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Introduction

Studying varieties with prescribed properties is one of the fundamental tasks in
algebraic geometry. It was one of the main achievements in the last century to
realize that it is not only necessary to study these varieties for themselves, but also
to consider families of varieties. This means that a “good” space has to be found
parametrizing all varieties with the fixed prescribed properties. Once such a moduli
space has been constructed, then understanding its geometry allows us to answer a
lot of interesting questions.

In this thesis, we consider reduced hypersurfaces W in a smooth, projective variety
V defined over the complex numbers, and we assume that W has at most isolated
singularities. The singular points are considered up to analytical or topological
equivalence, and the equivalence classes are called singularity types. In the case of
topological types we restrict ourselves to singularities, which are either quasihomo-
geneous or of corank less than 2.

Let S1, . . . , Sr be types of isolated singularities, and let H be an ample divisor of V
and d ≥ 0. The space

Vd(S1 + · · ·+ Sr) := {Reduced hypersurfaces W ∈ |dH| with r isolated singular

points z1, . . . , zr of types S1, . . . , Sr as its only singularities}

is a locally closed subspace of the linear system |dH|, and it is called the equisingular
stratum. The fundamental questions concerning this space are:

• Is Vd(S1 + · · · + Sr) non-empty, i.e. does there exist a hypersurface with sin-
gularities of the prescribed types and belonging to the given linear system?

• Is Vd(S1 + · · · + Sr) smooth and what is its dimension? In particular, does
Vd(S1 + · · · + Sr) have the “expected dimension”, i.e. do the singular points
impose independent conditions on hypersurfaces in the given linear system?

• Is Vd(S1 + · · ·+Sr) irreducible and what is its degree in the linear space |dH|?

These questions have attracted the continuous attention of algebraic geometers since
the beginning of the 20th century, where the foundations were laid by Severi, Plücker,
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Segre, Zariski and others. It was realized quite early that all these questions ap-
peared to be rather hard, the last one being the most difficult. In fact the only case
for which a complete answer is known, is the classical case of plane, nodal curves
solved essentially by Severi [Sev21] and completed by Harris [Har85]. Severi showed
that V irr

d (r · A1) is non-empty if and only if

r ≤ (d− 1)(d− 2)

2
,

where V irr
d (r ·A1) is the open subset of Vd(r ·A1) corresponding to irreducible curves.

Furthermore, if V irr
d (r·A1) is non-empty, then it is smooth of the expected dimension

d(d+3)
2
− k and also irreducible.

For other singularities and more general hypersurfaces, examples were found where
the spaces Vd(S1+. . .+Sr) are reducible or non-reduced or singular or have dimension
bigger than the expected one. Note that such pathological behaviour of singular
hypersurfaces has already been observed for plane curves with only nodes and cusps.
Since there are no more complete answers, the problem is to find necessary and
sufficient conditions (in terms of numerical invariants of the singular points and the
linear system) for the “good” properties to hold.

Our approach consists of reformulating the questions above in terms of H1-vanishing
conditions for ideal sheaves of zero-dimensional schemes associated to the singular
points. Developing new techniques for deducing H1-vanishing criteria is then one
of the fundamental tasks in this area. This approach was applied very successfully,
mainly by Greuel, Lossen and Shustin in the study of families of plane curves,
and generalized to some extent by Keilen and Tyomkin to curves on more general
surfaces. In this thesis we study the problem also for hypersurfaces in Pn.

We are particularly interested in “asymptotically proper” conditions, i.e. criteria
where the necessary and sufficient parts are asymptotically of the same order. Let
us explain this more closely by means of the existence problem of hypersurfaces in
Pn with many singularities of a certain fixed type S. A sufficient condition

r · σ(S) ≤ α1 · dm −R(d) , α1 > 0 , R(d) ∈ O(dm−1) , (0.0.1)

for the existence of hypersurfaces in Vd(rS) will be called asymptotically proper if
there exists an absolute constant α2 > α1 and infinitely many pairs (d, r) ∈ N2 for
which Vd(rS) = ∅ but r · σ(S) ≤ α2 · dm.
In fact, if σ(S) = τ(S) then (0.0.1) is asymptotically proper if and only if m = n,
as we shall see later.

Main results

The main results of this thesis deal with the existence and the smoothness prob-
lem. We improve several conditions for the existence of hypersurfaces in Pn with
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prescribed singularities and develop the first asymptotically proper existence the-
orems for higher dimensional hypersurfaces with many singularities. On the other
hand, some of the results are new even in the case of plane curves. Our main tool
for constructing hypersurfaces with prescribed singularities is the so-called patch-
working method (also called Viro’s glueing method) combined with the theory of
zero-dimensional schemes.

For obtaining new conditions for T-smoothness we study the Castelnuovo function
of zero-dimensional schemes on surfaces in P3, which generalizes the theory in the
plane case. This can be applied to derive H1-vanishing theorems for these schemes.

Existence of hypersurfaces in Pn with prescribed singularities

We introduce an invariant of sets of singularity types, which is essentially the leading
coefficient in a sufficient condition for the existence of hypersurfaces in Pn with these
singularities.

Let S be a set of singularity types and denote by τ s(S) the equianalytic or equi-
singular Tjurina number of S ∈ S. Consider the set of all α ≥ 0 such that for all
{S1, . . . , Sr} ⊂ S, the condition

r∑

i=1

kiτ
s(Si) ≤ α · dn +O(dn−1) ,

implies the existence of a non-empty T -smooth component of V n
d (k1S1 + . . .+krSr).

The T-smoothness requirement implies that

0 ≤ α ≤ 1

n!
,

and the existence result is asymptotically proper if α > 0. The supremum of all α
satisfying the property above is denoted by αregn (S).

Let n > 2, and let S = Sa ∪ St where Sa is a set of analytic singularity types of
corank < n and St is a set of topological singularity types of corank ≤ 2. If the
(analytic, respectively topological) Tjurina number τ s(S) is bounded as S varies in
S, then

αregn (S) ≥ αregn−1(S)

n
. (0.0.2)

Hence, asymptotically proper existence results automatically carry over to higher
dimensions, so this result can be seen as a kind of stabilization of the existence
problem. Generalizing a result of [Sh01] we obtain as an immediate consequence
that

αregn (S) ≥ 2

9 · n!
(0.0.3)
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for a set S of (analytical or topological) singularity types of corank ≤ 2 with bounded
Tjurina number. Note that the lower bound (0.0.3) differs from the natural upper
bound αregn (S) ≤ 1/n! only by a constant factor.

For plane curves with only tacnodes and cusps, the sharpest known lower bound of 1
6

was found by J. Roé in [Ro01]. Using our methods we are able to improve this result
substantially and even determine the precise asymptotic factor for hypersurfaces of
arbitrary dimension. If S is a finite set of simple singularity types, then

αregn (S) =
1

n!
. (0.0.4)

This is also an extension of the results of [Sh93], where it was shown for plane curves
with only ordinary nodes and cusps.

We also prove an asymptotically proper existence result for hypersurfaces with quasi-
homogeneous singularities. For fixed a = (a2, . . . , an) ∈ Nn−1, denote by Sa the set
of all analytical types of singularities defined by polynomials of the form

f(x1, . . . , xn) = c1x
k
1 + c2x

a2
2 + . . .+ cnx

an
n ,

with k ∈ N and c1, . . . , cn ∈ C \ {0}. Explicit constructions in combination with a
local patchworking method allows us to deduce

αregn (Sa) ≥
c

2n · n · ln > 0 , (0.0.5)

where l = 1 +
∑n

i=2 ai and c =
∏n

i=2(ai− 1). Note that in Sa the Tjurina number is
not bounded. We can use this result to deduce an asymptotically proper existence
result for hypersurfaces with singularities of modality ≤ 2.

Zero-dimensional schemes on surfaces in P3

We study the behaviour of the Castelnuovo function for zero-dimensional schemes on
a general surface Sn ⊂ P3 of degree n ≥ 4. Then Pic(Sn) = Z, and the Castelnuovo
function of a zero-dimensional scheme X ⊂ Sn is defined by

CX : N→ N , d 7→ h1(IX/Sn
(d− 1))− h1(IX/Sn

(d)) .

We show that the graph of CX has similar properties as for schemes in P2, in particu-
lar, we prove that if H0(IX/Sn

(d)) 6= 0 for some d then starting at least with d+n−1
the function CX is descending. In analogy to the P2 case, we study fixed components
of the linear systems H0(IX(d)) and their influence onto the graph of CX . We prove
that if CX has a “long stair” at d0, i.e.

CX(d0 − 1) < CX(d0) = CX(d0 + 1) > 0 , (0.0.6)

and the linear system H0(IX(d0)) has a fixed component D ∈ |OS(e)|, then

CX∩D(d) = min{CX(d), h0(OC(d))− h0(OC(d− e))} ,
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where C ⊂ S is a generic hyperplane section of S. This is an analogue of the
so-called Davis’ Lemma for P2 [Da86].

In fact, we conjecture that (0.0.6) already implies the existence of the fixed curve D
in H0(IX(d0)). If this conjecture holds, then for any zero-dimensional scheme on S,
there exists a curve D such that the graph of CX∩D has no long stairs, and we can
use this property to derive the same H1-vanishing results as in [Ke03]. However,
since this conjecture has not been proven, we derive a slighter weaker vanishing
result. We show that if X ⊂ S ⊂ P3 is a zero-dimensional scheme contained in the
equianalytic scheme associated to an irreducible curve Cd ∈ |OS(d)|, d ≥ 3, then
h1(IX(d)) = 0 if

γ1(X;C) < (d+ n− 4)2 ,

where γ1(X;C) is a certain invariant introduced in [LoK03]. Furthermore, we com-
pare the Castelnuovo function approach with the application of Bogomolov insta-
bility described in [CS97, Ke03].

Finally, we derive some properties of the Castelnuovo function of zero-dimensional
schemes in P3, and calculate some examples.

Organization of the material

In Chapter 1 we introduce the main objects which we shall study in this thesis, i.e.
hypersurfaces in smooth projective varieties with at most isolated singularities, and
study their deformation theory. We formalize the concept of equisingular families
and recall results concerning their geometry such as dimension and smoothness of
these strata.
The second part of this preliminary chapter deals with the Newton polytope, which
plays a major role in the patchworking method, which is our main tool for construct-
ing hypersurfaces with prescribed singularities.

Chapters 2 and 3 are devoted to the existence problem. We review previously
known existence results and theoretical restrictions. For hypersurfaces in Pn we
formalize the general asymptotic existence problem by introducing the invariant
αregn (S). Furthermore, we describe the patchworking method in detail and discuss
the connections between the existence problem and H1-vanishing. In the third
chapter we present our existence results.

In Chapter 4 we concentrate on H1-vanishing theorems, and study in particular the
Castelnuovo function of zero-dimensional schemes. After reviewing the theory for
schemes in P2, we present our results concerning schemes on general surfaces in P3.
We also review briefly the concept of Bogomolov instability and its relation to the
H1-vanishing problem, and compare this approach to the Castelnuovo function.
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Publications of the results

It should be mentioned that many of the results are the product of the collaboration
with Prof. E. Shustin from Tel Aviv University. Some of the results are published
in [Wes03], some will appear in [SW03]. The results of Chapter 4 will be contained
in a forthcoming paper.
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Unterstützung herzlich danken.



Contents

Introduction i

1 Preliminaries 1

1.1 Notations and general remarks . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Hypersurfaces with isolated singularities . . . . . . . . . . . . . . . . 3

1.2.1 Singularity types and their local deformation theory . . . . . . 3

1.2.2 Equisingular families of hypersurfaces . . . . . . . . . . . . . . 10

1.2.3 Zero-dimensional schemes and H1-vanishing . . . . . . . . . . 12

1.3 Newton polytopes, toric geometry and isolated singular points . . . . 16

1.3.1 Newton polytope and Newton diagram . . . . . . . . . . . . . 16

1.3.2 Toric varieties from convex polytopes . . . . . . . . . . . . . . 19

1.3.3 Singular points and combinatorics of the Newton polytope . . 23

2 Hypersurfaces with prescribed singularities 27

2.1 The asymptotic existence problem . . . . . . . . . . . . . . . . . . . . 27

2.2 Overview of known necessary and sufficient conditions for the existence 32

2.2.1 Restrictions for the existence . . . . . . . . . . . . . . . . . . . 32

2.2.2 Asymptotic proper existence results . . . . . . . . . . . . . . . 34

2.2.3 Obstructed and reducible families of hypersurfaces . . . . . . . 36

2.3 Patchworking of projective varieties . . . . . . . . . . . . . . . . . . . 38

2.3.1 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

2.3.2 The patchworking theorems . . . . . . . . . . . . . . . . . . . 45

2.4 Existence and H1-vanishing . . . . . . . . . . . . . . . . . . . . . . . 51

3 Existence results 55

3.1 Stabilization of the Existence Problem . . . . . . . . . . . . . . . . . 55

3.2 Hypersurfaces in Pn with ordinary multiple points . . . . . . . . . . . 60

3.3 Curves with simple singularities . . . . . . . . . . . . . . . . . . . . . 62

vii



viii CONTENTS

3.3.1 The Aµ case . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

3.3.2 The Dµ case . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

3.3.3 The exceptional cases . . . . . . . . . . . . . . . . . . . . . . . 65

3.3.4 Result . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

3.4 Hypersurfaces with one singularity . . . . . . . . . . . . . . . . . . . 69

3.5 Existence on other projective surfaces . . . . . . . . . . . . . . . . . . 74

3.6 Real curves with many singularities . . . . . . . . . . . . . . . . . . . 75

4 H1-vanishing 79

4.1 Introduction to the problem . . . . . . . . . . . . . . . . . . . . . . . 79

4.2 The Castelnuovo function . . . . . . . . . . . . . . . . . . . . . . . . 83

4.2.1 The Castelnuovo function of zero-dimensional schemes in P2 . 85

4.2.2 The Castelnuovo function of schemes X ⊂ S ⊂ P3 . . . . . . . 88

4.2.3 The Castelnuovo function and branched coverings . . . . . . . 93

4.3 Bogomolov instability of vector bundles . . . . . . . . . . . . . . . . . 93

4.4 A vanishing theorem for X ⊂ S ⊂ P3 . . . . . . . . . . . . . . . . . . 96

4.5 Some remarks about the Castelnuovo function of schemes in P3 . . . 99

A Some general facts 103

A.1 Bertini’s theorem and Cremona transformations . . . . . . . . . . . . 103

A.2 Cohomology of coherent sheaves . . . . . . . . . . . . . . . . . . . . . 104

A.3 Bogomolov instability . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

A.4 Some facts about surfaces in P3 . . . . . . . . . . . . . . . . . . . . . 106

B Some algorithms 107

B.1 Computing h0(IX/Pn(d)) and h1(IX/Pn(d)) . . . . . . . . . . . . . . . 108

B.2 Computing a vector-space basis of I ∩K[x]≤d . . . . . . . . . . . . . 110

B.3 Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

Literature 114

Index 121



Chapter 1

Preliminaries

In this first chapter we introduce notation, define the main objects of interest
and recall known results, which are necessary for the following chapters.

After some notation is fixed, we discuss classifications of isolated hypersurface
singularities and their deformation theory. We study equisingular families of
hypersurfaces and recall results concerning the geometry of these strata.

Then we introduce the Newton polytope, a combinatorial object associated to
polynomials, containing information about the local and global behaviour of
the corresponding hypersurfaces. In this context, the theory of toric varieties
plays a major role, and we recall some facts which are of interest to us.

1.1 Notations and general remarks

Throughout this whole thesis we will use the following conventions. We study re-
duced hypersurfaces (i.e. reduced divisors) W in smooth projective varieties V de-
fined over the complex numbers (unless otherwise stated). We assume in general
that W has at most isolated singularities, and we denote the set of singular points
by Sing(W ). Furthermore we fix an ample divisor H, e.g. a hyperplane section if
V ⊂ PN , and consider hypersurfaces belonging to a linear system |dH| for some
d > 0.

A smooth projective surface is usually denoted by S. If C,D are divisors in S then
we write C.D for their intersection number.

If X is any subscheme of V , then we denote by IX/V (or just by IX) the ideal sheaf
of X in V . The support of X is the set

supp(X) = {z ∈ V | IX,z 6= OV,z} .

1



2 1 Preliminaries

If F is a coherent sheaf on V and W ⊂ V is a divisor, then we write F(W ) for
F ⊗OV

OV (W ).

Let V be a smooth projective variety of dimension n, and let W ⊂ V be a hypersur-
face. Let z ∈ Sing(W ) be an isolated singular point and assume that f ∈ C{x} :=
C{x1, . . . , xn} ∼= OV,z is a local equation for (W, z). We introduce the following
invariants

τ ea(W, z) := τ(W, z) := dimC C{x}/〈f, fx1 , . . . , fxn〉 , fxi
:= ∂f

∂xi
,

µ(W, z) := dimC C{x}/〈fx1, . . . , fxn〉 ,
mult(W, z) := max{m ∈ Z | f ∈ 〈x〉m} ,

corank(W, z) := corank(f) := corank(Hf(x)) ,where Hf is the Hessian of f ,

δ(W, z) := dimC(OW,z/OW,z) ,where OW,z is the normalization of OW,z.

Note that all these numbers are well-defined, i.e. they are finite and independent of
the choice of the local equation f . Furthermore, observe that δ(W, z) = 0 for all
isolated singularities (W, z) if n > 2.

We usually denote by x = (x1, . . . , xn) a coordinate vector, and by ω = (ω1, . . . , ωn)
a vector in Zn, and write xω for the (Laurent-)monomial xω1

1 · · · · · xωn
n of degree

|ω| := ω1 + . . . + ωn. The set (C ∗)n, C∗ = C \ {0}, is called the (n-dimensional)
complex algebraic torus. Obviously, any ω ∈ Zn defines a regular function

(C ∗)n → C , x 7→ xω .

If A ⊂ Rn is a finite set, then Conv(A) denotes the convex hull of A and we write
vol(A) := vol(Conv(A)) for its euclidean volume.

If f ∈ C[x] and U ⊂ Cn is open, then V (f) ⊆ U denotes the hypersurface of U
defined by f ,

V (f) := {x ∈ U | f(x) = 0} .

On some occasions, we are also interested in hypersurfaces defined over the real num-
bers. We denote the real projective space by RPn and call (R ∗)n the (n-dimensional)
real algebraic torus. Furthermore, we denote by Rn

≥0, respectively Rn
+, the positive

(respectively strictly positive) orthant.

Moreover, we would like to mention that even though we restrict ourselves to (sub-
fields of) the complex numbers, the results of this thesis are also valid over any
algebraically closed field of characteristic zero by the Lefschetz principle.
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1.2 Hypersurfaces with isolated singularities

1.2.1 Singularity types and their local deformation theory

In this section, we study the local structure of isolated hypersurface singularities
(W, z). We classify these singularities up to different equivalence relations, and
recall invariants with respect to these classifications.
Moreover, we study equisingular deformations over complex space germs and recall
results concerning infinitesimal equisingular deformations and obstructions for lifting
these infinitesimal deformations to the next order.

Definition 1.2.1. Let (Wi, zi), i = 1, 2, be isolated hypersurface singularities.

(i) The two germs are called analytically equivalent, (W1, z1)
a∼ (W2, z2), if their

local rings OW1,z1 andOW2,z2 are isomorphic. The equivalence classes are called
analytic types.

(ii) The two germs are called topologically equivalent, (W1, z1)
t∼ (W2, z2), if there

exists a local homeomorphism (V1, z1)
∼=−→ (V2, z2) mapping (W1, z1) to (W2, z2).

The equivalence classes are called topological types.

Notation 1.2.2. In the following, a (topological or analytic) singularity type is
denoted by S. We use the convention that the singularity type carries implicitly the
information whether this singularity is considered up to topological or analytical
equivalence.

Remark 1.2.3. Obviously, if (W1, z1) and (W2, z2) are analytically equivalent then
they are topologically equivalent. However, the opposite is not true. Consider for
example the family of plane curves

Ft(x, y) = (xy) · (x− y) · (x + (1− t)y) .

The elements of this family consist of four lines meeting in one point, and all these
singular points are topologically equivalent. However, the analytic type depends
on the cross-ratio of the four lines, so that the family consists of infinitely many
analytically non-equivalent singularities.
Indeed, the topological equivalence coincides with the analytical equivalence if the
singularity is simple. However, the converse is not true (cf. Remark 1.2.17).

Notation 1.2.4. If σ is an invariant of isolated hypersurface singularities with
respect to some classification and S denotes an equivalence class, then we define
σ(S) := σ(W, z), where (W, z) is an arbitrary germ representing the type S.

In this way we introduce
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(i) for topological or analytical types S

• the Milnor number µ(S) (cf. [Tei73]),

• the delta invariant δ(S),

(ii) and for analytic types S

• the Tjurina number τ ea(S) = τ(S),

• the multiplicity mult(S),

• the corank corank(S).

Remark 1.2.5. (a) The Tjurina number is not a topological invariant. Consider
for example the plane curve germs defined by

f = x5 + y5 and g = x5 + y5 + x4y2 + x3y3 .

They are topologically equivalent (cf. Remark 1.2.19 below) but

16 = τ(f, 0) 6= τ(g, 0) = 15 .

(b) Zariski has conjectured that the multiplicity is also a topological invariant
(cf. [Za71a]). However, this conjecture is known to be true only in special
cases (e.g. for plane curves (cf. below), and for quasihomogeneous singularities
[Gr85]).

(c) If n > 2, then the delta invariant is trivial (i.e. δ(S) = 0) since the singularity
is isolated.

We introduce the concept of embedded deformations of reduced hypersurface sin-
gularities with special emphasis on those deformations which preserve the type of
the singularity. We start by introducing the deformation category. For simplicity
of notation we assume that (W, 0) ⊂ (Cn, 0).

Definition 1.2.6. Assume that (W, 0) ⊂ (Cn, 0) is a reduced hypersurface germ.

(1) An embedded deformation of (W, 0) over a complex germ (T, 0) is given by a
commutative diagram

(W , 0)
i

ϕ

(Cn × T, 0)

π

(T, 0)

where π denotes the natural projection, (W , 0) ⊆ (Cn×T, 0) is a hypersurface
germ with ϕ−1(0) ∼= (W, 0) and ϕ is a flat morphism of complex germs. If, in
addition, a section s : (T, 0) −→ (W , 0) is given then we call (ϕ, s) a deforma-
tion with section.
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(2) Two deformations ϕ1 : (W1, 0) → (T, 0) and ϕ2 : (W2, 0) → (T, 0) are called
isomorphic if there exists an analytic isomorphism of hypersurface germs

ψ : (W1, 0)
∼=−→ (W2, 0) such that the following diagram commutes

(W1, 0)

ψ

∼=

ϕ1

(Cn × T, 0)

pr

(W2, 0)

ϕ2

(T, 0)

(3) A deformation ϕ : (W, 0) → (T, 0) is called equianalytic or trivial if it is
isomorphic to the trivial deformation (W × T, 0)→ (T, 0).

The equianalytic deformations over Tε := Spec(C[ε]/ε2) are of particular interest.

Proposition 1.2.7. Let (W, 0) ⊂ (Cn, 0) be a hypersurface germ defined by f ∈
OCn,0. The set

Iea(W, 0) :=
{
g ∈ OCn,0 | F = f + ε · g defines an equianalytic deformation

of (W, 0) over Tε

}

is equal to the Tjurina ideal generated by f and its partial derivatives. We call
Iea(W, 0) the equianalytic ideal of (W, 0) .

Throughout this dissertation we shall primarily use the analytic equivalence. How-
ever, we discuss in the following some aspects of the theory for the topological
classification because in some cases we can proceed analogously to the analytic case.

Remark 1.2.8. The local equianalytic stratum in the semi-universal deformation of
any isolated singularity is always smooth (since it consists of just one reduced point).
However, for the topological classification the situation is much more complicated
in higher dimensions. Luengo gave an example of an isolated surface singularity, for
which the µ-constant stratum in the semi-universal deformation is not smooth (cf.
[Lue87]).

In the case of curves, we introduce a class of deformations, which do not change the
topological type of the singularity.

Definition 1.2.9. Let ϕ : (C , 0) → (T, 0) be a deformation of (C, 0) ⊂ (C2, 0).
Assume that (C, 0) is defined by f ∈ OC2,0 and (C , 0) is given by F ∈ OC2×T,0.
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Figure 1.1: The deformation of the cusp given by Ft(x, y) = x3 − y2 − t2x2 is
equimultiple but not equisingular along the trivial section.

(i) The deformation ϕ is called equimultiple along a section s : (T, 0) → (C , 0) if
F ∈ Ims where m = mult(C, 0) and Is denotes the ideal of s(T, 0) ⊂ (C2×T, 0).

(ii) The deformation ϕ is called equisingular along a section s : (T, 0)→ (C , 0) if

• ϕ is equimultiple along s and

• there exists a sequence of morphisms

π : ΣN
πN−→ · · · π2−→ Σ1

π1−→ Σ0 = (C2 × T )

and sections s
(i)
k : (T, 0)→ Ĉk, i = 1, . . . , rk, where Ĉk is the reduction of

(π1 ◦ · · · ◦ πk)−1(C , 0) satisfying the following properties:

(a) The mappings πk simultaneously blow up the sections s
(i)
k , i = 1, . . . , rk.

(b) s
(i)
k (0), i = 1, . . . , rk, are the singularities of

Ĉk = ((π1 ◦ · · · ◦ πk)−1(C, 0))red

of types different from A1, i.e. π induces a minimal resolution of (C, 0)
over (C2 × {0}).

(c) The sections are compatible, that is, for all k = 1, . . . , N and j =

1, . . . , rk, there exists 1 ≤ i ≤ rk−1 with πk ◦ s(j)
k = s

(i)
k−1.

(d) the deformations of (Ĉk, s
(i)
k (0)) are equimultiple along s

(i)
k for k =

1, . . . , N , i = 1, . . . , rk.

For arbitrary hypersurface singularities there is no notion of equisingular deforma-
tions over non-reduced spaces. However, for semi-quasihomogeneous singularities
we can generalize this concept.
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Definition 1.2.10. (i) A polynomial f ∈ C[x] is quasihomogeneous if there exist
α ∈ Nn and d ∈ Z such that

f =
∑

α1ω1+...+αnωn=d

aωx
ω .

Then we say that f has type (α, d) and define

degα(f) := 〈α, ω〉 := α1ω1 + . . .+ αnωn = d .

(ii) A quasihomogeneous polynomial f ∈ C[x] is called non-degenerate if it has an
isolated singular point at the origin.

(iii) A polynomial f is called semi-quasihomogeneous of type (α, d), α ∈ Nn, d ∈ Z,
if f can be written as f0 + f ′ where f0 is a non-degenerate quasihomogeneous
polynomial of type (α, d), and all monomials xω of f ′ satisfy 〈α, ω〉 > d. The
polynomial f0 is called the quasihomogeneous initial form of f .

Example 1.2.11. Let f ∈ C[x, y] be homogeneous of degree m. Then f can be
written in the form

f(x, y) =

m∏

k=1

(akx+ bky) .

Then f is non-degenerate if and only if (ak : bk) ∈ P1 are pairwise distinct for
k = 1, . . . , m, i.e. if the curve defined by f consists of m distinct lines. If f is
non-degenerate, and g is a polynomial of degree ≥ m + 1, then f + g is semi-
quasihomogeneous.

We introduce a class of singularity types, which can be treated similarly to the
analytic case.

Definition 1.2.12. Let (W1, z1), (W2, z2) be isolated hypersurface singularities. Then
we say that (W1, z1), (W2, z2) have the same admissible topological type S if either

• there exist local equations f, g for (W1, z1), (W2, z2) of the form

f(x)
a∼ f0(x1, x2) + x2

3 + · · ·+ x2
n , g(x)

a∼ g0(x1, x2) + x2
3 + · · ·+ x2

n ,

such that the plane curve singularities defined by f0 and g0 are topologically
equivalent, or

• (W1, z1), (W2, z2) are semi-quasihomogeneous of the same type, i.e. there exists
a semi-quasihomogeneous local equations for (W1, z1), (W2, z2) which have the
same type in the sense of Definition 1.2.10.



