Untersuchungen zur Struktur und Reaktivität von P_n-Liganden in der Koordinationssphäre von Mo, Fe und Co

Vom Fachbereich Chemie der Technischen Universität Kaiserslautern zur Verleihung des akademischen Grades "Doktor der Naturwissenschaften" genehmigte Dissertation (D 386)

> vorgelegt von Dipl.-Chem. Jörg Ertl aus Mannheim

Betreuer der Arbeit: Prof. Dr. O.J. Scherer Tag der wissenschaftlichen Aussprache: 23. April 2004

Kaiserslautern 2004

Vom Fachbereich Chemie der Technischen Universität Kaiserslautern am 23. April 2004 als Dissertation angenommen.

Dekan: Prof. Dr. Dr. D. Schrenk

Prüfungskommission:

Vorsitzender: Prof. Dr. H.-G. Kuball 1. Berichterstatter: Prof. Dr. O. J. Scherer

2. Berichterstatter: Prof. Dr. H. Sitzmann

Die vorliegende Arbeit entstand in der Zeit von März 2000 bis März 2003 im Fachbereich Chemie der Technischen Universität Kaiserslautern

Herrn Prof. Dr. O. J. Scherer danke ich recht herzlich für die Aufnahme in seine Arbeitsgruppe, den mir gewährten Freiraum bei der Gestaltung des Themas, seine große Begeisterungsfähigkeit und Unterstützung, sowie seine stete Diskussionsbereitschaft. Für meine Eltern und Ariane

Verzeichnis der Abkürzungen

Abb.	Abbildung
amu	atomare Masseneinheit
ber.	berechnet
^t Bu	tert-Butylrest
bzw.	beziehungsweise
Ср	η^5 -Cyclopentadienylligand
Cp*	η^{5} -Pentamethylcyclopentadienylligand
⁴ Cp	η^{5} -Tetraisopropylcyclopentadienylligand
⁵ Cp	η^{5} -Pentaisopropylcyclopentadienylligand
Cp"	η ⁵ -1,2,-Di- <i>tert</i> -butylcyclopentadienylligand
Ср'''	η ⁵ -1,2,4-Tri- <i>tert</i> -butylcyclopentadienylligand
Cp	η^5 -Trimethylsilylcyclopentadienylligand
Cp ⁻	$\eta^{5}\mbox{-}1\mbox{-}Trimethylsilyl\mbox{-}3\mbox{-}tert\mbox{-}butylcyclopentadienylligand$
Cp ⁼	η^{5} -Bistrimethylsilylcyclopentadienylligand
Cp ^R	zu spezifizierender Cyclopentadienylligand
EI	Elektronenstoß-Ionisation
IR	Infrarot Spektroskopie
Me	Methylrest
NMR	Magnetische Kernresonanz
PE	Petrolether
Ph	Phenylrest
QT	Temperatur der Ionenquelle
RT	Raumtemperatur
THF	Tetrahydrofuran
Tms	Trimethylsilylrest
triphos	1,1,1-Tris(diphenylphosphinomethyl)ethan
VE	Valenzelektronen
Zent.	Zentroid

$[Cp^{-\prime}Co(CO)_2]$ $[{(\eta^{5}-Cp^{-})(CO)_{3}Mo}_{2}]$ 1 2 $[{Cp^{-}(CO)_2Mo}(\eta^3 - P_3)]$ $[{(\eta^{5}-Cp^{-})Mo}_{2}(\mu-\eta^{6}-P_{6})]$ 3 RSA [Cp^{'''}₂Fe] 4a RSA [Cp''FeCp'''] **4b** RSA $[{Cp^{R}Fe}(\eta^{5}-P_{3}(C_{2}^{t}BuH))]$ 5 $[{Cp^{R}Fe}(\eta^{5}-P_{3}(C_{2}PhH))]$ 6 $[{Cp}^{=}Fe}(\eta^{5}-(P_{3}(CPh)_{2}))]$ 7 $[Cp^{=}Fe(\eta^{5}-(P((CPh)_{2})_{2}))]$ 8 $[(Cp^{-}Fe)_4P_4]$ 9a $[(Cp'Fe)_4P_4]$ 9b $[{Cp}^{-}Fe(CO)_2]_2]$ 10 RSA

- 0

- $[Cp^{-}Fe(\eta^{5}-P_{5})]$ Ν

 $[Cp^{R}_{2}Fe]$

Verzeichnis der Verbindungen

 $[{Cp^{R}(OC)_{2}Fe}_{2}(\mu-\eta^{1:1}-P_{4})]$

 $[{(\eta^{5}-Cp^{*})Mo}_{2}(\mu-\eta^{6}-P_{6})]$

 $[Cp*_2(CO)_4Mo_2(\mu-\eta^2-P_2)]$

 $[{Cp*(CO)_2Mo}(\eta^3-P_3)]$

 $[(\eta^{5}-Cp^{=})(CO)_{2}Mo]_{2}$

 $[{Cp^{R}Fe}_{2}(\mu-\eta^{4:4}-P_{4})]$

 $[{Cp^{=}Fe}_{2}(\mu-\eta^{4:4}-P_{4})]$

 $[[{^5CpFe}_3(CO)_4P_{11}]$

 $[Cp^{R}Fe(\eta^{5}-\{P_{3}(CPh)_{2}\}]$

 $[{Cp*(CO)Mo(\mu-\eta^2-P_2)}_2]$

 $[{(triphos)Co}(\eta^3-P_3)]$

 $[{Cp^{R}Fe(CO)_{2}}_{2}]$

[{Cp'''Fe(CO)₂}₂]

 $[Cp*Fe(\eta^5-P_5)]$

Α

B

С

Ca

D

E

F

G

Η

I

J

Ja

K

L

Μ

- $[{Cp^{-'}Co}_3(\mu_3-P)_2]$
- $[{Cp^{-}Co}_4P_4]$
- **13** [{Cp^{-'}Fe}₂(μ_3 - $\eta^{4:4:1:1}$ -P₄) {Cp^{-'}Co}]
- $[{Cp^{-}Fe}_{2}{Cp^{-}Co}_{2}P_{4}]$
- **15** $[{Cp^{-}Co}_4P_{10}]$
- $[{Cp^{-}Co} {{Cp^{-}Fe}_{2}(\mu-CO)}(\mu_{3}-P)_{2}]$ RSA

Inhaltsverzeichnis

1	Einleitung1	
1.1	Substituentenfreie cyclische P _n -Liganden1	
1.2	Silylierte Cyclopentadienyl-Liganden4	
2	Problemstellung5	
3	Eigene Ergebnisse6	
3.1	Cothermolyse von [{(η⁵-Cp⁻)(CO)₃Mo}₂] (1) mit	
	weißem Phosphor6	
3.1.1	Charakterisierung von [{(η ⁵ -Cp ⁻)(CO) ₂ Mo}(η ³ -P ₃)] (2)7	
3.1.1.1	Eigenschaften von [{ $(\eta^{5}-Cp^{-})(CO)_{2}Mo$ } $(\eta^{3}-P_{3})$] (2)	
3.1.1.2	¹ <i>H- und</i> ³¹ <i>P-NMR-spektroskopische Daten von (2)</i>	
3.1.1.3	IR-spektroskopische Daten7	
3.1.2	Charakterisierung von [{(η ⁵ -Cp ⁻)Mo} ₂ (μ-η ^{6:6} -P ₆)] (3)	
3.1.2.1	Eigenschaften von [{ $(\eta^{5}-Cp^{-})Mo$ } ₂ (μ - $\eta^{6:6}$ - P_{6})] (3)	
3.1.2.2	NMR-spektroskopische Daten	
3.1.2.3	Massenspektrum von [{(η^5 -Cp ⁻)Mo} ₂ (μ - $\eta^{6:6}$ -P ₆)] (3)	
3.1.2.4	<i>Röntgenstrukturanalyse von</i> [{ $(\eta^5 - Cp^-)Mo$ } ₂ ($\mu - \eta^{6:6} - P_6$)] (3)	
3.1.2.5	Strukturvergleich von 3 mit [{ $Cp^{=}Mo$ } ₂ (μ - $\eta^{6:6}$ - P_6)]	
3.2	Orientierende Versuche mit [{Cp ⁻ (CO) ₂ Mo}(η ³ -P ₃)] (2)	
	als Phosphorquelle13	
3.2.1	Cothermolyse von 2 mit Alkinen13	
3.2.2	Cothermolyse von 2 mit [(η ⁵ -Cp ⁼)Fe(η ⁵ -P ₅)]13	
3.3	Übertragung der Untersuchungen von Molybdän	
	auf Wolfram13	
3.4	[{Cp ^R Fe} ₂ (μ-η ^{4:4} -P ₄)] (J) als alternative Phosphorquelle14	
3.4.1	Herstellung von [{Cp ^R Fe} ₂ (μ-η ^{4:4} -P ₄)] (J) durch Cothermolyse	
	von [{Cp ^R (CO) ₂ Fe} ₂] (C) mit weißem Phosphor15	
3.4.1.1	Eigenschaften von [Cp''' ₂ Fe] (4a) und [Cp''FeCp'''] (4b)16	
3.4.1.2	NMR-spektroskopische Daten16	
3.4.1.3	Massenspektrometrie17	

3.4.1.4	Röntgenstrukturanalysen von Verbindungen 4a und 4b	17
3.4.1.4.1	Röntgenstrukturanalyse von [Cp ²] ₂ Fe] (4a)	17
3.4.1.4.2	Röntgenstrukturanalyse von [Cp''FeCp'''] (4b)	19
3.4.1.4.3	Vergleich der Strukturen von [Cp ² Fe] (4a), [Cp ⁴ FeCp ²] (4b)	
	und [Cp'' ₂ Fe]	21
3.4.2	Umsetzungen von J mit unsymmetrisch substituierten Alkinen	21
3.4.2.1	Cothermolyse von $[{Cp}^{R}Fe_{2}(\mu-\eta^{4:4}-P_{4})]$ (J) mit ^t Bu-C = C-H	22
3.4.2.1.1	Eigenschaften von [{ $Cp^{R}Fe$ }(η^{5} - $P_{3}(C_{2}^{t}BuH)$)] (5)	22
3.4.2.1.2	NMR-spektroskopische Daten von [{ $Cp^{R}Fe$ }(η^{5} - $P_{3}(C_{2}^{t}BuH)$)] (5)	22
3.4.2.1.3	Massenspektrometrie	
3.4.2.1.4	Strukturvorschlag für [{ $Cp^{R}Fe$ }(η^{5} - $P_{3}(C_{2}^{t}BuH)$)] (5a,b)	24
3.4.2.2	Cothermolyse von $[{Cp}^{R}Fe_{2}(\mu-\eta^{4:4}-P_{4})]$ (J) mit Ph-C = C-H	25
3.4.2.2.1	Eigenschaften von [{ $Cp^{R}Fe$ }(η^{5} - $P_{3}(C_{2}PhH)$)] (6)	
3.4.2.2.2	NMR-spektroskopische Daten von [{ $Cp^{R}Fe$ }(η^{5} - $P_{3}(C_{2}PhH)$)] (6)	26
3.4.2.2.3	Massenspektrometrie	
3.4.2.2.4	Strukturvorschlag für [{ $Cp^{=}Fe$ }(η^{5} - $P_{3}(C_{2}PhH)$)] (6a)	27
3.4.3	Umsetzung mit symmetrisch substituierten Alkinen	28
3.4.3.1	Cothermolyse von $[{Cp}^{=}Fe}_{2}(\mu-\eta^{4:4}-P_{4})]$ (Ja) mit Ph-C \equiv C-Ph	
3.4.3.1.1	Erste Säulenfraktion: [{ $Cp^{=}Fe$ }(η^{5} -($P_{3}(CPh)_{2}$))] (7)	29
3.4.3.1.1.1	Eigenschaften von 7	29
3.4.3.1.1.2	NMR-spektroskopische Daten	29
3.4.3.1.1.3	Massenspektrometrie	
3.4.3.1.2	Zweite Säulenfraktion: $[Cp^{=}Fe(\eta^{5}-(P((CPh)_{2})_{2}))]$ (8)	30
3.4.3.1.2.1	Eigenschaften von 8	30
3.4.3.1.2.2	NMR-Spektroskopie	30
3.4.3.1.2.3	Massenspektrometrie	
3.5	Umsetzungen von [{Cp ^R (CO) ₂ Fe} ₂] mit weißem Phosphor	31
3.5.1	Eigenschaften von $[(Cp^{-}Fe)_4P_4]$ (9a) und $[(Cp^{-}Fe)_4P_4]$ (9b)	
3.5.2	NMR-spektroskopische Daten	32
3.5.3	Strukturvorschlag für [(Cp ⁻ 'Fe) ₄ P ₄] (9b)	33
Exkurs :	Kristallstruktur von [{Cp ⁼ Fe(CO) ₂ } ₂] (10)	
3.6	Umsetzung von $[(\eta^5 - Cp^-)Fe(\eta^5 - P_5)]$ mit $[(\eta^5 - Cp^-)Co(CO)_2]$	2] 3 7
3.6.1	Charakterisierung von [{Cp ^{-'} Co} ₃ (µ ₃ -P) ₂] (11)	39
3.6.1.1	<i>Eigenschaften von</i> [{ $Cp^{-'}Co$ } ₃ (μ_3 - <i>P</i>) ₂] (11)	39

3.6.1.2	³¹ P-NMR spektroskopische Daten	39
3.6.1.3	¹ H-NMR spektroskopische Daten	39
3.6.2	Charakterisierung von [{Cp ⁻ ′Fe} ₂ (μ ₃ -η ^{4:4:1:1} -P ₄){Cp ⁻ ′Co}] (13)	40
3.6.2.1	Eigenschaften von [{ $Cp^{-'}Fe$ } ₂ (μ_3 - $\eta^{4:4:1:1}$ - P_4){ $Cp^{-'}Co$ }] (13)	
3.6.2.2	NMR-spektroskopische Daten von 13	40
3.6.3	Charakterisierung von [{Cp ^{-′} Co}₄P₄] (12)	41
3.6.3.1	Eigenschaften von [{Cp ^{-'} Co} ₄ P ₄] (12)	41
3.6.3.2	¹ H-NMR-spektroskopische Daten	41
3.6.3.3	^{31}P -NMR-spektroskopische Daten von [{Cp ^{-'} Co} ₄ P ₄] (12)	42
3.6.4	Charakterisierung von [{Cp ⁻ ′Fe} ₂ {Cp ⁻ ′Co} ₂ P ₄] (14)	42
3.6.4.1	Eigenschaften von [{ $Cp^{-}Fe$ } ₂ { $Cp^{-}Co$ } ₂ P ₄] (14)	42
3.6.4.2	¹ H-NMR-spektroskopische Daten von Komplex 14	
3.6.4.3	³¹ P-NMR-spektroskopische Daten	
3.6.5	Charakterisierung von [{Cp ⁻ ′Co}{{Cp ⁻ ′Fe} ₂ (µ-CO)}(µ ₃ -P) ₂] (16)	44
3.6.5.1	Eigenschaften von [{Cp ^{-'} Co}{{Cp ^{-'} Fe} ₂ (µ-CO)}(µ ₃ -P) ₂] (16)	44
3.6.5.2	¹ H-NMR-spektroskopische Daten von Komplex 16	
3.6.5.3	³¹ P-NMR spektroskopische Daten von	
	$[{Cp^{-'}Co}] [{Cp^{-'}Fe}_{2}(\mu - CO)] (\mu_{3} - P)_{2}] (16)$	
3.6.5.4	IR-spektroskopische Daten von Verbindung 16	45
3.6.5.5	Röntgenstrukturanalyse von [{ $Cp^{-}Co$ }{{ $Cp^{-}Fe$ } ₂ (μ -CO)}(μ ₃ -P) ₂] (16).	
3.6.6	Charakterisierung von [{Cp ^{-′} Co} ₄ P ₁₀] (15)	
3.6.6.1	Eigenschaften von [{Cp ^{-'} Co} ₄ P ₁₀] (15)	47
3.6.6.2	¹ H-NMR-spektroskopische Daten von Verbindung 15	47
3.6.6.3	³¹ P-NMR-spektroskopische Daten von [{ $Cp^{-\prime}Co_{4}^{2}P_{10}$] (15)	47
4	Experimenteller Teil	49
4.1	Analysenmethoden	49
4.2	Ausgangsverbindungen	50
4.3	Versuchsbeschreibungen	50
4.3.1	Cothermolyse von [{(η ⁵ -Cp ⁻)(CO) ₃ Mo} ₂] (1) mit P ₄	51
4.3.2	Orientierende Versuche mit [{Cp ⁻ (CO) ₂ Mo}(η ³ -P ₃)] (2) als	
	Phosphorquelle	52
4.3.2.1	Cothermolyse von (2) mit Alkinen	52
4.3.2.2	Cothermolyse von (2) mit $[(\eta^5 - Cp^{=})Fe(\eta^5 - P_5)]$	52

4.3.2.3	Orientierender Versuch: Cothermolyse von $W(CO)_6$, Cp ⁻ H und		
	weißem Phosphor		
4.3.3	Herstellung von [{ $Cp^{R}Fe$ } ₂ (μ - $\eta^{4:4}$ - P_{4})] (J) ($Cp^{R} = Cp^{\prime\prime\prime}, Cp^{=}$)		
4.3.4	Umsetzungen von [{ $Cp^{R}Fe$ } ₂ (μ - $\eta^{4:4}$ - P_{4})] (J) ($Cp^{R} = Cp^{\prime\prime\prime}, Cp^{=}$) mit		
	unsymmetrisch substituierten Alkinen (R-C \equiv C-H, R = ^t Bu, Ph, Tms) 55		
4.3.5	Umsetzungen von [{ $Cp^{R}Fe$ } ₂ (μ - $\eta^{4:4}$ - P_{4})] (J) ($Cp^{R} = Cp^{\prime\prime\prime}, Cp^{=}$) mit		
	symmetrisch substituierten Alkinen (R-C ≡ C-R, R = Ph, Tms)57		
4.3.6	Umsetzungen von [{ $Cp^{R}(CO)_{2}Fe$ }] ($Cp^{R} = Cp^{=}, Cp^{-}$) mit weißem		
	Phosphor		
4.3.7	Cothermolyse $[(\eta^5 - Cp^7)Fe(\eta^5 - P_5)]$ mit $[(\eta^5 - Cp^7)Co(CO)_2]$ 61		
5	Zusammenfassung63		
6	Literaturverzeichnis68		
7	Anhang70		
7.1	Kristalldaten von [{(η ⁵ -Cp ⁻)Mo} ₂ (μ,η ^{6:6} -P ₆)] (3) 70		
7.2	Kristalldaten von [Cp ² Fe] (4a)77		
7.3	Kristalldaten von [Cp´´FeCp´´´] (4b) 87		
7.4	Kristalldaten von [{Cp ⁼ Fe(CO) ₂ } ₂] (10)93		

1 Einleitung

1.1 Substituentenfreie cyclische P_n-Liganden

Sacconi ^[1] und *Ginsberg*^[2] gaben mit ihren grundlegenden Arbeiten auf dem Gebiet der koordinativ stabilisierten, substituentenfreien P_n -Liganden Anlass zu vielen weiterführenden Untersuchungen^[3]. So gelang *Sacconi* 1982 die Synthese des ersten cyclo-P₃-Komplexes **A**.

Auch in unserem Arbeitskreis besteht ein reges Interesse an der Stabilisierung von P_n -Liganden in der Koordinationssphäre von Übergangsmetallfragmenten (ML_n). Dabei liegt ein Schwerpunkt der Untersuchungen auf dem Einfluss substituierter Cyclopentadienyl-Liganden auf die Bildung von acyclischen und cyclischen P_n -Bausteinen. Die erfolgreiche koordinative Stabilisierung von cyclo- P_4 , cyclo- P_5^- und cyclo- P_6 Liganden – die Phosphoranaloga zu Cyclobutadien, Cyclopentadienyl und Benzol – als Sandwich- und Tripeldecker-Sandwich-Komplexe ist ein weiteres beeindruckendes Beispiel für die Schrägbeziehung im PSE zwischen Kohlenstoff und Phosphor^{[3],[4]}. Die aktuellen Ergebnisse auf diesem Gebiet der Forschung sind in einem Übersichtsartikel^[5] von *Scherer* zusammengefasst worden. Außer der großen Reaktionsvielfalt solcher Komplexe ist auch ihre oftmals hohe thermische Stabilität bemerkenswert.

Bedeutende Vertreter der Klasse substituentenfreier P₄-Komplexe stellen die Tetraphosphabicyclobutan-Komplexe dar. Diese entstehen formal durch eine Zweielektronenreduktion einer Phosphor-Phosphor-Bindung im Tetrahedrangerüst des weißen Phosphors und wurden 1982 erstmals von *Niecke et al.*^[6] mittels Röntgenstrukturanalyse nachgewiesen. Das Butterfly-Grundgerüst wird dabei von zwei Trimethylsilylamino-Gruppen an den Flügelspitzen komplexchemisch, sowohl in endo/exo-, als auch in exo/exo-Anordnung stabilisiert. Vergleichbare Ergebnisse erzielte 1994 Tattershall et al.^[7] mit den Hauptgruppenelementen Chlor, Brom, Iod in Form von Halogeniden des Typs P₄XY. Fünf Jahre zuvor gelang es T. Brück^[8] auf dem Gebiet der Übergangsmetallkomplexe des Eisens der erste ³¹P-NMR-spektroskopische Nachweis von Tetraphosphabicyclobutankomplexen der Zusammensetzung [{ $Cp^{R}(OC)_{2}Fe$ }₂(μ - $\eta^{1:1}$ -P₄)] (**B**). Die Stabilisierung der Phosphoratome an den Flügelspitzen erfolgt hier durch 17 VE-Übergangsmetallfragmente in exo/exo-Anordnung. Der eindeutige Strukturbeweis für Butterfly-Verbindungen des Typs B lieferte erst T. Hilt^[9,10] 1999 durch Röntgenstrukturanalyse des Cp"'-Derivates, die durch Kurzzeitthermolyse der Eisen-Zweikern-Komplexe [Cp^RFe(CO)₂]₂ (C) mit weißem Phosphor in Toluol in sehr guten Ausbeuten erhalten werden können.

Ein weiteres Beispiel für das Reaktionspotential dieser Verbindungen ist $[Cp*Fe(\eta^5-P_5)]$ (**D**). **D** wurde 1987 als erstes Cyclopentaphosphaferrocenderivat von $Br"uck^{[8]}$ isoliert und charakterisiert.

Das Reaktionsverhalten dieser zum Ferrocen isolobalen Verbindung ist Gegenstand vieler Untersuchungen^[11–19]

Den ersten Tripeldecker-Komplex mit P₆-Mitteldeck isolierte 1985 *Sitzmann*^[20] bei der Reaktion von $[(\eta^5-Cp^*)(CO)_2Mo]_2$ (Mo=Mo) mit weißem Phosphor in siedendem Xylol.

Abbildung 1.2: Cothermolyse von $[(\eta^5 - Cp^*)(CO)_2Mo]_2$ *mit weißem Phosphor*

Betrachtet man den P₆-Ring als 6π -Elektronendonorligand, dann stellt **3** ein Tripeldecker-Sandwichkomplex mit 28 VE dar (vgl. hierzu die 30- und 34e⁻Regel^[21] bei derartigen Komplexen). Im Rahmen meiner Diplomarbeit gelang mir die Übertragung der Reaktion auf den bissilylierten Komplex [(η^5 -Cp⁼)(CO)₂Mo]₂ (**I**) mit nahezu identischem Produktbild. Lediglich das Strukturanalogon zu **F** konnte nicht detektiert werden.

1.2 Silylierte Cyclopentadienyl-Liganden

Neben den zuvor erwähnten alkylierten Cp-Liganden existieren seit den sechziger Jahren silylierte Liganden^[22,23]. In der metallorganischen Chemie gibt es bereits Untersuchungen darüber, wie sterischer und elektronischer Einfluss verschieden substituierter Cyclopentadienylliganden auf den Verlauf und das Produktbild einer Reaktion auswirken^[24]. Jedoch kann bisher noch keine zuverlässige Prognose über die Auswirkungen der beiden unterschiedlichen Gruppen *tert*-Butyl und Trimethylsilyl als Substituent am Cp-Ring in verschiedenen Komplextypen gemacht werden.

2 Problemstellung

Im Rahmen dieser Arbeit sollte das Reaktionsverhalten von $[{(\eta^5-Cp^-)(CO)_3Mo}_2]$ gegenüber weißem Phosphor untersucht werden und die dabei gewonnenen Ergebnisse einerseits mit denen des bissilylierten Analogons verglichen und andererseits, wenn möglich, auf das Metall Wolfram erweitert werden.

Ein weiteres Kapitel untersucht die Verwendung des Komplexes $[{Cp^RFe}_2(\mu-\eta^{4:4}-P_4)]$ (Cp^R = Cp⁼, Cp^{'''}) als alternative Phosphorquelle und sein Reaktionsverhalten gegenüber symmetrisch und unsymmetrisch substituierten Alkinen.

Im dritten Kapitel wird der Einfluss des Cp^{-'}-Liganden auf das Produktbild und den Verlauf der Reaktion von $[(\eta^5-Cp^{-'})Fe(\eta^5-P_5)]$ mit $[(\eta^5-Cp^{-'})Co(CO)_2]$ untersucht und mit den analogen Cp^R-substituierten Komplexen (Cp^R = Cp⁼, Cp^{''}) verglichen.

3 Eigene Ergebnisse

3.1 Cothermolyse von $[{(\eta^5-Cp^-)(CO)_3Mo}_2]$ (1) mit weißem Phosphor

Erhitzt man eine Lösung aus $[{(\eta^5-Cp^-)(CO)_3Mo}_2]$ (1) und weißem Phosphor in Xylol am Rückfluss, so verfärbt sich die anfangs rote Lösung nach dunkelbraun. ³¹P-NMR-spektroskopisch beobachtet man die Entstehung zweier neuer phosphorhaltiger Produkte. Die Reaktion wird nach 70 Stunden abgebrochen.

Bei der anschließenden säulenchromatographischen Aufarbeitung des Rohproduktes an Kieselgel kann mit Pentan [{(η^5 -Cp⁻)(CO)_2Mo}(η^3 -P₃)] (2) als gelbe Fraktion eluiert werden. Eine zweite, dunkelrote Fraktion eluiert mit einem Petrolether/Toluol-Gemisch (2:1), enthält [{(η^5 -Cp⁻)Mo}₂(μ - $\eta^{6:6}$ -P₆)] (3).

Abbildung 3.1: Cothermolyse von [${(\eta^5-Cp^-)(CO)_3Mo}_2$] mit weißem Phosphor

3.1.1.1 Eigenschaften von
$$[{(\eta^{5}-Cp^{-})(CO)_{2}Mo}(\eta^{3}-P_{3})]$$
 (2)

Nach dem Entfernen des Lösungsmittels fällt **2** als gelbes Öl an. Es ist sowohl in unpolaren (z.B. Hexan, Pentan, Petrolether), als auch in polaren (z.B THF) und aromatischen (z.B. Deuterobenzol und Toluol) sehr gut löslich. Unter Inertgasatmosphäre bei Lichtausschluss und 0 °C ist der Komplex mehrere Monate ohne Zersetzung haltbar.

3.1.1.2 ¹H- und ³¹P-NMR-spektroskopische Daten von (2)

Das ¹H-NMR-Spektrum von [$\{(\eta^5-Cp^-)(CO)_2Mo\}(\eta^3-P_3)$] (2) in Deuterobenzol weist drei Signale auf.

Proton	δ [ppm]		
H ^a	0.33 (s, 9 H)		
H ^b	4.44 (d, 2 H)		
H^{c}	4.59 (d, 2 H)		
$J_{\rm H,H}{=}2~{\rm Hz}$			

Die drei Phosphoratome treten aufgrund ihrer chemischen Äquivalenz bei –348 ppm als Singulett im ³¹P-NMR-Spektrum in Resonanz.

3.1.1.3 IR-spektroskopische Daten

Das in THF (Heptan) aufgenommene IR-Spektrum zeigt für die beiden Carbonylgruppen zwei starke Banden bei 1997 (1992) cm^{-1} und 1940 (1942) cm^{-1} . Die Banden liegen im typischen Bereich für terminale Carbonyl-Liganden.

Aufgrund der öligen Konsistenz von 2 konnten weder massenspektroskopisch noch elementaranalytisch befriedigende Daten gewonnen werden.

3.1.2 Charakterisierung von $[{(\eta^5-Cp^-)Mo}_2(\mu-\eta^{6:6}-P_6)]$ (3)

3.1.2.1 Eigenschaften von $[{(\eta^5 - Cp^-)Mo}_2(\mu - \eta^{6:6} - P_6)]$ (3)

Nach dem Entfernen des Lösungsmittels fällt **3** in Form eines rotbraunes Pulvers an. Der Komplex ist in unpolaren Lösungsmitteln (z.B. Pentan, Petrolether) schlecht, in aromatischen (z.B. Deuterobenzol, Toluol) gut löslich. Der Tripeldecker-Komplex ist thermisch sehr stabil und kann auch an Luft gehandhabt werden.

Zur Röntgenstrukturanalyse taugliche Kristalle konnten durch Umkristallisation aus Toluol bei 0 °C erhalten werden.

3.1.2.2 NMR-spektroskopische Daten

Das ¹H-NMR-Spektrum von **3** in Deuterobenzol weist drei Signalsätze auf.

Proton	δ [ppm]		
H ^a	0.33 (s, 18 H)		
H ^b	4.44 (d, 4 H)		
H ^c	4.59 (d, 4 H)		
$J_{H,H} = 2 Hz$			

Im ³¹P-NMR-Spektrum treten die sechs Phosphoratome des P₆-Rings als Singulett bei -353 ppm in Resonanz, d.h. alle sechs Phosphoratome sind magnetisch und chemisch äquivalent. ¹H- und ³¹P-NMR-Spektrum weisen darauf hin, dass **3** hochsymmetrisch ist.

3.1.2.3 Massenspektrum von $[{(\eta^5 - Cp^-)Mo}_2(\mu - \eta^{6:6} - P_6)]$ (3)

Im Massenspektrum ist lediglich der Molekülionenpeak M^+ bei m/z = 655.8 charakteristisch. Das gemessene Isotopenmuster des Molekülionenpeaks ist mit dem simulierten nahezu identisch.

 $(QT = 220 \circ C, 70 \text{ eV})$

3.1.2.4 Röntgenstrukturanalyse von $[{(\eta^5 - Cp^5)Mo}_2(\mu - \eta^{6:6} - P_6)]$ (3)

Abbildung 3.2 zeigt den Molekülplot des Tripeldecker-Sandwich-Komplexes **3**. Ausgewählte Strukturparameter werden in den folgenden Tabellen aufgezeigt. Detaillierte Angaben zu Strukturlösung, Atomlageparameter und Temperaturfaktoren sind im Anhang zu finden.

