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Introduction

The main objects considered in this thesis are the fluids and the porous medium. In [43, p.1],
the porous medium is defined as ” a material consisting of a solid matrixz with an interconnected
void. ... The interconnectedness of the void (the pores) allows the flow of one or more fluids
through the material’. Examples of porous media are (see, e.g. [5, p.4]): soil, sand, fissured rock,
cemented sandstone, Karstic limestone, ceramics, foam rubber, bread, lungs, textile, paper, etc.

Typically, the solid matrix has a very complicated structure (see Fig.1). The geometry
of the solid structure significantly changes on a distance &, which is much smaller than the
characteristic size L of the porous media in the whole problem, and this motivates the usage
of the term microstructure for denoting the solid matrix of the porous medium. & can be also
used to denote a typical pore size. We don’t have a precise definition for £ in the general case,
but for the case of periodic porous media it can be defined as the (smallest) period of the solid
microstructure. If we consider a characteristic function, taking values one at the void points,
and zero at the solid points, then this function rapidly oscillates in the porous media.

In this thesis we will deal with saturated porous media only. It means that the void space is
occupied by a single fluid, which we suppose to be incompressible, Newtonian with dynamical
viscosity p. Moreover, we restrict our considerations to steady-state, isothermal flows. Unsteady
problems, having as a limit steady-state solution, can be considered as well at time moments
far enough from the initial stage.

In many cases, the porous medium is surrounded completely or partially by a region, oc-
cupied purely by a fluid. We will use the terms ”plain media”, ”free fluid” or ”pure fluid” to
denote such a region. We suppose that its size is comparable with the size of the porous medium.
Coupled flows in the plain and in the porous media are the main subject of investigation in the
thesis. Some examples of coupled considerations are:

e coupling of the surface flow with the groundwater flow (what is very important for studying
contaminant transport, for predicting flooding, etc.);

e coupling of the water waves with the flow through porous breakwaters;

e coupled flows through certain heat exchangers or mixers which are based on porous
medium mixing;

e coupling the flow between the porous tows with the flow within them during resin transfer
moulding;

e coupled flows through industrial and others filters, etc.

The flows through oil filters are of special interest for us, therefore we will explain this case
in more details. The oil filter consists of a filter box and a porous filtering medium, which
completely separates the inlet of the filter box from the outlet. The purpose of these filters is to
catch inside the filtering medium (small) dirt particles coming with the oil flow from inlet. What

7



8 INTRODUCTION

is the motivation for simulating the flow through filters? Usually, a designer uses a CAD system
to create a geometry for a new filter box with the filtering medium inside. The designing process
and the further modifications often take days. After the design, next stage is to manufacture
a prototype and to perform experiments, determining properties of the designed filter. In fact,
many of these properties (e.g., pressure drop - flow rate ratio, uniformity of the loading of the
filtering media, etc.) are governed by the coupled flow within pure liquid subregions of the box,
and the flow within the filtering porous medium. Altogether, manufacturing the prototype and
performing experiments takes a couple of weeks or more. Based on the obtained experimental
results, a decision is taken whether the properties of the new filter are appropriate, or the filter
needs further improvements. Often, several steps of improvements need to be performed. The
overall designing process can be significantly optimized: the manufacturing of a prototype and
the performance of experiments can be replaced (at least partially) by numerical simulations.
The CAD data with the filter’s geometry can be directly used to construct the computational
domain and to perform computer simulations. This allows significantly to shorten the time for
the design of a new filter, at the same time preserving the needed accuracy.

The above examples demonstrate the practical importance of studying such coupled flows.
The problem, however, is very attractive also from the mathematical point of view. There are
several challenges in mathematical modeling of these coupled flows:

e the choice of the model for the plain and for the porous media, and what is even more
important, formulation of proper interface (i.e., transmission) conditions on the interface
between the plain and the porous media;

e analysis of the formulated mathematical problem: under which conditions it is a well
posed one;

o developing efficient numerical algorithms for this kind of coupled problem;

These three topics, as well as the closely related problems for the validation of the models
and the algorithms, and for the application of the developed algorithms in simulation of real
industrial problems, are a subject of investigation in this thesis. The main purpose of the
thesis is to investigate from theoretical and numerical point of view the Brinkman model in
porous media, coupled to the free fluid part with the help of the recently suggested by Whitaker
and Ochoa-Tapia interface conditions. We will focus on solvability of the problem and the
uniqueness of the solution, on comparison with the well studied channel problem (including the
disputable question concerning the pressure continuity through the interface), on the numerical
algorithm for the model, on some aspects of the model verification and determination of the
tensor coefficient M, and on 3D simulations of coupled flows through a real filter.

We will proceed as follows. In Chapter 1 we present the problem and make an overview of
known models and approaches related to the problem. Also, we describe there the mathematical
model, recently proposed by J.A. Ochoa-Tapia and S. Whitaker in [44], which is the main subject
of investigation in the following chapters. In Chapter 2 we consider flow over a porous block
in a channel. We compare the asymptotical behaviour for the solution of the above mentioned
model (based on Brinkman equation and on Ochoa-Tapia& Whitaker interface conditions), with
what was analytically found by W. Jager, A. Mikeli¢, N. Neuss [24]-[25] (they use a model based
on Darcy law and on Beavers-Joseph interface conditions). Also, we introduce in this Chapter
the notion of a generalized solution for the model in the linear case, and study the existence
and the uniqueness of the generalized solution. In Chapter 3 we propose a numerical algorithm
for the considered model for coupled flows, and make some tests to validate the algorithm and
its implementation. Chapter 4 is devoted to validation of the selected model on the base of
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direct numerical simulation: we design model problems where the microscopical solid structure
of the porous media can be resolved by the computational grid. The numerical (micro-)solutions
for such geometries are compared with the numerical solutions of the macro-model, where the
porous medium is treated as a homogeneous medium without complicated microstructures. Also,
we investigate the pressure jump effect, predicted in [23],[25]. In the Chapter 5, the results from
numerical simulation of a 3D industrial problem, concerning coupled flow through a car oil
filter, are presented and compared with measurements. This Chapter contains also some other
2D and 3D calculations related to the filtration problem which is one of the most important
applications for the problem of coupled flow in free fluid and in porous media. Chapter 6 is left
for conclusions and open problems.

Figure 1: Large magnification of fiber materials
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Chapter 1

Mathematical models for the
coupled flow in free fluid and in
porous media

1.1 Preliminaries. Models in the free fluid domains and in the
solid part.

Let Q be a connected bounded domain in R¢, d = 2 (2D) or d = 3 (3D). Points in Q2 are denoted
by x, x = (z!,...,2%). We assume that  is subdivided into three subdomains: pure fluid
part €f, saturated porous media €, and pure solid part Q, (2 = Q;UQ, UQ,). The partition
is appropriate for macroscopic descriptions of the problem. For microscopical descriptions one
needs additionally internal structure of €2, given by its subdivision into the solid matrix €, and
the pore space €25 which is completely occupied by the fluid ("ps”, "pf” mean porous-solid,
porous—fluid). The total fluid part 2y U €2),f should be connected (if there is a void space in the
porous media which is surrounded by solid so that there is no connection to €2y then we can
assume that this void space belongs to the solid phase). From a microscopic point of view, the
macroscopic interface X = 9€2, N 9€1y, is an imaginary interface and therefore there is a freedom
in choosing its exact position within a layer with typical pore size thickness.

The flow is characterized by velocity u € R¢ and pressure p € R, which are functions of
spatial coordinates only (we have already mentioned that we restrict ourselves to stationary
flow and all variables as well as the subdomains of ) are time independent). The exact domain
of definition of (u,p) is different for macro and micro formulation:

e (u,p)(x): 2\ Qs — (R R) (macro formulation);
o (u,p)(x): QrUQyr — (R?,R) (micro formulation);

Also, the meaning of the macroscopic velocity is different in the free fluid region and in the
porous media

The velocity defined at some x € Qis u = (u', ..., u?). We will also use index-free notation:
x = (z,9,2), u= (u,v,w) in 3D and x = (z,y), u = (u,v) in 2D.

The geometry of the problem is schematically drawn in Fig.1.1. The solid phase is shown
with black color. On the left one can see the geometry on a macroscale, as it is treated in the
macroscopic formulation. But in fact, the macroscopic formulation hides small heterogeneities
which are important for microscopical formulation. They are drawn in the right subfigure as a
high magnification of a small part of the left subfigure (see also Fig.1). The dashed line on the

11



12 CHAPTER 1. MATHEMATICAL MODELS FOR COUPLED FLUID FLOW PROBLEM

Figure 1.1: Domain €, pure fluid part Q, porous part €, = Q,, U Q,, pure solid part €,

right subfigure shows one possible location for the interface. L is a characteristic length for the
macroscale, while £ is the one for the microscale. It is clear, that € < L.

Now let us consider each of the subdomains Qf, €15, Q, separately, in order to fix the
mathematical models that can be used there. The mathematical model in the fluid region €2 is
based on laminar, incompressible, isothermal stationary Navier-Stokes equations (see, e.g. [16]):

—pAu+ (pu-Viu+Vp=H1,

V.u=0 (1.1)

We will also use the linearized version for creeping flows:

—pupAu+Vp=H1,

V-u=0. (1.2)

One usually neglects the convective term when the Reynolds number Re = pUL/pu, calculated
with respect to the macro distance L and characteristic velocity U, is small for the flow in £2;.

We may exclude €, from consideration since there is no flow there, and the flow variables
(u,p) need not be defined there: Q"¢ := Q\ Q;. One can set the Dirichlet boundary condition
u = 0 on the fluid—solid boundary 9€2y N 9€)s. Either u = 0, or only no-penetration condition
u-n; = 0 can be set on the porous-solid boundary 0, N 0€)s, depending on the model in
Qp, (here n, is an outer normal to €2s). On the other hand, it might be more convenient (for
example when Q \ Q; becomes a complicated domain) to use fictitious domain method (see
[371,[35],[3],[4]) and to consider in €2 a kind of (Navier—) Stokes system, penalized by the zero
order velocity term Bu, where B is a large number. An additional penalization can be done by
choosing also a large viscosity ps:

—V  (usVu) + (pu-V)u+ Bu+ Vp =f,

V.ou=0 (1.3)

The flow in € is not forbidden in this case, but the large coefficients B and us force it to be
almost negligible there.

1.2 Models in the porous media (2,

We have described the models in domains consisting of only one phase: either fluid 2; or solid
Q5. The porous media is then an intermediate case. There are two possibilities to deal with such
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heterogeneous media. The first possibility is to consider the equations on a microlevel (pore
level), this is the so-called microscopical model. Second possibility is to try to substitute the
heterogeneous medium by an imaginary homogeneous medium and to consider macroscopic (ef-
fective) equations there for macroscopic unknowns, this is the so-called macroscopic model. The
effective equations can be completely different from the equations on a microlevel. The infor-
mation about the heterogeneities is usually contained in effective parameters of the macroscopic
model. The macroscopic unknowns may have a quite complicated relation with the micro-
scopic unknowns, but often the macroscopic unknowns have a meaning of spatially averaged
microscopic unknowns as it happens in our case with velocity and pressure (u, p).

1.2.1 Microscopical model

The porous media is represented as a connected domain of pore space filled with the fluid
and the flow there is governed by the Stokes (1.2) or the Navier-Stokes (1.1) equations. No-
penetration and no-slip boundary conditions on the solid boundary (which has a very complex
geometrical structure) are prescribed. The pore space domain €,; can be readily added to
the free flow region Q; to have the same system of equations (Navier-Stokes or Stokes) in the
whole fluid domain Q7 U Q,; U X. The model approximates the physical problem with a good
precision, but it seems to be inappropriate for applications with real porous media since it needs
unrealistic amount of CPU time/memory resources. Additional difficulty is that the internal
geometry of the solid matrix can be even unknown (although it is possible nowadays to look
inside some particular porous medium without destroying it by using X-ray microtomography
with resolution up to one micrometer).

The information, contained in the microsolution is superfluous for most purposes. It often
needs further processing in order to obtain a smooth, large scale (averaged) data, which are
much more appropriate for qualitative conclusions, compared to the rapidly oscillated functions
on a pore level.

However, the micromodel is useful for theoretical purposes, such as deriving macroscopic
models for porous media (some overview is given below) and for direct numerical simulations
(when possible) of fluid flows in porous media (see also the Chapter 4).

1.2.2 Macroscopic models in the porous media

Many macroscopic models for different physical processes in heterogeneous media were obtained
empirically, without considering the equations on a microscale as a starting point. One suc-
cessful example is the famous Darcy law, discovered in 1856. Nowadays much effort is made
to establish a relation between micro and macro formulations. Some reasons are: to justify
the macroscopic model, to get its precise form, checking that there are no missing or excessive
terms, to determine assumptions and restrictions for the model, as well as to obtain (if possi-
ble) macroscopic parameters needed in macro formulation. The idea in the last case is, that
calculations (based on available microparameters and microgeometry), can (partially) replace
the experiments, needed for determining macroparameters.

Of course, all derivations have some assumptions and restrictions. But the model may also
work reasonably in a significantly larger area as it was assumed in the derivation. We also
believe that rigorous derivation is desirable, but not necessary for a model. Validation via a
comparison with experiments, is also a reason to use a model, even if no rigorous derivation is
known.

To sketch ideas of two upscaling techniques we assume that we have to solve (approximately)
a microscopical problem (for example the microproblem discussed above, but restricted to Q,
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since in this subsection we don’t discuss difficulties coming from the interfaces). Denote it by
P. We assume that P is a well posed problem and there is enough information to determine
its solution. The only difficulty is that an accurate numerical solution is extremely resource-
extensive.

1.2.3 Local volume averaging

Let us assume that the micro solution of P is known. Then an averaged solution at some
point x can be introduced as a spatially averaged value of the micro variables taken over the
so-called Representative Elementary Volume (REV), denote it by V(x). The REV V(x) is a
neighbourhood of the point x, having the same form and size for all x. It can be, for example,
an open ball with the centre at x. The size should be small compared with L, but not too
small: it should contain enough pores and solid structures to justify the word ”representative”
in its name (see also [5, Sec. 1.2.3]). Some microscopical variables are defined only in one
phase (like pressure in the fluid part €,r). Then one can define the fluid component of REV:
Vi(x) = V(x) N Q,y, and the surface where the microscopic boundary conditions are imposed:
Agp(x) = V(x) N 08p,. The averaged variables (U, p) can be calculated from the microscopical

variables:
1 1

=V oo " PO T 0

We note, that u, p are defined up to the choice of size and form of V' and there is uncertainty
near the boundaries since the microvariables are not necessary defined outside the domain.

But the microscopical solution is not known and it is not the purpose here to obtain it.
Nevertheless, using the fact that it satisfies the equations on a micro level (in our case (1.2)
or (1.1)), one can integrate them over REV and apply the so-called averaging theorems [26, p.
54],[22] like

u(x)

p(y) dy (1.4)

1
V)| Ja,,x)

v—lp:vm#/ ynde V- b=V-b+ b-ndo.  (L5)
V)| Ja,x)
The purpose is to exclude all micro unknowns and to have at the end a closed system containing
the averaged variables as unknowns and material parameters, assumed to be known properties
independent of micro unknowns. Thus, the system for the averaged unknowns (macroscopic
model) can be solved without knowledge of the microsolution. Unfortunately it is not always
possible to exclude micro unknowns from all their entries in averaged microscopic equations
using rigorous or formal techniques, and therefore additional unknowns are introduced which
require experimental verifications.

The volume averaging of the Stokes equation (1.2) in the porous media ([44]) leads to the
stationary Brinkman system of equations (see [44]):

—EAu+puKlu+Vp="f
¢ in Q,,
V.-u=0 P

where ¢ is the porosity of the porous media. The averaged unknowns (u,p) are in fact the main
unknowns (u,p) in the macro formulation

—V  (ppeffVu) + puK'lu+ Vp =1 .
Vou=0 in €, (1.6)

where perf = p1/¢. u, p have no bar any more, but they have different meaning comparing with
the micro formulation.
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1.2.4 Homogenization

Describing homogenization of some problem one usually starts with a sequence of problems
depending on a parameter €. The main purpose is to obtain the so-called limit problem when
€ — 0. Here our priorities will be somewhat different: the main purpose is to approximate the
solution of P. The sequence of problems and the limit problem are just a way to reach it. More
precisely, under a deterministic homogenization of the microscopical problem P in heterogeneous
media, we will understand a method of constructing a sequence of imaginary problems {P¢},
such that one of them P¢ coincides with P. The positive numbers e, and in particular &,
are members of some sequence {e,},2, — 0. When dealing with spatial heterogeneities we
will treat £ as a typical size of heterogeneities in the problem P¢ (in this case £ is small in
comparison with L, but it is not correct to say that ¢ is small itself). If we choose L as a unit
length, and measure everything in L, then ¢ is the same as it is usually used as a dimensionless
small parameter equal to the ratio between the typical lengths in micro and macro scales.

If the sequence is convergent in some sense to some limit problem P? which can be approxi-
mately solved with moderate requirement on resources (comparing to what is necessary for P¢),
then the solution of P? can be used in approximating (in some sense) the solutions of P, and
in particular, of P (it is exactly our purpose claimed above). The ”convergence of problems”
is, of course, related to convergence of their solutions, but it is too restrictive to say something
more precise: for example it can be weak or strong convergence in some norm of solutions itself,
or multiplied by some degree of € (examples and references are given below in homogenization of
our microproblem). Also, the ”limit problem” can be in fact not a single problem, but a series
of problems for determining terms in some asymptotic expansion (see [9, p.12],[48, p.48],[21,
p.9],[13, p.128]) for the solution of P¢. The "approximation” of P¢ using the solution(s) of P°
depends on the ”convergence”.

PE0, ... ,PEn-1, PE PEntl . PE. . s PO

I
P

Some additional restrictions on the sequence {P¢} are that the problem P¢ should be a "natural”
member of the sequence, and other problems there should also be well-posed. The first restriction
is important since a convergent sequence will still be convergent if we substitute one of its
elements by some arbitrary element that has nothing to do with the sequence, but then the
limit of the sequence will be a bad approximation for this particular element.

The convergence of {P¢} alone cannot guarantee that the approximation is good enough even
in the same sense as we understand the convergence, since & cannot be made smaller, and P¢
for small enough ¢ is of no practical interest. The ideal case is when the speed of convergence
(in some norm) can be estimated as some function E(e), tending to zero as ¢ — 0. Then
we have a number E(£) that estimates the particular error of approximation for our problem
P. And for any admissible error we can find from the function how small the microstructure
should be to obtain an admissible approximation for the microsolution by the limit problem
PO, Unfortunately there are no simple ways to improve the approximation. One possibility is
to try to construct another sequence {755} with other limit problem P° which may give better
approximation. Another is to use the same sequence {P¢}, but to generalize P° by adding more
terms in the asymptotic expansion.

The construction of such a sequence is not an easy task. One well adopted for theoretical
investigations case, often resulting in a cheap and accurate macroscopic model, is the case of
periodic micro geometry in P. If inhomogeneity of P has periodic microstructure with period &
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in some domain D, and can be described in a fixed coordinate system with axes parallel to the
directions of periodicity by some é-periodic function

x(x) : R 5 R, x(x + £e;) = x(x), vx eRY, i€ {l,...,d},

then one well-known way to create heterogeneous micro-structure for the problem P¢ is to use
the e-periodic functions x(x) = x(éx/e), restricted to D. When ¢ = & then the microstructure
in D is exactly the same as for the problem P: x¢(x) = x(x).

With the help of this approach it is quite often possible to construct a sequence {P*}, whose
solutions converge in some sense when ¢ — 0. An overview of mathematical techniques used
to obtain the limit problem P°, and to show the convergence to the solution of PY, can be
found for example in [21, p.225-247]. Examples of different sequences and limit problems can
be found, among others, in [9],[48].

On derivation of the Darcy law

In particular, dealing with periodic porous media, the function x(x) in €, is a characteristic
function of the fluid part: for x € Q,, x(x) =1 if and only if x € Q,;. Since at the moment we
are interested in macroscopic model describing the flow in €2, only, it is reasonable not to consider
the microscopical problem in the whole 2, but to consider it in some domain D C (2, with
boundary conditions on 0D (we exclude pure fluid and solid parts since they destroy periodicity
and make the problem much more complicated and irrelevant to deriving macroscopic model in
2,). The microscopical problem P, based on Stokes system can be written as:

—uANu+Vp="~f in Q,rND

. V:-u=0 in Q,rND
P u=20 on 0,y N D (1.7)
boundary conditions on 0D

The right hand side f € [L2(D)]?. The porous media structure for the problem P depends on
¢ and is described with the help of x¢:

pr={x €M [ x"(x) =1} O, ={xe[x°(x)=0}

An important role is played by a microgeometry of one period magnified so that it becomes a
cube Y = (0,1)%, namely

Yi={yeY|x(ey)=1}, Y,={yeY|x(y) =0}

The function x is not arbitrary. One have to check that the resulting €27 s are connected, Yy, ¥
have positive measures, and smooth enough boundaries. A discussion on admissible geometries
can be found in [1].

The governing system in €27 ;, determining the problem P is (see [21, p.46))

—ne? AvE +Vpt =1 inQ;fﬂD

V-veE=0 inQ.ND
€. pf 1.
P ve=0 on 082, N D (18)
boundary conditions on 0D

Existence and uniqueness of the solutions for (1.7), (1.8) come from correspondent results for
the Stokes system. In the problems P¢, not only the perforated domain Q¢ depends on ¢,
but also the viscosities ne? become smaller together with the microstructures. To satisfy the
condition P€ = P we should set n := p/&2.
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Remark 1 An alternative way to construct the sequence P is given in [1],[13, p.131]:

—pAu +Vp*=f inQ;fﬂD

V-u* =0 i S, ND

ut =0 on BQ;f NnD
boundary conditions on 0D

P (1.9)

These two sequences (1.8), (1.9) are equivalent since u® = e2v¢. The sequence of solutions {u®}

and also {u®/e} tend to zero as € — 0. The first non-zero term in the asymptotic expansion of
u® has a magnitude of €2. This can be justified by a priory estimates (see [13]).

For the case of homogeneous Dirichlet boundary conditions on dD: v* = 0 in (1.7) and
(1.8), the result concerning the limit problem and the convergence is given in [21, p.46):

Proposition 1 There exists an extension (V=,p°) of the solution (v¢,p°) of (1.8) from Q,,ND
to D such that the velocity v¢ converges weakly in [L?(D)]? to v°, and the pressure p° converges
strongly in L?>(D) \ R to p°. Here (v°,p°) is the unique solution of the homogenized problem,
the Darcy law (the problem P°):

v0 = %]C(f -Vp®) inD
Limit Problem P° : V-v?=0 in D (1.10)
vl.n=0 on 0D

The symmetric positive definite dimensionless permeability tensor K can be calculated as
Kij = / w] (y) dy
Yy

where (w;,m;), 1 =1,...,d are unique Y -periodic solutions of the so-called cell problems:

= Ay wily) + Vymi(y) = e, in Yy
Vy -wi(y) =0, in Yy;
w; = 0 on 0Y5,
fo 7'(-Z(Y) dy = 07

Cell Problems : (1.11)

where Y -periodic function f(y) means that it is defined in R? and f(y + e;) = f(y) for any
yeR ie{l,...,d}, .

Remark 2 In [13, Sec.1] similar result (Darcy law) is obtained for periodic boundary conditions
when D is a square.

Remark 3 The extensions v¢, p¢ are given explicitly in [1],[21, p.52]. The velocity v© is
extended by 0 to the solid part. The pressure in each periodicity cell Y;¥ C D (with microgeometry
like inY):

Y ={yeD|ei* <yf <e(@+1),i=(",...,i% 2%, Y=Y, Y=Y,

is extended to the solid part Y¢; by the constant

3 1
P; =17 [ PO dy- (1.12)
YEil YE,
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Next we need to understand in which sense v, p® approximates the microsolutions v¢,

p°. The convergence of v¢ to v¥ is weak in [L?(D)]?, meaning that for any h € [L?(D)]%:
[p vhdy — [, v’hdy. Let us consider a REV V(x) C D from Sec. 1.2.3 and its characteristic
function xy (y) € L2(D): xv(y) = 1 when y € V(x) and 0 otherwise. The left integral tested
with h = egxy /|V (x)| according to the zero extension in the solid part, gives the k-th component
of the vector v¥(x) (see the expression (1.4) for averaged velocities). If v¥ changes slowly on a
microscale then the right integral is approximately the k-th component of the vector v°(x). We
write it roughly as v& ~ v0(x).

Now we compare average values of micro and macro pressures over some measurable set V.
For small enough ¢, the averages are close enough to each other:

1 / . 1 / 0 ‘ 1 / . 0 155 = 2°llz2 ) 15° — P°ll 2
| PPy - [ pdy| < | [B°-p [ ldy < —————%/ | Pdy < —————
i L7 v 7 v ) VI

due to convergence of p° to p® in L?(D) \ R. If we choose V = V(x), consisting of entire Y;®
only: V(x) = Uiesejv(x) Y5~ then using the extension (1.12) we obtain a connection to (1.4):

1 _
dy— /psdy p°dy = p*(x
vil,? \Z}( |f,|> v, D Y W6 e )

where V§(x) = V(x) N, since |V(x)|/|IE(x)| = |YF/IYF;l = 1+ Y551 /1YF;| for such V(x).
Another choice leading to the same result p®(x) without additional assumptions is V = V7 (x).

The mean value of p® over V is approximately p°(x) if the macroscopic pressure changes
slowly on a microscale, and if V C V(x) (V(x) is a small neighbourhood of D). The assumption
that v, p® change slowly on a microscale is reasonable since there is no microscale in the limit
problem: the resulting X is a constant matrix.

So (roughly speaking), the macroscopic variables v, p° have a meaning of spatially averaged
microscopical variables v¢, p¢ similar to (1.4): v%(x) ~ v¥(x), p°(x) ~ p¥(x).

Last but not the least, we should return to the problem P = P¢. This equality needs
n = u/&%. Plugging it into the Darcy law (1.10) we obtain the Darcy law for P:

= 1K(f Vp°) :
V V0 — 0 in D (1.13)
The permeability tensor of our &-periodic media 2, is
K := &°K. (1.14)

with relation between microvariables u = v®, p = p° and macrovariables v, p® discussed above.

Remark 4 For the alternative sequence (1.9), G°/e? weakly converges to v° in [L%(D)]?, p°

converges strongly in L2(D) \R to p°, (v0,p°) satisfies (1.10) with n = p. u® is approzimated by
e2v0 in the same sense as v¢ was approzimated by vO In particular, u = u® is approzimated by

u’ =0, If we multiply all equations in (1.10) by &2, then we obtain again (1.18), but with u°
instead of v°. u®, p° have a meaning of spatially averaged solution u, p of P. The permeability

is also given by (1.14).

The system (1.13) describes the behaviour of flows in porous media: plugging the first
equation into the second, one obtains a well studied second order elliptic equation with respect
to a single unknown p°:

V- (KVp®) =V (Kf). (1.15)
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For known p°, v0

can be calculated using the first expression in (1.13).
Besides zero normal flux condition like in (1.10), another classical boundary conditions for

(1.15) are Dirichlet for pressure: p° = g; on 0D, or
vl.n=g¢gy, ondD, / g2do =0 (compatibility condition)
oD

(pressure in (1.13) will be defined up to a constant).
For numerical experiments in Chapter 4, we will need permeability of two types of periodic
microstructures: see Fig. 1.2 for Y = Y;UY, in cases CG I and CG II. The permeability tensors

Yo Y2
1 v 1 Y,
f Y Y
CGl CG I
Y1 Y1
0 1 0 1

Figure 1.2: Cell Geometries: CG I (left) and CG II (right).

K1 and Ky were calculated in [47] and [52], respectively:

0.034 0 0.0194  —0.004
Kr= ( 0 0.034 ) » K= ( ~0.004 0.0194 ) (1.16)

The geometry CG 1 leads to isotropic macroscopic medium. For the second case, the matrix
K1 has two different eigenvalues: A\; = 0.0154, Ao = 0.0234 resulting in anisotropic macroscopic
medium.

On derivation of the Brinkman system

Nothing prevents P to be a member of another sequence of problems {’ﬁg}, the latter converging
(in some sense) to another limit problem PY, when ¢ — 0 (see Fig.1.3). The solutions of the

Figure 1.3: Two different sequences {P}, {P*} passing through P.

limit problems P° and P° have also no reason to be the same, or even similar to each other,
since the ways to construct approximations for the solution of P can be different. However, if
two approximations for the solution of P, obtained from P° and P° are quite different from
each other, then at least one of them gives a bad approximation.

Construction of another sequence for our problem P for the case when the porous media
is a periodic distribution of solid obstacles, (e.g., when €, contains blocks drawn in Fig.1.2) is
given in [2]. The geometries of PE are again periodic, with period €. The obstacles building up
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(1s have the same shape, but their size a. tends to zero much quicker than e: lim. o a. /e =0.
The equations are the same as for P, only the domain Q; ;= Qp\ 2, depends on e:

—p AvE+Vp =f in 0, ND

~ V-veE=0 inQ€.ND
€. pf 1.17
P vi=0 on 0, N D (1.17)
vi=0 on 0D

In [2], it was found that depending on the behavior of a. (more precise o, see below) the
sequence {P¢} may have different limit problems. According to the asymptotical behaviour of
the sequence of positive numbers {o}:

1/2
) dxs
elin(%)|/?2 d=2

O =

three cases were distinguished:

e lim.,0 0. = 0: the limit system is again the Darcy law (1.13) with the permeability tensor
K = 02K. 02 makes this tensor small for small ¢ like it was in (1.14))

e lim, o, = o > 0: the limit system is the Brinkman law (1.6) with the permeability
tensor K = 02K, Meff = [

e lim. ;g0 = +oo: the limit system is the Stokes equations with absence of the solid
obstacles.

The exact statement is given in [2, p.266-273] or in a compact form in [21, p.63]. The tensor K
is calculated from cell problems which are different from (1.11).

Of course, for the given problem P with period € and the size of the obstacle a (a < &, but
not necessary a < ) it is possible to choose a function a(e) (d > 3):

gld—(d-2))/2

s

afe) = |

a

=17 (d-2)/2
] e, for arbitrary v > 1, O = [_]

which suggests sizes of obstacles for the problems {PE€}. The sequence {PE} constructed in
this way satisfies the condition {P¢} = P since a(£) = a. We can control the limit problem by
choosing : the first, second or third limit cases appear when 1 <y < d/(d —2), vy =d/(d — 2)
or vy > d/(d — 2), respectively. For example, choosing in 3D v = 3, one obtains a sequence with
the Brinkman system with permeability K& /a as a macroscopic model. Another v or another
a(e) will lead to another sequence {P€}, another limit problem and another approximation for
the solution of P. If the solution of P can be calculated directly, then it is possible to check
whether the approximations are good and which one is better than others. Otherwise, it might
be a difficult task to choose a macroscopic model for P if more than one candidate is known.
A possible situation is schematically drawn in Fig.1.3 where the sequence P¢ going through
P converges, but the limit P° is still “far away” from P, meaning that the approximations
for microscopical solutions work well for P¢ with £ much smaller than . Therefore it seems
reasonable to apply the Brinkman model (and also other models in this paragraph derived
under the assumption lim. ,pa./e = 0) only if a < & for P, otherwise the approximation
can be too rough. But in this case such porous media are idealizations, hardly applicable for
real cases: the obstacles in 3D are disconnected but assumed to be rigid, motionless; porosity
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should be extremely close to 1. Also, for numerical experiments which we perform in 2D for
periodic geometries from Fig.1.2, these assumptions seem to be inappropriate. First, the solid
obstacles are not small in comparison with the size of the unit cells Y. Second, it was obtained
[2, p-232] that in 2D case the (Brinkman) permeability is a scalar which is even independent
on the obstacle’s shape. Our numerical experiments done for example in Section 4.1 show the
importance of the shape of the obstacles. Therefore it is questionable whether these macroscopic
models are able to give reasonable approximations to microsolutions in our cases.