8 1 Preliminaries

If the initial form is homogeneous of degreem, then (W, z) is called a semi-homogeneous
singularity or an ordinary multiple point (of multiplicity m) .

Note that if (W1, z1), (W2, z2) have the same admissible topological type, then they
have the same topological type by the following remark.

Remark 1.2.13. Let f, g ∈ C{x} be germs of corank ≤ 2. If

f(x)
a∼ f0(x1, x2) + x2

3 + · · ·+ x2
n , g(x)

a∼ g0(x1, x2) + x2
3 + · · ·+ x2

n ,

then f
t∼ g if f0

t∼ g0 because the links of f, g are suspensions of the links of f0, g0.

For admissible topological types we generalize the concept of equisingular deforma-
tions.

Definition 1.2.14. Let ϕ : (W , 0) → (T, 0) be a deformation of (W, 0) ⊂ (Cn, 0)
and assume that (W, 0) is of admissible topological type. We call ϕ equisingular if
it satisfies the corresponding condition below.

• If corank(W, 0) ≤ 2, then ϕ induces a deformation of a plane curve singularity,
and ϕ is equisingular if the deformation of this curve singularity is equisingular
in the sense of Definition 1.2.9.

• If (W, 0) is semi-quasihomogeneous, defined in some local coordinates x1, . . . , xn
by f of type (α, d). Then ϕ is equisingular if it is isomorphic to a deformation

ϕ1 : (W1, 0)→ (T, 0)

satisfying OT,0 ∼= C{t1, . . . , tr}/I and (W1, 0) ⊂ (Cn×T, 0) is defined by F (x, t)
such that all monomials xωtω

′

of F satisfy degα(x
ω) ≥ d.

We shall use the latter definition from a pragmatic viewpoint, and do no deal with
questions of functoriality here. Furthermore, note that equisingular deformations
respect the topological type.

Proposition 1.2.15. Let (W, 0) ⊂ (Cn, 0) be a reduced hypersurface singularity and
assume that (W, 0) is of admissible topological type. Let f ∈ C{x} ∼= OCn,0 be a local
equation of (W, 0).

(a) If f = f0(x1, x2) + x2
3 + · · ·+ x2

n, let W0 be the plane curve germ defined by f0.
Then the set Ies(f, 0) := Ies(f0) + 〈x3, . . . , xn〉 · OCn,0 is an ideal containing
the equianalytic Tjurina ideal Iea(f, 0) where

Ies(f0, 0) :=
{
g ∈ OC2,0 | F = f0 + ε · g defines an equisingular deformation

of (W0, 0) over Tε
}
.
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(b) If f is semi-quasihomogeneous of type (α, d), then

Ies(f, 0) = Iea(f, 0) + 〈xω | degα(x
ω) ≥ d〉 .

Proof. Cf. [Wa74] for singularities of corank ≤ 2 and [AGV88, GLS] for semi-
quasihomogeneous singularities.

Definition 1.2.16. The equisingular Tjurina number of (W, z) is defined by

τ es(W, z) := dimC(OCn,0/I
es(W, z)) .

Remark 1.2.17. Let (C, z) be a plane curve germ. Then τ es(C, z) equals the
codimension of the µ-constant stratum in the semi-universal deformation of (C, z).
Hence, if

τ ea(C, z) = τ es(C, z) , (1.2.1)

then the µ-constant stratum consists of just one point. In particular, the topological
classification coincides with the analytic classification for this singularity. Note that
for example the (non-simple) curve germ defined by

f = (x2 − y3) · (x3 − y2)

satisfies (1.2.1).

Notation 1.2.18. We use the notation τ s(S) for either τ ea(S) or τ es(S) depending
on whether S is an analytic or topological type. Similarly we write I s(W, z) for
either Iea(W, z) or Ies(W, z).

Concluding this section, we discuss some relations between the different classes of
deformations introduced before.

Remark 1.2.19. (i) Topologically trivial deformations over a reduced complex
space are always µ-constant (e.g. [Tei73]). The converse is also true if n 6= 3
[LeR76].

(ii) Assume that f ∈ C[x] is quasihomogeneous of type (α, d) and non-degenerate.
If g =

∑
〈α,ω〉>d aωx

ω. Then the 1-parameter deformation

Ft = f + t · g

is µ-constant [AGV88].



10 1 Preliminaries

1.2.2 Equisingular families of hypersurfaces

Passing on to the global situation, we introduce the concept of families of (reduced)
hypersurfaces on a smooth projective variety V ↪→PN .

Definition 1.2.20. Let T be a complex space. A family W of reduced hypersurfaces
on V over T is given by a commutative diagram

W
i

ϕ

V × T
π

T

where π is the natural projection onto T , i is a closed embedding and ϕ is a flat
morphism such that the fibres Wt = ϕ−1(t) ⊂ V × {t} are reduced hypersurfaces
for all t ∈ T .

Let ϕ : W → T be a family of hypersurfaces in V , and let s : T → W be a section.
Then ϕ induces, for any t ∈ T , a deformation of the germ (ϕ−1(t), s(t)) over (T, t).

Definition 1.2.21. The Hilbert functor HV is the functor

(Complex spaces) −→ (Sets)
T −→ {W −→ T family of reduced hypersurfaces} .

Proposition 1.2.22. The Hilbert functor is representable by a complex space HV ,
i.e. there exists an isomorphism of functors

HV

∼=−→ Hom( , HV ) .

Proof. cf. [Bin80].

Let pt be the reduced point. Then we have a bijection

HV (pt)
1:1←→ Hom(pt,HV ) = HV .

Hence, we can identify the points of HV with hypersurfaces W in V . The Zariski
tangent space to HV at W is given by H0(NW/V ), where NW/V = OV (W ) ⊗ OW
denotes the normal sheaf of W in V . Furthermore, there exists a unique preimage
U of idHV

∈ Hom(HV , HV ), which is called the universal family of HV .

Remark 1.2.23. Since the Hilbert polynomial ht defined by

ht(n) = χ(OWt(n))
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is constant on any connected component of T , the universal family U splits into
components on which the Hilbert polynomial is constant. This implies that the
Hilbert scheme decomposes in the form

HV =
∐

h∈C[z]

Hh
V ,

where the Hh
V are unions of connected components of HV .

Proposition 1.2.24. Let W be a reduced hypersurface in V , and let U ⊆ |W | be
the open subset of reduced hypersurfaces linearly equivalent to W . Denote by h the
Hilbert polynomial of W . There exists a natural injective morphism U↪→Hh

V . If
h1(OV ) = 0 then we can identify U with Hh

V .

Proof. Consider the incidence variety

{(W ′, z) ∈ U × V | z ∈ W ′} ⊆ U × V
↓
U

which is flat over U . Thus, there exists a natural morphism U → Hh
V . The corre-

sponding map on the level of tangent spaces at W is the map

H0(OV (W ))/H0(OV )↪→H0(NW/V ) . (1.2.2)

The map (1.2.2) is coming from the exact sequence

0 −→ OV −→ OV (W ) −→ OW (W ) −→ 0 .

If h1(OV ) = 0 then the map H0(OV (W ))/H0(OV )
∼=−→ H0(NW/V ) is an isomor-

phism, which implies the claim (using e.g. the implicit function theorem).

Let ϕ : W→ T be a family of reduced hypersurfaces, t ∈ T and z ∈W. Then there
is an induced local deformation

ψ : (W, z)→ (T, t) .

This allows us to introduce the concept of equianalytic and equisingular families.

Definition 1.2.25. Let ϕ : W −→ T be a family of hypersurfaces such that, for all
t ∈ T , the fibre Wt has only isolated singularities.

(i) We call ϕ an equianalytic or locally trivial family of hypersurfaces if, for all
t ∈ T , the induced deformation of each singular point of Wt is equianalytic.
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(ii) Assume in addition that, for all t ∈ T , the topological types of the singular
points of Wt are admissible. Then we call the family equisingular if, for all
t ∈ T , and every singular point of Wt, the induced deformation is equisingular.

We define the equisingular stratum, i.e. the space of all hypersurfaces in a linear
system with singularities of prescribed types. For the construction and properties
of this space we refer to [GrK89, GrL96].

Definition 1.2.26. Let S1, . . . , Sr be analytic or admissible topological singularity
types. We write

VD(S1 + . . .+ Sr) ⊂ |D|
for the (locally closed) space of all reduced hypersurfaces linearly equivalent to D
with precisely r singularities which are of types S1, . . . , Sr. We call VD(S1 + . . .+Sr)
the equisingular stratum.

The open subset of all irreducible hypersurfaces is denoted by V irr
D (S1 + . . .+ Sr).

Remark 1.2.27. If V = Pn, n > 2, then the space V irr
D (S1 + . . . + Sr) coincides

with VD(S1 + . . . + Sr), because hypersurfaces in Pn of dimension ≥ 2 having only
isolated singularities are always irreducible.

Notation 1.2.28. Let S1, . . . , Sr be analytic or admissible topological types. If an
ample divisor H is fixed, then to simplify notation we write Vd(S1 + . . . + Sr) for
VdH(S1+. . .+Sr), respectively V irr

d (S1+. . .+Sr) for V irr
dH (S1+. . .+Sr). Furthermore,

we abbreviate VD(S + . . .+ S) by VD(rS).

1.2.3 Zero-dimensional schemes and H1-vanishing

Again, V ⊂ PN denotes a smooth, projective variety.

Definition 1.2.29. Let S1, . . . , Sr be analytic or admissible topological singularity
types, and let D be an ample divisor. Assume that VD(S1 + . . . + Sr) 6= ∅. Then
we call the germ of VD(S1 + . . .+ Sr) at a hypersurface W T-smooth if it is smooth
and has the “expected” codimension

∑r
i=1 τ

s(Si) in |D|.

Given a hypersurface having only isolated singularities, we associate to it certain
zero-dimensional schemes concentrated in the singular points. The cohomology
groups of the ideal sheaves of these schemes contain fundamental geometric in-
formation.

Definition 1.2.30. Let W ⊂ V be a hypersurface having r isolated points z1, . . . , zr
as its only singularities. Then we introduce the following schemes (cf. also Proposi-
tion 1.2.15):
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(1) Xea(W ) :=
⋃r
i=1X

ea(W, zi) with IXea(W ),zi
= Iea(W, zi).

(2) Xes(W ) :=
⋃r
i=1X

es(W, zi) with IXes(W ),zi
= Ies(W, zi).

We write Xs(W ) for either Xea(W ) or Xes(W ).

The following theorem shows that the first cohomology group of the ideal sheaf of
Xs(W ) obstructs the T -smoothness of the equianalytic stratum.

Theorem 1.2.31. Let W ∈ |D| be a reduced hypersurface in V having r singu-
lar points z1, . . . , zr of analytic or admissible topological types S1, . . . , Sr, and let
Xs = Xs(W ).

(i) The Zariski tangent space of VD(S1+. . .+Sr) at W is H0(IXs/V (W ))/H0(OV )
and

h0(IXs/V (W ))−h1(IXs/V (W )) ≤ dim(VD(S1+. . .+Sr),W )+1 ≤ h0(IXs/V (W )).

In particular, if h1(IXs/V (W )) = 0 then VD(S1 + . . .+ Sr) is T-smooth at W .

(ii) If h1(IXs/V (W )) = 0 then all possible local deformations of the singular points
of W are realizable when varying W in |D|.

Proof. See [GrK89] for the equianalytic case and [GrL96] for equisingular case.

Remark 1.2.32. If h1(IXea/V (W )) = 0, then the natural map of germs

(H0(OV (D)),W ) −→
∐

zi∈Sing(W )

Def(W, zi)

is surjective, where Def(W, zi) denotes the semi-universal deformation of (W, zi).
In other words, any local deformation of the singular points of W can be realized
simultaneously when varying W in |D|.

Remark 1.2.33. Let W ∈ |D| be a reduced hypersurface with isolated singular-
ities z1, . . . , zr of (analytic or admissible topological) types S1, . . . , Sr, and some
additional singularities w1, . . . , ws of arbitrary types. We denote by

VD(S1 + . . .+ Sr;W ) ⊂ |D|

the germ at W of the variety of reduced hypersurfaces with singularities z ′1, . . . , z
′
r

in neighbourhoods of z1, . . . , zr having the same types S1, . . . , Sr. Note that the
hypersurfaces are allowed to have also singularities other than the r prescribed ones.
Then it can be shown that VD(S1 + . . . + Sr;W ) is T-smooth if h1(IX/V (W )) = 0,
where X =

⋃r
i=1X

s(W, zi) (see [GrL96]).
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The schemes defined by powers of the maximal ideal are of particular interest.

Definition 1.2.34. Let m = (m1, . . . , mr) ∈ Nr. We introduce the zero-dimensional
scheme X(m; z) ⊂ V of r multiple points zi of multiplicities mi, which is defined by
the ideal sheaf IX(m;z)/V with

(IX(m;z)/V )z =

{
m
mi

V,zi
, z = zi, i = 1, . . . , r

OV,z else .

We call X(m; z) a fat point scheme. If the points z1, . . . , zr are in general position
then X(m; z) is a generic fat point scheme, and we denote it by X(m).

The degree of a fat point scheme X(m; z) ⊂ Pn can be determined as follows:

deg(X(m; z)) =
r∑

i=1

dimCOPn,zi
/mmi

Pn,zi
=

r∑

i=1

(
mi + n− 1

n

)
.

The Horace Method. The Horace method introduced by Hirschowitz ([Hir85]) is
an inductive method, which can be used to prove H1-vanishing theorems for zero-
dimensional schemes concentrated in generic points. It is based on the residual exact
sequence (cf. below) and on specializing the position of points.

Definition 1.2.35. Let W be a divisor in a smooth variety V and X a closed
subscheme of V . Then we define

(i) the trace of X on W to be the scheme theoretic intersection X ∩W defined
by the ideal sheaf

I(X∩W )/W = (IX/V + IW/V ) · OW ⊂ OW ,

(ii) and the residual of X with respect to W , X : W , given by the ideal sheaf

I(X:W )/V = IX/V : IW/V ⊂ OV .

Note that X : W is a closed subscheme of V .

The following lemma is easily verified.

Lemma 1.2.36. Let V be a smooth projective variety and W a divisor in V . For
all divisors D we have an exact sequence

0 −→ I(X:W )/V (D −W ) −→ IX/V (D) −→ I(X∩W )/W (D) −→ 0 . (1.2.3)
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We call the exact sequence (1.2.3) the reduction sequence (of X with respect to W ).

Now consider the case V = Pn. Let X be a zero-dimensional scheme concentrated
in points z1, . . . , zr ∈ Pn, and let H a hyperplane in Pn. For any d ∈ Z, we have an
exact sequence

. . . −→ H1(I(X:H)/Pn(d− 1)) −→ H1(IX/Pn(d)) −→ H1(I(X∩H)/H(d)) −→ . . . .

In order to show h1(IX/Pn(d)) = 0 it is sufficient to verify that

h1(I(X:H)/Pn(d− 1)) = 0 and h1(I(X∩H)/H(d)) = 0 .

Note that the first condition is a condition in lower degree while the latter condition is
a condition in lower dimension, which makes this procedure well suited for inductive
proofs.

Let us discuss two simple applications of the Horace method. The following lemma
is useful in combination with Bertini’s theorem (cf. Appendix A).

Lemma 1.2.37. Let X ⊂ Pn be a zero-dimensional scheme and assume that

h1(IX(d− 1)) = 0 .

Then the linear system |H0(IX(d))| has no base points outside the support of X.

Proof. Assume that w /∈ supp(X) is a base point of |H0(IX(d))|. Hence

H0(IX(d)) = H0(IX∪{w}(d)) . (1.2.4)

Let H ⊂ Pn be a hyperplane with w ∈ H and X ∩H = ∅. The reduction sequence
for X with respect to H together with the assumption implies that

H1(IX∪{w}(d)) = 0 .

But this implies that we obtain an exact sequence

0 −→ H0(IX∪{w}(d)) −→ H0(IX(d)) −→ H0(I{w}(d))︸ ︷︷ ︸
6={0}

−→ 0 ,

which contradicts (1.2.4).

The following lemma is a simple H1-vanishing condition.

Lemma 1.2.38. Assume that H1 ⊂ . . . ⊂ Hn−1 ⊂ Pn is a chain of linear subspaces
with Hi

∼= Pi, i = 1, . . . , n − 1. Let X1, . . . , Xn ⊂ Pn be zero-dimensional schemes
satisfying
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(i) Xi ⊂ Hi for i = 1, . . . , n− 1,

(ii) Xi ∩Hi−1 ⊆ Xi−1 for i = 2, . . . , n,

(iii) Xi ⊂ Hsi

i−1 := siHi−1 for i = 2, . . . , n, and

(iv) deg(X1) ≤ s1.

Then
h1(IXn/Pn(d)) = 0 if d ≥ s1 + . . .+ sn .

Before starting the proof, we would like to mention an elementary property, which
we shall use several times. Assume that X ⊂ Y are zero-dimensional schemes in V .
Then

h1(IY/V (W )) = 0 =⇒ h1(IX/V (W )) = 0 ,

since the support of IX/IY is zero-dimensional and hence h1(IX/IY ) = 0.

Proof. We use induction over the dimension n.
For n = 1 the assumptions imply h1(IX1(s1)) = 0 by the Riemann-Roch Theorem
for curves because deg(X1) ≤ s1 ≤ d < d+ 1.

Now assume the claim is true for n, and let H1, . . . , Hn and X1, . . . , Xn+1 satisfy the
assumptions of the lemma. Hence h1(IXn(d)) = 0 whenever d ≥ s1 + . . .+ sn.
We have to show that h1(IXn+1(d)) = 0 if d ≥ s1 + . . .+ sn+1. Note that it is enough
to verify

(i) h1(IXn+1:Hj
n+1∩Hn+1

(d− j)) = 0 for j = 0, . . . , sn+1 − 1, and

(ii) h1(IXn+1:H
sn+1
n+1

(d− sn+1)) = 0.

The first assertion is true since by assumption Xn+1 : Hj
n+1 ∩ Hn+1 ⊆ Xn and by

induction hypothesis h1(IXn(d− j)) = 0 as d− j ≥ s1 + . . .+ sn for j ≤ sn+1.
The second claim follows since Xn+1 : H

sn+1

n+1 = ∅.

1.3 Newton polytopes, toric geometry and iso-

lated singular points

1.3.1 Newton polytope and Newton diagram

We recall the definition of the Newton polytope and Newton diagram and introduce
some notation related to them.
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Definition 1.3.1. (i) A convex polytope ∆ in Rn is the convex hull of a discrete
set A ⊂ Rn. A convex polytope is called non-degenerate if dim(∆) = n.

(ii) Let ϕ : Rn → R be an affine linear function with ϕ(∆) ⊂ R≥0. Then the
intersection σ := {ϕ(x) = 0} ∩ ∆ is called a face of ∆. A face of dimension
dim(∆)− 1 is called a facet. A zero dimensional face is a vertex of ∆.

(iii) If all vertices of ∆ are integral, i.e. A can be chosen as A ⊂ Zn, then ∆ is
called a Newton polytope.

(iv) For a Newton polytope ∆ we denote by deg(∆) = n! ·vol(∆) the affine volume
or degree of ∆. Here vol(∆) denotes the usual euclidean volume of ∆.

Let f =
∑

ω∈Zn aω ·xω ∈ C[x1, x
−1
1 , . . . , xn, x

−1
n ] be a Laurent polynomial. The finite

set supp(f) = {ω ∈ Zn | aω 6= 0} is called the support of f . The convex hull of
supp(f) is the Newton polytope of f and is denoted by ∆(f), or just by ∆ if no
confusion arises. The combinatorial structure of the set ∆(f) contains interesting
information about the hypersurface defined by f .
We are only considering convex polytopes arising in this way. So when we speak
about convex polytopes, we shall always mean convex polytopes having integral
vertices. Furthermore we usually assume ∆ ⊂ Rn

≥0.

Definition 1.3.2. (i) Let ∆ be a convex polytope. We denote by P(∆) the space
of (Laurent-)polynomials with monomials from ∆, i.e.

P(∆) =
{
f =

∑

ω∈∆∩Zn

aωx
ω
}
.

(ii) Let f =
∑

ω∈∆∩Zn aωx
ω ∈ P(∆) and let σ ⊂ ∂∆ be a face of ∆. The polyno-

mial
fσ =

∑

ω∈σ∩Zn

aωx
ω

is called the σ-truncation of f .

If ∆ is contained in Rn
≥0 then we consider P(∆) also as a subspace of H0(OPn(d))

where d ≥ max{|ω| | ω ∈ ∆}. We introduce the notation ∆n
d for the simplex

{
(x1, . . . , xn) ∈ Rn|xi ≥ 0,

n∑

i=1

xi ≤ d
}
.

such that P(∆n
d ) corresponds to the complete linear system |OPn(d)|. We abbreviate

P(∆n
d ) by P(d) if no confusion arises. The polytope ∆2

d is shown in Figure 1.2.

Let us denote by Affn(Z) the group of affine lattice isomorphisms, i.e.

Affn(Z) = {A : Zn → Zn | A(ω) = Bω + b, with B ∈ Gln(Z), b ∈ Zn}.
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d

d

Figure 1.2: The polytope ∆2
d: The circles correspond to points (i, j) ∈ ∆2

d ∩Z2, and
hence to monomials xiyj ∈ C[x, y] of degree less than d.

Definition 1.3.3. The group Affn(Z) acts naturally on C[x1, x
−1
1 , . . . , xn, x

−1
n ] by

sending

f(x) =
∑

ω∈Zn

aωx
ω to fA(x) =

∑

ω∈Zn

aωx
A(ω) , A ∈ Affn(Z).

Note that ∆(fA) = A(∆).

Remark 1.3.4. Any A ∈ Affn(Z) induces an automorphism of (C ∗)n by

(C ∗)n −→ (C ∗)n

(x1, . . . , xn) 7→ (xA·e1 , . . . ,xA·en),

where ei denotes the i-th unit vector. Thus A induces an isomorphism between
V (f) ∩ (C ∗)n and V (fA) ∩ (C ∗)n.

While the Newton polytope contains global information about the hypersurface

V (f) = {x ∈ Cn | f(x) = 0} ,

the Newton diagram contains information about the hypersurface locally at the
origin.

Definition 1.3.5. Let f ∈ C[x] be a polynomial with Newton polytope ∆. Let
K0(f) be the closure of the set Conv({0} ∪∆) \∆. The Newton diagram Γ(f, 0) of
f at the origin is defined by

Γ(f, 0) := K0(f) ∩∆ .

If a ∈ Cn, then we define Γ(f, a) := Γ(f(x− a), 0).
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Figure 1.3: Example: The Newton polytope of f = x4 + xy + y3 + y4 + x4y2. The
circles correspond to the integral points of the Newton diagram at the origin.

Remark 1.3.6. From the Newton polytope we can read off information concerning
the behaviour of the corresponding hypersurfaces at the coordinate hyperplanes, in
particular at the fundamental points. Note that fixing the Newton polytope is equiv-
alent to fixing the degree and the local Newton diagrams at the n+ 1 fundamental
points (0 : ... : 1 : ... : 0).

For example the polynomial f = x4 + xy + y3 + y4 + x4y2 has A1 singularities at
(0 : 0 : 1) and (1 : 0 : 0) and an A3 singularity at (0 : 1 : 0), which can be read off
the Newton polytope shown in Figure 1.3.

1.3.2 Toric varieties from convex polytopes

Definition 1.3.7. A complex toric variety is an irreducible, complex algebraic va-
riety X equipped with an action of the algebraic torus (C ∗)n having an open dense
orbit.

We associate to any convex lattice polytope a toric variety in the following way.

Definition 1.3.8. Let ∆ ⊂ Rn be a lattice polytope of dimension n. Assume that
∆ ∩ Zn = {ω0, . . . , ωN} and consider the map

ϕ : (C ∗)n −→ PN , ϕ(x) = (xω0 : . . . : xωN ) .

Then we define Tor(∆) to be the closure in the Zariski topology of ϕ((C ∗)n) ⊂ PN .
We denote the coordinates of PN by (zω0 : . . . : zωN

).

Theorem 1.3.9. Tor(∆) is a projective, normal, toric variety of degree

deg(∆) = n! · vol(∆) .
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Figure 1.4: Polytopes defining P2, P1 × P1 and F3.

Furthermore, there is a 1 : 1 correspondence between faces of ∆ and (C ∗)n orbits,
and for any face σ of ∆ of dimension k, there is a k-dimensional orbit Oσ

∼= (C ∗)k

given by

Oσ = Tor(∆) ∩ {(zω)ω∈∆∩Zn | zω = 0 for ω /∈ σ and zω 6= 0 for ω ∈ σ} .

Proof. See [GKZ94].

Remark 1.3.10. (i) The same toric variety may arise from different polytopes.
For example Tor(∆) ∼= Tor(A(∆)) for any A ∈ Affn(Z).

(ii) The embedding Tor(∆) ⊂ PN corresponds to a very ample sheaf O∆ on Tor(∆)
satisfying H0(O∆) ∼= P(∆), and we denote the global section of O∆ corre-
sponding to a lattice point ω by χω.

Example 1.3.11. Let us discuss some examples (cf. Figure 1.4).

(1) Let n, d ≥ 1, and let ∆ = ∆n
d . Then Tor(∆) is the image of Pn under its d-uple

embedding and O∆
∼= OPn(d).

(2) Let a, b ≥ 1, and let ∆ = Conv{(0, 0), (a, 0), (0, b), (a, b)}. Then Tor(∆) ∼=
P1 × P1 and O∆

∼= OP1×P1(a, b).

(3) Let a ≥ 1, and let ∆a be the rectangle Conv{(0, 0), (2a, 0), (0, 2a), (1, 2a)}.
Then Tor(∆) ∼= Fa, the Hirzebruch surface P(OP1 ⊕OP1(a)).

Real part of complex toric varieties, the moment map and charts of poly-
nomials.

Inside a complex toric variety Tor(∆) we have its real part TorR(∆), which is the
intersection of Tor(∆) ⊂ PN with RPn ⊂ PN . The real algebraic torus (R ∗)n is the
union of 2n orthants

Rn
ε = {(x1, . . . , xn) | εixi > 0}
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where ε ∈ {±1}n. We define the subspaces Torε(∆) ⊆ TorR(∆) to be the closure
(in the real topology) of the subsets

Rn
ε ⊆ (R ∗)n↪→TorR(∆) .

Thus,

TorR(∆) =
⋃

ε∈{±1}n

Torε(∆) .

We abbreviate the sign vector ε = (1, . . . , 1) by +. Using the same philosophy, we
define the real parts (Oσ)R of the orbits and decompose them in the form

(Oσ)R =
⋃

ε∈{±1}n

(Oσ)ε .

Definition 1.3.12. The moment map is the map µ := µ∆ : Tor(∆) → ∆ defined
by

µ(x) =
1∑

ω∈∆∩Zn |χω(x)|
·
∑

ω∈∆∩Zn

|χω(x)| · ω , (1.3.5)

where we consider the sections χω as functions Tor(∆)→ C.

In general, moment maps arise in the context of Hamiltonian actions of Lie groups
on symplectic manifolds. For details about relations between general moment maps
and the map defined above we refer to [Fu93] or [Ri92].

The following theorem is the key to a purely combinatorial description of the real
toric variety TorR(∆).

Theorem 1.3.13. The moment map µ induces a real analytic homeomorphism from
Tor+(∆) onto ∆ respecting the stratification of ∆ by its faces.
More precisely: for any face σ ⊆ ∆, the corresponding orbit (Oσ)+ is mapped by µ
diffeomorphically onto the interior of σ.

