP .

More on valuation theory can be found in [vdW93b, Kapitel 18]. Let us define
divisors, next. These are formal sums of places:

Definition I.4. The free abelian group over PF is called the divisor group of F ,
denoted by DF . We write DF additively. The elements of DF are divisors.

We extend the notation of valuations to divisors: Let Q ∈ PF and A =
∑
P∈PF nPP

be a divisor of F . Then we write vQ(A) := nQ. Using this notation, we can define
a partial order on DF . If A,B ∈ DF , we write A ≤ B, iff vP (A) ≤ vP (B) for all
places P ∈ PF .

Let D ∈ DF , D =
∑
P∈PF nPP with nP ∈ Z be a divisor of F . Then we define the

support of D by
supp(D) := {P ∈ PF | nP 6= 0}.

The divisor group obviously is not finite. We will see below, that there exists a
quotient of a subgroup D0

F ≤DF , called the Jacobian JF , which is a finite group if k
is finite. The Jacobian can be used for cryptographic algorithms (cf. chapter II). In
order to define D0

F , we need the concept of the degree of a divisor. By the following
proposition, each place defines an algebraic field extension of k of finite degree.

Proposition I.2. Let F/k be an algebraic function field and P ∈ PF . Then P is
the maximal ideal of OP and OP /P is a finite field extension of k. If 0 6= x ∈ P
then

[OP /P : k] ≤ [F : k(x)] <∞.

Proof. By [Sti93, theorem I.1.12], P is the maximal ideal of the valuation ring
OP . The degree formula is proved in [Sti93, proposition I.1.14]. �

Definition I.5. Let F/k be an algebraic function field and P ∈ PF a place of F .
Then the degree of P is defined by

deg(P ) := [OP /P : k].

If D =
∑
P∈PF nPP ∈ DF is a divisor, its degree is defined by

deg(D) :=
∑
P∈PF

nP deg(P ).

The divisors of degree 0 form a subgroup D0
F ≤DF .

As we wish to define the Jacobian, a quotient of D0
F , we need to construct a

subgroup PF of D0
F . This group will consist of so called principal divisors which

are generated by evaluating elements of F with respect to all places. We proceed
with constructing principal divisors.

Definition I.6. Let F/k be an algebraic function field and x ∈ F . A place P ∈ PF
is called zero of x if vP (x) > 0. If we have vP (x) < 0, we call P a pole of x.
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We would like to construct the principal divisor of an x ∈ F by evaluating it with
respect to all places setting (x) :=

∑
P∈PF vP (x)P . Thus, we have to assure that

the latter sum consists of only finitely many terms.

Lemma I.3. Let F/k be an algebraic function field and 0 6= x ∈ F . Then x has
only finitely many zeroes and poles.

Proof. [Sti93, corollary I.3.4]. �

Definition I.7. Let F/k be an algebraic function field and 0 6= x ∈ F . The
principal divisor of x is given by

(x) := (x)F :=
∑
P∈PF

vP (x)P.

The zero divisor of x is

(x)0 := (x)F0 :=
∑
P∈Z

vP (x)P,

w here Z ⊆ PF is the set of zeroes of x. The pole divisor of x is

(x)∞ := (x)F∞ :=
∑
P∈N

−vP (x)P,

where N ⊆ PF is the set of poles of x.

By lemma I.3, (x), (x)0 and (x)∞ all are divisors, i.e. the sums are finite. Further-
more, it is obvious that (x)0, (x)∞ ≥ 0 and

(x) = (x)0 − (x)∞.

If 0 6= x, y ∈ F , the property vP (xy) = vP (x) + vP (y) of the valuation vP implies
the equation (xy) = (x)+(y). Thus, the set PF is a subgroup of DF . Furthermore,
principal divisors have degree 0:

Proposition I.4. Let F/k be a function field with k = k̃ and 0 6= x ∈ F .

(1) If x ∈ k, then (x) = (x)0 = (x)∞ = 0.
(2) If x /∈ k, then we have

deg((x)0) = deg((x)∞) = [F : k(x)].

Thus PF ≤D0
F .

Proof. If x ∈ k and P ∈ PF , we have vP (x) = 0 by definition, thus (x) = (x)0 =
(x)∞ = 0. If x /∈ k, our claim is proved in [Sti93, theorem I.4.11].

As deg(0) = 0, we get PF ⊆ D0
F . The subgroup property is seen easily: The

elements of k all have 0 as their principal divisor. If x, y ∈ F , we have seen above
that (x) + (y) = (xy). Finally for each x ∈ F , we have ( 1

x ) = −(x), because
vP (x) + vP ( 1

x ) = vP (xx ) = vP (1) = 0 for each P ∈ PF . �

As PF is a subgroup of D0
F ≤DF and all of these are abelian groups, their quotients

are also abelian groups.

Definition I.8. Let F/k be a function field such that k = k̃. Then the divisor
class group of F is the quotient group

CF := DF /PF .
If A,B ∈ DF are in the same divisor class, i.e. if A = B + (x) for some x ∈ F , we
call them equivalent, denoted by A∼B. Analogously, we define the group of divisor
classes of degree 0 by

JF := C0
F := D0

F /PF .
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This group is also called the Jacobian of F .

The Jacobian of a hyperelliptic function field (cf. section 6) is the most common
group to be used for hyperelliptic crypto systems. Of course, any cryptographically
relevant group needs to be finite in order to be able to represent it on a computing
device. According to the following proposition, Jacobians over finite constant fields
are always finite.

Proposition I.5. Let F/k be a function field such that k = k̃ and k is finite. Then
JF is a finite abelian group.

Proof. We already know, that JF is an abelian group. Its finiteness is proved in
[Sti93, proposition V.1.3]. �

3. The Riemann-Roch Theorem

In this section we introduce the Riemann-Roch spaces, the genus of a function
field, Weil differentials and the famous Riemann-Roch theorem. An introduction
to Riemann-Roch theory, where slightly different notations are used, can be found
in [vdW93b, Kapitel 19].

Definition I.9. Let F/k be a function field such that k = k̃ and A ∈ DF . Then
the set

L(A) := {x ∈ F | (x) ≥ −A}
is called the Riemann-Roch space of A.

As the name “space” suggests, Riemann-Roch spaces actually are vector spaces:

Proposition I.6. Let F/k be a function field such that k = k̃ and A ∈ DF . Then
L(A) is a finite dimensional k-vector space.

Proof. [Sti93, proposition I.4.9] �

Let us state some elementary, but useful properties of Riemann-Roch spaces.

Proposition I.7. Let F/k be a function field such that k = k̃ and A ∈ DF . Then
the following holds:

(1) Let x ∈ F . We have x ∈ L(A) iff vP (x) ≥ −vP (A) for all places P ∈ PF .
(2) If B ∈ DF is equivalent to A, then L(A) and L(B) are isomorphic k-vector

spaces.
(3) L(A) 6= {0} iff there exists a divisor B ∈ DF with B ∼A and B ≥ 0.
(4) If A < 0, then L(A) = {0}.
(5) L(0) = k.

Proof. [Sti93, remark I.4.5, lemma I.4.6 and lemma I.4.7] �

Definition I.10. Let F/k be a function field such that k = k̃ and A ∈ DF . We
call the vector space dimension of L(A) over k the dimension of A and denote it
by

dim(A) := dimk(L(A)).

Using the dimension, we can give a characterization of principal divisors.

Proposition I.8. Let F/k be a function field and A ∈ DF . A is principal, iff
deg(A) = 0 and dim(A) = 1 which is equivalent to deg(A) = 0 and dim(A) ≥ 1.
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Proof. [Sti93, corollary I.4.12]. �

The following proposition tells us that the difference between the degree and the
dimension of a divisor is bounded by some global bound. The smallest such bound
will be of great interest as it defines the genus of the function field.

Proposition I.9. Let F/k be a function field such that k = k̃. Then there exists
an integer γ ∈ Z such that we have for each divisor A ∈ DF the inequality

deg(A)− dim(A) ≤ γ.

Proof. [Sti93, proposition I.4.14]. �

Definition I.11. Let F/k be a function field such that k = k̃. Then we define the
genus gF of F by

g := gF := max{deg(A)− dim(A) + 1 |A ∈ DF }.

The theorem of Riemann-Roch states the connection between genus of a function
field and degree and dimension of its divisors. It uses so called Weil differentials of
a function field. In order to define them, we need the concept of adeles:

Definition I.12. Let F/k be a function field with k = k̃. An adele of F/k is a
map α : PF → F , such that α(P ) ∈ OP for almost all1 places P ∈ PF . We regard
an adele as an element of

∏
P∈PF F . Thus, the set AF of all adeles of F becomes

a k-vector space. We call AF the adele space of F .

The principal adele of a field element x ∈ F is defined to be the adele x : PF → F ,
P 7→ x. Thus, we can consider F to be a subspace of AF . Let us extend the notion
of valuations to arbitrary adeles. If P ∈ PF and α ∈ AF , we set

vP (α) := vP (α(P )).

If A ∈ DF , we define a k-subspace of AF by

AF (A) := {α ∈ AF | vP (α) ≥ −vP (A) for all P ∈ PF }.

Let us proceed defining Weil differentials:

Definition I.13. Let F/k be a function field with k = k̃. For each divisor A ∈ DF ,
we consider the k-vector space

ΩF (A) := {ω : AF → k | ω is k-linear and ω(α) = 0 for all α ∈ AF (A) + F}.
The sum

ΩF :=
∑
A∈DF

ΩF (A)

is called the vector space of Weil differentials, its elements are Weil differentials.

Remark I.10. Weil differentials are the same as ordinary differentials: Let F/k
be a function field where k is a perfect field. For simplicity, we assume k to be
algebraically closed. We consider differentials w dz as defined by Helmut Hasse,
[Has34a]: First of all, the fraction dz

dt , where t is a prime of some place P ∈ PF and
z ∈ F , is defined as the formal derivative of z with respect to t: We interpret z as a
power series with respect to t, i.e. z =

∑
ait

i, ai ∈ k. Then we set dz
dt :=

∑
iait

i−1.

Let w ∈ F . We define w dz
dt in the following way: Consider both w and z as power

series w =
∑
bit

i, z =
∑
ait

i. Then we set

w
dz
dt

:= w · dz
dt

=
(∑

bit
i
)
·
(∑

iait
i−1
)

1i.e. all but finitely many
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and expand the product, i.e. we compute ci ∈ k such that w dz
dt =

∑
cit

i. Hasse
defines the totality of all w dz

dt , where P ∈ PF and t is a prime of P to be the dif-
ferential w dz. For each place P , Hasse mentions two invariants of each differential
w dz: Its valuation and its residue with respect to P ∈ PF . The term “invariant”
stresses the fact these notions are not affected by the choice of the prime t ∈ P .
The valuation of a differential w dz is defined by

vP (w dz) := min ({i ∈ Z | ci 6= 0} ∪ {∞}) , where w
dz
dt

=
∑

cit
i.

Its residue simply is the coefficient c−1 of t−1 in the power series w dz
dt .

In order to obtain a Weil differential, we need to define the mapping w dz : AF → k.
We start defining its local components (w dz)P : F → k, first. Let P ∈ PF and
t ∈ P be a prime of P . We compute the power series w dz

dt =
∑
cit

i. Let x ∈ F have
the power series

∑
xit

i. We compute the product (w dz
dt )x =:

∑
dit

i and define

(w dz)P (x) := d−1 ∈ k,
to be the residue of (w dz

dt )x with respect to P . Thus, (w dz)P : F → k maps each x
to the residue of the product w dz

dt x, which does—as mentioned above—not depend
on the choice of t.

Now, we are able to define w dz : AF → k. Let α ∈ AF . Then we set

(w dz)(α) :=
∑
P∈PF

(w dz)P (α(P )).

It can be shown that w dz, defined in this way is a Weil differential and that all Weil
differentials are of this kind. More detailed discussions of the relation between Weil
differentials and ordinary ones can be found in [Sti93, chapter IV] and [vdW93b,
§156].

With each differential, we associate a divisor. All such divisors are called canonical:

Definition I.14. Let F/k be a function field with k = k̃ and 0 6= ω ∈ ΩF be a
Weil differential.

(1) The divisor of ω is the divisor W ∈ DF which is uniquely determined2 by the
following conditions.
(a) ω ∈ ΩF (W ), i.e. ω vanishes on AF (W ) + F .
(b) If ω ∈ ΩF (A) for a divisor A ∈ DF , then A ≤W .
Hence W is the maximal divisor such that ω ∈ ΩF (W ).

(2) Let P ∈ PF . Then we set vP (ω) := vP (W ), where W is the divisor of ω.
(3) A divisor W is called canonical divisor if there is a Weil differential ω ∈ ΩF

such that W is the divisor of ω.

The following proposition yields an easy criterion for a divisor to be canonical.

Proposition I.11. Let F/k be a function field of genus g with k = k̃. A divisor
A ∈ DF is canonical iff deg(A) = 2g − 2 and dim(A) ≥ g.

Proof. [Sti93, proposition I.6.2]. �

Now, we are able to state the Riemann-Roch theorem:

Theorem I.12 (Riemann-Roch). Let F/k be a function field of genus g with k = k̃,
W ∈ DF a canonical divisor and A ∈ DF any divisor. Then we have the formula

dim(A) = deg(A) + 1− g + dim(W −A).

2Existence and uniqueness of W are proved in [Sti93, lemma I.5.10].
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Proof. [Sti93, theorem I.5.15]. �

A consequence of theorem I.12 is the following.

Proposition I.13. Let F/k be a function field of genus g with k = k̃ and A ∈ DF
with deg(A) ≥ 2g − 1. Then

dim(A) = deg(A) + 1− g.

Proof. [Sti93, theorem I.5.17]. �

Remark I.14. Most aspects of the Riemann-Roch theory can be implemented
efficiently on a computer, provided one considers only function fields over finite
constant fields. In particular, it is possible to represent Riemann-Roch spaces,
compute the genus of a function field and determine divisor class numbers if these
are not too large. Cf. [Hes99] for more details.

4. Subfields of Algebraic Function Fields

We will investigate algorithms to compute the automorphism group of a hyper-
elliptic function field in chapter V. Naturally, automorphism groups are closely
related to subfields. In this section, we discuss the fundamentals of algebraic field
extensions of function fields.

Throughout this section, we will assume all constant fields k to be the
full constant field k = k̃ of their corresponding function field F/k. Fur-
thermore, all constant fields are assumed to be perfect.3

As this thesis is concerned with hyperelliptic function fields over finite or alge-
braically closed constant fields, these conditions will always hold in the following
chapters.

Definition I.15. Let F/k and F ′/k′ be algebraic function fields.

(1) F ′/k′ is called an algebraic extension or simply extension of F/k, if F ′ ⊇ F
and k′ ⊇ k both are algebraic field extensions. The function field F/k is called
subfield of F ′/k′.
The extension is called separable, if F ′ ⊇ F is separable. It is called finite, if
F ′ ⊇ F is of finite degree.

(2) F ′/k′ is called constant field extension of F/k if it is an algebraic extension of
F/k and F ′ = Fk′ is the composite field of F and k′.

(3) Let F ′/k′ be an extension of F/k, P ′ ∈ PF ′ and P ∈ PF . The place P ′ lies
over P (or P lies under P ′) if P ⊆ P ′. If P ′ lies over P , we write P ′ | P .

Let us state some elementary facts on extension fields of algebraic function fields.

Proposition I.15. Let F ′/k′ be an extension of F/k, P ′ ∈ PF ′ , P ∈ PF and P ′ |P .
Then we have

(1) F ∩ k′ = k.
(2) F ′/k′ is a finite extension of F/k iff [k′ : k] <∞.
(3) P = P ′ ∩ F and OP = OP ′ ∩ F .
(4) There exists an integer e ≥ 1 such that vP ′(x) = e · vP (x) for all x ∈ F .
(5) For each place Q ∈ PF , there is at least one, but only finitely many places

Q′ ∈ PF ′ such that Q′ |Q.

3Note that finite fields, algebraically closed fields and fields of characteristic 0 all are perfect (cf.
[Kun94, §8]), i.e. all constant fields of practical relevance are perfect.
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Proof. [Sti93, lemma III.1.2, proposition III.1.4 and proposition III.1.7]. �

In many situations we will assume function field extensions to be finite and sepa-
rable and to share the same constant field. The following proposition justifies this
assumption.

Proposition I.16. Let F ′/k′ be an algebraic function field extension of F/k. Then
there exists a uniquely determined function field F ′

s/k
′, such that

F ′ ⊇ F ′
s ⊇ Fk′ ⊇ F

all are algebraic function field extensions, where Fk′/k′ is a constant field extension
of F/k, F ′

s/k
′ is a finite separable extension of Fk′/k′ and F ′/k′ is a purely insep-

arable extension of F ′
s/k

′ of finite degree. Furthermore, F ′ ∼= F ′
s are isomorphic if

k′ is perfect. If char(k) = 0, we even have F ′ = F ′
s.

Proof. Obviously, Fk′/k′ is a constant field extension of F/k and F ′/k′ is a
function field extension of Fk′/k′. As the latter function fields share the same
constant field, F ′/k′ is a finite extension of Fk′/k′ (by proposition I.15) and we
only need to consider the ordinary field extension F ′/Fk′. If char(k) = 0, F ′/Fk′

needs to be separable since char(Fk′) = char(k) = 0 (cf. [vdW93a, §44]). Thus, our
claim is proved in the case char(k) = 0. Let us consider the case p := char(k) > 0,
now. By [Bos93, Satz 3.7.4], there is a uniquely determined intermediate field F ′

s,
such that F ′/F ′

s is purely inseparable while F ′
s/Fk

′ is separable. Of course both of
these extensions are finite, since F ′/Fk′ is.
Finally, we prove the isomorphy F ′ ∼= F ′

s if k′ is perfect. From [vdW93a, §44] we
obtain [F ′ : F ′

s] = pn for some nonnegative integer n. [Sti93, proposition III.9.2]
implies that F ′

s = {xpn |x ∈ F ′} and that the Frobenius map ϕn : F ′ → F ′
s, x 7→ xp

n

is an isomorphism. �

Remark I.17. We are chiefly concerned in divisor class groups and Jacobians.
Constant field extensions are quite easy to handle, since they are unramified4 (cf.
proposition I.24). As we have seen in proposition I.16, the purely inseparable part
of a function field extension yields nothing but an isomorphic field. It is easy to
see that isomorphic fields have isomorphic divisor groups, divisor class groups and
Jacobians.5 Thus, the finite separable part of a function field extension is the most
interesting one. We will assume most function field extensions to be finite separable
and sometimes even to share the same constant field. Inseparable extensions will
not be discussed in the remainder of this thesis.

The connection between function fields and their extension fields depends heavily
on the connection between their places. Therefore, we will examine the places of
extension fields more closely.

Lemma I.18. Let F ′/k′ be an extension of F/k, P ′ ∈ PF ′ , P ∈ PF and P ′ | P .
Then there exists an embedding OP /P ⊆ OP ′/P ′, such that the latter inclusion is
a field extension.

Proof. Let x + P ∈ OP /P . As OP ′ ∩ F = OP , we have x ∈ OP ′ . Furthermore,
for each y ∈ P = P ′ ∩ F , we have y ∈ P ′. Thus, the mapping

OP /P 3 x+ P 7→ x+ P ′ ∈ OP ′/P ′

is a well defined field homomorphism. As P = P ′ ∩ F , this mapping is injective,
i.e. it is an embedding. �

4Ramification is defined on page 17
5This can be proved analogously to [Sti93, lemma III.5.2], the special case stating that field
automorphisms induce group automorphisms on the Jacobian is proved in proposition I.28
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Ramification index and relative degree are essential properties of places of extension
fields. Knowing the facts above, we are able to define both of them.

Definition I.16. Let F ′/k′ be an extension of F/k, P ′ ∈ PF ′ , P ∈ PF and P ′ | P .

(1) The ramification index of P ′ over P is the positive integer e(P ′/P ) such that

vP ′(x) = e(P ′/P ) · vP (x)

for all x ∈ F . If e(P ′/P ) > 1, we call P ′ ramified over P . Otherwise P ′ is
called unramified over P . If all places of F ′ are unramified, we call F ′/k′ an
unramified function field extension of F/k.

(2) The relative degree of P ′ over P is defined by

f(P ′/P ) := [OP ′/P ′ : OP /P ].

(3) If P ′ is unramified and f(P ′/P ) = 1, we call P ′ regular.
(4) If P ′ is unramified and f(P ′/P ) = [F ′ : F ], we call P ′ inert.

The next proposition shows that both ramification indices and relative degrees
behave well in towers of function fields. Furthermore, they are bounded by the
degree of the field extension.

Proposition I.19. Let F ′/k′ be an extension of a function field F/k.

(1) If P ′ ∈ PF ′ lies over P ∈ PF . Then f(P ′/P ) <∞ iff [F ′ : F ] <∞.
(2) If F ′′/k′′ is an extension of F ′/k′, P ′′ ∈ PF ′′ , P ′ ∈ PP ′ and P ∈ PF such that

P ′′ | P ′ and P ′ | P . Then P ′′ | P and we have

e(P ′′/P ) =e(P ′′/P ′) · e(P ′/P ),

f(P ′′/P ) =f(P ′′/P ′) · f(P ′/P ).

(3) If F ′/k′ is a finite extension of F/k, P ∈ PF and P ′
1, . . . P

′
n ∈ PF ′ are all

places of F ′ lying over P , then we have
n∑
i=1

e(P ′
i/P ) · f(P ′

i/P ) = [F ′ : F ].

Proof. In the second claim, P ′′ | P is trivial. The remaining facts are proved in
[Sti93, proposition III.1.6 and theorem III.1.11]. �

By proposition I.15, each place P ∈ PF has only finitely many extensions P ′ ∈ PF ′ ,
P ′ |P . Thus, the sum of all such places P ′, multiplied by their ramification indices,
is a divisor of F ′, the so called conorm of P . Extending this definition linearly, we
obtain an embedding ConF ′/F : DF → DF ′ .

Definition I.17. Let F ′/k′ be a function field extension of F/k.

(1) Let P ∈ PF be a place of F . The conorm of P is defined by

ConF ′/F (P ) :=
∑
P ′|P

e(P ′/P ) · P ′,

where the P ′ are places of F ′.
(2) Let A =

∑
P∈PF nPP ∈ DF . The conorm of A is defined by

ConF ′/F (A) :=
∑
P∈PF

nP · ConF ′/F (P ).

The following proposition shows that the conorm map is injective and induces ho-
momorphisms CF → CF ′ and JF → JF ′ , as well as some other elementary properties.
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Proposition I.20. Let F ′/k′ be a function field extension of F/k. Then the fol-
lowing holds:

(1) ConF ′/F : DF → DF ′ is an injective group homomorphism.
(2) If F ′′/k′′ is an extension of F ′/k′ and A ∈ DF , then

ConF ′′/F (A) = ConF ′′/F ′(ConF ′/F (A)).

(3) Let 0 6= x ∈ F . Then, we have

ConF ′/F ((x)F ) =(x)F
′
,

ConF ′/F ((x)F0 ) =(x)F
′

0 ,

ConF ′/F ((x)F∞) =(x)F
′

∞ .

Hence, ConF ′/F induces homomorphisms

ConF ′/F : CF → CF ′ , ConF ′/F : JF → JF ′ .

In general, these homomorphisms are neither injective nor surjective.
(4) Let A ∈ DF . If F ′/k′ is a finite extension of F/k, we have the formula

deg(ConF ′/F (A)) =
[F ′ : F ]
[k′ : k]

· deg(A).

Proof. Let us provide the proofs for our statements, separately:

(1) Obviously, ConF ′/F is a group homomorphism. We will show that it is in-
jective: Let A ∈ DF such that ConF ′/F (A) = 0. Suppose A 6= 0 and let
P1 ∈ supp(A). Then supp(ConF ′/F (P1)) 6= ∅ and for each P2 ∈ supp(A),
P2 6= P1, we have

supp(ConF ′/F (P1)) ∩ supp(ConF ′/F (P2)) = ∅
(otherwise, we had P1 = P ′

2 ∩ F = P2 for some P ′
2 lying over P2). Thus the

coefficients of places lying over P1 cannot be canceled by places lying over
any P2 6= P1. This implies ∅ 6= supp(ConF ′/F (P1)) ⊆ supp(ConF ′/F (A)) = ∅.
Contradiction. Hence ConF ′/F : DF → DF ′ is injective.

(2) Because ramification indices behave well in towers of function fields, this also
holds for the conorm.

(3) [Sti93, proposition III.1.9] and the paragraphs below its proof.
(4) [Sti93, corollary III.1.12].

�

The genus of a subfield of a function field can be computed using the Hurwitz genus
formula in many cases. In order to state this formula, we need to define the different
of a function field extension.

Definition I.18. Let F ′/k′ be a finite separable function field extension of F/k.

(1) Let P ′ ∈ PF ′ lie over P ∈ PF . If char(k) - e(P ′/P ), we call

d(P ′/P ) := e(P ′/P )− 1

the different exponent of P ′ over P .
(2) If char(k) - e(P ′/P ) for all P ′ ∈ PF ′ and all P ∈ PF with P ′ |P , we define the

different of F ′ over F by

Diff(F ′/F ) :=
∑

P∈PF ,P ′∈PF ′ ,
P ′|P

d(P ′/P ) · P ′.
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Remark I.21. More generally, the different can be defined for arbitrary finite func-
tion field extensions using generators of so called complimentary modules of valu-
ation rings. This general definition can be found in [Sti93, definition III.4.3]. In
order to simplify the discussion, the author decided to use a constructive defini-
tion which is possible for the fields in which we are interested most: hyperelliptic
function fields over constant fields of characteristic ≥ 2. By Dedekind’s different
theorem ([Sti93, theorem III.5.1]), our notion of the different is nothing but the
ordinary different—whenever it can be defined.

Theorem I.22 (Hurwitz Genus Formula). Let F ′/k′ be a finite separable function
field extension of F/k. Then we have

2gF ′ − 2 =
[F ′ : F ]
[k′ : k]

· (2gF − 2) + deg(Diff(F ′/F )).

Proof. [Sti93, theorem III.4.12]. �

As the Hurwitz genus formula holds for all finite separable function field exten-
sions and Diff(F ′/F ) ≥ 0 even for the general definition, we deduce the following
inequality.

Corollary I.23. Let F ′/k′ be a finite separable function field extension of F/k.
Then we have

gF ′ − 1 ≥ [F ′ : F ]
[k′ : k]

· (gF − 1)

Proof. By [Sti93, proposition III.4.2], we have Diff(F ′/F ) ≥ 0 even for the gen-
eral different definition [Sti93, definition III.4.3], i.e. deg(Diff(F ′/F )) ≥ 0. The
Hurwitz genus formula ([Sti93, theorem III.4.12]) implies our claim. �

We conclude this section by stating some facts on constant field extensions.

Proposition I.24. Let F ′/k′ be a constant field extension of the function field F/k,
i.e. k′ ⊇ k is an algebraic field extension and F ′ = Fk′. Then the following holds:

(1) k′ is the full constant field of F ′ (as stated above, we assume k to be the full
constant field of F ).

(2) [F : k(x)] = [F ′ : k′(x)] for any x ∈ F \ k.
(3) F ′/F is unramified, i.e. each place P ′ ∈ PF ′ is unramified over P := P ′ ∩ F .
(4) gF ′ = gF .
(5) For each divisor A ∈ DF , we have

deg(ConF ′/F (A)) = deg(A),

dim(ConF ′/F (A)) = dim(A),

(6) The conorm ConF ′/F : CF → CF ′ for divisor classes is injective.

Proof. [Sti93, proposition III.6.1 and theorem III.6.3]. �

5. Automorphisms of Algebraic Function Fields

In this section, we define the automorphism group of an algebraic function field and
discuss the relation between subfields and automorphisms. We will see, that every
separable function field extension can be split into a constant field extension and an
extension generated by automorphisms. Thus, all separable subfields of a function
field having the same constant field can be determined from its automorphism
group.
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As above we assume all constant fields to be full constant fields. Further-
more, all constant fields are supposed to be perfect.

Definition I.19. Let F/k be an algebraic function field. The automorphism group
of F/k is the group Aut(F/k) consisting of all field automorphisms σ : F → F
fixing k, i.e. σ(x) = x for all x ∈ k. The group law is the composition.

Let G≤Aut(F/k). We denote the fixed field of G by

FG := {x ∈ F | σ(x) = x for all σ ∈ G}.

If σ ∈ Aut(F/k), we denote the fixed field of 〈σ〉 by Fσ := F 〈σ〉.

We have already seen that the most interesting function field extensions are finite
separable ones. Furthermore, it is commonly known that each finite subgroup G
of the automorphism group of a field F defines a separable subfield FG ⊆ F of
finite degree (cf. [Art73, Satz 15]). The following theorem shows the inverse fact:
Each finite separable subfield of a function field is the fixed field of a group of
automorphisms. Thus, if one is interested in all (finite separable) subfields of a
function field, the knowledge of the automorphism group is essential.

In section 4 of chapter II, we will see that subfields of hyperelliptic function fields
sometimes are dangerous in cryptographic applications. Hence, theorem I.25 yields
one of the core motivations for constructing algorithms to compute the automor-
phism group of hyperelliptic function fields (cf. chapter V): We need to avoid
hyperelliptic function fields with subfields which decrease security.

Theorem I.25. Let F ′/k be a finite separable extension of a function field F/k
such that Aut(F ′/k) is finite. Then there exists a subgroup U ≤ Aut(F ′/k) such
that F = (F ′)U .

Proof. Let G1 := {σ|F : σ ∈ Aut(F ′/k)} be the set of restrictions of automor-
phisms of F ′/k to F . Obviously, G1 ≤Aut(F/k). Let F1 := FG1 .

F̃ ′

Aut(F̃ ′/F1)

ŨF ′

U

F

G1

F1

trans.

k

Then F/F1 is finite and separable by [Art73, Satz 15], thus F ′/F1

also is finite and separable (transitivity of separability, [Kun94,
Korollar 8.13]). Let F̃ ′ be the Galois closure of F ′/F1. Since
F̃ ′/F1 is Galois, there exists a subgroup Ũ≤Aut(F̃ ′/F1), such that

F = (F̃ ′)
Ũ

. Let U := {σ|F ′ : σ ∈ Ũ}. Then U ≤ Aut(F ′/F1) ≤
Aut(F ′/k). We will show F = (F ′)U .

Let x ∈ F = (F̃ ′)
Ũ

. As F ⊆ F ′, we know x ∈ F ′. Let σ ∈ U . Then,
there exists σ̃ ∈ Ũ such that σ = σ̃|F ′ . Hence σ(x) = σ̃(x) = x,
since x is fixed by Ũ . This proves F ⊆ (F ′)U .
Conversely, let x ∈ (F ′)U . Again, x ∈ F̃ ′ is obvious. Let σ̃ ∈ Ũ
and σ := σ̃|F ′ ∈ U . This implies σ̃(x) = σ(x) = x, since x ∈ F ′ is
fixed by U . Thus (F ′)U ⊆ F , implying F = (F ′)U .

Summing up, we have proved the existence of a subgroup U ≤ Aut(F ′/k) such that
F = (F ′)U . �

Remark I.26. The assumption that Aut(F ′/k) needs to be finite is met in our
application: Hermann Ludwig Schmid proved in [Sch38] that each function field of
genus > 1 over an arbitrary constant field has at most finitely many automorphisms.

The following proposition shows how automorphisms and places are related.
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Proposition I.27. Let F/k be a function field and F ′/k′ an algebraic extension
of F/k. For a place P ′ ∈ PF ′ and an automorphism σ ∈ Aut(F ′/F ), we denote
σ(P ′) := {σ(x) | x ∈ P ′}. Then the following holds:

(1) For each σ ∈ Aut(F ′/F ) and each P ′ ∈ PF ′ , we have σ(P ′) ∈ PF ′ . Further-
more, we have for each x ∈ F ′

vP ′(x) = vσ(P ′)(σ(x)).

(2) For each σ ∈ Aut(F ′/F ) and each P ′ ∈ PF ′ , P ∈ PF such that P ′ |P , we have
σ(P ′) | P .

(3) If F ′/F is Galois, P ′
1, P

′
2 ∈ PF ′ and P ∈ PF such that P ′

1 |P and P ′
2 |P , there

exists a σ ∈ Aut(F ′/F ) such that P ′
2 = σ(P ′

1).
(4) For each P ′ ∈ PF ′ , P ∈ PF such that P ′ | P we have e(σ(P ′)/P ) = e(P ′/P )

and f(σ(P ′)/P ) = f(P ′/P ).

Proof. [Sti93, lemma III.5.2 and theorem III.7.1]. �

Finally, we will prove that automorphisms of function fields induce automorphisms
of their Jacobians.

Proposition I.28. Let F/k be a hyperelliptic function field and σ ∈ Aut(F/k).
Then σ induces a group automorphism σ : JF → JF .

Proof. By proposition I.27, σ induces a group automorphism of DF . In order to
prove our claim, we need to show σ(PF ) = PF . This obviously follows from the
second of the above facts. �

6. Hyperelliptic Function Fields

In this section, we define the fields most relevant to this thesis: Hyperelliptic func-
tion fields. We discuss their elementary properties and why the above facts can be
applied to elliptic and hyperelliptic function fields.

Throughout this section, we assume all constant fields to be perfect.

Definition I.20. Let k be a field of characteristic 6= 2. A polynomial D ∈ k[x] is
said to be separable6 if D has pairwise distinct roots over k.

Definition I.21. Let k be a field of characteristic 6= 2 and D ∈ k[x] a monic
separable polynomial of degree ≥ 3. We define the function field F/k by F :=
k(x, y), where x is transcendental over k and y2 = D(x). If deg(D) ≤ 4, we call
F/k an elliptic (function) field. If deg(D) > 4, we call F/k a hyperelliptic (function)
field. The elements x, y ∈ F = k(x, y) are called generators or basis of F/k. The
equation y2 = D(x) is called defining equation of F/k.

If deg(D) is even, the basis x, y is called real quadratic and we call F/k to be in
real quadratic representation. Otherwise, we call x, y an imaginary quadratic basis
and F/k to be in imaginary quadratic representation.

Remark I.29. Although it is possible to consider (hyper-)elliptic function fields
over constant fields of characteristic 2, we will not consider this case.

6Note that many authors use a different notion of separability for polynomials which are not
irreducible: In many works, a polynomial is called separable, if all its irreducible factors are

separable (in the sense of our definition). While the splitting field of a separable polynomial is
separable for both of these definitions, our definition forbids some “irrelevant” polynomials.
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Remark I.30. Let F/k be a (hyper-)elliptic function field with defining equation
y2 = D(x). Then the variety

{(t, u) ∈ k × k | u2 = D(t)}

is called the (hyper-)elliptic curve of F . The curve’s function field is our given field
F . Of course, every (hyper-)elliptic curve defines a function field.

First of all, we prove that real and imaginary quadratic representations are es-
sentially equivalent: Each real quadratic (hyper-)elliptic function field has a finite
constant field extension which has an imaginary quadratic representation and vice
versa.

Lemma I.31. Let F/k be a (hyper-)elliptic function field in imaginary quadratic
representation with defining equation y2 = Dx(x), i.e. we assume deg(Dx) to be
odd. Then there exists a finite constant field extension Fk′/k′ such that Fk′/k′ has
a real quadratic basis Fk′ = k′(t, u), u2 = Dt(t) with degt(Dt) = degx(Dx) + 1.

Furthermore, if there exists a ξ ∈ k such that Dx(ξ) 6= 0, k′ can be chosen such
that [k′ : k] ≤ 2.

Proof. Let ξ ∈ k such that Dx(ξ) 6= 0. If necessary, we extend k by some
such ξ. We set x′ := x − ξ and D′

x(x
′) := Dx(x′ + ξ). Then D′

x ∈ k[x′] is a
separable polynomial of degree d := degx(Dx) and F = k(x′, y). Furthermore,
y2 = Dx(x) = Dx(x′ + ξ) = D′

x(x
′) and D′

x(0) = Dx(ξ) 6= 0. Thus, y2 = D′
x(x

′)
is an imaginary quadratic defining equation of F and D′

x has a nontrivial constant
term.

Let k′ = k(η), where η2 = D′
x(0). We set t := 1

x′ and u := t(d+1)/2

η y. Then

F = k(t, u) and we have u2 = td+1

D′
x(0)

y2 = td+1

D′
x(0)

D′
x(x

′) = td+1

D′
x(0)

D′
x(

1
t ) =: Dt(t).

Then Dt ∈ k[t] is a monic separable polynomial. Thus, u2 = Dt(t) is a defining
equation for Fk′/k′. Furthermore, degt(Dt) = d + 1, since D′

x has a nontrivial
constant term. Hence, t, u is a real quadratic basis of Fk′/k′. �

Example I.1. We consider the hyperelliptic function field C(x, y) defined by y2 =
Dx(x), where Dx(x) := x5+19x4+5x3+11x2+80x. AsDx(1) 6= 0, we set x′ = x−1
and substitute x′ + 1 in Dx, obtaining D′

x(x
′) = Dx(x′ + 1) = (x′)5 + 24(x′)4 +

91(x′)3 + 150(x′)2 + 198x′ + 116. We immediately see D′
x(0) 6= 0, as claimed in the

above proof.

Setting t := 1
x′ and u := t3√

116
y, we get the real quadratic defining equation

u2 =
t6

116
y2 =

t6

116
Dx(x) =

t6

116
Dx(x′ − 1) =

t6

116
D′
x(x

′) =
t6

116
D′
x(

1
t
)

=
1

116
(116t6 + 198t5 + 150t4 + 91t3 + 24t2 + t)

=t6 +
99
58
t5 +

75
58
t4 +

91
116

t3 +
2
29
t2 +

1
116

t.

The inverse statement can be proved analogously.

Lemma I.32. Let F/k be a (hyper-)elliptic function field in real quadratic represen-
tation with defining equation y2 = Dx(x), i.e. we assume d := deg(Dx) to be even.
Then there exists a finite constant field extension Fk′/k′ such that Fk′/k′ has an
imaginary quadratic basis Fk′ = k′(t, u), u2 = Dt(t) with degt(Dt) = degx(Dx)−1.
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Proof. Let k′′ ⊇ k be an extension field such that Dx has a root ξ ∈ k′′. We
set x′ := x − ξ and D′

x(x
′) := Dx(x′ + ξ). As above, D′

x ∈ k′′[x′] is separable
and we have Fk′′ = k′′(x, y) = k′′(x′, y) with y2 = Dx(x) = Dx(x′ + ξ) = D′

x(x
′).

Furthermore, D′
x(0) = Dx(ξ) = 0, i.e. D′

x(x
′) is divisible by x′.

We set t := 1
x′ and u′ := td/2y. Then Fk′′ = k′′(t, u) and we have (u′)2 = tdy2 =

tdD′
x(x

′) = tdD′
x(

1
t ) =: D′

t(t). Then D′
t ∈ k′′[t] is a separable polynomial. In

order to make it monic, let k′ = k′′(η) with η2 = lct(D′
t), u := u′

η Then, u2 =

(u′)2 D′
t(t)

lct(D′
t)

=: Dt(t) is a defining equation for Fk′/k′. Furthermore, degt(Dt) =
d− 1, since D′

x(x
′) is divisible by x′. Hence, t, u is an imaginary quadratic basis of

Fk′/k′. �

Example I.2. We consider the hyperelliptic function field F109(x, y), y2 = Dx(x),
whereDx(x) = x6+23x5+24x4+82x3+62x2+91x+6. We haveDx(−2) = 0. Hence
we define D′

x := Dx(x′ − 2) = (x′)6 + 11(x′)5 + 72(x′)4 + 105(x′)3 + 72(x′)2 + 72x′.
Thus, D′

t = 72t5 + 72t4 + 105t3 + 72t2 + 11t + 1. Dividing by 72, we obtain
Dt = t5 + t4 + 6t3 + t2 + 38t+ 53. The corresponding basis is t = 1

x−2 , u = t3√
72
y.

Next, we prove that a (hyper-)elliptic function field is of genus g iff it has a defining
equation y2 = D(x) with deg(D) ∈ {2g + 1, 2g + 2}.
Proposition I.33. Let F/k be a (hyper-)elliptic function field with defining equa-
tion y2 = D(x). Then F is a function field of genus bdeg(D)−1

2 c.

Proof. For hyperelliptic function fields, cf. [Sti93, proposition VI.2.3]. Let us
consider the elliptic case. If F/k is in real quadratic representation, lemma I.32
yields a constant field extension Fk′/k′ in imaginary quadratic representation Fk′ =
k′(t, u), u2 = Dt(t) and degt(Dt) = 3. We know from proposition I.24 that gF =
gFk′ . Hence, it suffices to consider the imaginary quadratic case. Thus, [Sti93,
proposition VI.1.3] implies our claim. �

Remark I.34. From this proposition, it can be explained, why only separable
polynomials are allowed in defining equations: If D = f2E ∈ k[x], then the function
field F = k(x, y), y2 = D would also be generated by x and u = y

f . Thus, we had

F = k(x, u), u2 = y2

f2 = E. This implies that the genus of F could not be computed
from the degree of the defining equation.

In the sections above, we often assumed the given constant fields to be the full
constant fields of their corresponding function fields. The following proposition
justifies this assumption: (hyper-)elliptic function fields all have this property.

Proposition I.35. Let F/k be a (hyper-)elliptic function field. Then k is the full
constant field of F/k, i.e. k = k̃.

Proof. [Sti93, proposition VI.3.1]. �

Obviously, (hyper-)elliptic function fields are cyclic extensions of degree 2 of ra-
tional function fields. We want to be able to compute valuations (or places) of
(hyper-)elliptic function fields. To do so, we discuss the valuations of rational func-
tion fields, first. Afterwards, we will examine the ramification behavior of places of
(hyper-)elliptic function fields.

Proposition I.36. Let k(x) be a rational function field. Let P ∈ Pk(x). Then,
either vP (ϕ) = −degx(ϕ) for all ϕ ∈ k[x] or there exists an irreducible polynomial
p ∈ k[x], such that for all ϕ ∈ k[x], we have pvP (ϕ) ‖ ϕ. Obviously, for each
ϕ
ψ ∈ k(x), we have vP (ϕψ ) = vP (ϕ)− vP (ψ).



24 I. HYPERELLIPTIC FUNCTION FIELDS

Proof. [Sti93, Section I.2]. �

Definition I.22. Let k(x) be a rational function field and P ∈ k[x] an irreducible
polynomial. Then we denote the place associated with P by P , i.e. vP (Pn ϕψ ) = n

whenever P - ϕ,ψ ∈ k[x].
The place given by the degree with respect to x is called the infinite place with
respect to x. We denote it by ∞x or simply by ∞. Hence, v∞x

(ϕψ ) = degx(ψ) −
degx(ϕ) for each ϕ,ψ ∈ k[x].

Remark I.37. The infinite place ∞x with respect to x is just the pole divisor of
x, i.e. ∞x = (x)∞.

The degrees of places of rational function fields are nothing but the degrees of the
corresponding polynomials.

Proposition I.38. Let k(x) be a rational function field and P ∈ Pk(x). If P ∈ k[x],
we have deg(P ) = degx(P ), i.e. the degree of the place P equals the degree of the
polynomial P .

If P = ∞x, we have deg(P ) = 1.

Proof. [Sti93, proposition I.2.1]. �

Let us discuss the ramification behavior in (hyper-)elliptic over rational function
fields, next.

Proposition I.39. Let F = k(x, y) be a (hyper-)elliptic function field with defining
equation y2 = D(x). Then k(x) is a rational subfield of F of degree [F : k(x)] = 2.
The places lying over irreducible polynomials dividing D are ramified. If degx(D)
is odd, the place lying over ∞x also is ramified. All other places are unramified.

In other words, if P ′ ∈ PF lies over P ∈ Pk(x), the ramification index is given by

e(P ′/P ) =


2 , if P ∈ k[x] and P | D,
2 , if P = ∞x and deg(D) ≡ 1 mod 2,
1 , otherwise.

Proof. By [Sti93, proposition III.7.3], we have e(P ′/P ) = 2
(2,vP (D(x))) . If P ∈

k[x], P | D, we have vP (D) = 1, i.e. e(P ′/P ) = 2. If P ∈ k[x], P - D, we
have vP (D) = 0, i.e. (2, vP (D)) = 2. Thus, e(P ′/P ) = 1. If P = ∞x, we have
vP (D) = −degx(D). Thus, e(P ′/P ) = 2, if degx(D) is odd and e(P ′/P ) = 1, if
degx(D) is even. �

For (hyper-)elliptic curves, it also is easy to compute the relative degree of places
over k(x). This can be done using the following proposition.

Proposition I.40. Let F = k(x, y) be a (hyper-)elliptic function field with defining
equation y2 = D(x), P ∈ Pk(x) and P ′ ∈ PF such that P ′ | P . Then the relative
degree of P ′ over P is given by

f(P ′/P ) =


1 , if P ∈ k[x] and P | D,
1 , if P ∈ k[x], P - D and D is a square modulo P,
1 , if P = ∞x,

2 , otherwise.
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Proof. Because of proposition I.19, whenever P ′ ∈ PF is ramified over P , we need
to have f(P ′/P ) = 1. By proposition I.39, this proves our claim if P ∈ k[x], P | D
or P = ∞x, degx(D) odd.

We consider the unramified cases, next. By proposition I.19, we can compute the
relative degree by counting the number of places over P : We have f(P ′/P ) = 1 iff
there are two places over P . By [Neu92, Satz II.8.2], P has as many extensions as
y2 −D(x) has irreducible factors in the P -adic completion K of k(x).

Let us consider the case P ∈ k[x], P - D, first: By Hensel’s Lemma (cf. [vdW93b,
§144]), y2−D(x) has two factors over K iff there exists a polynomial α ∈ k[x] such
that D ≡ α2 mod P . This proves our claim in this case, i.e. for P ∈ k[x], P - D.

Finally, we have to consider the case P = ∞x, d := degx(D) even. In order to
factor D modulo P , we need to find a power series

α = x
d
2 + a− d

2 +1x
d
2−1 + ...+ a0 +

∞∑
i=1

aix
−i,

such that α2 ≡ D mod P . An explicit computation of the power series α2 shows
that α exists, since degx(D) is even. Thus, P has two extensions in F , which implies
f(P ′/P ) = 1. �

From our definition of the different, we obtain a formula for Diff(F/k(x)):

Corollary I.41. Let F = k(x, y) be a (hyper-)elliptic function field with defining
equation y2 = D(x). Then the different Diff(F/k(x)) is just the sum of all ramified
places, i.e.

Diff(F/k(x)) =


∑
P |D P

′ , if deg(D) ≡ 1 mod 2,∑
P |D P

′ +∞′
x , if deg(D) ≡ 0 mod 2,

where P ′ denotes the (uniquely determined) place of F lying over P ∈ k[x] ⊆ Pk(x).

Proof. Because of proposition I.19, all ramified places have ramification index 2
and are uniquely determined by the places lying under them. Thus, char(k) 6= 2
implies that the different is the sum of all ramified places. Proposition I.39 yields
our formula. �

7. Weierstraß Points

In [Sch39], Friedrich Karl Schmidt defined the Weierstraß points of an algebraic
function field over an arbitrary constant field as generalization of those defined for
curves over the field C of complex numbers. Weierstraß points of an algebraic func-
tion field are closely related to its automorphism group. This is why we investigate
some of their properties.

In this section we give a definition of Weierstraß points and state some elementary
properties. We will see that each function field has only finitely many Weierstraß
points and we will characterize the Weierstraß points of (hyper-)elliptic function
fields. Furthermore, we will see that automorphisms permute the set of Weierstraß
points.

In order to define Weierstraß points we need the notions of pole and gap numbers
of places.

Definition I.23. Let F/k be an algebraic function field with k = k̃, P ∈ PF a
place of F and n ∈ N.
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(1) We call n a pole number of P , if there exists an element x ∈ F such that
(x)∞ = nP .

