
An Alternative Approach to the
Oblique Derivative Problem

in Potential Theory

Frank Bauer

Vom Fachbereich Mathematik
der Universität Kaiserslautern

zur Erlangung des akademischen Grades
Doktor der Naturwissenschaften

(Doctor rerum naturalium, Dr. rer. nat.)
genehmigte Dissertation

1. Gutachter: Prof. Dr. W. Freeden
2. Gutachter: Prof. Dr. S. Pereverzev

Vollzug der Promotion: 8. September 2004

D 386





This thesis has evolved with the advice, feedback and help of many people. In particular
I would like to express my gratitude to Prof. Dr. W. Freeden for giving me the opportu-
nity to work on this subject and supporting me with advice and suggestions throughout
my time. Furthermore I would like to thank HDoz. Dr. V. Michel for valuable discus-
sions and my cooperation partner Dr. P. Schwintzer for answering detailed questions
concerning forthcoming satellite missions.
A part of my work is concerning the symbolical solution of partial differential equations.
At this point I would like to express my thanks to Dr. habil. W. Seiler, M. Hausdorf,
HDoz. Dr. E. Zerz, Dr. A. Quadrat and in particular to V. Levandovskyy for their
valuable ideas and directing me to important literature.
Furthermore I would like to especially thank Prof. Dr. S. Pereverzev for giving a very
interesting lecture course on inverse problems. This lecture constitutes the basis of my
treatment of severely ill-posed problems and gave rise to intense and fertile discussions
on this topic. As I am not an expert in stochastics I gratefully acknowledge the patience
of Dr. J.-P. Stockis who helped me whenever I had a problem at the borderline between
functional analysis and stochastics.
At last I want to thank everybody whom I have not mentioned before including the
members of the Geomathematics Group and my family.

The financial support of the Graduiertenkolleg “Mathematik und Praxis” financing my
two and a half years of research is gratefully acknowledged.





Contents

Preface 1

Introduction and Outline 3
1.1 Oblique Derivative Problem . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.1.1 Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.1.2 Oblique Boundary Value Problem . . . . . . . . . . . . . . . . . . 4
1.1.3 Oblique Satellite Problem . . . . . . . . . . . . . . . . . . . . . . 5

1.2 Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.2.1 Operator Split Approach for ∆ . . . . . . . . . . . . . . . . . . . 6
1.2.2 Integration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.2.3 Geoscientifical Problems . . . . . . . . . . . . . . . . . . . . . . . 7
1.2.4 Noise and Regularization . . . . . . . . . . . . . . . . . . . . . . . 7
1.2.5 Unified Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.2.6 Aspects of Scientific Computing . . . . . . . . . . . . . . . . . . . 8
1.2.7 Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2 Operator Split Approach for ∆ 11
2.1 General Problem Setup and Solution Strategy . . . . . . . . . . . . . . . 12

2.1.1 Bidirectional Split Operator . . . . . . . . . . . . . . . . . . . . . 12
2.1.2 Relaxations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.1.3 Composition and Linearity . . . . . . . . . . . . . . . . . . . . . . 15
2.1.4 Kernels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.1.5 Application . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.2 Split Operators with Respect to a First Order Operator Condition . . . . 17
2.2.1 First Order Split Operators . . . . . . . . . . . . . . . . . . . . . 19
2.2.2 Second Order Split Operators . . . . . . . . . . . . . . . . . . . . 22
2.2.3 First Computations . . . . . . . . . . . . . . . . . . . . . . . . . . 22
2.2.4 Second Order Terms . . . . . . . . . . . . . . . . . . . . . . . . . 23
2.2.5 Restriction to ∆ = ∆ . . . . . . . . . . . . . . . . . . . . . . . . . 25
2.2.6 Further Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . 25
2.2.7 Solving the System . . . . . . . . . . . . . . . . . . . . . . . . . . 26
2.2.8 Kernels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
2.2.9 Composition of Solutions for Pure Second Order Operators . . . . 35

