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In this paper we present an interpreter which allows to support the validation of conceptual

models in early stages of the development. We compare hypermedia and expert system

approaches to knowledge processing and show how an integrated approach eases the creation

of expert systems. Our knowledge engineering tool CoMo-Kit allows a “smooth” transition

from initial protocols via a semi-formal specification based on a typed hypertext up to an

running expert system. The interpreter uses the intermediate hypertext representation for the

interactive solution of problems. Thereby, tasks are distributed to agents via an local area

network. This means that the specification of an expert system can directly be used to solve

real world problems. If there exist formal (operational) specifications for subtasks then these

are delegated to computers. Therefore, our approach allows to specify and validate distributed,

cooperative systems where some subtasks are solved by humans and other subtasks are solved

automatically by computers.

1.0  Introduction and Overview

To evaluate software Boehm [7] distinguishes two goals:

Verification: Does the program fulfil the specified requirements?

Validation: Does the program solve the problem of the customer?

This paper deals with aspects of the second point. We present an interpreter which uses a

semi-formal specification in cooperation with human agents to solve real world problems.

Therefore, our approach supports the validation of a knowledge-based system in an early

development stage. The semi-formal specification is the basis for further development

steps.

Rapid prototyping supports the validation of software systems and was the methodology

underlying the development of first generation expert systems. The resulting systems often

were unmaintainable. Therefore, model-based approaches, e. g. KADS [9], were devel-

oped. The main difference to rapid prototyping is that in KADS much effort is focused on

1 The work reported here was partially funded by the Ministerium für Wirtschaft und Verkehr of Rhein-
land-Pfalz within the project “Integration von Hypermedia und Expertensystemen”.



the analysis of the problem domain and the specification of the system. The specification is

the base for the implementation. In KADS the specification is calledConceptual Model.

The Conceptual Model consists of the Model of Cooperation and the Model of Expertise.

A drawback of model-based knowledge acquisition is that often users cannot understand

and validate (natural language) specifications. Reasons for this are the ambiguity of the

natural language and the complexity of the specification. To overcome the ambiguity prob-

lem several authors ([1], [25], [26], [24]) proposed formal and operational specification

languages for the Model of Expertise. Our approach follows a different line: We developed

an interpreter which uses a semi-formal specification in cooperation with the users. Using

the interpreter we are able to validate the Model of Expertiseand the Model of Coopera-

tion.

Our approach is based on a tight integration of hypermedia and expert system technology

which is a topic of undergoing research ([5], [6]). Both technologies allow the manage-

ment and efficient access on knowledge with the help of computers.

Atomic knowledge entities (nodes) in hypermedia systems (cf. [12] or [11]) are typically

represented in a format which is not understandable for computers (e. g. video sequences,

pictures, audio signals, natural language text). The stored knowledge may be interpreted

by the human user depending on the context. Therefore, humans are able to use the knowl-

edge to solve real world problems. To define a connection between two nodes links are

used. A user can follow these links to get further information (associative access).

In hypermedia systems, the search for knowledge needed for the problem solving process

is controlled by the user2. In table 1 we compare in different dimensions the strong and

weak points of hypermedia and expert system technology. The assessments are only the

edges of a continuum.

2 “guided tours” are an exception to the description given above because there the search is (partially) con-
trolled by the system.



.

The questions which come up are: What can the approaches learn from each other? How

can the approaches be integrated that the advantages are adopted and the weak points are

pushed back? First answers are described within this paper.

The second chapter contains an overview how we structure the knowledge for a new appli-

cation. The resulting hypertext is the basis for our distributed interpreter which is

described in the third chapter. Chapter four discusses how a “smooth” development proc-

ess can be reached and how the progress can be measured. In chapter five we compare our

approach with the KADS methodology which was a basis of our research. Last, we sum-

marise our results, describe the state of our implementation and give an overview on ongo-

ing work.

2.0  Structuring the knowledge

In section 2.1 we introduce the CoMo-Kit3 system. CoMo-Kit supports the development

of expert systems in the sense of a computer-aided knowledge engineering tool. Section

2.2 describes how an intermediate representation is developed with CoMo-Kit starting

from initial data.

2.1  CoMo-Kit: Conceptual Model Construction Kit

CoMo-Kit supports teams of experts and knowledge engineers in the development of con-

ceptual models. Further, CoMo-Kit allows to define which user is able to solve a task (task

distribution, cf. [13]).