The Brinkman model can be rehabilitated as an approximation to the Darcy model if we
use the same permeability as for the Darcy law : K from (1.14) is very small since £ is a small
distance (with respect to L), and one can expect that the term pK~'u dominates over the
viscosity term g A u in internal part of the porous media where the macro velocity u is typically
smooth (see also the dimensionless form: (1.43) in Sec.1.4.1). The deviations from the solution
of the Darcy system are expected near the boundary of €2, due to variations in velocity, but the
assumptions needed to derive the Darcy law also breaks down there.

One can also start from the microscopical problem P, where the flow is governed by the
Navier-Stokes equations (1.1) instead of the Stokes equations in (1.7). An important role in
classifying such flows is played by the local Reynolds number Reﬁ,"c = pUp€/ ., based on a typical
pore size £, and on typical flow velocity in the porous media U,. The only case we consider
here is the flow in porous media with small Re:f,"c: the convective term is much smaller than the
viscous term, and the Navier-Stokes equations are a small perturbation of the Stokes equations.
The corresponding sequence {P¢} converges again to the Darcy law (see [40]). When the local
Reynolds number increases, the convective terms start to play an important role and the so-
called two-pressure Navier-Stokes system gives a better approximation for the flow (see [13,
p.168]). We will not consider this case.

It is also possible to consider PE like above, but based on Navier-Stokes equations [21, p.65].
The limit problem for the case lim._,g o, = ¢ > 0 is a Navier—-Stokes—Brinkman system:

=V - (effVu) + (pu- V)u+ pK 'u+ Vp=1f in (1.18)
V-u=20

with pefr = p and K = 02K (one can divide everything by p in (1.18) and rescale p.p.f to

obtain exactly the same equations like in [21]).

If we use in (1.18) the Darcy permeability (1.14), then (1.18) is again an approximation to
the Darcy law (1.13), provided that additionally uK 'u dominates over the convective term
(pu-V)u (see a dimensionless form (1.38): the product of Reynolds and Darcy numbers ReDa
should be small).

1.3 Interface conditions

Up to this point our purpose was to obtain macroscopic models for the flow in the porous media
only. We fence ourselves off from fluid part 2y by restricting consideration to D, D C €2, and
setting boundary condition on dD. But in our original problem the boundary conditions are
given on 912, and ¥ = 0§, N J; is an interface inside Q. In this section we discuss some
known approaches to treat the coupled problem between 2y and €2,, when Darcy or Brinkman
macroscopic models are considered in the porous media. The microscopical model doesn’t need
any special interface conditions (see Sec.1.2.1).

It is important to note that if we deal with a macroscopic model in the porous media then
the velocity and pressure variables have different meanings in €2, and €2, although we will use
the same notation for both: u, p (to distinguish them one have just to check where the variables
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are defined: in Q, or in Qf, and whether microscopical or macroscopic model is used). In Qf
they are usual fluid velocity and pressure, but in the porous media €2, u, p have the meaning of
spatially averaged microscopical variables like @, p from (1.4) (see Sec.1.2.3, 1.2.4). The velocity
there has also other names: seepage velocity, filtration velocity, volumetric flux density (see,
e.g., [43, p.5]).

Concerning the values on the interface 3. We will distinguish the interface ”seen” from the
porous part 3, and the interface ”seen” from the fluid part X (Of course ¥ = 3, = X, but if
some value ¢ is discontinuous through ¥, we can write that the jump [¢][s = ¢|s, — ¢|s, # 0).
Depending on the macroscopic model for the porous media flow, different interface conditions
have to be specified on the interface X.

1.3.1 Interface conditions between 2y and 2,(Darcy)

First of all, we consider the (Navier—)Stokes equations (1.2),(1.1) in €2y, and Darcy system (1.13)
in €,. These are different order systems of PDEs, and they need different number of conditions
on Y. If 3 was not an interface but a boundary, then a reasonable choice would be a given
velocity vector (d conditions) for the system in 0y and a given normal mass flux/given pressure
(1 condition) for the system in €2,.

One condition comes from the mass flux continuity through the interface,

u-mls, —u-mfs, =0, (1.19)

where ny, is an outer normal vector to €,. Recall, that u has a different meaning in Qf and €.
This condition is not enough even to determine the flow in €2, since the flux is still unknown.

One usually needs the microscopical model or experimental results to make conclusions on
further macroscopic interface conditions. The sequence of microscopical problems {P¢} with e-
periodic solid matrix in €, constructed as before with the help of characteristic functions x®(x),
and e-independent fluid part Q, was considered in [12],[32],[48, p.147],[23],[24],[25]. Since the
sequence of problems {P¢} is fixed, there is no reason to mark out one of them (P€) as the
"main” problem. From now any ¢ from {g,} can be consider as &, all problems P¢ are ”equal in
rights” and the main purpose is to approximate solutions of P¢ by effective solutions constructed
from P for small enough e.

A condition, satisfied by effective solutions on the interface is a candidate to become a
macroscopic interface condition. The crucial role is played by the fact that in the sequence P
the permeabilities for 2, (K = £?K) tend to zero when ¢ — 0, roughly meaning that the same
pressure gradient (or force f) in Qf and €, leads to much smaller mass flux in €, than in Qf
and also the same mass flux needs much higher pressure gradient (or f) in €, than in Q. The
words "much smaller” and "much higher” have a sense since instead of unique problem where
such qualifications are relative, one deals with the sequence of problems where the qualifications
become more and more evident as € — 0.

The Sanchez-Palencia, Ene, Levy conditions

In [12],[32] the authors H.I. Ene, E. Sanchez-Palencia, T. Levy distinguished two qualitatively
different kinds of flow, according to the question whether the velocities or the pressure gradients
are comparable in , and Q;:

Case A. The velocity in the free fluid part is much larger than the filtration velocity in the
porous medium, the pressure gradients in both subregions have comparable magnitudes. With
respect to the interface this case was called ”"near parallel flow” in [26, p. 68])

Case B. The velocities in both subregions have comparable magnitudes. The pressure gradient
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in the porous media is much larger than in the free fluid part and is almost perpendicular to
Yp. This case was called "near normal flow” in [26, p. 68]).

The classification is important since the conditions proposed in [12],[32] are different for
Case A and Case B.

Case A: uly, =0 ply, =pls, (1.20)

The filtration velocity (in €2,), being negligible comparing with velocity in €y, is approximated
by 0. The first condition makes it possible to solve the flow in Q¢ (at least the interface creates
no problems). The pressure field in €2, can be found by solving the elliptic equation (1.15) with
the given pressure condition on ¥, taken from the known pressure field in €2; due to the second
condition in (1.20). In €, one can use the velocity field obtained from the Darcy law instead of
0. It is small (of order £? if we deal with the sequence of problems) and its normal component
is small (but non-zero in general). This makes the condition (1.19) only approximately true.

The Case B was considered in [32], and the following conditions were proposed additional
to (1.19):

Case B: pls, = C; u-tily, =0 i=1,...,d-1 (1.21)

Here C is an unknown constant, t; is a tangential vector to the interface so that n, t1, ..., t4_1
is an orthogonal basis. To have a comparable velocity field, the pressure gradient in €2, should
be much larger than the one in €2, so that although p|s, is not a constant and depends on the
flow in €2y, its variation is negligible in comparison with the pressure variation in €2,. Here it
might be possible to solve the problem in €, first, if, for example, the problem allows to choose
the value for the constant pressure arbitrary (pressure is often defined up to a constant), or
using additional information like the total mass flux through €,. If the flow in €, is known,
then the Dirichlet condition for the velocity is given on 3; due to conditions for tangential
velocity components (1.21) and the known normal flux from (1.19).

The flow type classification needs a qualitative information about the flow, but should be
done before solving the problem, since the choice of interface conditions depend on the classifi-
cation. If the flow is originated by the boundary conditions and not by the right hand side force
f, then the classification often can be guessed from the geometrical information (subdivision of
Q into €y, Qf), and from the boundary conditions on 9€2. In [48, p.147] two typical examples
for both cases are presented: Case A — a porous body is embedded in a domain filled with fluid
(the flow in the porous medium is a consequence of the flow in the free fluid region); or the
opposite situation for the Case B — when the fluid region is surrounded by the porous medium
(the flow in the cavity is a consequence of the flow in the porous medium).

In the Chapter 4 we will consider some flow problems where the boundary 02 is solid
(with no-slip boundary condition) except one connected part for ”Inlet” boundary condition
(Sin C 0€) and another connected part with ”Outlet” condition (S,u; C 0S2¢). Each of Qf
and €2, can be consisting of connected subdomains Qz;, Qf,, respectively. We will deal with at
most two such subdomains for €y, and €2, will be always a single connected subdomain. If

1 is connected, then we have Case A. If 1 is disconnected, and Sin, Sout belong to different

ﬁj«, then the porous media separates the Inlet from the Outlet, and this is a typical filtration
problem corresponding to the Case B.

If we have several connected subdomains . , Q;,, and several parts of the boundary (placed

in different Q?c) where the flow comes in and goes out, then the presented classification can
become much more difficult, or even impossible.
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The Beavers—Joseph condition

G.S. Beavers and D.D. Joseph [6] performed experiments with fluid flow in a channel over a
porous media block (see Fig.2.1). A uniform pressure gradient was maintained in the longitu-
dinal direction in Q; and €,. They found out that the mass flux through €2; is larger than
what could be predicted by the Poiseuille flow. The last corresponds to using no slip conditions
on the channel boundaries. In our notations it would mean considering Case A, and posing
conditions (1.20) on the interface. They explained this effect with appearance of a slip velocity
on the interface, and have found an empirical condition which was in good correlation with the

experimental results:
?(., 0) = 282
Y VK
Here € is above (0 < y < h), and €, is below the interface. The latter is located at y = 0. u is a
horizontal velocity in 2y and @ is a (uniform) horizontal filtration velocity in Q,, K is a scalar
permeability and apy is a [6]:” dimensionless quantity depending on the material parameters
which characterize the structure of permeable material within the boundary region”.

The following table is presented in [6]. It contains the measured slip coefficients aps, the
scalar permeability K, and the estimation for the typical pore size £&. We add the column with
numbers K = K/&2 as a dimensionless permeability (the length was initially given in inches. 1
inch =~ 0.0254 meter (m)):

(u(-,0) = Q) (1.22)

Porous medium | ap; | K(m?) g(m) K/&
Foametal A 0.78 | 9.7-10=° | 0.0004 | 0.058
Foametal B 1.45 | 3.9-10°% | 0.00084 | 0.053
Foametal C 4.0 | 8.2-107% | 0.0011 | 0.063

Aloxte 0.1 | 6.5-10 '° | 0.00033 | 0.0059
Aloxte 0.1 | 1.6-107° | 0.0007 | 0.0034

In [7] the condition was retested and laminar-turbulent translation was investigated, and in [8]
it was verified for gas flows.

Saffman’s modification of the Beavers—Joseph condition The Beavers-Joseph condition
establishes a connection between velocities in ¢ and €2,. The systems in Q; and 2, should
be solved simultaneously. In [49] P.G. Saffman proposed a modification of the Beavers—Joseph
condition which contains only variables in €2:

_ VEou

ul(-,0) = (-,0) + O(K) (1.23)

apy 0y 7
since the filtration velocity is much smaller than the slip velocity %(0). In turn, the slip velocity
can be small compared to the maximal velocity in €, (for example when the channel’s width
is much larger than v K) then setting tangential velocity to zero like in (1.20) also gives a
reasonable approximation.

On mathematical justification of interface conditions

In [23]-[25] W. Jager, A. Mikeli¢, N. Neuss continued to investigate the interface problem from
an asymptotical point of view, according to the sequence of problems P¢. The 2D geometry 2
was defined as 2 = (0,b) X (Ymin, Ymaz), Q, = (0,0) X (ymin,0), Qp = (0,0) x (0, Ymaz)- Ymin,
Ymaz are either infinite in [23] or finite in [24],[25]. The e—periodicity assumption on the solid
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microstructure breaks down near the interface y = 0, but the problem still has e—periodicity in
the direction OX.

Restricting themselves to this geometry, the authors treated the problem rigorously for both,
Case A and Case B. Although the exact microsolutions (uf,p®) cannot be explicitly written,
their approximate solutions were constructed with the help of several auxiliary problems. Each
of them is either a macroscopic problem, or a cell problem (in Y'), or a boundary layer problem
(in Z; defined below). This approach needs much less computational resources, compared to
solving the microproblem P¢ itself. The approximation errors were estimated as functions of ¢,
tending to zero when ¢ — 0 (this makes possible to estimate the approximation error for P%).

The boundary layer problems use the periodicity in the direction OX. The boundary layer
Z = (0,1) x R is subdivided into solid and fluid parts with the help of the é&-periodic function

x(x):

Zi={z= (1,2 e Z |22 <0,x(éz) =0}, Z;=2Z\Zs, S=10,1]x {0}

In [23] the micromodel is based on the Stokes system. The flow regimes corresponding to
Cases A and B were originated due to different choices of the right hand side f depending on ¢.

For the Case B, the approximation satisfies continuity of the normal flux (1.19), and the first
condition in (1.21) postulating a constant pressure along the interface. Instead of the second
condition in (1.21), the approximation for the tangential velocity has a jump on the interface
(see [23, p. 428,429])

The investigation of the Case A started in [23] was continued in [24],[25] for the parallel flow
in a channel as it was in Beavers—Joseph experiments. The no-slip condition from (1.20) (which
leads to the Poiseuille flow in 2¢) was found to be a first order (in €) approximation for the
flow in Q. This approximation can be further improved by a velocity field (effective velocity)
which has a zero vertical velocity (v = 0) and a non-zero horizontal velocity (u) at the interface
satisfying the Saffman’s form of the Beavers—Joseph condition:

u(z,0+0) = —ec{’lg—;‘(x, 0+0) (1.24)

To simplify notations, we refer to the following interface condition

u(z,0+0) = ag—Z(:v, 0+0) (1.25)

as to Beavers—Joseph condition in a Saffman’s form. The parameter o which is used in (1.25) is
related to similar parameters apy in (1.22),(1.23) and C% in (1.24): a = % and o = —eC¥,
respectively. In both cases « is O(¢), if one estimates its dependence on the typical pore size.

The pressure field in Q; has a uniform gradient parallel to the interface. To obtain the
pressure field in 2, one should solve the elliptic equation (1.15). The pressure on the interface
from the side of €2, (needed to pose the boundary conditions), can be found from the pressure
jump condition:

p(z,0 —0) = p(z,0+0) + qu,lg—Z(x, 0+0). (1.26)

For more details see [25]. In order to obtain the constant coefficients C%, C%, the following
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boundary layer problem should be solved:

( — Ay Ebl tvywbl =0 in Zf
Vy_.- Br =0 in Z;
Boundary By =0 on 0Z,
lai(lar : 3 [ﬁ“bl]s (,0)=0 on S (1.27)
roblem
g [(vygbl - wbll)e2] 5 (n0)=e; onS
Ebl, wp; are 1-periodic in y'.

\

where [¢]g = ¢(-,04+0)—¢(-,0—0). The coefficients can be calculated from the solution (ﬁbl, W)
as follows: ) .
ot = [ st o, ol = [ et 0" (1.28)
0 0
Remark 5 We note, that the constants C? and C® will be used later in the Section 2.1 to

determine coefficients in a stress jump condition for the Brinkman equations, when we consider
another model for the coupled flow.

To have the pressure continuity like it was proposed in (1.20), it is sufficient that the &-
periodic function x(x) is symmetric with respect to some vertical line z = z.: x(z,y) =
x(2z+ — z,7). In the general case C” # 0 (see Remark 3.9 in [25]). In the Chapter 4 we
will perform direct numerical solutions for microproblems for geometries with symmetric and
non-symmetric obstacles in artificial periodic porous media.

On solving practical problems

Practical applications need robust algorithms, working well for problems having complicated,
possibly disconnected domains €2, €, with curved boundaries and interfaces, where the flow
classification (Cases A,B) can be either complicated or impossible. It often means that the
interface conditions, derived or experimentally verified for model problems, should be generalized
and modified in order to be applicable in a priory unknown situations. They should be valid
for possibly large range of applications and (desirably) to lead to well-posed problems. Some
recent works in this direction based on domain decomposition approach are [31],[10],[11].

1.3.2 Interface conditions between 2; and ,(Brinkman)

The Brinkman system is often used as a flow model in the porous media. The main reason is
that it has similar form with the equations, governing the flow in the free fluid part. If instead of
porous part we have another fluid part, then the interface would be an imaginary line dividing
the fluid into two subregions. The interface conditions in this case are the continuity of the
velocity and continuity of the normal component of the stress tensor. The first one reads:

u|2f = u|2p. (1.29)

The total force on a small element of the interface, ds = nds, from the side for which n is an
external normal is given by [34, p.56]:

dF = [~ ji(Vu + Vu®) + pI + puu’|nds
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and the force balance for incompressible viscous Newtonian fluid together with (1.29) leads to
continuity of the normal stress tensor through the interface:

Tn|g, = Tnlg,, T =pA(Vu+Vu')-pl (1.30)

or further to
Tl’l|§]f = Tn|§]p, T = ;]Vu —pI (131)

if /i is continuous through the interface (see section. 2.2). With i we denote a function defined
in Qp uQ f

~ 14 in Q f

g { fefr 0 SY (1:52)

The velocity continuity condition (1.29) is usually used as the first out of d conditions on the
interface, when dealing with the Brinkman model in €, and with (Navier-)Stokes in ;. And
it seems to be more adequate, compared to the jump conditions needed for the Darcy model. A
reason is that the micro-velocity is continuous and its spatial average is also continuous, although
jumps don’t prevent appropriate approximations in integral norms (if the rapid velocity changes
in a small boundary region are substituted by a jump).

But neither the stress tensor T nor T has the same physical meaning for the Brinkman
equations in €2, as they have in Qf for (Navier—) Stokes equations. In the porous media the
influence of the solid matrix is not taken into account by considering stress continuity. Also
on the interface: the influence from the free fluid part is given by Tn to €2,; and €, but
it is unclear how to express the balance from the porous part in such situation (see also [43,
p.17]). The conditions (1.30), (1.31) are therefore purely mathematical. Some articles using the
conditions (1.29), (1.30) or (1.31) are [19],[51],[3],[39], [42],[38],[27].

An effective viscosity, perr, can be introduced with twofold purposes. From one side, to
improve the model in internal part of €,, as it is proposed, for example, in [36] or [27]. From
another side, to control the flow behaviour in the region near the interface (we have already
mentioned that there the viscosity term plays an important role).

In [42], G. Neale, W. Nader considered a flow in a channel like in Beavers — Joseph exper-
iments, but with Brinkman model instead of Darcy model in 2,. Using an exact solution to
corresponding ODE equation, they found that the effective viscosity p.rs can be found from the
relation \/pefp/pu = apy to provide a good agreement with the Beavers-Joseph model based
on Darcy law. It was noted in [26, p. 75] that \/pefs/p is a parameter of the porous media
itself (it is defined in €2,), and ap; depends on the microgeometry of the interfacial region (it
is defined on X). Therefore the usage of this approach is quite limited.

In [38] the authors N. Martys, D.P. Bentz, E. Garboczi made numerical experiments with
the 3D Stokes flow in the channel with randomly generated solid matrix in €2,,. Then they fitted
the Brinkman’s 1D macrosolution for different 1.7y with the averaged Stokes microsolution to
obtain a dependence of pu.f; on porosity. Good fitting was obtained for porosities between 0.5
and 0.8 (similar purposes we will have in the Chapter 4).

M. Sahraoui and M. Kaviany in [50] also did numerical experiments and comparison of the
microsolution with the macrosolution with Brinkman model (the solid matrix in the porous
medium was periodic and constructed from cylinders). They reported that for the choice of
pref s proposed in [42], the macrosolution differs from the averaged microsolution in a small part
of the porous region near the interface. They also considered models where the effective viscosity
and permeability change near the interface.

Remark 6 The effective viscosity terms that may appear in the Brinkman equation: pery A,
V- (eprV), V - [perr(Vu+ Vul)] are the same if pess is a constant in Qp, have different
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form otherwise: the k-th components of these vectors are respectively:

=0
ou 0 —
,ueffAuk, ,ueffAuk+Vpeff-Vuk, ,ueffAuk+Vueff-Vuk+Vueff- (W>+w (V : 11) .

Ochoa-Tapia, Whitaker interface conditions: Based on the local volume averaging
technique for Stokes system, J.A. Ochoa-Tapia, S. Whitaker [44], additionally to (1.29) proposed
the so-called stress jump condition

n, - (uVu —pI) s, —np - (pegrVa —pl) |y, = pMau. (1.33)

Here n,, is the unit normal vector to the interface external to the porous part €2, the second order
tensor coefficient M should be determined from experiments. M was decomposed there into
constitutive parts, but we will not use it since the problem of their experimental determination
is more complicated than for M. The magnitude of M was estimated as 1/v/K. A one
dimensional investigation of the conditions (1.29),(1.33) were undertaken in [45] [28], [29] for
the channel flow when the 1D solution can be constructed and compared with the results of the
Beavers—Joseph experiment.

Further development is given in [46], where the Navier—Stokes equations are considered, and
as a result the stress jump condition (1.33) is generalized by adding a term containing a fourth
order tensor that should be experimentally determined. We will not deal here with this more
complicated condition.

To simplify the notation, we include p into M: M = pM. The condition (1.33) can be
rewritten using the notation from (1.31) as

(T|s; — T[s,)n, = Mu. (1.34)
An alternative condition can be obtained if we substitute T by the stress tensor T:
(Tls, - T|s,)n, = Mu (1.35)

but we don’t consider it here. Excepting some test examples for the algorithm in Chapter 3, we
will use e = p in numerical simulations, and consequently the condition (1.34) is the same
as (1.35) (see Section 2.2).

On solving practical problems The conditions mentioned here like (1.29), (1.30)/(1.31)
can be used for quite general types of geometries without a priory classification. The numerical
methods can be based on similar discretization in the whole domain but with some modifications
specific for porous, fluid parts and interfacial region. In this thesis we propose a numerical
method for the case with interface conditions (1.29), (1.34).

1.4 (Navier—)Stokes—Brinkman macroscopic model
Let us consider the so-called Navier-Stokes-Brinkman system of equations in Q7 U Q):

~V - (iVu) + (pu-V)u + pKlu+ Vp = f,
(1.36)

Veu=0

where i is defined in (1.32), K is the (Darcy) permeability tensor in €2,, and K~' = 0 in €.

According to the fictitious domain method [3], it is also possible to consider (1.36) in Q, by
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choosing a small number § > 0 and setting there either i = p, K =6l or it = p/d, K = 0I. We
will often deal with the so-called Stokes-Brinkman system: (1.36) without the convective term
(pu- V)u:

~V - (iVu) + pKlu+ Vp=f.

ol (1.37)

The (Darcy) permeability K for the é-periodic porous media is symmetric and positive definite,
and can be determined from (1.11), (1.14). K ! is well defined. For the real porous media
K is usually obtained experimentally. In the Table on p.24, the values of typical pore size &,
permeability K = KT and K/&2 are presented for some real porous materials. One can check
that the formula (1.14), separating the magnitude of the permeability £2 from the geometrical
properties K for periodic porous media, also has a meaning for the real porous materials. The
existence of K~ comes from the physically reasonable assumption that if we have a nonzero
pressure gradient Vp in the porous media then the resulting flux vector u should be non-zero
(using the Darcy law: u = —KVp/pu). It is also reasonable that the angle between u and —Vp
should always be acute. This means that K is positive definite: (KVp)-Vp = pu-(—Vp) > 0.

1.4.1 Dimensionless equations

Let us define a dimensionless coordinates x, and variables u,, p. (see [16, II,p.12]):

x=Ix,, ux)=Uu(x), pX)=pU%p.(x), [AX)=pi(x), £x)=pgf(x.),

where L is a characteristic length for the whole problem (see Fig.1.1), U is a characteristic
velocity (for example the maximal Dirichlet velocity on S;,), ¢ is the gravity acceleration.
The spatial derivatives changes in the following way for some function ¢(x) = ¢.(x):

0 ¢, 0. orl 1 9
5500 = 55 (x(x)) = Ej: P, (%)) 55 = za—m@(x*)

and formally V = L 'V,. If we change from (u,p) to (u,,p.) in (1.36) and multiply the
resulting momentum equations by L/pU? in order to have 1 in front of the convective term we
get:
_pULLV* : (ﬂ*v*u*) + (u* : v*)u* + %Kﬁlu* + Vips = %f*
Vi-ue=0

Re = pUL/u is a Reynolds number (corresponding to macro length L), Fr = U/\/Lg is a
Froude number. uL/(pU) = L?/Re, K=! = &72K~!. Hence it is convenient to define a Darcy
number Da = (£/L)? to obtain a dimensionless system with three dimensionless parameters Re,
Da, Fr. instead of (1.36) (we omit stars which denote the dimensionless variables):

—2V- (“‘;JVu) +(u-V)u+ g K 'u+ Vp = 75f

1.38
V-u=0 ( )
in a porous part €2, for macro simulations and
_1 . - L
e Aut (u-Viu+ Vp = 55f (1.39)

V-u=0

in the fluid part €2y for macro simulations or in €2y U £, for micro simulations. For practical
problems the right hand side f is usually the density of the gravity force f = pgey, where
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€, is a unit vector in the direction of the gravity force. But the gravity force with variable
direction enter an additional undesirable factor in the model. It is an advantage of computational
experiment in comparison with physical experiment that we can easily turn it off and to consider
f = 0 avoiding the uncertainty related to the choice of F'r and the direction e,. Formally this
term can be neglected when the Froude number is large. In any case the external force can be
included into the numerical algorithm without evident difficulties. But there can be another
reason for non-zero right hand side: it is a usual approach in theoretical treatment to transform
the problem with non-homogeneous boundary condition into similar problem with homogeneous
boundary condition having an additional item in the right hand side.

Let us recall that on p.21, in order to justify the usage of the Brinkman equation for the
same problems where the Darcy law is proved to be valid, we used the argument that the third
term with permeability is much larger than the other velocity terms in the equation. Formally
this needs that the Darcy number Da is small and the product of Reynolds and Darcy numbers
ReDa is small (1.38). Near the interface where high gradients may occur, the flow behaviour is
determined mostly by the interface conditions. Using the dimensionless variables we obtain:

U U
l'lp . (%V*u* — pU2p*I> ‘Ef — np . (%%V*u* - ,OU2p*I> |Zp = UMu*

u*|2p - u*‘zf =0

We can scale M as it was proposed in [45] but instead of VK we can use & M = M/&
where M is dimensionless. If we multiply the first interface condition by 1/(pU?) and use that
M = uM = pM/E then after omitting stars we will obtain the dimensionless interface stress
jump condition:

n, - (éVu —pI) 2, — 1y (u;iéVu —pI) ls, = ReL\/D_au (1.40)
or in particular (M = 0) the continuous stress condition:
n, - (iVu —pI) v, —np- (MiVu —pI) |z, =0 (1.41)
Re f u Re »
Also the dimensionless velocity is continuous on the interface:
uls, —ulg, =0 (1.42)

Most of our examples are based on the dimensional system (1.37) instead of (1.36). It leads to
dimensionless systems (1.38), (1.39) where the term (u-V)u is absent. In this case the Reynolds
number loses its importance since we can multiply the first equation in (1.38), (1.39) by Re and
renormalize pressure as p, = Rep to finish with

-V (“—jf—LVll) + 5-K"'u+Vp=0

V.ou=0 in ©, (Macro problem) (1.43)
_Avu_tzpozo in Q; or in Qf UQ,; (1.44)

where the star was again omitted from p, and the interface conditions are

M
n, - (Va—pl)|y, —n,- (MZfVu —pI) Iz, = \/T_au. (1.45)
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In the particular case M = 0, when the continuous stress condition is written as:

n,- (Vu—pl)|s, —n,- (“;ffvu—px) Iz, =0 (1.46)

The other interface condition is still (1.42).
The Darcy law is just the first equation in (1.36) without first two terms. We can scale it
exactly as it was done above for Navier—Stokes—Brinkman system to have a dimensionless form

1 1
mKﬂu +Vp=0, or further D—aICflu +Vp=0 (1.47)
for Stokes—Brinkman system.

The dimensionless equations we will use for the numerical experiments in the Chapters 4
and 5.
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Chapter 2

The Stokes—Brinkman model with
stress jump condition

In this chapter we discuss some theoretical aspects related to the (Navier-)Stokes-Brinkman
model accomplished with the interface conditions (1.29), (1.34), as proposed in [44].

In the Section 2.1 we consider the well investigated case of parallel flow in a channel over a
porous medium (this problem has been studied both from experimental and theoretical point of
view in [6]-[8],[49],[24]-[25]). Our purpose is to show that at least for the flow regime we consider,
the solution, corresponding to the (Navier—) Stokes-Brinkman model is able to approximate
the solution, corresponding to the (Navier—) Stokes-Darcy model which satisfies the Saffman’s
modification of the Beavers-Joseph condition [49] and the pressure jump condition, proposed
by Jager and Mikelié.

In more general situations, the stress jump coefficient M can be a matrix-valued function
on a curvilinear interface. The vector condition (1.34), written in scalar equations may have
a different form at different points. To simplify the analysis of the conditions at a particular
point, to compare the conditions at different points, we introduce in Section 2.2 a notion of
”laboratory system” for any point on the interface. In the ”laboratory system” the conditions
have a fixed form, similar to what was for the channel in the Section 2.1. We investigate how
the coefficient M at a given point on the interface is related to M’ in the ”laboratory system”.
We also compare (1.34) with (1.35).

In the Section 2.3, we apply the concept of generalized solutions to the linearized version
of our problem (Stokes—Brinkman). Although there is a class of M for which the problem has
the unique solution, in general, the solvability is not obvious and can be related to a spectral
problem. And we present a problem where for some M the uniqueness of the solution is violated.

2.1 Parallel flow (Beavers-Joseph experiment)

Let us consider a 2D channel, (z,y) € Q© = (00, Z4+00) X (—I,h), where [,h are positive
constants, and T, T400, T—co < T400, are finite or infinite. The solution (u,p), u = u(z,y) =
(u(z,y),v(z,y)), p = p(z,y), satisfies (1.2) in Qy and (1.37) in Q, with f = 0, as well as
conditions (1.29), (1.34) at the porous fluid interface y = 0, and the no-slip conditions u = 0
on the lower boundary y = —I and on the upper boundary y = h. We choose p.yr, K to be
constants in (2,. K does not necessarily correspond to an isotropic porous medium, and can be
a tensor. We will not be interested in the solution in the whole channel 2, but only in a part
of it, Qrar = (Tmin, Tmaz) X (=1, h), where Q, N Qror = (Tmin, Tmaz) X (=1,0), Qf N Qyper =
(Zmins Tmaz) % (0, h), (see Fig.2.1). The exact subdivision of Q into €, and Q in the other part

33
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of ©Q can be unknown together with the left, right boundaries and boundary conditions there.
This lack of information plays no role, since we will consider only a fully developed flow regime
in Q¢4 in the sense that g—g = 0 there. This rather strong restriction aims at obtaining an exact
solution in 274,. The analytical solution can be used for several purposes:

e in the investigation of the solutions behaviour,

e in comparison with the Navier-Stokes-Darcy model and interface conditions proposed for this
model,

e in determination of the coefficient M,

e in testing of numerical algorithms, etc.