Abbildung 3.2 : Struktur von [{ $(\eta^5 - Cp^5)Mo$ }₂($\mu - \eta^{6:6} - P_6$)] (3)

Bindung	Bindungslänge [Å]	
P(1)-P(2)	2.167(3)	
P(2)-P(3)	2.177(2)	
P(3)-P(4)	2.185(2)	
P(4)-P(5)	2.167(3)	
P(5)-P(6)	2.164(2)	
P(6)-P(1)	2.170(2)	
(P-P) Mittelwert	2.172	
$Mo(1)$ - Cp^{R}_{Zent}	1.985	
Mo(1)-P _{6 Zent}	1.341	
$Mo(2)$ - Cp^{R}_{Zent}	1.995	
Mo(2)-P _{6 Zent}	1.328	
Mo(1)-Mo(2)	2.668	

<u>Tabelle 3.1</u>: Ausgewählte Bindungslängen von [$\{(\eta^5-Cp^-)Mo\}_2(\mu-\eta^{6:6}-P_6)$] (3)

Tabelle 3.1

Tabelle 3.2 : Ausgewählte Bindungswinkel

Bindung	Bindungswinkel [°]
P(1)-P(2)-P(3)	119.89(8)
P(2)-P(3)-P(4)	119.75(9)
P(3)-P(4)-P(5)	119.99(9)
P(4)-P(5)-P(6)	119.93(9)
P(5)-P(6)-P(1)	120.35(9)
P(6)-P(1)-P(2)	120.09(8)
P(1)-Mo(1)-P(2)	50.38(7)
P(2)-Mo(1)-P(3)	50.75(6)
P(1)-Mo(2)-P(2)	50.18(7)
P(2)-Mo(2)-P(3)	50.35(6)
Mo(1)-P(1)-Mo(2)	63.10(3)
Mo(1)-P(4)-Mo(2)	63.18(3)

Tabelle 3.2

Ebene	Atome	Abweichung aus der besten Ebene [Å]
E1	C(1)-C(2)-C(3)-C(4)-C(5)	0.0056
E2	P(1)-P(2)-P(3)-P(4)-P(5)-P(6)	0.0034
E3	C(6)-C(7)-C(8)-C(9)-C(10)	0.0065

<u>Tabelle 3.3</u>: Ausgewählte Ebenen von [$\{(\eta^5-Cp^-)Mo\}_2(\mu-\eta^{6:6}-P_6)$] (3)

Tabelle 3.3

Tabelle 3.4 : Winkel zwischen den gewählten Ebenen

Ebenen	Winkel [°]	
E1 / E2	2.8	
E1 / E3	0.7	
E2 / E3	3.4	

Tabelle 3.4

Die Röntgenstrukturanalyse zeigt den asymmetrischen Aufbau des Tripeldecker-Sandwich-Komplexes **3** mit einem P₆-Mitteldeck. Die Fünfringe und der Sechsring sind planar, Fünfringe sind nahezu parallel zueinander angeordnet. Die beiden Cp⁻-Liganden weichen in Bezug auf das P₆-Mitteldeck um 2.8 bzw. 3.4° von der Parallelität ab. Die Phosphor-Phosphor-Abstände betragen im Mittel 2.172 Å. Sie besitzen Mehrfachbindungscharakter^[21] und sind kürzer als die Einfachbindung im P₄ (2.21 Å). Die Mo-Mo-Bindung liegt mit 2.668 Å (Mo-Mo im Metall: 2.72 Å) formal zwischen Doppel- und Einfachbindung.

Abbildung 3.3 : Newmanprojektion auf die Ebenen

Abbildung 3.3 zeigt die Newmanprojektion des Kristallplots auf die Ebenen. Die beiden Cp-Liganden nehmen eine nahezu gestaffelte Anordnung ein, der Dieder-Winkel zwischen den Trimethylsilylsubstituenten der Cyclopentadienringe beträgt 178.2°. Die oben erwähnte Abweichung des P₆-Mittelldecks aus der Parallelität kann auf sterische Effekte zurückgeführt werden.

Die Anzahl der Clusterelektronen beträgt 28 und entspricht damit nicht der 30- und 34-Elektronenregel^[11] für stabile Tripeldecker mit carbocyclischem Mitteldeck^[25]. Den Komplex zeichnet dennoch eine hohe Stabilität aus.

		$[{Cp^{R}Mo}_{2}(\mu-\eta^{6:6}-P_{6})]$	
		$Cp^{R} = Cp^{-}(3)$	$Cp^{R} = Cp^{=}$
Bindungslängen [Å]	(P–P) Mittelwert	2.172	2.171
	$Mo(1)$ - Cp^{R}_{Zent}	1.985	1.996
	$Mo(2)$ - Cp^{R}_{Zent}	1.995	1.996
	Mo(1)–P _{6 Zent}	1.341	1.341
	Mo(2)–P _{6 Zent}	1.328	1.341
	Mo(1)–Mo(2)	2.668	2.682
Winkel zw. den Ebenen	E1/E2	2.8	1.0
	E1/E3	0.7	0.7
	E2/E3	3.4	1.0
	E1 (1. Cp-Ring)	E2 (P ₆ -Mitteldeck)	E3 (2. Cp-Ring)

3.1.2.5 Strukturvergleich von 3 mit $[{Cp^{=}Mo}_{2}(\mu - \eta^{6:6} - P_{6})]^{[26]}$

Tabelle 3.5: Strukturvergleich von 3 mit [{ $Cp^{=}Mo$ }₂(μ - $\eta^{6:6}$ - P_6)]

Die beiden Strukturen ähneln sich wie zu erwarten stark, lediglich der Mo-Mo-Abstand ist bei **3** etwas kürzer. Auffallend ist, dass bei $[{Cp=Mo}_2(\mu-\eta^{6:6}-P_6)]$, im Gegensatz zu Verbindung **3**, alle drei Decks nahezu parallel angeordnet sind.

3.2 Orientierende Versuche mit [{Cp⁻(CO)₂Mo}(η³-P₃)] (2) als Phosphorquelle

3.2.1 Cothermolyse von 2 mit Alkinen

 $[{(\eta^5-Cp^-)(CO)_2Mo}(\eta^3-P_3)]$ (2) wurde mit verschiedenen Alkinen (R¹-C = C-R², R¹ = R² = Ph; R¹ = Tms, R² = H; R¹ = ^tBu, R² = H) in Xylol am Rückfluss erhitzt, außer der thermischen Umwandlung von 2 in 3 konnten keine weiteren Produkte detektiert werden.

3.2.2 Cothermolyse von 2 mit $[(\eta^5-Cp^{-})Fe(\eta^5-P_5)]$

 $[{(\eta^5-Cp^-)(CO)_2Mo}(\eta^3-P_3)]$ (2) wurde mit einer äquimolaren Menge an $[(\eta^5-Cp^-)Fe(\eta^5-P_5)]$ versetzt und in Dekalin für mehrere Stunden refluxiert. Die Reaktionskontrolle mittels ³¹P-NMR zeigte auch nach 20 h neben den Eduktsignalen nur das für **3** typische Singulett.

3.3 Übertragung der Untersuchungen von Molybdän auf Wolfram

Die Herstellung des für die Thermolyse notwendigen [{ $Cp^{R}(CO)_{3}W$ }_2] aus W(CO)₆ und $Cp^{R}H$ war aufgrund der geringen Reaktivität von W(CO)₆ nicht möglich. Allerdings zeigte die Reaktionskontrolle einer "Eintopf"-Reaktion von W(CO)₆, Cp⁻H und weißem Phosphor in refluxierendem Diglyme im ³¹P-NMR-Spektrum zwei Singuletts ($\delta = -350$ ppm, $\delta = -356$ ppm). Diese können im Hinblick auf die Cothermolyse von [{ $(\eta^5-Cp^-)(CO)_3Mo$ }_2] mit weißem Phosphor Hinweise auf [{ $(\eta^5-Cp^-)(CO)_2W$ } (η^3-P_3)] bzw. [{ $(\eta^5-Cp^-)W$ }_2(μ - η^6-P_6)] sein. Eine präparative Auftrennung gelang jedoch nicht.

3.4 $[{Cp}^{R}Fe_{2}(\mu-\eta^{4:4}-P_{4})]$ (J) als alternative Phosphorquelle

Die von $Hilt^{[9,10]}$ beschriebene Langzeitthermolyse von Verbindung $[{Cp^{R}(OC)_{2}Fe}_{2} (\mu-\eta^{1:1}-P_{4})]$ (**B**) liefert die schon bekannten und kristallstrukturanalytisch untersuchten Decarbonylierungsprodukte $[Cp^{R}Fe(\eta^{5}-P_{5})]$ (**D**) und den *pseudo*-Tripeldeckerkomplex $[{Cp^{R}Fe}_{2}(\mu-\eta^{4:4}-P_{4})]$ (**J**) $(Cp^{R} = Cp^{\prime\prime\prime}, {}^{4}Cp$ und ${}^{5}Cp$).

Bei der Langzeitthermolyse der Tetraphospha-Bicyclobutankomplexe vom Typ **B** mit symmetrisch substituierten Alkinen konnte *Hilt* 1999 die außergewöhnlichen, phosphorhaltigen Verbindungen $[Cp^{R}Fe(\eta^{5}-\{P_{3}(CPh)_{2}\}]$ (**K**) und $[[\{{}^{5}CpFe\}_{3}(CO)_{4}P_{11}]$ (**L**) erhalten und lieferte so den Nachweis für die Verwendung von $[\{Cp^{R}(OC)_{2}Fe\}_{2}(\mu-\eta^{1:1}-P_{4})]$ (**B**) als alternative Phosphorquelle. Der ferrocenanaloge Sandwichkomplex **K** mit einem η^{5} koordinierten 1,2,3-Triphospholyl-Liganden und der Undecaphosphor-Komplex **L** wurden anhand von geeigneten Einkristallen röntgenstrukturanalytisch eindeutig nachgewiesen^[9,27].

Neuere Ergebnisse zur Reaktion von Komplex **B** mit Alkinen erhielt *Eichhorn* 2002 unter Verwendung der sterisch anspruchsvollen Ligandensysteme Di-*tert*-butyl-indenyl und Tri-*tert*-butyl-cyclopentadienyl^[28].

Im Folgenden soll die Frage geklärt werden, inwieweit Komplex $[{Cp^{R}Fe}_{2}(\mu-\eta^{4:4}-P_{4})]$ (J) $(Cp^{R} = Cp^{\prime\prime\prime}, Cp^{=})$ als alternative Phosphorquelle geeignet ist.

3.4.1 Herstellung von $[{Cp}^{R}Fe_{2}(\mu-\eta^{4:4}-P_{4})]$ (J) durch Cothermolyse von $[{Cp}^{R}(CO)_{2}Fe_{2}]$ (C) mit weißem Phosphor

Erhitzt man eine Lösung aus $[{Cp^{R}(OC)_{2}Fe}_{2}]$ (C) und weißem Phosphor im molaren Verhältnis 1:1 in Dekalin am Rückfluss, so verfärbt sich die anfangs rote Lösung nach einigen Minuten braun. Der Verlauf der Reaktion wird dabei NMR-spektroskopisch kontrolliert. Die Reaktion ist nach 50 Minuten beendet, wenn kein intermediär gebildetes $[{Cp^{R}(OC)_{2}Fe}_{2}(\mu-\eta^{1:1}-P_{4})]$ (B) im ³¹P-NMR-Spektrum mehr detektiert werden kann.

Abbildung 3.4: Cothermolyse von $[{Cp^{R}(OC)_{2}Fe}_{2}]$ mit weißem Phosphor

Bei der anschließenden säulenchromatographischen Aufarbeitung des Rohproduktes an silyliertem Kieselgel erhält man mit Petrolether als Laufmittel zunächst den schon bekannten grünen Komplex $[(\eta^5-Cp^R)Fe(\eta^5-P_5)]$ (**D**). Als zweite Fraktion eluiert man mit einem Lösungsmittelgemisch von Petrolether/ Toluol 20:1 die gewünschte rotbraune Verbindung

 $[{Cp^{R}Fe}_{2}(\mu-\eta^{4:4}-P_{4})]$ (J). Unter Verwendung eines Solvensgemisches aus Petrolether und Toluol im Verhältnis 15:1 erhält man als dritte Fraktion das grüne Ferrocen $[Cp^{R}_{2}Fe]$ (M). Ausgehend von $[{Cp''Fe(CO)}_{2}_{2}]$ (Ca) konnten bei dieser Synthese die beiden neuen Ferrocene $[Cp''_{2}Fe]$ (4a) und [Cp''FeCp'''] (4b) erhalten werden. Verbindung 4b ist wahrscheinlich aus Komplex 4a durch Abspaltung von Isobuten an einem Cp'''-Liganden infolge der hohen Reaktionstemperatur entstanden. Allerdings konnte kein $[Cp''_{2}Fe]$, das formal durch Abspaltung von zwei Isobuten-Einheiten an zwei verschiedenen Tri(*tert*butyl)cyclopentadienyl-Liganden entsteht, detektiert werden.

3.4.1.1 Eigenschaften von [Cp^{''}₂Fe] (4a) und [Cp^{''}FeCp^{'''}] (4b)

Nach dem Entfernen des Lösungsmittels im Ölpumpenvakuum fallen beide Verbindungen als grüne Feststoffe an, die in unpolaren (z.B. Petrolether, Hexan) gut, und aromatischen Lösungsmitteln (z.B. Toluol, Deuterobenzol) sehr gut löslich sind. Beide Komplexe können an Luft gehandhabt werden und lassen sich unter Argonatmosphäre mehrere Monate zersetzungsfrei lagern.

3.4.1.2 NMR-spektroskopische Daten

Die Protonenspektren der Komplexe **4a** und **4b** in Deuterobenzol weisen die für den Cp^{''-} bzw. Cp^{''-}Liganden typischen Signale im erwarteten Bereich auf.

[Cp ² ₂ Fe] (4a)	[Cp´´FeCp´´´] (4b)	[Cp ^{~2} Fe] ^[29]
1.32 (s, 36H, C(C <u>H</u> ₃) ₃)	$1.28 (s, 18H, C(CH_3)_3)$	1.22 (s, 36H, C(C <u>H</u> ₃) ₃)
1.34 (s, 18H, C(C <u>H</u> ₃) ₃)	1.31 (s, 18H, C(C <u>H</u> ₃) ₃)	
4.20 (s, 4H, Ringprotonen)	1.33 (s, 9H, C(C <u>H</u> ₃) ₃)	3.10 (m, 4H, Ringprotonen)
	3.32 (m, 2H, Ringprotonen)	3.82 (m, 2H, Ringprotonen)
	3.68 (m, 1H, Ringproton)	
	4.05 (s, 2H, Ringprotonen)	
	[Cp ² ₂ Fe] (4a) 1.32 (s, 36H, C(C <u>H</u> ₃) ₃) 1.34 (s, 18H, C(C <u>H</u> ₃) ₃) 4.20 (s, 4H, Ringprotonen)	$[Cp''_2Fe]$ (4a) $[Cp''FeCp''']$ (4b)1.32 (s, 36H, C(C <u>H</u> ₃) ₃)1.28 (s, 18H, C(C <u>H</u> ₃) ₃)1.34 (s, 18H, C(C <u>H</u> ₃) ₃)1.31 (s, 18H, C(C <u>H</u> ₃) ₃)4.20 (s, 4H, Ringprotonen)1.33 (s, 9H, C(C <u>H</u> ₃) ₃)3.32 (m, 2H, Ringprotonen)3.68 (m, 1H, Ringprotonen)4.05 (s, 2H, Ringprotonen)

Tabelle 3.6: NMR-spektroskopische Daten

3.4.1.3 Massenspektrometrie

In den EI-Massenspektren von **4a** und **4b** wird jeweils der Molekülionenpeak der Zusammensetzung $[Cp''_2Fe]^+$ bzw. $[Cp''FeCp''']^+$ bei m/z = 522.4 amu bzw. 466.3 amu gefunden.

 $(QT = 200 \ ^{\circ}C, 70 \ eV)$

3.4.1.4 Röntgenstrukturanalysen von Verbindungen 4a und 4b

Geeignete Einkristalle von [Cp^{''}₂Fe] (**4a**) und [Cp^{''}FeCp^{'''}] (**4b**) konnten durch Abdiffusion des Lösungsmittels aus einer gesättigten Hexanlösung gewonnen werden.

3.4.1.4.1 Röntgenstrukturanalyse von [Cp²Fe] (4a)

Abbildung 3.5: Röntgenstrukturanalyse von [Cp^{'''}₂Fe]

Bindung	Bindungslänge [Å]	
Fe(1)-Cp ^R _{Zent} *	1.715	
Fe(1)-Cp ^R _{Zent} **	1.716	
$* = Cp^{R}$ -Ring C(1) bis C(5)		
** = Cp^{R} -Ring C(6) bis C(10)		

Ausgewählte	Rindungenarameter von 19.	
Ausgewanne	Dinuungsparameter von -a .	

Ebene	Atome	Abweichung aus der besten Ebene [Å]
E1	C(1)-C(2)-C(3)-C(4)-C(5)	0.0108
E2	C(6)-C(7)-C(8)-C(9)-C(10)	0.0150

Ebene	Winkel [°]
E1 / E2	8.2

Abbildung 3.5 zeigt den asymmetrischen Aufbau von Hexakis(*tert*-butyl)cyclopentadienylferrocen **4a**. Der Abstand der beiden Cyclopentadienyl-Liganden zueinander beträgt 3.43 Å. Die beiden Fünfringe der Cyclopentadienylliganden weichen mit 8.2° deutlich von einer parallelen Anordnung ab.

Abbildung 3.6: Newman-Projektion auf die Ebenen

Wie aus Abbildung 3.6 ersichtlich ist, nehmen die *tert*-Butyl-Gruppen, bis auf die an C(6) und C(7), eine gestaffelte Anordnung ein. Diese Substituenten stehen nahezu ekliptisch zueinander. Die daraus resultierende ungünstige sterische Wechselwirkung wird durch ein Ausweichen der Cyclopentadienylliganden aus der Parallelität minimiert.

3.4.1.4.2 Röntgenstrukturanalyse von [Cp''FeCp'''] (4b)

Abbildung 3.7: Röntgenstrukturanalyse von [Cp''FeCp''']

Ausgewählte Bindungsparameter von 4b :

Bindung	Bindungslänge [Å]	
$Fe(1)$ - Cp^{R}_{Zent} *	1.673	
Fe(1)-Cp ^R _{Zent} **	1.684	
* = Cp^{R} -Ring C(1) bis C(5)		
$** = Cp^{R}-Ring C(6) bis C(10)$		

Ebene	Atome	Abweichung aus der besten Ebene [Å]
E1	C(1)-C(2)-C(3)-C(4)-C(5)	0.0058
E2	C(6)-C(7)-C(8)-C(9)-C(10)	0.0118

Ebene	Winkel [°]
E1 / E2	1.4

Die Kristallstruktur von Verbindung [Cp''FeCp'''] (**4b**) zeigt den ebenfalls asymmetrischen Aufbau des Pentakis(*tert*-butyl)cyclopentadienylferrocens. Die Cyclopentadienylliganden sind unterschiedlich weit von dem Eisenatom entfernt. Der Abstand des Cp''-Restes ist mit 1.684 Å etwas länger als der des Tri-(*tert*-butyl)-Cyclopentadienyl-Liganden mit 1.673 Å. Der Winkel zwischen den durch die Liganden aufgespannten Ebenen beträgt 1.4°, sie sind also annähernd parallel.

Abbildung 3.8: Newman-Projektion auf die Ebenen

Eine minimale sterische Wechselwirkung der *tert*-Butylreste an den Cp-Liganden wird, wie Abbildung 3.8 zeigt, durch eine gestaffelte Anordnung erreicht.

	$[Cp_{2}Fe] (4a)$	[Cp''FeCp'''] (4b)	[Cp'' ₂ Fe] ^[30]
Bindung	Bindungslänge [Å]		
Fe(1)-Cp ^R _{Zent} *	1.715	1.673	1.67
$Fe(1)-Cp^{R_{Zent}}^{**}$	1.716	1.684	1.67
$* = Cp^{R}$ -Ring (C(1) bis C(5) $^{**} = Cp^{R}$ -Ring C(6) bis C(10)		
Ebene		Winkel [°]	
E1 / E2	8.2	1.4	8.3
E1 = C(1) - C(2) - C(C(3)-C(4)-C(5)	E2 = C(6)-C(7)-C(6)	8)-C(9)-C(10)

3.4.1.4.3 Vergleich der Strukturen von $[Cp''_2Fe]$ (4a), [Cp''FeCp'''] (4b) und $[Cp''_2Fe]$

Tabelle 3.7: Vergleich der Strukturen von 4a, 4b und [Cp''₂Fe]

Tabelle 3.7 zeigt die Tendenz zu größerem Abstand zwischen den beiden Cyclopentadienylliganden je stärker die Ferrocene alkyliert sind. Die Abwinkelung der Decks bei Komplex **4a** und [Cp^{''}₂Fe] ist annähernd gleich groß, dadurch wird die geringste sterische Wechselwirkung der *tert*-Butylreste erreicht. Beim Pentakis(*tert*-butyl)cyclopentadienylferrocen dagegen wird dies durch die nahezu parallele Ausrichtung der Cyclopentadienyl-Einheiten realisiert.

3.4.2 Umsetzungen von [$\{Cp^{R}Fe\}_{2}(\mu-\eta^{4:4}-P_{4})$] mit unsymmetrisch substituierten Alkinen

Zu einer rotbraunen Lösung von [{ $Cp^{R}Fe$ }₂(μ - $\eta^{4:4}$ - P_{4})] (**J**) ($Cp^{R} = Cp^{\prime\prime\prime}$, $Cp^{=}$) in Toluol wird eine äquimolare an R-C \equiv C-H (R = ^tBu, Ph, Tms) gegeben und 24 Stunden unter Rückfluss in einem Druckschlenkrohr bei 120 °C gerührt. ³¹P-NMR-spektroskopisch ließ sich bei der Reaktion mit Tms-C \equiv C-H keine Reaktion feststellen, im Falle der beiden anderen Alkine konnte jeweils ein neues phosphorhaltiges Produkt detektiert werden. Anschließend wurden die Reaktionsansätze säulenchromatographisch an Kieselgel bei –20 °C aufgearbeitet. Als Laufmittel diente dabei ein Lösungsmittelgemisch aus Petrolether und Toluol.

3.4.2.1 Cothermolyse von $[{Cp^{R}Fe}_{2}(\mu-\eta^{4:4}-P_{4})]$ (J) mit ^tBu-C = C-H

Bei der säulenchromatographischen Aufarbeitung erhält man mit einem Lösungsmittelgemisch von Petrolether und Toluol im Verhältnis 40:1 eine rote Fraktion, die charakteristische Signale im ³¹P-NMR-Spektrum aufweist.

$[{Cp}^{R}Fe \}_{2}(\mu-\eta^{4:4}-P_{4})]$		
(J)	Toluol	
+		[{Cp ^R Fe}(η ⁵ -P ₃ (C ₂ ^t BuH))]
^t Bu-C≡C-H	24h, 120°C	(5)

Abbildung 3.9: Cothermolyse von [{ $Cp^{R}Fe$ }_2(μ - $\eta^{4:4}$ - P_{4}]) mit ^tBu- $C \equiv C$ -H

3.4.2.1.1 Eigenschaften von [{ $Cp^{R}Fe$ }(η^{5} - $P_{3}(C_{2}^{t}BuH)$)] ($Cp^{R} = Cp^{=}$ (5a), $Cp^{\prime\prime\prime}$ (5b))

Nach dem Entfernen des Lösungsmittels im Ölpumpenvakuum fällt **5** als rotes mikrokristallines Pulver an. Es kann kurzzeitig an Luft gehandhabt werden und ist unter Schutzgas mehrere Wochen zersetzungsfrei lagerfähig. Die Löslichkeit ist in unpolaren Solventien (z.B. Petrolether, Hexan) nur mäßig, in aromatischen (z.B. Toluol, Deuterobenzol) gut und in polaren (z.B. Dichlormethan, THF) dagegen sehr gut.

3.4.2.1.2 NMR-spektroskopische Daten von [$\{Cp^{R}Fe\}(\eta^{5}-P_{3}(C_{2}^{t}BuH))$] (5)

Das ¹H-NMR-Spektrum weist in beiden Komplexen für den Bistrimethylsilyl- bzw. den Tri*tert*-butyl-Cyclopentadienyl-Liganden in unsymmetrischer Umgebung die charakteristischen Signalsätze mit einem Integralverhältnis der Singuletts von 18:2:1 bzw. 9:9:9:1:1 auf. Die Ringprotonen der entsprechenden Liganden treten in Form zweier Singuletts (Integralverhältnis 2:1 bzw. 1:1) im Bereich von $\delta = 4$ bis 5 ppm in Resonanz. Der *tert*-butyl-Rest der Alkineinheit weist ein Singulett bei $\delta = 1.49$ ppm bzw. 1.45 ppm auf. Das Proton des eingebauten Alkin-Bausteins tritt bei Komplex [{Cp⁼Fe}(η⁵-P₃(C₂^tBuH))] (**5a**) als Doppeldublett bei $\delta = 6.03$ ppm mit einer ²J_{P,H}-Kopplungskonstante von 40.6 Hz und einer ³J_{P,H}-Kopplungskonstante von 11.56 Hz in Resonanz. Für das Proton der Verbindung [{Cp⁻⁻⁻Fe}(η⁵-P₃(C₂^tBuH))] (**5b**) wird überraschenderweise ein dublettiertes Doppeldublett bei $\delta = 5.89$ ppm mit einer ²J_{P,H}-Kopplungskonstante von 41.1 Hz, einer ³J_{P,H}-Kopplungskonstante von 12.02 Hz und einer ⁴J_{P,H}-Kopplungskonstante von 4.59 Hz beobachtet.

Die ³¹P-NMR-Spektren der Komplexe **5a** und **5b** weisen drei Signalsätze eines ABX-Spinsystems auf. Ein dublettiertes Dublett bei $\delta = 46.54$ ppm bzw. $\delta = 42.84$ ppm, das mit einem pseudo-Triplett bei $\delta = 12.65$ ppm bzw. 0.06 ppm und einem Dublett bei $\delta = 50.55$ ppm bzw. 48.37 ppm korreliert. Die ¹J_{P,P}-Kopplungskonstante beträgt hierbei 409.36 Hz bzw. 406.27 Hz.

	[{Cp ⁼ Fe}(η ⁵ -	$P_3(C_2^{t}BuH))]$ (5a)	[{Cp´´´Fe}(η ⁵ ·	$P_3(C_2^{t}BuH))]$ (5b)
	δ [ppm]	Zuordnung	δ [ppm]	Zuordnung
	0.41 (s, 18H)	$Si(CH_3)_3$, $Cp^{=}$ -Ligand	1.26 (s, 9H)	$C(CH_3)_3$, Cp ^{···} -Ligand
			1.31 (s, 9H)	$C(CH_3)_3$, Cp ^{···} -Ligand
	1.49 (s, 9H)	$C(C\underline{H}_3)_3$, ^t Bu-Rest des	1.45 (s, 9H)	$C(CH_3)_3$, ^t Bu-Rest des
		Alkin-Bausteins		Alkin-Bausteins
$^{1}\mathrm{H}$			1.53 (s, 9H)	C(C <u>H</u> ₃) ₃ , Cp ^{'''} -Ligand
	4.17 (s, 1H)	aromat. H, Ligand	4.15 (s, 1H)	aromat. H, Ligand
	4.40 (s, 2H)	aromat. H, Ligand	4.36 (s, 1H)	aromat. H, Ligand
	6.03 (dd, 1H)	aromat. H, P ₃ C ₂ -Ligand	5.89 (ddd, 1H)	aromat. H, P ₃ C ₂ -Ligand
	$^{2}J_{P,H}$ = 40.6 Hz		$^{2}J_{P,H}$ = 41.10 Hz	
	${}^{3}J_{P,H}$ = 11.56 Hz		${}^{3}J_{P,H} = 12.02 \text{ Hz}$	
			${}^{4}J_{P,H} = 4.59 \text{ Hz}$	
	12.65 (pt, 1P)	P _X -Atom	0.06 (pt, 1P)	P _X -Atom
	${}^{1}J_{P,P} = 409.36 \text{ Hz}$		${}^{1}J_{P,P} = 406.27 \text{ Hz}$	
	46.54 (dd, 1P)	P _B -Atom	42.84 (dd, 1P)	P _B -Atom
³¹ P	${}^{1}J_{P,P} = 409.36 \text{ Hz}$		${}^{1}J_{P,P} = 406.27 \text{ Hz}$	
	$^{2}J_{P,P} = 44.53 \text{ Hz}$		${}^{2}J_{P,P} = 41.48 \text{ Hz}$	
	50.55 (d, 1P)	P _A -Atom	48.37 (d, 1P)	P _A -Atom
	${}^{1}J_{P,P} = 409.36 \text{ Hz}$		${}^{1}J_{P,P} = 406.27 \text{ Hz}$	

Tabelle 3.8: NMR-spektroskopische Daten von [$\{Cp^{R}Fe\}(\eta^{5}-P_{3}(C_{2}^{t}BuH))$]

3.4.2.1.3 Massenspektrometrie

In den EI-Massenspektren von **5a** und **5b** wird jeweils der Molekülionenpeak der Zusammensetzung $[{Cp^{=}Fe}(\eta^{5}-P_{3}(C_{2}^{t}BuH))]^{+}$ bzw. $[{Cp'''Fe}(\eta^{5}-P_{3}(C_{2}^{t}BuH))]^{+}$ bei m/z = 440.1 amu bzw. 464.33 amu gefunden.

(QT = 200 °C, 70 eV)

3.4.2.1.4 Strukturvorschlag für [{ $Cp^{R}Fe$ }(η^{5} - $P_{3}(C_{2}^{t}BuH)$)] ($Cp^{R} = Cp^{=}(5a), Cp^{\prime\prime\prime}(5b)$)

Für die Komplexe **5a**, **b** wird folgende Struktur vorgeschlagen:

3.4.2.2 Cothermolyse von $[{Cp}^{R}Fe]_{2}(\mu-\eta^{4:4}-P_{4})]$ (J) mit Ph-C = C-H

Bei der säulenchromatographischen Aufarbeitung erhält man mit einem Lösungsmittelgemisch von Petrolether und Toluol im Verhältnis 20:1 eine braunrote Fraktion, die charakteristische Signale im ³¹P-NMR-Spektrum aufweist.

[{Cp ^R Fe} ₂ (μ-η ^{4:4} -P ₄)] (J) +	Toluol Druckschlenkrohr	[{Cp ^R Fe}(η ⁵ -P ₃ (C ₂ PhH))]
Ph-C≡C-H	24h, 120°C	(6)

Abbildung 3.10: Cothermolyse von [{ $Cp^{R}Fe$ }₂(μ - $\eta^{4:4}$ - P_{4})] mit Ph-C = C-H

3.4.2.2.1 Eigenschaften von $[{Cp^{R}Fe}(\eta^{5}-P_{3}(C_{2}PhH))]$ (6)

Nach dem Entfernen des Lösungsmittels am Ölpumpenvakuum fallen die Komplexe $[{Cp^{-}Fe}(\eta^{5}-P_{3}(C_{2}PhH))]$ (6a) und $[{Cp'''Fe}(\eta^{5}-P_{3}(C_{2}PhH))]$ (6b) als braunrote, ölige Substanzen an, die unter Schutzgas mehrere Wochen ohne ein Anzeichen für Zersetzung gelagert werden können. Die Löslichkeit ist in unpolaren Solventien (z.B. Petrolether, Hexan) nur mäßig, in aromatischen (z.B. Toluol, Deuterobenzol) gut und in polaren (z.B. Dichlormethan, THF) dagegen sehr gut.

Verbindung **6b** konnte schon von *C. Eichhorn* 2002 in unserem Arbeitskreis via Cothermolyse der Butterflyverbindung [{ $Cp'''Fe(CO)_2$ }_2(μ - $\eta^{1:1}$ -P₄)] mit Phenylacetylen synthetisiert und charakterisiert werden^[28]. Deshalb werden die Daten zu Komplex **6b** im Folgenden nur zum Vergleich herangezogen.
	[{Cp ⁼ Fe}(η ⁵ -P ₃ (C ₂ PhH))] (6a)		[{Cp´´`Fe}(η ⁵ -P ₃ (C ₂ PhH))] (6b) ^[28]	
	δ [ppm]	Zuordnung	δ [ppm]	Zuordnung
	0.42 (s, 18H)	$Si(CH_3)_3, Cp^{-}-Ligand$	1.21 (s, 9H)	$C(C\underline{H}_3)_3$, Cp ^{···} -Ligand
			1.24 (s, 9H)	C(C <u>H</u> ₃) ₃ , Cp ^{<i>···</i>} -Ligand
			1.53 (s, 9H)	$C(C\underline{H}_3)_3$, Cp ^{···} -Ligand
	4.21 (s, 1H)	aromat. H, Ligand	4.13 (s, 1H)	aromat. H, Ligand
¹ H	4.45 (s, 2H)	aromat. H, Ligand	4.30 (s, 1H)	aromat. H, Ligand
	6.58 (dd, 1H)	aromat. H, P ₃ C ₂ -Ligand	6.36 (dd, 1H)	aromat. H, P ₃ C ₂ -Ligand
	$^{2}J_{P,H}$ = 41.37 Hz		$^{2}J_{P,H}$ = 40.10 Hz	
	${}^{3}J_{P,H}$ = 12.14 Hz		${}^{3}J_{P,H} = 10.78 \text{ Hz}$	
	7.45 (m, 3H)	aromat. H, Phenylrest	7.19 (m, 3H)	aromat. H, Phenylrest
	${}^{3}J_{\rm H,H} = 7.94 \text{ Hz}$		${}^{3}J_{\mathrm{H,H}} = 7.71 \ \mathrm{Hz}$	
	8.12 (d, 2H)	aromat. H, Phenylrest	7.92 (d, 2H)	aromat. H, Phenylrest
	${}^{3}J_{H,H} = 7.94 \text{ Hz}$		${}^{3}J_{H,H} = 7.71 \text{ Hz}$	
³¹ P	23.28 (pt, 1P)	P _X -Atom	15.07 (pt, 1P)	P _X -Atom
	${}^{1}J_{P,P} = 438.44 \text{ Hz}$		${}^{1}J_{P,P} = 427.25 \text{ Hz}$	
	50.45 (dd, 1P)	P _B -Atom	42.84 (dd, 1P)	P _B -Atom
³¹ P	${}^{1}J_{P,P} = 438.44 \text{ Hz}$		${}^{1}J_{P,P} = 427.25 \text{ Hz}$	
	$^{2}J_{P,P}$ = 43.72 Hz		$^{2}J_{P,P}$ = 40.17 Hz	
	55.51 (d, 1P)	P _A -Atom	48.37 (d, 1P)	P _A -Atom
	${}^{1}J_{P,P} = 438.44 \text{ Hz}$		${}^{1}J_{P,P} = 427.25 \text{ Hz}$	

3.4.2.2.2	NMR-spektroskopische Daten	von [{Cp ^R Fe}(η ³	$P_{3}(C_{2}PhH))] (6)$
-----------	----------------------------	--	-------------------------

Tabelle 3.9: NMR-spektroskopische Daten von $[{Cp^{R}Fe}(\eta^{5}-P_{3}(C_{2}PhH))]$

3.4.2.2.3 Massenspektrometrie

Das EI-Massenspektrum von **6a** zeigt den Molekülionenpeak der Zusammensetzung $[{Cp}^{=}Fe}(\eta^{5}-P_{3}(C_{2}PhH))]^{+}$ bei m/z = 460 amu.

