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Abstract

In this paper we consider numerical algorithms for solving a system
of nonlinear PDEs arising in modeling of liquid polymer injection. We
investigate the particular case when a porous preform is located within
the mould, so that the liquid polymer flows through a porous medium
during the filling stage. The nonlinearity of the governing system of
PDE:s is due to the non-Newtonian behavior of the polymer, as well as
due to the moving free boundary. The latter is related to the penetra-
tion front and a Stefan type problem is formulated to account for it.
A finite-volume method is used to approximate the given differential
problem. Results of numerical experiments are presented.

We also solve an inverse problem and present algorithms for the
determination of the absolute preform permeability coefficient in the
case when the velocity of the penetration front is known from mea-
surements.

In both cases (direct and inverse problems) we emphasize on the
specifics related to the non-Newtonian behavior of the polymer. For
completeness, we discuss also the Newtonian case. Results of some
experimental measurements are presented and discussed.

Keywords: Liquid Polymer Moulding, Modelling, Simulation. Infiltration,
Front Propagation, non-Newtonian flow in porous media

1 Introduction

Composite materials are widely used in automotive, aerospace, railroad, ma-
rine and many other industries. Liquid composite moulding is a family of
technologies to manufacture composite materials. These technologies (see,
e.g., [5, 35, 38, 43]) are of strong economical interest for manufacturing high
quality composite parts. The essence of the discussed technologies is that



a dry fibrous mat, which forms a porous preform, is located within the
mould, and after that the liquid polymer is injected. In this way an accu-
rate orientation of the fibers within the composite parts is achieved, making
moulding parts with desired mechanical properties. In order to reduce the
production costs of manufactured parts, mathematical modeling and numer-
ical simulation are more and more extensively used at the designing stage.
Since the filling of the mould is the most critical part of the process, most
of the effort is concentrated on its study. The review articles [9, 39] give
an impression about most of the mathematical models and numerical algo-
rithms developed in this area. The great part of the models (see, e.g., [9]
and references therein) use the linear Darcy model to describe the liquid
polymer flow through the porous preform, the latter being considered in
rigid body approximation. It should be noted, that such models are not
valid for the flow of non-Newtonian fluids. Moreover, they do not account
for the compressibility of the fibrous mat and, therefore, these models have
a limited range of applicability in modeling polymer moulding. More ad-
vanced models consider either the coupled problem for Newtonian fluids in
deformable porous media (see, e.g., [1, 18, 19, 20, 21, 39]), or the flow of a
non-Newtonian fluid in a rigid porous medium (see, e.g., [44]). The most
complete formulation concerning non-Newtonian flow in deformable porous
medium is still not well studied.

Several challenging mathematical problems have to be solved in connec-
tion with simulation of liquid polymer moulding. Among them are develop-
ing of accurate numerical algorithms for solving the nonlinear free boundary
direct problems, analysing and solving inverse problems (e.g., parameter es-
timation, etc.). This paper concerns several aspects of the modeling of LPM
processes. These are:

(i) presenting a complete model for flow of non-Newtonian fluids in de-
formable porous media;

(ii) solving an inverse problem for determining permeability in the case
when the penetration front is known from the measurements;

(iii) developing a finite volume algorithm for solving the 1-D direct prob-
lem.

First of all, a complete model for flow of non-Newtonian fluids in de-
formable porous media is listed. Curing (i.e., polymerization) is also ac-
counted for. The model assumes a sharp interface between the filled (wet)
part of the porous preform and the unfilled (dry) part. A justification of this
assumption for certain process regimes can be found, e.g., in [39]. For the
approach dealing with an unsaturated subregion we refer to the discussion



in [9]. In the next section we recall the 3-D model from [18, 19, 20, 21, 39]
which treats Newtonian fluids, but accounts for the deformation of the pre-
form and for the curing. The third section is devoted to a more detailed
discussion of the model for the 1-D case. The fourth section concerns an
extension of this model to the case of the non-Newtonian fluids.

Parameter (i.e., permeability) identification is discussed in Section 3 in
the Newtonian case and in Section 4 in the non-Newtonian case. In Section 5
the Forchheimer law is formulated instead of Darcy’s law for large flow
velocities, when inertial effects become important.

The evaluation of the permeability of a porous material is a very impor-
tant step in optimization of liquid composite moulding technologies. Cur-
rently, the most reliable method for the determination of the permeability
is experimental [35]. But it is well known that this approach inherits several
major drawbacks (see, [3]). Therefore, a lot of efforts are focused on alterna-
tive ways for the evaluation of permeability. The investigations are done on
micro- and macro—scales. For simple preform structures, i.e. unidirectional
fiber arrays, random mats, or simplistic fabric-like structures, the results of
permeability modeling on the micro—scale are presented in [12, 22, 37, 41].
Simulation on macroscale leads to solving systems of PDE describing the
flow of liquid in the porous media, and here some general assumptions on
the dependence of the flow velocity on the permeability are usually done a-
priori. We should mention that in all experiments the macro—scale behaviour
of the flow is observed, thus the interpretation and comparison of the re-
sults obtained using a numerical approach are much simpler for macro-scale
models. We also mention a paper of Ghaddar [15], where a parallel com-
putational approach for the evaluation of the permeability of unidirectional
fibrous media is presented.

The determination of the permeability is critical for the simulation of
the filling. Once the permeability is known, the polymer injection can be
simulated by analytical or numerical methods. Analytical solutions for the
infiltration front position are presented in Section 6 for both cases: Newto-
nian and non-Newtonian fluids. This information is related to the task of
evaluation of permeability and determination of fluid properties.

Section 7 is devoted to a numerical algorithm for solving the governing
system of PDEs. Finite volume discretization, treating the moving bound-
aries, decoupling of the system and results from some numerical experiments,
are consecutively discussed there. An algorithm in Lagrangian coordinate
system is presented in Section 8. In the last section the results of numerical
simulations are presented and discussed.



Some preliminary results of this report were published in [10].

2 Mathematical Model

In this section we introduce the basic equations describing the injection
moulding processes. Consider a deformable porous medium that at time
t = 0 starts being infiltrated. Let us denote by D and D? the time-varying
domains corresponding to the wet part of the solid preform (i.e., which is
already wet by the infiltrating resin), and to the dry one (i.e., which is not
yet reached by the liquid polymer), respectively.

We assume that capillary phenomena can be neglected, thus D¥ and D¢
are divided by a sharp interface o that represents the infiltration front. We
also neglect the gravity force. Both assumptions are reasonable when the
applied external pressure is relatively high. Let us denote by ¢ the contact
surface between the pure liquid and the wet solid.

The mathematical model consists of evolution equations for the state
variables in the wet and in the dry regions, completed by interfaces con-
ditions on ¢! and ¢ and by proper boundary conditions. Note that the
general multi-component mixture equations can be simplified [20] for the
considered case.

2.1 Mathematical Model in the Wet Region

The following variables are used to describe processes in the wet region:

®Y and @}’ are the volume fraction occupied by the solid and the liquid
constituents, respectively. Assuming full saturation, the volume fraction
occupied by the liquid satisfies

P=1-0Y.

vy, v}’ denote the velocities of the solid and the liquid constituents. P/
is the pore liquid pressure. 6" is the temperature of the mixture in the
wet region. Here we assume that the solid and liquid constituents there are
locally in thermal equilibrium. ¢ is the degree of cure of the resin.

Additionally, the model takes into account the fact that during the pen-
etration the liquid undergoes a polymerization process (i.e., curing), which
is largely exothermic. The degree of cure § represents the fraction of cured
resin. So 0 < § <1 (no curing for § = 0, complete curing for 6 = 1).



2.1.1 Mass Conservation of Solid and Liquid Constituents

Assuming that the solid and liquid are incompressible (i.e., the densities of
the solid p, and liquid p; are constant), we obtain the local mass conservation
equations in the Eulerian framework:

aq)zsu W, W\ __

ot +V'(Q)SVS)—O, (1)
0Py w. w

V(@) =0. (2)

Assuming saturation the volume fraction occupied by the liquid is given
by
P =1-9. (3)

Summing up Egs. (1) and (2) and introducing the composite velocity (or
volume average velocity)

R S e
and recalling the saturation condition (3) results in the equation
V-vy=0. (4)
Let us denote by p;» the density of the mixture as a whole, i.e.:
P = PP+ 1@
and by v» the mass average velocity of the mixture

_ ps Ve + pi® vy

P

\%

w
m
Summing up Egs. (1) and (2) multiplied by the corresponding densities gives

the following mass conservation equation

9pm, wwy _

2.1.2 Momentum Balance Equations

We will not consider the general momentum balance equations. To focus on
flow in porous media, the following simplifying assumptions are used [20]:



(A1) Negligible surface tension and capillary effects and slow liquid flow in
the porous medium;

(A2) Negligible liquid excess-stress; excess interaction force between the
solid and the liquid is proportional to the velocity difference v}’ — vy’

(A3) Negligible inertia if compared to the stresses; external body forces (e.g.
gravity) are neglected;

Then we write the general momentum balance equations as

[y w K w
(I)l (Vl — Vg ) = __VPl 9 (5)
n
VPY —V.T% =0, (6)

where p is the liquid viscosity, which depends on the degree of cure § and
on the temperature 6%, i.e.

p=pu(0",6).

The viscosity decreases with increasing temperature and increases with in-
creasing degree of cure. Models used for the description of the viscosity are
the following:

u.0) = e (3) (5725) w00 = e (5 + ).
K is the permeability tensor, which for saturated deformable porous media
depends on the deformation gradient F of the solid constituent K = K(F).
P/ is the pore liquid pressure and T}, is the effective stress tensor.

Equation (5) is known as Darcy’s law for deformable porous media. Here
the effects of gravity are neglected, since normally for resin injection pro-
cesses the pressure gradient is large compared to the value of the gravita-
tion term. A critical discussion of the hypotheses underlying Darcy’s law is
given in [32, 34]. Several generalizations of Darcy’s law can be used here,
e.g. Forchheimer law to account for fast flows, or correction to take into ac-
count the non-Newtonian properties of the resin. Both generalizations are
discussed in the next sections.

To complete the model, one has to specify the constitutive equation for
the stress tensor Ty . We will present such equations later for the one-
dimensional case of the model.



2.1.3 Energy Balance

Following the same procedure, which was used in previous sections, it is
possible to write the energy equation for the mixture:

ogv 1

prmém <W + Vin - VG“’) = V- (ALVO") +  KVPY- VP (7)
P PPV

FOPH.f.(5,0°) — PP T0 (¢ — o) (v — ) - VO

Pm

where ¢, is the specific heat of the mixture:

_ pscI)qéUCs + plCI);”cl
Pm ‘

Cm

A} is the thermal conductivity tensor of the entire mixture, the term
O’ H.f.(0,0") represents the heat generated by the curing reaction of the
resin and the last term represents the heat diffusion due to the relative
motion.

2.1.4 The Degree of Curing

As the liquid is moving, the evolution of the degree of cure is modeled by
the equation

X ViV = 1(6.0%), ©

where f. is an experimentally determined function describing the chemical
reaction. The most popular model is proposed by Kamal-Sorour:

fc(é, 9) = (Kl + Kgém)(l — 5)”, Kz = C,eXp <—%> 5

where R is the universal gas constant, F; are the activation energies and c¢;
are the characteristic constants for the reactions.

2.2 Mathematical Model in the Dry Region

We proceed in a way similar to the one outlined for the wet region. However,
some additional assumptions are used, which enable us to simplify the model.

(D1) The air pressure is everywhere equal to the atmospheric pressure;

(D2) The gas contribution to the global stress may be neglected;



(D3) The mass average velocity is equal to the velocity of the solid con-
stituent and the composite density p, ~ ®%p,, but the composite
velocity

Ve = ®5v, + (1 - (bs)vair .

Thus, we have the following state variables in the dry region: <I>§l is the
solid volume fraction, v¢ is the solid velocity and 6 is the temperature.

Mass Conservation The equation of mass conservation reads

04
ot

+ V- (@vh) =0. (9)

Momentum Balance Equation The deformation of the dry solid part
is governed by the momentum balance equation

v.-Ti=0, (10)

where T¢ is the stress tensor of the dry medium. Here we assume, that
T¢ = T9.

As mentioned above, in order to complete the model we still have to
specify the constitutive equations for the stress tensors T% and T9. We
assume that the wet and dry solids behave elastically.

Energy Balance Equation The Energy balance equation reads
d 96° d d d A wpd
psie, (S +vi-vo') = V. (<I>SAS Y/ ) , (11)

where AY is the thermal conductivity of the solid.

2.3 Interface and Boundary Conditions
Infiltration Front

Let the infiltration interface o be given by the surface

1/}7;(‘7;7 Y, Zat) =0.

This surface moves together with the propagation of the liquid, thus its
evolution equation is given by

oY;

5 +v¥(o?) - Vi = 0. (12)




Preform Border
Let the contact surface o€ between the liquid and the wet solid be given by
¢€(x7 y7 Z? t) = 0 *

As the resin penetrates the porous solid this material surface is fixed on the
solid, and therefore its evolution equation is

e
ot

+ vy (0%) - Ve = 0. (13)

Jump Conditions for Material Surfaces

Considering the mixture as a whole, the following jump conditions are ob-
tained for material surfaces [18, 20, 31]

[P (Vi — Vo)] s =0, (14)
[0] =0, (15)
[-PI+ Ty, n,=0, (16)
[P] =0, (17)

where n, is the normal outside D". It follows from (14) that
[Ve] 'my =0.

Using (16), (17) gives the continuity of the stress T, across the the surface:
[T),] n, =0.

In the one-dimensional case assuming the same constitutive equation of elas-
tic type for wet and dry solids, this implies the continuity of ®, across o,
and then we get from (14) the continuity of vj.

If the specific heat of the solid is continuous across o¢, the temperature
fluxes satisfy the following condition:

A, VO] -n, =0.