(2) We call n a gap number of P if (x)∞ 6= nP for each x ∈ F .

It is easy to see that the set of pole numbers is a sub-semigroup of (N,+):

Proposition I.42. Let F/k be an algebraic function field with k = k̃, P ∈ PF a
place of F and n1, n2 pole numbers of P . Then n1 + n2 also is a pole number of
P . Thus, the set of pole numbers is a sub-semigroup of N.

Proof. Let n1, n2 be pole numbers of P . Then there are x1, x2 ∈ F such that
(x1)∞ = n1P and (x2)∞ = n2P . From the definitions of vP and of pole divisors it
is obvious that (x1x2)∞ = (x1)∞ + (x2)∞ = (n1 + n2)P . Thus n1 + n2 also is a
pole number. This proves our claim. �

A well known property of gap numbers is the Weierstraß gap theorem which tells
us that gap numbers are bounded by 2g − 1 for places of degree 1.

Proposition I.43 (Weierstraß Gap Theorem). Let F/k be an algebraic function
field of genus g > 0 with k = k̃ and P ∈ PF a place of degree deg(P ) = 1. Then P
has exactly g gap numbers 1 = n1 < · · · < ng ≤ 2g − 1.

If k is algebraically closed, almost all places have the same sequence of gap numbers.

Proof. [Sti93, theorem I.6.7]. �

As almost all places have the same sequence of gap numbers (if k is algebraically
closed), the places not sharing these gap numbers are of special interest. We will
call them Weierstraß points of F/k. The following definition also considers the case
where k is not algebraically closed.

Definition I.24. Let F/k be an algebraic function field with k = k̃. A place
P ∈ PF is called Weierstraß point of F if only finitely many places of F have the
same set of gap numbers as P .

From proposition I.43, we know that the set of Weierstraß points is finite whenever
the constant field of an algebraic function field is algebraically closed. This also
holds for arbitrary constant fields, as can easily be deduced from the first claim of
proposition I.43, if we consider that rational function fields cannot have Weierstraß
points.7

Proposition I.44. Let F/k be an algebraic function field with k = k̃. Then F has
only finitely many Weierstraß points.

Proof. [Sch39, page 78, I.]. �

This fact becomes even more interesting, if we consider that each function field has
infinitely many places, as is the content of the following proposition.

Proposition I.45. Let F/k be a function field such that k = k̃. Then F has an
infinite number of places.

Proof. [Sti93, corollary I.3.2]. �

7Let us prove this statement: Because ( 1
p(x)n

)∞ = np for each irreducible polynomial p ∈ k[x]

and each n ∈ N, irreducible polynomials have no gap numbers. The analogous argument holds for
∞x. Thus all (infinitely many) places of k(x) share the same set ∅ of gap numbers, i.e. they are
no Weierstraß points.
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From this, we obtain that function fields over finite constant fields have an infinite
number of places whose degree is larger than any given bound. In particular, for
each finite field Fq and each n ∈ N, there exist irreducible polynomials whose degree
is at least n.

Corollary I.46. Let F/k be a function field over a finite field k such that k = k̃
and n ∈ N. Then F has an infinite number of places of degree ≥ n.

Proof. Let k(t) ⊆ F be rational. For each place p ∈ Pk(t), we have only finally
many places of F lying over p, as we know from proposition I.15. Apart from ∞t ∈
Pk(t), all places of k(t) can be identified with polynomials from k[t]. The degree
of a place of k(t) is just the degree of the corresponding polynomial. The degree
of a place P ∈ PF lying over p ∈ Pk(t) is f(P/p) · deg(p). Thus, deg(P ) ≥ deg(p)
whenever P | p. All of these facts have been discussed in section 6.

If n ≤ 1, there are no places of degree < n. Let us assume n > 1, now. Since k is
finite, the number of polynomials p ∈ k[t] such that degt(p) < n is |k|n, which is
more than the number of corresponding places, since multiplying a polynomial by
an element of k yields the same place. The infinite place ∞t is the only additional
place of degree 1 < n. Thus, the number of places of k(t) whose degree is less than
n is finite. Because only finitely many places of F can lie over each place of k(t)
and because the degree of a place P of F can only be larger than that of the place
below, F can only have finitely many places of degree less than n.

By proposition I.45, F has infinitely many places. Thus, F needs to have an infinite
number of places whose degree is at least n. �

Next, we would like to characterize Weierstraß points of (hyper-)elliptic function
fields—at least over finite as well as over algebraically closed constant fields. To do
so, it is necessary to determine the gap numbers of arbitrary places. The following
proposition solves this problem.

Proposition I.47. Let F = k(x, y) be a (hyper-)elliptic function field of genus g
over an arbitrary constant field k and P ∈ PF a place of F . Then

(1) If P is regular over k(x), i.e. if P is not ramified over k(x) and the relative
degree of P over P ∩ k(x) is 1, P has the gap numbers 1, 2, . . . , b g

deg(P )c.
In other words, the gap numbers of a regular place P are the first b g

deg(P )c
positive integers.

(2) If P is ramified over k(x), then its gap numbers are 1, 3, 5, . . . , 2b g
deg(P )c − 1.

In other words, the gap numbers of a ramified place P are the first b g
deg(P )c

positive odd integers.
(3) If P is inert over k(x), i.e. if P is not ramified over k(x) and the relative

degree of P over P ∩ k(x) is 2, then P has no gap numbers at all.

Proof. [Sch39, Satz 7]. �

Note that proposition I.43 does not contradict the fact that inert places do not have
Weierstraß points: Inert places have at least degree 2.

Proposition I.47 implies the following, very simple characterization of Weierstraß
points in hyperelliptic function fields over algebraically closed constant fields: Weier-
straß points are exactly the ramified places over the rational function field. Elliptic
function fields do not have Weierstraß points. The part of proposition I.48 concern-
ing hyperelliptic function fields also was proved in [Sch39, Satz 8].
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Proposition I.48. Let F = k(x, y) be a hyperelliptic function field over an alge-
braically closed constant field k and y2 = D(x) a defining equation for F . Then the
set of Weierstraß points of F is exactly the set of places which are ramified over
k(x).

Elliptic function fields over algebraically closed constant fields do not have Weier-
straß points at all.

Proof. Let’s consider the inert, regular and ramified places separately:

(1) By propositions I.39 and I.40, a place P lying over a polynomial p ∈ k[x] is
inert iff p - D and D is no square modulo p. Thus, even for arbitrary constant
fields, there is an infinite number of inert places. Hence, an infinite number of
places does not have gap numbers. Therefore, inert places are no Weierstraß
points.

(2) Since k is algebraically closed, each regular or ramified place has degree 1.
Thus, each regular place has the gap numbers 1, 2, . . . , g. As there is an
infinite number of regular places, they also cannot be Weierstraß points.

(3) Thus, each Weierstraß point needs to be ramified. If P is ramified, then
P ∩ k(x) is a divisor of D or P ∩ k(x) = ∞x (if F is in imaginary quadratic
representation). Thus there are only finitely many ramified places. By propo-
sition I.47, each ramified place has the gap numbers 1, 3, . . . , 2g−1. Therefore,
if g ≥ 2, the ramified places are Weierstraß points. If g = 1, ramified places
have the same gap numbers as regular places, i.e. they are no Weierstraß
points.

�

Combining propositions I.39 and I.48 we obtain a concrete criterion for Weierstraß
points of (hyper-)elliptic function fields:

Corollary I.49. Let F = k(x, y) be a hyperelliptic function field over an alge-
braically closed constant field k and y2 = D(x) a defining equation of F . Let
D = p1 · · · pn be the factorization of D. For each pi, let Pi be the place of F which
lies above pi. Then the set of Weierstraß points of F is given by

(1) {P1, . . . , Pn}, if deg(D) = n = 2g + 2 (real quadratic representation).
(2) {P1, . . . , Pn,∞x}, if deg(D) = n = 2g + 1. (imaginary quadratic representa-

tion).

Proof. From proposition I.48 we know, that the set of Weierstraß points is equal
to the set of ramified places of F over k(x). By proposition I.39, the ramified places
of F are just the places listed in our claim. �

In the cases of practical relevance, the constant field rarely is algebraically closed.
Instead, we mostly have to consider finite constant fields. For these, the character-
ization of Weierstraß points is easy, too.

Proposition I.50. Let F = k(x, y) be a (hyper-)elliptic function field over a fi-
nite constant field k and y2 = D(x) a defining equation for F . Then the set of
Weierstraß points of F is consists of the following places:

(1) The infinite place ∞x.
(2) Regular places of degree ≤ g, i.e. places P ∈ PF with deg(P ) ≤ g, P | p,

p ∈ k(x) and D is a square modulo p, as well as the infinite place ∞x if
degx(D) = 2g + 2.
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(3) Ramified places of degree ≤ g, i.e. places P ∈ PF with deg ≤ g, P |p, p ∈ k(x)
and p divides D as well as the infinite place ∞x if degx(D) = 2g + 1.

Proof. By proposition I.47, inert places, as well as all places of degree > g do not
have gap numbers. By corollary I.46, there is an infinite number of such places, i.e.
they are no Weierstraß points.

As we have seen in the proof of corollary I.46, the number of places of degree < g
is finite. The infinite place either is regular of split. Thus, the number of places
specified in our claim is finite and it remains to consider their gap numbers.

Since g ≥ 1 each regular or ramified place of degree ≤ g has 1 as a gap number.
Thus, all of the specified places are Weierstraß points. �

For finite constant fields, both deciding whether a given place is a Weierstraß point
and constructing all Weierstraß points becomes easy using proposition I.50. A non-
infinite place P ∈ PF lies above some p ∈ k[x]. In order to decide whether P is
ramified, we only have to check if p | D. If P is not ramified, we have to find out

whether D is a square modulo p, i.e. we need to compute the Jacobi symbol
(
D
p

)
.

Its definition and how to compute it efficiently can be found on page 36, at the end
of section II.1.

We finish this section with a simple connection between automorphisms and Weier-
straß points. It is folklore knowledge that automorphisms of hyperelliptic function
fields permute the Weierstraß points. As the author was not able to find a proof of
this fact in the common literature, an elementary one is presented, next.

Proposition I.51. Let F/k be an algebraic function field with k = k̃, σ ∈ Aut(F/k)
and P ∈ PF a Weierstraß point. Then σ(P ) also is a Weierstraß point, i.e. each
automorphism permutes the set of Weierstraß points.

Proof. Let n ∈ N be a pole number of a place P ∈ PF . Then, there exists an x ∈ F
such that (x)∞ = nP , i.e. vP (x) = −n and vQ(x) ≥ 0 for all Q ∈ PF , Q 6= P . By
proposition I.27 we have vσ(P )(σ(x)) = vP (x) = −n and vσ(Q)(σ(x)) = vQ(x) ≥ 0
for all Q 6= P . Thus, (σ(x))∞ = nσ(P ). Hence, n is a pole number of σ(P ).
Analogously, each pole number of σ(P ) also is a pole number of P .

Because P and σ(P ) share the same set of pole numbers, they also have the same
set of gap numbers, i.e. σ(P ) is a Weierstraß point whenever P is one. �

Remark I.52. The facts that automorphisms permute Weierstraß points and that
each algebraic function field of genus > 1 has only finitely many Weierstraß points
can be used to prove that each hyperelliptic function field has only finitely many
automorphisms. As this was shown in [Sch38], we only give the idea of this proof:
Because of g > 1, our function field has (finitely many) Weierstraß points. By
proposition I.51, each automorphism yields a permutation of the Weierstraß points.
If two automorphisms induce the same permutation, they differ by an automor-
phism fixing all Weierstraß points. [Sch38, Sätze 8 und 10] imply that the set
of automorphisms fixing all Weierstraß points is finite. Thus, there can only be
finitely many automorphisms.

8. Cantor’s Representation of Divisor Classes

For hyperelliptic function fields to be usable for cryptographic purposes, it is essen-
tial to be able to compute effectively in Jacobians. In order to do so, it is necessary
to find a unique representation of divisor classes (of degree 0) in a form which can
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easily be stored on a computing device. Furthermore, algorithms to compute the
group law of the Jacobian need to be available.

David G. Cantor to presented such a representation and the corresponding algo-
rithms (cf. [Can87]) for imaginary quadratic (hyper-)elliptic function fields over
finite constant fields (of characteristic 6= 2). Hence, most cryptographers speak
of the “Cantor representation” of divisors. Actually, Cantor’s representation for
a divisor class in Jk(x,y) is essentially a uniquely determined pair of generators of
a so called reduced ideal in the integral closure of k[x]. These reduced ideals are
uniquely determined elements of ideal class groups (i.e. fractional ideals modulo
fractional principal ideals). Most of the theory on ideals in the integral closure of
k[x] and on ideal class groups was developed by Emil Artin ([Art24]). The con-
nection between the geometric aspects like places, divisors or divisor class groups
and the number theoretic point of view (prime ideals, ideals, ideal class groups) is
explained in [Kux03, chapter 1] as well as in [Ste01, section 2].

Let us discuss Cantor’s representation of divisor classes, now.

Proposition I.53. Let F/k be a (hyper-)elliptic function field in imaginary qua-
dratic representation8 and y2 = D(x) its defining equation. Then each divisor class
A ∈ JF can uniquely represented by a pair a, b ∈ k[x] of polynomials with lc(a) = 1,
degx(a) ≤ gF , degx(b) < degx(a) and a | b2 −D.

Proof. [Can87, section 2] �

Definition I.25. Let F/k be a (hyper-)elliptic function field in imaginary quadratic
representation and y2 = D(x) its defining equation. Let A ∈ JF and a, b ∈ k[x],
lcx(a) = 1, degx(a) ≤ gF , degx(b) < degx(a) and a | b2 − D its representation as
stated in proposition I.53. Then we denote A by div(a, b) and call this representa-
tion A’s Cantor representation.

Remark I.54. Actually, the Cantor representation specifies a specific type of di-
visors, the so called reduced divisors. If we drop the condition deg(a) ≤ g, we
obtain semi-reduced divisors. Cantor’s algorithm for adding divisor classes is split
into two steps: First, a semi-reduced divisor equivalent to the sum is computed
(composition step). In the second step, this divisor is reduced to obtain a Cantor
representation of the sum as defined above (reduction step).

Let us start describing the composition step, first:

Algorithm I.1. Let F/k be a hyperelliptic function field in imaginary quadratic
representation and y2 = D(x) its defining equation. Furthermore let A1, A2 ∈ JF
have the Cantor representations A1 = div(a1, b1), A2 = div(a2, b2). We compute
polynomials a, b ∈ k[x] which define a semi-reduced divisor in the class A1 + A2 ∈
JF .

(1) Compute d0 := (a1, a2) and d := (d0, b1 + b2) using the extended Euclidean
algorithm, also obtaining h1, h2, h3 ∈ k[x] such that

d = h1a1 + h2a2 + h3(b1 + b2).

(2) Let a := a1a2
d2 ∈ k[x].

(3) Let b :≡ 1
d (h1a1b2 + h2a2b1 + h3(b1b2 + D)) mod a, such that degx(b) <

degx(a).

8Note that char(k) 6= 2 was one of our preliminaries for (hyper-)elliptic function fields.
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After computing a, b, we need to reduce it in order to obtain the Cantor represen-
tation div(a3, b3) = div(a1, b1) + div(a2, b2) ∈ JF of the sum of the given divisor
classes. This is achieved by the following algorithm. Performance improvements
of this algorithm have been described by Cantor himself ([Can87]) as well as by
Sachar Paulus and Andreas Stein ([PS98]).

Algorithm I.2. We use the notations of algorithm I.1 and compute a3, b3 ∈ k[x]
such that div(a3, b3) = A1 +A2.

(1) Let u := a, v := b.
(2) While deg(u) > g, do

(a) Let u := D−v2
u .

(b) Let u := u
lc(u) .

(c) Let v :≡ −v mod u, with deg(v) < deg(u).
(3) Let a3 := u, b3 := v.

The correctness of the above algorithms is proved in [Can87]. As these algorithms
enable us to compute effectively in the Jacobian of a (hyper-)elliptic curve, it is
possible to use the Jacobian in crypto systems like Diffie-Hellman, ElGamal or
DSA. This application will be discussed in chapter II.





CHAPTER II

Cryptographic Aspects

Neal Koblitz suggested Jacobians of hyperelliptic function fields to be used in public
key crypto systems which are based on the discrete logarithm problem ([Kob89]).
We will give some algorithms of this kind in section 1. Furthermore, we will intro-
duce a method to encode text in divisor classes. In section 2, we will enumerate
several known attacks on the hyperelliptic curve discrete logarithm problem. Of
course, we will also give conditions under which these attacks are infeasible. We
will see that it is essential to know the order of the Jacobian to be able to avoid
most of these attacks. In section 3, we give an overview of the algorithms known
to compute this order. There are two kinds of such algorithms: On the one hand,
ones which are restricted to a small family of hyperelliptic function fields (e.g. fields
with small characteristic or with complex multiplication), but which can be used to
construct fields yielding secure key sizes. On the other hand, there are algorithms
which compute the order of Jacobians of general hyperelliptic function fields. Un-
fortunately, these algorithms are too slow to construct fields with reasonable large
Jacobians. Thus, it is desirable to have methods at hand which help to decide if the
application of expensive divisor class counting algorithms is worthwhile for a given
hyperelliptic function field. Finally, we will see in section 4 that the automorphism
group of a hyperelliptic function field has an influence on the order of its Jacobian.
Hence, a fast algorithm to compute automorphism groups is a promising method
to decide, whether an expensive order counting algorithm should be applied to a
given function field. This is one of the core motivations to compute automorphism
groups (cf. chapter V).

1. Hyperelliptic Crypto Systems

In this section we present the most common cryptographic algorithms which use
the discrete logarithm in Jacobians of hyperelliptic function fields as their trapdoor
function. An introduction to cryptography can be found in [Kob99], [Sch96] or
[MvOV96]. The shortest and most “mathematical” of these books is the one
by Koblitz. Schneier’s book is a computer science book, while the “handbook”
([MvOV96]) is best to be used as a reference book. [Sin02] is an amusing but
nonscientific introduction to cryptography.

We assume all hyperelliptic function fields in this section to be in imag-
inary quadratic representation.

This assumption is needed here, since we only gave a representation of divisor classes
as well as algorithms to perform the arithmetic on the Jacobian of hyperelliptic
function fields in imaginary quadratic representation (cf. section I.8). As described
in [PS98], it also is possible to compute in the Jacobian of hyperelliptic function
fields in real quadratic representation. According to Paulus and Stein, there is no
real difference in the efficiency of the arithmetic in both of these cases. Therefore
and because the representation is easier to describe in the imaginary quadratic case,
the author decided to consider the latter case, only.

33
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First of all, we recall the definition of the discrete logarithm problem. We state it
specifically for Jacobians:

Definition II.1. Let F/k be a hyperelliptic function field, A,B ∈ JF such that
B = nA for some unknown n ∈ N. The hyperelliptic curve discrete logarithm
problem (HECDL) is the problem to compute n from A and B.

For an arbitrary group the similar problem is called discrete logarithm problem
(DL).

Koblitz conjectured the HECDL to be intractable for general hyperelliptic function
fields—and most cryptographers share this opinion. Thus, the Jacobian seems to be
suitable to be used in DL-based crypto systems. To achieve security, the Jacobian
needs to yield key sizes of at least 160 bits, i.e. its group order has to exceed
2160. Currently, the BSI (“Bundesamt für Sicherheit in der Informationstechnik”,
German Federal Office for Information Security) recommends to use 256 bit keys
for elliptic and hyperelliptic crypto systems.

We continue describing the Diffie-Hellman key exchange protocol1, an algorithm
which allows two parties to obtain a common secret key.

Algorithm II.1. Two users A and B want to exchange a common secret key over
public channels. To do so, they perform the following steps.

(1) First, A and B publicly negotiate a secure hyperelliptic function field F/k
over a finite field and a divisor class G ∈ JF such that ord(G) > 2160.

(2) A chooses a (secret) integer a with 1 < a < ord(G), computes aG and sends
it (publicly) to B.

(3) B chooses a (secret) integer b with 1 < b < ord(G), computes bG and sends it
(publicly) to B.

(4) A computes the shared key a(bG) = (ab)G, which B computes by b(aG) =
(ab)G.

Using Cantor’s algorithms (cf. section I.8), it obviously is possible to apply this
algorithm in practice. The only difficulties are to choose a secure hyperelliptic
function field as well as to compute the order of G, which is nearly as hard as
computing the order of JF . We will discuss the choice of the field in section 2 and
the order counting in section 3.

In addition to the Diffie-Hellman key exchange protocol, Jacobians can also be
used for public key encryption and signature schemes. As an example, we present
the ElGamal encryption algorithm2, which essentially consists of an asymmetrically
interpreted Diffie-Hellman key exchange and the addition of the “shared” key to
the message.

Algorithm II.2. User A wants to send a message m to user B. Like in other
public key protocols, B has to generate a pair of keys, first (“key generation”):

(1) B chooses a secure hyperelliptic function field F/k over a finite constant field,
as well as a divisor class G ∈ JF such that ord(G) > 2160.

(2) B chooses an integer b with 1 < b < ord(G) and computes bG.
(3) B publishes F , G and bG, keeping b secret.

In order to send the message m to B, A has to do the following (“encryption”):

(1) A obtains B’s public key (F,G, bG).

1[MvOV96, protocol 12.47 and remark 12.49]
2[MvOV96, algorithms 8.25 and 8.26]
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(2) A chooses a random integer x with 1 < x < ord(G).
(3) A computes xG and x(bG) = bxG.
(4) A encodes the message m in a divisor class M ∈ JF .
(5) A computes M + bxG and sends xG and M + bxG to B.

In order to recover the plain text (“decryption”), B computes b(xG) = bxG and
(M + bxG)− bxG = M . Decoding M yields the message m.

To be able to implement the ElGamal scheme, we need to know how to encode text
in divisor classes. Furthermore, it is necessary to be able to compute the inverse of
a divisor class. The latter problem is easy: If G ∈ JF has the Cantor representation
G = div(a, b), it is well known that −G = div(a,−b). This formula can easily be
verified using the composition step of Cantor’s addition algorithm (algorithm I.1).

Next, we present a possibility to encode text in divisor classes. The idea is to convert
the text via an integer in the polynomial a of a class M = div(a, b). Unfortunately,
b needs to be a square root of D (where y2 = D is a defining equation of F ), which
does not exist for every choice of a. Thus, it is necessary to include random bits
in a.

Algorithm II.3. Encoding text in divisor classes.
Input: Let F/Fq be a hyperelliptic function field with defining equation y2 = D(x)
and m = (mi)i=1,...,n with mi ∈ Z, 0 ≤ mi ≤ 255 a string of bytes. Since typical
key lengths3 of hyperelliptic crypto systems are 160 to 256 bits, we can assume
23·8 ≤ qg ≤ 2256·8.
Output: We encode the beginning of m in a divisor class M = div(a, b) ∈ JF .
Steps:

(1) Let b := blog2(qg)c be the number of bits encodeable in a monic polynomial
a ∈ Fq[x] of degree ≤ g and l := b b8c the number of encodeable bytes. If
l ≥ n, let l := n+ 1.

(2) We set

aint := (l − 1) +
l−1∑
i=1

256imi + 256lr,

where r is a random integer such that 0 ≤ r < 2b−8l.
(3) We encode aint in a monic polynomial a ∈ Fq[x]. To do so, we compute a

q-adic representation of aint and use its digits a0, . . . , ag−1 as coefficients of
a = xg + ag−1x

g−1 + · · ·+ a1x+ a0.
(4) We check if D is a square modulo a. If so, we compute one of the square roots

b and continue with step 5. Otherwise, we return to step 2, decreasing l, if
all possible paddings r failed for the current l.

(5) Finally, we define M := div(a, b) to be the encoding of m1,m2, . . . ,ml−1. The
remainder of m needs to be encoded in additional divisor classes.

Our assumption 23·8 ≤ qg ≤ 2256·8 has two implications: On the one hand, qg ≤
2256·8 implies l ≤ 256, i.e. it is possible to encode l − 1 in a single byte. Thus it
is easily possible to reconstruct l, as well as m1, . . . ,ml−1 from aint. On the other
hand, practical tests suggest that a random padding of one byte suffices to find an
a such that D is a square modulo a. Thus, qg ≥ 23·8 implies that each divisor class
contains at least one byte of our message.

3i.e. group sizes, by the Hasse-Weil theorem (proved in [Art24, §24], assuming Riemann’s hy-
pothesis, a proof of which can be found in [Roq53]), we have |JF | ≈ qg .
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If we want to implement algorithm II.3, we need to be able to check, whether D is a
square modulo a and to construct a square root b, if it is (step (4))—the remaining
obstacles have been discussed, above.

In order to check, if D possibly is a square modulo a, we compute the Jacobi symbol(
D
a

)
, which is the product of all

(
D
P

)
, where P | a is a prime polynomial and

(
D

P

)
:=


−1 , if P - D and D is no square mod P,
0 , if P | D,
1 , if P - D and D is a square mod P.

Thus, if
(
D
a

)
6= 1, we know that D is no square modulo a. If, on the other hand,(

D
a

)
= 1, we cannot infer that D is a square, because

(
D
a

)
may as well be the

product of several −1-s. At least
(
D
a

)
= 1 is a necessary condition that D is a

square modulo a, which can be computed fast. To obtain the Jacobi symbol, we
use the law of reciprocity and Euler’s criterion in the obvious way. Both of these
can be found in [Art24, §15–16].

If
(
D
a

)
= 1, we hope that D is a square modulo a and try to compute its square

root in the following way: We start factoring a = ae11 · · · aenn into irreducible factors
such that the ai are pairwise relatively prime. For each ai we try to compute a
square root b′i of D modulo ai using the algorithm of Tonelli-Shanks, which can for
example be found in [Lin97]. If D is no square modulo ai, Tonelli-Shanks will fail
and report this fact. Then, D can also be no square modulo a. Otherwise, we obtain
a square root b′i modulo ai for each i = 1, . . . , n. In order to obtain square roots
bi modulo aeii , we compute a p-adic approximation of such a root using Newton
iterations. Finally, we construct a square root b modulo a from the bi using the
Chinese remainder theorem.

2. Attacks on HECC

The security of crypto algorithms like the ones presented in section 1 depends
mostly on the condition whether the HECDL is hard. In fact, the only known
attacks against Diffie-Hellman, ElGamal and the like actually try to solve the cor-
responding DL. Thus, in this section, we list attacks against HECDL and provide
countermeasures against them.

The Pohlig-Hellman Attack: The Pohlig-Hellman algorithm ([PH78]) is both the
oldest and the most general of the attacks against DL crypto systems.
It solves a discrete logarithm over a group G in each of its subgroups
separately and constructs the solution for G using the Chinese remainder
theorem. If G consists of many small subgroups, this obviously is easy,
since the subgroup’s DL can be solved by Pollard’s ρ-method ([Pol78],
[Pol00]), Shank’s baby-step giant-step algorithm or even by brute force.
Because the subgroups of any finite group G are in 1-1 relation to the
divisors of ord(G), it is necessary that |JF | contains a large4 prime factor
in order for JF to be secure against Pohlig-Hellman attacks.

The Duursma-Gaudry-Morain Attack: Iwan M. Duursma, Pierrick Gaudry and Fran-
cois Morain proposed a possibility to speed up Pollard’s ρ-method by a
factor of

√
m, if there is an automorphism α of order m on the group

JF , which can be evaluated easily ([DGM99]). Let A = 〈α〉 be the
cyclic group generated by α. Duursma, Gaudry and Morain applied the
ρ-method to the quotient group G/A, i.e. the group of equivalence classes

4i.e. greater than 2160.
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of elements of G, where f ∼ g iff g = αi(f) for some i ∈ Z. Numerical
experiments yielded complexities which are close to those predicted by
theory.
By proposition I.28, each field automorphism of F/k induces a group
automorphism of JF . Thus, it is sensible to avoid hyperelliptic function
fields with large automorphism groups.

The Frey-Rück Attack: In [FR94], Gerhard Frey and Hans-Georg Rück generalized
the MOV attack ([MOV93]) to hyperelliptic function fields using the
so called Tate pairing, which embeds the Jacobian of F/Fq into Fql for
some l ∈ N. Using, for example, the index calculus method, the DL in
this field has subexponential complexity.
In order to render the Frey-Rück attack unfeasible, we have to assure
that Fql is so large that the DL cannot be solved effectively. To do so,
we follow the advice from [SSI98]: Let p0 be the largest prime divisor
of |JF |. We only allow hyperelliptic function fields, where p0 does not
divide ql − 1 for all positive integers l with l < (log2(q))2.

The Adleman-DeMarrais-Huang Attack: Leonard M. Adleman, Jonathan DeMarrais
and Ming-Deh Huang presented an index-calculus like algorithm to solve
the hyperelliptic curve discrete logarithm problem which is efficient for
hyperelliptic function fields of high genus ([ADH94]). Their method was
improved by Pierrick Gaudry ([Gau00]), rendering fields of genus > 4
to be insecure.
This attack can easily be prevented, if we use hyperelliptic function fields
of genus ≤ 4, only.

The Rück Attack: If JF has a cyclic subgroup of order pn, where p = char(k) and
n ∈ N, Hans-Georg Rück presented an algorithm to compute the discrete
logarithm in this subgroup by O(n2 log(p)) operations in k ([Rüc99]).
This attack can be prevented, if we assert p - |JF | or p - ord(G), where
G is the generator used in our crypto system.

Summing up, the Adleman-DeMarrais-Huang attack can easily be avoided, since
the genus of a hyperelliptic function field is obvious from the degree of its defining
polynomial. In order to prevent the Duursma-Gaudry-Morain attack, we need to
assure that the automorphism group is small. Ideally, Aut(F/k) ought to be trivial,
i.e. it should not contain any automorphism beside the hyperelliptic involution
x 7→ x, y 7→ −y. The remaining attacks can most easily be guarded against, if
|JF | is known. We will see in section 4 that the order of JF also depends on the
automorphism group. Thus, it is sensible to compute Aut(F/k) in order to avoid
insecure hyperelliptic function fields.

3. Known Algorithms for Computing the Order of Jacobians

As we have seen in section 2, many attacks on hyperelliptic crypto systems can be
prevented, if the order of the Jacobian is known. In this section we will see some
of the currently available methods to compute this group order and to construct
secure hyperelliptic function fields.

3.1. Zeta Functions. If F/Fp is a hyperelliptic function field with small constant
field of characteristic p, it is quite easy to compute |JF | using F ’s zeta function

ζ(s) :=
∞∑
n=0

Ans
n, where An := |{A ∈ DF |A ≥ 0 and deg(A) = n}|,



38 II. CRYPTOGRAPHIC ASPECTS

which has been developed by Artin ([Art24]). If F has an imaginary quadratic
defining equation y2 = D(x), Artin proved that

ζ(s) =
1

1− p1−s

2g∑
n=0

σn
pns

, where σn :=
∑

P∈Fp[x],deg(P )=n,
lc(P )=1

(
D

P

)
.

In order to compute the σn, the formula σ2g−n = pg−nσn is essential, since it allows
to compute only σ0, . . . , σg by adding the corresponding Jacobi symbols. The order
of JF can be obtained via

|JF | = ζ(0) =
2g∑
n=0

σn.

Furthermore, zeta functions can be used to compute the order of the Jacobian of
constant field extensions of F . To do so, we factor

L(s) := (1− s)(1− ps)ζ(s) =:
g∏
i=1

(1− αis)(1− αis)

over C, where αi denotes the complex conjugate of αi. Then the Weil conjecture
(e.g. [Kob99, chapter 6, theorem 5.1]) implies

|JFFpr | =
g∏
i=1

|1− αri |2

for each r ∈ N+. This method to compute the cardinality of Jacobians was proposed
by Koblitz ([Kob89]) for char(k) = 2. For odd characteristic, it can be found
in [Sti93, chapter V] or in [Kob99, chapter 6]. It was used by Yasuyuki Sakai
and Kouichi Sakurai to construct secure hyperelliptic function fields ([SS98]). For
example, they provided the following secure hyperelliptic function fields:

• F359(x, y), y2 = x5 + x4 + x3 + x+ 1 has a 185-bit prime divisor of |J|.
• F543(x, y), y2 = u5 + u2 + 1 has a 200-bit prime divisor of |J|.
• F737(x, y), y2 = u5 + u3 + u2 + u+ 1 has a 208-bit prime divisor of |J|.

Using his own implementation, the author was also able to find secure hyperelliptic
function fields of small characteristic. One such example5 is given by F361(x, y),
y2 = x5 + x4 + x. Here |J| = 8q, where q is a prime of 191 bit.

Nowadays, zeta functions can also be computed in hyperelliptic function fields over
large constant fields of small characteristic: The defining equations no longer need
to be defined over the prime field. Instead they may be defined over any field
of small characteristic. The most famous of these algorithms was presented by
Kiran Kedlaya ([Ked01]). It uses the so called Monsky-Washnitzer cohomology
to compute the trace of the Frobenius endomorphism, which in turn yields the
divisor class number |J|. Kedlaya’s algorithm works for hyperelliptic function fields
of characteristic 6= 2. It has been extended to characteristic 2 by Jan Denev and
Frederik Vercauteren ([DV02]).

3.2. CM-Method. Annegret Weng proposed a totally different approach to ob-
tain secure hyperelliptic function fields ([Wen03]). Instead of choosing a random
field and computing its Jacobian’s order Weng chooses the desired order of the
Jacobian, first and tries to construct a hyperelliptic function field with complex
multiplication, which has exactly the given divisor class number.

5cf. example VI.1.
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Weng’s algorithm is a generalization of the CM-method used to construct elliptic
curves of given size. It was implemented and can be used online at cv cryptovision’s
“Kurvenfabrik” ([ccG]).

3.3. Weil Descent. Pierrick Gaudry, Florian Hess and Nigel P. Smart presented
the strategy of Weil descent in [GHS00], which yields a homomorphism φ between
an elliptic curve E over Fqn and the Jacobian J of a hyperelliptic curve H over
Fq, where q is a power of 2. Using φ, it becomes possible to translate the discrete
logarithm problem of E to J. Furthermore Weil descent can be used to construct
hyperelliptic curves from elliptic ones in such a way that the order of the Jacobian
has a large prime factor: We choose an elliptic curve whose order has such a large
prime factor. This can be done choosing random elliptic curves and counting their
Fqn -rational points by SEA6 or Satoh’s algorithm7. Then the order of the Jacobian
of H shares this prime factor, if the generator of the corresponding subgroup of E
does not lie in the kernel of φ. Of course, the latter property can be tested easily.

We will give a crude sketch of the Weil descent idea. Let E : y2 + xy = x3 +
αx2 + β, α, β ∈ Fqn be an elliptic curve, where q is a power of 2. We choose a
basis {ψ0, . . . , ψn−1} of Fqn over Fq and use it to express E over Fq. This yields
an n-dimensional variety A over Fq, which is called the Weil restriction of E. The
process constructing A from E is called Weil descent.

We restrict x = x0ψ0 + · · ·+ xn−1ψn−1 to lie in Fq, which yields a subvariety C of
A, which is birationally equivalent to the curve D over Fqn , given by

D :


w2

0 + xw0 + x3 + α0x
2 + β0 =0,

...
w2
n−1 + xwn−1 + x3 + αn−1x

2 + βn−1 =0,

where αi = σi(α), βi = σi(β), σ is the Frobenius endomorphism of Fqn over Fq,
and (x, y) ∈ E, x ∈ Fq implies wi = σi(y) for some i.

Let F be the splitting field of the equations defining D over Fqn(x) and [F :
Fqn(x)] =: 2m. Furthermore let σ : F → F be the automorphism induced by
the Frobenius σ : Fqn → Fqn and F ′ ⊆ F be its fixed field. Then, C has an ir-
reducible reduced component H, which is a hyperelliptic curve of genus 2m−1 or
2m−1 − 1 over Fq and F ′ is its function field.

According to [GHS00], the method of Weil descent can be used to construct hy-
perelliptic curves from most elliptic curves over Fqn , where q is a power of 2 and
n is quite small. For elliptic curves over F2p , where p is prime, it is very unlikely
to find a hyperelliptic curve whose genus is low enough to be secure. For odd
characteristic, Weil descent techniques are not well developed.

Florian Hess, Gadiel Saroussi and Nigel Smart used Weil descent to construct secure
hyperelliptic curves provably at random ([HSS00]). Applying SHA-18 to a random
text, a string of random bits is generated, which is used to construct an elliptic curve
E. Using SEA9, the order of E is computed. Weil descend yields a hyperelliptic
curve H such that possible divisors of |J| are known. If H does not resist the
common attacks, another curve is generated in the same way. Otherwise, H is
used.

6the Schoof-Elkies-Atkin algorithm, which is an improvement of [Sch95]
7[Sat00], which was generalized and implemented in [FGH00].
8[MvOV96, algorithm 9.53]
9Today, Satoh’s algorithm ought to be preferred
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Steven Galbraith generalized the technique of Weil descent from elliptic to hyper-
elliptic curves ([Gal01]). If a hyperelliptic curve C of genus g over Fqn , q even,
satisfies several conditions, it is possible to construct a curve H of genus at most
g2m−1 to which discrete logarithm problems on C can be transmitted. The constant
m is defined like above.

Galbraith even successfully applied Weil descent to some curves of odd character-
istic, although theory does not guarantee this to work.

3.4. AGM Method (Gaudry-Harley). Pierrick Gaudry and Robert Harley de-
scribe several algorithms which yield information about the order of the Jacobian
J of an imaginary quadratic hyperelliptic curve C of genus 2 over a finite field Fq of
characteristic p 6= 2 ([GH00]). This information can be combined to compute the
actual order. The most important of these algorithms is a generalization of SEA,
the Schoof-Atkin-Elkies algorithm.

(1) The birthday paradox algorithm, which is a distributed version of Pollard’s
lambda method ([Pol78]), searches for |J| in the Hasse-Weil interval ([Art24,
§24], [Roq53])

d(√q − 1)2ge ≤ |J| ≤ b(√q + 1)2gc,

whose width is w := 2b4√q(q + 1)c and whose center is c := q2 + 6q + 1.
Given a divisor D, its order is computed in the following way using M ma-
chines: Choose some uncommon10 property P of divisors, a hash function h
that maps divisors to a small set of integers {1, . . . , l} and l random positive
integers li, 1 ≤ i ≤ l, which are near M

√
w. Precompute Di := liD and

E := cD.
Now, each computer picks some integer r < w and a bit b at random and
computes

R :=

{
rD if b = 0,
rD + E if b = 1.

While R does not satisfy P , we update r := r + lh(R) and R := R + Dh(R).
The triple (R, b, r), where R has the property P , is stored on a central server.
If there are triples (R, 0, r) and (R, 1, r′) with r 6= r′ + c, we may stop, since
r′ + c− r is a multiple of ord(D), which is factored to find ord(D).
To compute |J|, we compute the order of several random divisors, whose least
common multiple n is usually greater than w. Then |J| is the unique multiple
of n in the Hasse-Weil interval. However, in rare cases n ≥ w cannot be
obtained. Gaudry and Harley “do not yet have a completely satisfactory
solution for such a rare case”.

(2) The Hasse-Witt matrix A of C can be used for calculating |J| modulo p :=
char(Fq): Let C : y2 = f(x) be a hyperelliptic curve and (f(x))(p−1)/2 =∑
cix

i. Then A = (ci,p−j)1≤i,j≤g. Let κ(t) be the characteristic polynomial
of the matrix AApAp

2 · · ·Aq/p and χ(t) the characteristic polynomial of the
Frobenius endomorphism φ of J. Then χ(t) ≡ (−1)gtgκ(t) mod p, which
yields |J| ≡ (−1)gκ(1) mod p.

(3) The afore mentioned Schoof-like algorithm is used to find divisors D with
lD = 0, where l 6= p is some small prime. Using several such divisors, χ(t)
may be computed modulo l, since χ(φ) = 0, i.e.

(χ mod l)(φ(D)) = 0.

10i.e. P occurs with a probability substantially less than
√

w/M .
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This algorithm, which is too complex to be presented here, depends on the
assumption g = 2.

(4) A lifting of 2-power torsion divisors can be used to determine |J| modulo small
powers of 2. Factoring f yields a 2-torsion11 divisor D = div(u, 0) of J, where
u | f and deg(u) ≤ g. Repeated halving of D, which is done using Gröbner
bases, yields a 2k-torsion divisor, which gives information on |J| mod 2k again.
To be able to halve a divisor, it is often necessary to extend the constant field.

Combining these algorithms, Gaudry and Harley were able to deduce |J| for random
curves, where |J| has about 30 decimal digits, in a few days. Improving these
algorithms, Gaudry computed |J| of a hyperelliptic function field over F5·1024+41

whose Jacobian’s order had even 50 decimal digits ([Gau02]).

4. A Theorem by Madan and its Practical Consequences

By investigating the involutions in Aut(F/k), Tony Shaska characterized the genus 2
function fields over an algebraically closed field k of char(k) 6= 2, which contain
degree 2 elliptic subfields ([Sha00]): Aut(F/k) is isomorphic to one of the following
groups: C2, C10, Klein’s four-groupD2, the dihedral groupsD4 orD6, C3oD4, C2×S5

or W1, where W1 is a central extension12 of the permutation group S4. Therefore,
Aut(F/k) has (exactly) two conjugation classes of elliptic involutions13 in the cases
D2, D4, D6 and C3 o D4. If Aut(F/k) is isomorphic to C2 × S5 or W1, there is
exactly one class; in the remaining cases, there are no elliptic involutions at all.
Since each elliptic involution fixes a degree 2 elliptic subfield of F and vice versa,
this characterizes the degree 2 elliptic subfields completely.

In the case char(k) = 0, Shaska has shown that each genus 2 function field, which
contains a degree 2 elliptic subfield, is of the form F = k(x, y), where y2 = Dx :=
x6− s1x4 + s2x

2− 1, s1, s2 ∈ k and 27− 18s1s2− s21s22 +4s31 +4s32 6= 0. The elliptic
subfield is given by u2 = Dt := x3+s1x2+s2x−1. It is obvious that these formulas
define genus 2 hyperelliptic function fields with degree 2 elliptic subfields in each
characteristic 6= 2. The above facts can also be deduced from Brandt’s theorem
(theorem V.6). The inequality 27− 18s1s2 − s21s

2
2 + 4s31 + 4s32 6= 0 assures that Dx

and Dt both are separable14.

Example II.1. We choose k := F101, s1 := 17 and s2 := 6. Then 27 − 18s1s2 −
s21s

2
2 + 4s31 + 4s32 ≡ 21 6≡ 0 mod 101 and we obtain the hyperelliptic function field

F := F101(x, y), y2 = x6 − 17x4 + 6x2 − 1. Using KASH ([DFK+97]), we obtain
|JF | = 7728.

The elliptic subfield E := F101(x2, y) has |JE | = 92, which is a divisor of 7728.

Examining several such examples, one conjectures that |JE | divides |JF | whenever
E ⊆ F is a degree 2 elliptic subfield of a genus 2 hyperelliptic function field.

Madan’s theorem (theorem II.1 below) implies that this actually is the case. Fur-
thermore, the property |JF | | |JF ′ | even holds in the more general case, where F ′/F
is a finite Galois extension of function fields over a finite constant field.

As seen in section 2, the order of a secure Jacobian needs to contain a large prime
factor. If F ⊆ F ′ is a hyperelliptic subfield with reasonably large Jacobian, |JF ′ | is
divided by |JF |. Thus, if JF is secure, considering JF ′ may not yield bigger security.

11i.e. a divisor D with 2D = 0
12Please refer to Shaska’s paper for a definition of W1.
13i.e. involutions which are different from the hyperelliptic one.
1427− 18s1s2 − s2

1s2
2 + 4s3

1 + 4s3
2 is the discriminant of Dx
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On the other hand, if JF is large but insecure, |JF ′ | shares the small prime divisors
of |JF |, which implies that JF ′ is either insecure or much larger than necessary for
its level of security.

Example II.2. Let k := F53, F := k(x, y), y2 = x5 + 2x4 + 37x3 + 18x2 + 6x+ 52
and F ′ := k(t, u), u2 = t10 +30t9 +36t8 +2t7 +8t6 + t5 +2t4 +14t3 +31t2 +11t+8
Setting x := (t+3)2 and y := u we see F ⊆ F ′. Using KASH, we obtain |JF | = 2940
and |JF ′ | = 8596560 = 2940 · 2924.

Let us state Madan’s theorem, now.

Theorem II.1. (Madan) Let F/k be a function field over a finite constant field k
and let F ′/k′ be a finite Galois extension of F/k, i.e. F ′/k′ is a function field and
F ′/F is a finite Galois extension. Furthermore, we assume k = k̃ and k′ = k̃′.
Then |JF | divides |JF ′ |.

A purely algebraic proof using cohomological methods can be found in [Mad70],
while a purely analytical one is given in [Ros02, chapter 14]. We will present a
proof similar to Madan’s first one ([Mad68], [Mad69]) in the remainder of this
section.

We start proving another fact due to Madan which implies Madan’s theorem in
some cases (theorem II.4): Let e1, . . . em be the ramification indices of the places
ramified in a finite Galois extension F ′/F of degree n, where both F ′ and F are
function fields over the same constant field. Then e1 · · · em · |JF | is a divisor of
n2 · |JF ′ |. The connection to Madan’s theorem is that theorem II.4 implies d | |JF ′ |
for each divisor d of |JF | which is relatively prime to n.

In order to do prove theorem II.4, we need the following lemmas.

Lemma II.2. Let F/k be a function field over a finite constant field, F ′/k a finite
Galois extension of F/k such that k = k̃, G := Aut(F ′/F ) the corresponding Galois
group and DGF ′ ≤ DF ′ and D0G

F ′ ≤ D0
F ′ the subgroups of divisors fixed by G.

Then D0G
F ′ + ConF ′/F (DF )≤DGF ′ and [DGF ′ : D0G

F ′ + ConF ′/F (DF )] divides [F ′ : F ].

Proof. D0G
F ′ + ConF ′/F (DF )≤DGF ′ is obvious, since both D0G

F ′ and ConF ′/F (DF )
are subgroups of DGF ′ . Reducing the degree of a divisor modulo n := [F ′ : F ]
obviously is a group homomorphism

ϕ : DGF ′ → Z/nZ, A 7→ deg(A) mod n.

By proposition I.20, n | deg(ConF ′/F (A)) for each A ∈ DF , i.e. D0G
F ′ +ConF ′/F (DF )

is a subgroup of Ker(ϕ).

Conversely, let A ∈ Ker(ϕ), i.e. A ∈ DGF ′ with n | deg(A). By [Sch31, page 27], the
greatest common divisor of the degrees of all places of F is 1. Thus, there exists a
divisor B ∈ DF such that deg(B) = 1. Then deg(A− deg(A)

n ·ConF ′/F (B)) = 0, i.e.
A ∈ D0G

F ′ + ConF ′/F (DF ).

Thus, Ker(ϕ) = D0G
F ′ + ConF ′/F (DF ), i.e. [DGF ′ : D0G

F ′ + ConF ′/F (DF )] | n. �

Lemma II.3. Let F/k be a function field over a finite constant field k. Let F ′/k

be a finite Galois extension of F/k with k = k̃, G := Aut(F ′/F ) the corresponding
Galois group and PGF ′ ≤ PF ′ the subgroup of divisors fixed by G.

Then ConF ′/F ′(PF ) ≤ PGF ′ and [PGF ′ : ConF ′/F ′(PF )] divides n := [F ′ : F ]. If
|k∗| > n, we even have [PGF ′ : ConF ′/F ′(PF )] = 1.
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Proof. That ConF ′/F ′(PF ) is a subgroup of PGF ′ is obvious. Let m = |k∗|, A :=
{x ∈ (F ′)∗ | xm ∈ F ∗} and

ϕ : A→ PGF ′ , x 7→ (x)F
′
.