3 CoMo-Kit was developed in cooperation with Susanne Neubert, University of Karlsruhe.

Dimension Hypermedia Expert System

Degree of the for-
malisation of the
knowledge

Knowledge is only interpretable by
humans

Knowledge is formalized and therefore
usable by a computer

Initiative in the
problem solving
process

The user controls the problem solving
process which means that he has to ful-
fil high requirements

The system controls the problem solv-
ing process which means that the user
has to fulfil lower requirements

Development effort Medium development effort: Formali-
sation of the knowledge not necessary;
It is not necessary to formalize the
background knowledge and common
sense of the user

High development effort: The result of
the knowledge acquisition must be a
complete decontextualisation of the
knowledge because inferences can only
be made based on formalized knowl-
edge

User interface Communication with the user via a
multimedia interface; the interface is a
major research issue

Multimedia user interface only a “Add-
On”

Table 1:  Comparison of Hypermedia and Expert System Technology



CoMo-Kit is based on the HyperCAKE system [16] und ideas of [18]. HyperCAKE uses

an extended hypertext abstract machine [11] for the management of multimedia informa-

tion. HyperCAKE makes it possible to define views on a global hypertext. Hypermedia

networks are stored in an object-oriented database and accessible from all workstations in

a local area network. CoMo-Kit uses the HyperCAKE system for the management ofall

data which is used within the knowledge engineering process.

To specify an knowledge-based system we use the following terminology4:

• Protocol: Protocols are the initial data of the knowledge acquisition process. A protocol
contains unstructured information which were elicitated from domain experts or other
sources of knowledge. Currently, CoMo-Kit supports texts, bitmaps, audio and video.

• Concept: Concepts describe the data which is needed for the problem solving process in
textual, natural language form. We distinguish, as it is normal in object-oriented design,
between class descriptions and instance descriptions. Concept classes are organised in a
IS-A-Hierarchy5. Each class description includes a set of attributes. For each attribute
its value type can be defined.

• Task: A task describes in natural language what has to be done to solve a given prob-
lem. For each task the input6 and output data7 are specified by defining links to con-
cepts. Each task may consist of several subtasks which are organised in a dataflow
graph. This means that tasks built up a hierarchy. For each task a set of agents is defined
which are potentially able to “do it”.

• Agent: Agents are identified by their name and may belong to several groups. Agents
may be humans or computers. Agents handle tasks.

For concepts and tasks it is possible to define operational annotations (program frag-

ments). This feature is discussed in “Formalizing the specification”.

2.2  Using CoMo-Kit

Starting point for the conceptual modelling is the protocol of a discussion with an expert

who describes the problem at hand in natural language. Figure 1 shows on the left side a

list of all protocols of a domain and a protocol editor on the right.The knowledge engineer8

selects a part of the text which describes a task and chooses the menu entry “create task” to

4 We only give an abstract description of the classes which are relevant for this paper.

5 CoMo-Kit supports further relations between concepts PART-Of, CAUSES etc.) which are not described
here.

6 Inputs of task may be concept classes or instances. If instances are used in the specification, they are not
changed at runtime and represent static knowledge e. g. laws. The input of a task is everything which is
needed to solve the problem.

7 Output of tasks are always concept instances because they are modified as a result of the task.

8 In one example (Baunutzungsverordnung = rules for building houses) of CoMo-Kit the modelling of the
domain is partially done by city planners, which means by the experts. We think that this may be trans-
ferred to other domains because there is no need for learning a programming language.



create a new task node. Correspondingly, concepts and agents can be created. We imple-

mented graphical interfaces to define the membership of an agent to a group and the con-

cept class hierarchies.

Figure 2 shows a task hierarchy. Additionally, one can see the task which was created in

Figure 1. The text which was selected in the protocol is copied into the new node. The

knowledge engineer can edit the text to specify the task more exactly. The inner structure

of a task is specified as a dataflow diagram (cf. Figure 3). Concepts are shown as rectan-

gles whereas ellipses represent tasks. The hierarchy of data flow diagrams is the base of

our interpreter which is described in the following chapter.

Figure 1:  The list of protocols and a protocol editor



Figure 2:  The task hierarchy and a task description

Figure 3:  A task structure



3.0  The interpreter for hierarchical task structures

In [13], advantages of a “Wizard of Oz”-experiment in evaluating the cooperation between

humans and computers are explained. Guided by the interpreter which is presented in this

section, users are enabled to validate directly a task which has just been decomposed. So, a

(slightly modified) “Wizard of Oz”-experiment is carried out by this interpretation. Direct

questions to the expert are made impossible in order to find out whether the task is suffi-

ciently described to be executed by the user or not. For him, the only data available is the

task´s description, it´s inputs and his own knowledge.