Boundary Conditions on ¢°¢

Let the superscript ~ denotes the quantities evaluated in the pure liquid
region. Then we have the following conditions

O =0, v, =viy,
Tfnnge:(), Pl_:P07



where v;;, is the inflow velocity of the resin and Py the pressure driving the
flow. Thus, in the wet region we have ®¥ (o€ t) = ®,, where ®, is the solid
volume fraction in the dry undeformed preform.

The temperature on o€ is § = 0;,, where 6;,, is the temperature of the
infiltrating liquid.

Boundary Conditions for the Curing Equation

The curing equation (8) is hyperbolic. Hence, the boundary conditions
0 (O‘ e) = 5m

must be specified on the part of the boundary where the characteristics enter
the domain (the resin enters the preform), i.e. where (v}’ —vY) - ng < 0.

3 One-Dimensional Infiltration

This section deals with one-dimensional problems (see [1, 18, 20, 21]). Unidi-
rectional injection is obtained in a flat mold of constant thickness when one
side of the mold is connected to an injection channel. It is assumed that the
permeability is homogenous and boundary effects can be neglected. Then
the flow front is a straight line and the 1D model can be used to describe
this case.

Assume that the porous medium is initially dry, homogeneous, isotropic
and that the flow and the strain take place only along the x axis. Let us
denote by x = w.(t) the left border of the preform, which can move (due
to the preform’s compression) when the liquid touches it. The infiltration
front = = x;(t) separates the wet region D" from the remaining dry region
D

DY = [zo(t), z;(t)], D= [xi(t),L].

As infiltration proceeds, the dry and the wet preforms compress or expand
back according to the process conditions.

The one-dimensional mathematical model is obtained from the system
of equations given in the previous section.

For ¢t < 0 the whole preform is dry, at rest, and compressed at a given
volume ratio:

Nz, t =0)=d,, x€[0,L],
z(t=0)=0, z;(t=0)=0,

10



where @, is the solid volume fraction of the solid preform in its undeformed
configuration.

3.1 Wet Region

In the wet region the following equations are satisfied:

ooy 0
s T (W) — 1

S (®U) =0, (18)
Y (xc(t),t) =P, t>0,

ovY

c _ 1
K oPY
1 _ (Dw wo_ w7 —l
( s )(Ul Us ) M(& ew) or (20)
opy ot
o = or )
oo™ wd0°\ 0 oY PsPl w
pmm <W ”m%) T <*m a2 > o e es) s
K 9 o0 K [orv)®
1— oY DNt ——— | —
) B g O ONHAG0 +  (T) e
00 w 00 w
a_’_vl %_fc(éae )a (23)
where 7% is the xx component of T,,:
™ =(Tyw),,, €D t>0,

and K is the xzz component of the permeability tensor K = (K)

xxr °

3.1.1 Constitutive Models

We still need to specify the constitutive equations for the stresses. At equi-
librium the stress is usually related to the strain by a nonlinear relation,
which can be determined by static stress—strain measurements. It should
be noted that in one-dimensional problems the strain is related to volume
ratio, i.e. to ®,.

Two models can be used.

(WA1) The elastic model for the wet porous medium preform reads

= —5,(8Y),

11



where 3, is a strictly increasing function. Frequently, it is assumed that
Yig=2y.

Then the continuity of the stress across x; implies also the continuity of the
®,. If wet and dry preforms behave elastically with ¥4 # 3., the continuity
of & across x; does not hold any more.

(WA2) Due to the fact that the solid and the liquid matrices can not
deform independently but have to carry the load by joint deformations, the
wet preform can be modeled using a nonlinear Kelvin—Voigt law:

orv wOT? w 0%, (DY) waEw(@s") w
A(W”S %) T A(T”ST +Zu(®4),

where A is called the relaxation time, A is the retardation time, and the fol-
lowing inequality A > X is satisfied. If A = A and suitable initial conditions
are used, then this equation has the solution:

T = =Xy (),

i.e. the material behaves elastically.

(DA3) The dry preform is always assumed to behave elastically
= _Ed(q)gl) ) (24)

where Y is a strictly increasing function of the solid volume fraction.

3.1.2 Velocity Driven Infiltration

Before formulating equations in the dry region D we will use equation (19),
from which it follows that v. is space independent in DY

ve(z,t) = v(t).

The boundary z.(t) is fixed to the solid phase and moves with the velocity
vg. Specializing the jump condition formulated in the previous section and
writing it for the one—-dimensional problem

[pm(vm —vs)] =0,

one can obtain the following equalities:
pm(vm - vs) - qu)l(vl - vs) = pl(vc - vs) .

12



Taking the limits on both sides of the boundary we prove that the composite
velocity is continuous across x.(t), and thus we have:

Uc(l',t) = uin(t)> r e DY,

Here u;,(t) is the velocity of the infiltrated liquid.
Using Darcy’s law (20) we can express the velocities of the solid and
liquid constituents

KoprPY
o) = tin + ey
v K oPY
o = - T ae (25)

The infiltration front z;(¢) moves with the liquid, thus we have the initial
value problem

di(t) = v (x; = u; oo z;
dt Yl ( z(t)7t) in T <1 —@éUQ> ( z(t)’t)7 (26)

where @ is given by

and evaluated at the infiltration front from the wet region.

Determination of the Permeability

It follows from (25) that the permeability of the homogeneous structure can
be determined as

e (L—=@9) (PPN !
K=oy S0 ()

if experimental measurements of the interface velocity v;"(z;(t),t), the vol-
ume fraction occupied by the solid ®¥ and pressure gradients are available.

3.2 Dry Region

Since the interaction between the air and the solid can be assumed negligible,
there is no pressure drop in the air. Therefore Pd(w, t) = Py , where Py,
is the atmospheric pressure.

13



Let 7¢ be the 2z component of the excess stress tensor in the dry region,
then we obtain

or?
—=0. 27
o (27)
If the dry preform is assumed to behave elastically, then equations (24) and
(27) imply that ®7 is space independent, i.e.
d d
oY = (1) (28)

Then the continuity equation implies that

0P ovd 0

ot or

and the velocity satisfies the linear ODE with respect to the space coordi-
nate:

+ ®4(t)

oul (ol o)
ox Pd(t)

Integrating equation (29) over the interval [x;, L] and using the boundary
condition

vi(L,t) =0,

(i.e. the preform is constrained by a fixed draining boundary at x = L and
its velocity vanishes there), one has

d

0y - AL

Vs > —x).
of

Neglecting the influence of the air, we get the simplified heat equation

d d d d
PsCs <<I>dai + 42 (L —x) % ) 0 <<I>d)\ 8i> . (30)

ot dt or ) " oxr \ 7o

3.2.1 Velocity Driven Infiltration

Now we will finish the analysis of this case. ;From the general jump con-
ditions formulated in the previous section (here we use the velocity of the
infiltration interface) one can obtain the following equalities:

pm(vm - 'Ul) - ps(I)s('Us - 'Ul) - ps(vc - vl) .

Then after simple computations it follows that v. is also continuous across
the interface z;(t)

v (wi(t), 1) = vl (zi(t), 1) ,

14



thus it is equal to the inflow velocity
ve(,t) = uin(t), x€ D?.
The continuity of v, across the infiltration front and the fact that x;(t)
is a material interface fixed on the liquid phase

d.’L‘i (t)
dt

= v(zi(t), t)
leads to the initial value problem

%((1 —d(t)) (L - a;i(t))) = —uin(t),

®5(0) = D -

(31)

The solution of (31) can be obtained in the explicit form:

O L%x(t) < /0 " tin(s) ds — i(t) + L<I>§f0> . (32)

This equation should be solved with the initial value problem (26), which
specifies the development of the infiltration front x;(t).
3.2.2 Pressure Driven Infiltration

If the inlet pressure AP(t) = Py(t) — Pam is given, then we can integrate
the momentum equation (21) and use the continuity of the stress on the
infiltration front:

7(t) = AP(t), t>0.

Then the solid volume fraction of the dry region is given as

d(t) =X (AP(1)) .

Using this formula and the mass conservation we can find the initial
position of the left border of the preform after incoming liquid compresses

the preform:
®,
(0)=L11- .
o = 1.(1- 55t )

Taking the equation (31) and using (25) to eliminate w;, from the ob-
tained equation gives the initial value problem for the interface x;(t):

15



A(@iz) _ | ded ( e ) (wi(t).1).

dt dt 1—ov (33)
The inflow velocity is then determined as
uin (1) = %, 4 (1 — d%)yy
ddd(t) o dzi(t)
= (L i(t 5 1- 4
(L= 2u(0) 2220 1 (1 gy 2 34

If AP(t) is constant in time, one obtains:

d$i (t)

Um(t) = (1 - (I)gl) dt

4 Non-Newtonian Flow

In the previous section we considered Newtonian fluids, for which Darcy’s
law specifies the relation between the velocity and the pressure. But a large
number of fluids, such as polymer solutions, polymer melts, suspensions do
not follow Newton’s law of viscosity [16]. The flow of polymer resin through
fibrous materials is a very important process in the resin transfer moulding
technology. The literature on non—Newtonian fluid flows is far less complete
(see an overview in [45]). Some experimental results are presented in [44], a
numerical study is given in [48].

One of the possibilities to describe non-Newtonian fluids is to modify
the classical Darcy’s law and to use a generalized Darcy’s law (power law).
For the one-dimensional case we have:

K opw\ /"™
(e - = (-3 ) (35)

where n is used to describe different types of fluids. If n < 1 then a fluid
is pseudoplastic (polymer solutions are pseudoplastic). Dilatant fluids are
described using n > 1. Here H is the non-Newtonian bed factor. Following
[8] we combine a power law model of a non-Newtonian fluid with the Blake-
Kozeny model for the porous medium. We obtain

3

o 1 " (1-n)/2
~ L2942} @
H= 1 <9 n) (150Ke) :

16



where € is the porosity of the structure. Then equation (35) can be rewritten
as:

1/n
(14+n)/2 gpw
K on ) , (36)

(1 —=27) (v —vy) = <_MT e

1 3\"
_ 2 (1-n)/2
d, = 3 <9 + n) (150¢) .

Determination of the Permeability

Using the generalized Darcy’s law (36) and the fact that v. is constant in
space we can express the velocity of the liquid constituent

v = Uin +

1/n
w (1+n)/2 g pw
P (_ K op; ) | 37

1—ovw wd, Oz

The infiltration front z;(¢) moves with the liquid, thus we have the initial
value problem

1/n
dz;(t) B v KU+n)/2 gpw
a0 (wi(8),1) = win + 1—ovw <_ wd, Oz ’
zi(t=0)=0

After measuring the front velocity v}”(z;(t),t), the volume fraction cor-
responding to the solid ®¥ and the pressure gradient we can determine the
permeability of the homogeneous structure as

I R N

5 The Forchheimer law

Darcy’s law states the linearity between velocity and pressure. It holds
for slow flows when the inertial effects of the flow are negligible. In this
section we consider one more correction to Darcy’s law for large enough
flow speed. Then the relation between the velocity and the pressure is
nonlinear. The following equation has been proposed by Forchheimer and

17



investigated by many authors (see, e.g. [2, 26, 29, 40]). We consider only
the one-dimensional case of the equation

1% PICF opyY
—U + -,
K K2 oz
where © = @}’ (v}” —vY') and cp is the Forchheimer or inertia coefficient. Eq.
(38) is the two phase flow Forchheimer law for the case of moving porous
medium (solid matrix), which means the relative velocity u must be taken
instead of the usual ®;v;.
The nonlinear law (38) can be formulated as a Darcy-like law by intro-

ducing a velocity—dependent permeability K [29]:

ufu =

(38)

- K
L+ (K'Y 2piep/p)|ul

(39)

So (38) is now written in the following form

K opPY
PY (¥ — W) = — — l )
(v =) 0 e

6 One—Phase Model

It is well known that the macroscopic flow behavior at large length scales
is well captured by one-phase flow models (see publications on RTM [9, 36,
47]). Such models are sufficiently accurate in predicting flow—front location,
mold-filling time and pressure distribution during mold filling.

In this section we consider a one-dimensional model of the injection in a
non-deformable porous medium (i.e., a rigid preform) with resin as a single
phase.

Darcy’s Law

Let us assume that the flow is governed by Darcy’s law:

v= _KOR(t) , (40)
uw Ox
where v = ®;v; is the volumetric velocity (i.e., the amount of volume travers-
ing a unit area per unit time through the preform). We also assume that
injection is isothermal
If the flow is saturated, then the assumption of resin incompressibility
(i.e., the mass balance) leads to the following boundary value problem:
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v

-0

Ox ’

P(0,t) = Po(t), Pi(zi(t),t) = Patm -
We obtain the solution in the explicit form

Patm - PO (t)
Pz, t) = Py(t) + —————
1, 1) = Po(t) + pry
The evolution of the infiltration front is described by the initial value
problem

x. (41)

d.%‘z(t) . Epo(t) - Patm
- op omt)

which integrates as

o 2K [ _
HORE: /0 (Po(t) — Pagm) dt

If the driving pressure is constant in time (constant pressure driven infiltra-
tion) then we obtain the position of the infiltration front as:

a:,(t) = \/% (Po — Patm) t.

Determination of the Permeability

The established relationships can be used to evaluate the permeability K, if
the positions of the flow front are recorded during the injection experiments
and if the fluid viscosity p is known:

P L0
2 [y (Po(t) — Papm) dt

or

oo k)

2(Py — Pum)t
We note, that one more relation for the evaluation of the permeability K
follows directly from the infiltration front equation

(42)

() v (w(t), t)
K= PO(t)_Patm ‘
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On inverse problems for determination of permeabilities. The prob-
lem of identification of diffusion coefficient in parabolic or elliptic equations
arises in numerous engineering, medical and scientific applications. We want
to reconstruct a diffusion coefficient from some additional data on a solution
[11, 25, 49]. This data can consist in values of the solution (or functionals of
this solution) measured on the boundary or in some points of the time-space
region.

