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1 INTRODUCTION 

The brain is the most complex part of the human body. It is the seat of intelligence, 

the interpreter of the senses, the initiator of body movements, and the controller of 

behaviors. In the adult mammalian brain, there are some 1012 neurons, each 

connected through a plethora of synapses. So, more important are the connections 

that actually determine the brain's behaviour which are in the order of 1015. That is, a 

typical neuron in the brain may have something like 1000 synapses on it. Each 

neuron processes all incoming information and decides how to respond. Thus, the 

output of a single neuron is controlled by an ensemble of neurons firing in an 

organized fashion. During ontogenesis, neurons wire themselves into networks by 

extending cable-like axons that grow towards specific targets and undergo 

refinement in terms of anatomy and physiology to establish a mature network. This 

thesis addresses some of the issues regarding the maturation of inhibitory synapse 

in the auditory brainstem. 

1.1 Mammalian auditory pathway 

Acoustic signals travel through the air, enter the pinna, and are finally transformed 

into electrical signals in the cochlea. From the cochlea, information encoded in the 

timing of action potentials in a tonotopic array of auditory nerve fibres reaches the 

cochlear nucleus (CN) of the ipsilateral side. From the CN, acoustic information is 

fed through at least six parallel ascending pathways (Cant, 1991), including several 

brainstem nuclei that converge upon the inferior colliculus (IC). Neurons of the IC 

send their axons to the auditory thalamus, the medial geniculate body, which then 

relays information to different areas of the auditory cortex where a neuronal correlate 

of sound perception is formed. The integrative roles of these pathways are not 

completely understood.  
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The evidence is compelling that the cross correlation of inputs from the two ears 

through spherical bushy neurons in the CN and through the medial superior olive 

(MSO) serve to measure interaural time and phase differences that are used to 

localize sound in the azimuth (Grothe and Park, 1998; Brand et al., 2002). It has 

been suggested that a pathway through the lateral superior olive (LSO) serves to 

detect interaural level differences through which animals can localize high 

frequencies in the azimuth (Goldberg and Brown, 1969). These two nuclei (MSO and 

LSO) are situated in the superior olivary complex (SOC), the first station in the 

ascending auditory pathway, where the information from both cochleae converges. 

The SOC plays a pivotal role in sound localization. It is comprised of four well 

defined nuclei, surrounded by more diffuse periolivary regions (Irving and Harrison, 

1967). The major nuclei are the medial nucleus of the trapezoid body (MNTB), the 

LSO, the MSO and the superior paraolivary nucleus (SPN; Fig. 1.1). 

        

                     
Fig. 1.1: The major nuclei of 

the superior olivary complex 

(SOC).   

Camera-lucida drawing of a 

coronal section through the 

right SOC of a postnatal day 

(P) 60 rat, showing the nuclei 

outlined, namely the medial 

nucleus of the trapezoid body 

(MNTB), the lateral superior 

olive (LSO), the medial 

the periolivary nucleus (PON). 

Scale bar = 500 µm. Modified from Friauf (1993). 

superior olive (MSO), the superior paraolivary nucleus (SPN), and 
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1.2 Circuitry and function of the LSO 

The LSO is the first auditory center that processes differences in sound level 

between the two ears (Wu and Kelly, 1992a; Sanes, 1993; Tollin and Yin 2002). In 

carnivores and rodents, it is located laterally in the SOC and is S-shaped (Schwarz, 

1992; Fig 1.1). In the rat, seven classes of neurons have been identified (Rietzel and 

Friauf, 1998). The two most frequent types are bipolar neurons and multipolar 

neurons. Less frequent neuron types are small multipolar neurons, banana-like 

neurons, bushy neurons, unipolar neurons and marginal neurons. The LSO receives 

glutamatergic inputs from the spherical bushy neurons of the ipsilateral ventral CN in 

a tonotopic fashion (Cant and Casseday, 1986; Friauf and Ostwald, 1988; Suneja et 

al., 1995; Cant, 1991; Wu and Kelly, 1995) and glycinergic inputs indirectly from the 

globular bushy cells in the contralateral CN via the MNTB (Warr, 1972; Tolbert et al., 

1982; Wenthold, 1991; Wu and Kelly, 1992b; Vater, 1995). The frequency of sound 

to which the LSO neurons respond best varies systematically across the LSO 

(Sanes et al., 1990) i.e., the LSO displays a tonotopic representation. 

1.3 Development of glycinergic neurotransmission in LSO 

Glycinergic transmission from the MNTB to the LSO starts at embryonic day (E) 18 

and is depolarizing until the end of the first postnatal week, after which it becomes 

hyperpolarizing (Kandler and Friauf, 1995). During the early depolarizing phase, the 

coexistence of GABAergic and glycinergic inputs to rat LSO neurons was recently 

reported (Nabekura et al., 2004). Furthermore, a shift from mainly GABAergic to 

glycinergic neurotransmission has been reported in the gerbil (Kotak et al., 1998) 

and the rat (Nabekura et al., 2004). There are similar reports demonstrating 

depolarization upon GABAergic or glycinergic activation in several other systems  
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during their early postnatal life, e.g., in the hippocampus (Mueller et al., 1984; 

Janigro and Schwartzkroin, 1988; Ben-Ari et al., 1989; Cherubini et al., 1990; Zhang 

et al., 1990), cerebral cortex (Luhmann and Prince, 1991; Yuste and Katz, 1991; Lo 

Turco et al., 1995; Owens et al., 1996), hypothalamus (Chen et al., 1996), spinal 

cord (Wu et al.,1992; Reichling et al., 1994; Rohrbough and Spitzer, 1996) and 

retina (Huang and Redburn, 1996; Billups and Attwell, 2002). The depolarization 

during early development leads to increased cytoplasmic Ca2+ levels and action 

potentials (Reichling et al., 1994; Obrietan and van den Pol, 1995; Leinekugel et al., 

1995; Owens et al., 1996; Flint et al., 1998). This link of glycinergic/GABAergic 

synaptic activity to intracellular calcium signalling during the period of inhibitory 

synaptic plasticity may be one of the mechanisms by which tonotopic MNTB-LSO 

connections become established (Lohmann et al., 1998; Kandler et al., 2002). 

Moreover, it has been elucidated that in the LSO, depolarizing and hyperpolarizing 

glycine-induced responses are attributable to developmentally regulated high and 

low intracellular chloride concentration ([Cl-]i), respectively (Ehrlich et al., 1999; 

Kakazu et al., 1999).  

 

1.4 Chloride regulation in neurons 

Chloride is an important ion for neurons. It is a dominant diffusible anion inside the 

neurons, together with bicarbonate, and both exhibit non-equilibrium distribution 

across the plasma membrane. Chloride serves as a key player in a variety of cellular 

functions such as intracellular pH regulation (Russell and Boron, 1976), cell volume 

regulation (Basavappa, 1996), transepithelial salt transport (Mount and Gamba,  
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2001), synaptic signalling (for review, see Reimer et al., 2001), neuronal growth 

(Kriegstein and Owens, 2001; Payne et al., 2003), migration and targeting (Barker et 

al., 1998), membrane potential stabilization (Valverde et al., 1995; Jentsch and 

Gunther, 1997), regulation of transport systems (Hoffmann, 1986), and K+ 

scavenging (Payne, 1997). 

In this thesis, I tried to reveal the mechanisms behind chloride homeostasis in LSO 

neurons. It is well documented that [Cl-]i determines the polarity of glycine-induced 

responses in postnatal animals (Ehrlich et al., 1999; Fig. 1.2). To date, no evidence 

for a primary active transport mechanism for Cl- exists (Gerencser and Zhang, 

2003). In figure 1.2 and table 1.1, some secondary active transporters that are 

involved in Cl- transport in neurons are shown. Na+- and K+-dependent Cl- 

cotransporter (NKCC1) and K+-dependent Cl- cotransporter (KCC2) were reported to 

be the principal inward directed and outward directed Cl- pumps in neurons, 

respectively (Plotkin et al., 1997; Rivera et al., 1999; Sun and Murali, 1999; Sung et 

al., 2000; Vardi et al., 2000; Hubner et al., 2001; Jang et al., 2001).  

Table 1.1: Chloride cotransporters/exchangers and the direction of Cl- 

transport 

        Chloride transporters Direction of Cl- transport 

KCC K+-dependent Cl- transporter           Outward 

NDAE Na+-dependent Cl-/HCO3
- exchanger          Outward 

AE Na+-independent Cl-/HCO3
- exchanger         Inward 

NCC Na+-Cl- cotransporter           Inward 

NKCC Na+- and K+-dependent Cl- cotransporter          Inward 

GAT GABA transporter           Inward 

GLYT Glycine transporter          Inward 
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Fig. 1.2: Change in glycine responses is attributable to intracellular chloride regulation during LSO 

development. (A) During the first postnatal week, neonatal LSO neurons depolarize upon glycine 

application, whereas they hyperpolarize from the second postnatal week. A depolarizing glycine 

response is attributable to a high intracellular chloride concentration ([Cl-]i), whereas a 

hyperpolarizing response is due to a low [Cl-]i. Thus, in young cells Cl- inward transporting 

mechanisms and in older cells certain Cl- outward transporting mechanisms are necessary to 

maintain a high and low [Cl-]i, respectively. (B) Schematic diagram depicting several transporters 

possibly involved in Cl- homeostasis (refer Table 1.1 for abbreviations). Shown are the ions involved 

and their stochiometry as well as the direction of flow. 
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1.5 Aim of this thesis 

This doctoral thesis was performed to elucidate the molecular mechanism underlying 

chloride homeostasis in LSO neurons and to understand the maturation of inhibitory 

synapses. I investigated the temporal expression and function of brain specific 

chloride transporters involved in the developmental regulation of [Cl-]i in LSO 

neurons.  

More precise, the following two questions were addressed: (1) What are the 

molecular mechanisms of the accumulation of Cl- during early postnatal ages? (2) 

What are the molecular mechanisms of the shift from high to low [Cl-]i ? 
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2 MATERIALS AND METHODS 

All protocols adhered to the German Animal Protection Law, and were approved by 

the local animal care and use committee. 

 
2.1 Auditory brainstem and hippocampal slice preparation 

The following animal strains were used: Sprague–Dawley rats, Wistar rats, 

C57BL/6J wildtype mice, KCC2 knockout mice (Woo et al., 2002), NKCC1 knockout 

mice (Delpire et al., 1999), and GLYT2 knockout mice (Gomeza et al., 2003), aged 

between postnatal day (P) 1 and 13. Animals were deeply anaesthetized by a 

peritoneal injection of ketamine (0.3 g kg-1 body weight), decapitated, and their 

brains were dissected in a chilled (4 °C) preparation solution (for composition, see 

Table 2.1). Coronal sections of 300 µm were cut using a VT-1000 vibratome (Leica, 

Bensheim, Germany), containing either SOC or the hippocampus. The slices were 

preincubated in extracellular solution 1 for 1 hr at 36 °C and stored at room 

temperature until recording (for composition, see Table 2.1). 

 
2.2 Electrophysiological recordings 

Electrophysiological responses were recorded using gramicidin perforated-patch 

recording technique. For electrophysiological recordings, patch pipettes were pulled 

from borosilicate glass capillaries with fire polished ends (GP150-8P, Science 

Products, Hofheim, Germany), which had an outer diameter of 1.5 mm and an inner 

diameter of 0.86 mm. A vertical puller (PP-83, Narishige, Japan) was employed for 

pulling the pipettes. Recording electrodes had a resistance of 2-7 MΩ when filled 

with different pipette solutions (for composition, see Table 2.2). The patch pipettes 

were front filled with gramicidin-free pipette solution for 2-3 min and then backfilled 

with the same pipette solution, supplemented with 2.5-10 µg ml-1 gramicidin.  
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Table 2.1: Composition of bath solutions 

Chemical 

compounds (mM) 

Preparation 

solution  

Extracellular 

solution 1 

Extracellular 

solution 2  

KCl 2.5 2.5 2.5 

NaCl - 125 - 

NMDG - - 125 

NaHCO3 25 25 25 

NaH2PO4 1.25 1.25 1.25 

MgCl2 1 1 1 

CaCl2 2 2 2 

Na-pyruvate 2 2 2 

Myo-inositol 3 3 3 

Kynurenic acid 1 - - 

Ascorbic acid - 0.4 0.4 

D-Glucose 260 10 10 

pH 7.4, when gassed with 95% O2 and 5% CO2. 

 

Table 2.2: Composition of pipette solutions  
Compound Solution 1 (mM) Solution 2 (mM)  Solution 3 (mM)  Solution 4 (mM) 

KCl 140 110 130 - 

K-gluconic acid - -  130 

NaCl - 20  - 

EGTA 5 5 5 5 

MgCl2 3 1 1 1 

HEPES 5 10 10 10 

Na2ATP - 2 2 2 

NA2GTP - 0.3 0.3 0.3 

pH 7.3 adjusted with KOH 

 

Gramicidin was dissolved in DMSO, such that the final concentration of DMSO in the 

pipette solution was ≤ 0.1%. Most experiments were carried out with pipette solution 

1 (for composition, see Table 2.2). The usage of different pipette solutions is 

mentioned in the appropriate sections. In case of patch-clamp recordings combined 
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with subsequent single cell RT-PCR, 6 µl pipette solution 1 with gramicidin was 

backfilled in the pipette (Fig. 2.1). Electrophysiological responses were recorded with 

an Axopatch 1D amplifier (Axon Instruments, Foster City, CA) and pClamp 8.0.2 

software (Axon Instruments). Slices were transferred to a recording chamber and 

continually perfused with extracellular solution at room temperature at a rate of 1.5-

2.0 ml min-1. LSO neurons were visualized with DIC-infrared optics using a 40X, 0.80 

NA water immersion objective on an upright microscope (Eclipse E600-FN, Nikon, 

Düsseldorf, Germany).  