First, we show that (x)F
′
is indeed fixed by G. Let x ∈ A and σ ∈ G. Then xm ∈ F ,

i.e. σ(xm) = xm. We obtain
(
σ(x)
x

)m
= σ(xm)

xm = 1. Hence, σ(x)
x is algebraic over

k, i.e. σ(x)
x ∈ k̃ = k. Thus (σ(x)) − (x) = (σ(x)

x ) = 0, which yields (x) ∈ PGF ′ .
Therefore, ϕ can be defined in the above way.

Next, we will see that ϕ is surjective. Let x ∈ F ′ such that (x) ∈ PGF ′ . Then
(σ(x)) = (x) for each σ ∈ G. Thus (σ(x)

x ) = 0 for each σ, from which we infer
σ(x)
x ∈ k by proposition I.7. Because of m = |k∗|, we obtain

(
σ(x)
x

)m
= 1, i.e.

σ(xm) = xm for each σ ∈ G. Thus, xm ∈ (F ′)G = F , i.e. x ∈ A. Therefore, ϕ is
surjective.

Let ϕ(x) = 0, i.e. (x)F
′

= 0. Then we have x ∈ k∗ ⊆ F ∗. Thus, the kernel of ϕ
is contained in F ∗. Next, we will see that F ∗ is the pre-image of ConF ′/F (PF ).
The inclusion ϕ(F ∗) ⊆ ConF ′/F (PF ) follows from proposition I.20. Let x ∈ A

and y ∈ F , such that (x)F
′

= ConF ′/F ((y)F ) = (y)F
′ ∈ ConF ′/F (PF ). Then

(xy )F
′

= (x)F
′ − (y)F

′
= 0. Thus x

y ∈ k ⊆ F as above, i.e. x ∈ F ∗. Hence
ϕ−1(ConF ′/F (PF )) = F ∗.

Summing up, we proved that ϕ induces a group isomorphism

A/F ∗ ∼= PGF ′/ConF ′/F (PF ).

Let F0 := F (A). By Kummer theory ([Art73, Satz 32]), the character group C of
Aut(F0/F ) is isomorphic to A/F ∗. Since C ∼= Aut(F0/F ) (cf. [Art73, pages 60f]),
we obtain

[PGF ′ : ConF ′/F (PF )] = [A : F ∗] = |Aut(F0/F )| = [F0 : F ] | [F ′ : F ] = n.

If |k∗| > n, i.e. m > n we have [F0 : F ] = 1. Otherwise we had m | [F0 : F ] | n,
which is impossible. �

Using these lemmas, we can prove theorem II.4:

Theorem II.4. Let F/k be a function field over a finite constant field k. Let
F ′/k be a finite Galois extension of F/k of degree [F ′ : F ] = n with k = k̃ and
P ′

1, . . . , P
′
m ∈ PF ′ the ramified places of F ′/F . We denote their ramification indices

by ei := e(P ′
i/P

′
i ∩ F ).

Then e1 · · · em · |JF | divides n2 · |JF ′ |. If |k∗| > n, we even have that e1 · · · em · |JF |
divides n · |JF ′ |.

Proof. Let G := Aut(F ′/F ) and DGF ′ ≤ DF ′ , PGF ′ ≤ PF ′ and D0G
F ′ ≤ D0

F ′ be the
subgroups of divisors fixed by G.

We deduce from proposition I.27 that DGF ′ is generated by all divisors of the form∑
P ′∈PF ′ , P ′|P

P ′,

where P ∈ PF . A divisor a
∑
P ′|P P

′ ∈ DGF ′ is an element of ConF ′/F (DF ) iff
e(P ′/P ) | a, where P ′ ∈ PF ′ is any divisor lying over P . Thus, DGF ′/ConF ′/F (DF )
is the direct product of cyclic groups of order e1, . . . , em, i.e.

[DGF ′ : ConF ′/F (DF )] = e1 · · · em.
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Furthermore, we have

|JF ′ | = [D0
F ′ : PF ′ ] = [D0

F ′ : D0G
F ′ + PF ′ ] · [D0G

F ′ + PF ′ : PF ′ ].

By the first isomorphism theorem (cf. [vdW93a, §50]) we know that we can reduce
fractions of groups in the following way

(D0G
F ′ + PF ′)/(PF ′) ∼= (D0G

F ′ )/(D0G
F ′ ∩ PF ′) ∼= (D0G

F ′ )/(PGF ′).

This implies

[PGF ′ : ConF ′/F (PF )] · |JF ′ |
=[PGF ′ : ConF ′/F (PF )] · [D0

F ′ : D0G
F ′ + PF ′ ] · [D0G

F ′ + PF ′ : PF ′ ]

=[PGF ′ : ConF ′/F (PF )] · [D0
F ′ : D0G

F ′ + PF ′ ] · [D0G
F ′ : PGF ′ ]

=[D0
F ′ : D0G

F ′ + PF ′ ] · [D0G
F ′ : PGF ′ ] · [PGF ′ : ConF ′/F (PF )]

=[D0
F ′ : D0G

F ′ + PF ′ ] · [D0G
F ′ : ConF ′/F (D0

F )]

· [ConF ′/F (D0
F ) : ConF ′/F (PF )]

=[D0
F ′ : D0G

F ′ + PF ′ ] · [D0G
F ′ : ConF ′/F (D0

F )] · |JF |, (1)

since ConF ′/F is injective (cf. proposition I.20). Reducing fractions of subgroups
we compute

(D0G
F ′ + ConF ′/F (DF ))/ConF ′/F (DF ) ∼= D0G

F ′ /ConF ′/F (D0
F ).

Multiplying (1) with [DGF ′ : D0G
F ′ + ConF ′/F (DF )], we obtain

[DGF ′ : D0G
F ′ + ConF ′/F (DF )] · ([PGF ′ : ConF ′/F (PF )] · |JF ′ |)

=[DGF ′ : D0G
F ′ + ConF ′/F (DF )] · ([D0

F ′ : D0G
F ′ + PF ′ ] · [D0G

F ′ : ConF ′/F (D0
F )] · |JF |)

=[DGF ′ : D0G
F ′ + ConF ′/F (DF )] · [D0

F ′ : D0G
F ′ + PF ′ ]

· [D0G
F ′ + ConF ′/F (DF ) : ConF ′/F (DF )] · |JF |

=[D0
F ′ : D0G

F ′ + PF ′ ] · [DGF ′ : ConF ′/F (DF )] · |JF |
=[D0

F ′ : D0G
F ′ + PF ′ ] · e1 · · · em · |JF |

Hence, e1 · · · em · |JF | divides

[DGF ′ : D0G
F ′ + ConF ′/F (DF )] · [PGF ′ : ConF ′/F (PF )] · |JF ′ |.

By lemma II.2 and lemma II.3 the latter divides n2 · |JF ′ | or even just n|JF ′ | if
|k∗| > n, which proves our claim. �

In order to show the usefulness and limits of this theorem, we take a look at some
examples.

Example II.3. Let us consider example II.1, again. We have k = F101, F = k(x, y),
E = k(x2, y). We already know |JF | = 7728, |JE | = 92. Using [Sti93, proposition
III.7.3], we see that F is unramified over E. Thus e1 · · · em = 1. Because of
|k∗| = 100 > 2 = [F : E], theorem II.4 implies that

|JE | divides 2 · |JF |, i.e. 92 divides2 · 7728 = 2 · 84 · 92,

which is a weaker statement than |JE | | |JF |, which we obtain from theorem II.1.

On the other hand, there also are examples for which theorem II.4 is stronger than
theorem II.1:
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Example II.4. Let k := F61, F := k(x, y), y2 = x3 + 30x+ 31. Setting t3 := x+ 3,
we obtain the hyperelliptic function field F ′ := k(t, y), y2 = t9 + 52t6 + 57t3 + 36.
Using [Sti93, proposition III.7.3], we see that F ′ has two places which are ramified
over F : The pole and zero divisors of x+ 3. Thus, e1 · · · em = 3 · 3 = 9. Because of
|F61

∗| = 60 > 3 = [F ′ : F ], we obtain

9 · JF | 3 · JF ′ , i.e. 3 · JF | JF ′

from theorem II.4, while theorem II.1 only yields JF | JF ′ . Using KASH, we compute
the following class numbers: |JF | = 52, |JF ′ | = 13855296 = 3 · 52 · 88816.

Let us proceed with our proof of Madan’s theorem (theorem II.1). In many cases,
it can be proved using zeta functions as presented by Helmut Hasse. We only have
to show why some formulas from [Has34b] imply our claim.

Proposition II.5. Let F/k be a function field over a finite constant field k of
characteristic p and F ′/k a cyclic extension of prime degree [F ′ : F ] =: n with
k = k̃ such that

(1) either n 6= p and k contains n-th roots of unity
(2) or n = p.

Then |JF | divides |JF ′ |.

Proof. Let k = Fq. The following three equations on zeta functions are due to
Helmut Hasse ([Has34b, equations (30) and (31), page 51]):

ζF ′(s) =ζF (s)
n−1∏
ν=1

L(s, χν),

LF (s) =
ζF (s)
ζ0(s)

,

LF ′(s) =
ζF ′(s)
ζ0(s)

.

Here ζF (s), ζF ′(s) are the zeta-functions of F and F ′ resp., L(s, χν) is the L-series
of the extension F ′/F and of the proper character χν of this extension (see also
[Art24]). LF (s) and LF ′(s) are polynomials in q−s (see also section 3.1), i.e.
LF (s), LF ′(s) ∈ Z[q−s]. We have LF (0) = |JF | and LF ′(0) = |JF ′ |. Furthermore,∏n−1
ν=1 L(s, χν) ∈ Z[q−s] also is a polynomial in q−s. Hence,

∏n−1
ν=1 L(0, χν) ∈ Z.

We infer

LF ′(s) =
ζF ′(s)
ζ0(s)

=
ζF (s)
ζ0(s)

·
n−1∏
ν=1

L(s, χν) = LF (s) ·
n−1∏
ν=1

L(s, χν),

which immediately yields

|JF ′ | = LF ′(0) = LF (0) ·
n−1∏
ν=1

L(0, χν) = |JF | ·
n−1∏
ν=1

L(0, χν),

where
∏n−1
ν=1 L(0, χν) ∈ Z. Thus, |JF | | |JF ′ |. �

For the remaining case, where n 6= p and k does not contain n-th roots of unity, it
suffices to prove that the conorm on divisor classes of order nm is injective for any
m ∈ N+.
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Proposition II.6. Let F/k be a function field over a finite constant field and F ′/k

a finite Galois extension with k = k̃. Let d ∈ N be a prime such that k does not
contain d-th roots of unity. Then for each divisor A ∈ D0

F \PF such that dmA ∈ PF
for some m ∈ N+, we have ConF ′/F (A) /∈ PF ′ .

Proof. Without loss of generality, let m be minimal such that dmA ∈ PF . Then
dm−1A /∈ PF . If we show that ConF ′/F (B) /∈ PF ′ for all B ∈ D0

F \ PF such that
dB ∈ PF , we can infer ConF ′/F (dm−1A) /∈ PF ′ . Thus, ConF ′/F (A) /∈ PF ′ because
PF ′ is a subgroup of DF ′ . Hence we may assume m = 1.

Suppose B ∈ D0
F \PF , dB ∈ PF and ConF ′/F (B) = (x)F

′
for some x ∈ F ′ \F . We

denote dB =: (y)F with y ∈ F and obtain

(y)F
′
= ConF ′/F ((y)F ) = ConF ′/F (dB) = dConF ′/F (B) = d(x)F

′
.

Therefore, there exists some a ∈ k such that y = axd. Since F ′/F is Galois, there
are x1, . . . , xd ∈ F ′ such that x = x1 and y = axdi . Thus, there exists a primitive
d-th root ζ ∈ F ′ of unity such that xi = ζix, if the xi are ordered appropriately.
Obviously, ζ ∈ k̃ = k, which contradicts our assumption ζ /∈ k. �

Using the above propositions, we are able to prove Madan’s theorem:

Proof of theorem II.1. We have to prove that |JF | divides |JF ′ | whenever F ′/k′

is a finite Galois extension of a function field F/k with finite constant field and
k = k̃, k′ = k̃′.
By proposition I.16, we can split up our extension into F ′ ⊇ Fk′ ⊇ F , where Fk′/F
is a constant field extension. By proposition I.24, the conorm map ConFk′/F on
divisor classes is injective. Since it maps divisor classes of degree 0 to divisor classes
of degree 0, we obtain |JF | | |JFk′ |. It remains to show that |JFk′ | divides |JF ′ |. To
simplify the notation, we assume k = k′, i.e. we consider a finite Galois extension
F ′/k over F/k, where k = k̃.
Let p := char(k) and n := [F ′ : F ]. Since F ′/F is Galois, we can split up this
extension into cyclic extensions of prime degree. Thus, if we can prove |JF | | |JF ′ |
for cyclic extensions of prime degree, our theorem is shown. Thus, we will assume
F ′/F to be cyclic and n to be prime.
We consider several cases, separately:

(1) If p = n or k contains n-th roots of unity, we deduce |JF | | |JF ′ | from propo-
sition II.5.

(2) Let us consider the case where p 6= n and k does not contain n-th roots of
unity.
Let d ∈ N be a prime and l ∈ N+ such that dl ‖ |JF |. We will show that
dl | |JF ′ |.
(a) If d 6= n, we apply theorem II.4 and obtain

dl | |JF | | e1 · · · em · |JF | | n2|JF ′ |,
where the ei are the ramification indices of all ramified places. Hence
dl | |JF ′ |, since (d, n) = 1.

(b) Now, only the case d = n 6= p, where k does not contain n-th roots of
unity, remains to be investigated. Let U ≤ JF such that |U | = dl. We
will show that ConF ′/F : U → JF ′ is injective.
Let 0 6= A ∈ U be any nonzero element. Then, dlA = 0 is obvious.
Since d = n, our constant field k does not contain d-th roots of unity.
Thus, proposition II.6 implies ConF ′/F (A) 6= 0, i.e. ConF ′/F : U → JF ′

is injective. This implies dl | |JF ′ |.
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Thus, we have |JF | | |JF ′ | if p 6= n and k does not contain n-th roots of unity.

�





CHAPTER III

Defining Equations

In this chapter, we are interested in conditions which determine whether two given
hyperelliptic function fields—which are defined over the same constant field—are
isomorphic. We will prove in section 4 that all we need to decide isomorphy are the
defining equations of the corresponding fields: Two function fields are isomorphic
iff they have the same defining equation.

Since defining equations of function fields are not uniquely determined, we need
criteria to decide whether a given function field has a given defining equation.
In section 1, we will present a very simple necessary condition: If a hyperelliptic
function field has two defining equations y2 = Dx, u2 = Dt, the degrees of the
irreducible factors of Dx and Dt are essentially equal. Sections 2 and 3 culminate
in a condition which is both necessary and sufficient: Theorem III.16.

In section 2 we prove a proposition by Lockhart (proposition III.4, theorem III.6),
which provides somewhat unique normal forms for the defining equations of hyper-
elliptic function fields. Although this uniqueness needs additional conditions which
are not met if we wish to compute isomorphisms (cf. remark III.7), the theorem
points in the correct direction. In fact, it was the starting point for the develop-
ment of theorem III.16, a generalization of theorem III.6, which enables us to check,
whether a given field has a given defining equation (cf. section 3).

1. A Simple Criterion

In this section, we will see that the irreducible factors of Dt and Dx are essentially
the same whenever k(t, u) = k(x, y), u2 = Dt, y2 = Dx. Hence, we obtain a neces-
sary condition for a hyperelliptic function field to have a given defining equation,
which can be checked very efficiently.

In order to prove this criterion, we need the following proposition stating that each
hyperelliptic function field contains exactly one rational function field of degree 2.

Proposition III.1. Let k(t, u) = k(x, y) be a hyperelliptic function field, u2 = Dt,
y2 = Dx, where Dt ∈ k[t] and Dx ∈ k[x] are separable monic polynomials. Then
k(t) = k(x).

Proof. [Sti93, proposition VI.2.4]. �

Remark III.2. This fact does not hold for elliptic function fields:1 Let F be an
elliptic function field which has at least two distinct places P,Q of degree 1. By
proposition I.47, 2 is no gap number of P , i.e. 2 is a pole number. Thus, there exists
an x ∈ F such that (x)∞ = 2P . From proposition I.4 we know 2 = deg((x)∞) = [F :
k(x)]. Let us show that k(x) indeed is rational: Because we assumed char(k) 6= 2,
the different Diff(F/k(x)) is defined to be the sum of all ramified places of F/k(x).

1The author thanks Henning Stichtenoth for pointing out this fact.
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We deduce deg(Diff(F/k(x))) = 4 from proposition I.39. In our case, the Hurwitz
genus formula (theorem I.22) becomes

0 = 2gF − 2 = [F : k(x)] · (2gk(x) − 2) + deg(Diff(F/k(x))) = 2 · (2gk(x) − 2) + 4.

Hence we have gk(x) = 0, i.e. k(x) is rational. Analogously, Q yields a different
rational subfield of degree 2.

If k is algebraically closed, there even is an infinite number of regular places of
degree 1, i.e. we have an infinite number of rational subfields of degree 2.

Since a hyperelliptic function field has a uniquely determined rational subfield of
degree 2, it is easy to see that a place is ramified over k(t) iff it is ramified over k(x).
From this, we conclude that given two defining equations u2 = Dt(t), y2 = Dx(x)
of a function field F = k(t, u) = k(x, y) the degrees of the prime divisors of Dt and
Dx are essentially equal:

Theorem III.3. Let F = k(t, u) = k(x, y) be a hyperelliptic function field with
u2 = Dt(t) and y2 = Dx(x), where Dt ∈ k[t] and Dx ∈ k[x] both are separable
polynomials. Furthermore, let Dt = p1 · · · pm and Dx = q1 · · · qn be prime factor
decompositions over k.

(1) If degt(Dt) = degx(Dx), then m = n and for a suitable numbering we have
degt(pi) = degx(qi) for all i = 1, . . . ,m.

(2) If degt(Dt) = degx(Dx) + 1, then m = n+ 1 and for a suitable numbering we
have degt(pi) = degx(qi) for all i = 1, . . . ,m. and degx(qn) = 1.
In the case degx(Dx) = degt(Dt) + 1 the analogous statement is true.

(3) There are no further cases.

Proof. By proposition I.33, we have degt(Dt),degx(Dx) ∈ {2g+1, 2g+2}. There-
fore, we only have the cases stated above.

We denote the place of F lying above pi by Pi; the place above qj is called Qj (for
all i, j). By proposition I.39, the Pi and Qj are ramified over pi and qj respectively.
Thus Pi indeed is uniquely determined by pi as well as Qj is the unique place lying
over qj .

(1) Let us consider the case degt(Dt) = degx(Dx) ≡ 0 mod 2 first. By proposi-
tion I.39, P1, . . . , Pm are exactly the places of F which are ramified over k(t),
while Q1, . . . , Qn are the ramified places over k(x). By proposition III.1, we
have k(t) = k(x). Hence, we get {P1, . . . , Pm} = {Q1, . . . , Qn}, from which
we conjecture m = n. Furthermore, we have Pi = Qi for all i = 1, . . . ,m if
the numbering is chosen appropriately. Thus, the places pi and qi are equal.
Hence, we have degt(pi) = deg(pi) = deg(qi) = degx(qi) for all i.

(2) We consider the case degt(Dt) = degx(Dx) ≡ 1 mod 2, next. Analogously to
the above, we deduce {P1, . . . , Pm,∞t} = {Q1, . . . , Qn,∞x}, where ∞t is the
place above (t)k(t)∞ and ∞x is above (x)k(x)∞ . Again, we infer m = n and for
suitable numbering Pi = Qi for i = 1, . . . ,m − 1. If Pm = Qm, the claim is
proved like in the above case. Otherwise, we have Pm = ∞x, Qm = ∞t, i.e.
degt(pm) = deg(Pm) = deg(∞x) = 1 and degx(qm) = deg(Qm) = deg(∞t) =
1. Therefore, we have degt(pm) = degx(qm) = 1, which proves our claim.

(3) If degt(Dt) = degx(Dx) + 1 we infer degt(Dt) ≡ 0 mod 2. Like above, we get

{P1, . . . , Pm} = {Q1, . . . , Qn,∞x},
i.e. m = n + 1 and for a suitable numbering Pi = Qi for i = 1, . . . ,m as well
as Qn = ∞t. This proves our claim.

�
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Let us give an example which shows the usefulness of theorem III.3.

Example III.1. Let F = F41(t, u), u2 = Dt := t6 + 35t5 + 34t4 + 9t3 + 6t+ 8 and
Dx := 6x + 25x2 + 5x4 + 26x5 + x6 + 13. If we had F = F41(x, y), y2 = Dx, the
irreducible factors of Dt and Dx needed to have the same degrees. Factoring over
F41, we obtain

Dt =(t+ 7)(t5 + 28t4 + 2t3 + 36t2 + 35t+ 7)

Dx =(x+ 18)(x+ 38)(x2 + 28x+ 35)(x2 + 24x+ 7)

Thus, F 6= F41(x, y).

2. A Theorem by Lockhart

Paul Lockhart proved the existence and a certain kind of uniqueness of normal
forms for defining equations of hyperelliptic function fields (cf. [Loc94, proposition
1.2]). Let us state the existence part, first:

Proposition III.4 (Lockhart). Let F be a hyperelliptic function field of genus g
over k, char(k) 6= 2, and P a Weierstraß point of degree 1 of F . Then there exist
x, y ∈ F such that F = k(x, y) with x ∈ L(2P ), y ∈ L((2g + 1)P ), y2 = D(x), D
monic and deg(D) = 2g + 1.

Proof. Cf. [Loc94, proposition 1.2, remark]. �

As the uniqueness part of the before mentioned proposition (theorem III.6) is a
special case of theorem III.16, which motivated the development of the latter, we
will prove it. In order to do so, we need the following lemma:

Lemma III.5. Let k(t, u) be a (hyper-)elliptic function field, u2 = D(t), where D is
a separable monic polynomial over k. Let t have a double pole at P (i.e. (t)∞ = 2P ).
Then dim(2P ) = 2 and {1, t} is a basis of L(2P ) over k.

Proof. Since 1, t ∈ L(2P ) and as 1, t are linearly independent over k, we have
dim(2P ) ≥ 2. Furthermore, L(2P ) ⊆ L(2gP ), and the Riemann-Roch theorem
yields dim(2gP ) = deg(2gP ) + 1 − g = g + 1 (cf. proposition I.13). In the elliptic
case, this proves our claim.

Let us suppose dim(2P ) > 2 and g > 1. It is easy to see that 1, t, t2, . . . , tg ∈ L(2gP )
form a basis. Thus we need to have ti ∈ L(2P ) for some i ∈ {2, . . . , g} 6= ∅.
Evaluating ti at P leads to vP (ti) = ivP (t) = 2i > 2, i.e. ti /∈ L(2P ). Contradiction.

As 1, t ∈ L(2P ) are linearly independent and dim(2P ) = 2, these elements form a
basis of L(2P ). �

Now we prove the uniqueness part of Lockhart’s proposition. It essentially states
that the defining equation of a hyperelliptic function field is unique up to basis
transformations x = α2t + β, y = α2g+1u, provided x and t share the same pole
divisor.

Theorem III.6 (Lockhart). Let F = k(t, u) = k(x, y) be a hyperelliptic function
field2 of genus g and u2 = Dt, y2 = Dx be imaginary quadratic defining equations of
F . Furthermore let P ∈ PF be a Weierstraß point of degree 1 such that t, x ∈ L(2P ),
u, y ∈ L((2g + 1)P ). Then there are α, β ∈ k, α 6= 0, such that x = α2t + β,
y = α2g+1u.

2Recall that our definition implies g ≥ 2 and char(k) 6= 2.
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Proof. As degt(Dt) = 2g+1, the pole divisor of t is ramified over k(t), as is proved
in proposition I.39. Thus, (t)∞ = 2P . By lemma III.5, we obtain dim(2P ) = 2, i.e.
there are β, γ ∈ k, γ 6= 0 such that x = γt+ β.

As vP (u2) = vP (Dt) = −2 degt(Dt) = −2(2g+1), we have vP (u) = −(2g+1). In a
similar way, we see that vQ(u) ≥ 0 for each Q 6= P , i.e. u ∈ L((2g + 1)P )\L(2gP ).
Similarly, y ∈ L((2g + 1)P )\L(2gP ). As deg(2gP ) = 2g ≥ 2g−1, proposition I.13
implies dim(2gP ) = 2g + 1 − g = g + 1 and dim((2g + 1)P ) = g + 2. Therefore,
y = δu + η, where δ ∈ k∗ and η ∈ L(2gP ). Because η ∈ F = k(t, u), there are
f, h ∈ k(t) such that η = f + hu. Hence, y = δu+ η = (δ + h)u+ f . This implies

Dx = y2 = (δ + h)2u2 + 2(δ + h)fu+ f2 = (δ + h)2Dt + 2(δ + h)fu+ f2.

Because k(x) = k(t), this equation yields

2(δ + h)fu = Dx − (δ + h)2Dt − f2 ∈ k(t).
Since u /∈ k(t), we need to have 2(δ + h)f = 0. Thus (δ + h) = 0 or f = 0, because
char(k) 6= 2. Suppose f 6= 0. Then (δ + h) = 0 and the above equation becomes
Dx = f2, which contradicts the separability of Dx. Thus, f = 0. We obtain
Dx = (δ + h)2Dt. As 2 degx(Dx) = vP (Dx) = 2 degt(Dx), we have degt(Dx) =
2g + 1 = degt(Dt). Thus degt(h) = 0, i.e. h ∈ k. Since hu = η ∈ L(2gP ) and
u /∈ L(2gP ), we infer h = 0, i.e. η = 0. Therefore, we have

Dx = δ2Dt

with δ ∈ k∗. Computing leading coefficients yields lct(Dx) = lct(δ2Dt). Because
x = γt+ β and Dx, Dt both are monic, we obtain

γ2g+1 = lct(Dx) = lct(δ2Dt) = δ2.

Let α := δγ−g . Then α2 = δ2γ−2g = γ and α2g+1 = α2g · α = γgα = γgδγ−g = δ,
i.e. x = α2t+ β, y = α2g+1u. �

Remark III.7. Unfortunately, given a hyperelliptic function field F = k(t, u), u2 =
Dt and a defining equation y2 = Dx of a hyperelliptic function field over k, we can-
not assume that F = k(x, y) implies the condition t, x ∈ L(2P ), u, y ∈ L((2g + 1)P )
for any P , as we will see in the following example III.2. Thus we cannot check,
whether F = k(x, y) using theorem III.6.

Example III.2. Let k := F13, F := k(t, u), u2 = t5 + t + 1. If (t)∞ =: 2P ,
we have t ∈ L(2P ) and u ∈ L((2g + 1)P ) = L(5P ). Setting x := t

4t+1 , y :=
8u(4x − 1)3, i.e. t = − x

4x−1 , u = y
8(4x−1)3 , we easily see F = k(x, y). Since

vP (x) = 2(degt(4t+ 1)− degt(t)) = 0 and x /∈ k, there is a place Q 6= P such that
vQ(x) < 0. Thus x /∈ L(2P ). This shows that the condition x, t ∈ L(2P ) does not
necessarily hold for each pair of bases of a hyperelliptic function field.

The necessity of the condition x ∈ L(2P ), y ∈ L((2g + 1)P ) in theorem III.6 can
also be demonstrated using this example: Computing y2 yields the equation

y2 = −(4x− 1)6u2 = x5 − 2x4 + 2x3 + x2 − 3x− 1.

If the assumption on x, y to lie in the mentioned Riemann-Roch spaces was optional,
we needed to have x = α2t+ β, y = α2g+1u with α, β ∈ k, which does not hold.

3. Basis Transformations

In this section we show the connection between different bases of a hyperelliptic
function field (cf. theorem III.16): If k(t, u) = k(x, y), is a hyperelliptic function
field, then x needs to be a fraction of linear polynomials in t and the relation
between u and y can be computed easily for each choice of t and x.
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As we will see in section 2 of chapter IV this theorem can be used to check two
given hyperelliptic function fields for isomorphy (cf. also section 4 of this chapter).
This algorithm is one of the core components of our method for computing the
automorphism group of a hyperelliptic function field (cf. chapter V).

3.1. Relations Between the Variable Symbols. In this section, we show that
x can be represented as a fraction of linear polynomials in t. In order to do so, the
first step is to recall proposition III.1, which states that for hyperelliptic function
fields k(t, u) = k(x, y), u2 = Dt, y2 = Dx implies k(t) = k(x). This reduces the
question of the relation between t and x to rational function fields. The following
proposition states that in rational function fields, any variable symbol is a fraction
of linear polynomials in any other variable symbol.

Proposition III.8. Let k(t) be a rational function field and x ∈ k(t) such that
k(t) = k(x). Then there are α0, . . . , α3 ∈ k with x = α0t+α1

α2t+α3
and α0α3 − α1α2 6= 0.

Proof. As x ∈ k(t), there are polynomials ϕ,ψ ∈ k[t], such that x = ϕ
ψ and

(ϕ,ψ) ∈ k. We consider the principal divisor of x. Proposition I.4 implies

deg((x)0) = deg((x)∞) = [k(t) : k(x)] = 1.

Let us consider the case ∞t /∈ supp(x) first. Then v∞t
(x) = 0, i.e. degt(ϕ) =

degt(ψ). As ϕ,ψ ∈ k[t], we get (ϕ)∞ = degt(ϕ)∞t = degt(ψ)∞t = (ψ)∞. We have
(x) = (ϕ)− (ψ) = (ϕ)0− (ϕ)∞− ((ψ)0− (ψ)∞) = (ϕ)0− (ψ)0, i.e. (x)0 = (ϕ)0 and
(x)∞ = (ψ)0. Thus,

degt(ϕ) = deg((ϕ)∞) = deg((ϕ)0) = deg((x)0)

= 1 = deg((x)∞) = deg((ψ)0) = deg((ψ)∞) = degt(ψ).

Thus there are αi ∈ k such that ϕ = α0t+ α1, ψ = α2t+ α3 and α0α3 − α1α2 6= 0
as claimed.

If ∞t ∈ supp(x), we obviously have degt(ϕ) 6= degt(ψ). Without loss of generality
we assume v∞t

(x) < 0 (consider 1
x in the other case). As deg((x)∞) = 1, we need

to have v∞t
(x) = −1. Thus

−1 = v∞t(x) = v∞t(
ϕ

ψ
) = degt(ψ)− degt(ϕ),

i.e. degt(ψ) = degt(ϕ)−1. As (ϕ)∞ = degt(ϕ)∞t and (ψ)∞ = degt(ψ)∞t, we infer

(x) = (ϕ) − (ψ) = (ϕ)0 − (ϕ)∞ − (ψ)0 + (ψ)∞ = (ϕ)0 − (ψ)0 −∞t.

Thus, we have (x)0 = (ϕ)0, i.e.

degt(ϕ) = deg((ϕ)∞) = deg((ϕ)0) = deg((x)0) = 1.

We obtain x = ϕ
ψ = α0t+α1

α3
with αi ∈ k, α0α3 6= 0 as claimed. �

Combining propositions III.1 and III.8, we obtain the afore mentioned fact: In a
hyperelliptic function field with two bases t, u and x, y, the variable symbol x is a
fraction of linear polynomials in t.

Corollary III.9. Let k(t, u) = k(x, y) be a hyperelliptic function field, and u2 =
Dt, y2 = Dx the corresponding defining equations. Then there are α0, . . . , α3 ∈ k
with x = α0t+α1

α2t+α3
and α0α3 − α1α2 6= 0.

Proof. By proposition III.1, we have k(t) = k(x). Thus proposition III.8 implies
the existence of the αi. �
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Remark III.10. For algebraically closed k the assertion of corollary III.9 can in all
probability also be derived from [Gey74, Satz 1], which states the following: The
isomorphism classes of curves of genus g over k are in one-to-one correspondence
to the PGL2(k)-orbits on

{S ⊆ P1(k) : |S| = 2g + 2}.
The fact that two (hyperelliptic) function fields are isomorphic iff they possess the
same defining equation is proved in section 4.

3.2. Relation Between the Square Roots. Since we know now, how t and x are
related in a hyperelliptic function field for which we have two bases k(t, u) = k(x, y),
we proceed studying the relationship between u and y. We will see that y is a
multiple of u over k(t) in proposition III.11. Later, we will see that the factor ϕ we
need to multiply u with to obtain y is the inverse of a polynomial in t (lemma III.13).
Furthermore, we will find out that ϕ is (up to a constant factor) the denominator
of x when interpreted as a function in t (lemma III.14) and we will determine its
degree in proposition III.15.

Proposition III.11. Let k(t, u) = k(x, y) be a hyperelliptic function field and let
u2 = Dt, y2 = Dx be the corresponding defining equations. Then there exists a
ϕ ∈ k(t)∗, such that y = ϕu.

Proof. As y ∈ k(t, u) and [k(t, u) : k(t)] = 2, there are ϕ,ψ ∈ k(t) such that
y = ϕu+ ψ. Let us suppose ϕ = 0. Then we had y ∈ k(t). From proposition III.1
we know that k(x) = k(t). Thus we had y ∈ k(x), i.e. k(x, y) = k(x), contradicting
[k(x, y) : k(x)] = 2. Therefore ϕ 6= 0.

Substituting our representation of y into its minimal polynomial we get

Dx = y2 = (ϕu+ ψ)2 = ϕ2u2 + 2ϕψu+ ψ2 = ϕ2Dt + 2ϕψu+ ψ2,

thus 2ϕψu ∈ k(t) = k(x). As u /∈ k(t), this leads to 2ϕψ = 0, from with we
conclude ψ = 0 because char(k) 6= 2 and ϕ 6= 0. �

Knowing that y = ϕu, we will examine ϕ more closely. We start with the following
lemma, which is quite technical, but will be useful in the subsequent proofs: It will
lead to explicit formulas for the relation between u and y, if the relation between t
and x is known.

Lemma III.12. Let F = k(t, u) = k(x, y) be a hyperelliptic function field and
u2 = Dt, y2 = Dx be the corresponding defining equations. Let x = α0t+α1

α2t+α3
,

αi ∈ k, α0α3 − α1α2 6= 0 as stated in corollary III.9 and y = ϕu, ϕ ∈ k(t)∗ as
in proposition III.11. Let η1, . . . , ηdx ∈ k, dx := degx(Dx) be the zeroes of Dx.
Furthermore, let pi := (α0−α2ηi)t+α1−α3ηi for each i. Then the pi are pairwise
relatively prime and we have

Dt = ϕ−2(α2t+ α3)−dx
dx∏
i=1

pi.

Furthermore we have

(1) dx − 1 ≤ degt
(∏dx

i=1 pi

)
≤ dx.

(2) Let q ∈ k[t] be linear. Then q2 -∏dx
i=1 pi. In particular, (α2t+ α3)2 -∏dx

i=1 pi.

Proof. Because Dx is square-free, we have ηi 6= ηj for all i 6= j. The definition of
the pi implies x − ηi = α0t+α1

α2t+α3
− ηi = α0t+α1−(α2t+α3)ηi

α2t+α3
= pi

α2t+α3
. Suppose there

were indices i 6= j such that (pi, pj) /∈ k. Then we had pi = βpj for some β ∈ k
∗
,
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i.e. (x − ηi) = pi
α2t+α3

= β
pj

α2t+α3
= β(x − ηj). Thus, Dx were not square-free.

Contradiction. Therefore, the pi are pairwise relatively prime. We compute

Dt =u2 = ϕ−2y2 = ϕ−2Dx = ϕ−2
dx∏
i=1

(x− ηi) = ϕ−2
dx∏
i=1

pi
α2t+ α3

=ϕ−2(α2t+ α3)−dx
dx∏
i=1

pi.

This proves our main claim. Let us proceed by examining the supplementary state-
ments. Obviously,

degt

(
dx∏
i=1

pi

)
≤ dx.

If degt
(∏dx

i=1 pi

)
< dx − 1, there were two indices i 6= j such that pi, pj ∈ k, thus

α0 − α2ηi = α0 − α2ηj = 0, i.e. α0 = α2ηi = α2ηj or α2(ηi − ηj) = 0 which yields
α2 = 0 since ηi 6= ηj . Now we can easily deduce α0 = 0 from α0 − α2ηi = 0. Since

α0α3 − α1α2 6= 0, this is not possible. Thus degt
(∏dx

i=1 pi

)
≥ dx − 1.

Finally, we suppose qν |∏dx
i=1 pi for some linear q ∈ k[t] and ν ∈ N+. As degt(pi) ≤

1, there are ν factors pi1 , . . . , piν , which are multiples of q. Thus pi1 , . . . , piν are
scalar multiples of each other. If ν > 1, this contradicts the relative primality of
the pi. This proves the last claim. �

The following lemma states, that ϕ−1 is a non-zero polynomial in t.

Lemma III.13. Let F = k(t, u) = k(x, y) be a hyperelliptic function field and u2 =
Dt, y2 = Dx be the corresponding defining equations. Let x = α0t+α1

α2t+α3
as stated in

corollary III.9 and y = ϕu as in proposition III.11. Then we have ϕ−1 ∈ k[t] \ {0}.

Proof. ϕ 6= 0 was proved in proposition III.11. Hence, it remains to show ϕ−1 ∈
k[t]. Lemma III.12 implies Dt = ϕ−2(α2t + α3)−dx

∏dx
i=1 pi. Suppose ϕ−1 = ϕ1

ϕ0
/∈

k[t]. As Dt ∈ k[t], ϕ2
0 needs to be canceled by

∏dx
i=1 pi. Let q ∈ k[t] be a linear

factor of ϕ0. Thus q2 | ∏dx
i=1 pi, which contradicts lemma III.12. Therefore, we

need to have ϕ−1 ∈ k[t]. �

We will prove next, that ϕ−1 is a power of the denominator of x, multiplied by
some constant from k.

Lemma III.14. Let F = k(t, u) = k(x, y) be a hyperelliptic function field and u2 =
Dt, y2 = Dx be the corresponding defining equations. Let x = α0t+α1

α2t+α3
as stated in

corollary III.9 and y = ϕu as in proposition III.11. Then there are γ ∈ k∗ and
m ∈ N such that

ϕ−1 = γ(α2t+ α3)m.

Proof. By lemma III.13 we know ϕ−1 ∈ k[t] \ {0}. Factoring it over k yields
ϕ−1 = γ · (α2t + α3)m, where γ ∈ k[t] \ {0} such that (α2t + α3) - γ (γ does not
need to be irreducible). By lemma III.12 we have

Dt = ϕ−2(α2t+ α3)−dx
dx∏
i=1

pi = γ2(α2t+ α3)m−dx
dx∏
i=1

pi.

As Dt is separable, we need to have γ ∈ k∗ which proves our claim. �
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Computing the degree of ϕ−1, we see that it is a scalar multiple of the (g + 1)-th
power of the denominator of x.

Proposition III.15. Let F = k(t, u) = k(x, y) be a hyperelliptic function field and
u2 = Dt, y2 = Dx be the corresponding defining equations. Let x = α0t+α1

α2t+α3
as

stated in corollary III.9 and y = ϕu as in proposition III.11. Then we have

(1) If x ∈ k[t], then ϕ ∈ k∗.
(2) If x ∈ k(t)\k[t], then there exists some γ ∈ k∗ such that ϕ−1 = γ(α2t+α3)g+1.

Proof. By lemma III.12, there are pi ∈ k[t], such that

Dt = ϕ−2(α2t+ α3)−dx
dx∏
i=1

pi, dx − 1 ≤ degt

(
dx∏
i=1

pi

)
≤ dx.

Let us consider the given cases, separately.

(1) Let us assume x ∈ k[t], i.e. x = α0t+α1
α3

, first. We already know ϕ−1 ∈ k[t]\{0}
(lemma III.13) and Dt = ϕ−2α−dx3

∏dx
i=1 pi. If ϕ−1 /∈ k, then ϕ−2 were a non

trivial square polynomial in t dividing Dt. This contradicts the separability
of Dt. Thus ϕ−1 ∈ k, which immediately implies ϕ ∈ k∗.

(2) We assume the case x /∈ k[t], i.e. α2 6= 0, now. As ϕ−1 ∈ k[t], we get

degt(Dt) =2 degt(ϕ
−1)− dx degt(α2t+ α3) + degt

(
dx∏
i=1

pi

)

=2degt(ϕ
−1)− dx + degt

(
dx∏
i=1

pi

)
,

which implies

2 degt(ϕ
−1) = degt(Dt) + dx − degt

(
dx∏
i=1

pi

)
.

Thus, the inequality dx − 1 ≤ degt
(∏dx

i=1 pi

)
≤ dx yields

degt(Dt) =degt(Dt) + dx − dx

≤degt(Dt) + dx − degt

(
dx∏
i=1

pi

)
=2degt(ϕ

−1)

≤degt(Dt) + dx − dx + 1

=degt(Dt) + 1.

As degt(Dt) ∈ {2g + 1, 2g + 2} we conclude degt(ϕ−1) = g + 1. From
lemma III.14 we know that there is some γ ∈ k∗ and some m ∈ N such
that ϕ−1 = γ(α2t+ α3)m. As degt(ϕ−1) = g + 1 and α2 6= 0, this implies our
claim.

�
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3.3. Putting Both Relations Together. In this section, we completely char-
acterize the relation between any two bases of a hyperelliptic function field. The
main result is theorem III.16. It states that, given a hyperelliptic function field
k(t, u) = k(x, y) with two bases, the variable symbol x is a fraction of linear poly-
nomials in the variable symbol t. Furthermore, theorem III.16 gives an explicit
formula to compute y from t and u if its minimal polynomial y2 = Dx and the rela-
tion between t and x are known. We also see, that theorem III.16 is a generalization
of theorem III.6 as claimed in section 2.

In order to use this theorem to check, if a hyperelliptic function field has two given
defining equations, we also need to know the inverse implication. Its easy proof is
given in theorem III.18. Hence, the facts proved in this section allow us to check
whether a hyperelliptic function field has a given defining equation.

Most of the proof of theorem III.16 has already been completed in the previous
sections. Mainly, it remains to compute the constant factor γ whose existence was
verified in proposition III.15. Furthermore, we reduce the fraction x = α0t+α1

α2t+α3
such

that α2 = 1 or α3 = 1 in order to obtain simpler formulas.

Theorem III.16. Let k(t, u) = k(x, y) be a hyperelliptic function field and u2 = Dt,
y2 = Dx be the corresponding defining equations. We denote dx := degx(Dx).

(1) If x ∈ k[t], then there are α0, α1 ∈ k such that x = α0t + α1, α0 6= 0.
Furthermore we have y = ϕu with ϕ ∈ k∗,

ϕ2 = αdx0 .

(2) If x /∈ k[t], then there are α0, α1, α3 ∈ k, such that x = α0t+α1
t+α3

, α0α3−α1 6= 0.
Furthermore we have y = ϕu where

ϕ =
β

(t+ α3)g+1
,

with β ∈ k. For β we have the formula

β2 =

{
Dx(α0) , if Dx(α0) 6= 0
(α1 − α0α3)D̃x(α0) , if Dx(α0) = 0,

where D̃x(x) := Dx(x)
x−α0

.

Proof. Corollary III.9 gives the existence of α0, . . . , α3 ∈ k such that x = α0t+α1
α2t+α3

and α0α3 − α1α2 6= 0. Proposition III.11 yields some ϕ ∈ k(t)∗ such that y = ϕu.
By proposition III.15, we know ϕ ∈ k∗ if x ∈ k[t] and ϕ−1 = γ(α2t + α3)g+1 with
γ ∈ k∗ otherwise. Lemma III.12 implies

Dt = ϕ−2(α2t+ α3)−dx
dx∏
i=1

pi (2)

where pi = (α0 − α2ηi)t+ α1 − α3ηi and the ηi ∈ k are the zeroes of Dx.

Let us consider the different cases, now:

(1) If x ∈ k[t], we have α2 = 0. Reducing the fraction α0t+α1
α3

, we may assume
without loss of generality that α3 = 1, i.e. x = α0t + α1. Thus equation (2)
becomes

Dt = ϕ−2
dx∏
i=1

(α0t+ α1 − ηi).
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As α0 6= 0 (which we conclude from α0α3 − α1α2 = α0 6= 0) and ϕ ∈ k, the
leading coefficient of Dt is

1 = lct(Dt) = ϕ−2αdx0 ,

because Dt is monic by assumption. This implies ϕ2 = αdx0 .
(2) If x /∈ k[t], we have α2 6= 0. Reducing the fraction α0t+α1

α2t+α3
, we may assume

α2 = 1, i.e. x = α0t+α1
t+α3

. We already know ϕ−1 = γ(α2t + α3)g+1. Setting
β := γ−1, it remains to compute β2. From equation (2), we get

Dt = β−2(t+ α3)2g+2−dx
dx∏
i=1

pi. (3)

As before, we compute the leading coefficients:

1 = lct(Dt) = lct

(
β−2(t+ α3)2g+2−dx

dx∏
i=1

pi

)
= β−2lct

(
dx∏
i=1

pi

)
.

We obtain

β2 = lct

(
dx∏
i=1

pi

)
.

From lemma III.12, we know dx − 1 ≤ degt(
∏dx
i=1 pi) ≤ dx. Thus, there are

two cases: degt(
∏dx
i=1 pi) = dx and degt(

∏dx
i=1 pi) = dx − 1. In the latter case,

there is some index j such that pj = (α0−ηj)t+α1−α3ηj ∈ k, i.e. α0−ηj = 0.
Hence α0 = ηj , which implies Dx(α0) = 0. In the former case, there is no
such index, i.e. we have Dx(α0) 6= 0.
(a) If Dx(α0) 6= 0, we have α0 − ηi 6= 0 for all i. Thus we get

β2 =lct

(
dx∏
i=1

pi

)
= lct

(
dx∏
i=1

(α0 − ηi)t+ α1 − α3ηi

)

=
dx∏
i=1

(α0 − ηi) = Dx(α0).

as claimed.
(b) If Dx(α0) = 0, there is some exactly one index j such that α0 − ηj = 0.

Without loss of generality, we assume j = dx. Thus, pdx = α1 − α0α3.
Hence, equation (3) implies

β2 =lct

(
dx∏
i=1

pi

)
= lct

(
dx∏
i=1

(α0 − ηi)t+ α1 − α3ηi

)

=lct

(
(α1 − α3ηdx)

dx−1∏
i=1

(α0 − ηi)t+ α1 − α3ηi

)

=(α1 − α3ηdx)
dx−1∏
i=1

(α0 − ηi)

=(α1 − α3ηdx)D̃x(α0) = (α1 − α0α3)D̃x(α0),

because D̃x(x) = Dx(x)
x−α0

= Dx(x)
x−ηdx

=
∏dx−1
i=1 (x− ηi).

�

Example III.3. Let F := F191(x, y),

y2 = Dx := x6 + 8x4 + 3x3 + 5x2 + 7x+ 7.
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We choose t := 54x+1
x−1 , i.e. x = t+1

t+137 , and want to have F = F191(t, u). By
theorem III.16 we need to choose u in such a way that y = β

(t+137)3u, where

β2 = Dx(1) = 31.

Euler’s criterion yields that F191 does not contain a square root of 31, because
31(191−1)/2 ≡ −1 mod 191. Hence, there is no u ∈ F such that F = F191(t, u).

Nevertheless, we can continue our construction in a constant field extension: The
field F1912 contains a square root3 of 31 because 31(1912−1)/2 ≡ 1 mod 1912, i.e.
β ∈ F1912 . Thus, we can define u such that FF1912 = F1912(t, u). From y = ϕu we
obtain

Dt =u2 = ϕ−2y2 =
(t+ 137)6

31
·Dx

=t6 + 36t5 + 134t4 + 23t3 + 94t2 + 21t.

SinceDt ∈ F191[t], we can use it to define a hyperelliptic function field over F191: Let
F ′ := F191(t, u), u2 = t6+36t5+134t4+23t3+94t2+21t. Because FF1912 = F ′F1912 ,
but F 6= F ′, we get the following diagram of hyperelliptic function fields.

