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Verhältnis zum Meere des Wissenswerten, ein ver-
schwindend kleiner Tropfen sein. Aber es ergibt einen
Zuwachs an Energie, an Schlußvermögen, an Zähigkeit
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Zusammenfassung

...Waren die numerischen Verfahren schon immer von
Nutzen, so liegt es auf der Hand, dass nunmehr ihre
Rolle in der wissenschaftlichen Forschung eine funda-
mentale Bedeutung erlangt hat. Kein Mathematiker,
der sich der modernen angewandten Mathematik be-
dient, kein Physiker und kein Ingenieur kann heute
entsprechend ausgebildet werden, ohne dass ihm ein
gewisses Verständniss für numerische Verfahren vermit-
telt wird...

[83], Vorwort.

Diese Arbeit beinhaltet einen Beitrag zur rechnergestützten numerischen nichtlinearen

Elastodynamik. Es wird eine einheitliche Umgebung zur Entwicklung numerischer Meth-

oden für die Zeitintegration beschrieben. Die betrachteten Methoden vererben Erhaltung-

seigenschaften des zugrundeliegenden mechanischen Systems an das resultierende Zeit-

schrittverfahren. Diese Zeitschrittverfahren werden als mechanische Integratoren bezeich-

net. Im Rahmen der nichtlinearen Elastodynamik werden ausschließlich die Gesamten-

ergieerhaltung sowie die Erhaltung von Impulsabbildungen betrachtet. Als konkrete Prob-

lemstellungen werden Massenpunktsysteme und die semi-diskrete nichtlineare Elastody-

namik behandelt.

Mechanische Integratoren zeichnen sich in der Praxis durch exzellente numerische Sta-

bilität auch bei Langzeitberechnungen von steifen Systemen aus. Ihre dabei erreichte

Genauigkeit entspricht der eines Standard-Integrators. Aus diesem Grund sind mechanis-

che Integratoren für eine Zeitintegration sehr attraktiv. Jedoch sind die meisten energie-

und drehimpulserhaltenden Integratoren zumeist nur von zweiter Ordnung genau. Ist

man an einem kleinen Näherungsfehler interessiert, so muss eine kleine Zeitschrittweite
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vi Zusammenfassung

verwendet werden. Dies ist besonders bei Langzeitberechnungen nicht vorteilhaft. Im

Gegensatz dazu können die Zeitschrittweiten bei der Verwendung von Integratoren höherer

Genauigkeitsordnung erhöht werden. Als einheitliche Umgebung zur Entwicklung von In-

tegratoren höherer Genauigkeitsordnung hat sich die kontinuierliche Galerkin-Methode

erwiesen. Insbesondere ist diese Methode gut geeignet um mechanische Integratoren zu

entwickeln. Der Grund ist, dass Erhaltungseigenschaften des zugrundeliegenden Systems

an die resultierenden Zeitschrittverfahren vererbt werden.

Das Ziel dieser Arbeit ist eine einheitliche Entwicklungsumgebung für energie- und

drehimpulserhaltende Integratoren höherer Genauigkeitsordnung für die nichtlineare Elas-

todynamik. Dies führt zu dem Problem wie man die vererbten Erhaltungseigenschaften

behält, wenn Zeitintegrale im Zeitschrittverfahren durch eine Quadraturregel approx-

imiert werden. Die Erhaltungseigenschaften der entwickelten mechanischen Integratoren

werden in einem verallgemeinerten Problem bewiesen. Die Resultate können dann direkt

auf Massenpunktsysteme und auf die semi-diskrete nichtlineare Elastodynamik angewand

werden, da beide Problemklassen dem definierten verallgemeinerten Problem unterge-

ordnet sind. Der Unterschied zwischen Massenpunktsystemen und der semi-diskreten

nichtlinearen Elastodynamik liegt in der unterschiedlichen Art der inneren Kräfte. Die

inneren Kräfte der Massenpunktsysteme hängen von einem skalarwertigen Vektorfeld ab,

den Massenpunktabständen, während in der semi-diskreten nichtlinearen Elastodynamik

die inneren Kräfte aus einem tensoriellen Spannungsfeld resultieren.

Die dargestellte Entwicklungsumgebung basiert auf der kontinuierlichen Galerkin-

Methode in der Zeit. Diese Methode erzeugt eine Familie von k-stufigen Einschrittver-

fahren. In den Gleichungen dieser Verfahren befinden sich Zeitintegrale. Werden die

Zeitintegrale durch eine Quadraturregel angenähert, so zeigt sich dass die Vererbung der

Erhaltungseigenschaften auf einer Kollokation in k Quadraturpunkten basiert. Da die be-

trachteten Impulsabbildungen maximal quadratische Invarianten sind, muss die k-Punkt

Gaußregel mit der Genauigkeitsordnung 2k verwendet werden. Wir nennen diese Fami-

lie von Zeitschrittverfahren verbunden mit einer k-Punkt Gaußregel die cG(k)-Methode.

Es werden konservative Systeme mit einer im allgemeinen nichtlinearen potentiellen En-

ergie betrachtet. Im Falle einer approximierten Integration wird deshalb Energieerhal-
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tung über eine neue Projektionsmethode erreicht. Diese Projektionsmethode muss die

unterschiedliche Art der inneren Kräfte bei den Massenpunktsystemen und bei der semi-

diskreten Elastodynamik berücksichtigen. Der Unterschied wird verursacht durch die

unterschiedlichen Verzerrungsmaße. Aus diesem Grund ist die Projektionsmethode un-

abhängig von der Form des verwendeten Verzerrungsmaßes gehalten. Die erwähnten Mod-

ifikationen der cG(k)-Methode führen letztendlich auf eine erweiterte cG(k)-Methode.



viii Zusammenfassung



Abstract

...The book is motivated by the rapidly increasing de-
pendence on numerical methods in mathematical mod-
elling driven by the development of powerful computers
accessible to everyone...

[44], Preface.

In computational dynamics, energy and momentum conserving time integrators are well

established for also integrating stiff mechanical problems for long time periods. However,

previously developed energy and momentum conserving integrators are mostly second

order accurate. So the error can be only bounded by a very small time step size, which is

not worthwhile in respect of long run-times. Higher order integrators however allow for

larger time steps, which leads to shorter runs.

The present work is therefore concerned with a unified development of higher order

energy and momentum conserving time integrators for nonlinear elastodynamics. The

work in particular considers many-particle dynamics and semi-discrete elastodynamics.

The developed unified framework is based on the continuous Galerkin (cG) method in

time. In the last years, the cG method turned out to be especially well suited for design-

ing energy and momentum conserving time integrators due to its inherent conservation

properties.

This work shows that energy conservation can be achieved for all accuracy orders by

applying a new projection technique. Total linear and angular momentum is obtained by

collocation at Gaussian quadrature points. Numerical examples for the specific problems

are presented for illustrating the well performance of the designed higher order conserving

time integrators. They exhibit excellent numerical stability in the presence of stiffness

without a compromise in accuracy relative to standard integrators of comparable order.
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x Abstract

The numerical investigations also includes an efficiency comparison of the developed higher

order integrator with a well-known integrator of comparable order. It is shown that in

general a higher order integrator renders less CPU time to obtain a constant relative

global error, and that the better stability of the developed integrator however must be

paid by a more costly matrix assembly.
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Chapter 1

Introduction

...Galerkin’s principle is flexible enough to apply also
to initial-value problems...They still have important ad-
vantages over finite differences, for general geometries
and for problems which evolve comparatively slowly in
time...

[130], Chapter 7: Initial-value problems.

Computer-aided design is nowadays an important component in mechanical engineering.

For example, testing of prototypes is increasingly being replaced by computational simu-

lation because this provides a more rapid and less expensive way to evaluate the design.

In the field of automotive design, simulation of car motions is replacing test drives and

simulation of processes is speeding the design in manufacturing.

Technical systems in mechanical engineering have to satisfy contradictory require-

ments. High accelerations cause high dynamical forces, which require stiff and heavy con-

structions. On the other hand, power consumption should be reduced by using lightweight

structures, for instance, in wheel suspensions of modern high performance cars or in ma-

nipulators of manufacturing robots. Accordingly, if one is interested in simulating motions

of such mechanical systems, the elastic deformation of flexible bodies has to be taken into

consideration. First the material model of the elastic bodies has to be identified, for ex-

ample hyperelasticity, and then the flexible body itself has to be modelled, for instance

with spatial finite elements or configurations of mass points.

1



2 Introduction Chapter 1

This contribution is concerned with computing motions of hyperelastic continuum

bodies. Since the motions are computed in a computational setting, discrete models for

elastic bodies are introduced. The dynamical simulation of these models should reproduce

the main physical features, which guarantees that the simulation remains qualitatively

accurate. The developed numerical integration method has therefore particular properties,

which are especially important while integrating mechanical systems.

1.1 Modelling in elastodynamics

Motions of continuum bodies are described by partial differential equations arising from

localising the mechanical laws governing the continuum motion. The solutions of these

equations of motion depend on the position in the Euclidean space and on the time. Since

analytical solutions of these equations only exist for a very limited set of mostly academic

problems, the exact solution has to be generally approximated. The approximating solu-

tions are usually determined in a computational setting. These approximating functions

can be possibly piecewise interpolating polynomials if we partition the space in which

we approximate the solution. This furnishes a finite number of subspaces to which are

usually referred to as elements. The coefficients of the polynomial basis functions are

related to nodal points, the so-called element nodes, bordering the considered elements.

This kind of approximation is called a finite element approximation. Using a finite ele-

ment approximation for the spatial dependence (see Figure 1.1b), the mass of the body

remains homogeneous distributed over the whole space between the nodes. The hyper-

elastic connection between the nodes emanates from an approximated tensor field. For

further details see [17, 148, 14].

A more discrete model of a continuum body is given by a many-particle system arising

from a triangulation of the continuum body in imaginary elements. The particles represent

the centres of mass pertaining to these imaginary elements of the body (see Figure 1.1c).

The mass of the body is then concentrated in these particles [75]. The hyperelasticity of

the material is modelled by discrete nonlinear springs between the particles. This problem

is included in the so-called N-body problem or many-body problem which can be described



Section 1.1 Modelling in elastodynamics 3

PSfrag replacements

a b c

Figure 1.1. Discrete models of the continuum body (a) can be a finite element discretisa-
tion with element nodes (b) or a configuration of particles (c).

as follows: Given the initial positions and velocities of a certain number of particles which

attract one another by forces of interaction, one has to determine their configuration at

any time in the future.

The motions of both above mentioned discrete systems can be divided into small

scale and large scale motions, namely deformations of the body and rigid body motions,

respectively. Rigid body motions can be translations as well as rotations. A more simple

discrete model which can be used to investigate deformations and superimposed rotations

is given by a circular pendulum with an elastic rod in the absence of gravitation (see

Figure 1.2), which can be often found in the literature as an introduction model for

nonlinear elastodynamics. This problem is a special case of the so-called one-body central

force problem in which one particle is moving under the influence of a force field vectored

to the origin of an inertial coordinate system. The one-body central force problem usually

emanates from reducing the dynamics of the two-body problem, as mentioned in books

on classical mechanics.

The aforementioned discrete models for elastodynamics represent finite-dimensional

mechanical systems wherein the motions of the nodes or the particles are described by

nonlinear ordinary differential equations in time. These equations of motion are usu-

ally derived in the Lagrangian or the Hamiltonian formalism of dynamics, in which first

integrals of the equations of motion can be simply deduced by symmetry properties of

the underlying system. Symmetries can be based on an invariance with respect to time-

reversal or with respect to Lie group actions on each node or each particle, for instance.
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Figure 1.2. Circular pendulum with elastic rod in the absence of gravitation.

The first symmetry leads to total energy conservation and the latter renders conservation

of the corresponding momentum maps. For example, a symmetry with respect to trans-

lations or rotations renders conservation of linear or angular momentum, respectively.

1.2 Computational dynamics

Considering finite-dimensional mechanical systems, the numerical integration of the cor-

responding equations of motion can be performed by finite difference schemes [116, 142,

128, 129, 131, 59, 60, 119, 65, 64, 130, 141] and by integrators which are based on nu-

merical quadrature (see [29] for example). The latter include the Runge-Kutta schemes

[65, 64, 132, 38, 68] and integrators arising from Galerkin methods in time. We have

to distinguish between two different Galerkin methods [44, 86]: The continuous Galerkin

method in time [45, 82, 81, 48], which can be traced back at least to [135, 42] for parabolic

problems as well as to [82, 81] for ordinary differential equations, and the discontinuous

Galerkin method in time [138, 87, 78, 16, 15, 27, 72, 80, 79, 87, 88, 107, 108, 117], which

is often accredited to [98]. Finite difference schemes are commonly at most second order

accurate whereas Runge-Kutta schemes and schemes arising from Galerkin methods in

time are higher order accurate.

In the last decade, numerical integrators have been designed, which inherit major

physical properties of the underlying mechanical system. The most considered physical

properties are the symplecticity of Hamiltonian flows and the conservation of first integrals

of the equations of motion. The conservation of first integrals in particular played a central

role in the numerical integration of finite-dimensional mechanical systems. Integrators
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preserving one or more of these physical properties have been referred to as mechanical

integrators [104]. Mechanical integrators are in general either symplectic and momentum

conserving or energy and momentum conserving [56, 57, 58, 95, 96, 94, 77, 123, 125,

126, 120, 51, 52, 54, 53]. The reason is that energy conserving integrators cannot be

symplectic for a constant time step size according to [145, 146]. In the present work,

however, we restrict ourselves to energy and momentum conserving mechanical integrators

because they are generally the more practical time integration schemes in the context of

elastodynamics [54, 121, 55].

Most of the previously developed energy conserving mechanical integrators are de-

signed by modifying finite difference schemes which are at most second order accurate. A

fourth order accurate integrator can be then obtained by the successive application of a

second order integrator with different time step sizes, the so-called sub-stepping procedure

[137, 39]. The design of mechanical integrators by applying a Galerkin method in time

has been less noted even though in [48] an energy preserving continuous Galerkin method

has been already presented. That has changed in the last few years because the design

of higher order mechanical integrators is possible with the continuous Galerkin method

in time [22, 19, 20, 21, 18, 67]. The temporal discontinuous Galerkin method, however,

does not seem to be as well suited for designing mechanical integrators as the contin-

uous Galerkin method in time [62, 63]. The discontinuous Galerkin method in time is

established for solving differential equations with a dissipative or parabolic nature such

as diffusion dominated problems which possess a smoothing effect in the solution. (See

[44] for the numerical treatment of heat conduction and viscous flow).

In the past, second order accurate integrators have been favoured over higher order

accurate integrators for large scale systems of ordinary differential equations. One reason

for that can be traced back to a theorem which states the so-called Dahlquist-barrier (see

[37, 38]). The Dahlquist-barrier restricts the maximum attainable accuracy of A-stable

linear multi-step methods to second order. The A-stability refers to the behaviour of

the scheme while integrating an linear ordinary differential equation. This concept of

stability is based on a condition on the eigenvalues of this differential equation. Another

reason are the larger resulting linear systems of higher order implicit schemes. The limit
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of A-stability for higher accuracy orders is however confuted in [43, 143] for collocation

methods based on Gauss points. Examples for collocation methods are implicit Runge-

Kutta methods [26] or continuous Galerkin methods in time associated with a certain

number of quadrature points [82, 81]. The algebraic stability of Runge-Kutta methods

is proved in [30, 10, 25]. This stability is based on conditions on the Butcher-arrays

corresponding to the Runge-Kutta methods. An algebraic stable Runge-Kutta method is

also A-stable. (See [40] for a detailed discussion of the stability notions of Runge-Kutta

methods). The stability of a fourth order accurate mechanical integrator is shown in [137].

1.3 Motivation for mechanical integrators

A numerical solution of the equations of motion is an approximation with an global error

e = C hp+1
n , where hn and p denote the time step size and the order of accuracy, respec-

tively. Since the factor C generally grows in time due to rounding and approximation

errors [44, 136], a numerical solution may be no longer accurate in long term calculations.

Then a fixed error bound at a certain final time T can be achieved by small time steps

or by a larger time step size if the accuracy is increased [136, 22]. A higher order ac-

curate integrator, however, may be more costly as a lower order accurate integrator due

to a larger linear algebraic system which has to be solved. So one has to investigate the

computational cost before one is able to decide which accuracy order p is effective.

The exact reproduction of physical properties however guarantees that the numerical

solution remains at least qualitatively accurate because the numerical solution is then

embedded in the right solution space [123]. This may be one of the reasons why mechan-

ical integrators perform especially well in long term calculations (see [51, 53, 123, 121],

among other papers listed in this work). Conservation laws of mechanical systems in

particular play a central role in dynamics because the corresponding first integrals of the

motion allow the reduction of the solution space [104, 106, 1]. Conservation of angular

momentum and total energy, for example, reduce the dynamics of a free rigid body to a

completely integrable one-degree of freedom problem [106, 123] (see Figure 1.3). The ex-

act reproduction of conservation laws is also helpful in the stability analysis of integrators
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Figure 1.3. The free motion ψ of a body in the configuration space Q is the intersection
of the level set of constant angular momentum L = const. and the surface of constant
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[116, 122, 124]. Nonlinear stability of a solution is often related to the notion of Lyapunov

stability. A solution is Lyapunov stable if the so-called Lyapunov function is bounded.

Since the total energy of a system fulfils the requirements for a Lyapunov function [116],

energy conserving integrators may be consequently regarded as unconditionally numer-

ically stable [54]. The preservation of momentum maps alleviates the stability analysis

further [122, 124, 5, 6] because an additionally preserved momentum map again reduces

the dimension of the solution space [54].

The continuous Galerkin method in time is a unified framework for developing higher

order accurate integrators for ordinary differential equations [42, 81, 82, 48, 44, 22, 19,

20, 21]. The accuracy depends on the degree of the shape functions and on the quadra-

ture rule used for calculating the remaining integrals. The continuous Galerkin method

in time moreover turns out to be especially well suited for designing mechanical inte-

grators due to its inherent conservation properties. The continuous Galerkin method in

time associated with a distinct number of Gauss points is a collocation method [82] and

leads to the so-called implicit Gauss Runge-Kutta methods [22]. In [118], there has been

shown that implicit Gauss Runge-Kutta methods are symplectic and preserve all at most

quadratic invariants such as total linear and angular momentum. The conservation of at

most quadratic momentum maps has been therefore observed for the continuous Galerkin

method in time [22, 19, 20, 21].
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In summary, the development of higher order mechanical integrators for large scale

systems is currently of interest. A unified framework for designing higher order symplectic

and momentum conserving integrators is given by the continuous Galerkin method in time.

However, a systematic development of higher order energy and momentum conserving

integrators is not available in the currently published literature. The goal of this work

is to fill this gap. The newly developed higher order energy and momentum conserving

integrators are based on appropriate modifications of a continuous Galerkin method in

time.

1.4 Design of mechanical integrators

Two universally applicable approaches for designing energy and momentum conserving

integrators can be found in the literature: Projecting the numerical solution of a non-

conserving integrator onto a conserving solution space (see Figure 1.4) and deriving a

mechanical integrator from a discrete variational principle [140]. In this connection, a

number of projection techniques have been proposed:

1. Enforcing conservation laws by a scalar parameter which can be determined by an

additional equation in the linear system of equations [77, 125, 126, 147, 99, 136].

2. Modifying quadrature points (in the present context called the collocation param-

eters) or the weights of a standard quadrature rule so that the conservation law is

fulfilled along with a preservation of the original accuracy order of the quadrature

rule [123, 48].

3. Replacing the ordinary derivative of a potential with a conserving discrete derivative

[56, 57, 58, 95, 96, 94, 51, 52, 54, 53, 120].

4. Determining test functions of a continuous Galerkin method so that the conservation

law is satisfied [67].

In the case of the first two techniques, however, there is not clear that a projection by

scalars is always possible, especially if several conservation laws are to be simultaneously
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Figure 1.4. The numerical solution qnum in the interval [0, T ] is projected to the surface
H0 = const. of a first integral H and results in a H-conserving numerical solution qcons.

satisfied [136], or if the internal forces depend on a tensor field such as in semi-discrete

elastodynamics. This can lead to convergence problems in a iterative solution procedure.

Integrators based on discrete variational principles are called variational integrators

[90], which fulfil the three fundamental properties of autonomous Hamiltonian systems

with symmetry, namely the conservation of the symplectic structure as well as the conser-

vation of total energy and momentum maps [89]. This is possible by an adaptively deter-

mined time step size according to [146]. This approach is applied to nonlinear elastody-

namics in [100] and led to asynchronous variational integrators. The term ‘asynchronous’

is based upon the possibility of having different time steps for different elements in the

finite element mesh. The resulting algorithms satisfy also the energy and momentum

balance for each element.

Mechanical integrators arising from the above mentioned approaches are however at

most second order accurate with exception of the mechanical integrators in [48] and [67],

which both are applied to scalar problems. Note that in [136, 137], there is demonstrated

a possibility for increasing the accuracy from second order to fourth order. In this work,

there is presented a further projection technique. The ordinary derivative (or gradient) of

a potential is replaced with a continuous function which conserves a first integral as con-

straint. This specific technique leads to mechanical integrators being not bounded in the
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accuracy order because no discrete derivatives (or gradients) are used. Since the dimen-

sion of the function value and of the function argument is not restricted, the projection

method is well suited for problems in several dimensions. This projection technique is

applied to the constraint of energy conservation in the context of the continuous Galerkin

method in time. The developed approach is specifically applied to the above presented

discrete models for elastodynamics, namely particle dynamics and semi-discrete nonlinear

elastodynamics. In this way, we designed higher order energy and momentum conserving

integrators for both problem classes. We in particular give a detailed account of the com-

putational setting of the designed integrators associated with linear, quadratic, cubic and

quartic time finite elements. Consequently, mechanical integrators up to eighth order ac-

curacy have been implemented. The conservation properties are investigated in numerical

examples for which accuracy aspects are also investigated in the light of computational

effort. The resulting error diagrams can be used to compare the efficiency of a class of

integrators related to linear, quadratic and cubic time finite elements.

1.5 Outline

Chapter 2 begins by introducing a generalised problem which covers the considered parti-

cle dynamics and semi-discrete elastodynamics. This provides a unified treatment of the

major physical properties behind each considered problem.

In Chapter 3, the applied Galerkin-based continuous time discretisation of the equa-

tions of motion is presented. Conservation properties of the emanating family of integra-

tors are investigated by applying a main feature of the Galerkin method. Some aspects

about the iterative solution procedure for these integrators are also presented. A compact

matrix representation allows for a compact description of the algorithmic structure of the

whole family of integrators. Finally, a discontinuous time discretisation of the equations

of motions is discussed for comparison.

A family of higher order mechanical integrators for dynamics of one particle in a central

force field is deduced in Chapter 4. This problem is often used just for illustrating the

fundamental difficulties arising in nonlinear elastodynamics or as benchmark problem for
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evaluating numerical integrators. The conservation properties, the accuracy as well as the

numerical cost of the proposed mechanical integrators are investigated by means of three-

dimensional numerical examples. The numerical investigations culminate in a specific

diagram which depicts the connection between accuracy and computational effort. In this

way, the issue of numerical efficiency is discussed in the context of linear, quadratic and

cubic time finite elements.

In Chapter 5, we are concerned with computing three-dimensional motions of many-

particle systems. New mechanical integrators for this problem are designed and examined

as well. The numerical investigations are analogous to those in the previous chapter.

Higher order mechanical integrators for semi-discrete nonlinear elastodynamics are

derived in Chapter 6. The term ‘semi-discrete’ refers to a separate spatial discretisation

of a solid continuum body by finite elements. Motions of two-dimensional as well as

three-dimensional solid continuum bodies, which exhibits nonlinear hyperelastic material

behaviour, are considered in the numerical examples. The spatial discretisation is based

on four and eight node Lagrange finite elements, respectively. (See [76] for a definition of

these elements).

In Chapter 7, a summary of the main results and some concluding remarks on the

presented developments are given.

In an Appendix, additional theoretical as well as numerical aspects, which are relevant

to the presented treatment, are summarised for completeness.
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Chapter 2

The generalised problem

...The advantage of considering a problem in abstract
form is that we can emphasise the essential ingredients
and moreover we can apply results for the abstract prob-
lem to specific applications, as soon as the assumptions
of the abstract problem are satisfied, without having
go through the same type of argument over and over
again...

[44], Chapter 21: The Power of Abstraction.

This work is concerned with mechanical integrators for particle dynamics as well as semi-

discrete nonlinear elastodynamics. More precisely, we are interested in integrators pre-

serving the conservation laws of these problems. These problems have a common structure

because they eventually describe the motion of material points placed in the Euclidean

space. In the case of particle dynamics, the material points are the particles and in semi-

discrete nonlinear elastodynamics, the spatial nodes represent the material points. Hence

the formulations of these problems can be derived from a generalised problem describ-

ing motions of a set of material points arranged in a configuration. The kinematic and

dynamic aspects of this generalised problem show the distinction of the similarities of

particle dynamics as well as semi-discrete nonlinear elastodynamics presented below.

First we present the Lagrangian and Hamiltonian formulation of the generalised prob-

lem. We then deduce the conservation laws arising from symmetries of the generalised

problem, which are based on an invariance with respect to time-reversal and with respect

to Lie group actions on each material point. The first symmetry leads to total energy

13
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conservation and the latter renders conservation of the corresponding momentum maps.

These conservation laws will be preserved by the mechanical integrators designed in this

work. We are finally investigate deformations and rigid body motions of configurations of

material points. These latter investigations prepare for a convenient time approximations

of strain measures for the generalised problem in the chapters below.

A more detailed description of the considered formulations can be found in standard

books about geometrical methods in mechanics, for example [106, 1, 104, 9, 8, 93, 50].

Further background material about the kinematics are given in books on nonlinear solid

mechanics or continuum mechanics such as [74, 105, 110, 103]. A review of the relevant

kinematic topics can be found in [17, 142, 23, 113].