(QT = 200 °C, 70 eV)

3.4.2.2.4 Strukturvorschlag für $[{Cp^{=}Fe}(\eta^{5}-P_{3}(C_{2}PhH))]$ (6a)

Für Verbindung **6a** wird folgende Struktur vorgeschlagen:

3.4.3 Umsetzung mit symmetrisch substituierten Alkinen

Eine rotbraune Lösung von [{ $Cp^{R}Fe$ }₂(μ - $\eta^{4:4}$ -P₄)] (**J**) ($Cp^{R} = Cp^{\prime\prime\prime}$, $Cp^{=}$) in Toluol wurde mit einer äquimolaren an R-C \equiv C-R (R = Ph, Tms) in einem Druckschlenkrohr bei 130 °C für 48 Stunden unter Rühren zur Reaktion gebracht. ³¹P-NMR-spektroskopisch ließ sich bei der Reaktion mit Tms-C \equiv C-Tms keine Reaktion feststellen.

Bei der Verwendung von Ph-C \equiv C-Ph als Reaktionspartner konnte nur mit Verbindung $[{Cp}^{=}Fe}_{2}(\mu-\eta^{4:4}-P_{4})]$ (Ja) eine Umsetzung beobachtet werden. Dabei wurden zwei neue phosphorhaltige Komplexe gebildet. Anschließend wurde der Reaktionsansatz säulenchromatographisch an silyliertem Kieselgel bei –20 °C aufgearbeitet. Als Laufmittel diente dabei ein Lösungsmittelgemisch aus Petrolether und Toluol.

3.4.3.1 Cothermolyse von $[{Cp}^{=}Fe]_2(\mu-\eta^{4:4}-P_4)]$ (Ja) mit Ph-C = C-Ph

Die säulenchromatographische Aufarbeitung des Reaktionsansatzes erfolgt an silyliertem Kieselgel bei –20 °C. Mit einem Petrolether-Toluol-Gemisch (40:1) wird eine grüne Fraktion eluiert, die im ³¹P-NMR-Spektrum die für 1,2,3-Triphosphaferrocene typischen Signalsätze aufweist. Des Weiteren wird mit einem Lösungsmittelgemisch aus Petrolether und Toluol im Verhältnis von 30:1 eine rote Fraktion erhalten. Diese kann anhand ihrer ³¹P-NMR-spektroskopischen Daten eindeutig der Verbindungsklasse der Monophosphaferrocene zugeordnet werden.

[{Cp ⁼ Fe}₂(μ-η ^{4:4} -P₄)]		$[{Cp}^{=}Fe}(\eta^{5}-P_{3}(C_{2}Ph_{2}))]$
(Ja)	Toluol	(7)
+ Ph-C=C-Ph	Druckschlenkrohr 48h, 130°C	+ [{Cp ⁼ Fe}(η ⁵ -P(C ₂ Ph ₂) ₂)]
		(8)

Abbildung 3.11: Cothermolyse von [{ $Cp^{=}Fe$ }₂(μ - $\eta^{4:4}$ - P_4)] mit Ph-C = C-Ph

3.4.3.1.1 Erste Säulenfraktion: $[{Cp^{=}Fe}(\eta^{5}-(P_{3}(CPh)_{2}))]$ (7)

3.4.3.1.1.1 Eigenschaften von 7

Nach dem Entfernen des Solvens im Ölpumpenvakuum wird Verbindung $[{Cp}^{-}Fe}(\eta^{5}-(P_{3}(CPh)_{2}))]$ (7) als dunkelgrüner Feststoff erhalten, der in unpolaren Lösungsmitteln (z.B. Petrolether, Hexan) gut, in polaren (z.B. Diethylether, THF) und aromatischen (z.B. Toluol, Deuterobenzol) sehr gut löslich ist. Verbindung 7 kann kurzzeitig an Luft gehandhabt und unter Schutzgas mehrere Wochen ohne erkennbare Zeichen der Zersetzung aufbewahrt werden.

3.4.3.1.1.2 NMR-spektroskopische Daten

Das Protonenresonanzspektrum von Verbindung $[{Cp^{=}Fe}(\eta^{5}-(P_{3}(CPh)_{2}))]$ (7) in Deuterobenzol weist die typischen drei Singuletts des Cp⁼-Liganden im Integralverhältnis 18:2:1 auf. Im Aromatenbereich treten darüber hinaus zwei Multipletts auf, die den Protonen der Phenylreste der Alkineinheit zuzuordnen sind.

Im ³¹P-NMR-Spektrum von 7 erkennt man neben einem Triplett bei $\delta = -2.3$ ppm ein Dublett bei $\delta = 77.4$ ppm. Die Wechselwirkung der Kopplungspartner ist auch am Dacheffekt der Signale zu erkennen, die ¹J_{P,P}-Kopplungskonstante beträgt jeweils 414 Hz.

	$[Cp^{R}Fe(\eta^{5}-(P_{3}(CPh)_{2}))]$			
	$Cp^{R} = Cp^{=}(7)$		$Cp^{R} = Cp^{[27]}$	
	δ [ppm]	Zuordnung	δ [ppm]	Zuordnung
¹ H	0.39 (s, 18H)	$Si(CH_3)_3$, $Cp^{=}$ -Ligand	1.18 (s, 9H)	$C(C\underline{H}_3)_3$, Cp ^{···} -Ligand
			1.28 (s, 9H)	$C(CH_3)_3$, Cp ^{···} -Ligand
			1.36 (s, 9H)	$C(CH_3)_3$, Cp ^{···} -Ligand
	4.27 (s, 1H)	Ringprotonen, Cp ⁼ -Ligand	4.26 (s, 2H)	Ringprotonen, Cp ^{'''} -Lig.
	4.48 (s, 2H)	Ringprotonen, Cp ⁼ -Ligand		
	7.07 (m, 5H)	7 (m, 5H) Ringprotonen, Phenylrest		Ringprotonen, Phenylrest
	7.62 (m, 5H)	Ringprotonen, Phenylrest	7.55 (m, 5H)	Ringprotonen, Phenylrest
³¹ P	-2.3 (t, 1P)	$^{1}J_{P,P} = 414.5 \text{ Hz}$	-18.5 (t, 1P)	$^{1}J_{P,P} = 412.0 \text{ Hz}$
	77.4 (d, 2P)	${}^{1}J_{P,P} = 414.5 \text{ Hz}$	78.1 (d, 2P)	${}^{1}J_{P,P} = 412.0 \text{ Hz}$

Tabelle 3.10: NMR-spektroskopische Daten

3.4.3.1.1.3 Massenspektrometrie

Das EI-Massenspektrum von $[{Cp^{=}Fe}(\eta^{5}-(P_{3}(CPh)_{2}))]$ (7) weist den Molekülionenpeak der Zusammensetzung $[{Cp^{=}Fe}(\eta^{5}-(P_{3}(CPh)_{2}))]^{+}$ bei m/z = 536.1 amu auf. (QT = 200 °C, 70 eV)

3.4.3.1.2 Zweite Säulenfraktion: $[Cp^{-}Fe(\eta^{5}-(P((CPh)_{2})_{2}))]$ (8)

3.4.3.1.2.1 Eigenschaften von 8

Verbindung **8** fällt nach dem Entfernen des Lösungsmittels als rote, ölige Substanz an, die in polaren (z.B. Dichlormethan, THF) und aromatischen Solventien (z.B. Toluol) sehr gut und in unpolaren (z.B. Hexan, Petrolether) gut löslich ist. $[Cp=Fe(\eta^5-(P((CPh)_2)_2))]$ (**8**) lässt sich kurzzeitig an Luft handhaben. Komplex **8** konnte nicht zur Kristallisation gebracht werden.

3.4.3.1.2.2 NMR-Spektroskopie

Wie auch schon bei Komplex 7 zeigt das Protonenresonanzspektrum von $[Cp^{=}Fe(\eta^{5}-(P((CPh)_{2})_{2}))]$ (8) die für den $Cp^{=}$ -Liganden zu erwartenden Signalsätze. Auch die vier Phenylreste der beiden eingebauten Alkineinheiten kommen im typischen Bereich zur Resonanz.

Im Phosphorresonanzspektrum ist ein Singulett bei $\delta = -69.8$ ppm zu beobachten.

	$[Cp^{=}Fe(\eta^{5}-P(C_{2}Ph_{2})_{2})]$ (8)		
	δ [ppm]	Zuordnung	
¹ H-NMR	0.40 (s, 18H)	$Si(CH_3)_3$, Cp^Ligand	
	4.27 (s, 1H)	Ringprotonen, Cp ⁼ -Ligand	
	4.49 (s, 2H)	Ringprotonen, Cp ⁼ -Ligand	
	7.08 (m, 10H)	Ringprotonen, Phenylreste	
	7.60 (m, 10H)	Ringprotonen, Phenylreste	
³¹ P-NMR	-69.8 (s, 1P)		

Tabelle 3.11: NMR-spektroskopische Daten

Das Molekülion der Zusammensetzung $[Cp^{=}Fe(\eta^{5}-(P((CPh)_{2})_{2}))]^{+}$ tritt im EI-Massenspektrum von Verbindung **8** bei m/z = 652.2 auf.

(QT = 200 °C, 70 eV)

3.5 Umsetzungen von [{Cp^R(CO)₂Fe}₂] mit weißem Phosphor

G. Kemény gelang es 1994 durch Thermolyse von $[{Cp^{R}(CO)_{2}Fe}_{2}]$ (Cp^R = Cp, MeCp) mit weißem Phosphor die ersten Komplexe mit Dreiecksdodekaeder-Struktur und einem Fe₄P₄-Skelett zu synthetisieren^[31]. Im Folgenden soll auf diesen Ergebnissen aufbauend die Reaktivität der zweikernigen Eisencarbonylkomplexe $[{Cp^{R}(CO)_{2}Fe}_{2}]$ (Cp^R = Cp⁼, Cp⁻) gegenüber weißem Phosphor untersucht werden.

Erhitzt man eine rote Lösung von $[{Cp^{R}(CO)_{2}Fe}_{2}]$ mit weißem Phosphor unter Rückfluss in Dekalin, so lässt sich nach wenigen Minuten ein Farbumschlag feststellen. Die Reaktion wird IR-spektroskopisch kontrolliert und nach 10 Minuten abgebrochen, da kein weiteres $[{Cp^{R}(CO)_{2}Fe}_{2}]$ mehr detektiert werden kann.

Abbildung 3.12: Umsetzungen von $[{Cp^{R}(CO)_{2}Fe}_{2}]$ mit weißem Phosphor

Die anschließende säulenchromatographische Aufarbeitung erfolgt an silyliertem Kieselgel. Mit Petrolether wird zunächst eine braunrote Fraktion eluiert, die NMR-spektroskopisch als die schon bekannte Verbindung [{ $Cp^{R}Fe$ }₂(μ - $\eta^{4:4}$ - P_{4})] (**J**) ($Cp^{R} = Cp^{=}$, Cp^{-})^[32] identifiziert werden kann. Des Weiteren wird mit dem gleichen Laufmittel eine zweite, grüne Fraktion eluiert, die sich durch ein Singulett bei sehr tiefem Feld (δ = 880 ppm) im ³¹P-NMR-Spektrum auszeichnet.

3.5.1 Eigenschaften von $[(Cp^{-}Fe)_4P_4]$ (9a) und $[(Cp^{-}Fe)_4P_4]$ (9b)

Nach dem Entfernen des Lösungsmittels fallen die Komplexe **9a**, **b** als dunkelgrüne Feststoffe an, die sowohl luft- als auch feuchtigkeitsempfindlich sind, unter Inertgasatmosphäre jedoch über Wochen zersetzungsfrei gelagert werden können. Verbindungen **9a**, **b** sind sowohl in unpolaren (z.B. Hexan, Petrolether), als auch in polaren (z.B. THF, Dichlormethan) und aromatischen (z.B. Toluol, Deuterobenzol) Lösungsmitteln gut löslich.

3.5.2 NMR-spektroskopische Daten

Verbindung **9a** wurde schon von *F. Fuchs* 2001 bei der Cothermolyse von $[{Cp^{=}Co}_{4}P_{10}]$ mit $[{Cp^{=}Fe(CO)_{2}}_{2}]$ (C) als eines der Reaktionsprodukte isoliert und charakterisiert^[32]. Die spektroskopischen Daten werden im Folgenden zu Vergleichszwecken wiedergegeben. Das ³¹P-NMR-Spektrum von $[(Cp^{-}Fe)_{4}P_{4}]$ (**9b**) weist für die vier Phosphoratome nur ein

Signal bei $\delta = 880$ ppm auf. Im Protonenresonanzspektrum treten die für den Cp⁻⁻-Liganden typischen Signalsätze auf.

	[{Cp ^R Fe} ₄ P ₄]			
	$Cp^{R} = Cp^{= [32]}$	$Cp^{R} = Cp^{-\prime} (9b)$	$Cp^{R} = MeCp^{[33]}$	$Cp^{R} = Cp^{[33]}$
$^{1}\mathrm{H}$	0.54 (s, 72H)	0.42 (s, 36H)	2.12 (s, 12H)	4.29 (s, 20H)
	3.94 (s, 12H)	1.25 (s, 36H)	4.03 (s, 8H)	
		3.87 (s, 4H)	4.14 (s, 8H)	
		4.31 (s, 8H)		
³¹ P	881 (s)	880 (s)	881 (s)	848 (s)

Tabelle 3.12: NMR-spektroskopische Daten

Von Verbindung **9b** konnten leider keine verwertbaren massenspektrometrischen Daten gewonnen werden. Allerdings stimmen die elementaranalytischen Daten gut mit der Struktur überein.

3.5.3 Strukturvorschlag für $[(Cp^-Fe)_4P_4]$ (9b)

Aufgrund der NMR-spektroskopischen und elementaranalytischen Daten einerseits und deren große Ähnlichkeit mit schon in der Literatur bekannten, analogen Verbindungen andererseits wird folgender Strukturvorschlag formuliert.

Abbildung 3.13: Strukturvorschlag

Exkurs : Kristallstruktur von [{Cp⁼Fe(CO)₂}₂] (10)

Der in den vorangegangenen Reaktionen als Edukt verwendete Komplex **10** wurde 1992 zum ersten Mal synthetisiert und charakterisiert^[34]. Eine Kristallstrukturanalyse konnte bisher jedoch nicht angefertigt werden.

Durch Abdampfen des Lösungsmittels aus einer gesättigten Lösung von $[{Cp=Fe(CO)_2}_2]$ (10) in Hexan konnten jetzt jedoch Einkristalle erhalten werden, die zur Röntgenstrukturanalyse geeignet waren.

Abbildung 3.14: Kristallstruktur von $[{Cp^{=}Fe(CO)_2}_2]$

Ausgewählte Bindungsparameter von 10 :

Bindung	Bindungslänge [Å]
Fe(1)-Cp ^R _{Zent}	1.751
Fe(1)-Fe(1A)	2.5623(7)
Fe(1)-C(6)	1.951(3)
Fe(1)-C(6A)	1.946(3)
Fe(1)-C(7)	1.727(4)

Atome	Winkel [°]
Fe(1)-C(6)-Fe(1A)	82.24(13)
Fe(1)-C(6A)-Fe(1A)	82.24(13)

Ausgewählte Ebenen :

Ebene	Atome	Abw. aus der besten Ebene [Å]
E1	C(1)-C(2)-C(3)-C(4)-C(5)	0.0074
E2	C(1A)-C(2A)-C(3A)-C(4A)-C(5A)	0.0074
E3	Fe(1)-C(6)-Fe(1A)	
E4	Fe(1)-C(6A)-Fe(1A)	

Ebenen	Winkel [°]
E1 / E2	90.9
E3 / E4	156.0

Die Röntgenstrukturanalyse von Komplex **10** zeigt einen symmetrischen zweikernigen Eisenkomplex, mit zwei terminalen und zwei verbrückenden Carbonylliganden und zwei η^5 -koordinierten Bis(trimethylsilyl)cylopentadienylgruppen in cis-Anordnung bezüglich der Fe–Fe-Achse. Der Eisen–Eisen-Abstand beträgt 2.56 Å und ist damit mit dem Metall–Metall-Abstand in den ${}^{4}Cp^{-[35]}$, Cp^{*} -Derivaten ${}^{[36]}$ bzw. in Fe₃(CO)₁₂ ${}^{[37]}$ identisch. Der Bindungsabstand entspricht formal einer Fe–Fe-Einfachbindung, die im Einklang mit der 18 VE-Regel steht. Allerdings können weder Photoelektronenspektren noch semiempirische MO-Rechnungen und Neutronenbeugungsexperimente für verschiedene [{Cp^R(CO)₂Fe}₂]-Derivate eine direkte Fe-Fe-Bindung bestätigen^[38,39], da entlang der Kernverbindungsachse keine Elektronendichte detektiert werden kann. Stattdessen muss eine Bindung der Eisenatome über die verbrückenden Carbonylliganden in Betracht gezogen werden.

Die beiden Kohlenstoffatome der verbrückenden CO-Liganden bilden mit den Eisenatomen zwei Dreiecksflächen mit einem Diederwinkel von 156°. Dieser Befund steht in Kontrast zu den analogen ⁴Cp- und Cp^{*}-Verbindungen, bei denen die beiden Dreiecksflächen nur 0.5° von dem planaren Vierring abweichen.

Die Bindungsabstände zwischen Metall und terminalen Carbonylliganden betragen 1.727 Å und sind damit deutlich kürzer als bei den verbrückenden mit im Mittel d(Fe-C) = 1.948 Å. Die Zentren der Fünfringe der Cyclopentadienylliganden sind 1.751 Å von den Eisenatomen entfernt. Der Winkel zwischen den Cyclopentadienylliganden beträgt nahezu 90°.

Die Struktur von 10 ähnelt in den Bindungslängen stark den analogen ⁴Cp- und Cp^{*}-Verbindungen, weicht allerdings stark in der Anordnung der beiden Cyclopentadienylliganden zueinander ab. Während in den ⁴Cp- und Cp^{*}-Derivaten die beiden Fünfringe eine trans-Anordnung bezüglich der Eisen-Eisen-Achse einnehmen, stehen sie in Komplex 10 cis zueinander.

3.6 Umsetzung von $[(\eta^{5}-Cp^{-7})Fe(\eta^{5}-P_{5})]$ mit $[(\eta^{5}-Cp^{-7})Co(CO)_{2}]$

Wie bereits in der Einleitung erwähnt, ist Verbindung $[Cp*Fe(\eta^5-P_5)]$ (**D**) durch ihr großes Reaktionspotential ein ideales Edukt für eine Vielzahl von Reaktionen. Diese können in drei Gruppen unterteilt werden: Öffnung^[16], Erhalt^[12,16] und Abbau^[16,40,41] des P₅-Ringes.

Erwähnenswert sind in diesem Zusammenhang vor allem die von *S. Weigel*^[19,42] durchgeführten Untersuchungen zur Cothermolyse von **D** mit Mono- und Di(*tert*butyl)cyclopentadienylcobaltdicarbonyl, die viele neue mehrkernige homo- und heterobimetallische Phosphorkomplexe mit Eisen und Cobalt lieferten. Weiterführende Untersuchungen zu diesem Thema im Hinblick auf den Einfluss unterschiedlich substituierter Cyclopentadienylliganden (Cp⁻, Cp⁼) auf das Produktbild wurden 2001 von *F. Fuchs*^[32] vorgenommen. Im Folgenden sollen diese Ergebnisse durch den Einsatz des 1-(*tert*-butyl)-3-(trimethylsilyl)cyclopentadienyl-Liganden als Bindeglied zwischen den rein silylierten und alkylierten Spezies erweitert werden.

Erhitzt man eine Lösung aus $[Cp^-'Fe(\eta^5-P_5)]$ (**N**) und $[Cp^-'Co(CO)_2]$ (**O**) im Verhältnis 1:1.7 in Dekalin am Rückfluss, so verfärbt sich die anfangs braunorange Lösung schon nach einigen Minuten dunkelbraun. Die Reaktionskontrolle mittels IR-Spektroskopie zeigt die Abnahme der für $[Cp^-'Co(CO)_2]$ charakteristischen CO-Banden, dabei kann eine neue Bande detektiert werden. Die Reaktion wird nach dem Verschwinden der Eduktbanden abgebrochen.

Abbildung 3.15: Umsetzung von $[(\eta^{5}-Cp^{-'})Fe(\eta^{5}-P_{5})]$ mit $[(\eta^{5}-Cp^{-'})Co(CO)_{2}]$

Bei der anschließenden säulenchromatographischen Aufarbeitung des Rohproduktes an neutralem Aluminiumoxid kann mit Petrolether zuerst eine violette Fraktion an $[{Cp^-Co}_3(\mu_3-P)_2]$ (11), danach eine braune Mischfraktion aus $[{Cp^-Fe}_2(\mu_3-\eta^{4:4:1:1}-P_4)$ ${Cp^-Co}]$ (13), $[{Cp^-Co}_4P_4]$ (12) und $[{Cp^-Fe}_2(Cp^-Co}_2P_4]$ (14) erhalten werden. Die Auftrennung in die Einzelkomponenten gelang erst durch mehrmalige säulenchromatographische Aufarbeitung. Mit Petrolether eluiert man des Weiteren eine braune Fraktion an $[{Cp^{-}Co}_{4}(\mu-CO)](\mu_3-P)_2]$ (16). Schließlich erhält man mit einem Gemisch aus Petrolether und Toluol im Verhältnis 20:1 eine olivgrüne Fraktion an $[{Cp^{-}Co}_{4}P_{10}]$ (15).

3.6.1 Charakterisierung von [{Cp^{-'}Co}₃(μ₃-P)₂] (11)

3.6.1.1 Eigenschaften von $[{Cp^{-'}Co}_{3}(\mu_{3}-P)_{2}]$ (11)

Nach dem Entfernen des Lösungsmittels fällt **11** als violettes Pulver an, das in unpolaren (z.B. Pentan, Hexan), polaren (z.B. Tetrahydrofuran, Dichlormethan) und aromatischen Lösungsmitteln (z.B. Deuterobenzol, Toluol) sehr gut löslich ist. Schon eine geringe Menge des Komplexes vermag Lösungen intensiv violett zu färben. Als Pulver ist **11** kurzzeitig an Luft handhabbar und zeigt unter Inertgasatmosphäre auch nach mehreren Wochen keine Zersetzungsspuren.

3.6.1.2 ³¹*P*-*NMR spektroskopische Daten*

Die beiden Phosphoratome kommen bei $\delta = 1068$ ppm als Singulett in Deuterobenzol zur Resonanz. Der sehr starke Tieffeldshift des Signals liegt in der Bindung zu drei 14 VE-Metallfragmenten begründet. Diese verursachen eine extreme Entschirmung des μ_3 -Phosphorliganden.

3.6.1.3 ¹*H-NMR spektroskopische Daten*

Das ¹H-NMR-Spektrum von [$\{Cp^{-'}Co\}_{3}(\mu_{3}-P)_{2}$] (11) zeigt nur einen Signalsatz für die drei Cp^{-'}-Liganden.

δ [ppm] 0.32 (s, 27 H) 1.15 (s, 27 H) 3.93 (s, 6 H) 4.27 (s, 3 H)

Tabelle 3.13: ¹*H-NMR-Daten von* [{ $Cp^{-'}Co$ }₃(μ_3 -*P*)₂] (**11**) *in* C_6D_6

3.6.2 Charakterisierung von [{Cp⁻'Fe}₂(µ₃-η^{4:4:1:1}-P₄){Cp⁻'Co}] (13)

3.6.2.1 Eigenschaften von
$$[{Cp^{-}Fe}_2(\mu_3-\eta^{4:4:1:1}-P_4){Cp^{-}Co}]$$
 (13)

Nach dem Entfernen des Lösungsmittels fällt **13** als grünlich-braunes Pulver an, das in unpolaren (z.B. Pentan, Hexan), polaren (z.B. Tetrahydrofuran, Dichlormethan) und aromatischen Lösungsmitteln (z.B. Deuterobenzol, Toluol) gut löslich ist. Als Feststoff kann der Komplex unter Inertgasatmosphäre einige Wochen ohne Anzeichen von Zersetzung aufbewahrt werden. Danach nimmt die Löslichkeit stark ab.

3.6.2.2 NMR-spektroskopische Daten von 13

Das ¹H-NMR-Spektrum von [{Cp⁻'Fe}₂(μ_3 - $\eta^{4:4:1:1}$ -P₄){Cp⁻'Co}] (**13**) in Deuterobenzol weist einen Signalsatz für die beiden Cp⁻'-Liganden an den Eisenatomen auf. Die Protonen des Cp⁻'-Liganden am Cobaltatom treten bei tieferem Feld in Resonanz. Die Signale weisen ein Verhältnis von 2:1 auf, das Integralverhältnis beträgt erwartungsgemäß 9:9:2:1. Im Folgenden werden die NMR-spektroskopischen Daten von (**13**) mit denen von [{Cp⁼Fe}₂(μ_3 - $\eta^{4:4:1:1}$ -P₄){Cp⁼Co}] (**H**) verglichen.

	[{Cp ^R Fe} ₂ (µ ₃ -η ^{4:4:1:1} -P ₄){Cp ^R Co}]		
	$Cp^{R} = Cp^{-\prime} (13)$	$Cp^{R} = Cp^{=}(H)$	
³¹ P	488 (m)	501 (dd, 2P)	
δ [ppm]		$({}^{1}J_{P-P} = 214 \text{ Hz}, {}^{2}J_{P-P} = 107 \text{ Hz}$	
• (FF)	- 40 (m)	-37 (dd, 2P)	
		$({}^{1}J_{P-P} = 214 \text{ Hz}, {}^{2}J_{P-P} = 107 \text{ Hz}$	

Tabelle 3.14a): NMR-spektroskopische Daten

	[{Cp ^R Fe} ₂ (µ ₃ -η ^{4:4:1:1} -P ₄){Cp ^R Co}]		
	$Cp^{R} = Cp^{-\prime} (13)$	$Cp^{R} = Cp^{=}(H)$	
¹ H	5.13 (s, 2H)*	5.18 (s, 2H)*	
δ [ppm]	4.59 (s, 1H)*	$4.87 (s, 1H)^*$	
	3.17 (s, 4H)**	3.32 (s, 4H)**	
	3.02 (s, 2H)**	3.18 (s, 2H)**	
	1.52 (s, 18H)**	0.46 (s, 36H)**	
	1.16 (s, 9H)*	0.33 (s, 18H)*	
	0.49 (s, 18H)**		
	0.32 (s, 9H)*		
* Cp ^R -Ligand am Cobalt		** Cp ^R -Ligand am Eisen	

Tabelle 3.14b): NMR-spektroskopische Daten

Trotz der unterschiedlichen Nachbarschaft unterscheiden sich die 4-H- und 5-H-Atome der Cp⁻⁻'-Liganden nicht, lediglich das Signal ist etwas verbreitert. Ähnliche Beobachtungen machte auch *Fuchs*^[32] bei seinen Untersuchungen mit diesem Liganden. Die Phosphoratome treten bei erwartetem Feld in Resonanz.

3.6.3 Charakterisierung von [{Cp^{-'}Co}₄P₄] (12)

3.6.3.1 Eigenschaften von $[{Cp^{-}Co}_4P_4]$ (12)

Nach dem Entfernen des Lösungsmittels fällt **12** als grüner Feststoff an. Dieser löst sich gut in unpolaren (Petrolether, Hexan) und sehr gut in polaren (THF, Diethylether) und aromatischen (Toluol, Deuterobenzol) Solventien. Der Feststoff ist unter Inertgas mehrere Wochen ohne Zersetzung lagerfähig.

3.6.3.2 ¹*H-NMR-spektroskopische Daten*

Das ¹H-NMR-Spektrum von **12** weist für die vier Cp⁻'-Liganden nur einen Signalsatz mit einem Integrationsverhältnis von 1:2:9:9 auf, d.h. die Liganden sind sowohl chemisch als auch magnetisch äquivalent.

		[{Cp ⁻ ′Co} ₄ F	P_{4}](12)	
δ [ppm]	0.33 (s, 36H)	1.18 (s, 36H))	5.04 (s, 4H)	5.56 (s, 8H)

*Tabelle 3.15:*¹*H-NMR-Daten von* [{ $Cp^{-'}Co$ }₄*P*₄] (12) in C_6D_6

3.6.3.3 ${}^{31}P$ -NMR-spektroskopische Daten von [{Cp^{-'}Co}₄P₄] (12)

Die vier Phosphoratome treten im ³¹P-NMR-Spektrum nur als ein Singulett bei $\delta = 494$ ppm in Resonanz. Hier zeigt sich die starke Verwandtschaft mit dem bissilyliertem Analogon ([{Cp=Co}₄P₄] ^[32] : $\delta = 496$ ppm).

	$[{Cp''Co}_4P_4]$	[{Cp ⁻ ′Co} ₄ P ₄]	$[\{Cp^{-}Co\}_4P_4]$
	[19]		[32]
¹ H	1.47 (s, 72H)	0.33 (s, 36H)	0.39 (s, 72H)
δ[nnm]	4.16 (s, 4H)	1.18 (s, 36H)	5.07 (s, 4H)
o (bbm)	5.47 (s, 8H)	5.04 (s, 4H)	5.76 (s, 8H)
		5.56 (s, 8H)	
³¹ P	472.5 (s)	494.2 (s)	496.0 (s)
δ [ppm]			

Tabelle 3.16: Vergleich der NMR-Daten in C₆D₆

3.6.4 Charakterisierung von [{Cp⁻'Fe}₂{Cp⁻'Co}₂P₄] (14)

3.6.4.1 Eigenschaften von $[{Cp^{-}Fe}_{2}{Cp^{-}Co}_{2}P_{4}]$ (14)

Nach mehrfacher säulenchromatographischer Aufarbeitung an neutralem Aluminiumoxid kann eine geringe Menge an 14 analysenrein isoliert werden. Das braune Pulver ist sowohl in unpolaren (Petrolether, Hexan) als auch in polaren (Diethylether, THF) und aromatischen (Toluol, Deuterobenzol) Solventien gut löslich. Als Feststoff ist $[{Cp^- Ye}_2 {Cp^- 'Co}_2 P_4]$ (14) unter Inertgas mehrere Wochen lagerfähig.

3.6.4.2 ¹H-NMR-spektroskopische Daten von Komplex 14

Das ¹H-NMR-Spektrum von $[{Cp^-'Fe}_2{Cp^-'Co}_2P_4]$ (14) in Deuterobenzol weist für die Cp^{-'}-Liganden an den Eisen- und Cobaltkernen jeweils einen Signalsatz auf. Das Integralverhältnis beträgt nicht wie zu erwarten wäre 9:9:1:1:1, sondern 9:9:2:1. Eine genaue Zuordnung der Protonensignale zu den einzelnen Cp^{-'}-Metallfragmenten ist allerdings nicht möglich. In Verbindung 12, die als einziger Komplex auch aus beiden Metallfragmenten besteht, treten die Protonen der {Cp^{-'}Co}-Einheit bei tieferem Feld in Resonanz. Aufgrund der unterschiedlichen Geometrie und Bindungsverhältnisse können jedoch keine Rückschlüsse auf Komplex 14 gezogen werden.