Proof. See [Fu93].

Instead of Rn
+ we can consider any other orthant Rn

ε . Then completely analogous
results are true for Torε(∆). In particular, Theorem 1.3.13 implies that, from the
topological point of view, TorR(∆) can be thought of as 2n copies of ∆ glued together
appropriately.

For every vector ε ∈ {±1}n take a copy ∆ε of ∆ and for every face σ of ∆ denote
the corresponding face in ∆ε by σε. We say that two vectors ε, δ ∈ {±1}n agree on
a face σ ⊆ ∆ if either εω = δω for all ω ∈ σ ∩ Zn or εω 6= δω for all ω ∈ σ ∩ Zn.
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Proposition 1.3.14. The real toric variety TorR(∆) is homeomorphic to 2n copies
of ∆ glued together by the following recipe: for any ε, δ ∈ {±1}n and any face σ ⊆ ∆
identify σε with σδ if ε and δ agree on σ.

Proof. By the description of the orbits given in Theorem 1.3.9, we have (Oσ)ε =
(Oσ)δ if and only if either εω = δω or εω 6= δω for all ω ∈ σ.

Let f be a real (Laurent) polynomial

f(x) =
∑

ω∈Zn

aω · xω

and ∆ its Newton polytope. We usually assume that ∆ is nondegenerate, i.e.
dim(∆) = n.

Let us consider the zero set of f in the toric variety TorR(∆), by which we mean
the closure of V (f) ⊂ (R ∗)n under the embedding (R ∗)n↪→TorR(∆), and which we
also denote by V (f) by abuse of notation. We map the intersection of this toric
hypersurface with each orthant into a separate copy of ∆ by means of the moment
map. This leads to the definition of the chart of a polynomial.

Definition 1.3.15. Let f(x) ∈ R[x] and let ∆ be its Newton polytope. For every
ε ∈ {±1}n let ∆ε be a copy of ∆ in the orthant Rn

ε (i.e. the image of ∆ under the
map Rn → Rn, (x1, . . . , xn) 7→ (ε1x1, . . . , εnxn)). Define

Chε(f) = µ(Z(f)) ∩ Torε(∆) ⊂ ∆ε .

The chart of f is the union

Ch(f) =
⋃

ε∈{±1}n

Chε(f).

Remark 1.3.16. Clearly Chε(f) ∼= Ch+(f ε) where f ε(x1, . . . , xn) = f(ε1x1, . . . , εnxn).
This implies that it is often enough just to consider the positive orthant.

Example 1.3.17. Consider the space of affine linear polynomials, i.e. polynomials
of the form

f(x) = a0 +
n∑

i=1

aixi .

Assume ai 6= 0 for all i, so that the zero locus of f is a hyperplane in RPn transversal
to all the coordinate hyperplanes and the Newton polytope ∆(f) is the simplex

{
(t1, . . . , tn)

∣∣∣∣ ti ≥ 0,
∑

ti ≤ 1

}
.
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+− +

+

−

Figure 1.5: Example: The 4 charts of an affine linear polynomial f . The signs
correspond to the signs of the coefficients of f ε, ε ∈ {±1}2.

The corresponding real toric variety is RPn and x1, . . . , xn are coordinates in an
affine chart. In this chart the moment map is given by

µ(x) =
(

|x1|
1+
∑ |xi| , . . . ,

|xn|
1+
∑ |xi|

)
.

Consider the intersection of Z(f) with the positive part of TorR(∆) = RPn, i.e. the
set of zeros of f(x1, . . . , xn) = 0 with all xi > 0. The image of this set under the
moment map is

{
(t1, . . . , tn) ∈ ∆

∣∣∣ a0

(
1−

n∑

i=1

ti

)
+

n∑

i=1

aiti = 0
}
,

which is a hyperplane section in ∆ separating the vertices of ∆ with ai < 0 from
those with ai > 0. In particular, the chart of linear polynomials only depends on
the signs of the coefficients (cf. Figure 1.5).

1.3.3 Singular points and combinatorics of the Newton poly-
tope

In this section we discuss some connections between Newton polytopes and isolated
singular points. Assume that ∆ is a Newton polytope and f ∈ P(∆). For the
patchworking method, which shall be described in Chapter 2, we need to understand
the intersections of the zero locus Z(f) ⊂ Tor(∆) with Tor(σ) for faces σ of ∆.

The following lemma is obvious.

Lemma 1.3.18. Let σ be a face of ∆ and consider Tor(σ) ⊆ Tor(∆). Then

Z(f) ∩ Tor(σ) = Z(fσ) ⊆ Tor(σ) .
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Definition 1.3.19. Let ∆ ⊂ Rn be a Newton polytope and f ∈ P(∆).

(i) Let σ ⊂ ∂∆ be a face. Then f is called non-singular along σ (respectively
non-critical along σ) if the truncation f σ has no singular point (respectively
critical point) in (C ∗)n.

(ii) f is called peripherally non-singular (PNS) if f is non-singular on all proper
faces σ of ∆, and has only isolated singular points in (C ∗)n.

(iii) f is called peripherally non-critical (PNC) if f is non-critical on all proper
faces σ of ∆, and has only isolated critical points in (C ∗)n.

Remark 1.3.20. (i) If f ∈ P(∆) is non-singular along a face σ ⊂ ∆. Then the
intersection Z(f) ∩ Tor(σ) ⊂ Tor(∆) is transversal.

(ii) Let ∆ = ∆n
d and f ∈ P(∆) with only isolated singular points. Then there exist

a linear coordinate change such that f is PNS. Just choose n+ 1 hyperplanes
Hi as coordinate hyperplanes such that V (f) is non-singular along all the Hi.

Since the hyperplane sections of Tor(∆) are compactifications of zero loci of poly-
nomials from P(∆) and deg(Tor(∆)) = deg(∆) by Theorem 1.3.9 we expect that n
generic (Laurent) polynomials from P(∆) have deg(∆) common solutions in (C ∗)n.

Kouchnirenko proved the following theorem [Kou76].

Theorem 1.3.21. Let ∆ ⊂ Zn be an integral, convex, nondegenerate polytope. If
f1, . . . , fn ∈ P(∆) are PNC polynomials, then the number of common solutions of
f1, . . . , fn in (C ∗)n (counted with multiplicity) is equal to deg(∆) = n! · vol(∆).

Proof. [Kou76].

Concluding this section, we introduce a special class of local deformations, which
play an important role in the local patchworking method. They are called lower
deformations, because we deform with monomials which correspond to lattice points
below the Newton diagram.

Definition 1.3.22. Let (W, z) ⊂ (Cn, z) be a semi-quasihomogeneous singularity
whose initial form is of type (α, d) such that αi|d for all i, i.e. the hyperplane

{ω ∈ Rn | 〈α, ω〉 = d}
meets the coordinate axes in integral points. Let

∆ := Conv{ω ∈ Nn | 〈α, ω〉 < d} .
A pattern for a lower deformation of (W, z) is a hypersurface Wz defined by a
polynomial g(x) ∈ P(∆) such that the quasihomogeneous leading form of g is non-
degenerate.
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Figure 1.6: Example: Lower deformation deformation of an ordinary singular point
of multiplicity m.

Example 1.3.23. Let C ⊂ P2 be defined by a polynomial F of degree d. Assume
that C has an ordinary multiple point of multiplicity m < d at the origin (0 :0 :1),
and that C does not pass through (1:0 :0) and (0:1 :0). Then the Newton diagram of
F looks as in Figure 1.6, and a lower deformation of (C, 0) is given by any polynomial
G of degree ≤ m − 1 whose leading form is non-degenerate. Note that the latter
property can be achieved by a generic linear coordinate change.

The local patchworking method, which we shall present in Chapter 2, is based on
the idea that we can find a 1-parameter family Ft such that F0 = F and for t > 0
small enough, Ft has in a neighbourhood of the origin the same number and types
of singularities as G in Cn.





Chapter 2

Hypersurfaces with prescribed
singularities

In this chapter, we give a detailed introduction to the asymptotic existence
problem in order to distinguish it from the existence problem in small degrees.
After that we review classical construction methods and previous existence
results as well as restrictions for the existence of singular hypersurfaces.

The rest of the chapter is devoted to the patchworking method, which is our
main tool for constructing hypersurfaces with prescribed singularities. The
idea is essentially to construct a new hypersurface out of old ones, such that
the new hypersurface inherits all the (isolated) singularities of the initial hy-
persurfaces. We present two different versions of this patchworking method
(which we call local and global patchworking) and discuss some examples.

2.1 The asymptotic existence problem

Let again V ⊂ PN be a fixed smooth variety. In the following we shall refer to the
following problem as the existence problem:

Given an ample linear system D and singularity types S1, . . . , Sr, decide
whether VD(S1 + . . .+ Sr) is non-empty.

Obviously, it is impossible to find complete solutions to this problem in this gener-
ality. In fact, the only case where a complete answer is known is the classical case
of nodal curves in P2. It was shown by Severi [Sev21] that there is an irreducible

curve of degree d having r nodes if and only if r ≤ (d−1)(d−2)
2

, i.e.

V irr
d (rA1) 6= ∅ ⇐⇒ r ≤ (d− 1)(d− 2)

2
.

27
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The main step of the proof was to show that nodes on plane curves can be ”smoothed”
independently.

In the general case, we may hardly expect that sufficient and necessary conditions
for the existence agree. In fact, already for cuspidal plane curves, a complete answer
is only known up to degree 11 (cf. below). Hence, the general existence problem
consists of two parts:

(1) Find criteria in terms of certain invariants which prohibit the existence of
hypersurfaces with a given collection of isolated singularities and belonging to
the prescribed linear system. We shall refer to these criteria as restrictions
for the existence or upper bounds (since we are primarily interested in the
maximal number of singularities of certain types, and these criteria bound
these numbers from above).

(2) Construct reduced hypersurfaces with prescribed singularities in a given linear
system. As mentioned above, the most interesting case is to realize hypersur-
faces with as many singularities of the prescribed types as possible. We shall
refer to an existence result (expressed in terms of certain invariants) as a lower
bound for the existence.

Example 2.1.1. Consider irreducible, plane curves of degree d having r nodes as
only singularities. Then the genus formula implies the restriction

r ≤ (d− 1)(d− 2)

2
. (2.1.1)

On the other hand, Severi showed that the singularities of a nodal, plane curve,
irreducible or not, can be smoothed independently [Sev21]. Hence, by taking the
union of d generic lines and smoothing out suitable intersection points, one can
construct irreducible curves with any number of nodes allowed by (2.1.1).

Essentially there are two diametrical approaches to the constructive part of the
existence problem.

Complete results for small degrees and very special singularities.
The idea of this approach is to obtain concrete maximal numbers of singularities of
some type, which can be realized on curves or surfaces of some small fixed degree.

This approach was used in the following situations.

(1) Curves with ordinary cusps in P2.
The following table displays the maximal number of cusps of a (complex) cus-
pidal curve of degree less than 10. In all cases there exist curves corresponding
to T-smooth germs, which implies that any cusp can be smoothed indepen-
dently, and curves with lower number of cusps can be obtained in the same
degree.
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degree 2 3 4 5 6 7 8 9 10

number of cusps 0 1 3 5 9 10 15 20 26

For d ≤ 6 the results are classical. For a detailed construction of a curve of
degree 5 having 5 (real) cusps see [Gu82]. The cases d = 7, 8, 9, 10 can be
found in [IS96, Sh98].
Note that for real curves the maximal number of singularities may be smaller
than in the complex case. For example Shustin and Itenberg [IS96] showed
that a real curve of degree 6 cannot have more than 7 cusps, which is less than
in the complex case.

(2) Nodal surfaces in P3.
The following table displays upper and lower bounds for the number of ordi-
nary nodes on a (complex) nodal surface of degree less than 10.

degree 2 3 4 5 6 7 8 9 10

upper bound 1 4 16 31 65 104 174 246 360
lower bound 1 4 16 31 65 93 168 216 345

For d ≤ 5, the results are classical. The cases d = 6, 10 can be found in
[Bar96], d = 7, 9 in [Ch92] and for d = 8 see [End97]. A nice overview can be
found on [URL:Mainz].

(3) As an example of non-simple singularities, consider surfaces in P3 with ordinary
triple points. They were studied in [EPS00, Ste03] and the following bounds
were found.

degree 3 4 5 6 7

upper bound 1 1 5 10 17
lower bound 1 1 5 10 16

For other classes of singularities, or more general varieties V , almost nothing is
known. Moreover, the construction methods are very specific to the singularity
types and to the degrees of the curves or surfaces. Hence, for every new degree or
other singularity type a new idea is needed.

The asymptotic approach.
In contrast to the approach described above, we try to find conditions for the exis-
tence in linear systems |dH| for d sufficiently large. More precisely, this means the
following:
Fix an ample divisor H, for example a hyperplane section, and a set of singular-
ity types S. We try to find sufficient conditions for the existence of hypersurfaces
W ∈ Vd(S1 + · · ·+ Sr), S1, . . . , Sr ∈ S, of the form

r∑

i=1

σ(Si) < f(d) , (2.1.2)
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where σ(S) is an invariant of the singularities S ∈ S, and f(d) is some function. Note
that this implies in particular that if there exists W ∈ Vd(S1 + · · ·+ Sr) satisfying
(2.1.2), then there is also W ′ ∈ Vd(S1, . . . , Sr′) with r′ ≤ r. If h1(OV (d)) = 0, then
the latter property always holds for example for T-smooth hypersurfaces since we
can smooth any of the singular points independently of the others by Remark 1.2.32.

In order to understand the asymptotic quality of a condition of the form (2.1.2) we
have to find necessary conditions with the same left hand side. More precisely, this
means that we try to find a function g(d) such that there exist infinitely many d ∈ N

and infinitely many S1, . . . , Sr ∈ S with

r∑

i=1

σ(Si) ≤ g(d) and Vd(S1 + · · ·+ Sr) = ∅ . (2.1.3)

Assume we have a sufficient condition (2.1.2) and a necessary condition (2.1.3). If
the functions f(d) and g(d) satisfy O(f) = O(g), then we call this an asymptotically
proper solution to the given existence problem. In case f and g are polynomials of
the same degree and their leading coefficients agree, we speak of an asymptotically
optimal existence result.

The existence problem for V = Pn.
In the most interesting case V = Pn we express the asymptotic existence problem
in terms of certain invariants.

Definition 2.1.2. Fix n ≥ 2, and let S be a set of some (analytic or topological)
singularity types.

(i) We define Amaxn (S) to be the set of all α ∈ R such that there exists a function
R(d) ≤ βdn−1 with β > 0, depending only on n, α, and S, with the property:

For all {S1, . . . , Sr} ⊂ S and infinitely many k1, k2 . . . and kr there exists a
d ≥ 0 such that Vd(k1S1 + . . .+ krSr) is non-empty and

r∑

i=1

kiτ
s(Si) ≥ α · dn −R(d) .

We put αmaxn (S) = supAmaxn (S).

(ii) We define Aregn (S) to be the set of all α ∈ R such that there exists a function
R(d) ≤ βdn−1 with β > 0, depending only on n, α, and S, with the property:

If for some subset {S1, . . . , Sr} ⊂ S and positive integers k1, . . . , kr, the relation

r∑

i=1

kiτ
s(Si) ≤ α · dn − R(d)
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holds true, then there is a hypersurface W ∈ Vd(k1S1+. . .+krSr) corresponding
to a T-smooth germ.

We put αregn (S) = supAregn (S).

Remark 2.1.3. Let us make some easy remarks concerning these invariants.

(a) If αmaxn (S) ∈ Amaxn (S), respectively αregn (S) ∈ Aregn (S), then the coefficient β
in Definition 2.1.2 can be chosen independently of α.

(b) Obviously αregn (S) ≤ αmaxn (S). Furthermore, we know

0 ≤ αregn (S) ≤ 1

n!
,

since for a T-smooth hypersurface the total Tjurina number cannot exceed the
dimension of the space of polynomials of degree d, which equals dn

n!
+O(dn−1).

Moreover,
0 ≤ αmaxn (S) ≤ 1 ,

since
∑r

i=1 µ(Si) > (d − 1)n implies that Vd(S1 + · · ·+ Sr) = ∅ by Bézout’s
Theorem.

(c) However, it is not known whether αmaxn (S) 6= 0 for an arbitrary set S. In case
we know αmaxn (S) > 0 we have an asymptotically proper existence result for S.

The main conjecture concerning the asymptotic existence problem for Pn states that
there is a general sufficient condition ensuring existence with a function of order dn

on the right-hand side. More precisely,

Conjecture. Let S be an arbitrary set of isolated singularity types of corank ≤ n.
Then

αregn (S) > 0 .

Evidence for this conjecture can be found in Section 2.2 and in Chapter 3. In
particular we will see that αregn (S) > 0 if

• the Tjurina number in S is bounded, i.e. sup{S ∈ S} <∞,

• S is a set of curve singularities, i.e. corank(S) ≤ 2 for S ∈ S,

• S is a set of ordinary singularities,

• S = S1 ∪ S2 with αregn (Si) > 0.

The case of hypersurfaces of minimal degree having only one prescribed singularity
is of its own interest but, as we shall see in Section 2.3, plays also a major role in
the application of the local patchworking method.
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Definition 2.1.4. Let S be an (analytic or topological) singularity type.

(i) We denote by dn(S) the smallest natural number d for which there exists a
hypersurface W ⊂ Pn of degree d having one singular point of type S as its
only singularity.

(ii) We define dregn (S) as above but require furthermore that the hypersurface
corresponds to a T-smooth germ.

Remark 2.1.5. Obviously dn(S) ≤ dregn (S). Furthermore,

n
√
µ(S) + 1 ≤ dn(S) ≤ τ ea(S) + 1

by Bézout and the finite determinacy theorem.

There is also a conjecture concerning this number dn(S), which is equivalent to the
conjecture mentioned before.

Conjecture. There exists an absolute constant α > 0 such that

dregn (S) ≤ α n
√
τ s(S)

for any singularity type S of corank ≤ n.

2.2 Overview of known necessary and sufficient

conditions for the existence

2.2.1 Restrictions for the existence

The only effective way to proof non-existence of a hypersurface with certain singu-
larity collection and belonging to a prescribed linear system, is to show that it would
violate certain constraints on invariants. A common approach is consider some in-
variant which behaves semi-continuously under deformations, and derive properties
for a general singular hypersurface from a special one (e.g. one having many ordinary
singular points).

We review general restrictions for the existence and group them according to the
surrounding variety V .

Singular hypersurfaces in Pn.
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(i) For every hypersurface W ⊂ Pn of degree d with Sing(W ) = {z1, . . . , zr} we
have

r∑

i=1

µ(W, zi) ≤ (d− 1)n.

This is an immediate consequence of Bézout’s Theorem applied to the inter-
section of n generic polars.

(ii) (Bruce’s bound [Bru81]). Let W ⊂ Pn be a hypersurface of degree d with r
isolated singularities. Then

r ≤ 1
2
dn +O(dn−1) .

(iii) (Spectrum bound [Var83]). Let W ⊂ Pn be a hypersurface of degree d with
r isolated singularities having spectra D1, . . . , Dr ∈ Div(Q). Moreover, let
D ∈ Div(Q) be the spectrum of an ordinary singular point of multiplicity d.
Then for any open interval I of length 1 the following semi-continuity property
holds

r∑

i=1

|Di ∩ I| ≤ |D ∩ I|.

While this inequality often gives the best bounds in concrete examples, the
asymptotic quality is only known in the case of nodal hypersurfaces.

Curves on general smooth, projective surfaces. Let C ⊂ S be a curve having
r singular points z1, . . . , zr. Then the genus formula implies that

r∑

i=1

δ(C, zi) ≤
C2 + C.KS + 2

2
.

Plane curves C ⊂ P2.

Let C ⊂ P2 be a plane curve of degree d having r singular points z1, . . . , zr.

(1) The first Plücker formula implies

r∑

i=1

(µ(C, zi) + mult(C, zi)− 1) ≤ d2 − d− 2 .

In particular, if C has r1 nodes and r2 cusps, r1 + r2 = r, then

2r1 + 3r2 ≤ d2 − d− 2 .

(2) The genus formula implies that
∑r

i=1 δ(C, zi) ≤ (d−1)(d−2)
2

.
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(3) Applying the log-Miyaoka inequality F. Sakai [Sak93] proved that

r∑

i=1

µ(C, zi) ≤
2ν

2ν + 1

(
d2 − 3

2
d
)
,

where ν denotes the maximum of the multiplicities mult(C, zi), i = 1, . . . , r.

(4) The best known upper bound for plane curves of degree d having r nodes and
s cusps was given by Ivinskis [Iv85],

9

8
r + 2s ≤ 5

8
d2 − 3

4
d .

Singular surfaces S ⊂ P3.

Assume that S ⊂ P3 is a normal surface of degree d having only log-canonical
singularities. Then Wahl’s generalization of Miyaoka’s bound (cf. [Mi84, Wa94])
implies that ∑

z∈Sing(S)

µ(S, z) ≤ 4

9
d(d− 1)2 .

2.2.2 Asymptotic proper existence results

In this section we review previously known asymptotically proper existence results.
Only in the case of curves, there are results dealing with general singularity types.
In the higher-dimensional case, there are only asymptotically proper results in very
few cases.

Existence of singular curves on surfaces

(i) Plane curves.

(a) General results. The first general asymptotically proper existence result
for plane curves with singularities prescribed up to topological equivalence was
proven by Greuel, Lossen and Shustin in [GLS98]. They showed that there
exists a plane curve of degree with r singular points of prescribed topological
types S1, . . . , Sr and corresponding to a T-smooth germ if

r∑

i=1

µ(Si) ≤
1

392
(d+ 2)2 .

This result has been improved successively ([GLS98, Los99]), and the best
general sufficient condition up to now was found by Shustin [Sh01]. He proved
that for arbitrary analytic or topological types S1, . . . , Sr, the condition

r∑

i=1

τ s(Si) ≤
1

9
d2 +O(d)
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implies the existence of a non-empty T-smooth component of Vd(S1 + · · ·+Sr),
i.e. in our notation

αreg2 (S) ≥ 1

9
.

(b) Cuspidal curves. The best general existence result for cuspidal plane
curves was found by Hirano [Hi92] and reads αmax2 (A2) ≥ 9

16
.

In particular, this implies that these curves cannot correspond to T-smooth
germs. Hence already for plane curves with only ordinary cusps, the picture is
much more complicated than for nodal curves, where the nodes always imposed
independent conditions.

(c) Curves with ordinary nodes and cusps. Shustin proved the first
asymptotically optimal existence result for curves with nodes and cusps [Sh93].
Using the patchworking method he proved that αreg2 (A1, A2) = 1

2
. Note that

this was the only case where an asymptotically optimal result is known. This
will be extended in Chapter 3.

(d) Curves with general tacnodes and cusps. Using the theory of En-
riques diagrams, Roé [Ro01] showed that αreg2 ({Ak|k ≥ 1}) ≥ 1

6
. Our results

presented in Chapter 3 improve this bound substantially.

(e) Curves with one Ak singularity. Lossen [Los99] generalized a con-
struction of Gusein-Zade and Nekhoroshev [GZN83] to produce a series of
polynomials fk of degree dk with one Ak singularity and satisfying

lim
k→∞

k

d2
=

1

2
.

Gusein-Zade and Nekhoroshev [GZN00] improved the coefficient to 15
28

.

(ii) Curves on general surfaces.

The first general asymptotically proper sufficient conditions for the existence
for curves on more general surfaces S were found by Keilen and Tyomkin
[KeT02] (cf. also [Sh01]). Let L be an ample divisor and D a divisor such that
D −KS is nef. Then there exists an α > 0 such that

r∑

i=1

δ(Si) ≤ α(D −KS − L)2 , respectively

r∑

i=1

µ(Si) ≤ α(D −KS − L)2 ,

together with some additional conditions (cf. [KeT02]) implies the existence of
a curve C ∈ |D| with topological (respectively analytic) singularities of types
S1, . . . , Sr.

The higher-dimensional case

We only mention the classical case of nodal surfaces in P3 since it has been studied
by many people, and moreover, hypersurfaces in Pn with only ordinary singular
points.



36 2 Hypersurfaces with prescribed singularities

(i) Nodal surfaces in P3. The best asymptotic bound was given by Chmutov
[Ch92] and reads αmax3 (A1) ≥ 5

12
. Again, this already implies that these sur-

faces do not correspond to T-smooth germs of the equisingular stratum, and
we cannot expect that the maximal number of nodes on surfaces in P3 has a
regular behaviour.

(ii) Hypersurfaces in Pn with ordinary multiple points. Using the Horace
method outlined in Section 1.2.3, Shustin derived the following existence the-
orem for hypersurfaces with ordinary multiple points (cf. [Sh00]). If

r∑

i=1

(
mi + n− 1

n

)
≤ 2 ·

(bd−1
2
c+ n

n

)
=

1

2n−1n!
dn +O(dn−1) ,

then there exists a hypersurface W ⊂ Pn having r ordinary multiple points
of multiplicity m1, . . . , mr as its only singular points. Note that this result is
asymptotically proper since the terms on the left hand side are asymptotically
of order mn

i , just as the Milnor number of the multiple points.

2.2.3 Obstructed and reducible families of hypersurfaces

In order to understand the (asymptotic) quality of a sufficient condition for some
property (e.g. T-smoothness or irreducibility of an equisingular stratum), it is indis-
pensable to construct (series of) examples, where this property fails. In this section
we review some classical and new examples.

Families of plane curves which are smooth but not T-smooth

Already Segre [Seg29] constructed a series of plane curves, which correspond to
smooth germs of the equisingular stratum of dimension bigger than the expected
one. Let m ≥ 3 and consider two generic homogeneous polynomials F2m(x, y, z) and
G3m(x, y, z) of degrees 2m, respectively 3m. The curve C6m ⊂ P2 defined by

(
F2m(x, y, z)

)3

+
(
G3m(x, y, z)

)2

= 0 ,

has 6m2 ordinary cusps and the dimension of the family of such curves has dimension

2m(2m+ 3)

2
+

3m(3m + 3)

2
+ 1 =

d(d+ 3)

2
− 6m2 +

(m− 1)(m− 2)

2
,

which is bigger than the expected dimension since m ≥ 3. On the other hand, a
simple calculation of the Zariski tangent space of V irr

6m (6m2 · A2) at C6m yields that
this space is in fact smooth.
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A slight modification of this example can be found in [GLS]. They show that the
space V irr

7m−3(6m
2 · A2) has a non-T-smooth component. Note that the number r of

cusps satisfies

r =
6

49
d2 +O(d) .

Non-smooth families of curves

The following series of irreducible curves where the T-property fails is due to Lossen
([Los02]). It generalizes the example of Luengo [Lue87].

Theorem 2.2.1. Let l ≥ 2, 0 ≤ s ≤ l− 2, k > 2l− s, q ≥ 3/(l− s− 1) be integers.
Then there exist irreducible curves Cd such that

(i) the degree of Cd is d = qk + qs,

(ii) Cd has precisely q2 singularities of type Alk+s−1, and

(iii) V irr

d (q2 ·A`k+s−1) is is non-T-smooth at Cd.

Moreover, if k > 4l − s then V irr
d (q2 ·Alk+s−1) has a component of the expected di-

mension but is singular at Cd.

Proof. [Los02].

Remark 2.2.2. (i) There exists also examples of non-smooth families of curves
with many Dµ singularities, or, more generally, quasihomogeneous singularities
(cf. [Los02]).

(ii) Furthermore, this series can be used to construct examples of obstructed sin-
gular hypersurfaces in Pn. For example consider the surface in P3 defined
by

Fd(x, y, z, w) := Cd(x, y, z) + wj ·Gd−j(x, y, z, w) ,

with Gd−j a generic polynomial, j ≥ 2. Then F has q2 singularities of types
Alk+s−1 and corresponds to a non-T-smooth germ because the singularities of
Fd are contained in the plane {w = 0}.