2.1 Lagrangian formulation

We define a set B of npoi material points which are arranged in a configuration Bt at

a given time t. The configuration Bt is embedded in the Euclidean space Rndim (see

Figure 2.1). We identify any material point A, A = 1, . . . , npoi, in this configuration Bt by

its position vector qA ∈ Rndim . We assume free motions of the set B such that the number

of degrees of freedom reads ndof = ndimnpoi. The configuration space Q of the material

points is then an open set in the ndof -dimensional Euclidean space Rndof . Points in Q are

denoted by the vector q = (q1, . . . , qnpoi) ∈ Q to which we refer to as the coordinate vector

of the configuration. A motion of the system in a time interval It = [ta, tb] between two

configurations qa = q(ta) and qb = q(tb) is the curve ψ : It 3 t 7→ q(t) ∈ Q. We define a

set

Q = {ψ : It → Q|ψ smooth,ψ(ta) = qa and ψ(tb) = qb} (2.1)

including all possible motions between the two configurations qa and qb. Let such a

motion be influenced by a conservative force field acting on all material points. This

conservative force field is associated with a potential energy V : Q→ R. We suppose a

potential energy V (q) possessing gradients ∇qV of the special form

∇qV (q) = Q(q) q. (2.2)
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The matrix Q ∈ Rndof×ndof denotes a nonlinear symmetric stiffness matrix which has a

block structure of the form

Q(q) = Q(q) ⊗ Indim
, (2.3)

with the structure matrix

Q(q) =











Q11(q) . . . Q1npoi
(q)

...
...

Qnpoi1(q) . . . Qnpoinpoi
(q)











∈ Rnpoi×npoi (2.4)

The matrix Indim
is the ndim × ndim identity matrix and the symbol ⊗ denotes the direct

matrix product.

Let a superimposed dot denote differentiation with respect to time t. We refer to the

vector q̇ as the velocity vector of the configuration. The velocity vector q̇ is the tangent

vector on the configuration space Q at position q. The corresponding tangent space TqQ is

then given by TqQ = Rndof . The tangent space TψQ ⊂ TqQ includes the tangent vectors

to the curve ψ. The associated velocity curve ψ̇ is given by ψ̇ : It 3 t 7→ q̇(t) ∈ TψQ
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which is a mapping to the tangent vector q̇(t) of the motion ψ at time t. The kinetic

energy T : TψQ→ R of the system is a quadratic form in the velocity vector:

T (q̇) =
1

2
q̇ · M q̇, (2.5)

with a nonsingular symmetric mass matrix M ∈ Rndof×ndof which is constant due to con-

servation of mass and has the following block structure:

M = M ⊗ Indim
, (2.6)

with a structure matrix

M =











M11 . . . M1npoi

...
...

Mnpoi1 . . . Mnpoinpoi











∈ Rnpoi×npoi (2.7)

Note that a diagonal structure matrix M denotes a concentration of the mass in the

material points.

The principle of Hamilton states that an actual motion ψ minimises the functional

S : Q → R which is defined by S =
∫ tb
ta
L(q(t), q̇(t)) dt, with the function L : TQ→ R

called the Lagrangian. The space TQ = Q× TψQ designates the tangent bundle of Q

with the coordinates (q1, . . . , qnpoi, q̇1, . . . , q̇npoi) ∈ TQ in which the dynamics are de-

scribed. The necessary condition for this variational problem is given by the following

Euler-Lagrange equations:
d

dt
∇q̇L(q, q̇) = ∇qL(q, q̇). (2.8)

The Lagrangian L(q, q̇) for the considered mechanical system is the difference of the ki-

netic energy T (q̇) from the potential energy V (q). Employing this Lagrangian and equa-

tion (2.5) in the Euler-Lagrange equations (2.8), we obtain the following set of ordinary

differential equations:

M q̈ = −∇qV (q). (2.9)

The equations of motion follow from equations (2.9) by employing the assumed gradi-
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ent (2.2) of the potential energy:

M q̈ = −Q(q)q (2.10)

Note that if an external force F A, which depends explicitly on the time t, acts on the

material point qA, the equation of motion has to be augmented by the external force

vector F = (F 1, . . . ,F npoi) of the configuration:

M q̈ = −Q(q)q + F . (2.11)

Remark 2.1. The gradient (2.2) generate high and low frequency oscillations, because the

matrix M− 1

2∇2
qV M− 1

2 has large and small eigenvalues, respectively [49, 61]. The solution

of equation (2.10) therefore has the form of high frequency oscillations superimposed by a

low frequency oscillating motion. Mechanical systems with such solutions are called stiff

[132, 102] or highly oscillatory [115, 11, 12, 85, 84]. In the considered mechanical systems,

there are accordingly two vastly different time scales present. The faster time scale gen-

erally has a negligible effect on the motion of the configuration so that its resolution by

the integrator is not important for obtaining an accurate motion.

2.2 Hamiltonian formulation

We consider the configuration Bt in the phase space P = T ∗Q which is an open set in the

2ndof -dimensional Euclidean space Rndof × Rndof ' R2ndof . Points in P are denoted by the

vector z = (q,p) ∈ P , where we refer to p = (p1, . . . ,pnpoi) ∈ Rndof as conjugate momen-

tum vector. The space T ∗Q = Q× T ∗
qQ denotes the cotangent bundle of the configuration

space Q, which has the coordinates q and p. The cotangent space T ∗
qQ corresponding

to the configuration space Q is given by T ∗
qQ = Rndof . A motion ζa of the system in

a time interval It = [ta, tb] starting at the point za = z(ta) in the phase space P is the

curve ζa : It × P 3 (t, za) 7→ z(t) ∈ P . The tangent vectors to the curve ζa are elements

of the tangent space Tζ
a

P ⊂ TzP = R2ndof . The associated velocity curve ζ̇ is given by

ζ̇a : It 3 t 7→ ż(t) ∈ Tζ
a

P which is a mapping to the tangent vector ż(t) of the motion ζa
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at time t. We pass from the coordinates (q, q̇) of the tangent bundle to the coordinates

(q,p) of the cotangent bundle by applying the Legendre transformation FL : TQ→ T ∗Q

which is defined by

FL(v) ·w =
d

ds
s=0

L(q, v + sw), v,w ∈ TqQ. (2.12)

The Legendre transformation FL is a so-called fibre derivative because it maps the fibre

TqQ to the fibre T ∗
qQ. Applying the Legendre transformation (2.12) to the Lagrange

function of the generalised problem, we obtain the relation

(q,p) = FL(q, q̇) = (q,∇q̇L(q, q̇)), (2.13)

which is equivalent to the equation

p = ∇q̇L(q, q̇) = M q̇. (2.14)

According to Appendix B, the mass matrix (2.6) is invertible. Equation (2.14) can be

therefore solved for q̇:

q̇ = M−1p. (2.15)

The inverse M−1 of the mass matrix reads

M−1 = M−1 ⊗ Indim
, (2.16)

with the structure matrix

M−1 =











M−1
11 . . . M−1

1npoi

...
...

M−1
npoi1

. . . M−1
npoinpoi











∈ Rnpoi×npoi, (2.17)

where M−1
AB denotes a scalar entry of the structure matrix M−1. By using the Legendre

transformation, we replace the Lagrangian function L : TQ→ R with the Hamiltonian
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H : T ∗Q→ R which is given by H(q,p) = p · q̇(p) − L(q, q̇(p)). Taking equation (2.15)

into account, the Hamiltonian takes the form of the total energy of the configuration:

H(q,p) = T ∗(p) + V (q), (2.18)

with the quadratic form

T ∗(p) =
1

2
p · M−1p, (2.19)

defining the kinetic energy T ∗ : T ∗
qQ→ R of the system with respect to the cotangent

space.

There exists a natural symplectic (canonical) structure z 7→Ω on the 2ndof -dimensional

Euclidean space Rndof × Rndof , where Ω designates a skew-symmetric bilinear form. This

bilinear form on the space Tz(Rndof × Rndof ) = Rndof × Rndof is independent of the point

z and given by

Ω(v,w) = v · Jw, v,w ∈ Rndof × Rndof , (2.20)

with the matrix

J =





0 1

−1 0



 ⊗ Indof
, (2.21)

where Indof
∈ Rndof×ndof denotes the identity matrix. A natural Hamiltonian system is
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characterised by a canonical Hamiltonian vector field XH : P → TzP defined by

XH(z) = Ω](∇zH(z)) = J∇zH(z). (2.22)

An actual motion ζa of a natural Hamiltonian system is an integral curve of the canon-

ical Hamiltonian vector field XH starting at za ∈ P , which is a curve whose tangent

space Tζ
a

P is equal to the vector set Vz = {v ∈ TzP |v = XH(z), va = XH(za)} (see Fig-

ure 2.2). The velocity curve ζ̇ is therefore equal to the curve XH(ζ) : It 3 t 7→ v ∈ Vζ ,

which leads to Hamilton’s canonical equations of motion being defined by

ż = XH(z) = J∇zH(z). (2.23)

Using the equations (2.18) and (2.2) in Hamilton’s canonical equations (2.23), the equa-

tions of motion can be written as the following two ordinary differential equations:

q̇ = M−1p,

ṗ = −Q(q)q.
(2.24)

Note that this system of ordinary differential equations does not depend explicitly on the

time t. However, if there exist external forces F A which depend explicitly on time, the

explicitly time-dependent equations of motion read

q̇ = M−1p,

ṗ = −Q(q)q + F ,
(2.25)

where F = (F 1, . . . ,F npoi) denotes the external force vector of the system.

2.3 Total energy conservation

If the Hamiltonian H does not depend explicitly on the time t, then the same motion

occurs (but is traced out in reverse order) if t and −t are interchanged. This effect is called

the principle of invariance with respect to time-reversal. As consequence, the Hamiltonian
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H(z(ta)) at the starting point z(ta) of a motion in an arbitrary time interval It = [ta, tb]

is equal to the Hamiltonian H(z(tb)) at the end point z(tb). Since the total energy of the

generalised problem is identical with its Hamiltonian H, the total energy is a constant of

the motion as can be easily verified by using the fundamental theorem of calculus:

H(z(tb)) −H(z(ta)) =

∫ tb

ta

Ḣ(z(t)) dt. (2.26)

Applying Hamilton’s canonical equations (2.23), the time derivative of the Hamiltonian

H(z) reads

Ḣ(z) = ∇zH(z) · ż = ∇zH(z) · J∇zH(z) = Ω(∇zH(z),∇zH(z)) . (2.27)

The time derivative Ḣ vanishes owing to the skew-symmetry of Ω and equation (2.26)

therefore renders H(z(tb)) = H(z(ta)) which implies total energy conservation.

2.4 Conservation of momentum maps

According to the theorem of E. Noether, there may exist further first integrals in a Hamil-

tonian system, which are called momentum maps. These invariants follow from the even-

tual symmetry with respect to Lie group actions. In this section, we derive Noether’s

theorem in the context of the presented generalised problem and introduce the concept of

momentum maps to eventually show the conservation of two momentum maps, namely

the total linear momentum and the total angular momentum. The introduction of mo-

mentum maps therefore shows the derivation and the concept behind the latter both first

integrals.

2.4.1 Noether’s theorem

The theorem of E. Noether states that to each one-to-one differentiable coordinate trans-

formation which preserves the Lagrangian L of the system, there corresponds a first

integral of the equations of motion. If such a coordinate transformation exists one says

that this system possesses a symmetry [7]. To this end we consider the one-parameter



22 The generalised problem Chapter 2

family of diffeomorphisms hε : Q→ Q, ε ∈ R, which mean differentiable one-to-one map-

pings from the configuration space into itself associated with a differentiable inverse. We

suppose that this family of mappings form a group with the properties

h0(q) = q,

h−1
ε (q) = h−ε(q), for any ε, ε1, ε2 ∈ R, q ∈ Q.

hε1(hε2(q)) = hε1+ε2(q),

(2.28)

We therefore refer to hε as a one-parameter group of diffeomorphisms. Here we are only

interested in diffeomorphisms hε preserving the Lagrangian of the generalised problem,

which means L(q, q̇) = L(hε(q), ḣε(q)). The motion ψε : It 3 t 7→ hε(q(t)) ∈ Q then also

minimises the functional Sε : Q → R given by

Sε =

∫ tb

ta

L(hε(q(t)), ḣε(q(t))) dt. (2.29)

Since the motion ψ : It 3 t 7→ q(t) ∈ Q is known by the Euler-Lagrange equations (2.8),

the functional Sε can be considered as a function only depending on the parameter ε. The

function Sε then takes a minimum at ε = 0 due to the identity property (2.28):

dSε
dε

ε=0

= 0. (2.30)

Taking the chain rule of differentiation into account, the derivative of the function Sε with

respect to ε reads

dSε
dε

=

∫ tb

ta

[

∇qL · dhε
dε

+ ∇q̇L · dḣε
dε

]

dt. (2.31)

Using the Euler-Lagrange equation (2.8) in the first term and the permutability of the

derivatives in the last term, we obtain

dSε
dε

=

∫ tb

ta

[

d

dt
∇q̇L · dhε

dε
+ ∇q̇L · d

dt

dhε
dε

]

dt =

∫ tb

ta

dJε
dt

dt, (2.32)
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where the function Jε(q,p) is defined by

Jε(q,p) := p · dhε(q)

dε
(2.33)

Note that the dot denotes the dot product of two vectors u, v ∈ Rndof in the Euclidean

space Rndof , which can be also written as

u · v =

npoi
∑

A=1

uA · vA, (2.34)

where the dot on the right designates the dot product in the Euclidean space Rndim . We

now apply the fundamental theorem of calculus to obtain a relation between the function

values of Jε at the starting point and the endpoint of the motion:

∫ tb

ta

dJε
dt

dt = Jε(qb,pb) − Jε(qa,pa), (2.35)

where pa = p(ta) and pb = p(tb). Taking equation (2.30) into consideration, it follows

that the considered dynamical system has the first integral J : T ∗Q→ R defined by

J(q,p) = p ·Xh(q) (2.36)

where

Xh(q) =
dhε(q)

dε
ε=0

(2.37)

is the vector field Xh : Q→ TqQ associated with the one-parameter group hε at q ∈ Q if

the dynamical system admits the mapping hε which means hε preserves the Lagrangian

L of the system (see Figure 2.3).

2.4.2 Actions of Lie groups

In the previous section, we considered a one-parameter group hε : Q→ Q, ε ∈ R, of dif-

feomorphisms. It turned out that if hε preserves the Lagrangian L then there exists a first

integral J : T ∗Q→ R of the equations of motion. For our purposes, we are only interested
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in diffeomorphisms hε generated by an action of a Lie group G with a differentiable binary

group operation ψ : G×G→ G in an Euclidean space. We consider two Lie groups G

throughout our developments. The first group is the Abelian vector group Rndim under the

vector addition ψ(g1, g2) = g1 + g2, for all g1, g2 ∈ Rndim . The zero vector 0 ∈ Rndim is

the identity element and the inverse of g ∈ Rndim is −g. The second group is formed from

the set of all linear isomorphisms of Rndim into itself. Taking the matrix multiplication

ψ(g1, g2) = g1 g2, ∀g1, g2 ∈ Rndim×ndim , as binary group operation, we obtain the general

linear group GL(ndim,R
ndim) = {g ∈ Rndim×ndim | det[ g] 6= 0}. The identity element is the

ndim × ndim identity matrix Indim
and the inverse of the matrix g ∈ Rndim×ndim is the

inverse matrix g−1.

Let φ : G×Q→ Q be an action of the Lie group G on the configuration space Q. The

mapping φg : Q→ Q, g ∈ G, is then differentiable and there exists an inverse φ−1
g = φg−1 .

We therefore deduce that φg is one-to-one for each g ∈ G. Applying the diffeomorphism

φg : Q→ Q, we obtain a one-parameter group hε of diffeomorphisms if any one-parameter

subgroup ϕ(ε) of g with ε ∈ R is given. Therefore, given a curve ϕ : R → G at the identity

element e ∈ G, that is ϕ(0) = e, we call ϕ a one-parameter subgroup of G if ϕ(R) is a

subgroup of G and if ϕ additionally fulfils the following property:

ϕ(ε1 + ε2) = ψ (ϕ(ε1),ϕ(ε2)) , for all ε1, ε2 ∈ R. (2.38)

We can associate a tangent vector ξ̂ at the identity e ∈ G to each one-parameter subgroup

ϕ, which is defined by

ξ̂ =
dϕ(ε)

dε
ε=0

∈ TeG. (2.39)

Conversely, consider any tangent vector ξ̂ ∈ TeG at e ∈ G and for any g ∈ G the left

translation map Lg : G→ G which is defined by Lg(x) = ψ(g,x) for all x ∈ G. The

derivative ofLg at e is a linear mapping ∇xLg(e) : TeG→ TgG. Hence we can associate a

vector fieldX ξ̂ : G→ TeG to any ξ̂ ∈ TeG. The ordinary differential equation associated

with the vector field X ξ̂ and the vector field X ξ̂ itself can be deduced from differentiating

the relation ϕ(ε+ η) = ψ(ϕ(ε),ϕ(η)) =
(

Lϕ(ε) ◦ϕ
)

(η) at η = 0. This relation is identical
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to the defining relation (2.38) of a one-parameter subgroup. By differentiating with the

chain rule, we obtain

dϕ(ε)

dε
=

[

∇xLϕ(ε)(ϕ(η)) · dϕ(η)

dη

]

η=0

= ∇xLϕ(ε)(e) · ξ̂ =: X ξ̂(ϕ(ε)). (2.40)

The vector field X ξ̂ : G→ TeG defined in equation (2.40) is called left invariant because

the diagram in Figure 2.4 commutes.

The tangent space TeRndim of the vector group Rndim at the identity is isomorphic to

Rndim itself. The left invariant vector field associated with the tangent vector ξ̂ ∈ TeRndim

is therefore given by the constant vector field X ξ̂(g) = ξ̂, for all g ∈ Rndim. Considering

the general linear group GL(ndim,R), the tangent space TeGL(ndim,R) is the vector space

L(Rndim ,Rndim) of all linear transformations of Rndim into itself. Hence the left invariant

vector field on GL(ndim,R) corresponding to the tangent vector ξ̂ ∈ L(Rndim ,Rndim) is

given by the linear vector field X ξ̂(g) = g ξ̂, for all g ∈ GL(ndim,R).

Let ϕ(ε) be an integral curve of the vector field X ξ̂ : G→ TeG with the initial con-

dition ϕ(0) = e ∈ G. Applying the theory of linear ordinary differential equations, we

obtain the solution ϕ(ε) = exp[εξ̂], which is defined in G for all ε ∈ R. We can thus asso-

ciate a unique one-parameter subgroup ϕξ̂(ε) of G to any ξ̂ ∈ TeG (see Figure 2.5). Since

we can associate a unique element in G via the expression ϕξ̂(1) to each ξ̂, we can define a

mapping expG : TeG→ G by the relation exp[ξ̂] = ϕξ̂(1), which is called the exponential
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map for G. In particular, expG is a diffeomorphism from a neighbourhood U of 0 (zero

element) in TeG onto a neighbourhood V of e in G.

If G is the vector group Rndim with the tangent space TeG ∼= Rndim, the exponential

map expV : Rndim → Rndim is the identity map. We have therefore a one-parameter sub-

group for any ξ̂ ∈ TeG, which is given by ϕξ̂(ε) = expV [εξ̂] = εξ̂. The exponential map

for the matrix group GL(ndim,R), denoted by expM : L(Rndim ,Rndim) → GL(ndim,R), is

given by the matrix exponential

expM [A] = eA ≡
∞

∑

i=0

Ai

i!
, for any A ∈ L(Rndim ,Rndim). (2.41)

Given any ξ̂ ∈ L(Rndim ,Rndim), we can thus construct the following one-parameter sub-

group by the matrix exponential:

ϕξ̂(ε) = expM [εξ̂] = eεξ̂. (2.42)

In this work, we only consider a subgroup of GL(ndim,R) which is called the special

orthogonal group SO(ndim) defined by

SO(ndim) = {g ∈ GL(ndim,R)| det[ g] = 1 and g−1 = gT}. (2.43)

One can verify that TeSO(ndim) = so(ndim) = {A ∈ Rndim×ndim |AT = −A} which is the

set of all ndim × ndim real skew-symmetric matrices. The matrix exponential for SO(ndim)

has a closed-form expression given by the Euler-Rodrigues formula (see in [106]).
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Now let ϕξ̂(ε) be a one-parameter subgroup of G associated with a tangent vector

ξ̂ ∈ TeG and let φ be an action of G on Q. A one-parameter group of diffeomorphisms,

which is defined by hε(q) = φ(ϕξ̂(ε), q), is said to be generated by ξ̂ and the associated

vector field on Q, denoted by

ξ̂Q(q) =
dφ(ϕξ̂(ε), q)

dε
ε=0

(2.44)

is called the infinitesimal generator of the action φ corresponding to ξ̂ ∈ TeG.

2.4.3 Momentum maps

According to Noether’s theorem, the first integral J : T ∗Q→ R corresponding to the

admitted one-parameter group of diffeomorphisms hε : Q→ Q, ε ∈ R, is given by

J(q,p) = p · dhε(q)

dε
ε=0

(2.45)

Considering a one-parameter group hε = φϕ
ξ̂
(ε) generated by ξ̂ ∈ TeG, the first integral

is denoted by

Jξ̂(q,p) = p · ξ̂Q(q) (2.46)
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where ξ̂Q : Q→ TqQ is the infinitesimal generator of the action φ on the configuration

space Q. We then say that a map J : T ∗Q→ T ∗
eG is a momentum map for the action if we

have a first integral Jξ̂ = J ·ξ̂ for every ξ̂ ∈ TeG. The momentum map J is thus conserved

in the sense that the mapping Jξ̂ : T ∗Q→ R, which is defined by equation (2.46), is

conserved for any ξ̂ ∈ TeG.

2.4.4 Total linear momentum conservation

If the potential energy V of the generalised problem is independent of the origin of the co-

ordinate frame, the Lagrangian is invariant with respect to a translation of the coordinate

frame itself (Galilean invariance). The Lagrangian therefore admits the one-parameter

subgroup describing the translation of the whole configuration, and there exists a first inte-

gral Jξ̂(q,p). In the end we obtain as momentum map the total linear momentum. To see

this we define the translation of the configuration as an action φ : Rndim × Rndim → Rndim

of the vector group Rndim on a material point at qA ∈ Rndim given by

φ(g, qA) = g + qA, ∀g ∈ Rndim . (2.47)

Since the identity element of the vector group Rndim is the zero vector 0, we have a one-

parameter subgroup ϕξ̂(ε) = expV [εξ̂] = εξ̂, ε ∈ R, for any ξ̂ ∈ T0Rndim ∼= Rndim and the

infinitesimal generator on Q corresponding to ξ̂ reads

ξ̂Q(qA) =
d(εξ̂ + qA)

dε
ε=0

= ξ̂. (2.48)

According to Noether’s theorem, the first integral Jξ̂ : T ∗Q→ R associated with this

infinitesimal generator is given by

Jξ̂ =

[

npoi
∑

A=1

pA

]

· ξ̂ .
= J · ξ̂. (2.49)
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The momentum map J : T ∗Q→ T ∗Rndim ∼= Rndim associated with the action (2.47) is

therefore the total linear momentum of the configuration, which is denoted by

P =

npoi
∑

A=1

pA (2.50)

Hence we know that the total linear momentum P is conserved if translations are a so-

called symmetry group, which means that the corresponding group action conserves the

Lagrangian. We finally deduce a condition for the equations of motion which has to

be satisfied if translations are admitted and thus P is conserved. Given the fundamental

theorem of calculus, conservation of total linear momentum is a consequence of a vanishing

time derivative of the total linear momentum:

P (tb) − P (ta) =

∫ tb

ta

Ṗ dt. (2.51)

Differentiating the total linear momentum with respect to time and applying Hamilton’s

canonical equations of motion (2.24), we obtain

Ṗ =

npoi
∑

A=1

ṗA =

npoi
∑

A,B=1

QAB(q) qB. (2.52)

Accordingly, the time derivative of the total linear momentum vanish if all internal forces

arising in the configuration vanish in the sum

npoi
∑

A,B=1

QAB(q) qB = 0 (2.53)

A system for which this equation is fulfilled is referred to as closed [8].

2.4.5 Total angular momentum conservation

When the potential energy V is independent of the orientation of the coordinate frame,

the Lagrangian is invariant with respect to a rotation of the whole configuration B. Ap-

plying Noether’s theorem, this symmetry furnishes conservation of total angular mo-
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mentum as can be easily verified by using a theorem of Euler, which states that a fi-

nite rotation of a vector is given by a linear mapping with a matrix g ∈ SO(ndim) of

the special orthogonal group [106, 127]. Considering the group SO(ndim), an action

φ : SO(ndim) × Rndim → Rndim rotating each coordinate vector qA ∈ Rndim of the mate-

rial point A around the axial vector ξ ∈ Rndim going through the origin of the coordinate

frame, is therefore defined by

φ(g, qA) = g qA, ∀g ∈ SO(ndim). (2.54)

Given a ξ̂ ∈ TeSO(ndim) = so(ndim), we have a one-parameter subgroup ϕξ̂ = expM [εξ̂].

Thus, the infinitesimal generator of the action φ corresponding to ξ̂ is

ξ̂Q(qA) =
d(eεξ̂ qA)

dε
ε=0

= ξ̂qA. (2.55)

According to Noether’s theorem, a first integral Jξ̂ : T ∗Q→ R is related to this infinites-

imal generator:

Jξ̂ =

npoi
∑

A=1

pA ·
[

ξ̂ qA
]

. (2.56)

Now we can associate a unique axial vector ξ ∈ Rndim to any ξ̂ ∈ so(ndim) via the following

isomorphism:

ξ̂w = w × ξ, for all w ∈ Rndim , (2.57)

where × denotes the cross vector product in Rndim. The space so(ndim) can be therefore

identified with Rndim . Employing the above defined isomorphism (2.57) and taking the

skew-symmetry of the cross product into account, we obtain

Jξ̂ =

npoi
∑

A=1

pA ·
[

qA × ξ
]

= −
npoi
∑

A=1

[

qA × pA
]

· ξ = −J · ξ. (2.58)
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The resulting momentum map J : T ∗Q→ so(ndim)∗ ∼= Rndim is therefore the total angular

momentum of the configuration, which is denoted by

L =

npoi
∑

A=1

qA × pA (2.59)

We conclude this section with the symmetry conditions for the equations of motion asso-

ciated with the symmetry group SO(ndim). Using the fundamental theorem of calculus,

conservation of total angular momentum results if the time derivative L̇ vanishes:

L(tb) − L(ta) =

∫ tb

ta

L̇ dt. (2.60)

Differentiating both sides of equation (2.59) with respect to the time t and employing

Hamilton’s canonical equations (2.24), the time derivative L̇ of the total angular momen-

tum has the form

L̇ =

npoi
∑

A=1

[

q̇A × pA + qA × ṗA
]

=

npoi
∑

A,B=1

[

M−1
AB p

B × pA +QAB(q) qA × qB
]

. (2.61)

Owing to the symmetry of the mass and the stiffness matrix in conjunction with the skew-

symmetry of the cross product, all terms related to the same matrix annihilate each other

and yield a vanishing time derivative L̇. Consequently, the total angular momentum is

conserved in the sense L(tb) = L(ta) by definition of the mass and the stiffness matrix of

the generalised problem.