Our semi-formal9 hypertext structuring of the domain leads to usable results: Complex

tasks are split to several subtasks which can - under guidance of the interpreter - be exe-

cuted by (lower qualified) users which can access all task-relevant data. Non-relevant data

is hidden.

A survey of distributed task-execution is given in Figure 4. A (privileged) user starts a task

by delegating it to one ore more users and by unlocking it. Doing this, he starts a sched-

uler-process. The scheduler generates instances of all data10 which will be modified during

the interpretation run. Further, the scheduler will only allow to interpret a task if all input

data are accessible (generated by the interpretation of previous tasks). So, if a certain user

9 Semi-formal, here: The network´s topology is formal (Each kind of node or link has a certain meaning for
problem solving determined by the interpreter). Nevertheless, a node´s contents can only be interpreted
by a human user.

10 A task can be multiply interpreted several times in parallel (e.g. choosing insurances for different per-
sons).

Figure 4:  The interpreter´s process-structure
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wants to work on a task, he is free to choose it from a whole pool of tasks delegated to him.

These tasks can be divided in two groups: complex tasks and atomic tasks.

Complex tasks consist of several subtasks. They are represented as inner nodes of the tree

shown in Figure 2. If a user works on a complex task, he becomes some kind of a manager.

In our case, a manager has to

• delegate subtasks to other users and

• supervise their execution

Doing this, he is assisted by the system. Tasks which can only be interpreted by a single

person (or by a computer program) are transfered directly to their executor. Additionally,

the state of task execution can be displayed, for instance in order to re-delegate it. A con-

trol window for usage by the manager is shown in Figure 5.

This window consists or four lists, containing:

• uninterpreted tasks (upper left)

• delegated tasks waiting to be executed (bottom left)

• tasks which are just being interpreted (bottom right)

• tasks whose interpretation has been finished (upper right).

An information space is placed below these lists in order to display textual information

about each task´s state of execution.

The window title displays the task the manager currently works on (here: analysis). In the

upper left subtasks are shown which are not yet distributed among the agents. They will be

delegated to one or more users by selecting them from the dialogue box. After confirming

Figure 5:  Distribution of tasks among agents



the selection, the subtask appears in the bottom left list. The bottom right list consists of

tasks which are just in work by an agent. The agent´s name is added to the task name here.

If the execution of this subtask was successful, it moves to the list above, which gives a

survey over all executed tasks. So, a subtask moves counterclockwise through the four

lists. The manager is enabled to control the execution process and eventually intervene in

case of stagnation.

Atomic tasks are solved using the window shown in Figure 6. To the left, dynamically gen-

erated buttons are displayed. Each stands for task-relevant11 data accessible by pressing it.

The central part of the window holds a description of the task itself. Basing on this, the

user is enabled to edit the results in the editor12 on the left. Pressing the “Propagate”-but-

ton, editings are confirmed and propagated to the scheduler. So, tasks which follow this

task in the dataflow diagram and which are relying on it´s outputs can be started next.

There are two features of the described interpreter which are of special interest:

1. Knowledge needn’t be formalized completely. We represent the knowledge in a hyper-

media network. Basing on the operational semantics of nodes and links, the interpreter

uses the network´s structure to support the problem solving process. Interpretation of

node-contents is performed by the user. This only is a gradual difference to interactive

expert systems, because each question directed to the user will be interpreted by the

11 The relevance of information for executing a certain task has been determined while structuring the
domain: Inputs of a task are relevant for it´s solution.

12 If the task produces more than one result, an editor is shown for each output.

Figure 6:  Editor for execution of an atomic task



user. Following this thought implies thatthere is no exactly defined border between

hypertexts and expert-systems. Therefore, a “smooth” transition between both kinds of

knowledge representation is achievable.

2. Problem solving is distributed on several agents (humans or computers). So, the inter-

preter supports validation of the Model of Cooperation.

4.0  Formalizing the specification

The interpreter for task structures guides the user in interactive problem solving. It con-

trols the overall process. Atomic tasks are solved by a human who uses the information

stored in the hypertext.