2.3 Split Operators with Respect to a Purely Second Order Operator Condition 36
2.3.1 First Computations . . . . . . . . . . . . . . . . . . . . . . . . . . 37
2.3.2 Second order terms . . . . . . . . . . . . . . . . . . . . . . . . . . 38
2.3.3 Further equations . . . . . . . . . . . . . . . . . . . . . . . . . . . 39



ii Contents

2.3.4 Number of Solutions . . . . . . . . . . . . . . . . . . . . . . . . . 39

2.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

3 Integration 47

3.1 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

3.1.1 Kelvin Transform . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

3.1.2 Homogeneous Harmonic Polynomials . . . . . . . . . . . . . . . . 49

3.1.3 Kelvin Transform and Derivatives . . . . . . . . . . . . . . . . . . 50

3.2 Homogeneous Harmonic Polynomials . . . . . . . . . . . . . . . . . . . . 51

3.2.1 Differential Operator did . . . . . . . . . . . . . . . . . . . . . . . 51

3.2.2 Differential Operator dxi . . . . . . . . . . . . . . . . . . . . . . . 51

3.2.3 Differential Operator d¬xi . . . . . . . . . . . . . . . . . . . . . . 56

3.2.4 Differential Operator dr . . . . . . . . . . . . . . . . . . . . . . . 58

3.3 Kernel Spaces and other Remarks . . . . . . . . . . . . . . . . . . . . . . 59

3.4 Spherical Harmonics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

3.4.1 Basis Change Matrices . . . . . . . . . . . . . . . . . . . . . . . . 61

3.4.2 Direct Integration . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

3.5 Other Basis Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

3.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

4 Geoscientifical Problems 69

4.1 Data Situation and Open Problems . . . . . . . . . . . . . . . . . . . . . 69

4.2 Mathematical Description . . . . . . . . . . . . . . . . . . . . . . . . . . 70

4.2.1 The Gravitational Field . . . . . . . . . . . . . . . . . . . . . . . 70

4.2.2 Spectral Representation . . . . . . . . . . . . . . . . . . . . . . . 70

4.2.3 From Data to a Solution . . . . . . . . . . . . . . . . . . . . . . . 70

4.3 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

5 Noise and Regularization 73

5.1 Data Error for the Satellite Problem . . . . . . . . . . . . . . . . . . . . 73

5.1.1 Integration Grid . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

5.1.2 Stochastical Preliminaries . . . . . . . . . . . . . . . . . . . . . . 74

5.1.3 Uncorrelated Noise Case . . . . . . . . . . . . . . . . . . . . . . . 74

5.1.4 Correlated Noise Case . . . . . . . . . . . . . . . . . . . . . . . . 76

5.1.5 Combinations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

5.1.6 Noise Estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

5.2 Auto-Regularization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

5.2.1 Functional Analysis Preliminaries . . . . . . . . . . . . . . . . . . 79

5.2.2 The Situation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

5.2.3 Regularization with Known Smoothness . . . . . . . . . . . . . . 87

5.2.4 Regularization with Unknown Smoothness . . . . . . . . . . . . . 88

5.2.5 Estimations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

5.3 Noise Estimation out of Two Start Values . . . . . . . . . . . . . . . . . 102

5.3.1 Ordinary Ill-Posed Case . . . . . . . . . . . . . . . . . . . . . . . 109

5.3.2 Severely Ill-Posed Case . . . . . . . . . . . . . . . . . . . . . . . . 112

5.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116



Contents iii

6 Combining Data in a Unified Setup 117
6.1 Order of the Solution Scheme . . . . . . . . . . . . . . . . . . . . . . . . 117

6.1.1 Approximation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
6.1.2 Downward-Continuation . . . . . . . . . . . . . . . . . . . . . . . 118
6.1.3 Integration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

6.2 The Combination . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118
6.3 Error and Weights . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121
6.4 Final Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122
6.5 Conclusion and Demands . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

7 Aspects of Scientific Computing 125
7.1 Restrictions and Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

7.1.1 Satellite Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125
7.1.2 Approximation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126
7.1.3 Data Distribution . . . . . . . . . . . . . . . . . . . . . . . . . . . 126
7.1.4 Data Generation . . . . . . . . . . . . . . . . . . . . . . . . . . . 126
7.1.5 Regularization Method . . . . . . . . . . . . . . . . . . . . . . . . 127
7.1.6 Auto - Regularization . . . . . . . . . . . . . . . . . . . . . . . . . 127
7.1.7 Data Combination . . . . . . . . . . . . . . . . . . . . . . . . . . 128
7.1.8 Implementation, Time and Accuracy . . . . . . . . . . . . . . . . 128

7.2 Numerical Tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128
7.2.1 Auto-Regularization . . . . . . . . . . . . . . . . . . . . . . . . . 129
7.2.2 Oblique Derivatives . . . . . . . . . . . . . . . . . . . . . . . . . . 132
7.2.3 Data Combination . . . . . . . . . . . . . . . . . . . . . . . . . . 140

7.3 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141

Bibliography 143





Preface

Nowadays one of the major objectives in geosciences is the determination of the gravita-
tional field of our planet, the Earth. A precise knowledge of this physical quantity is not
just interesting in its own but it is indeed a key point for a vast number of applications.
In particular we want to mention:

• Geoid. The geoid is the height of the sea level, i.e., the gravitational force has
the same value at each point of this surface. The real height above (or sometimes
below) sea level can now be obtained by further measurements like GPS or laser
ranging.