		[${Cp^{-}Fe}_2$	$\{Cp^{-\prime}Co\}_2P_4$.] (14)			
¹ H-NMR	0.43	0.58	1.25	1.38	3.87	4.05	4.30	4.54
δ [ppm]	s, 36H	s, 36H	s, 36H	s, 36 H	s, 4H	s, 2H	s, 2H	s, 4H

Tabelle 3.17: ¹H-NMR-spektroskopische Daten

3.6.4.3 ³¹*P-NMR-spektroskopische Daten*

Die Phosphoratome treten verglichen mit Verbindung $[{Cp=Fe}_2{Cp=Co}_2P_4]$ im erwarteten Bereich in Resonanz, jedoch wie auch schon bei **13** mit unterschiedlicher Spinmultiplizität. Dies liegt wieder in der unsymmetrischen Struktur des Cp⁻⁻-Liganden begründet. Die folgende Tabelle gibt einen vergleichenden Überblick über die ³¹P-NMR-Daten der beiden Verbindungen.

	$[{Cp}Fe]_2{Cp}$	$\overline{Co}_{2}P_{4}](\mathbf{H})$	$[{Cp^{-}Fe}_{2}{Cp^{-}Co}_{2}P_{4}](14)$
³¹ P-NMR	197.39 (dd, 1P)	${}^{1}J_{XA} = 135 \text{ Hz}$	193 (m)
δ [ppm]		${}^{1}J_{XX'} = 76 \text{ Hz}$	
ur ,	194.56 (dd, 1P)	${}^{1}J_{XA} = 135 \text{ Hz}$	186 (m)
		$^{1}J_{XX'} = 76 \text{ Hz}$	
	-125.15 (d, 1P)	${}^{1}J_{AX} = 135 \text{ Hz}$	-129 (m)
	-126.19 (d, 1P)	${}^{1}J_{AX} = 135 \text{ Hz}$	

Tabelle 3.18: ³¹P-NMR-spektroskopische Daten

3.6.5 Charakterisierung von [{Cp⁻Co}{{Cp⁻Fe}₂(μ-CO)}(μ₃-P)₂] (16)

3.6.5.1 Eigenschaften von $[{Cp^{-}Co}] [{Cp^{-}Fe}_{2}(\mu - CO)](\mu_{3} - P)_{2}]$ (16)

Nach dem Entfernen des Lösungsmittels fällt **16** als brauner Feststoff an. Dieser löst sich gut in unpolaren (Petrolether, Hexan) und sehr gut in polaren (THF, Diethylether) und aromatischen (Toluol, Deuterobenzol) Solventien. Der Feststoff ist unter Inertgas mehrere Wochen ohne Zerfallserscheinungen lagerfähig. Zur Röntgenstrukturanalyse taugliche Einkristalle konnten durch Abdiffusion des Lösungsmittels aus einer Hexanlösung erhalten werden.

3.6.5.2 ¹H-NMR-spektroskopische Daten von Komplex 16

Das ¹H-NMR-Spektrum von $[{Cp^{-'}Co} {\{Cp^{-'}Fe\}_2(\mu-CO)}(\mu_3-P)_2]$ (16) in Deuterobenzol weist einen Signalsatz für die beiden Cp⁻⁻-Liganden an den Eisenatomen auf. Die Protonen des Cp⁻⁻-Liganden am Cobaltatom treten bei tieferem Feld in Resonanz. Die Signale weisen ein Verhältnis von 2:1 auf, das Integralverhältnis beträgt 9:9:2:1.

	$[{Cp^{-'}Co} {\{Cp^{-'}Fe\}}_{2}(\mu-CO)}(\mu_{3}-P)_{2}] (16)$							
¹ H-NMR	0.34*	0.55**	1.21*	1.64**	3.56**	3.67**	4.06*	4.31 [*]
δ [ppm]	s, 9H	s, 18H	s, 9H	s, 18H	s, 2H	s, 4H	s, 1H	s, 2H
[*] Cp ^R -Ligand am Cobalt ^{**} Cp ^R -Ligand am Eisen								

 Tabelle 3.19: ¹H-NMR-spektroskopische Daten

3.6.5.3 ${}^{31}P$ -NMR spektroskopische Daten von [{Cp^{-'}Co}{{Cp^{-'}Fe}_2(\mu-CO)}(\mu_3-P)_2] (16)

Die beiden Phosphoratome sind aufgrund des verbrückenden CO-Liganden zwischen den Eisenatomen chemisch und magnetisch nicht äquivalent. Sie treten verglichen mit dem reinen Cobalt-Komplex [$\{Cp^{-}Co\}_{3}(\mu_{3}-P)_{2}$] (11) bei höherem Feld in Resonanz.

	[{Cp ⁻ ′Co}{{Cp ⁻ ′Fe}	${}_{2}(\mu-CO){(\mu_{3}-P)_{2}}$ (16)	$[{Cp^{-}Co}_{3}(\mu_{3}-P)_{2}]$ (11)
³¹ P-NMR	479.8 (d, 1P)	${}^{2}J_{P-P} = 30 \text{ Hz}$	1068 (s, 2P)
δ [ppm]	476.6 (d, 1P)	${}^{2}J_{P-P} = 30 \text{ Hz}$	

Tabelle 3.20: ³¹P-NMR spektroskopische Daten

3.6.5.4 IR-spektroskopische Daten von Verbindung 16

Das in Hexan aufgenommene IR-Spektrum zeigt für die Carbonylgruppe eine starke Bande bei 1782 cm⁻¹. Die Bande liegt im typischen Bereich für verbrückende Carbonylgruppen.

3.6.5.5 Röntgenstrukturanalyse von $[{Cp^{-}Co}]{{Cp^{-}Fe}_{2}(\mu-CO)}(\mu_{3}-P)_{2}]$ (16)

Abbildung 3.16: Röntgenstrukturanalyse von $[{Cp^{-}Co}_{{Cp^{-}Fe}_{2}(\mu-CO)}(\mu_{3}-P)_{2}]$ (Ansicht 1)

Abbildung 3.17: Röntgenstrukturanalyse von [$\{Cp^{-}Co\}\{\{Cp^{-}Fe\}_{2}(\mu-CO)\}(\mu_{3}-P)_{2}$] (Ansicht 2)

Der Strukturplot von **16** lässt einen trigonal bipyramidalen Aufbau des Schweratomgerüsts erkennen. Die von den beiden Eisen- und dem Cobaltatom gebildete Ebene wird auf jeder Seite von einem Phosphoratom überkappt. Die Carbonylgruppe überbrückt die Bindung zwischen den beiden Eisenfragmenten. Die ³¹P-NMR-Daten (je ein Dublett pro Phosphoratom) lassen darauf schließen, dass entweder die CO-Gruppe nicht in der Ebene der Eisen- und des Cobaltatoms liegt, oder "was wahrscheinlicher ist, eine Rotationsbehinderung um die Fe-Cp⁻⁻-Achse vorliegt, da ansonsten die Phosphoratome magnetisch und chemisch äquivalent sein sollten.

Leider ließ die Beschaffenheit der Einkristalle eine Verfeinerung der Struktur und damit eine weitere Diskussion von Bindungslängen und -winkeln von $[{Cp^-'Co} {{Cp^-'Fe}_2(\mu-CO)}(\mu_3-P)_2]$ (16) nicht zu.

Verbindung 16 stellt den ersten Vertreter dieser Art von heterobimetallischen Clustern mit $(\mu_3-P)_2$ -Einheit dar.

3.6.6 Charakterisierung von [{Cp^{-'}Co}₄P₁₀] (15)

3.6.6.1 Eigenschaften von $[{Cp^{-}Co}_4P_{10}]$ (15)

Nach dem Entfernen des Lösungsmittels fällt **15** als olivgrüner Feststoff an, der in unpolaren (z.B. Pentan, Hexan), polaren (z.B. Tetrahydrofuran, Dichlormethan) und aromatischen Lösungsmitteln (z.B. Deuterobenzol, Toluol) gut löslich ist. Im festen Zustand kann der Komplex unter Inertgasatmosphäre einige Wochen ohne Anzeichen von Zersetzung aufbewahrt werden.

3.6.6.2 ¹H-NMR-spektroskopische Daten von Verbindung **15**

Die ¹H-NMR-spektroskopische Daten für $[{Cp^{-}Co}_4P_{10}]$ (15) in Deuterobenzol sind in nachfolgender Tabelle zusammengefasst.

		[{Cp ⁻ ′Co]	$_{4}P_{10}$] (15)	
¹ H-NMR	0.34 (s, 9H)	1.23 (s, 9H)	4.58 (s, 1H)	4.98 (s, 2H)
δ [ppm]	0.37 (s, 9H)	1.27 (s, 9H)	4.61 (s, 1H)	5.01 (s, 2H)
	0.59 (s, 9H)	1.42 (s, 9H)	4.64 (s, 1H)	5.33 (s, 2H)
	0.64 (s, 9H)	1.51 (s, 9H)	4.73 (s, 1H)	5.49 (s, 2H)

Tabelle 3.21: ¹H-NMR-spektroskopische Daten

3.6.6.3 ${}^{31}P$ -NMR-spektroskopische Daten von [{Cp^{-'}Co}₄P₁₀] (15)

Das ³¹P-NMR Spektrum weist für die zehn Phosphoratome nur drei Signalsätze auf.

	$[{Cp^{-}Co}_{4}P_{10}]$ (15)	$[{Cp^{=}Co}_{4}P_{10}] (G)^{[43]}$
³¹ P-NMR	266.8 (m)	269.6 (m)
δ [ppm]		268.7 (m)
	60.4 (m)	74.4 (pdd)
		70.7 (pdd)
	-143.2 (m)	-137.2 (m)
		-139.6 (m)

Tabelle 3.22: ³¹P-NMR-spektroskopische Daten

Die Signale treten im erwarteten Bereich in Erscheinung, jedoch mit zu G verschiedener Spinmultiplizität. Während bei G das ³¹P-NMR-Spektrum fünf Signalsätze mit definierten Multiplizitäten aufweist, bewirkt bei **15** der Einfluss des unsymmetrischen Cp⁻⁻'-Liganden, dass nur noch drei komplexe Multipletts detektiert werden.

4 Experimenteller Teil

4.1 Analysenmethoden

Elementaranalyse

Die Elementaranalysen (C, H-Analyse) wurden von Frau Menendez-Perez und Frau Biehl mit Hilfe eines Analyzer 240 bzw. 400 der Firma Perkin-Elmer im Fachbereich Chemie der Universität Kaiserslautern angefertigt.

NMR-Spektroskopie

Die NMR-Spektren wurden an den FT-NMR-Geräten DPX 200 bzw. DPX 400 der Firma Bruker gemessen. Die Substanzen wurden in deuterierten Lösungsmitteln unter Argonatmosphäre, soweit nicht anders angegeben, bei 298 K vermessen. Die chemischen Verschiebungen sind entsprechend der δ-Skala in ppm angegeben. Dabei werden zur Charakterisierung der Spinmultiplizitäten die üblichen Abkürzungen verwendet:

s = Singulett	m = Multiplett	ddd = dublettiertes Doppeldublett
dd = dublettiertes Dublett	d = Dublett	t = Triplett
Für die unterschiedlichen k	Kerne gelten folgende I	Messfrequenzen und Standards:

³¹P-NMR: 161.97 MHz bzw. 81.02 MHz ; 85 %-ige Phosphorsäure, extern (δ = 0 ppm)
 ¹H-NMR: 400.14 MHz bzw. 200.13 MHz; als interner Standard wurden die Signale der in den deuterierten Lösungsmitteln vorhandenen, nicht vollständig deuterierten Moleküle verwendet. Dabei wurde folgende Zuordnung getroffen: δ(C₆D₅H) = 7.20 ppm, δ(CHCl₃) = 7.25 ppm

Infrarot-Spektroskopie

Die Aufnahme der Infrarot-Spektren erfolgte mit einem 16 PC FT-IR-Spektrometer der Firma Perkin-Elmer. Die Lösungen wurden in Calciumfluorid-Küvetten mit 0.2 mm Schichtdicke in Referenz zum reinen Lösungsmittel vermessen.

Röntgenstrukturanalyse

Die Röntgenstrukturanalysen wurden von Herrn *Dr. G. Wolmershäuser* und Herrn *Dr. T. Sögding* an den Geräten Stoe IPDS und Siemens P4 durchgeführt. Zur Lösung der Datensätze wurden die Programme SIR92 (Giacovazzo et al., 1993) und SHELXL-97 (Sheldrick, 1990) verwendet.

4.2 Ausgangsverbindungen

Alle nicht kommerziell erhältlichen bzw. nicht vorrätigen Ausgangsverbindungen wurden nach den folgenden Literaturvorschriften hergestellt:

Verbindung	Literatur	
Trimethylsilylcyclopentadien	Ср-Н	[44]
Tri(tert-butyl)cyclopentadien	Ср‴Н	[45]
Bis(trimethylsilyl)cyclopentadien	Ср=Н	[23]
	[{Cp-(CO) ₃ Mo} ₂]	[46]
(Bromo)(dicarbonyl)(cyclopentadienyl)eisen(II)	$[Cp^{R}Fe(CO)_{2}Br]$	[47]
Silyliertes Kieselgel		[48]

4.3 Versuchsbeschreibungen

Sämtliche hier beschriebenen Versuche wurden unter Inertgas-Atmosphäre (Argon, 99.998% der Firma Messer Griesheim) in mehrfach ausgeheizten, evakuierten und mit Argon gespülten Glasgeräten durchgeführt.

Die verwendeten Lösungsmittel werden wie folgt absolutiert und unter Argon aufbewahrt:

Lösungsmittel	Trocknungsmittel
Toluol, Dekalin, Diglyme	Na-Metall
Tetrahydrofuran	K-Metall
Deuterochloroform	Phosphorpentoxid

Deuterobenzol	Calciumhydrid
Petrolether, Hexan, Pentan, Diethylether	Na/K-Legierung

Das als Säulenmaterial verwendete Kieselgel (0.02-0.06 mm Korngröße, Firma Merck) wurde 20 h bei 190 °C im Ölpumpenvakuum ausgeheizt, mit 2% destilliertem und entgastem Wasser deaktiviert (Aktivitätsstufe II) und unter Argon aufbewahrt.

Lösungsmittel wurden im Ölpumpenvakuum bei ca. 3·10⁻³ mbar entfernt. Der unter Wasser aufbewahrte weiße Phosphor wurde vor Verwendung ca. 15-20 Minuten im Ölpumpenvakuum getrocknet.

4.3.1 Cothermolyse von $[{(\eta^5 - Cp^7)(CO)_3Mo}_2]$ (1) mit P_4

2.34 g (3.7 mmol) [$\{(\eta^5-Cp^-)(CO)_3Mo\}_2$] (1) und 1.37 g (11 mmol) P₄ werden in 50 ml Xylol gelöst und 70 Stunden refluxiert. Dabei ist nach etwa zwei Stunden ein Farbumschlag von rot nach dunkelbraun festzustellen. Danach wird das Lösungsmittel im Ölpumpenvakuum entfernt. Der Rückstand wird in ca. 15 ml THF gelöst und mit ca. 3 g Kieselgel versetzt. Danach trocknet man das Adsorbat am Ölpumpenvakuum bis zur Rieselfähigkeit und trägt es auf eine chromatographische Säule (Kieselgel (II), 2.5 x 27cm, Petrolether, Wasserkühlung) auf.

Mit Pentan eluiert man zunächst eine gelbe Fraktion der Zusammensetzung [$\{\eta^5-Cp^-)(CO)_2Mo\}(\eta^3-P_3)$] (2). Bei Erhöhung der Polarität erhält man mit Petrolether/ Toluol 2:1 eine rote Fraktion von [$\{(\eta^5-Cp^-)Mo\}_2(\mu,\eta^6:\eta^6-P_6)$] (3).

Ausbeute: $[\{(\eta^5-Cp^-)(CO)_2Mo\}(\eta^3-P_3)]$ (2), 118 mg (0.31 mmol), $\equiv 8.4 \%$ bezogen auf $[(\eta^5-Cp^-)(CO)_3Mo]_2$. $[\{(\eta^5-Cp^-)Mo\}_2(\mu,\eta^6:\eta^6-P_6)]$ (3), 58 mg (0.09 mmol), $\equiv 4.8 \%$ bezogen auf $[(\eta^5-Cp^-)(CO)_3Mo]_2$.

Elementaranalyse:	$[{(\eta^{5}-Cp^{-})Mo}_{2}(\mu,\eta^{6}:\eta^{6}-P^{-})Mo}]$	₆)] (3)
	$C_{16}H_{26}Mo_2P_6Si_2$	(M = 652,28 g/mol)
	ber. C : 29.46 %	H : 4.02 %
	gef. C : 29.49 %	H: 3.47 %

4.3.2 Orientierende Versuche mit [{ $Cp^{-}(CO)_2Mo$ }($\eta^3 - P_3$)] (2) als Phosphorquelle

4.3.2.1 Cothermolyse von (2) mit Alkinen

200 mg (0.52 mmol) [{(η^5 -Cp⁻)(CO)_2Mo}(η^3 -P₃)] (2) wurde mit verschiedenen Alkinen (R¹-C = C-R², R¹ = R² = Ph; R¹ = Tms, R² = H; R¹ = ^tBu, R² = H) (jeweils 0.52 mmol) in 25 ml Xylol für mehrere Stunden unter IR- und ³¹P-NMR-Kontrolle für mehrere Stunden am Rückfluss erhitzt, außer der thermischen Umwandlung von 2 in 3 konnten keine weiteren Produkte detektiert werden.

4.3.2.2 Cothermolyse von (2) mit $[(\eta^{5}-Cp^{=})Fe(\eta^{5}-P_{5})]$

180 mg (0.47 mmol) [{(η^5 -Cp⁻)(CO)_2Mo}(η^3 -P₃)] (2) wurde mit einer äquimolaren Menge an [(η^5 -Cp⁻)Fe(η^5 -P₅)] (198 mg) versetzt und in 50 ml Dekalin für mehrere Stunden refluxiert. Die Reaktionskontrolle mittels ³¹P-NMR zeigte auch nach 20 h neben den Eduktsignalen nur das für 3 typische Singulett.

4.3.2.3 Orientierender Versuch: Cothermolyse von W(CO)₆, Cp⁻H und weißem Phosphor

1 g (2.8 mmol) W(CO)₆, 393 mg (2.8 mmol) Cp⁻H und 350 mg weißer Phosphor wurden in 50 ml Diglyme unter Rückfluss zur Reaktion gebracht. Auch nach 20 Stunden war die Reaktion nur sehr unvollständig abgelaufen. Im ³¹P-NMR-Spektrum der Rohlösung konnten zwei neue Signale detektiert werden, die aufgrund ihrer Signallage auf Spuren an $[{(\eta^5-Cp^-)(CO)_2W}(\eta^3-P_3)]$ und $[{(\eta^5-Cp^-)W}_2(\mu,\eta^{6:6}-P_6)]$ hinweisen. Eine Isolierung war aber wegen der geringen Substanzmenge nicht möglich.

4.3.3 Herstellung von [{ $Cp^{R}Fe$ }_2(μ - $\eta^{4:4}$ - P_4)] (J) ($Cp^{R} = Cp^{\prime\prime\prime}, Cp^{=}$)

Zu 3 g (7 mmol) $[Cp'''Fe(CO)_2Br]$ in 125 ml Toluol werden über einen Tropftrichter die Lösung von 1.34 g (7 mmol) Cobaltocen in 100 ml Toluol bei Raumtemperatur getropft. Dabei bildet sich ein gelber Niederschlag. Das Reaktionsgemisch lässt man über Nacht bei Raumtemperatur rühren. Danach wird der Niederschlag über eine Fritte (D3) abgetrennt und die Lösung am Ölpumpenvakuum trockengezogen. [{Cp'''Fe(CO)_2}_2] bleibt als rotbrauner Feststoff zurück.

 $[{Cp''Fe(CO)_2}_2]$ wird in 130 ml Dekalin gelöst und mit 870 mg (7 mmol) weißem Phosphor unter Rückfluss zur Reaktion gebracht. Die anfangs rote Lösung verfärbt sich nach einigen Minuten braun. Der Verlauf der Reaktion wird dabei NMR-spektroskopisch kontrolliert. Die Reaktion ist nach 50 Minuten beendet, wenn kein intermediär gebildetes $[{Cp^RFe(CO)_2}_2(\mu-\eta^{1:1}-P_4)]$ (**B**) im ³¹P-NMR-Spektrum mehr detektiert werden kann. Anschließend wird das Lösungsmittel unter vermindertem Druck (3·10⁻³ mbar) abdestilliert. Der Rückstand wird mit 15 ml THF aufgenommen und mit ca. 3 g silyliertem Kieselgel versetzt. Das Adsorbat wird dann bis zur Rieselfähigkeit im Ölpumpenvakuum getrocknet

und auf eine chromatographische Säule ((Kieselgel (II), 2.5 x 25cm, Petrolether, -20 °C Kryostat) aufgetragen.

Mit Petrolether als Laufmittel erhält man zunächst den grünen Komplex $[(\eta^5-Cp^{\prime\prime\prime})Fe(\eta^5-P_5)]$ (**D**). Als zweite Fraktion eluiert man mit einem Lösungsmittelgemisch von Petrolether/ Toluol 20:1 die gewünschte rotbraune Verbindung $[\{Cp^{\prime\prime\prime}Fe\}_2(\mu-\eta^{4:4}-P_4)]$ (**J**). Unter Verwendung eines Solvensgemisches aus Petrolether und Toluol im Verhältnis 15:1 erhält man als dritte Fraktion das grüne Ferrocen $[Cp^{\prime\prime\prime}_2Fe]$ (**4a**) und etwas später als vierte Fraktion den ebenfalls grünen Komplex $[Cp^{\prime\prime}FeCp^{\prime\prime\prime}]$ (**4b**).

Ausbeute: $[(\eta^5 - Cp^{\prime\prime})Fe(\eta^5 - P_5)]$ (**D**), 150 mg (0.34 mmol) $\equiv 4.8 \%$ bezogen auf $[Cp^{\prime\prime}Fe(CO)_2Br]$

 $[\{Cp'''Fe\}_2(\mu-\eta^{4:4}-P_4)] (J), 380 \text{ mg } (0.54 \text{ mmol}) \\ \equiv 15.4 \% \text{ bezogen auf } [Cp'''Fe(CO)_2Br]$

 $[Cp''_{2}Fe] (4a), 120 mg (0.23 mmol)$ = 3.3 % bezogen auf [Cp'''Fe(CO)_2Br] [Cp''FeCp'''] (4b), 60 mg (0.13 mmol)= 1.8 % bezogen auf [Cp'''Fe(CO)₂Br]

Elementaranalyse:	$[Cp^{\prime\prime\prime}_{2}Fe]$ (4a):	$C_{34}H_{58}Fe$	(M = 5	522.68 g/mol)
		ber. C: 78.1	3 %	H: 11.18 %
		gef. C: 77.9	9 %	H: 11.24 %
	[Cp´´FeCp´´´] (4b):	$C_{30}H_{50}Fe$	(M = 4	466.57 g/mol)
		ber. C: 77.2	3 %	H: 10.80 %
		gef. C: 77.1	5 %	H: 10.51 %

Die Synthese von [$\{Cp=Fe\}_2(\mu-\eta^{4:4}-P_4)$] erfolgt analog.

4.3.4 Umsetzungen von [{ $Cp^{R}Fe$ }₂(μ - $\eta^{4:4}$ - P_{4})] (J) ($Cp^{R} = Cp^{\prime\prime\prime}, Cp^{=}$) mit unsymmetrisch substituierten Alkinen ($R-C \equiv C-H, R = {}^{t}Bu, Ph, Tms$)

In einem Druckschlenkrohr (3x15 cm, mit 2 mm Wandstärke) mit seitlichem Teflonhahn (Rotaflow®) und Teflonschraubverschluss werden eine Lösung von 355 mg (0.5 mmol) [{Cp^{···}Fe}₂(μ - $\eta^{4:4}$ -P₄)] (**J**) in 10 ml Toluol und eine äquimolare Menge an Alkin bei 120 °C unter Rühren zur Reaktion gebracht. Der Reaktionsverlauf wird ³¹P-NMR-spektroskopisch kontrolliert. Bei der Verwendung von Trimethylsilylacetylen konnte auch nach 24 Stunden keine Reaktion festgestellt werden. Im Falle von *tert*-Butylacetylen und Phenylacetylen zeigt das ³¹P-NMR-Spektrum der Rohlösung, dass jeweils nur ein neues phosphorhaltiges Produkt entstanden ist. Die Reaktion wird nach 24 Stunden abgebrochen, das Lösungsmittel im Ölpumpenvakuum entfernt. Der Rückstand wird in 10 ml THF gelöst und unter Rühren mit ca. 1 g silyliertem Kieselgel versetzt. Das Adsorbat wird bis zur Rieselfähigkeit getrocknet, die Aufarbeitung erfolgt säulenchromatographisch bei –20 °C (2.5 x 15 cm, Kieselgel (II), Petrolether, Kryostat). Bei der Verwendung von *tert*-Butylacetylen (Phenylacetylen) als Alkin wird mit einem Lösungsmittelgemisch aus Petrolether und Toluol im Verhältnis 40:1 (20:1) eine rote (braunrote) Fraktion an [{Cp^{···}Fe}(η^5 -P₃(C₂^tBuH))] (**5b**) ([{Cp^{···}Fe}(η^5 -P₃ (C₂PhH))] (**6b**)) eluiert.

Ausbeute: $[{Cp'''Fe}(\eta^5 - P_3(C_2^{t}BuH))]$ (5b), 43 mg (0.09 mmol) $\equiv 18.5 \%$ bezogen auf $[{Cp'''Fe}_2(\mu - \eta^{4:4} - P_4)]$

 $[\{Cp'''Fe\}(\eta^{5}-P_{3}(C_{2}PhH))] (6b), 51 mg (0.11 mmol) \\\equiv 21.1 \% bezogen auf [\{Cp'''Fe\}_{2}(\mu-\eta^{4:4}-P_{4})]$

Elementaranalyse :
$$[{Cp'''Fe}(\eta^{5}-P_{3}(C_{2}^{t}BuH))]$$
 (5b) $C_{23}H_{39}P_{3}Fe$ (M = 464.33 g/mol)
ber.: C 59.49 % H 8.47 %
gef.: C 59.76 % H 8.43 %
 $[{Cp'''Fe}(\eta^{5}-P_{3}(C_{2}PhH))]$ (6b) $C_{25}H_{35}P_{3}Fe$ (M = 484.22 g/mol)
ber.: C 62.00 % H 7.28 %
gef.: C 61.89 % H 7.42 %

Die Reaktion von $[{Cp=Fe}_2(\mu-\eta^{4:4}-P_4)]$ mit *tert*-Butylacetylen bzw. Phenylacetylen wird analog durchgeführt und aufgearbeitet.

Ansätze: $[{Cp^{=}Fe}_{2}(\mu-\eta^{4:4}-P_{4})], 350 \text{ mg } (0.53 \text{ mmol})$ ^tBu-C \equiv C-H, 45 mg (0.55 mmol) Ph-C \equiv C-H, 55 mg (0.54 mmol)

Ausbeute: $[{Cp^{=}Fe}(\eta^{5}-P_{3}(C_{2}{}^{t}BuH))]$ (5a), 38 mg (0.09 mmol) $\equiv 16.3 \%$ bezogen auf $[{Cp^{=}Fe}_{2}(\mu-\eta^{4:4}-P_{4})]$

$[{Cp}Fe{\eta^5}-P_3(C_2PhH))]$ (6a), 55 mg (0.12 mmc	ol)
= 22.6 % bezogen auf [{ $Cp^{=}Fe$ }_2(μ - $\eta^{4:4}$ - P_4)]	

Elementaranalyse:	$[{Cp}Fe{(\eta^{5}-P_{3}(C_{2}^{t}BuH))](5a)$	
	$C_{17}H_{31}P_3Si_2Fe$	(M = 440.37 g/mol)
	ber.: C 46.37 %	Н 7.10 %
	gef.: C 46.52 %	Н 7.19 %

$[{Cp^{=}Fe}(\eta^{5}-P_{3}(C_{2}PhH))]$ (6a)	
$C_{19}H_{27}P_3Si_2Fe$	(M = 460.36 g/mol)
ber.: C 49.57 %	Н 5.91 %
gef.: C 48.77 %	Н 6.02 %

4.3.5 Umsetzungen von [{ $Cp^{R}Fe$ }₂(μ - $\eta^{4:4}$ - P_{4})] (J) ($Cp^{R} = Cp^{\prime\prime\prime}$, $Cp^{=}$) mit symmetrisch substituierten Alkinen (R- $C \equiv C$ -R, R = Ph, Tms)

Im Prinzip verläuft die Durchführung der Reaktion analog zu der in Kapitel 4.3.4 beschriebenen mit unsymmetrisch substituierten Alkinen. Lediglich die Temperatur wird auf 130 °C erhöht und die Reaktionsdauer verlängert sich auf 48 Stunden. Bei der Verwendung von Bis(trimethylsilyl)acetylen kann keine Umsetzung der Edukte festgestellt werden. Ebenso zeigt sich [{Cp'''Fe}₂(μ - $\eta^{4:4}$ -P₄)] inreaktiv gegenüber Diphenylacetylen (Tolan). Dagegen zeigt das ³¹P-NMR-Spektrum der Rohlösung der Reaktion von [{Cp⁼Fe}₂(μ - $\eta^{4:4}$ -P₄)] mit Tolan, dass zwei neue phosphorhaltige Produkte entstanden sind. Das Lösungsmittel wird am Ölpumpenvakuum entfernt, der Rückstand in 10 ml THF gelöst und unter Rühren mit ca. 1 g silyliertem Kieselgel versetzt. Das Adsorbat wird bis zur Rieselfähigkeit getrocknet, die Aufarbeitung erfolgt säulenchromatographisch bei –20 °C (2.5 x 20 cm, Kieselgel (II), Petrolether, Kryostat). Mit einem Petrolether-Toluol-Gemisch (40:1) wird eine grüne Fraktion an [Cp⁼Fe(η^{5} -(P₃(CPh)₂))] (7) eluiert. Erhöht man die Polarität des Laufmittels durch ein Gemisch im Verhältnis von 30:1, so erhält man eine rote Fraktion an [Cp⁼Fe(η^{5} -(P((CPh)₂)₂))] (8).

Ansatz: $[{Cp^{=}Fe}_{2}(\mu-\eta^{4:4}-P_{4})], 350 \text{ mg } (0.53 \text{ mmol})$ Ph-C = C-Ph, 96 mg (0.54 mmol)

Ausbeute: $[Cp^{=}Fe(\eta^{5}-(P_{3}(CPh)_{2}))]$ (7), 42 mg (0.08 mmol) $\equiv 14.8$ % bezogen auf $[\{Cp^{=}Fe\}_{2}(\mu-\eta^{4:4}-P_{4})]$

> $[Cp^{=}Fe(\eta^{5}-(P((CPh)_{2})_{2}))] (8), 25 mg (0.04 mmol)$ = 7.2 % bezogen auf [{Cp^{=}Fe}_{2}(\mu-\eta^{4:4}-P_{4})]

Elementaranalyse:	$[Cp^{=}Fe(\eta^{5}-(P_{3}(CPh)_{2}))]$ (7)	
	$C_{25}H_{31}Si_2P_3Fe$	(M = 536.46 g/mol)
	ber.: C 55.97 %	Н 5.82 %
	gef.: C 55.89 %	Н 5.80 %

$[Cp^{-}Fe(\eta^{5}-(P((CPh)_{2})_{2}))]$ (8)	
$C_{39}H_{41}PSi_2Fe$	(M = 652.75 g/mol)
ber.: C 71.76 %	Н 6.33 %
gef.: C 72.07 %	Н 6.52 %

4.3.6 Umsetzungen von $[{Cp^{R}(CO)_{2}Fe}] (Cp^{R} = Cp^{=}, Cp^{-})$ mit weißem Phosphor

260 mg (2.1 mmol) weißer Phosphor werden in einem 100 ml-Dreihalskolben mit Rückflusskühler und Claisen-Aufsatz in 60 ml Dekalin vorgelegt und bis zum Sieden erhitzt. Über den Claisen-Aufsatz werden dann 2.6 g (4.2 mmol) [$\{Cp^{=}(CO)_{2}Fe\}_{2}$] zugegeben und für 10 Minuten unter Rückfluss erhitzt. Dabei schlägt die anfangs rote Farbe der Lösung langsam in braun um. Das Lösungsmittel wird anschließend unter Ölpumpenvakuum vorsichtig abdestilliert, der Rückstand mit 15 ml THF aufgenommen und mit 4 g silyliertem Kieselgel versetzt. Das Adsorbat wird bis zur Rieselfähigkeit getrocknet und auf eine chromatographische Säule aufgetragen (2.5 x 25 cm, Kieselgel (II), Petrolether, -20 °C, Kryostat). Mit Petrolether eluiert man eine dunkelgrüne Fraktion an [($Cp^{=}Fe$)₄P₄] (**9a**).