Reducible families

The main example of a reducible stratum is due to Zariski [Za71], and was general-
ized by Shustin [Sh94].

Example 2.2.3. For all p ≥ 1, the space V irr
6p (6p2 ·A2) is reducible. For p = 1, 2 the

stratum consists of two different T-smooth components and for p ≥ 3 there exist
components with different dimensions.
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Obstructed families of hypersurfaces

The following lemma allows us to generalize of examples of obstructed families of
plane curve to arbitrary dimensions.

Lemma 2.2.4. Let C be a reduced plane curve of degree d > 2. Then, for any n > 2,
there exists a hypersurface W ⊂ Pn of degree d having only isolated singular points,
such that τ(W ) = τ(C) and

h1
(
IXea(C)/P2(d)

)
= h1

(
IXea(W )/Pn(d)

)
.

Proof. [GLS].

The following theorem implies that the 4d − 4 criterion (cf. Section 4.1) for T-
smoothness is sharp.

Theorem 2.2.5. Let n ≥ 2 and d ≥ 10. Then there exists a reduced hypersur-
face W ⊂ Pn of degree d having an isolated singular point z with Tjurina number
τ(W, z) = 4d − 4 and being smooth outside z such that the corresponding germ of
the analytic equisingular stratum is non-smooth.

Proof. For n = 2 the result is due to du Plessis and Wall [dPW00]. The higher
dimensional case can be derived using Lemma 2.2.4.

2.3 Patchworking of projective varieties

The patchworking method, sometimes also called Viro’s glueing method, was intro-
duced by Oleg Viro in order to construct non-singular real algebraic curves in RP2

with prescribed isotopy type [Vir, Vir84], which is a part of Hilbert’s 16th problem.
The isotopy type of a real, non-singular, plane curve is determined by the mutual
disposition of its components, which, from the topological viewpoint, are either so-
called “ovals” (they divide RP2 into two parts) or so-called “one-sided curves” (their
complement is connected). Viro’s idea was to construct a new curve out of old ones
such that the isotopy type of the new curve was some kind of patchwork of the
components of the original curves.

It was realized, mainly by Shustin, that the patchworking method can in fact be
applied in many contexts to construct objects defined by polynomials with certain
prescribed properties, as long as one is able to control these properties in deforma-
tions. Except for the construction of hypersurfaces with prescribed singularities,
which we shall describe in detail in this section, there exist also versions of Viro’s
method in the following situations:
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Figure 2.1: A regular and a non regular triangulation.

• non-singular complete intersections with prescribed isotopy type [St94],

• real polynomial vector fields with prescribed singular points [IS94],

• real polynomials with prescribed critical points [Sh96],

• construction of ample divisors out of old ones [Bir99].

Moreover, we should mention that recent new observations about the patchworking
method provided valuable new insight and led to a generalization of the construction
presented below in the case of curves (see [Sh02, ShT03]). This revealed interesting
connections between enumerative geometry and the new field of tropical geometry.

2.3.1 Preliminaries

Viro’s original method and all of its modifications are based on subdivisions of
Newton polytopes corresponding to the defining polynomials. We start by defining
regular polyhedral subdivisions of Newton polytopes, and formulate the general
setup of patchworking, which is similar in all variants.

Furthermore, we introduce the notion of transversality, which is the key condition
to control equisingular deformations of polynomials with fixed Newton polytope.

In the following we consider the singularities either up to analytical or up to topo-
logical equivalence, and singularity type always means the equivalence class with
respect to the fixed classification.

Definition 2.3.1. Let ∆ ⊂ Rn be a non-degenerate Newton polytope.
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PSfrag replacements
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ω
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Figure 2.2: Graph of a function ν inducing a subdivision of ∆ ⊂ R.

(i) A polyhedral subdivision of ∆ is a subdivision

∆ = ∆1 ∪ · · · ∪∆N

into non-degenerate Newton polytopes ∆i, i = 1, . . . , N , such that ∆i ∩∆j is
either empty or a proper, common face of ∆i and ∆j.

(ii) A polyhedral subdivision ∆ = ∆1 ∪ · · · ∪∆N is called regular if there exists a
convex, piecewise linear function ν : ∆ → R with ν(∆ ∩ Zn) ⊂ Z and whose
linearity domains are exactly the polytopes ∆1, . . . ,∆N .

Example 2.3.2. (i) The triangulation shown on the left in Figure 2.1 is an ex-
ample of a regular subdivision. For let ν1, ν2, ν3 be convex functions whose
linearity domains are the strips k ≤ x ≤ k + 1 (for ν1), k ≤ y ≤ k + 1 (for ν2)
and k ≤ x+y ≤ k+1 (for ν3), where k = 0, . . . , d−1, and put ν = ν1 +ν2 +ν3.
This obviously is a convex, piecewise linear function and its linearity domains
are exactly as shown in Figure 2.1.

(ii) Not every subdivision is regular. For example the triangulation shown on the
right in Figure 2.1 is not regular ([GKZ94]).

(iii) A regular decomposition of ∆ can be constructed by the following procedure.
Let A ⊆ Zn be a finite set with Conv(A) = ∆ and let ν : A → Z be any
function. Consider the convex hull K ⊂ Rn+1 of the graph of ν. The lower
boundary of K projects bijectively onto ∆ and the projections of the faces
define a regular subdivision of ∆. Figure 2.2 illustrates this construction for
n = 1.

Obviously, every regular decomposition can be obtained via this procedure.
Furthermore, a generic function ν induces a triangulation of ∆ (cf. [GKZ94]).

Let us formulate the setup of the patchworking method.
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Input data of the patchworking method
Assume we are given

• a non-degenerate Newton polytope ∆ ⊂ Rn,

• a regular polyhedral subdivision ∆ = ∆1 ∪ · · · ∪∆N of ∆,

• complex numbers aω ∈ C with ω ∈ ∆ ∩ Zn and aω 6= 0 whenever ω is a
vertex of some ∆i.

Using this data we define the polynomials

Fk(x) =
∑

ω∈∆k

aωx
ω ∈ P(∆k) , k = 1, . . . , N ,

which obviously satisfy ∆(Fk) = ∆k.
Furthermore, they are compatible in the sense that F σ

i = F σ
j for σ = ∆i ∩∆j.

Given initial data as above, consider the polynomial

F (t)(x) =
∑

ω∈∆

aωx
ω · tν(ω) ,

where t is a parameter and ν is a convex, piecewise linear function inducing the given
subdivision of ∆. This polynomial is sometimes also called the Viro polynomial since
it was used in Viro’s original construction and will reappear in slightly modified
form in the patchworking theorem for singular hypersurfaces. Let us discuss some
elementary properties of this polynomial.

(i) Let l : Rn → R be an affine linear function defined by

l(ω1, . . . , ωn) = α0 + α1ω1 + . . .+ αnωn

with α0, . . . , αn ∈ Z. Put ν̃ := ν − l and define F̃ (t) in the same way as F (t)

with ν replaced by ν̃. Note that ν̃ is also convex and piecewise linear.

Let T be the linear transformation Rn → Rn given by T (x) = (tα1x1, . . . , t
αnxn).

Then

tα0 ·
(
f̃ (t) (T (x))

)
= f (t)(x) and thus V

(
f̃ (t)
)

= T
(
V
(
f (t)
))
.

(ii) Now let lk be the linear function equal to ν on ∆k and put νk = ν − lk.
So νk|∆k

= 0 and hence,

F
(t)
k (x) :=

∑

ω∈∆

aωx
ω · tνk(ω) = Fk(x) + G

(t)
k (x),
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Figure 2.3: Example of a subdivision together with an admissible directed graph.

where every monomial of G
(t)
k contains t to a positive power due to the con-

vexity of ν. This implies that F
(t)
k is a small deformation of the polynomial

Fk, and indicates the necessity for restricting to regular subdivisions.

The rest of this section is devoted to the notion of transversality.

Notation 2.3.3. Let ∆ be a Newton polytope and F ∈ P(∆). If ∆+ ⊂ ∂∆ is a
union of faces of ∆ then we denote by P(∆,∆+, F ) the space of polynomials from
P(∆) with fixed coefficients on ∆+, i.e.

P(∆,∆+, F ) :=
{
G ∈ P(∆) | F σ = Gσ, for all faces σ ⊂ ∆+

}
.

Again we consider P(∆,∆+, F ) also as a subspace of H0(OPn(d)), d ≥ deg(F ), by
homogenizing the polynomials.

Definition 2.3.4. Let ∆ be a Newton polytope and assume that ∆ = ∆1∪· · ·∪∆N

is a polyhedral subdivision. Let G = (V,E) be the dual graph of the subdivision, i.e.
V = {1, . . . , N} and (i, j) ∈ E if ∆i ∩∆j is a common facet of ∆i and ∆j. Denote

by ~G 6= ∅ the set of directed graphs with support G and without oriented cycles. We
call these graphs admissible, and for any such graph Γ ∈ ~G we define

∆k,Γ :=
⋃

(j,k)∈Γ

∆k ∩∆j ⊆ ∂∆k ,

i.e. the union of those facets of ∆k which “go into” ∆k with respect to the directed
graph Γ.

Example 2.3.5. Consider the subdivision of ∆(5) shown in Figure 2.3 together with
the indicated directed graph Γ. Let ∆1 = Conv{(1, 0), (3, 1), (3, 2), (0, 3)} be the
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shaded polytope. The non-filled circles correspond to ∆1,Γ∩Z2. The idea is that the
coefficients corresponding to these lattice points are already prescribed by conditions
on the polynomials defined on neighbouring polytopes, i.e. these coefficients are no
free parameters.

Definition 2.3.6. Let F ∈ C[x1, . . . , xn] and assume that

• ∆ = ∆(F ) has dimension n and

• Sing(F ) ∩ (C∗)n = {z1, . . . , zr}.

If ∆+ is a subset of ∂∆, then we call the triple (∆,∆+, F ) transversal if the natural
map

P(∆,∆+, F ) −→
r⊕

i=1

OPn,zi
/Is(W, zi)

is surjective, where W ⊂ Pn is the hypersurface defined by F .

The following remark justifies the name of “transversality”.

Remark 2.3.7. Let F ∈ C[x] be as in Definition 2.3.6 and let d ≥ deg(F ). De-
note by Md(F ) the germ at F of the space of all polynomials G of degree less
than d, having r singularities w1, . . . , wr in neighbourhoods of z1, . . . , zr and such
that (F, zi) ∼ (G,wi), i = 1, . . . , r. In other words Md(F ) denotes the germ of
the equisingular stratum corresponding to the singularities in (C ∗)n (embedded via

multiplying F with x
d−deg(F )
0 ).

Then a triple (∆,∆+, F ) as in Definition 2.3.6 is transversal if and only if for d� 0
the intersection

Md(F ) ∩ P(∆,∆+, F ) ⊂ C[x1, . . . , xn]≤d

is transversal. This follows since for d sufficiently large the sequence

0 −→ H0(IX(d)) −→ H0(OPn(d)) −→ H0(OX) −→ 0

is exact, where X =
⋃r
i=1X

s(F, zi). Hence (∆,∆+, F ) is transversal if and only if
the sequence

0 −→ H0(IX(d)) ∩ P(∆,∆+, F ) −→ P(∆,∆+, F ) −→ H0(OX) −→ 0

is exact, which is equivalent to P(∆,∆+, F ) intersecting transversally withMd(F ).

Let us give a condition for transversality in terms of H1-vanishing.
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Proposition 2.3.8. Let us be given a triple (∆,∆+, F ) and assume that ∆ meets
all the coordinate axes. Let Y be the subscheme of Pn defined by the homogeneous
ideal

I = 〈xd−ω1−...−ωn

0 xω1
1 . . . xωn

n | ω ∈ ∆ \∆+〉 ,
where d = deg(F ). Furthermore, we introduce the scheme

X =
⋃

z∈Sing(F )\Y
Xs(F, z) and put Z = X ∪ Y .

Then (∆,∆+, F ) is transversal if and only if h1(IZ/Pn(d)) = 0.

Proof. If h1(IZ/Pn(d)) = 0 then we have exact sequences

0

H0(IX(d))

H0(OPn(d))

0 H0(IZ(d)) H0(IY (d)) H0(OX(d)) 0

This implies that h1(IX(d)) = 0 and that the intersection H0(IX(d)) ∩ H0(IY (d))
has the expected dimension. Since

H0(IY (d)) =
{ ∑

ω∈∆\∆+

aωx
d−ω1−...−ωn

0 xω1
1 . . . xωn

n

}

the claim follows.

Transversality also implies that we can prescribe generic coefficients on ∆+. This is
very helpful to make given polynomials compatible on common faces of their Newton
polytopes.

Lemma 2.3.9. Assume that (∆,∆+, F ) is transversal, then for a generic polynomial

f(x) =
∑

ω∈∆+∩Zn

aωx
ω ,

there exists a polynomial F ′ ∈ P(∆) such that S(F ) = S(F ′), (F ′)σ = f and
(∆,∆+, F

′) is transversal.

Proof. Easy application of the implicit function theorem.
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2.3.2 The patchworking theorems

Again we assume that the classification of singular points is fixed. In order to
simplify the formulation of the patchworking theorem, we introduce the following
notation.

Notation 2.3.10. (i) Let F be a polynomial with Sing(F )∩(C∗)n = {z1, . . . , zr}.
If (F, zi) has type Si, we write S(F ) for the formal sum S1 + . . .+ Sr.

(ii) Analogously, if W is a hypersurface contained in a toric variety Tor(∆) with
Sing(W ) ∩ (C∗)n = {z1, . . . , zr} and (W, zi) has type Si, then we write S(W )
for the formal sum S1 + . . .+ Sr.

Theorem 2.3.11 (Patchworking of singular hypersurfaces). Assume we are
given a regular subdivision ∆ = ∆1∪· · ·∪∆N and let F1, . . . , FN be compatible PNS
polynomials with ∆(Fk) = ∆k and having only isolated singular points in (C∗)n.

If there exists an admissible graph Γ ∈ ~G, such that the triples (∆k,∆k,Γ, Fk) are
transversal for k = 1, . . . , N , then there exists a polynomial F ∈ P(∆) with

S(F ) = S(F1) + . . .+ S(FN ) .

Furthermore, (∆, ∅, F ) is transversal.

Proof. [Sh98].

The following corollary reformulates the theorem above in the language of hyper-
surfaces in smooth toric varieties.

Corollary 2.3.12. Assume that Tor(∆) is smooth. Then under the assumptions of
the patchworking theorem, there exists a toric hypersurface W ⊂ Tor(∆) such that

S(W ) = S(F1) + . . .+ S(FN ) ,

and W is smooth outside the torus (C ∗)n, and corresponds to a T-smooth germ.

Remark 2.3.13. The patchworking theorem works completely analogously in the
real case since it is based on the implicit function theorem (cf. [Sh98] for details).
In fact, using the charts of polynomials introduced in Section 1.3.2 we can give a
nice topological picture of the resulting hypersurface, at least in the case of curves.

Since the initial polynomials Fk are assumed to be PNS, Remark 1.3.20 implies that
all charts Chε(Fk) intersect transversally with the boundaries ∂∆k. Viro’s original
theorem (e.g. [Vir84]) states that the chart of the constructed polynomial F satisfies

Chε(F ) =

N⋃

k=1

Chε(Fk) ,
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Figure 2.4: A patchwork of a non-singular real algebraic curve of degree 6.

for all ε ∈ {±1}n. Hence the charts are “glued” together, which explains the name
“patchworking” (respectively “Viro’s glueing method”). Note that if the initial
polynomials Fk have no singular points in (C ∗)n, then the triples (∆,∆k,+, Fk) are
always transversal.

Figure 2.4 shows an example of a patchwork of a non-singular real curve of degree 6.
The Newton polytopes of the initial polynomials are all triangles of area 1

2
and their

charts look like the chart of a linear function, which were computed in Example
1.3.17. In particular, their shape only depends on the signs of the coefficients. In
the displayed example we chose the following coefficients ai,j of the monomials xiyj,
i+ j ≤ 6:

ai,j =

{
+1 if i and j are even,

−1 otherwise.

The resulting curve is a so-called Harnack curve; it has 11 connected components,
which is the maximal number for curves of degree 6.

The following variant of the patchworking theorem allows a simpler application, and
we refer to it as local patchworking. We formulate and apply this theorem only for
hypersurfaces in Pn, but it is possible to generalize it to hypersurfaces in smooth
varieties.

Theorem 2.3.14 (Local patchworking). Let S1, . . . , Sr be isolated singularity
types and assume that

• there exists an irreducible hypersurface in Pn of degree d having r + r′ or-
dinary singular points z1, . . . , zr+r′ of multiplicities m1, . . . , mr+r′ as its only



2.3 Patchworking of projective varieties 47

singularities, and
h1(IX(m;z)/Pn(d)) = 0 , (2.3.4)

• for any i = 1, . . . , r there exists a hypersurface in Vmi−1(Si) corresponding to
a T -smooth germ.

Then there exists an irreducible hypersurface W ⊂ Pn of degree d with r sin-
gular points of types S1, . . . , Sr and r′ ordinary singular points of multiplicities
mr+1, . . . , mr+r′ as its only singularities.

The following proof is a generalization of the proof from [GLS98] to arbitrary smooth
varieties. For a different proof, dealing also with lower deformations of Newton non-
degenerate points, see [Sh00].

Proof. We denote the hypersurface having r+r′ ordinary singular points by F and
let Gi ∈ Vsi

(Si), si = mi− 1, be T -smooth. The idea of the proof is to deform F by
“glueing” a local equation of Gi into the Newton diagram of a local equation of F .
We shall proceed in several steps.

Step 1. Choose An ⊂ Pn containing z1, . . . , zr+r′. We introduce local coordinates
xi = (xi1, . . . , xin) around zi inducing isomorphisms

OCn,zi
∼= C{xi1, . . . , xin}.

Assumption (2.3.4) implies that the natural morphism

H0(OPn(d)) −→ H0(OX(m;z)(d)) ∼=
r+r′⊕

i=1

C{xi}/mmi ,

is surjective, which means that we can realize any variation of the (mi − 1)-jets at
zi in P(H0(OPn(d))).
We consider the following system of coordinates for H0(OPn(d)) in a sufficiently
small neighbourhood U of F :

• choose preimages A
(i)
ω of the monomials xi

ω, 0 ≤ |ω| ≤ mi−1, i = 1, . . . , r+r′,
and

• some additional parameters Bj, j = 1, . . . , N =
(
d+n
n

)
−∑r+r′

i=1

(
mi+n−1

n

)

such that F corresponds to the parameter values

• A(i)
ω = 0, 0 ≤ |ω| ≤ mi − 1, i = 1, . . . , r + r′,

• Bj = 0, j = 1, . . . , N .
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Step 2. Assume that

gi(xi) =
∑

0≤|ω|≤mi−1

a(i)
ω xi

ω

is an affine equation for Gi at zi such that the leading form of gi is nondegenerate.

We define the hypersurface G corresponding to the parameter values

• A(i)
ω =

{
a

(i)
ω if |ω| = si = mi − 1 and i ≤ r

0 otherwise

• Bj = bj for j = 1, . . . , N with bj ∈ C arbitrary.

Thus, the hypersurface G has semi-quasihomogeneous singularities at z1, . . . , zr and
mi-fold points at zr+1, . . . , zr+r′. Furthermore, we may assume that G is a small

deformation of F by choosing the coefficients a
(i)
ω , bj sufficiently small such that

(i) the mi-fold points zr+1, . . . , zr+r′ are ordinary,

(ii) G is irreducible and

(iii) G has no singular points other than z1, . . . , zr+r′.

Step 3. We consider the family Wt of hypersurfaces close to G corresponding to the
parameter values

• A(i)
ω =

{
a

(i)
ω (t) · tsi−|ω| if |ω| ≤ si = mi − 1 and i ≤ r ,

0 otherwise

• Bj = bj(t) for j = 1, . . . , N .

where a
(i)
ω (t) and bj(t) are smooth functions in a neighbourhood of zero with

a(i)
ω (0) = a(i)

ω , bj(0) = bj.

Then the affine equation of Wt at zi is given by

f
(i)
t (xi) =

∑

0≤|ω|≤si

a(i)
ω (t) · tsi−|ω|xi

ω +
∑

|ω|>si

a(i)
ω (t)xi

ω

where the coefficients a
(i)
ω (t), |ω| > si, are affine functions in A

(m)
ω , m 6= i.

Step 4. Now we have to show that we can define the functions a
(i)
ω (t) and bj(t) as

smooth functions of t such that the hypersurface belongs to the intersection of the
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local equisingular strata corresponding to the singular types Si and has ordinary
singular points at zr+1, . . . , zr+r′. For any i ∈ {1, . . . , r} we first apply the (local)
coordinate change

Ti : (xi1, . . . , xin) 7→ (txi1, . . . , txin),

which induces an isomorphism for t 6= 0. This coordinate change turns Wt into a
hypersurface with affine equation

f̃
(i)
t (xi) =

∑

0≤|ω|≤si

a(i)
ω (t)xi

ω +
∑

|ω|>si

a(i)
ω (t) · t|ω|−sixi

ω

satisfying f̃
(i)
0 (xi) = gi(xi).

Since Gi is T -smooth the germ of the local equianalytic stratum at Gi · Hd−si
∞ in

H0(OPn(d)) can be described by ci = τ(Si) equations

ϕ(i) : U −→ Aci

depending only on A
(i)
ω , |ω| ≤ d, and with the property that there exists a subset

Λi ⊆ {ω ∈ Nn | |ω| ≤ si}

with cardinality ci and satisfying

det

(
∂ϕ

(i)
u

∂A
(i)
ω

)

ω∈Λi
u=1,...,ci

6= 0

at the point A
(i)
ω = a

(i)
ω , ω ≤ si, A

(i)
ω = 0, ω > si, i.e. at the parameter values

corresponding to Gi. Now consider the function

Φ = (Φ(1), . . . ,Φ(r)) : A1 × U −→
r∏

i=1

Aci

given by

Φ(i)
u

(
t,
{
A(i)
ω | i = 1, . . . , r, |ω| ≤ si

}
,
{
Bj | j = 1, . . . , N

})

= ϕ(i)
u

({
A(i)
ω | |ω| ≤ si

}
,
{
t|ω|−si · A(i)

ω | si < |ω|
})
.

By applying the chain rule we obtain

∂Φ
(i)
u

∂A
(m)
ω

∣∣∣∣∣
A

(j)
ω =a

(j)
ω

t=0, Bj=bj

=





∂ϕ
(i)
u

∂A
(m)
ω

(
{a(i)

ω | |ω| ≤ si}, 0, . . . , 0
)

if i = m

∑
|λ|≤si

∂ϕ
(i)
u

∂A
(i)
λ

(
{a(i)

ω | |ω| ≤ si}, 0, . . . , 0
)
· ∂A

(i)
λ

∂A
(m)
ω︸ ︷︷ ︸

=0

if i 6= m.
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This implies that at the point t = 0, A
(j)
ω = a

(j)
ω , Bj = bj, the determinant

det

(
∂Φ

(i)
u

∂A
(m)
ω

)

ω∈Λm, u=1,...,ci
i,m=1,...,r

decomposes into the product

r∏

i=1

det

(
∂ϕ

(i)
u

∂A
(i)
ω

({
a(i)
ω | |ω| ≤ si

}
, 0, . . . , 0

)
)

ω∈Λi
u=1,...,ci

6= 0 .

Hence we can apply the implicit function theorem and obtain the existence of
(smooth) functions

t 7→ A(i)
ω =





a
(i)
ω (t) if ω ∈ Λi, i ∈ {1, . . . , r}
a

(i)
ω if ω /∈ Λi, i ∈ {1, . . . , r}

0 if i ∈ {r + 1, . . . , r + r′}
t 7→ Bj = bj, j = 1, . . . , N,

which parametrizes locally at G a 1-parameter subfamily of the solution set of Φ = 0.
The hypersurface Wt (for t sufficiently small) corresponding to those parameter
values has then the desired singularities.

Step 5. It remains to verify that the hypersurface W = Wt (for t sufficiently small)
has no other than the r + r′ prescribed singularities.
Recall that the hypersurface W is a small deformation of the hypersurface G hav-
ing semi-quasihomogeneous singular points at z1, . . . , zr+r′ as its only singularities.
Thus, there exist open neighbourhoods Ui(0) ⊂ An and V (0) ⊂ C such that for

t ∈ V (0) the singular points of f
(i)
t in Ui(0) come from the singularity of f

(i)
0 at the

origin. But the singularities of f
(i)
t in Ui(0) coincide with the singularities of f̃

(i)
t in

T−1
i (Ui(0)) and since f̃

(i)
t is a small deformation of the polynomials gi, which have

exactly one singular point z, we know that there exists a neighbourhood U(z) such
that

Sing
(
f̃

(i)
t

)
∩ T−1

i (Ui(0)) = {z′} ⊂ U(z).

This implies that W = Wt (t small) cannot have singularities other than the r + r′

prescribed ones.

Remark 2.3.15. The local patchworking theorem can be seen as a special case of
global patchworking. Let us explain this in the case r = 1, i.e. we want to specify a
lower deformation of one ordinary multiple point z of multiplicity m while keeping
r′ ordinary singular points.

Denote the polynomial having r′ + 1 ordinary singular points by F and let G be
a polynomial of degree m − 1 having exactly one singular point situated at z such
that the hypersurface defined by G corresponds to a T-smooth germ of Vm−1(S).
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Assume without loss of generality that z is the affine origin and that

(i) ∆(F ) = {ω ∈ Rn
≥0 | m ≤ ωi ≤ d , i = 1, . . . , n},

(ii) ∆(G) = {ω ∈ Rn
≥0 | 0 ≤ ωi ≤ m− 1 , i = 1, . . . , n},

(iii) F and G are PNS polynomials.

As in the proof of Theorem 2.3.14 we can deform F into a PNS polynomial F ′ such
that

(i) ∆(F ′) = {ω ∈ Rn
≥0 | m− 1 ≤ ωi ≤ d , i = 1, . . . , n},

(ii) The terms of degree m− 1 of the polynomials F ′ and G agree.

Consider the subdivision of ∆(F ′)∪∆(G) of ∆n
d . Then the assumptions of the local

patchworking theorem imply that the triples

(∆(G), ∅, G) and (∆(F ′),∆(F ′) ∩∆(G), F ′)

are transversal, and hence the global patchworking theorem applies.

2.4 Existence and H1-vanishing

In this section we give conditions for the existence of hypersurfaces with prescribed
singularities, purely in terms of H1-vanishing. We start by expressing the existence
problem in terms of a certain zero-dimensional scheme.

Definition 2.4.1. Let (W, z) ⊂ (V, z) be a hypersurfaces germ defined by f ∈
C{x} ∼= OV,z.

(i) We define

Ia(W, z) :=
{
g ∈ C{x} | 〈g, gx1, . . . , gxn〉 ⊂ 〈f, fx1, . . . , fxn〉

}
,

and let Za(W, z) be the zero-dimensional scheme defined by Ia(W, z).

(ii) Let Ia1 (W, z) := mz · Ia(W, z) and denote by Za
1 (W, z) the zero-dimensional

scheme defined by Ia1 (W, z).

The following lemma is an immediate consequence of the Mather-Yau theorem.
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Lemma 2.4.2. (i) If g ∈ Ia(W, z), then for almost all t ∈ C, the germs {f = 0}
and {f + tg = 0} are analytically equivalent.

(ii) If g ∈ Ia1 (W, z), then for all t ∈ C, the germs {f = 0} and {f + tg = 0} are
analytically equivalent.

This yields the following existence criterion for hypersurfaces with one singularity.