• Prospecting and Exploration. Natural resources are often accompanied by a differ-
ent specific weight of the surrounding soil layers. This leaves a kind of fingerprint,
small spatial perturbations, in the geopotential field and hence can be detected.

• Satellite Orbits. A precise knowledge of the gravitational field enhances the pre-
diction of spacecraft orbits considerably.

• Solid Earth Physics. Tectonic processes cause mass inhomogeneities of the litho-
sphere and as a consequence gravity anomalies which can be measured.

• Physical Oceanography. Ocean currents are the source of huge water displacements
which result in an actual sea level height which differs from the theoretical sea
level determined by the geoid. These height differences enable us to get a better
description of these currents.

• Climate Predictions. Moving air causes mass anomalies which can be detected with
a sufficiently time sensitive measurement of the geopotential field.

This selection of possible applications displays the need for a very accurate model of
the geopotential field. However, it is difficult to get information of sufficient accuracy
and coverage of the potential directly. Another possible way to retrieve information is
measuring the change in the potential, i.e., the gradient or even higher derivatives like
the Hesse tensor. Therefore we are facing the question how to obtain this kind of data
for a sufficient number of places on the Earth. There are several possibilities which all
have their advantages and disadvantages.

• Terrestrial. Measurements taken on the ground are the oldest source of information,
which locally provides a very dense set of data. However, obstacles are manifold
ranging from unsuitable terrain for measurement campaigns over political instabil-
ities to a simple lack of financial resources.
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• Airborne. Gravitational field determination onboard of a plane is still expensive
and also is not capable to provide a sufficient global coverage.

• Satellite tracks. Satellites are comparably cheap (taken as a data/cost ratio) and
also allow a near to global coverage. One possibility is determining the perturba-
tions of the satellite track due to changes in the gravitational field.

Satellites have a particular problem. The lower they fly the shorter their life ex-
pectance and the higher they fly the bigger the error due to the smoothing of
the geopotential field leading to an amplification of the unavoidable measurement
errors during the downward continuation process to the Earth’s surface. Recent
examples are CHAMP (Challenging Minisatellite Payload for Geoscience and Ap-
plication, launched 2000) and GRACE (Gravity Recovery and Climate Experiment,
launched 2003)

• Spaceborne Gradiometer. Gradiometer onboard of a satellite enable us to do highly
precise measurements but are considerably more expensive than the above variant.
The other advantages and disadvantages are right the same. An example is GOCE
(Gravity Field and Steady State Ocean Circulation Explorer, launch expected 2006)

Currently one mostly concentrates on getting the geopotential field out of the radial
component of the measured derivatives. In principle, this is rather efficient because the
reconstruction out of these data is mathematically seen of good nature and the error
in this direction is often lower than for the other components. However, just using
a relatively small selection of the measured data seems to be a waste. Furthermore
an interesting question is how to combine data from completely different sources and
positions.

These are exactly the points the following text intends to deal with. We will investi-
gate a sensible possibility to use all obtainable data in a unified setup. Furthermore we
will make some improvements at various points.



Introduction and Outline

As we have seen in the preface there is a major interest in a good knowledge of the
gravitational field of the Earth. Over the past decades a huge amount of data concerning
gravity have been measured out of which one can recover the gravitational field. However,
we will not try to tackle this task immediately but take a closer look on the underlying
mathematical problems. Actually all of them are special cases of the oblique derivative
problem which we want to analyze in this thesis.

First we will give a short mathematical description of the oblique derivative prob-
lem. Then we will display some interesting special cases occurring in the geosciences.
Afterwards we intend to describe our approach and our results briefly.

1.1 Oblique Derivative Problem

In many fields of geophysics we have the following situation. The behavior of a certain
quantity can be described by a differential equation for the whole or a major part of the
space. A prominent example is the gravitational field which fulfills the Laplace equation
in the outer space of the Earth Σext. However we are just able to measure data, e.g.,
derivatives of the quantity we are interested in, in a very limited area, most of the time
just at a surface.

Nevertheless we want to know how the quantity looks like on the whole space. Because
we are dealing with a real world situation we are not just interested in existence and
uniqueness of our solution but also in how to actually get it and what errors we are
facing. This is a physically motivated description of the oblique derivative problem, now
we will give a mathematical one.