In practical cases, we expect that for long enough channels, in the regions far away from the

entrance (we used the word far” in Q,,) this flow regime may approximately occur: 2% = 0.
f g y oz

tau

So let us suppose that 57 = 0 in Q4. Using the incompressibility condition

ou ov

in Q) N Qg and Qf N Qfy,p, we have g—; z,y) = 0 there. If we take some line z = ¢ in Qg

we have

U(wan) =v *’L‘Oa x()a d§ =0 in anQfa'r-

(
v(zo,y) = v(zg, — / (20,€)dE =0 in Q, N Qgqr,
/5
Because of boundary conditions v(zg, —l) = v(xg,h) = 0, and accounting for g—;(x,y) =0, we
find that v(zo,y) = 0, and therefore v(z,y) = 0 in Q4 since zp is an arbitrary point from
(Tmins Tmag ). Additionally, u(z,y) = u(y) there. The incompressibility condition has played its
role and we can forget it since any vector function in a form u(z,y) = (u(y), 0) satisfies it. The

momentum equations now are:
0%u Op

“a_yQ( y) = 5. (2:9) (2.1)
g_p( y) =0 (2.2)
in Qf N Qfm«; and
Neffg—;;(y) — prnuly) = g—i(x,y) (2.3)
~prar(y) = 5 (y) (2.4)

in ), N Q¢4 We have used the fact that % =0 in Q¢4 implies % = 0; {k4j} are elements of
K-1.

Remark 7 It was also possible to consider the Navier—Stokes—Brinkman model in the channel:
(1.1) in Qy and (1.36) in €y, instead of (1.2) and (1.37). Anyway, v =0 and % = 0 implies

that the convective terms
P\ " ox oy )’ P\ %oz oy

disappear, and the momentum equations will be exactly (2.1)-(2.4).
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From (2.2) and (2.4), the pressure can be written as

p(x,y) = p(.’L‘) in Qf N Qfar

0
p(oy) = ila) + poear [ w() e in 20 O,
y
where p(z) = p(z,0 — 0). g—g(w,y) = %(m) doesn’t depend on y in ©, N Q4. Hence, in (2.1)
and in (2.3) the left hand sides depend on y and the right hand sides on z only. If F(y) = G(z),
then F(y;) = F(y2) = G(z1) = G(x2) = const and the constant doesn’t depend on z, y. Thus
the momentum equations (2.1) - (2.4) can be rewritten as

pu(y) = Py, p(z,y) =p(z) =p}+ Prz in QN Qg (2.5)

0
pefru’ (y) — pruiu(y) = P, p(z,y) = pg + Py + pkor / u(€) d€ in Q, N Qper.  (2.6)
y

Here Py, p?c, P, p?, are some constants.

Now we consider the interface conditions. Continuity of the velocity implies (0 — 0) =
u(0+0) =:u(0). We assume that the coefficient M is a constant matrix along the interface.
The normal vector to the interface is n = (0,1)7. The stress jump conditions (1.34) are:

pu' (04 0) — peppu’ (0 — 0) = My1u(0) —p(z,0 +0) + p(z,0 — 0) = Mu(0).

(it is a particular case of (2.45), when v = 0). If we plug the expressions for pressure from (2.5),
and (2.6) into the second interface condition, then we get

—p% +p2 - Pf.’L‘ + Pp.’IJ = Mglu(O)

and consequently Py = P, and —p? + pg = M>51u(0), since the right hand side doesn’t depend
on z. Thus, we can simplify the notation: P := —P; = — P, p? = p(}. The constants P and p°
can be considered as input parameters. Without loss of generality we can set P > 0 in order to
have the flow in the positive direction. From the 2D problem we came to the boundary value
problem for ordinary differential equations

u(=1) =0, (2.7)

—pesru’(y) + pruuly) =P,y € (=1,0), (2.8)
u(0 = 0) = u(0 +0), (2.9)

p! (0 + 0) — pregpu' (0 — 0) = Myu(0), (2.10)
—pu"(y) =P, y€(0,h) (2.11)

u(h) =0, (2.12)

)

If u(y) is known then the solution of the 2D problem can be calculated as u(z,y) = (u(y),0
for the velocity field and
p(z,y) =p’ = Pz, y € (0,h); (2.13)

0
p(z,y) = p° — Pz + Myu(0) + lmm/ u(§)d¢, ye(-=1,0) (2.14)
y
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for the pressure field. The general solution of (2.8),(2.11) is given by

P ~ -
uy) = 5 +Cre™V + Coe in (=1,0) (2.15)
Py? .
u(y) = _ﬂ +Ciy+Co in (0, h), (2.16)

where B = pkKi11, A = \/B/Ueff- We note that 11 > 0 since K~! is positive definite. The
constants Cj, Cs, Cy, Cy are free parameters of the general solutions, they should be fixed
from the interface and boundary conditions (2.7),(2.9),(2.10),(2.12). These constants will be
determined later in (2.24)-(2.26).

2.1.1 Approximation of the Saffman’s interface condition

The flow in the channel over a porous medium is well investigated (see Section 1.3.1). Instead
of solving the problem with M1, My considered as known parameters, we can try to determine
them from the known behaviour of the flow. From the Beavers—Joseph condition in a Saffman
form (1.25), we have
ou
Ue (04 0) = 6*’iyff(0+0) a> 0.

The effective flow, ucsrf = (uesr(y),0) can be obtained in Q7 N 4, using no-slip condition at
y = h, and Saffman condition at y =0

Py? Ph? Ph?
=— . 2.17
st =~ Y o ' T v o) (2.17)

In this case the flow is independent from the flow in the porous media (the initial Beavers—Joseph
interface condition (1.22) depends on the Darcy velocity in the porous media).

We search now M7, such that the solution to (2.7-2.12) for My, = M, satisfies u(y) =
ueff(y) for y € (0,h). The constants Cy, Cy in (2.16) are already fixed by C}, C5 from (2.17).
The other two constants: Cf, Cg in (2 15), which correspond to this situation we also mark with
stars: Cl, 02 The unknowns Cl, CZ, M, should satisfy the system of linear equations

2.7) = P/B+Cie; +Cie =0
(2.9) = P/B+Ci+C5=0C3
(210) = | pCf — pesM(Cs — CF) = M7, C5

Some notations, which we often use in this section, are:

B = pk11, A=,/ a k11, exr =exp(xAl), Er=e;te_. (2.18)
Keff

From the first two equations above, we calculate C}, Cj:

~ 1—e )P/B+Cje_ ~ 1—e)P/B+C3
Cik — _( € ) E/ +Cse , C; — ( 6_|_) E/ + 26+. (219)
The coefficient M{,, that we are interested in, is given by
)2 E+ 12 AP E_|_ -2
My =5 —pepp Az + ngB . (2.20)
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It depends on C3, E4, E_, and consequently on macroscopic geometry parameters h,l. This is
not in accordance with the assumption, that M7, is a local characteristic of the porous media
near the interface. At the same time, u.;; is not an exact microscopical solution in ,, but
only an approximation. Further, the Saffman’s form of the Beavers—Joseph condition needs the
assumption h/v/K > 1 That’s why we can try to simplify the expression (2.20), neglecting
small terms. The aim is to obtain such M1, which doesn’t depend on macroscopic parameters,
but still leads to a solution u(y), which is close to u.ss(y) in (0,h). If we fix certain porous
medium, then the parameters a, A\, B, E1, C5 will be just numbers, and a decision, that some
numbers are small or large enough comparing with others, is subjective. But if one considers
a sequence of problems P* for e-periodic porous media, as it was done in [24],[25] (see Section
1.3.1, p.25) then the parameters become e-dependent and it is possible to compare them when
¢ = 0. The effective solutions of macroscopic problems P¢;, were shown in [24],[25] to give an
appropriate approximation to the microscopical solutions of P¢ for small enough . To compare
the asymptotic behaviour of parameters and variables as € — 0 we use the following notation:
e f() = olg(e)): im0 £(2)/g(e) = 0;

e f(e) = O(g(e)): there are constants C, ey > 0 such that |f(g)/g(e)] < C for € € (0,&p)-

e f(e) ~g(e): f(e) =O0(g(e)), g(e) = O(f(€)). Some parameters appear in numerators as well
as in denominators — they should be estimated from above together with their inverse.

We have two primary e-dependent parameters: K and «. Others are either e-independent
or depend on it through K and «. The (Darcy) permeability of our e-periodic porous depends
on ¢ as K = K(¢) = €2K (see (1.14)). K~! is positive definite and therefore diagonal elements
of K~1: 3; are strictly positive. K1 = ¢ 2! has elements Kij = Kij(e) = 572%1-]-. Therefore

BN6_2, )\28_11/ a %11N€_1.
Ueff

Consequently, A\l ~ ¢~1. Hence e = e tends to infinity quicker than e, and e_ = e~ tends
to zero quicker than ", for any n € N. For arbitrary n € N, e_ = 6;1 = o(e").

E 2e_ E, -2 e —1

“E o1 = 140(e), LS 1427 =140

E_ er —e_ E_ e+ —e_

The coefficient « in (1.25) depends on ¢ as a = —eC?. C? < 0 can be calculated from (1.28)
after solving the boundary layer problem (1.27). Therefore C5 ~ ¢, and the terms in (2.20)
have the following asymptotical behaviour:

1 HepfAPEL -2

E
B et e
a"F “eff’\E_ © CiB E_ (2.21)

The third term in (2.20) is small compared to others, and it can be neglected. So we simplify
(2.20) up to
My, = g — fef A, (2.22)

which is independent of the macro geometrical parameters. If we set this M1 into (2.7)-(2.12),
the solution u(y) for y € (0, k) will be of course different from uff(y).

To estimate the difference between these two solutions, we will first obtain expressions for
Ci, Ca, C1, Cs, such that u(y) from (2.15),(2.16) solves (2.7)-(2.12), provided M;; is known (for
example from (2.22)). The linear system for unknowns C;, Co, 6’1, Cs is given by

(2.7) = P/B + é1e+ +Cre_ =0
(2.9) = P/B+Cy+Cy = Co
(2.10) = uCr — ,ueff)\(CQ —Cy) = M11Cy
(2.12) = —PE L Cih+Cy =0

(2.23)



38 CHAPTER 2. ANALYSIS OF THE STOKES-BRINKMAN MODEL

y velocity at Xg pressure at Xg
h
y
0 o o X
Qp
Qfar

Figure 2.1: Geometry for the flow in a channel and typical solution of the Stokes—Brinkman
equations (velocity and pressure profiles).

and the solution can be explicitly written starting from Co:

Cy = (7 + ¢ 5 ol My + ,UeffAE + E (2.24)
Ph  Cs
_Ph o 2.2
Cy o h (2.25)

Remark 8 In the Section 3.3 we will also use the solution (2.15),(2.16), (2.24)-(2.26) to com-
pare this analytical solution with the numerical one.

Remark 9 The expression (2.24) has a zero denominator if

Ey p
My = MY, = —pesy E—+ - (2.27)

In this case the expressions (2.24)-(2.26) cannot be used. For My; chosen in this way, the
determinant of the matriz, corresponding to the linear system (2.23), is zero. M{Dl is different
from My in (2.22) since

2e

o8 > 0.

Lo,

0> —E 7é E—F[Leff)\

Now, we assume Mj; in (2.24)-(2.26) is given by (2.22). If in (2.24) we would have M7

instead of M1, then C, Co would coincide with C}, C5. Let us approximate Co through C5.

From (2.21) we know that M;; = M7, + O(1). The denominator in (2.24), multiplied by ¢ is

given by

E E

£ (Mu + pep A + %) = (M{‘1 + ep A + %) +0(e). (2.28)

J

~~

f(e)
Using (2.20) and (2.21), the asymptotical behaviour of f(e) is estimated as

APE, —2
f(e):g(ng“g{B . -l-%):sg—i-O(e)Nl.
; -
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The last follows from (2.21). If f(e) ~ 1 and g(e) = O(e), then

1 1
@19 7 O

Using f(e) from (2.28), we can apply it to (2.24), in order to estimate how Cy approximates Cs:

Cy—c (@ 4 Bt AP B — 2)/(f(e) +0(e)) = G5 + O(e2)

2 B E_

Consequently,

Cil=—-—F=—-—F—"+0 =C] + 0(e).

S TR T 5 +0(e7) =Cr + 0(e7)
C5 and C have the same orders of magnitude as C3 and C}, namely O(e) and O(1), respectively.
We are ready to estimate the difference between u and u.;; in the free fluid part. First, the

pointwise estimate reads

u(y) — uesp(y) = (C1 — CF)y + C2 — C5 = O(¢?) uniformly in y € (0, h).
AC AC:

Next, the L? estimate is given by
7 A Ac,aGH? + ACEH = O(c
lu = tersllz2p) = ACT 5 + ACIACE” + ACh = O(€7)
The Beavers—Joseph condition in a Saffman form (1.25) in this case can be written as

u(0+) — ag—Z(O+) = Cy —aCy = C; + 0(?) — a(CF + 0(?)) = O(?), (2.29)

since from (2.17) we have

ueff(0+) — aa'g_sz(o_{_) =C5 —aCf =0.
O(?) is similar to O(K) used in (1.25). The pressure p(z,y) from (2.13) doesn’t depend on ¢
— it is also an effective pressure in the free fluid part.

Thus, we have shown that the analytical solution of the (Navier-)Stokes—Brinkman model
with Ochoa-Tapia, Whitaker condition satisfies the Beavers—Joseph condition in a Saffman form
(2.29) when M, is given by (2.22), and furthermore, it approximates the effective solution for
the (Navier-)Stokes-Darcy model in the fluid part of the channel (). In the next subsection
we discuss the proximity of the solutions in the porous medium.

2.1.2 Approximation of the pressure jump condition

In the porous media the solution is determined by (2.14),(2.15),(2.26). As it was mentioned in
the Section 1.3.1, Jager and Mikeli¢ proposed the jump condition (1.26) between the pressure in
the free fluid part, given by (2.13), and the effective pressure in the porous media. The latter is a
solution of an elliptic equation (1.15), corresponding to the Darcy law and the incompressibility
condition. We use another macroscopic equation in the porous part, and it is interesting to
check if its solution (with appropriate choice of My;) is able to approximate the pressure jump
condition on the interface, as well as the Darcy’s relation between velocity and pressure in the
porous part.
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Velocity u(y) and pressure p(z,y) are given explicitly by (2.14),(2.15),(2.26) for — < y < 0.
Let us fix some ¢, —I < § < 0 and estimate u(9) and p(z,§) with respect to the small parameter
. First of all,

~_P+O(€n)_ n N P ny _ 2
C = BE = o(c"), Cy =00y B—l—o(&: ) = C2+ O(e7), (2.30)
e_Ag il
7= o(e"), eV = o(e") for any n € N
For each ¢, (-1 < § < 0), we have
R P
u(y) = B + o(e") for any n € N.,

Then, it is natural to define an effective velocity field for the internal part of €, N Qg4 as
ucsr = (P/B,0). At any point (z,9) € Q, N Qyqp, u(z,9) = (u(y),0) tends to uesp(z,y) when
e — 0 quicker than u.ys(z,9) tends to 0.

Later we will see that the effective velocity corresponds to the Darcy’s velocity, and it differs
from u(y) — velocity from the Brinkman equation mostly near the interface y = 0, and near
the solid wall y = —I, where higher order derivatives play an important role. If we choose an
interval (y1,v2), (—I < y1 < y2 < 0), strictly in (—7,0) in order to restrict our considerations to
the internal part of the porous media only, then

—2X\y1 6—2)\y2 ~262)\y2 _ 62/\y1

X + CQT + 26’1@2(?/2 —y1) = o(e"),

~o€
lu(y) = P/Bllz2( o) = CF

for each n € N. This follows from the fact, that for any fixed j, —I < § < 0, it holds:

6—2)\y

A= o), S = ole).
When accounting for boundary points, y = 0 and y = —[, the estimation becomes worse:
0 2 2 2
o _ P+o(e")\“eq — 1 P
2,~2MY gy — + — ) — O(gd 2.31
/_l Cre " dy ( BE_ ) > e TN =06, (2:31)

° . P 1—¢? 2 p? P
J e ©
-1

_ e ny _ 3
B o oy Tonge g Tole) =06, (232)

lu(y) = /B2 10 = O(%)

lu(y) — P/Bl|12(-1,0) is not smaller than O(£%/?) since the largest term is C3/(2)) ~ €3. But
|1P/BllL2(_1,0) is O(€?) itself.

Now, let us seek for the effective pressure field in Q, N Q4. Of course, p(z,y) from
(2.13),(2.14) has a jump at y = 0 equal to My1u(0). The last integral in (2.14), being a
smooth function in (—/,0), changes quickly in a negative neighbourhood of y = 0, so that there
can be some kind of additional jump in the effective pressure. The integral can be explicitly
calculated:

0 N
[ u@de=-Tu=SHa- e+ -, ye-10) (2.33)
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To catch the additional jump, let us fix some §, —I < § < 0, and estimate p(z,7) again with
respect to the small parameter €.

0 P Ca + O(e?) P Co
w(@)dé = —=j+ — "2 = g+ =24+ 0()
/g B ) BY TN

P C
p(z,9) = p° — Pz + Myu(0) — ko Eg) + /u<c2172 + O(e) (2.34)

According to (2.34), we can define an effective pressure field in the porous media as

K C
Pesf(e,y) = p° — P + Mo1u(0) — Fu—iPy + pk21 (2.35)

~2

-
The effective pressure field at any point (z,9) € Q, N Qyq,, is a limit of the p(z,§) when e — 0.
We note that u(0) = Co. The pair (uesf,pess) satisfy the Darcy law:

K11 mgHP/B]:[ P

=-V
K21 K22 0 f‘é21P//‘611] Peff

pK tuepr = p [

The jump at y = 0, between the pressure in the free fluid (2.13) and the effective pressure in
the porous media (2.35), is given by

C
(7,0 +0) — pesp(z,0 —0) = —Ma1u(0) — HF&21T2 =— (M21 + M%) u(0 +0)

since Cy = u(0) = u(0 + 0). If we use (2.29), then

0
p(x,040) — pesp(z,0—0) = — <M21 + u%) aa—Z(O +0) + O(e).

A comparison with (1.26) suggests that we have to choose

Cbl K21 Cbl K21
= w2 = — —w _ = -1 2.
Moy :=p ( o 3 ) W (eC{’l + ) O(e™), (2.36)

if we want to have a similar pressure jump condition.

Now, recall, that in order to make expressions shorter we included y into M: M = uM,
where M was originally used by J.A.Ochoa-Tapia and S. Whitaker in [44]; M we used as a
dimensionless coefficient in the Section 1.4.1. The order of magnitude of M was estimated as
O(K~1/2) (K is a scalar permeability). Putting (2.22), (2.36) together we obtain

1 K11 1 Heff
o L[ M M| _ | o= | | T TV wa .
M - M21 M22 == Cu.)l ko1 =¢ C,bl AT =¢ M (2-37)
—_— = 5 — W
K [ A chl et 721

Two other elements, Mo and Moo, play no role for the particular flow we are considering, and
we leave them unknown or just give them zero values.

Let us estimate the difference between p(x,y) from (2.14), and the effective pressure from
(2.35) in L? norm:

2
dy.

0

/_(: (2, y) = pess(z,y)|* dy = /

=l

0
K C
/m21/ u(€) dé + "2 Py — kg1 —2
y K11 A
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The internal integral was calculated in (2.33), so we obtain:

° 2 IR A W WD 2
/l\p(x,y)—peff(m,yﬂ dy = (T) /Z[Cﬁe — Che +£—01+02_02)J] dy =

g9(e)

A

For the first two terms see (2.31) and (2.32). They are O(¢%) and O(e?), respectively. The third,
fifth and sixth terms need estimation for the function g(e), which doesn’t depend on y:

prg1\2 [° A2, —2) A2 2\ 2 A A SAPED A X
= (—) / (Cle Y4+ C5e“Y + g%(e) — 2C1C2 + 2g(e)[Cre ™Y — Cae y]) dy
—

C1, Co were estimated in (2.30).

0
/ (6(2) = 201Ca) dy = () + ofe”) = O(e")

The following two terms are multiplied by 2g(e) = O(e?)

0. P+o(e")er -1 P
_Ay = + = — ny — 3
/_l Cie™VYdy BE 3 B + o(e") = O(¢e”),

o P l—e. Cy P
Coe™ dy = (Cy — — " == - — ") = O(e?).
[ Gty = (o= f+ ol T = T - 15+ o) = O
The largest term again is C2/(2)\) ~ &3 from (2.32). There is no other term it could cancel
with. We return to our L? estimate for the pressure difference:

Kot \ 2
Ip=Pesrlac 1oy = (B52) OE) = 0() or lp=pessllia-io) = OWE):

We can summarize results in this section in the

Proposition 2 If we consider a flow in a 2D channel Q, governed by Stokes system (1.2)
(or Navier-Stokes system (1.1)) in Sy, by Brinkman system (1.6) (or Brinkman system with
convective term (1.18)) in Qp; completed with the interface conditions (1.29), (1.84), such that
in the region Qg4 (described at the beginning of the section) M is a constant parameter along
the interface, and the solution is fully developed in the sense that g—g(w,y) =0 in Qyqr, then

1. if My # —p/h — pesfAEL/E_, then the solution (u,p) in Qfqr, u = (u(y),0) is given by
(2.15), (2.16),(2.18), (2.14) with constants defined in (2.24)-(2.26), and the expression
for the integral in (2.14) is from (2.33);

2. if we consider a sequence of problems with small parameter € > 0, such that some param-
eters depend on €:

1
K=K M=t (__bl _ [Begs %11)
€ CYy pe11

where C% < 0 is a known constant, then the horizontal component u(y) of the solution
satisfies the Beavers-Joseph condition in a Saffman’s form:

u(0 +0) = —eC{’lg—Z(O +0) + O(g?).
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3. further, there exists an effective velocity-pressure field (uess,peyy) in p N Qfar, given by
divergence-free effective velocity, .y = (P/B,0), and by the pressure from (2.35), that
satisfies the Darcy law: uepp = —%KVpeff there, and has a pressure jump on the interface
between the free fluid part and the porous medium:

K
P(,0+0) = pess(2,0 = 0) = = (Ma1 + u20 ) u(0).

col
(—% — [ %21> )
¢y Mo

Further, if
My =

o=

where C% is a known constant, then

ou
p(2,0 4 0) — pess(z,0 —0) = —ucz’a—y(0+ 0) + O(e);

4. the relation between (u,p) and (ucfp,pefy) is the following: for a given point (Z,7) €
Qp N Qfer, and for any n € N,

u(j:a :l)) = Ueff (j:a :l)) + 0(€n), p(.’i‘, g) = peff(‘f", @) + O(E)
and for arbitrary T € (Timin, Tmaz) we have

Ip(2,-) — pess(z, )|l L2(—1,0) = O(Ve).

Remark 10 The constants C?, C% are defined in [25] where the solution to the Navier—Stokes—
Darcy model was compared with the solution to the microscopical model based on periodic porous
media. We should note that the results in [25] were formulated for the constant pressure boundary
conditions given on the left and right boundaries of Q4 and it is different from the situation we
have when the pressure on the left and on the right boundaries depends on y, provided ka1 # 0.

2.1.3 Some generalization of the analytical solution in the channel

Let us consider the system of equations (2.7)—(2.12) where the homogeneous Dirichlet conditions
(2.7), (2.12) are substituted by the non-homogeneous conditions: u(—!) = u_;, u(h) = up. In
the section 3.1 we will use this case to interpolate velocity on the interface. The solution u(y)
is given by (2.15), (2.16). The difference is in C;, Cy, C, Cy:

Ph AP EL —2 A E
Cy = (— I S 2ﬂu_z>/ (Mn +pef A + H) (2.38)

2 B E_ h E_ h

Ph  Co up
_Ph_ 2.
C " h (2.39)

= (1-e )P/B+ Cee —u_y ~ (1—ey)P/B+ Coey —u_y
Cl = - E ) CQ = E

(2.40)
The velocity on the interface is Cy and it depends on the (input) parameters P, up, u_; as

Cy = aP + buy, + cu_y, a, b, c are functions of u, peyys, I, b, M, K. (2.41)
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2.2 The stress jump condition and basic properties of M.

From the particular case of the parallel flow in the channel we return to the case of general
geometry. The system of equations (1.36) or (1.37) with interface conditions (1.29), (1.34) and
appropriate boundary conditions are considered in some fixed orthogonal coordinate system
OX1...X4. M is a given d X d matrix function on 3. If we consider another orthogonal
coordinate system O'X]... X} according to the transformation: x' = x'(x) = C(x — rpor),

C! = C7T, rpor — coordinates of 00" in OX; ... Xy, then one can calculate values of the
tensor fields in the new coordinates using:

s'(x') = s(x(x")), v (x') = Cv(x(x")), B'(x') = CB(x(x))CT

for scalars like p; for vectors like u, n; and for second order tensors like Vu, Vu”, pI, K, T, T,
respectively. If we multiply the interface condition (1.34) by C from the left side then:

[T]sn=Mu = C[T]xCTCn = CMC” Cu (2.42)

since CTC = I. Using values, calculated in the new coordinates, n’ = Cn, u’ = Cu, TV =
CTCT, the equality (2.42) leads to the following interface condition in the new coordinates

[T]yn’ = CMCTu'  =M'u.

It has the same form as (1.34), and M in the old coordinates is related to M’ in the new
coordinates by

M=cCc"M'c, M =cmMcC’. (2.43)
A nl u/ A nl uI
M%)
M (X,) J i
M(x,) N - -7
OoLD coordinates NEW

Figure 2.2: Two "equivalent” parts of the boundary.

Now we assume that there are two different points on the interface xs5; and Xy, such that
(see Fig. 2.2, left) some neighbourhood of one of them can be obtained by rotation, reflection
and translation from a neighbourhood of another by the formula

x' =x/(x) = %s + C(x — x3) = C (x — (x — CTxy)) (2.44)

(if x from the neighbourhood of xy. belongs to some of the following sets: €5, Qpf, Qp, Qf,
then the same happens with the point x'(x)). Although for real porous media such situation is
purely hypothetical (something similar may occur but in statistical sense: a possible example
is the constant ap; in the Beavers—Joseph condition) we will often have such situation in the
Chapter 4 (see Fig. 4.1, 4.6, 4.13, 4.20).
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If we use (2.44) to change coordinates in the whole space, then according to (2.43) we
have M/(Xs) = CM(xx)C?. On the other hand, the neighbourhood of x5 in new coordinates
coincides with the neighbourhood of x5 in the old coordinates (see Fig.2.2). We assume that
M(x) is a local characteristic depending only on the microgeometry of the porous medium
around the point x on the interface, and on the position of the interface. Then, one can
imagine the same microflows in the neighbourhoods of xx on the left subfigure as well as
on the right subfigure of Fig. 2.2 leading to the same macroscopic quantities like u, T (the
coincident neighbourhoods shouldn’t be too small). Therefore it seems reasonable to equate
M(xy) with M'(Xy) and consequently in such situations we will use the following relation
between M(xy) and M(Xx): M(Xy) = CM(xx)C”T. The interface condition (1.34) has quite

X1 laboratory system

Figure 2.3: Laboratory coordinate system for xy.

different form for points on ¥ having different normal vectors. That’s why it is convenient to
consider a ”laboratory” system for each point x5 € ¥ with origin at x5 and coordinate axis
(0'X1,...,0'X])) directed in such a way that one of them coincide with the normal vector (see
Fig.2.3). To change coordinates we can use the transformation x’ = x'(x) = C(x — xx) where
C transforms n into n’ = (0,...,0,1). If we know M’ = M, for the laboratory system then
using (2.43) the real M for the boundary condition at x5 can be calculated. We will do this in
Chapters 3 and 4. In the laboratory system, or for any interface point where the normal vector
is co-directed with O Xy, the interface condition in 2D has a form (u = (u,v)7)

| A - ﬂg—z 0\ /23—1; _ [ Muu+ Mpv
[T]En - ~ Ju ~ Qv - ~ Qv -
Pow  Hgy—p | \1 Bay =P | Ma1u + Magv

Different microstructures may lead to different values of the matrix M. The form

Mii1u+ Migv
Msiu + Mysw

e 9
By lsy = tefray s,

(2.45)
p3els, — perrols, —plsy +pls,

of the jump interface conditions is more suitable than (1.34) for interpretation and comparison
with the Darcy case (Beavers—Joseph, pressure jump conditions).

If some quantity is continuous through a smooth interface (in our case the velocity com-
ponents u¥ are continuous) then derivatives of this quantity in the direction tangential to the
interface can also be considered as continuous quantities through the interface. To justify this
statement let us consider a point xx on the interface 3 between two subdomains €27 and Q5 and
a function ¢ continuous at least in some neighbourhood O of xx. Here the interface is smooth
(belongs to C!) and can be uniquely projected to the hyperplane which is perpendicular to the
normal at xy. Additionally, V¢ is continuous up to the interface in each part O; = 2; N O and
Oy = Q2 N O (see Fig.2.4, left): ¢ € C(0), ¢ € C'(01), $ € C1(O3). "Up to the interface”
means that V¢ can be defined on the interface as a limit of gradients approaching the interface
point from the internal part of either O; or Oz. The limits from both sides can be different.
|[V¢| in O is bounded by Cvg. Our purpose is to show that %d) = t- V¢ (where t stands for the
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~ [

N \ X £+ .7U . X
- |

! X1 X2

Figure 2.4: Continuity of tangential derivatives

tangential vector) has the same limit from both sides of the interface. To do it, let us assume
the opposite: they are not equal and the absolute value of the jump is Cjjymp > 0.

First, we can change the coordinate system so that the new origin is at xy, t and n become
e; and ey correspondingly, and the part of the interface in ¥ N O is described by the points
(!, ..., 2% f(z',...,2¢ ")), e.g. the equation of the surface is z¢ = f(z!,...,z¢7!). Our
orthogonal transformation doesn’t change the bound for |Vu|. Without loss of generality we
can reduce number of dimensions to 2: OX || e1, OY || e4 (see Fig.2.4, middle). The jump at
xy in the old coordinates is the same as the jump at (0,0) in the new coordinates:
‘305 o

5 (0:0+0) = 27(0,0 = 0)| = Cjump. (2.46)

Due to the continuity of %% in O; and O, separately, there is a neighbourhood

U= {(av,y) | =€ (—0g02),y € (f(x) — dy, f(z) +5y)}

divided by the interface &' = {(z,y) € U | y = f(z)} into two parts such that for (z,y) € U\ ¥’

we have
either |%(w,y) - g—f(o, 0—0)| < Cjump/4, fory < f(z)
or a—ﬁ(m,y) —%(0,0—I—OH < Cjump/4, fory > f(z);
and also for « € (—d,,d;) we have |f'(z)| = |f'(z) — f'(0)| < Cjump/8Cv¢ due to continuity of
f'(z), f'(0) = 0. Let us introduce a rectangular neighbourhood of 0

(2.47)

U ={@0| @&+f@)eU}={@O] ze(-bab), €€ (0,0}
(see Fig.2.4, right), and an auxiliary function v (z,¢) defined in U’ by

V5. =8(0.f@ +6), o) = 5o (o f@) +€) + G (2.70) + €)1 @)

From the properties of ¢ and smoothness of f(x), we conclude that ¢ € C1(U'\ {¢ = 0}),
¥ e C(U).