2.5 Strain measures for deformations

In this section, we introduce strain measures for the generalised problem, which are well-

known from books on nonlinear solid mechanics or continuum mechanics mentioned in

the preamble of this chapter.

A deformation of the configuration B is indicated by the variation of the distances

between neighbouring material points [74]. A quantitative measure of strains in the
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deformed configuration B can be therefore derived from the distance between neighbouring

material points. To this end we determine the change in length between two neighbouring

material points A and B in the configuration B after a deformation (see Figure 2.6). The

geometry of neighbouring material points in the initial configuration B0 is given by

XB =XB + (XA −XA) = XA + ‖XB −XA‖EAB = XA + dXA, (2.62)

where

EAB =
XB −XA

‖XB −XA‖ =
dXA

‖ dXA‖ (2.63)

is the unit vector in the direction of the initial connecting line. Similarly, the geometry

of neighbouring material points in the current configuration Bt reads

xB = xB + (xA − xA) = xA + ‖xB − xA‖ eAB = xA + dxA, (2.64)

where

eAB =
xB − xA

‖xB − xA‖ =
dxA

‖ dxA‖ (2.65)

is the unit vector in the direction of the current connecting line. The stretch ratio or

simply the stretch λ is defined by

λ2 =
‖ dxA‖2

‖ dXA‖2
=

dxA · dxA

dXA · dXA
(2.66)

The stretch λ therefore measures how much an initial line element dXA has stretched

to the current line element dxA. Taking the deformation mapping ϕ into account, we

obtain by Taylor’s theorem

xB = ϕ(XA + dXA) = ϕ(XA) + ∇Xϕ(XA) dXA + O(‖XB −XA‖2). (2.67)

The gradient ∇Xϕ(XA) of the deformation map is called the deformation gradient F so

that equation (2.67) leads to dxA = F dXA if nonlinear terms are neglected, which is a
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Figure 2.6. The geometry of two neighbouring material points in the configuration B.

good approximation the smaller dXA is. The squared stretch therefore reads

λ2 = EAB ·CEAB (2.68)

where C = F TF denotes the so-called right Cauchy-Green tensor. The right Cauchy-

Green tensor is a symmetric and positive definite tensor and an important strain measure

in nonlinear elastodynamics. In particle dynamics, equation (2.66) is preferred as formu-

lation for the stretch.

2.6 Superimposed rigid body motions

Within this section, we are concerned with rigid body motions in the context of the gen-

eralised problem. To this end we summarise the relevant topics from the books mentioned

in the preamble.

If the configuration is moved without a change in its shape, which means rigid body

motions, the applied strain measure must not indicate a stretch. A strain measure having

this property is called consistent with respect to rigid body motions. In this section,

we show the consistency of the strain measures considered in the previous section with
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respect to superimposed rigid body motions. This property proves to be important in

view of the subsequent time discretisation of the strain measures.

Each motion ϕ+ of the configuration B is a composition of a motion ϕ associated with

a deformation and a superimposed rigid body motion χ such that ϕ+ = χ ◦ϕ. The de-

formation is identified by changed distances between the material points and is therefore

indicated by a changed value of the chosen strain measure. A rigid body motion of the con-

figuration is however characterised by no variation of the distances between the material

points and therefore given by an Euclidean transformation x+ = χ(x, t) ≡ a(t) +R(t)x,

with a(t) ∈ Rndim and R(t) ∈ SO(ndim). The vector a(t) is associated with a rigid body

translation and the tensor R(t) renders a rigid body rotation. The rotation tensor

R(t) naturally fulfils the equation [R(t)]TR(t) = Indim
. Taking the previous section into

account, line elements associated with closely neighbouring points are then related by

dx+ = R(t) dx. By using of this relation, the stretch λ associated with a deformation

which is superimposed by a rigid body motion take the form

[

λ+
]2

=
dx+ · dx+

dX · dX
=

dx ·
[

RT (t)R(t)
]

dx

dX · dX
= λ2, (2.69)

where λ denotes the stretch only associated with the deformation. Consequently, a rigid

body motion of the system does not affect the stretch because an Euclidean transformation

give not rise to a change in the stretch λ. The particle distance or the right Cauchy-

Green tensor are therefore consistent strain measures for the generalised problem. This

invariance of the strain measure with respect to rigid body motions, however, have to be

maintained if the strain measure is discretised in time.
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Galerkin-based time discretisation

...Mathematically, one property that can be guaranteed
is that if energy is conserved in the true problem, then
it is conserved in Galerkin’s method, and that if it is
decreasing with time in the true problem, then it is de-
creasing in the Galerkin approximation...

[130], Chapter 7: Initial-value Problems.

We obtain a numerical solution of the equations of motion by discretising them with

respect to the time t. We apply the Galerkin method in time which is based on a piecewise

polynomial approximation of Hamilton’s canonical equations. More precisely, we use

Galerkin finite element methods which rely on continuous or discontinuous trial functions.

To this end we introduce finite elements in time and a corresponding master element. The

equations of motion are then related to an initial value problem on this reference element.

We apply the continuous Galerkin finite element method along the way described in

[22, 19, 20] for solving this initial value problem. We obtain a family of higher order

implicit time stepping schemes which possesses some properties when applied a certain

kind of quadrature. The first property is the collocation property which states that

this family of time stepping schemes provides a continuous approximation which exactly

satisfies the underlying differential equation at a finite number of quadrature points [28,

129]. The collocation property proves to be important for conserving first integrals of the

underlying equations of motion. Applying this collocation property, we then investigate

the conservation of the first integrals of Hamilton’s canonical equations pertaining to the

35
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generalised problem. We conclude the examination of the continuous Galerkin method in

time by depicting the iterative solution procedure of this family of time stepping schemes

in a compact description. At the end we present the discontinuous Galerkin method in

time according to [62]. However, it turned out that the temporal discontinuous Galerkin

method is not convenient to design mechanical integrators because the discontinuous

approximation introduces a kind of energy dissipation (see more details in [62, 63]). We

therefore concentrate in the further chapters on the continuous Galerkin method in time.

3.1 Finite element discretisation in time

We divide the time interval T = [t0, T ] of interest into Nτ − 1 nonoverlapping subintervals

Tn of length hn, n = 1, . . . , Nτ − 1, such that

T =
Nτ−1
⋃

n=1

Tn. (3.1)

This partition of T is related with a mesh of time points t0 < t1 < . . . < tNτ
= T . We

subsequently transform each subinterval Tn = [tn−1, tn] to a master element Iα = [0, 1]

corresponding to the normalised coordinate

α =
t− tn−1

hn
, (3.2)

where hn = tn − tn−1 denotes the length of Tn. Accordingly, the motion in each subinterval

Tn is determined by the following initial-value problem with respect to the master element:

Given the initial value z0 = z(tn−1), find the motion ζ0 : Iα × P 3 (α, z0) 7→ z(α) ∈ P in

the phase space P which is determined by the ordinary differential equation

dz(α)

dα
= hnJ∇zH(z(α)) (3.3)

Where appropriate, we indicate differentiation with respect to α by using a prime.
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3.2 The continuous Galerkin (cG) method

In this section, we apply the continuous Galerkin method to the initial value problem

(3.3) emanating from the finite element discretisation of Hamilton’s canonical equations.

The continuous Galerkin method is defined using continuous trial functions of degree k

and test functions of degree k − 1. The finite element approximation of the test functions

accordingly leads to possible discontinuities across the element boundaries. More details

can be found in [44, 22, 19, 20]. The continuous Galerkin method can be traced back at

least to [135, 42] for parabolic problems and to [82, 81] for ordinary differential equations.

3.2.1 Implicit time stepping schemes

An implicit time stepping scheme is a system of nonlinear equations which relates the

nodal values zI , I = 1, . . . , k + 1, to the initial value z0. Galerkin’s method determines

the nodal values zI such that the residual error of the considered differential equation is

orthogonal to all functions in the test space. The residual error of the ordinary differential

equation (3.3) reads

R(z) =
dz

dα
− hn J∇zH(z). (3.4)

The Galerkin orthogonality condition for the trial function z(α), the weak form of the

residual error (3.4), takes the form

∫ 1

0

Ω(R(z(α)), δz(α)) dα =

∫ 1

0

Jδz(α) ·R(z(α)) dα = 0, (3.5)

where the test function δz(α) and the trial function are polynomials of degree k − 1 and

k, respectively, and given by

δz(α) =

k
∑

I=1

M̃I(α) δzI , z(α) =

k+1
∑

J=1

MJ(α) zJ , (3.6)

where δzI = δz((I − 1)/(k − 1)), I = 1, . . . , k and zJ = z((J − 1)/k), J = 1, . . . , k + 1

denote the nodal values at the equidistant nodes of the polynomials. We have to state

the continuity condition z1 = z0 at the beginning of each time step for global continuity
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Figure 3.1. The q + 1 nodes of a continuous Lagrange polynomial of degree q.

of the trial functions. The functions M̃I and MJ denote Lagrange polynomials of degree

k − 1 and degree k, respectively, with respect to the equidistant nodes on the master

element. Lagrange polynomials LI(α), I = 1, . . . q + 1, of degree q with respect to q + 1

equidistant nodes αI = (I − 1)/q (see Figure 3.1) generally have the following form [44]:

LI(α) =

q+1
∏

J=1
J 6=I

α− αJ
αI − αJ

, I = 1, . . . , q+1. (3.7)

Employing the test as well as the trial functions in the weak form (3.5) and taking the

fundamental theorem of variational calculus into account, we obtain

k+1
∑

J=1

∫ 1

0

M̃IM
′
J dα zJ − hn

∫ 1

0

M̃I(α) J∇zH(z(α)) dα = 0, I = 1, . . . , k. (3.8)

The first term is an integral over a polynomial of degree 2(k − 1) and can be exactly

determined, however the second integrand includes the Jacobian of the arbitrary Hamil-

tonian and generally has to be determined by numerical quadrature. We generally apply

interpolatory quadrature formulas (see [83, 81]) given by

Ih{f} =

Nα
q

∑

l=1

f(ξl)wl, (3.9)

where ξl and wl denote the quadrature points and the associated weights, respectively.
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However, we limit our considerations to the Gaussian quadrature rules with the accuracy

order O(h
2Nα

q
n ) (see [13, 38, 66] for details) and obtain

k+1
∑

J=1

∫ 1

0

M̃IM
′
J dα zJ − hn

Nα
q

∑

l=1

M̃I(ξl) J∇zH(z(ξl))wl = 0 I = 1, . . . , k. (3.10)

These equations represent a family of higher order integrators with the parameters k and

Nα
q (see [22, 19, 20]). Essentially two additional steps have to performed to obtain a

particular integrator. First the selection of the degree k of the finite elements in time

and second the number of quadrature points Nα
q for calculating the integral including the

Jacobian of the Hamiltonian.

3.2.2 Collocation property

In this section, we show that the integrators (3.10) is able to provides a continuous

approximation of the motion, which exactly satisfies Hamilton’s equations at the Gauss

points. To this end we consider the integrator (3.10), however, we also apply a Nα
q -point

Gauss rule to the integral in the first term. Nevertheless, this integral is supposed to be

exactly calculated. Since the corresponding integrand is a polynomial of degree 2(k − 1),

the integral is exactly calculated by Nα
q ≥ k − 1 Gauss points. Hence we require in the

following at least k − 1 Gauss points. Taking the definition (3.4) into account, we obtain

the equations (3.10) in the form of the following homogeneous linear system of equations:

[

W̃ (ξ1, . . . , ξNα
q
) ⊗ I2ndof

]













R(z(ξ1))w1

...

R(z(ξNα
q
))wNα

q













=













0
...

0













(3.11)

with the structure matrix

W̃ (ξ1, . . . , ξNα
q
) =

[

w̃(ξ1) . . . w̃(ξNα
q
)
]

, where w̃(α) =











M̃1(α)
...

M̃k(α)











(3.12)
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Figure 3.2. One component Ri(α) of the residual R(z(α)) in the case of collocation at
the Gauss points ξl, l = 1, . . . , k.

The solution of the system (3.11) is unique if Nα
q = k. In this case, we obtain the trivial

solution if the coefficient matrix is additionally invertible. According to Appendix B,

the inverse of a direct product of matrices is given by the direct product of the inverse

matrices. Since the inverse of the 2ndof × 2ndof identity matrix I2ndof
exists, we only

have to verify that the structure matrix (3.12) is non-singular. Accordingly, the Lagrange

polynomial basis of the test space has to satisfy the so-called Haar condition (see [114]).

A family of Lagrange polynomials generally satisfies the Haar condition if it is a poly-

nomial basis. This can be easily verified by relating this family of Lagrange polynomials

to a monomial basis because the Haar matrix W̃ corresponding to a monomial basis

is the well-known Vandermonde matrix. For this purpose we write the monomials αj,

j = 0, . . . , k − 1, by using the Lagrange polynomials M̃I , I = 1, . . . , k. The monomials

result from an interpolation over the time nodes αI associated with the Lagrange poly-

nomials. This leads to the equations αj =
∑k

I=1 M̃I(α)(αI)
j (see [73, 44, 66]). In matrix

notation, we obtain a linear algebraic system of the form

ṽ(α) = Ṽ (α1, . . . , αk) w̃(α), (3.13)

with the Vandermonde matrix given by (see [66, 73, 13])

Ṽ (α1, . . . , αk) =
[

ṽ(α1) . . . ṽ(αk)
]

, where ṽ(α) =













1
...

αk−1













(3.14)

The structure matrix W̃ (ξ1, . . . , ξk) can be therefore written as a product of Vander-
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monde matrices: W̃ (ξ1, . . . , ξk) = Ṽ
−1

(α1, . . . , αk) Ṽ (ξ1, . . . , ξk). The determinant of the

structure matrix can be thus expressed by the so-called Vandermonde determinant. The

corresponding formula can be found in [66], for instance. Applying this determinant

formula, we obtain the following relation:

det W̃ (ξ1, . . . , ξk) =
k−1
∏

I=1

k
∏

J=I+1

ξI − ξJ
αI − αJ

(3.15)

Hence the determinant of the structure matrix cannot vanish because the time nodes

and the Gauss points are pairwise distinct so that the structure matrix is therefore non-

singular.

Since the Haar condition for the test space is fulfilled by using k Gauss points, the

system (3.11) has only the trivial solution which can be written as

dq(ξl)

dα
= hn M−1 p(ξl)

dp(ξl)

dα
= −hn∇qV (q(ξl))

for l = 1, . . . , k. (3.16)

The time stepping schemes (3.10) associated with k-point Gaussian quadrature therefore

exactly fulfil Hamilton’s canonical equations at the Gauss points ξl, which means that

the determined residual has roots at the Gauss points (see Figure 3.2). We call this

combination the cG(k) method. Note that the cG(k) method leads to k-stage Gauss

Runge-Kutta methods (see [82, 81, 22, 132] for example) for which the collocation property

is satisfied [143].

3.2.3 Total energy conservation

This section investigates the total energy conservation of the cG(k) method. For this

purpose we determine the total energy at the endpoint of the interval Iα in dependence

on the total energy at the given initial point. Since the approximation of the total energy

is continuous, we relate the energies at the boundaries of Iα by applying the fundamental
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theorem of calculus (see also [4, 22]):

H (z(1)) −H (z(0)) =

∫ 1

0

dT ∗ (p(α))

dα
dα +

∫ 1

0

dV (q(α))

dα
dα, (3.17)

Employing the kinetic energy T ∗ of the generalised problem, the first integrand is a

polynomial of degree 2k − 1. The corresponding integral is exactly calculated by a k-

point Gauss rule. Thus the fundamental theorem of calculus applied to the kinetic energy

T ∗ can be written as

T ∗ (p(1)) − T ∗ (p(0)) =

k
∑

l=1

dp(ξl)

dα
· M−1 p(ξl)wl. (3.18)

The potential energy is assumed to be an arbitrary nonlinear function. The corresponding

fundamental theorem of calculus is satisfied by a quadrature rule which fulfils the following

equation:

V (q(1)) − V (q(0)) =

k
∑

l=1

∇qV (q(ξl)) ·
dq(ξl)

dα
wl (3.19)

Now we take the collocation property of the cG(k) method into account and additionally

suppose that equation (3.19) is fulfilled. Employing equations (3.16a) and (3.16b) in the

equations (3.19) and (3.18), respectively, summation of the resulting two equations leads

to H(z(1)) = H(z(0)) independent of a finite time step size hn. Accordingly, the cG(k)

method is an energy conserving integrator if the condition (3.19) is satisfied. We refer to

this equation as the energy conservation condition for the cG(k) method.

Remark 3.1. The energy conservation condition (3.19) can be interpreted as the discrete

version of the gradient theorem which states

V (q(1)) − V (q(0)) =

∫

ψ

∇qV · dq, (3.20)

where ψ is a path starting at q(0) and ending at q(1) (see Figure 3.3). The gradient

theorem describes a fundamental property of a potential function V (q), namely the path-

independence of the line integral
∫

ψ
∇qV · dq [144, 139]. The path-independence of the
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Figure 3.3. The work done by a force field along a path ψ in the configuration space Q
only depends on the initial point and the end point.

work done by the conservative force field −∇qV follows from this property. The work is

then equal to the difference between the final and the initial value of the potential V (q).

The energy conservation condition (3.19) guarantees that this fundamental property of a

conservative force field is retained in spite of applying quadrature for calculating integrals.

3.2.4 Total linear momentum conservation

This section verifies the total linear momentum conservation of the cG(k) method applied

to the generalised problem. Since the motion is continuously approximated by the cG(k)

method, we also apply the fundamental theorem of calculus to relate the total linear

momenta at neighbouring points in the partition of the interesting time interval. The

fundamental theorem of calculus with respect to the total linear momentum reads

P (z(1)) − P (z(0)) =

∫ 1

0

dP (z(α))

dα
dα =

∫ 1

0

npoi
∑

A=1

dpA(α)

dα
dα. (3.21)

The integrand in equation (3.21) is a sum of polynomials of degree k − 1. The corre-

sponding integral is exactly determined by Gaussian quadrature with k Gauss points. In

addition, the collocation property of the cG(k) method provides that the equations of
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motion (2.10) are satisfied at k Gauss points. Hence we obtain

P (z(1)) − P (z(0)) = −hn
k

∑

l=1

npoi
∑

A,B=1

QAB(q(ξl))qB(ξl)wl. (3.22)

Taking equation (2.53) into account, the cG(k) method leads to total linear momentum

conservation P (z(1)) = P (z(0)) independent of the time step size.

3.2.5 Total angular momentum conservation

A further invariant of the generalised problem is the total angular momentum whose

conservation is examined in this section. We apply the fundamental theorem of calculus

to determine the total angular momentum at the endpoint of the master element:

L (z(1)) −L (z(0)) =

∫ 1

0

dL (z(α))

dα
dα =

∫ 1

0

npoi
∑

A=1

d

dα

[

qA(α) × pA(α)
]

dα. (3.23)

In accordance with the kinetic energy T ∗, the integral in the fundamental theorem of

calculus applied to the total angular momentum L is exactly calculated by applying k

Gauss points:

L (z(1)) − L (z(0)) =

k
∑

l=1

nnode
∑

A=1

[

dqA(ξl)

dα
× pA(ξl) + qA(ξl) ×

dpA(ξl)

dα

]

wl. (3.24)

Taking equations (3.16) in conjunction with equation (2.2) into account, total angular

momentum conservation L (z(1)) = L (z(0)) independent of the used time step size follows

from the same argumentation as in Section 2.4.5.

3.2.6 Iterative solution procedure

This section describes the procedure for solving the equations of the cG(k) method in a

computational setting. Taking the definition z = (q,p) into account, the cG(k) method
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of the generalised problem takes the form

k+1
∑

J=1

∫ 1

0

M̃IM
′
J dα qJ − hn

∫ 1

0

M̃I M−1 p dα = 0,

k+1
∑

J=1

∫ 1

0

M̃IM
′
J dαpJ + hn

k
∑

l=1

M̃I(ξl) Q(q(ξl))q(ξl)wl = 0,

I = 1, . . . , k. (3.25)

We collect the unknown coordinates and momenta in the vectors xq = (q2, . . . , qk+1) and

xp = (p2, . . . ,pk+1), respectively. The 2k vector equations of the cG(k) method can be

then expressed in matrix notation as

b′ ⊗ q1 +
[

A′ ⊗ Indof

]

xq − hnb⊗
[

M−1 p1

]

− hn
[

A⊗ M−1
]

xp = 0, (3.26)

b′ ⊗ p1 +
[

A′ ⊗ Indof

]

xp + hn

[

W̃ (ξ1, . . . , ξk) ⊗ Indof

]

f(xq) = 0, (3.27)

where we introduced the following matrices for a compact description:

A =











A11 . . . A1k

...
...

Ak1 . . . Akk











A′ =











A′
11 . . . A′

1k

...
...

A′
k1 . . . A′

kk











b =











b1
...

bk











b′ =











b′1
...

b′k











(3.28)

Here the prime at the matrices A′ and b′ does not indicate differentiation of the matrices

A and b with respect to α, which can be seen by the corresponding coefficients of these

matrices:

AIJ =

∫ 1

0

M̃IMJ+1 dα, bI =

∫ 1

0

M̃IM1 dα, (3.29)

A′
IJ =

∫ 1

0

M̃IM
′
J+1 dα, b′I =

∫ 1

0

M̃IM
′
1 dα. (3.30)

and the force vector f reads

f(xq) =











Q(q(ξ1))q(ξ1)w1

...

Q(q(ξk))q(ξk)wk











(3.31)
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Since the unknown momenta are linear combinations of the unknown coordinates, we

eliminate the vector xp such that we obtain the residual

R(xq) =
1

hn

[

AR
m ⊗ M

]

xq +
1

hn
AR
q ⊗ [M q1] +AR

p ⊗ p1 + hn

[

W̃ (ξ) ⊗ Indof

]

f(xq)

(3.32)

with the Gauss points ξ = (ξ1, . . . , ξk) and the matrices

AR
m = A′A−1A′, AR

q = A′A−1 b′, AR
p = b′ −A′A−1 b. (3.33)

Accordingly, to determine the unknown coordinates qA, A = 2, . . . , k + 1, we have to

solve the nonlinear equations R(xq) = 0. As we iteratively solve this nonlinear system of

equations by using the Newton-Raphson method, we perform a linearisation. Using i as

iteration index, we therefore obtain the iteration formula

x(i+1)
q = x(i)

q −K−1
T (x(i)

q )R(x(i)
q ), (3.34)

where KT (xq) = ∇xq
R(xq) indicates the tangent operator corresponding to the resid-

ual (3.32), which reads

KT (xq) =
1

hn

[

AR
m ⊗ M

]

+ hn

[

W̃ (ξ) ⊗ Indof

]

K(xq) (3.35)

where

K(xq) = ∇xq
f(xq) =











K2(ξ1)w1 . . . Kk+1(ξ1)w1

...
...

K2(ξk)wk . . . Kk+1(ξk)wk











(3.36)

We initialise the unknown coordinates for the first iteration by the following equation:

xq = −Aq
q ⊗ q1 − hnA

q
p ⊗

[

M−1 p1

]

(3.37)

with

Aq
q = [A′]

−1
b′ = −ek, Aq

p = [A′]
−1
A [A′]

−1
b′ − [A′]

−1
b, (3.38)
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where ek = (1, . . . , 1) ∈ Rk (see Appendix C.3). Finally, the momenta xp are determined

by the following equation with the now known coordinates qA, A = 1, . . . , k + 1:

xp =
1

hn
[Ap

m ⊗ M]xq +
1

hn
Ap
q ⊗ [M q1] −Ap

p ⊗ p1 (3.39)

with the matrices

Ap
m = A−1A′, Ap

q = A−1 b′, Ap
p = A−1 b. (3.40)

Remark 3.2. In this work, we decide to check in the stopping criterion of the iterative

solution procedure the Euclidean norm of the residual. For this purpose we choose a

tolerance ε which has to be fulfilled by the Euclidean norm. Another possible stopping

criterion is to check whether the residual is virtually stayed constant (see [41]). More-

over, we have only applied an iterative solution procedure associated with a consistent

tangent which can be also unsymmetric. A direct solver based on Gaussian elimination in

conjunction with sparse matrices is employed. We can avoid an unsymmetric tangent by

applying a symmetric nested iterative procedure proposed in [6]. The condition for this

numerical implementation, however, is an additive structure of the internal force vector

f(xq) which leads to the split of the tangent in a symmetric part and an unsymmetric

part. In the inner loop of this solution procedure, one considers the internal forces corre-

sponding to the unsymmetric tangent at a fixed deformation and iterates in the internal

forces associated with the symmetric tangents. Once this symmetric iterative process

converges, the internal forces associated with the unsymmetric tangents are updated with

the computed deformation in the outer loop and the iteration is repeated. These nested

iterations are taken to convergence.

3.3 The discontinuous Galerkin (dG) method

In this section, we apply the discontinuous Galerkin method in time to the initial value

problem (3.3). The trial as well as the test functions of the discontinuous Galerkin method

in time are piecewise polynomials of equal degree. Both functions are generally discon-
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tinuous across the element boundaries. This turns out to be an advantage in the error

analysis and it improves the stability for parabolic problems in comparison to the contin-

uous Galerkin method in time (see [44, 138]).