Generally, such inverse problems have notorious theoretical and numer-
ical difficulties: non-monotonicity and severe ill-posedness, i.e. the inverse
solutions are very sensitive to changes in input data resulting from measure-
ment. Hence, they may not be unique. A regularization method should be
used if we want to obtain a stable solution of the inverse problem [13, 17]. We
apply such a regularization for determination of the permeability coefficient
K in the form of the Least—squares method (see also [7]).

Let the positions of infiltration front x;(¢;) be recorded at specific time
moments ¢;, j = 1,2,...,J during experiment. The objective function is
defined as the sum of weighted differences between the front position z;(t;)
predicted from the computational model and its corresponding measured
value:

S(K) = ¢j(xilty) — @(t)))”.

7j=1
Identification of the Permeability Coefficient

1. For a given value of K solve the direct problem, describing the liquid
moulding process.

2. Compute the objective function S(K) and test the optimality of this
value.

3. If the optimal value is not obtained, update the permeability K and
goto step 1.

Gradient—type methods or the nonlinear Simplex algorithm can be used
to minimize the objective function.

Even if we have an explicit formula (42) for the estimation of the per-
meability K, the regularization algorithm must be used to overcome the
ill-posedness of such estimations due to errors in experimental data. A sta-
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ble value of K is obtained taking the mean-value of all estimations:

~ 2J(Py — Patm) =

K — K a3 (t)) _
tj
Velocity Driven Infiltration

It is well known that the velocity of the infiltration front must not be too
slow to ensure a good quality of the final product. If the velocity is too slow
it may result in the creation of air bubbles or voids between the fibers.

We can determine the pressure which is sufficient to produce a constant
flow rate of the injected resin. Let us consider the following problem

ov

-0

ox ’

v(0,t) =vo, Pi(zi(t),t) = Pam -
Integration of this equation yields

v(x,t) = vy, 0<x <uz4(t).

Using Darcy’s equation and integrating it, we finally get the relation:

Vol

Pl(oat):Patm‘i'?ta

i.e. the pressure at the injection line should increase linearly with time.

The Generalized Darcy’s Law

In this paragraph we assume that the flow is governed by the generalized
Darcy’s law (or power law):

1/n
. <_K“+">/2 aﬂ(x,w) /

wd ox (43)

The explicit formula (41) is also valid for this case, thus similarly we
obtain that for the generalized Darcy’s law the infiltration front is given by

1/(n+1)
K (1+n)/2 n+1 n/(n+1)
(Ifz(t) = (MT(PQ — Patm) ( n t> .
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If front positions z;(t) are recorded during infiltration experiments, then
the permeability K can be evaluated as
(O (u )
(PO _ patm)z/(nﬂ) (TLTHt)Zn/(nJrl) ’

The Forchheimer Law

In this paragraph we assume that the flow is governed by the Forchheimer
law

By PPy = 220
K K1/2 ox

First, we will rewrite the formula for the modified permeability K, when

the dependence on velocity is substituted by a pressure gradient dependence

(see, also [29]). Taking the absolute values of both sides of the equation and

solving for positive root |v|, results in
H 3/2| pt 1/2
o= —H —1+(1+4K P) ,
ol = 5t JK| P

where we use the notation P’ = % and v = ”L#. Substituting this expres-

sion into (39) leads to the relation:
2K 0P (x,t)
p(1+ (14 4yK32|P)Y2 - O
The mass balance for the incompressible fluid flow gives the following non-
linear boundary value problem:

i( 2K (9Pl(x,t)> _ 0

Oz \ p(1+ (1 + 4yK3/2|P'|)V/2 Oz ’
Pl(O,t) = Po(t), Pl({L'i(t),t) = Patm .

We see that the diffusion is selectively slowed down in places where the

gradient of the solution is large. Such nonlinear diffusion problems are used

for mathematical modeling of many important processes, e.g. for a nonlinear

image processing [28, 33]. The existence and uniqueness of similar initial-
boundary value problems is investigated in [6].

(44)

In general, solving nonlinear diffusion problem is a very difficult task,
but assuming that the flow is saturated (thus K and p are constant) we
again obtain the solution in the following form:

P(x,t) = Py(t) + Mm.
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The evolution of the infiltration front x;(t) is described by the initial
value problem

dl‘z(t) . 2K/M PO(t) - Patm

dt 1+ (1+ 47K3/2| PO(tm)i_(tI)Datm |)1/2 xz(t) )

Let us consider the constant pressure driven infiltration. Scaling the
position of the infiltration front and the time with characteristic constants

i = 4YKY*(Py — Patm) X, t =89’ K*(Py — Pagm)put/

the initial value problem for the infiltration front can be rewritten as:

dX2(t') 2
dt’ 1 1/27
1+ (14—
*( i X(t/))
X(0)=0.

In Figure 1 we plot the computed values of the infiltration front position
X2(t'). For the comparison we present also the position of the front obtained
by using the Darcy law.
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Figure 1: Position of X?(¢): a) T = 0.5, b) T= 10. The solid line is a
solution of the Forchheimer law, the dashed line is a solution of Darcy’s law.

We have investigated the case of the pressure driven infiltration, when the

pressure drop is constant. At the beginning the inertial effects are important
and the velocity of infiltration front movement is slower for the Forchheimer
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law. But as the front moves forward the velocity decreases and the inertial
effects become negligible. In this situation the flow again is described by the
Darcy law.
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Figure 2: Position of x2(t): measured values (circles) and a fitted curve
(solid line).

Experimental Data

In this paragraph we present certain results of experimental measurements
performed at the Institut fuer Verbundwerkstoffe GmbH, Kaiserslautern.
The conditions of the experiment were characterized by a slow flow. A New-
tonian liquid was used in experiments. In Figure 2 we plot the measured
values of 22(t) (circles) and the linear approximation (solid line), which is fit-
ted to the experimental data using the Least squares method. Experiments
were done in conditions of pressure driven infiltration and two different val-
ues of pressure were used.

The results show that the model based on Darcy’s law gives a good
approximation of the movement of the infiltration front in this case.

Next we present measurements obtained with non-Newtonian liquids and
compare them with our analytical predictions. Three different liquids were
used in experiments. In Figure 3 we plot the measured values of z2(¢). It
can be seen that in two cases the liquids are close to Newtonian liquids and
the last one shows a strong non-Newtonian behaviour.

We also estimated the parameter n in the generalized Darcy’s law (35).
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Figure 3: Position of 22(¢) for non-Newtonian liquids.

The following technique was used: find n such that

M
M(n) = ner[%is%f] ;(«Ti(tk) - Xz‘(tmn))Z ,

where x;(t)) are measured values of the front position, X;(tx,n) are predicted
values of the front

Xi(tg,n) = (a(n) tr + b(n))”%l ,

and a(n),b(n) are obtained by using a linear fitting by the Least squares
method of the transformed experimental data
n+1

(tk,xi(tk)T), k=1,....,.M.

The obtained results are presented in Table 1.

Table 1: The parameter n for non-Newtonian liquids

Liquid n

14 -1 1.16
15—-1 0.975
15 -2 0.40

It follows from the presented results, that the first and second fluid are
very close to Newtonian liquids, but the third liquid can be described only



by the generalized Darcy’s law. In Figure 4 we plot the measured values
x;(ty) (for the third liquid) and predictions of the front position, given by
the model based on the generalized Darcy’s law with n = 0.4.

1000 2000 3000 4otoo 5000 6000 7000 8000

Figure 4: Measured and predicted positions of x;(¢) for a non-Newtonian
liquid.

7 Numerical Method

Let us assume that at time t = 0 the liquid touches the left border of the
preform. We are not trying to describe the early instants of the infiltration
process and simply state that the incoming liquid compresses the preform
and wets some of its part, therefore the initial positions of the border x., as
well as of the infiltration front z; are given a priori

l’e(O) = Te0, 1'2(0) = Z50 -

Then we can identify a wet region D* and a dry region D

There are two main difficulties in constructing discrete approximations
of the given differential problem:

e Moving boundaries z.(t) and x;(t) (the Stefan type problem);

e The generalized Darcy’s and Forchheinmer laws for flow velocities.

26



In this section we will analyze some methods for solving the one-dimensional
differential problems from above. In order to simplify the presentation we
restrict to the mass and momentum balance Eqgs. (18)—(21):

o0vy 9

ot ox
DY (z0(t), 1) = By, BY(25(t),t) = Py, t>0,
DY (x,0) = Po(x), w(t) <z < mi(t),

(@Yvg’) =0,

ovy (45)
e =0
(1—29) (v —vs) =Q,
oPY* otV
\ Oz ox

Here, ) describes the Darcy’s, generalized Darcy’s or Forchheimer’s law
terms. We assume that the viscosity of the resin is constant during the
injection process, i.e. the injection process is finished before the effects of
curing reactions and temperature on the viscosity become significant.

7.1 Approximation of the Infiltration Front Equation

The given one-dimensional problem is defined in the region with two free
boundaries. Following [1] we define discrete meshes which are dynamically
adapted to the moving boundaries:

Dy ={zj=x;t): xj=x(t),+hwj, 7=0,1,..., M, xp =x;(t)},
D,Cf:{wjzwj(t): xj=xi(t) + hej, j=M,M+1,...,N, ay=1L},

here, M = M (t) is selected to preserve the quasi-uniform spatial discretiza-
tion of the region D

(zi(t) — ze(t))N
T ;

M = M>1.

Let 7™ denote the discrete time step at ¢ = t". In the following, we will
denote by 7 the finite difference approximation of ®}(x;,t").

Front Tracking Method

The front tracking method is applied to determine the time step 7,,. Using
the free boundary equation for x;(t), the time step 7, is chosen such that
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the infiltration front jumps from one node to the next node per time step.
Thus at time ¢ = t™ the infiltration front position coincides with the node
M"™ = n. The time step 7, is computed from the discrete approximation of

the infiltration front equation.

7.1.1 Pressure Driven Infiltration

Let us consider the pressure driven case. Approximating the differential
equation (33) by the forward Euler method yields the equation for the de-

termination of 7,,:

O (o 4 h) — By RS - 9"
Tn Tn
Mn_,
=T @y, tY).
T Y1 2

Then, the inflow velocity u;, is computed from (34)

(Dd,nJrl _ (I>gl,n

h
= ) B gy

(46)

If the pressure drop AP, is constant in time, then these equations can

be written in a simpler form:

(Dn
L — z.(0) M-l
= Qx n_latn )
e (1-ay,,_ped Anept)
hy

Uip, = (1 — @g’n—l—l) —_—.

Tn

7.1.2 Velocity Driven Infiltration

We will use the fact that the infiltration front moves with the liquid

dxcz«t(t) = Ujp + <% Q) (z:(t), 1) .

The time step 7, is obtained from the discrete equation

n

P Mn—1
g 4 M7 w1, 1)
ey, Yyt
2
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7.2 Approximation of the Mass Conservation Equations

For a moment, let us assume that the left boundary z.(t) is not moving,
i.e. remains constant. In the case of Darcy’s (or Forchheimer’s) law we can
reduce the system of equations to a single nonlinear parabolic problem [19]

POV DY 9 (K(BY) d, (DY) 0BV
ot + uin(?) dr Oz < i dov s oz )’
PY(ze,t) = Dy, PV (wi(t),t) = Py, t>0.

(47)

Let us introduce the following finite differences notation:

(I)j — <I>j71

Djt1 — P
oo '

5 = -

0@ =

The discrete approximation is obtained using the finite—volume method.
For ease of notation we suppress the superscript index n +1in M = M"™t1,
if it makes no confusion. We use the upwind approximation for the con-
vection part, centered differencing for the diffusion part and a backward
Euler method for integration in time. Then, the difference scheme takes the
following form

¢ n+l _ Fn
o5 — @F

+ un—l—l 5_@7}—}—1
T J

in

 ajp0s(@MTOL O —ayo5("H)I_ BT

h ’ (48)
n+1
0i105(@MH) = Kitos @Xuw(®705) iy
740.5 - L d(bn+1 7+0.5>
oyttt =@, Y =0a,.
where
) P, 1<j<M-1,
=91, . .
§(<I>M—1 +@%), Jj=M-1.
Such a definition of &)%71 is due to the fact that at ¢ = t" the elemen-
tary finite-volume Vir—1 = [x,,_3,2,, 1] covers the wet and dry region.
2 2

Therefore, the mass of solid should be computed separately in both regions.
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The system of nonlinear equations (48) is solved using Picard lineariza-
tion, i.e. at each iteration step one gets a system of linear equations:

4 (Dn,r N
J J n+1 n,r
Tn
n,r—1 n,r . n,r—1 n,r
 a405(P"T)6L R —aj5(P"TT )09
= . ,
n,r n,r
CDQ =, (I)M =D,

o =an j=1,2,... M-1.

Generalized Darcy’s Law

The given algorithm can also be used if the flow velocities are described by
the generalized Darcy’s law, at least when the parameter np < 1. Here we
have changed the notation of n to np in formula (43). Then the iterative
algorithm has the following form:

n,r n . n,r—1 nro_p. n,r—1 n,r
o — @] Lty T — bjt0.5(2™" )04 P j—0.5(@" )0 D
Tn i O h
1
K(1+WD)/2((I)) dzw(Cb) o -n n
bj+0.5(<1>) = < Mdn 1D [0)) |6+(I)]|(1 p)/np .
it

7.3 Moving Boundaries

In this section we will take into account that the contact surface z.(t) is fixed
on the solid. Thus if vs(z.(t),t) # 0, the boundary is also moving. Then
the position of grid points depends on time and the discrete approximation
should be constructed for the case when grid points are moving with its own
velocities independent of the velocity of the conservative quantity.