For some points &4 > 0, &- < 0 which belong to a small neighbourhood of 0, and for some
fixed points 1 < 0 < x2, we can integrate just below and above the interface:

Won &) =vane) + [ (0 f@)+e) + 5 (0. f@) +60) o) do
Woa &) =) + [ (o f@) e )+ G (n 0 +6) @) do
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Let us subtract the second equation from the first one and put integrals of % to the left hand
side, other terms to the right hand side and let us take the absolute value from the result:

| G0 €)= G2 (o 7l0) + ) do| < [plon )~ plon &)+ (248)

) ox
22| 9 8 ,
e en) ~vlon )l + [ [ (0@ +6) - 3 (o s@ +e ) |17 @) <
< 2%(:]}2 — :El) =+ QCv¢§g:(: (.’E2 — :L‘l) = @((EQ — 331)

The terms [|¢(z2,&4) — P(z2,€-)|, |¢¥(z1,&€+) — ¥(z1,€-)| can be made arbitrary small, for
example, less than %(xz — z1) for small enough |, — &_| due to continuity of 9 through
the interface £ = 0. g—‘; in the last integral are not necessarily small, but bounded in U by Cy.
But this term is small enough due to |f(z)]-

Now we estimate the left hand side of (2.48) from below. The integrand has the same sign
for all z € [z1,75] as 92(0,0 4+ 0) — 22(0,0 — 0) due to (2.46), (2.47) leading to

T2

/%(m, (:17)+£+) —%<x,f($)+£_)dx =/‘%<x,f(x)+§+) —%(m,f(w)—i—f_)

Z1

dz

The absolute value in the last integral is greater than Cjyum,/2 due to (2.46), (2.47). Hence, the

Cjump
2

whole integral is greater than (x2 —z1). Here we have a contradiction with the estimation
of the left hand side of (2.48) from above. We can summarize the above results in

Proposition 3 Let O be a neighbourhood of some point x5, at the interface ¥ which divides O
into open sets O1 and Og. Let the interface XN O be C' smooth, n be a normal vector to the
interface at xs. Let the function ¢, defined at least in O, belong to C(0), C*(Oy), C*(O,).
Then, for any tangential vector t which is perpendicular to n, the derivative of ¢ in the direction
of t is continuous through the interface (In general V¢ can be discontinuous through X):

o _ 9 I _

lim 22— lim 22, —t. V.
<y Bt < Ot ot ¢
x€0q x€09

We also use the continuity of tangential derivatives in the section 3.1.3 to derive a numerical
scheme.

Now we can return to the interface conditions in a laboratory system (2.45). Due to incom-
pressibility condition and continuity of the derivatives in the direction parallel to the interface,
we have:

o
dy

@
zf, oy

ou

’ el
Sh ox

_ _Ou
55 ox

_ Ou

Sh ox

_ Ou
=/ ox

Ep
If fiefr = p1, then the second condition from (2.45), can be rewritten as

—[pls = Ma1u + Mayv

In 3D laboratory system we have a similar interface conditions as (2.45) (n = (0,0,1)7):

N%—gbf _Meff%b]p = Miju+ Miov + Mysw
Haslsr — Hefr 51y = Myu+ Mav + Mazw (2.49)

1825, — terrSels, — Pl +pls, = Msiu+ Msv + Magw
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Like in 2D case, pefry = p implies
) __ou ] _,
0z |y, |0z  Oyly

—[pls = M31u + M3ov + M3zw

and the last condition is

Remark 11 As it was already mentioned in Section 1.3.2, in general, T # T, and if we use
(1.85) instead of (1.34), then the stress jump interface conditions would have a form:

ug—Zsz —Heffg—Z|2p+Hg_;|Ef — pefrSlly, = Myu+ M
(2D) : ov ov
2/J3—y|2f —QMeff@bp —pls; +pls, = Maoiu+ Mav
du _ du w _ dw = M M M
Bogln; — terrayls, + arles — Heffor s, 114 + Migv + Mizw
(3D): M%Izé—ueff%lzp ;M%—Z’sz —Meff%_Z|zp =  Moju + Mapv + Mazw
2ugrls; = 2pefr gy ls, —pls, +0ls, = Mziu+ Mzpv + M3zzw

However, if pefp = p, u satisfies (1.29) and the incompressibility condition V -u = 0 then the
conditions in (2D), and (3D) in the "laboratory system”

ou
du - M u—|—M v /J[—z]z = M11U+M12’U+M13’u}
(2D) : “_[fg]]ﬂ _ M”u+ M”U ,  (3D): By = Moyu+ Mo + Myzw

Y 21 22 —[p]z = Msziu + Msyv + Mszw
are the same for both (1.84), (1.35). If [T]sn = [T]sn in some coordinate system then we can
multiply the equality by C from the left side to conclude that in the other orthogonal coordinates
[T]syn’ = [T']gm’ is also satisfied.

2.3 Generalized solution

When a mathematical model is chosen, one of the most important questions is its solvability.
Investigating this question is the main purpose of the current section.

2.3.1 The variational formulation
Let
T, L2(Q) —» LX),  I;:L*Q)— L*Qy)

be natural embeddings. Assume, that there is a solution (u,p) which satisfies in a classical
sense (1.2) in Qy, (1.37) in €, interface conditions (1.29) and (1.34) on X, and some Dirich-
let boundary conditions on 92, Suppose, the following smoothness assumptions hold for the
solution:

Iyu € C*(Q,), ZIyue C*9Qy), Ip € CH (), ZIspe CHQy). (2.50)

For the coefficients, right hand side, and the known velocity on 92 suppose:
ter € O (), K € [C(@)]74 M € [C(2)]*% € [C@)]% uan € [COQ)L  (2.51)

The equations (1.2), (1.37) are of Stokes type ((1.2) is exactly Stokes). To derive the variational
formulation for the coupled problem, we can follow, for example, [30],[53],[17]. We consider
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systems in {2, and € separately: we multiply the k-th momentum equation by the k-th com-
ponent of an arbitrary test vector-function v € [C§°(2)]¢, integrate either over €2, or over {1y,
and, at the end, take a sum over k from 1 to d.

For the further transformations (namely, integration by parts) we will need some auxiliary
equalities based on the Green’s formula [57, p.23] (or [41, p.121]). If £ is either Q, or Qf, with
the boundary at least from C%! (Lipschitz-continuous) then due to the Green’s formula, we have

0 ouk ouk ouk ovk
k _ _ ~
/ ozt <,u or’ ) x = /ag Y <,u ozt ) ' do H ozt Or' dx,

where n is the outer normal to 9€. If we take a sum over i = 1,...,d, we obtain:

/’UkV - (AVuF) dx = / v*(aVuF - n)do — / AVoF - vk dx,
& o€ &

andover k=1,...,d:
Z/vkv-(ﬂVuk)dx:/ vl (;]Vu)ndo—//]Vv:Vudx.
& & oE &

In a similar way, using the Green’s formula, we obtain (I is a unit matrix)

dp 81)
b == 7 dx = [/ Ukpnkdo— dx] :/ vaInda—/p V -v)dx.
S [t ame=X voerix| = [ 59

£

Using the expressions above with either €2, or 0 instead of £, the results of the ”integration
by parts” are the following:
e in Q,: (n, is an outer normal for €2,)

teffVV :Vu—p(V-v) + pvI K tu) dx — v (ptesrVu — pI) n, do = f-vdx
ff ff P

Q, 09, Q,
(2.52)
e and in Qy: (ny is an outer normal for Q)
/ (uVv :Vu—p(V-v)) dx — / T (uVu—pI)npdo = / f-vdx. (2.53)
o Gl o

If we take a sum of (2.52) and (2.53) and use that v = 0 on 02, ny = —n, on %, the jump
condition (1.33) on the interface ¥ implies

/ vl [(uVu —pD)|s; — (s Vu —pl)|s,| nydo = /vT[ﬂVu —pIlsnydo = / v Mu do.
s b

Then we obtain:
/ AVv :Vudx — / p(V-v)dx +/ pvT K ludx +/ vIMudo = / f-vdx (2.54)
Q Q o b Q

for all v € [C§°(92)]¢. After restriction to solenoidal test functions only

veVo={vel[CPQ)¢ |V v=0}
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the pressure term disappears from (2.54):

/ﬂVv:Vudx+/ uvTK_ludx—F/vTMuda:/f-vdx (2.55)
Q o8 b Q

~ S

a(u,v)

The next important question is the choice of appropriate spaces for generalized solutions,
which contains our classical solutions. From the interface conditions (1.29) and (1.34) we cannot
conclude that the pressure should be continuous through the interface 3, so we can consider it
as a member of L2(€) (it is also a standard choice of a functional space for the pressure when
dealing with the Stokes system).

From (2.50) we can conclude that Z,u € [H*(€)]4, Zyu € [H'(2;)]¢. The trace operators

Toq, : H () = L2 (09,),  Taq, : H'(Qy) — L*(0%y)

generalizing a concept of boundary values for H' functions, are well defined and bounded,
provided that 89, 0Q are at least C%! regular (see e.g. [57, p.22],[41, Sec.2.4],[56]). The trace
operators

(Ton, = ) Ts,:HY Q) = L*(%); Teanan, : H (Qp) — L7 (89 N 0Qy);
(Toa, = ) Ts,: H'(Qf) = L*(2); Toanon, : H (Qf) = L9020 %y);

are the restrictions of Thq,, Ton ; to X, 00 N 09,, and 9Q N 082y, respectively. For our u which

is smooth in Q_p, Q_f, the traces are just usual restrictions to the boundaries. Then, the solution
satisfies the condition for traces:

sz (Ipu) = Tzf (Ifll) (256)
due to (1.29), and
Toonan, (Tpw) = wsarsn,  Teansn, (Zru) = usansq;-

which follows from the Dirichlet boundary conditions (Uagnagp, ugonoq, are restrictions of ugn
to 0Q N 0Q, and 082 N Oy respectively).

Let us check that we can consider u as a member of [H*(2)]¢. First, u € [L?(£2)]¢. Second,
the L?(Q) functions, constructed from classical derivatives in Q, and Q:

ouk .
ko 81;" in €,
9i = duk

5er  n

are candidates for the distributional derivatives ‘?91;]; in the whole Q. In fact, for arbitrary

¢ € C§°(9), the distributional (generalized, weak) derivative is

k
<%a¢>=—/uk%dx:— Z / uk%dx.
v o oF jetsmy U v

Using the Green’s formula [57, p. 23], (2.56), and n, = —ny, we obtain

auk auk . auk
<W’ ¢> = Z [ p dpdx — / TE], (Ijuk)qgn;- da] = Z B pdx = / gfqb dx,
jelfpy L7 = jetfpy Y @
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since the boundary integrals cancel each other. So, g are the distributional derivatives for u,
and u € [H!(22)]¢. Consequently,

ueV={ue[H' Q)| V- -u=0}

a(u,v) from (2.55) can be considered as a bilinear form on [H*(Q)]¢ x [H()]%, where Vu,
Vv are distributional gradients, the interface term v’ Mu is generalized to (Txv)? M(Tsu) (due
to continuity of the trace for H'(Q) on %, we denote Tx = Ty, = Tx,). The bilinear form is
continuous on [H'(Q)]¢ x [H(Q)]%: for all u € [HY(Q)]%, v € [H(Q)]¢

la(u,v)| < C(Q, %, i, K, M)||ull iz (el VIIa ()4

The right hand side term from (2.54), (2.55) can be considered as a continuous linear functional
on [Hg ()%
|/Qf vdx| < |flliz2pe vl -

Therefore, the equality (2.55), being true for the classical solution u, all v € 170, is also true for
all v € V, where V} is the closure of V; in the norm of [H'(2)]¢. In a similar way,

| /Q p(V - v) dx| < dllpllz2gey ¥l ey

implies that (2.54) is true when (u, p) is a classical solution not only for all smooth test functions
v € [C§°()]¢, but also for all v € [H}(Q2)]%. From the other side, (2.54) can be used to define
a generalized solution.

Definition 1 Any pair (u,p) € V x L?(R) is called a generalized (weak) solution for our prob-
lem, if (2.54) is true for all v € [H}(Q)]%, and u satisfies the Dirichlet boundary conditions:

Thanaa, (1) = snnan,, Toonan, (1) = uganan; - (2.57)

At least this gives a more general concept of the solution to our problem. Conditions on the
input quantities can be significantly weaker than what is necessary for the classical case (2.51):

fie L®(Q), K™ € [L®(9,)]%4 M e [L®()]™, f e [HH()]%, ugq € [HY?(89))°.

Let us try to simplify the previous definition. First, the pressure can be taken out from the
consideration: a vector function u € V', which satisfies the boundary conditions (2.57), and

a(u,v) = (f,v) Vv € Vg,

is a velocity from the generalized solution (u,p). The pressure field p € L2(f) exists due to
the result related to the De Rahm’s theorem (see [53, p.15,p.19],[17, p.186]): the functional
gp € [H ()]

<gpav) = <fa V) - G,('I.l,V), Vv e [H(%(Q)]da

such that (g,,v) = 0 for all v € Vj, can be represented through the function p € L?*(Q) (unique
up to a constant), as

(&0, V) = (VD,v) = — /Q p(V - v) dx,
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and (2.54) is true for all v € [H}(Q)]%.
Second, we can substitute the problem for homogeneous Dirichlet boundary conditions for
the non-homogeneous one. Vector fields u € V satisfy

Oz/V-udx:/ Toqu - ndo,
Q Ele)

where n is the outer normal to 9. On the other hand, if the given data ugq € [HY/?(0Q)]¢
from the Dirichlet boundary condition satisfy the compatibility condition:

/ uyn - ndo =0, (2.58)
o

then (see [17, p.131],[53, p.31-32]) there exist a vector up € V, such that Tooup = upn. We
can seek the generalized solution u in a form u = ug + up, where ug € Vj is a new unknown,

Vo = {u € [Hy()]"| V- u=0}.
For the Lipschitz domains, we have Vg = Vp (see [53, p.18, T. 1.6] or discussion in [17, ITL.4]).
a(ug,v) = (f,v) — a(up,v), Vv e W, (2.59)

where (f,v) —a(up, v) is a new linear functional on v € Vj. If we can find ug € Vj satisfying
(2.59), then the generalized solution (u,p) can be constructed. Is it unique? The vector function
up is, for example, not unique. Assume, there are two generalized solutions u; and uy from V,
which satisfy the boundary conditions (2.57), and

a(uy,v) = (f,v), a(ug,v) = (f,v), Vv € V.
Then the difference w = u; — uy € Vj; satisfies
a(w,v) =0, Vv € V.

Instead of investigating the problem from Def.1, it is sufficient to investigate existence and
uniqueness of the problem:

Find u € Vj, such that a(u,v) = (f,v) Vv € Vp, (2.60)

where f € [H 1(Q)]%.

2.3.2 Coercivity of a(u,v)

a(u,v) = ac(u,v) + /E(TEV)TM(TZu) do, ac(u,v) = /Q/ZVV : Vudx +/Q pvI K tudx
where a.(u,v) is a bilinear form that corresponds to the Stokes-Brinkman syste:n with contin-
uous stress condition M = 0 (see [3]). As it is shown in [3], a.(u,Vv) is Vy—elliptic:

ac(u,u) > C’1||u||%/0, Vv eV

If the function M is accidently semi-positive definite on the whole interface ¥ then a(u,v)
is also elliptic. Hence (2.60) has unique solution for any f € [H~!(Q)]¢. But unfortunately
this assumption (which has a physical background for some particular cases) doesn’t seem to
be realistic for our problem. Similar is the situation with the symmetry of M, and therefore
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a(u,u) is not necessarily symmetric. In general, a(u,v) is not Vy—elliptic, since we can find
u, € Vj such that Txu, # 0. Defining

m = —ac(u*,u*)//E(Tgu*)zda,

and setting M := mI, we come to a(u,u,) = 0. That is, a(u,v) is not Vy—elliptic.
Now we can check Vy—coercivity of a(u,v). To do this, we should first define an appropriate
Hilbert space H for the Gelfand triple

Vo> H=H <V (2.61)

(see for example [20, p.133]) where the injection of V) into H is continuous and dense.
To construct H, let us consider the linear space Vj, equipped with the scalar product

(u,v)H:/u-vdx-l—/u-vda.
Q b

The scalar product is well defined for smooth vector functions from Vo. Let H be a closure of V;

with respect to the norm associated with the scalar product: |[ul|3, = ||u||[2L2(Q)]d + ||u||[2L2(E)]d'

The norm in Vj is stronger than the norm in H: for u € 170
lull = ||U-||[2L2(Q)}d + ||T2u||[2L2(>:)]d < ||u||[2L2(Q)]d + C%EHuH[QHé(Q)]d =1+ C%E)HU-H%/O

since the trace operator is continuous on Vj. For each element u € Vj, there exists a sequence
u, in 170 that converges to u in Vj norm. And the same sequence is convergent in H to some
limit uy € H which can be identified with u through the embedding operator. Vj is dense in H
since ‘70 is dense in both spaces. To ensure that different elements in Vg correspond to different
elements in H, it is enough to show that if u,, is a Cauchy sequence in V5N Vj and ||u,||g — 0,
then ||un|v, — 0. First, u, — u in [H}(Q)]? since V; is a subspace of [H}(2)]¢. Second, from
lunllzr — 0 one can conclude that [|uy[[z2(q)e — 0. This means that u = 0 in [H§(2)]* and
lunllve =l g enge = 0.

Definition 2 (see [20, p.141]). Let (2.61) be a Gelfand triple. A bilinear form a(-,-) is said to
be Viy-coercive if it is continuous and if there exists Cy > 0 and Cy € R such that

a(u,u) + C’g||u||%1 > (3’1||u||%/0 for allu € V.

Let us estimate the integral over ¥ in a(u,u) from above. For a matrix M and a vector t we
have:

T » (t)? + () 2
[t7Mt| < Z; [Mi;7] < max | My ZZJ: g < it max | My).

The bilinear form a(u, u) is Vy—coercive, since there exists a constant Co > d max || Mjj| poo(x),
0]

such that for all u € V;

a(u,u) + Col|ulf = ac(u,u) + / (Teu) " M(Txu) do + Calullf > ac(u,u) > Cifjul[f;.
P
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Remark 12 In [3, p. 140/4] the following inequality was used:
ITs¢llegsy < Co@Nglgroyllol g, Y6 € H'(Q).

Using this inequality for each component of u, we estimate the integral over 3

< 022 1T 22 < 02022 || oy 1 |2 () <

/E (Tsu)"M(Txu) do

< CuCE \/Z 4 \/Z 4125y = CoCR s sl gy

From the Cauchy’s inequality ab < ga2+2%62 (6 > 0), where a = |[ul;g1(qya, b= CQC%HUH[Lz(Q)]d
6 = C1, we obtain

C3C5()

Ciy 2 2
< i e + =55 Il (e

/ (Tsw)TM(Txu) do
by

The coercivity of a(u,v) can also be obtained, using the standard space H,

H = {the closure of Vo in [L2(Q)]%} (see [53, p.248])

C3C5(9)

c
a(w ) + =B ey > 5

||u|| [H1(Q))d"

For smooth domains €, and €y the trace operator Tx is not only continuous, but also
compact. But in some important practical situations, the smoothness assumption for both 2,
and €y is too strong: for example the case when ¥ has a non-empty intersection with 02 (see
[3]). Also our numerical method (see Chapter 3) is based on rectangular control volumes, so
that Q" Qg, Q? has only piecewise smooth boundary. The compactness result for Lipschitz
boundaries can be found in [33, p.344] or in [41, p.107].

It means that if we have a bounded sequence {u,} in Vj then there exists a subsequence
{u!} such that u/, is a Cauchy sequence in [L?(Q2)]¢ due to compact embedding of H'(Q) —
L?(9), and Tsu/, is a Cauchy sequence in [L?(X)]¢ due to compactness of Ts. Hence u, is a
Cauchy sequence in H, and the embedding of V; to H in (2.61) is compact.

Having a compact embedding in the Gelfand triple (2.61), one can apply results of the Riesz-
Schauder theory (see for example [20, p.142] or [56, p.169,266]) for the spectrum of the linear
operator A : Vy — V{ defined as <AuaV>V0’><V0 = a(u,v). Z here is the compact embedding
operator from Vj through H to V{.

Proposition 4 The spectrum of A: Sp(A) consists of at most countably many eigenvalues
which cannot accumulate in C.
e If A € C is not an eigenvalue then the variational problem:

find u € Vy such that a(u,v) = Aw, v)g = (£, v)vi v, Vvel (2.62)

has unique solution for all £ € V. (this corresponds to the operator equation (A — AT)u=f)
e If A € C is an eigenvalue then there exists finite-dimensional eigenspace E(\) # {0} that for
u* € E(N)

a(u*,v) = \(u*,v)g, VveT.

In this case the solution of (2.62) exists not for all f € V{, and when u ezists, for some £, then
it is not unique (u+ u* is also a solution).
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In connection with (2.60) we are interested only in the question if 0 € Sp(A). In general it
is difficult to solve the eigenvalue problem for some given €2, €2,, Q, K, M, fi. The practical
meaning of Prop. 4 is given by the following Remark from [20, p.143]: ” The spectrum Sp(.A)
has measure zero so that the solvability of (2.62) is guaranteed for almost all \. The problem
(2.60) is uniquely solvable if not ’accidentally’ 0 € Sp(A)”.

There is a quite large class of M € [L>®°(X)]?*¢ (which includes semi-positive definite matrix
functions on ¥) that guarantees 0 ¢ Sp(A). The following question can arise: would it be
possible (by using some advanced technique) to show that the case 0 € Sp(A) never occurs
for general M 7 A hint that the answer could be negative comes from the 1D solution of a
fully developed flow in the channel presented above for My, = M?l (2.27). We cannot use that
example since the channel problem is not a common Dirichlet problem that we consider here
and the weak formulation is valid for d > 1. But we can try to construct a 2D Dirichlet problem
which leads to ODE in polar coordinates and for some M has some problems with the solution.
From the Prop.4 we need to investigate the uniqueness of the homogeneous solution to conclude
if 0 € Sp(A), or not. This is done in the next subsection.

2.3.3 Example of non-unique solution for some M

Let us consider the Stokes-Brinkman system (1.37) in f and €2, which in the particular case
has the form of a ring drawn in Fig.2.5. Consider interface conditions (1.29), (1.34) on the fluid—-
porous interface 3, no-slip conditions on the solid core, and some Dirichlet boundary conditions
on the outer boundary 0Q (they will be specified later). We consider only the case when p. s
is a constant in €2,. Hence, the Stokes-Brinkman system can be written as

—fiAu+ Bu+ Vp="f, V-u=0, in Q,UQ; (2.63)
where i = po in Sy B 0 in Qf
Pefs in £ inQ,

The relation between Cartesian (z,y) and polar (r,8) coordinates is the following: = = r cos#,

Figure 2.5: Qy, €, Q) for the example in polar coordinates

y =rsinb; r = \/z? +y2, 6 = arctg?. We will often use the vector functions n(f), t(¢),t L n
(see Fig. 2.5):
(z,y)T [ cos@ ¢ — (—y,z)T [ —sin@ 3_n 4 @_
/32 442 | sind |’ T /2ty | cosO |’ 00 7 00

Let us look for the solution in a form (we are interested in ”1D” solution that comes from ODE
since in this case it can be easily investigated): u(r,0) = t(0)¢(r), p(r,0) = p(r). This form

n= —I.
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guarantees that V -u = 0:

For any scalar function v(r, ) we have

10 ov 1 0% ov 1 0Ov
AU(T, 0) 87" (7’5) + ﬁw, V’U(T, 9) na— + —t%

The momentum equation then can be written in polar coordinates as follows:

o022 (20 - o) + Beo)etr) +n0) A2 = s()0) +9rIm(0) - (260

We have restricted ourselves to f(r,0) = f(r)t(0) + g(r)n(0). It is a vector equation and we can
group terms in it according to vectors t and n:

t(0) [-i¢" - 2+ (5 + B) ¢ + 00D = 0)8(0) + g(rIn(0)

Since t(f) L n(#) then we can split (2.64) into

{ i (67 + &) + B+ Bri)e = £(r)

p'(r) = g(r)

From the second equation, the pressure can be calculated by p(r b) + f » 9(z)dz. p(b) will
have a condition on the interface, and can be specified either in Qp, or in {1y by an arbitrary
constant. For simplicity, let us set g = 0. Then p(r) = p(b) = const. Further, consider the first
equation.

T2§H+7‘fl _ (1 +7"QB//1)§ — _f(;)’l"2

In order to have a solution in a closed analytical form, we choose K (r) = Kor? in ©,, so that

2B 2 . 2
in Q, : 1+ 2 14 "F K — 3% = const; in Q) : 478y
fi

=1+
fi pef K (1) pef Ko

Then, the second order ODE has the form:

2 2
26 g 32 = 1O s and 2 g —e= LD i b0). (2.65)
Hef f K
The homogeneous equations for (2.65) have two linear independent solutions: &F(r) = 7‘5‘,

E(r) =r7, in Qpy ff(r) =r, fg(r) = 1/r in Q. For our purposes the homogeneous problems
are enough, since non-zero solution to homogeneous problem means non-uniqueness.The solution
is then the linear combination of £¥, &5 in (a, b), and f{ , f{ in (b, ¢). In order to obtain 4 constants
needed to determine the solution of the boundary value problem in €2, one should use interface
and boundary conditions.
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Interface conditions. First, we need to calculate T = iVu — pI in polar coordinates.

Vu(r,0) = 50 + ;%tT = t&n’ + g(—n)tT

Thus, using that n’n = 1 and t'n = 0, in the left hand side of the stress jump condition (1.34)
we have
¢

Tn = é'tn’n — ﬁ;ntTn —p(r)In = g&'(r)t(0) — p(r)n(9). (2.66)

Now we consider the right hand side of (1.34). Assume that M is known in a laboratory
system (at the point (z,y) = (0,b), where n = (0,1)T):
M, M
M = [ 11 12 ]
Ms, Ma,
Other points on the interface we assume to be similar to the point (z,y) = (0,b) (see Section
2.2). This means that M is not a constant matrix on the interface, but a function of 6 (since
the normal vector is not constant). In order to calculate it, we need (see (2.43)) a matrix C
(C gives a rotation from the current system into the laboratory system. n’ = Cn). C is the
matrix of the counterclockwise rotation on the angle 7 —6. It is given by (to make the notations
shorter we will use ¢ = cos 0, s = sin#)

C_ cos(3 —0) —sin(F—0) | _|s —c cr—| 5 ¢
5 c s |’ —c s
Now we can calculate M(0), and group terms corresponding to each of M;:

32 —S8C sC —02 SC 32

M(f) = C"M'C = M, [ Cse 2 }+M£1 [ &2 ]‘*‘Mﬁ [ 2 ¢ ]"‘Mﬁ [ 2

C SC —S

In the stress jump condition (1.34) the right hand side is Mu:
_ @3 ap2 <2, _ .3
Mo =) | ] =eo (| 508 o 505 )

The vectors corresponding to M1y, Mb, are identically zero. The identity s? +c? = 1 is used in
order to obtain

M=) (31| |40 | 0 ]) =g Do) - apm)]. 26m)

Now we can put together (2.66), (2.67) into the interface stress jump conditions (1.34):

€' (r)t(0) — p(r)n(0)] 5, = £(b) [M{,£(0) — Mgy n(0)]

or, since n, t don’t have jumps on the interface

t(0)[¢" ()]s — n(0)[p(r)]s = £(0) M1, £(b) — n(0) M5, £ (D).

This vector condition can be splitted with respect to the basis vectors into two conditions from
(1.34). The third interface condition comes from (1.29): [£(r)]x = 0 (it is a continuity of the
tangential component. The normal component is zero and therefore is also continuous). On the
interface we have

Lo (@' (n)]s =MuE0); 2. [p(r)ls = M) 3. [§(r)]s =0 (2.68)
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Now all preliminary work is done and we are ready to formulate the current problem in
as ODE: ¢ =¢(r), p = p(r), r € [a,c] (c is no more notation for cos )

r2€"(r) + e (r) — N%(r) =0, 7€ (a,b); r2€"(r) +ré'(r) —€(r) =0, 7€ (b,c).
The general solution in (a,b) (porous part):
&(r) = C~’1T5‘ + CN’Q%\, p(r) = const = p;
in (b,c) (fluid part):
&(r) =Cir + 02%, p(r) = const = p;

with the homogeneous boundary conditions:
| 1
£(a) = Cra* + Cr==0,  &(b)=Cic+ Gz =0;
a
and the interface conditions from (2.68):

pE'(0+0) — pespg'(b—0) = M,1£(b),  p—p=MyEb), £0b+0)=¢£(>b-0).

If we know &(r), then the situation with the pressure is clear: we can choose an arbitrary
constant p in (porous part) and then the constant pressure in the fluid part is p = p+ M3, &(b).
The boundary and interface conditions determine a system of linear equations with unknowns

él, CYQ, Cl, CQ:

H(C1 = Co/V?) — peppM(C1bN ! — Co/WM1) = MY, (C1b+ Co/b)
Cib* + C~'2/b)‘ = Ci1b+ Cy/b
C~’1a5‘ + C~’2/a5‘ =0
Cic+ CQ/C =0

(2.69)

Of course our ODE has a zero solution £(r) = 0 when C’l = 6’2 = (7 = Cy = 0. This corresponds
to the 2D problem (2.63) where f = 0, no-slip conditions u = 0 on 92, 99 and the solution
u = 0. Our purpose here is to check if there exists such S that when M/; = g then the system
(2.69) has a non-zero solution Cy, Cy, C1, Co leading to a non-zero solution £(r), and to another,
non-zero solution u of (2.63). The linear system (2.69) has a non-zero solution if and only if
the determinant of the matrix corresponding to the system (2.69) is zero. In other words we
are looking for such g that

- Si1 e .
~Appoppbt DBelf g _ﬁ_%

X 3 A—1  Alte B
A I;)Aj—i . b2b71 —)\,Ueffb mf:lf— -5-3
0= . . - - = —¢ b)\ b—)\ _b—l +
A - - -
a a 0 0 a)\ G,_A O
0 0 c c !
- 51 Aue
+ - pr p—A —b = —¢ ﬁ-i—— — = — | = eff — +
c - - b2 b A ar b2 b a*
a a=? 0
1 ¥ o ~ ¥ o
+ (M—ﬁ)(a—;\—b—;\)—)\/leff(a—j\-l-b—)\
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If we put all terms with 3 to the left hand side and other terms to the right hand side we will
get:

B

b2)\ . a2)\ [c b:| B ,Ueffj\(bQ o 02)(a2)\ + 1)2’\) +M(b2 + 02)(a2,\ . b2)\)

a b b o] AP +2e
Due to our geometry 0 < a < b < ¢, and this guarantees that (b** —a?*)/(ab)* > 0, ¢/b—b/c > 0,
and hence  exists: ) )

pof P A + a2 e b2
b pA g2 b2 b2

B = < 0.

For Mj, equal to 3, there is a non-zero ODE solution £(r), and consequently one can construct
a pair (u,p) € H}(Q) x L2(Q): u(r,8) = &(r)t(0) € H(Q), p(r,0) = p in Q, and p(r,0) =
P+ M3, £(b) in Qf. The solution is smooth and satisfies in classical sense the homogeneous
equation (2.63) in each domain Qy, €,, no-slip boundary conditions on dQ and continuous
velocity, stress jump condition on the porous—fluid interface. Therefore it is also a solution in a
weak sense and satisfies a(u, v) = 0. Since u # 0 then u should be an eigenvector corresponding
to the eigenvalue 0 € Sp(.A).
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Chapter 3

Numerical algorithm

In this chapter we describe a numerical algorithm for the model, considered in previous chap-
ters. These are Navier-Stokes and Brinkman equations (1.36), (1.37), together with interface
conditions (1.29), (1.33) on the porous-fluid interface, no-slip conditions on the solid walls, and
Dirichlet, ”Outlet”, or ”Symmetry” boundary conditions on remaining parts of J€2. The al-
gorithm is based on a finite volume discretization on a non-uniform staggered Cartesian grid.
SIMPLE-type method is used for solving the resulting coupled system of algebraic equations. At
the end of this chapter we present some tests that were done in order to validate the algorithm
and its implementation.