We take as trial functions for the discontinuous Galerkin method in time the same

as for the continuous Galerkin method. For this reason the test functions take here the

form:

δz(α) =
k+1
∑

I=1

MI(α) δzI , (3.41)

where δzI = δz((I − 1)/k), I = 1, . . . , k + 1, denotes the values at the equidistant nodes

of the polynomials. The weak form of the discontinuous Galerkin method in time is given

by the equation
∫ 1

0

Ω(R(z(α)), δz(α)) dα + Ω([[z]], δz1) = 0. (3.42)

Here the initial condition z0 is introduced in a variational sense through an additional

term because otherwise the coefficients zI , I = 1, . . . , k + 1, of the trial functions are over-

determined. In general, one therefore gets a jump [[z]] :=z1 − z0 6=0 (discontinuity) in the

master element Iα at α = 0. We finally obtain a generally discontinuous approximation

of the test and the trial functions.

Employing the trial functions and the test functions in the weak form, the fundamental

theorem of variational calculus renders the equations

k+1
∑

J=1

∫ 1

0

MIM
′
J dα zJ − hn

∫ 1

0

MI(α)J∇zH(z(α)) dα+ δ1I [[z]] = 0, I = 1, . . . , k + 1.

(3.43)

The integrand in the first term coincides with a polynomial of order 2k − 1. The cor-

responding integral can be then exactly computed. However, the integral in the second

term generally has to be approximated. By using interpolatory quadrature of the form

(3.9), one obtains the following higher order integrator (compare [44, 62, 63]):

k+1
∑

J=1

∫ 1

0

MIM
′
J dα zJ − hn

Nα
q

∑

l=1

MI(ξl)J∇zH(z(ξl))wl + δ1I [[z]] = 0 I = 1, . . . , k + 1.

(3.44)
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k = 1 Quadratic potential Arbitrary potentials

exact sym. quadrature sym. quadrature

Nq = 1 1 < Nq < ∞ Nq = 1 1 < Nq < ∞

H D C D NC

exact sym. quadrature sym. quadrature

Nq = 1 1 < Nq < ∞ Nq = 1 1 < Nq < ∞

L D C D C NC

Figure 3.4. Conservation properties of the dG(1) method. ‘C’ denotes conservation, ‘D’
denotes decay and ‘NC’ denotes nonconservation, in general. An empty space signifies the
absence of a corresponding evidence or counterevidence. ‘exact’ means exact integration
and ‘sym. quadrature’ denodes the application of a symmetric quadrature rule, that is a
rule with symmetric quadrature points in the master element.

By applying Nα
q = k + 1 quadrature points, this family of time stepping schemes is of the

order k + 1 ≤ p ≤ 2k + 1 accurate and equivalent to an implicit Runge-Kutta method (see

[98]).

Remark 3.3. A nonvanishing jump [[z]] renders nonconservation of first integrals (see

[62, 63]). In these references, there has been shown a total energy decay associated

with an arbitrary convex Hamiltonian for constant time finite elements (k=0) and asso-

ciated with a quadratic convex Hamiltonian for higher order time finite elements. The

conservation of total angular momentum for constant and linear finite elements in time

is discussed in [62]. In Figure 3.4, we have summarised the conservation properties for

linear time finite elements (k=1). It is remarkable that there is conservation by using

one symmetric quadrature point (reduced integration). The reason is that the jump [[z]]

in the equations (3.44) associated with k = 1 vanishes by applying one Gaussian quadra-

ture point. The resulting integrator is then equivalent to the cG(1) method and leads

to total angular momentum conservation in general and total energy conservation in the

integrable case.
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Chapter 4

One-particle dynamics in a central

force field

...the problem was constructed so as to exhibit key fea-
tures typical of more complex systems with symme-
try such as those arising in nonlinear solid mechanics,
namely, the presence of large (and relatively slow) over-
all motions together with high-frequency internal mo-
tions...

[54], Abstract.

Dynamics of a single particle under the influence of a central force field is a concrete ex-

ample of the generalised problem with npoi = 1 moving material points. The Hamiltonian

formulation of the generalised problem can be therefore applied to this problem. The

central force field is based on a potential energy which does not depend on the orientation

of the inertial coordinate system associated with the Euclidean space. The angular mo-

mentum is consequently a constant of the motion. However, the potential energy depends

on the origin of the inertial coordinate system, which prevents a symmetry with respect

to translations. Hence the total linear momentum is not conserved. More details about

this so-called one-body problem can be found in standard books on classical mechanics,

for instance [9, 50].

The one-body problem typically results from reducing the motion of two particles

under the influence of a mutual central force. In this so-called two-body central force

51
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Figure 4.1. The geometry of the one-body problem.

problem, we obtain two independent equations of motion if the three components of the

radius vector to the centre of mass as well as the three components of the difference

vector between the particles are treated as coordinates. The first equation of motion

then states that the centre of mass is either at rest or moving uniformly. The second

equation describes the motion of a single particle of a reduced mass, which is positioned

at a distance from a fixed centre of force. This central force motion of two particles about

their centre of mass can be therefore reduced to an equivalent one-body problem.

4.1 Hamiltonian formulation

We consider a single particle of mass m in the configuration space Q ⊂ Rndim . The particle

moves about a fixed centre of force in the origin of an inertial coordinate system (see

Figure 4.1). The current position of the particle is denoted by the position vector q ∈ Q.

The potential energy V : Rndim → R is only a function of the radial distance ‖q‖. Hence we

introduce a function V̂ : R+ → R to describe the potential energy as follows: V = V̂ (‖q‖).
The gradient ∇qV of this potential energy therefore has to be determined by the chain

rule of differentiation:

∇qV (q) = DV̂ (‖q‖)∇q‖q‖ =
DV̂ (‖q‖)

‖q‖ Indimq = Q(q) q, (4.1)
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where the stiffness matrix Q(q) is given by the equation (2.3) and the corresponding

structure matrix reads

Q(q) =

[

DV̂ (‖q‖)
‖q‖

]

(4.2)

Since the stiffness matrix Q only depends on ‖q‖, it can be rewritten as Q = Q̂(‖q‖).
The inverse mass matrix M−1 has the form (2.16) with the structure matrix

M−1 =

[

1

m

]

(4.3)

We obtain no conservation of the linear momentum p because the internal forces do not

vanish for an arbitrary motion. However, the angular momentum L = q×p is conserved.

4.2 Galerkin-based time discretisation

The starting point for designing higher order mechanical integrators is a time discretisa-

tion. We now perform a time discretisation of the equations of motion pertaining to the

one-body problem by using the cG(k) method:

k+1
∑

J=1

∫ 1

0

M̃IM
′
J dα qJ − hn

∫ 1

0

M̃I(α) M−1 p(α) dα = 0,

k+1
∑

J=1

∫ 1

0

M̃IM
′
J dαpJ + hn

k
∑

l=1

M̃I(ξl) Q̂
(

rh(ξl)
)

q(ξl)wl = 0,

I = 1, . . . , k, (4.4)

where rh : Iα → R+ denotes an arbitrary time approximation of the radial distance ‖q‖.
One possible approximation of the radial distance is the Euclidean norm of the approxi-

mated position vector q. We call this time approximation r = ‖q‖ of the radial distance

the cG approximation which only relies on the approximation q of the position vector.

However, the cG approximation of the radial distance has a disadvantage when computing

rigid body rotations because it generates an artificial stretch λ at the Gauss points (see

Figure 4.2). We have a considerable artificial compression at the midpoint of the master

element for k = 1 (λ(ξ1) = 0.7071), small artificial compressions at both Gauss points for

k = 2 (λ(ξ1) = λ(ξ2) = 0.9904) and both a small artificial compression (λ(ξ2) = 0.9983)
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Figure 4.2. Position vector q(α) at the time nodes I, I = 1, . . . k + 1, and at the Gauss
points ξl, l = 1, . . . , k, on the master element during a rigid body rotation determined by
the cG approximation r of the radial distance for k=1,2,3.

and extensions (λ(ξ1) = λ(ξ3) = 1.0027) for k = 3. We refer to the cG(k) method corre-

sponding to the cG approximation r as standard cG(k) method or simple cG(k) method.

The cG(k) method can be related to implicit Gauss Runge-Kutta methods (see [22])

which are known to be a family of symplectic integrators (compare [118]). These inte-

grators preserve the symplectic structure of the integral curves, which leads to a volume

preservation in phase space (Liouville’s theorem). Thus the property of being symplectic

refers to families of integral curves, wherefore it is difficult to interpret its consequence

for individual integral curves of the Hamiltonian vector field (for example, see [123, 132]

and references theirin). We obtain with linear time finite elements (k = 1) the symplectic

implicit midpoint rule for the one-body problem, which takes the form

q2 − q1−
hn
2

M−1 [p1 + p2] = 0,

p2 − p1+
hn
2

Q̂

(

q1 + q2

2

)

[q1 + q2] = 0.

(4.5)

For instance, this time stepping scheme is investigated in [11, 54].

4.3 Design criterion for energy conservation

In this section, we deduce a criterion for designing mechanical integrators for the one-body

problem from the energy conservation condition for the cG(k) method. We employ the

gradient (4.1) of the potential energy pertaining to the one-body problem in the energy
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conservation condition (3.19) for the cG(k) method and obtain the relation

V̂
(

rh(1)
)

− V̂
(

rh(0)
)

=

k
∑

l=1

DV̂
(

rh(ξl)
) q(ξl)

rh(ξl)
· dq(ξl)

dα
wl. (4.6)

We now suppose that the approximated position vector q and the approximation rh of

the radial distance are related at all Gauss points ξl, l = 1, . . . , k, as follows:

q(ξl)

rh(ξl)
· dq(ξl)

dα
=

drh(ξl)

dα
(4.7)

Taking equation (4.7) into account, the total energy H is conserved if the following equa-

tion holds:

V̂
(

rh(1)
)

− V̂
(

rh(0)
)

=

k
∑

l=1

DV̂
(

rh(ξl)
) drh(ξl)

dα
wl (4.8)

We refer to equation (4.8) as the design criterion for an energy conserving integrator for

the one-body problem.

Remark 4.1. Since the potential energy V is given by the potential function V̂ which only

depends on the radial distance, the gradient ∇qV is determined by the chain rule of dif-

ferentiation (see equation (4.1)). Hence equation (4.7) maintains the gradient form (2.2)

of the internal forces at the Gauss points. We therefore have to bear in mind that rela-

tion (4.7) is satisfied. In Section 3.2.3, we have mentioned that the energy conservation

condition can be considered as a discrete version of the gradient theorem. The design

criterion (4.8) can be viewed as a discrete version of the gradient theorem in polar coor-

dinates.

4.4 Enhanced derivative

We consider the design criterion (4.8) as constraint on the ordinary derivative DV̂ . We

obtain the problem of finding a function with a minimal distance to the ordinary deriva-

tive, which satisfies the design criterion as constraint. This problem leads to an additive

enhanced derivative, as we can see in this section. This kind of variational problem with
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Figure 4.3. Generalised force F (α) associated with the constraint of energy conservation
along the approximated motion ψh(α) starting at q0 and lying in the surface H = const.

constraint can be classified as isoperimetrical problem in view of the specific constraint.

(See [47, 31, 91, 69, 46] for further details about isoperimetrical problems. For com-

pleteness, a summary of the main features of solving isoperimetrical problems is given in

Appendix A.6). The minimisation of the distance to the ordinary derivative is equivalent

to minimising the functional

F(DV̂ ) =
1

2

∫ 1

0

[

DV̂ (α) −DV̂ (rh(α))
]2

dα. (4.9)

Since the design criterion has to be simultaneously satisfied while minimising F , we have

to introduce the constraint G = 0, where

G(DV̂ ) = V̂ (rh(1)) − V̂ (rh(0)) −
∫ 1

0

DV̂ (α)
drh(α)

dα
dα. (4.10)

We now augment F with the constraint G through a Lagrange multiplier λ ∈ R and obtain

the Lagrange functional L = F + λG. The minimisation of this Lagrange functional then

results in the corresponding Euler-Lagrange equation. Taking the constraint into account,

the solution of this Euler-Lagrange equation is given by an additive enhanced derivative

of the form

DV̂ (α) = DV̂
(

rh(α)
)

+
G(DV̂ )

N
drh(α)

dα
(4.11)
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where

N =

∫ 1

0

drh(α)

dα

drh(α)

dα
dα. (4.12)

In the computational setting, we apply a k-point Gaussian quadrature rule with the

accuracy O(h2 k
n ) for solving the integrals. The design criterion is then determined such

that

G(DV̂ ) = V̂ (rh(1)) − V̂ (rh(0)) −
[

V̂ (rh(1)) − V̂ (rh(0)) + O(h2k
n )

]

. (4.13)

This implies that the distance of the enhanced derivative to the ordinary derivative is

within the error bounds of the Gaussian quadrature in the cG(k) method. The accuracy

of the cG(k) method is therefore not deteriorated by the enhanced derivative.

Remark 4.2. The last term of the enhanced derivative in equation (4.11) can be regarded

as a generalised force F (α) for the enforcement of the constraint of energy conservation

(compare Lagrange equations for holonomic constraints in standard books on classical

mechanics). Note that in the case of exact quadrature this force vanishes due to the

intrinsic energy conservation of the one-body problem, however in the case of numerical

quadrature this generalised force F (α) does generally not vanish (see Figure 4.3).
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4.5 Assumed distance approximation

The enhanced derivative (4.11) gives rise to the question for an appropriate time approx-

imation rh of the radial distance. Since the radial distance is invariant with respect to

an occurring rigid body rotation, we seek for a time approximation rh which retains this

property. Further, the invariance with respect to rigid body motions should be numeri-

cally preserved because this property can be related to the numerical stability of the time

stepping scheme (see [54] and [5] for instance). We start from the cG approximation r of

the radial distance and separate that part which satisfies the invariance property. For this

purpose, let rI = ‖qI‖ denote the absolute value of the position vector qI = rI eI at the

time node αI , where eI is the associated directional unit vector. The squared absolute

value of the cG approximation r is then given by

q · q =

k+1
∑

I,J=1

MIMJ qI · qJ =

k+1
∑

I,J=1

MIMJ rI rJ cos ΘIJ , (4.14)

where cos ΘIJ = eI ·eJ (see Figure 4.4). It follows from the dependence on the angle ΘIJ

that the cG approximation r is affected by a rigid body rotation through a scaling with a

factor, however the squared absolute value of r can be split into two terms:

q · q = r2 + 2

k
∑

I=1

k+1
∑

J=I+1

MIMJ rI rJ (cos ΘIJ − 1) , (4.15)

where

r2 =
k+1
∑

I,J=1

MIMJ rI rJ . (4.16)

Taking the square root of r2, we obtain an interpolation formula over the distances rI at

the time nodes of the master element:

r(α) =
k+1
∑

I=1

MI(α) rI (4.17)

This interpolation formula is called the assumed distance approximation of the radial dis-

tance (see [19]). The assumed distance approximation r is not affected by a rigid body
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Figure 4.5. Position vector q(α) at the time nodes I, I = 1, . . . k + 1, and at the Gauss
points ξl, l = 1, . . . , k, on the master element during a rigid body rotation determined by
the assumed distance approximation r of the radial distance for k=1,2,3.

rotation due to the absence of the angle ΘIJ (compare [54]) and it therefore preserves

the symmetry of the one-body problem with respect to rigid body rotations on the whole

master element. This property is due to the completeness condition of the Lagrange poly-

nomials MI , I = 1, . . . , k + 1. The assumed distance approximation is also a consistent

time approximation of the radial distance because the approximation order is the same

as that of the cG approximation of the position vector (compare Appendix C.2). Accord-

ingly, the assumed distance approximation can be applied as physically consistent time

approximation of the radial distance.

Remark 4.3. The application of the assumed distance approximation can be interpreted

as an approximation of the position vector with respect to the corotational directional unit

vector e(α) = q(α)/‖q(α)‖, whereby the length of the position vector is approximated by

the assumed distance approximation. Accordingly, the position vector is approximated by

the vector q(α) = r(α) e(α) which does not change its length during rigid body rotations

(see Figure 4.5). On the contrary, the cG approximation is an approximation with respect

to the inertial coordinate frame (x, y, z) with the directional unit vectors ex, ey and ez

(compare [36, 112, 32, 35]).

4.6 Enhanced assumed derivative

In this section, we apply the assumed distance approximation r to the enhanced deriva-

tive (4.11) while retaining its total energy conservation property. The application of the
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assumed distance approximation to the enhanced derivative is restricted by the condi-

tion (4.7) which has to be fulfilled at all Gauss points in those terms where the chain

rule of differentiation is used. In the special case k = 1, the assumed distance approxima-

tion and the cG approximation r satisfies this condition at the one Gauss point α = 1/2.

However, generally the chain rule of differentiation can be preserved only by the cG ap-

proximation for which the condition (4.7) is fulfilled for arbitrary k. In other terms,

however, we apply the assumed distance approximation such that the design criteria in

the enhanced derivatives take the following form:

G = V̂ (r(1)) − V̂ (r(0)) −
k

∑

l=1

DV̂ (r(ξl))
dr(ξl)

dα
wl. (4.18)

This composite approximation is possibly due to the same accuracy order of both distance

approximations. By using Gaussian quadrature for calculating all integrals, the enhanced

derivative associated with the design criterion (4.18) reads

DV̂ = DV̂ (r) +
G
N

dr

dα
(4.19)

where

N =

k
∑

l=1

dr(ξl)

dα

dr(ξl)

dα
wl. (4.20)

The cG approximation is only applied in the Lagrange multiplier λ = G/N which scales

the length of the generalised force associated with the energy conservation. The gen-

eralised force direction, which is represented by the derivative dr/dα, is invariant with

respect to rigid body rotations.

4.7 The enhanced Galerkin (eG) method

A mechanical integrator is a time integration method preserving the physical structure

of the underlying mechanical system. We are essentially interested in preserving first

integrals. The first integrals of the one-body problem are the total energy H(q,p) and

the angular momentum L = q × p. The cG(k) method preserves the angular momen-
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tum by collocation at k Gauss points . The total energy is preserved by the enhanced

derivative. By using the assumed distance approximation, we also conserve the symmetry

with respect to rigid body rotations. We therefore recommend as higher order accurate

mechanical integrator the cG(k) method in conjunction with the enhanced derivative and

the assumed distance approximation. We refer to this mechanical integrator as the en-

hanced cG(k) method or short enhanced Galerkin (eG(k)) method, which applied to the

one-body problem reads

k+1
∑

J=1

∫ 1

0

M̃IM
′
J dα qJ −

hn
m

∫ 1

0

M̃I(α)p(α) dα = 0,

k+1
∑

J=1

∫ 1

0

M̃IM
′
J dαpJ + hn

k
∑

l=1

M̃I(ξl)
DV̂ (ξl)

r(ξl)
q(ξl)wl = 0,

I = 1, . . . , k. (4.21)

The eG(1) method for the one-body problem is identical to a well known mechanical

integrator proposed in [51, 52, 54], which is given by

q2 − q1−
hn
2m

[p1 + p2] = 0,

p2 − p1+ hn
V̂ (‖q2‖) − V̂ (‖q1‖)

‖q2‖ − ‖q1‖
q1 + q2

‖q1‖ + ‖q2‖
= 0.

(4.22)

This scheme is occasionally referred to as Simo-Gonzalez method (see [11] for instance).

4.8 Numerical investigations

In this section, we compare the conservation properties, accuracy as well as computational

costs of the eG(k) method and the cG(k) method by means of a numerical example.

Further, the efficiency of higher order finite elements in time is investigated for both

methods. To this end we begin by describing the linearisation of both methods and we

conclude with the discussion of the numerical results.
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4.8.1 Linearisation of the algorithms

The solution of the cG(k) as well the eG(k) method is performed according to Sec-

tion 3.2.6. In the Newton-Raphson method, we have set the tolerance ε of the stopping cri-

teria to ε = 10−10. The blocks KJ , J = 2, . . . , k + 1 of the tangent operatorK pertaining

to the cG(k) and the eG(k) method can be divided in two parts: KJ =KGeoJ +KMatJ ,

where the matrix KGeoJ is called the geometrical part associated with the node J and

the matrices KMatJ are called the material parts. In general, the geometrical parts of the

tangent are defined to be those parts which are associated with the linearisation of the

so-called B-matrices of the nonlinear problem and the material parts result from linearis-

ing the algorithmic constitutive law. Note that in the nonlinear case the B-matrices are

those matrices which are used to formulate the conservative forces as product with the

algorithmic constitutive law. Here we have thus the following B-matrices:

B =
q

r
BJ =

qJ
rJ

(4.23)

The symmetric geometrical parts then follow from linearising the matrix B. The geomet-

rical as well as the material parts associated with the cG method take the form

KGeoJ = MJ

DV̂ (r)

r
[Indim

− B ⊗ B] ,

KMatJ = MJ D
2V̂ (r)B ⊗ B.

(4.24)

Since the cG approximation of the radial distance is also applied in the eG method, the

geometrical parts associated with the eG method are similar to those of the cG method,

however the corresponding material parts are more difficult as those of the cG method:

KGeoJ = MJ

DV̂

r
[Indim

− B ⊗ B] ,

KMatJ =

[[

MJ D
2V̂ (r) +M ′

J

G
N

]

+ δJ,k+1

[

1

N DV̂ (rJ)
dr

dα

]]

B ⊗BJ−

−
[

1

N
dr

dα
L1

]

B ⊗BJ −
[

1

N
dr

dα

]

B ⊗ L2,

(4.25)
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where

L1 =
k

∑

l=1

dr(ξl)

dα

[

MJ(ξl)D
2V̂ (r(ξl)) +M ′

J(ξl)
G
N

]

wl,

L2 =
k

∑

l=1

DV̂ (r(ξl))

[

M ′
J B(ξl) +MJ

dB(ξl)

dα

]

wl.

(4.26)

Note that the material parts of the cG method are symmetric and those of the eG method

are unsymmetric.

4.8.2 Stiff Neo-Hooke type spring potential

We consider a particle with the mass m = 10 and the initial position q0 = (2, 1, 1) in

the three-dimensional Euclidean space (see Figure 4.6). We initiate the particle motion

by an initial angular velocity vector ω0 = (0.5,−2, 1). The initial velocity v0 has been

determined by v0 = ω0 × q0. The particle can be thought of as connected with the origin

via a stiff nonlinear spring with stiffness c = 103 and a spring length r̄ = 4 in the force

free configuration. The potential energy of the spring is derived from a one-dimensional

compressible Neo-Hooke material and has the form (also see [19])

V̂ (r) =
c

6
r̄2

[

(r

r̄

)2

+ 2
r̄

r
− 3

]

(4.27)

The first integrals of the motion are the angular momentum L = q × p and the total

energy H = T + V̂ . The angular momentum L0 of the particle at the initial state is given

by

L0 = m q0 × (ω0 × q0) = mr2
0 ω0 = (30,−120, 60) (4.28)

and the corresponding total energy H0 of the particle reads

H0 = T (v0) + V̂ (r0) =
1

2
mr2

0 ‖ω0‖2 + V̂ (r0) = 1866.8, (4.29)

where r0 = ‖q0‖ denotes the absolute value of the initial position vector.
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4.8.3 Discussion of the results

In Figure 4.7, we depict the particle orbits which are determined by the eG method. A

comparison of the orbits reveals that the final position of the motion depends on the

accuracy of the method (compare the orbits within the dotted circles). The difference

between k = 2 and k = 3 is thereby smaller as between k = 1 and k = 2. Total angular

momentum and total energy is depicted in Figure 4.7 and Figure 4.8, respectively. The

first integrals which are computed by the eG method stay at the initial values independent

of the family parameter k and the chosen time step size hn. The total angular momentum

corresponding to the cG method is also constant over the whole time interval. The total

energy of the cG method however oscillates between to bounds which are associated with

the inner and the outer turning points of the orbit. Moreover, we see that the cG method

tends to instabilities after a perturbation, since its total energy no longer periodically

oscillates after changing the time step size. The last diagram in Figure 4.8 depicts the

residual error of the energy conservation condition (3.19) pertaining to k = 3. The cG

method particularly violates the energy conservation condition at the turning points of the

orbit, whereas the residual error corresponding to the eG method is below the Newton-

Raphson tolerance ε. We summarise that the total energy of the cG method depends on

the family parameter k, on the time step size hn as well as on the motion itself. This is

in opposition to the total energy evolution of the eG method.

The left diagram of Figure 4.9 shows the graphs of the relative global error in the

position at time T versus the time step size. This relative error is defined by

eq =
‖q(T ) − qref(T )‖

‖qref(T )‖ (4.30)

where qref(T ) denotes a reference solution at time T . The reference solution is computed

by the eG(4) method with a time step size hn = 0.01. The graphs have the shape of lines

due to the logarithmic scale for both axes. The slopes of these lines specify the accuracy

order O(h2k) of the continuous Galerkin method (compare [82]). Since both methods

show similar accuracy properties, we observe for both methods the same behaviour if

k is increased; we observe increasing slopes of the lines and decreasing line intercepts.
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Figure 4.6. Initial velocity vector v0 and initial angular velocity vector ω0 of a mass point
at initial position q0.

Considering a relative global error achievable with k = 1, 2, 3, the corresponding time

step size is increasing by increasing the parameter k. Hence a greater family parameter

is associated with allowing a greater time step size to obtain the solution at time T .

In the right diagram of Figure 4.9, the relative global error is depicted versus the

corresponding CPU time in a double logarithmic scale. We also obtained lines by virtue

of a least square curve fitting. First we compare the CPU time of a specific method by

increasing k. We observe that with a greater k, less CPU time is required to achieve a

prescribed accuracy. This observation holds for both cG and eG method. The saving of

CPU time with a greater family parameter is related to larger time steps and to a smaller

iteration number within the Newton-Raphson iteration. The smaller iteration number

is a direct consequence of the higher accuracy. Comparing both methods for a fixed k,

the CPU time of the eG method is generally longer in comparison with the cG method

because of the more extensive internal force and the corresponding tangent operator. The

advantage of the eG method in comparison with the cG method is a better stability

because the eG method allows for time steps larger as those for the cG method. This is

evident if the time step size hn has been set larger as the largest depicted in Figure 4.9.
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Figure 4.7. Orbit and total angular momentum of a particle (mass m = 10, spring stiffness
c = 103) computed with the eG method (k = 1, k = 2 and k = 3). The time step size hn
has been set to 0.01 for T ≤ 4 and to 0.1 for T > 4.