1.1.1 Definitions

Let V be in an appropriate function space S defined on Σext ⊂ R
N . This V will be the

function we are seeking for.

A mth order differential operator ∆ in Σext is defined as

∆ =
∑

|µ|≤m
Aµ∂µ

where the µ are multiindices for an N -dimensional space, ∂µ the differentials in the
corresponding directions and Aµ : Σext → R smooth functions.
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Σext ⊂ R
N is now the set on which V should fulfill the following partial differential

equation:

∆V = 0

Equivalently one can define differential operators {dk}k∈{1,...,n} on Σext with smooth func-
tions Dk,µ : Σext → R:

dk =
∑

|µ|≤mk

Dk,µ∂µ

which should fulfill the following n equations (side conditions):

(dkV )|Σk = Fk for all k ∈ {1, . . . , n}

where the Σk ⊂ Σext and Fk : Σk → R correspond to the input, e.g., measurements.
Please note that (dkV )|Σk does not mean that dk is constrained to Σk but that this
equation just needs to hold on the subset Σk

Now we want to know how V looks like on the whole set Σext. Therefore we are
interested in the following properties:

• Existence of V .

• Uniqueness of V .

• A constructive possibility how to get V out of the Fk.

• An estimate how near we actually get to V , when we work with perturbed data or
discrete sets Σk.

Usually it is possible to reconstruct V out of one of the equations dkV = Fk completely
or at least to a large amount. Therefore one normally restricts the attention to one side
condition (dkV )|Σk = Fk at a time and puts together the results later on.

Now we will show two possible specializations of the oblique derivative problem oc-
curring in the geoscientific context. For a much more detailed account on this topic and
a vast collection of corresponding literature we want to refer the reader to [Fre99, FGS98,
FM03b]. Additionally we will take a more mathematical look on this in the chapter on
geoscientifical problems.

1.1.2 Oblique Boundary Value Problem

The first specialization of the oblique derivative problem is the oblique boundary value
problem. Using the notation from above we have that Σext is the exterior of the Earth
including its surface and Σk is the Earth’s surface. The underlying partial differential
equation is the Laplace equation

∆V = 0
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Possible terrestrial data available include the gravitational potential itself (Satellite Al-
timetry), the first derivative (Gravimetry and Geometric-Astronomical Levelling) and
the second derivative (Terrestrial Gradiometry) but it should be mentioned that none of
the above data is globally available.

Neglecting the fact that not every derivative allows an exact reconstruction the oblique
boundary value problem is of good nature. Possible solution concepts include integral
equations [Kel67], pseudo differential equations and mere approximation [FGS98].

In the literature the following cases including solutions have been discussed

• First order differentials, which are not tangential to the boundary, especially [FK81],
the references therein and [GT97].

• First and second order radial derivatives in radial direction, e.g., in [FGS98].

Furthermore we know

• For a very limited number which tangential (first or second order) derivatives need
to be combined in order to get a complete reconstruction.

Beyond these possibilities we want to consider the much more general case

• First and second order oblique derivatives, i.e., not necessarily non-tangential to
the boundary and not just the radial direction.

1.1.3 Oblique Satellite Problem

The second specialization of the oblique derivative problem is the oblique satellite prob-
lem. Using the notation from beforehand we again have that Σext is the exterior of the
Earth including its surface and the Σk are satellite tracks. Please note that just in very
unusual cases the satellite tracks can be considered as a subset of a surface outside the
Earth because normally every satellite track is slightly elliptic and its semimajor axis
does not coincide with the rotation axis of the earth.

Again the underlying partial differential equation is the Laplace equation reading

∆V = 0

This time our observables are the first derivatives (Satellite-to-Satellite Tracking) and
second derivatives (Satellite Gravity Gradiometry).

This problem is ill-posed, i.e., small perturbations in the input data lead to large
differences in the results. The necessary regularization (“downward-continuation”) will
be described in detail in the chapter concerning Noise and Regularization.

In the literature the following cases including solutions have been discussed

• First and second order radial derivatives in radial direction, e.g., in [Fre99].

Furthermore we know

• For a very limited number which tangential (first or second order) derivatives need
to be combined in order to get a complete reconstruction [Sch94].

Beyond these possibilities we want to consider the much more general case

• First and second order oblique derivatives, i.e., derivatives not pointing in the radial
direction.
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1.2 Outline

Now we want to give a brief outline of the thesis. Our ultimate goal is to provide new
tools for getting the gravitational field out of various sources. Therefore we need to
consider the next two points in more detail

• Treatment of oblique derivatives.

• Combination of data from different sources.