3.1 Finite volume discretization

Consider a bounded domain 2. We can include it into some parallelepiped, II, TI = [z}, wi] X
[72, 2] x [x3, 73] (in 3D). We use a non-uniform Cartesian grid to subdivide II into rectangular
control volumes P; ;. Denote the centre of P, by x;;x = (2i,v;,2), and the lengths by

hi,j,k) = (h"ialjadk):
Iji,j,k = {(av,y,z) ell | T € (xiféaxﬂ_%)ay € (yj_%ayj+%)az € (zkféazlﬂ_%)}

wherexii% zxi:t%,yji% =y; + 3, Zpt1 :zk:t%’“.
If Q_f, Q_p, Q, cannot be represented by some union of the control volumes P; j - Then we

approximate them by Q%, Qg, QF by expanding properties of the central point x; ;  to the whole
control volume P; ;. For example, if the centre x;; is in {1; then the whole P, ;; belongs
to Q’; (see Fig.3.1). If a centre of some control volume is outside €2 then we can exclude such
control volume from consideration or, alternatively, we can consider it within the framework of
the Fictitious Region approach. The control volumes are supposed to contain only one phase:
either solid, or fluid, or porous. That is, interfaces between different media appear only between
control volumes F; ; .

Remark 13 Approzimation of the domain with bricks gives O(h) error estimates for Dirichlet
and Neumann problems. However, it is not clear if the problem with shifted interfaces approzi-
mates the problem with original interface. In the Section 3.3 and Chapter 4 we use only those

Q, Qp, Qpr, Qps, Qp, Qg for which the interface is resolved by the grid.

We use the Finite Volume method on staggered grid (see for example [54],[16],[14]). Con-

tinuous variables u = (u!,u?,u3), p which are defined in Q are substituted by discrete variables
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/

///V

j
—

o0

Figure 3.1: Computational domain II with a non-uniform grid in 2D. Approximation of Q by
Qh, , by Qg, Q, by Q.
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Figure 3.2: Control volumes for pressure (P; j,P; j, black, solid line) and for the first velocity
blue, dashed line) in 3D (left) and 2D (right)
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(u},j,k, u?,j,k,u?,j,k), Di,jk- These are defined at grid points in Q. The discrete pressure Dijk 18

defined at x; ; ;. The capital letter P is used to denote a control volume related to the pressure
— P; j . Discrete velocity components (u'},j,k’uzg,j,k’u?,j,k) = (Ui j ks Vijk Wijk) are defined at
different points. Namely, ug’fj,k is defined at the point x; ;; + emhzlj, /2, which is the middle of
P, ; 1’s face, perpendicular to the m-th unit vector e,, (see Fig.3.2). “Z},k has its own control
volume Z"J’k = U™, here i is a multi-index, (i = (4,4, k)),

Ulm = {x = (;I,‘l,... ,;Ed) € Qr | ™ e (mimax'ir:l—em); for s #m 2’ € (xf - El’l‘f + El)}

The control volumes P; will be used for discretization of the continuity equation in the system
(1.36). The velocity control volume U™ is used for discretization of the m-th momentum
equation in (1.36). The divergence form of (1.36) reads:

—V-(iVu—puu’ —pI) +pK lu="f (3.1)
W
V-u=0 (3.2)

The system (1.37) can be discretized in the same way just ignoring the convective term. The
macroscopic characteristics of the porous medium p.yr, K can be functions in €2,, but we had
only the porous—fluid interface. Here we can consider a more general situation where {2, may
consist of different porous media Q’; (Qp = U, ©%). In each Q’; we assume feff = ,u’gf K= K*
are constant (smooth) functions. Additional to the porous-fluid interface we may have porous-
porous interfaces between Q’; and Q", k # m. We impose on the porous-porous interfaces
the same conditions as on the porous—fluid interface (1.29), (1.34). Such generalization doesn’t
change the derivation of the numerical scheme, although it is not clear if the conditions are
physical. We assume that the solution of (3.1), (3.2) is smooth enough in £ and in each Q’;. The
velocity u is continuous in €2, U €2y due to the interface condition (1.29). The interface between
porous and fluid (or different porous media), under our assumptions on the discretization is
always perpendicular to a certain e,. Using W = T — pu u’ one can rewrite the interface
conditions (1.34) as

(WH—W)e,=Mu (3.3)

where WH=W(x + 0 e,), W =W (x — 0 e,) and x is a point on the interface.

First, [W]|x = [T]|x since [pu u’]|x = 0 due to the interface condition (1.29). Second:
o if e, = n) then W = W|s, and W~ = W]z, ;

o if e, = —n, then W = W[y and W~ = W]g,.

For brevity, let us derive the discretization in the 2D case (See Fig.3.3). We consider the
coefficients fi, K~! to be constants (or smooth) inside each control volume P ; (inside each of
red, green, yellow and blue boxes in Fig.3.3), but they may have jumps on the P;; boundaries.
We assume that the solution of (3.1), (3.2) is smooth enough in P; ;. The velocity u is continuous
in €, U Qf due to (1.29) condition on the interface. The pressure and Vu can be discontinuous
through the interface. Any face between two control volumes P;, P, is a possible part of the
porous-fluid (porous-porous) interface. If it is really the case then W may have a jump there
according to the condition (3.3), where M is given. Otherwise, W is smooth, without jump
through the interface, but we still can consider the condition (3.3) with M = 0. So the matrix
function M can be defined on any face of P;.

To discretize the continuity equation, (3.2) let us integrate it over P;; (it is denoted by
ABFE in Fig.3.3, its volume is |P; j| = h;l;) and use the Gauss theorem:

ij — Wi-1

0= / V- -udx = / u-ndo = (u” d g g © Ui’j1> | P, (3.4)
ABFE OABFE hi l;
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h; h.

1+1
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Figure 3.3: A small part of Q" with P, ; (ABFE) and U}; (CDHG).

The first momentum equation from (3.1) is

-V -S[LVU —puu— peﬂ/—l—ukl cu=f! (3.5)

Wi

where K™ = (ky,...,kg)T, W = (wy,...,wy)?. To obtain a discretized form we integrate
(3.5) over Uil’j (it is denoted by CDHG in Fig.3.3). Let us first express the integral from V - wy.
In order to use the Gauss theorem we should divide CDHG into two parts CDFFE and EFHG
since E'F' is a possible interface with jump in stress and viscosity:

/ V-wldx=/ V-wldx—l-/ V - wq dx.
CDHG CDFE EFHG

In CDFFE and EFHG the Gauss theorem can be applied:

/ V-wldx:/ wl(U—Oﬁ)-ﬁdo+/ wi(oc — 0 1) -ndo,
CDHG OCDFE OEFHG

where n and 1 are outer normals to CDFE and EFHG respectively, wi(o — 0 1), wi(o —
0 1) means that we take a limit from internal part of CDFE and EFHG since w; may be
discontinuous on the interface. On FF n = —n = e; then

/ V-wldx:/ wl(a—On)-ndo—/ (Wi —w])- e do
CDHG dCDHG EF

where n is an outer normal to CDHG. From the stress jump condition (3.3) we know that

w —w])-e; =m - u, for given M = (m1,...,my)7:
1 1 g

/ V-wldx:/ wi(c —0n)-ndo — m; - udo.
CDHG dCDHG EF
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Hence (3.5) integrated over CDHG leads to the equation

—/ wi-ndo + ml-uda—i—/ (pki -u — fl)dx = 0. (3.6)
8CDHG EF CDHG

Below we will approximate consecutively each of the integrals in (3.6). The discretized momen-
tum equation for v will be a result of substitution of all approximations to (3.6). To approximate
the integrals we will often use the following standard technique. Assume f(z) is a continuous
function and g(x) is possibly a discontinuous one. Let z* be some intermediate point within a
volume V. Then

| f@ta)ds ~ 1) [ gta) da

The diameter of V' should be small. In our case it is bounded by the largest discretization step.
/ wi - -ndo = wi -ndo + w1 -ndo + wi-ndo + w1 - ndo
dCDHG CcD DH HG cG

It is enough to consider integrals over HG and DH. The integral over C'D is approximated
similar to HG, CG similar to DH.

3.1.1 Approximation of the integrals over CDHG and EF

First, we approximate the volume integral in (3.6):

/(ukl-u—fl)dxzuu(xﬂ_é,yj)- / k; dx — / fldx (3.7)

CDHG CDHG CDHG

— the continuity of u was used. Similar we approximate the integral over EF"

m; -udo R u(z;, 1,y;) m; do = u(z;, 1,y;) - m} m) . = m;do  (3.8)
+1 op +1 N J

EF EF

The first component of u(z;, 1,y;) is just a discrete variable u;;. The second component
2
v(7;,1,y;) (and the third, appearing in 3D case) can be obtained by interpolation from discrete
2
variables in the neighbourhood due to continuity of u, for example:

(vij + Vij—1)hit1 + (Vig1,j + Vig1,j—1) b
2(h; + hit1) '

v(wi_l_%,yj) ~ (3.9)

These are possible approximations for the integrals over CDHG and EF. But we need here
some additional care. ki can have very large values (of order £ 2) in one of CDFE, EFHG
and zeros in another (one belongs to porous phase, another to fluid). Also the discrete variables
for velocities tangential to the interface (in our case v and in 3D w) can have very small values
in the porous part and significantly larger values in the fluid part (like the flow behaviour in
the Beavers—Joseph experiment). Then the values of v on EF obtained by linear interpolation
from v; j, Vi1, Vi j—1, Vi+1,; is not the best choice to approximate the integral on EF (we note
also that m; can have large values (of order £71)). As a consequence, a good approximation
for the integrals fc puc Mk - udx, / ppM1 - udo by the formulae proposed above may need a
very small discretization step. One other way to interpolate v on EF (which we believe leads to
a weaker restriction on the discretization step) is to use the analytical solution in the channel
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(see Section 2.1.3). For example, if P; ; is porous and P, ; is fluid then we can take
o [ =hi/2, h = hi;11/2 in order to determine the geometry of €y, ;

Pij+1 —Dij—1
2+l + 1

or similar expressions

to determine P — the pressure gradient in the direction tangential to the interface;

® (v;j + v;;—1)/2 to determine u_; for the Dirichlet boundary condition u(—I) = u_; on the
lower boundary of the channel; and

® (Vit1,4 + vit1,j—1)/2 to determine uy, for the Dirichlet boundary condition u(h) = up, on the
upper boundary of the channel. The notation: u(y), h, I, P, Q4 was used in the section
2.1. The analytical solution for non-homogeneous Dirichlet boundary condition is given in the
section 2.1.3. The velocity on the interface (Cy in 2.38) linearly depends on P, up, u_; (2.41)
and hence on discrete variables v., p.. This expression can be used for the value of v(z;, +1 Yj)

2(pij+1 — Pij-1) L plitl F Vi1 Vig F Vi
21j + lj_|_1 + lj_l 2 2

(e 1,y5) ~ a (3.10)

instead of linear interpolation (3.9) which uses only v. (3.10) can be used in the approximation
of the integral over EF (3.8). It can also be useful for approximation of fCD e ki - wdx
different from those given in (3.7). We can divide the integral into two, and approximate each
of them, separately (2D):

Vi + Ui j—
/ pki-udx = uui,j/ K11 dx + % (%’Jl + U(ﬂUH;,y]’)) / Ko dx+
CDHG CDHG CDFE

B Vit1,5 + Vit1,5-1 ,
+§ ( 9 +v($i+;,yj)> LFHGﬁlg dx.

3.1.2 Approximation of the integral over HG.

Let us return to the approximation of (3.6). We consider now the integral over HG. The
integrand is

.0
(w1 0)|mg = (W1~ e1)|e = fig — plul® —p

HG is inside P;y1,j where the solution is assumed to be smooth, wy - e; is continuous on HG
and we can use central point approximation for the integral:

Uip1j — Ui
% — plu(ziz1,y;)]? - pi+1,j) |HG|
1+1

(3.11)

Wi n A (w1 1)l - [HG| (ﬁi+1,j
HG

Similar
L Ui — Uie1,
wWin R — (um% — plu(zi, y;)] —Pm'> |CD]
cD i

The terms [u(zi+1,y;)]?, [u(z;,y;)]* needs a special care due to non-linearity. Their interpolation
will be discussed in Section 3.1.4.
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Figure 3.4: Approximation of the surface integral over DH

3.1.3 Approximation of the integral over DH.

Approximation of the surface integral over D H is somewhat more interesting since four different
media may contact at the point F. (see Fig.3.4, left). The integrand is
_Ou
(w1 -n)|py = (w1-e)|py = ua—y - puv.

Let us define an auxiliary function w(y), ¥ € [y;,yj+1] \ {¥j41/2}

wmzéw@%—wﬁw, where S(y) = {(z,9) : 2 € [z 7]}, (3.12)

If DH is a part of the porous-fluid interface interface where m; # 0 then w(y) may be discon-
tinuous at y = y;1/o. The jump is anyway known from (3.3):

W(Yjtr172 +0) —w(yjp12 —0) = . m; - udo (3.13)

Let w™(y) be a continuous part of w(y):

w (y) = w(y) Y € [Y5,Yj+1/2)
W) { wy) — [pymi-udo y € (Yji1/9,Yj+1] (3.14)

w™ (y) is continuous on [y;, y;+1]. (see Fig.3.4, middle) Our purpose is to approximate

wW(Yjtr172 = 0) = w™ (Yj41/2)

since it is exactly the interface integral we are looking for. If y # y, 1/ then u;(x, y) is contin-
uous on S(y): in P;;, P41, we assume u to be enough smooth; there is also no discontinuity
through the possible interface E'F' since u; is a derivative along the direction tangential to the
interface (see Prop.3). We approximate (3.12) by taking the continuous function through the
integral:

wly) %y o 30) [

pdr — p/ uv dz, Y # Yjr1/0- (3.15)
S(y) 5(y)
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Let us introduce A(y) = fs(y) pdr >0, UV(y) = pfs(y) uwv dz. From (3.15) we can express

wyei1,y) & (©) +UVE) /AW fory # yjppn:

Even if uy(z;, 1,y) is not defined at y = y; 1/, the following integral relation holds:
2
it Yj+1
Uij+1 ~ Uiyj = / uy(iy 1,y) dy = / (w(y) + UV(y))/A(y) dy =
Yj Yi

= [T o+ ove) e+ [ (w) +0V0) /Al dy -

Yi Yi+d

Y; A(y) DH Yird A(y)

we have expressed w(y) in [yj +1,Yj+1] using the continuous function w™ (y) defined in (3.14).
2

The continuous functions w™(y) + UV (y), u we can take out from the integrals at the points
Yj+l, (z;41, yj+l) respectively to obtain the approximation for u; j41 — u; j:
2 2 2

B Yj+1 dy Yj+1 dy

Uij+1 — Uiy R (w (yj+%)+UV(yj+%)) /y]- @Jr(U(wH%,yﬁ%)- DHm1dcv> /y‘+1 )
itg

(3.16)

Using the following notation for the coefficients

-1 —1 -1
Yj+1 dy Yj+1 dy _ Yj+1/2 dy

T e RO M
A [/yJ A(y)] ity [y A(y)] bty [yj Aly)

§4+1/2
N Agjil _ Apjil
m’. |, = m; dz m. , = mi dx.
wits AT, Jpu ’ ity - .1 JDH
i+l ij+l

we can resolve (3.16) for w_(yj+%):

W (Y1) R A (g —uig) = p(uv)(@, 1,9, )| DH| —u(z;, 1,y;,1) - m;fﬁ%- (3.17)

To approximate the surface integral over CG we need an expression for —w+(yj7 1 )- From (3.13)
we approximate w+(y]-+%) = w(yj+% +0) by
W (yse1) R Ayt (wigen —uig) = pluv) (@, 1,95, DIDH| + w1, y5,1) my

and use it in approximation of momentum equation for the control volume P; ;1. The expression
for w+(yj_%) can be obtained if we substitute j by j — 1:

.1
%] —3

W (y;_1) R Ay (i —uig) = p(w) (@, 1y, 1) |DH| +u(z;,1,y; 1) -m

If in each control volume F; ;, the effective viscosities /i are constants equal to fi; ; then it is
easy to calculate the integrals in the expressions for the coefficients:

Aly) = s(fiighi + fivighic)) € [y, ;,1]
s(fijr1hi + fiig1j41hip1) Y€ [yj+%’yj+1]
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l; liv1 -1
Ai,j—l—% == p + = ~ (3.18)

Biihi + fBiv1ghivr  figrihi + fivaj41hie

S (i) Yo (o)
iita i j+1hi + fig11hiv ity fi,ghi + fit1,5hiva
To complete the approximation of (3.17) we need to express the velocity vector at (. LY )-
Due to continuity of u we can use the linear interpolation:

N o ui,jljﬂ + u,"j_Hlj . Uzghz—}—l + vip1 ]h
Wi oYy g) B gy = li+ 1 ’ s L T hi + hit1
(3.19)
u(wi+;,yj+l) is a velocity tangential to the interface. If, for example, both P; ;, P; 1 ; contain
2 2

one phase (e.g. porous), and P; j1, Pi11 j+1 contain another phase (e.g. fluid) then like in the
section 3.1.1 we may use the analytical solution in the channel to interpolate u(z, +1:Y41 ). In

2 2
our case it is possible to choose the input parameters: [ =1;/2, h = ;4 /2

p — oPit1 = Pig)li+1 + Pit1j+1 — Pig+1)lj
(hit1 + hi) i1 + 1)

U_] = U;j, Up = U;j+1- Then the interpolation has a form:

(Pi+1,j — Pij)ljv1 + (Pig1,j+1 — Di j+1)lj>
1, ~ 2 > : > 2 + bu; 5 » 3.20
uliep Yyag) > 0 ( (hit1 + hi) (L1 + 1) i e (320

The interpolation (3.20) might be better than u, g+l from (3.19) (we note also that m:j+l can
] T3
be large (£7!)). But in the term from (3.17) containing (uv)(:vH%,yﬂ%) it is preferable to use

(3.19) since the behaviour of (3.20) together with non-linearity is not clear.

3.1.4 Approximation of the non-linear convective terms

We still have to approximate the non-linear terms [u(x;11,;)]* from (3.11), and (uv)(z,_ 1, Yjr1)
2 2

from (3.17). They don’t appear if we deal with the Stokes—Brinkman model (1.37).
The so-called central differencing approximation is:

Ug 7 + U +1,5
'L+27J %7 [ (xl+1’ y])] ~ ’u’z+2’] z+ ]7 (ulu) (xz+%’yj+%) ~ uz,]+%vz+%’]

(3.21)
where the expressions from (3.19) were used. Unfortunately the scheme doesn’t work well when
the Reynolds number is high. To weaken this restriction one can use the so-called upwind
differencing scheme:

9 H_l Ui j ifu+2,>0 z+1 U j 1fv+,J>0

ulTir1,Y5)]” = UONT,  1,Y; 1)~ 2
[ ( i+1, J)] { Z+§,]UZ+1;] lf’u, <O 1( )( it+50 J+2) z+%,]uw+1 lf’U,H_ g <0
(3 22)
where @, , 100 + j are a priory known predictions for the values of u, 1 Vigd g This already

couples the creatlon of the system of non-linear algebraic equations (where the dlscrete variables
play a role of unknowns) with solving it by an iterative process. The expressions with tilde
are calculated using the known discrete variables from the previous iteration. Assuming a
convergence of the iterative process the discrete variables on previous iteration (marked with
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tilde) approximate the current discrete variables. The approximations from (3.21) can be also
made linear:

[u(wis1, y))* ~ Uit gUiply (W)@ 1, Y01) R0

The upwind scheme (3.22) can be applied for problems with much higher Reynolds numbers
than the central differencing approximation (3.21), but it is less precise. A compromise solution
is the so-called deferred correction with upwind as a low order scheme and central differences
as a high order scheme (see [15, p.76]):

ﬂi+%,j(ui,j — Ug5) + (@4-%,;’)2 \ if ﬂH—%,j >0
g1 (i1 = Gigng) + (g1 5)° i a1 5 <0

[u(zit1, ;)] = {

N U1 (Wig — ig) + 05,101 5 i 01 ;>0
(UU)(wwgvyﬂé) ~ f

Tig g (g1 = Bign) + 1005 10,405 <0

3.1.5 Vector-index form and 3D case

In a similar way one can discretize another momentum equations and consider the third velocity
component for the 3D case. Although there are no principal difficulties in writing down or
implementing in a computer program other momentum equations, a heightened attention is
required, since a large number of similar cases should be taken into account.

An alternative approach is to discretize the momentum equation only once, using Fig. 3.3
as it was done above, but to abstract from particular directions. The first momentum equation
(3.5) we can substitute by the m-th momentum equation

=V (VU™ — pu™ u — pey,) +ukpy - u = ", (3.23)
Wi,
where m is a parameter that can take values from 1,...,d. Further, when we integrate (3.23)

over U™, we obtain

- / Wy, - ndo + / mm-uda+/(,ukm-u—fm)dx:0 (3.24)

aum OPNOP; e,y um

instead of (3.6). oU™ = (J; Fk, where Fj, is a union of two faces of U™ perpendicular to ej:
Fy = [oU{" N oU, 1 U [OU™ N AU, . (m is either e, or —ej, on Fj). Then the first integral
can be represented as a sum

/ wm-nda:Z wm-ndaz/ wm-nda—l—z W, - ndo.
aum Frn

£V s#m Fs

In 2D there is only one Fs, s # m: s = 3—m. In 3D we have two F§, and integrals over them are
approximated in a similar way, like it was done in the section 3.1.3. s is the second parameter
after m. The integral over F), is different (see the section 3.1.2). So, it is enough to write the
discretizations for the momentum equations in a vector form, depending on the parameters m,
s. The third parameter ¢ appears only in 3D. It is uniquely determined by t = 6 — m — s. We
will not write the approximation of (3.24) up to the end in the vector-index form, but we used
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this way in order to implement the algorithm. The discretization of the continuity equation (see
(3.4) in 2D) is
d . m m
um — !

> %Wﬂ =0, (3.25)

m=1 i
where |P;| is either the volume (in 3D) or the area (in 2D) of the pressure control volume P;.

From here we will use mostly the vector-index notation.

3.1.6 Discrete unknowns and corresponding algebraic equations

At the end of the discretization process one should obtain a system of algebraic equations.
Those discrete variables, which are unknowns in that system, let us call as discrete unknowns.
It is important to have the number of equations in the system equal to the number of discrete
unknowns. To satisfy this criteria we may think that each discrete unknown should have its
own equation and the only one. Let i(2") be a set of all indexes i € Z? such that P; C Q*. The
number of such indexes (and the number of P;) we denote by N¢y. Let us define the set of all
discrete unknowns as those u!, ..., uf, p; that i € i(2"). We note that the discrete variable u",
defined on the boundary 992", belongs to the set of discrete unknowns only if the outer normal
to 0Q" coincides with e,, at the point where ul" is defined. It means, that one should treat the
parts of the boundary with and without discrete unknowns in a different way.

If the discrete unknown u{" is not on the boundary then i + e, € i(Q"), and U™ can
be defined as usual, containing a half of P; and a half of Piie, . (3.24) makes sense, and
the algebraic equation for this u{" is an approximation of (3.24). Above, we have discussed
the approximation for the case when U™ is away from the boundary (all discrete variables
used in the approximation were discrete unknowns). When U™ is close to the boundary it is
also possible to write the approximation of (3.24), using the approach proposed above since
the grid can be also defined outside 2" (see Fig.3.1), but some discrete variables needed for
the approximation are not discrete unknowns and we should also somehow extrapolate the
properties of the medium (like /i) from Q" to some region outside Q" (since the expressions like
(3.18) in the approximation may depend on the properties outside 2”). All discrete variables
which are not discrete unknowns cannot be used in the resulting system of algebraic equations.
They should be excluded with the help of boundary conditions. This will be discussed in the
next subsection as well as the case when the discrete unknown u{" is on the boundary. In the
latter case the algebraic equation corresponding to u{" is an approximation of the boundary
condition.

To the discrete pressure unknown p; we correspond the discretization of the continuity
equation (3.25) even if there is no pressure variable itself (it is one of the difficult points of
incompressible Navier-Stokes system of equations). If P; does not touch the boundary, then
(3.25) is well defined in terms of discrete unknowns. Otherwise the boundary conditions should
be used to express the missing velocities in (3.25). It is also the task of the next subsection.

At the end we should have a system of (d + 1)N¢y algebraic equations for (d + 1)Ncoy
discrete unknowns.

3.1.7 Boundary conditions

We will consider here and use for solving numerical problems in the Section 3.3 and the Chapters
4, 5 only three types of boundary conditions:

e Dirichlet boundary condition. Let S;, be a part of the boundary 09", where the Dirichlet
condition is imposed. At any point x € Sj, we have d conditions: u(x) = ugq. If it is the
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only boundary condition in use, then the input data usq should satisfy the compatibility
condition (2.58). A particular case is the no-slip condition imposed on the solid-fluid, solid-
porous boundaries: u(x) = 0. The Dirichlet condition will be used in all our numerical
tests, usually together with the ”"Outlet” condition.

e ”Qutlet” boundary condition. Let Sy be a part of the boundary 90", where the ” Outlet”
condition is imposed, and n be an outer normal to 9Q". The ?Outlet” conditions at the
point x € S, results in d conditions g—ﬁ = 0 (Neumann conditions for each velocity

component).

The solution u of the differential system satisfies the incompressibility condition leading to
fth u-ndo = 0. If the mass flux through 0Q" \ Sout: fth\S u-ndo can be calculated,
then we have a necessary integral condition for Sy,¢:

Fou= / u-ndo = —/ u-ndo, (3.26)
Sout aQh\Sout

that can be used in the numerical algorithm for solving the resulting system of algebraic
equations.

The ”Outlet” condition is usually used far from the region of interest, where the flow is
assumed to be fully developed. We will use this condition on the boundaries perpendicular
to some pipe where the outlet of the flow is expected.

o "Symmetry” boundary condition. Let Sgy,, be a part of the boundary 00", where the
”Qutlet” condition is imposed. This condition one can impose on a symmetry plane for
the case when the solution is expected to be symmetric with respect to this plane. The
boundary (plane) is perpendicular to some e, (n || e,,). Other unit vectors e; (and e; in
3D) are tangential to the boundary. Then for x € Sy, we have d conditions: u™ = 0,
a%u =0 (and Zu' =0 in 3D).

There is no mass flux through such boundary: | Seym & ndo = 0.

We will use the symmetry condition only in one problem (see the problem’s geometries in
Fig.4.10,4.11) together with Dirichlet and ”Outlet” boundary conditions.

If we deal only with these three boundary conditions, then (3.26) can be rewritten as

Fout:/ u-nda:—/ u-ndo, (3.27)
Sout Sin

Let us assume that the boundary lies between P; and P;ie,, (S = P;N Piie,,)- Then either
iori+ ey is not in i(Q"). (in the Fig.3.3 we can choose for example S = EF, P, = P, ;,
Pire, = Pit1,j; uf" = Uij, u§ = vij, Ui o = Vit1,5)-

If i € i(Q") then ul" is a discrete unknown. The corresponding algebraic equation is a
discretization of the boundary condition (the momentum equation is not used for this case).
We have the following possibilities:

o if S C S, then uf® = u¢, where v is the given value (u’ = |%fs ugg - ndo).

o if S C Sout then we equate u;" with the discrete unknown u{" The unknown wuj is
placed one step in the direction opposite to n from the boundary (the case i —e, & (Qh) is
not in agreement with imposing ”Outlet” condition on S). The equation for u{" is uf" = u{"_ .
o if S C Sy, then the equation for uf" is u]® = 0 (no-penetration).

If i + e, € i(Q") then u" is not a discrete unknown and hence doesn’t need an equation.
But it can be used in the equations for other discrete unknowns. We have similar cases:
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e if S C Sjy then u® = v'¢: we substitute the value ¢’ for each entry of u".
e if S C Sout then we identify u{" and the discrete unknown u{’, : we substitute the discrete
unknown ufy, ~for each entry of uf".
e if S C Sy we substitute 0 for each entry of ui".

Now we consider velocity components tangential to the boundary. If only one from i, i+ e,
is in i(Q"), then only one from the discrete variables u§, uf \e,, 18 the discrete unknown (s # m).
The discrete variable being outside Q" still can be used in expressions approximating some
momentum equation. In order to exclude it we can do the following:
e if S C S5;,. Let x € S be the intersection point of the segment connecting points where u;
and uf, . ~are defined with the boundary (according to our example, x coincides with the point

F in Fig.3.3). Due to the Dirichlet condition the velocity is known at that point. The s-th
component is u®(x) = ug. Using the linear interpolation

uly uihile, + uiie, M (in Fig.3.3 o(F)~ Vi jhit1 + Uz‘+1,jhz‘)

hi* + hil hi + hit1

i+en,

and the known value ug, we can express either uf or uf,, . One of them, which is not a discrete
unknown, can be replaced in this way from all equations.
o if S C Sput then v = uf te,,- We substitute the discrete unknown for another one in all
equations.
o if S C Ssym: the same as in the case S C Sous.

These are the main ideas how to exclude the discrete variables being not in the set of discrete

unknowns from approximations of momentum and continuity equations.

3.1.8 Numerical solution

As we have mentioned in the subsection 3.1.6, the main purpose of the discretization procedure
is to determine the system of (d+1) N¢y algebraic equations with (d+1) N¢y discrete unknowns.
Any set of values for the discrete unknowns that satisfies the system of (non-linear) algebraic
equations we can call a numerical solution for our problem (discrete unknowns marked with tilde
(in the subsection 3.1.4) has the same meaning here as the discrete unknowns without tilde). We
discuss here neither existence nor uniqueness of the numerical solution. Using the values of the
discrete unknowns it is possible to determine also the values of the discrete variables near the
boundary which were excluded with the help of the boundary conditions (see Section 3.1.7). In
particular, we can determine the discrete velocity field consisting of all discrete variables which
are defined in Q".

One possibility to solve the system of equations, based on the SIMPLE method, we consider
in the next section.

3.2 On solving the coupled system of algebraic equations

Iteration methods are often used when one have to solve systems of non-linear algebraic equa-
tions as well as systems of linear algebraic equations (especially in the case of large number of
unknowns). In the subsection 3.1.4 some discrete unknowns were marked with the ¢ilde sign,
meaning that on the current iteration this variable is not an unknown, but has a known value
from previous iteration. If the iterative process converges, then, after enough large number of
iterations, the values of the discrete unknowns on the current and on the previous iteration are
close to each other and satisfy approximately the initial system of algebraic equations. This
means the convergence to the numerical solution. Additional to discrete unknowns marked
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with the tilde sign in the subsection 3.1.4 to make the equations linear, we can mark some other
discrete unknowns with the tilde sign in order to simplify the current iteration. For example,
in the algebraic equation that corresponds to some discrete unknown u{* we can mark with the
tilde sign all discrete unknown u® (s # m). If we use the expressions (3.10), (3.20) then the
pressure variables there we also mark with the tilde sign. Due to our discretization the algebraic
equation for u{" contains no more than 2d + 1 discrete velocity unknowns without tilde sign,
namely the main (diagonal) unknown u{" and 2d neighbours uf", where j=it ey, k=1,...d,
j € i(9") and two discrete pressure unknowns p;, Dite,,- The pressure unknowns appear only
in the discretized momentum equations (not in the discretized continuity equations), therefore
we have to consider them as unknowns on the current iteration.

If we numerate somehow the elements of the finite set i(Q2"?) then we can define the vectors
Uk e RNev |k =1,...,d, containing all discrete unknowns uf, i €i(Q"); P € RVov containing
all p;, i €i(Q"); U= (U',...,U% € R¥Nev containing all discrete velocity unknowns (we note
that this notation is different from Uik, P; denoting the velocity and pressure control volumes).