Section 4.8 Numerical investigations 67

0 1 2 3 4 5 6 7
1850

1900

1950

2000

2050

PSfrag replacements

cG(1) method
eG(1) method

cG(2) method
eG(2) method
cG(3) method
eG(3) method

E
n
er

gy

TimeEnergy conservation
1 1.5 2 2.5 3 3.5

1865

1865.5

1866

1866.5

1867

1867.5

PSfrag replacements

cG(1) method
eG(1) method

cG(2) method
eG(2) method
cG(3) method
eG(3) method

E
n
er

gy

TimeEnergy conservation

0 1 2 3 4 5 6 7
1810

1820

1830

1840

1850

1860

1870

1880

PSfrag replacements
cG(1) method
eG(1) method

cG(2) method
eG(2) method

cG(3) method
eG(3) method

E
n
er

gy

TimeEnergy conservation
1 1.5 2 2.5 3

1866.7945

1866.795

1866.7955

1866.796

1866.7965

1866.797

1866.7975

PSfrag replacements
cG(1) method
eG(1) method

cG(2) method
eG(2) method

cG(3) method
eG(3) method

E
n
er

gy

TimeEnergy conservation

0 1 2 3 4 5 6 7
1866

1867

1868

1869

1870

1871

1872

1873

1874

PSfrag replacements
cG(1) method
eG(1) method
cG(2) method
eG(2) method

cG(3) method
eG(3) method

E
n
er

gy

TimeEnergy conservation
1.5 2 2.5 3

−5

−4

−3

−2

−1

0

1

2

3

4

5

x 10
−7

PSfrag replacements
cG(1) method
eG(1) method
cG(2) method
eG(2) method

cG(3) method
eG(3) method

Energy

Time

E
n
er

gy
co

n
se

rv
at

io
n

Figure 4.8. Total energy of a particle (mass m = 10, spring stiffness c = 103) computed
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Chapter 5

Dynamics of many-particle systems

...We do not need exact classical trajectories to do this,
but must lay great emphasis on energy conservation as
being of primary importance for this reason. Momentum
conservation is also important, but this can usually be
easily arranged...

[3], Chapter 3: Molecular Dynamics.

Many-particle dynamics are also covered by the generalised problem in Section 2. The

material points of the configuration are particles with mass. In contrast to the one-

body problem, the potential energy in many-particle dynamics depends neither on the

orientation nor on the origin of an inertial coordinate system. Translations as well as

rotations of a many-particle configuration are therefore symmetry groups and the total

linear momentum is preserved along with the total angular momentum. We here suppose

that the interaction forces are large enough to prevent collisions during the motions.

In standard books of classical mechanics, the problem of moving many-particle configu-

rations is often called N-body problem or many-body problem (see [9, 50, 106] for example).

The many-body problem is typically mentioned in connection with motions in the outer

solar system and molecular dynamics. In the outer solar system, the potential energy is

associated with the so-called Kepler potential due to the gravitational forces between the

planets. Astronomers have studied the motions of the outer solar system in long term

computations and have observed a chaotic evolution [134]. In molecular dynamics, the

Lennard-Jones potential is very popular to describe the repulsive and attractive forces

69
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between molecules [71]. This potential is a special case of the Mie potential (see also

[133] for an overview). Computations in molecular dynamics usually aim at macroscopic

quantities such as temperature, pressure or energy and more or less using the trajectories

of the atoms [3].

5.1 Hamiltonian formulation

We consider a configuration of npar particles of masses mA, A = 1, . . . , npar, moving in

the Euclidean space Rndim . The potential energy V of the configuration is related to all

potentials V AB = V BA corresponding to interactional forces between the particles A and

B:

V (q) =

npar−1
∑

A=1

npar
∑

B=A+1

V AB(qA, qB). (5.1)

We refer to the vectors rAB = qB − qA, B 6= A, as the radius vector from particle A

to particle B. The potentials of interaction only depend on the distances rAB = ‖rAB‖
between the particles. For this reason we define functions V̂ AB : R+ → R and write the

potentials of interaction as V AB = V̂ AB(‖rAB‖). The gradients ∇qAV AB of the potentials

of interaction accordingly take the form

∇qAV AB = DV̂ AB ∇rAB‖rAB‖ · ∇qArAB = −DV̂
AB

‖rAB‖ r
AB. (5.2)

Thus the coefficients of the symmetric stiffness structure matrix (2.4) have the form

QAB =































−DV̂
AB(‖rAB‖)
‖rAB‖ if A 6= B,

npar
∑

C=1
C 6=A

DV̂ AC(‖rAC‖)
‖rAC‖ if A = B.

(5.3)

Since the potential energy only depends on the particle distances rAB ∈ R+, we redefine

the stiffness matrix as Q = Q̂(r), where r denotes the following matrix including the
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particle distances rAB as components:

r =

















0 r12 . . . r1npar

r21 0 . . . r2npar

...
...

rnpar1 . . . . . . 0

















(5.4)

The mass matrix of the many-body problem is associated with a diagonal structure matrix

with coefficients MAB = mAδAB , where δAB designates the Kronecker delta. The inversion

of the structure matrix then leads to the coefficients M−1
AB = 1/mAδAB of the inverse

structure matrix (2.17). We have a closed particle system due to the coefficients (5.3):

npar
∑

A,B=1

QAB q
B =

npar
∑

A,B=1

B 6=A

QAB q
B +

npar
∑

A=1

QAA q
A = 0. (5.5)

Therefore, the total linear momentum is conserved. Moreover, we have total angular

momentum conservation because the mass and the stiffness matrix are symmetric.

5.2 Galerkin-based time discretisation

We perform a temporal discretisation of Hamilton’s equations of motion for the many-

body problem by applying the cG(k) method. On the basis of this family of time stepping

schemes we derive mechanical integrators by incorporating the energy conservation con-

dition (3.19) in the following sections. We obtain the following schemes:

k+1
∑

J=1

∫ 1

0

M̃IM
′
J dα qJ − hn

∫ 1

0

M̃I M−1 p dα = 0,

k+1
∑

J=1

∫ 1

0

M̃IM
′
J dα pJ + hn

k
∑

l=1

M̃I(ξl) Q̂
(

rh(ξl)
)

q(ξl)wl = 0,

I = 1, . . . , k, (5.6)

where rh : Iα → R
npar×npar

+ is an arbitrary time approximation of the matrix (5.4). For

example, a time approximation of this matrix can be generated by the absolute val-
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ues rAB = ‖rAB‖ of the approximated distance vectors rAB =
∑k+1

I=1 MI(α) rABI , where

rABI = qBI − qAI . We refer to the matrix r corresponding to the particle distances rAB as

the cG approximation of the matrix (5.4). Node that this time approximation is lead-

ing to artificial strains between the time nodes during a rigid body rotation (compare

Section 4.2). Then we call the cG(k) method associated with the cG approximation r

the standard cG(k) method or simple cG(k) method. This method is leading to implicit

Gauss Runge-Kutta schemes (see [22]) which are identified as symplectic and momentum

conserving in [118]. In the special case of linear time finite elements (k = 1), we obtain

the implicit midpoint rule which is given by

q2 − q1−
hn
2

M−1 [p1 + p2] = 0,

p2 − p1+
hn
2

Q̂
(

r
(

1
2

))

[q1 + q2] = 0.

(5.7)

This integrator is second order accurate and can be also derived by finite differences

(see [123, 19]).

5.3 Design criterion for energy conservation

In this section, we deduce a criterion for designing mechanical integrators for the many-

body problem. Since the potential energy of the particle configuration results from sum-

ming over the potentials of interaction, we are able to localise the energy conservation

condition (3.19) with respect to an arbitrary particle pair (A,B). The resulting equation

is then formulated in the corresponding interaction potential V̂ AB :

V̂ AB
(

rAB
h

(1)
)

− V̂ AB
(

rAB
h

(0)
)

=

k
∑

l=1

DV̂ AB
(

rAB
h

(ξl)
) rAB(ξl)

rABh(ξl)
· drAB(ξl)

dα
wl. (5.8)

We now suppose that the approximation rAB
h

and the corresponding approximated dis-

tance vector are related by the following equation at all Gauss points ξl:

rAB(ξl)

rABh(ξl)
· drAB(ξl)

dα
=

drAB
h

(ξl)

dα
(5.9)
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Employing condition (5.9) in equation (5.8), we obtain a local energy conservation con-

dition which reads

V̂ AB
(

rAB
h

(1)
)

− V̂ AB
(

rAB
h

(0)
)

=

k
∑

l=1

DV̂ AB
(

rAB
h

(ξl)
) drAB

h

(ξl)

dα
wl (5.10)

This equation is a design criterion for energy conserving integrators for the many-body

problem and has to apply in accordance with equation (5.9). Since the gradient of the

potential energy is determined by the chain rule of differentiation, relation (5.9) guarantees

the gradient form (2.2) for the approximated internal force vector of the configuration at

the Gauss points.

5.4 Enhanced derivative

In this section, we consider the design criterion (5.10) as constraint on the ordinary

derivatives DV̂ AB . By using the variational calculus we then determine functions DV̂ AB

with a minimal distance to these ordinary derivatives, which also satisfy the total energy

constraint. A variational problem with a constraint of this form is called an isoperimetrical

problem in the relevant literature [47, 31, 91, 69, 46]. (See also Appendix A.6). We

therefore search for functions DV̂ AB(α) minimising the functionals

FAB(DV̂ AB) =
1

2

∫ 1

0

[

DV̂ AB(α) −DV̂ AB
(

rAB
h

(α)
)]2

dα (5.11)

on the master element Iα and satisfying the design criteria

GAB(DV̂ AB) = V̂ AB(rAB
h

(1)) − V̂ AB(rAB
h

(0)) −
∫ 1

0

DV̂ AB(α)
drAB

h

(α)

dα
dα. (5.12)

Solutions of this minimisation problem with constraint are functions which minimise

the Lagrange functionals LAB = FAB + λAB GAB, where λAB denotes the associated La-

grange multiplier. One obtains the minimising functions by solving the corresponding

Euler-Lagrange equations. Taking the constraint into account, the solutions of the Euler-
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Lagrange equations are represented by the enhanced derivatives

DV̂ AB(α) = DV̂ AB
(

rAB
h

(α)
)

+
GAB(DV̂ AB)

NAB

drAB
h

(α)

dα
(5.13)

where

NAB =

∫ 1

0

drAB
h

(α)

dα

drAB
h

(α)

dα
dα. (5.14)

In the computational setting, we apply k-point Gaussian quadrature for calculating the

remaining integrals in the cG(k) method. We therefore also apply this quadrature rule

to the integrals in the enhanced derivatives. Taking the accuracy O(h2 k
n ) of the Gaussian

quadrature into account, the design criterion differs from the fundamental theorem of

calculus by O(h2 k
n ). Since the enhancement of the ordinary derivatives has thus the same

accuracy order as the quadrature rule applied in the cG(k) method, the accuracy of this

integrator is also maintained with the enhanced derivatives.

5.5 Assumed distance approximation

In the enhanced derivatives DV̂ AB , we have to choose a time approximation rAB
h

of the

particle distances rAB, which fulfils the requirements of a consistent strain measure for

particle dynamics, namely the invariance with respect to a rigid body motion of the par-

ticle configuration (see Section 2.6). We here deduce a time approximation of the particle

distances maintaining this property. We start from the natural radial distance approxi-

mation rAB arising from the cG approximation qA of the position vectors. Considering

the motion of two neighbouring particles A and B (see Figure 5.1), the squared absolute

value pertaining to the cG approximation rAB of the radius vector reads

rAB · rAB =

k+1
∑

I,J=1

MIMJ r
AB
I · rABJ =

k+1
∑

I,J=1

MIMJ r
AB
I rABJ cos ΘAB

IJ , (5.15)

where cos ΘAB
IJ = eABI · eABJ . The distances rABI = ‖rABI ‖ denote the absolute values of

the distance vectors rABI between the particles A and B. The vectors eABI designate the

corresponding directional unit vectors. The cG approximation is affected by a rigid body



Section 5.5 Assumed distance approximation 75

PSfrag replacements

α = αI

α = αJ

mA

mB
qAI

qBI

rABI

mA

mB

qAJ

qBJ
rABJ

x
y

z

ΘAB
IJ

Figure 5.1. Geometry of the motion of two neighbouring particles A and B

rotation due to the dependence on the angle ΘAB
IJ . However, one can split this squared cG

approximation rAB into two parts by using the completeness condition for the Lagrange

basis functions MI , I = 1, . . . , k + 1:

rAB · rAB =

k+1
∑

I,J=1

MIMJ r
AB
I rABJ + 2

k
∑

I=1

k+1
∑

J=I+1

MIMJ r
AB
I rABJ

(

cos ΘAB
IJ − 1

)

. (5.16)

The square root of the first term is an interpolation formula over the particle distances

rABI at the time nodes of the master element Iα, which reads

r
AB(α) =

k+1
∑

I=1

MI(α)rABI (5.17)

One refers to this interpolation formula as the assumed distance approximation of the

particle distances (see [19]). The assumed distance approximation is a consistent approx-

imation of the particle distances because the approximation order is the same as that of

the cG approximation (compare Appendix C.2). The assumed distance approximation

rAB is not affected by a rigid body rotation due to the absence of a dependence on the

angle ΘAB
IJ (compare [120]). The assumed distance approximation is consequently that

part of the cG approximation, which is indifferent with respect to rigid body motions.
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Node that the assumed distance approximation can be interpreted as approximation of

the radius vector with respect to the corresponding corotational directional unit vector

(compare Section 4.5).

5.6 Enhanced assumed derivative

The assumed distance approximation in the previous section is not influenced by rigid

body motions and can be therefore recommended for using in the enhanced derivatives.

The constraint of energy conservation, however, generally prevents the application of the

assumed distance approximation in each term of the enhanced derivatives because of

equation (5.9). This equation has to be fulfilled at all Gauss points in those terms where

the chain rule of differentiation is used. For example, equation (5.9) is satisfied by the

cG approximations rAB of the particle distances for arbitrary k. Only in the case k = 1,

equation (5.9) is also satisfied by the assumed distance approximation. In the argument

of the ordinary derivatives DV̂ AB and in the directional part of the enhanced derivatives,

we can use the assumed distance approximation without affecting the energy conservation

condition. Taking into account the assumed distance approximation, the design criteria

in the enhanced derivatives are given by

GAB = V̂ AB
(

rAB(1)
)

− V̂ AB
(

rAB(0)
)

−
k

∑

l=1

DV̂ AB
(

rAB(ξl)
) drAB(ξl)

dα
wl. (5.18)

The corresponding enhanced derivatives associated with Gaussian quadrature for calcu-

lating the integrals have the following form:

DV̂ AB = DV̂ AB(rAB) +
GAB
NAB

drAB

dα
(5.19)

where

NAB =
k

∑

l=1

drAB(ξl)

dα

drAB(ξl)

dα
wl. (5.20)

This composite approximation is possibly due to the same accuracy order of both distance

approximations.
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5.7 The enhanced Galerkin (eG) method

A mechanical integrator for many-particle dynamics has to conserve all invariants of

the motion. The collocation property of the cG(k) method leads to conservation of total

linear and total angular momentum. We obtain total energy conservation by incorporating

the enhanced derivatives associated with Gaussian quadrature. The employed assumed

distance approximation of the particle distances is indifferent with respect to rigid body

motions. We therefore recommend as higher order accurate mechanical integrator the

cG(k) method in conjunction with the enhanced assumed derivatives. The resulting time

stepping scheme is given by

k+1
∑

J=1

∫ 1

0

M̃IM
′
J dα qJ − hn

∫ 1

0

M̃I M−1 p dα = 0,

k+1
∑

J=1

∫ 1

0

M̃IM
′
J dαpJ + hn

k
∑

l=1

M̃I(ξl) Q(ξl)q(ξl)wl = 0.

I = 1, . . . , k, (5.21)

The corresponding stiffness matrix Q = Q ⊗ Indim
has a structure matrix Q with coeffi-

cients

Q
AB

=































−DV̂ AB

rAB
if A 6= B,

npar
∑

C=1
C 6=A

DV̂ AC

rAC
if A = B.

(5.22)

We refer to this mechanical integrator as the enhanced cG(k) method or short enhanced

Galerkin (eG(k)) method corresponding to the many-body problem. The eG(1) method

for the many-body problem can be written in a more explicit form as the following equa-

tions:

qA2 − qA1 −
hn

2mA

[

pA1 + pA2
]

= 0,

pA2 − pA1 − hn

npar
∑

B=1
B 6=A

V̂ AB
(

rAB2

)

− V̂ AB
(

rAB1

)

rAB2 − rAB1

rAB1 + rAB2

rAB1 + rAB2

= 0,
A = 1, . . . , npar.

(5.23)
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This time-stepping scheme is identical with the energy and momentum conserving second

order accurate integrators investigated in [58, 120, 19].

5.8 Numerical investigations

We now present numerical results of the eG(k) method as well as the cG(k) method

for many-particle dynamics in order to compare conservation properties, accuracy and

computational costs. The numerical example is calculated by linear, quadratic as well as

by cubic time finite elements.

5.8.1 Linearisation of the algorithms

We begin by describing the linearisation of both methods. The procedure for solving

the time stepping schemes follows directly from Section 3.2.6. In the stopping criteria of

the iterative solution procedure, the tolerance ε is set to 10−8. The block matrices KJ ,

J = 2, . . . , k + 1, of the tangent operator themselves have a block structure which takes

the form

KJ =

























−
npar
∑

C=1
C 6=1

K1C
J . . . K

1npar

J

...
...

K
npar1
J . . . −

npar
∑

C=1
C 6=npar

K
nparC
J

























(5.24)

The blocksKAB
J in turn can be written as a sum of a geometrical part associated with lin-

earising the corresponding B-matrix and a material part associated with the linearisation

of the algorithmic constitutive law: KAB
J =KGeo

AB
J +KMat

AB
J . We have the following

B-matrices to formulate the conservative forces:

BAB =
rAB

rAB
BAB
J =

rABJ
rABJ

(5.25)
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The geometrical and the material parts associated with the cG method then take the

following forms:

KGeo
AB
J = −MJ

DV̂ AB
(

rAB
)

rAB
[

Indim
− BAB ⊗ BAB

]

,

KMat
AB
J = −MJ D

2V̂ AB(rAB)BAB ⊗ BAB.

(5.26)

Determining the geometrical parts associated with the eG method, one obtains a similar

form as for the cG method, however in consequence of the additional terms in the enhanced

derivatives, the material parts associated with the eG method are more complicated:

KGeo
AB
J = −MJ

DV̂ AB

rAB
[

Indim
− BAB ⊗ BAB

]

,

KMat
AB
J =

[

1

NAB

drAB

dα
L
AB
1 −MJ D

2V̂ AB(rAB) −M ′
J

GAB
NAB

]

BAB ⊗BAB
J −

−δJ,k+1

[

1

NAB
DV̂ AB(rABJ )

drAB

dα

]

BAB ⊗BAB
J +

[

1

NAB

drAB

dα

]

BAB ⊗ LAB2 ,

(5.27)

where

L
AB
1 =

k
∑

l=1

drAB(ξl)

dα

[

MJ(ξl)D
2V̂ AB(rAB(ξl)) +M ′

J(ξl)
GAB
NAB

]

wl,

LAB2 =
k

∑

l=1

DV̂ AB(rAB(ξl))

[

M ′
J BAB(ξl) +MJ

dBAB(ξl)

dα

]

wl.

(5.28)

It is obviously that the material parts corresponding to the eG method are unsymmetric

and those corresponding to the cG method are symmetric.

5.8.2 Stiff Neo-Hooke type spring potentials

We consider configurations with npar = k + 2 particles which all have the mass mA = 10,

A = 1, . . . , npar. The particles are arranged in deltahedra which means polyhedra whose

faces are congruent equilateral triangles. The length of the edges is L = 2. The deltahe-

dra are positioned with their barycentre in the origin of the three-dimensional Euclidean

space. The particles can be thought of as connected by stiff nonlinear springs with stiffness
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c = 103 and spring length r̄AB = L in the force free configuration. We initiate the motions

of the configurations with an initial angular velocity vector ω0 = (0, 0.7, 0.7). The initial

velocity vectors vA0 of the particles are determined by the equation vA0 = vT + ω0 × qA0 ,

where vT = (2.5,−0.3,−0.2) denotes a constant translation velocity vector. The poten-

tials of interaction are derived from a one-dimensional compressible Neo-Hooke material

and take the form

V̂ AB(rAB) =
c

6

(

r̄AB
)2

[

(

rAB

r̄AB

)2

+ 2
r̄AB

rAB
− 3

]

(5.29)

(see also [19]).

5.8.3 Discussion of the results

In the Figures 5.2, 5.6 and 5.10, the initial velocities of the configurations are depicted.

The diagrams on the left show a three-dimensional view and the diagrams on the right

a top view on the configurations. The three-dimensional motions are shown in the Fig-

ures 5.3, 5.7 and 5.11. The particles are indicated by different markers for a better tracing

of the motion. Comparing the graphs of the momentum maps and the total energy de-

picted in the Figures 5.4, 5.8, 5.12 and in the Figures 5.5, 5.9, 5.13, respectively, we see

that the first integrals computed by the eG method are constant over the whole time

interval independent of the family parameter k and the chosen time step size hn. The

total linear and angular momentum computed by the cG method is also constant over

the whole time interval, however the corresponding total energy oscillates about its initial

value. The diagrams verify that the total energy computed by the cG method depends on

k as well as on the time step size hn. Since the total energy oscillations of the cG method

are pronouncedly aperiodic after the change of the time step size, the cG method tends

to be instable in contrast to the eG method.

The left diagram in Figure 5.14 shows the graphs of the relative global error in the

position at time T versus the time step size. This relative error at time T is given by

eq =
‖q(T ) − qref(T )‖

‖qref(T )‖ (5.30)
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where qref(T ) denotes the reference solution at time T . The reference solution is computed

by the eG(4) method with a time step size hn = 0.001. The graphs have the shape of lines

due to the logarithmic scale of both axes. The slopes of these lines specify the accuracy

O(h2k) of the continuous Galerkin method (compare [82]). The cG and the eG method

show a similar behaviour with respect to the accuracy, namely the intercept of the lines

is decreasing with increasing k. It follows that the time step size corresponding to a

relative global error achievable with k = 1, 2, 3 is increasing with increasing k. A greater

k therefore enables larger time steps for calculating the solution at time T .

In the right diagram in Figure 5.14, the relative global error versus the CPU time is

depicted in a double logarithmic plot. By virtue of a least square curve fitting, we also

obtained lines. First we consider the CPU time for one method corresponding to the

family parameter k = 1, 2, 3. We observed for both methods that a greater k leads to

less CPU time for computing a solution with a prescribed accuracy. This saving of CPU

time is related to a smaller number of time steps and to a smaller iteration number in the

Newton-Raphson iteration. We now compare both methods for a fixed family parameter

k. The CPU time of the eG method is generally greater in comparison with the cG method

because of the more extensive internal forces and the associated tangent operator. The

advantage of the eG method is the better stability compared to the cG method because

the eG method allows for time steps which are larger as those for the cG method. This

is obviously when we use a time step size hn larger as the largest depicted in Figure 5.14.
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Figure 5.2. Initial velocity vectors of an equilateral triangle with an edge length L = 2.
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m = 10) computed with the eG(1) method. The time step size hn has been set to 0.1 for
T ≤ 3 and to 0.2 for T > 3.
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Figure 5.4. Momentum maps of a stiff equilateral triangle (spring stiffness c = 103, point
masses m = 10) computed with the cG(1) method as well as with the eG(1) method. The
time step size hn has been set to 0.1 for T ≤ 3 and to 0.2 for T > 3.
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Figure 5.6. Initial velocity vectors of a tetrahedron with an edge length L = 2.
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computed with the eG(2) method. The time step size hn has been set to 0.1 for T ≤ 3
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Figure 5.8. Momentum maps of a stiff tetrahedron (spring stiffness c = 103, point masses
m = 10) computed with the cG(2) method as well as with the eG(2) method. The time
step size hn has been set to 0.1 for T ≤ 3 and to 0.2 for T > 3.
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Figure 5.9. Total energy of a stiff tetrahedron (spring stiffness c = 103, point masses
m = 10) computed with the cG(2) method as well as with the eG(2) method. The time
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Figure 5.10. Initial velocity vectors of a triangular dipyramid with an edge length L = 2.
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Figure 5.11. Motion of a stiff triangular dipyramid (spring stiffness c = 103, point masses
m = 10) computed with the eG(3) method. The time step size hn has been set to 0.1 for
T ≤ 3 and to 0.2 for T > 3.
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Figure 5.12. Momentum maps of a stiff triangular dipyramid (spring stiffness c = 103,
point masses m = 10) computed with the cG(3) method as well as with the eG(3) method
The time step size hn has been set to 0.1 for T ≤ 3 and to 0.2 for T > 3.
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Figure 5.13. Total energy of a stiff triangular dipyramid (spring stiffness c = 103, point
masses m = 10) computed with the cG(3) method as well as with the eG(3) method. The
time step size hn has been set to 0.1 for T ≤ 3 and to 0.2 for T > 3.



