
Report in Wirtschaftsmathematik
Nr. 92/2004

Integer programming approaches for solving the

delay management problem∗

A. Schöbel

Technische Universität Kaiserslautern
and

Institut für Techno- und Wirtschaftsmathematik

January 2004

Abstract

In the delay management problem we decide how to react in case of de-
lays in public transportation. More specific, the question is if connecting
vehicles should wait for delayed feeder vehicles or if it is better to depart
in time. As objective we consider the convenience over all customers, ex-
pressed as the average delay of a customer when arriving at his destination.

We present path-based and activity-based integer programming mod-
els for the delay management problem and show the equivalence of these
formulations. Based on these, we present a simplification of the (cubic)
activity-based model which results in an integer linear program. We iden-
tify cases in which this linearization is correct, namely if the so-called
never-meet property holds. Fortunately, this property is often almost satis-
fied in our practical data. Finally, we show how to find an optimal solution
in linear time in case of the never-meet property.

1 Introduction

A major reason for complaints about public transportation is the missing punctu-
ality, which — unfortunately — is a fact in many transportation systems. Since

∗This work was supported by Stiftung Innovation Rheinland-Pfalz

1



it seems to be impossible to avoid delays completely, it is a necessary issue in
the dispositive work of a public transportation company to deal with delayed
vehicles. In this paper we focus on the convenience of the customers and present
a model for minimizing the average delay over all passengers.

Let us consider some vehicle (e.g., a train g) that arrives at a station with a delay.
At the station, there are other vehicles (e.g., buses h and h′) ready to depart,
see Figure 1. What should each of these connecting vehicles do? There are two
alternatives:

• A connecting vehicle h can wait to allow passengers to change from the
delayed vehicle g to h.

• The connecting vehicle h can depart on time.

Unfortunately, both decisions have negative effects: In the first case, vehicle h

causes delay for passengers already within h, but also for customers who wish to
get on vehicle h later on, and possibly for subsequent other vehicles which will
have to wait for its delay. In the second case, however, all customers who planned
to change from the delayed vehicle g into h will miss their connection.

g h’

hv

Figure 1: The wait-depart decision at one single station.

In the first case the connecting vehicle h does not depart at its scheduled time,
but with a delay. The new departure time of h is called its perturbed timetable.
In the second case, the perturbed departure time of h at v equals the scheduled
one.

The delay management problem is to find wait-depart decisions and a perturbed
timetable in case of some known delays, not only for one single bus, but for all
vehicles in the network, such that the sum of all delays over all customers is
minimized. The delay of a customer is defined as the delay he has when he he
reaches his destination.
Since in the delay management problem new departure times for each vehicle at
each station have to be determined, it is related to finding timetables in public
transportation. In this field, a lot of research has been done for periodic and

2



non-periodic timetables. A recent overview is given by [Pee02]. We also refer
to [Nac98, Car99, Gov98, vE01] and references therein. Note that the main
difference between timetabling and delay management is that in the timetabling
problem the connections are given in advance, while in the delay management
problem we have to decide which connections should be maintained and which
can be dropped.

How to react in case of delays has — due to the size and complexity of the
problem — be mainly tackled by simulation and expert systems. We refer to
[SM97, SM99, SBK01, SMBG01] for providing a knowledge-based expert system
including a simulation of wait-depart decisions with a what-if analysis. Simulation
has also been used in [Ack99, SM01].
In [GS02] the delay management problem was formulated as a bicriterial prob-
lem, minimizing the number of missed connections and the delay of the vehicles
simultaneously, and solved by methods of project planning. The weighted sum of
these functions has been minimized in [RdVM98] by an enumeration procedure
and a greedy heuristic within a max-plus algebraic model, see also [SvdB01].
Integer programming formulations for a simple case without slack times were de-
veloped independently in the diploma theses of [Kli00] (see also [SBK01]) and by
[Sch01a]. Both assumed that the number of customers on each edge is fixed (which
is not true if customers miss a connection) and hence studied an approximation
of the effects of delays. An exact linear integer model for the delay management
problem is presented in [Sch01b]. In all these models it is assumed that the un-
derlying timetable is periodic with one common period T . Related work includes
how to reduce delays by investing into new tracks (see [EFK01a, EFK01b, EF02])
and how to minimize the sum of waiting times of customers at their starting sta-
tions in a stochastic context (see [APW02]).

In this paper we present a new and more general integer programming formu-
lation of the delay management problem. This new formulation contains the
formulations of [Sch01a, Kli00] as special cases and is equivalent to the model in
[Sch01b] in the case of one common period of time. Although our model can be
applied to many different objective functions we specialize here on minimizing
the sum of all delays over all customers.
After introducing definitions and basic properties in Section 2 we present two
different, but equivalent integer programming formulations for the delay man-
agement problem. In Section 4 we show that the new model (TDM-C) can be
linearized if a special condition, called the never-meet property holds. In Section 5
we show how to solve (TDM) in linear time in this case. The paper is concluded
by some remarks on future research.

3



2 Notation, concepts, and basic properties

We first introduce a new notation for the delay management problem, based on
its representation as an activity-on-arc project network (see e.g. [Nac98] for using
this concept in timetabling). As an example, a very small event-activity network
is depicted in Figure 2.

driving
driving

driving

waiting

driving

changing

changing

g,v0,dep h,v0,arr

h,v0,depg,v0,arr

of vehicle g

of vehicle g

of vehicle g

from vehicle h to g

from vehicle g to h

of vehicle h

waiting of vehicle h

of vehicle h

h,v3,dep

h,v4,arrg,v1,dep

g,v2,arr

Figure 2: An event-activity network.

Notation 1 An arrival of a vehicle g at a station v is called an arrival event
(g, v, arr), while a departure event (g, v, dep) is the departure of some vehicle
g at some station v. The event activity network is a graph N = (E ,A) where

• E = Earr ∪ Edep is the set of all arrival and all departure event

• A = Await ∪ Adrive ∪ Achange is a set of directed arcs, called activities,
defined by

Await = {((g, v, arr), (g, v, dep)) ∈ Earr × Edep}

Adrive = {((g, v, dep), (g, u, arr)) ∈ Edep × Earr : vehicle g goes

directly from station v to u},

Achange = {((g, v, arr), (h, v, dep)) ∈ Earr × Edep : a changing

possibility from vehicle g into h at station v is required}.

4



The driving and waiting activities are performed by vehicles, while the changing
activities are used by the customers. Note that N is a special case of a time-
expanded network and hence is acyclic. This means, a precedence relation ≺
between events and activities is canonically given. We remark that for a given
set of events, or of activities, a minimal element w.r.t. ≺ always exists, but it
needs not be unique.