Let us consider the elementary domain, which is described by our mesh
[zj_1(t),x;(t)]. We denote by v = v(z,t) the velocity of grid points. Then
it is convenient to use the integral formulation of the mass balance equation

o®Y 0

at +%(US¢S):O

Integrating it over the elementary volume [z;_1(t),z;(t)] and using the
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equality

z;(t) z;(t)
0 w B ooy dzi(t) .., '
5 [ wenda= [ s e,

xj-1(t) xj-1(t)

_ d.’L‘j_l (t)

L S CIRIOR)

leads to the integral mass balance equation

z;(t)
[ avidn+ 50— a0 =0, (49)

z;j-1(t)

9
ot

where

Fi(t) = (v5' (2 (8), 1) — v (8), 1)) @' (25 (t). 1)

There are many methods for solving equations describing fluid flow prob-
lems in a moving coordinate system [4, 24, 30, 42, 46]. They are based on the
flux corrected transport idea, when at the first step the equation is solved
using some consistent approximation, e.g. the 2-step Lax—Wendroff method
[30], then anti-diffusion is added in such a way that the resulting method is
still monotonicity preserving. In practical computations the fluxes are lim-
ited in a way that no new maxima or minima are generated and the existing
extrema are not increased.

Next we present a general algorithm to solve the system of nonlinear
partial differential equations (45) on a moving grid. Applying the finite-
volume method we approximate the integral equation (49) by the following
conservative finite-difference scheme (the nonlinear equations are linearized
using the Picard method)

hn,rq);hr_hnq);p—{—F wn,r (I)n,r (Dn,r _F wn,r (Dn,r (I)n,r
T g Pirn @) oy Pt it

_ n,r—1 n,r n,r—1 n,r
= a1 (PSR — a1 (@)D

n,r n+1 n,r

w., = U, — .

itz ity

n,r __ n,r __

OY =@y, RN =Dy,
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where the numerical flux F (w i1 P, (I>j> is defined as follows (see, [14,
2

27)):
1 1
F (wj+%7¢j+17q’j> = Wi (Bj1 + P5) = Slwy 1| (Rj1 — 25)
The velocity of the movement of the grid point z;(¢") is defined as

() = 0 (2 (7)) <1 - ﬁ) . j=0,1,...,M.

7.4 Approximation of the Contact Surface Velocity

We will approximate the equation, which defines the contact surface x.(t)
movement:

K oPY K d¥,(®Y) 00Y
— - = Up— .
u Ox wo dr ox
Multiplying it by ®¥ we get the full flux:

K _,,d¥, (oY) oY

vy ®Y = u, Py — —PY . o

Taylor’s expansion gives the following estimate of the finite difference ap-
proximation

w
US

= Ujn +

w w w W FHW h o0y
umq)s,l/2 - a1/2(q)s )5+(I)s,0 - vs,O(I)s,O + 5 (uznﬁ

e ) o

or, using the mass conservation equation, one gets

w w w W FHW h aq)gio
uinq>371/2 - al/Z(CI)s )5+(I)S,O = US,O(I)S,O + 5 ot

Thus we approximate the contact surface velocity with the high resolution
discrete formula

+O(h?).

wp Y = ay (@M 8y 0p L=t

vy (e(t™)) = 1 27,

The contact front position is updated by the following relaxation method:
wh = Qw4 (1 — 0)vY (z (1), 7Y, 0<O <1,

T (t™) = 2 (") + Tw™", w™? =0.
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7.5 Analysis of Boundary Conditions

Simulation of liquid polymer moulding requires solving of systems of nonlin-
ear PDEs in domains with moving boundary fronts. Formulation of correct
boundary conditions (and development of numerical algorithms for solving
such boundary value problems) is still an open problem. In the above anal-
ysis we followed papers [18, 19, 21, 39] and prescribed the given values for
®Y on the moving fronts

DY (ze(t),t) = @y, PV (wi(t),t) = Dy,

The obtained boundary—value problem is well-defined and a numerical ap-
proximation of such boundary conditions is trivial.

But the border z. is fixed on the solid, therefore it moves with the
solid and no boundary condition should be given on it. Let us consider in
Q(t) = [ze(t), zi(t)] x (0,1] the following test problem

o (@ 0®), (1) € Q).
O(z,0)=1, 1<z<2.

We assume that both borders are fixed on the solid.

SHASTA algorithm

The method is based on a single flux element in Lagrangian sense with time
step 7. The deformed flux element is interpolated to the new grid points at
time ¢"*1,

At t = 0 we consider the uniform grid:

Dp(t") = {2Y: 29 =2.(0) + jh, j=0,1,....M, h=

1
J J M}

At time t"*! the position of each grid point is defined by the movement of

the solid:
x}‘“ =z} + Tvs(2}, 1)

Let us denote the space step of the obtained nonuniform grid as:

The numerical approximation of the solution is computed by the fol-
lowing algorithm (the solution is inversely proportional to the length of the
control volume) [4]:
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m

(I)nJrl _ 2 g

0 - thrl 0>
1/2

n n
o+l — Y P
J - hn+l + hn—l—l
j71/2 j+1/2

<I>;?, O<j< M, (50)

n
gr+l — _M-1/2
M thrl
L M~-1/2

o

We note that the original SHASTA algorithm consists of two stages.
During the second stage the corrected values of the solution are obtained
by solving the anti—diffusion equation. In the case, when all grid points
move with the solid velocity, these two steps can be combined into one. A
generalization of the SHASTA algorithm for the case when grid points move
with arbitrary velocities is presented in [24].

At the end of this paragraph we will give some remarks on the stabil-
ity of the SHASTA algorithm. It is explicit and thus the scheme is only
conditionally stable. Very small time steps 7 may be needed for flows with
large velocities. In LPM problems the velocity also depends on the gradient
of the solution, thus the Picard-type linearization will lead to an explicit
approximation of the parabolic problem.

FVM algorithm

Let us assume that boundary fronts move with the solid, and at each time
step we use a uniform grid, i.e. grid points move with velocity v(z, t) different
to the solid velocity vs(z,t).

We use the integral mass conservation equation (49) and apply it to the
control volume [z.(t),71/2(t)]. Since the boundary front z.(t) moves with
the solid part, the mass flux on this boundary is equal to zero and we get
the discrete equation

Wy et — by, o
1/2 20 1/270
/ 5 20y F(wy e, @7, @5 =0, (51)
where wy /5 = v?“(x?fgl) - Un+1($?/+21) and

1 1
F (w12, ®1,®0) = w172 (D1 + Bo) — Sfwipo] (81— Do) -
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Similarly, on the right boundary front we obtain the equation

+1 +1
hT]\LJ—l/z oy — hT]\LJ—l/z Py
2T

— F(wM—1/27 @7]\?—1, (p?\j__ll) =0.

The obtained approximations of the boundary conditions may lead to
linear equations, which do not satisfy the discrete maximum principle. Let
us consider the case when wy/; < 0, then it follows from (51) that

hn+1 <I>6L+1 — Q" n

1/2 1/2 0 — \wl/g\ (D?-i_l — O

2T

Computational experiments show that sufficiently small time steps 7 should
be used, in order to preserve the monotonicity of the solution.

8 Algorithm in Lagrangian Coordinates

One of the main challenges in solving infiltration problems is due to moving
fronts, e.g. determination of z.(¢) and x;(t) and approximation of differen-
tial equations and boundary conditions on grids, which are moving in time.
An alternative is to formulate the problem in a Lagrangian framework, in-
troducing new coordinates fixed on the solid constituent.

8.1 Reformulation of the Mathematical Model

First, we rewrite all equation of the mathematical model such that the ad-
vection terms containing the solid velocity vs are written explicitly [18] (we
will write only equations for a solid matrix and the degree of cure):

ooy | 09 _ L, 0 (K dS.(@F) 09
ot Tor T Cox pw o ddY 9z )’
o5 a5 1 K d5, (o) 00w 95

TR it wer iy e e R LGSR

As reference configuration we consider the configuration in which the
solid is dry at rest, i.e. ®¥(x) = ®,. The compression configuration is

determined by
or @,

% oy

In Lagrangian coordinates the wet domain reads

DV ={6: 0<E<&(1)},
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where the left boundary x.(t) always corresponds to & = 0. We obtain the
following equations for the unknown functions ®4(&,t) = ®¥(&,t) and 6(&, t):
0%, o2 9 7 0D,
ot @, 0 o¢ )’
) o
96 s 7 0P, 06

E B (I)r(l - CI)S) ag 8_§

(52)

+ fe(6,6),

where

K(®,) Oy dXg(Py)
po @, dd,
The infiltration front position is obtained from the equation
0&;(t VARG
%E ) - <1 — 0, a§8> (&:t), (53)
here it is taken into account that the liquid phase velocity with respect to
the solid matrix is given by v; — vs.

Z:

8.2 Numerical Algorithm

We introduce the uniform grid

D;f = {5] : é-j :jh, j:O,l,...,M(t), §M:§Z(t)}
The new time step is selected in such a way that the infiltration front
moves one space node per time step:

Z’VL
h = Min_%(;_q)%_
Tn 1—@7](4

n_ 1
2
Here, we assumed that the pressure drop AP, is constant in time.

The mass conservation equation of the solid phase is approximated by
the following finite—volume scheme:

BT —On (DTN Zi05(RMT )LD — Zj 05(BM )55

T D, h ’
Oy =By, B =By,

o =on j=12... M-1.

The position of the free border z.(t) can be computed integrating the

differential equation

Recall that in a Lagrangian coordinate system this border is fixed at £ = 0.
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9 IMPES Type Algorithm

The given nonlinear system of equations can be linearized by solving sequen-
tially the pressure and saturation equations [23]. Applying this iteration
method to problem (18)—(21) leads to the following algorithm:

1. Implicit Pressure Equation

—0_04+ P =06_64% (<I>"”'*1) ) (54)
54
P(;L7T:P0a P]\Z’T:Patm-
2. Mass Balance Equation
The difference scheme which uses the Enquist-Osher numerical flux [14,
27] has the following conservative form:

n,r n,r n,r n,r n,r Fn,r
cI);?’r—<I>;.L+F<Uj+;’(I)j+1’(I)j > _F<Uj_;’q)j ’(I)j1> 0
- ; =0, (55)

n,r __ n,r __
DY = B, O} = Dy,

where the numerical flux F' is defined as above.

10 Numerical Experiments

The simulations presented in this section use the values of parameters given
in [20], where the infiltration of a thermosetting resin in a network of glass
fibers is considered.
The dependence of the permeability on the volume ratio is assumed to
be given by
K (®Y) = Koe 16(%5 =)

The stress-strain relations are given by
Ew(q)lsu) — 0.09(626.4{);‘) _ 626.4{2’,,.) (Pa) 7
Sa(®9) = 0.3(e25% — %) (Pa),

where @, = 0.5 is the undeformed solid phase volume fraction.

37



The resin viscosity and the function describing the curing process are
chosen to be:

0.1 \15+6
18000/R0< ) i 5<01
e if §<0.1,
u(s,9) =14 1 01-0
o0 otherwise,
o = 2.78 -107* (J /mol) .
02s| /,/”’/
0.27 /z’//
08| ,"/
oa]
L /,
0.05)’
o 5  _10 1 2
Time[s]

Figure 5: Positions of free boundaries: z.(t) (solid line) and z;(¢) (dashed
line).

In order to test the proposed finite-difference scheme we simulated the
infiltration process which is driven by a constant pressure drop of 0.1 M Pa.
After the application of the pressure drop, the preform initially is compressed
from 300 mm to 282 mm. Figure 5 shows the evolution in time of z.(t) and
xX; (t)

As expected from the one-phase model, the interface x;(t) moves as v/,
at least for the initial time interval.

Figure 6 gives the evolution of the solid volume fraction in time.
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1. D. Hietel, K. Steiner, J. Struckmeier
A Finite - Volume Particle Method for
Compressible Flows

We derive a new class of particle methods for con-
servation laws, which are based on numerical flux
functions to model the interactions between moving
particles. The derivation is similar to that of classical
Finite-Volume methods; except that the fixed grid
structure in the Finite-Volume method is substituted
by so-called mass packets of particles. We give some
numerical results on a shock wave solution for Burgers
equation as well as the well-known one-dimensional
shock tube problem.

(19 pages, 1998)

2. M. Feldmann, S. Seibold

Damage Diagnosis of Rotors: Application
of Hilbert Transform and Multi-Hypothe-
sis Testing

In this paper, a combined approach to damage diag-
nosis of rotors is proposed. The intention is to employ
signal-based as well as model-based procedures for an
improved detection of size and location of the damage.
In a first step, Hilbert transform signal processing tech-
niques allow for a computation of the signal envelope
and the instantaneous frequency, so that various types
of non-linearities due to a damage may be identified
and classified based on measured response data. In a
second step, a multi-hypothesis bank of Kalman Filters
is employed for the detection of the size and location
of the damage based on the information of the type
of damage provided by the results of the Hilbert trans-
form.

Keywords: Hilbert transform, damage diagnosis, Kal-
man filtering, non-linear dynamics

(23 pages, 1998)

3. Y. Ben-Haim, S. Seibold

Robust Reliability of Diagnostic Mullti-
Hypothesis Algorithms: Application to
Rotating Machinery

Damage diagnosis based on a bank of Kalman fil-

ters, each one conditioned on a specific hypothesized
system condition, is a well recognized and powerful
diagnostic tool. This multi-hypothesis approach can

be applied to a wide range of damage conditions. In
this paper, we will focus on the diagnosis of cracks in
rotating machinery. The question we address is: how to
optimize the multi-hypothesis algorithm with respect
to the uncertainty of the spatial form and location of
cracks and their resulting dynamic effects. First, we
formulate a measure of the reliability of the diagnos-
tic algorithm, and then we discuss modifications of

the diagnostic algorithm for the maximization of the
reliability. The reliability of a diagnostic algorithm is
measured by the amount of uncertainty consistent with
no-failure of the diagnosis. Uncertainty is quantitatively
represented with convex models.