F1912(t, u) = F1912(x, y)

F191(t, u)

||||||||
F191(x, y)

CCCCCCCC

Remark III.17. In section 2, we mentioned that theorem III.16 is a generalization
of Lockhart’s uniqueness theorem (theorem III.6). Let us examine this fact, now: If
k(t, u) = k(x, y) is a hyperelliptic function field as in theorem III.6, then Lockhart
proposes x = α2t + β. Theorem III.16 implies y = ϕu with ϕ2 = (α2)dx =
(α2)2g+1 = (α2g+1)2, because theorem III.6 applies to imaginary representations,
only. From this we get ϕ = ±α2g+1, which is exactly what Lockhart proposes (if
ϕ = −α2g+1 we interpret the α2 in x = α2t + β as (−α′)2, which in turn yields
ϕ = (α′)2g+1).

In order to be able to check whether a given hyperelliptic function field has a
given defining equation, it is necessary that the inverse implication also holds.
Fortunately, this can be proved easily:

Theorem III.18. Let k(x, y) be a hyperelliptic function field and y2 = Dx the
corresponding defining equation. Let Dt ∈ k[T ] be a monic separable polynomial.

There exists a basis t, u ∈ k(x, y) such that k(x, y) = k(t, u), u2 = Dt(t) iff there
exist t, u ∈ k(x, y) for which u2 = Dt(t) and the relations x = α0t+α1

α2t+α3
, y = ϕu given

in theorem III.16 hold.

Proof. It remains to show that the existence of t, u, u2 = Dt(t) such that x =
α0t+α1
α2t+α3

, y = ϕu as given in theorem III.16 implies k(x, y) = k(t, u). It is obvious,
that k(x) ⊆ k(t) and k(t)(u) = k(t)(y). Solving x = α0t+α1

α2t+α3
for t, we see k(t) ⊆ k(x).

Thus k(t) = k(x), i.e. k(t, u) = k(t)(u) = k(t)(y) = k(x)(y) = k(x, y). �

3One such square root is given by β := 31(1912+1)/4 ∈ F1912 , but we do not need its value—all

we need to know is that β is an element of our constant field.
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4. Isomorphisms

In this section, we study the implications of the above results for isomorphisms of
hyperelliptic function fields. This will enable us to check given function fields for
isomorphy and compute the corresponding isomorphisms, as we will see in chap-
ter IV.

The following proposition states that function fields over the same constant field
that have the same defining equation are isomorphic.

Proposition III.19. Let k be an arbitrary field, and f(T,U) ∈ k[T,U ] an irre-
ducible polynomial. Let F = k(t, u), f(t, u) = 0 and G = k(x, y), f(x, y) = 0 be
two function fields. Then the mapping Φ : t 7→ x, u 7→ y defines a k-isomorphism
Φ : F ∼= G.

Proof. Obviously, the mapping Φ defines a ring-isomorphism Φ : k[t, u] → k[x, y]
which fixes k. As

k(t, u) = k[t, u]/ (f(t, u) · k[t, u]) and k(x, y) = k[x, y]/ (f(x, y) · k[x, y]) ,

it suffices to show that Φ (f(t, u)) · k[t, u]) = f(x, y) ·k[x, y]. Let ϕ ∈ f(t, u) ·k[t, u],
i.e. ϕ = f(t, u) · ψ. Then we have

Φ(ϕ) =Φ(f(t, u) · ψ)

=Φ(f(t, u)) · Φ(ϕ)

=f(Φ(t),Φ(u)) · Φ(ϕ)

=f(x, y) · Φ(ϕ) ∈ f(x, y) · k[x, y].

Thus we have Φ (f(t, u)) · k[t, u]) ⊆ f(x, y) · k[x, y]. In order to show the inverse
inclusion let f(x, y) · ξ ∈ f(x, y) · k[x, y]. We obtain

Φ−1 (f(x, y) · ξ) =Φ−1(f(x, y)) · Φ−1(ξ)

=f(Φ−1(x),Φ−1(y)) · Φ−1(ξ)

=f(t, u) · Φ−1(ξ) ∈ f(t, u) · k[t, u],

i.e. f(x, y) · ξ ∈ Φ (f(t, u) · k[t, u]). �

The above proposition tells us that two function fields having the same defining
equation are isomorphic. In the following statement, we will see that the inverse
implication also is true: If two function fields are isomorphic, then they have bases
such that their defining equations are equal. Together, these facts enable us to
check two function fields for isomorphy by testing whether one of them has a basis
which satisfies the defining equation of the other.

Proposition III.20. Let k be a field, F and G function fields over k. Let F =
k(t, u), f(t, u) = 0, where f ∈ k[t, u] is irreducible, and let Φ : F → G be a k-
isomorphism. Then setting x := Φ(t), y := Φ(u) implies G = k(x, y), f(x, y) = 0,
i.e. f = 0 is a defining equation for G.

Proof. Because f is a polynomial, we have

f(x, y) = f(Φ(t),Φ(u)) = Φ(f(t, u)) = Φ(0) = 0.

Obviously, this implies k(x, y) ⊆ G. It remains to show that G ⊆ k(x, y). Let ξ ∈ G.
Then Φ−1(ξ) = ϕ(t,u)

ψ(t,u) ∈ F = k(t, u) with polynomials ϕ,ψ ∈ k[t, u]. Applying Φ

yields ξ = ϕ(Φ(t),Φ(u))
ψ(Φ(t),Φ(u)) = ϕ(x,y)

ψ(x,y) ∈ k(x, y). �
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Thus, in order to check, whether two hyperelliptic function fields F,G are isomor-
phic over k, we only need to check whether G has a basis which satisfies the defining
equation of F . If F = k(t, u), u2 = Dt(t) and G = k(x, y), y2 = Dx(x), where
Dt ∈ k[t] and Dx ∈ k[x] both are separable, are hyperelliptic function fields, we
“just” need to check, whether G has a basis G = k(t′, u′), such that (u′)2 = Dt(t′).
This can be done using theorem III.16 as we will see in chapter IV.

Remark III.21. [Gey74, Satz 12, Folgerung 2] contains an assertion4 which is
similar to theorem III.18 (if we take propositions III.19 and III.20 into account)
and holds in the case, where k is algebraically closed: The set of isomorphism
classes of hyperelliptic function fields is given by the spectre5 of a specific ring.

From Geyer’s work it is not obvious how to check two hyperelliptic function fields
for isomorphy, algorithmically. In addition, such an algorithm needed to check a
given field to be isomorphic to a field whose defining equation contains parameters.
Otherwise it would be useless to our intended application of computing automor-
phism groups.

4The author thanks Arieh Cohen for referring him to this result at the MEGA 2003 conference,
shortly before this thesis was finished.
5i.e. the set of prime ideals, cf. [Fis56]





CHAPTER IV

Isomorphisms and Normal Forms

In chapter III we have seen that two hyperelliptic function fields are isomorphic iff
they possess the same defining equations. Furthermore, we have proved a necessary
and sufficient condition for a hyperelliptic function field to have a given defining
equation. In this chapter, we turn our knowledge into explicit algorithms which
check hyperelliptic function fields for isomorphisms and defining equations.

In section 1 we present algorithms which check whether a given hyperelliptic func-
tion field has a given defining equation. This check can be performed over the
given constant field as well as over its algebraic closure. Furthermore, it is possible
to construct the smallest constant field extension which has the desired defining
equation. As the results of section III.4 suggest, these algorithms can be used to
compute isomorphisms, explicitly. We discuss how to do this, in section 2.

Finally, we define a normal form for hyperelliptic function fields in section 3, which
enables us to devise a different algorithm for checking isomorphy of hyperelliptic
function fields: Two hyperelliptic function fields are equal iff they have the same
normal forms.

1. Checking for Defining Equations

In this section, we present an algorithm to check whether a given hyperelliptic
function field k(x, y), y2 = Dx has a given defining equation u2 = Dt, i.e. whether
there are t, u ∈ k(x, y) such that k(x, y) = k(t, u) and u2 = Dt. We consider the
case of arbitrary constant fields, first (section 1.1). In section 1.2, we will see, that
our algorithm can also be used to construct the minimal constant field extension
k′(x, y) which has the defining equation u2 = Dt, whenever such an extension exists.
If the constant field is algebraically closed and we are not interested in an explicit
formula for a basis, our algorithms can be improved considerably with respect to
speed: We replace solving a set of polynomials by checking its solvability, in this
situation (section 1.3).

Let us give a crude sketch of our algorithm. According to theorem III.18, there are
t, u ∈ k(x, y) such that u2 = Dt and k(x, y) = k(t, u) iff there are t, u ∈ k(x, y) such
that x = α0t+α1

α2t+α3
and y = ϕu, where the αi ∈ k and ϕ can be computed from the αi

using theorem III.16. This, in turn, is equivalent to the existence of t, u ∈ k(x, y)
such that x = α0t+α1

α2t+α3
, and Dt = ϕ−2Dx.

Hence, in order to check, whether k(x, y) = k(t, u), u2 = Dt, we suppose this to
be true. We set x = α0t+α1

α2t+α3
symbolically, i.e. we leave the αi unknown. Next we

compute ϕ from the αi, which is also done symbolically. Substituting x = α0t+α1
α2t+α3

in Dx and simplifying Dt = ϕ−2Dx, we obtain a polynomial equation in t, whose
coefficients depend on the αi. Comparing coefficients yields a set of equations
for the αi. We try to solve this set of equations, together with the inequality
α0α3 − α1α2 6= 0 using Gröbner basis techniques. If a solution exists, we have

63
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proved that k(x, y) = k(t, u), u2 = Dt and we have constructed t and u from x and
y. Otherwise, k(x, y) can have no basis t, u satisfying u2 = Dt.

As can even be seen from this sketch of the algorithm, the polynomial Dt does not
need to be known, completely. If Dt contains several parameters in its coefficients,
which are unknown elements of k, our algorithm is capable to solve for these pa-
rameters, as well. This feature will be needed for computing the automorphism
group of a hyperelliptic function field, as we will see in chapter V.

1.1. Solving Over the Given Constant Field. In this section, we will give
a detailed description of our algorithm to check whether a hyperelliptic function
field has a given defining equation. As Gröbner basis techniques are both well
known and beyond the scope of this work, we will not discuss them. If a set of
polynomial equations has to be solved, we will only say that it is solved using
Gröbner basis methods. Nevertheless, such a solving step involves a profound
knowledge of Gröbner basis techniques.

We describe our algorithm top down, i.e. we start giving its overall structure, using
sub-algorithms which will be discussed later.

Algorithm IV.1. Check a hyperelliptic function field for a defining equation and
construct the corresponding basis.
Input: Let k(x, y) be a hyperelliptic function field and y2 = Dx, Dx ∈ k[x] the
corresponding defining equation. Let s ∈ N, θ0, . . . , θs−1 be variable symbols and
C0, C6=0 ⊆ k[θ0, . . . , θs−1] finite sets of polynomials. Let Dt ∈ k[θ0, . . . , θs−1][t] be
a monic, separable polynomial of degree degt(Dt) ∈ {2g + 1, 2g + 2}.
Output: This algorithm reports, whether there exist

t, u ∈ k(x, y) and θ0, . . . , θs−1 ∈ k

such that

• u2 = Dt,
• k(x, y) = k(t, u),
• f(θ0, . . . , θs−1) = 0 for each f ∈ C0 and
• h(θ0, . . . θs−1) 6= 0 for each h ∈ C6=0.

If this is the case, the algorithm returns θ0, . . . , θs−1, α0, . . . , α3 ∈ k and ϕ ∈ k(t)
such that setting x =: α0t+α1

α2t+α3
and y =: ϕu, i.e. t := α3x−α1

α0−α2x
, u := ϕ−1y, implies the

above conditions.
Steps:

(1) If s = 0, we check the degrees of the factors ofDt andDx using algorithm IV.2.
If this implies that u2 = Dt is no defining equation of k(x, y), we quit reporting
this fact.

(2) We try to construct t, u such that x ∈ k[t] using algorithm IV.3. If this is
possible, we quit returning the constructed parameters.

(3) We try to construct t, u such that x = α0t+α1
α2t+α3

∈ k(t) and Dx(α0) 6= 0 using
algorithm IV.4. If this is possible, we quit returning the constructed param-
eters.

(4) We try to construct t, u such that x = α0t+α1
α2t+α3

∈ k(t) and Dx(α0) = 0 using
algorithm IV.5. If this is possible, we quit returning the constructed param-
eters.

(5) Since we did not quit till now, it is impossible to construct t, u. Thus, we
report that there exist no t, u ∈ k(x, y), θ0, . . . , θs−1 ∈ k such that the above
conditions hold.
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As explained above, the correctness of algorithm IV.1 follows from theorem III.18
and the correctness of algorithms IV.2, IV.3, IV.4 and IV.5.

We continue stating algorithm IV.2, which is an application of theorem III.3.

Algorithm IV.2. Check factor degrees of defining equations for compatibility.
Input: Let k(x, y) be a hyperelliptic function field and y2 = Dx, Dx ∈ k[x] the
corresponding defining equation. Let Dt ∈ k[t] be a monic, separable polynomial.
Output: This algorithm reports, whether we can infer from theorem III.3 that
there are no t, u ∈ k(x, y) such that k(x, y) = k(t, u) and u2 = Dt. If this is not the
case, we can deduce nothing from the result of this algorithm.
Steps:

(1) We factor Dt =: p1 · · · pm and Dx =: q1 · · · qn into their non-constant, irre-
ducible factors over k.

(2) If n /∈ {m − 1,m,m + 1} we report that u2 = Dt is no defining equation for
k(x, y).

(3) Let m̃ := max(m,n).
Let dt,i := degt(pi) for i = 1, . . . ,m and dt,i := 1 for i = m+ 1, . . . , m̃.
Let dx,i := degx(qi) for i = 1, . . . , n and dx,i := 1 for i = n+ 1, . . . , m̃.

(4) We sort (dt,i)i=1,...,m̃ and (dx,i)i=1,...,m̃ such that dt,i ≥ dt,j and dx,i ≥ dx,j
whenever 1 ≤ i < j ≤ m̃.

(5) If there exists an i ∈ {1, . . . , m̃} such that dt,i 6= dx,i, we report that u2 = Dt

is no defining equation for k(x, y). Otherwise, report that it is unknown, if
u2 = Dt is a defining equation for k(x, y).

Let us prove the correctness of algorithm IV.2:

Proposition IV.1. Let k(x, y) be a hyperelliptic function field and y2 = Dx,
Dx ∈ k[x] the corresponding defining equation. Let Dt ∈ k[t] be a monic, sepa-
rable polynomial. If algorithm IV.2 reports that u2 = Dt is no defining equation for
k(x, y), then this statement is true.

Proof. We use the notation from algorithm IV.2. Suppose u2 = Dt is a defining
equation of k(x, y) even though the algorithm tells us it is not. There are two
possible reasons for the algorithm’s statement. We will find a contradiction in both
of these cases:

(1) If step (2) quits the algorithm, we have n /∈ {m−1,m,m+1}, which contradicts
theorem III.3.

(2) If step (5) quits the algorithm reporting that u2 = Dt is no defining equation,
there needs to be some i ∈ {1, . . . , m̃} such that dt,i 6= dx,i.
Let us consider the cases given in theorem III.3, separately: If degt(Dt) =
degx(Dx), we have m = n, i.e. m = n = m̃ and there is a numbering such
that degt(pi) = degx(qi) for all i. Sorting these degrees, we obtain dt,i =
degt(pi) = degx(qi) = dx,i. Contradiction.
If degt(Dt) = degx(Dx) + 1, we have m = n + 1, i.e. m̃ = m = n + 1.
There exists a numbering such that degt(pi) = degx(qi) for all i = 1, . . . , n,
and degt(pm) = 1. After sorting these degrees, we have dt,i = degt(pi) =
degx(qi) = dx,i for all i = 1, . . . , n and dt,m = degt(pm) = 1. Since dx,m = 1
was defined in steps (3) and (4), this implies dt,i = dx,i for all i, contradicting
the existence of an index i such that dt,i 6= dx,i.
If degt(Dt) + 1 = degx(Dx), we obtain a similar contradiction.

�
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The following example shows the usefulness of algorithm IV.2 and demonstrates
how it works:

Example IV.1. Let F43(x, y),

y2 = Dx := x9 + 17x8 + 24x7 + 39x5 + 41x4 + 13x

and Dt := t10 + 31t9 + 23t8 + 16t7 + 14t6 + 5t4 + 15t3 + 3t2 + 2t + 10. We apply
algorithm IV.2 literally:

(1) Factoring yields:

Dt =(t2 + 26t+ 7) · (t4 + 29t3 + 25t2 + 22t+ 16)

· (t2 + 42t+ 26) · (t2 + 20t+ 35)

Dx =(x2 + 26x+ 35) · x · (x2 + 18x+ 9) · (x4 + 16x3 + 12x2 + 5x+ 4)

(2) Since m = n = 4, we continue.
(3) m̃ := 4, dt,1 := 2, dt,2 := 4, dt,3 := 2, dt,4 := 2,

dx,1 := 2, dx,2 := 1, dx,3 := 2, dx,4 := 4.
(4) Sorting yields dt,1 := 4, dt,2 := 2, dt,3 := 2, dt,4 := 2,

dx,1 := 4, dx,2 := 2, dx,3 := 2, dx,4 := 1.
(5) Because of dt,4 6= dx,4, we infer that u2 = Dt is no defining equation for

F43(x, y)

Although algorithm IV.2 cannot decide, whether a given hyperelliptic function field
has a given defining equation, it still is useful. Because it is very efficient, we do
not loose much time in algorithm IV.1, if we use it. On the contrary, we may save
a huge amount of time in the remaining steps of algorithm IV.1, if algorithm IV.2
can already tell us that t, u do not exist.

Let us describe the first of the remaining steps of algorithm IV.1 which corresponds
to the first case of theorem III.16.

Algorithm IV.3. Check a hyperelliptic function field k(x, y) for having a defining
equation u2 = Dt with x ∈ k[t].
Input: Let k(x, y) be a hyperelliptic function field and y2 = Dx, Dx ∈ k[x] the
corresponding defining equation. Let s ∈ N, θ0, . . . , θs−1 be variable symbols and
C0, C6=0 ⊆ k[θ0, . . . , θs−1] finite sets of polynomials. Let Dt ∈ k[θ0, . . . , θs−1][t] be
a monic, separable polynomial of degree degt(Dt) ∈ {2g + 1, 2g + 2}.
We denote dx := degx(Dx).
Output: This algorithm reports, whether there exist

t, u ∈ k(x, y) and θ0, . . . , θs−1 ∈ k

such that

• x ∈ k[t],
• u2 = Dt,
• k(x, y) = k(t, u),
• f(θ0, . . . , θs−1) = 0 for each f ∈ C0 and
• h(θ0, . . . θs−1) 6= 0 for each h ∈ C6=0.

If this is the case, the algorithm returns θ0, . . . , θs−1, α0, α1, ϕ ∈ k such that setting
t := x−α1

α0
and u := ϕ−1y implies the above conditions.

Steps:
(1) We substitute x = α0t + α1 into Dx, symbolically. We expand the resulting

polynomial and denote it by Dx,t ∈ k[α0, α1][t].
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(2) We simplify the polynomial equation Dx,t = αdx0 Dt and compare coefficients
of t. The resulting set of polynomials which need to be = 0 is denoted by

E′
0 ⊆ k[α0, α1, θ0, . . . , θs−1].

(3) Let E0 := E′
0 ∪ C0. This is the set of polynomials, which need to be = 0.

(4) Let E 6=0 := {α0} ∪C6=0. This is the set of polynomials, which need to be 6= 0
simultaneously.

(5) We transform E 6=0 into a polynomial which needs to be = 0. To do so, we
choose a variable symbol z /∈ {t, u, α0, α1, θ0, . . . , θs−1}. We set

e6=0 := 1− z ·

 ∏
h∈E6=0

h

 .

(6) We set E := E0∪{e6=0} and try to solve E = 0 using Gröbner basis methods.
If there exists a solution (α0, α1, θ0, . . . , θs−1, z) ∈ ks+3, we try to compute
ϕ ∈ k such that ϕ2 = αdx0 . If ϕ exists, we return α0, α1, ϕ which determine t
and u, as well as θ0, . . . , θs−1 which define Dt ∈ k[t].

(7) If step (6) does not yield a solution, we report that there are no θ0, . . . , θs−1 ∈
k such that there exists a basis k(x, y) = k(t, u) with x ∈ k[t] and u2 = Dt.

We prove the correctness of algorithm IV.3 in proposition IV.3. To do so, we start
showing that the transformation in step (5) is correct.

Lemma IV.2. Let k be a field, X0, . . . , Xn−1 transcendental over k (variable sym-
bols), E 6=0 ⊆ k[X0, . . . , Xn−1] finite and Z /∈ {X0, . . . , Xn−1} a new variable symbol.
We define

e(X0, . . . , Xn−1, Z) := 1− Z ·

 ∏
h∈E6=0

h

 .

Then the following assertions are equivalent

(1) There exist x0, . . . , xn−1 ∈ k such that h(x0, . . . , xn−1) 6= 0 for each h ∈ E 6=0.
(2) There exist x0, . . . , xn−1, z ∈ k such that e(x0, . . . , xn−1, z) = 0.

If this is the case, each solution (x0, . . . , xn−1, z) ∈ kn+1 of e = 0 immediately
yields a solution (x0, . . . , xn−1) of E 6=0 6= 0.

Proof. Let h(x0, . . . , xn−1) 6= 0 for each h ∈ E 6=0. Then∏
h∈E6=0

h(x0, . . . , xn−1) 6= 0.

Since k is a field, we can define z :=
(∏

h∈E6=0
h(x0, . . . , xn−1)

)−1

. We obtain

z ·
∏

h∈E6=0

h(x0, . . . , xn−1) = 1,

i.e. e(x0, . . . , xn−1, z) = 0.

On the other hand, let e(x0, . . . , xn−1, z) = 0. Then z
∏
h∈E6=0

h(x0, . . . , xn−1) = 1,
i.e. ∏

h∈E6=0

h(x0, . . . , xn−1) 6= 0.

Thus, each h(x0, . . . , xn−1) 6= 0. �

Using this lemma, we can prove the correctness of algorithm IV.3.
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Proposition IV.3. We use the notations of algorithm IV.3. The algorithm yields
a solution iff there exist t, u ∈ k(x, y) and θ0, . . . , θs−1 ∈ k such that

• x ∈ k[t],
• u2 = Dt,
• k(x, y) = k(t, u),
• f(θ0, . . . , θs−1) = 0 for each f ∈ C0 and
• h(θ0, . . . θs−1) 6= 0 for each h ∈ C6=0.

Proof. Let the algorithm yield a solution. Then, there are

α0, α1, ϕ, θ0, . . . , θs−1, z ∈ k

solving E and ϕ2 = αdx0 . Because of

E = E0 ∪ {e6=0} = E′
0 ∪ C0 ∪ {e6=0},

we obtain the following facts.

(1) f(α0, α1, θ0, . . . , θs−1) = 0 for each f ∈ E′
0. Thus αdx0 Dt = Dx,t ∈ k[t].

(2) f(θ0, . . . , θs−1) = 0 for each f ∈ C0.
(3) e6=0(α0, α1, θ0, . . . , θs−1, z) = 0. Thus lemma IV.2 implies α0 6= 0 and

h(θ0, . . . , θs−1) 6= 0 for all h ∈ C6=0.

Setting t := 1
α0

(x − α1) ∈ k(x, y) we obtain x = α0t + α1 ∈ k[t] and Dx,t = Dx.
Because of ϕ ∈ k, we also have u := ϕ−1y ∈ k(x, y). Thus,

u2 = ϕ−2y2 = α−dx0 Dx = α−dx0 Dx,t = αdx−dx0 Dt = Dt.

By theorem III.18, this implies k(x, y) = k(t, u), as claimed.

Let θ0, . . . , θs−1 ∈ k be a solution of C0 = 0 and C6=0 6= 0 and t, u ∈ k(x, y) a
basis such that u2 = Dt(θ0, . . . , θs−1, t) and x ∈ k[t]. By theorem III.16, there
are α0, α1 ∈ k, such that x = α0t + α1 and α0 6= 0. Furthermore, there exists
ϕ ∈ k such that ϕ2 = αdx0 and y = ϕu. Thus, αdx0 Dt = ϕ2u2 = y2 = Dx. Hence,
α0, α1, θ0, . . . , θs−1 are a solution to E′

0 = 0. Since the θi solve C0 = 0 and C6=0 6= 0,
we know that α0, α1, θ0, . . . , θs−1 solve E0 = 0 and E 6=0 6= 0. By lemma IV.2, there
exists a z ∈ k, such that α0, α1, θ0, . . . , θs−1, z solve e6=0 = 0. Hence, these elements
solve E = 0. Because ϕ ∈ k, step (6) returns a solution. �

In the following example, we demonstrate, how algorithm IV.3 works.

Example IV.2. Let F = F11(x, y), y2 = Dx := x5 + x4 + 4x3 + 5x2 + 10x + 7.
We would like to know, if there is a basis F = F11(t, u) such that u2 = Dt :=
t5 + 7t3 + 9t2 + 9t+ 6 and x ∈ F11[t]. Thus, we choose s := 0, C0 := C6=0 := ∅.

(1) Substituting x = α0t+ α1 into Dx, we get

Dx,t = Dx(α0t+ α1) =α5
0t

5

+ (5α4
0α1 + α4

0)t
4

+ (10α3
0α

2
1 + 4α3

0α1 + 4α3
0)t

3

+ (10α2
0α

3
1 + 6α2

0α
2
1 + α2

0α1 + 5α2
0)t

2

+ (5α0α
4
1 + 4α0α

3
1 + α0α

2
1 + 10α0α1 + 10α0)t

+ α5
1 + α4

1 + 4α3
1 + 5α2

1 + 10α1 + 7

where α0, α1 are to be found.
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(2) Comparing coefficients in Dx,t = α5
0Dt yields the equations E′

0:

0 =5α4
0α1 + α4

0,

0 =10α3
0α

2
1 + 4α3

0α1 + 4α3
0 − 7α5

0,

0 =10α2
0α

3
1 + 6α2

0α
2
1 + α2

0α1 + 5α2
0 − 9α5

0,

0 =5α0α
4
1 + 4α0α

3
1 + α0α

2
1 + 10α0α1 + 10α0 − 9α5

0,

0 =α5
1 + α4

1 + 4α3
1 + 5α2

1 + 10α1 + 7− 6α5
0.

(3) Let E0 := E′
0.

(4) Let E 6=0 := {α0}.
(5) Let e6=0 := 1− α0z.
(6) Let E := E0 ∪ {e6=0}. We interpret E as an ideal Ek[α0, α1, z]. Singular

([GPS+02]) computes the following Gröbner basis of E with respect to the
lexicographical ordering:

z − 4 =0
α0 − 3 =0

α1 − 2α5
0z

2 − 3α2
0z

2 =0

This implies z = 4, α0 = 3. Substituting these values into the remaining
equation, we obtain α1 = 2. Setting t := 4x − 3, u := y, i.e. x = 3t + 2,
ϕ = 35 = 1, we get a basis F = F11(t, u), with u2 = Dt.

We continue presenting algorithm IV.4, which corresponds to the second case of
theorem III.16, i.e. the case x = α0t+α1

t+α3
∈ k(t), where Dx(α0) 6= 0.

Algorithm IV.4. Check a hyperelliptic function field k(x, y) for having a defining
equation u2 = Dt with x = α0t+α1

t+α3
and Dx(α0) 6= 0.

Input: Let k(x, y) be a hyperelliptic function field and y2 = Dx, Dx ∈ k[x] the
corresponding defining equation. Let s ∈ N, θ0, . . . , θs−1 be variable symbols and
C0, C6=0 ⊆ k[θ0, . . . , θs−1] finite sets of polynomials. Let Dt ∈ k[θ0, . . . , θs−1][t] be
a monic, separable polynomial of degree degt(Dt) ∈ {2g + 1, 2g + 2}.
We denote dx := degx(Dx).
Output: This algorithm reports, whether there exist

t, u ∈ k(x, y) and θ0, . . . , θs−1 ∈ k

such that

• x = α0t+α1
t+α3

∈ k(t) with α0, α1, α3 ∈ k and Dx(α0) 6= 0,
• u2 = Dt,
• k(x, y) = k(t, u),
• f(θ0, . . . , θs−1) = 0 for each f ∈ C0 and
• h(θ0, . . . θs−1) 6= 0 for each h ∈ C6=0.

If this is the case, the algorithm returns θ0, . . . , θs−1, α0, α1, α3 ∈ k and ϕ ∈ k(t)
such that setting t := α3x−α1

α0−x and u := ϕ−1y implies the above conditions.
Steps:

(1) We substitute x = α0t+α1
t+α3

into Dx, symbolically. We expand the result, factor
out the denominator (t+ α3)−dx and denote this product by

Dx(
α0t+ α1

t+ α3
) =: (t+ α3)−dx ·Dx,t,

i.e. Dx,t ∈ k[α0, α1, α3][t].
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(2) We simplify the polynomial equation Dx(α0) ·Dt = (t+α3)2g+2−dx ·Dx,t and
compare coefficients of t. The resulting set of polynomials which need to be
= 0 is denoted by E′

0 ⊆ k[α0, α1, α3, θ0, . . . , θs−1].
(3) Let E0 := E′

0 ∪ C0. This is the set of polynomials, which need to be = 0.
(4) Let E 6=0 := {α0α3−α1, Dx(α0)}∪C6=0. This is the set of polynomials, which

need to be 6= 0 simultaneously.
(5) We transform E 6=0 into a polynomial which needs to be = 0. To do so, we

choose a variable symbol z /∈ {t, u, α0, α1, α3, θ0, . . . , θs−1}. We set

e6=0 := 1− z ·

 ∏
h∈E6=0

h

 .

(6) We set E := E0∪{e6=0} and try to solve E = 0 using Gröbner basis methods.
If there exists a solution (α0, α1, α3, θ0, . . . , θs−1, z), we try to compute β ∈ k
such that β2 = Dx(α0). If β exists, we return α0, α1, α3 and ϕ := β

(t+α3)g+1 ∈
k(t) which determine t and u, as well as θ0, . . . , θs−1 which define a possible
Dt ∈ k[t].

(7) If step (6) does not yield a solution, we report that there are no θ0, . . . , θs−1 ∈
k such that there exists a basis k(x, y) = k(t, u) with x = α0t+α1

t+α3
∈ k(t),

Dx(α0) 6= 0 and u2 = Dt.

The correctness of algorithm IV.4 is shown analogously to proposition IV.3:

Proposition IV.4. We use the notations from algorithm IV.4. The algorithm
yields a solution iff there exist t, u ∈ k(x, y) and θ0, . . . , θs−1 ∈ k such that

• x = α0t+α1
t+α3

∈ k(t) with α0, α1, α3 ∈ k and Dx(α0) 6= 0,
• u2 = Dt,
• k(x, y) = k(t, u),
• f(θ0, . . . , θs−1) = 0 for each f ∈ C0 and
• h(θ0, . . . θs−1) 6= 0 for each h ∈ C6=0.

Proof. Let the algorithm yield a solution. Then, there are

α0, α1, α3, β, θ0, . . . , θs−1, z ∈ k

solving E and β2 = Dx(α0). Because of

E = E′
0 ∪ C0 ∪ {e6=0},

we obtain the following facts.

(1) f(α0, α1, α3, θ0, . . . , θs−1) = 0 for each f ∈ E′
0. Thus Dx(α0) · Dt = (t +

α3)2g+2−dx ·Dx,t, i.e.

Dx,t =
Dx(α0)

(t+ α3)2g+2−dx
·Dt.

(2) f(θ0, . . . , θs−1) = 0 for each f ∈ C0.
(3) e6=0(α0, α1, α3, θ0, . . . , θs−1, z) = 0. Thus lemma IV.2 implies α0α3 − α1 6= 0

as well as Dx(α0) 6= 0 and

h(θ0, . . . , θs−1) 6= 0 for all h ∈ C6=0.

Setting t := α1−α3x
x−α0

∈ k(x, y) we obtain x = α0t+α1
t+α3

and (t + α3)−dx ·Dx,t = Dx.
Because of ϕ := β

(t+α3)g+1 ∈ k(t)∗ ⊆ k(x, y)∗, we also have u := ϕ−1y ∈ k(x, y).
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Thus,

u2 =ϕ−2y2

=
(t+ α3)2g+2

β2
·Dx

=
(t+ α3)2g+2

Dx(α0)
· (t+ α3)−dx ·Dx,t

=
(t+ α3)2g+2−dx

Dx(α0)
·Dx,t

=
(t+ α3)2g+2−dx

Dx(α0)
· Dx(α0)
(t+ α3)2g+2−dx

·Dt

=Dt.

By theorem III.18, this implies k(x, y) = k(t, u), as claimed.

Let θ0, . . . , θs−1 ∈ k be a solution of C0 = 0 and C6=0 6= 0 and t, u ∈ k(x, y) a
basis such that u2 = Dt(θ0, . . . , θs−1, t) and x = α0t+α1

t+α3
with α0, α1, α3 ∈ k and

Dx(α0) 6= 0. Proposition III.8 implies α0α3 − α1 6= 0. By theorem III.16 there
exists β ∈ k such that β2 = Dx(α0) and y = ϕu with ϕ := β

(t+α3)g+1 . Thus,

Dx(α0) ·Dt =
Dx(α0)

(t+ α3)2g+2
(t+ α3)2g+2 · u2

=ϕ2(t+ α3)2g+2u2

=(t+ α3)2g+2y2

=(t+ α3)2g+2Dx

=(t+ α3)2g+2−dxDx,t.

Hence, α0, α1, α3, θ0, . . . , θs−1 are a solution to E′
0 = 0. Since the θi solve C0 = 0

and C6=0 6= 0, we know that α0, α1, α3, θ0, . . . , θs−1 solve E0 = 0 and E 6=0 6= 0. By
lemma IV.2, there exists a z ∈ k, such that α0, α1, α3, θ0, . . . , θs−1, z solve e6=0 = 0.
Hence, these elements solve E = 0. Because β ∈ k, step (6) returns a solution. �

The next example shows how algorithm IV.4 works.

Example IV.3. Let F = F79(x, y), y2 = Dx := x5 + 49x4 + 21x2 + 13. We would
like to know, if there is a basis F = F79(t, u) such that u2 = Dt := t6 + 28t5 +
71t4 + 39t3 + 18t+ 3 and x = α0t+α1

t+α3
∈ F79(t) with Dx(α0) 6= 0. Thus, we choose

s := 0, C0 := C6=0 := ∅.

(1) Substituting x = α0t+α1
t+α3

into Dt, we get

Dx,t =(t+ α3)5 ·Dx

=(α5
0 + 49α4

0 + 21α2
0 + 13)t5

+ (49α4
0α3 + 5α4

0α1 + 38α3
0α1 + 63α2

0α3 + 42α0α1 + 65α3)t4

+ (38α3
0α3α1 + 10α3

0α
2
1 + 63α2

0α
2
3 + 57α2

0α
2
1

+ 47α0α3α1 + 51α2
3 + 21α2

1)t
3

+ (21α2
0α

3
3 + 57α2

0α3α
2
1 + 10α2

0α
3
1 + 47α0α

2
3α1

+ 38α0α
3
1 + 51α3

3 + 63α3α
2
1)t

2

+ (42α0α
3
3α1 + 38α0α3α

3
1 + 5α0α

4
1 + 65α4

3 + 63α2
3α

2
1 + 49α4

1)t

+ 13α5
3 + 21α3

3α
2
1 + 49α3α

4
1 + α5

1
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where α0, α1, α3 are to be found.
(2) Comparing coefficients in Dx(α0)Dt = (t+ α3)Dx,t, i.e. in

(α5
0 + 49α4

0 + 21α2
0 + 13) · (t6 + 28t5 + 71t4 + 39t3 + 18t+ 3) = (t+ α3)Dx,t

yields the equations E′
0, which we omit for the sake of readability.

(3) Let E0 := E′
0.

(4) Let E 6=0 := {α0α3 − α1, α
5
0 + 49α4

0 + 21α2
0 + 13}.

(5) Let e6=0 := 1− (α0α3 − α1) · (α5
0 + 49α4

0 + 21α2
0 + 13) · z.

(6) Let E := E0 ∪ {e6=0}. We interpret E as an ideal EF79[α0, α1, α3, z]. Using
Singular ([GPS+02]) we compute a Gröbner basis of E with respect to the
lexicographical ordering, which implies z = 27 and α0 = 3. Substituting this,
we obtain α1 = 28, which finally yields α3 = 58.
Unfortunately, Dx(α0) = 68 is no square in F79. Thus, there is no β such that
β2 = Dx(α0).

(7) There is no basis t, u ∈ F79(x, y), such that x = α0t+α1
t+α3

, Dx(α0) 6= 0.

If we consider FF792 instead, there exists a square root β ∈ F792 of Dx(α0) = 68,
because 68(792−1)/2 = 1 ∈ F792 (Euler’s criterion). Hence, given this field, our
algorithm successfully computes the requested basis.

In order to describe algorithm IV.1, it remains to give algorithm IV.5, which cor-
responds to the third case of theorem III.16: k(x, y) = k(t, u), u2 = Dt, where
x = α0t+α1

t+α3
and Dx(α0) = 0.

In this case, we have only very few possibilities to choose α0: The zeroes of Dx.
On the other hand, we need to consider these zeroes separately, since we need to
know α0 in order to compute ϕ.

Algorithm IV.5. Check a hyperelliptic function field k(x, y) for having a defining
equation u2 = Dt with x = α0t+α1

t+α3
and Dx(α0) = 0.

Input: Let k(x, y) be a hyperelliptic function field and y2 = Dx, Dx ∈ k[x] the
corresponding defining equation. Let s ∈ N, θ0, . . . , θs−1 be variable symbols and
C0, C6=0 ⊆ k[θ0, . . . , θs−1] finite sets of polynomials. Let Dt ∈ k[θ0, . . . , θs−1][t] be
a monic, separable polynomial of degree degt(Dt) ∈ {2g + 1, 2g + 2}.

We denote dx := degx(Dx).
Output: This algorithm reports, whether there exist

t, u ∈ k(x, y) and θ0, . . . , θs−1 ∈ k

such that

• x = α0t+α1
t+α3

∈ k(t) with α0, α1, α3 ∈ k and Dx(α0) = 0,
• u2 = Dt,
• k(x, y) = k(t, u),
• f(θ0, . . . , θs−1) = 0 for each f ∈ C0 and
• h(θ0, . . . θs−1) 6= 0 for each h ∈ C6=0.

If this is the case, the algorithm returns θ0, . . . , θs−1, α0, α1, α3 ∈ k and ϕ ∈ k(t)
such that setting t := α3x−α1

α0−x and u := ϕ−1y implies the above conditions.
Steps:

(1) We factor Dx over k in order to obtain its zeroes. For each α0 ∈ k such that
Dx(α0) = 0 we do the following:
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(1.1) We substitute x = α0t+α1
t+α3

into Dx, symbolically. We expand the result,
factor out the denominator (t+ α3)−dx and denote this product by

Dx(
α0t+ α1

t+ α3
) =: (t+ α3)−dx ·Dx,t,

i.e. Dx,t ∈ k[α1, α3][t].
(1.2) We compute the polynomial D̃x(x) := Dx(x)

x−α0
∈ k[x].

(1.3) We simplify the polynomial equation

(α1 − α0α3) · D̃x(α0) ·Dt = (t+ α3)2g+2−dx ·Dx,t

and compare coefficients of t. The resulting set of polynomials which
need to be = 0 is denoted by E′

0 ⊆ k[α1, α3, θ0, . . . , θs−1].
(1.4) Let E0 := E′

0 ∪ C0. This is the set of polynomials, which need to be
= 0.

(1.5) Let E 6=0 := {α0α3 − α1} ∪ C6=0. This is the set of polynomials, which
need to be 6= 0 simultaneously.

(1.6) We transform E 6=0 into a polynomial which needs to be = 0. To do so,
we choose a variable symbol z /∈ {t, u, α1, α3, θ0, . . . , θs−1}. We set

e6=0 := 1− z ·

 ∏
h∈E6=0

h

 .

(1.7) We set E := E0 ∪ {e6=0} and try to solve E = 0 using Gröbner basis
methods. If there exists a solution (α1, α3, θ0, . . . , θs−1, z), we try to
compute β ∈ k such that β2 = (α1−α0α3)D̃x(α0). If β exists, we return
α0, α1, α3 and ϕ := β

(t+α3)g+1 ∈ k(t) which determine t and u, as well as
θ0, . . . , θs−1 which define a possible Dt ∈ k[t].

(2) If step (1.7) does not yield a solution for any α0 ∈ k with Dx(α0) = 0,
we report that there are no θ0, . . . , θs−1 ∈ k such that there exists a basis
k(x, y) = k(t, u) satisfying the above conditions.

Let us consider the correctness of this algorithm:

Proposition IV.5. We use the notations from algorithm IV.5. The algorithm
yields a solution iff there exist t, u ∈ k(x, y) and θ0, . . . , θs−1 ∈ k such that

• x = α0t+α1
t+α3

∈ k(t) with α0, α1, α3 ∈ k and Dx(α0) = 0,
• u2 = Dt,
• k(x, y) = k(t, u),
• f(θ0, . . . , θs−1) = 0 for each f ∈ C0 and
• h(θ0, . . . θs−1) 6= 0 for each h ∈ C6=0.

Proof. Analogously to proposition IV.4. �

We finish this section by giving an example for algorithm IV.5.

Example IV.4. Let F = F592(x, y), y2 = Dx := x6 + 37x5 + 13x4 + 18x3 + 42x2 +
55x + 32. We would like to know, if there is a basis F = F592(t, u) such that
u2 = Dt := t5 + 27t4 + 7t3 + 14t2 + 50t + 11 and x = α0t+α1

t+α3
∈ F592(t) with

Dx(α0) = 0. Thus, we choose s := 0, C0 := C6=0 := ∅.

(1) Factoring Dx yields

Dx = (x+ 19)(x+ 10)(x2 + 14x+ 54)(x2 + 53x+ 34).
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Hence, we either have α0 ∈ {−19,−10} = {40, 49} or there is no solution at
all. We start trying α0 = 40.

(1.1) Substituting x = 40t+α1
t+α3

into Dt, we get

Dx,t =(t+ α3)6 ·Dx

=(2α1 + 38α3)t5

+ (57α2
1 + 52α1α3 + 58α2

3)t
4

+ (22α3
1 + 7α2

1α3 + α1α
2
3 + 5α3

3)t
3

+ (25α4
1 + 19α3

1α3 + 21α2
1α

2
3 + 31α1α

3
3 + 33α4

3)t
2

+ (41α5
1 + 51α4

1α3 + 10α3
1α

2
3 + 27α2

1α
3
3 + 36α1α

4
3 + 32α5

3)t

+ α6
1 + 37α5

1α3 + 13α4
1α

2
3 + 18α3

1α
3
3 + 42α2

1α
4
3 + 55α1α

5
3 + 32α6

3

where α1 and α3 are to be found.
(1.2) D̃x(x) = x5 + 18x4 + 25x3 + 15x2 + 52x+ 11.
(1.3) Comparing coefficients in (α1 − 40α3)D̃x(40)Dt = Dx,t, i.e. in

2(α1 − 40α3)Dt = Dx,t

yields the equations E′
0:

0 =57α2
1 + 52α1α3 + 58α2

3 − 54α1 − 23α3

0 =22α3
1 + 7α2

1α3 + α1α
2
3 + 5α3

3 − 14α1 − 30α3

0 =25α4
1 + 19α3

1α3 + 21α2
1α

2
3 + 31α1α

3
3 + 33α4

3 − 28α1 − α3

0 =41α5
1 + 51α4

1α3 + 10α3
1α

2
3 + 27α2

1α
3
3 + 36α1α

4
3 + 32α5

3

− 41α1 − 12α3

0 =α6
1 + 37α5

1α3 + 13α4
1α

2
3 + 18α3

1α
3
3 + 42α2

1α
4
3 + 55α1α

5
3 + 32α6

3

− 22α1 − 5α3

(1.4) Let E0 := E′
0.

(1.5) Let E 6=0 := {40α3 − α1}.
(1.6) Let e6=0 := 1− (40α3 − α1) · z.
(1.7) Let E := E0 ∪ {e6=0}. We interpret E as an ideal EF592 [α1, α3, z].

Singular ([GPS+02]) computes the Gröbner basis {1} of E. Thus, E =
k[α1, α3, z], which implies that E has no solutions in F592 (or any of its
extension fields).

(2) Next we try α0 = 49. Like above, we construct the ideal EF592 [α1, α3, z] and
compute its Gröbner basis with respect to the lexicographical ordering. We
obtain the following Gröbner basis.

0 =z + 2
0 =α1 − 18
0 =α3 − 9

Thus, α0 = 49, α1 = 18, α3 = 9 is a solution of E. We have to find β ∈ F592

such that β2 = (α1 − α0α3)D̃x(α0) = 56, next. From 56(592−1)/2 = 1 ∈ F592 ,
we know that 56 is a square root. In order to compute it explicitly, we need a
basis for F592/F59. If the basis has been chosen in advance, we compute β :=
56(592+1)/4 ∈ F59. Otherwise, we simply choose F592 := F59(β), β2 − 56 = 0,
since 56 is no square modulo 59.
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1.2. Constructing Necessary Constant Field Extensions. In section 1.1, we
have presented algorithm IV.1, which checks whether a hyperelliptic function field
F = k(x, y) has a given defining equation u2 = Dt. Furthermore, this algorithm
constructs a basis satisfying u2 = Dt, explicitly. In example IV.3, we have seen that
even if F does not have the defining equation u2 = Dt, F may have a constant field
extension having this equation. Thus, it is sensible to ask whether a hyperelliptic
function field F/k has a constant field extension Fk′ having the defining equation
u2 = Dt. With slight modifications, algorithm IV.1 can be used to decide this
question. Furthermore, the smallest such field extension Fk′/F and a basis Fk′ =
k′(x, y) = k′(t, u) satisfying u2 = Dt can be constructed as well. The case, where
an explicit construction of k′, t and u is not necessary, is discussed in section 1.3.

Algorithm IV.1 is modified in the following way to solve our problem: First of all,
solving the set E of polynomials in the sub-algorithms IV.3, IV.4 and IV.5 is done
over k (instead of over k itself) and the smallest k′/k containing all solutions is
constructed. Furthermore, because we allow constant field extensions, factoring
Dx and Dt decomposes them into linear factors. Thus, step (1) of algorithm IV.1,
which checks the degrees of the factors of Dx and Dt for compatibility, becomes
useless and is omitted.

Algorithm IV.6. Check a hyperelliptic function field for a defining equation in a
constant field extension, construct extension and basis.
Input: Let k(x, y) be a hyperelliptic function field and y2 = Dx, Dx ∈ k[x] the
corresponding defining equation. Let s ∈ N, θ0, . . . , θs−1 be variable symbols and
C0, C6=0 ⊆ k[θ0, . . . , θs−1] finite sets of polynomials. Let Dt ∈ k[θ0, . . . , θs−1][t] be
a monic, separable polynomial of degree degt(Dt) ∈ {2g + 1, 2g + 2}.
Output: This algorithm reports, whether there exist a finite extension k′/k,

t, u ∈ k′(x, y) and θ0, . . . , θs−1 ∈ k′

such that

• u2 = Dt,
• k′(x, y) = k′(t, u),
• f(θ0, . . . , θs−1) = 0 for each f ∈ C0 and
• h(θ0, . . . θs−1) 6= 0 for each h ∈ C6=0.

If this is the case, the algorithm returns the smallest possible extension field k′/k
as well as θ0, . . . , θs−1, α0, . . . , α3 ∈ k′ and ϕ ∈ k′(t) such that setting x =: α0t+α1

α2t+α3

and y =: ϕu implies the above conditions.
Steps:

(1) We try to construct k′, t, u such that x ∈ k′[t] using a modified version of
algorithm IV.3, where we solve E over k and construct the smallest extension
field k′ containing α0, α1, θ0, . . . , θs−1, as well as ϕ. If this is possible, we quit
returning the constructed parameters.