Ausbeute: $[(Cp^{=}Fe)_4P_4]$ (9a), 830 mg (0.7 mmol) = 16.7 % bezogen auf $[\{Cp^{=}(CO)_2Fe\}_2]$

Elementaranalyse:	$[(Cp^{-}Fe)_{4}P_{4}]$ (9a)	
	$C_{44}H_{84}Si_8P_4Fe_4$	(M = 1185.12 g/mol)
	ber.: C 44.59 %	Н 7.14 %
	gef.: C 44.13 %	Н 7.16 %

Die Reaktion wird für [{Cp^{-'}(CO)₂Fe}₂] analog durchgeführt und aufgearbeitet.

Ansatz: $[{Cp^{-'}(CO)_2Fe}_2], 920 \text{ mg} (1.5 \text{ mmol})$ P₄, 118 mg (0.95 mmol)

Ausbeute: $[(Cp^{-}Fe)_4P_4]$ (9b), 290 mg (0.26 mmol) $\equiv 17.2$ % bezogen auf $[\{Cp^{-}(CO)_2Fe\}_2]$

Elementaranalyse:	$[(Cp^{-}Fe)_4P_4](9b)$	
	$C_{48}H_{84}Si_4P_4Fe_4$	(M = 1120.82 g/mol)
	ber.: C 51.44 %	Н 7.55 %
	gef.: C 50.89 %	Н 7.32 %

4.3.7 Cothermolyse $[(\eta^{5}-Cp^{-})Fe(\eta^{5}-P_{5})]$ mit $[(\eta^{5}-Cp^{-})Co(CO)_{2}]$

1.2 g (2.97 mmol) $[Cp^{-}Fe(\eta^{5}-P_{5})]$ und 1.54 g (4.99 mmol) $[Cp^{-}Co(CO)_{2}]$ werden in einem 250 ml-Zweihalskolben mit Hahn und Rückflusskühler in 160 ml Dekalin gelöst und 1 Stunde am Rückfluss erhitzt. Die Reaktion wird IR-spektroskopisch kontrolliert. Die Reaktion ist beendet, wenn keine Banden der terminalen Carbonylgruppen des Cobaltkomplexes mehr detektiert werden. Anschließend wird das Lösungsmittel im Ölpumpenvakuum abdestilliert, der ölige Rückstand mit 15 ml THF aufgenommen und mit 5 g basischem Aluminiumoxid (Aktivitätsstufe II) versetzt. Das Adsorbat wird bis zur Rieselfähigkeit getrocknet und säulenchromatographisch aufgearbeitet (2.5 x 30 cm, neutrales Aluminiumoxid (II), Petrolether, -20 °C, Kryostat). Mit Petrolether wird zunächst eine violette Fraktion an $[{Cp^{-}Co}_{3}(\mu_{3}-P)_{2}]$ (11) eluiert, danach eine braune Mischfraktion aus $[{Cp^{-}Fe}_{2}(\mu_{3}-\eta^{4:4:1:1}-\eta^{4:4:1:1})]$ P_4 {Cp^{-'}Co}] (13), [{Cp^{-'}Co}₄P₄] (12) und [{Cp^{-'}Fe}₂{Cp^{-'}Co}₂P₄] (14). Die Auftrennung in die Einzelkomponenten gelingt erst durch dreimalige säulenchromatographische Aufarbeitung (2.5 x 30 cm, neutrales Aluminiumoxid (II), Petrolether, -20 °C, Kryostat). Ebenfalls mit Petrolether eluiert man des Weiteren eine braune Fraktion an $[{Cp^{-}Co} {Cp^{-}Fe}_{2}(\mu - CO)](\mu_{3}-P)_{2}]$ (16). Schließlich erhält man mit einem Gemisch aus Petrolether und Toluol im Verhältnis 20:1 eine olivgrüne Fraktion an $[{Cp^{-}Co}_4P_{10}]$ (15).

Ausbeute:	$[\{Cp^{-}Co\}_{3}(\mu_{3}-P)_{2}] (11) \\\equiv 1.3 \% \text{ bezogen auf } [Cp^{-}Fe(\eta^{5}-P_{5})]$	35 mg (0.04 mmol)
	$[\{Cp^{-}Co\}_{4}P_{4}] (12) \\\equiv 7.7 \% \text{ bezogen auf } [Cp^{-}Fe(\eta^{5}-P_{5})]$	260 mg (0.23 mmol)
	$[\{Cp^{-}Fe\}_{2}(\mu_{3}-\eta^{4:4:1:1}-P_{4}) \{Cp^{-}Co\}] (13)$ = 4.6 % bezogen auf [Cp^{-}Fe(\eta^{5}-P_{5})]	60 mg (0.07 mmol)
	$[\{Cp^{-}Fe\}_{2}\{Cp^{-}Co\}_{2}P_{4}] (14) \\\equiv 0.8 \% \text{ bezogen auf } [Cp^{-}Fe(\eta^{5}-P_{5})]$	15 mg (0.013 mmol)
	$[\{Cp^{-}Co\}_{4}P_{10}] (15) \\\equiv 5.6 \% \text{ bezogen auf } [Cp^{-}Fe(\eta^{5}-P_{5})]$	110 mg (0.08 mmol)
$[{Cp^{-}Co} {\{Cp^{-}Fe}_{2}(\mu-CO)}(\mu_{3}-P)_{2}] (16)$	50 mg (0.06 mmol)	
--	-------------------	
$\equiv 4.0 \%$ bezogen auf [Cp ⁻ Fe(η^5 -P ₅)]		

Elementaranalyse:	
-------------------	--

$[{Cp^{-}Co}_{3}(\mu_{3}-P)_{2}](11)$	
$C_{36}H_{63}P_3Si_3Co_3$	(M = 849.87 g/mol)
ber.: C 50.88 %	Н 7.47 %
gef.: C 50.63 %	Н 7.39 %

 $[{Cp^{-}Co}_{4}P_{4}](12)$

$C_{48}H_{84}P_4Si_4Co_4$	(M = 1133.16 g/mol)
ber.: C 50.88 %	Н 7.47 %
gef.: C 51.07 %	Н 7.50 %

$[\{Cp^{-}Fe\}_{2}(\mu_{3}-\eta^{4:4:1:1}-P_{4}) \{Cp^{-}Co\}] (13)$			
$C_{36}H_{63}P_4Si_3CoFe_2$	(M = 874.67 g/mol)		
ber.: C 49.44 %	Н 7.26 %		
gef.: C 49.50 %	H 7.44 %		

 $[\{Cp^-Fe\}_2\{Cp^-Co\}_2P_4] (14)$ $C_{48}H_{84}P_4Si_4Co_2Fe_2 \qquad (M = 1126.99 \text{ g/mol})$ ber.: C 51.16 % H 7.51 %
gef.: C 51.43 % H 7.62 %

 $[\{Cp^{-r}Co\}_4P_{10}] (15)$ $C_{48}H_{84}P_{10}Si_4Co_4 \qquad (M = 1319.01 \text{ g/mol})$ ber.: C 43.71 % H 6.42 % gef.: C 43.63 % H 6.39 %

$[{Cp^{-}Co} { (Cp^{-}Fe}_{2}(\mu-CO)}(\mu_{3}-P)_{2}] (16)$

$C_{37}H_{63}OP_2Si_3CoFe_2$	(M = 840.74 g/mol)
ber.: C 52.86 %	Н 7.55 %
gef.: C 52.49 %	H 7.48 %

5. Zusammenfassung

Der Einsatz von Monotrimethylsilylcyclopentadien als Ligandensystem bei der Cothermolyse von $[{(\eta^5-Cp^-)(CO)_3Mo}_2]$ mit weißem Phosphor liefert ein mit der bissilylierten Spezies vergleichbares Produktbild. Allerdings können bei der Aufarbeitung nur zwei neue phosphorhaltige Produkte isoliert werden.

 $[\{(\eta^5-Cp^-)Mo\}_2(\mu-\eta^{6:6}-P_6)]$ (3) zeichnet sich, wie für diese Art von Tripeldecker typisch, durch eine sowohl hohe thermische Stabilität als auch nur geringe Empfindlichkeit gegenüber Luftsauerstoff aus. Von Verbindung 3 konnte eine Röntgenstrukturanalyse angefertigt werden. $[\{(\eta^5-Cp^-)Mo\}_2(\mu-\eta^{6:6}-P_6)]$ (3) ist im Gegensatz zu dem bissilylierten Analogon nicht symmetrisch aufgebaut. Der Winkel zwischen Mo(1)-P_{6 Zent}.-Mo(2) beträgt 149.8° und die drei Decks weichen von der Parallelität ab.

Aufgrund der Eigenschaft von $[{(\eta^5-Cp^-)(CO)_2Mo}(\eta^3-P_3)]$ (2), sich unter thermischen und photolytischen Bedingungen in Komplex 3 umzuwandeln, eignete sich diese Verbindung nicht als Edukt für weitere Reaktionen.

Eine Übertragung der Ergebnisse auf Wolfram gelang vermutlich aufgrund der geringen Reaktivität von W(CO)₆ nicht.

Die cothermolytische Umsetzung des *pseudo*-Tripeldecker-Komplexes [{ $Cp^{R}Fe$ }₂(μ - $\eta^{4:4}$ - P_{4})] (J) mit einer äquimolaren Menge an Alkin liefert, abhängig vom Substituentenmuster, ein mit dem des Butterfly-Komplexes [{ $Cp^{R}Fe(CO)_{2}$ }₂(μ - $\eta^{1:1}$ - P_{4})] vergleichbares Produktbild an Polyphospholyl-Verbindungen, das sich allerdings in einigen Punkten signifikant unterscheidet.

Bei der Verwendung von unsymmetrisch substituierten Alkinen werden im Gegensatz zu Verbindung $[{Cp^{R}Fe(CO)_{2}}_{2}(\mu-\eta^{1:1}-P_{4})]^{[28]}$ ausschließlich Sandwichkomplexe des Typs $[{Cp^{R}Fe}(\eta^{5}-(P_{3}(C_{2}^{R'}H))]$ mit einem η^{5} -koordinierten 1,2,3-Triphospholylliganden in guten Ausbeuten gebildet.

Wird dagegen ein symmetrisch substituiertes Alkin eingesetzt, so wird neben dem korrespondierenden Triphospholylkomplex auch das Monophosphaferrocen $[Cp^{=}Fe(\eta^{5}-P(C_{2}Ph_{2})_{2})]$ (8) gebildet. Da dieses Produktbild nur im Falle des Komplexes $[\{Cp^{=}Fe\}_{2}(\mu - \eta^{4:4}-P_{4})]$ und des Alkins Tolan festzustellen ist, kann diese Tendenz nicht verallgemeinert werden.

Das Produktbild der Cothermolyse von $[Cp^-Fe(\eta^5-P_5)]$ (N) mit $[Cp^-Co(CO)_2]$ (O) ähnelt sehr stark dem der bissilylierten Analoga^[32].

So werden bei der thermischen Reaktion von $[Cp^{-}Fe(\eta^{5}-P_{5})]$ mit $[Cp^{-}Co(CO)_{2}]$ die zu den Verbindungen **11**, **12**, **13**, **14** und **15** im Grundgerüst identischen mehrkernigen Bis(trimethylsilyl)cyclopentadienyl-Komplexe gebildet.

Verbindung [$\{Cp^-Co\} \{\{Cp^-Fe\}_2(\mu-CO)\}(\mu_3-P)_2\}$] (16) stellt allerdings einen neuen Vertreter der Reihe mehrkerniger phosphorhaltiger Eisen-Cobalt-Cluster dar. Die Röntgenstrukturanalyse von 16 zeigt einen trigonal bipyramidalen Aufbau des Komplexes, bei dem zwei Eisen- und ein Cobaltatom die Basis und zwei Phosphoratome die Spitzen über und unter der Dreiecksfläche bilden. Die Eisenkerne werden von einer Carbonylgruppe verbrückt und die 18 VE-Regel damit erfüllt.

 $[{Cp^{-}Co} {(Cp^{-}Fe)_2(\mu-CO)}(\mu_3-P)_2]$ (16) ist bisher der einzige bekannte heterobimetallische Phosphorkomplex mit einer solchen Struktur.

6 Literatur

- [1] M. Di Vaira,; L. Sacconi, Angew. Chem., Int. Ed. Engl., 1982, 21, 330.
- [2] A. P. Ginsberg, W. E. Lindsell, K. J. McCullough, C. R. Sprinkle, A. J. Welch, J. Am. Chem. Soc., 1986, 108, 403.
- [3] Review : O. J. Scherer, Angew. Chem., Int. Ed. Engl., 1990, 29, 1104.
- [4] K. B. Dillon, F. Mathey, J. F. Nixon, *Phosphorus : The Carbon Copy*, Wiley; New York, **1998**.
- [5] Review : O. J. Scherer, Acc. Chem. Res., 1999, 32, 751.
- [6] E. Niecke, R. Rueger, B. Krebs, Angew. Chem. 1982, 94, 553-554; Angew. Chem. Int. Ed. Engl. 1982, 21, 544.
- [7] B. W. Tattershall, N. L. Kendall, *Polyhedron* 1994, 13, 1517-1521.
- [8] T. Brück, *Dissertation*, Universität Kaiserslautern **1989**.
- [9] T. Hilt, *Dissertation*, Universität Kaiserslautern **1999**.
- [10] O. J. Scherer, T. Hilt, G. Wolmershäuser, Organometallics 1998, 17, 4110-4112.
- [11] O. J. Scherer, T. Brück, G. Wolmershäuser, Chem. Ber., 1988, 121, 935.
- [12] O. J. Scherer, T. Brück, G. Wolmershäuser, Chem. Ber., 1989, 122, 2049.
- [13] B. Rink, O. J. Scherer, G. Heckmann, G. Wolmershäuser, *Chem. Ber.*, 1992, 125, 1011.
- [14] O. J. Scherer, C. Blath, G. Wolmershäuser, J. Organomet. Chem., 1990, 387, C21.
- [15] M. Detzel, G. Friedrich, O. J. Scherer, G. Wolmershäuser, *Angew. Chem.*, 1995, 107, 1454, *Angew. Chem. Int. Ed. Engl.*, 1995, 34, 1321.
- [16] M. Detzel, T. Mohr, O. J. Scherer, G. Wolmershäuser, *Angew. Chem.*, 1994, 106, 1142, *Angew. Chem. Int. Ed. Engl.*, 1994, 33. 1110.
- [17] M. Ehses, *Diplomarbeit*, **1995**, TU Kaiserslautern.
- [18] M. Schmidt, *Dissertation*, **1996**, TU Kaiserslautern.
- [19] S. Weigel, *Dissertation*, **1999**, TU Kaiserslautern.
- [20] O. J. Scherer, H. Sitzmann, G. Wolmershäuser, *Angew. Chem.*, 1985, 97, 358;
 Angew. Chem., Int. Ed. Engl., 1985, 94, 351.
- [21] J. W. Lauher, M. Elian, R. H. Summerville, R. Hoffmann, J. Am. Chem. Soc., 1976, 98, 3219.
- [22] H. P. Fritz, C. G. Kreiter, J. Organomet. Chem., 1965, 4, 313-319.
- [23] L. M. Pribytkova, A. V. Kisin, Y. N. Luzikov, N. P. Makoveyeva,
 V. N. Torocheshnikov, Y. N. Ustynyuk, J. Organomet. Chem., 1971, 30, C57-C60.

- [24] J. Okuda, Top. Curr. Chem., 1991, 160, 97-145.
- [25] a) W. Tremel, R. Hoffmann, M. Kertesz, J. Am. Chem. Soc., 1989, 111, 2030.
 b) E. D. Jemmis, A. C. Reddy, Organomet., 1988, 7, 1561.
- [26] J. Ertl, *Diplomarbeit*, TU Kaiserslautern, **2000**.
- [27] O. J. Scherer, T. Hilt, G. Wolmershäuser, Angew. Chem. Int. Ed. 2000, 39, 1425-1427.
- [28] C. Eichhorn, *Dissertation*, TU Kaiserslautern 2003.
- [29] Wayne D. Luke, Andrew Streitwieser Jr, J. Am. Chem. Soc., 1981, 103, 12, 3241-3243.
- [30] R. Boese, D. Blaeser, N. Kuhn, S. Stubenrauch, *Zeitschrift für Kristallographie*, 1993, 205 (2), 282-284.
- [31] O. J. Scherer, G. Kemény, G. Wolmershäuser, Chem. Ber., 1995, 128, 1145-1148.
- [32] F. Fuchs, *Dissertation*, TU Kaiserslautern, 2001.
- [33] G. Kemény, *Dissertation*, TU Kaiserslautern, 1994.
- [34] D. White, L. Carlton, N. J. Coville, J. Organomet. Chem., 1992, 440, 15-25.
- [35] T. Hilt, *Diplomarbeit*, TU Kaiserslautern 1996.
- [36] R. G. Teller, J. M. Williams, Inorg. Chem. 1980, 19, 2770-2773.
- [37] C. H. Wei, L. F. Dahl, J. Am. Chem. Soc. 1969, 91, 1351-1361.
- [38] M. V. Andreocci, M. Bossa, C. Cauletti, R. Paolesse, G. Ortaggi, T. Vondrak, M. N. Piancatelli, M. Casarin, M. Dal Colle, G. Granozzi, *J. Organomet. Chem.* 1989, 366, 343-355.
- [39] A. Mitschler, B. Rees, M. S. Lehmann, J. Am. Chem. Soc. 1978, 100, 3390-3397.
- [40] C. von Hänisch, D. Fenske, F. Weigand, R. Ahlrichs, *Chem. Eur. J.*, 1997, 3, 1486-1494.
- [41] C. Hofmann, O. J. Scherer, G. Wolmershäuser, J. Organomet. Chem., 1998, 559, 219-222.
- [42] O. J. Scherer, S. Weigel, G. Wolmershäuser, Chem. Eur. J., 1998, 4, 1910-1916.
- [43] T. Völmecke, *Dissertation*, TU Kaiserslautern, **1998**.
- [44] C. S. Kreihanzel, M. L. Losee, J. Am. Chem. Soc., 1968, 90, 4701-4705
- [45] K. Mast, *Diplomarbeit*, TU Kaiserslautern, **1996**.
- [46] J. M. Smith, D. P. White, N. J. Coville, *Polyhedron*, **1996**, Vol. 15, No. 24, 4541.
- [47] T. Dezember, *Dissertation*, TU Kaiserslautern, **1996**
- [48] W. Towae, *Dissertation*, TU Kaiserslautern, **1979**.

P

7 Anhang

7.1 Kristalldaten von [{(η^5 -Cp⁻)Mo}₂(μ - $\eta^{6:6}$ -P₆)] (3)

Tabelle 1 : Kristalldaten und Strukturverfeinerung für 2038

Summenformel Molmasse Temperatur Strahlung Wellenlänge Scanmodus Kristallsystem Raumgruppe Zelldimensionen	C ₁₆ H ₂₆ Mo ₂ P ₆ Si ₂ 652.25 293(2) K MoK α 0.71073 Å Phi-Oszillation Orthorombisch Pca2 ₁ $a = 13.0114(8)$ Å $\alpha = 90^{\circ}$ $b = 8.3690(5)$ Å $\beta = 90^{\circ}$	P(3) P(3) P(4) P(5) Mo(2) P(6) P(6) P(6)
Zellvolumen Formeleinheiten pro Zelle Z	$c = 22.7980(13) \text{ Å} \qquad \gamma = 90^{\circ}$ 2482.5(3) Å ³ 4	of or
Absorptionskoeffizient	1.745 Mg/m^{-1}	
Kristallgröße	0.48 x 0.30 x 0.08 mm	
Gemessener θ-Bereich	3.02 bis 25.94°	
Anzahl der gemessenen Reflexe	32895	
Unabhängige Reflexe	4808 (Rint = 0.1196)	
Absorptionskorrektur	Analytisch (STOE/XRED)	
Max. und min. Transmission	0.8209 und 0.5826	
Diffraktometer	Stoe IPDS	
Strukturlösung	Direkte Methoden	
Strukturlösungsprogramm	SIR97 (Giacovazzo et al., 1997)	
Strukturverfeinerung	Vollmatrix Least-Squares gegen F	2
Strukturverfeinerungsprogramm	SHELXL-97 (Sheldrick, 1997)	
Daten/ Restraints/ Parameter	4808 / 1 / 242	
Endgültige R-Werte $[I \ge 2\sigma(I)]$	R1 = 0.0274, $wR2 = 0.0695$	
R-Werte (alle Daten)	R1 = 0.0304, $wR2 = 0.0713$	
Absolutstrukturparameter	0.59(5)	
Wichtungsschema	$w = 1/[\sigma^2(Fo^2) + (0.0073P)^2 + 0.9387$	$P] mit P = (Fo^2 + Fc^2)/3$
GooF (alle Daten)	1.054	
Größtes Maximum und Minimum	0.486 und -0.286 eÅ ⁻³	

Verfeinerung nach F^2 mit ALLEN Reflexen. Die gewichteten R-Werte wR2 und alle GooF's basieren auf F^2 . Die konventionellen R-Werte R1 basieren auf F, wobei F für negative F^2 gleich Null gesetzt wird. Das Ablehnungskriterium $F^2 > 2\sigma(F^2)$ wird nur zum Berechnen von R(obs) etc. verwendet. Zur Verfeinerung wurden alle Reflexe herangezogen. Grundsätzlich gilt: Auf F^2 bezogene R-Werte sind statistisch etwa doppelt so groß wie die auf F basierenden. Auf ALLE Reflexe bezogene R-Werte sind noch größer.

Der Kristall lag als Inversionszwilling vor (S. Flack-Parameter). Die Wasserstoffatome wurden geometrisch lokalisiert. Für die Verfeinerung wurde ein Reitermodell angenommen. Als Temperaturfaktor wurde der 1.5fache Wert (CH₃-Gruppen) bzw. der 1.2-fache Wert (Cp-H)des äquivalenten isotropen Temperaturfaktors desjenigen C-Atoms eingesetzt, an welches das jeweilige H-Atom gebunden ist.

Einzelheiten können dem Handbuch für das Verfeinerungsprogramm SHELXL entnommen werden.

$$GooF = \sqrt{\frac{\sum \left[w\left(F_0^2 - F_c^2\right)\right]}{(n-p)}}$$
 n = Zahl der Reflexe; P = Zahl der verfeinerten Parameter

Tabelle 2

Atomkoordinaten [x 10⁴] und äquivalente isotrope Auslenkungsparameter [Å² x 10³] für 2038 U(eq) wird berechnet als ein Drittel der Spur des orthogonalisierten U_{ij} -Tensors.

	Х	У	Z	U(eq)
Mo (1)	6801 (1)	2423 (1)	2024(1)	42 (1)
Mo(2)	5671(1)	2423(1) 2474(1)	1071(1)	42(1)
$\operatorname{Si}(1)$	6498(1)	-219(1)	3414(1)	56(1)
Si(2)	6014(1)	5023(1)	-312(1)	56(1)
P(1)	5380(1)	378(2)	1868(1)	70(1)
P(2)	6764 (2)	46(1)	1354 (1)	72(1)
P (3)	7620 (1)	2111 (2)	1041 (1)	75 (1)
P (4)	7089 (1)	4518 (2)	1256 (1)	75 (1)
P (5)	5704 (2)	4843 (2)	1770 (1)	75 (1)
P (6)	4858 (1)	2781 (2)	2079 (1)	75 (1)
C(1)	8432 (3)	2649 (5)	2452 (2)	58 (1)
C(2)	7815 (4)	3836 (5)	2705 (2)	61 (1)
C(3)	7025 (4)	3073 (5)	3030 (2)	57 (1)
C (4)	7152 (3)	1385 (5)	2984 (2)	50 (1)
C (5)	8032 (3)	1159 (5)	2621 (2)	55 (1)
C (6)	5438 (3)	1760 (5)	96 (2)	54(1)
C (7)	5337 (3)	3461 (5)	125 (2)	47 (1)
C (8)	4454 (3)	3746 (5)	490 (2)	54 (1)
C (9)	4033 (4)	2270 (6)	666 (2)	65 (1)
C (10)	4642 (4)	1044 (6)	427 (2)	65 (1)
C (11)	7169 (6)	-378 (7)	4135 (3)	89 (2)
C (12)	6654 (6)	-2145 (6)	3021 (4)	98 (2)
C (13)	5125 (5)	273 (7)	3547 (3)	73 (1)
C (21)	5370 (6)	5018 (7)	-1043 (3)	83 (2)
C (22)	5832 (6)	6967 (6)	57 (3)	100 (2)
C (23)	7390 (5)	4521 (7)	-426 (3)	80(2)

Tabelle 3 Bindungslängen [Å] und -winkel [°] für 2038.

Bindungslängen:

Mo(1)-C(1)	2.319 (5)	Si(1)-C(13)	1.858 (6)
Mo(1)-C(3)	2.325 (5)	Si(1)-C(4)	1.867 (4)
Mo(1)-C(5)	2.320 (4)	Si(1)-C(12)	1.855 (6)
Mo(1)-C(2)	2.319 (4)	Si(2)-C(22)	1.846 (6)
Mo(1)-C(4)	2.352 (4)	Si(2)-C(23)	1.857 (7)
Mo(1)-P(2)	2.5402 (15)	Si(2)-C(7)	1.865 (4)
Mo(1)-P(4)	2.5422 (14)	Si(2)-C(21)	1.865 (7)
Mo(1)-P(3)	2.5406 (15)	P(1)-P(2)	2.167 (3)
Mo(1)-P(1)	2.5508 (14)	P(1)-P(6)	2.170 (2)
Mo(1)-P(6)	2.5507 (12)	P(2)-P(3)	2.177 (2)
Mo(1)-P(5)	2.5594 (16)	P(3)-P(4)	2.185 (2)
Mo(1)-Mo(2)	2.6680 (4)	P(4)-P(5)	2.167 (3)
Mo(2)-C(10)	2.321 (4)	P(5)-P(6)	2.164 (2)
Mo(2)-C(6)	2.323 (4)	C(1)-C(5)	1.405 (6)
Mo(2)-C(8)	2.324 (4)	C(1)-C(2)	1.401 (7)
Mo(2)-C(9)	2.329 (5)	C(2)-C(3)	1.420(7)
Mo(2)-C(7)	2.350 (4)	C(3)-C(4)	1.426 (6)
Mo(2)-P(6)	2.5413 (15)	C(4)-C(5)	1.425 (6)
Mo(2)-P(5)	2.5423 (16)	C(6)-C(10)	1.414 (6)
Mo(2)-P(4)	2.5506 (14)	C(6)-C(7)	1.431 (7)
Mo(2)-P(1)	2.5477 (14)	C(7)-C(8)	1.438 (6)
Mo(2)-P(3)	2.5552 (13)	C(8)-C(9)	1.409 (6)
Mo(2)-P(2)	3.5627 (15)	C(9)-C(10)	1.407 (7)
Si(1)-C(11)	1.867 (7)		

Bindungswinkel:

58.93 (17)	C(3)-Mo(1)-P(1)	113.58 (12)
35.27 (14)	C(5)-Mo(1)-P(1)	106.61 (12)
58.49 (16)	C(2)-Mo(1)-P(1)	148.89 (14)
35.17 (17)	C(4)-Mo(1)-P(1)	92.20 (11)
35.61 (16)	P(2)-Mo(1)-P(1)	50.38 (7)
58.46 (18)	P(4)-Mo(1)-P(1)	116.95 (6)
59.47 (15)	P(3)-Mo(1)-P(1)	95.20 (6)
35.50 (15)	C(1)-Mo(1)-P(6)	152.35 (14)
35.52 (15)	C(3)-Mo(1)-P(6)	93.86 (12)
59.42 (15)	C(5)-Mo(1)-P(6)	136.10(11)
109.30 (13)	C(2)-Mo(1)-P(6)	118.98 (14)
141.72 (12)	C(4)-Mo(1)-P(6)	102.02 (11)
90.46 (12)	P(2)-Mo(1)-P(6)	95.12 (6)
144.39 (13)	P(4)-Mo(1)-P(6)	94.82 (5)
106.23 (11)	P(3)-Mo(1)-P(6)	116.93 (6)
95.35 (11)	P(1)-Mo(1)-P(6)	50.34 (6)
120.32 (12)	C(1)-Mo(1)-P(5)	123.03 (11)
127.90 (11)	C(3)-Mo(1)-P(5)	97.01 (13)
91.41 (12)	C(5)-Mo(1)-P(5)	152.26 (12)
150.65 (11)	C(2)-Mo(1)-P(5)	94.23 (12)
95.88 (7)	C(4)-Mo(1)-P(5)	128.64 (11)
89.22 (13)	P(2)-Mo(1)-P(5)	117.05 (8)
147.46 (12)	P(4)-Mo(1)-P(5)	50.28 (7)
	58.93 (17) $35.27 (14)$ $58.49 (16)$ $35.17 (17)$ $35.61 (16)$ $58.46 (18)$ $59.47 (15)$ $35.50 (15)$ $35.52 (15)$ $59.42 (15)$ $109.30 (13)$ $141.72 (12)$ $90.46 (12)$ $144.39 (13)$ $106.23 (11)$ $95.35 (11)$ $120.32 (12)$ $127.90 (11)$ $91.41 (12)$ $150.65 (11)$ $95.88 (7)$ $89.22 (13)$ $147.46 (12)$	58.93 (17) $C(3)-Mo(1)-P(1)$ $35.27 (14)$ $C(5)-Mo(1)-P(1)$ $58.49 (16)$ $C(2)-Mo(1)-P(1)$ $35.17 (17)$ $C(4)-Mo(1)-P(1)$ $35.17 (17)$ $C(4)-Mo(1)-P(1)$ $35.61 (16)$ $P(2)-Mo(1)-P(1)$ $58.46 (18)$ $P(4)-Mo(1)-P(1)$ $58.46 (18)$ $P(4)-Mo(1)-P(1)$ $59.47 (15)$ $P(3)-Mo(1)-P(6)$ $35.50 (15)$ $C(1)-Mo(1)-P(6)$ $35.52 (15)$ $C(3)-Mo(1)-P(6)$ $59.42 (15)$ $C(5)-Mo(1)-P(6)$ $109.30 (13)$ $C(2)-Mo(1)-P(6)$ $141.72 (12)$ $C(4)-Mo(1)-P(6)$ $90.46 (12)$ $P(2)-Mo(1)-P(6)$ $90.46 (12)$ $P(2)-Mo(1)-P(6)$ $90.46 (12)$ $P(2)-Mo(1)-P(6)$ $106.23 (11)$ $P(3)-Mo(1)-P(6)$ $120.32 (12)$ $C(1)-Mo(1)-P(6)$ $120.32 (12)$ $C(1)-Mo(1)-P(5)$ $127.90 (11)$ $C(3)-Mo(1)-P(5)$ $91.41 (12)$ $C(5)-Mo(1)-P(5)$ $95.88 (7)$ $C(4)-Mo(1)-P(5)$ $95.88 (7)$ $C(4)-Mo(1)-P(5)$ $89.22 (13)$ $P(2)-Mo(1)-P(5)$ $147.46 (12)$ $P(4)-Mo(1)-P(5)$