Keywords: Robust reliability, convex models, Kalman
filtering, multi-hypothesis diagnosis, rotating machinery,
crack diagnosis

(24 pages, 1998)

4. F.-Th. Lentes, N. Siedow
Three-dimensional Radiative Heat Transfer
in Glass Cooling Processes

For the numerical simulation of 3D radiative heat trans-
fer in glasses and glass melts, practically applicable
mathematical methods are needed to handle such
problems optimal using workstation class computers.
Since the exact solution would require super-computer
capabilities we concentrate on approximate solu-

tions with a high degree of accuracy. The following
approaches are studied: 3D diffusion approximations
and 3D ray-tracing methods.

(23 pages, 1998)

5. A.Klar, R. Wegener

A hierarchy of models for multilane
vehicular traffic

Part I: Modeling

In the present paper multilane models for vehicular
traffic are considered. A microscopic multilane model
based on reaction thresholds is developed. Based on
this model an Enskog like kinetic model is developed.
In particular, care is taken to incorporate the correla-
tions between the vehicles. From the kinetic model a
fluid dynamic model is derived. The macroscopic coef-
ficients are deduced from the underlying kinetic model.
Numerical simulations are presented for all three levels
of description in [10]. Moreover, a comparison of the
results is given there.

(23 pages, 1998)

Part Il: Numerical and stochastic
investigations

In this paper the work presented in [6] is continued.
The present paper contains detailed numerical inves-
tigations of the models developed there. A numerical
method to treat the kinetic equations obtained in [6]
are presented and results of the simulations are shown.
Moreover, the stochastic correlation model used in [6]
is described and investigated in more detail.

(17 pages, 1998)

6. A.Klar, N. Siedow

Boundary Layers and Domain Decompos-
ition for Radiative Heat Transfer and Diffu-
sion Equations: Applications to Glass Manu-
facturing Processes

In this paper domain decomposition methods for
radiative transfer problems including conductive heat
transfer are treated. The paper focuses on semi-trans-
parent materials, like glass, and the associated condi-
tions at the interface between the materials. Using
asymptotic analysis we derive conditions for the cou-
pling of the radiative transfer equations and a diffusion
approximation. Several test cases are treated and a
problem appearing in glass manufacturing processes is
computed. The results clearly show the advantages of a
domain decomposition approach. Accuracy equivalent
to the solution of the global radiative transfer solu-
tion is achieved, whereas computation time is strongly
reduced.

(24 pages, 1998)

7. 1. Choquet

Heterogeneous catalysis modelling and
numerical simulation in rarified gas flows
Part I: Coverage locally at equilibrium

A new approach is proposed to model and simulate
numerically heterogeneous catalysis in rarefied gas
flows. It is developed to satisfy all together the follow-
ing points:

1) describe the gas phase at the microscopic scale, as
required in rarefied flows,

2) describe the wall at the macroscopic scale, to avoid
prohibitive computational costs and consider not only
crystalline but also amorphous surfaces,

3) reproduce on average macroscopic laws correlated
with experimental results and

4) derive analytic models in a systematic and exact
way. The problem is stated in the general framework
of a non static flow in the vicinity of a catalytic and
non porous surface (without aging). It is shown that
the exact and systematic resolution method based

on the Laplace transform, introduced previously by
the author to model collisions in the gas phase, can
be extended to the present problem. The proposed
approach is applied to the modelling of the EleyRideal
and LangmuirHinshelwood recombinations, assuming
that the coverage is locally at equilibrium. The models
are developed considering one atomic species and
extended to the general case of several atomic species.
Numerical calculations show that the models derived in
this way reproduce with accuracy behaviors observed
experimentally.

(24 pages, 1998)

8. J. Ohser, B. Steinbach, C. Lang
Efficient Texture Analysis of Binary Images

A new method of determining some characteristics

of binary images is proposed based on a special linear
filtering. This technique enables the estimation of the
area fraction, the specific line length, and the specific
integral of curvature. Furthermore, the specific length
of the total projection is obtained, which gives detailed
information about the texture of the image. The
influence of lateral and directional resolution depend-
ing on the size of the applied filter mask is discussed in
detail. The technique includes a method of increasing
directional resolution for texture analysis while keeping
lateral resolution as high as possible.

(17 pages, 1998)

9. J. Orlik

Homogenization for viscoelasticity of the
integral type with aging and shrinkage

A multiphase composite with periodic distributed
inclusions with a smooth boundary is considered in this
contribution. The composite component materials are
supposed to be linear viscoelastic and aging (of the
nonconvolution integral type, for which the Laplace
transform with respect to time is not effectively appli-
cable) and are subjected to isotropic shrinkage. The
free shrinkage deformation can be considered as a ficti-
tious temperature deformation in the behavior law. The
procedure presented in this paper proposes a way to
determine average (effective homogenized) viscoelastic
and shrinkage (temperature) composite properties and
the homogenized stressfield from known properties

of the components. This is done by the extension of
the asymptotic homogenization technique known for
pure elastic nonhomogeneous bodies to the nonhomo-
geneous thermoviscoelasticity of the integral noncon-



volution type. Up to now, the homogenization theory
has not covered viscoelasticity of the integral type.
SanchezPalencia (1980), Francfort & Suquet (1987) (see
[2], [9]) have considered homogenization for viscoelas-
ticity of the differential form and only up to the first
derivative order. The integralmodeled viscoelasticity

is more general then the differential one and includes
almost all known differential models. The homogeni-
zation procedure is based on the construction of an
asymptotic solution with respect to a period of the
composite structure. This reduces the original problem
to some auxiliary boundary value problems of elastic-
ity and viscoelasticity on the unit periodic cell, of the
same type as the original non-homogeneous problem.
The existence and uniqueness results for such problems
were obtained for kernels satisfying some constrain
conditions. This is done by the extension of the Volterra
integral operator theory to the Volterra operators with
respect to the time, whose 1 kernels are space linear
operators for any fixed time variables. Some ideas of
such approach were proposed in [11] and [12], where
the Volterra operators with kernels depending addi-
tionally on parameter were considered. This manuscript
delivers results of the same nature for the case of the
spaceoperator kernels.

(20 pages, 1998)

10. J. Mohring
Helmholtz Resonators with Large Aperture

The lowest resonant frequency of a cavity resona-

tor is usually approximated by the classical Helmholtz
formula. However, if the opening is rather large and
the front wall is narrow this formula is no longer valid.
Here we present a correction which is of third order

in the ratio of the diameters of aperture and cavity. In
addition to the high accuracy it allows to estimate the
damping due to radiation. The result is found by apply-
ing the method of matched asymptotic expansions. The
correction contains form factors describing the shapes
of opening and cavity. They are computed for a num-
ber of standard geometries. Results are compared with
numerical computations.

(21 pages, 1998)

11. H. W. Hamacher, A. Schobel
On Center Cycles in Grid Graphs

Finding “good” cycles in graphs is a problem of great
interest in graph theory as well as in locational analy-
sis. We show that the center and median problems are
NP hard in general graphs. This result holds both for
the variable cardinality case (i.e. all cycles of the graph
are considered) and the fixed cardinality case (i.e. only
cycles with a given cardinality p are feasible). Hence

it is of interest to investigate special cases where the
problem is solvable in polynomial time. In grid graphs,
the variable cardinality case is, for instance, trivially
solvable if the shape of the cycle can be chosen freely.
If the shape is fixed to be a rectangle one can ana-
lyze rectangles in grid graphs with, in sequence, fixed
dimension, fixed cardinality, and variable cardinality.
In all cases a complete characterization of the optimal
cycles and closed form expressions of the optimal
objective values are given, yielding polynomial time
algorithms for all cases of center rectangle problems.
Finally, it is shown that center cycles can be chosen as
rectangles for small cardinalities such that the center
cycle problem in grid graphs is in these cases com-
pletely solved.

(15 pages, 1998)

12. H. W. Hamacher, K.-H. Kufer
Inverse radiation therapy planning -
a multiple objective optimisation approach

For some decades radiation therapy has been proved
successful in cancer treatment. It is the major task of
clinical radiation treatment planning to realize on the
one hand a high level dose of radiation in the cancer
tissue in order to obtain maximum tumor control. On
the other hand it is obvious that it is absolutely neces-
sary to keep in the tissue outside the tumor, particularly
in organs at risk, the unavoidable radiation as low as
possible.

No doubt, these two objectives of treatment planning
- high level dose in the tumor, low radiation outside the
tumor - have a basically contradictory nature. Therefore,
it is no surprise that inverse mathematical models with
dose distribution bounds tend to be infeasible in most
cases. Thus, there is need for approximations com-
promising between overdosing the organs at risk and
underdosing the target volume.

Differing from the currently used time consuming
iterative approach, which measures deviation from an
ideal (non-achievable) treatment plan using recursively
trial-and-error weights for the organs of interest, we
go a new way trying to avoid a priori weight choices
and consider the treatment planning problem as a mul-
tiple objective linear programming problem: with each
organ of interest, target tissue as well as organs at risk,
we associate an objective function measuring the maxi-
mal deviation from the prescribed doses.

We build up a data base of relatively few efficient
solutions representing and approximating the variety
of Pareto solutions of the multiple objective linear
programming problem. This data base can be easily
scanned by physicians looking for an adequate treat-
ment plan with the aid of an appropriate online tool.
(14 pages, 1999)

13. C. Lang, J. Ohser, R. Hilfer
On the Analysis of Spatial Binary Images

This paper deals with the characterization of micro-
scopically heterogeneous, but macroscopically homo-
geneous spatial structures. A new method is presented
which is strictly based on integral-geometric formulae
such as Crofton’s intersection formulae and Hadwiger’s
recursive definition of the Euler number. The corre-
sponding algorithms have clear advantages over other
techniques. As an example of application we consider
the analysis of spatial digital images produced by
means of Computer Assisted Tomography.

(20 pages, 1999)

14. M. Junk

On the Construction of Discrete Equilibrium
Distributions for Kinetic Schemes

A general approach to the construction of discrete
equilibrium distributions is presented. Such distribution
functions can be used to set up Kinetic Schemes as
well as Lattice Boltzmann methods. The general prin-
ciples are also applied to the construction of Chapman
Enskog distributions which are used in Kinetic Schemes
for compressible Navier-Stokes equations.

(24 pages, 1999)

15. M. Junk, S. V. Raghurame Rao
A new discrete velocity method for Navier-
Stokes equations

The relation between the Lattice Boltzmann Method,
which has recently become popular, and the Kinetic
Schemes, which are routinely used in Computational
Fluid Dynamics, is explored. A new discrete veloc-

ity model for the numerical solution of Navier-Stokes
equations for incompressible fluid flow is presented by
combining both the approaches. The new scheme can
be interpreted as a pseudo-compressibility method and,
for a particular choice of parameters, this interpretation
carries over to the Lattice Boltzmann Method.

(20 pages, 1999)

16. H. Neunzert
Mathematics as a Key to Key Technologies

The main part of this paper will consist of examples,
how mathematics really helps to solve industrial prob-
lems; these examples are taken from our Institute for
Industrial Mathematics, from research in the Techno-
mathematics group at my university, but also from
ECMI groups and a company called TecMath, which
originated 10 years ago from my university group and
has already a very successful history.

(39 pages (4 PDF-Files), 1999)

17. ). Ohser, K. Sandau

Considerations about the Estimation of the
Size Distribution in Wicksell’s Corpuscle
Problem

Wicksell's corpuscle problem deals with the estima-
tion of the size distribution of a population of particles,
all having the same shape, using a lower dimensional
sampling probe. This problem was originary formulated
for particle systems occurring in life sciences but its
solution is of actual and increasing interest in materials
science. From a mathematical point of view, Wicksell's
problem is an inverse problem where the interest-

ing size distribution is the unknown part of a Volterra
equation. The problem is often regarded ill-posed,
because the structure of the integrand implies unstable
numerical solutions. The accuracy of the numerical
solutions is considered here using the condition num-
ber, which allows to compare different numerical meth-
ods with different (equidistant) class sizes and which
indicates, as one result, that a finite section thickness
of the probe reduces the numerical problems. Fur-
thermore, the relative error of estimation is computed
which can be split into two parts. One part consists

of the relative discretization error that increases for
increasing class size, and the second part is related

to the relative statistical error which increases with
decreasing class size. For both parts, upper bounds

can be given and the sum of them indicates an optimal
class width depending on some specific constants.

(18 pages, 1999)

18. E. Carrizosa, H. W. Hamacher, R. Klein,
S. Nickel

Solving nonconvex planar location prob-
lems by finite dominating sets

It is well-known that some of the classical location
problems with polyhedral gauges can be solved in
polynomial time by finding a finite dominating set, i.e.
a finite set of candidates guaranteed to contain at least
one optimal location.

In this paper it is first established that this result holds



for a much larger class of problems than currently con-
sidered in the literature. The model for which this result
can be proven includes, for instance, location problems
with attraction and repulsion, and location-allocation
problems.

Next, it is shown that the approximation of general
gauges by polyhedral ones in the objective function of
our general model can be analyzed with regard to the
subsequent error in the optimal objective value. For
the approximation problem two different approaches
are described, the sandwich procedure and the greedy
algorithm. Both of these approaches lead - for fixed
epsilon - to polynomial approximation algorithms with
accuracy epsilon for solving the general model con-
sidered in this paper.

Keywords: Continuous Location, Polyhedral Gauges,
Finite Dominating Sets, Approximation, Sandwich Algo-
rithm, Greedy Algorithm

(19 pages, 2000)

19. A. Becker
A Review on Image Distortion Measures

Within this paper we review image distortion measures.
A distortion measure is a criterion that assigns a “qual-
ity number” to an image. We distinguish between
mathematical distortion measures and those distortion
measures in-cooperating a priori knowledge about
the imaging devices ( e.g. satellite images), image pro-
cessing algorithms or the human physiology. We will
consider representative examples of different kinds of
distortion measures and are going to discuss them.
Keywords: Distortion measure, human visual system
(26 pages, 2000)

20. H. W. Hamacher, M. Labbé, S. Nickel,
T. Sonneborn

Polyhedral Properties of the Uncapacitated
Multiple Allocation Hub Location Problem

We examine the feasibility polyhedron of the unca-
pacitated hub location problem (UHL) with multiple
allocation, which has applications in the fields of air
passenger and cargo transportation, telecommuni-
cation and postal delivery services. In particular we
determine the dimension and derive some classes of
facets of this polyhedron. We develop some general
rules about lifting facets from the uncapacitated facility
location (UFL) for UHL and projecting facets from UHL
to UFL. By applying these rules we get a new class of
facets for UHL which dominates the inequalities in the
original formulation. Thus we get a new formulation of
UHL whose constraints are all facet-defining. We show
its superior computational performance by benchmark-
ing it on a well known data set.