Using the notation of event-activity networks, a timetable Π is given by assigning
a time Πi to each event i ∈ E (see [Nac98]). The planned duration of activity
a = (i, j) is hence given by Πj −Πi. Furthermore, let La be the minimal duration
of activity a. We assume that the timetable is feasible, i.e.,

Πj − Πi ≥ La for all a = (i, j) ∈ A.

We further assume that all source delays are known, i.e., we have a set of (arrival)
events Edel ⊆ Earr such that di > 0 for all i ∈ Edel. For non-delayed events we set
di = 0. If Edel 6= ∅ some of the scheduled arrival and departure times have to be
changed. The outcome is called a perturbed timetable.

Definition 1 A perturbed timetable xi for all i ∈ E is feasible, if

xi ≥ Πi + di for all i ∈ E and (1)

xj − xi ≥ La for all a = (i, j) ∈ Await ∪ Adrive. (2)

Constraint (1) requires that no event must be scheduled earlier than in the original
timetable, and furthermore ensures that for all i ∈ Edel the source delays are taken
into account. Due to constraint (2) the delay is carried over correctly from one
event to the next along waiting and driving activities.

Notation 2 A changing activity a = (i, j) ∈ Achange is called maintained, if
xj − xi ≥ La.

In the delay management problem our goal is to identify which connections should
be maintained and which can be missed. This has to be in accordance with the
perturbed timetable x.

Definition 2 A set of maintained connections Afix ⊆ Achange together with a
feasible perturbed timetable xi for all i ∈ E is a feasible solution of the delay
management problem, if

xj − xi ≥ La for all a = (i, j) ∈ Afix.

In other words, (Afix, xi) is feasible, if all connections a ∈ Afix are maintained.

5



Notation 3 The slack time sa of activity a ∈ A is the time which can be saved
while performing activity a as fast as possible, and it is given by

sa = Πi − Πj − La

for all three types of activities a = (i, j) ∈ A.

Using Notation 3 the delays yi = xi − Πi can be used instead of the perturbed
timetable. Rewriting (1) and (2) we obtain that Afix ⊆ Achange, yi ∈ IN|E| is a
feasible solution of the delay management problem, if

yi ≥ di for all i ∈ Edel

yi − yj ≤ sa for all a = (i, j) ∈ Await ∪ Adrive ∪ Afix

Note that a timetable would also be feasible if some vehicles depart or arrive late
without any reason, i.e., without having an incoming delay. Such solutions are
clearly not optimal, and hence we define a set of “most punctual” solutions.

Notation 4 Let (Afix, y) be a feasible solution of the delay management problem.
y is called time-minimal with respect to Afix if all feasible solution (Afix, y′)
satisfy y ≤ y′. In this case, (Afix, y) is called a time-minimal solution.

Note that given Afix ⊆ Achange, a time-minimal solution y = y(Afix) w.r.t. Afix

can be found efficiently by one of the following methods (see also [GS02]).

Linear programming approach: We introduce variables z̄a describing if con-
nection a ∈ Achange is missed (z̄a = 1) or maintained (z̄a = 0). Choosing
M ≥ D := max{di : i ∈ E}, the following is an integer programming for-
mulation whose solutions are exactly the time-minimal feasible solutions:

yi ≥ di for all i ∈ Edel (3)

yi − yj ≤ sa for all a = (i, j) ∈ Await ∪ Adrive (4)

−Mz̄a + yi − yj ≤ sa for all a = (i, j) ∈ Achange (5)

yi ∈ IN for all i ∈ E .

Since the resulting integer program has a totally unimodular coefficient
matrix, the integrality condition y ∈ IN|E| is not needed and the problem
can be solved by linear programming.

Critical path method: The event-activity network can easily be transformed
into a project network (as defined, e.g., in [Elm77]) by introducing one
super-sink s and taking

A(Afix) = Await ∪ Adrive ∪ Afix

6



and additional timetable activities {(s, i) : i ∈ E} as set of activities in the
corresponding project network. The duration of an activity is set to −sa

for a ∈ A and to the source delay di if a = (s, i). Then it can be shown
that the earliest possible starting time of each activity is a time-minimal
solution of the delay management problem. The procedure uses the critical
path method to determine the earliest starting times but is applied directly
in the original network N .

Algorithm 1: Calculating a time-minimal solution for a set Afix

Input: N, di, sa, Afix.

Output: Optimal (time-minimal) solution w.r.t. Afix.

Step 1. Sort E = {i1, . . . , i|E|} according to ≺.

Step 2. For k = 1, . . . , |E|:

yik = max{dik , max
a=(i,ik)∈A(Afix)

yi − sa} (6)

Step 3. Output: yi, i ∈ E

Longest path technique for the feasible differential problem It is also pos-
sible to transform the delay management problem with fixed connections
to a feasible differential problem (defined, e.g., in [Roc84]). Note that the
potential in this case is given by the delay for each node and the tension is
the additional delay of each of the activities, see [Sch03] for details.

The following result will be used throughout the paper.

Lemma 1 For some set Afix ⊆ A let y(Afix) denote a time-minimal solution
w.r.t. Afix. Then

1. A1,A2 ⊆ Achange leads to y(A1) ≤ y(A2).

2. y = y(Afix) satisfies yi ≤ D = max{di : i ∈ E} for all i ∈ E .

Proof: The result can be shown easily by using induction using Algorithm 1 to
calculate a time-minimal solution. To start, choose a minimal event i and note
that yi = di ≤ D and this is independent of the set of fixed connections chosen.
Now take any event j ∈ E. From the induction assumption we may assume that

7



yi ≤ D and yi(A1) ≤ yi(A2) holds for any predecessors i (w.r.t. ≺) of j. From
(6) we directly obtain that yj ≤ D and

yj(A
1) = max{dj, max

a=(i,j)∈A(A1)
yi(A

1) − sa}

≤ max{dj, max
a=(i,j)∈A(A2)

yi(A
2) − sa}

= yj(A
2).

QED

As mentioned before, our objective is to minimize the sum over all delays over
all customers. To this end, we have to specify the customers data.
A customer’s paths is given as a sequence of events, i.e.,

p = (i1, i2, . . . , ipL
)

where ik ∈ E are events, and (ik, ik+1) ∈ A are activities. We will write a =
(ik, ik+1) ∈ p in this case. Note that i1 is a departure event, i2 an arrival event,
i3 ∈ Edep and so on. Furthermore, i(p) denotes the last event on path p and wp

the number of passengers who want to use path p.
To calculate the delay of a passenger on path p we assume one (common) time
period T for all vehicles, and that in the next time period all vehicles are in time.
We have to distinguish the following two cases.

Case 1: If all connections on path p are maintained, the delay of a passenger on
path p is the arrival delay yi(p) of his last event i(p).

Case 2: If at least one connection on path p is missed, the delay of a passenger
on path p is given by T .

We are finally in the position to define the total delay management problem.