(2) We try to construct k′, t, u such that x = α0t+α1
α2t+α3

∈ k′(t) and Dx(α0) 6= 0
using a modified version of algorithm IV.4. As in step (1), we solve E over k
constructing the smallest extension field k′/k containing our solution as well
as satisfying ϕ ∈ k(t). If this is possible, we quit returning the constructed
parameters.

(3) We try to construct k′, t, u such that x = α0t+α1
α2t+α3

6∈ k′(t) and Dx(α0) = 0
using a modified version of algorithm IV.5 as in steps (1) and (2). Note that
we need to factor Dx over k, here. If we can find a solution, we quit returning
the constructed parameters.
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(4) Since we did not quit till now, it is impossible to construct k′, t, u. Thus, we
report that there exist no k′/k, t, u ∈ k′(x, y), θ0, . . . , θs−1 ∈ k′ such that the
above conditions hold.

The correctness of algorithm IV.6 is obvious from that of algorithm IV.1.

1.3. Checking for Solutions Over the Algebraic Closure. In many cases,
it suffices to decide whether a hyperelliptic function field F/k has a constant field
extension Fk′/F with a given defining equation u2 = Dt, while explicit formulas
for k′, t and u are not needed at all. For example if we wish to compute the
automorphism group of a hyperelliptic function field over the algebraic closure of
its constant field, we are in this situation (cf. chapter V).
The most time consuming part of algorithm IV.1 is finding solutions of the sets
E of polynomials in the different cases. On the other hand, knowing whether E
is solvable over k is all we need, here. This can be checked efficiently for most
examples using standard techniques (see remark IV.6). As in algorithm IV.6, the
first step of algorithm IV.1 can be omitted because every polynomial decomposes
into linear factors over k. These modifications transform algorithm IV.1 into

Algorithm IV.7. Check a hyperelliptic function field for a defining equation over
the algebraic closure of its constant field.
Input: Let k(x, y) be a hyperelliptic function field and y2 = Dx, Dx ∈ k[x] the
corresponding defining equation. Let s ∈ N, θ0, . . . , θs−1 be variable symbols and
C0, C6=0 ⊆ k[θ0, . . . , θs−1] finite sets of polynomials. Let Dt ∈ k[θ0, . . . , θs−1][t] be
a monic, separable polynomial of degree degt(Dt) ∈ {2g + 1, 2g + 2}.
Output: This algorithm reports, whether there exist

t, u ∈ k(x, y) and θ0, . . . , θs−1 ∈ k
such that

• u2 = Dt,
• k(x, y) = k(t, u),
• f(θ0, . . . , θs−1) = 0 for each f ∈ C0 and
• h(θ0, . . . θs−1) 6= 0 for each h ∈ C6=0.

Steps:
(1) We check the existence of t, u such that x ∈ k[t] using a modified version

of algorithm IV.3: Instead of solving E, we check it for solvability1 over k.
Checking for ϕ ∈ k can obviously be omitted. If a solution exist, we quit
reporting this fact.

(2) We check the existence of t, u such that x = α0t+α1
α2t+α3

∈ k(t) and Dx(α0) 6= 0
using a modification of algorithm IV.4: Instead of solving E, we check it for
solvability over k. Checking for ϕ ∈ k(t) can obviously be omitted. If a
solution exist, we quit reporting this fact.

(3) We check the existence of t, u such that x = α0t+α1
α2t+α3

∈ k(t) and Dx(α0) = 0
using a modification of algorithm IV.5: Instead of solving E, we check it
for solvability over k. Note that we need to factor Dx over k in step (1) of
algorithm IV.5 obtaining dx candidates for α0. Checking for ϕ ∈ k(t) can
obviously be omitted. If a solution exist, we quit reporting this fact.

(4) Since we did not quit till now, it is impossible to construct t, u. Thus, we
report that there exist no t, u ∈ k(x, y), θ0, . . . , θs−1 ∈ k such that the above
conditions hold.

1see remark IV.6



2. EXPLICIT DETERMINATION OF ISOMORPHISMS 77

The correctness of algorithm IV.1 implies that of algorithm IV.7. The following
remark explains how to check E for solvability:

Remark IV.6. In algorithm IV.7 we need to find out, if a finite set E of polynomials
in k[X0, . . . , Xn−1] has a solution over k. To obtain this information, we interpret
E as the ideal Ek[X0, . . . , Xn−1] ⊆ k[X0, . . . , Xn−1] and compute its Gröbner basis
with respect to an ordering which promises an efficient Gröbner basis construction.
In many cases, the degree reverse lexicographical ordering is a good choice, here.
E has a solution iff the resulting basis is different from {1}.

We apply algorithm IV.7 to the following example.

Example IV.5. Let F = F809(x, y) with

y2 = Dx := x6 + 388x5 + 240x4 + 708x3 + 138x2 + 549x+ 501.

We would like to know whether FF809 has a degree 2 elliptic subfield. Fields of this
type are discussed in [Sha00]. As explained in the introduction of section II.4, such
fields have a defining equation u2 = Dt =: t6 − s1t

4 + s2t
2 − 1 with 27− 18s1s2 −

s21s
2
2 + 4s31 + 4s32 6= 0. Hence our task is to decide whether u2 = Dt is a defining

equation of FF809. Algorithm IV.7 yields the following:

(1) FF809 has no basis FF809 = F809(t, u) with u2 = Dt such that x ∈ F809[t].
(2) FF809 has a basis FF809 = F809(t, u) with u2 = Dt such that

x =
α0t+ α1

t+ α3
∈ F809(t), Dx(α0) 6= 0.

(3) FF809 has no basis FF809 = F809(t, u) with u2 = Dt such that

x =
α0t+ α1

t+ α3
∈ F809(t), Dx(α0) = 0.

Thus, FF809 has a degree 2 elliptic subfield.

2. Explicit Determination of Isomorphisms

Let F = k(x, y), y2 = Dx and G = k(t, u), u2 = Dt be two hyperelliptic function
fields. We wish to determine, whether F ∼= G are isomorphic over k. According to
propositions III.19 and III.20, we have F ∼= G iff u2 = Dt is a defining equation for
F . Thus, we can decide F ∼= G using algorithm IV.1:

Algorithm IV.8. Construct an isomorphism between two hyperelliptic function
fields.
Input: Let F = k(x, y) and G = k(T,U) be hyperelliptic function fields and y2 =
Dx, Dx ∈ k[x], U2 = Dt(T ), Dt(T ) ∈ k[T ] the corresponding defining equations.
Output: This algorithm reports whether F ∼= G are k-isomorphic function fields
over k. If this is the case, we return an isomorphism, explicitly.
Steps:

(1) Check if u2 = Dt(t) is a defining equation of F using algorithm IV.1. If this
is the case, let x = α0t+α1

α2t+α3
, y = ϕ(t)u be the basis transformation returned

by algorithm IV.1.
Otherwise, quit reporting F 6∼= G.

(2) We report that F ∼= G and that a k-isomorphism is given by

Φ : F → G, x 7→ α0T + α1

α2T + α3
, y 7→ ϕ(T )U.
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The inverse isomorphism is given by

Ψ : G→ F, T 7→ t =
α3x− α1

α0 − α2x
, U 7→ u =

y

ϕ(t)
=

y

ϕ(α3x−α1
α0−α2x

)
.

Remark IV.7. Algorithm IV.8 can be generalized such that it can also be applied if
G is not known completely, i.e. if Dt contains parameters θ0, . . . , θs−1. Since we will
not use this algorithm in the remainder of this work and because the generalization
is obvious from algorithm IV.1, the author chose to omit it from algorithm IV.8 for
the sake of readability.

Remark IV.8. We can easily generalize algorithm IV.8 to check hyperelliptic func-
tion fields over k or to construct a minimal constant field extension yielding an iso-
morphism. To do so, we mainly need to substitute algorithm IV.1 by algorithm IV.6
or IV.7 in step (1).

In order to show the correctness of algorithm IV.8, we need to prove that Φ : t 7→ T ,
u 7→ U and that Ψ = Φ−1.

Proposition IV.9. We use the notation of algorithm IV.8. If F and G are not
k-isomorphic, the algorithm reports this fact. Otherwise, the algorithm constructs
k-isomorphisms Φ : F → G and Ψ : G→ F such that Ψ = Φ−1.

Proof. Let F 6∼= G. By proposition III.19, u2 = Dt(t) is no defining equation for
F . Because algorithm IV.1 is correct, algorithm IV.8 quits reporting that F 6∼= G.

Let F ∼= G. By proposition III.20, u2 = Dt(t) is a defining equation for F . Let
F = k(t, u) be the corresponding basis. Because algorithm IV.1 is correct, it
returns α0, . . . , α3 ∈ k and ϕ(t) ∈ k(t) such that x = α0t+α1

α2t+α3
and y = ϕ(t)u. By

proposition III.19, the mapping t 7→ T , u 7→ U induces a k-isomorphism Φ′ : F →
G. We obtain

Φ′(x) = Φ′(
α0t+ α1

α2t+ α3
) =

α0Φ′(t) + α1

α2Φ′(t) + α3
=
α0T + α1

α2T + α3
= Φ(x)

and
Φ′(y) = Φ′(ϕ(t) · u) = ϕ(Φ′(t)) · Φ′(u) = ϕ(T ) · U = Φ(y).

Thus Φ = Φ′, i.e. Φ : F → G is a k-isomorphism as claimed. Hence,

Ψ(Φ(t)) = t, Ψ(Φ(u)) = u, Φ(Ψ(T )) = T and Φ(Ψ(U)) = U.

Thus Ψ = Φ−1 and we only need to verify the equations t = α3x−α1
α0−α2x

, u = y

ϕ(
α3x−α1
α0−α2x

)
.

This, in turn, is proved easily by solving x = α0t+α1
α2t+α3

and y = ϕ(t)u for t and u. �

Let us study algorithm IV.8 using an example:

Example IV.6. Let F = F83(x, y) and G := F83(T,U) with

y2 = Dx :=x8 + 29x7 + 73x6 + 64x5 + 28x3 + 5x2 + 54x+ 27,

U2 = Dt(T ) :=T 8 + 54T 7 + 70T 6 + 34T 5 + 48T 4 + 14T 3 + 58T 2 + 40T + 81.

(1) Algorithm IV.1 yields exactly one2 solution F = F83(t, u) such that u2 =
Dt(t), namely x = 14t

t+48 , y = ± 65
(t+48)8 · u.

2i.e. up to the sign of u, which obviously cannot be determined from the quadratic equation
u2 = Dt(t).
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(2) A k-isomorphism F ∼= G is given by

Φ : F → G, x 7→ 14T
T + 48

, y 7→ 65
(T + 48)8

· U.

The inverse isomorphism is given by

Ψ : G→ F, T 7→ 48x
14− x

, U 7→ y(t+ 48)8

65
=

11y
65(14− x)8

.

3. Normal Forms

In this section, we give a normal form for hyperelliptic function fields as well as
explicit formulas which transform a hyperelliptic function field to normal form. Our
notion of a normal form is not be uniquely determined by the field, alone. But if we
also choose three ramified places and fix their representation, the resulting normal
form becomes unique. Thus, any hyperelliptic function field has at most 8g3 +
12g2+4g normal forms, which is at most 720 for fields of practical relevance.3 Thus,
using normal forms, we can easily check hyperelliptic function fields for isomorphy
(see algorithm IV.9): Two hyperelliptic function fields are isomorphic, iff there
exists a choice of places such that the resulting normal forms are equal. This
check is much more efficient than algorithm IV.8, because we only need to perform
substitutions in the defining equations as well as some elementary arithmetics, while
algorithm IV.8 needs Gröbner basis methods. On the other hand, this method
cannot be generalized in the same way as noted in remark IV.7, i.e. if Dt contains
parameters outside of known linear factors, we cannot apply algorithm IV.9.

To define our normal forms, we need to discuss briefly, how many restrictions we can
pose on a defining equation. From theorem III.18 we know that defining equations
of a hyperelliptic function field can be changed substituting the variable symbol by a
fraction of linear polynomials. Thus, the set of defining equations of a hyperelliptic
function field over k is—at least, if k is algebraically closed—generated by PGL2(k).
This gives us the possibility to choose three (linear) conditions for the defining
equation. We decide to fix the representation of three places.

Definition IV.1. Let F = k(x, y) be a hyperelliptic function field and y2 = Dx

its defining equation. F is called to be in normal form, if degx(Dx) = 2g + 1,
Dx(0) = 0 and Dx(−1) = 0.

In other words, a defining equation in normal form has the property

Dx = x · (x+ 1) · f(x),

where f ∈ k[x] is a polynomial of odd degree.

Let us start showing that each hyperelliptic function field has a normal form if
its defining equation can be factored into linear terms and if the constant field
contains a specific square root. In particular, each hyperelliptic function field over
an algebraically closed function field has a normal form.

Proposition IV.10. Let F = k(x, y), y2 = Dx be a hyperelliptic function field such
that Dx completely decomposes into linear factors and Dx = (x+a)(x+b)(x+c)·f(x)
be a partial factorization of Dx, a, b, c ∈ k. Let

t :=
(c− a)x+ b(c− a)
(b− c)x+ a(b− c)

, u :=
(a− c)g(b− a)g

(c− b)g+1(x+ a)g+1
· y
γ
,

where γ ∈ k such that γ2 = f(−a)
b−c . Then F = k(t, u) is in normal form.

3As explained in chapter II, only fields of genus ≤ 4 are suitable for cryptographic purposes.
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Proof. Solving the definition of t for x, we obtain

x =
−a(b− c)t− b(a− c)

(b− c)t+ (a− c)
. (4)

The denominator of this fraction can be expressed by x:

(b− c)t+ (a− c) =(b− c)
(c− a)x+ b(c− a)
(b− c)x+ a(b− c)

+ (a− c)

=(b− c)
(

(c− a)x+ b(c− a)
(b− c)(x+ a)

+
a− c

b− c

)
=(b− c)

(c− a)x+ b(c− a) + (a− c)(x+ a)
(b− c)(x+ a)

=
(c− a)x+ b(c− a) + (a− c)x+ (a− c)a

(x+ a)

=
b(c− a) + (a− c)a

(x+ a)
.

Thus, we have

(b− c)t+ (a− c) =
(a− c)(a− b)

(x+ a)
. (5)

In order to show that k(t, u) is in normal form, we compute the relation between t
and u:

u2 =
(a− c)2g(b− a)2g

(c− b)2g+2(x+ a)2g+2
· y

2

γ2
,

=
(b− c)(a− c)2g(a− b)2g

f(−a)(b− c)2g+2(x+ a)2g+2
·Dx

=
(b− c)(a− c)2g+1(a− b)2g+1

f(−a)(a− c)(a− b)(b− c)2g+2(x+ a)2g+2
·Dx

(5)
=

(b− c) ((b− c)t+ a− c)2g+1

f(−a)(a− c)(a− b)(b− c)2g+2(x+ a)
· (x+ a)(x+ b)(x+ c) · f(x)

=
(b− c) ((b− c)t+ a− c)2g+1

f(−a)(a− c)(a− b)(b− c)2g+2
· (x+ b) · (x+ c) · f(x)

=
− ((b− c)t+ a− c) (x+ b)

(a− b)(b− c)
· − ((b− c)t+ a− c) (x+ c)

(a− c)(b− c)

· ((b− c)t+ a− c)2g−1
f(x)

f(−a)(b− c)2g−1
.

We consider these factors separately.

(1) To simplify the first factor, we substitute equation (4) into x+ b.

x+ b =
−a(b− c)t− b(a− c)

(b− c)t+ (a− c)
+ b

=
−a(b− c)t− b(a− c) + b(b− c)t+ b(a− c)

(b− c)t+ (a− c)

=
−(a− b)(b− c)t
(b− c)t+ (a− c)

.

Hence, the first factor of u2 is equal to t.
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(2) To simplify the second factor, we substitute equation (4) into x+ c.

x+ c =
−a(b− c)t− b(a− c)

(b− c)t+ (a− c)
+ c

=
−a(b− c)t− b(a− c) + c(b− c)t+ c(a− c)

(b− c)t+ (a− c)

=
−(a− c)(b− c)t− (b− c)(a− c)

(b− c)t+ (a− c)

=− (a− c)(b− c) · t+ 1
(b− c)t+ (a− c)

.

Hence, the second factor of u2 is equal to t+ 1.
(3) Finally, we consider the third factor of u2 above. Let d := degx(f(x)) and

η1, . . . , ηd ∈ k the zeroes of f , i.e.

f(x) =
d∏
i=1

(x− ηi).

Substituting equation (4), we get

f(x) =
d∏
i=1

(
−a(b− c)t− b(a− c)

(b− c)t+ (a− c)
− ηi)

=
d∏
i=1

(
−a(b− c)t− b(a− c)− ηi(b− c)t− ηi(a− c)

(b− c)t+ (a− c)
)

=
d∏
i=1

(
−(a+ ηi)(b− c)t− (b+ ηi)(a− c)

(b− c)t+ (a− c)
).

Thus, the third factor of u2 equals

h :=
((b− c)t+ a− c)2g−1

f(x)
f(−a)(b− c)2g−1

=
((b− c)t+ a− c)2g−1−d ·

∏d
i=1 (−(a+ ηi)(b− c)t− (b+ ηi)(a− c))

(b− c)2g−1 ·
∏d
i=1(−a− ηi)

=
((b− c)t+ a− c)2g−1−d ·

∏d
i=1

(
t− (b+ηi)(a−c)

−(a+ηi)(b−c)

)
(b− c)2g−1−d .

We immediately see h ∈ k[t], lct(h) = 1 and degt(h) = 2g − 1.

Summing up, we obtain

u2 = t(t+ 1) · h(t) =: Dt

with degt(Dt) = 2 + degt(h) = 2g + 1. Hence, k(t, u) is in normal form. Note that
all the above fractions are defined, since Dx is separable. �

Let us apply proposition IV.10 to an example field.

Example IV.7. Let F := F139(x, y) be defined by

y2 = Dx :=(x+ 60)(x+ 61)(x+ 75)(x+ 84)(x+ 94)(x+ 95)(x+ 132)

=x7 + 45x6 + 57x5 + 44x4 + 5x3 + 122x2 + 105x+ 95
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We choose a := 60, b := 75, c := 84 and define

t :=
(c− a)x+ b(c− a)
(b− c)x+ a(b− c)

=
24x+ 132
130x+ 16

=
90x+ 78
x+ 60

,

u :=
(a− c)g(b− a)g

(c− b)g+1(x+ a)g+1
· y
γ

=
76 · 39

28(x+ 60)4
· y
99

=
116

(x+ 60)4
· y.

Solving these for x, y yields

x =
8t− 66

−65t+ 12
=

79t+ 78
t+ 49

,

y =
(x+ 60)4

116
u =

( 79t+78
t+49 + 60)4

116
u =

994

116(t+ 49)4
u =

83
(t+ 49)4

u

The resulting defining equation is the desired normal form

u2 =
(t+ 49)8

832
y2 =

(t+ 49)8

78
Dx = t7 + 37t6 + 66t5 + 85t4 + 107t3 + 82t2 + 30t.

In the previous example the choice of a, b, c was quite arbitrary. Let us choose these
parameters differently. We will see that normal forms of hyperelliptic function fields
are not uniquely determined. Even permuting a, b, c yields a different normal form
in many cases.

Example IV.8. As in example IV.7 we consider F := F139(x, y), defined by

y2 = Dx :=(x+ 60)(x+ 61)(x+ 75)(x+ 84)(x+ 94)(x+ 95)(x+ 132)

=x7 + 45x6 + 57x5 + 44x4 + 5x3 + 122x2 + 105x+ 95

This time, we choose a := 84, b := 60, c := 75. According to proposition IV.10, we
define

t :=
(c− a)x+ b(c− a)
(b− c)x+ a(b− c)

=
130x+ 16
124x+ 130

=
84x+ 36
x+ 84

u :=
(a− c)g(b− a)g

(c− b)g+1(x+ a)g+1
· y
γ

=
97

(x+ 84)4
· y.

Solving for x yields

x =
9t+ 16
124t+ 9

=
55t+ 36
t+ 55

.

The resulting defining equation for F = F139(t, u) is

u2 = t7 + 66t6 + 106t4 + 95t3 + 52t2 + 128t.

If we check all possible choices for a, b, c, we obtain 105 pairwise different normal
forms. The remaining 105 possibilities imply γ /∈ F139, i.e. we get no normal form,
there.

For a fixed defining equation y2 = Dx, choosing a, b, c is the same as choosing a
triplet of ramified places4 and asserting that these points lie over ∞t, t and t + 1,
respectively. Although we have seen that normal forms of hyperelliptic function
fields are not unique, this choice of places makes them unique. We show this fact
in proposition IV.12. The main part of its proof is to establish that three ramified
places uniquely determine t, which is the gist of the following proposition.

4Or a triplet of Weierstraß points, if the constant field is algebraically closed.
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Proposition IV.11. Let F/k be a hyperelliptic function field and P0, P1, P2 ∈ PF .
Let t, x ∈ F , such that k(t) = k(x) is rational5 and [F : k(t)] = 2. If P0 | ∞t,
P0 | ∞x, P1 | t, P1 | x, P2 | t+ 1 and P2 | x+ 1, then t = x.

Proof. Since each place of k(t) is uniquely determined by a place lying above it,
we obtain ∞t = ∞x, (t)k(t)0 = (x)k(t)0 and (t+ 1)k(t)0 = (x+ 1)k(t)0 .

From ∞t = ∞x and (t)k(t)0 = (x)k(t)0 , we obtain (t)k(t) = (x)k(t). This implies
(xt )

k(t) = 0, i.e. xt ∈ k. Let a := x
t ∈ k, i.e. x = at.

We denote p2 := P2 ∩ k(t) = (t+ 1)k(t)0 . Then, we have vp2(x + 1) = 1, i.e.
t+ 1 | x+ 1. Because of the degrees we obtain b(t+ 1) = x+ 1 = at+ 1 for some
b ∈ k. Solving this equation yields (b− a)t+ (b− 1) = 0. Since t is transcendental
over k, we get b − a = 0, b − 1 = 0. Thus, b = a = 1, which yields our claim
x = t. �

Now, the uniqueness of a normal form—given a triplet of places—is easy to see:

Proposition IV.12. Let F = k(t, u), u2 = Dt be a hyperelliptic function field in
normal form and P0, P1, P2 ∈ PF the places lying over ∞t, t and t+1, i.e. P0 |∞t,
P1 | t and P2 | t+ 1. If F = k(x, y), y2 = Dx is another basis of F such that P0 |∞x,
P1 | x and P2 | x+ 1, then Dx = Dt.

Proof. By proposition IV.11, we have t = x. Theorem III.16 implies u = y. Thus,
Dx(t) = Dx(x) = y2 = u2 = Dt(t). �

From proposition I.39, we know that the places lying over divisors of Dt and the
infinite place (if Dt has odd degree) are exactly the ramified places of F . Counting
the number of possible triplets of ramified places, we obtain the maximal number
of normal forms of a hyperelliptic function field.

Corollary IV.13. A hyperelliptic function field has at most 8g3+12g2+4g normal
forms, if g is its genus.

Proof. Let F/k be a hyperelliptic function field. If F has no normal form, our
claim trivially holds for F . Let u2 = Dt be a normal form of F . By propositions I.39
and I.40, each place lying over ∞t, t or t+1 is ramified and of degree 1. Obviously,
these places are pairwise distinct. Thus, proposition IV.12 tells us that each normal
form of F is uniquely determined by a triplet of distinct, ramified places of F/k(t).
Since F/k(t) has at most 2g + 2 ramified places, there are at most (2g + 2)(2g +
1)(2g) = 8g3 + 12g2 + 4g triplets of distinct, ramified places, i.e. at most this much
normal forms. �

Using normal forms, it is easily possible to check two hyperelliptic function fields
over an algebraically closed constant field for isomorphy: We compute a normal
form of the first field and check, whether it is equal to any normal form of the
second field.

Algorithm IV.9. Construct an isomorphism between two hyperelliptic function
fields over an algebraically closed constant field.
Input: Let k be algebraically closed and F , G be hyperelliptic function fields over
k.
Output: This algorithm reports whether F ∼= G are k-isomorphic.
Steps:

5Note that [F : k(x)] = 2 = [F : k(t)] and k(x), k(t) rational implies k(t) = k(x) by proposi-
tion III.1.
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(1) We compute a normal form u2
G = Dt,G(tG) of G using proposition IV.10.

(2) If F is in imaginary quadratic representation, we transform F into real qua-
dratic representation according to lemma I.31.
Let y2

F = Dx(xF ) be a real quadratic defining equation of F .
(3) Factor Dx into linear factors.
(4) For each possible triplet of linear factors Dx = (x+ a)(x+ b)(x+ c) · f(x), we

compute the corresponding normal form u2
F = Dt,F (tF ) according to propo-

sition IV.10.
If Dt,F (t) = Dt,G(t), we quit reporting F ∼= G.

(5) If none of the above triplets yields Dt,F = Dt,G, we quit reporting F 6∼= G.

Remark IV.14. It is easily possible to extend algorithm IV.9 to return explicit
formulas for the constructed isomorphism, too. This can be done analogously to
algorithm IV.8.

In contrast to algorithm IV.8, it is not obvious how to generalize algorithm IV.9
such that it allows G to be given by a defining equation containing parameters.

When computing automorphism groups, we need to check hyperelliptic function
fields for having defining equations which contain parameters (see chapter V).
Thus, algorithm IV.9 cannot be used in our application. Instead, we will use
algorithms IV.1, IV.6 or IV.7. Because the computation of automorphism groups
is the main issue of this thesis, we will not discuss normal forms in the remaining
chapters.



CHAPTER V

Computing the Automorphism Group

In this chapter we propose an efficient method to compute the automorphism group
of an arbitrary hyperelliptic function field over an algebraically closed constant field
of prime characteristic > 2. The computation over finite constant fields also is
possible if efficiency is no issue (cf. remark V.10). Beside theoretical applications,
knowing the automorphism group of a hyperelliptic function field also is useful in
cryptography, as we have seen in chapter II.

Let us outline our algorithm briefly. It is well known that the automorphism group
of a hyperelliptic function field is finite (cf. remark I.52 and proposition V.1). For
each finite group, which can occur as subgroup of such an automorphism group,
Brandt has given a normal form for the corresponding hyperelliptic function fields
and explicit formulas for these automorphisms (theorem V.6, [Bra88]). Brandt’s
theorem reduces the computation of the automorphism group to the question
whether a given hyperelliptic function field has a specific defining equation. This
can be checked using the algorithms discussed in chapter IV. Brandt’s results
only apply to function fields over algebraically closed constant fields, but this is no
problem for our intended application: As mentioned before, we would like to check
hyperelliptic function fields for their subfields because (hyper-)elliptic subfields of
hyperelliptic function fields may yield insecure Jacobians1. Many order counting
methods for—as well as some attacks against—Jacobians use constant field exten-
sions. The automorphism group over the algebraic closure of the constant field can
be used to avoid Jacobians which become insecure over extension fields. Hence,
considering automorphisms over the algebraic closure is even more sensible than
working over the given constant field.

If the constant field k is algebraically closed and char(k) > 2, algorithm V.4 is
the only efficient possibility known to compute the automorphism group of an
arbitrary hyperelliptic function field. For finite k of odd characteristic, Michael
Stoll implemented an algorithm to compute the automorphism group ([Sto00]).
We will discuss his approach in section 5. If Aut(F/k) = Aut(Fk/k), algorithm V.4
is an alternative to Stoll’s algorithm.

Our algorithm is not intended for the case char(k) = 0. Here, the automorphism
group can be computed using a technique invented by Tony Shaska ([Sha03]),
who transforms the curve into a normal form yielding so called dihedral invariants.
These invariants give information on the reduced automorphisms.

This chapter is structured as follows: In section 1, we discuss some basic issues
concerning automorphism groups. The major part of section 2 is the statement of
Brandt’s theorem, which we use in section 3 to check for subgroups of the automor-
phism group. The resulting algorithms are combined to compute the automorphism
group itself (section 4). We conclude this chapter by a brief description of Stoll’s
algorithm in section 5.

1Cf. theorem II.1.

85
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1. Elementary Facts on Automorphism Groups

In section I.5 we defined the automorphism group Aut(F/k) of a general algebraic
function field F/k to be the set of field automorphisms of F fixing k. We have seen
that all finite separable subfields of hyperelliptic function fields are generated by
subgroups of automorphism groups (theorem I.25). In section II.4 we recognized
that such subfields may cause insecure Jacobians. Because of these facts it is
sensible to have algorithms at hand which compute the automorphism group of a
hyperelliptic function field.

We would like to compute the automorphism group by identifying its finite sub-
groups. This strategy yields the whole automorphism group, because the latter is
finite, as we have seen in section I.7. To get a feeling for the orders of automorphism
groups of hyperelliptic function fields, we give an upper bound, which was proved
by Peter Roquette.

Proposition V.1. Let k be an algebraically closed field and F/k a hyperelliptic
function field such that char(k) = 0 or p := char(k) > g + 1 and the defining
equation of F is distinct from u2 = tp − t. Then

|Aut(F/k)| ≤ 84(g − 1)

In the excluded case F = k(t, u), u2 = tp − t, we have |Aut(F/k)| = 2p(p2 − 1).

Proof. [Roq70, Satz 1]. �

It is easy to see that this proposition also holds if k is not algebraically closed.

Corollary V.2. Let F/k be a hyperelliptic function field such that char(k) = 0 or
p := char(k) > g + 1 and the defining equation of F is distinct from u2 = tp − t.
Then

|Aut(F/k)| ≤ 84(g − 1)
In the excluded case F = k(t, u), u2 = tp − t, we have |Aut(F/k)| ≤ 2p(p2 − 1).

Proof. Let u2 = Dt be a defining equation of F/k. Then each automorphism
ϕ of F/k is uniquely determined by the mapping t 7→ ϕ(t), u 7→ ϕ(u). Since
the same holds for Fk/k, each automorphism of F/k can be extended to an
automorphism of Fk/k. Thus, extending automorphisms is an embedding, i.e.
Aut(F/k)≤Aut(Fk/k). Proposition V.1 yields our claim. �

A natural question is how automorphisms of a hyperelliptic function field look like.
Fortunately, this can be answered quite easily using theorem III.16.

Proposition V.3. Let F = k(t, u), u2 = D(t) be a hyperelliptic function field.
Then Aut(F/k) is the set of field homomorphisms ψ : F → F fixing k, which are
given by mappings

ψ : t 7→ α0t+ α1

α2t+ α3
, u 7→ ϕu such that ψ(u)2 = D(ψ(t)),

where αi ∈ k, α0α3 − α1α2 6= 0 and ϕ is given as in theorem III.16.

Proof. Let ψ ∈ Aut(F/k). Proposition III.20 implies that ψ(u)2 = D(ψ(t)) and
F = k(ψ(t), ψ(u)). Thus, we can apply theorem III.16, which yields the existence of
the αi ∈ k and ϕ ∈ k(t) such that ψ(t) = α0t+α1

α2t+α3
, ψ(u) = ϕu and α0α3−α1α2 6= 0.

Let ψ : F → F be the field homomorphism given by t 7→ α0t+α1
α2t+α3

, u 7→ ϕu with
ψ(u)2 = D(ψ(t)). Let G := k(ψ(t), ψ(u)) ⊆ F . From proposition III.19 we obtain
that ψ : F → G is a k-isomorphism, which obviously implies ψ ∈ Aut(F/k). �
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Let us consider the structure of the automorphism group, next. Each hyperelliptic
function field F = k(t, u), u2 = Dt has at least one automorphism Φ, which is
defined by t 7→ t, u 7→ −u. We call this automorphism the hyperelliptic involution
of F . The next proposition shows that this definition makes sense, i.e. that the
hyperelliptic involution of F is a uniquely determined involution. As it is obvious
that the hyperelliptic involution is an automorphism, we do not prove this fact.

Proposition V.4. Let F = k(t, u) = k(x, y), u2 = Dt, y2 = Dx be a hyperelliptic
function field. Let φ, ψ ∈ Aut(F/k) be defined by

φ : t 7→ t, u 7→ −u,
ψ : x 7→x, y 7→ −y.

Then φ = ψ is an involution, i.e. φ2 = idF .

Proof. By theorem III.16, we know x = α0t+α1
α2t+α3

and y = ϕ(t)u with αi ∈ k,
ϕ(t) ∈ k(t). This implies

φ(x) =φ
(
α0t+ α1

α2t+ α3

)
=
α0φ(t) + α1

α2φ(t) + α3
=
α0t+ α1

α2t+ α3
= x and

φ(y) =φ(ϕ(t)u) = φ(ϕ(t))φ(u) = −ϕ(φ(t))u = −ϕ(t)u = −y.

Thus φ = ψ. From φ2(t) = φ(t) = t and φ2(u) = φ(−u) = u, we get φ2 = idF . �

The fixed field FΦ of the hyperelliptic involution is the rational subfield of F of
degree 2, which is uniquely determined according to proposition III.1. By Galois
theory, we know that Aut(F/k) is a central extension2 of 〈Φ〉 ∼= C2 by Aut(FΦ/k).
Thus, if we know all (finite) subgroups of Aut(FΦ/k) together with their generators,
we also know Aut(F/k). A hyperelliptic function field F/k is called of type F[G, k],
if Aut(FΦ/k) contains G as a subgroup, as we see in the following definition.

Definition V.1. Let F/k be a hyperelliptic function field, Φ its hyperelliptic in-
volution and G a finite group. F is called a function field of type F[G, k], if there is
a finite group U , such that U ≤ Aut(F/k), 〈Φ〉EU and U/〈Φ〉 ∼= G. The elements
of U/〈Φ〉 are called reduced automorphisms.

We denote such a group U by U(G) or UF (G), although U needs not to be uniquely
determined by F , G and k. We will only use this notation to state that a specific
group can be used as U in this definition.

For field extensions k′ ⊇ k, we call F to be of type F[G, k′] iff the constant field
extension Fk′/k′ is of type F[G, k′].

For the reader’s convenience, we recall the notation of the groups G which can occur
in field types or as subgroups U(G) of automorphism groups (the stated definitions
and results are taken from [Bra88], [Hum96] and [Kun94]):

Remark V.5. Let m,n, p ∈ N+, n > 1, p an odd prime, q := pm and G,H finite
groups. We will consider the following finite groups:

Cn: The cyclic group of n elements.
Dn: The dihedral group of order 2n.
An: The alternating group, i.e. the group of even permutations of n elements.

Its order is 1
2n!.

Sn: The symmetric group, i.e. the group of permutations of n elements. Its
order is n!.

2I.e. we have 〈Φ〉EAut(F/k), Aut(F/k)/〈Φ〉 ∼= Aut(FΦ/k) and 〈Φ〉 is a subgroup of the centralizer
{σ ∈ Aut(F/k) | στ = τσ ∀τ ∈ Aut(F/k)} of F ’s automorphism group.
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GoH: A semidirect product of G with H. Thus, G o H is the set G ×H with
a group law given by (g1, h1) · (g2, h2) := (g1 · ϕ(h1)(g2), h1 · h2), where
ϕ : H → Aut(G) is a fixed group homomorphism. The order of GoH is
|G| · |H|.

PSLn(q): The projective special linear group, i.e.

PSLn(q) = SLn(q)/{λ · In | λ ∈ Fq},

where SLn(q) is the special linear group consisting of invertible n × n-
matrices of determinant 1 over Fq and In is the identity matrix. The
order of PSLn(q) is

1
(q − 1) · (n, q − 1)

·
∏

ν=0,...,n−1

(qn − qν),

in particular, |PSL2(q)| = 1
2 · (q

3 − q).
PGLn(q): The projective general linear group, i.e.

PGLn(q) = GLn(q)/{λ · In | λ ∈ Fq},

where GLn(q) is the general linear group consisting of invertible n × n-
matrices over Fq and In is the identity matrix. The order of PGLn(q)
is

1
q − 1

·
∏

ν=0,...,n−1

(qn − qν),

in particular, |PGL2(q)| = q3 − q.

2. Automorphism Groups and Associated Normal Forms

Our aim is to compute the automorphism group of any given hyperelliptic function
field k(x, y), y2 = D. As mentioned above, Brandt gives normal forms for each
type of hyperelliptic function fields:

Theorem V.6 (Brandt). Let F be a hyperelliptic function field over an algebraically
closed constant field k of prime characteristic p ≥ 3. Then the types of F are
characterized as follows

(1) F is of type F[Cn, k] for n ∈ N+ with (n, p) = 1 iff there are t, u ∈ F , such
that F = k(t, u),

u2 = tν
s−1∏
j=0

(tn − aj),

where ν ∈ {0, 1}, s ∈ N+ and the aj ∈ k∗ are pairwise distinct.
In this case, UF (Cn) is generated by Φ and ψ : t 7→ η2t, u 7→ ηνu, where η is
a primitive 2n-th root of unity.

(2) F is of type F[Cmp , k] with m ∈ N+ iff there are t, u ∈ F and a subgroup A of
the additive group of k with order |A| = pm, such that F = k(t, u),

u2 =
s−1∏
j=0

(∏
a∈A

(t+ a)− aj

)
,

where s ∈ N+ and the aj ∈ k are pairwise distinct.
In this case, UF (Cmp ) is generated by Φ and all ψa : t 7→ t + a, u 7→ u with
a ∈ A.
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(3) F is of type F[Dn, k], where n ∈ N+, (n, p) = 1 iff there are t, u ∈ F , such
that F = k(t, u),

u2 = tν0(tn − 1)ν1(tn + 1)ν2
s−1∏
j=0

(t2n − ajt
n + 1),

where νj ∈ {0, 1}, s ∈ N and the aj ∈ k \ {±2} are pairwise distinct. If n = 2
or n ≡ 1 mod 2, we need to have ν1 = ν2.
In this case, UF (Dn) is generated by Φ, ψ : t 7→ η2t, u 7→ ην0u and σ :
t 7→ 1

t , u 7→ iν1u
tm , where η is a primitive 2n-th root of unity, i2 = −1 and

m = 1
2 · n(ν1 + ν2) + 2ν0 + 2ns.

(4) F is of type F[Dp, k] iff there are t, u ∈ F , such that F = k(t, u),

u2 = (tp − t)ν
s−1∏
j=0

((tp − t)2 − aj),

where ν ∈ {0, 1}, s ∈ N and the aj ∈ k∗ are pairwise distinct.
In this case, UF (Dp) is generated by ψ : t 7→ t + 1, u 7→ −u, σ : t 7→ −t,
u 7→ iνu, where i2 = −1.
It is easy to see that the hyperelliptic involution Φ also is an element of
UF (Dp).

(5) Let p = 3. Then F is of type F[A4, k] iff there are t, u ∈ F , such that F =
k(t, u),

u2 = (t3 − t)ν0(t6 + t4 + t2 + 1)ν1
s−1∏
j=0

(
(t6 + t4 + t2 + 1)2 − aj(t3 − t)3

)
,

where νj ∈ {0, 1}, s ∈ N and the aj ∈ k∗ are pairwise distinct.
In this case, UF (A4) is generated by Φ, ψ : t 7→ t + 1, u 7→ u and σ : t 7→ 1

t ,
u 7→ u

tm , where m = 2ν0 + 3ν1 + 6s.
(6) Let p > 3. Then F is of type F[A4, k] iff there are t, u ∈ F , such that F =

k(t, u),

u2 = (t5 − t)ν0(t4 − 2i
√

3 · t2 + 1)ν1

(t4 + 2i
√

3 · t2 + 1)ν2
s−1∏
j=0

(
2∏
l=0

(t4 − aj,lt
2 + 1)

)
,

where νj ∈ {0, 1}, i2 = −1, s ∈ N, aj,l ∈ k\{±2,±2i
√

3} are pairwise distinct,
aj,1 = 2aj,0+12

2−aj,0 and aj,2 = 2aj,0−12
2+aj,0

.
In this case, UF (A4) is generated by Φ, ψ : t 7→ −t, u 7→ iν0u and σ : t 7→
i · t+1

t−1 , u 7→ ξu
(t−1)m , where

ξ2 = (8i)ν0(2 + 2i
√

3)ν1(2− 2i
√

3)ν2
s−1∏
j=0

(
2∏
l=0

(2 + aj,l)

)
and m = 3ν0 + 2(ν1 + ν2) + 6s.
If ν0 = 1, we can omit Φ from our set of generators, because ψ2 = Φ.

(7) Let p = 3. F is of type F[S4, k] iff there are t, u ∈ F , such that F = k(t, u),

u2 = (t3 − t)ν0(t6 + t4 + t2 + 1)ν1
s−1∏
j=0

(
(t6 + t4 + t2 + 1)4 − aj(t3 − t)6

)
,

where νj ∈ {0, 1}, s ∈ N and the aj ∈ k∗ are pairwise distinct.
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In this case, UF (S4) is generated by Φ, ψ : t 7→ −t, u 7→ iν0u, σ : t 7→ t + 1,
u 7→ u and τ : t 7→ 1

t , u 7→
iν0u
tm , where i2 = −1 and m = 2ν0 + 3ν1 + 12s.

(8) Let p > 3. Then F is of type F[S4, k] iff there are t, u ∈ F , such that F =
k(t, u),

u2 = (t5 − t)ν0(t8 + 14t4 + 1)ν1(
(t4 + 1)(t8 − 34t4 + 1)

)ν2 s−1∏
j=0

(
(t8 + 14t4 + 1)3 − aj(t5 − t)4

)
,

where νj ∈ {0, 1}, s ∈ N and the aj ∈ k \ {0, 108} are pairwise distinct.
In this case, UF (S4) is generated by Φ, ψ : t 7→ it, u 7→ ην0u and σ : t 7→ i· t+1

t−1 ,
u 7→ ξu

(t−1)m , where i2 = −1, η is a primitive 8-th root of unity with η2 = i,

ξ2 = (8i)ν0(16)ν1(−64)ν2(64)2s

and m = 3ν0 + 4ν1 + 6ν2 + 12s.
(9) Let p = 3. Then F is of type F[A5, k] iff there are t, u ∈ F , such that F =

k(t, u),

u2 =
(
t(t10 + 2it5 + 1)

)ν0 (
t10 − 1

)ν1
s−1∏
j=0

(
(t10 − 1)6 − aj

(
t(t10 + 2it5 + 1)

)5)
,

where i2 = −1, νj ∈ {0, 1}, s ∈ N and the aj ∈ k∗ are pairwise distinct.
In this case, UF (A5) is generated by Φ, ψ : t 7→ η2t, u 7→ ην0u and σ : t 7→
−t−λ
λt+1 , u 7→ ξu

(λt+1)m , where η is a primitive 10-th root of unity, λ = −i(η2+η8),
ξ2 = (−λ2)ν0(1− λ2)ν1(−λ2)s and m = 6ν0 + 5ν1 + 30s.

(10) Let p = 5. Then F is of type F[A5, k] iff there are t, u ∈ F , such that F =
k(t, u),

u2 = (t5 − t)ν0
(
(t5 − t)4 + 1

)ν1 s−1∏
j=0

((
(t5 − t)4 + 1

)3 − aj(t5 − t)10
)
,

where νj ∈ {0, 1}, s ∈ N and the aj ∈ k∗ are pairwise distinct.
In this case, UF (A5) is generated by Φ, ψ : t 7→ −t, u 7→ iν0u, σ : t 7→ − 1

t ,
u 7→ u

tm and τ : t 7→ t+ 1, u 7→ u, where i2 = −1 and m = 3ν0 + 10ν1 + 30s.
(11) Let p > 5. Then F is of type F[A5, k] iff there are t, u ∈ F , such that F =

k(t, u),

u2 =
(
t30 + 522i(t25 − t5) + 10005i(t20 − t10)− 1

)ν0(
t20 − 228i(t15 + t5)− 494t10 + 1

)ν1 (
t11 + 11it6 + t

)ν2
s−1∏
j=0

((
t20 − 228i(t15 + t5)− 494t10 + 1

)3 − aj
(
t11 + 11it6 + t

)5)
,

where i2 = −1, νj ∈ {0, 1}, s ∈ N and the aj ∈ k \ {0,−1728i} are pairwise
distinct.
In this case, there exists3 some ξ ∈ k∗ such that UF (A5) is generated by Φ,
ψ : t 7→ ηt, u 7→ u and σ : t 7→ − t+λ

λt+1 , u 7→ ξu
(λt+1)m , where η is a primitive

5-th root of unity, λ = −i(η + η4) and m = 15ν0 + 10ν1 + 6ν2 + 30s.

3 Using proposition V.3, it is possible to compute ξ explicitly. We omit a general formula for ξ

because of its complexity.
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(12) Let m,n ∈ N+, n > 1 and n | pm − 1. Then F is of type F[Cmp o Cn, k], iff
there are t, u ∈ F , such that F = k(t, u),

u2 =

(
t
r−1∏
l=0

(tn − bl)

)ν
·
s−1∏
j=0

((
t
r−1∏
l=0

(tn − bl)

)n
− aj

)
,

where ν ∈ {0, 1}, r = pm−1
n , the aj ∈ k∗ are pairwise distinct and bl ∈ k∗ such

that U := {a ∈ k | a
∏r−1
l=0 (an − bl) = 0} ≤ (k,+).

In this case, UF (Cmp o Cn) is generated by Φ, ψ : t 7→ η2t, u 7→ ηνu and
σa : t 7→ t + a, u 7→ u for each a ∈ U , where η is a primitive 2n-th root of
unity.

(13) F is of type F[PSL2(pm), k], where m ∈ N+ iff there are t, u ∈ F , such that
F = k(t, u),

u2 = (tr − t)ν0
(
(tr − t)r−1 + 1

)ν1
s−1∏
j=0

((
(tr − t)r−1 + 1

) r+1
2 − aj(tr − t)

r2−r
2

)
,

where νj ∈ {0, 1}, s ∈ N, r = pm and the aj ∈ k∗ are pairwise distinct.
In this case, UF (PSL2(pm)) is generated by Φ, ψ : t 7→ η2t, u 7→ ην0u,
σ : t 7→ t + 1, u 7→ u and τ : t 7→ − 1

t , u 7→ u
tn , where η is a primitive

(pm − 1)-th root of unity and

n =
1
2

(
ν0(pm + 1) + ν1p

m(pm − 1) +
1
2
pm(p2m − 1)s

)
.

(14) F is of type F[PGL2(pm), k] iff there are t, u ∈ F , such that F = k(t, u),

u2 = (tr − t)ν0
(
(tr − t)r−1 + 1

)ν1
s−1∏
j=0

((
(tr − t)r−1 + 1

)r+1 − aj(tr − t)r
2−r
)
,

where νj ∈ {0, 1}, s ∈ N, r = pm and the aj ∈ k∗ are pairwise distinct.
In this case, UF (PGL2(pm)) is generated by Φ, ψ : t 7→ η2t, u 7→ ην0u,
σ : t 7→ t+ 1, u 7→ u and τ : t 7→ 1

t , u 7→
iν0u
tn , where i2 = −1, η is a primitive

2(pm − 1)-th root of unity and

n =
1
2
(
(pm + 1)ν0 + pm(pm − 1)ν1 + pm(p2m − 1)s

)
.

Proof. A slightly more general theorem was proved by Rolf Brandt in his PhD.
thesis: The types of cyclic extensions of rational function fields over algebraically
closed constant fields are characterized in [Bra88]. We list the references for each of
the stated facts, citing the proof that a function field of the given type has the given
normal form, first. Then, the proof of the inverse implication and the generators
are given.

(1) [Bra88, Satz 5.1], [Bra88, Satz 5.6] and [Bra88, Lemma 5.5].
(2) [Bra88, Satz 6.3] and its proof.
(3) If n is even: [Bra88, Satz 7.3], [Bra88, Satz 7.5] and [Bra88, Lemma 7.4].