If one transfers Searl’s Chinese Room Experiment into our context one can see that the

described interpreter is only partially able to “translate chinese”. For sentences which are

not stored in the lexicon the interpreter has to ask an external human agent.13 We call an

inference engine which delegates tasks which he does not understand to external agents

semi-formal. Different semi-formal mechanisms can be partially ordered by the number of

tasks which can be solved automatically without using an external agent. This ordering

also gives us a mean to measure the development progress. A goal of the development of a

expert system is to descend the partial ordering as deep as possible. Then the inference

mechanism solves many problems by itself and delegates only a few to a human.

Some steps in the development process consist of the formalization of atomic tasks. If

there exists a formal specification for a task it will be solved by an agent “computer” which

easily may be integrated in the schema described above. To support the maintenance of the

system the formalized knowledge should preserve the structure of the specification (“struc-

ture preserving design”). For this reason we use a formal specification language which is

directed to conceptual modelling. CoMo-Kit supports two of these languages: One is

based on Smalltalk-80 and will be described in the next paragraphs. The second is KARL

[1] and was integrated because of our cooperation with the group of Prof. Studer, univer-

sity of Karlsruhe. CoMo-Kit allows to define formal annotations for concepts and tasks in

these two languages.

The step from a semi-formal specification to operational programs is divided into two

parts. First, the knowledge engineer defines the type of a task. This step is based on the

idea of generic tasks which is a key concept of several knowledge engineering

13 This analogy goes back to Prof. Richter.



approaches.14 CoMo-Kit supports a typology of knowledge sources which helps the devel-

opment process in different ways:

• The type of a task (e. g. “select”, “select-best”, “match” etc.) gives hints for the design
and the implementation of the task.

• The type of a task allows to infer what information is needed to solve the problem.15

Second, the task description must be translated by the knowledge engineer into a formal

language. For this purpose we use object-oriented technology. For each task type we

defined a corresponding formal equivalent (cf. Figure 7):

The menu entry “edit ST specification” (cf. Figure 2) creates a node which stores the for-

mal annotation of a task. The class of the node depends on the type of the task. The param-

eters of the formal task description are automatically generated as specified and cannot be

edited by the user. The user has to fill the task body with Smalltalk-80 code (cf. Figure 8).

CoMo-Kit supports a smooth transition from semi-formal to formal specifications: The

user is not forced to formalize the whole task hierarchy but is allowed to choose atomic

14 e. g. “Generic Tasks” by Chandrasekaran and the typology of primitive knowledge sources in KADS.

15 This is a base of the Protege-System (cf. [18]).

...... ......

Informal Formal

Figure 7:  Corresponding class hierarchies for formal and informal task descriptions

Figure 8:  The edtitor for formal task descriptions



tasks which are annotated with Smalltalk-80 code. The replacement of an atomic task by

program code is abrupt. Nevertheless, every atomic task is only a very small part of the

overall system specification. Therefore, the development of the whole system can be con-

sidered to be smooth.

To summarize the ideas of our operational specification language:

• Based on the name of the task we automatically generate the name of the formal anno-
tation.

• The specified inputs and outputs of a task determine the names of the formal parameters
of a task (see the upper part in Figure 8).

• The body of the task has to be defined by the knowledge engineer and consists of a list
of Smalltalk-80 commands.

• The formal parameters can be used inside the body. The interpreter binds the parame-
ters with the appropriate values at runtime.

• If the type of the task determines the task body CoMo-Kit asks for the needed knowl-
edge. For example, a select-task need only the conditionwhat objects must be selected.
The knowledge engineer is not forced to determinehow the selection is done.

• The interpreter checks at runtime if the output of the task is of the specified concept
class.

Putting it all together CoMo-Kit supports a smooth development process starting from pro-

tocols via a hypertext-based intermediate representation to a operational implementation

of distributed knowledge-based systems. The knowledge engineer is not forced to imple-

ment the knowledge completely but the implementation of the knowledge can be done

partially. This means that in the course of the development process it can be decided which

subtasks should be implemented and which will be carried out by human agents. The deci-

sion is determined by the cost of the implementation16 and the expected benefits. The

financial risk of a wrong decision is reduced because the development follows the Spiral

Model (cf. [8]).

5.0  Comparison with the KADS methodology

Our approach is basing on the KADS methodology which - especially in Europe - comes

more and more to the foreground. A more detailed description of KADS can be, for

instance, found in: [22], [28], [29] or [9].

In KADS, the description of a knowledge-based system is split up into several models:

Organizational Model, Application Model, Task Model, Conceptual Model and Design

Model.