Proposition 2.4.3. Given a zero-dimensional scheme X ⊂ V , a point z ∈ V \
supp(X) and a reduced hypersurface germ (W, z) ⊂ (V, z). If

H1(IX∪Za
1 (W,z)(d)) = 0 , (2.4.5)

then there exists a hypersurface W ′ ∈ |H0(IX∪Za(W,z)(d))| such that (W ′, z) is an-
alytically equivalent to (W, z). Moreover, these hypersurfaces form an open, dense
subset in |H0(IX∪Za(W,z)(d))|.

Proof. [Sh01].

Remark 2.4.4. It is enough to require (2.4.5) for X ∪ Z, where Z is a generic
scheme isomorphic to Za

1 (W, z) and satisfying X ∩ Z = ∅.

This allows to deduce the following existence theorem for hypersurfaces in Pn with
many singularities.

Proposition 2.4.5. Let (W1, z1), . . . , (Wr, zr) be hypersurface germs and let

Z = Za
1 (W1, z1) ∪ · · · ∪ Za

1 (Wr, zr) .

If H1(IZ(d − 1)) = 0, then there exists a reduced hypersurface W of degree d,
such that (W, zi) is analytically equivalent to (Wi, zi) and W has no further singular
points.

Proof. We introduce the zero-dimensional schemes

Zz := Z ∪ {z} for z ∈ Pn \ {z1, . . . , zr} .

Let H be a generic hyperplane through z, then Zz : H = Z and hence

H1(IZz :H/Pn(d− 1)) = 0 .

Using the reduction sequence and H1(IZz∩H/H(d)) = 0 we obtain H1(IZz(d)) = 0.

By Proposition 2.4.3 there exist hypersurfaces D1, . . . , Dr ∈ |H0(IZ(d))| such that
(Di, zi) is analytically equivalent to (Wi, zi) for i = 1, . . . , r. By Lemma 2.4.2 a
hypersurface

D = λ1D1 + . . .+ λrDr ,
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with λ1, . . . , λr ∈ C generic, satisfies (D, zi) ∼ (Wi, zi) and is furthermore reduced.

Let w1, . . . , ws be the singular points of D outside z1, . . . , zr. Since H1(IZ∪{wj}(d)) =
0 for j = 1, . . . , s, we obtain the existence of hypersurfaces D′

j ∈ |H0(IZ(d))| not
passing through wj. Hence a generic hypersurface W in the linear system

λ′0D + λ′1D
′
1 + . . .+ λ′sD

′
s ,

λ′0, . . . , λ
′
s ∈ C, has singularities at z1, . . . , zr equivalent to (W1, z1), . . . , (Wr, zr) and

no further singular points by Bertini’s theorem (cf. Theorem A.1.1).





Chapter 3

Existence results

In this chapter we present our main results concerning the existence problem.
First, we present a general existence theorem, which roughly states that from
the asymptotic viewpoint it suffices to study the existence problem in the min-
imal dimension where the singularities appear.
After that, we study the existence problem in special situations. We derive new
results for hypersurfaces with simple singularities, which are even asymptoti-
cally optimal. Furthermore, we give explicit equations of certain hypersurfaces
with one singularity and glue them by the local patchworking method. Finally
we apply our results also to the construction of real hypersurfaces.

3.1 Stabilization of the Existence Problem

The goal of this section is to prove a general existence theorem, which allows us to
carry over existence results to higher dimensions.

Given a set of singularity types S of corank n ≥ 1, let us assume we have an
asymptotic proper existence result, e.g. assume we know that

αregn (S) > 0 . (3.1.1)

It is natural to ask whether this implies that we also have asymptotically proper
existence results for hypersurfaces with singularities of types S in higher dimensions,
i.e. does (3.1.1) imply

αregm (S) > 0 , ∀m ≥ n ?

Example 3.1.1. Let µ ≥ 1. Clearly, d1(Aµ) = µ + 1 and a defining polynomial is
xµ+1. However, taking the polynomial xµ+1 + y2 we only obtain d2(Aµ) ≤ µ + 1,

55
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(a) Polytope ∆1 ⊂ ∆(5)

5

5
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(b) Polytope ∆2 ⊂ ∆(5)
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3

(c) Polytope ∆3 ⊂ ∆(5)
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5

5

(d) Polytope ∆4 ⊂ ∆(5)

Figure 3.1: The subdivision for n = 3, d = 5.

which is not asymptotically proper, i.e. just adding squares is not enough.
On the other hand consider

fk(x, y) = (y − xk)2 + y2k ,

which has an A2k2−1 singularity at the origin. Hence for µ = 2k2 − 1

d2(Aµ) ≤ 1√
2
·
√
µ+ 1 for µ = 2k2 − 1 ,

which is asymptotically proper.

We start by introducing a subdivision of ∆n
d containing ∆n−1

p as “slices” for p =
1, . . . , d − 1. Consider the following convex, integral sub-polytopes ∆1, . . . ,∆d−1

of ∆n
d :

• If 1 ≤ i ≤ d−1, i is odd, we define ∆i to be the convex hull of the union of the
simplex ∆(d) ∩ {ωn = i} with the points (0, . . . , 0, i− 1) and (0, . . . , 0, i+ 1);
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• If 1 ≤ i ≤ d − 1, i is even, we define ∆i to be the convex hull of the union
of the simplex ∆(d) ∩ {ωn = i} with the points (0, . . . , 0, d− i+ 1, i− 1) and
(0, . . . , 0, d− i− 1, i+ 1).

The closure of ∆(d) \ (∆1 ∪ . . .∪∆d−1) is the union of d− 1 polytopes ∆′
1, . . . ,∆

′
d−1

yielding altogether a convex subdivision of ∆(d). Note that every lattice point of
the ∆′

i, i = 1, . . . , d−1 is contained in at least one of the ∆j, j = 1, . . . , d−1. Hence
if for i = 1, . . . , d − 1 PNS polynomials Fi ∈ P(∆i) are given, then the resulting
polynomials Gi ∈ P(∆′

i) are also PNS. In fact if the coefficients of the Fi on the
boundary are generic, then the Gi themselves have no singular point in (C ∗)n.

Figure 3.1 shows an example for n = 3, and Figure 3.2 shows the projection of
∆1, . . . ,∆d−1 onto the plane (ωn−1, ωn).

Notice that(
∆ \ (∆1 ∪ . . . ∪∆d−1)

)
∩ Zn =

{
(ω′, 0) | ω′ ∈ Zn−1 \ {0}

}
,

and furthermore, ∆i ∩∆j = ∅ if |i− j| > 1 and
(
∆2i−1 ∩∆2i

)
∩ Zn = Conv{(0, . . . , 0, 2i), (0, . . . , 0, d− 2i+ 1, 2i− 1)} ,

(
∆2i ∩∆2i+1

)
∩ Zn = Conv{(0, . . . , 0, d− 2i− 1, 2i+ 1), (0, . . . , 0, 2i)} .

Hence, codimRn(∆i ∩∆j) ≥ 2 for all i, j.

Let us define the polynomials which we want to glue:
Assume f(x1, . . . , xn−1) is a PNS polynomial of degree d − 1 having only isolated
singular points. Then we consider

F (x1, . . . , xn) := x2
n − 2xn(f(x1, . . . , xn−1) + 1) + 1 .

Obviously, ∆(F ) = ∆1 and F is PNS.

Lemma 3.1.2. If 2 is not a critical value of f , then Sing(F )∩(C∗)n = {(x′, 1) | x′ ∈
Sing(f) ∩ (C∗)n} and for all z ∈ Sing(F ),

Iea(F, z) = 〈f, fx1, . . . , fxn−1 , xn − 1〉 .

Proof. Firstly, note that

F (x1, . . . , xn) = (xn − f − 1)2 − f 2 − 2f = 0 .

Let x = (x1, . . . , xn) ∈ Sing(F ) ∩ (C∗)n. Calculating the partial derivatives yields

Fx1 = −2xn · fx1

...
...

Fxn−1 = −2xn · fxn−1

Fxn = 2(xn − f − 1) .
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Figure 3.2: Projection of the subdivision to the (ωn−1, ωn) plane (the shaded part is
∆1).

Since xn 6= 0, we obtain fxi
= 0, i = 1, . . . , n−1. Furthermore, F = Fxn = 0 implies

that f 2 + 2f = 0, hence f(x) = 0 (since 2 is not a critical value of f) and thus
xn = 1.

Lemma 3.1.3. Let f be a PNS polynomial as above, and assume that f defines a
T -smooth hypersurface in Pn−1. Then the triad (∆1, ∅, F ) is transversal.

Proof. This follows since the map

P(∆1) ⊇ 〈(x′)ω
′

xn | |ω′| ≤ d− 1〉 −→
⊕

zi∈Sing(F )∩(C∗)n

OPn,zi
/Is(F, zi) ,

is surjective.

We obtain the following general existence result:

Proposition 3.1.4. Fix n ≥ 3, and let fi(x1, . . . , xn−1) be PNS polynomials of
degree i, i = 1, . . . , d− 1, defining T -smooth hypersurfaces Wi ∈ Vi(Si), Si = Si1 +
. . .+ Siri.
Then there exists a T -smooth hypersurface W in Pn whose singular points correspond
precisely to the singularities of W1, . . . ,Wd−1, i.e.

W ∈ Vd(S1 + . . .+ Sd−1) .

Proof. Let ∆′
i = Conv{(0, .., 0), (0, .., 0, 2), (d − i, 0, .., 0, 1), . . . , (0, .., 0, d − i, 1)},

and let φi : Zn → Zn be an affine linear lattice isomorphism taking ∆′
k to ∆k.
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Hence φi induces isomorphisms P(∆′
i)

∼=−→ P(∆i) and (C∗)n
∼=−→ (C∗)n, which,

for simplicity of notation, we denote also by φi. We define again

F ′
i (x1, . . . , xn) := x2

n − 2xn(fi(x1, . . . , xn−1) + 1) + 1 ,

and put Fi = φi(F
′
i ). Then Fi has the same singularities in the torus as Fi and

moreover ∆(Fi) = ∆i.

By the preceding lemmas the assumptions of the patchworking theorem are satisfied
and the claim follows.

Using these steps we obtain the following

Theorem 3.1.5. Let n > 2, and let S = Sa ∪ St where Sa is a set of analytic
singularity types of corank < n and St is a set of admissible topological singularity
types. If supS∈S τ

s(S) <∞, then

αregn (S) ≥ αregn−1(S)

n
.

Furthermore, if αregn−1(S) ∈ Aregn−1(S), then αregn−1(S)/n ∈ Aregn (S).

Proof. For all p = 1, . . . , d− 1, we have the following condition for putting singu-
larities on the polynomials situated on the “slice of height p” in the subdivision:

r∑

i=1

k
(p)
i τ s(Si) ≤ αpn−1 +Rn−1(p), α ∈ Aregn−1(S) ,

where Rn−1(p) ∈ O(pn−2). Summing over all p yields the condition

r∑

i=1

kiτ
s(Si) =

r∑

i=1

d−1∑

p=1

k
(p)
i τ s(Si) ≤ α

d−1∑

p=1

pn−1 +

d−1∑

p=1

Rn−1(p) .

The right hand side of the inequality satisfies

α

d−1∑

p=1

pn−1 +

d−1∑

p=1

Rn−1(p) ≥
α

n
dn +Rn(d) ,

where Rn(d) ∈ O(dn−1), which implies the claim.

Let us discuss two immediate consequences of Theorem 3.1.5. Firstly, it allows us
to deduce a general existence theorem for hypersurfaces in Pn with singularities of
corank less than 2.
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Corollary 3.1.6 (Hypersurfaces with singularities of corank ≤ 2). Let n ≥ 2,
and let S be a set of (analytical or topological) singularity types of corank ≤ 2.
If supS∈S τ

s(S) <∞, then
2

9 · n!
∈ Aregn (S) .

Proof. Immediately by Theorem 3.1.5 since 1
9
∈ Areg2 (S) by [Sh01].

Furthermore, let us briefly discuss the case of nodal surfaces in P3.

Corollary 3.1.7. If

k ≤ 1

6
d3 − d2 +

11

6
d− 1

there is an irreducible, reduced surface S ⊂ P3 of degree d having exactly k nodes
and no other singular points. Moreover, the equisingular stratum is T -smooth at S.

Proof. We apply Theorem 3.1.5 to irreducible plane curves with (p−1)(p−2)
2

nodes,
p = 2, . . . , d − 1. By Severi’s classical result [Sev21], these curves correspond to

T-smooth germs. The result follows by calculating the sum
∑d−1

p=2
(p−1)(p−2)

2
.

3.2 Hypersurfaces in Pn with ordinary multiple

points

The local patchworking theorem requires the existence of hypersurfaces with many
ordinary multiple points. Hence, if we want to use local patchworking for obtain-
ing general asymptotically proper existence results, it is first necessary to have an
asymptotically proper existence result for hypersurfaces with multiple points.

The following proposition reduces this existence problem to an H1-vanishing condi-
tion.

Proposition 3.2.1. Given integers m = (m1, . . . , mr) and d > 0 with mi ≤ d for
all i, and generic points z1, . . . , zr ∈ Pn such that

h1(IX(m,z)/Pn(d− 1)) = 0 ,

then there exists a reduced, irreducible hypersurface of degree d in Pn having ordinary
singular points z1, . . . , zr of multiplicities m1, . . . , mr as its only singularities.
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Proof. The proof is a generalization of the proof for n = 2 in [GLS98].
For fixed j ∈ {1, . . . , r} let Hj be a generic hyperplane through zj (in particular
not containing any zi, i 6= j). Then we consider the zero-dimensional schemes
X := X(m, z) and Xj concentrated in z = (z1, . . . , zr) and given by the ideals

IX,zi
= m

mi
zi
, i = 1, . . . , r, respectively IXj ,zi

=

{
m
mi
zi

i 6= j

m
mj+1
zj i = j

.

SinceXj : Hj = X we have h1(Pn, IXj :Hj
(d−1)) = 0 and moreover h1(Hj, IXj∩Hj

(d)) =
0 as mj + 1 ≤ d+ 1. Hence we can conclude that

h1(IXj (d)) = 0 .

This implies that for any j ∈ {1, . . . , r} we can find a hypersurface

Wj ∈ H0(IX(d)) \H0(IXj (d)) ,

which has an mj-fold point at zj and at least multiplicity mi at zi, i 6= j. Then
by Bertini’s Theorem A.1.1 and Lemma 1.2.37 a generic hypersurface in the linear
system

{λ1W1 + . . .+ λrWr} ⊂ |H0(IX/Pn(d))|
has ordinary singularities of multiplicity mi at zi, i = 1, . . . , r, and no other singu-
larities.

If n > 2, then the hypersurface is clearly irreducible as it has only isolated singular
points. For n = 2 irreducibility follows by Bertini’s Theorem (cf. [GLS98]).

Using the Horace method, Shustin generalized anH1-vanishing theorem by Hirschowitz
for zero-dimensional schemes in P2 to higher dimensions.

Let n ≥ 1 and d ≥ 1. We define

• M(n, d) = 2 ·
(
k+n
n

)
for d = 2k and

• M(n, d) =
(
k+n
n

)
+
(
k+n−1

n

)
for d = 2k − 1.

Note that

M(n, d− 1) ≤ 2 ·
(bd−1

2
c+ n

n

)
=

1

2n−1n!
dn +O(dn−1) . (3.2.2)

Theorem 3.2.2. Let m = (m1, . . . , mr) and d > 0. If

r∑

i=1

(
mi + n− 1

n

)
< M(n, d) , (3.2.3)

then h1(IX(m)(d)) = 0.
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Proof. For n = 2 see [Hir85], the generalization to higher dimensions is contained
in [Sh00].

Using the local patchworking theorem and the theorem above, we obtain

Corollary 3.2.3. Let n ≥ 2, and for i = 1, . . . , r let Wi ∈ Vdi
(Si) be a T -smooth

hypersurface. Then there exists a T -smooth hypersurface W ∈ Vd(S1 + . . .+ Sr) if

r∑

i=1

(
di + n

n

)
≤ M(n, d− 1) .

Remark 3.2.4. Let S be a set of singularity types and assume we know that there
exists a constant α > 0 such that

dregn (S) ≤ α · n
√
τ s(S) (3.2.4)

for all S ∈ S. This implies

(
dregn (S) + n

n

)
<

2

(n− 1)!
· (dregn (S))n ≤ 2 · αn

(n− 1)!
τ s(S) .

Hence, using estimate (3.2.2) we obtain

αregn (S) ≥ 1

n · 2n · αn .

Note that if the Tjurina number in S is bounded (e.g. if S is finite), then there
always exists α > 0 satisfying (3.2.4) (e.g. α = M + 1 where M = maxS∈S{τ(S)}).
In particular, for any set S of singularity types with bounded Tjurina number we
know

αregn (S) > 0 .

3.3 Curves with simple singularities

We apply again the patchworking procedure to construct curves with many simple
singularities. The idea for obtaining an asymptotically optimal existence result is
to look for polynomials f such that the sum of the Tjurina numbers of its singular
points in (C∗)2 equals the euclidian volume of the Newton polytope of f .
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Figure 3.3: The polytopes ∆Aµ,∆
′
Aµ

for the Aµ case. The non-filled circles

correspond to ∆+ ∩ Z2, the filled ones to (∆ \∆+) ∩ Z2, ∆ = ∆Aµ (respectively
∆ = ∆′

Aµ
).

3.3.1 The Aµ case

We shall use the following polytopes, which are shown in Figure 3.3:

∆Aµ := Conv{(1, 0), (0, 1), (0, 2), (µ, 1)}, ∆′
Aµ

= Conv{(0, 1), (µ−1, 2), (µ, 1), (µ, 0)} .

Lemma 3.3.1. Let µ ≥ 1, ∆ = ∆Aµ or ∆′
Aµ

. Let ∆+ be the union of any two edges
of ∆ with a common vertex. There exists a PNS polynomial f ∈ P(∆) such that

(i) f has an Aµ singularity as its only singular point in (C∗)2,

(ii) the coefficients of f along ∆+ are prescribed non-zero numbers,

(iii) the triad (∆,∆+, f) is transversal.

Proof. Assume that ∆ = ∆Aµ . We look for the desired polynomial in the form

f(x, y) = ay2 − 2y ·Q(x) + cx, ac 6= 0, degQ = µ, Q(0) 6= 0 .

A singular point (α, β) ∈ (C∗)2 of f must be isolated and of multiplicity 2, that is,
of type Ak. The condition that (α, β) is of type Aµ means that

f(α, β) = 0, fx(α, β) = 0, fy(α, β) = 0 ,

or, equivalently

β =
Q(α)

a
, (Q2(x)− acx)

∣∣
x=α

= 0, (2Q′(x)Q(x)− ac)
∣∣
x=α

= 0 ,

where x = α is a root of multiplicity µ, respectively µ−1, of the second, respectively
third, equation. To satisfy the requirement, we choose a branch of

√
acx in a neigh-

borhood of x = α, and demand that Q(x)−√acx = (x−α)µ+1ϕ(x) with a function



64 3 Existence results

PSfrag replacements 2
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Figure 3.4: The polytope ∆Dµ for the Dµ case. The non-filled circles correspond to
∆+ ∩ Z2, the filled ones to (∆ \∆+) ∩ Z2, ∆ = ∆Dµ .

ϕ(x) holomorphic in a neighborhood of x = α. This yields that Q(x) is the µ-jet of
the Taylor series of

√
acx at x = α. It is an easy exercise to verify that, chosen any

three of the coefficients a, b = 2Q(0), c, or d = 2
µ!
Q(µ)(0) of f at the vertices of ∆,

the rest of the coefficients of f depend (locally) smoothly on the chosen parameters,
and this means the transversality of the triad (∆,∆+, f). Furthermore, by acting
as f(x, y) 7→ λ1f(λ2x, λ3y), λ1, λ2, λ3 6= 0, we can prescribe the values of the chosen
coefficients.

It remains to notice that the required polynomial with the Newton polytope ∆′
Aµ

can be chosen in the form xµy2f(x−1, y−1), with f being constructed above.

3.3.2 The Dµ case

We use the polytopes shown in Figure 3.4:

∆Dµ := Conv{(0, 0), (µ, 0), (µ, 2), (0, 2)} .

Let ∆+ be the union of the left and bottom parts of ∂∆Dµ , i.e. ∆+ = [(0, 0), (0, 2)]∪
[(0, 0), (µ, 0)].

Lemma 3.3.2. Let µ ≥ 3, ∆ = ∆Dµ . There exists a PNS polynomial f ∈ P(∆)
such that

(i) f has two Dµ singularities as its only singular points in (C∗)2,

(ii) the coefficients of f along ∆+ are prescribed generic non-zero numbers,

(iii) the triad (∆,∆+, f) is transversal.
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Figure 3.5: The polytopes ∆E6 ,∆E7,∆E8 for the E6, E7, E8 singularities. The
non-filled circles correspond to ∆+ ∩ Z2, the filled ones to (∆ \∆+) ∩ Z2,
∆ = ∆Ek

, k = 6, 7, 8.

Proof. Assume that

f(x, y) = (x−α1)(x−α2)
(
y2 ·P (x)− 2y ·Q(x)+R(x)

)
= (x−α1)(x−α2) · g(x, y) .

Let α = αi, i = 1, 2. The curve {f = 0} has a Dµ singularity at (α, β) ∈ (C∗)2 if
and only if the curve {g = 0} has an Aµ−3 singularity at (α, β). The latter property
is equivalent to

β =
Q(α)

P (α)
, R(α) =

Q2(α)

P (α)
, R′(α) =

(Q2

P

)′
(α) .

Since the polars {gx = 0}, {gy = 0} of g intersect with multiplicity µ−3 at (α, β), we
obtain that PR−Q2 = c · (x−α1)

µ−2(x−α2)
µ−2. The latter equation can be solved

for P and Q by interpolation: the degree of Q is µ−2 and we know the value of Q2 at
the µ− 1 points 0, x1, . . . , xµ−2 where xi are the (distinct) roots of R(x). Note that
in particular the value of c is uniquely determined by P (0), Q(0), R(0) and α1, α2.
Hence we obtain the existence of f and the transversality of (∆,∆+, f), since the
coefficients of P,Q depend smoothly on the fixed data R(x), P (0), Q(0), α1, α2.

3.3.3 The exceptional cases

For the three exceptional types E6, E7, E8 we proceed slightly differently. We use
the polytopes shown in Figure 3.5

∆E6 = Conv{(0, 0), (4, 0), (0, 3), (4, 3)} ,
∆E7 = Conv{(1, 0), (3, 0), (3, 4), (2, 5), (0, 5), (0, 1)} ,
∆E8 = Conv{(0, 0), (4, 0), (0, 4), (4, 4)} ,

and let ∆Ek,+ ⊂ ∂∆Ek
be the union of the left and lower part of the boundary.

Then we proceed as follows:
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(1) Find explicit polynomials Fk ∈ Q[x, y] with prescribed Newton polytopes ∆Ek

and two Ek singularities in (Q ∗)2.

(2) Compute the tangent space to the equisingular stratum and check that it inter-
sects transversally with the respective space of polynomials. Since everything
is defined over the rational numbers, this can be done using the computer
algebra system Singular [GPS01]. For details cf. Appendix B.

Lemma 3.3.3. For k = 6, 7, 8 there exists a polynomial Fk ∈ Q[x, y] with ∆(Fk) =
∆Ek

and having two Ek singularities in (Q ∗)2. Furthermore, the triad (∆Ek
,∆Ek,+, Fk)

is transversal.

In the proof we shall use elementary properties of the Cremona transform, cf. Ap-
pendix A.

Proof. S = E6. We show the existence of a curve of degree 7 with an ordinary
4-fold point at (0 : 1 : 0), an ordinary 3-fold point at (1 : 0 : 0), an E6 singularity
at (0 : 0 : 1) and another E6 singularity somewhere outside the coordinate triangle.
The Cremona transform of such a curve has degree 4 and clearly can be realized (just
take a generic polynomial with Newton polytope ∆ = Conv{(0, 3), (4, 0), (3, 1)} and
apply a linear coordinate change).

The picture below shows the essential behaviour of these curves.
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An explicit example looks as follows:

f0 := y3 + x4 + x3y , f1 := f0(x+ y + 2, x− y − 4) , f2 := cremona(f1) ,

where cremona(g) denotes the (strict) Cremona transform of g. Then the polyno-
mial F6 := f2(x− 4, y + 3) has the desired properties. Using Singular it has been
checked that

dimQ(Id ∩ P(∆E6 ,∆E6,+, F6)) = 0 , Id = 〈F6,
∂F6

∂x
, ∂F6

∂y
〉 ∩Q[x, y]≤d .

Hence (∆E6 ,∆E6,+, F6) is transversal.
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S = E7. We show the existence of a curve of degree 7 with an ordinary 4-fold
point at (0 : 1 : 0), an ordinary 2-fold point at (1 : 0 : 0), an E7 singularity at
(0 : 0 : 1) and another E7 singularity somewhere outside the coordinate triangle.
The Cremona transform of such a curve has degree 5 and is displayed below.

PSfrag replacements
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2
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Cremona

Then we apply a linear coordinate change such that the curve looks as in the left of
the next picture below. Another Cremona transform yields a curve of degree 3 as
shown on the right. Such a curve can easily be realized by taking a generic poly-
nomial with Newton polytope ∆ = Conv{(3, 0), (2, 0), (1, 1), (0, 1)} and applying a
linear coordinate change.

PSfrag replacements

E7 deg = 3deg = 5
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An explicit example looks as follows:

f0 := 3x3 − x2 − 2xy + y , f1 := f0(x+ y, y) , f2 := cremona(f1) ,
f3 := f2(x + y − 1, y + 1

2
) , f4 := cremona(f3) .

Then F7 := f4(x + 28
9
, y + 4) is the desired polynomial. The transversality of the

triad (∆E7 ,∆E7,+, F7) has been checked as in the E6 case.

S = E8. We show the existence of a curve of degree 8 with ordinary 4-fold points at
(0 : 1 : 0) and (1 : 0 : 0), an E8 singularity at (0 : 0 : 1) and another E8 singularity
somewhere outside the coordinate triangle (cf. Figure 3.4). The Cremona transform
of such a curve has degree 5. It has a cusp on the line at infinity and an E8 singularity
outside the coordinate triangle and such a curve clearly exists.
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A concrete example looks as follows:

f0 := y3 + x5 − y2x3 , f1 := f0(x + y + 2, x− y − 3) , f2 := cremona(f1) .

Then F8 := f2(x − 4, y + 3) is the desired polynomial. The transversality of the
triple (∆E8 ,∆E8,+, F8) has been checked as in the previous cases.

3.3.4 Result

Combining the results of this section yields

Corollary 3.3.4. Let S be a finite set of simple singularities. Then αregn (S) = 1
n!

,
and, moreover, 1

n!
∈ Aregn (S).

Proof. By Theorem 3.1.5 we only have to consider the case n = 2. Assume that
S = {S1, . . . , Sr}. If Si = Dµ or Si = Eµ, we put ∆i to be ∆Si

. If Si = Aµ, we put
∆i to be the hexagon Conv{(1, 0), (0, 1), (0, 2), (µ− 1, 3), (µ, 2), (µ, 1)}, the union of
∆Aµ and a suitable translate of ∆′

Aµ
.

There exists a linear function R(d) such that if

r∑

i=1

ki vol(∆i) ≤ vol(∆(d))−R(d) (3.3.5)

we can pack ki translate copies of ∆i simultaneously into ∆(d), and so that these
copies will be the linearity domains of some convex piece-wise linear function ν :
∆(d) → R. If we orient all common edges upward and to the right, Lemmas 3.3.1,
3.3.2 and 3.3.3 guarantee that, first, the coefficients of the polynomials in these
lemmas can be made compatible, and, second, the transversality assumptions of the
patchworking theorem are satisfied.
Since vol(∆i) = τ(Si) and vol(∆(d)) = d2

2
, inequality (3.3.5) implies the claim.
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Remark 3.3.5. Let m = maxS∈S{τ(S)}. Then R(d) = md+ 3 satisfies (3.3.5) and
we obtain the sufficient condition

r∑

i=1

kiτ(Si) ≤
d2

2
−md− 3

for the existence of a plane curve in Vd(k1S1 + . . . + krSr) with only simple singu-
larities.