If n is odd, we apply [Bra88, Satz 7.9], as p ≥ 3 and (n, p) = 1 obviously
imply (2n, p) = 1. The generators and the inverse implication are proved
analogously to [Bra88, Satz 7.5] and [Bra88, Lemma 7.4].

(4) [Bra88, Satz 7.14], [Bra88, Satz 7.16] and [Bra88, Satz 7.15]. Let us consider
Φ: As char(k) = p, we have ψp(t) = t+p = t. Furthermore, ψp(u) = (−1)pu =
−u since p is odd. Thus Φ = ψp ∈ 〈ψ, σ〉 = UF (Dp).
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(5) [Bra88, Satz 8.1], [Bra88, Satz 8.5] and [Bra88, Lemma 8.3].
(6) [Bra88, Satz 8.6], [Bra88, Satz 8.10] and [Bra88, Lemma 8.9].
(7) [Bra88, Satz 9.2], [Bra88, Satz 9.5] and [Bra88, Lemma 9.4].
(8) [Bra88, Satz 9.8], [Bra88, Satz 9.10] and [Bra88, Lemma 9.9].
(9) [Bra88, Satz 10.3], [Bra88, Satz 10.5] and [Bra88, Lemma 10.4].

(10) [Bra88, Satz 10.8], [Bra88, Satz 10.10] and [Bra88, Lemma 10.9].
(11) [Bra88, Satz 10.13], [Bra88, Satz 10.15] and [Bra88, Lemma 10.14].
(12) [Bra88, Satz 11.2 and Satz 11.6], [Bra88, Satz 11.5 and Bemerkung 11.9]

and [Bra88, Lemma 11.4].
(13) [Bra88, Satz 12.1], [Bra88, remark below Satz 12.5], [Bra88, Lemma 12.2].
(14) [Bra88, Satz 13.1], [Bra88, Satz 13.6]. The automorphisms are given in

[Bra88, Lemma 13.2]. Unfortunately, this lemma contains a typo: τ needs to
map u to iν0u

tn instead of u
tn . This is an easy consequence of τ(t) = 1

t (which
is also given in [Bra88, Satz 2.3, case 9] and its proof), the defining equation
and proposition V.3.

�

In order to be able to check a given hyperelliptic function field for its types using the
algorithms described in chapter IV, we need to translate all conditions on param-
eters, which are given in theorem V.6, into polynomial equations and inequalities
for these parameters.

This task is easy for most of the given cases. Nevertheless, the types Cmp and
Cmp o Cn pose problems, because of the subgroups of (k,+) we need to have. We
start describing the finite subgroups of (k,+). To do so, we note that such groups
are elementary abelian p-groups:

Lemma V.7. Let k be a field of prime characteristic p, m ∈ N+ and A ⊆ k such
that |A| = pm. Then A is a subgroup of the additive group of k iff (A,+) ∼= Cmp is
the product of m cyclic groups of order p.

Proof. Let A≤ (k,+). Because char(k) = p, the order of each element 0 6= a ∈ A
is p. [Hum96, proposition 14.9] yields A ∼= Cp × · · · × Cp.
The inverse implication is trivial. �

The fact that A is an elementary abelian p-group of order pm can be expressed
using only polynomial conditions. To simplify the notation we use the following
scalar product:

Definition V.2. Let k be a field of prime characteristic p, m ∈ N+ and l ∈ N
a non-negative integer with p-adic representation l =

∑
ν∈N lνp

ν . Furthermore let
c0, . . . , cm−1 ∈ k and c := (c0, . . . , cm−1) ∈ km. Then we define

(l · c) := l0c0 + l1c1 + · · ·+ lm−1cm−1 ∈ k.

This definition obviously yields an element of k for each l and c. If the cµ are
linearly independent over Fp ⊆ k, it is a bijection {0, . . . , pm−1} → 〈c0, . . . , cm−1〉.
Let us state our conditions for a finite subgroup of (k,+):

Proposition V.8. Let k be a field of prime characteristic p, m ∈ N+ and r := pm.
Let A := {a0, . . . , ar−1} ⊆ k. A is a subgroup of (k,+) with |A| = r iff the following
holds:

(1) aj − al 6= 0 for all j 6= l, i.e. the aj are pairwise distinct.
(2) There is a c ∈ km such that an appropriate numbering of the aj yields aj =

(j · c) for each j ∈ {0, . . . , r − 1}.
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Proof. Obviously |A| = r is equivalent to condition (1). Thus, we may assume
both of these conditions to be true.

Let A ≤ (k,+). By lemma V.7, we have A ∼= Cmp . Thus, A has m generators
c0, . . . , cm−1 over Fp. In other words, each aj can be represented as a linear com-
bination of the cµ.

The reverse implication can be shown analogously. �

Using proposition V.8, we can specify a finite subgroup A≤ (k,+) of cardinality pm

where both p and m are known, using only polynomial conditions: We use variable
symbols for the generators c0, . . . , cm−1 as well as for the elements aj of A and
assume the conditions of our proposition. We will use this in algorithm V.2.

Next, we discuss how to specify the condition{
a ∈ k | a

r−1∏
l=0

(an − bl) = 0

}
≤ (k,+)

on the choice of the bl in case (12) of theorem V.6. The assertion is translated to an
equivalent set of polynomial conditions. To do so, we mainly use proposition V.8:

Proposition V.9. Let k be an algebraically closed field of prime characteristic p,
m,n ∈ N+, n | pm−1 and r := pm−1

n . Then the following conditions are equivalent:

(1) There are b0, . . . , br−1 ∈ k, such that

U :=

{
a ∈ k | a

r−1∏
ν=0

(an − bν) = 0

}
is a subgroup of (k,+).

(2) There are b0, . . . , br−1 ∈ k and c ∈ km such that
(a) For each j, l ∈ {0, . . . , pm − 1}, j 6= l we have

(j · c)− (l · c) 6= 0.

(b) For each j ∈ {0, . . . , pm − 1} we have

(j · c) ·
r−1∏
ν=0

((j · c)n − bν) = 0.

Proof. Let us assume condition (1). Obviously, |U| = 1 + nr = pm. By proposi-
tion V.8, there need to be c ∈ km such that setting aj := (j ·g) implies U = {aj |j =
0, . . . , pm − 1} and aj 6= al whenever j 6= l. From aj 6= al, we immediately deduce
condition (2a). Because U = {aj | j = 0, . . . , pm − 1}, we obtain

aj

r−1∏
ν=0

(anj − bν) = 0

for each j. Thus, condition (2b) holds.

To prove the inverse implication, we assume condition (2). Let aj := (j · c) for each
j ∈ {0, . . . , pm − 1} and V := {aj | j = 0, . . . , pm − 1}. Because aj 6= al whenever
j 6= l, we obtain |V| = pm. Proposition V.8 implies V≤(k,+). From condition (2b),
we infer U = V. �

We will use this characterization in algorithm V.3.
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3. Subgroup Checking

In this section, we will see how to find out of which types a given hyperelliptic
function field is. To do so, we give algorithms to check for each of the possible
types. In order to avoid annoying the reader, we will restrict ourselves to giving
explicit algorithms in the cases F[Cn, k], (n, p) = 1, F[Cmp , k] and F[Cmp o Cn, k]. The
remaining cases are omitted, because they are similar to the first one. The cases
F[Cmp , k] and F[Cmp o Cn, k] will be discussed, since we need to check for certain
subgroups of (k,+), here.

Because the automorphism group is finite, the largest of its finite subgroups is
the automorphism group itself. Thus, checking for all possible subgroups of the
automorphism group solves our initial problem.

3.1. Checking for Cyclic Subgroups Whose Order is Prime to char(k). In
this section we give an algorithm which checks, whether a hyperelliptic function
field F/k is of type F[Cn, k] where (n, char(k)) = 1. This algorithm can be viewed
as a template algorithm for checking for all types of fields except those discussed
in sections 3.2 and 3.3.

Algorithm V.1. Check, whether F/k is of type F[Cn, k], (n, p) = 1 for any n.
Input: Let F = k(x, y), y2 = Dt be a hyperelliptic function field of prime
characteristic p > 2.
Output: This algorithm reports, whether there exists some n ∈ N+ such that
(n, p) = 1 and F is of type F[Cn, k].
Steps:

(1) For each n ∈ {2, 3, . . . , 2g + 2}, s ∈ N+ and ν ∈ {0, 1} such that (n, p) = 1
and ns+ ν ∈ {2g + 1, 2g + 2}, we perform the following steps:

(1.1) Let a0, . . . , as−1 be variable symbols representing elements of k. We
define

C6=0 := {aj | 0 ≤ j < s} ∪ {aj − al | 0 ≤ j < l < s}.

(1.2) We check, whether there are a0, . . . , as−1 ∈ k such that we have h 6= 0
for each h ∈ C6=0 and u2 = tν

∏s−1
ν=0(t

n − aν) is a defining equation for
Fk. To do so, we use algorithm IV.7.
If this is the case, we report that F is of type F[Cn, k].

(2) If step (1.2) does not report F being of type F[Cn, k] for any n, we quit stating
this fact.

The correctness of algorithm V.1 is obvious from that of algorithm IV.7 and from
theorem V.6.

Remark V.10. If we use algorithm IV.6 instead of algorithm IV.7 in step (1.2)
of algorithm V.1, we can construct the corresponding automorphisms, explicitly.
Furthermore, we can find the smallest extension k′ ⊇ k such that F is of type
F[Cn, k′] whenever F is of type F[Cn, k]. To do so, we construct k′ large enough to
fulfill the following conditions:

(1) Fk′ needs to have a basis k′(t, u) with a defining equation of the form u2 =
tν
∏

(tn − aj) as required for Fk in theorem V.6. This is achieved by using
algorithm IV.6.
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(2) Each of the generators of UFk(Cn) needs to be defined over k′. To achieve
this, we need to enlarge k′ such that it contains a primitive n-th root of unity,
if ν = 0 and a primitive 2n-th root of unity, if ν = 1.

Example V.1. We consider the field F := F10301(x, y), given by

y2 = Dx := x5 − 3657x4 − 2940x3 − 2593x2 − 463x− 1322.

We get the following possibilities to choose n, s and ν:

• n = 2, s = 2, ν = 1, which implies ns+ ν = 5.
• n = 2, s = 3, ν = 0, which implies ns+ ν = 6.
• n = 3, s = 2, ν = 0, which implies ns+ ν = 6.
• n = 4, s = 1, ν = 1, which implies ns+ ν = 5.
• n = 5, s = 1, ν = 0, which implies ns+ ν = 5.
• n = 5, s = 1, ν = 1, which implies ns+ ν = 6.
• n = 6, s = 1, ν = 0, which implies ns+ ν = 6.

Applying algorithm IV.7 yields that F is of the following types

• F[C2,F10301] with s = 3, ν = 0,
• F[C2,F10301] with s = 2, ν = 1,
• F[C3,F10301] with s = 2, ν = 0 and
• F[C4,F10301] with s = 1, ν = 1.

To motivate the usability of the modification discussed in remark V.10, we apply
it to the fourth of the above cases, where n = 4, s = 1 and ν = 1. Here, step (1)
of algorithm IV.6 yields a variety4 which contains an infinite number of solutions.
One of these solutions is given by a0 = 1, x = t − 3389, y = u, i.e. we have
F = F10301(t, u), u2 = t(t4 − 1). The corresponding automorphism ψ of Fk/k such
that U(C4) = 〈Φ, ψ〉 is given by ψ : t 7→ 1020t, u 7→

√
1020u. Thus, F is of type

F[C4,F103012 ]. The field F10301 does not contain an 8-th primitive root η of unity
as required for the definition of ψ in case (1) of theorem V.6. Hence, k′ = F103012

is the smallest possible extension of F10301 such that F is of type F[C4, k
′].

3.2. Checking for Elementary Abelian char(k)-Groups. From case (2) of
theorem V.6 we know that a hyperelliptic function field F/k is of type F[Cmp , k] iff
there exists a finite subgroup A≤(k,+) of order char(k)m such that F has a specific
normal form. The subgroup condition can be specified using proposition V.8 as we
see in the following algorithm:

Algorithm V.2. Check, whether F/k is of type F[Cmp , k] for any m.
Input: Let F = k(x, y), y2 = Dt be a hyperelliptic function field of prime
characteristic p > 2.
Output: This algorithm reports, whether there exists some m ∈ N+ such that F
is of type F[Cmp , k].
Steps:

(1) For each m, s ∈ N+ such that s · pm ∈ {2g + 1, 2g + 2}, we perform the
following steps:

(1.1) Let a0, . . . , as−1, c0, . . . , cm−1 be variable symbols representing elements
of k and c := (c0, . . . , cm−1). We define

C6=0 := {aj − al | 0 ≤ j < l < s} ∪ {(j · c)− (l · c) | 0 ≤ j < l < pm}

4the variety of the ideal E
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(1.2) We check, whether there are a0, . . . , as−1, c0, . . . , cm−1 ∈ k such that we
have

• h 6= 0 for each h ∈ C6=0 and

• u2 =
∏s−1
j=0

(∏pm−1
l=0 (t+ (l · c))− aj

)
is a defining equation for Fk.

To do so, we use algorithm IV.7.
If this is the case, we report that F is of type F[Cmp , k].

(2) If step (1.2) does not report F being of type F[Cmp , k] for any n, we quit stating
this fact.

Let us discuss the correctness of algorithm V.2 briefly. Proposition V.8 yields that
the condition C6=0 6= 0 is equivalent to A := {(0 · c), . . . , ((pm − 1) · c)} being
a subgroup of (k,+) of order pm and the aj being pairwise distinct. Thus, we
obtain from case (2) of theorem V.6 and the correctness of algorithm IV.7 that
algorithm V.2 also is correct.

Remark V.11. If we use algorithm IV.6 instead of algorithm IV.7 in step (1.2) of
algorithm V.2, we can construct the corresponding automorphisms, explicitly. Fur-
thermore we can find the smallest extension k′ ⊇ k such that F is of type F[Cmp , k′]
whenever F is of type F[Cmp , k]. This can be done analogously to remark V.10.

Example V.2. Let us consider the field F := F3(x, y), given by

y2 = Dx := x9 − x3 + x− 1.

The only possible choices of m and s are m = 1, s = 3 and m = 2, s = 1, because
3m > 10 for each m > 2. In both cases we have s · 3m = 9 = 2g + 1. Applying
algorithm IV.7 yields that F is of the types F[C3,F3] and F[C2

3 ,F3].

3.3. Checking for Semidirect Product Groups. From theorem V.6, case (12)
we know that a hyperelliptic function field F/k is of type F[Cmp o Cn, k] iff there
exist b0, . . . , br−1 ∈ k such that the set of zeroes of t·

∏r−1
j=0(t

n−bj) forms a subgroup
of (k,+) and F has a specific normal form. The subgroup condition can be specified
using proposition V.9 as we see in the following algorithm:

Algorithm V.3. Check, whether F/k is of type F[Cmp o Cn, k] for any m,n.
Input: Let F = k(x, y), y2 = Dt be a hyperelliptic function field of prime
characteristic p > 2.
Output: This algorithm reports, whether there exist m,n ∈ N+ such that F is
of type F[Cmp o Cn, k].
Steps:

(1) For each m,n ∈ N+, s ∈ N and ν ∈ {0, 1} such that ν · pm + s · n · pm ∈
{2g + 1, 2g + 2} and n | pm − 1, we perform the following steps:

(1.1) Let r := pm−1
n , a0, . . . , as−1, b0, . . . br−1, c0, . . . , cm−1 be variable sym-

bols representing elements of k and c := (c0, . . . , cm−1). We define

C6=0 :={aj | 0 ≤ j < s} ∪ {aj − al | 0 ≤ j < l < s}
∪ {bl | 0 ≤ l < r} ∪ {(j · c)− (l · c) | 0 ≤ j < l < pm},

C0 :=

{
(j · c) ·

r−1∏
ν=0

((j · c)n − bν) | 0 ≤ j < pm

}
.

(1.2) We check, whether there are a0, . . . , as−1, b0, . . . , br−1, c0, . . . , cm−1 ∈ k
such that we have
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• f = 0 for each f ∈ C0,
• h 6= 0 for each h ∈ C6=0 and
• Fk has the defining equation

u2 =

(
t
r−1∏
l=0

(tn − bl)

)ν
·
s−1∏
j=0

((
t
r−1∏
l=0

(tn − bl)

)n
− aj

)
.

To do so, we use algorithm IV.7. If Fk has this defining equation, we
report that F is of type F[Cmp o Cn, k].

(2) If step (1.2) does not report F being of type F[Cmp o Cn, k] for any n, we quit
stating this fact.

The correctness of algorithm V.3 follows from proposition V.9, theorem V.6 and
the correctness of algorithm IV.7.

Remark V.12. If we use algorithm IV.6 instead of algorithm IV.7 in step (1.2)
of algorithm V.3, we can construct the corresponding automorphisms, explicitly.
Furthermore we can find the smallest extension k′ ⊇ k such that F is of type
F[Cmp o Cn, k′] whenever F is of type F[Cmp o Cn, k]. This can be done analogously
to remark V.10.

Example V.3. We consider the field F = F7(x, y), given by

y2 = x14 + 5x8 + x2 + 6.

The only possible choice for m,n, s, ν is m = 1, n = 2, s = 1 ν = 0 and it turns out
that F actually is of the corresponding type F[C7 o C2, k].

4. Computing the Automorphism Group

In this section we present a method to compute the reduced automorphism group of
any hyperelliptic function field as well as the generators of its automorphism group.
Knowing the above facts and algorithms, the idea of our algorithm is straightfor-
ward: We check our field for each possible type. The largest such type defines the
reduced automorphism group.

Algorithm V.4. Compute Aut(Fk/k)/〈Φ〉 and generators of Aut(Fk/k).
Input: Let F = k(x, y), y2 = Dx be a hyperelliptic function field of characteristic
p > 2.
Output: This algorithm computes Aut(Fk/k)/〈Φ〉 as well as the generators of
Aut(Fk/k).
Steps:

(1) For each possible type of field F[G, k] as specified in theorem V.6, we check,
whether F is of type F[G, k]. In the cases G = Cmp and G = Cmp o Cn,
we use algorithms V.2 and V.3, respectively. In the case G = Cn, we use
algorithm V.1. The remaining cases are checked similarly to algorithm V.1.

(2) Let G be the largest5 group such that F is of type F[G, k]. If F is of no type
at all, let G := {1}.
We return Aut(Fk/k)/〈Φ〉 ∼= G. From theorem V.6, we obtain the genera-
tors of Aut(Fk/k), which are defined with respect to the basis (t, u) whose
existence has been shown in step (1). If F is of no type (i.e. if we defined

5Here, the term “larger” can be interpreted both with respect to the subgroup relation or with
respect to group orders, because each G≤Aut(Fk/k) and equality can be achieved.



98 V. COMPUTING THE AUTOMORPHISM GROUP

G = {1} above), Aut(Fk/k) is generated by the hyperelliptic involution Φ,
only.
If the generators are needed explicitly, we apply algorithm IV.6 instead of
algorithm IV.7 when checking for the field types as indicated in remark V.10.
In other words, we solve the occurring systems of polynomials obtaining ex-
plicit formulas for the basis (t, u). These immediately give formulas for the
generators of Aut(Fk/k) with respect to our given basis (x, y). Furthermore,
we obtain the smallest k′/k such that Aut(Fk′/k′) = Aut(Fk/k) using this
modification.

Example V.4. Let F = F9871(x, y) be defined by

y2 = x5 − 3741x4 − 2773x3 − 4074x2 − 2955.

In step (1) of algorithm V.4, we find out, that F is of the types F[C2,F9871],
F[C3,F9871], F[C4,F9871], F[D2,F9871], F[D3,F9871], F[D4,F9871], F[A4,F9871] and
F[S4,F9871]. The largest of these groups is S4, its order is 24. Thus, we obtain the
reduced automorphism group

Aut(FF9871/F9871)/〈Φ〉 ∼= S4.

The defining equation of FF9871 which proves that F is of type F[S4,F9871] is
u2 = t5 − t, i.e. we have ν0 = 1, ν1 = 0, ν2 = 0 and s = 0. Theorem V.6, gives
the generators of Aut(FF9871/F9871). We start computing their parameters: Let i
be a square root of −1 over F9871. Then, an 8-th primitive root of unity is given
by η := 4091(i + 1). The condition ξ2 = 8i implies ξ = ±2(i + 1). We choose
ξ = 2(i+ 1). Finally, we compute m = 3. Thus, we obtain the following generators
of the automorphism group:

Φ : t 7→ t, u 7→ −u,
ψ : t 7→ it, u 7→ 4091(i+ 1)u,
σ : t 7→ i · t+1

t−1 , u 7→ 2(i+1)u
(t−1)3 .

In order to express these automorphism with respect to our given basis (x, y), we
need to solve for the corresponding basis transformation, explicitly. We obtain the
solutions x = t− 1226, y = u and x = −t− 1226, y = iu, from which we choose the
former one. Substituting this transformation into the definitions of our generators
yields their representations with respect to (x, y):

Φ : x 7→ x, y 7→ −y,
ψ : x 7→ ix+ 1226(i− 1), y 7→ 4091(i+ 1)y,
σ : x 7→ (i−1226)x+(1227i−1458)

x+1225 , y 7→ 2(i+1)y
(x+1225)3 .

Remark V.13. Based on the reduced automorphism group G and the ramification
behaviour of F/FG, Aristides Kontogeorgis ([Kon99]) gives explicit formulas for
the structure of the automorphism group Aut(Fk/k).

Because we have not discussed how to compute ramification indices in these function
field extensions, we will not go into further details of how to compute the group
structure of Aut(Fk/k) itself, algorithmically.

5. Stoll’s Algorithm

Even though algorithm V.4 can be used to compute automorphism groups over
k if k is not algebraically closed, it is much more efficient when considering k.
This is due to the fact that solving a system of polynomial equations is much
harder than checking its solvability. On the other hand, for finite k, Michael Stoll



5. STOLL’S ALGORITHM 99

implemented6 an algorithm to compute Aut(F/k) in [Sto00]. Stoll’s algorithm
(algorithm V.5) uses a totally different approach from algorithm V.4. Instead of
trying to compute the structure and generators of the automorphism group, Stoll
constructs each automorphism, separately. To characterize the automorphisms,
Stoll uses proposition V.3. Let us outline Stoll’s algorithm:

Algorithm V.5 (Stoll).
Input: Let F = k(t, u) be a hyperelliptic function field over a finite constant field
of characteristic > 2, given by the defining equation u2 = D(t).
Output: This algorithms lists the elements of Aut(F/k).
Steps:

(1) We construct all fractions α0t+α1
α2t+α3

∈ k(t) such that α0α3−α1α2 6= 0 and there
exists γ ∈ k with

D(t) =

γ
2 · (α2t+ α3)2g+2 ·D

(
α0t+α1
α2t+α3

)
if α2 6= 0

γ2 ·D
(
α0t+α1
α2t+α3

)
if α2 = 0.

(2) For each of the above fractions, we return the automorphisms t 7→ α0t+α1
α2t+α3

,
u 7→ ±ϕu, where

ϕ =

{
1

γ·(α2t+α3)g+1 if α2 6= 0
1
γ if α2 = 0.

The correctness of algorithm V.5 is an immediate consequence of proposition V.3.
We will compare the efficiencies of algorithms V.5 and V.4 in chapter VI. It will
turn out that algorithm V.5 is fast if the automorphism group is small but that
its running time seems to grow linearly with the order of the automorphism group.
Because the algorithm has to consider every reduced automorphism separately, this
observation is plausible.

6A theoretical discussion of Stoll’s algorithm does not seem to exist, yet. The following is based
on the Magma source code, only.





CHAPTER VI

Computational Aspects

One of our motivations for considering automorphism groups of hyperelliptic func-
tion fields was to sort out fields yielding insecure Jacobians, quickly. Because of
its generality, the Pohlig-Hellman attack1 poses a major threat to a Jacobian’s se-
curity. Hence, we need to avoid Jacobians whose order have relevant divisors. As
we saw in section II.3, the problem of computing the order of a general Jacobian is
still unsolved. In most of the cases where order counting is possible, it takes a lot
of time. Thus, a fast test which allows us to abandon Jacobians whose order has
relevant divisors, would be of great value for the construction of secure Jacobians.

From Madan’s theorem (theorem II.1), we know that |JF | divides |JF ′ | whenever
F ′/F is a finite Galois extension of function fields. Because finite Galois subfields
are given by subgroups of the automorphism group2, we conjecture that function
fields with secure Jacobians need to have trivial3 automorphism groups. In section 1
we consider such a secure Jacobian. We will see that the automorphism group of
the corresponding hyperelliptic function field is indeed trivial.

In order to get an idea of how often our test will report an insecure field, we in-
vestigate the number of hyperelliptic function fields with non-trivial automorphism
group in section 2. If a function field has non-trivial automorphisms, we would like
to know how much influence this fact has on the actual security of the correspond-
ing Jacobian—which we suspect to be insecure because of Madan’s theorem. This
influence can be measured by the fraction of the group orders of the Jacobians of the
given and fixed fields. Because Madan’s theorem does not contain any statement
on this fraction, we investigate it computationally in section 3.

The authors implementation of algorithm V.4 and its running time are discussed
in section 4, where we also compare it to the efficiency of Stoll’s algorithm (algo-
rithm V.5).

1. A Secure Jacobian

The first question which arises when thinking about the usage of automorphism
groups to identify hyperelliptic function fields with insecure Jacobians is, whether
secure hyperelliptic function fields have trivial automorphism groups.

Using zeta function methods4, the author was able to construct a hyperelliptic
function field which resists most known attacks5:

Example VI.1. Let F = F361(t, u) with u2 = t5 + t4 + t. The usual zeta function
algorithm yields

|JF | = 8 · 2021636587403726826456314444374236419919242578545012376397,

1cf. section II.2.
2cf. theorem I.25.
3i.e. it only contains the hyperelliptic involution
4cf. section II.3
5cf. section II.2

101
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where the latter factor p0 is a prime of 191 bits. Because of the size of p0, the discrete
logarithm problem on JF cannot be solved using the Pohlig-Hellman method. It is
easy to prove that p0 does not divide

(
361
)l − 1 for any l in the range

1 ≤ l ≤ (log2(3
61))2 ≈ (96.68)2 ≈ 9347.5.

Hence, the Frey-Rück attack is inapplicable to JF . That the Adleman-DeMarrais-
Huang attack is no threat to JF is obvious, because gF = 2 ≤ 4. Finally, |JF | is no
power of 3, which avoids the Rück attack.

Applying algorithm V.4, we obtain that F has the trivial automorphism group

Aut(F/F361) = Aut(FF361/F361) = 〈Φ〉,
which is generated by the hyperelliptic involution.

This example leads us to assume that secure fields have trivial automorphism
groups. Furthermore, this example proves that Madan’s theorem (theorem II.1)
cannot be reversed: Even though |JF | has non-trivial divisors, there are no auto-
morphisms whose fixed field has a divisor class number dividing any of them.

2. The Number of Non-Trivial Automorphism Groups

In this section we investigate the probability for a hyperelliptic function field to have
a non-trivial automorphism group over the algebraic closure of its constant field,
experimentally. This probability gives an idea of the usefulness of algorithm V.4 for
checking hyperelliptic function fields for the security of their Jacobians: The more
fields have non-trivial automorphism group, the more insecure fields can be avoided
from being checked for security by more expensive methods. The question of how
insecure a field with non-trivial automorphism group is, is discussed in section 3.

To estimate the probability for non-trivial automorphisms, the author computed
the reduced automorphism groups Aut(Fk/k)/〈Φ〉 of the following hyperelliptic
function fields F/k using algorithm V.4:

(1) All hyperelliptic function fields F/F3 of genera 2 and 3 in imaginary quadratic
representation. See sections 1 and 2 of appendix A for a list of those such fields
with non-trivial automorphism group Aut(FF3/F3).

(2) All hyperelliptic function fields F/F5 of genus 2 in imaginary quadratic rep-
resentation. See section 3 of appendix A for a list of those such fields with
non-trivial automorphism group Aut(FF5/F5).

(3) 10000 random hyperelliptic function fields F/Fp of genus 3 over prime fields
of small characteristic 3 ≤ p ≤ 257. See section 4 of appendix A for a list of
those such fields with non-trivial automorphism group Aut(FFp/Fp).

(4) 10000 random hyperelliptic function fields F/Fp of genus 3 over prime fields
of large6 characteristic 16411 ≤ p ≤ 32003. All of these fields had trivial
automorphism group.

(5) 6900 random hyperelliptic function fields F/Fp of genus 4 over prime fields of
small characteristic 3 ≤ p ≤ 257. See section 5 of appendix A for a list of
those such fields with non-trivial automorphism group Aut(FFp/Fp).

(6) 6685 random hyperelliptic function fields F/Fp of genus 3 over prime fields
of large characteristic 16411 ≤ p ≤ 32003. All of these fields had trivial
automorphism group.

6Our implementation of algorithm V.4 uses Singular ([GPS+02]) for Gröbner basis computa-
tions. Because field characteristics are restricted to be ≤ 32003 in Singular, examples with larger
characteristic cannot be computed using the author’s implementation.
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Genus Characteristic p Number of Examples Non-Trivial
(1) 2 3 162 29.6%
(1) 2 5 2500 16.0%
(2) 3 3 1458 10.2%
(3) 3 3–257 10000 0.15%
(4) 3 16411–32003 10000 0%
(5) 4 3–257 6900 0.12%
(6) 4 16411–32003 6685 0%
Table 1. Relative frequencies of hyperelliptic function fields over
Fp with non-trivial automorphism group over Fp in examples com-
puted by the author. The number in the first column specifies the
kind of example as discussed in section 2.

A collection of all of these examples can be found in [Göb03b].

The resulting relative frequencies of non-trivial automorphism groups are listed in
table 1. From this data, we conjecture that it is very unlikely to find hyperelliptic
function fields of large characteristic, which have non-trivial automorphism groups.
In contrast, the genus of the considered fields does not seem to have much influence
on the probability for finding non-trivial automorphisms.

We conclude that the computation of automorphism groups can only be useful for
identifying insecure fields, if the characteristic is very small. On the other hand, it
is quite easy to compute the divisor class number, if the characteristic is small (cf.
section II.3). Hence, our initial goal to develop a fast criterion for insecure curves
does not seem to be achievable by computing automorphism groups.

3. Fixed Fields and Their Class Numbers

Madan’s theorem tells us that the order of the Jacobian of a Galois subfield divides
the order of the Jacobian of a given function field F . From this fact, we conjec-
tured that hyperelliptic function fields with non-trivial automorphism groups yield
insecure Jacobians, because each non-trivial automorphism defines a subfield: Its
fixed field. The aim of this section is to investigate experimentally, whether this
conjecture is true. We compute fixed fields and compare their class numbers to
that of F . If the class number of the fixed fields is about as large as the remaining
factor of |JF |, the corresponding automorphism subgroup has the biggest possible
impact on the security of JF .

Of course the largest Jacobians can be expected if we take small automorphism
subgroups. This is due to the facts that the Jacobian order is7 approximately |k|g
and that the genus of the subfield is8 at most 1 + gF−1

m for each nontrivial auto-
morphism subgroup G of order m. This is, why we restrict our discussion to cyclic
subgroups of Aut(Fk/k).

First, we have to find defining equations for fixed fields of cyclic automorphism
subgroups. We start with a simple fact on the elements of F .

Lemma VI.1. Let F = k(t, u), u2 = Dt be a hyperelliptic function field. The
elements of F can be written in the form∑m

j=0 ajt
j + u

∑m
j=0 bjt

j∑m
j=0 cjt

j
,

7Hasse-Weil interval, see page 40.
8This inequality is an easy consequence of corollary I.23 and |G| = [F : F G] =≥ 2.
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where m ∈ N, aj , bj , cj ∈ k and (am, bm, cm) 6= 0.

Proof. Because u2 ∈ k(t), each element can be written in the form∑m
j=0 ajt

j∑m
j=0 c

′
jt
j

+ u

∑m
j=0 bjt

j∑m
j=0 djt

j
,

with m ∈ N+, aj , bj , c′j , dj ∈ k and (am, bm, cm, dm) 6= 0. Computing the common
denominator of both of these fractions yields our claim. �

Using this fact, it is very easy to characterize the elements of a fixed field:

Corollary VI.2. Let F = k(t, u) be a hyperelliptic function field and U a subgroup
of Aut(F/k). Then

FU =

{∑m
j=0 ajt

j + u
∑m
j=0 bjt

j∑m
j=0 cjt

j
∈ F

∣∣∣∣∣∑m
j=0 ajt

j∑m
j=0 cjt

j
=

∑m
j=0 ajψ(t)j∑m
j=0 cjψ(t)j

and

u
∑m
j=0 bjt

j∑m
j=0 cjt

j
=
ψ(u)

∑m
j=0 bjψ(t)j∑m

j=0 cjψ(t)j
for all ψ ∈ U

}

Proof. This easily follows from lemma VI.1, the linear independency of 1 and
u and the fact that each automorphism maps u to a k(t)-multiple of u (proposi-
tion V.3). �

If we are able to give an upper bound9 for the degreem of the elements of FU , we can
compute explicit formulas for these elements algorithmically. Unfortunately, such
formulas do not give us a defining equation for the fixed field. Hence, these formulas
are useless if we wish to compute data of the fixed field’s Jabobian. Therefore, we
will not discuss this algorithm in more detail. Let us prove some facts on defining
equations of fixed fields of cyclic automorphism groups, instead.

From theorem V.6, we know that each cyclic subgroup10 of the automorphism group
is given by ψ : t 7→ η2t, u 7→ ηνu, where η is a root of unity and ν ∈ {0, 1} is the
exponent of the factor t in the normal form. We consider the cases ν = 0 and ν = 1
separately, starting with the easier case ν = 0.

3.1. Fixed Fields of Cn, where (n, char(k)) = 1 and ν = 0. Let us consider the
case, where F has a defining u2 =

∏s
j=0(t

n − aj). According to theorem V.6, we
have U(Cn) = 〈Φ, ψ〉 with ψ : t 7→ η2t, u 7→ u, where η is a 2n-th primitive root of
unity. In other words, ψ multiplies t by an n-th primitive root of unity and leaves
u unchanged. Obviously, ψ generates both a cyclic subgroup of order n of U(Cn)
and the quotient group Cn ∼= U(Cn)/〈Φ〉. Thus, the fixed field we are interested in,
is F Cn = Fψ. This field can be computed very easily from our normal form:

Proposition VI.3. Let F = k(x, y) be a hyperelliptic function field of type F[Cn, k]
over an algebraically closed constant field k of characteristic p such that (n, p) =
1. Furthermore, let u2 =

∏s
j=0(t

n − aj) be the corresponding normal form and
U(Cn) = 〈Φ, ψ〉. Then Fψ = k(tn, u).

9The author conjectures m ≤ |U |. An attempt to prove this supposition has not been made.
10whose order is relatively prime to the characteristic; the case of elementary abelian groups is
discussed in section 3.3 below.
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Proof. From ψ(tn) = ψ(t)n = (η2)ntn = tn, ψ(u) = u we get k(tn, u) ⊆ Fψ. To
show equality, we consider extension degrees.

Obviously, Xn− tn ∈ k(tn, u)[X] is a polynomial with root t, i.e. [F : k(tn, u)] ≤ n.
From Galois theory, we know that [F : Fψ] = |〈ψ〉| = n. We infer

n = [F : Fψ] ≤ [F : Fψ] · [Fψ : k(tn, u)] = [F : k(tn, u)] ≤ n.

Hence [Fψ : k(tn, u)] = 1, i.e. Fψ = k(tn, u) as claimed. �

Remark VI.4. If the basis transformation x = α0t+α1
α2t+α3

, y = ϕ(t)u is known ex-
plicitly in proposition VI.3, we can also express the fixed field in terms of x and
y:

F = k

((
α3x− α1

α0 − α2x

)n
, ϕ

(
α3x− α1

α0 − α2x

)
· y
)
.

This formula is obvious from t = α3x−α1
α0−α2x

.

Example VI.2. Let F = F61(x, y) be given by

y2 = x10 + 19x9 + 23x8 + 14x7 + 19x6 + 51x5 + 20x4 + 48x3 + 14x2 + 30x+ 3.

Using algorithm V.4 we obtain Aut(FF61/F61)/〈Φ〉 ∼= C3. For type F[C3,F61], we
obtain the normal form

u2 = (t3 − 32)(t3 − 39)(t3 − 55)

and the basis transformation

t =
11x+ 46
x+ 42

, u =
13y

(x+ 42)5
.

The corresponding automorphism (apart from Φ) is given by ψ : t 7→ 13t, u 7→ u.
From proposition VI.3 and remark VI.4 we obtain the fixed field

(FF61)
ψ

= F61(t3, u) = F61

((
11x+ 46
x+ 42

)3

, u

)
.

Furthermore, our transformation as well as our automorphism are defined over F61.
Thus, F61(x, y) = F61(t, u) and 〈ψ〉 ≤Aut(F/F61). We obtain

Fψ = F ∩ (FF61)
ψ

= F ∩ F61(t3, u) = F61(t3, u).

Using KASH ([DFK+97]), we obtain the following orders of Jacobians:

|JFψ | = 636, |JF | = 177476649696 = 636 · 279051336.

In table 2, we list some hyperelliptic function fields of type F[Cn, k], where ν = 0, i.e.
where the defining polynomialDt is not divisible by t, and where the automorphisms
in U(Cn) are defined over k. The divisor class numbers have been computed using
KASH ([DFK+97]). Note that the given defining equations are the normal forms
of general hyperelliptic fields of this type. We observe that |JFCn | can be larger,
smaller or even equal to the remaining factor of |JF |. To get an idea of this relation,
we computed 140 examples of fixed fields of C2. On the average, |JFC2 | is about
67% of the remaining factor |JF |/|JFC2 |. For different cyclic group orders n, this
percentage changes to 0, 7% (n = 3, 10 examples) or 0, 1% (n = 4, 14 examples).
These examples can be found in section 1 of appendix B. They suggest, that fields
of type F[C2, k], where ν = 0 are insecure, while cyclic subgroups of higher order
do not seem to pose serious security problems.
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k n s aj |JF | |JFCn | |JF |
|J
FCn |

F97 2 4 10, 14, 17, 91 976768 104 9392
F83 2 6 1, 5, 12, 16, 46, 69 4198547456 6976 601856
F83 2 6 1, 8, 26, 27, 59, 78 4009239552 7376 543552
F17 2 5 3, 8, 13, 14, 16 147456 384 384
F31 2 5 4, 8, 16, 17, 22 952576 976 976
F29 2 3 7, 20, 23 960 40 24
F79 2 5 6, 23, 40, 44, 49 37355520 7296 5120
F97 3 3 15, 65, 77 81870336 96 852816
F31 3 3 13, 14, 16 1288656 36 35796
F101 4 3 5, 84, 100 9599975424 96 99999744
F97 4 3 1, 8, 64 13530240000 100 135302400

Table 2. Jacobian orders of hyperelliptic function fields F =
k(t, u) of the form u2 =

∏s−1
j=0(t

n − aj) and of their fixed fields
F Cn = k(tn, u)

3.2. Fixed Fields of Cn, where (n, char(k)) = 1 and ν = 1. We consider the
case, where F has a defining u2 = t

∏s
j=0(t

n − aj). According to theorem V.6, we
have U(Cn) = 〈Φ, ψ〉 with ψ : t 7→ η2t, u 7→ ηu, where η is a 2n-th primitive root of
unity. In contrast to the above case, we have Fψ 6= F Cn . This follows from

ψn(t) = η2t = t, ψn(u) = ηnu = −u,

i.e. Φ = ψn ∈ 〈ψ〉 ∼= C2n. Therefore, we need to find a generator σ for Cn≤Aut(F/k),
if we want to compute F Cn . To do so, we discuss some simple, group-theoretic facts.

Lemma VI.5. Let n > 1 be an integer and G a cyclic group of order 2n, generated
by ψ. Then

(1) G contains exactly one cyclic subgroup S of order n.
(2) ψ2 generates S.
(3) G contains exactly one element of order 2. It is given by ψn.

Proof. Let S, S′ ≤ G, S, S′ ∼= Cn. If S 6= S′ we obtain S ∩ S′ = {1}. Hence
|S ∪ S′| = 2n− 1. The remaining element of G needs to be ψ because each element
of S ∪ S′ has order ≤ n. From ord(ψ) = 2n ≥ 4, we obtain ψ3 6= ψ, i.e. ψ3 ∈
S ∪ S′. Thus, ψ3n = 1, which implies ψn = 1. Contradiction. Thus, S is uniquely
determined.

Because ψ2n = 1, the order of ψ2 is a divisor of n. As ψ is a generator of G, the
order of ψ2 needs to be n itself. Thus, 〈ψ2〉 ∼= Cn, which implies 〈ψ2〉 = S since S
is unique.

Let θ ∈ G have order 2. There exists some integer τ ∈ {1, . . . , 2n− 1} s.th. θ = ψτ .
From θ2 = 1 we obtain 2n | 2τ , i.e. n | τ . Thus, τ = n and θ is the only element of
order 2. �

So, the generator σ of Cn≤Aut(F/k) we are looking for is just ψ2. Because we want
to examine the class number relation between F and Fσ, we are not interested in
rational fixed fields11. Hence, only cases where Φ /∈ 〈σ〉 are of interest to us.

11The Jacobian of a rational function field is trivial. This is folklore knowledge and can easy be
proved using proposition I.36



3. FIXED FIELDS AND THEIR CLASS NUMBERS 107

Lemma VI.6. Let n > 1 be an integer, G a cyclic group of order 2n, ψ a generator
of G, σ a generator of the cyclic subgroup of order n and Φ ∈ G the element of
order 2. Then Φ ∈ 〈σ〉 iff n is even.

Proof. By lemma VI.5 we obtain σ = ψ2 and Φ = ψn. The condition Φ ∈ 〈σ〉 is
equivalent to ψ2ν = σν = Φ = ψn for some ν, which is the same as 2n | 2ν − n, i.e.
2µn = 2ν−n, for some µ, ν. This in turn is equivalent to the existence of µ, ν such
that (2µ+ 1)n = 2ν, which is fulfilled iff n is even. �

Now, we are able to compute the fixed field of Cn in the current case:

Proposition VI.7. Let F = k(x, y) be a hyperelliptic function field of type F[Cn, k]
over an algebraically closed constant field k of characteristic p such that (n, p) =
1. Furthermore, let u2 = t

∏s
j=0(t

n − aj) be the corresponding normal form and
U(Cn) = 〈Φ, ψ〉. Then 〈ψ2〉 ∼= Cn is our cyclic group and the following holds:

(1) If n is even, then Fψ
2

is rational.
(2) If n is odd, then Fψ

2
= k(tn, t

n−1
2 u) is given by the defining equation

U2 = T
s∏
j=0

(T − aj),

where T := tn, U := t
n−1

2 u.

Proof. From theorem V.6 we know that

ψ : t 7→ η2t, u 7→ ηu,

where η is a primitive 2n-th root of unity. We have seen above that U(Cn) ∼= C2n

and that this group is generated by ψ. From lemma VI.5, we know that there
is exactly one cyclic subgroup Cn of U(Cn) and that it is generated by σ := ψ2.
Furthermore, we have Φ = ψn. Lemma VI.6 implies that Φ ∈ 〈σ〉 iff n is even.
According to this condition, we distinguish the following cases:

(1) If n is even, we have Φ ∈ 〈σ〉. We obtain the tower F ⊇ FΦ ⊇ Fσ of fields.
Because FΦ = k(t) is rational, Lüroth’s theorem12 implies that Fσ also needs
to be rational.

(2) Let n be odd, now. First, we show that

k(tn, t
n−1

2 u) ⊆ Fσ.

To do so, we prove that both generators are fixed by σ:

σ(tn) = ψ2(t)n = (η4)ntn = (η2n)2tn = tn,

σ(t
n−1

2 u) = ψ2(t
n−1

2 u) = (η4)
n−1

2 t
n−1

2 · η2u = η2n−2+2t
n−1

2 u = t
n−1

2 u.

Since this implies the above inclusion, it remains to show

k(tn, t
n−1

2 u) ⊇ Fσ.

12Lüroth’s theorem can be found in any good algebra book. See for example [vdW93a, §73].
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To verify this fact, we discuss the dia-
gram on the right. Because n is odd,
there exists a ν ∈ N s.th. n−2ν = 1, i.e.
ψ = ψn−2ν = ψnψ2n−2ν = Φσn−ν ∈
〈σ,Φ〉. Hence, 〈σ,Φ〉 = 〈ψ〉 ∼= C2n,
which implies the extension degrees
given in the diagram. FΦ = k(t)
is trivial. Above we have seen that
σ(tn) = tn, i.e. k(tn) ⊆ F 〈σ,Φ〉. Be-
cause t is a root of Xn− tn ∈ k(tn)[X],
we obtain [k(t) : k(tn)] ≤ n, which im-
plies k(tn) = F 〈σ,Φ〉. Hence, the dia-
gram is correct.
Because t

n−1
2 u /∈ k(tn), we need to

have [k(tn, t
n−1

2 u) : k(tn)] ≥ 2, which
yields [Fσ : k(tn, t

n−1
2 u)] = 1, i.e.

Fσ = k(tn, t
n−1

2 u) as claimed.

F

n 2

55
55

55
5

Fσ

||
||

||
||

2

FΦ

n

��
��
��
��
��
��
��
�

= k(t)

k(tn, t
n−1

2 u)

BB
BB

BB
BB

F 〈σ,Φ〉= k(tn)

Finally, we prove the defining equation. Let T := tn, U := t
n−1

2 u. Then,

U2 = tn−1u2 = tn−1 · t
s∏
j=0

(tn − aj) = tn
s∏
j=0

(tn − aj) = T
s∏
j=0

(T − aj)

as was to be shown.

�

Of course, remark VI.4 can be applied analogously. We will see this in the follow-
ing example. Because rational subfields are not very interesting, we only give an
example for the case where n is odd.

Example VI.3. Let F = F97(x, y) be given by

y2 = x8 + 76x7 + 63x6 + 89x5 + 61x4 + 12x3 + 55x2 + 86x+ 30.

Setting t := 74x+26
x+22 , u := 35

(x+22)4 · y we obtain the normal form

u2 = t(t3 − 39)(t3 − 18).

The mapping ψ : t 7→ 61t, u 7→ 62u defines an automorphism with U(C3) = 〈Φ, ψ〉,
〈ψ〉 ∼= C6 and 〈ψ2〉 ∼= C3. From proposition VI.7 we obtain the fixed field

(FF97)
ψ2

= F97(t3, tu) = F97

((
74x+ 26
x+ 22

)3

,
68x+ 37
(x+ 22)5

· y

)
=: F97(T,U),

where U2 = T (T − 39)(T − 18). Because both our automorphisms and our basis
transformation are defined over F97 itself, we obtain Aut(FF97/F97) = Aut(F/F97)
and F C3 = F97(T,U). Using KASH ([DFK+97]), we obtain the following class
numbers:

|JFC3 | = 92, |JF | = 783104 = 92 · 8512.