Keywords: integer programming, hub location, facility
location, valid inequalities, facets, branch and cut

(21 pages, 2000)

21. H. W. Hamacher, A. Schobel
Design of Zone Tariff Systems in Public
Transportation

Given a public transportation system represented by its
stops and direct connections between stops, we con-
sider two problems dealing with the prices for the cus-
tomers: The fare problem in which subsets of stops are
already aggregated to zones and “good” tariffs have
to be found in the existing zone system. Closed form
solutions for the fare problem are presented for three
objective functions. In the zone problem the design

of the zones is part of the problem. This problem is NP

hard and we therefore propose three heuristics which
prove to be very successful in the redesign of one of
Germany's transportation systems.

(30 pages, 2001)

22. D. Hietel, M. Junk, R. Keck, D. Teleaga:

The Finite-Volume-Particle Method for
Conservation Laws

In the Finite-Volume-Particle Method (FVPM), the weak
formulation of a hyperbolic conservation law is discretized
by restricting it to a discrete set of test functions. In
contrast to the usual Finite-Volume approach, the test
functions are not taken as characteristic functions of the
control volumes in a spatial grid, but are chosen from a
partition of unity with smooth and overlapping partition
functions (the particles), which can even move along
pre- scribed velocity fields. The information exchange
between particles is based on standard numerical flux
functions. Geometrical information, similar to the sur-
face area of the cell faces in the Finite-Volume Method
and the corresponding normal directions are given as
integral quantities of the partition functions. After a
brief derivation of the Finite-Volume-Particle Method,
this work focuses on the role of the geometric coeffi-
cients in the scheme.

(16 pages, 2001)

23. T. Bender, H. Hennes, J. Kalcsics,
M. T. Melo, S. Nickel

Location Software and Interface with GIS
and Supply Chain Management

The objective of this paper is to bridge the gap
between location theory and practice. To meet this
objective focus is given to the development of soft-
ware capable of addressing the different needs of a
wide group of users. There is a very active commu-
nity on location theory encompassing many research
fields such as operations research, computer science,
mathematics, engineering, geography, economics and
marketing. As a result, people working on facility loca-
tion problems have a very diverse background and also
different needs regarding the software to solve these
problems. For those interested in non-commercial
applications (e. g. students and researchers), the library
of location algorithms (LoLA can be of considerable
assistance. LoLA contains a collection of efficient algo-
rithms for solving planar, network and discrete facility
location problems. In this paper, a detailed description
of the functionality of LoLA is presented. In the fields
of geography and marketing, for instance, solving facil-
ity location problems requires using large amounts of
demographic data. Hence, members of these groups
(e. g. urban planners and sales managers) often work
with geographical information too s. To address the
specific needs of these users, LoLA was inked to a
geographical information system (GIS) and the details
of the combined functionality are described in the
paper. Finally, there is a wide group of practitioners
who need to solve large problems and require special
purpose software with a good data interface. Many of
such users can be found, for example, in the area of
supply chain management (SCM). Logistics activities
involved in strategic SCM include, among others, facil-
ity location planning. In this paper, the development of
a commercial location software tool is also described.
The too is embedded in the Advanced Planner and
Optimizer SCM software developed by SAP AG, Wall-
dorf, Germany. The paper ends with some conclusions
and an outlook to future activities.

Keywords: facility location, software development,

geographical information systems, supply chain man-
agement.
(48 pages, 2001)

24. H. W. Hamacher, S. A. Tjandra

Mathematical Modelling of Evacuation
Problems: A State of Art

This paper details models and algorithms which can

be applied to evacuation problems. While it concen-
trates on building evacuation many of the results are
applicable also to regional evacuation. All models
consider the time as main parameter, where the travel
time between components of the building is part of the
input and the overall evacuation time is the output. The
paper distinguishes between macroscopic and micro-
scopic evacuation models both of which are able to
capture the evacuees’ movement over time.
Macroscopic models are mainly used to produce good
lower bounds for the evacuation time and do not con-
sider any individual behavior during the emergency
situation. These bounds can be used to analyze exist-
ing buildings or help in the design phase of planning a
building. Macroscopic approaches which are based on
dynamic network flow models (minimum cost dynamic
flow, maximum dynamic flow, universal maximum
flow, quickest path and quickest flow) are described. A
special feature of the presented approach is the fact,
that travel times of evacuees are not restricted to be
constant, but may be density dependent. Using multi-
criteria optimization priority regions and blockage due
to fire or smoke may be considered. It is shown how
the modelling can be done using time parameter either
as discrete or continuous parameter.

Microscopic models are able to model the individual
evacuee's characteristics and the interaction among
evacuees which influence their movement. Due to the
corresponding huge amount of data one uses simu-
lation approaches. Some probabilistic laws for indi-
vidual evacuee’s movement are presented. Moreover
ideas to model the evacuee’s movement using cellular
automata (CA) and resulting software are presented.

In this paper we will focus on macroscopic models and
only summarize some of the results of the microscopic
approach. While most of the results are applicable to
general evacuation situations, we concentrate on build-
ing evacuation.

(44 pages, 2001)

25. J. Kuhnert, S. Tiwari

Grid free method for solving the Poisson
equation

A Grid free method for solving the Poisson equation

is presented. This is an iterative method. The method
is based on the weighted least squares approximation
in which the Poisson equation is enforced to be satis-
fied in every iterations. The boundary conditions can
also be enforced in the iteration process. This is a local
approximation procedure. The Dirichlet, Neumann and
mixed boundary value problems on a unit square are
presented and the analytical solutions are compared
with the exact solutions. Both solutions matched per-
fectly.

Keywords: Poisson equation, Least squares method,
Grid free method

(19 pages, 2001)



26. T. Gotz, H. Rave, D. Reinel-Bitzer,
K. Steiner, H. Tiemeier

Simulation of the fiber spinning process

To simulate the influence of process parameters to the
melt spinning process a fiber model is used and coupled
with CFD calculations of the quench air flow. In the fiber
model energy, momentum and mass balance are solved
for the polymer mass flow. To calculate the quench air
the Lattice Boltzmann method is used. Simulations and
experiments for different process parameters and hole
configurations are compared and show a good agree-
ment.

Keywords: Melt spinning, fiber model, Lattice
Boltzmann, CFD

(19 pages, 2001)

27. A. Zemitis

On interaction of a liquid film with an
obstacle

In this paper mathematical models for liquid films
generated by impinging jets are discussed. Attention

is stressed to the interaction of the liquid film with
some obstacle. S. G. Taylor [Proc. R. Soc. London Ser.
A 253, 313 (1959)] found that the liquid film gener-
ated by impinging jets is very sensitive to properties

of the wire which was used as an obstacle. The aim of
this presentation is to propose a modification of the
Taylor's model, which allows to simulate the film shape
in cases, when the angle between jets is different from
180°. Numerical results obtained by discussed models
give two different shapes of the liquid film similar as

in Taylors experiments. These two shapes depend on
the regime: either droplets are produced close to the
obstacle or not. The difference between two regimes
becomes larger if the angle between jets decreases.
Existence of such two regimes can be very essential for
some applications of impinging jets, if the generated
liquid film can have a contact with obstacles.
Keywords: impinging jets, liquid film, models, numeri-
cal solution, shape

(22 pages, 2001)

28. |. Ginzburg, K. Steiner

Free surface lattice-Boltzmann method to
model the filling of expanding cavities by
Bingham Fluids

The filling process of viscoplastic metal alloys and plas-
tics in expanding cavities is modelled using the lattice
Boltzmann method in two and three dimensions. These
models combine the regularized Bingham model for
viscoplastic with a free-interface algorithm. The latter
is based on a modified immiscible lattice Boltzmann
model in which one species is the fluid and the other
one is considered as vacuum. The boundary conditions
at the curved liquid-vacuum interface are met without
any geometrical front reconstruction from a first-order
Chapman-Enskog expansion. The numerical results
obtained with these models are found in good agree-
ment with available theoretical and numerical analysis.
Keywords: Generalized LBE, free-surface phenomena,
interface boundary conditions, filling processes, Bing-
ham viscoplastic model, reqularized models

(22 pages, 2001)

29. H. Neunzert

»Denn nichts ist fir den Menschen als Men-
schen etwas wert, was er nicht mit Leiden-
schaft tun kann«

Vortrag anlasslich der Verleihung des Akademie-
preises des Landes Rheinland-Pfalz am 21.11.2001

Was macht einen guten Hochschullehrer aus? Auf
diese Frage gibt es sicher viele verschiedene, fach-
bezogene Antworten, aber auch ein paar allgemeine
Gesichtspunkte: es bedarf der »Leidenschaft« fur

die Forschung (Max Weber), aus der dann auch die
Begeisterung fur die Lehre erwachst. Forschung und
Lehre gehoéren zusammen, um die Wissenschaft als
lebendiges Tun vermitteln zu kdnnen. Der Vortrag gibt
Beispiele dafir, wie in angewandter Mathematik Forsc-
hungsaufgaben aus praktischen Alltagsproblemstellun-
gen erwachsen, die in die Lehre auf verschiedenen
Stufen (Gymnasium bis Graduiertenkolleg) einflieBen;
er leitet damit auch zu einem aktuellen Forschungs-
gebiet, der Mehrskalenanalyse mit ihren vielfalti-

gen Anwendungen in Bildverarbeitung, Materialent-
wicklung und Stromungsmechanik tber, was aber nur
kurz gestreift wird. Mathematik erscheint hier als eine
moderne Schlisseltechnologie, die aber auch enge
Beziehungen zu den Geistes- und Sozialwissenschaften
hat.

Keywords: Lehre, Forschung, angewandte Mathematik,
Mehrskalenanalyse, Strémungsmechanik

(18 pages, 2001)

30. J. Kuhnert, S. Tiwari

Finite pointset method based on the projec-
tion method for simulations of the incom-
pressible Navier-Stokes equations

A Lagrangian particle scheme is applied to the pro-
jection method for the incompressible Navier-Stokes
equations. The approximation of spatial derivatives is
obtained by the weighted least squares method. The
pressure Poisson equation is solved by a local iterative
procedure with the help of the least squares method.
Numerical tests are performed for two dimensional
cases. The Couette flow, Poiseuelle flow, decaying
shear flow and the driven cavity flow are presented.
The numerical solutions are obtained for stationary as
well as instationary cases and are compared with the
analytical solutions for channel flows. Finally, the driven
cavity in a unit square is considered and the stationary
solution obtained from this scheme is compared with
that from the finite element method.

Keywords: Incompressible Navier-Stokes equations,
Meshfree method, Projection method, Particle scheme,
Least squares approximation

AMS subject classification: 76D05, 76M28

(25 pages, 2001)

31. R. Korn, M. Krekel

Optimal Portfolios with Fixed Consumption
or Income Streams

We consider some portfolio optimisation problems
where either the investor has a desire for an a priori
specified consumption stream or/and follows a deter-
ministic pay in scheme while also trying to maximize
expected utility from final wealth. We derive explicit
closed form solutions for continuous and discrete mon-
etary streams. The mathematical method used is clas-
sical stochastic control theory.

Keywords: Portfolio optimisation, stochastic control,
HJB equation, discretisation of control problems.

(23 pages, 2002)

32. M. Krekel
Optimal portfolios with a loan dependent
credit spread

If an investor borrows money he generally has to pay
higher interest rates than he would have received, if he
had put his funds on a savings account. The classical
model of continuous time portfolio optimisation ignores
this effect. Since there is obviously a connection between
the default probability and the total percentage of wealth,
which the investor is in debt, we study portfolio optimisa-
tion with a control dependent interest rate. Assuming a
logarithmic and a power utility function, respectively, we
prove explicit formulae of the optimal control.

Keywords: Portfolio optimisation, stochastic control,
HJB equation, credit spread, log utility, power utility,
non-linear wealth dynamics

(25 pages, 2002)

33. J. Ohser, W. Nagel, K. Schladitz

The Euler number of discretized sets - on
the choice of adjacency in homogeneous
lattices

Two approaches for determining the Euler-Poincaré
characteristic of a set observed on lattice points are
considered in the context of image analysis { the inte-
gral geometric and the polyhedral approach. Informa-
tion about the set is assumed to be available on lattice
points only. In order to retain properties of the Euler
number and to provide a good approximation of the
true Euler number of the original set in the Euclidean
space, the appropriate choice of adjacency in the lat-
tice for the set and its background is crucial. Adjacen-
cies are defined using tessellations of the whole space
into polyhedrons. In R 3, two new 14 adjacencies

are introduced additionally to the well known 6 and
26 adjacencies. For the Euler number of a set and its
complement, a consistency relation holds. Each of the
pairs of adjacencies (14:1; 14:1), (14:2; 14:2), (6, 26),
and (26; 6) is shown to be a pair of complementary
adjacencies with respect to this relation. That is, the
approximations of the Euler numbers are consistent if
the set and its background (complement) are equipped
with this pair of adjacencies. Furthermore, sufficient
conditions for the correctness of the approximations
of the Euler number are given. The analysis of selected
microstructures and a simulation study illustrate how
the estimated Euler number depends on the chosen
adjacency. It also shows that there is not a uniquely
best pair of adjacencies with respect to the estimation
of the Euler number of a set in Euclidean space.
Keywords: image analysis, Euler number, neighborhod
relationships, cuboidal lattice

(32 pages, 2002)

34. |. Ginzburg, K. Steiner

Lattice Boltzmann Model for Free-Surface
flow and Its Application to Filling Process in
Casting

A generalized lattice Boltzmann model to simulate free-
surface is constructed in both two and three dimen-
sions. The proposed model satisfies the interfacial
boundary conditions accurately. A distinctive feature
of the model is that the collision processes is carried
out only on the points occupied partially or fully by the
fluid. To maintain a sharp interfacial front, the method
includes an anti-diffusion algorithm. The unknown
distribution functions at the interfacial region are con-
structed according to the first order Chapman-Enskog
analysis. The interfacial boundary conditions are satis-



fied exactly by the coefficients in the Chapman-Enskog
expansion. The distribution functions are naturally
expressed in the local interfacial coordinates. The mac-
roscopic quantities at the interface are extracted from
the least-square solutions of a locally linearized system
obtained from the known distribution functions. The
proposed method does not require any geometric front
construction and is robust for any interfacial topology.
Simulation results of realistic filling process are pre-
sented: rectangular cavity in two dimensions and Ham-
mer box, Campbell box, Sheffield box, and Motorblock
in three dimensions. To enhance the stability at high
Reynolds numbers, various upwind-type schemes are
developed. Free-slip and no-slip boundary conditions
are also discussed.