The iterative process is the sequence

(u,p)V,(U,P)@,. .. (U,P)™ (U,P) "D

Each element (U,P)(™ contains values of all discrete variables after n € N iterations. The
values of all discrete velocity variables which are defined in W, but are not discrete unknown
can be calculated from U by the same expressions used to exclude them (for example from
discrete continuity equation). These values make up the discrete velocity field, corresponding
to UM,

In order to describe the iterative process, it is enough to describe one step, namely how to
obtain (U, P)"+1) from (U,~P)~(”). With the tilde sign (~) we mark the discrete unknowns on
the previous iteration (n): (U, P) := (U,P)™. With the hat sign (*) we mark the intermediate
velocity U. With the overline sign (=) we mark the numerical solution — the main goal of the
algorithm: U, P. U, P, u, p without tilde, hat or overline we use to denote the values on the
new iteration: (U, P) := (U, P)n+1),

Let us consider the linear algebraic equation for the discrete unknown u{*. It has a form:

d

aﬂ[U]uZn - Z Z a’m—k'yes [U] U’ﬁ'yes + bgn(pH“em - pi) = CIn[U] (328)
s=1y==%x1

where the coefficients a{f‘j, ci" depend only on the known values of U (aﬁ depends on U due to
convective terms, ¢* may depend also on P when (3.10),(3.20) are used), b is a constant. In
(3.28) aTi > 0, other coefficients may be equal to zero. When u{* is on the boundary then we

still have (3.28) with 5" = 0.
Using again that if the iterative process converges, then u{* ~ 4", we can add the term
(i — Dafi[Uluf" (0 < ay < 1) to both sides of (3.28) and then substitute in the right hand

side the known value " for u”. We will obtain the under-relaxed form of (3.28):

i L, & . ol o
=l =Y e, [ ufle, + b (bire, —pi) = o' [U] + ——"af}[UJaf". (3.29)
u s=1y==1 u

If we choose a, = 1 then (3.29) coincides with (3.28). Hence, we don’t need to consider (3.28)
any more. The relaxation parameter o, < 1 improves the main (diagonal) term in (3.29)
comparing to (3.28). This simplifies each iteration step, and sometimes it is even necessary to
use the under-relaxation in order to obtain a convergent iterative process.
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But, for u{", defined on the boundary with Dirichlet or ”Symmetry” conditions, there are
several reasons to use the left equation (without under-relaxation) than the right one:

ui® l1-a
ui" = given value, a—‘ = given value + - “a (3.30)
u u

First, the left equation has the diagonal dominance. Second, in the right equation we artificially
introduce an error which disappear only on convergent solution, when %" = u{"; but the left
equation is exactly the discretized form of the boundary condition. Third, if on 02 we have
only Dirichlet and ”Symmetry” boundary conditions (S, = 0), satisfying the compatibility
condition (2.58) then the discrete velocity field, obtained after solving the momentum equa-
tions (3.29), (3.30,left) satisfies the discretized compatibility condition. Using (3.30,right) we
don’t have this property, which will be important for the pressure—correction equation (see the
Subsection 3.2.3). In the case Syy: # (), we will combine solving the momentum equations with
?Outlet” condition and the momentum equations where the ” Outlet” conditions are substituted
by some Dirichlet conditions.

The equations (3.29) for all discrete velocity unknowns uw!®, m = 1,...,d, i € i(Q") and
discrete continuity equations (3.25) make up a system of linear algebraic equations. The linear
system has the following block—structure (3D):

A11 0 0 G1 U1 C1
0 A22 0 G2 .U2 _ 02
0 0 A33 G3 U3 o C3 (331)
D; D, D3 0 P d;n,
where Agr, G, Dy, (k= 1,...,d) are RVov*Nov matrixes, having non-zero elements (we note

that marking with the tilde sign has linearized the initial system of equations, and has simplified
the resulting matrix: A;; = 0, % # j). Solving the system and considering the solution (U, P)
as the values on the new iteration would define a possible iterative process (we note that due
to our boundary conditions, the pressure is defined up to a constant). But we use another
way to construct (U, P) from (ﬁ, f’) based on the SIMPLE method proposed by Patankar (see
e.g. [14],[54],[16]). The values of (U,P) (obtained by the SIMPLE method) in general doesn’t
satisfy (3.31). In order to describe the algorithm, we need to define some discrete operators.

3.2.1 The operators U, V-

The operators U, Up/Up. Let us consider the algebraic equations (3.29), (3.30,left) where
U is known from the previous iteration and assume that P is given. Then we have a system
of dN¢y linear equations with dN¢gy unknowns U. We have simplified the equations in such a
way that U™ can be found independently from other velocity components, by solving a system
of linear equations with the matrix A,,,, (see (3.31)). Then we can define a solution operator
U for this linear system:

U:RNev x RiNov y giNov U =y[P, U] = U'[P,U],...,Uu’P,U)).

The matrixes A,,,, can be made diagonal-dominant by a proper choice of the relaxation pa-
rameter a,. Therefore U exists and can be efficiently implemented in a computer program. We
note that the matrixes A,,,, are not necessarily symmetric (for example due to upwind scheme).
In the implementation of U™ we have used the BiCGSTAB solver for sparse matrixes with the
ILU preconditioner.
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If Sout # 0 then we will use two versions of U: Up[P, U], Up[P,U]. The former solves
the momentum equations with ”Outlet” conditions, and the latter solves momentum equations
where Dirichlet conditions substitute for ”Outlet” conditions (in the section 3.2.4 we discuss
how to obtain values for the Dirichlet conditions, needed in Up).

The operators Vj-, V. Let us define now the discrete divergence operator V- for the case
when on the the boundary we have either Dirichlet or ”Symmetry” boundary conditions:

d m m
Y — U
Ve RNV 5 RYOV,(V, O) () = Y S Rl i€i(@h), (3.32)

m=1 1

where the discrete variables u{" , ~defined on the boundary are substituted due to the boundary
condition as it was proposed in the Subsection 3.1.7 (u!" is a discrete unknown). According to
(3.31) the operator V- has a matrix form:

V,-U=D;U' ...+ D, U% - d;,,

where the non-zero elements of d;;, come from the non-zero Dirichlet conditions on the boundary
with the normal n directed opposite to some e;. Therefore Vj,- is not a linear operator. Vj, - U
depends only on the discrete vector field related to U. We will apply V- to those U, which
satisfies (3.30,left).

The operator V},- can be modified to obtain a linear operator Vj-: RiNev — RNev | To
define (V}, - U)(i) we use the expression from (3.32) where we substitute the zero for ul® or
u{" .~ whenever these discrete variables are defined on the boundary. Therefore, the operator
V},- depends only on the discrete unknowns u* from U which are defined between two control
volumes for pressure, P; and Py, from Q" (i,i+ e, € i(Q")). Hence the algebraic equation
(3.29) for such u}" contains the discrete pressure unknowns.

If U and V satisfy the boundary conditions (3.30,left), Q" = S, U Ssym, then
Vip-U-V,- V=V, (U-V), (3.33)

since the discrete unknowns ", v{" on the boundary has the same values due to the boundary
conditions, and the constant values from d;, cancel each other.

Another important property is the following: if U satisfies the boundary conditions (3.30,left),
o = S, U Ssym and V is arbitrary then

> (VarU)i) =0, > (Va-V)(i)=0 (334)

i€ei(Qh) iei(Qh)
In (3.32) uf", uf", =~ are defined on the faces with the area |FP[/h{". The sum (3.34) contains
terms u{*|P;|/h{"* and —u*|Piye,, |/h{},, cancelling each other for all u{" defined between two

pressure control volumes F; and Piie,, from Qh. Therefore the second sum is zero. The rest
in the first sum contains only mass fluxes through the boundary determined by the boundary
conditions. The first sum is exactly the total mass flux from Q" and it should be zero due to
the compatibility condition (2.58) for the Dirichlet data.

3.2.2 SIMPLE and SIMPLEC algorithms

Using the discrete operators defined above, the numerical problem can be written as:

Find (U,P)  suchthat: U =U[P,U], V,-U=0. (3.35)
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Using the values on the previous iteration (U, P) we can get a preliminary vector U on the new
iteration: o

U =U[P,U].
U satisfies the boundary conditions (09" = Sin U Sgym), but, in general, V, - U # 0. Using
(3.33), (3.35), we have

vh-U—vh-ﬁ:Vh-(ﬁ—ﬁ):—vh-ﬁ. (3.36)

The main goal is to find U, possibly close to U, satisfying the discrete incompressibility condition
Vi - U = 0. Then we want to approximate the difference

U-U=uP,U -up,uU. (3.37)

First of all, on the boundary U — U is zero. Hence we have to approximate ui” — uj" defined
between two pressure control volumes. The algebraic equations for 4{* and u!" are

_ 1= _
]W=Zﬁw$mm¢%%mfﬂwﬁm+a%ﬂmw,

u

a:ﬁ[ﬁ]Nm ey~ ~ - 1—ay piciiom
o 073t ve, [O]ag U} e, — b (Dite,, —Pi) +¢f"[U] + 5 ai’;[Uli;
u s,y U
respectively. Let us subtract the second equation from the first, denoting v{* = ai* — ul",
G =pi—pi, V= U- U Q= P - P
[U] l-«
= 3 b (O, = O e = )+ SO ) 4 Rest (33)

u

where the Rest is:

57 (e [0 = e, [01) e, + |

S

l—oy L] (a%[T] — a[O])af" + " [U] - ¢"[U] =

Oy, Oy

=3 (070,101 = 016, [01) 2 e, — (@F30] — aF3[O]) " + (0] - " [O).

Formally, assuming that U, U are known, we can consider equations (3.38) together with v]"* =

on the boundary as a linear system for V, and define its solution operator V[Q; U, U]. From
(3.38), (3.36) we obtain a system for V, Q:

V=Y[QUU, V, V=-V,-U, (3.39)
leading to one equation for Q:
V,-V[Q;U,U]= -V, U. (3.40)

This form is of no use, except that we can demonstrate the idea of the SIMPLE method on it:
instead of V in (3.39), (3.40) we will use its coarse simplification which depends explicitly and
linearly on the unknown Q, and may depend on the known parameters like U, U. Although it
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is not possible to get (U, P) from (ﬁ, ﬁ),/\using such V and Q, we still can obtain good values
for the new iteration (U, P), where U = U + V is divergence free: V;, - U = 0.

In order to obtain the simplification of V, let us try to express v{" from (3.38) explicitly.
First, we neglect in (3.38) the Rest term. Second, we can either neglect (f; = 0) or use (1 = 1)
the term

1- 1- ~
O] ~ ) = — a0 + " — ).
U (79} ’
Third, we have the non-diagonal terms af’; o [U] i} ve, that still prevent us to express vj". In

the SIMPLE method we simply neglect them (0 = 0) and in the SIMPLEC method they are
approximated by a!: [U]v;” (62 = 1). Then, instead of (3.38) we have

1 1+'yes
af}[U] = l-«a = ~
%Uim =02 alt e, [UP]" — b7 (Give,, — &) + 61 “afy[U)(vf" + 4" —af"),
U s,y u

or, collecting the terms with v in the left hand side:

1— -
Do = —b" (¢ite, — @) + 01— ai[U](@" —af"),

1—6,(1— . -
where D" = Ma?fi[U] ) Z {5 +ve, [U]-

«
u 5y

We note that the choice 61 = 1, 6, = 1 leads to D" = af} [U] 25y Bitre, [U]. It is better not
to use this case, since we will expect in (3.43) that all Dm are positive.
We can define two operators, in order to have a simple expression for V:

V =V[U]Q + R[U, U],
where the operators V and R are defined by

U " i =T T T — al ﬁ
(VIOQ)" () =~ o (tive, — @), RIT,T"() 1= 0, % _li;[.m]

(U — i)

when u{" is between two pressure control volumes, and are defined by zero otherwise. Returning
back to (3.40) we have the so-called pressure-correction equation:

Vi (VIUIQ) = =V, - R[T,T] - v,,- T. (3.41)
If we can solve it, then the velocity and pressure on the new iteration are:
U=U+V[UQ+R[U,T, P=P+0qQ. (3.42)

Aswellas V # U-U (after our simplifications), the solution of the pressure correction equation
Q is also different from P — P. Therefore it is reasonable to make a smaller step from P in the
direction Q: 0 < a;, < 1. The new velocity U is divergence—free:

ViU =Vy- T+, (VIUIQ) + Y, R[U, 0] =
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3.2.3 Pressure-correction equation

The vector form of the pressure correction equation (3.41) is a system of N¢y linear algebraic
equations with Noy unknowns that can be written explicitly. Let us take a look at the matrix
G for the linear system. In each row we have a linear equation corresponding to some pressure
control volume P;, i € i(Q"). All non-zero elements in this row correspond either to i or to
those j € i(Q") that P, and P; have a common face. We deal with the connected domain
Q = QF, therefore each P; has at least one neighbour. The non-zero coefficients in the row are
(m=1,...,d):

_ b imy o .
Gijten = —pmpm <0,  ifiten €i(QY);
o Z_eh' |Ay s " . \h gii = — E gij > 0. (3.43)
Giji—en, = _Di’ﬁ:ﬂ hi,; <0, ifi—ep€i(); s

Proposition 5 The matriz G is symmetric, degenerate, with one dimensional subspace
ker G = {Q € RVoV : GQ = 0}. The pressure correction equation (8.41) has a solution, unique
up to a constant.

e Symmetry of G.
if we take some gjj # 0, then i has a neighbour j as well as j has a neighbour i. It is enough to
consider the case j =i+ e,,. Then from (3.43) we have

g BB W Bl IR
L) 7 JuiTe;, ’ 1 T Jh)—em — .
D™ b Dj"i em hg" D hg”

9i,j = 9j,i since |Fj|/hi" = [B;|/h{" is the area of the common face.
o G is degenerate.
Let us take a vector Qg with all elements equal to 1. GQg = 0 since in any row

Z gij X1 =gij+ Z gij = 0.

jei(@) Jei(@M)\{i}

e rank G = Ngy — 1.
rank G < Ngy —1 since Qq € ker G. Let us construct a minor G’ of order Ngy —1, by excluding
a row and a column, corresponding to some index i € i(Q2?). In each row, corresponding to a
neighbour of i we will have

gl > D gl

Jei(@M)\{i,i}

> guil,
jei(@M)\{i}
Therefore, G’ has a weak diagonal dominance. After the control volume P is deleted from ",
the rest can become disconnected, but any connected part will contain a neighbour of F;. This
means that if G’ is not irreducible (see [55, p.267]) then every independent subsystem will have
a weak diagonal dominance. Consequently, det G’ # 0 and rank G = N¢y — 1.
e Solvability of the pressure-correction equation (3.41).
The pressure-correction equation is solvable only if the right hand side belongs to im G. From
RVev = imG @ ker GT, G = G” we conclude that the vector belongs to im G only if it is
orthogonal to Qp, meaning that the sum of all its elements is 0. According to (3.34) we have
this property for the right hand side of (3.41).

and in other rows of G':

|gii| =
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e To any solution one can add a vector from ker G: CQq (where C is a constant) to obtain
another solution. A difference of two solutions should belong to ker G. Therefore the solution
is unique up to a constant.

Remark 14 Let Q and Q' = Q + CQq are two solutions of the pressure correction equation.
The velocity U on the new iteration (3.42) is the same since V[U]Q = V[U|Q'. The new
pressure vector is different (3.42): P = P + apQ in the first case and P = P+ a,Q + 0,CQo
in the second. Nevertheless, it is not a problem since the pressure is defined up to a constant.

Remark 15 One can fiz a value of the solution at some control volume F;, for example: ¢ = 0.

Then the modified matriz G has only one non-zero element in the i-th row and column, namely
it is 1 on the diagonal. Other part of G is unchanged. Its determinant is det G = 1 xdet G’ # 0.

Remark 16 The pressure correction equation is another system of linear algebraic equations
that should be solved in the program (after the systems needed for the operators U™). We use
the CG method with ILU preconditioner to solve it.

3.2.4 Some final remarks about the algorithm.

Up to now we were dealing with the case Q" = S;, U S sym»> Sout = 0: no ”Outlet” conditions on
090. Now we consider the case: S,y # (0. Let us assume that the exact solution for the problem
with the ”Outlet” conditions (u,p) exists. It is possible to construct a corresponding problem
with Dirichlet conditions on Sy, setting the values of u on S,y as a known data. Then (u, p)
can be recovered as a solution of the modified problem, without ”Qutlet” condition.

This suggests a strategy of interchanging problems with ”Outlet” and Dirichlet conditions
in approaching the numerical solution by iterative process. Like before, let INJ', P be the values
on the previous iteration. We can solve the system of algebraic equations (with discretized
”Outlet” conditions on Syy¢) to obtain

Up = Up(P,TU) (”O” stands for ”Qutlet”).

The velocity field related to ﬁo (the discrete unknowns together with the discrete variables
excluded due to boundary conditions) satisfies neither the discrete continuity equations nor the
discrete compatibility condition in general. The latter prevents us to construct the pressure-
correction equation (namely, the operator Vj- was defined only for Dirichlet and ”Symmetry”
boundary conditions). Therefore we add an additional step: we substitute the ”Qutlet” con-
ditions by Dirichlet conditions that satisfies the discrete compatibility condition, and solve the
system of algebraic equations again (but with Dirichlet conditions on Syy):

U=Up(P,U) ("D’ stands for Dirichlet). (3.44)

U satisfies the boundary conditions (Dirichlet, ”Symmetry”). We can proceed further with
solving the pressure-correction equation (3.41) and constructing the approximation on the new
iteration (U, P) using (3.42).

In general, the Dirichlet conditions on S,,; and consequently the operator Up are not the
same on different iterations. In order to obtain values for the Dirichlet condition on S,,; we do
the following. First, we calculate the values of ﬁo on Sy (the discrete unknowns for velocity
components, directed tangential to the boundary can be extrapolated to Sy, using the Neumann
condition). Second, we use the velocity to calculate the total flux ﬁvut through S,,;. The correct
value F,; (which is in accordance with the compatibility condition) is given by (3.27). In fact,
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we need to modify the Dirichlet conditions only for the discrete velocity variables which are
defined on the boundary (they determine the fluxes through the boundary). If F,,; # 0, then

Fu F
Fo === u-ndo = %%y ) - ndo.
Fout J Sout Sout \Fout

Therefore we can use in Up the Dirichlet condition u* = uAI"OFout / ﬁout for any discrete variable

ul™ defined on the boundary Sp,:, where 4l [0 is the value on S, obtained from Uo Another

case, Fout = 0 usually happens on the first iteration, if we start from U=0. Using, that

F,
Fout = / out do
Sout |Sout|

we can use in Up a uniform velocity profile u]® = Foy;/|Sout| for any discrete variable u{", defined
on the boundary Syy:.

If the iterative process converges (mef}vning also that ﬁo — U tends to zero) then the limit so-
lution satisfies the continuity condition (U) and the discrete momentum equation with ” Outlet”
boundary conditions on Syt (ﬁo).

Sout = 0 means that we don’t need the operator Up, we just start from (3.44) where Up
is the same as the operator U defined in the Section 3.2.1. If the iterative process converges
(meaning also that U-TU tends to zero) then the limit solution satisfies the continuity condition
(U) and the discrete momentum equation (U).

We have often used the assumption that the iterative process converges, to be sure that
what we obtain at the end is the numerical solution U, P that we are looking for. In general,
we cannot guarantee the convergence. This may depend for example on the parameters of the
continuous problem, like Reynolds number and the choice of the boundary conditions; or on
the chosen discretization formulae; or on the internal parameters of the iterative method, like
Qy, Op, 01, O2. The algorithm implemented in a computer program needs much more additional
parameters, absent in the idealized case that we discussed above. For example, the operators
U™ and (V},-V) ! give in fact only an approximate solution of the underlying systems of linear
algebraic equations. The additional parameters in this case control the precision of the linear
solver. It is often the case that solving the linear systems on each iteration with high precision
needs much more time resources than just a coarse approximation, and in addition has no
advantage in number of iterations needed to approach the final solution.

Remark 17 We thankfully acknowledge the use in our program of the SparceLib++, IML++,
MV++ libraries for solving systems of linear algebraic equations, created by R. Pozo, K. Rem-
ington, and A. Lumsdaine. http://math.nist.gov/sparselib/

3.3 Numerical validation of the algorithm

The algorithm that we used is a modification of the SIMPLE algorithm for Navier-Stokes equa-
tions and in particular (for example when , = () it should be able to solve Navier-Stokes
system of equations. This suggests that the first tests can be just some standard test for
Navier-Stokes solvers.

The 2D lid-driven cavity test Let us consider a 2D cavity [0,1] x [0,1] with Dirichlet
boundary conditions u = (1,0) on the top y = 1 and the no-slip condition u = 0 on the other
boundaries.
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The Reynolds number is calculated with L =1, U = 1, p = 1: Re = 1/pu. The geometry
and computed velocity fields are presented in Fig.3.5 for Reynolds numbers equal to 1000 (left)

and 3200 (right).
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Figure 3.5: Velocity fields for the lid-driven cavity test problem. Re=1000 (left) and Re=3200
(right)

We have compared our velocity solution with the results presented in [18] see Fig.3.6
(Re=1000) and Fig.3.7 (Re=3200). The comparison was done on two lines z = 0.5 and
y = 0.5 for velocity components (u = (u,v)) which are perpendicular to the corresponding
lines: u(0.5,y), y € [0,1] (blue color) and v(z,0.5), z € [0,1] (red color). The circles are values
presented in [18] and the continuous lines show our solution calculated on different uniform
grids. The line numbers are related to the grid size in the following way: 1:20x20; 2:40x40;
3:80x80; 4: 160x160; 5:320x320. Similar comparisons were obtained also for smaller Reynolds

numbers: 100, 400.

A flow in a channel with porous media In the Section 2.1 we considered a fully developed
flow in a channel and an exact solution was obtained in €., provided g—; = 0 there.

Here we consider a 2D problem in a channel (see Fig.3.8) Q = (0,6) x (0,1) where porous
media domain is €, = (1,6) x (0,0.5). The boundary conditions are: no-slip conditions on the
solid boundaries of the channel y = 0 and y = 1, given inlet velocity u = (1,0) on the left side
z = 0 and "Outlet” condition on the right side z = 6 (this condition seems to be consistent
with our assumptions for the fully-developed flow).

Our purpose is to use the model (1.2) in Qy, (1.37) in Q, with the interface conditions
(1.29), (1.34) for numerical solution in 2D and to compare the solution in Qy,, with the (ODE)
analytical solution from the Section 2.1.

For the calculations we need to specify f, u, i, M, K. The right hand side was not taken
into account in the Section 2.1 therefore f = 0 for the numerical calculations. To make our
tests more rich in content, we can require effective viscosity in €2, to be different from the fluid

viscosity: p =1, pess = 5.
We present here results of two tests, different in the parameters M and K. The parameter
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Figure 3.6: Velocity profiles u(0.5,-) (blue), v(z,0.5) (red). Circles — benchmark solution.
Re = 1000

-1 1 1 1 1 1 1 1 1 1 J
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Figure 3.7: Velocity profiles u(0.5,-) (blue), v(z,0.5) (red). Circles — benchmark solution.
Re = 3200
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M’ in the "laboratory system” and the permeability K in Q, are

40 0

. ! _
test 1: M_[?)O 0

] , K = 0.08%2K;;

800 0

} 1 _
test 2: M = [ 600 0

] ) K = 0.008°K 7,
where the non-scalar permeability Kry is from (1.16). K and M were chosen to have a magnitude
of order &2, ¢! respectively. The porous medium for the second test has smaller pores than the
porous medium for the test 1.

M’ we will use to define M on the interface:
on (z,y): = € [1,6],y = 0.5 we can set M = M’ since n = (0,1)7;
in order to obtain M on (z,y): z =1, y € [0,0.5] we should choose coordinate transformation
C which transforms the normal n = (—1,0) into (0,1) and to use (2.43). In 2D there are two

possibilities:
0 1 0 -1
C_[—l O] or C_[—l 0]

depending on whether the tangential vector (0,1) transforms into (1,0) or (—1,0). We have
chosen the first variant. Then M on z = 1 is given by

o =1 ][ My My [0 1]_[ My -—My
M_[l 0 HMé1 My || -1 0] | -M, M, (3.45)

The 2D solution (uy,py) (N is for "numerical”) was calculated using two grids for the
first test: 120x100, 240x200 and tree grids for the second test: 120x100, 240x200, 480x400.
The geometry and velocity fields calculated on the finest grids are presented in Fig.3.8 (test 1),
Fig.3.12 (test 2); the pressure fields are plotted in Fig.3.9 (test 1) and Fig.3.13 (test 2).

We suppose that the channel is long enough and the region (4.5,5.5) x (0,1) can be taken as
Qfqr since the velocity profiles uy(4.5,-) and uy(5.5,-) almost coincide for all calculations see
for example Fig.3.10 (test 1, grid 120x100), Fig.3.14 (test 2, grid 480x400) where blue points
and red circles correspond to the 2D numerical velocity component uy plotted on blue and red
lines in Fig.3.8,3.12. The pressures along blue and red lines in {2y are almost constants also for
all calculations: py(4.5,-) = P, and py(5.5,-) = P, (the values P;, P, are of course test and
grid dependent:

120 x 100 240 x 200 120 x 100 240 x 200 480 x 400
P —350.7871 —350.3349 —362.2892 —362.3589 —361.977
Py —443.47185 —443.1095 —457.76195 —458.0489 —457.7385

the left table contains values for the first test, right for the second. The pressure was fixed by
setting pn(0.5,0.5) = 0)

These values can be used to calculate ”input” parameters for the ODE problem P = (P; —
P)/(Tmaz — Tmin) and p° = P;. Then 1D solution (u4,p4) (A is for "analytical”) can be
explicitly written in Qy,, using (2.15), (2.16), (2.13), (2.14), (2.24)-(2.26) and (2.33). We note
that the analytical solution (u4,p4) depends on the calculated numerical solution (uy,pn)-
On other grids the values P; and P, are different and consequently the analytical solutions are
also different.

The comparison of ux with u4 and py with p4 are presented in Fig.3.10, 3.11 (test 1) and
Fig.3.14, 3.15 (test 2).
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The Fig.3.10 shows the comparison of the horizontal velocity components uy(4.5,-) (blue
points), un (5.5, ) (red circles) calculated on the grid 120x100 for the test 1 and the correspond-
ing u4(5,-) (black dashed line) (they are given at different x since we additionally need to check
the assumption for 24, that g—g ~ 0). Two small subfigures on the right show magnifications
of two critical places: around the interface point y = 0.5 (down) and near the maximal velocity
where the maximal numerical error is expected.

Similar, the Fig.3.14 shows the velocity comparison for the second test. Different from the
previous case the grid for numerical solution is 480x400 and due to the large number (400), the
blue points and the red circles were substituted by blue and red continuous lines to indicate
un(4.5,-) and upn(5.5,-) respectively in the large subfigure. We note that it is not easy to
distinguish these three lines there.

The pressure py and p4 from the first test are compared in Fig.3.11. Two left subfigures
show pn(5,-) (green continuous line) calculated on the grids 120x100 (left subfigure), 240x200
(middle subfigure) and corresponding pa(5,-) (black dashed line). In both cases py and pa
are quite close to each other. The difference can be seen in the right subfigure where both left
and middle subfigures are combined and magnified around z = 0.3. Blue lines are for the grid
240x%200: continuous (num. 1) — py(5,-), dashed (num. 2) — p4(5,-). Red lines are for the grid
120x100: continuous (num. 3) — pn(5,-), dashed (num. 4) — pa(5,-).

Fig.3.15 presents a similar comparison for the second test. There is no magnification since the
difference is visible, all three subfigures corresponds to different grids: 120x100 (left), 240x200
(middle), 480x400 (right). According to the pressure comparison for tests 1 and 2 the numerical
solution corresponding to porous media with smaller pores is less accurate than those with large
pores. The accuracy obtained on the grid 120x100 for the first test was not achieved even on
the grid 480x400 for the second test.

The relative difference between py and p4 is much smaller if we take into account the total
pressure variation for the problem (see for example Fig.3.9) is around 450 instead of the pressure
variation over the line = 5 which is around 20 (see Fig.3.11). But we should also note that in
the numerical scheme the interface velocity was calculated using the 1D solution (see expressions
(3.10) (3.20)). It means that the scheme was optimized for the parallel flow problems. We can
compare with the standard case where the linear interpolations (from (3.9), (3.19)) were used
to predict the tangential velocity on the interface without employing the 1D solution. In the
Fig.3.16 the pressure py(5,-) calculated by this way is compared with corresponding p4(5,-).
The left subfigure is for the grid 120x100, test 1; other two are for the test 2 calculated for the
grid 240x200 (middle) and 480x400 (right).
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Figure 3.8: Geometry and velocity field in the channel, test 1
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Figure 3.9: Pressure field in the channel, test 1
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Figure 3.10: Velocity comparison: uy(Zmin,) (blue points), un(Zmaz,-) (red circles) and cor-
responding u (5, ) (dashed black line), test 1

—-382 -382
-386 _386
-390
-390
-394
-394
-398
-398
0 0.5 1 0

0.5

~385.81 \
AN N\
-386.01} 1
386.0 . O\
~386.21 N N
AN 3 N\
~386.41 R \
AN N\
~386.61 N
AN
~386.81
1 028 03  0.32

Figure 3.11: Pressure comparison: py(5,-) (continuous line) and corresponding p4(5,-) (dashed
line). Grids for px(5,-): 120x100(left), 240x200(middle), magnification of both (right), test 1
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Figure 3.12: Geometry and velocity field in the channel, test 2
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Figure 3.13: Pressure field in the channel, test 2
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Figure 3.14: Velocity comparison: un(Zmin,-) (blue), un(Zmqz,-) (red) and corresponding
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Figure 3.15: Pressure comparison: py(5,-) (continuous line) and corresponding p4(5, ) (dashed
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Figure 3.16: px without 1D interpolation: py(5,-) (continuous line) and corresponding p (5, -)
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Chapter 4

Validation of the models

In the preceding Chapters we described the (Navier-)Stokes-Brinkman model (equipped with
the Ochoa-Tapia& Whitaker interface conditions), as well as the numerical algorithm for solving
the arisen system of PDEs. This Chapter deals with the validation of the model via comparisons
with direct numerical simulation of flows at micro-level. The idea is to compare the solution at a
micro level, when the Stokes (or Navier-Stokes) equations are governing the flow in the complex
(micro) geometry, with the solution at a macro level, when the (Navier—)Stokes-Brinkman model
is used in homogeneous domain. That is, direct numerical simulations are used for validation of
the model. Nowadays this can not be done for arbitrary porous media due to limitations on the
computer resources. Therefore, we consider relatively simple samples of porous media, which
are chosen in accordance with the following requirements.

(i). First of all, we restrict ourselves to 2D case (the real porous media are tree-dimensional).
This restriction allows us to have around 1000 discretization points in each direction on the finest
grid.

(ii). Second, the ratio of typical pore size to the characteristic size of the problem (usually
assumed to be a small parameter for porous materials) for our calculations is bounded from
below, due to the need to resolve pores by a grid. Moreover, we want to be able to evaluate the
numerical error on a consequence of refined grids. As a result, the ratio that we are able to deal
with is much larger than what can be found in many practical problems.

(iii). Third, we do not use micro-geometries, obtained (e.g. via micro tomography) from
some real porous material. Instead, we design ourselves (artificial) micro-geometry, which sat-
isfies the following requirements:

e the solid structure should be aligned with the used grid elements (in our case it means
that a rectangular should be the basic element for assembling the solid matrix);

e the solid matrix is periodic.