In table 3, we list some hyperelliptic function fields of type F[Cn, k], where ν = 1,
i.e. where the defining polynomial Dt is divisible by t and all elements of U(Cn) are
defined over k. Because n needs to be odd if we want non-rational fixed fields and
large n results in large class numbers (|J| ≈ |k|g = |k|ns with s ≥ 3, which also is
needed for non-rational fixed fields), we only considered the case n = 3, here. The
divisor class numbers have been computed using KASH ([DFK+97]). Note that the
given defining equations are the normal forms of general hyperelliptic fields of this
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k s aj |JF | |JFCn | |JF |
|J
FCn |

F7 3 1, 3, 4 2016 8 252
F7 3 1, 3, 6 2304 12 192
F7 3 2, 4, 6 1824 8 228
F13 3 3, 6, 11 20124 12 1677
F31 3 1, 22, 26 1954800 36 54300
F31 3 2, 5, 18 1954800 36 54300
F31 3 4, 9, 19 1083600 28 38700
F31 3 6, 10, 17 978984 24 40791
F31 3 6, 16, 26 1566864 36 43524
F31 3 19, 26, 28 2135484 36 59319

Table 3. Jacobian orders of hyperelliptic function fields F =
k(t, u) of the form u2 = t

∏s−1
j=0(t

3 − aj) and of their fixed fields
F C3 = k(t3, tu)

type. To get an idea of the relation between |JFCn | and the remaining factor of
|JF |, we computed 126 examples13 of fixed fields of C3. On the average, |JFC3 | is
about 0.7% of the remaining factor |JF |/|JFC3 |. This percentage is approximately
the same as in the case ν = 0 above.
We conjectured at the end of section 3.1 that exactly the cyclic automorphism
subgroups of order 2 pose a major threat on the security of the corresponding Jaco-
bian. The examples given in this section confirm this supposition: Automorphisms
of order 3 yield fixed fields whose Jacobians are quite small.

3.3. Fixed Fields of Cmp . In the above sections, we computed fixed fields of
cyclic automorphism subgroups whose order is prime to the characteristic p. As
we would like to compute fixed fields of all kinds of cyclic subgroups, we consider
the remaining case of fixed fields of elementary abelian p-groups, now. Accord-
ing to theorem V.6, the automorphism group has such a subgroup U(Cmp ), if the
hyperelliptic function field has the normal form

u2 =
s−1∏
j=0

(∏
a∈A

(t+ a)− aj

)
,

where s ∈ N+, the aj ∈ k are pairwise distinct and A ≤ (k,+), |A| = pm. Then
UF (Cmp ) is generated by Φ and all ψa : t 7→ t+ a, u 7→ u with a ∈ A. It is obvious
that the corresponding Cmp is generated by the ψa, a ∈ A. Computing the fixed
field is quite easy in this case:

Proposition VI.8. Let F = k(x, y) be a hyperelliptic function field of type F[Cmp , k]
over an algebraically closed constant field k of characteristic p. Furthermore, let

u2 =
s−1∏
j=0

(∏
a∈A

(t+ a)− aj

)
,

where aj ∈ k and A ≤ (k,+), |A| = pm be the corresponding normal form. Let
U(Cmp ) = 〈Φ, (ψa)a∈A〉. Then G := 〈(ψa)a∈A〉 ∼= Cmp is our elementary abelian
group and its fixed field is given by

FG = k

(∏
a∈A

(t+ a), u

)
.

13These examples can be found in the section 2 of appendix B.
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Setting T :=
∏
a∈A(t + a), U := u, we obtain FG = k(T,U) with the defining

equation U2 =
∏s=1
j=0(T − aj).

Proof. According to theorem V.6, the automorphisms ψa, a ∈ A are given by
ψa : t 7→ t+ a, u 7→ u. From this, it is obvious that

U(Cmp ) = 〈Φ, (ψa)a∈A〉 = 〈Φ〉 × 〈(ψa)a∈A〉 = 〈Φ〉 ×G ∼= C2 × Cmp .

Thus, G is our elementary abelian group. We obtain FG ⊇ k(T,U) from the
following equations, which are consequences of a ∈ A and A being a group:

ψa(T ) =ψa

(∏
α∈A

(t+ α)

)
=
∏
α∈A

(t+ a+ α) =
∏
α∈A

(t+ α) = T

ψa(U) =ψa(u) = u = U.

Next, we show FG = k(T,U): We consider the polynomial∏
α∈A

(X + α)− T ∈ k(T,U)[X].

Its degree is |A| = pm and t is a zero. Thus, [F : k(T,U)] ≤ pm. Because
[F : FG] = pm, we obtain

pm ≥ [F : k(T,U)] = [F : FG][FG : k(T,U)] = pm · [FG : k(T,U)] ≥ pm,

which implies FG = k(T,U) as claimed. Now, it is obvious that FG has the defining
equation U2 =

∏s−1
j=0(T − aj). �

Again we can apply remark VI.4 analogously. We will see this in the following
example.

Example VI.4. We consider the field F3(x, y) given by

y2 = x9 + x7 + x6 + 2x4 + 2x3 + 2x.

Setting t := 1
x+1 and u := 1

(x+1)5 y, we obtain the normal form

u2 =(t3 − t)(t3 − t− 1)(t3 − t+ 1)

=

(
2∏
a=0

(t− a)

)
·

(
2∏
a=0

(t− a)− 1

)
·

(
2∏
a=0

(t− a) + 1

)
.

For a ∈ A = {0, 1, 2}, set ψa : t 7→ t+a, u 7→ u, which yields U(C3) = 〈Φ, ψ0, ψ1, ψ2〉.
Let G := {ψ0, ψ1, ψ2}. According to proposition VI.8, the fixed field is given by

FF3
G

= F3(t3 − t, u) = F3

(
1

(x+ 1)3
− 1
x+ 1

, u

)
= F3

(
2x2 + x

x3 + 1
,

1
(x+ 1)5

y

)
.

Because all of the above is defined over F3 we further obtain

FG = F3(t3 − t, u).

Using KASH ([DFK+97]), we obtain the following class numbers:

|JFG | = 4, |JF | = 112 = 4 · 28.

In table 4, we list some hyperelliptic function fields of type F[Cmp , k], where p =
char(k). Because we want non-rational fixed fields and the class numbers need to be
computable reasonably fast, we only consider m = 1 and small p. The divisor class
numbers have been computed using KASH. Note that the given defining equations
are the normal forms of general hyperelliptic fields of this type. On the average
over the examples given in table 4, |JFC3 | is about 1.3% of the remaining factor
|JF |/|JFC3 |.
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k s aj |JF | |JFCn | |JF |
|J
FCn |

F3 3 0, 1, 2 112 4 28
F5 3 0, 1, 2 99968 8 12496
F5 3 0, 1, 3 134464 4 33616
F5 3 0, 1, 4 46208 8 5776
F5 3 0, 2, 3 61504 4 15376
F5 3 0, 2, 4 134464 4 33616
F5 3 0, 3, 4 99968 8 12496
F5 3 1, 2, 3 262328 8 32791
F5 3 1, 2, 4 28684 4 7171
F5 3 1, 3, 4 28684 4 7171
F5 3 2, 3, 4 262328 8 32791

Table 4. Jacobian orders of hyperelliptic function fields F =
k(t, u) of the form u2 =

∏s−1
j=0

((∏
a∈k(t− a)

)
− aj

)
, and of their

fixed fields F Cp = k
(∏

a∈k(t− a), u
)
, where p := char(k)

At the end of sections 3.1 and 3.2 we conjectured that exactly the cyclic automor-
phism subgroups of order 2 pose a major threat on the security of the corresponding
Jacobians. The examples given in this section confirm this supposition: Even for
small characteristic p, automorphisms of order p yield fixed fields whose Jacobians
are quite small.

4. Efficiency Considerations and Comparison to Stoll’s Algorithm

In this section, we discuss some issues of the author’s implementation of algo-
rithm V.4. We consider its running time and compare it to that of Stoll’s algorithm
(algorithm V.5).

The author implemented algorithm V.4 for the computer algebra systems MuPAD
([Sci02]) and Singular ([GPS+02]). The Gröbner basis steps are implemented for
Singular, while anything else—i.e. Brandt’s normal forms, computing their inte-
ger parameters, substitution, computing ϕ and the comparing of coefficients—is
programmed for MuPAD. Both parts of the program are combined using Bash
([Fre98]) scripts. It was decided to separate the Gröbner basis steps from the
rest of the computation, since on the one hand, Singular has one of the most ef-
ficient Gröbner basis implementations. On the other hand, Singular is restricted
to characteristic p ≤ 32003, which is too small for many fields of cryptographic
relevance.

As a proof of concept, the implementation is not optimized for speed at all. For ex-
ample, we actually test for all types of function fields, regardless of the fact whether
Aut(Fk/k)/〈Φ〉 contains cyclic subgroups. Of course, if no cyclic subgroups exist,
the automorphism group needs to be trivial, so we check many field types in vain.
We check for all types, because of our separation of code between MuPAD and Sin-
gular: Our MuPAD code writes code for Singular without obtaining any feedback
on the types of F . Hence, checking for all types was easier to implement.

Because of these implementation issues, a speedup by a factor of at least 10 ought
to be possible using a “proper” implementation. Nevertheless, the examples given
in table 5 suggest that even our implementation computes the (reduced) auto-
morphism group Aut(Fk/k)/〈Φ〉 of an arbitrary hyperelliptic function field very
efficiently. The performance seems to depend neither on the size of the constant
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k Defining Equation |Aut(k(x, y)/k)| seconds
g = 2:
F9491 y2 = x5 − 4608x+ 1124 2 12.6
F10223 y2 = x6 − 4x4 − 4x2 + 1 4 52.5
F10711 y2 = x6 + 394x3 − 3378 12 23.3
F3 y2 = x6 + x4 + x2 + 1 24 9.8
F3 y2 = x6 + x4 + x2 + 1 48 9.2
F5 y2 = x5 + 4x 240 22.7
g = 3:
F11 y2 = x7 + 6x6 + 5x4 + 4x3 + x+ 3 2 67.0
F3 y2 = x8 + x7 + 2x5 + 2x+ 2 8 30.3
F7 y2 = x7 + 6x4 + 4x3 + x2 + 2 42 67.8
g = 4:
F5 y2 = x10 + x8 + 3x6 + 4x2 + 4 4 81.8
F3 y2 = x9 + 2x7 + 2x3 + 2x 8 46.6

Table 5. Time to compute Aut(k(x, y)/k) on an Intel r© Cele-
ron r©, 1.7GHz, ordered by genus and |Aut(k(x, y)/k)|

field, nor on the order of Aut(Fk/k). Even though increasing the genus increases
the size of the systems of polynomials—the number of both the polynomials and the
parameters increase linearly with g for types like F[C2, k]—, the examples indicate
that even for fields of genus 4 and higher, the automorphism group computations
are quite fast. More examples of running times can be found in sections 4 and 5 of
appendix A.

Let us discuss the cryptographic application, briefly. As explained before, the initial
goal was to provide an algorithm to check, whether a given hyperelliptic function
field promises to yield a secure Jacobian, i.e. whether it is worthwhile to apply more
expensive algorithms to check a given curve for security. Because of the attacks
mentioned in section II.2, secure curves need to have small automorphism groups
Aut(F/k). Since Aut(F/k) ≤ Aut(Fk/k), algorithm V.4 can be used to assure
this property. The timings of table 5 also apply to the set of relevant curves, as
secure curves are of genus ≤ 4 because of the Adleman-DeMarrais-Huang attack
([ADH94]) and as the characteristic of the constant field and the size of the auto-
morphism group do not seem to influence the running time. Hence, algorithm V.4
can be applied efficiently to hyperelliptic function fields of practical relevance. On
the other hand, the examples given in section 2 indicate that it is not very probable
to identify hyperelliptic function fields with insecure Jacobian by investigating their
automorphism groups.

The extensions to algorithm V.4 which compute the automorphism group over k
itself or which construct the smallest k′ such that Aut(Fk′/k′) = Aut(Fk/k) have
not been implemented. Nevertheless, we will compare algorithm V.4 to Michael
Stoll’s AutomorphismGroup function (algorithm V.5), experimentally. To do so, we
choose the constant field k of F large enough, such that Aut(F/k) = Aut(Fk/k)
holds14, in each example. Aut(Fk/k) is computed using algorithm V.4, while Stoll’s
method is used to compute Aut(F/k). The running times for some examples are
given in table 6.

14We start with a hyperelliptic function field F̃ over Fp for some prime p and compute

Aut(F̃Fp/Fp)/〈Φ〉 using algorithm V.4. Then, we try the extensions k/Fp by hand, until al-

gorithm V.5 yields an automorphism group Aut(F̃ k/k) of order 2 · |Aut(F̃Fp/Fp)/〈Φ〉|. Setting

F := F̃ k, we obtain Aut(F/k) = Aut(Fk/k).
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Function Field F = k(t, u) Running Time
k Defining Equation |Aut(F/k)| Stoll Göb
F36 u2 = t9 + 2t3 + t+ 2 36 2.9 27.7
F52 u2 = t5 + 4t 240 18.1 22.7
F72 u2 = t7 + 6t 672 228.3 61.0
F34 u2 = t9 + 2t 1440 1347.3 34.1
F112 u2 = t11 + 10t 2640 5625.1 90.3 5

Table 6. Running time comparison between Michael Stoll’s
algorithm V.5 and algorithm V.4, timings in seconds on an
Intel r© Celeron r©, 1.7GHz

From these examples, Stoll’s algorithm seems to be quite fast for small automor-
phism groups, while it is very slow for large ones. As stated above, our imple-
mentation does not seem to be influenced by the group size at all. Thus, if you
are quite sure that the field you are investigating only has a small automorphism
group, Stoll’s algorithm ought to be preferred. Even though the majority of hy-
perelliptic function fields has a small automorphism group15, the remaining fields
do not seem to be suited for Stoll’s algorithm. Hence, in order to compute the
automorphism group of an arbitrary hyperelliptic function field, it might be sensi-
ble to use algorithm V.4 as it at least seems to be more predictable with respect
to performance. Furthermore, Stoll’s algorithm returns every single automorphism,
while our method, gives the structure as well as the generators of the automorphism
group. Thus, it also depends on the application, which of the algorithms ought to
be preferred.

15See section 2.





Conclusion

In this thesis, we developed and investigated algorithms to compute the automor-
phism groups of hyperelliptic function fields16. Let us give a brief summary of the
major steps to achieving this goal as well as of some interesting byproducts and
open problems.

We devised methods to decide whether two hyperelliptic function fields F , G are
isomorphic: If both F and G are known explicitly, i.e. if their defining equations do
not contain parameters, algorithm IV.2 is very fast, but it can only decide between
F 6∼= G and knowing nothing at all. Furthermore, it can only be used if k is not
algebraically closed. To find out whether F ∼= G, we can apply algorithm IV.9,
which uses specific normal forms developed in section IV.3. Even if G is only given
up to some unknown parameters, we can find out, whether there exist parameter
settings such that F ∼= G. This time, we need to use the slower yet quite efficient
algorithm IV.7 which uses Gröbner basis techniques. It remains unknown whether
it is possible to extend algorithm IV.9 in such a way that it can also be used in
this case17. If this could be done efficiently, we likely obtained an algorithm for
computing automorphism groups, which was even faster than algorithm V.4.

Algorithm IV.7 is mainly based on theorem III.18, which makes the condition for
isomorphy between hyperelliptic function fields very explicit: Given hyperelliptic
function fields k(t, u), u2 = Dt(t) and k(X,Y ), Y 2 = Dx(X), we have k(t, u) ∼=
k(X,Y ) iff there are x, y ∈ k(t, u) such that y2 = Dx(x) and the following holds:
x is a fraction of linear polynomials from k[t] and y is a k(t)-multiple of u, where
the factor y

u is given up to its sign by the relation between t and x. A theoretical
application of this theorem arises for example in section VI.3, where we investigate
fixed fields of automorphisms.

The above algorithms and the knowledge of Brandt’s normal forms (theorem V.6)
culminate in our technique to compute the structure of the reduced automorphism
group G := Aut(F/k)/〈Φ〉 as well as the generators of the automorphism group
Aut(F/k) of any hyperelliptic function field F/k, efficiently (algorithm V.4 and
its sub-algorithms). While this data is more than we need in most cases of prac-
tical interest, it would also be nice to know the structure of the automorphism
group Aut(F/k) itself. One way to tackle this problem could be to investigate the
ramification behavior of the function field extension F/FG and apply theorems by
Aristides Kontogeorgis ([Kon99], see remark V.13).

In order to show the usability of our algorithms and to check, whether our initial
motivation for their development—identifying insecure Jacobians, quickly—can be
fulfilled, we implemented several of our algorithms and computed a huge number

16For simplicity, all the function fields we talk about in this conclusion are assumed to be defined
over algebraically closed constant fields.
17cf. remark IV.14
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of examples18. We found out that even a bad (i.e. slow) implementation of algo-
rithm V.4 runs quite fast. Hence a proper implementation ought to be very efficient.
Concerning our motivation we investigated two aspects, experimentally:

(1) The probability for a hyperelliptic function field to have a non-trivial auto-
morphism group and

(2) the class number relations |JF |
|JFσ | , where σ ∈ Aut(F/k).

The probability of non-trivial automorphism groups seems to be quite high, if the
field’s characteristic is very small. If one is interested in fields of large characteristic
however, it seems to be almost certain that the automorphism group is trivial. From
the class number relations we computed, it appears to follow that automorphisms
of small order (which ought to be the most probable) are a major threat to the
Jacobian’s security: |JFσ | seems to be approximately

√
|JF |, if ord(σ) is small. Of

course, this is what is to be expected knowing the Hasse-Weil interval.

Note that our proof of Madan’s theorem (theorem II.1) delivers insight to major
parts of the relation between |JFσ | and |JF |. This relation is closely connected to the
ramification properties of F/F σ. Therefore, it would be interesting to investigate
the theory of this relation in more detail, hopefully resulting in explicit formulas
for |JF |

|JFσ | .

Our experimental results imply that our cryptographic goal can be partially ful-
filled: For hyperelliptic function fields of large characteristic, it seems unlikely to
find non-trivial automorphisms. Hence, sorting out insecure Jacobians over large
characteristic by computing automorphism groups will most probably not be suc-
cessful. On the other hand, it appears to be quite probable to find automorphisms
of fields of small characteristic. Furthermore, they seem to yield subgroups of Jaco-
bians, which destroy security. Thus, for hyperelliptic curves of small characteristic,
computing automorphism groups is a promising idea to identify insecure Jacobians.

18cf. chapter VI, the appendix and [Göb03b]



APPENDIX A

Function Fields with Nontrivial Automorphism
Groups

1. All Imaginary Quadratic Hyperelliptic Fields of Genus 2 over F3

Defining Equation of F = F3(t, u) Aut(FF3/F3)/〈Φ〉
u2 = t5 + 1 C5

u2 = t5 + t S4

u2 = t5 + t2 + 1 C2

u2 = t5 + t3 + 1 C5

u2 = t5 + t3 + t2 + 2t D3

u2 = t5 + t3 + 2 C5

u2 = t5 + t3 + 2t D2

u2 = t5 + t3 + 2t2 + 2t D3

u2 = t5 + t4 + t+ 1 C2

u2 = t5 + t4 + t2 + 2t C2

u2 = t5 + t4 + t3 + 1 C2

u2 = t5 + t4 + t3 + t2 + t C2

u2 = t5 + t4 + t3 + 2t2 + 1 S4

u2 = t5 + t4 + t3 + 2t2 + t S4

u2 = t5 + t4 + t3 + 2t2 + 2t C5

u2 = t5 + t4 + t3 + 2t2 + 2t+ 1 C5

u2 = t5 + t4 + 2t2 + t C2

u2 = t5 + t4 + 2t2 + t+ 1 D2

u2 = t5 + t4 + 2t2 + t+ 2 C2

u2 = t5 + t4 + 2t3 + t2 + 1 D3

u2 = t5 + t4 + 2t3 + 2t D3

u2 = t5 + t4 + 2t3 + 2t2 + t+ 2 D2

u2 = t5 + t4 + 2t3 + 2t2 + 2t C5

u2 = t5 + t4 + 2t3 + 2t2 + 2t+ 2 C5

u2 = t5 + 2 C5

u2 = t5 + 2t S4

u2 = t5 + 2t2 + 2 C2

u2 = t5 + 2t3 + t2 + t+ 1 C2

u2 = t5 + 2t3 + 2t D2

u2 = t5 + 2t3 + 2t+ 1 C2

u2 = t5 + 2t3 + 2t+ 2 C2

u2 = t5 + 2t3 + 2t2 + t+ 2 C2

Table 1: All imaginary quadratic hyperelliptic function fields of
genus 2 over F3 with non-trivial automorphism groups over F3

(continued)
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Defining Equation of F = F3(t, u) Aut(FF3/F3)/〈Φ〉
u2 = t5 + 2t4 + t+ 2 C2

u2 = t5 + 2t4 + t2 + t C2

u2 = t5 + 2t4 + t2 + t+ 1 C2

u2 = t5 + 2t4 + t2 + t+ 2 D2

u2 = t5 + 2t4 + t3 + t2 + t S4

u2 = t5 + 2t4 + t3 + t2 + 2 S4

u2 = t5 + 2t4 + t3 + t2 + 2t C5

u2 = t5 + 2t4 + t3 + t2 + 2t+ 2 C5

u2 = t5 + 2t4 + t3 + 2 C2

u2 = t5 + 2t4 + t3 + 2t2 + t C2

u2 = t5 + 2t4 + 2t2 + 2t C2

u2 = t5 + 2t4 + 2t3 + t2 + t+ 1 D2

u2 = t5 + 2t4 + 2t3 + t2 + 2t C5

u2 = t5 + 2t4 + 2t3 + t2 + 2t+ 1 C5

u2 = t5 + 2t4 + 2t3 + 2t D3

u2 = t5 + 2t4 + 2t3 + 2t2 + 2 D3

Table 1: All imaginary quadratic hyperelliptic function fields of
genus 2 over F3 with non-trivial automorphism groups over F3

2. All Imaginary Quadratic Hyperelliptic Fields of Genus 3 over F3

Defining Equation of F = F3(t, u) Aut(FF3/F3)/〈Φ〉
u2 = t7 + 1 C7

u2 = t7 + t3 + t C2

u2 = t7 + t3 + t2 + 2t+ 1 D2

u2 = t7 + t3 + 2t C2

u2 = t7 + t3 + 2t2 + 2t+ 2 D2

u2 = t7 + t4 + t2 + t+ 2 C2

u2 = t7 + t4 + 2t2 + 2t C2

u2 = t7 + t4 + 2t3 + 2t2 + 2t D2

u2 = t7 + t4 + 2t3 + 2t2 + 2t+ 2 C2

u2 = t7 + t5 + t C2

u2 = t7 + t5 + t3 + t D8

u2 = t7 + t5 + t3 + t+ 1 C2

u2 = t7 + t5 + t3 + t+ 2 C2

u2 = t7 + t5 + t3 + 2t C2

u2 = t7 + t5 + t4 + 2t3 + 2t2 + 2 D2

u2 = t7 + t5 + 2t C2

u2 = t7 + t5 + 2t3 + t C2

u2 = t7 + t5 + 2t3 + t+ 1 D2

u2 = t7 + t5 + 2t3 + t+ 2 D2

u2 = t7 + t5 + 2t4 + 2 C2

Table 2: All imaginary quadratic hyperelliptic function fields of
genus 3 over F3 with non-trivial automorphism groups over F3

(continued)
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Defining Equation of F = F3(t, u) Aut(FF3/F3)/〈Φ〉
u2 = t7 + t5 + 2t4 + 2t3 + t2 + 1 D2

u2 = t7 + t5 + 2t4 + 2t3 + 2t D2

u2 = t7 + t6 + t2 + 2t C2

u2 = t7 + t6 + t4 + t2 + t C2

u2 = t7 + t6 + t4 + t2 + t+ 2 D2

u2 = t7 + t6 + t4 + t3 + t2 + t C2

u2 = t7 + t6 + t4 + t3 + 2t2 + 2t+ 1 C2

u2 = t7 + t6 + t5 + t3 + t2 + t+ 2 D2

u2 = t7 + t6 + t5 + t3 + 2t2 + t+ 2 D2

u2 = t7 + t6 + t5 + t4 + t2 + t C2

u2 = t7 + t6 + t5 + t4 + t2 + 2t+ 1 C2

u2 = t7 + t6 + t5 + t4 + t3 + t2 + t C2

u2 = t7 + t6 + t5 + t4 + t3 + t2 + t+ 1 D8

u2 = t7 + t6 + t5 + t4 + t3 + t2 + t+ 2 C2

u2 = t7 + t6 + t5 + t4 + t3 + t2 + 2t+ 2 C2

u2 = t7 + t6 + t5 + t4 + 2t3 + t2 + t D2

u2 = t7 + t6 + t5 + t4 + 2t3 + t2 + t+ 1 D2

u2 = t7 + t6 + t5 + t4 + 2t3 + t2 + t+ 2 C2

u2 = t7 + t6 + t5 + 2t3 + t2 + 2t C2

u2 = t7 + t6 + t5 + 2t4 + t2 + 1 D2

u2 = t7 + t6 + t5 + 2t4 + t3 + t2 + t+ 1 C2

u2 = t7 + t6 + t5 + 2t4 + 2t D2

u2 = t7 + t6 + 2t2 + 2t C2

u2 = t7 + t6 + 2t3 + 2t2 + 2t+ 1 C2

u2 = t7 + t6 + 2t3 + 2t2 + 2t+ 2 D2

u2 = t7 + t6 + 2t4 + 1 C2

u2 = t7 + t6 + 2t4 + t2 + 2t D2

u2 = t7 + t6 + 2t4 + t3 + 2 C2

u2 = t7 + t6 + 2t4 + t3 + 2t+ 1 C2

u2 = t7 + t6 + 2t4 + 2t C2

u2 = t7 + t6 + 2t4 + 2t2 + t+ 2 D2

u2 = t7 + t6 + 2t4 + 2t3 + t C7

u2 = t7 + t6 + 2t4 + 2t3 + t+ 2 C7

u2 = t7 + t6 + 2t5 + t3 + 2t2 + 1 C2

u2 = t7 + t6 + 2t5 + t3 + 2t2 + t+ 2 C2

u2 = t7 + t6 + 2t5 + t4 + t3 + t+ 2 D2

u2 = t7 + t6 + 2t5 + t4 + t3 + t2 + t D2

u2 = t7 + t6 + 2t5 + t4 + t3 + t2 + 2t D4

u2 = t7 + t6 + 2t5 + t4 + t3 + 2t2 + t+ 1 C2

u2 = t7 + t6 + 2t5 + t4 + 2t+ 2 C2

u2 = t7 + t6 + 2t5 + t4 + 2t2 + 2t+ 1 C2

u2 = t7 + t6 + 2t5 + t4 + 2t3 + t2 + 2t+ 1 C7

u2 = t7 + t6 + 2t5 + 2t2 + t+ 1 C2

u2 = t7 + t6 + 2t5 + 2t3 + t2 + t C2

u2 = t7 + t6 + 2t5 + 2t3 + 2t+ 1 C2

u2 = t7 + t6 + 2t5 + 2t3 + 2t2 + t D8

Table 2: All imaginary quadratic hyperelliptic function fields of
genus 3 over F3 with non-trivial automorphism groups over F3

(continued)
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Defining Equation of F = F3(t, u) Aut(FF3/F3)/〈Φ〉
u2 = t7 + t6 + 2t5 + 2t3 + 2t2 + 2 C2

u2 = t7 + t6 + 2t5 + 2t4 + t+ 1 C7

u2 = t7 + t6 + 2t5 + 2t4 + t3 + t2 + 2t C2

u2 = t7 + t6 + 2t5 + 2t4 + t3 + 2t2 + 2 C2

u2 = t7 + t6 + 2t5 + 2t4 + 2t3 + 1 D2

u2 = t7 + t6 + 2t5 + 2t4 + 2t3 + t D4

u2 = t7 + t6 + 2t5 + 2t4 + 2t3 + t2 + t D2

u2 = t7 + t6 + 2t5 + 2t4 + 2t3 + 2t2 + 2t+ 2 C2

u2 = t7 + 2 C7

u2 = t7 + 2t3 + 2t C2

u2 = t7 + 2t4 + t2 + 2t C2

u2 = t7 + 2t4 + 2t2 + t+ 1 C2

u2 = t7 + 2t4 + 2t3 + t2 + 2t D2

u2 = t7 + 2t4 + 2t3 + t2 + 2t+ 1 C2

u2 = t7 + 2t5 + t C2

u2 = t7 + 2t5 + t3 + t C2

u2 = t7 + 2t5 + t3 + t2 + t+ 1 C2

u2 = t7 + 2t5 + t3 + 2t D8

u2 = t7 + 2t5 + t3 + 2t2 + t+ 2 C2

u2 = t7 + 2t5 + t4 + t3 + t2 + 2 C2

u2 = t7 + 2t5 + t4 + t3 + 2t C2

u2 = t7 + 2t5 + t4 + 2t2 + t C7

u2 = t7 + 2t5 + t4 + 2t3 + t C2

u2 = t7 + 2t5 + t4 + 2t3 + 2t2 + 1 D2

u2 = t7 + 2t5 + t4 + 2t3 + 2t2 + t D4

u2 = t7 + 2t5 + 2t C2

u2 = t7 + 2t5 + 2t4 + t2 + t C7

u2 = t7 + 2t5 + 2t4 + t3 + 2t C2

u2 = t7 + 2t5 + 2t4 + t3 + 2t2 + 1 C2

u2 = t7 + 2t5 + 2t4 + 2t3 + t C2

u2 = t7 + 2t5 + 2t4 + 2t3 + t2 + t D4

u2 = t7 + 2t5 + 2t4 + 2t3 + t2 + 2 D2

u2 = t7 + 2t5 + 2t4 + 2t3 + 2t2 + 2t+ 1 D2

u2 = t7 + 2t6 + t2 + 2t C2

u2 = t7 + 2t6 + t4 + t2 + t+ 1 D2

u2 = t7 + 2t6 + t4 + t3 + 1 C2

u2 = t7 + 2t6 + t4 + t3 + 2t+ 2 C2

u2 = t7 + 2t6 + t4 + 2 C2

u2 = t7 + 2t6 + t4 + 2t C2

u2 = t7 + 2t6 + t4 + 2t2 + 2t D2

u2 = t7 + 2t6 + t4 + 2t3 + t C7

u2 = t7 + 2t6 + t4 + 2t3 + t+ 1 C7

u2 = t7 + 2t6 + t5 + t3 + t2 + t+ 1 D2

u2 = t7 + 2t6 + t5 + t3 + 2t2 + t+ 1 D2

u2 = t7 + 2t6 + t5 + t4 + t3 + 2t2 + t+ 2 C2

u2 = t7 + 2t6 + t5 + t4 + 2t2 + 2 D2

Table 2: All imaginary quadratic hyperelliptic function fields of
genus 3 over F3 with non-trivial automorphism groups over F3

(continued)
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Defining Equation of F = F3(t, u) Aut(FF3/F3)/〈Φ〉
u2 = t7 + 2t6 + t5 + 2t3 + 2t2 + 2t C2

u2 = t7 + 2t6 + t5 + 2t4 + t3 + 2t2 + t C2

u2 = t7 + 2t6 + t5 + 2t4 + t3 + 2t2 + t+ 1 C2

u2 = t7 + 2t6 + t5 + 2t4 + t3 + 2t2 + t+ 2 D8

u2 = t7 + 2t6 + t5 + 2t4 + t3 + 2t2 + 2t+ 1 C2

u2 = t7 + 2t6 + t5 + 2t4 + 2t2 + t C2

u2 = t7 + 2t6 + t5 + 2t4 + 2t2 + 2t+ 2 C2

u2 = t7 + 2t6 + t5 + 2t4 + 2t3 + 2t2 + t D2

u2 = t7 + 2t6 + t5 + 2t4 + 2t3 + 2t2 + t+ 1 C2

u2 = t7 + 2t6 + t5 + 2t4 + 2t3 + 2t2 + t+ 2 D2

u2 = t7 + 2t6 + 2t2 + 2t C2

u2 = t7 + 2t6 + 2t3 + t2 + 2t+ 1 D2

u2 = t7 + 2t6 + 2t3 + t2 + 2t+ 2 C2

u2 = t7 + 2t6 + 2t4 + t3 + t2 + 2t+ 2 C2

u2 = t7 + 2t6 + 2t4 + t3 + 2t2 + t C2

u2 = t7 + 2t6 + 2t4 + 2t2 + t C2

u2 = t7 + 2t6 + 2t4 + 2t2 + t+ 1 D2

u2 = t7 + 2t6 + 2t5 + t2 + t+ 2 C2

u2 = t7 + 2t6 + 2t5 + t3 + t2 + t+ 1 C2

u2 = t7 + 2t6 + 2t5 + t3 + t2 + 2 C2

u2 = t7 + 2t6 + 2t5 + t4 + t+ 2 C7

u2 = t7 + 2t6 + 2t5 + t4 + t3 + t2 + 1 C2

u2 = t7 + 2t6 + 2t5 + t4 + t3 + 2t2 + 2t C2

u2 = t7 + 2t6 + 2t5 + t4 + 2t3 + t D4

u2 = t7 + 2t6 + 2t5 + t4 + 2t3 + t2 + 2t+ 1 C2

u2 = t7 + 2t6 + 2t5 + t4 + 2t3 + 2 D2

u2 = t7 + 2t6 + 2t5 + t4 + 2t3 + 2t2 + t D2

u2 = t7 + 2t6 + 2t5 + 2t3 + t2 + 1 C2

u2 = t7 + 2t6 + 2t5 + 2t3 + t2 + t D8

u2 = t7 + 2t6 + 2t5 + 2t3 + 2t+ 2 C2

u2 = t7 + 2t6 + 2t5 + 2t4 + t2 + 2t+ 2 C2

u2 = t7 + 2t6 + 2t5 + 2t4 + t3 + t+ 1 D2

u2 = t7 + 2t6 + 2t5 + 2t4 + t3 + t2 + t+ 2 C2

u2 = t7 + 2t6 + 2t5 + 2t4 + t3 + 2t2 + t D2

u2 = t7 + 2t6 + 2t5 + 2t4 + t3 + 2t2 + 2t D4

u2 = t7 + 2t6 + 2t5 + 2t4 + 2t+ 1 C2

u2 = t7 + 2t6 + 2t5 + 2t4 + 2t3 + 2t2 + 2t+ 2 C7

Table 2: All imaginary quadratic hyperelliptic function fields of
genus 3 over F3 with non-trivial automorphism groups over F3

3. All Imaginary Quadratic Hyperelliptic Fields of Genus 2 over F5
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Defining Equation of F = F5(t, u) Aut(FF5/F5)/〈Φ〉
u2 = t5 + t PGL2(5)

u2 = t5 + t+ 1 PGL2(5)
u2 = t5 + t+ 2 PGL2(5)
u2 = t5 + t+ 3 PGL2(5)
u2 = t5 + t+ 4 PGL2(5)
u2 = t5 + t3 + t D2

u2 = t5 + t3 + t2 + 1 D2

u2 = t5 + t3 + t2 + 3t+ 2 D2

u2 = t5 + t3 + t2 + 4t+ 4 D2

u2 = t5 + t3 + 2t D2

u2 = t5 + t3 + 2t2 + 1 D2

u2 = t5 + t3 + 2t2 + t D2

u2 = t5 + t3 + 2t2 + 4t+ 2 D2

u2 = t5 + t3 + 3t D2

u2 = t5 + t3 + 3t2 + t D2

u2 = t5 + t3 + 3t2 + 4 D2

u2 = t5 + t3 + 3t2 + 4t+ 3 D2

u2 = t5 + t3 + 4t2 + 3t+ 3 D2

u2 = t5 + t3 + 4t2 + 4 D2

u2 = t5 + t3 + 4t2 + 4t+ 1 D2

u2 = t5 + t4 + t2 + 3t+ 4 C2

u2 = t5 + t4 + t2 + 4 C2

u2 = t5 + t4 + t3 + 1 C2

u2 = t5 + t4 + t3 + t2 + 3t+ 4 C2

u2 = t5 + t4 + t3 + 2t D2

u2 = t5 + t4 + t3 + 2t2 + 2t+ 2 C2

u2 = t5 + t4 + t3 + 2t2 + 4t C2

u2 = t5 + t4 + t3 + 3t2 + t+ 3 C2

u2 = t5 + t4 + t3 + 3t2 + t+ 4 D3

u2 = t5 + t4 + t3 + 3t2 + 3t+ 1 C2

u2 = t5 + t4 + t3 + 3t2 + 3t+ 3 C2

u2 = t5 + t4 + t3 + 3t2 + 4t C2

u2 = t5 + t4 + t3 + 4t+ 2 D3

u2 = t5 + t4 + t3 + 4t+ 3 C2

u2 = t5 + t4 + t3 + 4t2 + t+ 1 C2

u2 = t5 + t4 + t3 + 4t2 + t+ 2 C2

u2 = t5 + t4 + t3 + 4t2 + 3t C2

u2 = t5 + t4 + t3 + 4t2 + 4t D3

u2 = t5 + t4 + 2t+ 1 C2

u2 = t5 + t4 + 2t2 + t C2

u2 = t5 + t4 + 2t2 + t+ 2 C2

u2 = t5 + t4 + 2t2 + 2t C2

u2 = t5 + t4 + 2t2 + 4t C2

u2 = t5 + t4 + 2t2 + 4t+ 1 D3

u2 = t5 + t4 + 2t3 + t2 + t C2

Table 3: All imaginary quadratic hyperelliptic function fields of
genus 2 over F5 with non-trivial automorphism groups over F5
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Defining Equation of F = F5(t, u) Aut(FF5/F5)/〈Φ〉
u2 = t5 + t4 + 2t3 + t2 + t+ 2 C2

u2 = t5 + t4 + 2t3 + t2 + 2t+ 3 C2

u2 = t5 + t4 + 2t3 + t2 + 4t D3

u2 = t5 + t4 + 2t3 + t2 + 4t+ 4 C2

u2 = t5 + t4 + 2t3 + 2t+ 1 C2

u2 = t5 + t4 + 2t3 + 2t2 + 2t+ 3 C2

u2 = t5 + t4 + 2t3 + 2t2 + 2t+ 4 C2

u2 = t5 + t4 + 2t3 + 2t2 + 4 D3

u2 = t5 + t4 + 2t3 + 2t2 + 4t C2

u2 = t5 + t4 + 2t3 + 3t2 + t+ 2 D2

u2 = t5 + t4 + 2t3 + 3t2 + 3t+ 2 D3

u2 = t5 + t4 + 2t3 + 3t2 + 3t+ 3 C2

u2 = t5 + t4 + 2t3 + 3t2 + 4t C2

u2 = t5 + t4 + 2t3 + 4t+ 2 C2

u2 = t5 + t4 + 2t3 + 4t2 + 1 C2

u2 = t5 + t4 + 3t2 + t C2

u2 = t5 + t4 + 3t2 + t+ 4 C2

u2 = t5 + t4 + 3t2 + 3t C2

u2 = t5 + t4 + 3t2 + 4t+ 1 D3

u2 = t5 + t4 + 3t3 + t+ 1 C2

u2 = t5 + t4 + 3t3 + t2 + t C2

u2 = t5 + t4 + 3t3 + t2 + t+ 3 C2

u2 = t5 + t4 + 3t3 + t2 + 2t C2

u2 = t5 + t4 + 3t3 + t2 + 4t D3

u2 = t5 + t4 + 3t3 + t2 + 4t+ 4 C2

u2 = t5 + t4 + 3t3 + 2t2 + 1 C2

u2 = t5 + t4 + 3t3 + 2t2 + 2 C2

u2 = t5 + t4 + 3t3 + 2t2 + 2t+ 1 C2

u2 = t5 + t4 + 3t3 + 2t2 + 3t+ 4 D3

u2 = t5 + t4 + 3t3 + 3t2 + 2 C2

u2 = t5 + t4 + 3t3 + 3t2 + 2t+ 2 D2

u2 = t5 + t4 + 3t3 + 3t2 + 4t D3

u2 = t5 + t4 + 3t3 + 3t2 + 4t+ 1 C2

u2 = t5 + t4 + 3t3 + 4t+ 2 C2

u2 = t5 + t4 + 3t3 + 4t2 + 4t+ 3 C2

u2 = t5 + t4 + 4t2 + t C2

u2 = t5 + t4 + 4t2 + t+ 4 D3

u2 = t5 + t4 + 4t2 + 2t+ 4 C2

u2 = t5 + t4 + 4t2 + 4t D2

u2 = t5 + t4 + 4t3 + t D2

u2 = t5 + t4 + 4t3 + t2 + t C2

u2 = t5 + t4 + 4t3 + 2t2 + t+ 2 C2

u2 = t5 + t4 + 4t3 + 2t2 + 4t C2

u2 = t5 + t4 + 4t3 + 3t+ 1 D3

u2 = t5 + t4 + 4t3 + 3t+ 2 C2

u2 = t5 + t4 + 4t3 + 3t2 + 1 C2

Table 3: All imaginary quadratic hyperelliptic function fields of
genus 2 over F5 with non-trivial automorphism groups over F5

(continued)
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Defining Equation of F = F5(t, u) Aut(FF5/F5)/〈Φ〉
u2 = t5 + t4 + 4t3 + 3t2 + 2t+ 3 C2

u2 = t5 + t4 + 4t3 + 3t2 + 2t+ 4 D3

u2 = t5 + t4 + 4t3 + 3t2 + 4t C2

u2 = t5 + t4 + 4t3 + 3t2 + 4t+ 2 C2

u2 = t5 + t4 + 4t3 + 4t+ 2 C2

u2 = t5 + t4 + 4t3 + 4t2 + t C2

u2 = t5 + t4 + 4t3 + 4t2 + t+ 1 C2

u2 = t5 + t4 + 4t3 + 4t2 + 3t+ 3 C2

u2 = t5 + t4 + 4t3 + 4t2 + 4t D3

u2 = t5 + 2t PGL2(5)
u2 = t5 + 2t+ 1 PGL2(5)
u2 = t5 + 2t+ 2 PGL2(5)
u2 = t5 + 2t+ 3 PGL2(5)
u2 = t5 + 2t+ 4 PGL2(5)

u2 = t5 + 2t3 + t2 + 2 D2

u2 = t5 + 2t3 + t2 + 3t D2

u2 = t5 + 2t3 + t2 + 4t+ 1 D2

u2 = t5 + 2t3 + 2t D2

u2 = t5 + 2t3 + 2t2 + t+ 2 D2

u2 = t5 + 2t3 + 2t2 + 2t+ 4 D2

u2 = t5 + 2t3 + 2t2 + 3t+ 1 D2

u2 = t5 + 2t3 + 3t D2

u2 = t5 + 2t3 + 3t2 + t+ 3 D2

u2 = t5 + 2t3 + 3t2 + 2t+ 1 D2

u2 = t5 + 2t3 + 3t2 + 3t+ 4 D2

u2 = t5 + 2t3 + 4t D2

u2 = t5 + 2t3 + 4t2 + 3 D2

u2 = t5 + 2t3 + 4t2 + 3t D2

u2 = t5 + 2t3 + 4t2 + 4t+ 4 D2

u2 = t5 + 2t4 + t2 + t C2

u2 = t5 + 2t4 + t2 + t+ 4 C2

u2 = t5 + 2t4 + t2 + 2t C2

u2 = t5 + 2t4 + t2 + 4t C2

u2 = t5 + 2t4 + t2 + 4t+ 2 D3

u2 = t5 + 2t4 + t3 + t D2

u2 = t5 + 2t4 + t3 + t2 + t+ 4 C2

u2 = t5 + 2t4 + t3 + t2 + 4t C2

u2 = t5 + 2t4 + t3 + 2t2 + t C2

u2 = t5 + 2t4 + t3 + 2t2 + t+ 2 C2

u2 = t5 + 2t4 + t3 + 2t2 + 3t+ 1 C2

u2 = t5 + 2t4 + t3 + 2t2 + 4t D3

u2 = t5 + 2t4 + t3 + 3t+ 2 D3

u2 = t5 + 2t4 + t3 + 3t+ 4 C2

u2 = t5 + 2t4 + t3 + 3t2 + t C2

u2 = t5 + 2t4 + t3 + 4t+ 4 C2

u2 = t5 + 2t4 + t3 + 4t2 + 2 C2

Table 3: All imaginary quadratic hyperelliptic function fields of
genus 2 over F5 with non-trivial automorphism groups over F5
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Defining Equation of F = F5(t, u) Aut(FF5/F5)/〈Φ〉
u2 = t5 + 2t4 + t3 + 4t2 + 2t+ 1 C2

u2 = t5 + 2t4 + t3 + 4t2 + 2t+ 3 D3

u2 = t5 + 2t4 + t3 + 4t2 + 4t C2

u2 = t5 + 2t4 + t3 + 4t2 + 4t+ 4 C2

u2 = t5 + 2t4 + 2t+ 2 C2

u2 = t5 + 2t4 + 2t2 + t C2

u2 = t5 + 2t4 + 2t2 + t+ 3 D3

u2 = t5 + 2t4 + 2t2 + 2t+ 3 C2

u2 = t5 + 2t4 + 2t2 + 4t D2

u2 = t5 + 2t4 + 2t3 + t+ 2 C2

u2 = t5 + 2t4 + 2t3 + t2 + 2 C2

u2 = t5 + 2t4 + 2t3 + t2 + 2t+ 2 C2

u2 = t5 + 2t4 + 2t3 + t2 + 3t+ 3 D3

u2 = t5 + 2t4 + 2t3 + t2 + 4 C2

u2 = t5 + 2t4 + 2t3 + 2t2 + 4t+ 1 C2

u2 = t5 + 2t4 + 2t3 + 3t2 + t C2

u2 = t5 + 2t4 + 2t3 + 3t2 + t+ 1 C2

u2 = t5 + 2t4 + 2t3 + 3t2 + 2t C2

u2 = t5 + 2t4 + 2t3 + 3t2 + 4t D3

u2 = t5 + 2t4 + 2t3 + 3t2 + 4t+ 3 C2

u2 = t5 + 2t4 + 2t3 + 4t+ 4 C2

u2 = t5 + 2t4 + 2t3 + 4t2 + 2t+ 4 D2

u2 = t5 + 2t4 + 2t3 + 4t2 + 4 C2

u2 = t5 + 2t4 + 2t3 + 4t2 + 4t D3

u2 = t5 + 2t4 + 2t3 + 4t2 + 4t+ 2 C2

u2 = t5 + 2t4 + 3t2 + 3 C2

u2 = t5 + 2t4 + 3t2 + 3t+ 3 C2

u2 = t5 + 2t4 + 3t3 + t2 + 2t+ 1 C2

u2 = t5 + 2t4 + 3t3 + t2 + 2t+ 3 C2

u2 = t5 + 2t4 + 3t3 + t2 + 3 D3

u2 = t5 + 2t4 + 3t3 + t2 + 4t C2

u2 = t5 + 2t4 + 3t3 + 2t+ 2 C2

u2 = t5 + 2t4 + 3t3 + 2t2 + 2 C2

u2 = t5 + 2t4 + 3t3 + 3t2 + t C2

u2 = t5 + 2t4 + 3t3 + 3t2 + t+ 4 C2

u2 = t5 + 2t4 + 3t3 + 3t2 + 2t+ 1 C2

u2 = t5 + 2t4 + 3t3 + 3t2 + 4t D3

u2 = t5 + 2t4 + 3t3 + 3t2 + 4t+ 3 C2

u2 = t5 + 2t4 + 3t3 + 4t+ 4 C2

u2 = t5 + 2t4 + 3t3 + 4t2 + t+ 4 D2

u2 = t5 + 2t4 + 3t3 + 4t2 + 3t+ 1 C2

u2 = t5 + 2t4 + 3t3 + 4t2 + 3t+ 4 D3

u2 = t5 + 2t4 + 3t3 + 4t2 + 4t C2

u2 = t5 + 2t4 + 4t2 + t C2

u2 = t5 + 2t4 + 4t2 + t+ 3 C2

u2 = t5 + 2t4 + 4t2 + 3t C2

Table 3: All imaginary quadratic hyperelliptic function fields of
genus 2 over F5 with non-trivial automorphism groups over F5