$C(5)-M_0(1)-P(3)$	100.07(12)	$P(3)-M_0(1)-P(5)$	95 31 (6)
C(2)-Mo(1)-P(3)	113 53 (14)	P(1)-Mo(1)-P(5)	94 73 (6)
C(4)-Mo(1)-P(3)	134 60 (11)	$P(6)-M_0(1)-P(5)$	50 10 (6)
P(2)-Mo(1)-P(3)	50 75 (6)	C(1)-Mo(1)-Mo(2)	146 68 (13)
P(4)-Mo(1)-P(3)	50.93 (6)	C(3)-Mo(1)-Mo(2)	150.23(12)
C(1)-Mo(1)-P(1)	$141\ 45\ (11)$	C(5)-Mo(1)-Mo(2)	149.09(12)
C(2)-Mo(1)-Mo(2)	147.59(11)	$P(5) M_0(2) P(2)$	116.85 (8)
C(2) MO(1) MO(2) C(4)-Mo(1)-Mo(2)	147.59(11) 150.43(10)	$P(4) M_0(2) P(2)$	95 11 (6)
P(2)-Mo(1)-Mo(2)	58 80 (A)	$P(1) M_0(2) P(2)$	50.18 (7)
P(4)-Mo(1)-Mo(2)	58 56 (3)	$P(2) M_0(2) P(2)$	50.35 (6)
P(3)-Mo(1)-Mo(2)	58.50 (3) 58.70 (3)	$C(10) M_{0}(2) M_{0}(1)$	146 96 (11)
P(1)-Mo(1)-Mo(2)	58 20 (3)	C(10)-MO(2)-MO(1) C(6) Mo(2) Mo(1)	140.90(11)
P(6)-Mo(1)-Mo(2)	58 22 (4)	C(0) - WO(2) - WO(1)	149.27(11)
P(5)-Mo(1)-Mo(2)	58 16 (4)	C(8) - WO(2) - WO(1)	149.27(11) 146.62(14)
$\Gamma(3)$ -Wi0(1)-Wi0(2) $\Gamma(10)$ -Mo(2)- $\Gamma(6)$	38.10 (4) 25.46 (16)	C(9)-MO(2)-MO(1) C(7) Mo(2) Mo(1)	140.02(14) 150.76(9)
C(10)-Mo(2)-C(8)	59.66 (10)	$D(6) M_0(2) M_0(1)$	58 57 (3)
C(10) - MO(2) - C(0)	58 82 (16)	P(0)-WO(2)-WO(1) P(5) Mo(2) Mo(1)	58 78 (<i>1</i>)
C(0) - WO(2) - C(0)	36.62(10)	P(3)-WO(2)-WO(1) P(4) Ma(2) Ma(1)	58.78 (4)
C(10)-W0(2)-C(9)	55.21 (18) 59.77 (19)	P(4)-Mo(2)-Mo(1) P(1) Mo(2) Mo(1)	58 50 (3)
C(0)-W(0(2)-C(9))	38.77(18)	P(1)-MO(2)-MO(1) $P(2) M_{2}(2) M_{3}(1)$	58.50 (5) 58.16 (4)
C(3)-WO(2)-C(3) $C(10) M_{2}(2) C(7)$	55.20 (15) 50.55 (15)	P(3)-Mo(2)-Mo(1) P(2)-Mo(2)-Mo(1)	58.10 (4)
C(10)-W0(2)-C(7)	59.55 (15) 25.65 (16)	P(2)-MO(2)-MO(1)	108.7(4)
C(0)- $Mo(2)$ - $C(7)$	35.65 (16) 25.84 (14)	C(11) - SI(1) - C(13)	100.7(4) 107.5(2)
C(0) - WO(2) - C(7)	50.50 (14)	C(11)-SI(1)-C(4)	107.3(3) 111.4(2)
C(9)-WO(2)-C(7) $C(10) M_{2}(2) P(6)$	59.50 (16)	C(13)-SI(1)-C(4)	111.4(2) 108.2(4)
C(10)-WO(2)-F(0) $C(6) M_0(2) P(6)$	112.61 (14)	C(11)-SI(1)-C(12)	100.2(4) 1121(2)
C(0)-Wi0(2)-I (0) C(8) M ₂ (2) D(6)	140.80 (12)	C(13)-SI(1)-C(12)	112.1(3) 102.2(2)
C(8)- $Mo(2)$ - $P(6)$	100.70(11)	C(4)-SI(1)-C(12)	100.0(3) 112.8(3)
C(3)-WO(2)-I(0) C(7) Mo(2) P(6)	89.15 (15) 125.90 (10)	C(22)-SI(2)-C(23)	112.0(3) 108.3(2)
$C(10) M_0(2) P(5)$	135.80 (10)	C(22)-SI(2)-C(7)	108.3(2) 111.8(2)
C(10)-W(0(2)-P(5))	143.92(14) 142.22(12)	C(23)-SI(2)-C(7)	111.0(2) 110.6(3)
C(0)- $Mo(2)$ - $P(5)$	143.33(12)	C(22)-SI(2)-C(21)	107.9(4)
$C(0)-M_0(2)-P(5)$	90.00 (12)	C(23)-SI(2)-C(21)	107.9(4) 105.3(3)
$C(7)-M_0(2)-P(5)$	106.71(13) 107.69(11)	P(2) P(1) P(2)	103.3(3) 120.09(8)
$D(6) M_0(2) P(5)$	107.08 (11)	P(2) - P(1) - P(0)	(5.27(5))
$\Gamma(0)$ -MO(2)- $\Gamma(3)$ $\Gamma(10)$ Mo(2) $P(4)$	50.58 (6) 150.16 (12)	P(2)-P(1)-MO(2)	65.27(5)
C(10)-W(0(2)-1(4)) $C(6) M_0(2) P(4)$	150.10(15)	P(0)-P(1)-MO(2) P(2) P(1) Mo(1)	04.01(0)
C(0)-Wi0(2)-I (4) C(8) M ₂ (2) $P(4)$	115.15(12) 106.26(12)	P(2)-P(1)-MO(1)	04.30 (0) (4.82 (5)
$C(0) M_0(2) P(4)$	106.26 (12)	P(0)-P(1)-Mo(1)	64.83(5)
C(9)-WIO(2)-F(4) C(7) Mo(2) P(4)	140.94 (12)	MO(2)-P(1)-MO(1) P(1) P(2) P(2)	63.10 (3) 110.90 (9)
C(7)-Wi0(2)-I(4) D(6) Mo(2) $D(4)$	92.82 (10)	P(1) - P(2) - P(3)	119.89 (8)
P(0)-MO(2)-P(4) P(5) Mo(2) P(4)	94.85 (6) 50.27 (7)	P(1)-P(2)-MO(1)	65.06(6)
$\Gamma(3)$ -MO(2)- $\Gamma(4)$ $\Gamma(10)$ Mo(2) $P(1)$	50.57(7)	P(3)-P(2)-MO(1) P(1) P(2) Mo(2)	64.64(5)
C(10)-WO(2)-F(1) $C(6) M_0(2) P(1)$	90.67 (12)	P(1)-P(2)-MO(2)	64.55 (6)
C(0)- $Wi0(2)$ - $F(1)C(8)$ M ₂ (2) $P(1)$	119.10(11)	P(3)-P(2)-Mo(2)	64.65(5)
C(8)- $WO(2)$ - $I(1)C(0)$ Mo(2) $P(1)$	128.24(11)	MO(1)-P(2)-MO(2) P(4) P(2) P(2)	03.04 (3)
C(9)-WIO(2)-F(1) C(7) Mo(2) P(1)	95.51 (12)	P(4) - P(3) - P(2)	(1.59.(5)
C(7)-WO(2)-I(1) D(6) Mo(2) D(1)	150.15 (10)	P(4) - P(3) - MO(1) P(4) - P(3) - MO(1)	04.38 (3) (4.62 (6)
$P(5)-M_0(2) P(1)$	30.47 (6) 05.22 (7)	r(4)-r(3)-m(0(1))	04.02(0)
$P(A) - M_{O}(2) - P(1)$	95.22 (7) 116.76 (6)	P(2)-P(3)-MO(2)	64.55 (5)
$\Gamma(4) - 1 \times 10(2) - \Gamma(1)$ $\Gamma(10) - M_{O}(2) - \Gamma(2)$	110.70(0)	r(4)-r(5)-MO(2)	65.00 (6)
C(10) - WI0(2) - P(3) $C(6) M_0(2) - P(3)$	119.59 (14)	MO(1)-P(3)-MO(2)	63.14 (3)
C(0) - MO(2) - P(3) C(8) - MO(2) - D(2)	94.19 (12)	r(3)-r(4)-r(3)	119.99 (9)
$C(0)-M_0(2)-F(3)$	155.68 (11)	P(5) - P(4) - MO(1)	04.30 (6) 65.27 (6)
$C(7)-M_0(2)-P(3)$	101.55 (10)	r(3)-r(4)-MO(1) $P(2) P(4) M_{2}(2)$	03.2/(0)
$P(6)_M_0(2)_P(3)$	101.33 (10)	$\Gamma(3)-\Gamma(4)-MO(2)$ D(5) D(4) Ma(2)	04.//(3)
$(0) 110(2)^{-1}(3)$	110.75 (0)	1 (J)-F(4)-MO(Z)	04.02 (0)

P(5)-Mo(2)-P(3)	95.37 (6)	Mo(1)-P(4)-Mo(2)	63.18 (3)
P(4)-Mo(2)-P(3)	50.68 (6)	P(6)-P(5)-P(4)	119.93 (9)
P(1)-Mo(2)-P(3)	94.92 (6)	P(6)-P(5)-Mo(2)	64.79 (6)
C(10)-Mo(2)-P(2)	94.03 (13)	P(4)-P(5)-Mo(2)	65.01 (7)
C(6)-Mo(2)-P(2)	96.28 (12)	P(6)-P(5)-Mo(1)	64.74 (5)
C(8)-Mo(2)-P(2)	152.24 (12)	P(4)-P(5)-Mo(1)	64.45 (7)
C(9)-Mo(2)-P(2)	123.31 (13)	Mo(2)-P(5)-Mo(1)	63.06 (3)
C(7)-Mo(2)-P(2)	127.75 (11)	P(5)-P(6)-P(1)	120.35 (9)
P(6)-Mo(2)-P(2)	94.80 (6)	P(5)-P(6)-Mo(2)	64.83 (6)
P(1)-P(6)-Mo(2)	64.92 (6)	C(1)-C(5)-Mo(1)	72.3 (2)
P(5)-P(6)-Mo(1)	65.16 (6)	C(4)-C(5)-Mo(1)	73.4 (2)
P(1)-P(6)-Mo(1)	64.84 (5)	C(10)-C(6)-C(7)	109.2 (4)
Mo(2)-P(6)-Mo(1)	63.19 (3)	C(10)-C(6)-Mo(2)	72.2 (3)
C(5)-C(1)-C(2)	107.7 (4)	C(7)-C(6)-Mo(2)	73.2 (2)
C(5)-C(1)-Mo(1)	72.4 (2)	C(6)-C(7)-C(8)	105.4 (3)
C(2)-C(1)-Mo(1)	72.4 (3)	C(6)-C(7)-Si(2)	129.0 (3)
C(3)-C(2)-C(1)	108.1 (4)	C(8)-C(7)-Si(2)	124.7 (3)
C(3)-C(2)-Mo(1)	72.4 (2)	C(6)-C(7)-Mo(2)	71.2 (2)
C(1)-C(2)-Mo(1)	72.4 (3)	C(8)-C(7)-Mo(2)	71.1 (2)
C(2)-C(3)-C(4)	108.8 (4)	Si(2)-C(7)-Mo(2)	130.5 (2)
C(2)-C(3)-Mo(1)	72.0 (3)	C(9)-C(8)-C(7)	109.3 (4)
C(4)-C(3)-Mo(1)	73.2 (2)	C(9)-C(8)-Mo(2)	72.6 (3)
C(5)-C(4)-C(3)	105.5 (4)	C(7)-C(8)-Mo(2)	73.1 (2)
C(5)-C(4)-Si(1)	125.2 (3)	C(7)-C(9)-C(10)	108.1 (5)
C(3)-C(4)-Si(1)	128.4 (3)	C(8)-C(9)-Mo(2)	72.1 (2)
C(5)-C(4)-Mo(1)	71.0 (2)	C(10)-C(9)-Mo(2)	72.1 (3)
C(3)-C(4)-Mo(1)	71.2 (2)	C(9)-C(10)-C(6)	108.1 (4)
Si(1)-C(4)-Mo(1)	130.9 (2)	C(9)-C(10)-Mo(2)	72.7 (3)
C(1)-C(5)-C(4)	109.9 (4)	C(6)-C(10)-Mo(2)	72.4 (2)

Tabelle 4. Anisotrope Auslenkungsparameter [Ų x 10³] für 2038.Der Exponent des anisotropen Auslenkungsfaktors hat die Form: $-2\pi^2$ [(ha*)²U₁₁+...+ 2hka*b*U₁₂]

	U ₁₁	U ₂₂	U ₃₃	U ₂₃	U ₁₃	U ₁₂
Mo (1)	40(1)	43 (1)	42 (1)	0(1)	4(1)	2 (1)
Mo (2)	40(1)	44 (1)	42 (1)	1(1)	4(1)	1(1)
Si (1)	57(1)	57(1)	54 (1)	9 (1)	2(1)	-1 (1)
Si (2)	62 (1)	60(1)	45 (1)	7(1)	3 (1)	-5 (1)
P (1)	72 (1)	72 (1)	67 (1)	20(1)	-10(1)	-23 (1)
P (2)	88 (1)	55 (1)	73 (1)	-17(1)	-18 (1)	25 (1)
P (3)	50(1)	123 (1)	53 (1)	-4 (1)	10(1)	13 (1)
P (4)	82 (1)	76 (1)	68 (1)	23 (1)	-17(1)	-32 (1)
P (5)	96 (1)	56(1)	72 (1)	-16(1)	-19(1)	26(1)
P (6)	46 (1)	119(1)	53 (1)	0(1)	11(1)	12(1)
C (1)	38 (2)	78 (3)	57 (3)	14 (2)	-2 (2)	-8 (2)
C (2)	71 (3)	52 (2)	59 (3)	-2 (2)	-16 (2)	-12 (2)
C (3)	67 (2)	57 (2)	48 (2)	-6 (2)	-5 (2)	2 (2)
C (4)	51 (2)	57 (2)	43 (2)	1 (2)	-1 (2)	1 (2)
C (5)	50 (2)	62 (2)	52 (2)	6 (2)	-4 (2)	8 (2)
C (6)	60 (2)	56 (2)	45 (2)	-6 (2)	-3 (2)	0 (2)
C (7)	46 (2)	54 (2)	42 (2)	2 (2)	-3 (2)	0 (2)
C (8)	41 (2)	68 (2)	53 (2)	5 (2)	-3 (2)	9 (2)
C (9)	51 (2)	85 (3)	58 (3)	12 (2)	-7 (2)	-18 (2)
C (10)	69 (3)	65 (2)	60 (3)	7 (2)	-13 (2)	-22 (2)
C (11)	84 (5)	117 (4)	65 (4)	36 (3)	-13 (3)	-13 (3)
C (12)	128 (6)	57 (2)	109 (5)	2 (3)	28 (5)	-7 (3)
C (13)	61 (3)	95 (4)	62 (3)	11 (3)	6 (3)	-3 (3)
C (21)	86 (5)	105 (4)	58 (4)	18 (3)	-9 (3)	-2 (3)
C (22)	160 (7)	55 (2)	83 (4)	3 (3)	15 (4)	-10 (4)
C (23)	62 (3)	108 (4)	70 (4)	6 (3)	9 (3)	-19 (3)

	Х	У	Ζ	U (eq)
H (1)	9004	2817	2215	69
H (2)	7907	4933	2666	73
H (3)	6509	3589	3239	69
H (5)	8300	173	2512	66
Н (6)	5946	1213	-109	64
H (8)	4200	4746	593	65
Н (9)	3454	2131	900	78
H (10)	4540	-47	477	78
H (11A)	7066	587	4355	133
H (11B)	7891	-537	4071	133
H (11C)	6896	-1267	4351	133
H (12A)	7286	-2134	2805	147
H (12B)	6089	-2293	2755	147
H (12C)	6666	-3004	3300	147
H (13A)	4786	-634	3717	109
H (13B)	4801	544	3182	109
H (13C)	5080	1164	3811	109
H (21A)	4666	5337	-998	124
H (21B)	5398	3962	-1207	124
H (21C)	5715	5752	-1299	124
H (22A)	6050	6884	459	149
H (22B)	5119	7258	44	149
H (22C)	6234	7768	-139	149
H (23A)	7699	5304	-678	120
H (23B)	7443	3485	-604	120
H (23C)	7739	4514	-55	120

Tabelle 5H-Atomkoordinaten [x 10⁴] und äquivalente isotrope Auslenkungsparameter [Å² x 10³] für 2038.

7.2 Kristalldaten von [Cp^{'''}₂Fe] (4a)

Tabelle 1. Kristalldaten und Strukturverfeinerung für 2055.

Summenformel	$C_{34}H_{58}Fe$	
Molmasse	522.65	Ç
Temperatur	293(2) K	
Strahlung	ΜοΚα	C (11)
Wellenlänge	0.71073 Å	Ĺ
Scanmodus	Phi- Rotation	U
Kristallsystem	Orthorhombisch	0
Raumgruppe	Pna2 ₁	
Zelldimensionen	$a = 17.0954(10)$ Å $\alpha = 90^{\circ}$	
	$b = 21.0918(16)$ Å $\beta = 90^{\circ}$	
	$c = 17.9288(12) \text{ Å} \qquad \gamma = 90^{\circ}$	
Zellvolumen	6464.6(8) Å ³	
Formeleinheiten pro Zelle Z	8	
Berechnete Dichte	1.074 Mg/m^3	
Absorptionskoeffizient	0.485 mm^{-1}	
Kristallgröße	0.60 x 0.52 x 0.44 mm	
Gemessener θ-Bereich	2.64 bis 25.68°	
Anzahl der gemessenen Reflexe	57454	
Unabhängige Reflexe	12229 (Rint = 0.0788)	
Absorptionskorrektur	Analytisch (STOE/XRED)	
Max. und min. Transmission	0.8436 und 0.7419	
Diffraktometer	Stoe IPDS	
Strukturlösung	Direkte Methoden	
Strukturlösungsprogramm	SIR97 (Giacovazzo et al., 1997)	
Strukturverfeinerung	Vollmatrix Least-Squares gegen F ²	
Strukturverfeinerungsprogramm	SHELXL-97 (Sheldrick, 1997)	
Daten / Restraints / Parameter	12229 / 1 / 667	
Endgültige R-Werte $[I > 2\sigma(I)]$	R1 = 0.0369, wR2 = 0.0778	
R-Werte (alle Daten)	R1 = 0.0501, WR2 = 0.0821	
Absolutstrukturparameter	0.022(11)	2
Wichtungsschema	$w=1/[\sigma^2(Fo^2)+(0.0450P)^2]$ mit P=(Fo^2+2)	$2Fc^{2})/3$
GooF (alle Daten)	0.942	
Größtes Maximum und Minimum	0.217 und -0.199 eÅ ⁻³	

Verfeinerung nach F^2 mit ALLEN Reflexen. Die gewichteten R-Werte wR2 und alle GooF's basieren auf F^2 . Die konventionellen R-Werte R1 basieren auf F, wobei F für negative F^2 gleich Null gesetzt wird. Das Ablehnungskriterium $F^2 > 2\sigma(F^2)$ wird nur zum Berechnen von R(obs) etc. verwendet. Zur Verfeinerung wurden alle Reflexe herangezogen. Grundsätzlich gilt: Auf F^2 bezogene R-Werte sind statistisch etwa doppelt so groß wie die auf F basierenden. Auf ALLE Reflexe bezogene R-Werte sind noch größer.

Die Wasserstoffatome wurden geometrisch lokalisiert. Für die Verfeinerung wurde ein Reitermodell angenommen. Als Temperaturfaktor wurde der 1.5-fache Wert (CH₃-Gruppen) bzw. der 1.2-fache Wert (Cp-H) des äquivalenten isotropen Temperaturfaktors desjenigen C-Atoms eingesetzt, an welches das jeweilige H-Atom gebunden ist.

Einzelheiten können dem Handbuch für das Verfeinerungsprogramm SHELXL entnommen werden.

$$GooF = \sqrt{\frac{\sum \left[w\left(F_o^2 - F_c^2\right)\right]}{(n-p)}}$$
 n = Zahl der Reflexe; p = Zahl der verfeinerten Parameter

Tabelle 2.

Atomkoordinaten [x 10⁴] und äquivalente isotrope Auslenkungsparameter [Å² x 10³] für 2055. U(eq) wird berechnet als ein Drittel der Spur des orthogonalisierten U_{ij} -Tensors.

	v	V	7	
	A	У	2	0(04)
$\Pi_{2}(1)$	F 2 2 0 (1)	10017(1)	0074(1)	22/1)
C(1)	5220(1) 4925(2)	10917(1) 9956(1)	8874(1) 9135(1)	32(1) 34(1)
C(2)	5414(2)	9980(1)	8474(1)	34(1)
C(3)	5010(2)	10365(1)	7944(1)	36(1)
C(4)	4282(2)	10572(1)	8229(1)	36(1)
C(5)	4247(1) 5063(2)	10334(1) 11756(1)	8970(1) 9503(1)	35(⊥) 42(1)
C(0)	5003(2) 5771(2)	11750(1) 11443(1)	9758(1)	43(1)
C(8)	6259(2)	11378(1)	9123(2)	45(1)
C(9)	5923(2)	11671(1)	8488(2)	46(1)
C(10)	5182(2)	11883(1)	8726(1)	43(1)
C(11) C(12)	4394(2)	9507(1) 8925(1)	9567(2)	43(1) 70(1)
C(13)	5656(2)	9269(2)	10139(2)	67(1)
C(14)	4439(2)	9828(2)	10456(2)	68(1)
C(15)	6148(2)	9599(1)	8242(1)	43(1)
C(16) C(17)	5957(2) 6372(2)	8884(1) 9749(2)	8239(2) 7433(2)	64(1) 68(1)
C(18)	6863(2)	9741(2)	8730(2)	64(1)
C(19)	3597(2)	10800(1)	7764(2)	46(1)
C(20)	3770(2)	11397(2)	7309(2)	71(1)
C(21)	3425(2) 2865(2)	10261(2)	7211(2) 8233(2)	71(1) 63(1)
C(31)	4353(2)	12044(1)	9919(2)	56(1)
C(32)	4636(3)	12600(2)	10404(2)	81(1)
C(33)	3893(2)	11560(2)	10378(2)	74(1)
C(34) C(35)	3782(2)	12332(2) 11375(2)	9351(2) 10535(2)	57(1)
C(35)	6621(3)	12004(2)	10649(2)	81(1)
C(37)	5656(3)	11263(2)	11210(2)	82(1)
C(38)	6786(3)	10842(2)	10516(2)	77(1)
C(39)	6362(2) 7139(3)	118/5(2) 11503(2)	//92(2) 7719(3)	64(⊥) 125(2)
C(40) C(41)	6591(3)	12561(2)	7911(2)	88(1)
C(42)	5912(4)	11792(3)	7082(2)	130(2)
Fe(2)	10143(1)	9129(1)	9320(1)	32(1)
C(51)	10857(2)	9322(1)	10269(1)	40(1)
C(52) C(53)	10051(2) 10054(2)	8454(1)	10121(1) 10157(1)	42(1)
C(54)	9559(2)	8969(1)	10341(1)	40(1)
C(55)	10063(2)	9502(1)	10380(1)	38(1)
C(56)	10458(2)	8970(1)	8174(1)	43(1)
C(57)	9265(2)	0790(1) 9355(1)	8579(1)	39(1) 39(1)
C(59)	9804(2)	9870(1)	8611(1)	40(1)
C(60)	10527(2)	9620(1)	8382(1)	41(1)
C(61)	11523(2)	9801(1)	10434(2)	49(1)
C(62)	12033(2) 12043(2)	9564(Z) 9944(2)	11084(2) 9760(2)	78(⊥) 63(1)
C(64)	11174(2)	10438(2)	10687(2)	80(1)
C(65)	11482(2)	8119(1)	10170(2)	57(1)
C(66)	12286(2)	8282(2)	9852(3)	88(1)
C(67)	11197(3)	1943(Z) 7520(2)	⊥⊥∪∪∠(∠) 9751(2)	83(1)
C(69)	8740(2)	8927(2)	10666(2)	50(1)
C(70)	8210(2)	9467(2)	10424(2)	80(1)

C(71)	8843(2)	8974(2)	11518(2)	68(1)
C(72)	8356(3)	8289(2)	10492(2)	95(1)
C(81)	11113(2)	8692(1)	7681(2)	54(1)
C(82)	11211(3)	7968(2)	7676(2)	87(1)
C(83)	11913(3)	8964(2)	7899(3)	95(1)
C(84)	10938(3)	8912(2)	6872(2)	85(1)
C(85)	9152(2)	8208(1)	8085(2)	50(1)
C(86)	8298(2)	8312(2)	8285(2)	76(1)
C(87)	9167(3)	8121(2)	7236(2)	81(1)
C(88)	9405(2)	7598(1)	8481(2)	73(1)
C(89)	9580(2)	10574(1)	8650(2)	48(1)
C(90)	9184(3)	10722(2)	7901(2)	75(1)
C(91)	10306(2)	10990(1)	8720(2)	75(1)
C(92)	9000(2)	10717(1)	9274(2)	68(1)

Tabelle 3. Bindungslängen [Å] und -winkel [⁰] für 2055.

Fe(1) - C(10)	2.056(2)		Fe(2) - C(55)	2.061(2)	
Fe(1) - C(3) Fe(1) - C(8)	2.064(3) 2.074(3)		Fe(2) - C(58) Fe(2) - C(53)	2.080(3) 2.074(2)	
Fe(1)-C(5)	2.074(2)		Fe(2)-C(60)	2.080(2)	
Fe(1) - C(4)	2.106(3)		Fe(2)-C(59)	2.096(2)	
Fe(1) - C(9) Fe(1) - C(6)	2.110(3) 2 115(2)		Fe(2) - C(54) Fe(2) - C(57)	2.112(3) 2.132(2)	
Fe(1) - C(2)	2.128(2)		Fe(2) - C(51)	2.132(2)	
Fe(1)-C(1)	2.140(2)		Fe(2)-C(52)	2.139(3)	
Fe(1) - C(7)	2.152(3)		Fe(2)-C(56)	2.149(3)	
C(1) - C(5) C(1) - C(2)	1.436(3) 1 451(3)		C(51) - C(55) C(51) - C(52)	1.424(4) 1 454(4)	
C(1) - C(11)	1.549(3)		C(51) - C(61)	1.151(1) 1.552(4)	
C(2)-C(3)	1.426(3)		C(52)-C(53)	1.420(4)	
C(2)-C(15)	1.548(3)		C(52) - C(65)	1.549(4) 1 415(4)	
C(4) - C(5)	1.421(3)		C(53) - C(54) C(54) - C(55)	1.419(4)	
C(4) - C(19)	1.516(4)		C(54)-C(69)	1.520(4)	
C(6) - C(10)	1.433(4)		C(56)-C(60)	1.426(3)	
C(6) = C(7) C(6) = C(31)	1.454(4) 1 548(4)		C(56) - C(57) C(56) - C(81)	1.461(4) 1.543(4)	
C(7) - C(8)	1.419(4)		C(57)-C(58)	1.432(3)	
C(7)-C(35)	1.557(4)		C(57)-C(85)	1.547(4)	
C(8) - C(9)	1.416(4)		C(58) - C(59)	1.425(4) 1.404(4)	
C(9) - C(10) C(9) - C(39)	1.518(4)		C(59) - C(89) C(59) - C(89)	1.535(3)	
C(11)-C(13)	1.529(4)		C(61)-C(63)	1.530(4)	
C(11) - C(14)	1.531(4)		C(61)-C(64)	1.538(5)	
C(11) - C(12) C(15) - C(18)	1.549(4) 1 532(4)		C(61) - C(62) C(65) - C(66)	1.538(4)	
C(15) - C(17)	1.534(4)		C(65)-C(67)	1.541(5)	
C(15)-C(16)	1.544(4)		C(65)-C(68)	1.548(5)	
C(19)-C(22)	1.524(4)		C(69) - C(70)	1.519(5) 1.528(5)	
C(19) - C(20) C(19) - C(21)	1.536(4)		C(69) - C(72) C(69) - C(71)	1.528(5) 1.541(4)	
C(31)-C(33)	1.529(5)		C(81)-C(82)	1.535(5)	
C(31) - C(34)	1.538(5)		C(81)-C(83)	1.534(6)	
C(31) - C(32) C(35) - C(37)	1.538(4) 1.517(5)		C(81) = C(84) C(85) = C(86)	1.553(5) 1.518(5)	
C(35)-C(38)	1.539(5)		C(85)-C(88)	1.531(4)	
C(35)-C(36)	1.546(5)		C(85)-C(87)	1.534(4)	
C(39)-C(42)	1.498(6) 1 514(4)		C(89) - C(91)	1.526(5) 1.524(4)	
C(39) - C(40)	1.549(6)		C(89)-C(90)	1.524(4) 1.537(4)	
C(10)-Fe(1)-C(3)		116.66(10)	C(9)-Fe(1)-	C(6)	67.46(10)
C(10) - Fe(1) - C(8)		65.79(11)	C(10)-Fe(1)	-C(2)	151.79(10)
C(3)-Fe(1)-C(8)		125.89(11)	C(3) - Fe(1) - C(3) - Fe(1)	C(2)	39.74(9)
C(10) - Fe(1) - C(5) C(3) - Fe(1) - C(5)		124.94(11) 66.05(10)	C(8) - Fe(1) - C(5) - Fe(1)	C(2)	111.98(10)
C(8)-Fe(1)-C(5)		161.18(10)	C(4)-Fe(1)-	C(2)	67.20(9)
C(10) - Fe(1) - C(4)		104.33(10)	C(9)-Fe(1)-	C(2)	120.00(10)
C(3) - Fe(1) - C(4) C(8) - Fe(1) - C(4)		39.64(10) 158 73(10)	C(6) - Fe(1) - C(10) - Fe(1)	C(2) = C(1)	167.49(9) 163.62(11)
C(5)-Fe(1)-C(4)		39.74(9)	C(3)-Fe(1)-	C(1)	66.51(9)
C(10) - Fe(1) - C(9)		39.53(11)	C(8)-Fe(1)-	C(1)	126.81(10)
C(3)-Fe(1)-C(9)		104.98(10)	C(5) - Fe(1) - C(4) = C(1)	C(1)	39.82(9)
C(8) = Fe(1) = C(9) C(5) = Fe(1) = C(9)		39.55(11) 158 46(11)	C(4) - Fe(1) - C(9) - Fe(1)	C(1)	67.24(9) 156 84(11)
C(4)-Fe(1)-C(9)		120.92(10)	C(6)-Fe(1)-	C(1)	130.25(10)
C(10) - Fe(1) - C(6)		40.17(10)	C(2)-Fe(1)-	C(1)	39.75(9)
C(3) - Fe(1) - C(6) C(8) - Fe(1) - C(6)		151.65(10) 66.54(11)	C(10) - Fe(1) C(3) - Fe(1) =	-C(7)	66.32(10)
C(5) - Fe(1) - C(6)		110.48(10)	C(3) - Fe(1) - C(8) - Fe(1)	C(7)	39.17(10)
C(4)-Fe(1)-C(6)		119.03(10)	C(5)-Fe(1)-	C(7)	126.55(10)