We will not try to give a completely new solution technique but to enlarge the possibilities
and improve the process at several distinct points.

1.2.1 Operator Split Approach for ∆

How can one solve the oblique derivative problem occurring in the geoscientifical context?

This question will be partly answered in Chapter 2 (Split Operators for ∆). Using
a more general setup we will classify all first order and purely second order differential
operators d , where ∆(d V ) = 0. This allows us to solve the oblique derivative problem
as if we would just have non-derived data given. So standard methods are applicable.
Afterwards we need to invert the differential operator d to get the final solution, i.e., we
have to perform an integration.

In the geo-scientifically relevant case we have the following possibilities for d ; the c⊡
are all real valued constants, x1, x2 and x3 are the variables pointing in the corresponding
directions of the Euclidean space, of which we consider the subset Σext:

• First order differential operator d =
∑3

i=1Di∂i +D.



D1

D2

D3



 =




cr c¬3 c¬2

−c¬3 cr c¬1

−c¬2 −c¬1 cr








x1

x2

x3



+




c1
c2
c3





D = c

• Purely second order differential operator d =
∑3

i=1

∑3
j=iDij∂i∂j .

D11 =cr,rx
2
1 + cr,¬3x1x2 − cr,¬2x1x3

− c¬3,1x2 + c¬2,1x3 + c1,1

D22 =cr,rx
2
2 − cr,¬3x1x2 + cr,¬1x2x3

− c¬3,2x1 − c¬1,2x3 + c2,2

D33 =cr,rx
2
3 + cr,¬2x1x3 − cr,¬1x2x3

− c¬2,3x1 − c¬1,3x2(+c3,3)

D12 =cr,¬3(x
2
2 − x2

1) + 2cr,rx1x2 + cr,¬1x1x3 − cr,¬2x3x2

+ c¬3,1x1 + c¬3,2x2 − c¬2,2x3 − c¬1,1x3 + c1,2

D13 =cr,¬2(x
2
1 − x2

3) − cr,¬1x1x2 + 2cr,rx1x3 + cr,¬3x3x2

− c¬2,1x1 + c¬1,1x2 + c¬2,3x3 + c1,3

D23 =cr,¬1(x
2
3 − x2

2) + cr,¬2x1x2 − cr,¬3x1x3 + 2cr,rx2x3

+ c¬2,2x1 + c¬1,2x2 + c¬1,3x3 + c2,3
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The advantage in comparison to other solution methods for the oblique derivative
problem is that we can operate as if we actually would not have any oblique derivative.
This means that we can rely on standard techniques for solving the oblique derivative
problem which have been proven to be reliable in practice.

In particular we do not have any restrictions on our data location, every one which
is suitable for the standard problem without derivatives as side conditions does the job.
Especially for boundary value problems, where even a small quantity of derivatives which
are sufficiently near to the tangent plane pose enormous problems this is really a leap
forward. Additionally we can work with standard basis systems and do not have to
switch to differentiated (anisotropic) ones.

However the most obvious advantage is that one has a particularly easy solution
method for higher derivatives as side conditions. Even for derivatives higher than the
second order ones we considered the approach transfers without major problems.

1.2.2 Integration

How does the corresponding integration look like? Do we have uniqueness in the recon-
struction or do we have to take care of some kernel spaces?

The necessary computations will be done in Chapter 3 (Integration). We can show
that for each of the operators d proposed above and for spherical harmonics as basis
system [FGS98] the integration problem corresponds to solving several band limited
systems of linear equations. We explicitly calculate these matrices there.

1.2.3 Geoscientifical Problems

Which mathematical tasks do we have to perform for the oblique boundary value problem
and especially for the oblique satellite problem?

In this chapter we will give a more detailed account on the available data and on the
mathematical tasks one has to perform for solving this problem.

1.2.4 Noise and Regularization

Does there exist a sensible stopping criterion for the inverse problem “downward-conti-
nuation” which allows optimal regularization?
We need to know an approximate error level of our solution after regularization.

This question will be answered in Chapter 5 (Noise and Regularization). In a first
part we motivate that the noise model currently in use for ill-posed problems is not
appropriate. We replace this noise model with another which seems to fit much better.
Regularization under the assumption of this more general noise model is much harder
and up till now not known for severely ill-posed problems.

We provide such an optimal regularization procedure using three (two) input data
sets.
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1.2.5 Unified Setup

How can one combine data from different sources , e.g., different differential compo-
nents of the satellite and/or different measurement campaigns, in a sensible way? What
conditions do we have to impose on the data?