(continued)
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Defining Equation of F = F5(t, u) Aut(FF5/F5)/〈Φ〉
u2 = t5 + 2t4 + 4t2 + 4t+ 2 D3

u2 = t5 + 2t4 + 4t3 + t2 + 2t+ 4 C2

u2 = t5 + 2t4 + 4t3 + t2 + 4t C2

u2 = t5 + 2t4 + 4t3 + 2 C2

u2 = t5 + 2t4 + 4t3 + 2t D2

u2 = t5 + 2t4 + 4t3 + 2t2 + t+ 2 C2

u2 = t5 + 2t4 + 4t3 + 2t2 + t+ 4 C2

u2 = t5 + 2t4 + 4t3 + 2t2 + 3t C2

u2 = t5 + 2t4 + 4t3 + 2t2 + 4t D3

u2 = t5 + 2t4 + 4t3 + 3t2 + 3t+ 3 C2

u2 = t5 + 2t4 + 4t3 + 4t+ 1 C2

u2 = t5 + 2t4 + 4t3 + 4t+ 4 D3

u2 = t5 + 2t4 + 4t3 + 4t2 + t+ 1 C2

u2 = t5 + 2t4 + 4t3 + 4t2 + t+ 3 D3

u2 = t5 + 2t4 + 4t3 + 4t2 + 3t+ 1 C2

u2 = t5 + 2t4 + 4t3 + 4t2 + 3t+ 2 C2

u2 = t5 + 2t4 + 4t3 + 4t2 + 4t C2

u2 = t5 + 3t PGL2(5)
u2 = t5 + 3t+ 1 PGL2(5)
u2 = t5 + 3t+ 2 PGL2(5)
u2 = t5 + 3t+ 3 PGL2(5)
u2 = t5 + 3t+ 4 PGL2(5)

u2 = t5 + 3t3 + t2 + t+ 4 D2

u2 = t5 + 3t3 + t2 + 2t+ 3 D2

u2 = t5 + 3t3 + t2 + 3t+ 2 D2

u2 = t5 + 3t3 + 2t D2

u2 = t5 + 3t3 + 2t2 + 1 D2

u2 = t5 + 3t3 + 2t2 + 3t D2

u2 = t5 + 3t3 + 2t2 + 4t+ 3 D2

u2 = t5 + 3t3 + 3t D2

u2 = t5 + 3t3 + 3t2 + 3t D2

u2 = t5 + 3t3 + 3t2 + 4 D2

u2 = t5 + 3t3 + 3t2 + 4t+ 2 D2

u2 = t5 + 3t3 + 4t D2

u2 = t5 + 3t3 + 4t2 + t+ 1 D2

u2 = t5 + 3t3 + 4t2 + 2t+ 2 D2

u2 = t5 + 3t3 + 4t2 + 3t+ 3 D2

u2 = t5 + 3t4 + t2 + t C2

u2 = t5 + 3t4 + t2 + t+ 2 C2

u2 = t5 + 3t4 + t2 + 3t C2

u2 = t5 + 3t4 + t2 + 4t+ 3 D3

u2 = t5 + 3t4 + t3 + t D2

u2 = t5 + 3t4 + t3 + t2 + 2t+ 2 D3

u2 = t5 + 3t4 + t3 + t2 + 2t+ 4 C2

u2 = t5 + 3t4 + t3 + t2 + 3 C2

u2 = t5 + 3t4 + t3 + t2 + 4t C2

Table 3: All imaginary quadratic hyperelliptic function fields of
genus 2 over F5 with non-trivial automorphism groups over F5
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Defining Equation of F = F5(t, u) Aut(FF5/F5)/〈Φ〉
u2 = t5 + 3t4 + t3 + t2 + 4t+ 1 C2

u2 = t5 + 3t4 + t3 + 2t2 + t C2

u2 = t5 + 3t4 + t3 + 3t+ 1 C2

u2 = t5 + 3t4 + t3 + 3t+ 3 D3

u2 = t5 + 3t4 + t3 + 3t2 + t C2

u2 = t5 + 3t4 + t3 + 3t2 + t+ 3 C2

u2 = t5 + 3t4 + t3 + 3t2 + 3t+ 4 C2

u2 = t5 + 3t4 + t3 + 3t2 + 4t D3

u2 = t5 + 3t4 + t3 + 4t+ 1 C2

u2 = t5 + 3t4 + t3 + 4t2 + t+ 1 C2

u2 = t5 + 3t4 + t3 + 4t2 + 4t C2

u2 = t5 + 3t4 + 2t+ 3 C2

u2 = t5 + 3t4 + 2t2 + 2 C2

u2 = t5 + 3t4 + 2t2 + 3t+ 2 C2

u2 = t5 + 3t4 + 2t3 + t+ 3 C2

u2 = t5 + 3t4 + 2t3 + t2 + 1 C2

u2 = t5 + 3t4 + 2t3 + t2 + 2t+ 1 D2

u2 = t5 + 3t4 + 2t3 + t2 + 4t D3

u2 = t5 + 3t4 + 2t3 + t2 + 4t+ 3 C2

u2 = t5 + 3t4 + 2t3 + 2t2 + t C2

u2 = t5 + 3t4 + 2t3 + 2t2 + t+ 4 C2

u2 = t5 + 3t4 + 2t3 + 2t2 + 2t C2

u2 = t5 + 3t4 + 2t3 + 2t2 + 4t D3

u2 = t5 + 3t4 + 2t3 + 2t2 + 4t+ 2 C2

u2 = t5 + 3t4 + 2t3 + 3t2 + 4t+ 4 C2

u2 = t5 + 3t4 + 2t3 + 4t+ 1 C2

u2 = t5 + 3t4 + 2t3 + 4t2 + 1 C2

u2 = t5 + 3t4 + 2t3 + 4t2 + 2t+ 3 C2

u2 = t5 + 3t4 + 2t3 + 4t2 + 3 C2

u2 = t5 + 3t4 + 2t3 + 4t2 + 3t+ 2 D3

u2 = t5 + 3t4 + 3t2 + t C2

u2 = t5 + 3t4 + 3t2 + t+ 2 D3

u2 = t5 + 3t4 + 3t2 + 2t+ 2 C2

u2 = t5 + 3t4 + 3t2 + 4t D2

u2 = t5 + 3t4 + 3t3 + t2 + t+ 1 D2

u2 = t5 + 3t4 + 3t3 + t2 + 3t+ 1 D3

u2 = t5 + 3t4 + 3t3 + t2 + 3t+ 4 C2

u2 = t5 + 3t4 + 3t3 + t2 + 4t C2

u2 = t5 + 3t4 + 3t3 + 2t+ 3 C2

u2 = t5 + 3t4 + 3t3 + 2t2 + t C2

u2 = t5 + 3t4 + 3t3 + 2t2 + t+ 1 C2

u2 = t5 + 3t4 + 3t3 + 2t2 + 2t+ 4 C2

u2 = t5 + 3t4 + 3t3 + 2t2 + 4t D3

u2 = t5 + 3t4 + 3t3 + 2t2 + 4t+ 2 C2

u2 = t5 + 3t4 + 3t3 + 3t2 + 3 C2

u2 = t5 + 3t4 + 3t3 + 4t+ 1 C2

Table 3: All imaginary quadratic hyperelliptic function fields of
genus 2 over F5 with non-trivial automorphism groups over F5
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Defining Equation of F = F5(t, u) Aut(FF5/F5)/〈Φ〉
u2 = t5 + 3t4 + 3t3 + 4t2 + 2 D3

u2 = t5 + 3t4 + 3t3 + 4t2 + 2t+ 2 C2

u2 = t5 + 3t4 + 3t3 + 4t2 + 2t+ 4 C2

u2 = t5 + 3t4 + 3t3 + 4t2 + 4t C2

u2 = t5 + 3t4 + 4t2 + t C2

u2 = t5 + 3t4 + 4t2 + t+ 1 C2

u2 = t5 + 3t4 + 4t2 + 2t C2

u2 = t5 + 3t4 + 4t2 + 4t C2

u2 = t5 + 3t4 + 4t2 + 4t+ 3 D3

u2 = t5 + 3t4 + 4t3 + t2 + t+ 2 D3

u2 = t5 + 3t4 + 4t3 + t2 + t+ 4 C2

u2 = t5 + 3t4 + 4t3 + t2 + 3t+ 3 C2

u2 = t5 + 3t4 + 4t3 + t2 + 3t+ 4 C2

u2 = t5 + 3t4 + 4t3 + t2 + 4t C2

u2 = t5 + 3t4 + 4t3 + 2t D2

u2 = t5 + 3t4 + 4t3 + 2t2 + 3t+ 2 C2

u2 = t5 + 3t4 + 4t3 + 3 C2

u2 = t5 + 3t4 + 4t3 + 3t2 + t+ 1 C2

u2 = t5 + 3t4 + 4t3 + 3t2 + t+ 3 C2

u2 = t5 + 3t4 + 4t3 + 3t2 + 3t C2

u2 = t5 + 3t4 + 4t3 + 3t2 + 4t D3

u2 = t5 + 3t4 + 4t3 + 4t+ 1 D3

u2 = t5 + 3t4 + 4t3 + 4t+ 4 C2

u2 = t5 + 3t4 + 4t3 + 4t2 + 2t+ 1 C2

u2 = t5 + 3t4 + 4t3 + 4t2 + 4t C2

u2 = t5 + 4t PGL2(5)
u2 = t5 + 4t+ 1 PGL2(5)
u2 = t5 + 4t+ 2 PGL2(5)
u2 = t5 + 4t+ 3 PGL2(5)
u2 = t5 + 4t+ 4 PGL2(5)
u2 = t5 + 4t3 + t D2

u2 = t5 + 4t3 + t2 + t D2

u2 = t5 + 4t3 + t2 + 2 D2

u2 = t5 + 4t3 + t2 + 4t+ 4 D2

u2 = t5 + 4t3 + 2t D2

u2 = t5 + 4t3 + 2t2 + 3 D2

u2 = t5 + 4t3 + 2t2 + 3t+ 1 D2

u2 = t5 + 4t3 + 2t2 + 4t+ 2 D2

u2 = t5 + 4t3 + 3t D2

u2 = t5 + 4t3 + 3t2 + 2 D2

u2 = t5 + 4t3 + 3t2 + 3t+ 4 D2

u2 = t5 + 4t3 + 3t2 + 4t+ 3 D2

u2 = t5 + 4t3 + 4t2 + t D2

u2 = t5 + 4t3 + 4t2 + 3 D2

u2 = t5 + 4t3 + 4t2 + 4t+ 1 D2

u2 = t5 + 4t4 + t2 + t C2

Table 3: All imaginary quadratic hyperelliptic function fields of
genus 2 over F5 with non-trivial automorphism groups over F5
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Defining Equation of F = F5(t, u) Aut(FF5/F5)/〈Φ〉
u2 = t5 + 4t4 + t2 + t+ 1 D3

u2 = t5 + 4t4 + t2 + 2t+ 1 C2

u2 = t5 + 4t4 + t2 + 4t D2

u2 = t5 + 4t4 + t3 + t2 + t+ 3 C2

u2 = t5 + 4t4 + t3 + t2 + t+ 4 C2

u2 = t5 + 4t4 + t3 + t2 + 3t C2

u2 = t5 + 4t4 + t3 + t2 + 4t D3

u2 = t5 + 4t4 + t3 + 2t D2

u2 = t5 + 4t4 + t3 + 2t2 + t+ 1 D3

u2 = t5 + 4t4 + t3 + 2t2 + t+ 2 C2

u2 = t5 + 4t4 + t3 + 2t2 + 3t+ 2 C2

u2 = t5 + 4t4 + t3 + 2t2 + 3t+ 4 C2

u2 = t5 + 4t4 + t3 + 2t2 + 4t C2

u2 = t5 + 4t4 + t3 + 3t2 + 2t+ 3 C2

u2 = t5 + 4t4 + t3 + 3t2 + 4t C2

u2 = t5 + 4t4 + t3 + 4 C2

u2 = t5 + 4t4 + t3 + 4t+ 2 C2

u2 = t5 + 4t4 + t3 + 4t+ 3 D3

u2 = t5 + 4t4 + t3 + 4t2 + 3t+ 1 C2

u2 = t5 + 4t4 + 2t+ 4 C2

u2 = t5 + 4t4 + 2t2 + t C2

u2 = t5 + 4t4 + 2t2 + t+ 1 C2

u2 = t5 + 4t4 + 2t2 + 3t C2

u2 = t5 + 4t4 + 2t2 + 4t+ 4 D3

u2 = t5 + 4t4 + 2t3 + t2 + 4 C2

u2 = t5 + 4t4 + 2t3 + 2t+ 4 C2

u2 = t5 + 4t4 + 2t3 + 2t2 + t+ 3 D2

u2 = t5 + 4t4 + 2t3 + 2t2 + 3t+ 2 C2

u2 = t5 + 4t4 + 2t3 + 2t2 + 3t+ 3 D3

u2 = t5 + 4t4 + 2t3 + 2t2 + 4t C2

u2 = t5 + 4t4 + 2t3 + 3t2 + 1 D3

u2 = t5 + 4t4 + 2t3 + 3t2 + 2t+ 1 C2

u2 = t5 + 4t4 + 2t3 + 3t2 + 2t+ 2 C2

u2 = t5 + 4t4 + 2t3 + 3t2 + 4t C2

u2 = t5 + 4t4 + 2t3 + 4t+ 3 C2

u2 = t5 + 4t4 + 2t3 + 4t2 + t C2

u2 = t5 + 4t4 + 2t3 + 4t2 + t+ 3 C2

u2 = t5 + 4t4 + 2t3 + 4t2 + 2t+ 2 C2

u2 = t5 + 4t4 + 2t3 + 4t2 + 4t D3

u2 = t5 + 4t4 + 2t3 + 4t2 + 4t+ 1 C2

u2 = t5 + 4t4 + 3t2 + t C2

u2 = t5 + 4t4 + 3t2 + t+ 3 C2

u2 = t5 + 4t4 + 3t2 + 2t C2

u2 = t5 + 4t4 + 3t2 + 4t C2

u2 = t5 + 4t4 + 3t2 + 4t+ 4 D3

u2 = t5 + 4t4 + 3t3 + t+ 4 C2

Table 3: All imaginary quadratic hyperelliptic function fields of
genus 2 over F5 with non-trivial automorphism groups over F5

(continued)
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Defining Equation of F = F5(t, u) Aut(FF5/F5)/〈Φ〉
u2 = t5 + 4t4 + 3t3 + t2 + 4t+ 2 C2

u2 = t5 + 4t4 + 3t3 + 2t2 + 2t+ 3 D2

u2 = t5 + 4t4 + 3t3 + 2t2 + 3 C2

u2 = t5 + 4t4 + 3t3 + 2t2 + 4t D3

u2 = t5 + 4t4 + 3t3 + 2t2 + 4t+ 4 C2

u2 = t5 + 4t4 + 3t3 + 3t2 + 2t+ 4 C2

u2 = t5 + 4t4 + 3t3 + 3t2 + 3 C2

u2 = t5 + 4t4 + 3t3 + 3t2 + 3t+ 1 D3

u2 = t5 + 4t4 + 3t3 + 3t2 + 4 C2

u2 = t5 + 4t4 + 3t3 + 4t+ 3 C2

u2 = t5 + 4t4 + 3t3 + 4t2 + t C2

u2 = t5 + 4t4 + 3t3 + 4t2 + t+ 2 C2

u2 = t5 + 4t4 + 3t3 + 4t2 + 2t C2

u2 = t5 + 4t4 + 3t3 + 4t2 + 4t D3

u2 = t5 + 4t4 + 3t3 + 4t2 + 4t+ 1 C2

u2 = t5 + 4t4 + 4t2 + 1 C2

u2 = t5 + 4t4 + 4t2 + 3t+ 1 C2

u2 = t5 + 4t4 + 4t3 + t D2

u2 = t5 + 4t4 + 4t3 + t2 + t C2

u2 = t5 + 4t4 + 4t3 + t2 + t+ 4 C2

u2 = t5 + 4t4 + 4t3 + t2 + 3t+ 2 C2

u2 = t5 + 4t4 + 4t3 + t2 + 4t D3

u2 = t5 + 4t4 + 4t3 + 2t2 + 2t+ 1 D3

u2 = t5 + 4t4 + 4t3 + 2t2 + 2t+ 2 C2

u2 = t5 + 4t4 + 4t3 + 2t2 + 4 C2

u2 = t5 + 4t4 + 4t3 + 2t2 + 4t C2

u2 = t5 + 4t4 + 4t3 + 2t2 + 4t+ 3 C2

u2 = t5 + 4t4 + 4t3 + 3t+ 3 C2

u2 = t5 + 4t4 + 4t3 + 3t+ 4 D3

u2 = t5 + 4t4 + 4t3 + 3t2 + t+ 3 C2

u2 = t5 + 4t4 + 4t3 + 3t2 + 4t C2

u2 = t5 + 4t4 + 4t3 + 4t+ 3 C2

u2 = t5 + 4t4 + 4t3 + 4t2 + t C2

Table 3: All imaginary quadratic hyperelliptic function fields of
genus 2 over F5 with non-trivial automorphism groups over F5

4. Random Hyperelliptic Fields of Genus 3

We computed the reduced automorphism group Aut(Fk/k)/〈Φ〉 of 10000 random
genus 3 hyperelliptic fields of small characteristic 3 ≤ p ≤ 257, as well as of 10000
random genus 3 hyperelliptic fields of large1 characteristic 16411 ≤ p ≤ 32003.
All of the fields of large characteristic had trivial automorphism group, while we
found the 15 fields listed in table 4 to have non-trivial automorphism groups. The
complete list of examples can be found in [Göb03b].

1Because the characteristic of a field is restricted to be ≤ 32003 in Singular ([GPS+02]), this is
the largest characteristic achievable with our implementation of algorithm V.4.
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k Defining Equation of F = F5(t, u) Aut(Fk/k)/〈Φ〉 Time
F3 u2 = t7 + t6 + t4 + t3 + t2 + t C2 22.6
F3 u2 = t7 + 2t5 + t4 + t3 + 2t C2 26.9
F3 u2 = t8 + t5 + 2t4 + t3 + t2 + 2 C2 21.0
F3 u2 = t8 + t7 + 2t5 + 2t+ 2 D2 24.9
F5 u2 = t8 + t6 + 3t2 + t C2 20.4
F5 u2 = t8 + 4t7 + 4t6 + t3 + t C2 27.9
F7 u2 = t7 + 6t4 + 4t3 + t2 + 2 D3 36.8
F11 u2 = t7 + 4t6 + 10t5 + 6t3 + 9 C2 57.2
F11 u2 = t7 + 9t5 + 10t4 + 8t3 + 5t2 + 6t C2 51.4
F13 u2 = t7 + 12t6 + t5 + 10t3 + 3t2 + 7t+ 4 C2 60.5
F17 u2 = t8 + 8t5 + 5t4 + 10t3 + 14t+ 12 C2 35.4
F19 u2 = t7 + 8t6 + 8t5 + 18t4 + 18t3 + 8t+ 1 C2 63.6
F37 u2 = t8 + 24t6 + 3t5 + 5t4 + 19t3 + 13t2 + 1 C2 44.9
F41 u2 = t8 + 5t7 + 22t5 + 38t4 + 36t3 + 28t2 + 29 C2 60.9
F89 u2 = t7 + 16t5 + 10t4 + 37t3 + 37t2 + 63t+ 8 C2 64.6

Table 4: Genus-3 hyperelliptic function fields F = k(t, u) with
non-trivial automorphism group over k, together with the running
times of algorithm V.4 on an Intel r© Celeron r©, 1.7GHz, in seconds

5. Random Hyperelliptic Fields of Genus 4

We computed the reduced automorphism group Aut(Fk/k)/〈Φ〉 of 6900 random
genus 4 hyperelliptic fields of small characteristic 3 ≤ p ≤ 257, as well as of 6685
random genus 4 hyperelliptic fields of large2 characteristic 16411 ≤ p ≤ 32003. All
of the fields of large characteristic had trivial automorphism group, while we found
the 8 fields listed in table 5 to have non-trivial automorphism groups. The complete
list of examples can be found in [Göb03b].

k Defining Equation of F = F5(t, u) Aut(Fk/k)/〈Φ〉 Time
F3 u2 = t9 + 2t3 + t+ 1 C2

3 o C2 23.4
F3 u2 = t9 + 2t3 + t+ 2 C2

3 o C2 22.9
F3 u2 = t9 + 2t7 + 2t3 + 2t D2 34.7
F5 u2 = t9 + 2t7 + t5 + 3t3 + 2t C2 62.6
F5 u2 = t10 + t6 + 3t5 + t4 + 4t3 + t2 + 4 D2 114.2
F5 u2 = t10 + t8 + 3t6 + 4t2 + 4 C2 53.1
F5 u2 = t10 + 2t9 + 3t6 + t4 + 2t+ 2 C2 327.7
F7 u2 = t10 + t8 + 5t7 + t5 + 4t4 + 2t C2 1141.6

Table 5: Genus-4 hyperelliptic function fields F = k(t, u) with
non-trivial automorphism group over k, together with the running
times of algorithm V.4 on an Intel r© Celeron r©, 1.7GHz, in seconds

232003 is the largest possible characteristic, see footnote 1 above.





APPENDIX B

Jacobian Orders of Subfields

1. Fixed Fields of Cn, where (n, char(k)) = 1 and ν = 0

k s aj |JF | |JFC2 | |JF |
|J
FC2 |

F5 3 1, 3, 4 32 4 8
F5 3 2, 3, 4 64 8 8
F7 5 1, 2, 3, 4, 5 2304 48 48
F7 5 2, 3, 4, 5, 6 2304 48 48
F11 5 1, 3, 8, 9, 10 19712 112 176
F11 4 1, 4, 7, 10 1152 8 144
F11 3 2, 4, 5 96 8 12
F11 5 3, 6, 8, 9, 10 22528 176 128
F11 4 4, 5, 8, 9 2048 16 128
F11 3 5, 8, 10 128 8 16
F13 3 3, 5, 12 144 12 12
F13 5 3, 6, 7, 11, 12 30976 176 176
F13 5 3, 7, 9, 10, 11 30976 176 176
F13 5 4, 7, 9, 10, 12 28160 176 160
F17 5 1, 2, 7, 12, 16 110592 384 288
F17 3 1, 6, 9 400 20 20
F17 3 1, 6, 14 384 24 16
F17 4 3, 4, 6, 10 3584 16 224
F17 5 3, 4, 11, 15, 16 88320 240 368
F17 5 3, 8, 13, 14, 16 147456 384 384
F17 3 4, 5, 16 288 12 24
F17 4 4, 12, 14, 15 7296 24 304
F17 5 5, 6, 7, 8, 11 87552 288 304
F17 6 5, 6, 7, 11, 14, 15 1566720 272 5760
F17 3 5, 7, 13 384 16 24
F17 4 7, 10, 13, 14 4416 12 368
F17 4 10, 11, 13, 14 3840 16 240
F19 4 3, 13, 16, 18 5568 12 464
F19 3 8, 10, 16 672 24 28
F19 4 9, 10, 11, 14 8448 24 352
F23 4 2, 5, 6, 18 20480 32 640
F23 3 3, 8, 13 576 24 24

Table 1: Jacobian orders of hyperelliptic function fields F = k(t, u)
of the form u2 =

∏s−1
j=0(t

2 − aj) and of their fixed fields F C2 =
k(t2, u). Because some defining equations would be too large to fit
in a single line, we only list the parameters s and aj . (continued)
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k s aj |JF | |JFC2 | |JF |
|J
FC2 |

F23 4 4, 10, 14, 16 15232 28 544
F23 4 6, 7, 9, 11 17920 32 560
F23 3 6, 7, 10 384 16 24
F23 6 8, 10, 14, 15, 16, 19 5541888 528 10496
F23 3 10, 13, 20 768 24 32
F29 3 4, 14, 26 1296 36 36
F29 3 7, 20, 23 960 40 24
F29 3 8, 10, 24 1296 36 36
F29 4 9, 16, 19, 26 20480 32 640
F29 4 10, 11, 19, 27 17280 24 720
F29 3 10, 17, 25 896 28 32
F29 4 12, 14, 18, 19 31360 40 784
F31 5 4, 8, 16, 17, 22 952576 976 976
F31 6 6, 8, 17, 18, 23, 27 33516544 1136 29504
F37 4 1, 13, 33, 35 56448 36 1568
F37 4 2, 4, 8, 12 76032 48 1584
F37 4 3, 13, 14, 30 58368 48 1216
F37 3 3, 13, 30 1760 40 44
F37 3 4, 6, 36 896 28 32
F37 5 4, 8, 12, 27, 34 2045440 1360 1504
F37 3 5, 7, 14 1280 32 40
F37 4 5, 7, 14, 17 38400 32 1200
F37 3 5, 12, 30 1280 40 32
F37 4 9, 21, 24, 26 51264 36 1424
F37 4 10, 13, 21, 34 55808 32 1744
F37 4 10, 32, 34, 36 50112 36 1392
F37 3 11, 20, 32 1728 48 36
F37 4 14, 15, 23, 32 62080 40 1552
F37 4 18, 19, 25, 33 39744 36 1104
F41 4 1, 16, 22, 26 90688 52 1744
F41 4 3, 11, 12, 25 86528 52 1664
F41 3 4, 6, 33 2112 44 48
F41 3 5, 6, 25 1440 40 36
F41 4 7, 19, 33, 34 55296 32 1728
F41 6 8, 25, 29, 31, 32, 39 152678400 2272 67200
F41 4 12, 16, 38, 39 55680 40 1392
F41 3 15, 23, 40 1920 40 48
F43 5 4, 7, 28, 30, 35 3512320 2240 1568
F43 4 7, 24, 36, 39 72960 48 1520
F43 3 7, 36, 39 1152 32 36
F43 3 9, 28, 35 2112 48 44
F43 3 14, 18, 32 1440 36 40
F43 3 23, 30, 38 2496 52 48
F47 5 3, 18, 20, 35, 43 6451200 2880 2240

Table 1: Jacobian orders of hyperelliptic function fields F = k(t, u)
of the form u2 =

∏s−1
j=0(t

2 − aj) and of their fixed fields F C2 =
k(t2, u). Because some defining equations would be too large to fit
in a single line, we only list the parameters s and aj . (continued)
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k s aj |JF | |JFC2 | |JF |
|J
FC2 |

F47 3 8, 27, 36 2688 48 56
F53 6 4, 16, 21, 37, 44, 47 402259968 2816 142848
F53 3 9, 30, 49 2640 60 44
F53 6 15, 18, 21, 27, 38, 39 356099072 2416 147392
F59 3 5, 14, 33 2304 48 48
F59 3 20, 48, 50 3072 64 48
F59 3 40, 52, 58 3136 56 56
F61 6 2, 9, 15, 23, 34, 57 679450624 3296 206144
F67 4 3, 8, 42, 59 235648 56 4208
F67 3 4, 41, 48 5472 72 76
F67 3 8, 36, 61 5184 72 72
F67 3 11, 31, 56 4864 64 76
F67 6 14, 46, 54, 56, 60, 62 1589575680 4608 344960
F67 3 28, 31, 57 5120 80 64
F67 3 33, 36, 58 5760 72 80
F71 3 6, 57, 66 6400 80 80
F71 3 8, 14, 70 6048 72 84
F71 4 9, 27, 30, 33 347072 68 5104
F71 3 16, 55, 64 5184 72 72
F71 3 21, 54, 56 5184 72 72
F71 3 28, 43, 60 4608 64 72
F71 3 31, 49, 63 5760 72 80
F73 6 1, 5, 11, 27, 39, 44 2069971968 5424 381632
F73 3 10, 35, 63 5712 68 84
F79 3 1, 13, 72 5760 72 80
F79 6 4, 15, 25, 50, 58, 66 3374530560 6368 529920
F79 3 6, 17, 54 8448 88 96
F79 5 6, 23, 40, 44, 49 37355520 7296 5120
F79 3 6, 29, 70 6336 88 72
F79 4 7, 12, 29, 77 611328 96 6368
F79 5 20, 26, 28, 46, 73 49110016 7712 6368
F79 3 22, 42, 71 7392 88 84
F79 3 26, 27, 43 5440 68 80
F79 3 26, 44, 75 5632 64 88
F79 4 33, 54, 61, 73 473600 80 5920
F79 3 62, 65, 69 6688 88 76
F83 6 1, 5, 12, 16, 46, 69 4198547456 6976 601856
F83 6 1, 8, 26, 27, 59, 78 4009239552 7376 543552
F83 3 3, 34, 48 7680 80 96
F83 3 20, 47, 62 8448 88 96
F89 3 11, 12, 28 6080 80 76
F89 3 20, 78, 88 8448 96 88
F89 4 28, 42, 77, 80 774144 96 8064

Table 1: Jacobian orders of hyperelliptic function fields F = k(t, u)
of the form u2 =

∏s−1
j=0(t

2 − aj) and of their fixed fields F C2 =
k(t2, u). Because some defining equations would be too large to fit
in a single line, we only list the parameters s and aj . (continued)
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k s aj |JF | |JFC2 | |JF |
|J
FC2 |

F89 4 42, 50, 54, 77 724224 92 7872
F97 5 3, 16, 19, 25, 53 84999424 9712 8752
F97 5 3, 26, 39, 83, 94 73516800 8400 8752
F97 5 4, 24, 31, 41, 52 96422400 10800 8928
F97 3 4, 45, 88 7392 84 88
F97 3 5, 10, 22 10800 100 108
F97 5 6, 20, 24, 45, 65 98267136 11632 8448
F97 3 6, 45, 52 8064 84 96
F97 3 7, 10, 33 12096 108 112
F97 3 8, 52, 86 8096 92 88
F97 3 9, 18, 29 9568 104 92
F97 4 10, 14, 17, 91 976768 104 9392
F97 3 12, 74, 81 8064 84 96
F97 3 21, 23, 94 9984 104 96
F97 3 21, 35, 95 7728 84 92
F97 3 25, 48, 64 9072 108 84
F97 3 25, 54, 63 9568 92 104
F97 3 37, 43, 78 11136 96 116
F97 3 61, 65, 78 8400 100 84
F101 5 1, 34, 49, 50, 90 95422720 10160 9392
F101 3 33, 54, 64 11648 104 112

Table 1: Jacobian orders of hyperelliptic function fields F = k(t, u)
of the form u2 =

∏s−1
j=0(t

2 − aj) and of their fixed fields F C2 =
k(t2, u). Because some defining equations would be too large to fit
in a single line, we only list the parameters s and aj .

k Defining Equation of F = k(t, u) |JF | |JFC3 | |JF |
|J
FC3 |

F7 u2 = (t3 − 1)(t3 − 2)(t3 − 4)(t3 − 6) 19968 8 2496
F7 u2 = (t3 − 1)(t3 − 3)(t3 − 4) 5328 12 444
F7 u2 = (t3 − 2)(t3 − 3)(t3 − 4) 2904 8 363
F7 u2 = (t3 − 2)(t3 − 3)(t3 − 4)(t3 − 5) 16200 8 2025
F13 u2 = (t3 − 2)(t3 − 3)(t3 − 10) 19764 12 1647
F13 u2 = (t3 − 2)(t3 − 5)(t3 − 12) 18816 8 2352
F31 u2 = (t3 − 13)(t3 − 14)(t3 − 16) 1288656 36 35796
F37 u2 = (t3 − 2)(t3 − 9)(t3 − 22) 2072412 36 57567
F37 u2 = (t3 − 9)(t3 − 11)(t3 − 19)(t3 − 23) 64659456 32 2020608
F97 u2 = (t3 − 15)(t3 − 65)(t3 − 77) 81870336 96 852816

Table 2: Jacobian orders of hyperelliptic function fields F = k(t, u)
of the form u2 =

∏s−1
j=0(t

3 − aj) and of their fixed fields F C3 =
k(t3, u)
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k Defining Equation of F = k(t, u) |JF | |JFC4 | |JF |
|J
FC4 |

F5 u2 = (t4 − 1)(t4 − 2)(t4 − 3) 5120 8 640
F5 u2 = (t4 − 1)(t4 − 2)(t4 − 4) 4096 4 1024
F29 u2 = (t4 − 18)(t4 − 24)(t4 − 26) 12729600 36 353600
F37 u2 = (t4 − 23)(t4 − 34)(t4 − 36) 88657920 36 2462720
F53 u2 = (t4 − 16)(t4 − 23)(t4 − 49) 400717824 52 7706112
F53 u2 = (t4 − 18)(t4 − 34)(t4 − 50) 212808960 40 5320224
F53 u2 = (t4 − 35)(t4 − 37)(t4 − 47) 317611008 52 6107904
F53 u2 = (t4 − 37)(t4 − 39)(t4 − 45) 550850560 52 10593280
F61 u2 = (t4 − 14)(t4 − 31)(t4 − 34) 1102049280 72 15306240
F73 u2 = (t4 − 18)(t4 − 42)(t4 − 57) 2107438080 60 35123968
F97 u2 = (t4 − 1)(t4 − 8)(t4 − 64) 13530240000 100 135302400
F97 u2 = (t4 − 7)(t4 − 11)(t4 − 23) 8977152000 96 93512000
F97 u2 = (t4 − 13)(t4 − 47)(t4 − 87) 8479539200 100 84795392
F101 u2 = (t4 − 5)(t4 − 84)(t4 − 100) 9599975424 96 99999744

Table 3: Jacobian orders of hyperelliptic function fields F = k(t, u)
of the form u2 =

∏s−1
j=0(t

4 − aj) and of their fixed fields F C4 =
k(t4, u)

2. Fixed Fields of Cn, where (n, char(k)) = 1 and ν = 1

k Defining Equation of F = k(t, u) |JF | |JFC3 | |JF |
|J
FC3 |

F7 u2 = t(t3 − 1)(t3 − 2)(t3 − 3) 2400 8 300
F7 u2 = t(t3 − 1)(t3 − 2)(t3 − 4) 4464 12 372
F7 u2 = t(t3 − 1)(t3 − 2)(t3 − 5) 5328 12 444
F7 u2 = t(t3 − 1)(t3 − 2)(t3 − 6) 2688 8 336
F7 u2 = t(t3 − 1)(t3 − 3)(t3 − 4) 2016 8 252
F7 u2 = t(t3 − 1)(t3 − 3)(t3 − 6) 2304 12 192
F7 u2 = t(t3 − 1)(t3 − 4)(t3 − 5) 5472 8 684
F7 u2 = t(t3 − 1)(t3 − 4)(t3 − 6) 2304 12 192
F7 u2 = t(t3 − 1)(t3 − 5)(t3 − 6) 2688 8 336
F7 u2 = t(t3 − 2)(t3 − 3)(t3 − 4) 5868 12 489
F7 u2 = t(t3 − 2)(t3 − 3)(t3 − 5) 2904 8 363
F7 u2 = t(t3 − 2)(t3 − 3)(t3 − 6) 5472 8 684
F7 u2 = t(t3 − 2)(t3 − 4)(t3 − 5) 2904 8 363
F7 u2 = t(t3 − 2)(t3 − 4)(t3 − 6) 1824 8 228
F7 u2 = t(t3 − 2)(t3 − 5)(t3 − 6) 5328 12 444
F7 u2 = t(t3 − 3)(t3 − 4)(t3 − 5) 5868 12 489
F7 u2 = t(t3 − 3)(t3 − 4)(t3 − 6) 2016 8 252
F7 u2 = t(t3 − 3)(t3 − 5)(t3 − 6) 4464 12 372
F7 u2 = t(t3 − 4)(t3 − 5)(t3 − 6) 2400 8 300

Table 4: Jacobian orders of hyperelliptic function fields F = k(t, u)
of the form u2 = t

∏s−1
j=0(t

3 − aj) and of their fixed fields F C3 =
k(t3, tu) (continued)
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k Defining Equation of F = k(t, u) |JF | |JFC3 | |JF |
|J
FC3 |

F13 u2 = t(t3 − 1)(t3 − 2)(t3 − 5) 26880 20 1344
F13 u2 = t(t3 − 1)(t3 − 2)(t3 − 9) 16128 16 1008
F13 u2 = t(t3 − 1)(t3 − 3)(t3 − 5) 33024 16 2064
F13 u2 = t(t3 − 1)(t3 − 3)(t3 − 6) 69312 16 4332
F13 u2 = t(t3 − 1)(t3 − 3)(t3 − 7) 25536 16 1596
F13 u2 = t(t3 − 1)(t3 − 3)(t3 − 10) 37440 20 1872
F13 u2 = t(t3 − 1)(t3 − 4)(t3 − 7) 45504 12 3792
F13 u2 = t(t3 − 1)(t3 − 5)(t3 − 6) 18816 8 2352
F13 u2 = t(t3 − 1)(t3 − 5)(t3 − 8) 36864 16 2304
F13 u2 = t(t3 − 1)(t3 − 6)(t3 − 7) 24768 16 1548
F13 u2 = t(t3 − 1)(t3 − 7)(t3 − 10) 17856 12 1488
F13 u2 = t(t3 − 1)(t3 − 8)(t3 − 12) 36864 16 2304
F13 u2 = t(t3 − 1)(t3 − 9)(t3 − 10) 43776 16 2736
F13 u2 = t(t3 − 1)(t3 − 9)(t3 − 11) 37632 16 2352
F13 u2 = t(t3 − 2)(t3 − 3)(t3 − 8) 52080 20 2604
F13 u2 = t(t3 − 2)(t3 − 3)(t3 − 10) 20496 16 1281
F13 u2 = t(t3 − 2)(t3 − 3)(t3 − 11) 20496 16 1281
F13 u2 = t(t3 − 2)(t3 − 4)(t3 − 7) 52020 20 2601
F13 u2 = t(t3 − 2)(t3 − 4)(t3 − 8) 17856 12 1488
F13 u2 = t(t3 − 2)(t3 − 4)(t3 − 9) 20556 12 1713
F13 u2 = t(t3 − 2)(t3 − 4)(t3 − 10) 49860 20 2493
F13 u2 = t(t3 − 2)(t3 − 4)(t3 − 11) 56784 16 3549
F13 u2 = t(t3 − 2)(t3 − 5)(t3 − 8) 21312 12 1776
F13 u2 = t(t3 − 2)(t3 − 5)(t3 − 9) 25536 16 1596
F13 u2 = t(t3 − 2)(t3 − 6)(t3 − 12) 37632 16 2352
F13 u2 = t(t3 − 2)(t3 − 7)(t3 − 8) 43776 16 2736
F13 u2 = t(t3 − 2)(t3 − 7)(t3 − 12) 41280 20 2064
F13 u2 = t(t3 − 2)(t3 − 8)(t3 − 9) 35520 20 1776
F13 u2 = t(t3 − 2)(t3 − 8)(t3 − 11) 37440 20 1872
F13 u2 = t(t3 − 2)(t3 − 8)(t3 − 12) 55872 12 4656
F13 u2 = t(t3 − 3)(t3 − 4)(t3 − 12) 43776 16 2736
F13 u2 = t(t3 − 3)(t3 − 5)(t3 − 8) 33024 16 2064
F13 u2 = t(t3 − 3)(t3 − 6)(t3 − 7) 20556 12 1713
F13 u2 = t(t3 − 3)(t3 − 6)(t3 − 11) 20124 12 1677
F13 u2 = t(t3 − 3)(t3 − 7)(t3 − 10) 56784 16 3549
F13 u2 = t(t3 − 3)(t3 − 7)(t3 − 12) 35520 20 1776
F13 u2 = t(t3 − 3)(t3 − 8)(t3 − 12) 21312 12 1776
F13 u2 = t(t3 − 3)(t3 − 10)(t3 − 12) 37440 20 1872
F13 u2 = t(t3 − 4)(t3 − 5)(t3 − 6) 24768 16 1548
F13 u2 = t(t3 − 4)(t3 − 5)(t3 − 11) 35520 20 1776
F13 u2 = t(t3 − 4)(t3 − 6)(t3 − 11) 44688 16 2793
F13 u2 = t(t3 − 4)(t3 − 6)(t3 − 12) 66480 20 3324
F13 u2 = t(t3 − 4)(t3 − 7)(t3 − 9) 55632 16 3477
F13 u2 = t(t3 − 4)(t3 − 7)(t3 − 11) 17736 8 2217
F13 u2 = t(t3 − 4)(t3 − 9)(t3 − 11) 20556 12 1713

Table 4: Jacobian orders of hyperelliptic function fields F = k(t, u)
of the form u2 = t

∏s−1
j=0(t

3 − aj) and of their fixed fields F C3 =
k(t3, tu) (continued)
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k Defining Equation of F = k(t, u) |JF | |JFC3 | |JF |
|J
FC3 |

F13 u2 = t(t3 − 4)(t3 − 9)(t3 − 12) 45504 12 3792
F13 u2 = t(t3 − 5)(t3 − 6)(t3 − 8) 47040 20 2352
F13 u2 = t(t3 − 5)(t3 − 6)(t3 − 9) 66480 20 3324
F13 u2 = t(t3 − 5)(t3 − 6)(t3 − 10) 16128 16 1008
F13 u2 = t(t3 − 5)(t3 − 9)(t3 − 12) 29760 20 1488
F13 u2 = t(t3 − 5)(t3 − 10)(t3 − 11) 52080 20 2604
F13 u2 = t(t3 − 6)(t3 − 7)(t3 − 9) 55632 16 3477
F13 u2 = t(t3 − 6)(t3 − 7)(t3 − 12) 24768 16 1548
F13 u2 = t(t3 − 6)(t3 − 8)(t3 − 12) 29760 20 1488
F13 u2 = t(t3 − 6)(t3 − 11)(t3 − 12) 42048 12 3504
F13 u2 = t(t3 − 7)(t3 − 9)(t3 − 12) 14400 12 1200
F13 u2 = t(t3 − 8)(t3 − 9)(t3 − 12) 36864 16 2304
F13 u2 = t(t3 − 8)(t3 − 10)(t3 − 11) 14976 8 1872
F19 u2 = t(t3 − 1)(t3 − 10)(t3 − 13) 116880 20 5844
F19 u2 = t(t3 − 1)(t3 − 10)(t3 − 16) 98496 16 6156
F19 u2 = t(t3 − 2)(t3 − 10)(t3 − 11) 115776 16 7236
F19 u2 = t(t3 − 3)(t3 − 5)(t3 − 11) 109152 24 4548
F19 u2 = t(t3 − 3)(t3 − 14)(t3 − 17) 140616 24 5859
F19 u2 = t(t3 − 4)(t3 − 17)(t3 − 18) 275184 28 9828
F19 u2 = t(t3 − 5)(t3 − 8)(t3 − 15) 233568 24 9732
F19 u2 = t(t3 − 6)(t3 − 7)(t3 − 10) 177360 20 8868
F19 u2 = t(t3 − 6)(t3 − 7)(t3 − 17) 122976 24 5124
F19 u2 = t(t3 − 7)(t3 − 9)(t3 − 10) 161616 28 5772
F19 u2 = t(t3 − 7)(t3 − 11)(t3 − 15) 134784 24 5616
F19 u2 = t(t3 − 7)(t3 − 13)(t3 − 16) 115776 16 7236
F19 u2 = t(t3 − 11)(t3 − 12)(t3 − 13) 69888 16 4368
F19 u2 = t(t3 − 12)(t3 − 13)(t3 − 17) 233568 24 9732
F19 u2 = t(t3 − 13)(t3 − 16)(t3 − 18) 146496 16 9156
F31 u2 = t(t3 − 1)(t3 − 3)(t3 − 9) 1259040 40 31476
F31 u2 = t(t3 − 1)(t3 − 7)(t3 − 12) 744912 28 26604
F31 u2 = t(t3 − 1)(t3 − 7)(t3 − 13) 1341312 32 41916
F31 u2 = t(t3 − 1)(t3 − 7)(t3 − 25) 1053312 32 32916
F31 u2 = t(t3 − 1)(t3 − 7)(t3 − 26) 696192 32 21756
F31 u2 = t(t3 − 1)(t3 − 14)(t3 − 19) 1241760 40 31044
F31 u2 = t(t3 − 1)(t3 − 22)(t3 − 26) 1954800 36 54300
F31 u2 = t(t3 − 2)(t3 − 5)(t3 − 18) 1954800 36 54300
F31 u2 = t(t3 − 2)(t3 − 5)(t3 − 26) 1054560 40 26364
F31 u2 = t(t3 − 2)(t3 − 5)(t3 − 29) 775296 24 32304
F31 u2 = t(t3 − 2)(t3 − 9)(t3 − 12) 1288656 36 35796
F31 u2 = t(t3 − 2)(t3 − 13)(t3 − 28) 853200 36 23700
F31 u2 = t(t3 − 3)(t3 − 9)(t3 − 21) 565152 32 17661
F31 u2 = t(t3 − 4)(t3 − 9)(t3 − 19) 1083600 28 38700
F31 u2 = t(t3 − 4)(t3 − 11)(t3 − 13) 1011360 40 25284
F31 u2 = t(t3 − 4)(t3 − 22)(t3 − 28) 1038240 40 25956
F31 u2 = t(t3 − 5)(t3 − 6)(t3 − 11) 548856 24 22869

Table 4: Jacobian orders of hyperelliptic function fields F = k(t, u)
of the form u2 = t

∏s−1
j=0(t

3 − aj) and of their fixed fields F C3 =
k(t3, tu) (continued)
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k Defining Equation of F = k(t, u) |JF | |JFC3 | |JF |
|J
FC3 |

F31 u2 = t(t3 − 5)(t3 − 8)(t3 − 30) 1190400 32 37200
F31 u2 = t(t3 − 6)(t3 − 10)(t3 − 17) 978984 24 40791
F31 u2 = t(t3 − 6)(t3 − 16)(t3 − 26) 1566864 36 43524
F31 u2 = t(t3 − 6)(t3 − 18)(t3 − 22) 853152 32 26661
F31 u2 = t(t3 − 7)(t3 − 9)(t3 − 30) 591264 24 24636
F31 u2 = t(t3 − 8)(t3 − 10)(t3 − 12) 1292928 32 40404
F31 u2 = t(t3 − 8)(t3 − 10)(t3 − 26) 761472 32 23796
F31 u2 = t(t3 − 10)(t3 − 13)(t3 − 14) 1130400 32 35325
F31 u2 = t(t3 − 10)(t3 − 15)(t3 − 19) 726768 28 25956
F31 u2 = t(t3 − 10)(t3 − 16)(t3 − 24) 841440 40 21036
F31 u2 = t(t3 − 10)(t3 − 17)(t3 − 20) 1231008 32 38469
F31 u2 = t(t3 − 10)(t3 − 23)(t3 − 28) 865152 32 27036
F31 u2 = t(t3 − 11)(t3 − 14)(t3 − 23) 753696 24 31404
F31 u2 = t(t3 − 11)(t3 − 25)(t3 − 26) 853152 32 26661
F31 u2 = t(t3 − 12)(t3 − 16)(t3 − 30) 808704 36 22464
F31 u2 = t(t3 − 19)(t3 − 26)(t3 − 28) 2135484 36 59319
F31 u2 = t(t3 − 19)(t3 − 28)(t3 − 30) 915072 32 28596

Table 4: Jacobian orders of hyperelliptic function fields F = k(t, u)
of the form u2 = t

∏s−1
j=0(t

3 − aj) and of their fixed fields F C3 =
k(t3, tu)
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[Bra88] Rolf Brandt. Über die Automorphismengruppen von algebraischen Funktionenkörpern.

PhD thesis, Universität-Gesamthochschule Essen, 1988.
[Can87] David G. Cantor. Computing in the jacobian of a hyperelliptic curve. Mathematics of

Computation, 48(177):95–101, 1987.

[ccG] cv cryptovision GmbH. Kurvenfabrik. http://www.cryptovision.com/Kurvenfabrik/
textFabrik.html.
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support, 10

symbols

A∼B, 11
F/k, 9

AF (A), 13

AF , 13

An, 87
Aut(F/k), 20

ConF ′/F , 17

Cn, 87
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PSLn(q), 88

PF , 9
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OP , 9
ΩF (A), 13
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dim(L(A)), 12
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k̃, 9

gF , 13
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∞x, 24

P ′ | P , 15

(l · c), where l ∈ N, c ∈ km, 92
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σ(P ′), 21
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vP (α), 13
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(x)0, 11

symmetric group, 87

type F[G, k], 87

under (place P under place P ′), 15

unramified, 17

valuation, 9

valuation ring, 9
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Weierstraß point, 26

Weil descent, 39
Weil differentials, 13
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