 
Fig. 2.1: Patch-clamp recordings followed by RT-

PCR in a single LSO neuron. 
(A) Patch-clamp recordings in the perforated mode 

were obtained from a P12 neuron with spindle 

shaped soma. (B) Perforated patch-clamp 

recordings with gramicidin maintain the native [Cl-]i  

since the pores are permeable only to monovalent 

cations. (C) Rupture of patch membrane establishes 

conventional whole-cell mode where the native [Cl-]i 

is exchanged by the pipette chloride concentration 

(pipette [Cl-]). (D) The cell content was harvested 

into the recording pipette under visual control for 

performing single cell RT-PCR experiments. Scale bar in D = 20 µm, holds also for A.       

Native [Cl]   
(8 - 44 mM)

-

Pipette  [Cl ]  
(146 mM)

-

Pipette [Cl ]  
(146 mM)

-

Pipette [Cl ]  
(146 mM)

-

A B

C D

 
For gramicidin perforated-patch recordings, a gigaohm seal (≥ 1 GΩ) was 

established and the progress of perforation was controlled by monitoring the 

decrease in series resistance. Recordings were started when series resistance had 

stabilized to ~15 to 50 MΩ after 10-30 min. Data were digitized via a Digidata 1322A 

interface (Axon Instruments) and series resistance compensation was set to 70-80% 

with a lag of 100 µs. The voltage-clamp protocol consisted of stepping the 

membrane potential from a holding potential (VH) of -70 mV to command potentials 

(VC) ranging from -120 mV to 0 mV. Each step lasted 3 s and glycine (1 mM) was  



Materials and methods 11

 

pressure applied (~0.3 bar) for 10 ms with a delay of 500 ms after the step onset, 

through a wider tip (~1 µm) application pipette (Picospritzer, General Valve Corp., 

Fairfield, NJ). The application intervals lasted 10 s, which was sufficient to recover 

from possible changes of [Cl-]i, caused by Cl- loading or depletion at very positive (0 

mV) or negative (-120 mV) VC values, respectively (Ehrlich et al., 1999). The liquid 

junction potential between the patch pipette solution 1 and the extracellular solution 

1 was ~3 mV and was therefore neglected.  

 
2.3 Data analysis 

Data analysis was performed with software programs, Clampfit 8.1 (Axon 

instruments), Excel (Microsoft) and Winstat für Excel (Fitch software). The peak 

amplitude of glycine-activated currents was calculated by taking the difference 

between the holding current and the maximum current of the glycine response. Peak 

current responses were plotted for each VC and the data were analyzed for best 

fitting regression functions by the statistics software, Winstat für Excel. The reversal 

potential of glycine-activated currents (EGly) was determined as the x-intercept value 

of the regression line. The [Cl-]i was calculated after the Nernst equation (ECl = RT/F 

ln [Cl-]i / [Cl-]o) with the measured EGly, assuming that EGly = ECl (Ehrlich et al., 1999). 

The relevant values of RT/F, and [Cl-]o used in the experiment where RT/F = 25.69 

mV at 25 °C and [Cl-]o = 133.5 mM.  

[Cl-]i was calculated as : 
⎥
⎦

⎤
⎢
⎣

⎡
−

−
− = 16.591254.210][

ClE

iCl  

Data were expressed as mean ± SEM, and n is the number of cells tested. 

Differences between groups were statistically analyzed by carrying out Student’s t  
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test by the statistic software Winstat für Excel. The level of significance was set at p 

< 0.05. In the figures, the significant differences are marked with asterisks; *, p < 

0.05; **, p < 0.01; ***, p < 0.001. 

 

Table 2.3: Drugs used for pharmacology 

Drug Concentration (µM) Action 

Bumetanide  30  

100  

Specific NKCC antagonist 

Non-specific CCC antagonist  

SKF 89976A 100  Specific GAT1 antagonist  

Nipecotic acid 100  Specific GAT agonist (as a substrate) 

Bicuculline  30 GABAA receptor antagonist 

SCH50911 10 GABAB receptor antagonist 

I4AA 10 GABAC receptor antagonist 

Calyculin A 100  Protein phosphatase inhibitor 

 
 

2.4 Single cell RT-PCR 

After perforated patch-clamp recordings (see above), whole-cell configuration was 

established in some cells (n = 20) and their cellular content was aspirated into the 

patch pipette (Fig. 2.1). The complete content of each pipette (~7 µl) was expelled 

into an RNase-free PCR tube containing first strand buffer (Invitrogen, Karlsruhe, 

Germany), 10 mM dithiotreitol, 0.25 mM deoxynucleotide triphosphates (dNTPs), 2.5 

mM random hexamer primers (Invitrogen) and 0.1 µg of yeast tRNA (Roche, 

Mannheim, Germany) in a total volume of 17 µl. One µl of SUPERase-In (20 U µl-1; 

Ambion, Wiesbaden, Germany) and 1 µl RT Enhancer (Peqlab, Erlangen, Germany) 

were added, and the mixture was incubated at room temperature for 10 min and 

subsequently at 70°C for 5 min. After adding 1 µl of SuperScript II reverse  



Materials and methods 13

 

transcriptase (200 U µl-1; Invitrogen), the reverse transcription was carried out for 1 h 

at 42 °C (Fig. 2.2). The reaction volume was split into two halves; one was analyzed 

for the presence of KCC2 and the other for NKCC1. First round PCR was performed 

for 40 cycles with external primers (Table 2.4) and Taq DNA polymerase (Invitrogen) 

in the presence of 400 nM PCR primers and 0.5 mM dNTPs in a total volume of 50 

µl. For the second round PCR, 1 µl of the first round PCR was used as a template 

and 20 cycles were performed with nested primers. The program for both PCR was 

as follows: Denaturing at 94 °C for 30 s, annealing at 60 °C for 30 s, and extension 

at 72 °C for 1 min. Ten µl of each nested PCR was then analyzed in a 1% agarose 

gel containing ethidium bromide (0.5 µg ml-1). After electrophoresis, pictures were 

captured with a CCD camera (LTF Labortechnik, Wasserburg, Germany). 

 

Table 2.4: Oligonucleotides used for single-cell PCR  
 

  Gene 

 

Round

 No. 

 

   Type 

 

                                      Sequence 

 

Annealing 

temperature

forward 5’-CTGCCGAAAGTAAAGGAGTTGTAAAGTT-3’ 1st

reverse 5’-CTTCTTGCTGTCCAGTGAGATAAATGT-3’ 

60 ° C 

forward 5’-GGCTGGATCAAGGGTGTTTTAGTAC-3’ 

NKCC1  

 

2nd  

reverse 5’-CAGAAGGACGATCTGAGCCTTTGC-3’ 

60 ° C 

forward 5’-GCAGCCCCTTCATCAACAGCAC-3’ 1st  

reverse 5’-CATCGCTGGGAAGAGGTAAGC-3’ 

60 ° C 

forward 5’-GCCCTGTTTGAGGAGGAGATGGACAC-3’ 

KCC2  

 

2nd  

reverse 5’-ATTGCGCTCATGGAAATGGCTGTGAG-3’ 

60 ° C 
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Fig. 2.2: Chart flow of the methodological steps performed for single cell RT-PCR. The content of a 

single cell was used to investigate the expression profile of KCC2 and NKCC1 mRNAs.  
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2.5 Multiplex RT-PCR  

Reverse transcription of total RNA from different brain regions was performed by 

using standard protocols with random hexanucleotide priming and SuperScript II as 

enzyme (Invitrogen). Multiplex RT-PCR was carried out for 35 cycles in a total 

volume of 50 µl, using equimolar primers and conditions listed in Table 2.5. Primers 

for NKCC1 were designed such as to amplify both splice variants (Randall et al., 

1997; Vibat et al., 2001). Denaturing was at 94 °C for 30 s, annealing temperature 

as listed in the table, and elongation at 72 °C for 1-2 min. Ten µl of each reaction 

were loaded onto a 2% agarose gel containing ethidium bromide (0.5 µg ml-1). After 

electrophoresis, pictures were captured with a CCD camera (LTF Labortechnik). 

 
Table 2.5: Oligonucleotides used for multiplex PCR  

Gene Type Sequence Annealing Temperature 

forward 5’-CATGGATGACGATATCGCTG-3’ β-actin 

reverse 5’-CTGTGGTGGTGAAGCTGTAG-3’ 

55 °C 

forward 5’-TCCTAGGAGACATCAACAC -3’ NKCC1 

reverse 5’-ATCCAGTCACTCTGACTAG-3’ 

55 °C 

forward 5’-CGGAGGGGATCAAGGACTTC-3’ KCC2 

reverse 5’-CTCGCCACCTTTATTGCAAC-3’ 

55 °C 

 

2.6 Genotyping 

Tail biopsies (0.5 to 1 cm) from mice were obtained and incubated overnight at 55 

°C with 600 µl TNES buffer (for composition see Table 2.6) and 35 µl proteinase K 

(10 mg ml-1) in eppendorf tubes. Thereafter, the tubes were vigorously shaked for 15 

min with 166 µl of 6 M NaCl and centrifuged for 5 minutes at 14,000 g. The 

supernatant was collected in a new tube and 600 µl of 95% ethanol were added. 

Then the DNA was spooled and washed with 500 µl of 70% ethanol. After that it was 

centrifuged for 15 min at 14,000 g, and the supernatant was decanted. After air 
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drying the tubes, the pellet was resuspended in 100 µl TE buffer (for composition, 

see Table 2.7) and heated at 65 °C for 10 min to aid dissolution of DNA (Miller et al., 

1988). PCR was carried out for 35 cycles in a total volume of 50 µl, using primers 

and conditions listed in Table 2.8. Ten µl of each reaction were loaded onto a 2% 

agarose gel containing ethidium bromide (0.5 µg ml-1). After electrophoresis, pictures 

were captured with a CCD camera (LTF Labortechnik).  

 
Table 2.6: Composition of TNES Buffer 

Compound Concentration (mM) 

Tris 10  

NaCl 400  

EDTA 100  

SDS 0.6 % 

 

Table 2.7: Composition of TE Buffer 

Compound Concentration (mM) 

Tris 10 

EDTA 1  

pH 7.5, adjusted with HCl 

 

Table 2.8: Oligonucleotides used for genotyping 
 

Gene 

 

Genotype 

 

Type 

 

Sequence      

 

Annealing 

temperature 

forward 5’-TATCTCAGGTGATCTTGC-3’ Wild type 

reverse 5’-ACACTGCAATTCCTATGTAAACC-3’ 

60 °C 

forward 5’-TATCTCAGGTGATCTTGC-3’ 

NKCC1 

Knockout 

reverse 5’-ATTCCAAGCTCGAACCCCTCCG-3’ 

60 °C 

forward 5’-AGCGTGTGTCCGTGTGCGAGTG-3’ Wild type 

reverse 5’-ATCGCCGTCCTCGCAGTCCGTC-3’ 

62 °C 

forward 5’-AGCGTGTGTCCGTGTGCGAGTG-3’ 

KCC2 

Knockout 

reverse 5’-CCAGAGGCCACTTGTGTAGCGC-3’ 

62 °C 
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3 RESULTS 

3.1 Glycine-induced responses in LSO neurons  

Electrophysiological recordings of glycine-induced responses in rats and mice LSO 

neurons were performed. All recordings were done in perforated patch-clamp mode, 

using gramicidin as the ionophore to leave the native [Cl-]i undisturbed (Fig. 2.1). 

Gramicidin pores are thought to be impermeable to anions and permeable to 

monovalent cations (Ebihara et al., 1995; Kyrozis and Reichling, 1995).  

 

3.1.1 Stability of [Cl-]i during gramicidin perforated patch recordings 

While using pipette solutions with high [Cl-]i and without Ca2+ buffering, it has been 

suggested that some caution is needed when attempting gramicidin perforated 

patch-clamp recordings (Kyrozis and Reichling, 1995). To check if there is any 

relative permeability of Cl- through gramicidin pores, EGly was measured with two 

different pipette Cl- concentrations ([Cl-]p; Fig. 3.1), i.e., with 132 mM and 2 mM Cl- 

(Solution 3 and 4, see Table 2.2 for composition). In both cases, the gramicidin 

concentration was 2.5 µg ml-1 and the animals were aged between P3 and P4. EGly 

was determined as the intersection of the regression line of the current-voltage (I-V) 

relation with the X-axis (Fig. 3.1). With 2 mM [Cl-]p, EGly resulted in an average of      

-38 ± 3 mV (n = 7). With 132 mM [Cl-]p, the average EGly was -40 ± 3 mV (n = 7). The 

EGly values determined under high and low [Cl-]p displayed no significant difference 

(p > 0.05). Therefore, at a gramicidin concentration of 2.5 µg ml-1, the pores are 

impermeable to chloride ions. Thus, gramicidin perforated patch-clamp recordings 

can indeed serve as a tool to investigate the neuron’s native Cl- concentration. 
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Fig. 3.1: During gramicidin perforated 

patch-clamp recordings, native [Cl-]i is 

preserved, irrespective of the used 

pipette chloride concentration ([Cl-]p).  

I-V plots obtained from P3 and P4 

LSO neurons under two different [Cl-]p 

i.e., 2 mM (open circles) and 132 mM 

(closed circles). The reversal potential 

of glycine (EGly) amounted to -38 ± 3 

mV (n=7) and -40 ± 3 mV (n=7) for 2 

mM and 132 mM [Cl-]p, respectively, 

which was not  significantly different (p 

> 0.05). I = peak amplitude of glycine-induced currents; Vc = command potential; holds for following 

figures. 

 
3.1.2 Glycine-induced responses and determination of EGly in rat LSO neurons  

During current-clamp recordings, 1 mM glycine was applied focally on the soma of 

LSO neurons and the change in membrane potential was recorded simultaneously. 