88
D

y
n
am

ics
of

m
an

y
-p

article
sy

stem
s

C
h
ap

ter
5

10
−3

10
−2

10
−1

10
−8

10
−7

10
−6

10
−5

10
−4

10
−3

10
1

10
2

10
3

10
−8

10
−7

10
−6

10
−5

10
−4

10
−3

PSfrag replacements
xy

z

t0
t1
t2
t3
t4
t5
t6
t7

cG(1) method
eG(1) method

Energy
Particle distance

Angular momentum
Linear momentum

Time
L1
L2
L3
P1
P2
P3xy

z

t0
t1
t2
t3
t4
t5
t6
t7
t8

cG(2) method
eG(2) method

Energy
Angular momentum

Linear momentum
Time

L1
L2
L3
P1
P2
P3xy

z

t0
t1
t2
t3
t4
t5
t6
t7
t8

cG(3) method
eG(3) method

Energy
Angular momentum

Linear momentum
Time

L1
L2
L3
P1
P2
P3

cG(1)
cG(2)
cG(3)
eG(1)
eG(2)
eG(3)

e qe q

hn CPU time

2

4

6

Figure 5.14. Relative global error in the position (on the left) and CPU time (on the right) corresponding to the
motion of a stiff tetrahedron (spring stiffness c = 103, point masses m = 10) at time T = 10 pertaining to the cG and
the eG method for k = 1, 2, 3.



Chapter 6

Semi-discrete nonlinear

elastodynamics

...Given that stiffness is an issue and that one is in-
terested in long term simulations it is then natural to
search for implicit schemes which are unconditionally
stable and which preserve as much as possible the in-
trinsic properties of the underlying system. Namely,
conservation laws such as that of energy and angular
momentum...

[121], Chapter 1: Introduction.

We now deal with a hyperelastic solid continuum body embedded in a ndim-dimensional

Euclidean space. A spatial finite element discretisation in a Lagrangian description of the

motion generates the so-called semi-discrete equations of motion. This system of ordinary

differential equations describes motions of spatial nodes which are together coincident with

a configuration of material points pertaining to the solid continuum body. The dynamics

of the spatial discretised hyperelastic body in a Lagrangian description is therefore a

further example of the generalised problem in Section 2.

In continuum mechanics, a distinction is drawn between the Lagrangian description

of motion and the Eulerian description. These descriptions are different in the choice of

independent variables for the kinematics and the equations of motion. In the Lagrangian

description, the motion is described by coordinates indicating continuum points of the

89
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body. The nodes in a Lagrangian mesh are therefore coincident with material points.

Consequently, no material passes between the elements and element quadrature points

also remain coincident with continuum points. In contrast, Eulerian coordinates specify

the location of a point in the Euclidean space. Eulerian mesh nodes are thus fixed and

continuum points cross element interfaces. Moreover, the continuum point at a given

quadrature point changes with time. Since we are interested in trajectories of material

points of a solid continuum body, we apply the Lagrangian description of motion. A

detailed description of nonlinear finite element methods for solid continuum bodies can

be found in [109, 17, 33, 34, 142].

6.1 Finite element discretisation in space

We consider a partition of a solid continuum body B ⊂ Rndim into nonoverlapping sub-

domains Be, e = 1, . . . , nel, such that

B =

nel
⋃

e=1

Be. (6.1)

The sub-domain Be ⊂ B is called the e-th element which is defined by a set of material

points called the element nodes. The positions of the element nodes in the initial configu-

ration Be0 at time t = 0 are denoted by Xa
e ∈ Be0, a = 1, . . . , nen, and their positions in the

current configuration Bet at time t ∈ I = ]0, T ] are denoted by xae ∈ Bet (see Figure 6.1).

The positions xae are given by the mappings qae : I → Rndim such that xae = qae(t). We refer

to the vector qae as the position vector of the node a in the element Be.

This discretisation of B renders a configuration B of nnp material points which we call in

this context the spatial nodes. The positions of these nodes in the initial configuration B0

at time t = 0 are denoted by XA ∈ B0, A = 1, . . . , nnp, and their positions in the current

configuration Bt at time t ∈ I are denoted by xA ∈ Bt. The positions xA are given by the

mappings qA : I → Rndim such that xA = qA(t). We refer to the vector qA as the position

vector of the node A in the configuration Bt and to the vector q = (q1, . . . , qnnp) as the

corresponding coordinate vector of the configuration.
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Figure 6.1. Motion of a solid continuum body B embedded in the ndim-dimensional
Euclidean space Rndim and partitioned into nonoverlapping sub-domains Be, e = 1, . . . , nel.

In semi-discrete elastodynamics, the Euclidean space between the spatial nodes is con-

tinuously approximated. The positionXe of a continuum point in the initial configuration

Be0 is parameterised by the mapping Ψe : � → Be0 and its position xe in the current con-

figuration Bet is parameterised by the mapping ψe : � × I → Bet . According to a standard

isoparametric discretisation (see Figure 6.2) these mappings are given by (see [142])

Xe = Ψe(ηe) =

nen
∑

a=1

Na(ηe)X
a
e , xe = ψe(ηe, t) =

nen
∑

a=1

Na(ηe) q
a
e(t). (6.2)

The set � ⊂ Rndim is the unit ndim-hypercube called the parent domain and Na : � → R

denotes a Lagrangian shape function which satisfies the condition Na(η
b
e) = δba, where

ηbe ∈ �, b = 1, . . . , nen, are the element nodes of the e-th element in the parent domain.

The physical fields in the isoparametric concept are approximated analogously to the

geometry. The motion of a continuum point at the initial position X e ∈ Be0 to its current

position xe ∈ Bet is approximated by the field ϕe : Be × I → Bet defined by

xe = ϕe(Xe, t) = ψe ◦ (Ψe)
−1(Xe)(t) =

nen
∑

a=1

Na (ηe(Xe)) q
a
e(t). (6.3)

The Lagrangian velocity of a continuum point in the element Be is given by the partial
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Figure 6.2. Standard isoparametric parameterisation of the motion of an element Be.

time derivative ve(Xe, t) = ∂ϕe(Xe, t)/∂t. The linear tangent map of the field ϕe is given

by the deformation gradient

F e = ∇Xe
ϕe =

nen
∑

a=1

qae ⊗ J−T
e · ∇ηNa, (6.4)

with the Jacobian

J e = ∇ηXe =

nen
∑

a=1

Xa
e ⊗∇ηNa. (6.5)

We consider isotropic hyperelastic materials for which the second Piola-Kirchhoff stress

tensor corresponding to the element Be is defined as the gradient Se = 2∇Ce
We of the

scalar-valued isotropic strain energy density functionWe = We(Ce) with the right Cauchy-

Green strain tensor Ce = F T
e F e as argument. This right Cauchy-Green tensor with re-

spect to the above discretisation reads

Ce =
nen
∑

a,b=1

[

qae · qbe
]

N e
ab, (6.6)

where

N e
ab = J−T

e · [∇ηNa ⊗∇ηNb] · J−1
e . (6.7)
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6.2 Hamiltonian formulation

The potential energy V of the configuration B is equal to the strain energy of the body

B. The strain energy results from summing over the strain energies Ve =
∫

Be
0

We(Ce) dV

of the elements. The gradient ∇qV of the strain energy takes the form of equation (2.2).

The corresponding global stiffness matrix Q follows from assembling the element stiffness

matrices Q̂e(Ce) denoted by

Q =

nel

A
e=1

Q̂e(Ce). (6.8)

The element stiffness matrices have a block structure of the form Q̂e = Q̂e(Ce) ⊗ Indim

which are based on structure matrices

Q̂e =











Q̂e
11 . . . Q̂e

1nen

...
...

Q̂e
nen1 . . . Q̂e

nennen











(6.9)

where the coefficients of these matrices depend on the second Piola-Kirchhoff stress tensor

corresponding to the element Be:

Q̂e
ab(Ce) =

∫

Be
0

Se(Ce) : N e
ab dV. (6.10)

Remark 6.1. The global stiffness matrix Q is also symmetric because the assembly opera-

tor A is a symmetry preserving matrix transformation which depends on the connectivity

matrices associated with the spatial discretisation of the body B (see Appendix D).

The kinetic energy T of the configuration B is defined as the union of all kinetic element

energies Te which in turn are defined as volume integrals over the squared velocity field.

In connection with the approximated deformation, the kinetic energy Te takes the form

Te =
1

2

∫

Be
0

ρ0 ve · ve dV =
1

2

nen
∑

a,b=1

M e
ab q̇

a
e · q̇be =

1

2
q̇e · Meq̇e, (6.11)
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with the element coordinate vector qe = (q1
e, . . . , q

nen
e ) and the following coefficients of

the element mass matrix Me pertaining to the e-th element:

M e
ab =

∫

Be
0

ρ0NaNb dV. (6.12)

The matrices Me have a block structure of the form Me = M e ⊗ Indim
, where the corre-

sponding structure matrix M e reads

M e =











M e
11 . . . M e

1nen

...
...

M e
nen1 . . . M e

nennen











(6.13)

A matrix assembly of the element mass matrices Me furnishes a symmetric global consis-

tent mass matrix

M =

nel

A
e=1

Me, (6.14)

such that the kinetic energy T and the linear momentum vector p = (p1, . . . ,pnnp) of the

configuration is given by equation (2.5) and (2.14), respectively.

Remark 6.2. The mass matrix is not diagonal as in a configuration of particles because

the mass is continuously distributed over the whole space between the spatial nodes. In

contrast to many-particle dynamics, a force at element node a can therefore generate

accelerations at element node b.

Remark 6.3. In the computational setting, there exist possibilities to diagonalise or to

lump the mass matrix [76, 14, 142]. For example, one can use a nodal quadrature rule

instead of the naturally chosen Gauss rule (see [55]) or the row-sum technique. Lumped

mass matrices are often applied due to their economy, but they possibly lead to difficulties

such as negative masses or zero masses at nodes along symmetry axes. In [70], there can

be found a lumping procedure which has been shown to work well in many structural and

solid mechanical problems. In the present work, however, the consistent mass matrix is

employed.
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The total linear momentum of the configuration is defined by summing the total linear

momenta P e of all elements. In the Lagrangian description of motions, the total linear

momenta P e take the forms

P e =

∫

Be
0

ρ0 ve dV =

nen
∑

a=1

∫

Be
0

ρ0 Na dV q̇ae . (6.15)

Taking the completeness condition
∑nen

a=1 Na = 1 into account, we obtain the total linear

momenta P e as the sum over all linear momenta pae pertaining to the element nodes in

Bet :

P e =
nen
∑

a,b=1

M e
ab q̇

a
e =

nen
∑

b=1

pbe. (6.16)

A further summation over the elements furnishes the total linear momentum of the con-

figuration as in the generalised problem:

P =

nnp
∑

A=1

pA (6.17)

We see that a linear momentum vector pA of a spatial node A leads to contributions in

the adjoining elements Be. The total linear momentum P is conserved if equation (2.53)

is fulfilled for each element Be:

nen
∑

a,b=1

Q̂e
ab(Ce) q

b
e =

nen
∑

b=1

∫

Be
0

∇ξ

[

nen
∑

a=1

Na

]

·
[

J−1
e · Se(Ce) · J−T

e

]

· ∇ξNb dV qbe = 0. (6.18)

Employing the completeness condition for the spatial Lagrangian shape functions Na,

a = 1, . . . , nen, equation (6.18) shows total linear momentum conservation of the spatial

finite element discretisation.

The total angular momentum L of the configuration results from summing over all

angular momenta Le of the spatial elements. In the Lagrangian description, the total

angular momentum of each element is given by

Le =

∫

Be
0

ρ0ϕe × ve dV =
nen
∑

a,b=1

qae ×M e
ab q̇

b
e =

nen
∑

a=1

qae × pae. (6.19)
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The further summation over all elements results in L =
∑nnp

A=1 q
A × pA. Since the total

angular momentum has the form as in the generalised problem, the total angular momen-

tum is conserved due to the symmetry of the mass and stiffness matrix (see Section 2).

6.3 Galerkin-based time discretisation

We use the cG(k) method as time discretisation of the semi-discrete equations of mo-

tion. These higher order integrators are the basis for designing energy and momentum

conserving integrators in the following sections. The cG(k) method for the semi-discrete

nonlinear elastodynamics reads

k+1
∑

J=1

∫ 1

0

M̃IM
′
J dα qJ − hn

∫ 1

0

M̃I M−1 p dα = 0,

k+1
∑

J=1

∫ 1

0

M̃IM
′
J dαpJ + hn

k
∑

l=1

M̃I(ξl) Qh(ξl)q(ξl)wl = 0,

I = 1, . . . , k. (6.20)

The time approximation Qh(α) of the global stiffness matrix is given by the element stiff-

ness matrices Q̂h
e = Q̂e(C

h
e(α)), where Ch

e : Iα → Rndim×ndim denotes an arbitrary time

approximation of the right Cauchy-Green tensor of the element Be. We refer to the

approximation Fe =
∑k+1

I=1 MI(α)F e
I of the deformation gradient pertaining to the el-

ement e as the cG approximation, where F e
I denote the deformation gradients at the

time nodes αI . This approximation only relies on the cG approximation qe of the po-

sition vector. The cG approximation of the right Cauchy-Green tensor is then given by

Ce = FT
e Fe. This approximation of the right Cauchy-Green tensor however has a disad-

vantage when computing rigid body rotations because it generates artificial strains at the

Gauss points (see in Figure 6.3 the stretch λ(α) in direction of a symmetry axis of the

depicted body). There is considerable artificial compression at the midpoint of the master

element for k = 1 (λ(ξ1) = 0.7071), small artificial compressions at both Gauss points for

k = 2 (λ(ξ1) = λ(ξ2) = 0.9904) and both a small artificial compression (λ(ξ2) = 0.9983)

and extensions (λ(ξ1) = λ(ξ3) = 1.0027) for k = 3. We call the cG(k) method associated

with the cG approximation Ce as the standard cG(k) method or simple cG(k) method.
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Figure 6.3. Stretch λ(α) in direction of the depicted directional unit vectors during a rigid
body rotation determined by the cG approximation C of the right Cauchy-Green tensor
for k = 1, 2, 3. The numbered points and the points ξl, l = 1, . . . , k, denote the time nodes
and the Gauss points on the master element, respectively.

According to [22], the cG(k) method is identical with implicit Gauss Runge-Kutta meth-

ods which are symplectic and momentum conserving [118]. One obtains as particular case

for k = 1, the second order accurate implicit midpoint rule:

q2 − q1−
hn
2

M−1 [p1 + p2] = 0,

p2 − p1+
hn
2

Qh
(

1
2

)

[q1 + q2] = 0.

(6.21)

In the context of nonlinear elastodynamics, the implicit midpoint rule has been also

derived by a finite difference approximation in [125, 53, 121], for instance.

6.4 Design criterion for energy conservation

We now deduce a criterion for designing mechanical integrators by localising the energy

conservation condition for the cG(k) method. In the case of semi-discrete nonlinear elas-

todynamics, we localise with respect to the spatial discretisation and obtain an energy

conservation condition for each element of the mesh. We subsequently localise with re-

spect to the spatial quadrature and obtain the following condition for each continuum

point in the element e:

We

(

Ch
e(1)

)

−We

(

Ch
e (0)

)

=

k
∑

l=1

∇Ce
We

(

Ch
e (ξl)

)

:

nen
∑

a,b=1

2N e
ab

[

qbe(ξl) ·
dqae(ξl)

dα

]

wl.

(6.22)
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We suppose that the temporal approximation Ch
e of the right Cauchy-Green tensor fulfils

the following condition at all the Gauss points:

2 11sym :
nen
∑

a,b=1

N e
ab

[

qbe(ξl) ·
dqae(ξl)

dα

]

=
∂Ch

e(ξl)

∂α
, (6.23)

where 11sym denotes the symmetric fourth-order identity tensor. Taking the last equation

into account, the pointwise condition leads to the equation

We

(

Ch
e (1)

)

−We

(

Ch
e (0)

)

=
k

∑

l=1

∇Ce
We

(

Ch
e (ξl)

)

:
∂Ch

e (ξl)

∂α
wl (6.24)

We refer to equation (6.24) as the design criterion for an energy conserving integrator.

Note that this equation has to be applied in conjunction with equation (6.23) to maintain

the gradient form (2.2) of the internal force vector at the Gauss points ξl, l = 1, . . . , k.

Remark 6.4. It is a consequence of an existing strain energy density function W that the

work done on a hyperelastic or Green elastic material is independent of the deformation

path. The strain energy stored in the material thus only depends on the initial and the

final state of the deformation path because the following relation on the strain energy

density holds:

W (C1) −W (C0) =

∫

ϕ

∇CW : dC, (6.25)

where ϕ designates a deformation path starting with a reference configuration B0 and

ending in a current configuration B1. Equation (6.24) can be therefore regarded as a

discrete counterpart of the gradient theorem (6.25).

6.5 Enhanced gradient

We now regard the design criterion (6.24) as condition for the gradient of the strain

energy density function. We then have to determine new tensor-valued functions DWe(α)

satisfying the design criterion as constraint and possessing a minimal distance to the

approximated ordinary gradients ∇Ce
We(C

h
e(α)). This is a variational problem with
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constraint, which is called an isoperimetrical problem due to the specific form of the

constraint [47, 31, 91, 69, 46]. (See also Appendix A.6 for more details). We consequently

minimise the functionals

Fe(DWe) =
1

2

∫ 1

0

‖DWe(α) −∇Ce
We(C

h
e (α))‖2 dα (6.26)

on the master element Iα under the constraint

Ge(DWe) = We(C
h
e (1)) −We(C

h
e (0)) −

∫ 1

0

DWe(α) :
∂Ch

e (α)

∂α
dα. (6.27)

To this end we augment the functionals Fe with the constraints Ge through Lagrange

multipliers λe ∈ R. We obtain Lagrange functionals Le = Fe + λeGe and the correspond-

ing Euler-Lagrange equations as necessary condition for a minimum. Taking the design

criterion into account, the solution of the present isoperimetrical problem is the following

enhanced gradient:

DWe(α) = ∇Ce
We(C

h
e(α)) +

Ge(∇Ce
We)

Ne

∂Ch
e (α)

∂α
(6.28)

where

Ne =

∫ 1

0

∂Ch
e (α)

∂α
:
∂Ch

e (α)

∂α
dα. (6.29)

In a computational setting, we also apply k-point Gaussian quadrature with an accuracy

O
(

h2 k
n

)

for computing the time integrals in the enhanced gradient. In consequence, the

distance of the enhanced gradient to the approximated ordinary gradient is of the same

accuracy. The ordinary gradient is thus modified within the error bounds of the cG(k)

method and the accuracy order of this integrator is therefore retained.

6.6 Assumed strain approximation

In the enhanced gradients DWe, we have to employ an appropriate time approximation Ch
e

of the right Cauchy-Green tensor which is a consistent strain measure (see Section 2.5).

This consistency, however, is generally lost in a time approximation. Starting from the
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Figure 6.4. Rigid body motion χeI of an element Be. The initial element domain is denoted
by Be1, whereas the element domain at time node αI is denoted by BeI .

cG approximation Ce of the right Cauchy-Green tensor associated to an element Be, we

separate that part of Ce which is invariant with respect to rigid body motions. For

these purposes we consider a general rigid body motion χe of an element Be, which is

given by an Euclidean transformation (see Figure 6.4). The deformation gradient at each

time node αI, I = 2, . . . , k + 1, pertaining to the motion χeI is given by F e
I = Re

IF
e
1,

where F e
1 denotes the deformation gradient of the motion to the initial configuration and

Re
I ∈ SO(ndim) designate orthogonal rotation tensors with the property (Re

I)
TRe

I = Indim
.

The cG approximation Ce of the right Cauchy-Green tensor can be written as

FT
e Fe =

k+1
∑

I=1

MI C
e
I −

k
∑

I=1

k+1
∑

J=I+1

MIMJ [F e
I − F e

J ]
T [F e

I − F e
J ] , (6.30)

where Ce
I = (F e

I)
TF e

I is the right Cauchy-Green tensor at the time node αI . Since the

tensors Re
I are elements of the special orthogonal group SO(ndim) which has a matrix

multiplication as group operation, the difference of two orthogonal tensors is generally

not an orthogonal tensor. The last term of equation (6.30) is therefore affected by a

rigid body motion. Taking the orthogonality property into account, the first term is not

influenced by a rigid body motion. The first term in equation (6.30) is called the assumed

strain approximation of the right Cauchy-Green tensor (compare [20]):

Ce(α) =

k+1
∑

I=1

MI(α)Ce
I (6.31)
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Figure 6.5. Stretch λ(α) in direction of the depicted directional unit vectors during
a rigid body rotation determined by the assumed strain approximation C of the right
Cauchy-Green tensor for k = 1, 2, 3. The numbered points and the points ξl, l = 1, . . . , k,
denote the time nodes and the Gauss points on the master element, respectively.

Hence the assumed strain approximation can be viewed as that part of the cG approxima-

tion, which is indifferent with respect to rigid body motions. According to Appendix C.2,

the assumed strain approximation is also a consistent time approximation of the right

Cauchy-Green tensor because the approximation order is the same as for the cG approx-

imation Ce.

Remark 6.5. The application of the assumed strain approximation can be interpreted

as the approximation dx(α) of a line element in the current configuration with re-

spect to the corotational directional unit vector n(α) defined by dx(α) = d‖x‖(α)n(α),

where dx(α) = F(α) dX, with a separate approximation of the length of the line ele-

ment. The approximated line element in the current configuration can be then written

as dx(α) = [ dX · C(α) dX]
1

2 n(α) which does not change its length after a rigid body

rotation (see Figure 6.5). By using the cG approximation a line element in the same

direction has the length [ dX · C(α) dX]
1

2 with the cG approximation C = FTF of the

right Cauchy-Green tensor. The line element is then approximated with respect to the

inertial coordinate frame.

6.7 Enhanced assumed gradient

The assumed strain approximation in the previous section is not affected by rigid body

motions. We can therefore recommend this time approximation of the right Cauchy-Green
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tensor to conserve the objectivity of this strain tensor. However, the constraint of energy

conservation prevents the application of the assumed strain approximation in each term

of the enhanced gradients. The reason is equation (6.23) which has to be fulfilled at all

Gauss points in those terms where the chain rule of differentiation is used. This equation

is satisfied by the cG approximation Ce for arbitrary k. However, the assumed strain

approximation only satisfies this condition in the special case k = 1. In the argument of

the ordinary gradients and in the directional part of the enhanced gradients, we can use

the assumed strain approximation without affecting the energy conservation condition.

Taking the assumed strain approximation into account, the design criteria in the enhanced

gradients are thus given by

Ge = We (Ce(1)) −We (Ce(0)) −
k

∑

l=1

∇Ce
We (Ce(ξl)) :

∂Ce(ξl)

∂α
wl. (6.32)

The design criteria are fulfilled by the following enhanced gradients associated with k-

point Gaussian quadrature:

DWe = ∇Ce
We(Ce) +

G
e

N e

∂Ce

∂α
(6.33)

where

Ne =

k
∑

l=1

∂Ce(ξl)

∂α
:
∂Ce(ξl)

∂α
wl. (6.34)

This composite approximation is possibly due to the same accuracy order of both time

approximations of the right Cauchy-Green tensor.

6.8 The enhanced Galerkin (eG) method

A mechanical integrator for semi-discrete elastodynamics should conserve all first integrals

of the motion. The collocation at k Gauss points furnishes the conservation of total linear

and total angular momentum. Conservation of total energy is enforced by the enhanced

gradients with Gaussian quadrature. Moreover, we used in the enhanced gradients the ob-

jective assumed strain approximation of the right Cauchy-Green tensor. The application
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of a rotationally invariant strain measure is recommended for improving the numerical

stability of the integrator (see [53]). We therefore recommend as higher order accurate

mechanical integrator the cG(k) method in conjunction with the enhanced gradient and

assumed strain approximation given by

k+1
∑

J=1

∫ 1

0

M̃IM
′
J dα qJ − hn

∫ 1

0

M̃I M−1 p dα = 0,

k+1
∑

J=1

∫ 1

0

M̃IM
′
J dαpJ + hn

k
∑

l=1

M̃I(ξl) Q(ξl)q(ξl)wl = 0,

I = 1, . . . , k. (6.35)

The time approximation Q(α) of the stiffness matrix is given by the element stiffness

matrices Q
e
(α) corresponding to the coefficients

Q
e
ab

(α) =

∫

Be
0

2 DWe(α) : N e
ab dV (6.36)

of the structure element stiffness matrix Qe
ab

. We refer to this mechanical integrator as

the enhanced cG(k) method or simple as the enhanced Galerkin (eG(k)) method for semi-

discrete elastodynamics. The eG(1) method for semi-discrete elastodynamics is given

by

q2 − q1−
hn
2

M−1 [p1 + p2] = 0,

p2 − p1+
hn
2

Q
(

1
2

)

[q1 + q2] = 0,

(6.37)

where the gradient of the strain energy density function restricted to the element e is

approximated by the following finite difference quotient:

DWe

(

1
2

)

= ∇Ce
We

(

Ce
1 +Ce

2

2

)

+
G
e

N e

[Ce
2 −Ce

1] , (6.38)

with the expressions

Ge = We (Ce
2) −We (Ce

1) −∇Ce
We

(

Ce
1 +Ce

2

2

)

: [Ce
2 −Ce

1] ,

Ne = ‖Ce
2 −Ce

1‖2.

(6.39)
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This integrator is equivalent to the total energy and momentum conserving integrator in

[53], which is based on a second order accurate finite difference approximation.

6.9 Numerical investigations

In this section, we present the linearisation of the cG(k) and the eG(k) method in nonlinear

elastodynamics. We then verify the conservation properties stated for the eG(k) method

in numerical examples and draw a comparison between the cG(k) and the eG(k) method

with respect to conservation of first integrals, accuracy and numerical costs. Finally, the

efficiency of higher order time finite elements is also discussed in the light of computation

time.

6.9.1 Linearisation of the algorithms

The implementation of the cG(k) as well as the eG(k) method follows directly from

Section 3.2.6. We have used the ε = 10−8 as tolerance for the residual in the stopping

criteria of the Newton-Raphson method. The blocks KJ , J = 2, . . . , k + 1, of the tangent

operator themselves have again a block structure:

KJ =

nel

A
e=1











eK11
J . . . eK1nen

J

...
...

eKnen1
J . . . eKnennen

J











(6.40)

The blocks can be also divided in symmetric geometrical parts associated with linearising

B-matrices and material parts following from the linearisation of the algorithmic constitu-

tive law: eKab
J = eKGeo

ab
J + eKMat

ab
J . Here we have the following B-matrices to formulate

the conservative forces and the corresponding tangent matrices:

Be
a(α) = Fe(α) ⊗∇ξNa · J−1

e ,
[

eBb
J

]T
= J−T

e · ∇ξNb ⊗ [F e
J ]
T . (6.41)
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The geometrical and the material parts associated with the cG method read with these

B-matrices
eKGeo

ab
J = MJ Qe

ab Indim
,

eKMat
ab
J = MJ

∫

Be
0

Be
a :

[

4∇2

Ce
We(Ce)

]

: [Be
b]
T dV.