We will answer this question in Chapter 6 (Combining Data in a Unified Setup). We
show that from the mathematical point of view the best order for solving our problem is

1. Approximation of the differentiated data with respect to d i at the height of the
satellite track.

2. Downward-continuation.

3. Data combination and inverting the differential operators d i (Integration).

The last point is achieved with a least squares approach on the operators d i. In particular
we obtain that we do not have to care about the non-uniqueness of some of our differential
operators d i and that we actually minimize the occurring error.

1.2.6 Aspects of Scientific Computing

Does the method proposed in the solutions above actually work on data, derived from a
geophysically relevant modell?

We will do the numerical tests in Chapter 7 (Scientific Computing). There we will
show that each of the solutions of the above problems actually works in practice. In
particular we perform separate tests for

• Downward-continuation.

• Oblique derivative problem.

• Combination of data from completely different data sets.

1.2.7 Remarks

We want to remark that for each of the problems above we will use a completely differ-
ent strategy to attack it. Therefore some knowledge in the following topics is strongly
advisable (ordered by chapter).

• Chapter 2

– (computational) commutative algebra

– methods for solving PDE’s symbolically

• Chapter 3

– basic potential theory

• Chapter 4

– mathematical treatment of gravity data from satellites
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• Chapter 5

– stochastical methods

– advanced knowledge about functional analysis and the theory of inverse prob-
lems

• Chapter 6

– basic functional analysis

• Chapter 7

– satellite problems

The following references are just a proposal which were utilized by the author. Any
other good books on the mentioned topics should equally provide the background knowl-
edge in a sufficient way: [CLO91, GP02, Sei94], [Wal71], [Fre99, FM03b], [BD96, Per03b],
[Rud73] and [Sch97].
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Chapter 2

Operator Split Approach for ∆

How can one solve the oblique derivative problem occurring in the geoscien-
tifical context?

In the literature we find solutions for two cases:

• First order differentials, which are not tangential to the boundary (when we have
a boundary value problem), e.g., in [FK81, GT97].

• First and second order radial derivatives in radial direction, e.g., in [FGS98].

There are mainly two different ways to classically treat this problem. The first one is
an ansatz with an integral equation. The second possibility is an approximation of the
given data with an appropriate basis system satisfying the Laplace equation.

Beyond these possibilities we want to consider the much more general case

• First and second order oblique derivatives, i.e., not necessarily non-tangential to
the boundary (when we have a boundary value problem) and certainly not just the
radial direction.

In order to tackle this problem we will need to introduce a more general setup. Therein
we will demand a set of oblique derivatives at a subset which interacts in a special way
with the underlying partial differential equation.

This will result in a system of nonlinear partial differential equations which needs to be
solved symbolically. It will turn out to be much too complicated to get a general solution
and hence we will restrict the attention to the geoscientifically relevant problem with the
Laplace operator ∆. Its solution will be obtained for a special case using methods from
(non-)commutative algebra.

Please note that our method is a new approach and has the standard teething prob-
lems. Although it is general and capable to deal with other operators than the Laplace
one we are facing a number of algebraic equations which by now just seem to be solvable
under hard restrictions. Furthermore the classification process we do does not return
striking new results but “just” tells us that we do not have to do more investigations for
the Laplace operator.
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2.1 General Problem Setup and Solution Strategy

The oblique derivative problem is a special case of the following very general problem.

Problem 2.1

Let S, T1 and T2 be separable normed linear function spaces defined on a domain

Σext and assume ΣD ⊂ Σext ⊂ R
n. Let U : S → T1 and D : S → T2 be linear

operators. Assume furthermore T1 ∈ T1 and T2 ∈ T2.

We search all V ∈ S fulfilling

UV = T1

(DV )|ΣD = T2|ΣD

Remark

Observe that we demand D to be defined on the whole function space S and not

just on the space with the functions restricted to ΣD.

We can simplify the above problem by using the following standard method. If there does
not exist at least one solution V for the first equation there is nothing to do. Otherwise
we can use the linearity of the operator U and this solution V by substituting V by V −V
and T2 by T2 − DV . Hence we get the following easier configuration:

Problem 2.2 (General Problem)

Let S, T1 and T2 be separable normed linear function spaces defined on a domain

Σext and assume ΣD ⊂ Σext ⊂ R
n. Let U : S → T1 and D : S → T2 be linear

operators. Assume furthermore T2 ∈ T2.

We search all V ∈ S fulfilling

UV = 0

(DV )|ΣD = T2|ΣD

Remark

This is our oblique derivative problem in the geoscientifical case if we set Σext to

the exterior of the Earth, ΣD to the data location, U = ∆ and D = d to an oblique

derivative at ΣD.