At P3, focal application of glycine evoked a depolarization in 9 out of 10 neurons and 

the mean peak amplitude amounted to 8 ± 1 mV (Fig. 3.2A). In order to determine 

EGly in voltage-clamp mode, changes in glycine-induced current flow (I) at different 

command potentials (VC) were measured (Fig. 3.2B). EGly was determined as the 

intersection of the regression line of the I-V relation with the X-axis (Fig. 3.2C). A 

previous study showed that EGly is equivalent to ECl (Ehrlich et al., 1999), thus, 

Nernst equation can be used for calculating the native [Cl-]i. In P3 LSO neurons, the 

mean EGly was -32 ± 4 mV (n = 10; p < 0.001), i.e., less negative than the mean 

resting membrane potential (Vrest) of -59 ± 2 mV (n = 10). Usually, after determining 

EGly, the membrane under the patch was ruptured, resulting in dialysis of the cell 

interior by the pipette solution. Due to the [Cl-]p of 132 mM and the increased access 
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to the cell, large depolarizing glycine responses and concurrent action potentials 

could be observed in current-clamp mode (Fig. 3.2D).  

 

Fig. 3.2: Perforated patch-clamp 

recordings of a P3 LSO neuron imply 

high [Cl-]i. (A) Application of 1 mM 

glycine (triangle) induced a 

depolarization of approximately 5 mV 

when recording in current-clamp 

configuration. (B) Voltage-clamp 

recordings at different Vc with regular 

glycine application show inward and 

outward currents, revealing 

movement of chloride ions outward 

and inward through glycine receptors 

respectively. (C) The EGly was 

determined from the x-intercept value 

of the regression line in the current 

voltage (I-V) relationship and found to 

be -31 mV which was more positive than the resting membrane potential (Vrest) that amounted to        

-60 mV. (D) After rupture of the patch membrane, glycine elicited a large depolarization due to 

subsequent dialysis of the cell interior against the pipette solution with high [Cl-]i. The depolarization 

caused the cell to fire two action potentials (truncated), demonstrating the excitatory effect of glycine.  

 

At P12, in current-clamp mode, glycine-application induced a hyperpolarization in 9 

out of 10 neurons and the mean peak amplitude amounted to 11 ± 2 mV (n = 10; 

Fig. 3.3A). In voltage-clamp mode, EGly was determined as described above (Fig. 

3.3B&C). In P12 neurons, the mean EGly was -76 ± 4 mV (n = 10), i.e., more negative 

than the mean Vrest of -58 ± 1 mV (n = 10; p < 0.01). In whole cell current-clamp 

mode, large depolarizing glycine responses and concurrent action potentials could 

be observed (Fig. 3.3D) due to dialysis of pipette solution. 
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Fig. 3.3: Perforated patch-clamp 

recordings of a P12 LSO neuron 

imply low [Cl-]i. (A) Application of 1 

mM glycine (triangle) induced a 

hyperpolarization of approximately     

-8 mV when recording in current-

clamp configuration. (B) Voltage-

clamp recordings at different Vc with 

regular glycine application show 

inward and outward currents, 

revealing movement of chloride ions 

outward and inward through glycine 

receptors respectively. (C) The EGly 

was determined as described above 

and found to be -77 mV which was 

more negative than Vrest that 

amounted to -57 mV. (D) After 

rupture of the patch membrane, glycine elicited a large depolarization due to subsequent dialysis of 

the cell interior against the pipette solution with high [Cl-]i. The depolarization caused the cell to fire 

few action potentials (partly truncated), demonstrating the excitatory effect of glycine.  

 

3.1.3 Glycine-induced responses change during the LSO development in mice 

The development of the MNTB-LSO pathway has been intensively studied in rats 

and gerbils (Sanes and Friauf, 2000) but less in the case of mice. Mice are 

preferentially used as genetic models to investigate protein function. In order to 

make use of mouse knockout models of chloride cotransporters, to examine the 

functional role of transporters, glycine-induced responses in LSO neurons of wild 

type mice (C57BL/6J, a common strain used for genetic manipulation) between P2 

to P13 (n = 42) were characterized. Recordings were done in gramicidin perforated 

patch-clamp mode. Representative examples of recordings at P3 and P12 are 

shown in figure 3.4 A and B respectively. EGly was determined as described above, 

and amounted to -31 mV at P3 and -77 mV at P12. 
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Fig. 3.4: Developmental changes of glycine-induced responses in mouse LSO neurons. Typical 

examples of glycine-induced responses in mouse LSO neurons at P3 (A) and P12 (B). The upper 

panels show a glycine-induced depolarization and hyperpolarization at P3 and P12, respectively. 

Triangles indicate the time of glycine application. The middle panels show glycine-evoked currents at 

different Vc obtained from the same cells shown in the upper panels. The lower panels depict the 

corresponding I-V relations, where EGly (colored triangles) amounted to -21 mV (P3) and -84 mV 

(P12). (C) EGly and Vrest values from 42 LSO neurons are plotted against age (P2-13). The 
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corresponding [Cl-]i values are given at the right Y-axis. Colored circles mark results from the two 

cells shown in A and B. At P8, the regression line of EGly (black) intersects that of Vrest (red), 

demonstrating the time of glycine response shift.      

 

The vast majority of P2-5 neurons (10 out of 12) depolarized upon glycine 

application, whereas most P8-13 neurons (16 out of 18) hyperpolarized. The switch 

from glycine-induced depolarization to hyperpolarization takes place at P8, similar to 

rats, where it happened at P5-7 (Ehrlich et al., 1999). The Vrest remains constant 

irrespective of the age-related negative shift in EGly, thus revealing an age-

dependent positive shift in the driving force (Vrest - EGly) of chloride. 

 

3.2 Expression analysis of cation chloride cotransporters 

The switch from depolarization to hyperpolarization occurs in several systems due to 

Cl- regulation. The role of chloride cotransporters in neuronal chloride homeostasis 

is well documented (Delpire, 2000; Payne et al., 2003; Vale et al., 2003). Evidence 

in favor of a pivotal role of Na+ and K+-dependent Cl- cotransporter (NKCC1) and K+-

dependent Cl- cotransporter (KCC2) in several brain regions, in regulating [Cl-]i has 

been reported (Rivera et al., 1999; Sung et al., 2000). To correlate depolarizing and 

hyperpolarizing glycine activity with an age-dependent gene expression of KCC2 

and NKCC1, RT-PCR analysis of several brain regions including the brainstem at P3 

(depolarizing age) and P12 (hyperpolarizing age) were performed. 

 

3.2.1 Multiplex RT-PCR expression analysis of NKCC1 and KCC2 in several 

brain regions 

Developmental changes of KCC2 and NKCC1 was explored in the following rat brain 

regions, cerebellum, cortex, brainstem and auditory brainstem slice at P3 and P12. 

Multiplex RT-PCR was carried out to identify gene transcripts of NKCC1 (Fig. 3.5) 
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and KCC2 (Fig. 3.6) along with ß-actin as a control. At P3, NKCC1 and ß-actin 

expression was observed in cerebellum, cortex and brainstem. Surprisingly, NKCC1 

expression was hard to detect in the auditory brainstem slice at the level of the SOC, 

which indicates a negative stance on the role of NKCC1. The discrepancy in NKCC1 

expression, between brainstem and auditory brainstem slice at the level of SOC, 

could be due to expression of NKCC1 in other brainstem nuclei. At P12, NKCC1 

expression was comparatively higher than ß-actin in all regions analyzed.  

 

Fig. 3.5: Expression analysis of 

NKCC1 mRNA by multiplex  

RT-PCR assay. Expression of 

NKCC1 was analysed in 

cerebellum, cortex, brainstem 

and auditory brainstem slice at 

P3 and P12. At P3, no NKCC1 

signal was detected in the 

auditory brainstem slice but     

ß-actin (positive control) was detected. In the cerebellum and cortex, uniform NKCC1 and ß-actin 

signals were detected, whereas in the brainstem NKCC1 signal was more prominent than ß-actin. At 

P12, NKCC1 and ß-actin expression was detected in every brain region analysed. Compared to 

NKCC1 signals, ß-actin signals were low in every brain region analyzed.  

 

As for NKCC1, KCC2 was coamplified with ß-actin. KCC2 transcripts were found in 

all brain regions analyzed, irrespective of the age. This result implicates that 

functional KCC2 dominance upon development is not only due to up-regulation of 

the expression. In order to study the gene expression at high resolution, single cell 

RT-PCR was performed. 
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Fig. 3.6: Expression analysis 

of KCC2 mRNA by multiplex 

RT-PCR assay. Expression of 

KCC2 was analysed in 

cerebellum, cortex, brainstem 

and auditory brainstem slice 

at P3 and P12. KCC2 mRNA 

expression was observed 

irrespective of age in all 

tissues analyzed. At P3, KCC2 expression was higher than ß-actin in cerebellum and cortex, whereas 

uniform in brainstem and auditory brainstem slice. At P12, KCC2 and ß-actin expression was similar 

in all tissues tested.  

 

3.2.2 Single-cell RT-PCR confirms the presence of KCC2 mRNA at P3 and P12 

and the absence of NKCC1 mRNA at P3 

To determine whether there is a correlation between depolarizing and 

hyperpolarizing glycine activity and the gene expression of NKCC1 and KCC2, 

respectively, in individual LSO neurons, single-cell RT-PCR experiments were 

performed (Geiger et al., 1995). The mRNA expression profile of KCC2 and NKCC1 

was compared with the glycine reversal potential (EGly). Both NKCC1 and KCC2 

were probed for 20 neurons, 10 neurons each at P3 and P12. To do so, bipolar LSO 

neurons in the core region of the nucleus, most likely representing principal neurons 

(Rietzel and Friauf, 1998), were selected under visual control using DIC-infrared 

microscopy (see methods). After determining EGly, as mentioned in the above 

section, the cell content was carefully harvested while watching the gradual collapse 

of the soma (Fig. 2.1D), and a nested RT-PCR was performed. In the amplifications 

with the cotransporter specific primers, the obtained amplimers had the expected 

sizes of 323 bp and 464 bp for KCC2 and NKCC1, respectively. 
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Fig. 3.7: Relationship between EGly and the presence of KCC2 and NKCC1 transcripts in individual 

LSO neurons at P3 and P12. Each arrow illustrates the difference between the Vrest (base of arrow) 

and EGly (tip of arrow) of 20 individual neurons. At P3, in 9 of 10 neurons EGly was more positive than 

Vrest (upward arrows). At P12, in 9 out of 10 neurons EGly was more negative than Vrest (downward 

arrows). Values for [Cl-]i were calculated with the Nernst equation from the measured EGly values and 

are shown on the right Y-axis. The gray band illustrates the range for Vrest (-50 to -68 mV). Vrest 

averaged -59 ± 2 mV at P3 (mean ± SEM) and did not significantly differ from Vrest at P12 (-58 ± 1 

mV; p > 0.05). In contrast, EGly at P3 (mean: -32 ± 4 mV; range: -12 to -52 mV) became significantly 

more negative until P12 (mean: -76 ± 4 mV; range: -47 to -92 mV; p < 0.001). In line with this, [Cl-]i 

averaged 44 ± 7 mM at P3 which was significantly higher than 8 ± 2 mM (p < 0.001). The results from 

the single cell RT-PCR experiments are depicted in the lower part of the figure. Every neuron 

analyzed was positive for KCC2 mRNA, regardless of age. In contrast, no NKCC1 transcript was 

detected in the P3 group, whereas it was present in every neuron at P12. 

 

KCC2 was found in every single LSO neuron analyzed (n = 20), regardless of age or 

whether EGly was more negative or less negative than Vrest (Fig. 3.7). In contrast, 

NKCC1 mRNA was detected only in the P12 group (n = 10), which comprised 9 

neurons whose EGly was more negative than Vrest (Fig. 3.7). As no NKCC1 

transcripts were seen at P3, when 9 of 10 neurons showed depolarizing responses 

to glycine, it is very likely that NKCC1 is not the inward-directed Cl- transporter 

during the depolarizing phase in the LSO. Together, the single-cell RT-PCR data 

show that KCC2 and NKCC1 transcripts can exist in the same LSO neuron, but 
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coexpression is not obligatory. Most importantly, however, they confirm that KCC2 

expression does not correlate with hyperpolarizing glycine activity, and, likewise, 

NKCC1 expression does not correlate with depolarizing glycine activity in the LSO. 

The data imply that KCC2 activity may be regulated at the posttranslational level in 

the LSO, and they also raise the question concerning the nature of the inward-

transporting chloride transporter during early ontogeny. 

 

3.3 Characterization of Cl- homeostasis in KCC2 knockout mice 

Expression analyses demonstrate the existence of KCC2 mRNA in LSO at P3 and 

P12 (Fig. 3.7). To determine the functional role of KCC2 in LSO neurons, 

experiments with KCC2 knockout (-/-) mice were performed. KCC2 -/- mice, in which 

the KCC2 gene is disrupted and more than 95% reduction of protein expression is 

achieved, were chosen (as determined by Western blots; Woo et al., 2002). It was 

shown that homozygous offsprings (KCC2 -/-) exhibit frequent and generalized 

seizures during the first postnatal week and die between P10 and P16, while 

heterozygous animals (KCC2 +/-) are indistinguishable from wildtype (+/+) mice 

during that period (Woo et al., 2002). In the present study, EGly of KCC2 -/- animals 

were measured and compared with that from KCC2 +/+.  

 

3.3.1 LSO neurons of P3 KCC2 -/- mice display normal EGly  

As shown before (3.1.3), in LSO neurons of +/+ mice, the switch from depolarizing to 

hyperpolarizing glycine action takes place at P8 (Fig. 3.4). Consequently, P3 and 

P12 represent ages at which EGly > Vrest and EGly < Vrest, respectively, and therefore 

KCC2 -/- mice were investigated at these ages. Current-clamp recordings from LSO 

neurons of KCC2 -/- mice at P3 consistently showed depolarizing responses with a 
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mean peak amplitude of 7 ± 1 mV (n = 4), which was not significantly different to that 

seen in KCC2 +/+ mice (7 ± 1 mV, n = 5; p > 0.05;  Fig. 3.8A). The I-V relationship of 

glycine-induced responses in KCC2 -/- mice was indistinguishable from that of KCC2 

+/+ mice (Fig. 3.8B). The average EGly in KCC2 -/- mice was -32 ± 7 mV (n = 4) and 

did not significantly differ (p > 0.05) from the value found in KCC2 +/+ mice  

(-38 ± 9 mV; n = 5). These results provide evidence that KCC2 is not an active Cl- 

transporter in P3 LSO neurons. 