(6.42)

The geometrical parts of the eG method take similar forms as those of the cG method

because the B-matrices Be
a also determines the internal nodal force direction in the eG

method. However, the corresponding material parts are more complicated due to the

additional terms of the enhanced gradient:

eKGeo
ab
J = MJ Q

e
ab
Indim

,

eKMat
ab
J =

∫

Be
0

Be
a :

[

MJ 4∇2

Ce
We(Ce) +M ′

J 4
G
e

N e

11sym

]

:
[

eBb
J

]T
dV+

+

∫

Be
0

Be
a :

[

δJ,k+1
2

N e

∂Ce(α)

∂α
⊗ SeJ −

4

N e

∂Ce(α)

∂α
⊗ Le1

]

:
[

eBb
J

]T
dV−

−
∫

Be
0

Be
a :

[

4G
e

N 2
e

∂Ce

∂α
⊗ Le2

]

dV,

(6.43)

where

Le1 =
k

∑

l=1

MJ(ξl)
∂Ce(ξl)

∂α
: ∇2

Ce
We(Ce(ξl))wl+

+
k

∑

l=1

M ′
J(ξl)

[

∇Ce
We(Ce(ξl)) +

G
e

N e

∂Ce(ξl)

∂α

]

wl,

Le2 =
k

∑

l=1

∂Ce(ξl)

∂α
:

[

M ′
J [Be(ξl)]

T +MJ

[

∂Be(ξl)

∂α

]T
]

wl.

(6.44)

Note that the material parts corresponding to the eG method are unsymmetric and those

corresponding to the cG method are symmetric.

6.9.2 Compressible Neo-Hooke material

We consider k-blade planar and spatial propellers discretised by four-node and eight

node Lagrange elements, respectively. The propellers are positioned with their centre

in the origin of the corresponding Euclidean space. Given an initial angular velocity
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vector ω0 and an initial translation velocity vector vT , the initial velocity vectors vA0 ,

A = 1, . . . , nnp, of the nodes are determined by vA0 = vT + ω0 × qA0 . The propellers consist

of compressible Neo-Hooke material with the Lamé constants λ = 3000, µ = 750 in the

flexible case and λ = 30000, µ = 7500 in the stiff case. The motion starts in the stress

free reference configuration with a homogenous mass density ρ0 = 8.93. The strain energy

density function of the compressible Neo-Hooke material is as follows:

We(Ce) =
µ

2
[trCe − 3] +

λ

2
[ln Je]

2 − µ ln Je, (6.45)

where Je =
√
Ce (see also [20]).

6.9.3 Discussion of the results

In the Figures 6.6, 6.14 and 6.22, the initial states of the planar motions depicted in the

Figures 6.7, 6.15 and 6.23 are shown. The motions of the planar propellers are such that

the centre of mass moves parallel to the x-axis. The figures 6.10, 6.18 and 6.26 show the

initial conditions for the spatial motions plotted in the Figures 6.11, 6.19 and 6.27.

In the Figures 6.8, 6.16, 6.24, the momentum maps of the planar motions are depicted

and the Figures 6.12, 6.20, 6.28 shows the momentum maps associated with the spatial

motions. The corresponding total energies as well as a nodal distance of the mesh are

plotted in the Figures 6.9, 6.17, 6.25 and in the Figures 6.13, 6.21, 6.29, respectively. It

is obviously that the eG method fulfils the conservation laws independently of the family

parameter k and the chosen time step size hn. The total linear and angular momentum

computed by the cG method is also constant over the time in contrast to the corresponding

total energy. The cG method shows a blow-up behaviour because its total energy increases

after the change of the time step size. The blow up is also shown in the nodal distance

plots. The total energy computed by the cG method further depends on k as well as on

the time step size hn.

The left diagram of Figure 6.30 depicts the logarithm of the relative global error in

the position at time T versus the logarithm of the associated time step sizes hn. This
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relative error is determined by

eq =
‖q(T ) − qref(T )‖

‖qref(T )‖ (6.46)

where qref(T ) denotes the reference solution at time T computed by the eG(4) method

with a time step size hn = 0.001. The graphs are lines due to the logarithmic scale of

both axes. The slopes of the lines indicate the accuracy order O(h2k
n ) of both methods

under consideration. We observe increasing slopes of the lines and decreasing intercepts

of the lines while increasing the parameter k for both methods. For this reason a greater

k leads to a greater time step size hn for calculating the solution at the time T with a

prescribed accuracy.

The right diagram in Figure 6.30 is a double logarithmic plot showing the relative

global error versus the corresponding CPU time. We also obtained lines due to a least

square curve fitting. Firstly, we compare the CPU time consumed by one method cor-

responding to k = 1, 2, 3. We see that a greater k renders less CPU time to obtain a

constant relative global error for both methods. A greater k accordingly leads to a saving

of CPU time, which is due to larger time steps as well as less Newton-Raphson iterations.

Secondly, comparing the CPU time of both methods for a fixed family parameter k, we

observe that the CPU time of the eG method is generally greater in comparison with the

cG method. The reason for this observation is the more extensive internal force vector

and the associated unsymmetric tangent operator of the eG method. The advantage of

the eG method is a better stability because the eG method allows for larger time steps

compared to the cG method in the same problem.
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Figure 6.6. Initial velocity vectors of a planar 1-blade propeller discretised by nnp = 119
nodes in nel = 100 four-node elements. The initial angular velocity vector and the trans-
lational velocity vector are given by ω0 = (0, 0, 0.7) and vT = (2, 0, 0), respectively.
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Figure 6.7. Motion of a planar 1-blade propeller (Neo Hooke material with λ = 30000,
µ = 7500, ρ0 = 8.93) discretised by nnp = 119 nodes in nel = 100 four-node elements and
computed with the cG(1) method as well as with the eG(1) method. The time step size
hn has been set to 0.1 for T ≤ 5 and to 0.2 for T > 5. The propellers pertaining to the
eG(1) method are depicted on top.
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Figure 6.8. Momentum maps of a planar 1-blade propeller (Neo Hooke material with
λ = 30000, µ = 7500, ρ0 = 8.93) discretised by nnp = 119 nodes in nel = 100 four-node
elements and computed with the cG(1) method as well as with the eG(1) method. The
time step size hn has been set to 0.1 for T ≤ 5 and to 0.2 for T > 5.
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Figure 6.9. Nodal distance and total energy of a planar 1-blade propeller (Neo Hooke
material with λ = 30000, µ = 7500, ρ0 = 8.93) discretised by nnp = 119 nodes in nel = 100
four-node elements and computed with the cG(1) method as well as with the eG(1)
method. The time step size hn has been set to 0.1 for T ≤ 5 and to 0.2 for T > 5.
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Figure 6.10. Initial velocity vectors of a spatial 1-blade propeller discretised by nnp = 238
nodes in nel = 100 eight-node elements. The initial angular velocity vector and the trans-
lational velocity vector are given by ω0 = (0, 0.7, 0.7) and vT = (2, 0,−0.1), respectively.
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Figure 6.11. Motion of a spatial 1-blade propeller (Neo Hooke material with λ = 3000,
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Figure 6.12. Momentum maps of a spatial 1-blade propeller (Neo Hooke material with
λ = 3000, µ = 750, ρ0 = 8.93) discretised by nnp = 238 nodes in nel = 100 eight-node
elements and computed with the eG(1) method. The time step size hn has been set to
0.1 for T ≤ 5 and to 0.2 for T > 5.

0 5 10 15 20
0.98

1

1.02

1.04

1.06

1.08

PSfrag replacements
xy

z

t0
t1
t2
t3
t4
t5
t6
t7

cG(1) method
eG(1) method

Energy
Particle distance

Angular momentum
Linear momentum

Time
L1
L2
L3
P1
P2
P3xy

z

t0
t1
t2
t3
t4
t5
t6
t7
t8

cG(2) method
eG(2) method

Energy
Angular momentum

Linear momentum
Time

L1
L2
L3
P1
P2
P3xy

z

t0
t1
t2
t3
t4
t5
t6
t7
t8

cG(3) method
eG(3) method

Energy
Angular momentum

Linear momentum
Time

L1
L2
L3
P1
P2
P3

Energy

N
o
d
al

d
is

ta
n
ce

Time
0 5 10 15 20

2.0638

2.0639

2.064

2.0641
x 10

4

PSfrag replacements
xy

z

t0
t1
t2
t3
t4
t5
t6
t7

cG(1) method
eG(1) method

Energy
Particle distance

Angular momentum
Linear momentum

Time
L1
L2
L3
P1
P2
P3xy

z
t0
t1
t2
t3
t4
t5
t6
t7
t8

cG(2) method
eG(2) method

Energy
Angular momentum

Linear momentum
Time

L1
L2
L3
P1
P2
P3xy

z

t0
t1
t2
t3
t4
t5
t6
t7
t8

cG(3) method
eG(3) method

Energy
Angular momentum

Linear momentum
Time

L1
L2
L3
P1
P2
P3

E
n
er

gy

Nodal distance Time

Figure 6.13. Nodal distance and total energy of a spatial 1-blade propeller (Neo Hooke
material with λ = 3000, µ = 750, ρ0 = 8.93) discretised by nnp = 238 nodes in nel = 100
eight-node elements and computed with the eG(1) method. The time step size hn has
been set to 0.1 for T ≤ 5 and to 0.2 for T > 5.
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Figure 6.14. Initial velocity vectors of a planar 2-blade propeller discretised by nnp = 149
nodes in nel = 120 four-node elements. The initial angular velocity vector and the trans-
lational velocity vector are given by ω0 = (0, 0,−0.7) and vT = (3, 0, 0), respectively.
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Figure 6.15. Motion of a planar 2-blade propeller (Neo Hooke material with λ = 30000,
µ = 7500, ρ0 = 8.93) discretised by nnp = 149 nodes in nel = 120 four-node elements and
computed with the cG(2) method as well as with the eG(2) method. The time step size
hn has been set to 0.1 for T ≤ 5 and to 0.2 for T > 5. The propellers pertaining to the
eG(2) method are depicted on top.
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Figure 6.16. Momentum maps of a planar 2-blade propeller (Neo Hooke material with
λ = 30000, µ = 7500, ρ0 = 8.93) discretised by nnp = 149 nodes in nel = 120 four-node
elements and computed with the cG(2) method as well as with the eG(2) method. The
time step size hn has been set to 0.1 for T ≤ 5 and to 0.2 for T > 5.
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Figure 6.17. Nodal distance and total energy of a planar 2-blade propeller (Neo Hooke
material with λ = 30000, µ = 7500, ρ0 = 8.93) discretised by nnp = 149 nodes in nel = 120
four-node elements and computed with the cG(2) method as well as with the eG(2)
method. The time step size hn has been set to 0.1 for T ≤ 5 and to 0.2 for T > 5.
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Figure 6.18. Initial velocity vectors of a spatial 2-blade propeller discretised by nnp = 298
nodes in nel = 120 eight-node elements. The initial angular velocity vector and the trans-
lational velocity vector are given by ω0 = (0, 0.7, 0.7) and vT = (2, 0,−0.1), respectively.
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Figure 6.19. Motion of a spatial 2-blade propeller (Neo Hooke material with λ = 3000,
µ = 750, ρ0 = 8.93) discretised by nnp = 298 nodes in nel = 120 eight-node elements and
computed with the eG(2) method. The time step size hn has been set to 0.1 for T ≤ 5
and to 0.2 for T > 5.
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Figure 6.20. Momentum maps of a spatial 2-blade propeller (Neo Hooke material with
λ = 3000, µ = 750, ρ0 = 8.93) discretised by nnp = 298 nodes in nel = 120 eight-node
elements and computed with the eG(2) method. The time step size hn has been set to
0.1 for T ≤ 5 and to 0.2 for T > 5.

0 5 10 15 20 25 30 35
0.98

1

1.02

1.04

1.06

1.08

PSfrag replacements
xy

z

t0
t1
t2
t3
t4
t5
t6
t7

cG(1) method
eG(1) method

Energy
Particle distance

Angular momentum
Linear momentum

Time
L1
L2
L3
P1
P2
P3xy

z

t0
t1
t2
t3
t4
t5
t6
t7
t8

cG(2) method
eG(2) method

Energy
Angular momentum

Linear momentum
Time

L1
L2
L3
P1
P2
P3xy

z

t0
t1
t2
t3
t4
t5
t6
t7
t8

cG(3) method
eG(3) method

Energy
Angular momentum

Linear momentum
Time

L1
L2
L3
P1
P2
P3

Energy

N
o
d
al

d
is

ta
n
ce

Time
0 5 10 15 20 25 30 35

2.0121

2.0122

2.0123

2.0124
x 10

4

PSfrag replacements
xy

z

t0
t1
t2
t3
t4
t5
t6
t7

cG(1) method
eG(1) method

Energy
Particle distance

Angular momentum
Linear momentum

Time
L1
L2
L3
P1
P2
P3xy

z
t0
t1
t2
t3
t4
t5
t6
t7
t8

cG(2) method
eG(2) method

Energy
Angular momentum

Linear momentum
Time

L1
L2
L3
P1
P2
P3xy

z

t0
t1
t2
t3
t4
t5
t6
t7
t8

cG(3) method
eG(3) method

Energy
Angular momentum

Linear momentum
Time

L1
L2
L3
P1
P2
P3

E
n
er

gy

Nodal distance Time

Figure 6.21. Nodal distance and total energy of a spatial 2-blade propeller (Neo Hooke
material with λ = 3000, µ = 750, ρ0 = 8.93) discretised by nnp = 298 nodes in nel = 120
eight-node elements and computed with the eG(2) method. The time step size hn has
been set to 0.1 for T ≤ 5 and to 0.2 for T > 5.
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Figure 6.22. Initial velocity vectors of a planar 3-blade propeller discretised by nnp = 179
nodes in nel = 140 four-node elements. The initial angular velocity vector and the trans-
lational velocity vector are given by ω0 = (0, 0,−0.7) and vT = (2, 0, 0), respectively.
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Figure 6.23. Motion of a planar 3-blade propeller (Neo Hooke material with λ = 30000,
µ = 7500, ρ0 = 8.93) discretised by nnp = 179 nodes in nel = 140 four-node elements and
computed with the cG(3) method as well as with the eG(3) method. The time step size
hn has been set to 0.1 for T ≤ 5 and to 0.3 for T > 5. The propellers pertaining to the
eG(3) method are depicted on top.
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Figure 6.24. Momentum maps of a planar 3-blade propeller (Neo Hooke material with
λ = 30000, µ = 7500, ρ0 = 8.93) discretised by nnp = 179 nodes in nel = 140 four-node
elements and computed with the cG(3) method as well as with the eG(3) method. The
time step size hn has been set to 0.1 for T ≤ 5 and to 0.3 for T > 5.
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Figure 6.25. Nodal distance and total energy of a planar 3-blade propeller (Neo Hooke
material with λ = 30000, µ = 7500, ρ0 = 8.93) discretised by nnp = 179 nodes in nel = 140
four-node elements and computed with the cG(3) method as well as with the eG(3)
method. The time step size hn has been set to 0.1 for T ≤ 5 and to 0.3 for T > 5.



118 Semi-discrete nonlinear elastodynamics Chapter 6

−15
−10

−5
0

5
10

15

−15
−10

−5
0

5
10

15
−5

0

5

PSfrag replacements
xy

z

t0
t1
t2
t3
t4
t5
t6
t7

cG(1) method
eG(1) method

Energy
Particle distance

Angular momentum
Linear momentum

Time
L1
L2
L3
P1
P2
P3xy

z

t0
t1
t2
t3
t4
t5
t6
t7
t8

cG(2) method
eG(2) method

Energy
Angular momentum

Linear momentum
Time

L1
L2
L3
P1
P2
P3xy

z

t0
t1
t2
t3
t4
t5
t6
t7
t8

cG(3) method
eG(3) method

Energy
Angular momentum

Linear momentum
Time

L1
L2
L3
P1
P2
P3

xy

z

−15 −10 −5 0 5 10 15
−15

−10

−5

0

5

10

15

PSfrag replacements
xy

z

t0
t1
t2
t3
t4
t5
t6
t7

cG(1) method
eG(1) method

Energy
Particle distance

Angular momentum
Linear momentum

Time
L1
L2
L3
P1
P2
P3xy

z

t0
t1
t2
t3
t4
t5
t6
t7
t8

cG(2) method
eG(2) method

Energy
Angular momentum

Linear momentum
Time

L1
L2
L3
P1
P2
P3xy

z

t0
t1
t2
t3
t4
t5
t6
t7
t8

cG(3) method
eG(3) method

Energy
Angular momentum

Linear momentum
Time

L1
L2
L3
P1
P2
P3

x

y
z

Figure 6.26. Initial velocity vectors of a spatial 3-blade propeller discretised by nnp = 358
nodes in nel = 140 eight-node elements. The initial angular velocity vector and the trans-
lational velocity vector are given by ω0 = (0, 0, 0.7) and vT = (2, 0,−0.1), respectively.
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Figure 6.27. Motion of a spatial 3-blade propeller (Neo Hooke material with λ = 3000,
µ = 750, ρ0 = 8.93) discretised by nnp = 358 nodes in nel = 140 eight-node elements and
computed with the eG(3) method. The time step size hn has been set to 0.1 for T ≤ 5
and to 0.2 for T > 5.
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Figure 6.28. Momentum maps of a spatial 3-blade propeller (Neo Hooke material with
λ = 3000, µ = 750, ρ0 = 8.93) discretised by nnp = 358 nodes in nel = 140 eight-node
elements and computed with the eG(3) method. The time step size hn has been set to
0.1 for T ≤ 5 and to 0.2 for T > 5.
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Figure 6.29. Nodal distance and total energy of a spatial 3-blade propeller (Neo Hooke
material with λ = 3000, µ = 750, ρ0 = 8.93) discretised by nnp = 358 nodes in nel = 140
eight-node elements and computed with the eG(3) method. The time step size hn has
been set to 0.1 for T ≤ 5 and to 0.2 for T > 5.



120
S
em

i-d
iscrete

n
on

lin
ear

elasto
d
y
n
am

ics
C

h
ap

ter
6

10
−3

10
−2

10
−9

10
−8

10
−7

10
−6

10
−5

10
3

10
−9

10
−8

10
−7

10
−6

10
−5

PSfrag replacements
xy

z

t0
t1
t2
t3
t4
t5
t6
t7

cG(1) method
eG(1) method

Energy
Particle distance

Angular momentum
Linear momentum

Time
L1
L2
L3
P1
P2
P3xy

z

t0
t1
t2
t3
t4
t5
t6
t7
t8

cG(2) method
eG(2) method

Energy
Angular momentum

Linear momentum
Time

L1
L2
L3
P1
P2
P3xy

z

t0
t1
t2
t3
t4
t5
t6
t7
t8

cG(3) method
eG(3) method

Energy
Angular momentum

Linear momentum
Time

L1
L2
L3
P1
P2
P3

cG(1)
cG(2)
cG(3)
eG(1)
eG(2)
eG(3)

e qe q

hn CPU time

2

4

6

Figure 6.30. Relative global error in the position (on the left) and CPU time (on the right) of the cG method and
the eG method for k = 1, 2, 3 determined at time T = 1 of the motion of the planar 1-blade propeller (Neo Hooke
material with λ = 3000, µ = 750, ρ0 = 8.93) discretised by nnp = 119 nodes in nel = 100 four-node elements.



Chapter 7

Conclusions

...This thesis is no way the last word on conserving
schemes for Hamiltonian systems. There are many is-
sues which were not addressed herein and are well worth
investigation...the question arise as to whether or not
higher order one-step conserving schemes can be con-
structed...

[51], Chapter 9: Summary & Conclusions.

This work includes a contribution to the computational treatment of nonlinear elastody-

namics. In particular, we have been concerned with the unified development of higher

order numerical time integration methods. We considered methods which inherit the

physical properties of the underlying mechanical system. Such numerical time integration

methods are called mechanical integrators. We restricted ourselves to the treatment of

first integrals of the equations of motion. The total energy as well as the total linear and

angular momentum play the role of first integrals in the context of nonlinear elastody-

namics. Mechanical integrators possess excellent numerical stability in computing stiff

problems and in long term calculations. Their achieved accuracy is thereby indistinguish-

able from standard integrators. Mechanical integrators are therefore especially attractive

for time integration. Energy and momentum conserving integrators which are previously

developed are however mostly second order accurate. Thus to bound the global error

one has to take a very small time step size, which is expensive in long term calculations.

In contrast, higher order integrators can decrease the computational costs because they

121
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allow for larger time steps. A unified framework for designing higher order time integra-

tors is the continuous Galerkin method in time. This method is particularly well suited

for designing mechanical integrators because the resulting time stepping schemes inherit

physical properties as symplecticity or first integrals from the equations of motion.

The goal of this work was to develop a unified framework for designing higher order

accurate energy and momentum conserving time integration schemes for nonlinear elasto-

dynamics. This led to the problem how the inherited invariants can be conserved if time

integrals in the integration scheme are determined by a quadrature rule. We restricted

our considerations to finite-dimensional mechanical systems emanating from a spatial dis-

cretisation of continuum bodies. The conservation properties of the designed mechanical

integrators have been proved independent of the applied spatial discretisation by set-

ting up a generalised problem. These results have been directly applied to many-particle

dynamics and nonlinear semi-discrete elastodynamics because both problem classes are

included in the generalised problem. The distinction between many-particle dynamics and

semi-discrete elastodynamics can be traced back to different kinds of internal forces. In

many-particle dynamics, the internal forces depend on a scalar-valued vector field, namely

the particle distances. The internal forces in semi-discrete elastodynamics however em-

anate from a stress tensor field.

7.1 The main results

The proposed unified framework for designing higher order mechanical integrators is the

continuous Galerkin method in time. In the resulting family of k-stage time stepping

schemes, time integrals have to be evaluated. The conservation properties have been

related to collocation at k quadrature points due to the application of numerical quadra-

ture for evaluating these integrals. Since the momentum maps are at most quadratic

invariants, we had to choose a k-point Gaussian rule with accuracy order 2k. We called

this family of time stepping schemes associated with k-point Gaussian quadrature the

cG(k) method. Energy conservation has been additionally achieved for arbitrary non-

linear conservative systems by devising a new projection technique. The projection had



Section 7.2 Outlook 123

to take into account the difference between the internal forces in particle dynamics and

in semi-discrete elastodynamics. In particle dynamics, the newly developed projection

approach only affects a scalar-valued function, however in semi-discrete elastodynamics

each stress component is influenced by the projection technique. The distinction is caused

by different strain measures. To this end the projection technique is independent of the

form of the strain measure. We have further shown that the usual time approximations

of the used strain measures are leading to approximation errors for large rigid body rota-

tions. We have therefore designed an objective time approximation and applied it in the

projection approach.

The aforementioned modifications of the cG(k) method led to a new method called

eG(k) method which turned out to be well suited in long time calculations and also in

computing stiff systems. The presented numerical examples allocated this conclusion.

The relative global error of the solution and the computational cost of the cG(k) as well

as of the eG(k) method are also investigated within the numerical examples. We have

shown that the relative global error of the eG(k) method is similar to that of the cG(k)

method for the same parameter k. We have also shown that a greater k renders less

CPU time to obtain a constant relative global error for both methods. The advantage of

the eG method is a better stability because it allows for larger time steps compared to

the cG method in the same problem, however, the eG method is more costly due to the

unsymmetric tangent operator.

7.2 Outlook

We have deduced the conservation conditions for the cG(k) method from a generalised

problem. We have, however, considered specific problems for designing the eG(k) meth-

ods. One reason was the different strain measures which are used in the specific problems.

On the other hand, the transformations of the energy conservation condition (3.19) into

the projection equation have been specifically described for each problem. The mathe-

matical description of the eG(k) method could be completed by formalising this trans-

formation according to [51]. The formalism described herein based on the fact that the
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projection equation is exactly the gradient theorem with respect to a generalised den-

sity of the potential energy. In [51], the functional dependence on the distinct consistent

strain measures is moreover generalised by taking the feature of each consistent strain

measure into account. Since a consistent strain measure is invariant with respect to Eu-

clidean transformations, each consistent strain measure can be viewed as an invariant of

the group of translations (G = Rnpoi) as well as of the group of rotations (G = SO(ndim)).

These abstractions end in an G-equivariant derivative (or gradient) for the density of

the potential energy. By using this formalism in conjunction with the projection method

proposed in this work, one is able to describe a higher order mechanical integrator for the

generalised problem. It even should be possible to formulate in this manner higher order

mechanical integrators which preserve the Hamiltonian as well as each at most quadratic

momentum map pertaining to an arbitrary Hamiltonian system with symmetry.

We restricted ourselves to the treatment of energy conserving systems. The used

projection should be extended to dissipative systems associated with a given dissipation

function, for instance systems with Rayleigh damping. The dissipative part can be then

included in the Hamiltonian formulation in the form of generalised forces. Energy con-

servation is thus a special case in which the dissipation function identically vanishes.

Numerical damping is introduced in a similar manner in [5, 6].

In respect to the numerical investigations, the error analysis could be enhanced. In

this work, we only investigated the relative global error at the final time. The curves

of the error versus the time step size pertaining to the eG(k) method were therefore

nearly indistinguishable from those of the cG(k) method. In [19, 20], the mean square

norm of the solution error is calculated for the cG(k) method as well as for mechanical

integrators under consideration. This L2-error plotted versus the time step size also led to

parallel lines. In computing stiff systems, however, the L2-error of the cG(k) method was

a constant value greater as the L2-error of the mechanical integrator under consideration.

This locking behaviour in time may be also observed in relation to the eG(k) method.