(TDM): Given N = (E ,A) with source delays di, i ∈ E and a set of weighted
paths P, find a set Afix ⊆ Achange and a feasible perturbed timetable xi = Πi +yi,
i ∈ E such that the sum over all delays over all customers is minimal.

3 Two models for the delay management prob-

lem (TDM)

3.1 Path-based formulation

As first model we present a path-oriented description of (TDM) (based on the
formulation in [Sch01b]) which uses the following variables

8



zp =

{

0 if all connections on path p are maintained
1 otherwise

(TDM-A)

min fTDM−A =
∑

p∈P

wp(yi(p)(1 − zp) + Tzp)

such that

yi ≥ di for all i ∈ Edel (7)

yi − yj ≤ sa for all a = (i, j) ∈ Await ∪ Adrive (8)

−Mzp + yi − yj ≤ sa for all p ∈ P, a = (i, j) ∈ p ∩ Achange (9)

yi ∈ IN for all i ∈ E (10)

zp ∈ {0, 1} for all p ∈ P (11)

The first two constraints (7) and (8) are the same as (3) and (4). Constraint (9)
corresponds to (5) but is rewritten for paths p. Finally, the objective function
sums up the delay according to the two cases mentioned on page 8.
In the following, we always assume M ≥ D = max{di : i ∈ E}.

The given formulation of model (TDM-A) can be linearized (and weakened) by
substituting the quadratic term yi(p)(1 − zp) by a new variable qp, leading to the
following model (TDM-B).

(TDM-B)

min fTDM−B =
∑

p∈P

wp(qp + Tzp)

such that (7) – (11) hold, and such that

−Mzp + yi(p) − qp ≤ 0 for all p ∈ P (12)

qp ≥ 0 for all p ∈ P (13)

Lemma 2 The linearization is correct.

Proof:

(TDM-A) =⇒ (TDM-B): Let (y, z) be a feasible solution of (TDM-A). Due
to Lemma 1 we may assume that yi ≤ D for all i ∈ E . For all p ∈ P define
qp = yi(p)(1 − zp). Since yi(p) ≤ D ≤ M we get for all p ∈ P that

−Mzp + yi(p) ≤ −yi(p)zp + yi(p) = qp.

Hence, (y, z, q) is feasible for (TDM-B), and both solutions have the same
objective value.

9



(TDM-B) =⇒ (TDM-A): Let (y, z, q) be a feasible solution of (TDM-B). Then
(y, z) is also feasible for (TDM-A). From (12) and (13) we conclude that

qp ≥ yi(p) if zp = 0

qp ≥ 0 if zp = 1.

Consequently, qp ≥ yi(p)(1 − zp), i.e., fTDM−A ≤ fTDM−B.

QED

Since the number of variables is very large in the path-oriented formulations we
derive a (stronger) activity-based model for (TDM) in the next section.

3.2 Activity-based formulation

We now use variables for each changing activity z̄a describing if connection a ∈
Achange is missed (z̄a = 1) or maintained (z̄a = 0). Our goal is to calculate the
total delay by summing up the additional delays over all activities a ∈ A.
To this end, first consider some activity a ∈ A\Achange. We want to calculate the
additional delay customers will get while using this activity. The delay customers
already have at the start of a = (i, j) is yi, and at the end of a their delay is yj.
This means, the tension yj − yi is the additional delay gained by the customers
while performing activity a. Note that this additional delay can be negative,
meaning that slack times are used to compensate an already existing delay.
For changing activities we have to be more careful. Let a = (i, j) ∈ Achange and
suppose first that a is maintained. Then the additional delay on a is again the
tension yj − yi. On the other hand, if a is missed, the additional delay for the
customers who planned to use activity a is given by T −yi = yj−yi +T −yj, since
they now have to wait the remaining time period until the next (non-delayed)
vehicle arrives for carrying on their journey.

We further need to extend the event-activity network by defining

Es = E ∪ {s}

As = A ∪ {(s, i) : i ∈ E} and

Ps = {(s, ip1, . . . , i
p
L) : p ∈ P}.

The additional event s represents the arrival of the customers at their first sta-
tion (by a means of transport which is not considered in the delay management
problem). The extension makes sure that the delay of a customer waiting at some
station for his first (delayed) vehicle to come, is taken into account. We always
assume that customers reach their first station without any delay, i.e.,

ys = 0.

10



Now we can present the new model. As before, we assume that T, M ≥ D.
The following additional variables are necessary for (TDM-C).

z̃p
a =







1 if activity a is reached on path p without any missed
connection before

0 otherwise

wa = number of customers who really use activity a

It is important to understand that the number of customers wa (really) using
activity a ∈ A is a variable, since it depends on the wait-depart decisions whether
customers using a path p ∈ Ps will reach all arcs a ∈ p or not.

(TDM-C)

min fTDM−C =
∑

a=(i,j)∈As

wa(yj − yi) +
∑

a=(i,j)∈Achange

waz̄a(T − yj)

such that

yi ≥ di for all i ∈ Edel (14)

yi − yj ≤ sa for all a = (i, j) ∈ Await ∪ Adrive (15)

−Mz̄a + yi − yj ≤ sa for all a = (i, j) ∈ Achange (16)

z̃p
a +

∑

ã∈p∩Achange:
ã≺a

z̄ã ≥ 1 for all p ∈ Ps and a ∈ p (17)

z̃p
a + z̄ã ≤ 1 for all p ∈ Ps and for all a, ã ∈ p

with ã ∈ Achange and ã ≺ a (18)

wa =
∑

p∈Ps:a∈p

wpz̃
p
a for all a ∈ As (19)

yi ∈ IN for all i ∈ E

z̄a ∈ {0, 1} for all a ∈ As

z̃p
a ∈ {0, 1} for all p ∈ Ps, a ∈ As

wa ∈ IN for all a ∈ As

In the objective function the additional amount of delay on each activity is mul-
tiplied by the number of customers really using it. Restrictions (14) – (16) are
the same as (3) – (5). Restriction (17) defines the values of z̃p

a in such a way, that
they are forced to be 1, if no connection on path p before a has been missed, and
(18) makes sure that z̃p

a = 0 for all activities a after a missed connection ã on
path p. Finally, (19) determines the number of customers really using activity a.

Given a feasible solution yi, i ∈ E , it can easily be extended to a feasible time-
minimal solution (y, C(y)) := (y, z̄(y), z̃(z̄), w(z̃)) by

11



z̄a(y) =

{

0 if yi − yj ≤ sa

1 otherwise
for all a = (i, j) ∈ Achange, (20)

z̃p
a(z̄) = max















1 −
∑

a∈p∩Achange:
ã≺a

z̄ã, 0















for all p ∈ Ps, a ∈ p, (21)

wa(z̃) =
∑

p∈Ps:a∈p

wpz̃
p
a for all a ∈ As. (22)

The concept of C(y) is important since replacing a feasible solution (y, z̄, z̃, w)
by (y, C(y)) will always yield the same or a better objective function value for
(TDM-C).