 

 

Fig. 3.8: Characterization of glycine-induced 

responses in P3 LSO neurons of KCC2 

knockout (-/-) mice. (A) At Vrest of -58 mV 

and -60 mV, LSO neurons from wildtype 

(+/+) mice and -/- mice, show glycine-

induced depolarizations. Triangles indicate 

glycine application. (B) I-V relationships of 

glycine-induced responses in -/- and +/+ 

mice in comparison. No considerable 

difference in EGly between +/+ (-38 ± 9 mV) 

and -/- (-32 ± 7 mV) mice was found (p > 

0.05). Error bars illustrate SEM (long 

horizontal endings apply for +/+, short 

endings for -/- mice).  

 

 

 

3.3.2 LSO neurons of P12 KCC2 -/- mice display abnormal EGly

In contrast to the unaffected EGly seen at P3 in LSO neurons of KCC2 -/- mice, [Cl-]i 

regulation was obviously disturbed in P12 LSO neurons of these KCC2 -/- mice. This 

was evidenced by depolarizing glycine-induced responses (n = 6), while LSO 

neurons in KCC2 +/+ mice (n = 6) showed hyperpolarizing responses (Fig. 3.9A).  
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Fig. 3.9: Characterization of glycine-

induced responses in P12 LSO neurons of 

KCC2 -/- mice. (A) At Vrest of -58 mV and   

-62 mV, LSO neurons from +/+ mice show 

glycine-induced hyperpolarization and in 

contrast -/- mice show depolarization. 

Triangles indicate glycine application. (B) 

I-V relationships of glycine-induced 

responses in -/- and +/+ mice in 

comparison. Significant difference in EGly 

between +/+ (-75 ± 3 mV) and -/- (-33 ± 3 

mV) mice was found (p < 0.001). Error 

bars illustrate SEM (long horizontal 

endings apply for +/+, short endings for -/- 

mice).   

 

 

The I-V relationships were clearly shifted towards more positive membrane 

potentials and exhibited a slightly shallower slope in the KCC2 -/- group (Fig. 3.9B). 

In KCC2 -/- mice, EGly was significantly different (p < 0.001) from the value obtained 

for KCC2 +/+ mice (-33 ± 3 mV versus -75 ± 3 mV). Interestingly, EGly in KCC2 -/- 

mice at P12 did not differ from EGly in KCC2 +/+ mice at P3 (p > 0.05), indicating that 

the genetic-knockout leaves the LSO neurons in an immature state concerning Cl- 

regulation. Moreover, there is no significant difference in the resting membrane 

potential of the neurons among the groups (p > 0.05), implying that KCC2 activity 

does not contribute to Vrest (P3 +/+: -58 ± 2 mV, n = 5; P3 -/-: -59 ± 3 mV, n = 4; P12 

+/+: -61 ± 3 mV, n = 6; P12 -/-: -63 ± 2 mV, n = 6). The data obtained from the KCC2 

-/- mice strongly corroborate the idea that KCC2 transporter is active at P12. Thus, 

KCC2 achieves EGly values that are more negative than Vrest by extruding Cl- from 
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mature neurons, thus generating a low [Cl-]i and relatively negative values for ECl    

(≈ EGly) which ultimately result in hyperpolarizing glycine activity. 

 

3.4 Pharmacological characterization of the role of NKCC1 in Cl- homeostasis 

In order to compare the results of NKCC1 expression analysis, showing no NKCC1 

transcripts at P3, but at P12, with a possible functional role, pharmacological studies 

were done with a specific blocker of NKCC1. Bumetanide at low concentration    

(10–30 µM) has been shown to perturb chloride inward transport mechanisms in 

immature neurons by blocking NKCC1 specifically (Isenring et al., 1998; Sung et al., 

2000; Hannaert et al., 2002; Payne et al., 2003). Bumetanide at high concentration 

have been described to elicit non-specific inhibition among the cation chloride 

cotransporters. NKCC1 and KCC2 strongly differ in their sensitivity to bumetanide, 

i.e., IC50 of bumetanide to NKCC1 and KCC2 is 0.1 vs. 55 µM, respectively 

(Cabantchik and Greger, 1992; Lauf, 1984; Russell, 2000).  

 

3.4.1 At low (NKCC1-specific) concentration, bumetanide does not influence 

EGly of P3-5 and P12 LSO neurons  

To pharmacologically characterize the role of NKCC1 in chloride homeostasis of  

P3-5 LSO neurons, 30 µM bumetanide was bath applied. As a control, EGly was 

determined before the application of bumetanide and amounted to -35 ± 3 mV, n = 5. 

Subsequently to the bath application of bumetanide, the effect on EGly was 

monitored (Fig. 3.10). No significant change in the EGly (-37 ± 3 mV, n = 5) was 

observed in P3-5 LSO neurons upon bumetanide application (p > 0.05). This result 

is likely to exclude the possibility of the role of NKCC1 in the accumulation of 

chloride in P3-5 LSO neurons.    
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Fig. 3.10: Treatment with low concentration of bumetanide reflects no role of NKCC1 in [Cl-]i 

regulation in P3 LSO neurons. (A) I-V relations of a P3 LSO neuron under control conditions (open 

circles), in the presence of 30 µM bumetanide (closed circles) and after the washout of bumetanide 

(triangles). (B) Summary of bumetanide effects obtained from five different neurons: the values of EGly 

upon control conditions (open circles) are compared with those upon bumetanide treatment (closed 

circles). The arrows illustrate the direction and magnitude of bumetanide-induced shift in EGly which 

was not significant (p > 0.05). Color-marked cell represents the example shown in A.  

 

As described above, P12 LSO neurons were challenged with 30 µM bumetanide in 

order to find a functional correlate to the expression of NKCC1 mRNA at this age 

(Fig. 3.7). Under control conditions, EGly amounted to -79 ± 4 mV (n = 5). No 

significant change in EGly (-79 ± 5 mV, n = 5) was observed upon bumetanide bath 

application (Fig. 3.11, p > 0.05). The data rule out the possibility of the functional 

involvement of NKCC1 in chloride regulation during the hyperpolarizing phase even 

though NKCC1 transcripts were observed by expression analysis at this age. 
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Fig. 3.11: Treatment with low concentration of bumetanide reflects no role of NKCC1 in [Cl-]i 

regulation in P12 LSO neurons. (A) I-V relations of a P12 LSO neuron under control conditions (open 

circles), in the presence of 30 µM bumetanide (closed circles) and after the washout of bumetanide 

(triangles). (B) Summary of bumetanide effects obtained from five different neurons: the values of EGly 

upon control conditions (open circles) are compared with those upon bumetanide treatment (closed 

circles). The arrows illustrate the direction and magnitude of bumetanide-induced shift in EGly which 

was not significant (p > 0.05). Color-marked cell represents the example shown in A.  

 

3.4.2 At low (NKCC1-specific) concentration, bumetanide influences EGABA in 

P3-5 pyramidal LSO neurons 

In cultured hippocampal pyramidal neurons, NKCC1 was reported to play a role in 

setting the [Cl-]i, evidenced by the effects of bumetanide treatment (Hara et al., 

1992). Thus, pyramidal neurons served as a positive control to the above 

experiments with low concentrations of bumetanide. I-V relationships were made 

after focal application of 500 µM GABA, and the reversal potentials of GABA induced 

currents (EGABA) were determined as EGly, described above. Under control conditions 

EGABA of P3-5 pyramidal neurons amounted to -37 ± 6 mV (n = 6). In the presence of 

30 µM bumetanide EGABA significantly shifted towards more negative potential 

amounted to -53 ± 8 mV (n = 6; p < 0.01). The effect of 30 µM bumetanide on EGABA 
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was reversible (Fig. 3.12A). The slope of the I-V relationships were reduced after 

bumetanide application. 

 

Fig. 3.12: Treatment with low concentration of bumetanide reflects the role of NKCC1 in [Cl-]i in P3 

pyramidal neurons of hippocampal CA1 layer. (A) I-V relations of a P3 pyramidal neuron under 

control conditions (open circles), in the presence of 30 µM bumetanide (closed circles) and after the 

washout of bumetanide (triangles). (B) Summary of bumetanide effects obtained from five different 

neurons: the values of EGABA upon control conditions (open circles) are compared with those upon 

bumetanide treatment (closed circles). The arrows illustrate the direction and magnitude of 

bumetanide-induced shift in EGABA which was significant (p < 0.01). Color-marked cell represents the 

example shown in A. 

 

3.4.3 At high (non-specific) concentration, bumetanide influences EGly of P12 

LSO neurons 

At P12, under control conditions, EGly amounted to -78 ± 5 mV, n = 5. In the 

presence of 100 µM bumetanide, a change in EGly was monitored namely a 

significant shift towards less negative value amounting to -64 ± 6 mV, n = 5 (p < 

0.01, Fig. 3.13). This effect was reversible upon washout of the drug (Fig. 3.13A). 

This result is likely due to a non-specific blockade of functional KCC2, caused by the 

high bumetanide concentration. 
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Fig. 3.13: Treatment with high concentration of bumetanide reflects a role of KCC2 in [Cl-]i regulation 

in P12 LSO neurons. (A)  Shown are the I-V relations of a P12 LSO neuron under control conditions 

(open circles), in the presence of 100 µM bumetanide (closed circles) and after the washout of 

bumetanide (triangles). (B) Summary of bumetanide effects obtained from five different neurons: the 

values of EGly upon control conditions (open circles) are compared with those upon bumetanide 

treatment (closed circles). The arrows illustrate the direction and magnitude of bumetanide-induced 

shift in EGly which was significant (p < 0.01). Color-marked cell represents the example shown in A. 

 

3.5 On the role of Na+ involved in Cl- homeostasis of LSO neurons 

Several inward chloride cotransporters depend on Na+ gradient for their functional 

activity (Fig. 1.2). To physiologically characterize if there is any Na+-dependent 

chloride homeostasis in LSO neurons, experiments manipulating the extracellular 

and intracellular Na+ concentration ([Na+]) were performed.  

 

3.5.1 Lowering [Na+]o has no effect on EGly in P3/4 LSO neurons, but shifts 

EGABA towards negative in P3/4 pyramidal neurons 

To study the effect of lowering [Na+]o in chloride homeostasis, EGly was measured 

under different [Na+] in the extracellular solution (for composition see Table 2.1) as 
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shown in Fig. 3.14. Under normal [Na+]o, before application of Na+-reduced 

extracellular solution (t = 0 min), EGly amounted to -39 ± 2 mV (n = 6) and did not 

change significantly when [Na+]o was reduced to 18% (-38 ± 2 mV; n = 6; t = 20 min; 

p > 0.05). Further experiments with LSO neurons were attempted to examine the 

effect of 100% replacement of [Na+]o. But these were unsuccessful, the seal broke 

down and whole-cell mode was attained.    

      

Fig. 3.14: Lowering extracellular 

Na+ concentration ([Na+]o) has no 

effect on [Cl-]i in P3 LSO neurons. 

Mean EGly values of 6 cells were 

plotted as a function of time, 

where [Na+]o was lowered from 

100% to 18% for 20 min. The EGly 

values at 0 and 20 min were 

statistically compared. The 

reduced [Na+]o had no significant 

Nernst equation and are shown on 

the right Y-axis.  

effect on EGly (p > 0.05). Values for [Cl ]i were calculated with the -

      

 

In addition to P3 LSO neurons, pyramidal neurons from the CA1 region of the 

hippocampus were analyzed with normal and low [Na+]o. EGABA amounted to -38 ± 1 

mV (n = 4; t = 0 min) with normal [Na+]o and -45 ± 3 mV (n = 4; t = 20 min) with low 

[Na+]o (Fig. 3.15). This shift of EGABA towards more negative values was significant (p 

< 0.05), revealing a Na+ dependent Cl- accumulation in these hippocampal neurons. 
 

Fig. 3.15: Lowering [Na+]o 

influences [Cl-]i in P3 hippocampal 

CA1 pyramidal neurons. Mean 

EGABA values of 4 cells were 

plotted as a function of time, 

where [Na+]o was lowered from 

100% to 18% for 20 min. The EGly 

values at 0 and 20 min were 

statistically compared. The 
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reduction of [Na+]o significantly shifted EGABA towards more negative (p < 0.05). Values for [Cl-]i were 

calculated with the Nernst equation and are shown on the right Y-axis.        

  

3.5.2 Effects of altering [Na+]i on EGly of neonatal LSO neurons 

In order to study the influence of [Na+]i in chloride homeostasis at early postnatal 

ages, EGly was measured in P3/4 LSO neurons with two different pipette solutions, 

containing 4.6 and 24.6 mM Na+, respectively (solution 2 and 3; see Table 2.2). 

Since gramicidin pores are permeable to monovalent cations (Tajima et al., 1996), 

the cell interior is expected to be influenced by the pipette Na+ concentration 

([Na+]p). Experiments with [Na+]p = 4.6 mM resulted in an average EGly value of -40 ± 

3 mV (n = 7; Fig. 3.16). In contrast, at [Na+]p = 24.6 mM, EGly amounted to -52 ± 5 

mV (n = 7), which was significantly different (p < 0.05). These results indicate the 

presence of Na+-dependent chloride accumulation in LSO neurons, but contradict 

the experiments performed with low [Na+]o (3.5.1). It can be reasoned that reduction 

to 18% [Na+]o was not sufficient to interrupt the Na+-dependent chloride 

accumulation.     