$Q(4) = E_{0}(1) Q(7)$	1EC 2E(10)	a(22) a(21) a(21)	107 1/2)
C(4) - Pe(1) - C(7)	100.35(10)	C(33) = C(31) = C(34)	107.1(3)
C(9) - Fe(1) - C(7)	66.64(10)	C(33)-C(31)-C(32)	111.5(3)
C(6) - Fe(1) - C(7)	39.82(10)	C(34)-C(31)-C(32)	105.8(3)
C(2) - Fe(1) - C(7)	131 20(10)	C(33) - C(31) - C(6)	1136(2)
C(1) = C(1) = C(7)	115 52(0)	C(32) C(31) C(0)	100 E(2)
C(1) - Fe(1) - C(7)	115.52(9)	C(34) - C(31) - C(6)	109.5(3)
C(5)-C(1)-C(2)	106.09(19)	C(32) - C(31) - C(6)	109.1(3)
C(5)-C(1)-C(11)	117.6(2)	C(37)-C(35)-C(38)	107.4(3)
C(2) = C(1) = C(11)	133 9(2)	C(37) - C(35) - C(36)	108 5(3)
C(Z) C(1) C(11)	(7, (2/10))	C(37) $C(35)$ $C(30)$	106.0(3)
C(5) - C(1) - FO(1)	67.63(12)	C(38) - C(35) - C(36)	106.9(3)
C(2)-C(1)-Fe(1)	69.68(12)	C(37)-C(35)-C(7)	118.2(3)
C(11)-C(1)-Fe(1)	139.71(17)	C(38) - C(35) - C(7)	110.3(3)
C(3) - C(2) - C(1)	106 6(2)	C(26) - C(25) - C(7)	105 0(3)
C(3) C(2) C(1)	100.0(2)	C(30) C(33) C(7)	111 2(4)
C(3) - C(2) - C(15)	120.6(2)	C(42) - C(39) - C(41)	111.3(4)
C(1)-C(2)-C(15)	131.9(2)	C(42)-C(39)-C(9)	114.4(3)
C(3)-C(2)-Fe(1)	67.73(13)	C(41) - C(39) - C(9)	106.4(3)
$C(1) - C(2) - F_{\Theta}(1)$	70 57(12)	C(42) - C(39) - C(40)	108 0(4)
C(1) $C(2)$ $FC(1)$	124.26(10)	C(42) C(30) C(40)	105.0(4)
C(15) - C(2) - Fe(1)	134.36(17)	C(41) - C(39) - C(40)	105.9(4)
C(4) - C(3) - C(2)	111.1(2)	C(9)-C(39)-C(40)	110.5(3)
C(4)-C(3)-Fe(1)	71.75(14)	C(55) - Fe(2) - C(58)	117.23(11)
$C(2) - C(2) - F_0(1)$	7252(14)	$C(55) - E_{0}(2) - C(52)$	65 80(10)
C(2) - C(3) - FE(1)		C(55) = FE(2) = C(53)	05.00(10)
C(3) - C(4) - C(5)	105.4(2)	C(58) - Fe(2) - C(53)	124.88(11)
C(3)-C(4)-C(19)	125.3(2)	C(55)-Fe(2)-C(60)	125.18(10)
C(5) - C(4) - C(19)	126 5(2)	C(58) - Fe(2) - C(60)	66 00(11)
$Q(2) Q(4) E_2(1)$	60 61/1E	Q(E2) = P(2) Q(60)	161 60(11)
C(3) - C(4) - Fe(1)	00.01(15)	C(55) - Fe(2) - C(60)	101.09(11)
C(5)-C(4)-Fe(1)	68.94(14)	C(55) - Fe(2) - C(59)	104.85(10)
C(19)-C(4)-Fe(1)	141.32(17)	C(58)-Fe(2)-C(59)	40.08(10)
C(4) - C(5) - C(1)	110 7(2)	C(53) - Fe(2) - C(59)	158 46(11)
C(1) C(3) C(1)	(21, 22/14)	C(55) PC(2) C(55)	20.20(10)
C(4) - C(5) - Fe(1)	/1.33(14)	C(60) - Fe(2) - C(59)	39.29(10)
C(1)-C(5)-Fe(1)	72.55(13)	C(55)-Fe(2)-C(54)	39.73(10)
C(10) - C(6) - C(7)	105.8(2)	C(58) - Fe(2) - C(54)	104.56(11)
C(10) - C(6) - C(31)	$120 \ 4(2)$	$C(52) = E_0(2) = C(54)$	20 50(11)
C(10) C(0) C(31)		C(33) FE(2) C(34)	150 00(11)
C(7) = C(6) = C(31)	132.8(2)	C(60) - Fe(2) - C(54)	158.28(10)
C(10)-C(6)-Fe(1)	67.68(13)	C(59)-Fe(2)-C(54)	120.95(10)
C(7) - C(6) - Fe(1)	71.47(14)	C(55) - Fe(2) - C(57)	152.45(11)
C(31) - C(6) - Fe(1)	133 2(2)	C(58) - Fe(2) - C(57)	39 90(10)
	106 2(2)	C(50) PC(2) C(57)	111 02(10)
C(8) = C(7) = C(6)	106.3(2)	C(53) - Fe(2) - C(57)	111.22(10)
C(8)-C(7)-C(35)	116.8(3)	C(60)-Fe(2)-C(57)	66.45(10)
C(6) - C(7) - C(35)	133.5(2)	C(59)-Fe(2)-C(57)	67.45(9)
C(8) - C(7) - Fe(1)	$67 \ 45(14)$	C(54) - Fe(2) - C(57)	119 81 (10)
C(0) C(7) PC(1)	(0, 10(11))	C(51) PC(2) C(57)	20.66(10)
C(6) - C(7) - Fe(1)	68.72(14)	C(55) - Fe(2) - C(51)	39.66(10)
C(35)-C(7)-Fe(1)	143.50(19)	C(58)-Fe(2)-C(51)	152.54(10)
C(9) - C(8) - C(7)	111.4(3)	C(53)-Fe(2)-C(51)	66.13(10)
C(9) - C(8) - Fe(1)	71 59(17)	C(60) - Fe(2) - C(51)	111 71(10)
$Q(7) Q(9) F_{0}(1)$	72.00(16)	Q(E0) = E(2) = Q(E1)	120 04(10)
C(7) = C(8) = Fe(1)	/3.30(10)	C(59) - Fe(2) - C(51)	120.04(10)
C(10) - C(9) - C(8)	105.1(2)	C(54) - Fe(2) - C(51)	67.03(10)
C(10) - C(9) - C(39)	127.1(3)	C(57)-Fe(2)-C(51)	166.93(10)
C(8) - C(9) - C(39)	125 7(3)	C(55) - Fe(2) - C(52)	66 51 (10)
$Q(10) Q(0) E_{2}(1)$	60 1E(14)	$Q(EQ) = P_{Q}(2) + Q(EQ)$	162 07(10)
C(10) - C(9) - Fe(1)	00.15(14)	C(50) - Fe(2) - C(52)	102.07(10)
C(8)-C(9)-Fe(1)	68.85(15)	C(53)-Fe(2)-C(52)	39.35(10)
C(39)-C(9)-Fe(1)	139.9(2)	C(60)-Fe(2)-C(52)	127.09(11)
C(9) - C(10) - C(6)	111.2(2)	C(59) - Fe(2) - C(52)	157.05(11)
$C(0) C(10) E_0(1)$	72 22(14)	C(52) = C(2) = C(52)	66 06(11)
C(9) - C(10) - Fe(1)	72.33(14)	C(54) = Fe(2) = C(52)	00.90(11)
$C(\rho) - C(TO) - F_{G}(T)$	/2.15(13)	C(5/) - Fe(2) - C(52)	129.99(10)
C(13)-C(11)-C(14)	106.9(3)	C(51)-Fe(2)-C(52)	39.82(10)
C(13) - C(11) - C(12)	$108 \ 4(2)$	C(55) - Fe(2) - C(56)	163 19(10)
C(14) = C(11) = C(12)		$C(58) - F_{2}(2) - C(56)$	66 56(11)
C(14) - C(11) - C(12)	117.0(0)	C(30) - FE(2) - C(30)	107.00(11)
C(13) - C(11) - C(1)	⊥⊥/.Z(Z)	C(53) - Fe(2) - C(56)	127.03(10)
C(14)-C(11)-C(1)	110.1(2)	C(60)-Fe(2)-C(56)	39.36(9)
C(12)-C(11)-C(1)	106.4(2)	C(59)-Fe(2)-C(56)	66.81(10)
C(18) - C(15) - C(17)	107 5(3)	C(54) - Fe(2) - C(56)	157 08(10)
a(10) a(10) a(10)		$O(E_{2}) = O(2) O(E_{2})$	10/10(10)
C(10) - C(15) - C(16)	$\perp \perp \perp \cdot 3(\angle)$	C(5) - He(2) - C(56)	39.89(II)
C(17)-C(15)-C(16)	104.5(2)	C(51)-Fe(2)-C(56)	130.46(11)
C(18) - C(15) - C(2)	113.1(2)	C(52)-Fe(2)-C(56)	115.17(10)
C(17) = C(15) = C(2)	110 4(2)	C(55) - C(51) - C(52)	106 3(2)
O(16) O(15) O(2)		C(33) C(31) C(32)	110 0(0)
C(10) - C(15) - C(2)	TOA. 1(7)	C(55) - C(51) - C(61)	TTA.A(S)
C(4) - C(19) - C(22)	112.1(2)	C(52)-C(51)-C(61)	133.0(3)
C(4)-C(19)-C(20)	113.9(3)	C(55)-C(51)-Fe(2)	67.47(14)
C(22) - C(19) - C(20)	109 5(3)	C(52) - C(51) - F = (2)	70 21(14)
C(A) C(10) C(20)	105.5(3)	C(52) C(51) E(2) C(61) C(51) E(2)	10.JI(II)
C(4) = C(19) = C(21)		C(DT) - C(DT) - HG(Z)	134.14(18)
C(22)-C(19)-C(21)	107.7(3)	C(53)-C(52)-C(51)	106.0(2)
C(20)-C(19)-C(21)	107.6(3)	C(53)-C(52)-C(65)	117.7(2)
			· ·

C(51) - C(52) - C(65)	133 4(3)
Q(52) = Q(52) = Q(53)	
C(53) - C(52) - Fe(2)	67.89(14)
C(51)-C(52)-Fe(2)	69.87(14)
C(65) - C(52) - Fe(2)	140 8(2)
C(05) C(52) PC(2)	111 ((2)
C(54) - C(53) - C(52)	111.6(2)
C(54)-C(53)-Fe(2)	71.69(14)
$C(52) - C(53) - F_{2}(2)$	72 76(14)
C(52) $C(55)$ $E(2)$	12.70(14)
C(53)-C(54)-C(55)	104.9(2)
C(53)-C(54)-C(69)	126.6(2)
C(55) - C(54) - C(69)	125 9(2)
C(55) = C(51) = C(55)	$(2)^{-1}(14)$
C(53) - C(54) - Fe(2)	68.81(14)
C(55)-C(54)-Fe(2)	68.20(14)
C(69) - C(54) - Fe(2)	141.0(2)
C(E4) $C(EE)$ $C(E1)$	111 1(2)
C(34) - C(35) - C(31)	
C(54) - C(55) - Fe(2)	72.07(14)
C(51)-C(55)-Fe(2)	72.87(14)
C(60) - C(56) - C(57)	106 2(2)
C(00) C(50) C(57)	
C(60) - C(56) - C(81)	$\perp \perp / \cdot \perp (\geq)$
C(57)-C(56)-C(81)	133.5(2)
C(60) - C(56) - Fe(2)	67 71(14)
$Q(E7) Q(E6) E_{2}(2)$	CO 40/14)
C(5) = C(50) = Fe(2)	140 143(14)
C(81)-C(56)-Fe(2)	142.1(2)
C(58)-C(57)-C(56)	106.1(2)
C(58) - C(57) - C(85)	120 2/21
C(SC) = C(ST) = C(SS)	120.2(3)
C(50) - C(57) - C(85)	132.8(Z)
C(58)-C(57)-Fe(2)	67.35(13)
C(56) - C(57) - Fe(2)	70.68(14)
C(25) = C(57) = C(2)	10/ 20/10
C(05) = C(5) = FE(2)	110 5(0)
C(59)-C(58)-C(57)	110.5(2)
C(59)-C(58)-Fe(2)	71.29(15)
$C(57) - C(58) - F_{\Theta}(2)$	$72^{-}75(15)$
C(57) C(50) PC(2)	105 7(2)
C(60) - C(59) - C(58)	105.7(2)
C(60)-C(59)-C(89)	126.6(2)
C(58) - C(59) - C(89)	125.3(3)
$C(60) - C(50) - E_0(2)$	6975(11)
C(00) - C(33) - Fe(2)	(9.75(14))
C(58) - C(59) - Fe(2)	68.63(13)
C(89)-C(59)-Fe(2)	139.63(18)
C(59) - C(60) - C(56)	$111 \ 4(2)$
C(55) = C(50) = C(50)	111.1(2)
C(59) - C(60) - Fe(2)	70.96(14)
C(56)-C(60)-Fe(2)	72.93(14)
C(63) - C(61) - C(64)	106.6(3)
C(62), C(61), C(62)	100.4(2)
C(03) - C(01) - C(02)	109.4(3)
C(64)-C(61)-C(62)	106.3(3)
C(63)-C(61)-C(51)	113.8(2)
C(64) - C(61) - C(51)	109 9(3)
Q(G1) = Q(G1) = Q(G1)	110.4(2)
C(62) - C(61) - C(51)	110.4(2)
C(66)-C(65)-C(67)	110.7(3)
C(66)-C(65)-C(68)	106.6(3)
C(67) - C(65) - C(68)	107 2(3)
C(07) C(05) C(00)	116 4(2)
C(66) - C(65) - C(52)	110.4(3)
C(67)-C(65)-C(52)	106.0(3)
C(68) - C(65) - C(52)	109.6(3)
C(70) - C(60) - C(51)	112 1(2)
C(70) - C(09) - C(04)	110.2(2)
C(70)-C(69)-C(72)	110.3(3)
C(54) - C(69) - C(72)	111.6(3)
C(70) = C(69) = C(71)	1076(3)
C(70) C(00) C(71)	105 7(2)
C(54) - C(69) - C(71)	105.7(3)
C(72)-C(69)-C(71)	108.0(3)
C(82)-C(81)-C(83)	106.0(3)
C(82) = C(81) = C(56)	1175(3)
C(02) C(01) C(50)	111 0(2)
C(83) - C(81) - C(56)	111.0(3)
C(82)-C(81)-C(84)	108.3(3)
C(83)-C(81)-C(84)	107.3(3)
C(56) - C(91) - C(91)	106 4/21
$C(50) - C(\delta I) - C(\delta 4)$	100.4(3)
C(86)-C(85)-C(88)	106.5(3)
C(86)-C(85)-C(87)	105.5(3)
C(88) - C(85) - C(87)	110 7/2)
C(00) = C(00) = C(07)	$\pm \pm 0.7(3)$
C(86) - C(85) - C(57)	$\pm 10.3(2)$
C(88)-C(85)-C(57)	113.7(2)
C(87) - C(85) - C(57)	109.8(3)
C(91) = C(90) = C(92)	110 0/21
C(3T) - C(3A) - C(3A)	TTO'8(3)

C(91)-C(89)-C(59)	110.9(3)
C(92)-C(89)-C(59)	112.9(2)
C(91)-C(89)-C(90)	108.2(3)
C(92)-C(89)-C(90)	108.4(3)
C(59)-C(89)-C(90)	105.5(2)

Tabelle 4. Anisotrope Auslenkungsparameter [Å² x 10³] für 2055.

Tabelle 4.	Anisotrope Auslenkungsparameter [Å ² x 10 ³] für 2	2055.
Der Expon	ent des anisotropen Auslenkungsfaktors hat die Form:	$-2\pi^{2}$ [(ha [*]) ² U ₁₁ + + 2hka [*] b [*] U ₁₂]

$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		U ₁₁	U ₂₂	U ₃₃	U ₂₃	U ₁₃	U ₁₂
$\begin{array}{cccccccccccccccccccccccccccccccccccc$							
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Fe(1) C(1)	34(1) 37(2)	31(1) 32(1)	29(1) 34(1)	0(1) 2(1)	3(1) -2(1)	1(1) -2(1)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(2)	35(1)	33(1)	35(1)	-2(1)	0(1)	1(1)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(3) C(4)	38(2) 36(2)	40(1) 39(1)	31(1) 34(1)	0(1) 0(1)	5(1) -1(1)	4(1) 2(1)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(5)	33(1)	38(1)	36(1)	4(1)	2(1)	1(1)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(0) C(7)	50(2)	38(1)	40(1)	-6(1)	0(1)	-3(1)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(8)	41(2) 56(2)	42(1) 38(1)	53(2) 45(1)	-5(1) -1(1)	5(1) 11(1)	-5(1) -9(1)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(10)	54(2)	30(1)	45(1)	-1(1)	3(1)	3(1)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(11) C(12)	53(2) 74(3)	39(1) 57(2)	38(1) 77(2)	8(1) 14(2)	1(1) 1(2)	-1(1) -22(2)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(13)	74(3)	75(2)	52(2)	18(2)	-10(2)	12(2)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(14) C(15)	39(2)	45(1)	44(2) 45(1)	-5(1)	5(1)	9(1)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(16) C(17)	70(2) 71(3)	43(1) 74(2)	78(2) 58(2)	-11(1) 5(2)	6(2) 27(2)	15(1) 25(2)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(18)	36(2)	69(2)	87(2)	-14(2)	-3(2)	16(1)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(19) C(20)	42(2) 69(3)	56(2) 84(2)	41(1) 61(2)	5(1) 31(2)	-5(1) -14(2)	8(1) 4(2)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(21)	61(2) 41(2)	90(2)	63(2) 60(2)	-16(2)	-24(2)	8(2)
C(32) 100(3) 66(2) 76(2) -36(2) 3(2) 20(2) C(33) 69(3) 72(2) 81(2) -6(2) 37(2) 15(2)	C(31)	61(2)	49(2)	59(2)	-14(1)	11(2)	12(1)
	C(32) C(33)	100(3) 69(3)	66(2) 72(2)	76(2) 81(2)	-36(2) -6(2)	3(2) 37(2)	20(2) 15(2)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(34)	63(2)	74(2)	86(2)	-16(2)	2(2)	27(2)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(35) C(36)	89(3)	81(2)	72(2)	-23(2)	-18(2)	-17(2)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(37) C(38)	100(4) 80(3)	101(3) 82(2)	45(2) 70(2)	4(2) -6(2)	-8(2) -32(2)	-5(2) 14(2)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(39)	75(3)	55(2)	61(2)	5(1)	27(2)	-15(2)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(40) C(41)	127(5) 115(4)	107(3) 61(2)	140(4) 88(3)	41(3) 11(2)	96(4) 33(2)	28(3) -32(2)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(42)	173(6)	172(5)	44(2) 33(1)	19(2)	10(3)	-100(4)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(51)	36(2)	50(1)	34(1)	-1(1)	-2(1)	-6(1)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(52) C(53)	37(2) 44(2)	49(1) 40(1)	39(1) 40(1)	5(1) 9(1)	-6(1) -7(1)	0(1) -7(1)
C(54) 36(2) 50(1) 34(1) 5(1) -3(1) -8(1) C(55) 27(2) 44(1) 22(1) 2(1) -1(1)	C(54)	36(2)	50(1)	34(1)	5(1)	-3(1)	-8(1)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(55) C(56)	49(2)	42(1)	38(1)	-3(1)	1(1)	0(1)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(57) C(58)	43(2) 39(2)	38(1) 41(1)	34(1) 37(1)	-3(1) -1(1)	-8(1) -5(1)	1(1) 0(1)
C(59) 46(2) 35(1) 38(1) 1(1) 1(1) 0(1) C(59) 46(2) 45(1) 4(1) 1(1) 0(1)	C(59)	46(2)	35(1)	38(1)	1(1)	1(1)	0(1)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(60) C(61)	38(2)	65(2)	45(2)	-6(1)	-4(1)	-16(1)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(62)	64(3) 43(2)	116(3) 85(2)	54(2) 62(2)	2(2) -2(2)	-22(2) 7(2)	-29(2) -26(2)
$\begin{array}{c} C(63) \\ C(64) \\ 68(3) \\ 70(2) \\ 101(3) \\ -32(2) \\ 10(2) \\ -27(2) \\ \end{array}$	C(64)	68(3)	70(2)	101(3)	-32(2)	10(2)	-27(2)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(65) C(66)	44(2) 57(3)	57(2) 87(2)	121(3)	9(2) 10(2)	-9(2) 8(2)	12(1) 21(2)
C(67) $82(3)$ $86(2)$ $85(3)$ $32(2)$ $-27(2)$ $15(2)$ $C(68)$ $85(3)$ $57(2)$ $108(3)$ $-12(2)$ $-15(2)$ $28(2)$	C(67)	82(3) 85(3)	86(2) 57(2)	85(3) 108(3)	32(2)	-27(2)	15(2) 28(2)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(69)	38(2)	68(2)	45(2)	5(1)	6(1)	-8(1)
C(70) 38(2) 129(3) 72(2) 33(2) 15(2) 11(2) C(71) 57(2) 99(3) 47(2) 10(2) 13(2) -2(2)	C(70) C(71)	38(2) 57(2)	129(3) 99(3)	72(2) 47(2)	33(2) 10(2)	15(2) 13(2)	11(2) -2(2)
C(72) 70(3) 116(3) 100(3) -14(3) 21(2) -54(2) C(81) 52(2) 60(2) 50(2) 10(1) 12(2) -2(1)	C(72)	70(3) 52(2)	116(3)	100(3)	-14(3)	21(2)	-54(2)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(82)	90(3)	76(2)	96(3)	-14(2)	31(3)	25(2)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(83) C(84)	58(3) 112(4)	123(3) 93(3)	103(3) 50(2)	-36(3) -9(2)	30(2) 23(2)	-6(2) 3(2)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(85)	54(2)	42(1)	55(2)	-10(1)	-11(1)	-2(1)

<u>7 A</u>	nhang					Seite	<u>84</u>
C(87)	100(3)	87(2)	57(2)	-24(2)	-20(2)	-11(2)	
C(88) C(89) C(90)	82(3) 60(2) 88(3)	37(1) 34(1) 65(2)	51(2) 71(2)	-4(2) 2(1) 13(2)	-16(2) 6(1) -6(2)	-13(2) 1(1) 15(2)	
C(91) C(92)	79(3) 82(2)	37(1) 41(1)	108(3) 82(2)	0(2) -3(2)	2(2) 20(2)	-11(1) 15(1)	

	х	У	Z	U(eq)
н(3)	5201	10467	7474	44
H(5)	3842	10413	9303	42
H(8)	6739	11170	9123	54
H(10)	4817	12079	8418	52
H(12A)	4666	8705	9177	104
H(12B)	3894	9065	9387	104
H(12C) $H(12\lambda)$	4320	8645	9984	104
H(13R)	5937	9024	9762	101
H(13C)	5554	8995	10555	101
H(14A)	4436	9553	10883	101
H(14B)	3910	9911	10303	101
H(14C)	4692	10219	10581	101
H(16A)	6392	8652	8039	96
H(16C)	5855	8745	7930 8740	96
H(17A)	6457	10197	7380	102
H(17B)	5958	9618	7106	102
H(17C)	6843	9525	7306	102
H(18A)	7279	9455	8604	96
H(18B)	6727	9688	9245	96
H(18C)	/U3⊥ 2012	101/0 11754	8646	96 107
H(20A) H(20B)	30⊥2 3353	11468	6960	107
H(20C)	4252	11343	7042	107
H(21A)	3863	10208	6881	107
H(21B)	2967	10364	6925	107
H(21C)	3337	9874	7480	107
H(22A)	2701	10507	8445	95
H(22B) H(22C)	2455 2978	11199	7923	95 95
H(32A)	4192	12817	10611	121
H(32B)	4934	12889	10104	121
H(32C)	4957	12442	10802	121
H(33A)	3507	11776	10672	111
H(33B)	4244	11335	10701	111
H(33C)	3640	12008	10049 0013	
H(34R)	4041	12661	9076	112
H(34C)	3339	12507	9608	112
H(36A)	6258	12351	10653	121
H(36B)	6989	12061	10249	121
H(36C)	6897	11991	11115	121
H(3/A) H(27D)	5396	10862 11505	11245	123
H(37C)	5972	11261	11652	123
H(38A)	7017	10797	11001	116
H(38B)	7184	10945	10159	116
H(38C)	6538	10451	10376	116
H(40A)	7029	11064	7624	187
H(40B)	7432	11541	8174	187
H(40C) H(41A)	6974	12681	7546	132
H(41B)	6807	12611	8402	132
H(41C)	6137	12825	7861	132
H(42A)	5467	12070	7083	195
H(42B)	5739	11361	7041	195
H(42C)	6243	11894	6665	195
H(53) H(55)	988U 9806	8043	10166	50 4 E
H(58)	8742	9379	8717	47
H(60)	10991	9850	8368	50
H(62A)	12281	9173	10945	117
H(62B)	11711	9496	11515	117

Tabelle 5.H-Atomkoordinaten [x 10⁴] und äquivalente isotrope Auslenkungsparameter [Å² x 10³] für 2055.

H(62C) H(63A) H(63B) H(63C) H(64A) H(64B) H(64C) H(66A) H(66B) H(66C) H(67A) H(67C) H(67C) H(67C) H(67C) H(67C) H(67C) H(70A) H(70B) H(70C) H(70A) H(70B) H(70C) H(71A) H(71B) H(71C) H(71C) H(72A) H(72B) H(72C) H(82A) H(82B) H(82C) H(83A) H(83B) H(83C) H(84A) H(84B) H(84B) H(84C) H(86B) H(86C) H(87A) H(87C) H(88B) H(88C) H(88C) H(90A) H(90B)	12426 11733 12268 12452 11588 10879 10836 12501 12236 12628 11884 11034 11752 11019 10775 11620 8442 7710 8144 9047 9202 8347 7848 8675 8304 11615 10728 11353 11997 11927 12316 11368 10867 10470 8002 8099 8253 8802 9684 9024 9296 9122 9093 8695	9875 10135 9557 10230 10735 10376 10599 8636 8388 7923 7584 7839 8296 7637 7329 7223 9864 9424 9455 9384 8652 8914 8273 7953 8242 7853 7773 7826 8903 9408 8749 8800 9364 8709 7940 8668 8392 7796 8001 8512 7633 7534 7245 11170 10501	11196 9374 9578 9905 10778 11137 10304 10118 9333 9904 11059 11191 11276 9262 10022 9707 10565 10662 9892 11644 11683 11757 10720 10685 9962 7329 7530 8167 8424 7786 7624 6554 6865 6696 8159 8012 8810 7096 7082 6998 9004 8408 8277 7863 7871	$117 \\ 95 \\ 95 \\ 95 \\ 95 \\ 119 \\ 119 \\ 132 \\ 132 \\ 132 \\ 126 \\ 126 \\ 126 \\ 125 \\ 125 \\ 125 \\ 125 \\ 120 \\ 120 \\ 120 \\ 120 \\ 120 \\ 120 \\ 120 \\ 120 \\ 121 \\ 143 \\ 143 \\ 143 \\ 143 \\ 143 \\ 143 \\ 143 \\ 143 \\ 143 \\ 141 \\ 144 \\ 142 \\ 142 \\ 128 \\ 12$
H(88A) H(88B) H(88C) H(90A) H(90B) H(90C) H(91A) H(91B) H(91C) H(92A) H(92B) H(92C)	9296 9956 9122 9093 8695 9518 10155 10654 10566 9249 8557 8831	7633 7534 7245 11170 10501 10589 11428 10904 10900 10652 10441 11150	9004 8408 8277 7863 7871 7500 8709 8312 9182 9748 9231 9237	110 110 112 112 112 112 112 112 112 112

7.3 Kristalldaten von [Cp''FeCp'''] (4b)

Tabelle 1. Kristalldaten und Strukturverfeinerung für 0258.

$C_{30}H_{50}Fe$		C (61)
466.55		C C C (e
293(2) K		-
ΜοΚα		
0.71073 Å		C(11)
Phi-Oszillation		
Monoklin		C
$P2_1/c$		
a = 9.6737(8) Å	$\alpha = 90^{\circ}$	
<i>b</i> = 16.3832(9) Å	$\beta = 90.720(10)^{\circ}$	
c = 17.8012(15) Å	$\gamma = 90^{\circ}$	
2821.0(4) Å ³		
4		
1.099 Mg/m^3		
0.548 mm^{-1}		
0.60 x 0.56 x 0.14 mm		
2.74 bis 25.68°		
35534		
5261 (Rint = 0.1165)		
Analytisch (ABST in PL	ATON)	
0.93603 und 0.75376		
Stoe IPDS		
Direkte Methoden		
SIR97 (Giacovazzo et al.	, 1997)	
Vollmatrix Least-Square	s gegen F ²	
SHELXL-97 (Sheldrick,	1997)	
5261 / 0 / 295		
R1 = 0.0549, wR2 = 0.14	156	
R1 = 0.0871, $wR2 = 0.15$	565	
$w=1/[\sigma^2(Fo^2)+(0.0864P)^2]$	² +0.0000P] mit P=(Fo	$v^{2}+2Fc^{2})/3$
0.995		
$0.617 \text{ und } -0.275 \text{ e}^{\text{A}^{-3}}$		
	C ₃₀ H ₅₀ Fe 466.55 293(2) K MoK α 0.71073 Å Phi-Oszillation Monoklin P2 ₁ /c a = 9.6737(8) Å b = 16.3832(9) Å c = 17.8012(15) Å 2821.0(4) Å ³ 4 1.099 Mg/m ³ 0.548 mm ⁻¹ 0.60 x 0.56 x 0.14 mm 2.74 bis 25.68° 35534 5261 (Rint = 0.1165) Analytisch (ABST in PL 0.93603 und 0.75376 Stoe IPDS Direkte Methoden SIR97 (Giacovazzo et al. Vollmatrix Least-Square SHELXL-97 (Sheldrick, 5261 / 0 / 295 R1 = 0.0549, wR2 = 0.14 R1 = 0.0871, wR2 = 0.15 w=1/[$\sigma^{2}(Fo^{2})$ +(0.0864P) 0.995 0.617 und -0.275 eÅ ⁻³	C ₃₀ H ₅₀ Fe 466.55 293(2) K MoK α 0.71073 Å Phi-Oszillation Monoklin P2 ₁ /c $a = 9.6737(8)$ Å $\alpha = 90^{\circ}$ $b = 16.3832(9)$ Å $\beta = 90.720(10)^{\circ}$ $c = 17.8012(15)$ Å $\gamma = 90^{\circ}$ 2821.0(4) Å ³ 4 1.099 Mg/m ³ 0.548 mm ⁻¹ 0.60 x 0.56 x 0.14 mm 2.74 bis 25.68° 35534 5261 (Rint = 0.1165) Analytisch (ABST in PLATON) 0.93603 und 0.75376 Stoe IPDS Direkte Methoden SIR97 (Giacovazzo et al., 1997) Vollmatrix Least-Squares gegen F ² SHELXL-97 (Sheldrick, 1997) 5261 / 0 / 295 R1 = 0.0549, wR2 = 0.1456 R1 = 0.0871, wR2 = 0.1565 w=1/[$\sigma^{2}(Fo^{2})+(0.0864P)^{2}+0.0000P$] mit P=(Fo 0.995 0.617 und -0.275 eÅ ⁻³

Verfeinerung nach F^2 mit ALLEN Reflexen. Die gewichteten R-Werte wR2 und alle GooF's basieren auf F^2 . Die konventionellen R-Werte R1 basieren auf F, wobei F für negative F^2 gleich Null gesetzt wird. Das Ablehnungskriterium $F^2 > 2\sigma(F^2)$ wird nur zum Berechnen von R(obs) etc. verwendet. Zur Verfeinerung wurden alle Reflexe herangezogen. Grundsätzlich gilt: Auf F^2 bezogene R-Werte sind statistisch etwa doppelt so groß wie die auf F basierenden. Auf ALLE Reflexe bezogene R-Werte sind noch größer.

Die Wasserstoffatome wurden geometrisch lokalisiert. Für die Verfeinerung wurde ein Reitermodell angenommen. Als Temperaturfaktor wurde der 1.5-fache Wert (CH₃-Gruppen) und der 1.2-fache Wert (Cp-H) bzw. des äquivalenten isotropen Temperaturfaktors desjenigen C-Atoms eingesetzt, an welches das jeweilige H-Atom gebunden ist.

Einzelheiten können dem Handbuch für das Verfeinerungsprogramm SHELXL entnommen werden.

Tabelle 2. Atomkoordinaten [x 10⁴] und äquivalente isotrope Auslenkungsparameter [Å² x 10³] für 0258. U(eq) wird berechnet als ein Drittel der Spur des orthogonalisierten U_{ij} -Tensors.