2.1.1 Bidirectional Split Operator

If we take a closer look at the above problem we see that there is just one difference
in comparison to a problem with standard side condition. Instead of V |ΣD = T2|ΣD we
have to fulfill (DV )|ΣD = T2|ΣD . The problem would simplify considerably if we could
remove this additional operator D.
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Definition 2.1 (Bidirectional Split Operator)

UD : T2 → T1 is called bidirectional split operator for U with respect to D if it

fulfills the following property:

UV = 0 ⇔ UDDV = 0 for all V ∈ S

Remark

Neither existence nor uniqueness of UD is assured.

The next lemma highlights the significance of this new operator.

Lemma 2.1 (Bidirectional Split lemma)

Let UD be a bidirectional split operator for U with respect to D.

V is a solution of the problem

UV = 0

(DV )|ΣD = T2|ΣD
if and only if there exists VD ∈ T2 satisfying

UDVD = 0

VD|ΣD = T2|ΣD
DV = VD

Proof

Using the definition of the bidirectional split operator we can replace UV = 0 by

UDDV = 0. Substituting DV by VD yields the above result.

Because of the property UV = 0 iff UDDV = 0 , the “iff” also holds in our

proposition. q.e.d.

Instead of solving the original problem we can now restrict ourselves to solving the
following problem.

Problem 2.3

We search all VD ∈ T2 fulfilling

UDVD = 0

VD|ΣD = T2|ΣD

After having accomplished this task, we just need to invert the operator D in order to
get the final result. This means that we split the original problem with a non-standard
side condition (DV )|ΣD = T2|ΣD into a problem with a standard side condition VD|ΣD =
T2|ΣD and an additional integration problem DV = VD. This was the motivation for
calling UD bidirectional split operator.

Obviously this approach just makes sense if UD exists and if we can compute it. This
will turn out to be a very hard problem.
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2.1.2 Relaxations

The constraint UV = 0 ⇔ UDDV = 0 is too strict in most cases. Obviously we require
that there is no nonzero function V fulfilling UV = 0 which is mapped to 0 by D.
Therefore we rule out a lot of possible candidates for D. So we need to relax the conditions
imposed on the bidirectional split operator.

Definition 2.2 (Split Operator)

UD : T2 → T1 is called split operator for U with respect to D if it fulfills the following

property:

UV = 0 ⇒ UDDV = 0 for all V ∈ S

Remark

Observe that every bidirectional split operator is also a split operator. The opposite

does not hold because UD = 0 is a split operator but not a bidirectional one.

We also get a weaker version of the bidirectional split lemma which exactly has the same
proof as this one:

Lemma 2.2 (Split Lemma)

Let UD be a split operator for U with respect to D.

If V is a solution of the problem

UV = 0

(DV )|ΣD = T2|ΣD

then it is also a solution of the problem

UDVD = 0

VD|ΣD = T2|ΣD
DV = VD

This relaxation is at some point a trade. On the one hand we are gaining a larger number
of possible operators and an easier job to show that UD is fulfilling the requirements. On
the other hand we have to check every solution of our new problem if it is really a solution
of the old one. Hence we have to choose among the possible solutions V the ones which
fulfill UV = 0.

Considering this problem the kernel of D and UD are of high importance, they are the
source of candidates for solutions. For example, if UD = 0 we will not gain any valuable
information out of the solution of the new problem although 0 is a split operator. So we
will restrict ourselves to split operators which do not behave too badly in this respect.
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2.1.3 Composition and Linearity

As remarked in the introduction we will have to deal with second order derivatives as side
conditions. Quite a lot of second order differential operators can be seen as a composition
of two first order differential operators. Using split operators we can attack this problem
directly. The proof works exactly the same way as the split lemma.

Lemma 2.3 (Composition of Split Operators)

Assume D = D2D1 and let UD2 and (UD2)D1
be the corresponding (bidirectional)

split operators.

V is a solution of the problem

UV = 0

(DV )|ΣD = T2|ΣD

(iff) then it is also a solution of the problem

(UD2)D1
VD = 0

VD|ΣD = T2|ΣD
DV = VD

In other words, we have the equality

(UD2)D1
= U(D2D1) = UD

Thus, by composition, we are able to handle any finite compositions of operators D. In
particular, the second derivatives we observe as data in our satellite problem are covered.

Furthermore we can consider the following situation whose proof is straightforward,
again.

Lemma 2.4 (Linearity of Split Operators)

Assume UD1 = UD2 are (bidirectional) split operators with respect to D1 and D2

respectively.