 

Fig. 3.16: Intracellular Na+ 

concentration influences EGly in 

P3/4 LSO neurons. I-V 

relationships obtained from P3/4 

LSO neurons under two different 

pipette Na+ concentrations 

([Na+]P). Neurons recorded with 

4.6 mM [Na+]P (filled circles) had a 

mean EGly of -40 ± 3 mV (n = 7), 

which was significantly different to 

that recorded with 24.6 mM [Na+]P 

( -52 ± 5 mV, n = 6, p < 0.05).    
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3.6 Characterization of Cl- homeostasis in NKCC1 knockout mice 

From all the experiments done so far, the knowledge about KCC2 as an outward 

chloride cotransporter was conclusive, but the chloride inward transport mechanism 

remained puzzling. Gene expression and pharmacology excluded NKCC1 as a 

candidate, but there seemed to be some Na+-dependent mechanism involved in 

setting the [Cl-]i. To finally test whether NKCC1 might play a role, NKCC1 -/- mice 

were analyzed like those of KCC2 -/- at P3 and P12.

 

3.6.1 LSO neurons of P3 NKCC1 -/- mice display normal EGly 

The role of NKCC1 in chloride regulation was addressed with NKCC1 -/- mice at P3 

and P12. Current-clamp recordings from LSO neurons obtained in brainstem slices 

of NKCC1 -/- mice at P3 consistently showed depolarizing responses, whose peak 

amplitudes were in the range of those seen in NKCC1 +/+ mice (8 ± 2 mV; n = 4 and 

5 ± 1 mV; n = 5, respectively, p > 0.05, Fig. 3.17A). The I-V relationship of glycine-

induced responses in NKCC1 -/- mice was considerably similar to that in +/+ mice 

(Fig. 3.17B). The average EGly in P3 -/- mice was -31 ± 6 mV (n = 4) and did not 

significantly differ (p > 0.05) from the value found in P3 +/+ mice (-35 ± 3 mV; n = 5). 

These results provide evidence that NKCC1 plays no role in P3 LSO neurons, 

consistent with the above described expression analysis (Fig. 3.7), and the 

pharmacological findings (Fig. 3.10).  
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Fig. 3.17: Characterization of glycine-induced 

responses in P3 LSO neurons of NKCC1 -/- 

mice. (A) At Vrest of -62 mV and -59 mV, LSO 

neurons from +/+ mice and -/- mice, show 

glycine-induced depolarizations. Triangles 

indicate glycine application. (B) I-V 

relationships of glycine-induced responses in   

-/- and +/+ mice in comparison. No 

considerable difference in EGly between +/+     

(-35 ± 3 mV) and -/- (-31 ± 6 mV) mice was 

found (p > 0.05). Error bars illustrate SEM 

(long horizontal endings apply for +/+, short 

endings for -/- mice). 

 
 

 

3.6.2 LSO neurons of P12 NKCC1 -/- mice display normal EGly 

Expression analyses demonstrated an upregulation of NKCC1 with age (Fig. 3.7). 

To unravel the role of NKCC1 at P12, NKCC1 -/- mice were analyzed at the same 

age. Current-clamp recordings from LSO neurons obtained in brainstem slices of 

NKCC1 -/- mice at P12 (n = 4) consistently showed hyperpolarizing responses with a 

mean peak amplitude of 7 ± 2 mV (n = 5), which was not significantly different to 

that   seen in NKCC1 +/+ mice (6 ± 1 mV; n = 6; p > 0.05; Fig. 3.18A). The I-V 

relationship of glycine-induced responses in -/- mice was compared with +/+ mice 

(Fig. 3.18B). The average EGly in NKCC1 -/- mice was –74 ± 4 mV (n = 5) and did 

not significantly differ (p > 0.05) from the value found in NKCC1 +/+ mice (–78 ± 3 

mV; n = 6). These results provide evidence that NKCC1 plays no role in P12 LSO 

neurons, consistent with the above described pharmacological findings (Fig. 3.11).   
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Fig. 3.18: Characterization of glycine-induced 

responses in P12 LSO neurons of NKCC1 -/- 

mice. (A) At Vrest of -57 mV and -63 mV, LSO 

neurons from +/+ mice and -/- mice, show 

glycine-induced depolarizations. Triangles 

indicate glycine application. (B) I-V 

relationships of glycine-induced responses in  

-/- and +/+ mice in comparison. No 

considerable difference in EGly between +/+  

(-78 ± 3 mV) and -/- (-74 ± 4 mV) mice was 

found (p > 0.05). Error bars illustrate SEM 

(long horizontal endings apply for +/+, short 

endings for -/- mice). 

 

 

3.7 Voltage treatment modulates [Cl-]i
 in young LSO neurons 

Since the involvement of NKCC1 in chloride accumulation was ruled out by the 

above results, other possible candidates were investigated. The role of anion 

exchanger isoform 3 (AE3; Fig. 1.2) was reported to be negligible due to glycine-

induced depolarization observed in the absence of HCO3 buffer (Kakazu et al., 

1999). In order to further investigate the mechanism of chloride accumulation, I 

focus my studies on the possible involvement of electrogenic transporters like GABA 

(GAT) and glycine (GLYT) transporters (Fig. 1.2). In general, GAT and GLYT are 

primarily known as GABA and glycine transporters, respectively, which also 

cotransport Cl- along with Na+ (King and Tunnicliff, 1990; Kavanaugh et al., 1992; 

Kanner, 1994; Takahashi et al., 1995; Supplisson and Roux, 2002). To investigate 

the role of these electrogenic transporters in chloride homeostasis, experiments 
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employing different (depolarization and hyperpolarization) voltage treatments were 

performed in both P3 and P12 LSO neurons.  

 

3.7.1 Hyperpolarizing voltage treatment induces the Cl- influx in P3 LSO 

neurons 

To check the influence of negative voltage treatment in chloride transport 

mechanism, EGly was determined before and after subjecting the neurons to a   

potential of -120 mV for 15 min (Fig. 3.19). Three consecutive EGly values, obtained 

with time interval of 5 min before voltage treatment was used to monitor the stability 

of EGly. The control EGly was determined before the voltage treatment (at 10 min), 

and amounted to -42 ± 6 mV, n = 7. The EGly was measured after the voltage 

treatment (at 25 min) amounted to -30 ± 7 mV, which was significantly different from 

the control (p < 0.01). This change corresponds to an increase in [Cl-]i of about 16 

mM and indicates that long lasting hyperpolarization  increase chloride influx in LSO 

neurons.  

Fig. 3.19: Effect of long 

lasting hyperpolarization on 

EGly in P3/4 LSO neurons. 
Plot of average EGly observed 

in seven P3/4 LSO neurons, 

before and after the treatment 

with a 15 min lasting 

hyperpolarization of –120 mV. 

Values for [Cl-]i were 

calculated from Nernst 

equation and are shown on 

the right Y-axis. At the last 

measurement before the 

hyperpolarizing step (time = 10 min) the mean EGly amounted to -42 ± 6 mV (≈ [Cl-]i = 26 mM). At the 

first measurement after the hyperpolarizing step (time = 25 min), the mean EGly amounted to -30 ± 7 

mV (≈ [Cl-]i  = 42 mM), that is significantly less negative than before the voltage treatment (p < 0.01).  
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3.7.2 Depolarizing voltage treatment reduces the Cl- influx in P3 LSO neurons 

In line with the observed effect due to long lasting hyperpolarizations, long lasting 

depolarizations were expected to produce an opposite effect. To check the influence 

of long lasting depolarization in chloride transport mechanism, EGly was determined 

by I-V relationships of glycine-induced responses in LSO neurons before and after 

subjecting the neurons to a voltage potential of -40 mV for 15 min (Fig. 3.20). Three 

consecutive EGly values obtained with time interval of 5 min, before voltage 

treatment, were used to monitor the stability of EGly. The control EGly was determined 

before the voltage treatment (at 10 min), and amounted to -23 ± 2 mV, n = 11. The 

EGly measured after the treatment amounted to -34 ± 3 mV (n = 11), which was 

significantly different from the control (p < 0.001). This change corresponds to a 

decrease in [Cl-]i of about 19 mM. Thus, long lasting depolarization, diminish the 

chloride influx in LSO neurons.  

 

Fig. 3.20: Effect of long 

lasting depolarization on EGly 

in P3/4 LSO neurons. Plot of 

average EGly observed in 

eleven P3/4 LSO neurons, 

before and after the treatment 

with a 15 min lasting 

depolarization of -40 mV. 

Values for [Cl-]i were 

calculated from Nernst 

equation and are shown on 

the right Y-axis. At the last 

measurement before the depolarizing step (time = 10 min) the mean EGly amounted to -23 ± 2 mV   (≈ 

[Cl-]i = 55 mM). At the first measurement after the depolarizing step (time = 25 min), the mean EGly 

amounted to -34 ± 3 mV (≈ [Cl-]i = 36 mM), that is significantly more negative than before the voltage 

treatment (p < 0.001).  
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3.7.3 Depolarizing voltage treatment causes no change in Cl- regulation of P12 

LSO neurons 

The experiments with P3 LSO neurons indicate the presence of voltage dependent 

transport mechanism involved in Cl- homeostasis. Existence of such mechanism at 

P12 was checked, by subjecting the neurons to long lasting depolarization as 

described above for the P3 neurons. Three consecutive EGly values obtained with 

time interval of 5 min, before voltage treatment, were used to monitor the stability of 

EGly (Fig 3.21). The control EGly which was determined before the depolarizing step 

at 10 min amounted to -67.8 ± 4.7 mV, n = 5. The EGly measured after the treatment 

(at 25 min) amounted to -68.2 ± 5.2 mV (n = 5), which was not significantly different 

from the control (p > 0.05). Thus, long lasting depolarization has no influence in the 

chloride homeostasis of P12 LSO neurons. Altogether, the experiments indicate the 

existence of electrogenic transporters playing a role in chloride accumulation in LSO 

neurons.        

Fig. 3.21: Effect of long 

lasting depolarization on EGly 

in P11/12 LSO neurons. Plot 

of average EGly observed in 

five P11/12 LSO neurons, 

before and after the treatment 

with a 15 min lasting 

depolarization of -40 mV. 

Values for [Cl-]i were 

calculated from Nernst 

equation and are shown on 

the right Y-axis. At the last 

measurement before 

depolarizing step (time = 10 min), the mean EGly amounted to -68 ± 5 mV (≈ [Cl-]i = 9 mM). At the first 

measurement after the depolarizing step (time = 25 min), the mean EGly amounted to -68 ± 5 mV       

(≈ [Cl-]i = 9 mM) as well (p > 0.05).  
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3.8 Pharmacological revealing of GAT1 in Cl- homeostasis  

Voltage treatment experiments indicate a role of electrogenic transporters like GAT 

and/or GLYT. GAT1 is the predominant GABA transporter in the brain. To examine 

the role of GAT1 in [Cl-]i regulation in LSO neurons, experiments with GAT1 specific 

inhibitor and activator were performed. SKF 89976A (SKF) was used as a specific 

blocker of GAT1 in several studies (Mager et al., 1993; Zuiderwijk et al., 1996; Loo et 

al., 2000) and nipecotic acid (NPA) as a transportable substrate of GAT1, i.e., NPA 

is transported in place of GABA (Takahashi et al., 1995; Bernstein and Quick, 1999).   

 

3.8.1 GAT1 specific inhibitor influences the [Cl-]i in LSO neurons  at P3/4, but 

not at P11/12.  

To examine the effect of GAT1 in [Cl-]i regulation, EGly under control condition and 

during bath application of 100 µM SKF for 30 min was compared. EGly was 

measured at intervals of 5 min for up to 90 min as shown in Fig. 3.22. At P3/4, under 

control conditions (at 10 min), the mean EGly was -33 ± 3 mV (n = 6). In the presence 

of SKF (at 30 min), EGly significantly shifted towards more negative (-51 ± 6 mV; n = 

6; p < 0.05). In contrast, at P11/12, the EGly amounted to -75 ± 4 mV (n = 7) under 

control conditions (at 10 min), which was not significantly different to EGly obtained in 

the presence of SKF (-78 ± 5 mV, n = 7; p > 0.05). 
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Fig. 3.22: The blockade of GABA transporter 1 (GAT1) influences [Cl-]i in P3/4 but not in P11/12 LSO 

neurons. Plot of mean EGly values obtained from six P3/4 and seven P11/12 neurons, before, during 

and after 30 min application of the specific GAT inhibitor SKF 89976A (SKF). Values for [Cl-]i were 

calculated with the Nernst equation and are shown on the right Y-axis. EGly was significantly reduced 

at P3/4 i.e., from -33 ± 3 mV at 10 min to -52 ±  6 mV at 40 min (p < 0.05), indicating the blockade of 

a net inward Cl- transport mechanism. In contrast, at P12 SKF induced no significant shift in EGly (-76 

± 4 mV at 10 min, and -78 ± 5 mV at 40 min, p > 0.05), revealing no role of GAT1 in setting the [Cl-]i. 

The numbers adjacent to the symbols indicate individual n value of that mean.           

 

3.8.2 GAT1 specific inhibitor influences [Cl-]i in the presence of GABA 

receptors blockers. 

SKF treatment is likely to increase the extracellular GABA concentration in the 

synaptic cleft, which may lead to activation of postsynaptic GABA receptors. To 

elucidate that the reduction of [Cl-]i by SKF was not due to the activation of GABA 

receptors via an increased GABA concentration, experiments with antagonists 

against the three types of GABA receptors were performed (GABAA : 30 µM 

bicuculin, GABAB : 10 µM SCH 50911 and GABAC : 10 µM I4AA). In the presence of 

these GABA receptor antagonists, LSO neurons were challenged with SKF for 30 

min as shown in Fig. 3.23. The EGly before this treatment amounted to -33 ± 5 mV (n 
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= 6). Upon SKF treatment, EGly amounted to -49 ± 6 mV (n = 6), which was 

significantly different to the control situation (p < 0.05). Furthermore, the time 

courses of the SKF treatment obtained from experiments with and without GABA 

receptor antagonists were very similar. Quantitatively, EGly under SKF (at 40 min, 

Fig. 3.23), in the presence and absence of GABA receptor antagonists amounted to 

-49 ± 6 mV and -52 ± 6 mV, respectively. 