3.3 Relation between the models

Theorem 1 (TDM-A) and (TDM-C) lead to the same set of optimal solutions
y ∈ IR|E|.

Proof:
First, if

wa =
∑

p∈Ps:a∈p

wpz̃
p
a for all a ∈ As

the objective function of (TDM-C) can be reformulated to

fTDM−C =
∑

a=(i,j)∈As

wa(yj − yi) +
∑

a=(i,j)∈Achange

waz̄a(T − yj)

=
∑

a=(i,j)∈As

∑

p∈Ps:a∈p

wpz̃
p
a(yj − yi) +

∑

a=(i,j)∈Achange

∑

p∈Ps:a∈p

wpz̃
p
a z̄a(T − yj)

=
∑

p∈Ps

wp









∑

a=(i,j)∈As:a∈p

z̃p
a(yj − yi) +

∑

a=(i,j)∈Achange
a∈p

z̃p
a z̄a(T − yj)









=:
∑

p∈Ps

wpCp.

For the objective of (TDM-A), we define

Ap = yi(p)(1 − zp) + Tzp.

12



(TDM-C) =⇒ (TDM-A): Let (y, z̄, z̃, w) be feasible for (TDM-C). Define zp =
zp(z̄) as follows:

zp(z̄) =

{

0 if z̄a = 0 for all a ∈ p ∩ Achange

1 otherwise
(23)

Then (7) holds due to (14), (8) holds due to (15), and (9) is trivially sat-
isfied, if zp = 1, and for zp = 0 we know that z̄a = 0 for all a ∈ p and
hence (9) holds because of (16). This means (y, z) is feasible for (TDM-A).
It remains to show that Ap ≤ Cp. To this end, let p = (s, i1, . . . , iL) ∈ Ps

be a path with i(p) = iL.

Case 1: z̄a = 0 for all a ∈ p∩Achange. Then, we defined zp = 0. From (17)
we get that z̃p

a = 1 for all a ∈ p. Since ys = 0 we conclude that

Cp =
∑

a=(i,j)∈As:a∈p

yj − yi = yiL − ys = Ap.

Case 2: There exists a ∈ p ∩ Achange with z̄a = 1. Choose a minimal with
respect to ≺ with this property, say ā = (ik̄−1, ik̄). Then, since z̄a, z̃

p
a

satisfy (17) and (18) we obtain

z̃p
a = 0 for all a ∈ p with ā ≺ a

z̃p
a = 1 for all a ∈ p with a � ā.

Hence, for all a ∈ Achange ∩ p we get

z̃p
a z̄a =

{

1 if a = ā

0 otherwise

This yields

Cp =
∑

a=(i,j)∈As:a∈p

and a�ā

yj − yi + (T − yik̄
)

= yik̄
− yi0 + T − yik̄

= T = Ap,

and consequently, fTDM−C(y, z̄, z̃, w) = fTDM−A(y, z(z̄)).

(TDM-A) =⇒ (TDM-C): Now let a feasible solution (ỹ, z) of (TDM-A) be
given. We replace ỹ by a time-minimal solution y which satisfies yi ≤ T

for all i ∈ E , and has equal or better objective value (see Lemma 1). Since
y satisfies (7) and (8) we can construct a feasible solution for (TDM-C)
according to (20),(21), and (22).

For the objective value of this solution we again compare Cp and Ap for a
path p = (s, i1, . . . , iL) ∈ Ps and get:

13



Case 1: If zp = 0, we get from (9) that yi − yj ≤ sa for all a = (i, j) ∈ p.
Hence, due to the definition of z̄a we conclude that z̄a = 0 for all
a ∈ p ∩ Achange, yielding Cp = yi(p) = Ap analogously to Case 1 of the
first part of the proof.

Case 2: Now consider the case zp = 1.

Case 2a: yi − yj ≤ sa for all a = (i, j) ∈ p, yielding that z̄a = 0 for
all a ∈ p and hence Cp = yi(p) ≤ T = Ap.

Case 2b: There exists a = (i, j) ∈ p such that yi − yj > sa. This
gives us z̄a = 1. Choose ā = (ik̄−1, ik̄) minimal with respect to ≺
with this property. Then, from the definition of z̃p

a we get

z̃p
a = 0 for all a ∈ p with ā ≺ a

z̃p
a = 1 for all a ∈ p with a � ā

and analogously to Case 2 of the first part of the proof Cp = T = Ap.

Together, fTDM−A(ỹ, z) ≥ fTDM−A(y, z) ≥ fTDM−C(y, C(y)).

Combining both directions yields that there exists an optimal solution for (TDM-
A) with perturbed timetable y if and only if there exists an an optimal solution
for (TDM-C) with the same perturbed timetable y. QED

On a first glance, (TDM-C) does not seem to be useful for solving the delay
management problem better than (TDM-A), since it is much larger:

• (TDM-A) can be linearized (see Lemma 2) while (TDM-C) is cubic.

• The number of variables in (TDM-A) is O(|P|+ |E|), but O((|P||A|+ |E|+
|Achange|) in (TDM-C).

But note that (TDM-C) is more general since it allows to replace the common
time period T by time periods Ta for each changing activity a ∈ Achange. Even
with a common time period T we will need (TDM-C) to solve a special case of
(TDM) very efficiently in Section 5.
We remark that (TDM-C) can be used to derive the following reduction result
for (TDM). Assume that the slack times are so large that the delay disappears
after a few activities. Then we need not consider events which can not gain any
delay in the worst-case time-minimal solution.

Lemma 3 Let y = y(Achange) be a time-minimal solution w.r.t. Achange. Then
there exists an optimal solution (y∗, z̄∗, z̃∗, w∗) of (TDM-C) such that

• For all i ∈ E : If yi = 0 then y∗
i = 0.

• For all a = (i, j) ∈ Achange: If yi = 0 then z̄∗a = 0.

14



This kind of reduction will be referred to as late reduction. In the following we
always can assume that

E = Ered−late = {i ∈ E : yi(Achange) > 0}

(Note that in real-world instances, late reduction often leads to significantly
smaller networks.)

4 Constant weights and the never-meet-property

In order to solve (TDM-C) we fix the weights wa as parameters instead of calcu-
lating them during the optimization. Doing so, we obtain the total delay man-
agement problem with constant weights. Its formulation is given by deleting con-
straints (17), (18), and (19) in (TDM-C), and fixing

wa =
∑

p∈Ps:a∈p

wp for all a ∈ As (24)

as parameters, i.e., setting wa as the “traffic load” on activity a. We obtain:

min fTDM−const′ =
∑

a=(i,j)∈As

wa(yj − yi) +
∑

a=(i,j)∈Achange

waz̄a(T − yj)

such that (14),(15),(16),(20), and (20) hold.