Keywords: Lattice Boltzmann models; free-surface
phenomena, interface boundary conditions; filling
processes; injection molding, volume of fluid method,
interface boundary conditions; advection-schemes;
upwind-schemes

(54 pages, 2002)

35. M. Gunther, A. Klar, T. Materne,

R. Wegener
Multivalued fundamental diagrams and
stop and go waves for continuum traffic
equations

In the present paper a kinetic model for vehicular traf-
fic leading to multivalued fundamental diagrams is
developed and investigated in detail. For this model
phase transitions can appear depending on the local
density and velocity of the flow. A derivation of asso-
ciated macroscopic traffic equations from the kinetic
equation is given. Moreover, numerical experiments
show the appearance of stop and go waves for high-
way traffic with a bottleneck.

Keywords: traffic flow, macroscopic equations, kinetic
derivation, multivalued fundamental diagram, stop and
go waves, phase transitions

(25 pages, 2002)

36. S. Feldmann, P. Lang, D. Pratzel-Wolters
Parameter influence on the zeros of net-
work determinants

To a network N(qg) with determinant D(s;q) depend-
ing on a parameter vector g | R" via identification of
some of its vertices, a network N" () is assigned. The
paper deals with procedures to find N (g), such that
its determinant D" (s;q) admits a factorization in the
determinants of appropriate subnetworks, and with
the estimation of the deviation of the zeros of D" from
the zeros of D. To solve the estimation problem state
space methods are applied.

Keywords: Networks, Equicofactor matrix polynomials,
Realization theory, Matrix perturbation theory

(30 pages, 2002)

37. K. Koch, J. Ohser, K. Schladitz

Spectral theory for random closed sets and
estimating the covariance via frequency
space

A spectral theory for stationary random closed sets

is developed and provided with a sound mathemati-
cal basis. Definition and proof of existence of the
Bartlett spectrum of a stationary random closed set as
well as the proof of a Wiener-Khintchine theorem for
the power spectrum are used to two ends: First, well
known second order characteristics like the covariance

can be estimated faster than usual via frequency space.
Second, the Bartlett spectrum and the power spectrum
can be used as second order characteristics in fre-
quency space. Examples show, that in some cases infor-
mation about the random closed set is easier to obtain
from these characteristics in frequency space than from
their real world counterparts.

Keywords: Random set, Bartlett spectrum, fast Fourier
transform, power spectrum

(28 pages, 2002)

38. D. d’Humiéres, |. Ginzburg

Multi-reflection boundary conditions for
lattice Boltzmann models

We present a unified approach of several boundary
conditions for lattice Boltzmann models. Its general
framework is a generalization of previously introduced
schemes such as the bounce-back rule, linear or qua-
dratic interpolations, etc. The objectives are two fold:
first to give theoretical tools to study the existing
boundary conditions and their corresponding accu-
racy; secondly to design formally third- order accurate
boundary conditions for general flows. Using these
boundary conditions, Couette and Poiseuille flows are
exact solution of the lattice Boltzmann models for a
Reynolds number Re = 0 (Stokes limit).

Numerical comparisons are given for Stokes flows in
periodic arrays of spheres and cylinders, linear peri-
odic array of cylinders between moving plates and for
Navier-Stokes flows in periodic arrays of cylinders for
Re < 200. These results show a significant improve-
ment of the overall accuracy when using the linear
interpolations instead of the bounce-back reflection
(up to an order of magnitude on the hydrodynam-

ics fields). Further improvement is achieved with the
new multi-reflection boundary conditions, reaching a
level of accuracy close to the quasi-analytical reference
solutions, even for rather modest grid resolutions and
few points in the narrowest channels. More important,
the pressure and velocity fields in the vicinity of the
obstacles are much smoother with multi-reflection
than with the other boundary conditions.

Finally the good stability of these schemes is high-
lighted by some simulations of moving obstacles: a cyl-
inder between flat walls and a sphere in a cylinder.
Keywords: lattice Boltzmann equation, boudary condis-
tions, bounce-back rule, Navier-Stokes equation

(72 pages, 2002)

39. R. Korn
Elementare Finanzmathematik

Im Rahmen dieser Arbeit soll eine elementar gehaltene
Einfihrung in die Aufgabenstellungen und Prinzipien
der modernen Finanzmathematik gegeben werden.
Insbesondere werden die Grundlagen der Modellierung
von Aktienkursen, der Bewertung von Optionen und
der Portfolio-Optimierung vorgestellt. Naturlich kénnen
die verwendeten Methoden und die entwickelte Theo-
rie nicht in voller Allgemeinheit fir den Schuluntericht
verwendet werden, doch sollen einzelne Prinzipien so
heraus gearbeitet werden, dass sie auch an einfachen
Beispielen verstanden werden kénnen.

Keywords: Finanzmathematik, Aktien, Optionen, Port-
folio-Optimierung, Bérse, Lehrerweiterbildung, Mathe-
matikunterricht

(98 pages, 2002)

40. J. Kallrath, M. C. Muller, S. Nickel
Batch Presorting Problems:
Models and Complexity Results

In this paper we consider short term storage sys-

tems. We analyze presorting strategies to improve the
effiency of these storage systems. The presorting task
is called Batch PreSorting Problem (BPSP). The BPSP is a
variation of an assigment problem, i.e., it has an assig-
ment problem kernel and some additional constraints.
We present different types of these presorting prob-
lems, introduce mathematical programming formula-
tions and prove the NP-completeness for one type

of the BPSP. Experiments are carried out in order to
compare the different model formulations and to inves-
tigate the behavior of these models.

Keywords: Complexity theory, Integer programming,
Assigment, Logistics

(19 pages, 2002)

41. J. Linn

On the frame-invariant description of the
phase space of the Folgar-Tucker equation

The Folgar-Tucker equation is used in flow simula-
tions of fiber suspensions to predict fiber orientation
depending on the local flow. In this paper, a complete,
frame-invariant description of the phase space of this
differential equation is presented for the first time.
Key words: fiber orientation, Folgar-Tucker equation,
injection molding

(5 pages, 2003)

42. T. Hanne, S. Nickel

A Multi-Objective Evolutionary Algorithm
for Scheduling and Inspection Planning in
Software Development Projects

In this article, we consider the problem of planning
inspections and other tasks within a software develop-
ment (SD) project with respect to the objectives quality
(no. of defects), project duration, and costs. Based on a
discrete-event simulation model of SD processes com-
prising the phases coding, inspection, test, and rework,
we present a simplified formulation of the problem as
a multiobjective optimization problem. For solving the
problem (i.e. finding an approximation of the efficient
set) we develop a multiobjective evolutionary algo-
rithm. Details of the algorithm are discussed as well as
results of its application to sample problems.

Key words: multiple objective programming, project
management and scheduling, software development,
evolutionary algorithms, efficient set

(29 pages, 2003)

43. T. Bortfeld , K.-H. Ktfer, M. Monz,

A. Scherrer, C. Thieke, H. Trinkaus
Intensity-Modulated Radiotherapy - A
Large Scale Multi-Criteria Programming
Problem -

Radiation therapy planning is always a tight rope walk
between dangerous insufficient dose in the target
volume and life threatening overdosing of organs at
risk. Finding ideal balances between these inherently
contradictory goals challenges dosimetrists and physi-
cians in their daily practice. Today’s planning systems
are typically based on a single evaluation function that
measures the quality of a radiation treatment plan.
Unfortunately, such a one dimensional approach can-



not satisfactorily map the different backgrounds of
physicians and the patient dependent necessities. So,
too often a time consuming iteration process between
evaluation of dose distribution and redefinition of the
evaluation function is needed.

In this paper we propose a generic multi-criteria
approach based on Pareto’s solution concept. For

each entity of interest - target volume or organ at risk
a structure dependent evaluation function is defined
measuring deviations from ideal doses that are calcu-
lated from statistical functions. A reasonable bunch of
clinically meaningful Pareto optimal solutions are stored
in a data base, which can be interactively searched by
physicians. The system guarantees dynamical planning
as well as the discussion of tradeoffs between different
entities.

Mathematically, we model the upcoming inverse prob-
lem as a multi-criteria linear programming problem.
Because of the large scale nature of the problem it is
not possible to solve the problem in a 3D-setting with-
out adaptive reduction by appropriate approximation
schemes.

Our approach is twofold: First, the discretization of the
continuous problem is based on an adaptive hierarchi-
cal clustering process which is used for a local refine-
ment of constraints during the optimization procedure.
Second, the set of Pareto optimal solutions is approxi-
mated by an adaptive grid of representatives that are
found by a hybrid process of calculating extreme com-
promises and interpolation methods.

Keywords: multiple criteria optimization, representa-
tive systems of Pareto solutions, adaptive triangulation,
clustering and disaggregation techniques, visualization
of Pareto solutions, medical physics, external beam
radiotherapy planning, intensity modulated radio-
therapy

(31 pages, 2003)

44 T. Halfmann, T. Wichmann
Overview of Symbolic Methods in Industrial
Analog Circuit Design

Industrial analog circuits are usually designed using
numerical simulation tools. To obtain a deeper circuit
understanding, symbolic analysis techniques can addi-
tionally be applied. Approximation methods which
reduce the complexity of symbolic expressions are
needed in order to handle industrial-sized problems.
This paper will give an overview to the field of symbolic
analog circuit analysis. Starting with a motivation, the
state-of-the-art simplification algorithms for linear as
well as for nonlinear circuits are presented. The basic
ideas behind the different techniques are described,
whereas the technical details can be found in the cited
references. Finally, the application of linear and non-
linear symbolic analysis will be shown on two example
circuits.

Keywords: CAD, automated analog circuit design, sym-
bolic analysis, computer algebra, behavioral modeling,
system simulation, circuit sizing, macro modeling, dif-
ferential-algebraic equations, index

(17 pages, 2003)

45. S. E. Mikhailov, J. Orlik

Asymptotic Homogenisation in Strength
and Fatigue Durability Analysis of
Composites

Asymptotic homogenisation technique and two-scale
convergence is used for analysis of macro-strength
and fatigue durability of composites with a periodic
structure under cyclic loading. The linear damage

accumulation rule is employed in the phenomenologi-
cal micro-durability conditions (for each component
of the composite) under varying cyclic loading. Both
local and non-local strength and durability conditions
are analysed. The strong convergence of the strength
and fatigue damage measure as the structure period
tends to zero is proved and their limiting values are
estimated.

Keywords: multiscale structures, asymptotic homogeni-
zation, strength, fatigue, singularity, non-local condi-
tions
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46. P. Dominguez-Marin, P. Hansen,
N. Mladenovi¢, S. Nickel

Heuristic Procedures for Solving the
Discrete Ordered Median Problem

We present two heuristic methods for solving the
Discrete Ordered Median Problem (DOMP), for which
no such approaches have been developed so far. The
DOMP generalizes classical discrete facility location
problems, such as the p-median, p-center and Unca-
pacitated Facility Location problems. The first proce-
dure proposed in this paper is based on a genetic algo-
rithm developed by Moreno Vega [MV96] for p-median
and p-center problems. Additionally, a second heuristic
approach based on the Variable Neighborhood Search
metaheuristic (VNS) proposed by Hansen & Mladenovic
[HM97] for the p-median problem is described. An
extensive numerical study is presented to show the effi-
ciency of both heuristics and compare them.
Keywords: genetic algorithms, variable neighborhood
search, discrete facility location

(31 pages, 2003)

47. N. Boland, P. Dominguez-Marin, S. Nickel,
J. Puerto

Exact Procedures for Solving the Discrete
Ordered Median Problem

The Discrete Ordered Median Problem (DOMP) gener-
alizes classical discrete location problems, such as the
N-median, N-center and Uncapacitated Facility Loca-
tion problems. It was introduced by Nickel [16], who
formulated it as both a nonlinear and a linear integer
program. We propose an alternative integer linear
programming formulation for the DOMP, discuss rela-
tionships between both integer linear programming
formulations, and show how properties of optimal
solutions can be used to strengthen these formulations.
Moreover, we present a specific branch and bound
procedure to solve the DOMP more efficiently. We test
the integer linear programming formulations and this
branch and bound method computationally on ran-
domly generated test problems.

Keywords: discrete location, Integer programming
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48. S. Feldmann, P. Lang
Padé-like reduction of stable discrete linear
systems preserving their stability

A new stability preserving model reduction algorithm
for discrete linear SISO-systems based on their impulse
response is proposed. Similar to the Padé approxima-
tion, an equation system for the Markov parameters
involving the Hankel matrix is considered, that here
however is chosen to be of very high dimension.
Although this equation system therefore in general
cannot be solved exactly, it is proved that the approxi-

mate solution, computed via the Moore-Penrose
inverse, gives rise to a stability preserving reduction
scheme, a property that cannot be guaranteed for the
Padé approach. Furthermore, the proposed algorithm
is compared to another stability preserving reduction
approach, namely the balanced truncation method,
showing comparable performance of the reduced sys-
tems. The balanced truncation method however starts
from a state space description of the systems and in
general is expected to be more computational demand-
ing.