         

Fig. 3.23: Influence of GAT1 on [Cl-]i is independent of GABA receptor activation in P3/4 LSO 

neurons. Plot of mean EGly values obtained from twelve P3/4 neurons, before, during and after, 30 

min application of SKF. In one group (open circles, n = 6), the GABA receptor agonists were added to 

the extracellular solution. In the second group (filled circles, n = 6), the standard extracellular solution 

was used (same cells as in Fig. 3.22). Values for [Cl-]i were calculated with the Nernst equation and 

are shown on the right Y-axis. Similar to the situation under standard conditions (filled circles, for 

details see 3.22), in the presence of GABA receptor antagonists, EGly (open circles) was significantly 

reduced i.e., from -33 ± 5 mV at 10 min to -49 ± 6 mV at 40 min (p < 0.05). The change in EGly upon 

SKF treatment, in the presence and absence of GABA receptor antagonists, display no significant 

difference (p > 0.05), indicating that the effect of GAT1 is independent of GABA receptor activation. 

The numbers adjacent to the symbols indicate individual n value of that mean.            
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3.8.3 GAT specific activator influences [Cl-]i in LSO neurons at P3/4, but not at 

P11/12. 

P3 and P12 LSO neurons were treated with 100 µM NPA, usable as a substrate of 

GAT, for 30 min. By activating GAT, increase in the Cl- accumulation was expected 

at P3/4, because it is necessary at early postnatal development (P3/4) and not at 

latter ages (P11/12). EGly was measured in an interval of 5 min up to 90 min as 

shown in Fig. 3.24. At P3/4, under control conditions (at 10 min), the mean EGly was  

-35 ± 1 mV (n = 7). In the presence of NPA (at 30 min), EGly significantly shifted 

towards more positive (-28 ± 2 mV; n = 7; p < 0.01). In contrast, at P12, the EGly 

amounted to -70 ± 5 mV (n = 7) under control conditions (at 10 min), which was not 

significantly different to EGly obtained in the presence of NPA (-67 ± 8 mV; n = 7; p > 

0.05). These experiments hint a possible role of GAT1 in Cl- accumulation in P3/4 

LSO neurons.            

       

Fig. 3.24: The activation of GAT1 influences [Cl-]i in P3/4 but not in P11/12 LSO neurons. Plot of 

mean EGly values obtained from seven P3/4 and seven P11/12 neurons, before, during and after, 30 

min application of the specific GAT activator, nipecotic acid (NPA). Values for [Cl-]i were calculated 

with the Nernst equation and are shown on the right Y-axis. At P3/4, EGly was significantly increased 
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from -35 ± 1 mV at 10 min to -28 ±  2 mV at 40 min (p < 0.01), indicative of the activation of a net 

inward Cl- transport mechanism. At P12, NPA induce no significant (-70 ± 5 mV at 10 min and -67 ± 8 

mV at 40 min, p > 0.05), revealing no role of GAT1 in setting the [Cl-]i. The numbers adjacent to the 

symbols indicate individual n value of that mean.      

 

3.9 Characterization of Cl- homeostasis in GLYT2 knockout mice 

Like GABA transporters, glycine transporters (GLYT) also cotransport Cl- inwardly 

(Supplisson and Roux, 2002). Among the two isoforms, GLYT1 and GLYT2, GLYT2 

displays neuronal expression (Zafra et al., 1995; Friauf et al., 1999). To unravel any 

possible role of glycine transporter in Cl- regulation in LSO neurons, EGly from 

GLYT2 -/- mice (Gomeza et al., 2003) were compared with that from GLYT2 +/+.  

 

3.9.1 At P3/4, LSO neurons of GLYT2 -/- mice display relatively negative EGly 

values  

In current-clamp recordings at P3/4, LSO neurons of GLYT2 -/- mice consistently 

showed depolarizing glycine responses with a mean peak amplitude of 8 ± 1 mV (n 

= 8). The wildtype (GLYT2 +/+) and heterozygous (GLYT2 +/-) littermates showed 7 

± 1mV (n = 8) and 7 ± 1 mV (n = 20), respectively (Fig. 3.25A).  

In voltage-clamp mode, the I-V relationships of glycine-induced responses in GLYT2 

-/- mice were compared to that in GLYT2 +/+ mice (Fig. 3.25B). The average EGly in 

GLYT2 -/- mice was -52 ± 3 mV (n=8) and significantly different (p < 0.001) from the 

value found in P3 GLYT2 +/+ mice (-29 ± 4 mV; n = 8). Furthermore, the latter and 

GLYT2 +/- (-37 ± 2 mV; n = 20) mice differed by reaching significance (p = 0.0498). 

This result indicates the involvement of GLYT2 in chloride homeostasis of LSO 

neurons which needs further pharmacological investigation.       
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Fig. 3.25: Characterization of 

glycine-induced responses in P3/4 

LSO neurons of GLYT2 -/- mice.  

(A) Examples of glycine-induced 

depolarizations, obtained from LSO 

neurons of three different 

genotypes, i.e., GLYT2 +/+, GLYT2 

heterozygous (+/-) and GLYT2 -/- at 

Vrest of -68 mV, -62mV and -64 mV 

respectively. Triangles indicate 

glycine application. (B) I-V 

relationships of glycine-induced 

responses from -/-, +/- and +/+ 

mice. Their EGly values amounted to 

-52 ± 3 mV (-/-), -37 ± 2 mV (+/-) 

and -29 ± 4 mV (+/+), whereas 

those from -/- and +/+, as well as 

those from +/- and +/+, were 

significantly different (p < 0.001 and 

p < 0.05, respectively). Error bars illustrate SEM (long horizontal endings apply for +/+, medium 

endings +/- and short endings for -/- mice).  

 

3.10 Influence of phosphorylation in the regulation of [Cl-]i 

The phosphorylation status of proteins plays a pivotal role in determining the 

function in almost every conceivable way (Cohen, 2000). Several transport systems 

were reported to be dynamically regulated via phosphorylation mechanisms. For 

example, tyrosine phosphorylation has been implicated in the regulation of K-Cl 

transport (Sachs and Martin, 1993; Flatman et al., 1996); regulation of the dopamine 

transporter includes direct phosphorylation effects (Page et al., 2001; Mortensen and 

Amara, 2003); Protein kinase A phosphorylation of AMPA receptor controls synaptic 

trafficking (Esteban et al., 2003). To test whether the phosphorylation status of 

transporters influences the Cl- regulation, LSO neurons were treated with protein 
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phosphatase inhibitor calyculin A which was aimed to increase the phosphorylation 

of proteins in general (Ishihara et al., 1989). 

 

3.10.1 In P3 LSO neurons treated with calyculin A, [Cl-]i is reduced 

P3 rat SOC slices were treated with 100 µM calyculin A for 1 hr. EGly was determined 

from a population of neurons from treated and untreated slices and statistically 

compared. EGly in LSO neurons treated or untreated with calyculin A, demonstrated 

the influence of phosphorylation status in Cl- regulation (Fig. 3.26). Under control 

conditions, EGly was measured from ten P3 neurons and amounted on average to -

32 ±  4 mV. A total of 9 cells with calyculin A treatment showed a mean EGly of -51 ± 

3 mV, which was significantly more negative than the value obtained from the control 

group (p < 0.01). The resting membrane potential of these two groups displayed no 

considerable difference (untreated = -59 ± 2 mV and calyculin A treated = -58 ± 2 

mV; p > 0.05). 

 

                  

Fig. 3.26: The phosphorylation status of proteins influences [Cl-]i. P3 LSO neurons treated with 100 

µM calyculin A, a protein phosphatase inhibitor, showed significantly (p < 0.01) more negative mean 

EGly (-51 ± 3 mV, n = 9) compared to that from untreated controls (-32 ± 4 mV, n = 10).    
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3.11 Influence of thyroid hormone in the regulation of [Cl-]i 

Thyroid hormone (TH) plays an important role in brain development (Thompson and 

Potter, 2000; Konig et al., 2002; Bernal et al., 2003). For example, TH deficiency 

before the onset of hearing causes irreversible damage of peripheral and central 

auditory systems (Knipper et al., 2000). Moreover, TH regulates brain-derived 

neurotrophic factor (BDNF), neurotrophin-3 (NT3) and nerve growth factor (NGF) 

which are thought to play a role in chloride homeostasis (Giordano et al., 1992; 

Koibuchi et al., 1999; Neveu and Arenas, 1996). In the present study, the possible 

role of TH in the developmental regulation of chloride homeostasis was examined, 

by determining the developmental switch in EGly in hypothyroid animals.  

 

3.11.1 Hypothyroid rats lack a developmental shift in EGly between P5 and P12  

In LSO neurons from normal rats and mice, the age-dependent negative shift in EGly 

occurs between P5-8 (Ehrlich et al., 1999; chapter 3.1.3 of present study). In order to 

elucidate the possible role of TH in chloride homeostasis, EGly was determined from 

25 LSO neurons of hypothyroid rats aged P5-12 (open black symbols in Fig. 3.27). 

The Vrest of these neurons amounted to -64 ± 1 mV (n = 25) and showed no 

considerable change with age (filled red symbols in Fig. 3.27). The majority of the 

hypothyroid LSO neurons (n = 21/25) displayed depolarizations irrespective of the 

postnatal ages. Thus, abnormal chloride homeostasis in the LSO neurons of 

hypothyroid rats indicates the role of thyroid hormone in the development of 

inhibitory synapses. 
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Fig. 3.27: Thyroid hormone signalling is involved in [Cl-]i regulation in rat LSO neurons. The EGly (open 

black circles) and Vrest (closed red circles) values from LSO neurons of hypothyroid animals (n = 25) 

were plotted against their postnatal age (P5-12). Within this period, they displayed no shift in EGly, 

which is in contrast to LSO neurons from normal animals (cf. Fig. 3.4C). Note, that like in normal 

animals, Vrest remained considerably the same throughout the developmental period analyzed.   
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___________________________________________________________________ 

4 DISCUSSION  

Six major results concerning the Cl- regulation in LSO neurons were obtained in this 

study: (1) In mice, glycinergic responses shift from depolarizing to hyperpolarizing at 

P8, similar to the situation in rats. (2) As an outward Cl- transporter, KCC2 renders 

glycine hyperpolarizing. (3) NKCC1 plays no role in setting a high [Cl-]i therefore, it is 

not involved in depolarization. (4) Cl- accumulation during the early depolarizing 

phase is achieved by the neurotransmitter transporters GAT1 and GLYT2. (5) The 

phosphorylation status of proteins influences Cl- regulation, indicating the 

involvement of posttranslational mechanisms in Cl- homeostasis. (6) Hypothyroid 

rats display no developmental shift in the glycine response at a time when normal 

rats do so (i.e., P6-8). Thus, thyroid hormone is reasoned to play a role in the 

maturation of inhibitory synapses through influencing Cl- homeostasis of LSO 

neurons.  

 

4.1 Developmental changes in glycine-induced responses in mice LSO 

neurons 

GABA-induced and glycine-induced responses undergo a developmental shift from 

depolarization to hyperpolarization. Such a shift has been reported in several 

systems during their early postnatal life, e.g., hippocampus (Mueller et al., 1984; 

Janigro and Schwartzkroin, 1988; Ben-Ari et al., 1989; Cherubini et al., 1990; Zhang 

et al., 1990), cerebral cortex (Luhmann and Prince, 1991; Yuste and Katz, 1991; Lo 

Turco et al., 1995; Owens et al., 1996), hypothalamus (Chen et al., 1996), spinal 

cord (Wu et al.,1992; Reichling et al., 1994; Rohrbough and Spitzer, 1996) and 

retina (Huang and Redburn, 1996; Billups and Attwell, 2002). Gramicidin perforated 

patch-clamp recordings performed in rat LSO neurons demonstrate such an age- 
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dependent depolarization at P3 and hyperpolarization at P12, which is due to high 

and low [Cl-]i, respectively. At P3, the EGly is more positive than Vrest, whereas it is 

more negative at P12 (Ehrlich et al., 1999; Kakazu et al., 1999). 

In the present thesis, the developmental shift of EGly was also studied in mice LSO 

neurons (strain: C57BL/6J). The earliest hyperpolarization was observed at P5 and 

the day of developmental shift in EGly was denoted as P8. But Kullmann and Kandler 

(2001) report that the day of shift is at around P5 in mice LSO neurons. This 

discrepancy can be explained by a recent finding in rat LSO neurons, demonstrating 

regional differences in the timing of glycine response shift (Srinivasan et al., 2004). 

Remarkably, the high frequency region displays an early shift. Such regional 

differences in the developmental shift may also be present in mice.  

 

4.2 KCC2 renders glycine hyperpolarizing by setting EGly < Vrest   

The results from multiplex and single cell RT-PCR analyses provided firm evidence 

that there is no simple causality between the presence of KCC2 mRNA and 

hyperpolarizing glycine activity in LSO neurons. KCC2 mRNA was found in the 

brainstem throughout the first two postnatal weeks, showing no sign of up regulation. 

Similar results were observed in spinal cord motoneurons and hippocampal 

pyramidal cells, i.e., phosphorylated KCC2 protein was already present early in 

development even when the switch in GABA activity had not yet occurred (Stein et 

al., 2004). However, in other reports on rat hippocampus, it was shown that the 

amount of both KCC2 mRNA and protein gradually increased between P0 and P9, 

thereby rendering GABAergic activity hyperpolarizing (Rivera et al., 1999; Ganguly 

et al., 2001; Gulyás et al., 2001). An age-dependent increase of KCC2 expression 

was also reported for the rat neocortex (after P7, Clayton et al., 1998; between P3 

and P25, DeFazio et al., 2000), and the rat retina (between P1 and P14, Vu et al., 



 Discussion                                                    53 
 

___________________________________________________________________ 
2000). Lu et al. (1999) investigated the rat brain by Northern and Western blot 

analysis and found a low expression of KCC2 at birth and a significant increase until 

P28. Unfortunately, in this study, the brainstem was not specifically investigated. It is 

possible that the developmental regulation of KCC2 activity differs in regional 

aspects of the CNS, e.g. along a caudal to rostral axis. Spinal cord neurons and 

cranial motor neurons, which also display a developmental switch of glycine activity 

from depolarization to hyperpolarization (Wu et al., 1992; Reichling et al., 1994; 

Serafini et al., 1995; Singer and Berger, 2000), need to be investigated regarding 

their KCC2 expression to understand its nature in caudal brain regions. 