We can further rewrite fTDM−const′ as follows. For i ∈ E let

wi =
∑

p∈P :i(p)=i

wp (25)

be the number of customers with final destination i. Since
∑

a=(i,j)∈As

wa(yj − yi) =
∑

p∈Ps

wp

∑

a=(i,j)∈p

yj − yi

=
∑

p∈P

wp(yi(p) − ys)

=
∑

i∈E

∑

p∈P :
i(p)=i

wpyi =
∑

i∈E

wiyi

we rewrite

fTDM−const′ =
∑

i∈E

wiyi +
∑

a=(i,j)∈Achange

waz̄a(T − yj).

Unfortunately, in general, we make a mistake by fixing the weights as above. This
is illustrated in Figure 3.

15



vehicle 3

v1

v2 v3

v4

v0

vehicle 1

vehicle 2

vehicle 2

Figure 3: An example in which (TDM-const) is not correct.

We assume that there are three vehicles 1,2, and 3, where vehicle 1 and vehicle
3 reach the stations v2 and v3 with a delay. In this original network we consider
a path p = (v1, v2, v3, v4). Customers on this path use vehicle 1 until they reach
station v2; here they wish to change to vehicle 2 and to go on to stations v3

and v4. Suppose that vehicle 2 is not waiting for vehicle 1 at station v2, such
that the path p is missed. Assume further that vehicle 2 waits for the delayed
vehicle 3 at station v3. If we have not adapted the weights, the customers on
path p are counted twice: First, since they missed their connection at station v2,
and secondly, since they reach their final destination v4 with a delay. This double
counting might influence decisions in the wrong way.

Fortunately, we are able to identify problem instances for which the model with
constant weights is correct.

• One trivial case is given if no path in P contains a changing activity, i.e.,
no customer plans to change.

• It can be shown that the model is still correct, if we only allow paths without
changing activities or of the form

p = (i1, i2, . . . , iL−2, iL−1, iL),

where p contains at most one changing activity (iL−2, iL−1) followed by not
more than one driving activity, see [Sch03].

• A more interesting case, in which we make no mistake by using the constant
weights will be described in the following.

Since fTDM−const′ still is no linear function we first further simplify the model.
In the following we simply forget about subtracting yj in the second part of the
objective, to obtain the linear program (TDM-const).

16



(TDM-const)

min fTDM−const =
∑

i∈E

wiyi +
∑

a∈Achange

waT z̄a

such that

yi ≥ di for all i ∈ Edel (26)

yi − yj ≤ sa for all a = (i, j) ∈ Await ∪ Adrive (27)

−Mz̄a + yi − yj ≤ sa for all a = (i, j) ∈ Achange (28)

yi ∈ IN ∀i ∈ E

z̄a ∈ {0, 1} for all a ∈ Achange

It can be shown that each feasible solution of (TDM-const) yields an upper bound
on (TDM). But the main advantage of (TDM-const) is due to the surprising fact
that (TDM-const) is equivalent to (TDM) in a large class of practical examples.
To this end, we need some technical details.

Notation 5 H(i) = {j ∈ E : there exists a (directed) path from i to j}

For all j ∈ H(i) we hence have i � j.

Definition 3 The delay management problem has the never-meet-property if

1. H(i) is a tree for all i ∈ Edel, and

2. H(i) ∩ H(j) = ∅ for all i, j ∈ Edel with i 6= j.

j
i1

i2

delayed

delayed

Figure 4: A case in which the never-meet-property does not hold.

The interpretation of the never-meet-property is the following: By calculating
the time-minimal solution with respect to some given z̄, but without using slack-
times, we can find out how far the source delays can spread out in this solution in

17



the worst case. The never-meet-property requires that in no feasible solution of
(TDM) two delayed vehicles will meet, see Figure 4. Note that the formulation
includes that source delays can only occur after non-delayed events.

The following property is important for proving the next theorem.

Lemma 4 Let (TDM) have the never-meet-property and let (y, C(y)) be a feasi-
ble (time-minimal) solution of (TDM-C). Let ã = (̃i, j̃) ∈ Achange. If z̄ã = 1 we
have the following.

1. yi = 0 for all i ∈ H(j̃),

2. z̄a = 0 for all a = (i, j) with i ∈ H(j̃).

Proof: Let H =
⋃

j∈Edel
H(j). Then yi = 0 for all i 6∈ H. Due to z̄ã = 1

we conclude from (20) that yĩ ≥ 0 and hence ĩ ∈ H(i0) for some i0 ∈ Edel.
Consequently, also j̃ ∈ H(i0) and due to the never-meet property, dj̃ = 0 and

i 6∈ H for all i 6= ĩ with (i, j̃) ∈ A.
We now can start induction with j̃ as minimal event in H(j̃) and use (6) and the
never-meet property to obtain

yj̃ = max
(i,j̃)∈A(Afix)

yi − sa

= max
(i,j̃)∈A(Afix):i6∈H

yi − sa ≤ 0.

For all other events i ∈ H(j̃) we know that i ∈ H(i0) and hence no predecessor
of i can be in H \ H(i0). Note that all j 6∈ H satisfy yj = 0. Furthermore, all
j ∈ H satisfy j ∈ H(i0) and hence we have for all j ≺ i that yj = 0 due to the
induction assumption. Together, we conclude that yi = 0.
Finally, consider a = (i, j) with i, j ∈ H(j̃). Since we already have shown that
yi = yj = 0 (20) yields z̄a = 0.

QED

Theorem 2 Model (TDM-const) is correct if the never-meet-property holds.

Proof: We show that (TDM-C) and (TDM-const) are equivalent in this case.
First, a feasible solution (y, z̄) of (TDM-const) can be extended to a feasible
solution (y, C(y)) of (TDM-C) with equal or better objective value.
The other direction is the interesting one: We show that each feasible solution
of (TDM-C) corresponds to a feasible solution of (TDM-const) with the same
or better objective value. More precisely, given some feasible solution of (TDM-
C) with delay y, let (y, C(y)) = (y, z̄, z̃, wc) denote a (maybe better) feasible
solution. We show that (y, z̄) is a feasible solution of (TDM-const) with the same
objective value as (y, C(y)).

18



Feasibility of y, z̄ for (TDM-const) is trivially satisfied. It remains to show that

fTDM−C(y, z̄, z̃, w) = fTDM−const(y, z̄).

To this end, suppose that for some ā = (̄i, j̄) ∈ A

wā 6= wc
ā.