3.4 Hypersurfaces with one singularity

In this section we study the existence problem for hypersurfaces having only one
singularity and corresponding to a T-smooth germ, i.e. we want to estimate dregn (S)
for given types S.

Quasihomogeneous singularities

We construct hypersurfaces in Pn with one quasihomogeneous singularity and cor-
responding to T -smooth germs. These hypersurfaces can be glued using Corollary
3.2.3.

Let a = (a1, . . . , an) ∈ Nn, ai ≥ 2. Consider the polynomials

fk(x1, . . . , xn) = c2 · (x2 − xk1)a2 + . . .+ cn · (xn − xkn−1)
an + c1 · xa1kn ,

where (c1, . . . , cn) ∈ (C ∗)n. Then deg(fk) = max{a1, . . . , an} · k.

Lemma 3.4.1. If k ≥ max{a1, . . . , an}, then the germ of fk at the origin is contact
equivalent to

f(x) := c1 · xa1k
n

1 + c2 · xa22 + . . .+ cn · xan
n .

Proof. By applying successively the Jung automorphisms

x̃n = xn − xkn−1

...
...

x̃2 = x2 − xk1 ,

we deduce that fk is at the origin locally equivalent to f(x) + hk(x̃), where hk(x̃) is
a polynomial with

hk(x̃) ∈ 〈x̃a22 , . . . , x̃
an

n 〉 ,
since k ≥ max{a1, . . . , an}. Hence hk ∈ m · τ ea(f) and thus, by the theorem of
Mather-Yau, fk is contact equivalent to f at the origin.
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Example 3.4.2. Let a = (2, . . . , 2). Then fk has an A2kn−1 singularity, and we can
deduce in particular that for µ = 2kn − 1

d2(Aµ) ≤ 2 n

√
µ+1

2
,

which is asymptotically proper. However, fk cannot correspond to a T-smooth germ
of V2k(A2kn−1) since 2kn − 1 exceeds the dimension of the space of hypersurfaces of
degree 2k, which equals

h0(OPn(2k))− 1 =
(2k)n

n!
+O(kn−1) .

We can modify fk slightly to construct singularities of type Dµ. Consider the poly-
nomials of degree 2k + 1

gk(x) := x1(x2 − xk1)2 + (x3 − xk2)2 + . . .+ (xn − xkn−1)
2 + x2k+1

n .

Then using the same coordinate changes as above we deduce that gk has a Dµ-
singularity, µ = (2k + 1) · kn−1 + 1. Hence we obtain

d2(Dµ) ≤ 2 n

√
µ−1

2
+ 1 ,

which is again asymptotically proper.

The following lemma is a simple application of the Horace method, which can be
used to deduce T-smoothness.

Lemma 3.4.3. Consider the ideal I ⊂ C{x} given by

I := 〈(x2 − xk1)a1 , . . . , (xn − xkn−1)
an−1 , xkan

n 〉 ,

where ai ≥ 2 and k ≥ 1. Denote by X the zero-dimensional scheme in Pn defined
by I. Then h1(IX(d)) = 0 if d ≥ (a1 + . . .+ an) · k.

Proof. Using Lemma 1.2.38 we only have to note that for all i = 1, . . . , n

xkai

i ∈ Ii := I + 〈xi+1, . . . , xn〉/〈xi+1, . . . , xn〉 .

The previous lemma indicates how much we have to increase the degree in order to
obtain a T -smooth hypersurface.
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Lemma 3.4.4. Let m := max{a1, . . . , an} and let l be an integer satisfying l ≥∑n
i=1 ai

m
. Then for k ≥ m, the germ at the origin of

Fk(x) = fk(x) + (x2 − xk1)m·l + . . .+ (xn − xkn−1)
m·l + xm·l·k

n =: fk(x) + gk(x) .

is analytically equivalent to the germ of fk. Furthermore, the hypersurface in Pn

defined by the homogenization of Fk is smooth outside the origin and corresponds to
a T-smooth germ.

Proof. The first part follows by the theorem of Mather-Yau since

gk(x) ∈ m · τ(fk) .

The equisingular stratum is T-smooth at Fk by Lemma 3.4.3 since

〈(x2 − xk1)a1 , . . . , (xn − xkn−1)
an−1 , xkan

n 〉 ⊂ Iea(Fk, 0) .

The fact that Fk is smooth outside the origin can be checked by calculating the
partial derivatives.

Corollary 3.4.5. Let n ≥ 2 and fix a = (1, a2, . . . , an) ∈ Nn. Denote by Sa the set
of all analytical types of singularities defined by polynomials of the form

f(x) = c1 · xk1 + c2 · xa22 + . . .+ cn · xan

n ,

with k ∈ N, (c1, . . . , cn) ∈ (C ∗)n. Then

αregn (Sa) ≥
c

2n · n · ln > 0 , (3.4.6)

where l =
∑n

i=1 ai and c =
∏n

i=2(ai − 1).

Proof. Let S ∈ Sa, then by Lemma 3.4.4 the condition τ ea(S) ≤ c·dn

ln
, implies the

existence of a T -smooth hypersurface W ∈ Vd(S). Applying Corollary 3.2.3 and
Remark 3.2.4

αregn (Sa) ≥
c

2n · n · ln .

Remark 3.4.6. Corollary 3.4.5 implies that αn(S) > 0 for any finite union of
sets Sa. However, we do not obtain a uniform bound, which is independent of a.

Simple singularities

We apply these constructions also to obtain hypersurfaces with Dµ-singularities.
Furthermore, we improve the result from Lemma 3.4.4 in the case of Aµ-singularities.
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Proposition 3.4.7. Let n ≥ 2. Then

(a) Let µ ≥ 1. Then dregn (Aµ) ≤ (2n− 2) ·
⌈

n
√
µ+ 1

⌉
.

(b) Let µ ≥ 4. Then dregn (Dµ) ≤ (2n− 1) ·
⌈

n
√
µ− 1

⌉
+ 1.

Proof. We define the polynomials

fk,l(x) = (x2 − xk1)l + . . .+ (xn − xkn−1)
l + xlk .

(a) Let l = 2n− 2 and define

Fk(x) := fk,2(x) + fk,l(x) + xkn .

Then deg(Fk) = (2n− 2) · k and Fk has an Akn−1-singularity at the origin and
no further singular points. We show T-smoothness again using Lemma 1.2.38.
Choose Hi = {xi = 0} and let Xi ⊂ Pi, i = 1, . . . , n, be the zero-dimensional
scheme Xea(Fk(x1, . . . , xi, 0, . . . , 0), 0). Then sn = k and s2, . . . , sn−1 = 2k
satisfy the conditions of the lemma.
Furthermore, if we denote for simplicity fk(x1, x2, 0, . . . , 0) by f then

deg(X2 ∩ {x2 = 0}) = dimC (C{x1, x2}/〈x2, α · fx1 + β · fx2〉) = k

and thus s1 = k. This implies s1 + . . .+ sn = k+(n− 2) · 2k+ k = (2n− 2) · k
and hence by Lemma 1.2.38

h1(Pn, IXn((2n− 2) · k)) = 0 .

(b) Let l = 2n− 2 and define

gk = x1(x2 − xk1)2 + (x3 − xk2)2 + . . .+ (xn − xkn−1)
2 + fk,l + xkn

Then d := deg(gk) = (2n−1)k+1 and gk has an Dkn+1-singularity at the origin
and no further singular points. Then sn = k, s2, . . . , sn−1 = 2k + 1 satisfy
the conditions of Lemma 1.2.38 Furthermore, denote by g the polynomial
gk(x1, x2, 0, . . . , 0) then

deg(X2 ∩ {x2 = 0}) = dimC (C{x1, x2}/〈x2, α · gx1 + β · gx2〉) = k + 1

and hence s1 = k + 1. This implies

s1 + . . .+ sn = k + (n− 2)(2k + 1) + k + 1 = (2n− 2)k + n− 1

≤ (2n− 1)k + 1 = d

if k ≥ n− 2. Hence h1(IXn(d) = 0 by Lemma 1.2.38.
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Example 3.4.8. (i) The hypersurface in P4 of degree 8 defined by the (affine)
polynomial

f = (w − z4)2 + (z − y4)2 + (y − x4)2 + w8

has an A511-singularity at the origin and no other singular points. Note that
511 > 495 = h0(OP4(8)) and hence the hypersurface can not be T -smooth.

(ii) The hypersurface defined by the polynomial

F = (w−z4)2+(w−z4)6+(z−y4)2+(z−y4)6+(y−x4)2+(y−x4)6+w8+w24+w4

of degree 24 = 6k has an A255 = Ak4−1 singularity as its only singular point
and corresponds to a T-smooth germ.

Hence, we obtain an asymptotically proper existence result for the set of all simple
singularities (not just finite subsets). Proposition 3.4.7 implies in particular the
weaker estimate

dregn (S) ≤ 2n n
√
µ(S)

for any simple singularity type1 S. By Remark 3.2.4 we obtain that

αregn (S) ≥ 1

4n · nn+1
> 0 ,

for the set of all simple singularity types.

Unimodal singularities

The methods of this section can also be applied to construct hypersurfaces with
singularities which are not quasihomogeneous.

The hypersurface Wk defined by

Fk(x, y, z) = (y − xk)a2 + (z − yk)a3 + a · x · (y − xk) · (z − yk) + za1 ·k ,

a ∈ C, a1, a2, a3 ∈ N, has a Ta1k3,a2,a3 singularity at the origin. If Xk is the zero
dimensional scheme concentrated at the origin and defined by the Tjurina ideal, we
obtain that h1(IXk

(d)) = 0 if d ≥ (a1 + a2 + a3) · k using Lemma 3.4.3 because

〈(y − xk)a2 , (z − yk)a3 , za1 ·k〉 ⊂ Iea(Fk) .

By increasing the degree of Fk without changing the singularity as before we obtain
the following existence result.

1Note that dreg

n
(E6) = dreg

n
(E7) = 4, dreg

n
(E8) = 5.
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Corollary 3.4.9. Let Sa,b be the set of all singularities of type Tk,a,b. Then

αreg3 (Sa,b) ≥
1

24 · (1 + a+ b)3
> 0 .

Note that together with the result for simple singularities, this gives an asymptotic
proper existence result for hypersurfaces with singularities of modality < 2 since
the Tjurina number of the other unimodal singularities (3 parabolic and the 14
exceptional families, cf. [AGV88]) is bounded (cf. Remark 3.2.4).

3.5 Existence on other projective surfaces

In this section we present applications of our constructions to curves in other smooth,
projective surfaces.

Toric surfaces

Assume that V = Tor(∆) is a smooth, projective, toric surface. We denote the very
ample divisor corresponding to ∆ by H. Let d∆ ⊂ R2 be the polytope obtained by
multiplying all points in ∆ by d. Then

H0(OTor(∆)(dH)) ∼= P(d∆) .

We can use the methods of Section 3.3 to construct curves in the linear system
|H0(O∆(d))|, which has dimension

h0(O∆(d))− 1 = #{d∆ ∩ Z2} − 1 = vol(∆) + O(d) .

This yields

Theorem 3.5.1. Let S = {S1, . . . , Sr} be a finite set of simple singularity types.
There exists a linear function R(d) such that for all k1, . . . , kr the inequality

r∑

i=1

kiτ
s(Si) ≤ vol(∆)− R(d) (3.5.7)

implies that V|dH|(k1S1 + . . .+ krSr) has a non-empty T-smooth component.

Proof. Analogous to the proof of Corollary 3.3.4.

Example 3.5.2. Let ∆ = Conv{(0, 0), (1, 0), (0, 1), (1, 1)}. Then Tor(∆) ∼= P1×P1

and H is of type (1, 1) and h0(OP1×P1(d, d)) = (d + 1)2. Hence condition (3.5.7)
reads

r∑

i=1

kiτ
s(Si) ≤ d2 −R(d) .
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Surfaces in P3

The following application of the techniques and results of Sections 3.1 and 3.3 is due
to Shustin and Tyomkin [ShT03].

Let k be a positive integer. Define two sequences ak(n) and bk(n) recursively as
follows ak(1) = −k, bk(1) = −3, and

ak(n+ 1) = ak(n) + ak(1)− (n+ 1) ,

bk(n+ 1) = bk(n)− k +
(n+ 1)2

2
− (n+ 1)ak(1) + bk(1) .

Theorem 3.5.3. Consider a generic surface S ⊂ P3 of degree n ≥ 1 and let S =
{S1, . . . , Sr} be a finite set of simple singularity types with k = maxi=1..r{µ(Si)}. If
for k1, . . . , kr ≥ 0 and d ≥ 1 the inequality

r∑

i=1

kiµ(Si) ≤
nd2

2
+ ak(n)d+ bk(n) (3.5.8)

holds true, then there exists a curve C ∈ |OS(d)| satisfying C ∈ Vd(k1S1 + . . .+krSr)
and corresponding to a T-smooth germ.

Proof. For n = 1 the theorem coincides with Corollary 3.3.4. For n > 1, see
[ShT03].

Note that since h0(OS(d)) = nd2

2
+O(d), Theorem 3.5.3 is also asymptotically opti-

mal.

3.6 Real curves with many singularities

In this section we study plane curves defined over the real numbers and consider the
singular points up to topological equivalence.

Throughout this section, σ denotes the action on P2 = CP2 induced by complex
conjugation.

Definition 3.6.1. If z, w are points in RP2 (respectively pairs of conjugate imag-
inary points), and (C, z) ⊂ (C, z), (D,w) ⊂ (C2, w) are (multi-)germs, then (C, z)
and (D,w) are called topologically equivalent over R, if there exists a local equivari-
ant homeomorphism mapping (C, z) to (D,w). The equivalence classes are called
real topological types.

We start by making a few general remarks concerning real singularity types:
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(i) The real equisingular stratum is locally the real part of the complex equisin-
gular stratum. This implies in particular that if the complex ES-stratum is
T-smooth, then the real stratum is also T-smooth.

(ii) The real topological type S of a real, curve singularity is determined by the
(µ(S) + 1)-jet of a defining equation (cf. [AGV88]).

(iii) There are three different real types corresponding to a complex node: Real
nodes with real tangents (e.g. x2 − y2 = 0), single points (e.g. x2 + y2 = 0)
and pairs of conjugated imaginary nodes.

(iv) For unibranched singularities, the real topological type is uniquely determined
by the complex type since their resolution tree is a chain. For other singular-
ities the real type depends not only on the multiplicity sequence, but also on
the positions of the infinitely near points (cf. [Los99]).

(v) A real singularity (C, z) ⊂ (RP2, z) is simple if and only if its real topological
type belongs to the following list:

Real type Equation Real picture

A2k k ≥ 1 x2k+1 + y2 unibranched
A+

2k−1 k ≥ 1 x2k + y2 isolated point
A−

2k−1 k ≥ 1 x2k − y2 2 branches

D2k+1 k ≥ 2 x2k + xy2 2 branches
D+

2k k ≥ 2 x2k−1 + xy2 line
D−

2k k ≥ 2 x2k−1 − xy2 3 branches

E6 x3 + y4 unibranched
E7 x3 + xy3 2 branches
E8 x3 + y5 unibranched

Reviewing the constructions from Section 3.3 we obtain

Proposition 3.6.2. Let {S1, . . . , Sr} be a finite set of real, simple singularity types,
and let k = supi=1..r{µ(Si)}. If

r∑

i=1

kiµ(Si) ≤
1

2
d2 − kd− 3

then there exists a real curve C ⊂ RP2 of degree d with ki singularities of type Si for
i = 1, . . . , r, and no further singular points. Moreover, the real equisingular stratum
is T-smooth at C.

Proof. Using the remarks above we have to verify that in the constructions de-
scribed in Lemmas 3.3.1, 3.3.2 and 3.3.3 we find representatives defined over the
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real numbers. Moreover, whenever a complex type S splits into two real types S+

and S−, we have to check that both types can be realized.

If S = Aµ we consider the polynomials

f(x, y) = ay2 − 2y ·Q(x) + cx, ac 6= 0, degQ = µ, Q(0) 6= 0 ,

as in the proof of Lemma 3.3.1. It is easy to see that we find a polynomial defined
over the real numbers. Furthermore, the sign of Q0 determines the choice of the
branch of

√
acx and hence, if µ = 2k − 1, the corresponding real type A+

2k−1 or
A−

2k−1.

For S = Dµ consider again the polynomials

f(x, y) = (x− α1)(x− α2)
(
y2 · P (x)− 2y ·Q(x) +R(x)

)
.

If we assume that all roots of R are real, then we can solve the system appearing in
the proof of Lemma 3.3.2 over the real numbers. Since we require that

PR−Q2 = c · (x− α1)
µ−2(x− α2)

µ−2 ,

we see that the type depends on the sign of c if µ = 2k. But in this case the sign
of c is determined by the sign of P (0) ·R(0)−Q2(0), which implies that both types
can be constructed.

For S = Ek, k = 6, 7, 8, the result follows immediately by Lemma 3.3.3 since the
polynomials are defined even over the rational numbers.

Remark 3.6.3. We should mention that also the results from Section 3.4 can be
transfered to the real case by simply choosing real values for the parameters in the
constructed polynomials. This implies that we obtain precisely the same bounds as
in the complex case. For more details concerning real curves with one prescribed
singularity cf. [Sh93, Los99].





Chapter 4

H1-vanishing

As we have seen in the previous chapters, H1-vanishing of certain ideal sheaves
plays a major role for the geometry of equisingular strata. In this chapter we
study methods for deriving H1-vanishing criteria.

We start by reviewing classical and modern approaches, and give an overview
of vanishing theorems, most of which concern zero-dimensional schemes in P2.

Then we recall properties of the Castelnuovo function of zero-dimensional
schemes in P2, and show how to generalize this approach to zero-dimensional
schemes on general surfaces in P3. The graph of the Castelnuovo function
of these schemes is to some extent similar to the P2 case, and we show how
to apply this theory in order to obtain H1-vanishing theorems. Furthermore,
we review the approach based on Bogomolov instability, and discuss relations
with the Castelnuovo function.

Finally, we present some examples and properties of the Castelnuovo function
of zero-dimensional schemes in P3, which might serve as a motivation for future
studies.

4.1 Introduction to the problem

Assume that X ⊂ V ⊂ PN is a zero-dimensional scheme, and let H be a fixed ample
divisor. Then for d > 0 sufficiently large

H1(IX(dH)) = 0 (4.1.1)

since H is ample (cf. Appendix A). The goal is to find the smallest number d such
that (4.1.1) is valid.

79
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As for the existence problem discussed in Chapters 2 and 3 we are in particular
interested in the asymptotic behaviour. Let σ be an invariant of zero-dimensional
schemes, and assume that the inequality

σ(X) ≤ f(d) (4.1.2)

implies that H1(IX(dH)) = 0, where f : N→ N is some function. Assume further-
more that there exists a function g : N → N such that, for infinitely many d, there
exists a zero-dimensional scheme X with h1(IX(d)) > 0 and

σ(X) ≤ g(d) . (4.1.3)

As before, ifO(f) = O(g), then we call (4.1.2) an asymptotically proper H 1-vanishing
criterion, and in case f and g are polynomials whose leading terms agree, then (4.1.2)
is called asymptotically optimal.

Remark 4.1.1. There exists a series of zero-dimensional schemes Xk ⊂ Pn with

dk := deg(Xk) = αk2 +O(k) ,

and h1(IXk
(dk)) > 0 (cf. [Sh00]). This shows that a general H1-vanishing result

with σ(X) = deg(X) can be at most quadratic in d on the right-hand side.

We distinguish between several classes of zero-dimensional schemes, which require
or allow special techniques for dealing with them:

• General zero-dimensional schemes X ⊂ V ,

• Zero-dimensional schemes contained in a hypersurfaces X ⊂ W ⊂ V ,

• Zero-dimensional schemes associated to singular points of a hypersurface W
and satisfying X ⊂ Xea(W ),

• (Generic) fat point schemes X(m, z).

Let us briefly review some approaches and results.

Classical approaches based on the Riemann-Roch Theorem.

This approach was used already by Severi, Segre and Zariski, and it is based on the
following idea: If X is a zero-dimensional scheme on a surface S contained in a curve
C (for example X = Xea(C)), then consider IX/C = IX/S⊗OC instead of IX/S , and
apply vanishing theorems for coherent OC -modules using that X is a divisor on C.

Applying this method Greuel and Karras proved a general H1-vanishing theorem
for zero-dimensional schemes X ⊂ C ⊂ S, where S is a smooth, projective surface
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and C a curve. If C1, . . . , Cr are the irreducible components of C, they proved that
H1(IX/C(D)) = 0 if

deg(X ∩ Ci)− isodCi
(X,C) < (D −KS − C).Ci

for i = 1, . . . , r (cf. [GrK89]). The so-called isomorphism defect isodCi
(X,C) is a

certain positive number introduced in [GrK89], which we shall not define here.

If S = P2, X ⊂ Xea(C) and C is not a union of d ≥ 3 lines, d = deg(C), then the
above condition was used to produce the famous 4d− 4 criterion

deg(X)− isod(X,C ′) < 4d− 4 =⇒ H1(IX/C(d)) = 0 ,

where C ′ denotes a generic polar of C. It can be shown that for a curve C having r
nodes as only singular points, we have isod(Xea(C), C ′) = deg(Xea(C)) = r. Hence,
this criterion implies in particular the classical result that nodal curves are always
T-smooth.

Application of Kodaira vanishing.

This approach was introduced by Xu [Xu95], and it was used to prove vanishing
theorems for generic fat point schemes X(m) ⊂ P2. It is based on a criterion for
showing ampleness of divisors dH −m1E1 − . . .−mrEr on P2

r, the projective plane
blown up in the r generic points, and then applying the Kodaira vanishing theorem.

Using this idea he proved the following vanishing criterion for generic fat point
schemes:
Let m = (m1, . . . , mr), m1 ≥ m2 ≥ · · · ≥ mr, and d be positive integers satisfying
m1 +m2 ≤ d, m1 + . . .+m5 ≤ 2d, and

r∑

i=1

(mi + 1)2

2
<

9(d+ 3)2

20
.

Then H1(IX(m)(d)) = 0.

Keilen and Tyomkin [KeT02] generalized this approach to more general projective
surfaces S, and showed that H1(IX(m)/S(d)) = 0 if

2 ·
r∑

i=1

(mi + 1)2 < (D −KS)
2 ,

and, in addition, for any irreducible curve B with B2 = 0 and dim |B|a > 0 (the
system of curves algebraically equivalent to B)

max{mi | i = 1, . . . , r} < (D −KS).B .
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Bogomolov instability of rank 2 vector bundles.

Chiantini and Sernesi [CS97] used Bogomolov’s theory of unstable rank 2 vector
bundles (cf. [Bog79]) to produce H1-vanishing theorems for some zero-dimensional
schemes on smooth projective surfaces. We will discuss this approach in more detail
in Section 4.3 below.

In the P2 case they obtained the following result:
Let C ⊂ P2 be an irreducible curve of degree d ≥ 3, and let X ⊂ Xea(C) be a zero-
dimensional scheme with connected components Xi, i = 1, . . . , r. For an arbitrary
zero-dimensional scheme Z define

c(Z) = max{deg(Z ′) | Z ′ ⊂ Z locally a complete intersection} .

Then H1(IX(d)) = 0 if
r∑

i=1

(c(Xi) + 1)2 < d2 + 6d .

Keilen and Tyomkin used this approach in combination with ideas of [GLS00] to
produce a new vanishing result in terms of new invariants γα(S) discussed in detail
in [LoK03] (cf. also Section 4.4). Let S be a surface with Néron-Severi group equal
to Z and denote by L an ample generator. Assume that C ⊂ S is an irreducible
curve, and let X = X1 ∪ · · · ∪Xr ⊂ Xea(C) be a zero-dimensional scheme.
Then H1(IX/S(dL)) = 0 if

r∑

i=1

γα(C;Xi) < α(d− κ)2 · L2 , (4.1.4)

where α = 1
max{1,1+κ} and KS = κ · L.

The Horace method.

Hirschowitz [Hir85] initiated a new approach for finding H1-vanishing criteria, which
has been used in many variants. We have already discussed the idea of the basic
Horace method in Section 1.2.3.

The following vanishing theorem for generic fat point schemes in Pn was proven by
Hirschowitz [Hir89] for n = 2, and generalized to higher dimensions by Shustin in
[Sh00].

If m = (m1, . . . , mr) and d > 0 are positive integers such that

r∑

i=1

(
mi + n− 1

n

)
< M(n, d) ,
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then h1(IX(m)/Pn(d)) = 0, where M(n, d) is the number introduced in 3.2. Note that
this result is asymptotically proper.

The 4d− 4 criterion (cf. above) can be generalized to higher dimensions. If X ⊂ Pn

is an arbitrary zero-dimensional scheme, then H1(IX(d)) = 0 if

deg(X) <





8 if d = 2,

16 if d = 3,

18 if d = 4,

4d− 4 if d ≥ 5.

(cf. [dPW98]). Shustin and Tyomkin proved this theorem by induction on the degree
and the dimension by applying the Horace method [ShT99]. This is in fact the only
general H1-vanishing result in the higher dimensional case.

The Castelnuovo function.

Greuel, Lossen and Shustin used the Castelnuovo function to prove newH1-vanishing
results for zero-dimensional scheme in the plane [GLS00]. This approach is based
on the works of Davis [Da86] and Barkats [Ba93], and shall be discussed in detail in
the next section. The main result was the following theorem [GLS00]:

Let C ⊂ P2 be an irreducible curve of degree d ≥ 6, with r singular points z1, . . . , zr.
If a zero-dimensional scheme of the form

X = X1 ∪ · · · ∪Xr , Xi ⊂ Xea(C, zi) ,

satisfies
r∑

i=1

γ1(Xi, C) < (d+ 3)2 ,

then h1(IX(d)) = 0.

4.2 The Castelnuovo function

In this section we discuss the Castelnuovo function of zero-dimensional schemes in
detail. We start by recalling the definition and some elementary properties, which
are valid in general. In Section 4.2.1 the case of zero-dimensional schemes in the
plane is discussed and the results of [GLS00] are recalled. Then in Section 4.2.2 we
study the behaviour of the Castelnuovo function for schemes on general surfaces in
P3, which has not been studied before.

Let us define the Castelnuovo function of zero-dimensional schemes. Assume that
V ⊂ PN is a smooth, projective variety and that H ⊂ V is a fixed ample divisor. If
no confusion arises we write F(d) for F(dH) if F is a coherent sheaf on V .
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Definition 4.2.1. Let ∅ 6= X ⊂ V be a zero-dimensional scheme defined by the
ideal sheaf IX ⊂ OV . Then the Castelnuovo function of X is given by

CX : Z→ Z , d 7→ h1(IX/V ((d− 1)H)) + h1(IX/V (dH)) .

We associate to X the numbers

a(X) = min{d |H0(IX(d)) 6= 0} ,
b(X) = min{d | |H0(IX(d))| 6= ∅ has no fixed component} and

t(X) = min{d | h1(IX(d)) = 0} .

Here, a fixed component is a divisor D such that every element of the linear system
|H0(IX(dH))| contains D as a component. We call the maximal divisor satisfying
this property the fixed component of |H0(IX(dH))|.

Let us assume that h1(OV (d)) = 0 for all d, which is the case in particular for all
smooth hypersurfaces V ⊂ Pn, n ≥ 3. Then

h1(IX(d)) = h0(IX(d))− h0(OV (d)) + deg(X) ,

and hence

CX(d) = h1(IX(d− 1))− h1(IX(d))

= h0(OV (d))− h0(OV (d− 1))−
(
h0(IX(d))− h0(IX(d− 1))

)
.