The last requirement, the periodicity of the porous media, is suitable for a straightforward
calculation of the permeability (see also (1.11)). We use two different unit cells (see Fig.1.2),
from which we assemble periodic porous media. We use I or II signs to emphasize that the porous
medium is assembled from the periodic repetition of the unit cell CG I or CG 1I respectively.
The permeability, used in the macro problem is determined from (1.14), where € = &, K is either
K or Krr (1.16), depending on what cell geometry (i.e., CG I or CG II) was used to construct
the solid matrix.

To solve the macroscopic problem, one needs also to define the porous domain €),. This
is equivalent to defining the exact location of the porous-fluid interface ¥ = 09, N 0Qs. Our
porous medium is built from unit cells. Therefore it is reasonable to define €2, as an union
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of the unit cells. That is, the interface coincides with the outer cell boundaries (not with the
boundary of the solid matrix).

All flow problems, considered here, are solved in open regions. If nothing else is specified, a
velocity profile is prescribed at the inlet, while soft ”Outlet” boundary conditions are prescribed
at the outlet.

Several test problems for coupled flows in plain and porous media are solved and analyzed
in the next sections. They cover separately the cases when the main flow is perpendicular to
the porous medium, when it is parallel to the porous medium, and when it is inclined. In
some of the test cases the inlet and the outlet are completely separated by the porous medium,
in other cases there exist pure liquid subregion, connecting the inlet and the outlet. In our
understanding, these test cases represent qualitatively the most of the plain and porous media
combinations, observed in the real life problems. In the most of our test problems we consider
the (Navier-)Stokes-Brinkman system, equipped with continuous stress tensor, or with jump
stress tensor interface conditions as a macroscopic model. The first section, however, deals with
the usage of another model: the Navier-Stokes equations in the free fluid subregion, and the
Darcy law in the porous subregion.

4.1 Can there be a pressure jump on the interface when cou-
pling Navier—Stokes and Darcy equations?

The aim of the results, presented in this section, is to contribute to the discussions on the
coupling conditions between Navier-Stokes and Darcy equations. Although this thesis is devoted
to the Navier—Stokes-Brinkman model, analysis of the above mentioned coupling is also of
interest for us (in the Section 2.1 we investigated how the Beavers—Joseph and the pressure
jump conditions can be approximated with the proper choice of M). The used here direct
numerical simulation at a micro level allows us to discuss validity of the different coupling
conditions and of different models for the porous media.

One of the intuitive interface conditions for coupling Navier-Stokes in 2y with Darcy law in
€2y, is the continuity of the pressure (see the literature review in Chapter 1). Such a condition was
proposed in [12] for the case of the Stokes equations and Darcy law on the base of asymptotical
considerations. The authors concluded, that in the considered case the pressure variation across
the interface is of the same order, as the pressure variation along a cell face, aligned with
the interface. Using the fact, that the length of the unit cell is small, compared to the size
of the domain, they suggested to use the pressure continuity condition on the interface, as a
low order asymptotic approximation. In [50], the pressure interface condition was investigated
numerically. A channel with periodic porous media, constructed either from in-line, or from
staggered arrangement cylinders, was considered there. Solving the Navier-Stokes equations,
the authors calculated the pressure difference across the interface. This difference is calculated
from two limit values for the pressure on the interface: one is computed by averaging the pressure
from the fluid side, and another by averaging the pressure from the porous medium side. The
conclusion, made in [50] was that for small Reynolds number, the pressure difference across the
interface is negligible even in comparison with the pressure variation along the cell side, aligned
with the interface. That is, for the flow without convective terms and geometries considered
in from [50], the pressure jump effect is even smaller than it was expected in [12]. Thus, the
pressure continuity condition is a correct assumption in this case. It was further reported in [50],
that the pressure difference across the interface becomes more significant for higher Reynolds
numbers. These results are presented in [50, Fig. 6(c)] for the in-line arrangement of the
cylinders. It has to be noted that the 2-D geometry, chosen in [50] for the direct numerical
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simulation, is symmetric with respect to the vertical line passing through centers of all solid
circles in a certain column; and the in-line arrangement is square-periodic, and as such it belongs
to the case considered in [25]. Therefore, the constant C” from (1.28) should be zero for the
in-line arrangement due to Remark 3.9 in [25], meaning that no pressure jump is expected for
that geometry. In this way, the theoretical analysis from [25] explains the observed in [50] zero
pressure jump by the symmetry of the particular microgeometry. For more general (periodic)
geometries, the pressure jump condition (1.26) was suggested in [25] on the base of asymptotic
analysis. The article [25] contains also a numerical method for solving the boundary layer
problem (1.27) and for calculating the coefficients C¥, C% from (1.28) for two types of cell
geometries. The cell with inclined ellipse as an obstacle leads to a non-zero coefficient C%
(namely C% = —0.52, C% = —0.45). Therefore, the theory from [25] predicts a pressure jump
on the interface of the porous media constructed from this periodicity cell. Up to our knowledge,
the direct numerical simulations were not performed earlier to demonstrate the pressure jump
effect. Therefore, we present such simulations in this section.

We have chosen the periodic geometries drawn in Fig.1.2: symmetric (CG I) and non-
symmetric (CG II) with respect to the vertical line y' = 1/2. For the case CG I the constant
Cbl ‘1 should be zero. Although the constant C bl ‘17 related to the case C'G II is not known, the
sohd obstacle there is somehow similar to the 1nchned ellipse from [25] reflected with respect to
the line y' = 1/2. The constants C , C’f,l related to the cell with the reflected ellipse can be
calculated using C¥, C?:

Ol =Clf =052, ClY =-Cl =045 (4.1)

The reason is that the solutions of these two boundary layer problems (see (1.27)) for the inclined
ellipse from [25] and for the reflected ellipse are related as follows:

ﬁl}l(ylay2) :ﬁ;l(l _ylayQ)a /Bgl(ylayQ) = _IBI?I(]' _ylayZ)a G)bl(ylay2) = _wbl(]- _y1’y2)'
since, for example, the first momentum equation in (1.27) is

2 21 2
—aa(yﬂlglz(l —yLyH)(-1)? - (.f(yf;’ 1-y' 9%

~ ow
- Ay ﬁl}l(ylayZ) + Wbll(ylay2) =

P
_8—y1(1 —yLy7)(=1) = = Ay Byl —y',9%) + By —wp(l -y y*) =0.

This idea was used in the Remark 3.9 from [25] to show that the symmetry implies C% = 0.
Although the geometry for the case C'G II is only a rude approximation to the reflected
ellipse, we expect that C’ff 77 1s non-zero, and the pressure jump effect can be observed. Let us
describe the setup for our direct numerical simulation. The geometry for both test problems
(test T and test II), as well as the calculated pressure fields, are presented in Fig.4.1 and Fig.4.6.
The channels Q = (0,4) x (0,0.8) have solid top and bottom walls. Uniform velocity is given
on the left side, while ”Qutlet” condition is prescribed on the right side. The artificial porous
media €, = (0.51,2.99) x (0, 0.48) for the test II is obtained as a periodic ensemble from the cell
geometry CG II. For the test I, Q, = (0.5,3.02) x (0,0.48), and it is based on the cell geometry
CG 1. We have ;7 = 0.08 and ¢; = 0.06, respectively. We could not set the porous media
up to the end of the channel, otherwise the ”Outlet” conditions would violate the flow. The
flow is governed by the Stokes equations. The calculations were done on three nested grids:
1600x320 (solid line), 800x160 (dashed line), 400x80 (dotted line) to check the convergence of

the numerical solution.
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Magnifications of the pressure field near the interface are given in Fig.4.2 and 4.7. Although
the pressure field is not periodic, one can see that there are two patterns for isobars: one of
them is periodically repeated in both directions inside €2, and another is periodically repeated
in the horizontal direction near the interface.

The plots of the (microscopical) pressure along the various vertical lines (namely, z = 1.5,
x = 1.55, x = 2.0, z = 2.05 ) are presented in the four figures. First two figures, Fig.4.3
and Fig.4.4, concern the cell geometry CG II. Next two figures, Fig.4.8, and Fig.4.9, concern
the cell geometry CG 1. The pressure plot is not a continuous line: the gaps appear when the
vertical lines intersect the solid obstacles. The pressure variation near the interface is definitely
higher, compared to the pressure variation inside €2,. This is true for both microgeometries,
CG II and CG 1, as it can be seen in Fig.4.2, Fig.4.7, as well as in Fig.4.3, Fig.4.4, Fig.4.8, and
Fig.4.9. The symmetry of the geometry CG I is the reason why the pressure values below the
narrow interfacial region are practically the same, as the pressure values above the interface.
(see Fig.4.7). However, this is not the case for the geometry CG II. As it can be seen in Fig.4.2,
Fig.4.3, and Fig.4.4, the pressure values above and below the interface are different for the cell
geometry CG II. More informative are the plots of the pressure averaged over the er7-squares.
They are presented in Fig.4.5: the averaged pressures in the porous part are inclined black lines
which rapidly decrease near the interface to match the constant values in the free fluid part.
This rapid change in the interfacial region can be understood as a jump in the effective pressure
(given, e.g., by the green dashed lines).

The pressure gradient in €, (see Fig.4.5 (left)) is approximately given by:

dp 1211.3 —1199.6
P=_——~
oz 0.05

where 1211.3 — 1199.6 is approximately the gap between two pressure profiles at £ = 1.5 and
z = 1.55 in Fig.4.5 (left). Then, the pressure difference across the cell in the longitudinal
direction, 7P , erfP ~ 0.08 x 234 ~ 18.7, is comparable with the value of the jump which
is ~ 9 (see the green dashed line in Fig.4.5,left). Does this mean that the jump effect is small
and can be neglected (in our problem the total pressure difference is around 700 (see Fig.4.1))?
Let us make a rough estimation for the jump, using the approach from [25]. The profile for
the horizontal velocity component u(y) is given by u(y) = uesr(y — 0.48) where u.sy is from
(2.17) since the interface is not at y = 0, but at y = 0.48. The pressure jump condition (1.26)
is written as

— 234,

ou ou Ph?
p(2,0.48 — 0) — p(x,0.48 +0) = ucg{Ha—y(OAS) = uc};{Ha—;”(O) = cﬁ{Hm (4.2)
where o = —¢ HC% 1+ 4 = 1. Taking into account the approximate nature of our calculations,

let us substitute the unknown coefficients CffH, CZ{ 17> by the known C%, C¥ from (4.1). h is
the width of the pure fluid part in the channel: h = 0.8 — 0.48 = 0.32. Thus, the pressure jump
can be estimated by

Cln? 0.45 x 0.322
0.48 —0) — p(2,0.48 4 0) ~ P— 2" _ —_ P = 0.064P = 15.0
P, )~ p(@,0.48+0) o(h — e C%)  2(0.32+ 0.08 x 0.52)

This estimation for the pressure jump, 0.064P = 15, is comparable with our numerical jump,
which is 9. Further on, for this problem it is comparable also with the pressure difference across
the cell in the longitudinal direction, ;7 P ~ 18.7.

If one considers a sequence of problems with e7; — 0, then according to [24],[25] the pressure
jump (4.2) should tend to PCg{ ;7h/2. This constant doesn’t depend on €77 and hence cannot
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be neglected (although in particular cases it can be small in comparison with the total pressure
variation). On the other hand, the pressure difference across the cell in the longitudinal direction
tends to zero, when e77 does. In our test, £ is not enough small in comparison with A (in our
calculations h/er; = 4). Therefore we cannot completely confirm the pressure jump condition,
but we observe at least such a tendency.

0.6
0.4
0.2
b %
SO0 BN BE
0.5 1 15 2 25 3 3.5
[ I B
-1600 -1500 -1400 —13|00 —12|oo —11|oo -1000 -900

Figure 4.1: Geometry C'G II and the pressure field. Sec.4.1,4.3
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Figure 4.2: Pressure field near the porous-fluid interface. CG II

4.2 Flow, perpendicular to the porous medium

After the above short discussion on coupling conditions between (Navier-)Stokes and Darcy
models, we return to the main topic of our investigations, namely, to the (Navier—)Stokes—
Brinkman model. Analysis of the interface conditions for this system is the topic for the next
three sections. We will use the dimensionless form of the equations (see section 1.4.1). peyrs
different from p will not be used. The Darcy number is needed only for macro calculations and
can be easily obtained from geometry of the corresponding micro-problem: it is just the squared
size of one periodicity cell, measured in unit lengths of the computational domain. This unit
length corresponds to L in the dimensional problem. The characteristic velocity U is the normal
component of the uniform Inlet velocity (so, the dimensionless velocity is a unit vector there).

The first test is a simple filtration problem, which is often considered in conjunction with
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Figure 4.3: Pressure along the lines x = 1.5 (left) and z = 1.55 (right). CG II
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Figure 4.4: Pressure along the lines z = 2.0 (left) and z = 2.05 (right). CG II
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Figure 4.5: cell-averaged pressure along the lines z = 1.5, x = 1.55 (left) and z = 2.0, z = 2.05
(right). CG1I
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Figure 4.6: Geometry C'G I and the pressure field. Sec.4.1
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Figure 4.7: Pressure field near the porous-fluid interface. CG I
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Figure 4.9: Pressure along the line z = 2.0 (left) and z = 2.05 (right). CG I

the Darcy law, as a way to measure the scalar permeability of porous media. We investigate it
in conjunction with the Stokes—Brinkman model.

Consider a semi-infinite domain, (0, 1.5) X (—o0, +00). The porous medium, which is a peri-
odic arrangement of square obstacles, occupies the subdomain (0.3,1.2) x (—oo, +00). Account-
ing for the periodicity of the porous medium, we restrict our considerations to the subdomain
(0,1.5) x (0,0.12). Geometry for the corresponding microscopical problem, and the computed
there velocity field, are shown in Fig.4.10. The flow at the microscale (e.g. in the free fluid
region around the solid obstacles) is governed by the 2D Stokes equations (1.44).

The left boundary (z = 0) is the Inlet boundary (u = (1,0) there). At the outflow, z = 1.5,
we set the "Outlet” boundary conditions. ”Symmetry” boundary conditions are prescribed at
y = 0 and at y = 0.12 as if there would be many similar rows below y = 0 and above y = 0.12.
(consult the section 3.1.7 for the ”Symmetry” and ”Outlet” boundary conditions).

The consideration of only a small part of the periodic porous medium (in vertical direction)
allows us to use fine grids in simulations. This micro problem is solved on a sequence of
refined grids, containing 75x6, 150x12, 300x24, 600x48, 1200x96, and 2400x192 control volumes,
respectively.

The geometry for the corresponding macro problem is given in Fig.4.11. The Stokes-
Brinkman equations (1.43) are governing the (macro) flow there. The Darcy number is 0.062
(see Fig.4.10), and the permeability K = Ky from (1.16). Boundary conditions in this case are
the same as for the micro problem. The interface conditions on z = 0.3 and x = 1.2 are the
continuous velocity, (1.42), and the continuous stress tensor condition, (1.46). We note that the
first square in Fig.4.10 has the minimal z coordinate equal to 0.3 + \/ITG,/ 3, since we decided
to locate the interface in accordance with the cell’s boundary.

Two grids were used to calculate the macro solution: 75x6 and 150x12. It is easy to check,
that the macroscopic problem has an exact solution. It is given by u = (1,0)7 for (z,%) € Q,
together with p(x,-) = p; when z < 0.3; p(x,-) = po, when z > 1.2, and p(z) satisfies the 1D

Darcy law
op
u=—DaK— z € (0.3,1.2) (4.3)
oz
where u = 1, either p; or po can be chosen arbitrarily.
The comparison of pressure profiles along the line y = 0.04, calculated using the microscopi-

cal as well as the macroscopic problems on nested grids, is given in Fig.4.12. One can observe a
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very good agreement between the solutions of the micro and the macro models for this problem.
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Figure 4.10: Microgeometry (CG I) and the velocity field. Sec.4.2
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Figure 4.11: Macrogeometry (CG I) and the velocity field. Sec.4.2

4.3 Flow in a channel with a long porous obstacle

We continue to compare the microscopical calculations with macroscopic ones, considering now
more interesting types of flows. In contrast to the preceding section, now the flow is not
perpendicular to the porous medium, it is mainly parallel to it. For the first test (test I),
the porous medium is built from squares with the cell geometry CG I (see Fig.4.13). The
second test (test II) is the same test from the section 4.1 used to demonstrate the pressure
jump (see Fig. 4.1). The Stokes model (1.44) is used for the flow at a microlevel, while at a
macrolevel the Stokes model is used in 2y, and the Stokes-Brinkman model (1.43) is used in
(1, for both tests. The domains ) represent channels with solid top and bottom walls. The
left and right boundaries of the channels are Inlet and Outlet boundaries with Dirichlet and
?Outlet” conditions, respectively. For both test I and test II we consider two variants for the
interface conditions at a macrolevel. In the first variant, the continuous stress condition (1.46)
is used. In the second variant, the stress jump condition (1.45) is used. In both variants, the
second interface condition, as usual, is the continuity of the velocity across the interface (1.42).

Dealing with (1.45) we should specify the tensorial coefficient M on the interface 3. The
interface can be divided into three parts ¥, ¥, £3 having the normals (0,1)7, (-1,0)7, (1,0)7,
respectively. On each part 3J; we are going to use the same matrix M. The coefficient M on
Y2, X3 we will calculate by (2.43) from the values of M on X1, playing a role of M’ in the
"laboratory system” ((2.43) can be applied to M instead of M). The values of M on ¥;
we treat as parameters to be fitted. Below we describe both tests and the numerical results
separately.

Test I (see Fig. 4.13) The computational domain and the porous media are Q = (0,6) x
(0,1.44), Q, = (1.44,3.84) x (0,0.84). The Darcy number is Da = 0.12? (since the cell size is
0.12 in Fig.4.13) and the dimensionless permeability is £ = K (from 1.16).



98 CHAPTER 4. VALIDATION OF THE MODELS

1000 T T

-1000r Micro:

-2000

150x12

-3000 —
600x48

40001 1200x96 b

2400x192
~5000 s
000t Macro: }
75x6
T 150x12 g
-8000 . .
0 0.5 1 1.5

Figure 4.12: Comparison micro pressure on 6 nested grids with macro pressure on 2 nested grids
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Let us assume first that M; on ¥; = [1.44,3.84] x {0.84} is known and equal to M’ (in
the ”laboratory” system). Using M’ we can calculate My, M3. To obtain My on Xy =
{1.44} x [0,0.84] we use (3.45). For ¥3 = {3.84} x [0,0.84] (n = (1,0)7), we can calculate M3

from

02[0957% —sinﬂ%]’ MzCT[M:H M:H]C:[ 12/2 - 1'21
S5 COS3 21 22 —Mia 11
Now the only undetermined parameters are the values in M’. We did not find in the literature
how they can be determined. Therefore, we tried to fit them in a heuristic way. Starting from
M’ = 0 which corresponds to the continuous stress condition (1.46), we looked for such M’,
which leads to a better agreement (if possible) of the macro-solutions with the micro-solutions
for this particular problem. In general, M’ has four entries (2D). The cell geometry CG I
leads to the scalar permeability and is symmetric with respect to the vertical line going through
the center. This implies that s5; = 0 and C% = 0. Then the expression (2.36) suggests to
choose M/, = 0. Furthermore, the analytical solution for the parallel flow from the Section
2.1 was independent from the values Mi2 and M. Then let us restrict ourselves, by setting
M’y = M99 = 0. The only remaining entry, which we had to fit, is M/;. After several
attempts, we found that the best agreement between the micro- and the macro- solutions is
obtained for the following M’:

M’ -20 0
¢D—:[ 0 0] (44)
The resulting coefficients on X1, Yo, Y3 are
My [ =20 0 Mg Mz [0 O (4.5)
vDa | 0 0] Da +Da |0 —-20]° '

The micro-calculations were done on two grids, containing 1200 x 288 and 600 x 144 control
volumes, respectively. The macro-problems were solved on grids with 600 x 144 and 300 x 72
control volumes (for both variants of the interface conditions).

The numerical solutions of the microproblem are compared with the numerical solutions
of the macroproblems along the colored lines, shown on Fig.4.13. More precisely, we compare
pressures (calculated from micro- and from macro models) along the magenta (4) and and along
the cyan (5) colored lines. Horizontal velocities are compared along the blue (1), the red (2),
and the green (3) colored lines. The results are presented in Fig.4.14, 4.15 for the case of the
continuous stress tensor condition, and in Fig.4.16, 4.17 for the case of the stress jump condition
(using the already fitted values for M').

The macroscopic solution, computed with the continuous stress interface condition, has an
irreducible error, when compared to the microsolution. The term ”irreducible” is used here
in the sense, that further refining of the grid does not ensure proximity of the macro- and
micro- solutions in this case. It can be seen, that the macroscopic model with the stress jump
interface condition approximates the microsolutions with better accuracy on all lines where the

comparison was made. Recall, that this was achieved by changing only one entry, namely, M/;.

Remark 18 In the previous section 4.2 we obtained a good approximation of the microscopical
solution by the macroscopic solution when the continuous stress condition was used. The mi-
crogeometry in the interfacial regions near x = 0.3, x = 1.2 (see Fig.4.10) for that problem is

similar to the microgeometry near x = 1.44, © = 3.84 (see Fig.4.13). Therefore, instead of the
continuous stress interface conditions Mg =0 (on z = 0.3), M3 =0 (on z = 1.2) we can try
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to use Mo = Mg, Mg = Mg, where Msy, M3 can be expressed from (4.5) (v Da was equal to
0.12 there). In the problem from Section.4.2, v/Da = 0.06. Therefore

My 0120 0 Ms 0120 0
vDa 0060 —20 |’ vDa 0060 —20

The macrosolution given explicitly for the continuous stress interface condition in the Section
4.2 (uw=(1,0)T) also satisfies the stress jump condition with My, M3 since the right hand side
of (1.45) is zero in both cases:

| IR ERIE

Test II (see Fig.4.1) The computational domain and the porous media are Q = (0,4) x
(0,0.8), ©, = (0.51,2.99) x (0,0.48). The Darcy number is Da = 0.082 (since the cell size is
0.08) and the dimensionless permeability is £ = K;r (from 1.16). We still have to specify M
on 31 = [0.51,2.99] x {0.48}, Ty = {0.51} x [0,0.48], T3 = {2.99} x [0, 0.48].

On 3; =[0.51,2.99] x {0.48} the coeflicient was fitted:

(4.6)

VDa +Da | -10 0

For the cell geometry CG II we fitted two parameters M/, and MY, (similar to the test I, we
restrict ourselves to the case MY, = M}, = 0).

My M [—49 0]

Remark 19 We note that using (2.37) with C% C% from the Section 4.1 we would obtain

My 1 ~ 05— \/ 535938 - B [ —67.7 - ]
0. 0.45 1 | -8.1
VDa 0.08 | _ 045 _ /L1111

From one side the values of C’fl, é’ff are only some approzimations to the constants C{’ZH, Cf]lH
for the cell geometry CG II, from another side the form (2.37) for M is derived fm: periogh'c
microstructure under the assumption that the Darcy number is small enough (in other words
€ < L) and may lead to rough results in the case of moderate Darcy numbers that we are dealing
with. Hence, we will use the fitted M" from (4.6).

The value of M on ¥y = {0.51} x [0,0.48] (M3) we calculate from (4.6), since the micro-
geometries are similar. But rotations are not enough to transform a neighbourhood of ¥, to
some neighbourhood of ¥;. We also need a reflection. The matrix C transforms n = (—1,0) to
n' = (0,1) and t = (0,—1) to t' = (1,0). Therefore

0 -1 T " I2,2 1211
C=| ", , |+ M=CMC=|""R 0|
12 11

Similar situation we have on X3 = 2.99 x [0,0.48]: C transforms n = (1,0) to n’ = (0,1) and
t =(0,1) to t' = (1,0). Hence,

01 T A 41t 1212 12’1
C= , Mz =C'M'C= I i .

Lo 12 11
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The resulting coefficients are

M1:[—49 O] MQZM?,:[O —10]
VDa | -10 0" UDa VDa |0 -49 |

The following grids were chosen for the numerical calculations: 400 x 80, 800 x 160 control
volumes for the macroscopic solutions and 400 x 80, 800 x 160, 1600 x 320 control volumes for the
microscopical solutions. The microsolution is compared with the macrosolution in Fig.4.18,4.19.
In Fig.4.18 the pressure is plotted on two horizontal lines with y = 0.22 (black), y = 0.5 (red).
In the left subfigure the microscopical solution (black and red solid lines) is compared with
the macroscopic solution for the model with the stress jump interface condition (black and red
dashed lines). In the right subfigure we have a similar comparison, only the continuous stress
condition was used to obtain the macroscopic solution. The horizontal velocities plotted on
three vertical lines z = 0.25 (blue), z = 1.5 (red), z = 3 (green) are presented in Fig.4.19. The
micro velocities (solid lines) are compared with the macro velocities (dashed lines), obtained
for the stress jump interface condition (left subfigure), and for the continuous stress condition
(right subfigure). We note that the line z = 3 (green) lies partially on the porous-fluid interface.

Like for the test I, the macro solution with the stress jump condition approximates well
the microsolution, while the macro solution with the continuous stress condition has significant
quantitative discrepancies. We note that according to some authors, the continuous stress
condition can provide approximation to the microsolution, if psy is set different from p. We
do not consider this case here.
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Figure 4.13: Geometries for micro and macro problems. Colored lines and their reference
numbers 1,2, 3,4,5. test I. Sec.4.3
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Figure 4.14: p along color lines 4,5 (Fig.4.13). Solid lines — microsolutions 1200 x 288, 600 x 144,
dashed lines — macrosolutions 600 x 144, 300 x 72 (Continuous stress). test I
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Figure 4.15: u along color lines 1,2,3 (Fig.4.13). Solid lines — microsolutions 1200 x 288,
600 x 144, dashed lines — macrosolutions 600 x 144, 300 x 72 (Continuous stress). test I
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Figure 4.16: p along color lines 4,5 (Fig.4.13). Solid lines — microsolutions 1200 x 288, 600 x 144,
dashed lines — macrosolutions 600 x 144, 300 x 72 (Stress jump). test I
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Figure 4.17: wu along color lines 1,2,3 (Fig.4.13).
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Solid lines — microsolutions 1200 x 288,

600 x 144, dashed lines — macrosolutions 600 x 144, 300 x 72 (Stress jump). test I
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Figure 4.18: p along colored lines y = 0.22 (black), y = 0.5 (red). Solid lines — microsolutions
1600 x 320, dashed lines — macrosolutions 800 x 160. Stress jump condition - left; continuous
stress condition - right. test II
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Figure 4.19: u along colored lines z = 0.25 (blue), z = 1.5 (red), z = 3 (green) Solid lines —
microsolutions 1600 x 320, dashed lines — macrosolutions 800 x 160, Stress jump condition - left;
continuous stress condition - right. test II
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4.4 A model industrial filtration problem

In the last series of micro/macro comparisons we consider a 2D model geometry, which is a cross
section of a simplified oil filter presented in Fig.4.20. The microscopical geometry is shown in
the left subfigure, while the macroscopic one is shown in the right subfigure. The computational
(macro) domain, €, 2 = (0,2.5) x (0,2), consists of solid, porous, and fluid parts. The solid
part (colored in black in the figures), Q, is defined as Q; = [0,0.2] x [0.3,1.2] U [0, 2.1] x [1.2,2].
The porous part (colored in yellow) is defined as 2, = [0.2,2.5] x [0.32,0.92]. Finally, the fluid
part (colored in white), is given by Qy = Q\ (€, UQ,) (see Fig.4.20, right).

The boundary conditions for the problem are prescribed as follows. No-slip condition is
prescribed on solid walls. At the Inlet {0} x [0,0.3] uniform Dirichlet boundary conditions are
given. The inlet velocity is used again as a characteristic velocity, U (thus the dimensionless
inlet velocity is equal to 1). At the outlet [2.1,2.5] x {2} the soft ”Outlet” boundary conditions
are prescribed . These boundary conditions are appropriate for all models we consider.

The above problem is a typical filtration problem: the Inlet and the Outlet are separated by
the porous medium. The microgeometry of the porous media is formed by a periodic repetition
of the cell CG I from Fig. 1.2 (see Fig.4.20, left), The period is € = 0.12L. The Darcy number
is Da = 0.12%.

We compare numerical solutions of microscopical with those of the macroscopic models. The
flow at a microscopic level is governed by Stokes, or by Navier—Stokes equations . The following
grids are used for the computations at a microlevel: 125 x 100, 250 x 200, 500 x 400, 1000 x 800.
The flow at a macroscopic level is governed by the Stokes—Brinkman system, or by the Navier—
Stokes—Brinkman system. Again, two variants of the interface conditions are considered: one
including the continuous stress condition, the other including the stress jump condition. In
both variants, the continuity of the velocity is the second interface condition. Three grids are
used for macroscopic simulations: 125 x 100, 250 x 200, 500 x 400. The comparison between the
microscopic and the macroscopic solution is done at five locations: on two horizontal lines, and
on three vertical lines (see Fig.4.20). The vertical lines are marked by 1, 2, and 5, and they are
colored in blue (1), in red (2), and in magenta (5), respectively. The horizontal lines are marked
by 3 and 4, and they are colored in green (3) and in black (4), respectively. The solutions of
microscopical problems are plotted with solid lines and the solutions of macroscopic problems —
with dashed lines. As it was mentioned above, we used consecutively refined grids, in order to
observe convergence of the numerical solution with respect to the grid size. Here we plot only
numerical solutions calculated on two finest grids. We note that on certain intervals two of the
dashed lines can overlap, and to look like one solid line.

Direct Simulation (Stokes) vs Stokes—Brinkman with Continuous Stress In the first
test for the geometry from Fig.4.20, the microscopical model is the Stokes system (1.44) in
Qf UQ,r. The macroscopic model is based on Stokes, (1.44) in €, and on Brinkman, (1.43)
in Q,, equations. As in all tests in this Chapter, pcss/p = 1. The interface conditions for this
case are continuous velocity (1.42) and continuous stress tensor (1.46).

The pressure, computed on a microlevel, is compared with the pressure computed on a
macrolevel, at four different locations (see Fig.4.21). We note that the black (4) and the green
(3) lines on Fig.4.20 are horizontal ones, while and the blue (1), the red (2) lines are vertical.
The results for all four notations are plotted in one figure, and in their interpretation one has
to remember, that the abscissa in Fig.4.21 has different meaning: it corresponds to OX for
the black (4) and for the green (3) lines, while it corresponds to OY for the blue (1) and for
the red (2) lines. The horizontal velocity component u and the vertical velocity component v



106 CHAPTER 4. VALIDATION OF THE MODELS

R e e

R

0 L "
0 0.5 1 15 2 2.5
1 5 2

s et
S BSmanna g —~—-—-—-—-—-—-—--—va77777—'| -

Figure 4.20: Geometries for micro and macro problems. Colored lines and their reference
numbers 1,2, 3,4,5. Sec.4.4

(u = (u,v)) are compared in Fig.4.22 and 4.23, respectively. The microscopic solutions (solid
lines) were calculated on grids 1000 x 800, 500 x 400 and the macroscopic solutions (dashed
lines) were calculated on grids with 500 x 400, 250 x 200 control volumes.  As it can be
seen, the continuous stress tensor interface condition can not ensure satisfactory results in this
case. Significant differences are observed between the macro- and the micro- solutions, and these
differences do not decrease when the grid is refined. These differences are for the pressure and for
horizontal component of the velocity. On the other hand, the macroscopic computations ensure
a reasonable approximation for the vertical component of the velocity (compared to the one,
obtained in the microscopic simulations). Thus, in this case we observe the typical behaviour of
the solutions from the preceding sections: the continuous stress tensor is a reasonable interface
conditions for flow perpendicular to the porous medium, while it is not relevant for flows, parallel
to the porous medium.