In this work, we have only applied an usual Newton-Raphson iterative process as-

sociated with the consistent tangent. A direct solver based on Gaussian elimination in

conjunction with sparse matrices has been employed. Our comparison of numerical costs
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within the context of specific examples has shown that the eG(k) method is more ex-

pensive compared to the cG(k) method because of the extensive internal force vector

of the eG(k) method. Further the material tangent matrices of the eG(k) method are

unsymmetric and much costly. To avoid the added costs of the eG(k) method by these

drawbacks, a symmetric nested iterative procedure is proposed in [6]. The additive struc-

ture of the internal force vector corresponding to the eG(k) method becomes the key for

this efficient numerical implementation. Since the first terms of the enhanced derivatives

(gradients) lead to a symmetric material tangent, one considers the rest of the terms at a

fixed deformation. Once this symmetric iterative process converges, the conserving terms

are updated with the computed deformation and the iteration is repeated. These nested

iterations are taken to convergence. According to [6], the symmetric nested iteration halve

the CPU time for less degrees of freedom, where the computational cost is dominated by

the matrix assembly, as well as for much degrees of freedom, where the solver dominates

the total computational cost. This is despite the fact that a nested iteration can double

the number of iterations (that is, solver calls) for large time steps. For relatively small

time steps, the number of iterations is not affected.
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Appendix A

Geometric mechanics

...The Hamiltonian methods are not particularly supe-
rior to Lagrangian techniques for the direct solution
of mechanical problems. Rather, the usefulness of the
Hamiltonian viewpoint lies in providing a framework for
theoretical extensions in many areas of physics...

[50], Chapter 8: The Hamilton Equations of Motion.

Several mathematical models can be used to describe motions of mechanical systems.

The simplest model for motions of real bodies is Newtonian mechanics which deal with

a configuration of point masses in the three-dimensional Euclidean space on which acts

the Euclidean transformations. We are interested in Newtonian potential systems which

are specified by the masses of the points and by their potential energy. Group motions

leaving the potential energy invariant correspond to conservation laws.

Lagrangian mechanics describe motions of a mechanical system by means of the con-

figuration space. This space has the structure of a differentiable manifold on which acts

a group of diffeomorphisms. We consider differentiable manifolds embedded in the Eu-

clidean space. A Lagrangian mechanical system is given by a manifold (the configura-

tion space) and a function on its tangent bundle (the Lagrangian). Each one-parameter

group of diffeomorphisms acting on the configuration space and thereby preserving the

Lagrangian is associated with a conservation law. A Newtonian potential system is a

particular case of a Lagrangian system in which the configuration space is the Euclidean

space and the Lagrangian is the difference between kinetic and potential energy.
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Hamiltonian mechanics is geometry in the phase space. This space has the structure

of a symplectic manifold which is an even-dimensional manifold with a symplectic struc-

ture. On the phase space acts the group of symplectic diffeomorphisms. A Hamiltonian

mechanical system is given by a symplectic manifold (the phase space) and a function on

it (the Hamiltonian). Every one-parameter group of symplectic diffeomorphisms on the

phase space preserving the Hamiltonian is associated with a first integral of the equations

of motion. Lagrangian mechanics is contained in Hamiltonian mechanics as a special

case in which the phase space is the cotangent bundle of the configuration space and the

Hamiltonian is the Legendre transform of the Lagrangian.

Geometric mechanics mean mechanics on a manifold, that is Lagrangian and Hamil-

tonian mechanics. In this appendix, we abstract notions of geometric mechanics used in

the previous chapters. More details can be found in books on geometric mechanics, for

example in [111, 8, 9, 1, 106, 104, 24].

A.1 Euclidean spaces

Let R denote the field of real numbers. Rn then denotes the set of all ordered n-

tuples x = (x1, . . . , xn) ∈ Rn of real numbers xA, A = 1, . . . , n. We refer to Rn as the

n-dimensional real linear vector space with vectors x ∈ Rn. This space is also an inner

product space (Rn, ·) by the dot product x · y of two vectors x,y ∈ Rn, which is given by

x · y =

n
∑

A=1

xA yA. (A.1)

Rn is further a complete metric space (Rn, ‖ · ‖), the so-called Euclidean space Rn, by the

Euclidean norm which is defined by

‖x− y‖ :=

n
∑

A=1

√

(xA − yA)(xA − yA). (A.2)
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We refer to Rn×n as the set of all square matrices

M =











M11 . . . M1n

...
...

Mn1 . . . Mnn











∈ Rn×n (A.3)

of real numbers MAB , A,B = 1, . . . , n. The set Rn×n is also a n2-dimensional real linear

vector space with ‘vectors’ M and an inner product space (Rn×n, :) by the double dot

product of two matrices M ,N ∈ Rn×n, given by

M : N =
n

∑

A,B=1

MAB NAB. (A.4)

Rn×n is a complete metric space (Rn×n, ‖ · ‖), the so-called Euclidean space Rn×n, by the

Euclidean norm for matrices, which is defined by

‖M −N‖ :=

n
∑

A,B=1

√

(MAB −NAB)(MAB −NAB). (A.5)

Further details can be found in standard books on linear algebra or geometry such as

[4, 24].

A.2 The tangent space

Let I ⊂ R be an open interval which contains the origin of the one-dimensional Euclidean

space R. A curve γ in U ⊂ Rn at x is a smooth mapping γ : I → U with γ(0) = x. A

tangent vector v to the curve γ at x is a vector with coordinates

vA =
dγA(t)

dt
t=0

∈ R. (A.6)

The tangent space TxU to U at x ∈ U is a n-dimensional real vector space over the set

of all tangent vectors v to all curves in U at x (see Figure A.1). The elements of TxU are

therefore contravariant 1-tensors. We can choose the standard basis {e1, . . . , en} as basis
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for the tangent space TxU . With respect to the standard basis a tangent vector v ∈ TxU

reads v = vAeA. We identify the tangent space TxU with the vector space Rn by viewing

a tangent vector as a vector v = (v1, . . . , vn) ∈ Rn. The tangent bundle TU to U denotes

the union of the tangent spaces at the various points of the subspace U, which means

TU =
⋃

x∈U

TxU (A.7)

and can be identified with the vector space U × Rn. Considering a smooth mapping

f : U → V with V ⊂ Rm, the linear mapping ∇xf(x) : TxU → Tf (x)
V between two tan-

gent spaces is defined by

v =
d

dt
(f ◦ γ)(t)

t=0

=

[

∇xf(γ(t)) · dγ(t)

dt

]

t=0

= ∇xf(x) · u. (A.8)

The corresponding mapping between the tangent bundles TU and TV , the so-called tan-

gent map ∇f : TU → TV , is then given by TU 3 (x,u) 7→ (f(x),∇xf(x) · v) ∈ TV . A

detailed description can be found in [8, 9, 1, 106, 104].

A.3 The cotangent space

A cotangent vector p of a tangent vector v ∈ TxU is a linear functional p : TxU → R

which is defined by p(v) = pAv
A with pA ∈ R. We refer to the cotangent space T ∗

xU to U

at x ∈ U as the n-dimensional real vector space over the set of all cotangent vectors p.

Elements of T ∗
xU are therefore covariant 1-tensors. A basis {e1, . . . , en} of the cotangent

space T ∗
xU can be derived from the basis {e1, . . . , en} of the tangent space TxU as follows:

p(v) = p(vAeA) = pBe
B(vAeA) = pBv

AeB(eA)
.
= pAv

A (A.9)

The basis {e1, . . . , en} is thus defined by eB(eA) = δBA . A cotangent vector p ∈ T ∗
xU with

respect to the basis {e1, . . . , en} reads p = pAe
A. We identify T ∗

xU with the Rn by viewing

a cotangent vector p as a vector p = (p1, . . . , pn) ∈ Rn and by using the dot product as
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Figure A.1. The tangent space TxU at the point x ∈ U ⊂ Rn includes the tangent vector
v.

linear functional: p(v) = p · v = (p1, . . . , pn) · (v1, . . . , vn) = pAv
A. The cotangent bundle

T ∗U denotes the union of the cotangent spaces to U at all of its points x ∈ U :

T ∗U =
⋃

x∈U

T ∗
xU. (A.10)

We therefore identify T ∗U with the vector space U × Rn. For example, the derivative

∇xf(x) at a point x ∈ U of a smooth function f : U → R is an element of the cotangent

space T ∗
xU . Consider a smooth mapping f : U → V between Euclidean spaces. The

linear mapping

∇xf(x)−T : T ∗
xU → T ∗

f (x)
V (A.11)

is a mapping between cotangent spaces. The cotangent map ∇f−T : T ∗U → T ∗V is there-

fore given by T ∗U 3 (x,a) 7→ (f(x),∇xf(x)−T · a) ∈ T ∗V . More details can be found

in [8, 9, 1, 106, 104].

A.4 Bilinear forms on vector spaces

A bilinear form B on the tangent space TxU is called a mapping B : TxU × TxU → R

which is linear in both arguments and given by B(v,u) = v ·Bu = vABABu
B. The

coordinates BAB of the matrix B associated with the bilinear form B are given by
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BAB = B(eA, eB). One can relate a linear map B[ : TxU → T ∗
xU between the tangent

space TxU and the cotangent space T ∗
xU to the bilinear form B, which is defined by

p(u) = B[(v)(u) := B(v,u) = vABABu
B. We have therefore the relation pB = BABv

A

in terms of coordinates, which is equivalent to the equation p = B[(v) = BTv. A bilin-

ear form B∗ on the cotangent space T ∗
xU is a mapping B∗ : T ∗

xU × T ∗
xU → R given by

B∗(p,a) = p ·B∗a = pAB
ABaB, which is also linear in both arguments. A linear map-

ping B] : T ∗
xU → TxU associated with the bilinear form B∗ is similarly in terms of

coordinates given by vB = BABpA. The coordinates BAB of the matrix B∗ associated

with the bilinear form B∗ are given by the coordinates of the inverse of BT :

vA = B−1
ABpB

.
= BBApB ; B−1

AB = BBA, (A.12)

where B−1
AB denotes the coordinates of the inverse of B. We thus obtain in vector notation

the relations v = B](p) = [B∗]Tp = B−1p. Further details are presented in [2, 106].

A.5 Lie groups

A group consists of a set G together with a binary operation ψ : G×G→ G with certain

required properties. The operation ψ associates to any ordered pair (g1, g2) of elements

from G a unique element ψ(g1, g2) of G. The required properties are thereby the following:

1. Associativity: We require ψ(ψ(g1, g2), g3) = ψ(g1, ψ(g2, g3)) for any g1, g2, g3 ∈ G.

2. Existence of an identity element e ∈ G: There exists an element e in G such that

we have ψ(e, g) = ψ(g, e) = g for each g in G.

3. Existence of an inverse: There is an element g−1 ∈ G such that ψ(g, g−1) = e and

ψ(g−1, g) = e for each g ∈ G.

The group is called Abelian or commutative under the binary operation ψ if the elements

commute which means ψ(g1, g2) = ψ(g2, g1). It therefore follows that a group G has

exactly one identity element e and each element g is associated with only one inverse g−1.
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The group G is a Lie group provided that the mapping ψ : G×G→ G and the mapping

G→ G defined by g 7→ g−1 are both smooth.

Let Q be an open set in some Euclidean space. We call a smooth map φ : G×Q→ Q

an action of a group G on a set Q if the following relations hold:

1. φ(e, q) = q for all q ∈ Q.

2. φ(g1, φ(g2, q)) = φ(ψ(g1, g2), q) for all q ∈ Q and any g1, g2 ∈ G.

A group homomorphism of a group (G,ψ) into a group (H,Ψ) is a map f : G→ H which

preserves the group operation, which means we have f(ψ(g1, g2)) = Ψ(f(g1), f(g2)) for

all g1, g2 ∈ G. If the homomorphism f is a bijection then its inverse is also a group

homomorphism and f is called a group isomorphism. In this case, the groups G and H

are called isomorphic. Further details can be found in books on linear algebra, geometry

or geometric mechanics [92, 101, 24, 104, 1, 106].

A.6 An isoperimetrical problem

...Da nähmlich der Plan des Universums der vollkomm-
enste ist, kann kein Zweifel bestehen, dass alle Wirkun-
gen in der Welt aus den Ursachen mit Hilfe der Methode
der Maxima und Minima gleich gut bestimmt werden
können...

Leonhard Euler (1707-1783).

Variational calculus is a fundamental tool in geometric mechanics. In particular, variations

under a given constraint occur in dynamics. One of the simplest constraint involves an

integral as in the functional itself. Such a variational problem is called isoperimetrical

problem [47, 31, 91, 69, 46] and described as follows: Given a function f(α), α ∈ Iα = [0, 1]

and a functional

F(f) =

∫ 1

0

F (f(α)) dα, (A.13)

we search for a function f(α) minimising F and satisfying a constraint G (f) = 0 as well

as boundary conditions f(0) = f0 and f(1) = f1. We are interested in determining a
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Figure A.2. Variational problem on Iα = [0, 1] with constraint G(f) = 0.

function f(α) which minimise the distance

F (f) =
1

2
< f − f̂ , f − f̂ > (A.14)

of the function f(α) to the function f̂(α) in the whole Interval Iα = [0, 1] under satisfaction

of the constraint

G(f) := c−
∫ 1

0

G (f(α)) dα = 0, (A.15)

with c ∈ R and

G(f) =< f, g >, (A.16)

where < ·, · > denotes the scalar product with a function on Iα in the corresponding

Euclidean space. Following the procedure of Euler, we assume that the function f(α)

has been found and construct a one-parameter family of functions with the parameter

ε ∈ [−ε0, ε0], which is given by fε(α) = f(α) + ε f̃(α) = f(α) + δ f̃(α). Herein is f̃(α) an

arbitrary function only satisfying the conditions f̃(0) = 0 = f̃(1) so that the boundary

conditions are fulfilled (see Figure A.2).
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The optimal solution is given for ε = 0 which means a vanishing variation δ f̃(α). A

variational problem with constraint can be considered as an ordinary variational problem

with respect to the augmented Lagrange functional L = F + λG, where λ ∈ R denotes a

Lagrange multiplier. Employing the constraint and fε(α), we obtain a function Lε which

only depends on the parameter ε because the functions f(α) and f̃(α) are assumed to be

known. Since the optimal solution is included in the one-parameter family for ε = 0, the

function Lε take a minimum at ε = 0, which implies

dLε
dε

ε=0

= 0. (A.17)

We obtain the following Euler-Lagrange equation because f̃(α) is assumed to be arbitrary:

∂F
(

f
)

∂f
− λ

∂G
(

f
)

∂f
= 0. (A.18)

This Euler-Lagrange equation is the necessary condition for the optimal solution which

is given by f(α) = f̂(α) + λ g(α). The Lagrange multiplier λ is determined by the con-

straint (A.15) and reads

λ =
G(f̂)

N with N =

∫ 1

0

< g(α), g(α) > dα. (A.19)

We finally employ equation (A.19) and obtain the optimal solution f(α) for the given

problem:

f(α) = f̂(α) +
G(f̂)

N g(α) (A.20)
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Appendix B

The direct matrix product

The direct matrix product or the Kronecker product of matrices is a brief notation for

writing a special block matrix. In this appendix, we show the transposition, the multipli-

cation and the inversion of such a matrix, which occurs in this work at different places.

For more details see [97, 132, 40].

B.1 The definition

Given two matrices A ∈ Rm×n and B ∈ Rp×q of the form

A =











a11 . . . a1n

...
...

am1 . . . amn











B =











b11 . . . b1q
...

...

bp1 . . . bpq











(B.1)

the direct matrix product of A and B is defined to be the real mp× nq dimensional

matrix

A⊗B =











a11B . . . a1nB
...

...

am1B . . . amnB











(B.2)
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B.2 The transpose

Given the direct product C = A⊗B ∈ Rmp×nq of the matrices A ∈ Rm×n and B ∈ Rp×q

of the form (B.1), the transpose CT ∈ Rnq×mp reads

CT =











a11B . . . a1nB
...

...

am1B . . . amnB











T

=











a11B
T . . . am1B

T

...
...

a1nB
T . . . amnB

T











(B.3)

Hence the transpose of a direct matrix product is given by

(A⊗B)T = AT ⊗BT (B.4)

B.3 The product

Let C = A⊗B ∈ Rmp×nq be the direct product of the matrices A ∈ Rm×n and B ∈ Rp×q

of the form (B.1). Let C′ = A′ ⊗B′ ∈ Rnq×rs be a further direct product of the matrices

A′ ∈ Rn×r and B′ ∈ Rq×s given by

A′ =











a′11 . . . a′1r
...

...

a′n1 . . . a′nr











B′ =











b′11 . . . b′1s
...

...

b′q1 . . . b′qs











(B.5)

Multiplying the matrices C and C′, the matrix product CC′ ∈ Rmp×rs is given by

CC′ =











a11B . . . a1nB
...

...

am1B . . . amnB





















a′11B
′ . . . a′1rB

′

...
...

a′n1B
′ . . . a′nrB

′











(B.6)

The matrix product of two direct matrix products is therefore given by the direct matrix

product of the product matrices:

(A⊗B)(A′ ⊗B ′) = AA′ ⊗BB′ (B.7)
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B.4 The inverse

Let C = A⊗B ∈ Rmn×mn be a quadratic matrix, where A ∈ Rm×m and B ∈ Rn×n are

also quadratic matrices of the form

A =











a11 . . . a1m

...
...

am1 . . . amm











B =











b11 . . . b1n
...

...

bn1 . . . bnn











(B.8)

The inverse of the matrix C has the form C−1 = A′ ⊗B−1 ∈ Rmn×mn, where A′ ∈ Rm×m

is a quadratic matrix

A′ =











a′11 . . . a′1m
...

...

a′m1 . . . a′mm











(B.9)

The matrix A′ are then determined by the following matrix equation:

C C−1 = [AA′] ⊗
[

BB−1
]

= AA′ ⊗ In .
= Imn = Im ⊗ In (B.10)

This matrix equation is obviously equivalent to the matrix equation AA′ = Im which

means A′ is the inverse of A. The inverse of a direct matrix product A⊗B is conse-

quently the direct matrix product of the inverse matrices:

(A⊗B)−1 = A−1 ⊗B−1 (B.11)
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Appendix C

Notes on the cG(k) method

In this appendix, we give more information about the implementation and error analysis of

the cG(k) method. More precisely, we give the matrices required for the implementation

and details for proving the approximation error bounds at the time nodes and between

the time nodes of the master element.

C.1 Implementation matrices

This appendix include the matrices required for the implementation of the cG(k) method

for k = 1, . . . , 4.

C.1.1 Linear time finite elements (k = 1)

AR
m = [+2] AR

q = [−2] AR
p = [−2]

Ap
m = [+2] Ap

q = [−2] Ap
p = [+1]

Aq
q = [−1] Aq

p = [−1]

(C.1)
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C.1.2 Quadratic time finite elements (k = 2)

AR
m =





0 1

−8 3



 AR
q =





−1

5



 AR
p =





−1

1





Ap
m =





2 1
2

−8 4



 Ap
q =





−5
2

4



 Ap
p =





1
2

−1





Aq
q =





−1

−1



 Aq
p =





−1
2

−1





(C.2)

C.1.3 Cubic time finite elements (k = 3)

AR
m =











3
2

3
2

−1
2

−3 −3 3

15 −12 4











AR
q =











−5
2

3

−7











AR
p =











−1

0

−1











Ap
m =













13
6

7
6

− 5
54

−20
3

10
3

16
27

27
2

−27
2

13
2













Ap
q =













−175
54

74
27

−13
2













Ap
p =













11
27

−11
27

1













Aq
q =













−1

−1

−1













Aq
p =













−1
3

−2
3

−1













(C.3)
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C.1.4 Quartic time finite elements (k = 4)

AR
m =



















4 3
5

−4
5

3
10

−44
5

−3
5

28
5

−17
10

28
5

−3
5

−44
5

11
2

−332
15

123
15

−52
3

157
30



















AR
q =



















−41
10

11
2

−17
10

289
30



















AR
p =

















−1

0

0

1

















Ap
m =



















31
24

81
32

−11
24

17
384

−26
3

9
2

2
3

1
24

53
8

−303
32

39
8

91
128

−64
3

24 −64
3

28
3



















Ap
q =



















−1309
384

83
24

−351
128

28
3



















Ap
p =



















37
128

−3
8

37
128

−1



















Aq
q =



















−1

−1

−1

−1



















Aq
p =



















−1
4

−1
2

−3
4

−1



















(C.4)

C.2 Error estimate for a nodal time interpolation

This section gives a simple proof of the fact that the nodal time interpolation F(α) of a

function F (α) on the master element Iα = [0, 1], which is given by

F(α) =

k+1
∑

I=1

MI(α)F (αI), (C.5)

with k + 1 equidistant nodes αI = I/(k + 1), I = 1, . . . , k + 1 and k + 1 Lagrangian shape

functions of the form (3.7) is of the accuracy O(hkn) (compare [44, 82]). The approximation

is of the accuracy O(hkn) if the residual error RF = −F + F is of the accuracy order

O(hk+1
n ). Taking Taylor’s theorem into account, the nodal values F (αI) can be written
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as

F (αI) =
k

∑

i=0

hin
i!

diF (α)

dti
[αI − α]i + O(hk+1

n ), (C.6)

where the time step size hn is related to hn = dt/ dα by definition. We subtract the exact

function F (α) from the approximated function F(α) and obtain the residual error

RF = F (α) [c0 − 1] +

k
∑

i=1

hin
i!

diF (α)

dti
ci + O(hk+1

n ), (C.7)

where we have introduced the coefficients

ci =

k+1
∑

I=1

MI(α) [αI − α]i , i = 0, . . . , k. (C.8)

If the approximation is of order O(hkn) then the terms of the order O(hIn), I = 1, . . . , k,

have to vanish, which implies the matrix equation A(α)w(α) = b with

A =

















(α1 − α)0 . . . (αk+1 − α)0

(α1 − α)1 . . . (αk+1 − α)1

...
...

(α1 − α)k . . . (αk+1 − α)k

















w =

















M1(α)

M2(α)
...

Mk+1(α)

















b =

















1

0
...

0

















(C.9)

Multiplying this matrix equation from the left by the matrix B(α) of the form

B =















(

0

0

)

α0 . . .

(

0

k

)

α−k

...
...

(

k

0

)

αk . . .

(

k

k

)

α0















(C.10)

we obtain an equivalent linear system of equations of the form v(α) = V w(α), with the

matrix V = BA and the vector v(α) = B(α) b =
[

1 α . . . αk
]T

. The components VIJ ,

I, J = 1, . . . , k + 1, of the matrix V then read

VIJ =
k+1
∑

i=1

(

I − 1

i− 1

)

α(I−1)−(i−1) [αJ − α]i−1 = [α+ αJ − α]I−1 = αI−1
J . (C.11)
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Hence this matrix is the Vandermonde matrix V (α1, . . . , αk+1) =
[

v(α1) . . . v(αk+1)
]

.

Taking Section 3.2.2 into account, the matrix w consequently includes the Lagrangian

shape functions (3.7). The linear algebraic system is therefore fulfilled which leads to a

residual error RF = O(hk+1
n ).

C.3 Accuracy of the cG(k) method at the time nodes

In this section, we prove that the cG(k) method is of the order O(h2k
n ) accurate at the

time nodes in the master element (compare [82]). To this end we write the cG(k) method

applied to a general Hamiltonian system in the following form:

k
∑

J=1

∫ 1

0

M̃IM
′
J dα zJ − hn

∫ 1

0

M̃I(α) J∇H(z(α)) dα = 0, I = 1, . . . , k. (C.12)

The unknowns are represented by the vector xz = (z2, . . . , zk+1). By using the calculation

rules in Appendix B, the equations can expressed in matrix notation as

[

(A′)
−1
b′

]

⊗ z1 + xz − hn

∫ 1

0

[

(A′)
−1
w̃

]

⊗ J∇H(z(α)) dα. (C.13)

As intermediate step, we prove the relation (A′)
−1
b′ = −ek, where ek = (1 . . . 1) ∈ Rk

is a column vector. This equation is equivalent to the equation b′ = −A′ ek. Employing

the definitions (3.28), the right hand side results in

−A′ ek = −















∫ 1

0

M̃1

(

M ′
2 + . . .+M ′

k+1

)

dα

...
∫ 1

0

M̃k

(

M ′
2 + . . .+M ′

k+1

)

dα















(C.14)

Differentiating the completeness condition for the polynomials MI , I = 1, . . . , k + 1, with

respect to α, one obtains −M ′
1 = M ′

2 + . . .+M ′
k+1. Taking this equation into considera-

tion, the proof is complete.
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We apply the proved relation in equation (C.13) and obtain

xz = ek ⊗ z1 + hn

∫ 1

0

[

(A′)
−1
w̃

]

⊗ J∇H(z(α)) dα. (C.15)

In the computational setting, we use Gaussian quadrature for calculating the integrals in

equation (C.15). The cG(k) method therefore determines a vector xz including approxi-

mated values to the actual nodal values zI = z(αI), I = 2, . . . , k + 1:

xz = ek ⊗ z1 + hn

k
∑

l=1

[

(A′)
−1
w̃

]

⊗ J∇H(z(ξl))wl. (C.16)

The residual error Rx = xz − xz of the approximated nodal values is due to the accuracy

of the Gaussian quadrature of the order O(h2 k+1
n ). The nodal values xz are consequently

of order O(h2 k
n ) accurate.



Appendix D

The assembly operator

In finite element methods, some matrices are usually calculated on the element level. The

obtained element matrices are then combined into a global matrix by an operation called

matrix assembly. This operation is often indicated by the so-called assembly operator

A (see [76]). The assembly of element vectors be or of element square matrices Ae,

e = 1, . . . , nel, to a global vector b or to a global square matrix A is defined by

b =

nel

A
e=1

be =

nel
∑

e=1

LTe be, and A =

nel

A
e=1

Ae =

nel
∑

e=1

LTeAeLe, (D.1)

respectively, where the matrices Le are called the connectivity matrices which are Boolean

matrices only consisting of the integers 0 and 1 (see [17]). Hence if the element square

matrices Ae are symmetric then the global square matrix A is also symmetric:

AT =

nel
∑

e=1

[

LTeAeLe
]T

=

nel
∑

e=1

[AeLe]
T
Le =

nel
∑

e=1

LTeA
T
eLe =

nel
∑

e=1

LTeAeLe = A. (D.2)
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