If W is a generic hyperplane section of V ⊂ PN , then we have the reduction sequence

0 −→ IX(d− 1) −→ IX(d) −→ OW (d) −→ 0 .

Since h1(OV (d)) = 0 we obtain

CX(d) = h0(OV (d))− h0(OV (d− 1))−
(
h0(IX(d))− h0(IX(d− 1))

)

= h0(OW (d))−
(
h0(IX(d))− h0(IX(d− 1))

)

= dim coker(π) . (4.2.5)

where π : H0(IX(d))→ H0(OW (d)) is the natural restriction map.

The following lemma contains some elementary properties of the Castelnuovo func-
tion.

Lemma 4.2.2. Let V be a smooth, projective variety with h1(OV (d)) = 0 for all
d ∈ Z. Let X ⊂ V be a zero-dimensional scheme, and asssume that W is a generic
hyperplane section of V , hence in particular X ∩W = ∅. Then

(a) CX(d) ≥ 0 for all d, and CX(d) = 0 for d� 0.
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(b) CX(d) ≤ h0(OW (d)), with equality if and only if d < a(X).

(c) a(X) ≤ b(X) ≤ t(X) + 1.

(d) CX(d) = 0⇐⇒ d ≥ t(X) + 1.

(e) If Y ⊆ X then CY (d) ≤ CX(d).

(f)
∑d

s=0 CX(s) = deg(X)− h1(IX(d)) for all d ≥ 0.

Proof. (a) The first part is obvious, the second one follows from Proposition
A.4.1.

(b) Follows from (4.2.5).

(c) The first inequality follows by definition. For the second one we have to show
that CX(d) = 0 implies d ≥ b(X). Assume that d < b(X). Then there is fixed
component D of H0(IX(d)), and its restriction to W is a fixed component of
π(H0(IX(d)) ⊂ H0(OW (d)). But this implies that CX(d) 6= 0 by (4.2.5).

(d) If d ≥ t(X) + 1, then h1(IX(s)) = 0 for all s ≥ d− 1, and hence in particular
CX(d) = 0. Conversely if CX(d) = 0, then by (4.2.5) CX(s) = 0 for all s ≥ d.
Hence h1(IX(d− 1)) = h1(IX(s)) for all s ≥ d− 1, and the claim follows since
h1(IX(s)) = 0 for s� 0 by Proposition A.4.1.

(e) If Y ⊆ X, then H0(IX(d)) ⊆ H0(IY (d)) and the claim follows from (4.2.5).

(f) Follows since deg(X) = h1(IX(−1)).

In the following sections we will refer to the graph of Castelnuovo function, where
we consider the Castelnuovo function as a function on R≥0 given by

CX : R≥0 −→ R≥0 , d 7→ CX([d]) .

4.2.1 The Castelnuovo function of zero-dimensional schemes
in P2

In this section, we review the behaviour of the Castelnuovo function for zero-
dimensional schemes in P2. In the following L denotes a generic line in P2.

Lemma 4.2.3. Let X ⊂ P2 be a zero-dimensional scheme.

(a) If d < a(X), then CX(d) = d+ 1.
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i

i+1

a(X)

a(X)

t(X)b(X)d+1

Figure 4.1: The graph of the Castelnuovo function of a scheme X ⊂ P2. The content
of the shaded region is h1(IX(d)).

(b) If d ≥ a(X), then CX(d) ≤ CX(d− 1). In particular, CX(d) ≤ a(X) for all d.

(c) If b(X) ≤ d ≤ t(X) + 1, then CX(d) < CX(d− 1).

(d) Let X ⊂ P2 be the intersection of two curves Ca, Cb of degrees a, b with a ≤ b.
Then

CX(d) =





d+ 1 for d < a ,

a for a ≤ d < b ,

a + b− d− 1 for b ≤ d < a+ b− 1 ,

0 for d ≥ a+ b− 1 .

Proof. [Da86].

From these properties we can derive the typical form of the graph of CX(d), which
is displayed in Figure 4.1. For complete intersection schemes X the picture is sym-
metric, in particular there are no “long stairs” in the graph, i.e. CX(d) 6= CX(d+ 1)
if a(X) > CX(d) 6= 0. For more general schemes, there can be long stairs in the
graph, and it is necessary to understand the reason for their appearance.

Example 4.2.4. Let X ⊂ P2 be a zero-dimensional scheme supported in z1, . . . , z5,
where z1, . . . , z4 lie on a line L and z5 is generic. The Castelnuovo function of X is
shown below. Note that CX(3) = CX(4) = 1, which equals the degree of the fixed
component L. Furthermore, CX∩L(d) = 1 for d = 0, . . . , 4.

4

2
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d0

Figure 4.2: The Davis Lemma for X ⊂ P2. The shaded region is the graph of CX∩D,
where D is the fixed component in H0(IX(d0)) of degree CX(d0).

The example above is a special case of Davis’ Lemma (cf. [Da86]).

Lemma 4.2.5. Let X ⊂ P2 be a zero-dimensional scheme, and d0 ≥ a(X) such that
CX(d0) = CZ(d0 + 1). Then the fixed curve D in |H0(IX(d0))| is of degree CX(d0)
and satisfies for d ≥ 0

CX∩D(d) = min{CX(d), CX(d0)} . (4.2.6)

Definition 4.2.6. We call a zero-dimensional scheme X ⊂ P2 decomposable if there
exists a positive integer d0 such that

CX(d0 − 1) > CZ(d0) = CX(d0 + 1) > 0 .

The following lemma is one step towards an H1-vanishing theorem, and was derived
by Barkats [Ba93].

Lemma 4.2.7. Let Cd ⊂ P2 be an irreducible curve of degree d > 0, and let X ⊂ Cd
be a zero-dimensional scheme such that h1(IX(d)) > 0. Suppose, moreover, d > a(X).
Then there exists a curve Ck of degree k ≥ 3 such that X ∩ Ck ⊂ Cd ∩ Ck is non-
decomposable and satisfies

(a) h1(IX∩Ck
(d)) = h1(IX(d)),

(b) deg(X∩Ck) ≥ k ·(d+3−k), if k ≤ d+3
2

, and deg(X ∩ Ck) > (d+3)2

4
, if k > d+3

2
.

Note that, if X is contained in an irreducible curve C of degree d, then necessarily
d ≥ b(X). This follows since C ∈ |H0(IX(d))| and any fixed component of this
linear system would be a component of C, which is impossible since C is irreducible.
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4.2.2 The Castelnuovo function of schemes X ⊂ S ⊂ P3

In this section, we study the Castelnuovo function for zero-dimensional schemes on
a general surface S ⊂ P3 of degree n. Then h1(OS(d)) = 0 for all d, and Pic(S) = Z

if n ≥ 4 (cf. Proposition A.4.2). For simplicity of notation, we write |OS(d)| for the
complete linear system |H0(OS(d))|.
We also consider X as a subscheme of P3, and the cohomology groups are connected
by the exact sequence

0 −→ OS(d− n) −→ IX/P3(d) −→ IX/S(d) −→ 0 .

Since H1(OS(d− n)) = 0 we know that

H1(IX/S(d)) ∼= H1(IX/P3(d))

if H2(OS(d− n)) = 0. But the exact sequence

0 −→ OP3(d− 2n) −→ OP3(d− n) −→ OS(d− n) −→ 0

implies that h2(OS(d−n)) = h3(OP3(d−2n))−h3(OP3(d−n)), and hence we obtain
H2(OS(d− n)) = 0 if d− 2n+ 4 > 0. In particular,

CX/S(d) = CX/P3(d) if d ≥ 2n− 2 .

The Castelnuovo function of a complete intersection scheme shows a regular be-
haviour as expected. Its graph is depicted in Figure 4.3.

Lemma 4.2.8. Let X = Ca ∩ Cb be the intersection of two curves Ca ∈ |OS(a)|,
Cb ∈ |OS(b)| without common component, and assume that n ≤ a ≤ a + n ≤ b.
Then:

CX(d) =





(
d+2
2

)
for d < n− 2

n · d− n(n−3)
2

for n− 2 ≤ d < a

n · d− n(n−3)
2
−
(
d−a+2

2

)
for a ≤ d < a+ n− 2

n · a for a+ n− 2 ≤ d < b

CX(a+ b + n− d) for b ≤ d < a+ b + n− 2

0 for d ≥ a + b+ n− 2 .

Proof. Since

h0(IX/S(d)) = h0(OS(d− a)) + h0(IX/Ca
(d))

= h0(OS(d− a)) + h0(OS(d− b))− h0(OS(d− a− b)) ,
we obtain that CX(d) = H(d)−H(d− 1), where

H(d) := h0(OS(d))− h0(OS(d− a))− h0(OS(d− b)) + h0(OS(d− a− b)) .
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Figure 4.3: The Castelnuovo function of a complete intersection X = Ca ∩ Cb on a
surface Sn ⊂ P3, n ≤ a ≤ a + n ≤ b.

Example 4.2.9. Let S ⊂ P3 be a generic surface of degree n ≥ 4. Let X ⊂ S be
the fat point supported in z ∈ S and defined by the ideal m

2
z. Since S is locally

isomorphic to P2, X ⊂ S is isomorphic to a fat point Y ⊂ P2 of multiplicity 2.
However, the Castelnuovo function of X and Y do not coincide since

a(X) = 1 < 2 = a(Y ) ,

because the curve C ∈ |OS(1)|, given by the intersection of the tangent plane to S
at z with S, has multiplicity ≥ 2 at z.

Again we can estimate the maximal value of CX(d).

Lemma 4.2.10. Let X ⊂ S be a zero-dimensional scheme. Then

(i) CX(d) ≤ n · a(X),

(ii) t(X) ≤ a(X) + b(X) + n− 2.

Proof. Let Ca ∈ |H0(IX(a(X)))| 6= ∅ and let Cb ∈ |H0(IX(b(X)))| be a curve
without common component with Ca. Define Y := Ca ∩ Cb. Then X ⊆ Y , and the
assertions follow from Lemma 4.2.8 and Lemma 4.2.2(e).

The crucial step is to know when the Castelnuovo starts descending. While for
schemes in P2 this was the case as soon as d ≥ a(X), the situation on a general
surface in P3 is slightly different.

Lemma 4.2.11. Let S ⊂ P3 be a smooth surface of degree n, and let X ⊂ S be a
zero-dimensional scheme. Then for all p ≥ 0,

CX(a(X) + p) ≤ CX(a(X) + p− 1) + max{0, n− p− 1} .

In particular, if p ≥ n− 1, then the Castelnuovo function is descending.
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Proof. Let C be a generic hyperplane section of S, i.e. C is a plane curve of degree n.
In generic affine coordinates, C is given by an equation F (x, y) of degree n, and
we denote by R the affine coordinate ring C[x, y]/F of C. The subspaces of R≤d
corresponding to π(H0(IX(d))) ⊂ H0(OC(d)) are denoted by Id. We represent the
elements of R≤d in terms of monomials xiyj, i+ j ≤ d, j ≤ n− 1.

Let f ∈ Ia(X), and we may assume that deg(f) = a(X) since we chose generic
affine coordinates. Let fa be the leading form of f . Then the elements fa · xiyj,
i + j = d− a, j ≤ n− 1, are linearly independent in R≤d. Hence, if B is a basis of
Id−1, then the set

B ∪ {fa · xiyj | i+ j = d− a, j ≤ n− 1}

is linearly independent in R≤d.

Let us study the influence of fixed curves on the shape of the Castelnuovo function.

Lemma 4.2.12. Let D ∈ |H0(OS(e))| be a fixed curve of |H0(IX(d))|, and assume
that C ∈ |OS(1)| is a generic hyperplane section. Then

(a) e ≤ a(X), and if e = a(X) then X ∩D = X.

(b) If e < a(X), then

CX(d) = CX:D(d− e) + h0(OC(d))− h0(OC(d− e)) .

In particular, CX(d) ≤ h0(OC(d))− h0(OC(d− e)) with equality if and only if
t(X : D) < d− e.

Proof. The first assertion is clear. If e < a(X), then X : D 6= ∅, and

H0(IX(d)) = D ·H0(IX:D(d− e)) .

For t ≥ 0, denote by πt the restriction map

πt : H
0(IX(t)) −→ H0(OC(t)) .

Then result follows from the equations

CX(d) = h0(OC(d))− πd(H0(IX(d))

CX:D(d− e) = h0(OC(d− e))− πd−e(H0(IX:D(d− e)),

noting that πd(H
0(IX(d)) = πe(D) · πd−e(H0(IX:D(d− e)).
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Remark 4.2.13. If e ≤ d− n + 2, then h0(OC(d))− h0(OC(d− e)) = n · e. Hence
under this condition the previous lemma implies

e ≤ CX(d)

n

with equality iff t(X : D) < d− e.

In order to proceed similarly to the P2 case, it is necessary to understand the appear-
ance of fixed components in greater details. In fact, we believe that the following
property holds for all zero-dimensional schemes X on a general surface in P3 of
degree ≥ 4.

Conjecture 4.2.14. If d ≥ max{b(X), a(X) + n− 1}, then

CX(d) < CX(d− 1) .

In particular, this implies that if CX(d0) = CX(d0 + 1) > 0, then the linear system
H0(IX(d0)) has a fixed component. Conjecture 4.2.14 holds if X is a complete
intersection scheme (cf. above), or if X = π∗Y where π : S → P2 is a branched
covering (cf. Section 4.2.3 below). In the following, we will draw several conclusions
of this conjecture, indicating always the steps where it is necessary.

The next lemma is the analogue of the Davis Lemma 4.2.5 for zero-dimensional
schemes X ⊂ S ⊂ P3.

Lemma 4.2.15. Assume that Conjecture 4.2.14 holds. Let X ⊂ S be a zero-
dimensional scheme, and let C be a generic hyperplane section. Assume that

CX(d) = CX(d+ 1) ,

and let D ∈ |OS(e)| be the fixed curve of |H0(IX(d))|.

(a) CX(d) = h0(OC(d))− h0(OC(d− e)).
(b) For all u ∈ Z, CX(u) = CX:D(u− e)+min{CX(u), h0(OC(u)−h0(OC(u− e))}.
(c) deg(X ∩D) =

∑
u≥0 min{CX(u), h0(OC(u)− h0(OC(u− e))}.

(d) CX∩D(u) = min{CX(u), h0(OC(u)− h0(OC(u− e))} for u ∈ Z.

Proof. (a) If e = a(X), then the claim follows easily since X : D = ∅. Hence
assume that e < a(X). By Lemma 4.2.12 we have to verify that t(X : D) <
d− e. The assumptions together with Lemma 4.2.12 imply that

CX:D(d− e) = CX:D(d− e+ 1) . (4.2.7)

Furthermore, since D is the fixed curve of H0(IX(d)), it follows that the linear
system H0(IX:D(d− e)) has no fixed curve, that is, b(X : D) ≤ d− e. Hence,
(4.2.7) together with Conjecture 4.2.14 implies that CX:D(d− e) = 0, that is,
t(X : D) < d− e.
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e e+d−2 d

ne

Figure 4.4: The Davis Lemma for X ⊂ S ⊂ P3.

(b) The formula is true for all u ≤ d by Lemma 4.2.12.
If u > d, then CX:D(u− e) = 0 since u− e > d− e > t(X : D) by the proof of
part (a).

(c) Follows by summing (b) over all u ∈ Z since

deg(X) = deg(X ∩D) + deg(X : D) .

(d) Using (b) and (c) the claim follows since for all u ∈ Z

CX∩D(u) ≤ h0(OC(u))− h0(OC(u− e)) .

As in the plane case we call a zero-dimensional scheme X ⊂ S decomposable if there
exists d > 0 with CX(d− 1) > CX(d) = CX(d+ 1) > 0.

Corollary 4.2.16. Assume that Conjecture 4.2.14 holds. Let Cd ∈ |OS(d)| be an
irreducible curve, and X ⊂ Cd a zero-dimensional scheme such that h1(IX/S(d)) > 0
and d > a(X). Then there exists a curve Ck ∈ |OS(k)| such that the scheme
Y = X ∩ Ck is non-decomposable and satisfies

h1(IY/S(d)) = h1(IX/S(d)) .

Proof. Without loss of generality we may assume that X is decomposable. Other-
wise choose Y = X and k = a(X) < d.

Let d0 be maximal with the property CX(d0) = CX(d0 + 1) > 0. Since Cd is irre-
ducible, we know d0 < d. Let Ck be the fixed curve of H0(IX(d0)). Then Y = X∩Ck
is non-decomposable by Lemma 4.2.15 and satisfies

h1(IY (d)) =
∞∑

i=d+1

CY (i) =
∞∑

i=d+1

CX(i) = h1(IX(d)) .
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4.2.3 The Castelnuovo function and branched coverings

In this section, we relate the Castelnuovo function of a scheme on a surface in P3 to
the Castelnuovo function of a scheme in P2.

Assume that S ⊂ PN is a smooth surface, and let π : S → H be a branched covering
of degree n, where P2 ∼= H ⊂ PN . Let X ⊂ P2 be a zero-dimensional scheme disjoint
from the branch locus. Consider the scheme π∗X ⊂ S of degree n · deg(X). Then

IX/P2(d) ∼= π∗

(
Iπ∗X/S(d)

)
. (4.2.8)

Now assume that S ⊂ P3 is a smooth surface of degree n ≥ 1, and let π : S → H
be a generic projection to a plane H. Denote by C the plane curve of degree n
given by the intersection of S with H, and let X be a zero-dimensional scheme with
C ∩X = ∅. By (4.2.8)

π1(H
0(IX/P2(d)) = π2(H

0(Iπ∗X/S(d))) ⊂ H0(OC(d)) ,

where π1 is induced by IX/P2(d)→ OC(d), and π2 is induced by Iπ∗X/S(d)→ OC(d).
In particular, a(π∗X) = a(X), b(π∗X) = b(X) and

h1(OX(d− n))− h1(OX(d)) = h1(Oπ∗X(d− 1))− h0(Oπ∗X(d)) = Cπ∗X(d) ,

which implies

Cπ∗X(d) =
n−1∑

i=0

CX(d− i) .

Let us make some observations:

(i) Let a(X) ≤ d ≤ t(X), then Cπ∗X(d) = Cπ∗X(d− 1) if and only if CX(d− n) =
CX(d), i.e. if the graph of CX has a long stair of length n.

(ii) Cπ∗X(d) = 0 if CX(d− n + 1) = 0. This implies that h1(Iπ∗X(d)) = 0 if

d ≥ t(X) + n− 1 . (4.2.9)

We shall apply these observations in Section 4.4.

4.3 Bogomolov instability of vector bundles

In this section, we explain how to apply Bogomolov instability of rank 2 vector-
bundles (cf. Appendix A.3) to the study of zero-dimensional schemes on a surface
in P3 (cf. also [CS97, Ke03]).
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Lemma 4.3.1. Let S ⊂ P3 be a smooth surface of degree n ≥ 1 with Pic(S) = Z.
Let X ⊂ S be a zero-dimensional scheme with h1(IX(d)) > 0. Then there exists a
subscheme X0 ⊆ X and a rank 2 vector bundle E, fitting into an exact sequence

0 −→ OS −→ E −→ IX0(d− n + 4) −→ 0 .

In particular, X0 is a complete intersection scheme.

Moreover, if 4 · deg(X0) < (d− n + 4)2, then E is Bogomolov unstable.

Proof. Choose X0 ⊆ X minimal such that still h1(IX0(d)) > 0. Since h1(OS(d)) =
0 we know that X0 6= ∅. By Serre-Grothendieck duality (cf. Theorem A.2.3),

H1(IX0(d))
∼= Ext1

(
IX0(d),OS(n− 4)

)
6= 0 .

Hence, a general element ξ ∈ Ext1
(
IX0(d),OS(n− 4)

)
defines an extension

0 −→ OS −→ E −→ IX0(d− n+ 4) −→ 0 ,

where E is a coherent sheaf of rank 2. By [Laz97], Proposition 3.9, the sheaf E fails
to be locally free if and only if there exists a proper subscheme X ′ ⊂ X0 such that
ξ is contained in the image of the natural map

Ext1
(
(IX′(d),OS(n− 4)

)
−→ Ext1

(
(IX0(d),OS(n− 4)

)
.

But the group on the left hand side vanishes by the minimality of X0, because it is
isomorphic to H1(IX′(d)) by Theorem A.2.3. Hence, E is locally free, and X0 is a
local complete intersection scheme.

If 4 deg(X0) < (d− n + 4)2, then by Remark A.3.2 (b),

c1(E)2 − 4c2(E) = (d− n + 4)2 − 4 deg(X0) > 0 ,

and E is Bogomolov unstable by Theorem A.3.3.

Proposition 4.3.2. Let S be a surface of degree n in P3 with Pic(S) = Z, and let
X ⊂ S be a zero-dimensional scheme. Assume that h1(IX/S(d)) > 0, and let X0 be
the local complete intersection scheme from Lemma 4.3.1.

If 4 · deg(X0) < (d − n + 4)2, then there exists a curve Ck ∈ |H0(OS(k))|, k ≥ 1,
satisfying the following properties:

(i) Ck ∩X0 = X0, i.e. Ck ∈ |H0(IX0/S(k))|.

(ii) deg(X0) ≥ nk · (d− n + 4− k),
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Proof. By Lemma 4.3.1, there exists an exact sequence

0 −→ OS −→ E −→ IX0(d− n+ 4) −→ 0 , (4.3.10)

where E is a Bogomolov unstable rank 2 vector bundle with c2(E) = deg(X0). Thus,
there is an exact sequence

0 −→ OS(d0) −→ E −→ IZ(d− n+ 4− d0) −→ 0 , (4.3.11)

where Z is some zero-dimensional scheme and d0 is some positive number.

By twisting (4.3.11) with −d0, we see that E(−d0) has a global section. Thus,
twisting (4.3.10) with −d0 and taking global sections, we obtain

0 −→ H0(OS(−d0))︸ ︷︷ ︸
=0

−→ H0(E(−d0))︸ ︷︷ ︸
6=0

−→ H0(IX0(d− n + 4− d0)) .

Hence, we can deduce the existence of a curve Ck in |H0(IX0(k))|, where k =
d− n + 4− d0 ≥ 1. Furthermore, Remark A.3.2 applied to (4.3.11) implies

deg(X0) = c2(E) = n · d0 · (d− n + 4− d0) + deg(Z)

= nk · (d− n + 4− k) + deg(Z)

≥ nk · (d− n + 4− k) .

Remark 4.3.3. Under the same conditions as in Proposition 4.3.2, assume fur-
thermore that X0 ⊂ Cd, where Cd ∈ |H0(OS(d))| is an irreducible curve. Then by
Bézout’s Theorem

n · k · d =
∑

z∈Cd∩Ck

i(Cd, Ck; z)

≥ deg(X0) +
∑

z∈supp(X0)

min{deg(Xz), i(Cd, Ck; z)− deg(Xz)} ,

where Xz, z ∈ supp(X0), denote the connected components of X0.

Remark 4.3.4. Let X ⊂ P2 be a zero-dimensional scheme with h1(IX(d)) > 0.
Lemma 4.3.1 allows us to restrict ourselves to any minimal subscheme X0 of X with
h1(IX0(d)) > 0. These schemes X0 are necessarily non-decomposable, that is, CX0

has no long stairs, because otherwise there would exist a curve D, with X0∩D ( X
and

h1(IX0∩D(d)) = h1(IX0(d)) > 0 ,

contradicting the minimality of X0. Furthermore, notice that Proposition 4.3.2 for
S = P2 coincides with Lemma 4.2.7.

We would like to add that the same observations also hold for schemes on S ⊂ P3

provided that Conjecture 4.2.14 is true.
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4.4 A vanishing theorem for X ⊂ S ⊂ P3

In this section, we apply the theory of the Castelnuovo function and Bogomolov
instability to the H1-vanishing problem of zero-dimensional schemes contained in
the equianalytic scheme associated to an irreducible curve C ⊂ S.

Unless specified, S denotes a smooth, projective surface. We can estimate the degree
of schemes contained in Xea(C, z) by using the following lemma.

Lemma 4.4.1. Let (C, z) ⊂ (S, z) be a reduced curve singularity, and let I ⊂ mz ⊂ OS,z
be an ideal containing Iea(C, z). Then for any g ∈ I

dimCOS,z/I < dimCOS,z/〈g, C〉 = (g, C)z .

Proof. [Sh97], Lemma 4.1, since the estimate is a purely local computation of
intersection numbers.

The following invariants were introduced and studied in [LoK03] and applied in
[Ke03]. They are an extension of the γ-invariant introduced in [GLS00] (more pre-
cisely, the γ invariant equals the γα invariant for α = 1).

Definition 4.4.2. Let f ∈ OS,z define a reduced curve singularity (C, z). If I ⊂
OS,z =: R is an ideal containing Iea(f, 0), then we define for any real number α ≥ 0

γα(f ; I) := max
{
(1 + α)2 · dimC(R/I), λα(f ; I, g) | g ∈ I , i(f, g) ≤ 2 · dimC(R/I)

}
,

where for g ∈ I

λα(f ; I, g) :=

(
α · (i(f, g)− (1− α) · dimC(R/I)

)2

i(f, g)− dimC(R/I)
.

Note that i(f, g)− dimC(R/I) > 0 by Lemma 4.4.1.

Using this definition we define the following invariants of curve singularities.

Definition 4.4.3. Let (C, z) be a reduced curve singularity defined by f ∈ OS,z
and let X ⊂ Xea(C, z) be a zero-dimensional scheme supported in z and defined by
an ideal J ⊂ OS,z. Then we define

γα(X;C) := max{γα(f, I) | J ⊂ I a complete intersection} .

In particular:

(a) If (C, z) has topological type S then we define

γesα (S) := γesα (C, z) := max{γ(f, I) | Ies(f, z) ⊂ I a complete intersection} .
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(b) If (C, z) has analytic type S then we define

γeaα (S) := γeaα (C, z) := max{γ(f, I) | Iea(f, z) ⊂ I a complete intersection} .

Again we write γsα(S) for either γesα (S) or γeaα (S).

The following table contains the values of γesα (S) = γeaα (S) for all simple singularity
types S. In [LoK03] this invariant was calculated also for other singularity types,
but we should point out that there is no general algorithm for computing γsα(S).

Singularity type S γsα(S)

Ak, k ≥ 1 (k + α)2

Dk, 4 ≤ k < 4 +
√

2(2 + α) (k+2α)2

2

Dk, k ≥ 4 +
√

2(2 + α) (k − 2 + α)2

Ek, k = 6, 7, 8 (k+2α)2

2

In the general case, we only have the rough estimate:

Lemma 4.4.4. Let X ⊂ Xea(C, z) be a zero-dimensional scheme, and assume that
γα(X;C) = γ(f, I) for a complete intersection ideal I with IX,z ⊂ I ⊂ OS,z =: R.
Then

(1 + α)2 dimC(R/I) ≤ γα(C;X) ≤ (dimC(R/I) + α)2 .

Proof. See [LoK03].

The strategy for obtaining an H1-vanishing theorem is the same for the approaches
based on the Castelnuovo function and on Bogomolov instability. Let us explain the
main steps:

Assume that S is either P2 or a general surface in P3 of degree n ≥ 4.

• Start with a zero-dimensional scheme X ⊂ Xea(Cd), Cd ∈ |OS(d)| an irre-
ducible curve, and assume that h1(IX(d)) > 0.

• Consider a minimal subscheme X0 of X with h1(IX0(d)) > 0. We denote the
connected components of X0 by Xz, z ∈ supp(X0) = {z1, . . . , zr}.

• Both approaches1 provide the existence of a curve Ck ∈ |H0(IX0(k))| with

deg(X0) ≥ nk · (d− n + 4− k) ,
nkd ≥ deg(X0) +

∑

z∈supp(X0)

min{deg(Xz), i(Cd, Ck; z)− deg(Xz)} .