	х	У	Z	U(eq)
Fe(1) C(1) C(2) C(3) C(4) C(5) C(6) C(7) C(8) C(9) C(10) C(11) C(12) C(11) C(12) C(13) C(14) C(21) C(22) C(23) C(24) C(24) C(24) C(41) C(42) C(43) C(44) C(61)	$\begin{array}{c} x \\ 1919(1) \\ 1743(3) \\ 1715(3) \\ 574(4) \\ -122(3) \\ 603(3) \\ 2564(4) \\ 1991(4) \\ 2802(4) \\ 3830(4) \\ 3678(4) \\ 2546(4) \\ 2597(5) \\ 4038(4) \\ 1758(5) \\ 2447(4) \\ 3990(5) \\ 1765(6) \\ 2263(5) \\ -1552(3) \\ -1552(3) \\ -1795(5) \\ -1831(6) \\ -2564(5) \\ 2303(6) \\ \end{array}$	$\begin{array}{c} Y\\ \\ 59(1)\\ -453(2)\\ 431(2)\\ 693(2)\\ 23(2)\\ -680(2)\\ -546(3)\\ 237(2)\\ 854(2)\\ 435(3)\\ -415(3)\\ -1118(3)\\ -1904(3)\\ -895(3)\\ -1316(3)\\ 1039(3)\\ 1153(3)\\ 1883(3)\\ 776(3)\\ 44(3)\\ 798(4)\\ -687(4)\\ 12(5)\\ -1321(3)\\ \end{array}$	z $2435(1)$ $3496(2)$ $3554(2)$ $3093(2)$ $2773(2)$ $3018(2)$ $1460(2)$ $1291(2)$ $1659(2)$ $2081(2)$ $1968(2)$ $3918(2)$ $3465(3)$ $4100(3)$ $4637(3)$ $4080(2)$ $3932(3)$ $4009(3)$ $4896(2)$ $2414(2)$ $1953(4)$ $1919(4)$ $3048(3)$ $1015(3)$	U(eq) 34(1) 41(1) 40(1) 43(1) 44(1) 55(1) 49(1) 47(1) 46(1) 51(1) 52(1) 68(1) 64(1) 75(1) 54(1) 69(1) 77(2) 72(1) 54(1) 101(2) 117(2) 118(3) 74(1)
C(62) C(63) C(64) C(81) C(82) C(83)	3459(10) 1030(12) 1999(12) 2779(4) 3614(6) 1324(6)	$-1435(6) \\ -1234(6) \\ -2048(4) \\ 1750(3) \\ 2256(3) \\ 2083(4)$	506(6) 500(5) 1484(4) 1462(3) 2024(3) 1399(4)	241(8) 202(5) 175(5) 61(1) 89(2) 97(2)
C(84)	3503(7)	1820(4)	702(3)	96(2)

Tabelle 3. Bindungslängen [Å] und -winkel [°] für 0258.

Fe(1)-C(3) $Fe(1)-C(5)$ $Fe(1)-C(10)$ $Fe(1)-C(9)$ $Fe(1)-C(7)$ $Fe(1)-C(1)$ $Fe(1)-C(1)$ $Fe(1)-C(8)$ $Fe(1)-C(2)$ $Fe(1)-C(6)$ $C(1)-C(5)$ $C(1)-C(2)$ $C(1)-C(11)$ $C(2)-C(3)$ $C(2)-C(21)$ $C(3)-C(4)$ $C(4)-C(5)$ $C(4)-C(41)$ $C(6)-C(10)$ $C(6)-C(7)$	2.045(4) 2.048(4) 2.056(4) 2.056(3) 2.060(4) 2.072(3) 2.074(3) 2.089(4) 2.095(3) 2.101(4) 1.434(5) 1.452(5) 1.531(5) 1.433(5) 1.534(5) 1.405(5) 1.415(5) 1.517(4) 1.427(6)		$\begin{array}{c} C(6)-C(61)\\ C(7)-C(8)\\ C(8)-C(9)\\ C(8)-C(81)\\ C(9)-C(10)\\ C(11)-C(13)\\ C(11)-C(14)\\ C(11)-C(12)\\ C(21)-C(24)\\ C(21)-C(22)\\ C(21)-C(23)\\ C(41)-C(42)\\ C(41)-C(42)\\ C(41)-C(43)\\ C(61)-C(62)\\ C(61)-C(62)\\ C(61)-C(63)\\ C(81)-C(83)\\ C(81)-C(84)\\ \end{array}$	$\begin{array}{c} 1.517(6)\\ 1.433(5)\\ 1.416(5)\\ 1.510(6)\\ 1.519(5)\\ 1.519(5)\\ 1.521(6)\\ 1.521(6)\\ 1.527(6)\\ 1.531(6)\\ 1.536(6)\\ 1.500(6)\\ 1.505(6)\\ 1.509(7)\\ 1.460(8)\\ 1.485(9)\\ 1.533(9)\\ 1.512(7)\\ 1.523(7)\\ 1.536(7)\end{array}$	
C(3)-Fe(1)-C(5) C(3)-Fe(1)-C(10) C(5)-Fe(1)-C(9) C(5)-Fe(1)-C(9) C(10)-Fe(1)-C(9) C(10)-Fe(1)-C(7) C(5)-Fe(1)-C(7) C(5)-Fe(1)-C(7) C(3)-Fe(1)-C(4) C(5)-Fe(1)-C(4) C(7)-Fe(1)-C(4) C(7)-Fe(1)-C(1) C(7)-Fe(1)-C(1) C(7)-Fe(1)-C(1) C(7)-Fe(1)-C(1) C(7)-Fe(1)-C(1) C(7)-Fe(1)-C(1) C(7)-Fe(1)-C(1) C(7)-Fe(1)-C(1) C(7)-Fe(1)-C(1) C(7)-Fe(1)-C(1) C(7)-Fe(1)-C(1) C(7)-Fe(1)-C(2) C(7)-Fe(1)-C(3) C(5)-Fe(1)-C(8) C(7)-Fe(1)-C(8) C(7)-Fe(1)-C(8) C(7)-Fe(1)-C(8) C(1)-Fe(1)-C(8) C(1)-Fe(1)-C(2) C(1)-Fe(1)-C(2) C(1)-Fe(1)-C(2) C(1)-Fe(1)-C(2) C(1)-Fe(1)-C(2) C(1)-Fe(1)-C(2) C(1)-Fe(1)-C(2) C(3)-Fe(1)-C(2) C(3)-Fe(1)-C(2) C(3)-Fe(1)-C(2) C(3)-Fe(1)-C(2) C(3)-Fe(1)-C(2) C(3)-Fe(1)-C(2) C(3)-Fe(1)-C(6) C(5)-Fe(1)-C(6) C(7)-Fe(1)-C(6) C(7)-Fe(1)-C(6) C(7)-Fe(1)-C(6) C(7)-Fe(1)-C(6) C(7)-Fe(1)-C(6) C(1)-Fe(1)-C(6) C(1)-Fe(1)-C(6) C(1)-Fe(1)-C(6) C(1)-Fe(1)-C(6) C(1)-Fe(1)-C(6) C(1)-Fe(1)-C(6) C(1)-Fe(1)-C(6) C(1)-Fe(1)-C(6) C(1)-Fe(1)-C(6) C(1)-Fe(1)-C(6) C(1)-Fe(1)-C(6) C(1)-Fe(1)-C(6) C(3)-Fe($\begin{array}{c} 66.84(1) \\ 163.63(1) \\ 120.30(1) \\ 127.23(1) \\ 127.23(1) \\ 154.12(1) \\ 40.22(1) \\ 121.62(1) \\ 127.83(1) \\ 67.32(1) \\ 67.32(1) \\ 67.32(1) \\ 67.32(1) \\ 67.16(1) \\ 39.90(1) \\ 40.18(1) \\ 154.61(1) \\ 164.08(1) \\ 109.59(1) \\ 67.92(1) \\ 40.70(1) \\ 107.09(1) \\ 119.02(1) \\ 164.01(1) \\ 68.60(1) \\ 109.29(1) \\ 164.01(1) \\ 68.60(1) \\ 109.29(2) \\ 164.85(1) \\ 109.29(2) \\ 164.85(1) \\ 109.29(2) \\ 164.85(1) \\ 109.29(2) \\ 164.85(1) \\ 109.29(2) \\ 164.85(1) \\ 109.29(2) \\ 164.85(1) \\ 109.29(2) \\ 164.85(1) \\ 109.29(2) \\ 164.85(1) \\ 109.29(2) \\ 164.85(1) \\ 109.29(2) \\ 164.85(1) \\ 109.29(2) \\ 164.85(1) \\ 109.29(2) \\ 100.20(2) \\ $	5) 6) 7) 6) 5) 6) 5) 6) 5) 6) 5) 5) 4) 5) 5) 4) 5) 6) 7) 6) 6) 6) 6) 6) 6) 6) 6) 6) 6) 6) 6) 6) 6) 6) 7) 6) 6) 7) 6) 6) 7) 6) 6) 7) 6) 7) 6) 6) 7) 6) 6) 7) 6) 7) 6) 7) 6) 7) 6) 7) 6) 7) 7) 6) 7)	$\begin{array}{c} C(2) - Fe(1) - C(6) \\ C(5) - C(1) - C(2) \\ C(5) - C(1) - C(11) \\ C(2) - C(1) - Fe(1) \\ C(2) - C(1) - Fe(1) \\ C(2) - C(1) - Fe(1) \\ C(3) - C(2) - C(21) \\ C(3) - C(2) - C(21) \\ C(3) - C(2) - C(21) \\ C(3) - C(2) - Fe(1) \\ C(1) - C(2) - Fe(1) \\ C(2) - C(2) - Fe(1) \\ C(2) - C(3) - Fe(1) \\ C(2) - C(3) - Fe(1) \\ C(2) - C(3) - Fe(1) \\ C(3) - C(4) - C(5) \\ C(3) - C(4) - C(5) \\ C(3) - C(4) - C(41) \\ C(5) - C(4) - C(41) \\ C(5) - C(4) - Fe(1) \\ C(4) - C(5) - Fe(1) \\ C(1) - C(6) - Fe(1) \\ C(10) - C(6) - Fe(1) \\ C(10) - C(6) - Fe(1) \\ C(7) - C(6) - Fe(1) \\ C(6) - C(7) - Fe(1) \\ C(6) - C(7) - Fe(1) \\ C(6) - C(7) - Fe(1) \\ C(9) - C(8) - C(8) \\ C(7) - C(8) - Fe(1) \\ C(9) - C(1) - C(6) \\ \end{array}$		$\begin{array}{c} 162.89(15)\\ 106.7(3)\\ 119.2(3)\\ 133.2(3)\\ 68.68(19)\\ 70.4(2)\\ 133.5(3)\\ 105.8(3)\\ 120.1(3)\\ 133.1(3)\\ 67.88(19)\\ 68.9(2)\\ 136.1(3)\\ 111.1(3)\\ 71.1(2)\\ 71.6(2)\\ 106.1(3)\\ 125.7(3)\\ 126.4(3)\\ 69.01(19)\\ 69.00(19)\\ 138.1(3)\\ 110.2(3)\\ 70.8(2)\\ 70.6(2)\\ 106.8(4)\\ 125.6(4)\\ 125.6(4)\\ 125.5(4)\\ 68.4(2)\\ 141.0(3)\\ 109.2(3)\\ 71.5(2)\\ 106.1(3)\\ 125.1(4)\\ 125.0(3)\\ 68.8(2)\\ 68.8(2)\\ 68.8(2)\\ 68.8(2)\\ 139.0(3)\\ 109.3(3)\\ 69.9(2)\\ 71.3(2)\\ 108.5(4)\\ \end{array}$

$\begin{array}{cccccccccccccccccccccccccccccccccccc$
--

Tabelle 4. Anisotrope Auslenkungsparameter [Å² x 10³] für 0258.

Der Exponent des anisotro	pen Auslenkungsfaktors hat die Form:	$-2\pi^{2}$	[(ha [*]]	$^{2}U_{11} + + 2hka^{*}b^{*}U_{1}$	2]
				/	~ _

	$U_{_{11}}$	U_{22}	U ₃₃	U ₂₃	U_{13}	U_{12}
Fe(1)	29(1)	34(1)	38(1)	1(1)	-1(1)	1(1)
C(1)	38(2)	48(2)	36(2)	8(2)	6(1)	3(2)
C(2)	37(2)	44(2)	39(2)	-2(2)	$2(\perp)$	5(2)
C(3)	39(2)	48(2)	42(2)	$-\perp(2)$	$\perp (2)$	7(2)
C(4)	$3 \perp (\perp)$	51(2)	49(2)	7(2)	$-\perp(\perp)$	3(2)
C(5)	37(2)	44(Z) CO(Z)	50(2)	5(2)	-3(2)	-3(2)
C(6)	62(3)	60(3)	43(2)	$-\perp\perp(2)$	9(2)	$-\perp(2)$
C(7)	50(2)	60(3)	36(2)	3(2)	0(2)	-7(2)
C(8)	44(Z) 25(2)	46(Z) E4(Z)	49(Z) 50(2)	8(2)	6(Z) E(2)	3(2)
C(9)	35(Z) 4E(2)	54(5) E4(2)	50(Z) E4(2)	0(2)	ン	-/(Z)
C(10)	45(Z) E0(2)	54(5) E2(2)	54(Z) E2(2)	-Z(Z)	10(Z)	$\mathcal{D}(\mathcal{L})$
C(11)	50(2)	23(3) 19(2)	52(2)	10(2)	-Z(Z)	0(Z) 14(2)
C(12)	40(2)	40(3)	90(3) 70(2)	10(2) 12(2)	-3(2) 14(2)	14(2)
C(13)	49(2)	$7 \pm (3)$ $7 \wedge (4)$	72(3) 69(2)	$\pm 2(2)$	-14(Z) 7(2)	9(2)
C(14)	04(3) 54(2)	74(4)	00(3)	29(2) 10(2)	7(乙) 5(乙)	9(3)
C(21)	57(2)	79(3)	49(2) 59(2)	-10(2)	-10(2)	(2)
C(22)	100(4)	79(4) 51(2)	39(3)	-9(2)	-10(2)	-10(2)
C(23)	84(3)	31(3) 87(4)	45(2)	-21(2) -14(2)	-0(3) -1(2)	5(2)
C(24)	30(2)	70(3)	$\frac{1}{63}(2)$	12(2)	-5(1)	0(2)
C(42)	60(3)	118(5)	124(5)	52(2)	-34(3)	-3(3)
C(43)	73(4)	128(6)	150(6)	-36(5)	-51(4)	-12(4)
C(44)	34(2)	228(8)	91(4)	41(5)	12(2)	11(4)
C(61)	91(4)	68(3)	62(3)	-24(2)	12(2)	-5(3)
C(62)	213(10)	220(11)	295(13)	-211(11)	177(10)	-115(9)
C(63)	292(13)	132(8)	180(9)	-74(7)	-131(9)	9(8)
C(64)	373(16)	57(5)	96(5)	-30(4)	22(7)	-46(6)
C(81)	57(2)	56(3)	69(3)	19(2)	11(2)	-4(2)
C(82)	111(4)	51(3)	104(4)	10(3)	1(3)	-14(3)
C(83)	78(3)	69(4)	143(5)	43(4)	8(3)	15(3)
C(84)	123(5)	83(4)	83(4)	31(3)	25(3)	-10(3)

	х	У	Z	U(eq)
H(3)	314	1265	3012	51
H(5)	365	-1242	2878	52
H(7)	1190	337	962	59
н(9)	4540	693	2398	55
H(10)	4266	-841	2190	61
H(12A)	3046	-1803	2996	102
н(12в)	1673	-2095	3370	102
H(12C)	3103	-2310	3743	102
H(13A)	4061	-431	4429	96
H(13B)	4510	-766	3644	96
H(13C)	4487	-1349	4342	96
H(14A)	2239	-1735	4912	113
н(14в)́	845	-1502	4508	113
H(14C)	1695	-834	4942	113
H(22A)	4398	1475	4327	103
H(22B)	4107	1426	3460	103
H(22C)	4434	629	3916	103
H(23A)	812	1845	4149	116
H(23B)	1823	2069	3499	116
H(23C)	2235	2262	4335	116
H(24A)	1298	697	4992	108
H(24B)	2623	1192	5224	108
H(24C)	2751	275	4984	108
H(42A)	-2710	784	1739	151
H(42R)	-1130	823	1558	151
H(42C)	-1699	1272	2268	151
н(43д)	-2680	-606	1645	176
H(43B)	-1903	-1167	2225	176
H(43C)	-1086	-753	1573	176
H(44A)	-2517	511	3329	176
H(44B)	-2338	-438	3373	176
H(44C)	-3482	-59	2848	176
H(62A)	4291	-1528	794	362
H(62B)	3567	-956	203	362
H(62C)	3281	-1898	188	362
H(63A)	1260	-906	73	304
H(63B)	296	-977	771	304
H(63C)	735	-1764	334	304
H(64A)	1744	-2497	1164	263
H(64B)	1252	-1925	1815	263
H(64C)	2806	-2191	1774	263
H(82A)	3709	2803	1838	133
H(82B)	4513	2017	2092	133
H(82C)	3147	2267	2496	133
H(83A)	822	1788	1017	145
H(83B)	1357	2651	1268	145
H(83C)	868	2021	1872	145
H(84A)	3002	1508	332	144
H(84B)	4429	1613	749	144
H(84C)	3530	2382	550	144
	2220	2302	550	± ± ±

Tabelle 5.H-Atomkoordinaten [x 10⁴] und äquivalente isotrope Auslenkungsparameter [Å² x 10³] für 0258.

0

7.4 Kristalldaten von $[{Cp^{-}Fe(CO)_2}_2]$ (10)

Tabelle 1. Kristalldaten und Strukturverfeinerung für 0141.

Summenformel Molmasse Femperatur Strahlung	C ₂₆ H ₄₂ Fe ₂ O ₄ Si ₄ 642.66 293(2) K			
Wellenlänge	0.71073 Å		Skril 077	⁷⁷ P CIGAI D 017A
Scanmodus	Phi-Oszillation		10	[©] 016A) C
Kristallsystem	Tetragonal		O	
Raumgruppe	$P4_{2}/n$	_		
Zelldimensionen	a = 153392(9) Å	$= 90^{\circ}$		
	h = 15,3392(9) Å	$= 90^{\circ}$		
	c = 14.7550(8) Å	$= 90^{\circ}$		
Zellvolumen	c = 14.7550(8) A 3471 7(3) Å ³	- 90		
Formeleinheiten pro Zelle Z	Δ			
Berechnete Dichte	1.230 Mg/m^3			
Absorptionskoeffizient	1.000 mm^{-1}			
Kristallgröße	0.36 x 0.33 x 0.28 mm			
Gemessener θ -Bereich	2.99 bis 25.67°			
Anzahl der gemessenen Reflexe	47910			
Unabhängige Reflexe	3115 (Rint = 0.0812)			
Absorptionskorrektur	keine			
Max. und min. Transmission	0.7672 und 0.7149			
Diffraktometer	Stoe IPDS			
Strukturlösung	Direkte Methoden			
Strukturlösungsprogramm	SHELXS-97 (Sheldrick, 19	90)		
Strukturverfeinerung	Vollmatrix Least-Squares g	gegen F ²		
Strukturverfeinerungsprogramm	SHELXL-97 (Sheldrick, 19	997)		
Daten / Restraints / Parameter	3115 / 0 / 169			
Endgültige R-Werte [I>2 σ (I)]	R1 = 0.0396, wR2 = 0.0947	7		
R-Werte (alle Daten)	R1 = 0.0652, wR2 = 0.1029)	_	
Wichtungsschema	$w=1/[\sigma^{2}(Fo^{2})+(0.0650P)^{2}+(0.0650P)$	0.0000P] m	nit P=(Fo ² +2Fo	$c^{2})/3$
GooF (alle Daten)	0.892			
Größtes Maximum und Minimum	0.424 und -0.254 eÅ ⁻³			

Verfeinerung nach F^2 mit ALLEN Reflexen. Die gewichteten R-Werte wR2 und alle GooF's basieren auf F^2 . Die konventionellen R-Werte R1 basieren auf F, wobei F für negative F^2 gleich Null gesetzt wird. Das Ablehnungskriterium $F^2 > 2\sigma(F^2)$ wird nur zum Berechnen von R(obs) etc. verwendet. Zur Verfeinerung wurden alle Reflexe herangezogen. Grundsätzlich gilt: Auf F^2 bezogene R-Werte sind statistisch etwa doppelt so groß wie die auf F basierenden. Auf ALLE Reflexe bezogene R-Werte sind noch größer.

Die Wasserstoffatome wurden geometrisch lokalisiert. Für die Verfeinerung wurde ein Reitermodell angenommen. Als Temperaturfaktor wurde der 1.5-fache Wert (CH₃-Gruppen) bzw. der 1.2-fache Wert (Cp-H) des äquivalenten isotropen Temperaturfaktors desjenigen C- Atoms eingesetzt, an welches das jeweilige H-Atom gebunden ist.

Einzelheiten können dem Handbuch für das Verfeinerungsprogramm SHELXL entnommen werden.

Tabelle 2. Atomkoordinaten [x 10⁴] und äquivalente isotrope Auslenkungsparameter [Å² x 10³] für 0141. U(eq) wird berechnet als ein Drittel der Spur des orthogonalisierten U_{ij} -Tensors.

	x	У	Z	U(eq)
Fe(1) Si(1) Si(2) C(1) C(2) C(3) C(4) C(5) C(6) C(7) C(11) C(12) C(12) C(13) C(21)	x 6772(1) 6499(1) 4692(1) 6279(2) 5603(2) 5547(2) 6239(2) 6670(2) 7044(2) 6588(2) 7481(3) 5519(3) 6638(4) 4954(3)	Y 2909(1) 5237(1) 1883(1) 4053(2) 3553(2) 2707(2) 2691(2) 3486(3) 1683(2) 3023(2) 5563(3) 5838(3) 5838(3) 5442(3) 829(3)	z 1841(1) 1389(1) 1417(1) 177(2) 1570(2) 1174(2) 537(2) 541(2) 2048(2) 2990(3) 736(4) 984(5) 2604(4) 866(5)	U(eq) 46(1) 85(1) 94(1) 55(1) 53(1) 57(1) 65(1) 66(1) 136(2) 132(2) 125(2) 152(3)
C(22) C(23) O(6)	4571(4) 3667(3) 6693(2)	1767(4) 2315(3) 1048(2)	2649(5) 910(5) 2141(2)	141(2) 154(3) 92(1)
0('/)	6421(2)	3117(2)	3744(2)	106(1)

		-	
Tabelle 3.	Bindungslängen	[Å] und -winkel [°]	für 0141.

Fe(1)-C(7) Fe(1)-C(6)#1 Fe(1)-C(6) Fe(1)-C(2) Fe(1)-C(4) Fe(1)-C(5) Fe(1)-C(3) Fe(1)-C(1) Fe(1)-Fe(1)#1 Si(1)-C(1) Si(1)-C(1) Si(1)-C(11) Si(1)-C(12)	$\begin{array}{c} 1.727(4)\\ 1.946(3)\\ 1.951(3)\\ 2.086(3)\\ 2.117(3)\\ 2.120(3)\\ 2.148(3)\\ 2.148(3)\\ 2.5623(7)\\ 1.832(6)\\ 1.874(3)\\ 1.856(5)\\ 1.864(5)\\ \end{array}$		Si(2)-C(22) Si(2)-C(21) Si(2)-C(23) C(1)-C(5) C(1)-C(2) C(2)-C(3) C(3)-C(4) C(4)-C(5) C(6)-O(6) C(6)-Fe(1)#1 C(7)-O(7)	$\begin{array}{c} 1.837(7)\\ 1.855(3)\\ 1.854(4)\\ 1.864(5)\\ 1.413(5)\\ 1.414(4)\\ 1.426(4)\\ 1.419(4)\\ 1.387(5)\\ 1.121(4)\\ 1.946(3)\\ 1.151(4) \end{array}$	
C(7) -Fe(1) -C(6) # C(7) -Fe(1) -C(6) C(7) -Fe(1) -C(6) C(7) -Fe(1) -C(2) C(6) # 1 -Fe(1) -C(2) C(6) # 1 -Fe(1) -C(2) C(7) -Fe(1) -C(4) C(6) -Fe(1) -C(4) C(6) -Fe(1) -C(4) C(7) -Fe(1) -C(5) C(6) -Fe(1) -C(5) C(6) -Fe(1) -C(5) C(7) -Fe(1) -C(5) C(7) -Fe(1) -C(5) C(7) -Fe(1) -C(3) C(6) # 1 -Fe(1) -C(3) C(6) -Fe(1) -C(3) C(6) -Fe(1) -C(3) C(7) -Fe(1) -C(3) C(7) -Fe(1) -C(3) C(7) -Fe(1) -C(3) C(7) -Fe(1) -C(3) C(5) -Fe(1) -C(3) C(5) -Fe(1) -C(3) C(7) -Fe(1) -C(1) C(6) -Fe(1) -C(1) C(7) -Fe(1) -Fe(1) -C(1) C(7) -Fe(1) -Fe(1))))) 1) 1) 1) 1 1 1 1 1 1 1 1 1 1 1 1 1	88.04(15) 88.80(16) 94.93(14) 90.02(14) 132.84(12) 132.14(12) 147.70(15) 123.60(14) 94.15(14) 64.46(12) 146.55(16) 94.38(13) 124.07(14) 64.20(12) 38.22(14) 108.82(15) 159.52(13) 96.91(12) 39.38(11) 38.88(12) 65.14(13) 107.94(15) 97.88(12) 159.17(13) 38.99(11) 65.06(13) 38.67(12) 66.41(11) 101.06(11) 48.96(9) 48.80(9) 168.92(9) 105.00(8) 105.59(8) 133.90(8) 134.98(8) 110.5(2)	C(22)-Si(2)-C(23) $C(21)-Si(2)-C(23)$ $C(21)-Si(2)-C(23)$ $C(5)-C(1)-Si(1)$ $C(2)-C(1)-Si(1)$ $C(2)-C(1)-Fe(1)$ $Si(1)-C(1)-Fe(1)$ $C(1)-C(2)-Fe(1)$ $C(3)-C(2)-Fe(1)$ $C(4)-C(3)-Si(2)$ $C(4)-C(3)-Fe(1)$ $C(2)-C(3)-Fe(1)$ $C(2)-C(3)-Fe(1)$ $C(2)-C(3)-Fe(1)$ $C(2)-C(3)-Fe(1)$ $C(5)-C(4)-Fe(1)$ $C(5)-C(4)-Fe(1)$ $C(4)-C(5)-Fe(1)$ $C(4)-C(5)-Fe(1)$ $C(4)-C(5)-Fe(1)$ $C(4)-C(5)-Fe(1)$ $C(4)-C(5)-Fe(1)$ $C(4)-C(5)-Fe(1)$ $C(4)-C(5)-Fe(1)$ $C(4)-C(5)-Fe(1)$ $C(4)-C(5)-Fe(1)$ $C(5)-Fe(1)$ $C(5)-Fe(1$)) 1 1)	$\begin{array}{c} 110.3(3)\\ 106.1(2)\\ 108.5(3)\\ 104.5(3)\\ 129.1(2)\\ 126.1(2)\\ 69.58(18)\\ 68.13(16)\\ 130.69(17)\\ 111.7(3)\\ 72.89(16)\\ 72.50(16)\\ 104.0(3)\\ 130.2(2)\\ 125.7(2)\\ 69.56(17)\\ 68.11(16)\\ 128.97(18)\\ 109.8(3)\\ 70.97(19)\\ 71.55(19)\\ 110.0(3)\\ 70.81(19)\\ 71.75(19)\\ 138.4(3)\\ 138.9(3)\\ 82.24(13)\\ 176.2(3)\\ \end{array}$

Symmetrietransformationen für die äquivalenten Atome:

#1 -x+3/2,-y+1/2,z

~~~~/ ~~/ ~/ ~/ ~/ // // // // // // //	,
C(22)-Si(2)-C(3)	109.2(2)
C(22)-Si(2)-C(21)	111.7(3)
C(3)-Si(2)-C(21)	110.9(2)

	U ₁₁	U ₂₂	U ₃₃	U ₂₃	U ₁₃	$U_{12}$
Fe(1)	44(1)	60(1)	36(1)	-1(1)	2(1)	2(1)
Si(1)	73(1)	65(1)	116(1)	16(1)	1(1)	-5(1)
Si(2)	54(1)	64(1)	163(1)	-32(1)	-5(1)	-4(1)
C(1)	47(2)	66(2)	54(2)	10(2)	1(1)	6(1)
C(2)	42(1)	60(2)	57(2)	-4(1)	2(1)	6(1)
C(3)	46(2)	64(2)	63(2)	-12(2)	-9(1)	6(1)
C(4)	64(2)	85(2)	47(2)	-17(2)	-9(2)	20(2)
C(5)	57(2)	98(3)	43(2)	14(2)	3(1)	13(2)
C(6)	48(2)	61(2)	60(2)	0(1)	2(1)	-1(2)
C(7)	70(2)	88(2)	41(3)	-2(2)	5(2)	11(2)
C(11)	111(4)	117(4)	181(6)	54(4)	29(4)	-31(3)
C(12)	110(4)	86(3)	199(7)	21(3)	-15(4)	19(3)
C(13)	142(5)	93(3)	141(5)	-32(3)	-3(4)	-8(3)
C(21)	102(3)	86(3)	269(8)	-81(4)	-32(4)	6(3)
C(22)	125(4)	114(4)	185(7)	2(4)	70(4)	-37(3)
C(23)	61(2)	109(4)	291(9)	-41(5)	-44(4)	1(2)
0(6)	67(2)	80(2)	130(3)	16(2)	9(2)	-3(1)
0(7)	129(3)	141(3)	48(2)	-4(2)	7(2)	11(2)

**Tabelle 4.** Anisotrope Auslenkungsparameter [Ų x 10³] für 0141.Der Exponent des anisotropen Auslenkungsfaktors hat die Form:  $-2\pi^2$  [  $(ha^*)^2U_{11} + ... + 2hka^*b^*U_{12}$  ]

Tabelle 5.H-Atomkoordinaten [ x 10⁴] und äquivalente isotrope Auslenkungsparameter [Å² x 10³] für 0141.

	х	У	Z	U(eq)
ц(2)	5240	2751	2020	62
п(Z) т(A)	5240	375I 2210	2030	05
H(4)	0383	2218		/8
H(5)	/145	3626	1/8	/9
H(11A)	7576	6178	805	205
H(11B)	7395	5429	107	205
H(11C)	7979	5251	959	205
H(12A)	5011	5625	1293	197
H(12B)	5451	5750	343	197
H(12C)	5588	6449	1105	197
H(13A)	6103	5313	2915	188
H(13B)	6787	6043	2698	188
H(13C)	7095	5078	2836	188
H(21A)	5457	577	1152	228
H(21B)	5074	924	235	228
H(21C)	4468	439	927	228
н(22д)	5101	1538	2902	212
	1000	1275	2702	212
П(22D) П(22D)	4099	1375	2//0	212
$\Pi(\Delta\Delta C)$	4430	2320	2913	
H(Z3A)	3187	1948	1082	∠30
H(23B)	3719	2321	261	230
H(23C)	3566	2897	1125	230

# Danksagung

Ich möchte all denen danken, die mir mit Rat und Tat zur Seite gestanden und zum Gelingen dieser Arbeit beigetragen haben. Besonderer Dank gilt dabei:

Herrn Dr. G. Wolmershäuser für die Anfertigung der Röntgenstrukturanalysen

Frau Dr. G. Hornung für die Aufnahme der Massenspektren

Frau H. Ruzek, Frau Dr. C. Eichhorn, Herrn Dr. T. Sögding, für die Aufnahme zahlreicher NMR-Spektren

Herrn Dr. S. Boettcher, Herrn Dr. F. Fuchs und Frau A. Leinenweber für das gewissenhafte Korrekturlesen der vorliegenden Arbeit

Den Mitarbeitern der Arbeitskreise Scherer und Sitzmann für die gute Zusammenarbeit
## Lebenslauf

## Persönliche Angaben

Name :	Jörg Ertl
Geburtsdatum :	9.07.1973
Geburtsort :	Mannheim
Nationalität :	deutsch
Familienstand :	ledig
Eltern :	Dr. Gert Ertl, Chemiker
	Hannelore Ertl, geborene Lidy, Hausfrau
Anschrift :	Königstraße 33
	67655 Kaiserslautern

## Ausbildung

1980 bis 1984	Alfred-Delp-Grundschule, Mannheim
1984 bis 1993	Peter-Petersen-Gymnasiums, Mannheim
Mai 1993	Abitur, allg. Hochschulreife
1993 bis 1994	Zivildienst bei der Blutspende-Zentrale des
	Roten Kreuzes, Mannheim
10.1994 bis 10.1996	Grundstudium Chemie mit Vordiplom an der TU Kaiserslautern
10.1996 bis 02.2000	Hauptstudium Chemie mit Diplom an der TU Kaiserslautern
03.1998 bis 08.1998	Auslandssemester im Rahmen des AC II-Teil 2-Praktikums
	an der Universität von Burgund, Dijon
03.2000 bis 04.2004	Promotion im Arbeitskreis von Herrn Prof. Dr. O. J. Scherer
	an der TU Kaiserslautern