Posttranslational modifications that activate an initially inactive form of the KCC2 

protein were described in cultured hippocampal neurons (Kelsch et al., 2001). The 

activation involves a phosphorylation step via the action of insulin-like growth factor 

1 and a protein tyrosine kinase, and it propelles the switch of GABAergic responses. 

The authors concluded that the onset of transporter activity does not correlate with 

the amount of mRNA or with the mere presence of KCC2 protein. 

Immunohistochemical staining data from our group displayed an early diffuse pattern 

and later a crisply and densely outlined fashion (Balakrishnan et al., 2003), 

corroborating the activation upon phosphorylation and showing that such changes 

can also occur in vivo. The age-related integration of the KCC2 protein into the 

plasma membrane of LSO neurons per se does not necessarily imply the onset of 

function, since posttranslational modifications may well occur after the integration 

step (Balakrishnan et al., 2003). Nonetheless, the integration step is a necessity for 

functionality. In the rat hippocampus, a diffuse KCC2 immunolabeling and an 

association with membranes of transport vesicles was described at P0-P2 by 

electron microscopy, whereas at P4, most of the reaction products were observed in 

the plasma membrane (Gulyás et al., 2001). In these neurons, the change from 
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depolarizing to hyperpolarizing GABAergic activity occurs at the end of the first 

postnatal week (Cherubini et al., 1991), indicating that functionality is not merely 

determined by the incorporation of the protein into the plasma membrane. 

In line with the above arguments, experiments performed with KCC2 -/- mice 

revealed that KCC2 renders hyperpolarization at older ages and plays no role in 

accumulating Cl- at early ages (Fig. 4.1). Thus, KCC2 can be ruled out to operate in 

reverse and accumulate intracellular Cl- under conditions of an elevated [K+]o 

(Payne,1997; Jarolimek et al., 1999; Kakazu et al., 2000). In summary, KCC2 is 

concluded to be a common Cl- outward transporter for both the forebrain and the 

hindbrain (Rivera et al., 1999; Hübner et al., 2001; Balakrishnan et al., 2003). 

 

4.3 NKCC1 is not involved in setting EGly > Vrest in immature LSO neurons 

In search of the inward Cl- transporter, literature points to NKCC1 as the most 

favored candidate (for review, see Russell, 2000). Two different isoforms of NKCC 

namely, NKCC1, and NKCC2 have been identified. NKCC1 is found in nearly all cell 

types, whether epithelial or not, but NKCC2 is found exclusively in kidney. NKCC1 in 

CNS neurons catalyzes Cl- uptake (Kaila, 1994; Haas and Forbush, 1998; Misgeld et 

al., 1986; Rohrbough and Spitzer, 1996; Plotkin et al., 1997; Clayton et al., 1998; Li 

et al., 2002). The cotransport process of NKCC1 is electroneutral, with a 

stoichiometry of 1Na+:1K+:2Cl- (Russell, 1984; Alvarez-Leefmans et al., 1988) and 

sensitive to loop diuretics (Hannaert et al., 2002). Ion translocation by NKCC 

requires the simultaneous presence of all three ions (Na+, K+, and Cl-) at both sides 

of the membrane (Russell, 2000). The transporter can work in forward and backward 

mode; that is, net transport may occur into or out of the cells, the magnitude and 

direction of this transport being determined by the sum of the chemical gradients of 

the transported ions (Lytle et al., 1998).  
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In the present study, three different approaches were undertaken to investigate the 

role of NKCC1 in Cl- accumulation in LSO neurons, namely RT-PCR analyses, 

pharmacological studies and experiments with NKCC1 -/- mice. None of them led to 

the conclusion that NKCC1 is involved in setting the high [Cl-]i during the 

depolarizing phase of glycine activity.  

First, at P3, NKCC1 mRNA expression was missing in auditory brainstem slice and 

LSO neurons, as demonstrated by multiplex RT-PCR and single cell RT-PCR, 

respectively. These results contradict previous findings in the forebrain (Plotkin et 

al., 1997; Sun and Murali 1999), but are in accordance with observations from the 

spinal cord (Hübner et al., 2001). In E12.5 spinal cord, NKCC1 transcripts appeared 

to be concentrated and had almost disappeared by E18.5. Hence, the authors 

concluded that NKCC1 may not be the major transporter leading to an excitatory 

GABA response in the embryonic spinal cord (Hübner et al., 2001). In different 

forebrain regions, like hippocampus and cortex, the amount of NKCC1 mRNA 

expression is high during the early depolarizing phase and gradually declines 

thereafter, thereby rendering GABAergic activity depolarizing (Plotkin et al., 1997; 

Sun and Murali 1999). Moreover, in hippocampal pyramidal cells, there is a 

developmental shift in the NKCC1 localization from a predominantly somatic to a 

predominantly dendritic location at the end of the first postnatal week (Marty et al., 

2002).  

Second, pharmacological studies, with NKCC1-specific bumetanide treatment, had 

no effect on the [Cl-]i of LSO neurons, whereas bumetanide induced a significant 

reduction of [Cl-]i in hippocampal pyramidal neurons. The latter results are consistent 

with previous studies, demonstrating a functional role of NKCC1 in hippocampal 

neurons (Hara et al., 1992). Furosemide inhibits cation Cl- cotransporters (Alvarez-

Leefmans, 2001) and it has been demonstrated to induce a shift of EGly in the 
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negative direction and reasoned to be a block on net inward Cl- transport that was 

assumed to be mediated by NKCC1 by Ehrlich et al., (1999). This could be a non-

specific effect of the high concentration of furosemide (1 mM), as this concentration 

was shown to inhibit several processes (Lerma and Martin del Rio, 1992; Tosco et 

al., 1993; McConnell and Aronson, 1994). But current studies demonstrate a lack of 

NKCC1 expression during the depolarizing age in LSO neurons (Balakrishnan et al., 

2003), therefore the effect of furosemide observed by Ehrlich et al., (1999) is 

concluded as a non-specific action of furosemide. The results demonstrating the 

absence of NKCC1 during the depolarizing period of glycine responses, drawn in the 

present study, contradict those described by Kakazu and coworkers (1999) in the 

LSO, who replaced external Na+ to affect Na+-dependent transport and found a shift 

of EGly towards more negative values in four P3 neurons. Kakazu and coworkers 

(1999) reasoned that a Na+-dependent transporter (NKCC or NCC) regulates EGly. 

But in a recent paper, the same group demonstrates that there is no K+-dependent 

mechanism for Cl- accumulation in P0 LSO neurons (Shibata et al., 2004), 

consistent with the conclusion of the present study that NKCC1 does not act as an 

inward transporter. This implies that neither KCC2 nor NKCC1 play a role in 

accumulating Cl- in LSO neurons. Since neither one of the NKCC isoforms nor NCC 

appears to be present in the neonatal LSO (present study and Becker et al., 2003), it 

is possible that the effect of Na+ replacement on EGly may be due to some other Na+-

dependent mechanisms, involved in intracellular Cl- regulation.  

Third, the experiments with NKCC1 -/- mice revealed a normal Cl- homeostasis, like 

that observed in wild type mice, which leads me to conclude that NKCC1 plays no 

role in Cl- accumulation in LSO neurons during the depolarizing age. However, this 

result contradicts the decrease in Cl- accumulation observed in dorsal root ganglion 
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neurons of NKCC1 -/- mice (Sung et al., 2000). The difference may be due to a 

regional difference.    

 

4.4 GAT1 and GLYT2 – a focus on their role on Cl- accumulation 

GAT1 and GLYT2 are known as electrogenic, Na+-dependent transporters of 

inhibitory amino acids rather than as Cl- cotransporters (Jursky et al., 1994; Nelson, 

1998). Apart from presynaptic and glial cell mediated uptake of synaptically released 

neurotransmitters, amino acid transporters play a dynamic role in synaptic activity. 

For example, inhibitory amino acid transporters control brain excitability by 

modulating the level of tonic inhibition in response to neuronal activity (Richerson 

and Wu, 2003). GAT1 is the predominant GABA transporter in the brain, exhibiting 

high expression levels in neocortex, hippocampus, cerebellum, basal ganglia, 

brainstem, spinal cord, olfactory bulb, and retina (Guastella et al., 1990; Nelson et 

al., 1990). It co-localizes with markers for GABAergic neurons, specifically along 

axons and presynaptic nerve terminals. Interestingly, GAT1 mRNA is expressed not 

only in GABAergic neurons, but also in non-GABAergic neurons and/or glial cells 

which are not involved in GABAergic neurotransmission (Yasumi et al., 1997; 

Fletcher et al., 2002).  

Results from three different experiments focusing on GAT1, namely voltage 

treatment experiments, Na+ dependency experiments, and experiments with both a 

GAT1 agonist and antagonist, suggest its involvement in Cl- homeostasis during the 

depolarizing phase of glycine responses. First, upon voltage treatment, P3 LSO 

neurons demonstrated accumulation or depletion of [Cl-]i due to a prolonged 

hyperpolarization and depolarization stimulus, respectively. This indicates the 

involvement of an electrogenic mechanism in Cl- regulation. Second, increasing 
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[Na+]i reduced the accumulation of Cl- in the LSO neurons, depicting the Na+ 

dependency of the transport mechanism. Third, during the depolarizing period of 

glycine responses, a GAT1-specific antagonist (SKF 89967A) reduced the Cl- 

accumulation, whereas a GAT1 agonist (nipecotic acid) increased it. Overall, I 

conclude that GAT1 is involved in Cl- homeostasis of LSO neurons during the 

depolarizing period of glycine response. In line with these results, a recent finding 

that demonstrates the developmental switch from GABA to glycine release in single 

central synaptic terminals during the second postnatal week of the rat MNTB-LSO 

connection is reported (Nabekura et al., 2004). Such a shift was also demonstrated 

in gerbils (Kotak et al., 1998). On the other side, the presence of neurotransmitter 

transporters in the presynaptic side of the neurons was highlighted in several studies 

(Itouji et al., 1996; Jursky and Nelson 1996; Chiu et al., 2002). Only very few studies 

discuss their postsynaptic localization (Snow et al., 1992; Hu et al., 1999). To 

address the postsynaptic localization of neurotransmitter transporters, immuno-gold 

electron microscopic studies are needed.  

Like GAT1, GLYT2 is also a potential candidate that can accumulate chloride in LSO 

neurons. This neuronal isoform of the glycine transporter has been shown to be 

expressed in the LSO during development and it was speculated that GLYT2 

participates in the process of early synapse maturation (Friauf et al, 1999). In the 

present study I investigated the role of glycine transporter in chloride homeostasis in 

GLYT2 -/- mice. The results show that besides GAT1, GLYT2 also plays a role in 

chloride accumulation (Fig. 4.1). In order to confirm that the effect observed with 

GLYT2 -/- mice is due to a direct effect of the lack of GLYT2, pharmacological 

experiment employing highly specific drugs against GLYT2 are needed.      

The brain-specific anion exchanger (AE3) is another possible candidate for Cl- 

accumulation. It is expressed in LSO neurons (Becker et al., 2003). AE3 is an 
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antiporter, which exchanges one Cl- in and one HCO3

- out (Kopito et al., 1989). In 

the present study, it was not considered as a possible inward Cl- transporter in 

neonatal LSO neurons, because glycine-induced depolarizations were demonstrated 

in the absence of HCO3
- buffer, that is in the presence of HEPES-buffered 

extracellular solution. Therefore, in case of LSO neurons, AE3 has no role in setting 

a high [Cl-]i.    

                                  

 

Fig. 4.1: Transporters involved in chloride regulation during LSO development. During the first 

postnatal week, GAT1 and GLYT2 are transporting Cl- in to the neurons, maintaining a high [Cl-]i. 

From the second postnatal week, KCC2 is transporting Cl- out of the neurons, maintaining a low [Cl-]i. 

4.5 Inhibitory circuits in SOC develop through excitation 

The MNTB-LSO projection developes through excitatory GABAergic and glycinergic 

synapses, rather than relying on inhibitory interactions to drive the development and 

refinement. The time course of anatomical refinement follows the development of 

inhibition in the MNTB-LSO projection (Kim and Kandler, 2003). As shown for the 

development of inhibitory neurons in other CNS regions, such as cortex (Owens and 
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Kriegstein, 2002), in the LSO, EGly is more positive than Vrest which results in 

depolarization during the first postnatal week (Ehrlich et al., 1999). The early 

appearance of GABA release mechanisms as well as the early appearance of 

spontaneous GABA- and glycine- mediated synaptic events well before development 

of synaptic inhibition supports the notion that GABA and glycine have a functional 

role in nervous system development. GABA even may have an influence on the key 

processes of proliferation (Fiszman et al., 1999), migration (Behar et al., 1996; 

Barker et al., 1998) and differentiation (Barbin et al., 1993; Davis et al., 2000; Tapia 

et al., 2001; Varja et al., 2002). However, recent reports contradict the role of GABA 

in trophic support, i.e., inhibitory synapses mature without GABAergic 

neurotransmission (Titz et al., 2003; Ludwig et al., 2003). 