Keywords: Discrete linear systems, model reduction,
stability, Hankel matrix, Stein equation
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49. J. Kallrath, S. Nickel

A Polynomial Case of the Batch Presorting
Problem

This paper presents new theoretical results for a special
case of the batch presorting problem (BPSP). We will
show tht this case can be solved in polynomial time.
Offline and online algorithms are presented for solving
the BPSP. Competetive analysis is used for comparing
the algorithms.

Keywords: batch presorting problem, online optimi-
zation, competetive analysis, polynomial algorithms,
logistics

(17 pages, 2003)

50. T. Hanne, H. L. Trinkaus
knowCube for MCDM -

Visual and Interactive Support for
Multicriteria Decision Making

In this paper, we present a novel multicriteria deci-
sion support system (MCDSS), called knowCube, con-
sisting of components for knowledge organization,
generation, and navigation. Knowledge organization
rests upon a database for managing qualitative and
quantitative criteria, together with add-on informa-
tion. Knowledge generation serves filling the database
via e.g. identification, optimization, classification or
simulation. For “finding needles in haycocks”, the
knowledge navigation component supports graphi-
cal database retrieval and interactive, goal-oriented
problem solving. Navigation “helpers” are, for instance,
cascading criteria aggregations, modifiable metrics,
ergonomic interfaces, and customizable visualizations.
Examples from real-life projects, e.g. in industrial engi-
neering and in the life sciences, illustrate the applica-
tion of our MCDSS.

Key words: Multicriteria decision making, knowledge
management, decision support systems, visual inter-
faces, interactive navigation, real-life applications.
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51. O. lliev, V. Laptev

On Numerical Simulation of Flow Through
Oil Filters

This paper concerns numerical simulation of flow
through oil filters. Oil filters consist of filter housing
(filter box), and a porous filtering medium, which com-
pletely separates the inlet from the outlet. We discuss
mathematical models, describing coupled flows in the
pure liquid subregions and in the porous filter media,
as well as interface conditions between them. Fur-
ther, we reformulate the problem in fictitious regions
method manner, and discuss peculiarities of the numer-
ical algorithm in solving the coupled system. Next, we
show numerical results, validating the model and the



algorithm. Finally, we present results from simulation of
3-D oil flow through a real car filter.

Keywords: oil filters, coupled flow in plain and porous
media, Navier-Stokes, Brinkman, numerical simulation
(8 pages, 2003)

52. W. Dorfler, O. lliev, D. Stoyanov, D. Vassileva

On a Multigrid Adaptive Refinement Solver
for Saturated Non-Newtonian Flow in
Porous Media

A multigrid adaptive refinement algorithm for non-
Newtonian flow in porous media is presented. The sat-
urated flow of a non-Newtonian fluid is described by
the continuity equation and the generalized Darcy law.
The resulting second order nonlinear elliptic equation
is discretized by a finite volume method on a cell-cen-
tered grid. A nonlinear full-multigrid, full-approxima-
tion-storage algorithm is implemented. As a smoother,
a single grid solver based on Picard linearization and
Gauss-Seidel relaxation is used. Further, a local refine-
ment multigrid algorithm on a composite grid is devel-
oped. A residual based error indicator is used in the
adaptive refinement criterion. A special implementation
approach is used, which allows us to perform unstruc-
tured local refinement in conjunction with the finite
volume discretization. Several results from numerical
experiments are presented in order to examine the per-
formance of the solver.

Keywords: Nonlinear multigrid, adaptive refinement,
non-Newtonian flow in porous media

(17 pages, 2003)

53. S. Kruse

On the Pricing of Forward Starting Options
under Stochastic Volatility

We consider the problem of pricing European forward
starting options in the presence of stochastic volatility.
By performing a change of measure using the asset
price at the time of strike determination as a numeraire,
we derive a closed-form solution based on Heston's
model of stochastic volatility.

Keywords: Option pricing, forward starting options,
Heston model, stochastic volatility, cliquet options

(11 pages, 2003)

54. O. lliev, D. Stoyanov

Multigrid — adaptive local refinement solver
for incompressible flows

A non-linear multigrid solver for incompressible Navier-
Stokes equations, exploiting finite volume discretization
of the equations, is extended by adaptive local refine-
ment. The multigrid is the outer iterative cycle, while

the SIMPLE algorithm is used as a smoothing procedure.

Error indicators are used to define the refinement sub-
domain. A special implementation approach is used,
which allows to perform unstructured local refinement
in conjunction with the finite volume discretization.
The multigrid - adaptive local refinement algorithm is
tested on 2D Poisson equation and further is applied to
a lid-driven flows in a cavity (2D and 3D case), compar-
ing the results with bench-mark data. The software
design principles of the solver are also discussed.
Keywords: Navier-Stokes equations, incompress-

ible flow, projection-type splitting, SIMPLE, multigrid
methods, adaptive local refinement, lid-driven flow in
a cavity

(37 pages, 2003)

55. V. Starikovicius

The multiphase flow and heat transfer in
porous media

In first part of this work, summaries of traditional
Multiphase Flow Model and more recent Multiphase
Mixture Model are presented. Attention is being paid
to attempts include various heterogeneous aspects into
models. In second part, MMM based differential model
for two-phase immiscible flow in porous media is con-
sidered. A numerical scheme based on the sequential
solution procedure and control volume based finite dif-
ference schemes for the pressure and saturation-con-
servation equations is developed. A computer simulator
is built, which exploits object-oriented programming
techniques. Numerical result for several test problems
are reported.

Keywords: Two-phase flow in porous media, various
formulations, global pressure, multiphase mixture
model, numerical simulation

(30 pages, 2003)

56. P. Lang, A. Sarishvili, A. Wirsen

Blocked neural networks for knowledge
extraction in the software development
process

One of the main goals of an organization develop-

ing software is to increase the quality of the software
while at the same time to decrease the costs and the
duration of the development process. To achieve this,
various decisions e.ecting this goal before and dur-
ing the development process have to be made by the
managers. One appropriate tool for decision support
are simulation models of the software life cycle, which
also help to understand the dynamics of the software
development process. Building up a simulation model
requires a mathematical description of the interactions
between di.erent objects involved in the development
process. Based on experimental data, techniques from
the .eld of knowledge discovery can be used to quan-
tify these interactions and to generate new process
knowledge based on the analysis of the determined
relationships. In this paper blocked neuronal networks
and related relevance measures will be presented as
an appropriate tool for quanti.cation and validation

of qualitatively known dependencies in the software
development process.

Keywords: Blocked Neural Networks, Nonlinear Regres-
sion, Knowledge Extraction, Code Inspection
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57. H. Knaf, P. Lang, S. Zeiser
Diagnosis aiding in Regulation
Thermography using Fuzzy Logic

The objective of the present article is to give an over-
view of an application of Fuzzy Logic in Regulation
Thermography, a method of medical diagnosis support.
An introduction to this method of the complementary
medical science based on temperature measurements
- so-called thermograms — is provided. The process of
modelling the physician’s thermogram evaluation rules
using the calculus of Fuzzy Logic is explained.
Keywords: fuzzy logic,knowledge representation,
expert system

(22 pages, 2003)

58. M.T. Melo, S. Nickel, F. Saldanha da Gama
Largescale models for dynamic multi-
commodity capacitated facility location

In this paper we focus on the strategic design of supply
chain networks. We propose a mathematical modeling
framework that captures many practical aspects of net-
work design problems simultaneously but which have
not received adequate attention in the literature. The
aspects considered include: dynamic planning horizon,
generic supply chain network structure, external supply
of materials, inventory opportunities for goods, distri-
bution of commodities, facility configuration, availabil-
ity of capital for investments, and storage limitations.
Moreover, network configuration decisions concern-
ing the gradual relocation of facilities over the plan-
ning horizon are considered. To cope with fluctuating
demands, capacity expansion and reduction scenarios
are also analyzed as well as modular capacity shifts.
The relation of the proposed modeling framework with
existing models is discussed. For problems of reason-
able size we report on our computational experience
with standard mathematical programming software. In
particular, useful insights on the impact of various fac-
tors on network design decisions are provided.
Keywords: supply chain management, strategic
planning, dynamic location, modeling

(40 pages, 2003)

59. J. Orlik

Homogenization for contact problems with
periodically rough surfaces

We consider the contact of two elastic bodies with
rough surfaces at the interface. The size of the micro-
peaks and valleys is very small compared with the
macrosize of the bodies’ domains. This makes the
direct application of the FEM for the calculation of the
contact problem prohibitively costly. A method is devel-
oped that allows deriving a macrocontact condition

on the interface. The method involves the twoscale
asymptotic homogenization procedure that takes into
account the microgeometry of the interface layer and
the stiffnesses of materials of both domains. The mac-
rocontact condition can then be used in a FEM model
for the contact problem on the macrolevel. The aver-
aged contact stiffness obtained allows the replacement
of the interface layer in the macromodel by the macro-
contact condition.

Keywords: asymptotic homogenization, contact prob-
lems
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60. A. Scherrer, K.-H. Kufer, M. Monz, F. Alonso,
T. Bortfeld

IMRT planning on adaptive volume struc-

tures — a significant advance of computa-

tional complexity

In intensity-modulated radiotherapy (IMRT) planning
the oncologist faces the challenging task of finding a
treatment plan that he considers to be an ideal com-
promise of the inherently contradictive goals of deliver-
ing a sufficiently high dose to the target while widely
sparing critical structures. The search for this a priori
unknown compromise typically requires the computa-
tion of several plans, i.e. the solution of several optimi-
zation problems. This accumulates to a high computa-



tional expense due to the large scale of these problems
- a consequence of the discrete problem formulation.
This paper presents the adaptive clustering method as a
new algorithmic concept to overcome these difficulties.
The computations are performed on an individually
adapted structure of voxel clusters rather than on the
original voxels leading to a decisively reduced computa-
tional complexity as numerical examples on real clinical
data demonstrate. In contrast to many other similar
concepts, the typical trade-off between a reduction in
computational complexity and a loss in exactness can
be avoided: the adaptive clustering method produces
the optimum of the original problem. This flexible
method can be applied to both single- and multi-crite-
ria optimization methods based on most of the convex
evaluation functions used in practice.

Keywords: Intensity-modulated radiation therapy
(IMRT), inverse treatment planning, adaptive volume
structures, hierarchical clustering, local refinement,
adaptive clustering, convex programming, mesh gen-
eration, multi-grid methods

(24 pages, 2004)

61. D. Kehrwald

Parallel lattice Boltzmann simulation
of complex flows

After a short introduction to the basic ideas of lat-
tice Boltzmann methods and a brief description of

a modern parallel computer, it is shown how lattice
Boltzmann schemes are successfully applied for simu-
lating fluid flow in microstructures and calculating
material properties of porous media. It is explained
how lattice Boltzmann schemes compute the gradient
of the velocity field without numerical differentia-
tion. This feature is then utilised for the simulation of
pseudo-plastic fluids, and numerical results are pre-
sented for a simple benchmark problem as well as for
the simulation of liquid composite moulding.
Keywords: Lattice Boltzmann methods, parallel com-
puting, microstructure simulation, virtual material
design, pseudo-plastic fluids, liquid composite mould-
ing

(12 pages, 2004)

62. O. lliev, J. Linn, M. Moog, D. Niedziela,
V. Starikovicius

On the Performance of Certain Iterative
Solvers for Coupled Systems Arising in
Discretization of Non-Newtonian Flow
Equations

Iterative solution of large scale systems arising after
discretization and linearization of the unsteady non-
Newtonian Navier-Stokes equations is studied. cross
WLF model is used to account for the non-Newtonian
behavior of the fluid. Finite volume method is used to
discretize the governing system of PDEs. Viscosity is
treated explicitely (e.g., it is taken from the previous
time step), while other terms are treated implicitly. Dif-
ferent preconditioners (block—diagonal, block-trian-
gular, relaxed incomplete LU factorization, etc.) are
used in conjunction with advanced iterative methods,
namely, BiCGStab, CGS, GMRES. The action of the pre-
conditioner in fact requires inverting different blocks.
For this purpose, in addition to preconditioned BiC-
GStab, CGS, GMRES, we use also algebraic multigrid
method (AMG). The performance of the iterative solv-
ers is studied with respect to the number of unknowns,
characteristic velocity in the basic flow, time step,
deviation from Newtonian behavior, etc. Results from
numerical experiments are presented and discussed.

Keywords: Performance of iterative solvers, Precondi-
tioners, Non-Newtonian flow
(17 pages, 2004)

63. R. Ciegis, O. lliev, S. Rief, K. Steiner
On Modelling and Simulation of Different
Regimes for Liquid Polymer Moulding

In this paper we consider numerical algorithms for
solving a system of nonlinear PDEs arising in modeling
of liquid polymer injection. We investigate the par-
ticular case when a porous preform is located within
the mould, so that the liquid polymer flows through a
porous medium during the filling stage. The nonlinear-
ity of the governing system of PDEs is due to the non-
Newtonian behavior of the polymer, as well as due to
the moving free boundary. The latter is related to the
penetration front and a Stefan type problem is formu-
lated to account for it. A finite-volume method is used
to approximate the given differential problem. Results
of numerical experiments are presented.

We also solve an inverse problem and present algo-
rithms for the determination of the absolute preform
permeability coefficient in the case when the velocity
of the penetration front is known from measurements.
In both cases (direct and inverse problems) we empha-
size on the specifics related to the non-Newtonian
behavior of the polymer. For completeness, we discuss
also the Newtonian case. Results of some experimental
measurements are presented and discussed.
Keywords: Liquid Polymer Moulding, Modelling, Simu-
lation, Infiltration, Front Propagation, non-Newtonian
flow in porous media

(43 pages, 2004)
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