16 Based on the specification the costs can be estimated more precisely compared to the project start.



The result of a domain analysis is named Conceptual Model. This Conceptual Model con-

sists of an user-interface description (Model of Cooperation) and a knowledge model

(Model of Expertise). The Model of Expertise deals with four kinds of knowledge, each

associated to a different layers. These are: domain-, inference-, task- and strategy-level.

Basing on KADS, our approach differs from KADS itself by several items:

• Hierar chical Inference Structures: In our approach, inference structures do not only con-
sist of primitive inferences (knowledge sources) as KADS-structures do. Using hierar-
chical dataflow charts, they may be described from different levels of abstraction. This
approach to modelling includes aspects of the Task Model as well as aspects of the
inference layer. Separating aspects of controlling from aspects of inference is unnatural
in our eyes, because a priori, it may not be obvious whether a task is primitive or com-
plex17. Moreover, hierarchical inference structures are necessary for a modular struc-
turing of the specification and a subsequent implementation.

• Tool Development: Developer support by a knowledge acquisition tool is an inherent
part of our approach. It depends on tools, what is possible to be produced; and method-
ologies without tools are not applicable in practice18. This becomes obvious when look-
ing at an analogy in mechanical engineering: It makes a fundamental difference what is
being used in production: a CNC-machine-tool or a flint axe. So, developers of a meth-
odology will automatically consider which tools are available. If a pencil and a piece of
paper are the only resources for working out the specification, an “optimal” method will
surely be different from a method which is developed to be executed on a computer.
Anyway, tool development in KADS seems to be considered less important (in spite of
Shelley´s development [2]).

• Incr emental Development: Our approach uses hypermedia-networks as an intermediate
representation and uses them directly for problem-solving. This supports an incremen-
tal development of knowledge-based systems according to Boehm´s Spiral Model.

• User Interface: Generating multi-media user interfaces is relatively easy, since our sys-
tem is basing on an object-oriented hypermedia-system. Rapid development of user
interfaces is supported, too.

• Knowledge Repository: All information used in the knowledge engineering process is
held and handled in a global data base (knowledge repository). The knowledge reposi-
tory is the analogous to a data dictionary in conventional software engineering tools.

• Strategy Layer: The Strategy Layer is meant to hold meta-knowledge about selection
and combination of tasks. It hasn’t been specified clearly till now, hence it is not sup-
ported by our tool.

17 Describing Case-Based Reasoning as a KADS-Model (cp. [3]), one discovers that the knowledge source
“select best case” will be split up to a complex structure as soon as the specification becomes precise
enough for implementation. This effect will be found in many of the models described in [4].

18 Vice versa, a tool has to be based on a method.



• Interactive Simulation: In cooperation with the users, the described interpreter proc-
esses a semi-formal specification of the knowledge-based system; that means: valida-
tion of the knowledge-based system becomes possible without a previous formalisation
of the domain. So, problems can be detected in early stages of development and costs
can be reduced.

• Validating the Conceptual Model: In contrast to formal specification languages (KARL,
ML2, ForKADS, MoMo), our approach supports validation of Conceptual Models, not
only of Models of Expertise; that means assignment of tasks to agents can be checked
with the described interpreter, too.

6.0  Summary and ongoing work

In this paper, we demonstrated how knowledge-acquisition and -structuring can be sup-

ported by integrating hypermedia- and expert-system-techniques. We described an inter-

preter which makes it possible to validate a semi-formal specification of a knowledge-

based system. So, in early stages of development it can be recognized whether the system

solves the given problem or not. A “smooth” development process is provided by the

(incremental) replacement of tasks by operational specification.

HyperCAKE and CoMo-Kit are both completely implemented and linked with the object-

oriented data base GemStone from Servio Cooperation. The task-structure interpreter is

implemented as single-user system, multi-user implementation will be finished soon. The

System is implemented in Smalltalk-80, Rel. 4.1 by ParcPlace Systems. So, single-user

versions (without audio- and video-interfaces which depend on the current computer plat-

form) are running on several Unix-workstations (Sun, HP/Apollo, IBM, Dec), 386 PCs

and Apple Macintosh.

HyperCAKE/CoMo-Kit are the basis for the development of several expert-system-shells:

SAFRaN combines a geographical information system (GIS) and an expert system to pro-

vide a knowledge-based interpretation of maps. SAFRaN and an appertaining application

are described in [10], [14] and [15]. HyDi ([23]) supports the development of hyper-

media-based diagnosis systems and was completed in the beginning of 1993.
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