We have to show that in this case

yj̄ − yī = 0,

and that for ā ∈ Achange

Tzā = 0,

meaning that the error we make by calculating the weights will not influence the
value of the objective function. Note that this is satisfied if ī 6∈ Ered−late, since we
consider a time-minimal solution.
From wā 6= wc

ā we get (by comparing (22) and (24), respectively), that

∑

p∈Ps:ā∈p

wp = wā 6= wc
ā =

∑

p∈Ps:ā∈p

wpz̃
p
ā.

Hence there exists some path p ∈ P containing ā such that z̃
p
ā = 0. Due to (21)

there exists ã ∈ p with ã ≺ ā and z̄ã = 1. Without loss of generality let us take
ã = (̃i, j̃) minimal with this property, i.e., we choose the first changing activity
on path p that is marked as missed. For an illustration, see Figure 5.

j
a

i
j

a~~
~

i
_ _

_

Figure 5: The path p in the proof of Theorem 2. The grey events belong to H(j̃).

Since ī, j̄ ∈ H(j̃) we derive from Lemma 4 that

• yī = yj̄ = 0, and

• if ā ∈ Achange then z̄a = 0.

Hence, yj̄ − yī = 0, and if ā ∈ Achange we further have that Tzā = 0, which
completes the proof.

QED

Note that the never-meet property can be tested efficiently by the forward phase
of the CPM-method (with zero slack times and Afix = Achange). This means

19



we have shown that (TDM-const) is correct, whenever the never-meet-property
holds, and that this property can be tested efficiently. Fortunately, our numer-
ical results indicate, that the never-meet-property often is almost satisfied in
practice.

As test data we used a part of the public transportation network of Rheinland-
Pfalz, Germany. The data consists of 823 stations, 2118 edges, and 1314 trips. As
connections we use four different sets U5, U10, U30, and U60, where set Ux contains
reasonable connections with a scheduled waiting time of less than x minutes. By
“reasonable” we mean that we do not consider connections where changing results
in going directly back to the previous station. The sizes of the sets Ux range from
6531 (for U5) up to 80716 (for U60). The resulting event-activity-network has a
size of 46720 nodes (events). The number of edges (activities) depends on the set
Ux used and varies between 51937 and and 126122.
Our analysis with randomly chosen source delays is shown in Figures 6 and 7.
In both figures the graphed functions correspond to the different sets of relevant
connections. The lowest function uses U5 as set of connections, the next func-
tion corresponds to U10, then U30, and the top function refers to U60, confirming
that the number of conflicts with the never-meet-property increases if the set of
connections is enlarged. Figure 6 shows the number of conflicts with the never-
meet-property as a function of the source delay, if we assume that 10 vehicles
are delayed. It turns out that we can expect less than 50 conflicts if the source
delays are smaller than 15 minutes.
In Figure 7 the number of conflicts with the never-meet-property is depicted as
a function of the number of delayed vehicles. For this figure we assume a source
delay of 15 minutes. Again, it turns out that not more than 50 conflicts are likely
if the number of delayed vehicles is smaller than 10.
The reason for the relatively low number of conflicts in practice is in particular
due to the fact that only events that can gain a delay need to be considered (see
Lemma 3). Furthermore, most conflicts with the never-meet-property arise at
events within the city traffic included in our data, while the never-meet-property
is more likely to hold for transportation systems in a rural environment.

But all this is only helpful if we can draw advantage of the simplified model with
constant weights in terms of solving it. In the next section we will hence discuss
how to solve (TDM-const) if the never-meet property holds.

5 Solving (TDM) in the case of the never-meet

property

5.1 The special case with zero slack times

First, let us consider the special case (TDM-const-zero), in which

20



 0

 20

 40

 60

 80

 100

 120

 140

 160

 4  6  8  10  12  14  16  18  20

C
on

fli
ct

s

Amount of source delay

Figure 6: Conflicts with the never-meet-property as function of the source delay, if 10

vehicles are delayed.

• all source delays have the same amount, i.e., di ∈ {0, D} for all i ∈ E , and

• all slack times are equal to zero, i.e., sa = 0 for all a ∈ A.

Let y be a time-minimal solution of this problem. Then yi ∈ {0, D} for all i ∈ E .
This means that we can use binary variables yi instead of integer ones, with

yi =

{

1 if event i is delayed by D

0 if event i is not delayed.

Consequently, M = 1 is large enough and (TDM-const) — even with the first
objective fTDM−const′ introduced on page 15 — simplifies to the following linear
program. Recall that Edel = {i ∈ E : di > 0} is the set of events with a source
delay di > 0.

(TDM-const-zero)

min
∑

a=(i,j)∈As

waD(yj − yi) +
∑

a=(i,j)∈Achange

waz̄a(T − D)

21



 0

 50

 100

 150

 200

 250

 4  6  8  10  12  14  16  18  20

C
on

fli
ct

s

Number of source delays

Figure 7: Conflicts with the never-meet-property as function of the number of delayed

vehicles, assuming a source delay of 15 minutes for each vehicle.

such that

−yi ≤ −1 for all i ∈ Edel (29)

yi − yj ≤ 0 for all a = (i, j) ∈ Await ∪ Adrive (30)

z̄a + yi − yj ≤ 0 for all a = (i, j) ∈ Achange (31)

yi ∈ {0, 1} ∀i ∈ E

z̄a ∈ {0, 1} ∀a ∈ Achange,

where wa =
∑

p∈Ps:a∈p wp for all a ∈ As are given parameters as before (see, e.g.,
(24)).

Theorem 3 (TDM-const-zero) can be solved in polynomial time.

Proof: Let C = |Achange|, C̄ = |Adrive ∪ Await| and D̄ = |Edel|. Moreover, let IK

denote the unit matrix of size K × K and OK,L the zero matrix of size K × L.
Then the coefficient matrix of (TDM-const-zero) is

Φ =





−ID̄ 0D̄,C

0C̄,CΘT

IC



 ,

22



where the |A|× |E|-matrix ΘT is the transposed of the node-arc-incidence matrix
Θ of N , and hence totally unimodular. Adding a unit matrix on the right hand
side or above a totally unimodular matrix still yields a totally unimodular matrix,
i.e., Φ is totally unimodular. This means, that all basic solutions of (TDM-const-
zero) are integer and hence the LP-relaxation of (TDM-const-zero) can be used
to solve the problem in polynomial time by linear programming methods, (see
e.g., [NW88]).

QED

Note that (TDM-const-zero) is equivalent to the models developed independently
in diploma theses by Kliewer [Kli00] and Scholl [Sch01a], where the latter author
also recognized the total unimodularity of the model.

In the case of non-zero slack times, the objective value of (TDM-const-zero) is
still an upper bound on the objective value of (TDM-const).

5.2 Allowing arbitrary slack times

Since we assume that the never-meet property holds, we deal with the formulation
(TDM-const) and show that this problem can be solved efficiently in O(|A|) time.
The reason for this consists of the two facts listed below. Recall Notation 5 on
page 17.