1We assume again that Conjecture 4.2.14 holds.
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• Deduce from these inequalities that

γα(X;C) :=
∑

z∈supp(X)

γα(Xz;C) ≥ n · α · (d− n+ 4)2 ,

for an appropriate value of α > 0.

In other words, by reversing the steps above, one can prove

Theorem 4.4.5. Let S ⊂ P3 be a general surface of degree n, n = 1 or n ≥ 4, and
let X ⊂ Xea(C) be a zero-dimensional scheme, where C ∈ |OS(d)| is an irreducible
curve, d ≥ max{n− 3, 3}.
If the inequality

γα(X;C) < n · α · (d− n + 4)2

holds true, where α = 1
max{1,n−3} , then h1(IX(d)) = 0.

Proof. For S = P2, the theorem was shown in [GLS00] (in slightly weaker form)
using the Castelnuovo function, and the general case was proven in [Ke03] using
Bogomolov instability.

Using generic projections to a plane, we obtain the following result which is, for gen-
eral n ≥ 4 and arbitrary schemes X, asymptotically slightly weaker than Theorem
4.4.5, but stronger in some special cases.

Corollary 4.4.6. Let S ⊂ P3 be a smooth surface of degree n > 1. Let C ⊂ S be
an irreducible curve in |H0(OS(d))|, d ≥ 3, with r singular points z1, . . . , zr. If a
zero-dimensional scheme of the form

X = X1 ∪ · · · ∪Xr , Xi ⊂ Xea(C, zi)

satisfies
r∑

i=1

γ1(Xi, C) < (d+ 4− n)2 ,

then h1(IX(d)) = 0.

Proof. Let π : S → H be a generic projection to a plane H such that

X ∩D = ∅ , where D = S ∩H .

Using (4.2.9) the result follows by Theorem 4.4.5 since X ⊂ π∗(π(X)).

As an immediate corollary we obtain the following smoothness result.
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Corollary 4.4.7. Let C ⊂ S be an irreducible curve in |OS(d)|, d ≥ 3, having r
singular points z1, . . . , zr of topological (respectively analytic) types S1, . . . , Sr as its
only singularities. Then V irr

d (S1 + . . .+ Sr) is T -smooth at C if
r∑

i=1

γs1(C, zi) < (d− n + 4)2 .

4.5 Some remarks about the Castelnuovo func-

tion of schemes in P3

The techniques for dealing with zero-dimensional schemes in Pn, n ≥ 3, are quite
rare. In fact, all general H1-vanishing results have been obtained via the Horace
method. Since Pic(Pn) = Z and h1(OPn(d)) = 0 for all d, the Castelnuovo function
might provide also a useful tool for dealing with zero-dimensional schemes in higher
dimensions.

In this final section, we make some observations about the Castelnuovo function of
zero-dimensional schemes in P3.

Example 4.5.1. (i) Again, we consider first the case where X ⊂ P3 is a complete
intersection of three surfaces of degrees a, b, c ≥ 1,

X = Sa ∩ Sb ∩ Sc , a ≤ b ≤ a+ b ≤ c ,

The Castelnuovo function of X can be calculated by the formula

CX(d) =

(
d+ 2

2

)
−
(
d− a+ 2

2

)
−
(
d− b+ 2

2

)
+

(
d− a− b + 2

2

)

−
(
d− c+ 2

2

)
+

(
d− a− c+ 2

2

)
+

(
d− b− c+ 2

2

)

−
(
d− a− b− c+ 2

2

)
,

and its graph is shown in Figure 4.5. Obviously, a(X) = a and b(X) = b.

(ii) Let X = X(m, z) be a fat point of multiplicity m and supported in z ∈ P3.
Then a(X) = b(X) = m, and the Castelnuovo function looks as follows:

m(m+1)
2

m
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a b a+b−2 c

ab

a+b+c−2

Figure 4.5: Example: The Castelnuovo function of a complete intersection scheme
X = Ca ∩ Cb ∩ Cc ⊂ P3, a ≤ b ≤ a+ b ≤ c.

Remark 4.5.2. Recall that for zero-dimensional schemes on surfaces in P3, it is
possible to estimate t(X) by the numbers a(X) and b(X).

However, the previous example shows that this is not true for zero-dimensional
schemes in P3. The reason is that the linear systems H0(IX(d)), d ≥ b(X), may
now still have fixed parts of positive dimension.

Definition 4.5.3. Let X ⊂ P3 be a zero-dimensional scheme. We introduce the
number

c(X) := min{d | |H0(IX(d))| 6= ∅ has no fixed part of positive dimension} .

Obviously, b(X) ≤ c(X) ≤ t(X) + 1.

In particular, we can estimate t(X) by

t(X) ≤ a(X) + b(X) + c(X)− 2 .

Let X ⊂ P3 be a zero-dimensional scheme, and assume that b(X) < c(X). Let
X0 ⊃ X be the scheme defined by the elements of H0(IX(c(X)− 1)) 6= 0, and put
Y = X0 ∩H, where H is a generic hyperplane. Hence, Y 6= ∅ is a zero-dimensional
scheme in H ∼= P2, and the reduction sequence implies

C ′X(d) := CX(d)− CX(d− 1) = CY (d) .

Hence, we obtain

Corollary 4.5.4. Let X ⊂ P3 be a zero-dimensional scheme. Then

(i) If d < a(X), then CX(d) = h0(OP2(d)) =
(
d+2
2

)
.



4.5 Some remarks about the Castelnuovo function of schemes in P3 101

(ii) CX(d) ≤ a(X) · b(X).

(iii) If d ≥ a(X), then C ′X(d) ≤ C ′X(d− 1).

(iv) If b(X) ≤ d < c(X), then C ′X(d) < C ′X(d− 1), or C ′X(d− 1) = 0.

We conjecture that the Castelnuovo is strictly descending as soon as the linear
systems H0(IX(d)) have only isolated base points.

Conjecture 4.5.5. Let X ⊂ P3 be a zero-dimensional scheme. If d ≥ c(X), then

CX(d) < CX(d− 1) .

Remark 4.5.6. If we consider the Castelnuovo function of zero-dimensional schemes
in Pn, n > 3, then even higher derivatives of the Castelnuovo function may have
to be taken into account. They were already studied to some extent in a different
context in [DGM84].





Appendix A

Some general facts

In this appendix we review some classical results from algebraic geometry,
and reformulate them, if necessary, according to the context in which we shall
apply them. This includes Bertini’s theorem, Cremona transformations, sheaf
cohomology and Bogomolov instability.

Furthermore, we review some general facts about surfaces in P3.

A.1 Bertini’s theorem and Cremona transforma-

tions

In our constructions we apply several times Bertini’s theorem and Cremona trans-
formations. Cremona transformations are used to construct curves of small degree
with given Newton polytope and singularities. Bertini’s theorem is used in order
to show that a generic members of certain linear system are reduced and smooth
outside the prescribed singularities. In this section we briefly review both theorems.

Theorem A.1.1. Let V be a smooth projective variety, and let L ⊂ |D| be a linear
system, where D is an effective divisor.

(i) A generic member of L is reduced and non-singular outside the basepoints of L.

(ii) Let ϕ : V Pm be the rational map defined by L. If dim(ϕ(V )) ≥ 2, then
a generic member is also irreducible.

Proof. E.g. [Ha77, III,10] or [vdW73].
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Cremona transformations are a useful tool for constructing curves with a few pre-
scribed singularities and in addition certain multiple points at the fundamental
points. This is of particular interest if we want to construct curves such that the
defining equation has a specified Newton polytope.

Proposition A.1.2. Let C be a reduced curve of degree d in P2 and assume that
m1, m2, m3 ≥ 0 are the multiplicities of C at the fundamental points P1 = (1 : 0 : 0),
P2 = (0 : 1 : 0), P3 = (0 : 0 : 1). Let C∗ be the strict transform of C under the
Cremona transformation

P2 −→ P2

(x0 : x1 : x2) 7→ (x1x2 : x0x2 : x0x1) .

Then

(i) (C∗)∗ = C,

(ii) deg(C∗) = 2d−m1 −m2 −m3,

(iii) the tangents of C at Pi correspond precisely (including multiplicities) to inter-
section points of C∗ with the line xi = 0 outside the fundamental points,

(iv) the intersection points of C with the line xi = 0 outside the fundamental points
correspond precisely (including multiplicities) to tangents of C∗ at Pi.

Proof. These statements follow immediately since the Cremona transformation cor-
responds to the blow up of P2 in the three fundamental points. For details we refer
to [Wal50]

A.2 Cohomology of coherent sheaves

We recall a few general theorems about cohomology of coherent sheaves.

Theorem A.2.1 (Cohomology and ample sheaves). Let V be a smooth projec-
tive variety, and let L be an ample sheaf on V . If F is a coherent sheaf on V , then
for d� 0

H i(V,F ⊗L
⊗d) = 0 for all i > 0 .

Proof. [Ha77].

Hence in particular, if X ⊂ V is a zero-dimensional scheme, then for d sufficiently
large, the group H1(IX(d)) vanishes.

Furthermore we would like to remind the fact that the dimensions of the cohomology
groups behaves semi-continuously under deformations.
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Theorem A.2.2 (Semicontinuity of cohomology). Let f : X → Y be a proper
morphism of complex spaces, and let F be a coherent sheaf on X, flat over Y . Then,
for each i ≥ 0, the function hiF : Y → Z≥0,

hiF (z) := dimC H
i
(
f−1(z), f∗F(z)

)

is an upper semicontinuous function on Y .

Proof. [Ha77, III.12.8].

Theorem A.2.3 (Serre-Grothendieck Duality). Let F be a coherent sheaf on
a smooth projective surface S. Then there is a natural isomorphism

Ext1
(
F ,OS(KS)

) ∼=−→ H1
(
Σ,F

)∗

Proof. [Ha77].

A.3 Bogomolov instability

In this section, we briefly recall elements from Bogomolov’s theory of unstable vector
bundles. For details we refer to [Bog79] and [Laz97].

Throughout this section we assume that S is a smooth projective surface.

Definition A.3.1. A rank two vector bundle E on S is called Bogomolov unstable
if there exist divisors A,B and a (possibly empty) zero-dimensional scheme Z in S,
fitting into an exact sequence

0 −→ OS(A) −→ E −→ IZ/S(B) −→ 0 , (A.3.1)

and satisfying

(i) (A− B)2 > 0 and

(ii) (A− B).H > 0 for all ample divisors H.

Remark A.3.2. (a) If L is an invertible sheaf, then a rank 2 vector bundle E is
Bogomolov unstable if and only if E ⊗L is Bogomolov unstable.

(b) If E is a rank 2 vector bundle sitting in an exact sequence (A.3.1), then the
Chern numbers of E are

c1(E) = c1(A) + c1(B) , c2(E) = c1(A) · c1(B) + deg(Z) .
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Bogomolov’s famous theorem expresses this property in terms of Chern numbers.

Theorem A.3.3. Let E be a rank two vector bundle on a smooth projective surface
S. If the Chern numbers of E satisfy

c1(E)2 − 4c2(E) > 0 ,

then E is Bogomolov unstable.

Proof. [Bog79, Laz97].

A.4 Some facts about surfaces in P3

Let us review some invariants of surfaces in P3.

Proposition A.4.1. Let S ⊂ P3 be a smooth surface of degree n ≥ 4. Then

(i) KS = OS(d− n + 4),

(ii) h0(OS(d)) =
(
d+3
3

)
−
(
d−n+3

3

)
and h1(OS(d)) = 0 for all d.

(iii) Let C ∈ |H0(OS(1))| be a general hyperplane section. Then

h0(OC(d)) = h0(OS(d))− h0(OS(d− 1)) = h0(OP2(d))− h0(OP2(d− n))

=

{(
d+2
2

)
if d < n− 2

n · d− n(n−3)
2

if d ≥ n− 2.

In general the Picard number of a surface S ⊂ P3 may be arbitrarily large. However,
there is always a distinguished element of the Picard group, namely the class of a
hyperplane section. The following proposition shows that if deg(S) ≥ 4 and S is
sufficiently general, then this class actually generates Pic(S), hence in particular
Pic(S) ∼= Z for sufficiently general S.

Proposition A.4.2. Let n ≥ 4. Then the set U consisting of all smooth surfaces
S ⊂ P3 of degree n with Pic(S) generated by the restriction of OP3(1) is a very
general subset of |OP3(n)|, i.e. the complement of U is an at most countable union
of lower-dimensional subvarieties.

Proof. [Ha75], Corollary 3.5.
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Some algorithms

In this appendix we show how to check certain properties and calculate invari-
ants appearing in this thesis using the computer algebra system Singular.

We show how to check T-smoothness of the equisingular stratum locally at a
hypersurface W ⊂ Pn, more precisely we compute H1(IX/Pn(d)) for any zero-
dimensional scheme X ⊂ Pn. We also discuss how to check the transversality
property appearing in the patchworking method.

Finally we give an algorithm for computing the Castelnuovo function for zero-
dimensional schemes in Pn.

In this appendix we discuss some of the methods used throughout this thesis from
the computational point of view. We shall present some algorithms and show how to
implement them in the computer algebra system Singular. We shall not explain
the syntax extensively but refer to [GPS01, GP02] instead.

We start by giving a brief overview of some objects which can be computed.

• Let X ⊂ Pn be a zero-dimensional scheme defined over the rational numbers.
Then we can compute the cohomology groups of IX(d) (cf. Section B.1). In
particular this allows to check whether a hypersurface in Pn defined over Q

corresponds to a T-smooth germ and we can compute the Castelnuovo function
of a zero-dimensional scheme (cf. Section B.3).

• The equisingular Tjurina ideal Ies(f) can be computed for f ∈ K[[x, y]] re-
duced, K algebraically closed of characteristic 0, hence in particular the equi-
singular Tjurina number (cf. [Los03]).

• We can check whether a given triad (∆,∆+, F ), F ∈ Q[x], is transversal by
computing the intersection of H0(IXs(F )/Pn(d)) with the affine vector-space
P(∆,∆+, F ) (cf. Section B.3).
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• The equisingular stratum of any deformation of a reduced plane curve sin-
gularity over a complete, local K-algebra (cf. [Los03]). The algorithms are
implemented in the Singular library equising.lib.

• The ideal Ia(W, z) introduced in Section 3.4 ([GLS00]).

Unfortunately, there are no algorithms for calculating the following objects.

• There is no general algorithm for computing the invariants γα(S) introduced
in Chapter 4. For details how to calculate this invariant in special cases by
hand we refer to [LoK03].

• It is not possible to compute explicit equations of the hypersurfaces con-
structed via the patchworking method.

B.1 Computing h0(IX/Pn(d)) and h1(IX/Pn(d))

In this section we show how to compute the dimensions of the cohomology groups
of IX/Pn(d) with Singular.

LetX ⊂ Qn ⊂ Pn be a zero-dimensional scheme defined by an ideal I ⊂ Q[x1, . . . , xn].
Denote by Ih ⊂ Q[x0, . . . , xn] the homogenization of I with respect to x0 and let

Ihd := Ih ∩Q[x]d .

The Singular function kbase computes

kbase(Ih, d) = {m ∈M | deg(m) = d} ,
where M is a monomial basis of Q[x]/Ih.

Lemma B.1.1. The set kbase(Ih, d) is a vector-space basis of Q[x]d/I
h
d .

Proof. The monomials are clearly linear independent since if
∑

i aimi ∈ Ihd ⊂ Ih,
then ai = 0 for all i.
Hence we have to show that they generate K[x]d/I

h
d . For that let f ∈ K[x]d ⊂ K[x].

Then f can be written in the form

f =
∑

i∈I
aimi + h , h ∈ Ih

=
∑

deg(mi)=d

aimi + hd +
∑

j 6=d

( ∑

deg(mi)=j

aimi + hj

)
,

where h = hm+hm+1+. . . and hi is homogeneous of degree i. Since
∑

deg(mi)=j
aimi+

hj is homogeneous of degree j 6= d, it follows that it must be zero. Since Ih is a
homogeneous ideal, hj ∈ Ih and hence

∑
deg(mi)=j

aimi ∈ Ih. But the mi are linear

independent, hence ai = 0 if deg(mi) 6= d.
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Using the previous lemma we obtain

h0(IX/Pn(d)) =

(
d+ n

n

)
− size(kbase(Ih, d))

and hence

h1(IX/Pn(d)) = dim(Q[x1, . . . , xn]/I)− size(kbase(Ih, d)) .

The Singular function size() computes the number of elements in a list of poly-
nomials.

The following Singular procedure implements this computation. Note that gener-
ators of Ih can be obtained by homogenizing a standard basis of I with respect to a
degree ordering (e.g. [CLS96, 8.4]). The function binom(, ) computes the binomial
coefficient of two integers, and its definition has been omitted.

proc cohom(ideal I, int d)

"USAGE: cohom(I,d,k); I ideal, d integer

ASSUME: I is an zero-dimensional ideal,

the monomial ordering is a global degree ordering

RETURN: intvec containing h^0(I(d)),h^1(I(d))

"

{

def oldring=basering;

int n=nvars(oldring);

ideal j=std(i); // ordering has to be degree ordering

int dim1=vdim(j);

if (dim1==-1){

"Error: ideal not zero-dimensional!} return (0);

}

// compute homogenization

ring dummy=32003,(x(1..n+1)),dp;

ideal i=fetch(r,i);

ideal ih=std(homog(i,x(n+1)));

// compute h^i(I(d))

int dim2=size(kbase(ih,d));

invec v=binom(d+n,n)-dim2,dim1-dim2;

return (v);

}
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B.2 Computing a vector-space basis of I ∩K[x]≤d

In this section we how to compute a vector-space basis of I∩K[x]≤d, where I ⊂ K[x]
is an ideal. If f ∈ K[x] and I is a Groebner basis of I with respect to some monomial
ordering, then the Singular function reduce(f, I) returns the normal form of f
with respect to this Groebner basis.

Lemma B.2.1. Let K be any field, I ⊂ K[x1, . . . , xn] an ideal, and let d ≥ 0. Then
we can compute a vector space basis B of Id = I ∩K[x]≤d as follows:

(Step 0) B := ∅, M = list of all monomials of degree ≤ d.

(Step 1) G := leading terms of a Groebner basis of I with respect to a degree
ordering.

(Step 2) For all xω ∈M : If reduce(xω, G) = 0, then

B := B ∪ {xω − reduce(xω, I)} .

Proof. If reduce(xω, G) = 0, then there is an element gω ∈ I with leading mono-
mial xω and B is the set of all these gω. This set is clearly linearly independent.
Furthermore, since the chosen monomial ordering is a degree ordering we know that
deg(gω) ≤ d for all ω and it is easy to see that B also spans Id.

The Singular code looks essentially as follows:

proc zerohom(ideal I, int d)

"USAGE: zerohom(I,d); I ideal, d integer

ASSUME: I is a standard basis of an affine ideal,

the monomial ordering is a global degree ordering

RETURN: a list consisting of h^0(I(d))

and a vector space basis of H^0(I(d)) in terms of polynomials

of degree less than d.

"

{

ideal J=lead(I);

int i;

ideal M=1;

for (i=1; i<=d; i++) { M=M,maxideal(i); }

ideal R=reduce(M,J);

ideal res;
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for (i=1; i<=size(M); i++){

if (R[i]==0){ res=res+(M[i]-reduce(M[i],I)); }

}

list l=size(res),res;

return(l);

}

B.3 Applications

Let us show how to apply the procedures from the previous sections to some prob-
lems.

Checking T-smoothness

Assume that W ⊂ Pn is a hypersurface defined by an (affine) polynomial f ∈
Q[x] and having only isolated singularities. The following procedure checks if W is
obstructed in degree d ≥ deg(f), i.e. if h1(IXea(W )(d)) = 0.

proc is_Tsmooth(poly f, int d)

"USAGE: is_Tsmooth(f,d); f polynomial , d integer

ASSUME: - ground field Q and singularities of f are contained in Q^n

RETURN: -1: if f has non-isolated singularities

0: if h^1(I_X(d))=0, X the zero-dimensional scheme

associated to the singular points of f

1: otherwise

"

{

ideal i=std(f+jacob(f));

int tau=vdim(i);

if (tau==-1){

dbprint (printlevel-voice+1,"Error: Non-isolated singularity!");

return(-1);

}

else

{

intvec hi=cohom(i,d);

if (hi[2]==0) {return(0);} else { return(1);}

}

}
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Computing the Castelnuovo function

Assume that X ⊂ Qn ⊂ Pn is a zero-dimensional scheme. Using Lemma B.1.1 we
can compute the Castelnuovo function of X by calculating

CX(d) = size(kbase(Ih, d))− size(kbase(Ih, d− 1)) .

The Singular code looks as follows:

proc CNFunc(ideal i, int max)

"USAGE: CNFunc(i,max); i ideal, max integer

ASSUME: i is a projective zero-dimensional ideal

(in particular homogeneous)

RETURN: the values of the Castelnuovo function of i

"

{

ideal j=std(i);

intvec cas;

for (int k=0; k<=max; k++){

cas[k]=size(kbase(j,k))-size(kbase(j,k-1));

}

return(cas);

}

proc affCNFunc(ideal i, int max)

"USAGE: affCNFunc(i,max); i ideal, max integer

ASSUME: i is an affine zero-dimensional ideal,

monomial ordering is global degree ordering

RETURN: the values of the Castelnuovo function of i

{

def oldring=basering;

int n=nvars(oldring);

ideal j=std(i); // ordering has to be degree ordering

ring dummy=32003,(x(1..n+1)),dp;

ideal i=fetch(r,i);

ideal ih=homog(i,x(n+1));

intvec cas=CNFunc(ih,max);

setring oldring;

}

Checking transversality of triads (∆,∆+, F )

Let W ⊂ Pn be a hypersurface defined by the homogenization of a polynomial
f(x1, . . . , xn) ∈ Q[x]≤d. Let ∆ be the Newton polytope of f , and let ∆+ ⊂ ∂∆. Let
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us assume that

(i) f is a PNS polynomial.

(ii) All singularities of W are defined over Q.

(iii) W has only isolated singularities in Qn, all of them lying in (Q ∗)n. Denote
the types of the singularities by S1, . . . , Sr, r = #(Sing(W ) ∩ (Q ∗)n).

(iv) The equianalytic stratum corresponding to the singular points in (Q ∗)n is
smooth of the expected dimension.

Let us show how to check whether the triad (∆,∆+, f) is transversal. The tangent
space to the germ Vd(S1 + · · ·+ Sr;W ) is given by

Id := 〈f, fx1, . . . , fxn〉 ∩Q[x]≤d ⊂ Q[x]≤d ,

which can be computed exactly (i.e. no approximations appear). For checking
transversality of (∆,∆+, f) we have to check whether Id intersects transversally
with {

g ∈ Q[x] | g(x) =
∑

ω∈(∆\∆+)∩Zn

aωx
ω
}
.

We omit the definition of the following two procedures:

• If f ∈ k[x]≤d, then poly2vec(f, d) computes the coordinate representation of
f with respect to some (monomial) basis of k[x]≤d.

• Let U, V be matrices with entries in the ground field k having the same number
of rowsN . Then the procedure isTransInt(U, V) returns 1 if the column spaces
of U and V intersect transversally in kN , and 0 otherwise.

The Singular code for checking the transversality of a triad looks as follows:

proc isTriadTrans(poly f, ideal D, list #)

"USAGE: isTriadTrans(f,D[,d]); f polynomial, D ideal

(list of monomials), d integer

PURPOSE: checks whether the triad (Del(f),D_+,f) is transversal

where Del(f) is the Newton polytope of f and D=Del(f)\D_+

RETURN: -1: if f has non-isolated singularities

0: if (Del(f),D_+,f) is not transversal

1: otherwise

ASSUME: - ground field is Q

- f has only isolated singular points inside the (rational)
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torus and no singular points on the coordinate hyperplanes

"

{

int d=deg(f);

int n=nvars(basering);

if ((size(#)>1) and (#[1]>d)) { d=#[1]; }

int i;

// compute basis of H^0

ideal I=std(f+jacob(f));

if (vdim(I)==-1){

dbprint (printlevel-voice+1,"Error: Non-isolated singularity!");

return(-1);

}

ideal J=lead(I);

res=zerohom(J,d,1);

// compute basis representations of the two vector-spaces

int dimension=binom(d+n,n);

matrix U[dimension][size(res)];

for (i=1; i<=size(res); i++){

U[1..dimension,i]=poly2vec(res[i],d);

}

matrix V[dimension][size(D)];

for (i=1; i<=size(D); i++){

V[1..dimension,i]=poly2vec(D[i],d);

}

// check for transversal intersection

if (isTransInt(U,V)) { return (1); } else { return(0);}

}
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École Norm. Sup. 13 (1980), 317–347.

[Bir99] P. Biran, Constructing new ample divisors out of old ones, Duke Math. J.
98 (1999), no. 1, 113–135.

[Bog79] F.A. Bogomolov, Holomorphic tensors and vector bundles on projective va-
rieties, Math. USSR Isvestija 13 (1979), 499–555.

[BrK86] E. Brieskorn and H. Knörrer, Plane algebraic curves, Birkhäuser (1986).
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tions, Birkhäuser (1994).

[Gr85] G.-M. Greuel, Constant Milnor number implies constant multiplicity for
quasihomogeneous singularities, Manuscr. Math. 56 (1985), 159–166.

[GrK89] G.-M. Greuel and U. Karras, Families of varieties with prescribed singu-
larities, Compos. Math. 69 (1989), no. 1, 83–110.

[GrL96] G.-M. Greuel and C. Lossen, Equianalytic and equisingular families of
curves on a surfaces, Manuscr. Math. 91 (1996), 323–342.

[GLS98] G.-M. Greuel, C. Lossen, and E. Shustin, Plane curves of minimal degree
with prescribed singularities, Invent. Math. 133 (1998), 539–580.

[GLS00] G.-M. Greuel, C. Lossen and E. Shustin, Castelnuovo function, zero-
dimensional schemes and singular plane curves, J. Algebr. Geom. 9, no. 4
(2000), 663–710.

[GLS] G.-M. Greuel, C. Lossen and E. Shustin, Singular Algebraic Curves, Springer
Verlag, to appear.

[GPS01] G.-M. Greuel, G. Pfister, and H. Schönemann, Singular 2.0. A Computer
Algebra System for Polynomial Computations, Centre for Computer Algebra,
University of Kaiserslautern (2001), http://www.singular.uni-kl.de.

[GP02] G.-M. Greuel, G. Pfister, A Singular introduction to commutative algebra,
Springer Verlag (2002).



BIBLIOGRAPHY 117

[GZN83] S. Gusein-Zade and N. Nekhoroshev, Contiguity of Ak-singularities at
points of the stratum µ = const of a singularity, Func. Anal. Appl. 17 (1983),
312–313.

[GZN00] S. Gusein-Zade and N. Nekhoroshev, On Ak-singularity on plane curves
of fixed degree. Func. Anal. Appl. 34 (2000), 214–215.

[Gu82] D.A. Gudkov, A curve of fifth order with five cusps, Func. Anal. Appl. 16
(1982), 201–202.

[Ha75] R. Hartshorne, Equivalence relations on algebraic cycles and subvarieties
of small codimension, Algebraic Geometry, Arcata 1974 (R. Hartshorne, ed.),
AMS Proceedings of Symposia in Pure Mathematics, no. 29 (1975), 129–164.

[Ha77] R. Hartshorne, Algebraic Geometry, Graduate Texts in Mathematics. 52,
Springer Verlag (1977).

[Har85] J. Harris, On the Severi problem, Invent. Math. 84 (1985), 445–461.

[Hir86] F. Hirzebruch, Singularities of algebraic surfaces and characteristic numbers,
Contemp. Math. 58 (1986), 141–155.

[Hi92] A. Hirano, Constructions of plane curves with cusps, Saitama Math. J. 10
(1992), 21–24.

[Hir85] A. Hirschowitz, Le methode d’Horace pour l’interpolation à plusieurs vari-
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