Direct Simulation (Stokes) vs Brinkman with Stress Jump In the second test for the
geometry from Fig.4.20 we use the same equations in the fluid and in the porous subdomains,
and the same grids as above. However, the stress jump interface condition, (1.45), is used
instead of the continuous stress interface condition, (1.46). The tensor coefficient M has to be
prescribed on the interface in the stress jump condition.

There are two disconnected interfaces between the porous and the plain media (see Fig.4.20),
¥ =00.2,2.5] x {0.92} and ¥, = [0.2,2.5] x {0.32} having the same interfacial microstructures.
As usual, we assume that M should be a constant along each of the interfaces, and that M;
on the upper interface ¥; is related to My on the lower interface ¥y by (2.43):

cosm™ —sinm
sinm  cosTw

o= 0| O = e = s )
In the Section 4.3 we have obtained the values for M’ fitted for that problem (4.4). The interfa-
cial microstructure there was the same as for the current problem. Therefore, it is interesting to
check if M; = M’ (and consequently My = M’ due to (4.7)) also gives a better approximation
to the microscopical solution comparing with the continuous stress interface condition. Thus,
we set M = My = M’', where M’ is from (4.4). The macrosolution corresponding to this M’
is compared with the microsolution on Fig.4.24, 4.25, and 4.26. We should note that like in the
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Figure 4.21: p along colored lines 1,2,3,4 (Fig.4.20). Solid lines — microsolutions 1000 x 800,

500 x 400, dashed lines — macrosolutions 500 x 400, 250 x 200 (Continuous stress)
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Figure 4.22: wu along colored lines 1,5 (Fig.4.20).
500 x 400, dashed lines — macrosolutions 500 x 400, 250 x 200 (Continuous stress)
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Figure 4.23: v along colored lines 3,4 (Fig.4.20). Solid lines — microsolutions 1000 x 800,
500 x 400, dashed lines — macrosolutions 500 x 400, 250 x 200 (Continuous stress)

Section 4.3 the improvement (compared to continuous stress interface condition) was achieved
for all the variables, and on all the lines, where the comparison was made.

Direct simulation (Navier—Stokes, Re100) vs Brinkman with Continuous Stress In
the third and in the fourth tests for the geometry in Fig.4.20 we change the models by adding
the convective terms: the microscopical model is the Navier-Stokes system (1.39) in Q7 U Q.
The macroscopic model is (1.38) in €, with perr/p = 1, (1.39) in Q. The right hand side f
is identically zero for both tests. The interface conditions are: continuous velocity (1.42), and
continuous stress tensor (1.41) conditions. The Reynolds number (Re) appearing here is set to
100. The same grids as before were used. The comparison of the computed solutions at micro-
and at macro- level are shown on Fig.4.27, Fig.4.28, and Fig. 4.29. The meaning of the colors
and of the lines is the same as above.

Direct simulation (Navier—Stokes, Re100) vs Brinkman with Stress Jump In the last
test for the geometry plotted in Fig.4.20 we use the same models as in the previous test, but the
stress jump condition (1.40) is used instead of the continuous stress condition. The coefficient
M' is taken the same, as for the second test, i.e., from (4.4). The results are presented in
Fig.4.30, Fig.4.31, and Fig.4.32. Again, as in the second test, the usage of the stress jump
condition allows to obtain a good agreement between the micro- and the macro- solutions.

4.5 Summary of the models validation

Our main purpose in this Chapter was to show that the macrosolutions of the (Navier—) Stokes
—Brinkman system of equations together with the continuous velocity, jump in stress interface
conditions are able to approximate the corresponding microsolutions (at least for the test prob-
lems we consider) for some choice of the interface coefficient M. In particular we conclude that
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Figure 4.24: p along colored lines 1,2,3,4 (Fig.4.20). Solid lines — microsolutions 1000 x 800,
500 x 400, dashed lines — macrosolutions 500 x 400, 250 x 200 (Stress jump)
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Figure 4.25: u along colored lines 1,5 (Fig.4.20). Solid lines — microsolutions 1000 x 800,
500 x 400, dashed lines — macrosolutions 500 x 400, 250 x 200 (Stress jump)
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Figure 4.26: v along colored lines 3,4 (Fig.4.20). Solid lines — microsolutions 1000 x 800,
500 x 400, dashed lines — macrosolutions 500 x 400, 250 x 200 (Stress jump)
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Figure 4.27: p along colored lines 1,2,3,4 (Fig.4.20). Re = 100. Solid lines — microsolutions
1000 x 800, 500 x 400, dashed lines — macrosolutions 500 x 400, 250 x 200 (Continuous stress)
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Figure 4.28: wu along colored lines 1,5 (Fig.4.20). Re = 100. Solid lines — microsolutions
1000 x 800, 500 x 400, dashed lines — macrosolutions 500 x 400, 250 x 200 (Continuous stress)
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Figure 4.29: v along colored lines 3,4 (Fig.4.20). Re = 100. Solid lines — microsolutions
1000 x 800, 500 x 400, dashed lines — macrosolutions 500 x 400, 250 x 200 (Continuous stress)
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Figure 4.30: p along colored lines 1,2,3,4 (Fig.4.20). Re = 100. Solid lines — microsolutions
1000 x 800, 500 x 400, dashed lines — macrosolutions 500 x 400, 250 x 200 (Stress jump)
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Figure 4.31: wu along colored lines 1,5 (Fig.4.20). Re = 100. Solid lines — microsolutions
1000 x 800, 500 x 400, dashed lines — macrosolutions 500 x 400, 250 x 200 (Stress jump)
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Figure 4.32: v along colored lines 3,4 (Fig.4.20). Solid lines — microsolutions 1000 x 800,
500 x 400, dashed lines — macrosolutions 500 x 400, 250 x 200 (Stress jump)

the (Navier—)Stokes — Brinkman system was a reasonable model to describe the flow inside the
porous media (for all tests).

From a practical point of view it is desirable that M would be a property of the microstruc-
ture in the interfacial region. This hypothesis is very strong if we apply it without restrictions
since it means that whenever M is somehow determined then one is able to solve different types
of coupled flows. We don’t know whether the hypothesis in this general form can be justified
or whether it is true. More probably it has some applicability area (like almost all models),
describing at what situations and for which types of flow it can be applied. For example, in the
section 2.1 we investigated the model in the case of the parallel low in a channel for small Da
numbers and proposed the way to calculate M in accordance with experimental and theoretical
results.

Nevertheless, we used the hypothesis in order to minimize the effort while fitting M: we
chose one M' for the plain interface corresponding to CG I microgeometry and one M"” for
the plain interface corresponding to C'G II microgeometry, in the ”laboratory” system and used
these values to calculate M for the test problems at different points on the same interface; on
different interfaces provided they have similar microgeometries; for different types of flow (only
for CG I); and for models with and without convective terms (only for CG I). In all the cases
the macroscopic solution for such M was rather close to the microscopical solution. Although
we tried to choose the series of test problems to be representative in the area of moderately
small Darcy numbers, it is not enough to confirm the hypothesis and to claim that the given
M, M" should be always used in other test problems for the microgeometries CG I, CG 1I
(there might be other coefficients M’, M", e.g. containing non-zero Mia, Mag, still giving
appropriate results in a larger applicability area).

From our point of view the Navier-Stokes Brinkman model with continuous velocity, stress
jump condition on the porous—fluid interface is a promising model for solving the coupled flow.
But it is still not clear how to determine M in practical situations. In such situations it is
possible to choose for example M = 0 and to deal with the continuous stress condition on the
interface (or to choose some M, not necessarily the best one). Our test results for this model
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were qualitatively correct, even if the discrepancies with the microsolution were significant. The
model with the Navier-Stokes—Brinkman system and M = 0 is used in the next Chapter to
simulate flows in some 2D /3D filters. For a 3D car filter we compared the computational results
with experimental in a large diapason of Reynolds numbers and for a very small Darcy number
(too small for microscopical simulations). A reasonable prediction was obtained if we take into
account the measurement errors and the discussed weakness of the macroscopic model with the
continuous stress interface condition to give precise results.



Chapter 5

Numerical simulation of a class of
industrial Hows

In this chapter we present results from numerical simulations of certain industrial flows. The
first section deals with simulation of 3D oil flows through car filters, while the second section
deals with 2D,3D flows through ceramic filters. The simulations were performed using our
own software, which is an object—oriented implementation of the presented here algorithm.
For the case of oil filters this software works together with a Preprocessor, developed by A.
Vaikuntam and A. Wiegmann [58, p.35] in the Fraunhofer Institute for Industrial Mathematics.
The Preprocessor reads the CAD data (describing the filter housing and the filtering medium)
in STL format, and generates a Cartesian grid within the filter housing. This grid is further
used in the computations presented below. The visualization is done with MatLab.

5.1 Simulation of 3-D oil flow through car filters

5.1.1 Introduction

The purpose of oil filters is to filter out (small) dirt particles from the oil. Top and bottom
pans of a filter housing are shown in Fig.5.1, a sketch of a cross-section of a filter assembly is
shown on Fig.5.2. Several challenging mathematical problems have to be solved to support the
design of oil filters: detailed simulation of coupled flows through filters (i.e., through pure liquid
interior of the filter housing and through the porous filtering medium); modeling and simulation
of capturing of dirt particles by the filtering media, interaction of the flow and the deformable
filtering medium, optimal shape design, etc. Here we discuss the first of these problems, i.e.
coupled flows simulations. The main aspects in this case are:

e choice of an adequate mathematical model for the flow in each of subregions;

usage of proper interface conditions between different media;

development of efficient and robust numerical algorithms and software;

e usage of correct input parameters (e.g., permeability, viscosity, etc.).

The used in this Chapter mathematical model corresponds to the Navier—-Stokes—Brinkman
system of equations (1.38, f = 0) with continuous velocity (1.42) continuous stress tensor
interface conditions on the porous—fluid interface (1.46). The interface conditions are set in
accordance with the results from the preceding Chapter. As it was shown there, continuous

115
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Figure 5.1: Top pan (left) and bottom pan (right) of a filter housing;

Figure 5.2: A schematic drawing of a vertical cross-section of the filter

stress tensor condition is a good choice for the case when the direction of the flow is mostly
perpendicular to the interface between the plain and the porous media. Because the aim of the
designers is to achieve such a flow within the filter housing, we choose this interface condition
in our simulations below.

Numerical algorithms for solving the coupled system can be conventionally subdivided into
two groups. In the first group there are algorithms, using different systems of equations in
different subdomains (e.g., Navier-Stokes in liquid zones, and Darcy or Brinkman in the porous
zones), and coupling them through the interface conditions. Such algorithms are (naturally)
based on domain decomposition (DD). This approach has an advantage: one can use existing
algorithms and software for solving Navier-Stokes equations and for solving porous media flows.
But it also has a drawback: the convergence (at least for the additive and multiplicative versions
of DD) might be slow in the case when the inlet and the outlet are completely separated by the
porous medium, which is the case with the oil filters. For more details on this approach see, for
example, [31] and references therein.

In the second group there are algorithms, using one system of equations in the whole domain,
for example, the Navier-Stokes-Brinkman system. In some of commercial CFD software (e.g.
Star-CD, Fluent, etc.) the Navier-Stokes-Brinkman system is solved by algorithms developed for
the Navier-Stokes system, which are modified so that the main term describing the flow through
the porous media is treated explicitly (i.e., taken from the previous time step in the unsteady
case, or taken from the previous iteration in the algorithms for the steady state problems).
From our point of view it is preferable to treat this term implicitly, as it was already described
in Chapter 3.



5.1. SIMULATION OF 3-D OIL FLOW THROUGH CAR FILTERS 117

The usage of correct parameters might be critical for some of the applications. The manu-
facturers continuously offer new filtering media, and usually their permeabilities are not known.
The traditional approach here is to calculate the permeability on the basis of laboratory ex-
periments. A more recent approach supposes an usage of microstructure simulations (see for
details [59],[58, p.32]). In this case, a 3D picture of a piece of the filtering medium is taken
(say, by X-ray computer tomography), and after that 3-D image analysis is performed in order
to obtain a computer representation of the microstructure of the porous material. Next, one
solves Stokes equations in the complex microlevel-geometry, to calculate permeability on the
basis of homogenization theory [13]. Among others, this approach has an advantage: it is a
natural component of virtual material design [59]. Such a way for determining the permeability,
although more advanced, is still not realized in our case although the first step (3D image) is
done. Instead, the permeability of the filtering medium is determined from measurements.

The interface conditions and the algorithm are described in the preceding Chapters. Below
we will discuss the particular way for determining the permeability from measurements, the
comparison of the measurements and the simulations, and the results from the numerical sim-
ulations. We note, here we will present only a part of the obtained results, namely those for
which we have a permission from industrial partners. Also, most of the particular parameters,
which are used in simulations, will not be specified. Anyway, the presented results should give
an impression about the abilities of the developed algorithm and software.

5.1.2 Calculation of permeability from measurements and comparison be-
tween simulations and measurements

The permeability of the filtering medium, used in most of simulations, was measured in a
laboratory. For this purpose a special filter was constructed in such a way that the flow was
essentially perpendicular to the filtering medium (we assume an isotropic medium). The flow
rate @ of the oil was prescribed, and the pressure drop Ap was measured. Below we shortly
explain how the permeability was extracted from the measurements.

To calculate the permeability, we use the Darcy law:

K
u=——Vp
I

u stands for the Darcy velocity, K stands for the permeability, u for the viscosity, p for the
pressure. The pressure gradient can be approximated as Vp = ﬁ—?, where Al is the thickness of
the porous media. Rearranging the terms in the Darcy law, we obtain
pu ‘%PU_ Vp(uS)%Al_ vpQ@ Al
- Vp 2_1; N Ap N S Ap
Here S, v, p stand for the surface of the porous material, for the kinematic viscosity and for the

fluid density, respectively. It will be more suitable for us to change some of the measurements

units.
_v[m?/s] plkg/m?®] Q[m?/s] Al[m]
S[m?] Aplkg/(m s?)]

(1076 % v[mm?/s]) plkg/m?] (1g03 *Q[l/mz’n]) Al[m]

S[m?] (102 * Ap[mbar])

K[m2] =

Finally we have

1o vlmm?/s) plkg/m?) Qlt/min) Alfm]

STm?] (Apfmbar) (5-)

1
K[m?) = 5" 10~
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A series of experiments was performed for different flow rates and temperatures. The resulting
permeability values calculated by (5.1) belong to some interval (Kpin, Kmaz) With (Kper —
Kpin)/Kmaz = 0.25. We have noted some temperature dependence of these values. The
averaged value (K ap + Kpmin)/2 we refer as Kyg,.

Further, we need the permeability values for simulations of oil flows through a particular
filter (i.e., particular filter housing and particular filtering medium, see for example Fig. 5.5,
right). The filters we consider are designed to be used at temperature range of 60°C and flow
rates differing more then one order of magnitude. As it is known, viscosity of the oil (v = v(T'))
strongly depends on the temperature: at the lowest temperature it is 40 times larger than at
the highest temperature. This leads to a difference of more than two orders of magnitude in
the Reynolds number. We (and industrial partners), were mainly interested in flows at low Re,
because these are the so called cold regimes. For cold regimes significant pressure is needed,
therefore optimization of the flow for such regimes is especially important. The density may
also be the temperature-dependent function: p = p(T). The experimental data of the total
pressure difference AP between Inlet and Outlet of the filter for the series of flow rates @) and
temperatures 7" were available to compare the simulations and measurements.

According to our model, if the permeability of the porous medium is fixed, then we have
only one dimensionless parameter Re (Da number is fixed). Therefore some pairs (Q,7") with
different () and T" may correspond to the same dimensionless calculation. We can use @) and
the area S of the Inlet region of the filter to define a characteristic velocity U = @/S, and
choose some characteristic length L of the filter. Then the experimental data (Q,T, AP) can
be transformed into dimensionless numbers (Re, AP,) by

UL Q AP
Re = (T (where U = S), AP, = PGIE

(5.2)

(see subsection 1.4.1). Since Re and AP, vary in orders of magnitude, it is reasonable to deal
with their logarithms. We found out that the data (logRe,logAP;) corresponding to the same T
and different @) perfectly lie on smooth lines (see Fig. 5.5, left). The lines corresponding to high
temperatures T overlap very well, but for low temperatures the lines are shifted one with respect
to another. This means that using dimensionless simulations (macroscopic or microscopic) for
the whole range of Reynolds numbers it is not possible to fit well all the experimental data.
This discrepancy can occur due to measurement errors as well as presence of significant factors
which were not taken into account in our models. As a result of macroscopic simulations we
also have pairs (Re, AP,). If one is mostly interested in the total pressure difference at some
flow rate, temperature (AP(Q,T)) then it is possible to obtain several pairs (Re, AP,) from
macroscopic simulations, and then to construct the function AP,(Re) by interpolation. Again,
it is better to do it on the log-log plot, where the points (logRe,logAP,) are disperse and lie
almost on a line. The interpolation can be done for example by the least squares approximation
method. Then for a given (Q,T') we can calculate the corresponding Reynolds number Re from
(5.2) and use AP, = AP,(Re) to calculate the dimensional pressure AP from (5.2).

The relative errors (in %) between the experimentally measured pressure drop and predicted
by four calculations (the black boxes in Fig.5.5, left) and interpolation (the black line in Fig.5.5,
left) are presented in the following table. For all calculations the value K,, was used for
permeability. The blank entries ” ” in the table mean that no experiments were done for
this (7,Q), ”—" corresponds to the flow regime with high Reynolds number where only the
experimental data were available:
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T\Q | 4.0 | 6.0 | 80 | 10.0 | 15.0 | 20.0 | 30.0 | 32.5 | 40.0 | 50.0

24 | -23.8 -25.7 -
10 | -21.1 -22.8 -23.5 — - -
-4 | -23.8 -19.4 -18.5 | -20.4 -220 | -

-18 | -7.8 | -0.8 | 06 | -28 | 1.0 | 5.7 | 124 | 11.3
-26 | 34.9 | 369 | 41.1 | 454

Since the experimental results corresponding to different temperatures represented as points
on the log-log plot don’t lie on the same line, it was not possible to approximate all of them using
the same K and different Re. Only the group of results for ' = —18°C' is well approximated. We
tried to find the specific values of K for the other group of experimental results for 7' = —4°C,
T =10°C, T = 24°C (the corresponding points lie almost on the same line). The relative errors
for two other values of K are presented in the following tables. In both cases the approximations
for this particular group become better.

T\Q | 4.0 | 10.0 | 20.0 | 30.0 T\Q | 4.0 | 10.0 | 20.0 | 30.0
24 |-11.3 | -14.9 | -22.3 - 24 |31 -15|-11.5| -
10 -8.4 | -10.3 | -12.3 | -19.2 10 | 71| 43 1.5 | -7.0
-4 |-114 | -64 | -5.2 | -7.8 -4 137195 | 104 | 71

5.1.3 Simulation of 3-D flow though oil filters

Here we present some 3-D simulations of oil flows through filters shown in Fig.5.1 and in Fig.5.5
(right), respectively. While the first figure shows the top and bottom pan for one filter, the
second figure represents the computational domain for another filter. The computational domain
is formed by the interior of the filter housing, thus the second figure gives also impression about
the internal shape of a filter housing.

First, we will present some illustrative results for the filter from Fig.5.1. In this case we use
some model data, aiming at a qualitative study of the flow. Pressure distribution (illustrated
by the colors) and velocity distribution vectors (illustrated by the arrows) in two horizontal
cross-sections are presented in Fig.5.3. A very useful information is presented in Fig.5.4. The

0 0.1 0.2

-0.5

Figure 5.3: Pressure (colors) and velocity (arrows) at horizontal cross-section near the bottom
(left) and near the top (right)

mass flow rate from the upper surface of the filtering media is shown there. It can be seen, that
the filtering medium is non-uniformly loaded in this case. Of course, the aim of the designers is
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to avoid such situations.

I I I 1
-0.02 0 0.02 0.04 0.06 0.08 0.1

Figure 5.4: Mass flow rate from the upper surface of filtering media

To discretize the problem from Fig.5.5 (right), we used about 200 control volumes in OX
and in OZ directions (see also Fig.5.6,5.7). In OY direction, the grid was non-uniform and the
pipe was prolongated upwards to have a fully developed flow near the boundary with ”Qutlet”
boundary conditions. In the main part of the filter the discretization step in OY was smaller
than 0.002. The (scalar) permeability of the filter was experimentally determined, as explained
above.

In Fig. 5.6, 5.7 some typical velocity and pressure fields are presented in a vertical (OX,
0Y') and two horizontal (OX, OZ) cross-sections, respectively. Such information is used by
designers, in particular, for locating ribs (these are elements of the top pan, which have the task
to support the soft filtering medium, see Fig.5.5 (right)).

Such simulations make it possible to obtain the flow properties of the filter during the design
stage without creating a prototype needed for the experiments. The important properties are
the total pressure difference that a pump should provide for the given flow rate and the detailed
flow field needed to design the ribs supporting the filter.

Simulation (K=3.6e-10) vs Experiment

T T

Simulation, K=3.6e-10

) \
T=-26°C-)

Simulation, K=3.6e-10

« T=-18°C (Measurment)

& T=-4°C (Measurment)

T=+10°C (Measurment)

T=+24°C (Measurment)

Log of Pressure Drop

6 7
LogRe

Figure 5.5: Exper. and simul. results on log-log plot (left). 3D Filter box with ribs (right).
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-0.85

Filter medium

AR

L L L
-10.8 -10.6 -10.4 -10.2 -10

21 22

Figure 5.7: 3D Filter. pressure and velocity fields below (left) and above (right) the filter
medium (OX Z plane)
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5.2 Simulation of 2D,3D flows through ceramic filters

In this section we present some simulations for flows through ceramic filters. Such filters have
been more and more often used. Our particular task was to support the understanding of
the influence of the geometry and the permeability on the pressure drop. Thus, we carried
out simulations for the case of a rectangular isotropic filtering media, rectangular anisotropic
filtering media in 2D, and a 3D filtering media with the shape of a cylinder with drilled holes
from the inflow side. The idea in the last case is to reduce the pressure drop by drilling holes,
which have a smaller depth, compared to the depth of the filtering medium. The pressure drop
in such a case should be lower, but the interesting question is what the velocity and pressure
distributions within the filtering medium are in this case. We note that in these cases we did
not use in the simulations the real data, but some model values, just to study the phenomena
qualitatively.

In the 2D test the isotropic permeability tensor, K;s, and the anisotropic permeability tensor,
K.nis, used in simulations, are given by

Da x K, = 0.0174 0 . Dax Kapis = _0.0174 —0.0139
0 0.0174 0.0139 0.0174

Q=(0,2) x(0,1), Q, = (0.5,1.5) x (0,1), Re = 100. The channel has solid walls y =0, y = 1.
The uniform Dirichlet condition is prescribed on the left boundary and the ”OQutlet” condition
on the right boundary. In Fig.5.8 the calculated pressure is represented by colors, while the
velocity is illustrated by arrows.
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Figure 5.8: Pressure (colors) and velocity vectors (arrows) for coupled flow through isotropic
(left) and through anisotropic (right) porous media.

In the 3D test we consider a cylindrical channel, directed according to OZ with length
15.0 and radius 5.4. A 3D ceramic filter placed between z = 4 and z = 9 separates Inlet
with uniform Dirichlet boundary conditions from the right boundary with ”Outlet” boundary
conditions. Other boundaries are solid walls. The filter medium was a cylinder before holes with
different diameter and length were drilled (see Fig.5.9). The parameters used for the simulation
are Re = 3000, Da x K = 3 x 10~°1. For this problem with high Reynolds number the 1st order
Upwind differencing scheme was used. (see Subsection 3.1.4). The Grid was 100 x 100 x 100. We
have checked that similar results can be obtained if one consider only a quarter of the domain:
z > 5.4, y > 5.4 with ”Symmetry” boundary condition on the planes z = 5.4, y = 5.4. In the
Fig.5.10,5.11,5.12 the pressure and velocity fields are plotted in some crossections of the quarter
of the initial computational domain (other parts can be reconstructed by symmetry).
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4 6 78 9

Figure 5.9: Geometry of the 3D ceramic porous medium with holes

Figure 5.10: OZY plane at = 5.4, (only the part y > 5.4). Pressure (colors) and velocity
vectors (arrows) for the coupled flow (top) and the geometry of the computational domain
(bottom)
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Figure 5.11: Quarters of the OXY planes (z > 5.4, y > 5.4) at z = 3.45 (left), z = 4.95 (right).
Pressure (colors) and velocity vectors (arrows) for the flow in the ceramic filter with holes.

Figure 5.12: Quarters of the OXY planes (z > 5.4, y > 5.4) at z = 6.45 (left), 7.95 (right).
Pressure (colors) and velocity vectors (arrows) for the flow in the ceramic filter with holes.



Chapter 6

Summary

6.1 Scientific Achievements

The present thesis deals with coupled steady state laminar flows of isothermal incompressible
viscous Newtonian fluids in plain and in porous media. Several aspects of the numerical simu-
lations of such flows are considered:

e the choice of proper interface conditions between the plain and porous media

e analysis of the well-posedness of the arising systems of partial differential equations;

e developing numerical algorithm for the stress tensor jump interface conditions, coupling
Navier—Stokes equations in the pure liquid media with the Navier—Stokes—Brinkman equations
describing the flow in the porous media;

e validation of the macroscale mathematical models on the base of a comparison with the
results from a direct numerical simulation of model representative problems, allowing for grid
resolution of the pore level geometry;

e developing software and performing numerical simulation of 3-D industrial flows, namely
of oil flows through car filters.

The flow in the pure fluid region is usually described by the (Navier-)Stokes system of
equations. The most popular models for the flow in the porous media are those suggested by
Darcy and by Brinkman. Interface conditions, proposed in the literature for coupling Darcy
and Navier-Stokes equations (these two being different order systems of PDEs), are shortly
reviewed in the thesis. The coupling of Navier-Stokes and of Brinkman equations (these two
being the same order systems of PDEs) in the mathematical literature is based on the so
called continuous stress tensor interface conditions. Omne of the main tasks of this thesis is
to investigate another type of interface conditions, namely, the recently suggested stress tensor
jump interface conditions. The mathematical models based on this interface conditions were not
carefully investigated from the mathematical point of view, and also their validity was a subject
of discussions. The considerations within this thesis are a step toward better understanding of
these interface conditions.

The main results of the present thesis are summarized below.

= A numerical algorithm for solving 3-D coupled flow problems, described by Navier—Stokes
and Brinkman equations equipped with stress tensor jump interface condition, was developed
and validated. The algorithm includes careful treatment of the jumps, as well as an efficient
solution procedure for the coupled system.

= The mathematical model based on the stress tensor jump interface conditions was val-
idated for a representative class of model problems: flows which are parallel, perpendicular
or inclined with respect to the interface between the plain and porous media. These model
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problems include cases of connected, or of multiconnected pure fluid subregions (i.e., when the
porous medium separates completely the inlet and the outlet). The validity of the jump stress
tensor interface condition for these model problems is concluded on the base of a comparison
with the direct numerical simulation of the flows at the microlevel (i.e., when the pore geometry
is resolved by the grid).

= An object-oriented software, based on the above algorithm, was developed for numerical
simulation of a class of 3-D industrial flows. Results of simulations were validated in comparison
with measurements of the pressure drop — flow rate ratio for oil flow through a particular car
filter. Numerical simulations of 3-D oil flows through various car filters were performed.

In addition to the above considerations of the macroscale model, in the present thesis we
have also shown that:

¢ In the case of the benchmark problem for a parallel flow over a porous bed the solution
of Navier—Stokes—Brinkman equations, equipped with the stress tensor jump conditions, is able
to reproduce the well known results from the Beavers—Joseph experiments;

¢ For this benchmark case, the solution of the above model is asymptotically equivalent to
the solution of the model based on Darcy equation and pressure jump interface conditions (the
last was derived by Jiger and Mikeli¢ on the base of a rigorous asymptotic analysis). Namely,
the following representations hold

eff(2,9) + O(e?) P(Z,9) = pefr(Z,9) inside fluid part
) )+ O(e) inside porous part

where (Z, ¢) is a fixed point, €, as usual is the small parameter related to the pore size and n € N
is arbitrarily large. Here (u,p) denotes the solution of the Stokes—Brinkman model with stress
jump interface conditions, while (u. s, p.yy) is the solution of Stokes-Darcy model with Beavers—
Joseph condition in Saffman from for the liquid subregion and with pressure jump condition for
the porous subregion. The above proximity of the two solutions for this benchmark problem is
established on the base of analysis of the analytical solutions for the two mathematical models.

¢ The free parameter matrix, involved in the stress tensor jump condition, can be uniquely
determined for the above benchmark problem through the parameters of the Beavers—Joseph
and of the pressure jump interface conditions, rigorously derived by Jager, Mikeli¢ and Neuss.

¢ The mathematical model based on jump stress tensor interface conditions is not always a
well posed mathematical problem. For some (probably non—physical) values of the parameters
the problem has multiple solutions.

6.2 Further developments

In the preceding section we have formulated several topics for investigating the coupled flows in
plain and in porous media, as well as our achievements in this field. Each of the above aspects
should be investigated further.

e We have shown that the model with stress tensor jump conditions can be applied for
the known problems for coupled flows in plain and in porous media, where other models are
applied. It would be reasonable to continue the work in this direction, and for different classes
of problems to find the parameters range for which one or another model gives more accurate
solution. Also, we have considered here Brinkman model as a perturbation to the Darcy one (i.e.,
using Darcy permeability), and a rigorous mathematical justification in this case is still an open
problem. Another topic of future work is formulation of auxiliary problems for determining
the parameters in the stress tensor jump condition. As it is known, for about 30 years the
parameters in the Beavers—Joseph interface condition had been experimentally fitted, before
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a rigorous mathematical approach for their calculation was suggested in the paper by Jager,
Mikeli¢ and Neuss. Currently, we have been able to show how the parameters of the stress
tensor jump interface conditions are related to the parameters computed by Jager, Mikeli¢ and
Neuss. That is, these parameters can be mathematically determined only for a parallel flow
over a porous bed. For all other coupled flows the determination of these parameters can be
done currently only by fitting the experimental results.

e The well-posedness of the mathematical problem needs further systematic analysis. It
would be useful to find the range of parameters for which the problem is a well-posed one, and
furthermore to determine the area of applicability of this model.

e The numerical algorithm can be further extended in the direction of accounting for more
complicated interface geometries. Currently we require the interface between the plain and the
porous media to be aligned with the faces of the (pressure) grid cells. Multigrid and local grid
refinement are also proper directions for the future extension of the algorithm.

e The discussion with the industrial partners has shown the needs of developing algorithms
for efficient simulation of even more complicated coupled problems, such as i. accounting for
the deflection of the porous filtration medium; ii. accounting for the compression of the porous
medium; iii. accounting for a possible deflection of the filter housing in the case of car filters;
iv. accounting for the transport and capturing of the small particles, filtrated by the porous
medium, as well as on their impact on the porosity and permeability of the porous medium; v.
coupled multiphase flows in plain and in porous media, etc.

6.3 Conclusions

The mathematical model based on Navier—Stokes and Brinkman equations, equipped with stress
tensor jump interface conditions, can be used in numerical simulation of coupled flows through
plain and porous media. This model allows to obtain correct results for parallel, perpendic-
ular, or inclined flows for both, connected or multiconnected pure fluid subregion. For the
benchmark problem of a parallel low over a porous bed the solution of this model is asymptoti-
cally equivalent to the solution of the pressure jump interface condition for coupling Darcy and
Navier—Stokes equations. At the same time, the considered here model has to be carefully used,
because for certain (probably non—physical) values of the parameters in the interface condition
the mathematical problem might be not a well posed one. The derived numerical algorithm
and the developed software can be used successfully in numerical simulation of a class of 3-D
industrial flows.
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