 

During early development, glycinergic and GABAergic inputs depolarize the 

postsynaptic cell (Ben-Ari, 2002). Depolarization results in an increase of the 

postsynaptic Ca2+ concentration through voltage-dependent calcium channels 

(VDCC) and NMDA channels (Yuste and Katz, 1991; Lin et al., 1994; LoTurco et al., 

1995; Takebayashi et al., 1996; Leinekugel et al., 1997; Obrietan and van den Pol, 

1997; Flint et al., 1998) and can also result in action potentials (Kullmann et al., 

2002). Calcium entry via VDCC has been shown to upregulate brain-derived 

neurotrophic factor (BDNF) expression in immature hippocamapal neurons 

(Berninger et al., 1995). BDNF is involved in the maturation of inhibitory synapses 

via determining the functional expression of KCC2 (Aguado et al., 2003). Thus, 

GABA may act as a trophic factor in early development by depolarizing cells, 

activating VDCCs, and regulating gene expression through the activation of Ca2+-

dependent second messenger pathways (Ben-Ari et al., 1994; Lauder et al., 1998; 

Ganguly et al., 2001; Kriegstein and Owens, 2001). 
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4.6 Possible induction factors underlying the developmental shift in EGly 

The [Cl-]i determines the polarity of glycinergic/GABAergic responses in LSO 

neurons (Ehrlich et al., 1999). From the present study and several others (Delpire 

2000; Hübner et al., 2001; Woo et al., 2002), it is clear that the crucial maintenance 

of Cl- homeostasis is achieved by functional Cl- cotransporters. Recent studies 

support the idea that the maturation of inhibitory synapses follows several steps, 

triggering e.g. posttranslational modifications of inward or outward transporters, 

resulting in changes of the phosphorylation (Bize et al., 2000) and/or glycosylation 

(Hiki et al., 1999) status. What triggers the change in the functional expression of the 

transporters that regulate the Cl- homeostasis? In the present thesis, LSO neurons 

treated with calyculin A demonstrated a decline in the [Cl-]i which indicates a 

possible role of phosphorylation in the process of inhibitory synapse maturation. 

Recent studies pinpoint the involvement of BDNF action via TrkB receptors with the 

functional expression of KCC2 (Rivera et al., 2002; Aguado et al., 2003) or inhibitory 

neurotransmission (Frerking et al., 1998). Moreover, an activity- and Ca2+-dependent 

modulation of TrkB was demonstrated in hippocampal neurons (Du et al., 2003).  

In the present study, the role of thyroid hormone in the maturation of inhibitory 

synapses was tested. It was found that hypothyroid rats display an abnormality in 

the shift from depolarization to hyperpolarization. The shift did not occur during the 

usual time frame, i.e., between P6-8. It is well documented that thyroid hormone 

plays a critical role in brain development and plasticity (Chan and Kilby, 2000; 

Anderson et al., 2003; Vara et al, 2003). Neurotrophins like BDNF and neurotrophin 

3 (NT3) are regulated by thyroid hormone (Koibuchi et al., 1999; 2001). Several 

studies hint that there is a correlation between thyroid hormone deficiency and 

deafness (Forrest et al., 1996; 2002; Flamant and Samarut, 2003). For example, 
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hypothyroidism before hearing onset is reported to cause irreversible damage to 

auditory systems, i.e., within a critical period between the onset of fetal thyroid gland 

function and the onset of hearing at P12, any postponement in the rise of thyroid 

hormone-plasma levels, as can be brought about by treating lactating mothers with 

methimazole, leads to permanent hearing defects of the adult offsprings (Knipper et 

al., 2000). This leads to the hypothesis that thyroid hormone can also influence Cl- 

homeostasis by which it can play a role in the maturation of inhibitory synapses.  

Indeed, my results imply a role of thyroid hormone in the development of inhibitory 

synapses in the auditory brainstem, i.e., it may act as a possible induction factor in 

the developmental switch of the polarity of glycine/GABA responses.         

 

4.7 Outlook: 

The present study leaves several open questions:  

1. Through what cascade does calcium influx support the maturation of 

inhibitory synapses? 

2. What factors lead to the activation of KCC2 function at the end of the first 

postnatal week? 

3. Does chloride regulation guide the refinement of inhibitory synapses? 

4. Is the somatic [Cl-]i different from the dendritic [Cl-]i ?  

5. Is there any cooperation between the molecular mechanisms that govern the 

maturation of inhibitory and excitatory synapses? 

Addressing these questions may shed further light on our understanding of the 

function and maturation of inhibitory synapses.   
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5 SUMMARY  

Compared to our knowledge of the development of neuronal excitation, little is 

known about the development of inhibitory circuits. Recent studies showed that 

inhibitory circuits develop in a way similar to that of excitatory circuits. One such 

similarity is the development of inhibitory circuits through a transient period of 

excitation. The neurotransmission from the medial nucleus of the trapezoid body 

(MNTB) to the lateral superior olive (LSO) starts at embryonic day (E) 18 and is 

depolarizing until the end of the first postnatal week, after which it becomes 

hyperpolarizing. The depolarizing effect of glycine is due to a high intracellular 

chloride concentration ([Cl-]i), whereas hyperpolarization is due to a low [Cl-]i. Active 

regulation of [Cl-]i is achieved by cation Cl- cotransporters, such as the Na+-, K+-

dependent Cl- cotransporter  (NKCC1; a Cl- inward transporter) and the K+-

dependent Cl- cotransporter (KCC2; a Cl- outward transporter).  

 

Here, I used the inhibitory MNTB-LSO projection as a model system to unravel some 

mechanisms governing the development of inhibitory synapses. The focus was laid 

on the molecular mechanism behind the Cl- homeostasis in LSO neurons. To assess 

whether the shift in glycine action correlates with changes in the molecular repertoire 

of Cl- cotransporters, I combined gramicidin perforated patch-clamp recordings and 

single cell RT-PCR in LSO neurons of acute brainstem slices from postnatal day 

(P)3 and P12 rats. The impermeability of gramicidin pores for anions allows 

recordings of glycine-induced currents under native [Cl-]i. The reversal potential of 

glycine (EGly), which is equivalent to the reversal portential of Cl- (ECl), was 

determined and thereby [Cl-]i was calculated. In P3 and P12 neurons, the [Cl-]i 

amounted to 44 ± 7 mM  and 8 ± 2 mM, respectively. If Cl- were passively 
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distributed, then EGly would equal the resting membrane potential (Vrest). With Vrest    

≈ -60 mV, [Cl-]i would then approximately be 13 mM. The deviating values are 

indicative of an active Cl- inward transport at P3, and an active Cl- outward transport 

at P12.  Surprisingly, the expression analysis resulted in a paradox. The mRNA of 

the Cl- inward transporter NKCC1 was not observed during the early depolarizing 

phase but seen during hyperpolarizing phase. The mRNA of the Cl- outward 

transporter KCC2 appeared throughout development.  

 

To unravel the function of KCC2, experiments were performed with KCC2 knockout 

mice (-/-), and results were compared with those from wild type mice (+/+). At P3, 

[Cl-]i of KCC2 +/+ and -/- were not significantly different, confirming no role of KCC2 

in chloride accumulation during the depolarizing phase. In contrast, at P12 a 

significant difference in [Cl-]i was observed between KCC2 +/+ and -/- KCC2 -/- mice 

displayed depolarizations at P12 due to the high [Cl-]i, and the [Cl-]i at P12 was 

indistinguishable from that in P3 KCC2 +/+. This demonstrates that the genetic- 

knockout leaves the LSO neurons in an immature state concerning Cl- regulation. 

Taken together, I conclude that KCC2 renders glycine hyperpolarizing in LSO 

neurons at P12.              

 

To focus on the role of NKCC1, LSO neurons were challenged with bumetanide, a 

specific NKCC1 blocker at low concentration. Both at P3 and at P12, LSO neurons 

displayed no change in [Cl-]i upon bumetanide treatment (30 µM), demonstrating that 

NKCC1 has no function. In contrast, in P3 hippocampal pyramidal neurons, EGABA 

showed a negative shift at this concentration, demonstrating that NKCC1 is a Cl- 

inward transporter in these neurons. When P12 LSO neurons were challenged with 

a higher bumetanide concentration (100 µM), they displayed an increase in [Cl-]i, 
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most probably due to the blockade of KCC2 function. To confirm the negative 

pharmacological results on the role of NKCC1, NKCC1 -/- mice were compared with 

+/+ mice for any change in the [Cl-]i. In accordance with the pharmacological results, 

no significant difference was observed between the two groups. Therefore, it is clear 

that NKCC1 plays no role in establishing a high [Cl-]i in young LSO neurons.   

 

In search for alternative transporter candidates that elevate the [Cl-]i in immature 

LSO neurons, several experiments were performed. To check whether a Na+-

dependent chloride regulatory mechanism exists, experiments employing different 

[Na+]i were performed. In P3 LSO neurons, an effect of [Na+]i on [Cl-]i was observed: 

increasing [Na+]i led to a decline in [Cl-]i. Next, voltage dependency of Cl- regulation 

was analyzed by subjecting LSO neurons to different voltage potentials (-40 mV > 

Vrest; -120 mV < Vrest). Interestingly, voltage-dependent Cl- regulation was observed 

at P3, yet not at P12: the positive voltage treatment decreased the [Cl-]i, whereas the 

negative voltage treatment increased the [Cl-]i. The two criteria described above (Na+ 

dependency and voltage dependency) are fulfilled by amino acid transporters which 

play a major role in the reuptake of amino acids (e.g. glycine, GABA, glutamate) 

from the synaptic cleft. Moreover, amino acid transporters are Cl- cotransporters. 

The focus was laid on GABA transporters, since early LSO neurons were reported to 

receive mainly GABAergic inputs aside from their glycinergic inputs. As a 

predominantly neuronal expression was reported for the GABA transporter 1 

(GAT1), I concentrated on this isoform. Addressing GAT1, pharmacological studies 

with the specific inhibitor SKF 89976A were done. SKF 89976A significantly reduced 

the Cl- inward transport in LSO neurons at P3, but not at P12. In line with this, 

nipecotic acid, an activator of GAT1, promoted Cl- uptake, which confirms the role of 

GAT1 in neonatal LSO neurons. In a further set of experiments, the involvement of 
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the glycine transporter isoform 2 (GLYT2) in Cl- regulation was analyzed. 

Experiments with GLYT2 -/- mice revealed a significant role of this transporter in 

chloride regulation. These results led to the conclusion that both GAT1 and GLYT2 

play important roles in the uptake of chloride ions during the early depolarizing 

phase in LSO neurons.  

 

After having identified the inward and outward chloride transporters, the trigger for 

the age-dependent shift in EGly was analyzed. Reports on the correlation of the 

phosphorylation status and function of Cl- transporters, provoked me to study such a 

possible mechanism. P3 LSO neurons were treated with the protein phosphatase 

inhibitor calyculin A to modulate the phosphorylation status. [Cl-]i significantly 

declined upon calyculin A treatment, revealing a possible role of phosphorylation 

mechanisms behind the Cl- regulation in LSO neurons. Furthermore, the role of 

thyroid hormones, well known to play a pivotal role in the development of the 

auditory system, was studied with hypothyroid rats. In contrast to normal rats, 

hypothyroid rats (P5-12) showed no shift in EGly values in the expected time window 

(P6-8).   

 

In conclusion, this study has accumulated considerable evidence for the nature of 

the transporters involved in chloride homeostasis in the auditory brainstem. It also 

sheds some light on the molecular mechanisms underlying the maturation of 

inhibitory synapses.     
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8 APPENDIX 

Abbreviations 
+/+ mice  Wild type mice 

-/- mice  Knockout mice 

+/- mice  Heterozygous mice 

[Cl-]i   Intracellular chloride concentration 

[Cl-]o   Extracellular chloride contration 

[Cl-]p   Pipette chloride concentration  

[Na]   Sodium concentration 

[Na]i   Intracellular sodium concentration 

[Na]o   Extracellular sodium concentration 

[Na]p   Pipette sodium concentration

AE   Anion exchanger 

AE3   Anion exchanger isoform 3  

bp   Base pair 

BDNF   Brain derived neurotrophic factor 

cDNA   Complimentary Deoxyribonucleic acid 

CCD   Charge coupled device 

CN   Cochlear nucleus 

CNS   Central nervous system 

DIC   Differential interference contrast 

DIV   Days in vitro 

DMSO  Dimethyl sulfoxide 

DNA   Deoxyribonuclei acid  

E   Embryonic day 

Ecl   Cl- equilibrium potential  

EGABA   GABA reversal potential

EGly   Glycine reversal potential

EGTA   Ethylene glycol-bis(ß-aminoethyl ether) 

EPSC   Excitatory postsynaptic current 

EPSP   Excitatory postsynaptic potential

F   Faraday’s constant 

GABA   γ-amino-butyric acid 
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GABAR  γ-amino-butyric acid receptor 

GABAAR  γ-amino-butyric acid receptor type A 

GABABR  γ-amino-butyric acid receptor type B 

GABACR    γ-amino-butyric acid receptor type C 

GAT   GABA transporter 

GAT1   GABA transporter isoform 1 

GLYT   Glycine transporter  

GLYT2  Glycine transporter isoform 2 

HEPES  N-(2-hydroxyrthyl)piperazine-N’-(4-ethanesulfonic acid) 

IC   Inferior colliculus 

IC50   Half-maximal inhibitory concentration 

I-V   Current-voltage 

KCC   Potassium chloride cotransporter 

KCC2   Potassium chloride cotransporter isoform 2 

LJP   Liquid junction potential 

LSO   Lateral superior olive 

MNTB   Medial nucleus of the trapezoid body  

mRNA   Messenger ribonucleic acid  

MSO   Medial superior olive 

NA   Numerical aperture 

NCC    Na+-dependent chloride cotransporter 

NDAE   Na+-dependent anion exchanger    

NGF   Nerve growth factor 

NKCC   Na+-dependent potassium chloride cotransporter 

NKCC1  Na+-dependent, potassium chloride cotransporter isoform 1 

NMDA   N-methyl-D-aspartate  

NPA   Nipecotic acid 

NT3   Neurotrophin -3 

P   Postnatal day 

PCR   Polymerase chain reaction 

PON   Periolivary nucleus 

R   Gas constant 

RNA   Ribonuclei acid 
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RT-PCR  Reverse transcription – polymerase chain reaction 

SEM   Standard error of mean  

SKF   SKF 89976A (GAT1 inhibitor) 

SOC   Superior olivary complex 

SPN   Superior paraolivary nucleus 

tRNA   transfer ribonucleic acid 

T   Absolute temperature 

TrkB   Tyrosine kinase receptor B 

TTX   Tetrodotoxin 

TH   Thyroid hormone 

VDCC   Voltage-dependent calcium channels 

VC   Command potential  

VH   Holding potential 

Vrest   Resting membrane potential 
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