• First, if we fix z̄a = 1 for some a = (i, j), this means that we can set yi′ = 0
for all i′ ∈ H(j) and that all subsequent connections can be maintained
(Lemma 4).

• Secondly, the problem can be decomposed into at most |Achange| indepen-
dent subproblems due to the following lemma.

Lemma 5 Let i, j ∈ E , i 6= j, and let (y, z̄) be a feasible solution of (TDM-const)
with yi > 0, yj > 0. If the never-meet-property holds, exactly one of the following
three cases occurs.

H(i) ⊆ H(j) or H(j) ⊆ H(i) or H(i) ∩H(j) = ∅.

Proof: The result follows directly from the never-meet-property. QED

Suppose that some vehicle g has a delay at its arrival at station k. Then, inde-
pendently of what we decide for later connections from this vehicle g to other
vehicles, we can be sure that the vehicle will transfer its delay to subsequent
stations, until it has been compensated by the slack times. This delay that will
always be contributing to the objective is the following.

23



Notation 6 Let y be a time-minimal solution of (TDM) and i ∈ E with yi > 0.
Then denote

H∅(i) = {j ∈ E : there exists a path from i to j with arcs in Await ∪ Adrive}

F ∅(i, yi) =
∑

j∈H∅(i)

wjyj.

Before we formally state the algorithm, consider the following example, depicted
in Figure 8.

a1

a2

a3

a4

a9

a5

a6

a7
a8

source delay

subproblem belonging to a2

Figure 8: Decomposition of N in case of the never-meet-property. The changing

activities are dashed.

The algorithm will first decompose P into subproblems which are collected in
List(0). Each subproblem Pa is identified by a changing activity a. We obtain

List(0) = {a1, a2, a5, a9}.

The subproblem belonging to a2 is depicted in Figure 8. To further decompose
a subproblem Pa we store the subproblems belonging to its decomposition in
List(a). In the example this gives the following lists:

List(a2) = {a3, a4}

List(a5) = {a6, a7, a8},

and the lists for all other a ∈ Achange are empty. All subproblems that might
further be decomposed are stored in Decompose, and if a subproblem cannot

24



further be decomposed it is collected in Compose. Hence, at the end of the
decomposition step, we have

Compose = {a1, a3, a4, a6, a7, a8, a9}.

Moreover, for each subproblem identified by changing activity a,

• maintain(a) contains the value of the objective function of the subproblem
if a is maintained, and

• miss(a) contains the objective value if a is missed.

Algorithm: Enumeration for (TDM-const)

Input: N ,P, wp, di, sa, T.

Output: Optimal solution of (TDM), if the never-meet-property holds.

Step 0.

1. Decompose = ∅, Compose = ∅.

2. List(0) = ∅, f(0) = 0

3. For all i ∈ Edel:

(a) Calculate yj for all j ∈ H∅(i) (by Algorithm 1).

(b) f(0) = f(0) + F ∅(i, di)

(c) For all a = (j1, j2) ∈ Achange with j1 ∈ H∅(i): If yj1 > 0

i. List(0) = List(0) ∪ {a}

ii. Decompose = Decompose ∪ {a}

4. If List(0) = ∅ stop: f is the optimal objective value,

z̄a = 0 for all a ∈ Achange.

Step 1. While Decompose 6= ∅

1. Choose a ∈ Decompose, ã ∈ Achange with a = (i1, i2) ∈ List(ã)

2.

List(a) = ∅,

maintain(a) = 0,

miss(a) = waT.

3. yi2 = max{yi1 − sa, 0}

4. Calculate H∅(i2)

5. Calculate yj for all j ∈ H∅(i2) (by Algorithm 1)

25



6. maintain(a) = maintain(a) + F ∅(i2, yi2)

7. For all a′ = (j1, j2) ∈ Achange with j1 ∈ H∅(i2): If yj1 > 0

(a) List(a) = List(a) ∪ {a′}

(b) Decompose = Decompose ∪ {a′}

8. If List(a) = ∅ then Compose = Compose ∪ {a}.

9. Decompose = Decompose \ {a}.

Step 2. While Compose 6= ∅.

1. Choose a ∈ Compose, ã ∈ Achange with a ∈ List(ã)

2. Define

z̄a =

{

0 if maintain(a) ≤ miss(a)
1 if maintain(a) > miss(a)

f(a) = min{maintain(a),miss(a)}

3.

List(ã) = List(ã) \ {a}

maintain(ã) = maintain(ã) + f(a)

Compose = Compose \ {a}

4. If List(ã) = ∅ then Compose = Compose ∪ {ã}

Step 3. Output: f(0), z̄

Theorem 4 Algorithm 2 is correct and runs in time O(|A|).

Proof: We show by induction that at the end of Algorithm 2 f(a) contains the
objective value for the subproblem Pa. Pa is defined as (TDM-const) in the
following network determined by a = (i, j) and some delay yi:

Na = (H(i),A(H(i)),

where
A(H(i)) = {(j1, j2) ∈ A : j1, j2 ∈ H(i)).

The network belonging to Pa2
in the example is depicted in Figure 8.

26



Start: Let a = (i, j) be a maximal element of Achange (with respect to ≺).
The subproblem with respect to a is (TDM-const) in the small network
Na = (H(i),A(H(i))). Since a is maximal, A(H(i)) does not contain any
changing activity. This means, List(a) = ∅ in step 2 of the algorithm.
Furthermore,

maintain(a) =
∑

i′∈H(i)

yi′wi′ , and

miss(a) = Twa

give the objective values of this small network when maintaining or not
maintaining activity a. To see the correctness of miss(a) we note that due
to Lemma 4 yi′ = 0 for all i′ ∈ H(i).

Since a ∈ Compose we compare both values maintain(a) and miss(a) in
step 3, and choose the better as (correct) objective value, which is then
stored in f(a).

Conclusion: Now take any a = (i, j) and let the induction hypothesis be true for
all a′ with a ≺ a′. Then, if a is not maintained, we know from Lemma 4 that
all connections a′ ∈ H∅(i) are maintained and all i′ ∈ H∅(i) satisfy yi′ = 0,
i.e., the objective value is in this case given by miss(a) as calculated in step
2.

For maintaining activity a the algorithm calculates in step 2 the delay which
will be gained for sure, i.e., the delay of all events i′ ∈ H∅(i) that can be
reached without passing any changing activity, and stores it in maintain(a).
All changing activities a′ that can be reached from j without passing any
other changing activity are stored in List(a). Each of these activities a′

forms an independent subproblem on the smaller network Na′, since for
a1 = (i1, j1), a2 = (i2, j2) ∈ List(a) we have that

H(i1) ∩ H(i2) = ∅

according to Lemma 5.

In step 3, we add up

maintain(a) +
∑

a′∈List(a)

f(a′).

This sum contains the best possible objective value for (TDM-const) on
Na, if a is maintained, since f(a′) contains the optimal objective value of
subproblem (TDM-const) on Na′ due to the induction hypothesis.

Again, comparing the above sum (stored in maintain(a)) with miss(a) and
choosing the smaller of both gives the best possible choice for activity a

assuming the delay yi as given.

27



Finally, in step 0, the problem with the given source delays is decomposed into a
set of subproblems, given in List(0). All these subproblems are independent due
to Lemma 5, and they are all solved optimally due to the Claim above. Adding
up these optimal values and adding the delay of all events which are reached
before entering one of the subproblems gives the optimal objective function value
f(0).

For the time complexity we see that the number of subproblems equals the num-
ber of changing activities. For the decomposition step we have to process each
activity exactly once, and in the composition step we need one comparison and
one summation for each subproblem. The overall time complexity is hence linear
in |A|.

QED

6 Conclusions

The algorithm relies on the fact that each activity a ∈ Achange appears in exactly
one list, i.e., for each a ∈ Achange there exists a unique ã such that a ∈ List(ã),
or a ∈ List(0). If the never-meet property is not satisfied, this needs not be the
case, and hence Algorithm 2 cannot be applied to (TDM) for general problems.
To resolve this problem (and to obtain a heuristic by applying Algorithm 2) one
can either allow that the same element is added more than once to Compose in
step 2 (this would mean to duplicate activities until the never-meet-property is
satisfied), or to update the values of maintain to the larger one, if an element
which is already contained is added.
(TDM-const) and (TDM) can both be solved by branch and bound, reducing the
number of conflicts with the never-meet property in each node. Lower bounds
are derived in [Sch03]. Details and implementations are under research.

References

[Ack99] T. Ackermann. Die Bewertung der Pünktlichkeit als
Qualitätsparameter im Schienenpersonennahverkehr auf Basis
der direkten Nutzenmessung. PhD thesis, Universität Stuttgart,
1999.

[APW02] L. Anderegg, P. Penna, and P. Widmayer. Online train disposition:
to wait or not to wait? Electronic Notes in Theoretical Computer
Science, 66(6), 2002.

[Car99] M. Carey. Ex ante heuristic measures of schedule reliability. Trans-
portation Research, 53B(3):473–494, 1999.

28



[EF02] O. Engelhardt-Funke. Stochastische Modellierung und Simulation von
Verspätungen in Verkehrsnetzen für die Anwendung der Fahrplanop-
timierung. PhD thesis, Univerität Clausthal, 2002.

[EFK01a] O. Engelhardt-Funke and M. Kolonko. Cost-benefit analysis of invest-
ments into railway networks with randomly pertubed operations. In
S. Voß and J. Daduna, editors, Computer-Aided Transit Scheduling,
volume 505 of Lecture Notes in Economics and Mathematical systems,
pages 442–459. Springer, 2001.

[EFK01b] O. Engelhardt-Funke and M. Kolonko. Simulating delays for realis-
tic timetable-optimization. In Operations Research Proceedings 2001,
pages 9–15. Springer, 2001.

[Elm77] S.E. Elmaghraby. Activity Networks. Wiley Interscience Publication,
1977.

[Gov98] R.M.P. Goverde. The max-plus algebra approach to railway timetable
design. In Computers in Railways VI: Proceedings of the 6th interna-
tional conference on computer aided design, manufacture and opera-
tions in the railway and other advanced mass transit systems, Lisbon,
1998, pages 339–350, 1998.

[GS02] A. Ginkel and A. Schöbel. The bicriterial delay management problem.
Technical report, Universität Kaiserslautern, 2002.

[Kli00] N. Kliewer. Mathematische Optimierung zur Unterstützung kunde-
norientierter Disposition im Schienenverkehr. Master’s thesis, Uni-
versität Paderborn, 2000.

[Nac98] K. Nachtigall. Periodic Network Optimization and Fixed Interval
Timetables. Deutsches Zentrum für Luft– und Raumfahrt, Institut
für Flugführung, Braunschweig, 1998. Habilitationsschrift.

[NW88] G. L. Nemhauser and L. A. Wolsey. Integer and Combinatorial Opti-
mization. Wiley, 1988.

[Pee02] L. Peeters. Cyclic Railway Timetabling Optimization. PhD thesis,
ERIM, Rotterdam School of Management, 2002.

[RdVM98] B. De Schutter R. de Vries and B. De Moor. On max-algebraic mod-
els for transportation networks. In Proceedings of the International
Workshop on Discrete Event Systems, pages 457–462, Cagliari, Italy,
1998.

[Roc84] R.T. Rockafellar. Network Flows and Monotropic Optimization. John
Wiley, New York, 1984.

29



[SBK01] L. Suhl, C. Biederbick, and N. Kliewer. Design of customer-oriented
dispatching support for railways. In S. Voß and J. Daduna, editors,
Computer-Aided Transit Scheduling, volume 505 of Lecture Notes in
Economics and Mathematical systems, pages 365–386. Springer, 2001.

[Sch01a] S. Scholl. Anschlusssicherung bei Verspätungen im ÖPNV. Master’s
thesis, Universität Kaiserslautern, 2001.

[Sch01b] A. Schöbel. A model for the delay management problem based on
mixed-integer programming. Electronic Notes in Theoretical Com-
puter Science, 50(1), 2001.

[Sch03] A. Schöbel. Customer-oriented optimization in public transportation,
2003. Habilitationsschrift, Universität Kaiserslautern.

[SM97] L. Suhl and T. Mellouli. Supporting planning and operation time
control in transportation systems. In Operations Research Proceedings
1996, pages 374–379. Springer, 1997.

[SM99] L. Suhl and T. Mellouli. Requirements for, and design of, an opera-
tions control system for railways. In Computer-Aided Transit Schedul-
ing. Springer, 1999.

[SM01] L. Suhl and T. Mellouli. Managing and preventing delays in railway
traffic by simulation and optimization. In Mathematical Methods on
Optimization in Transportation Systems, pages 3–16. Kluwer, 2001.

[SMBG01] L. Suhl, T. Mellouli, C. Biederbick, and J. Goecke. Managing and
preventing delays in railway traffic by simulation and optimization.
In M. Pursula and Niittymäki, editors, Mathematical methods on Op-
timization in Transportation Systems, pages 3–16. Kluwer, 2001.

[SvdB01] B. De Schutter and T. van den Boom. Model predictive control for
railway networks. In Proceedings of the 2001 IEEE/ASME Interna-
tional Conference on Advanced Intelligent Mechatronics, pages 105–
110, Como, Italy, 2001.

[vE01] R.J. van Egmond. An algebraic approach for scheduling train
movements. In Proceedings of the 8th international conference on
Computer-Aided Transit Scheduling, Berlin, 2000, 2001.

30