Then UD := UD1 is a split operator with respect to the operator

D = α1D1 + α2D2 where α1, α2 ∈ R

2.1.4 Kernels

Now we will consider some further properties concerning the (algebraic) kernels (i.e.,
nullspace) of our operators. First we will rewrite our definition of a (bidirectional) split
operator in an algebraic way.
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Lemma 2.5

UD is a bidirectional split operator of U with respect to D iff

ker (U) = ker (UDD)

UD is a split operator of U with respect to D iff

ker (U) ⊂ ker (UDD)

This is a trivial consequence of UV = 0 iff V ∈ ker (U).
Obviously it does not make too much sense if ker (UDD) is getting much bigger than

ker (U) because we would need to check much more solutions if they really fulfill the
requirements. In particular, it is not useful if UDD = 0 or even UD = 0 because we would
not gain anything.

In order to classify the set of solutions we will introduce the following notation:

Definition 2.3 (Subset Kernel)

Using the notation from the problems above we define the subset kernel as

sker (D) =
{
V ∈ S | (DV )|ΣD = 0

}

Observe that sker (D) ⊃ ker (D). As we will see later on, we will actually get sker (D) =
ker (D) for a wide class of geoscientifically relevant problems.

Using this new definition we may rewrite our original problem algebraically:

Lemma 2.6

The set of all solutions of the general problem is ker (U) ∩ sker (D) + V , where V

is one solution of the problem.

In particular existence of a solution means that such a V exists, uniqueness means

that ker (U) ∩ sker (D) = {0}.

Lemma 2.7

The set of solutions we get when applying the split operator is ker (UDD)∩sker (D)+

V , where V is one solution of the problem.

The set of all solutions can be found by intersecting with ker (U).

Note that for none of the solution procedures the operator D is required to be one-to-one
and onto.

2.1.5 Application

Now we want to turn our attention to the geo-scientifically relevant case of the Laplace
operator ∆.
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Problem 2.4

Let Σext ⊂ R
3 be a domain and ΣData in its interior. Assume furthermore d to be

a smooth first order or second order differential operator on Σext. Let Data be a

smooth function on ΣData.

We search all harmonic [FGS98] functions V : Σext → R fulfilling

(∆V )|Σext = 0

(d V )|ΣData = Data

Remark

The notation “smooth differential operator” is meant as an abbreviation for a

differential operator with smooth coefficient functions.

Please note that we do not require that we can make a complete reconstruction of

the geopotential V out of the data for the derivative d .

Now we will turn our attention to the problem of actually obtaining the necessary split
operators for this problem. First we will attack the problem for first order differential
operators, afterwards for purely second order differential operators d .

Our goal is to classify which side conditions d possess a split operator in the form of
another differential operator of maximal degree 2.

2.2 Split Operators with Respect to a First Order

Operator Condition

Because of the mere impossibility to compute these split operators in general, we will
just try to get a solution for our problem. On the other hand we can keep the problem
at some points a little bit more general than described beforehand.

However, due to our algebraic approach and the fact that we use the cartesian coor-
dinate system to tackle the problem we face another kind obstacle:

• The function V we search for has to be smooth in the domain we consider, i.e.,
V ∈ C∞ (Σext

)
.

• We need the underlying differential operator ∆ to be defined and smooth on Σext.

• We need the side condition d to be defined and smooth on Σext.

In order to keep the notation simple A⊡ should incorporate the whole family of
possible A, Ai, Aij and so on. The same notation will be used for other variables
if appropriate, too. We want to mention again that we denote the derivative in the
Euclidean direction xi by ∂i.

As we are normally concerned with the three-dimensional space we will restrict our
attention to this special case. In particular this implies for our notation that all indices
in sums are assumed to reach from 1 to 3, e.g.,

∑
i =

∑3
i=1 if not stated otherwise.
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Problem 2.5

Assume

∆ =
∑

i≤j
Aij∂i∂j +

∑

i

Ai∂i + A

where the A⊡ ∈ C∞(Σext

)
denote smooth functions and all matrices aij =

(
Aii Aij
0 Ajj

)

are definite. (I.e.,
(
vTaijv

)
(x) 6= 0 for all v ∈ R

2 \ {0} for all x ∈ Σext)

Additionally ∆ should fulfill the following technical condition. For all differential

operators {1, ∂i, ∂j∂k, ∂i∂j∂k} with 1 ≤ i ≤ j ≤ k ≤ 3 and j 6= 3 there should exist

an half order ◮ on the multi-indices and functions H,Hi, Hij, Hijk which fulfill for

all values (ν, µ are multi-indices):

• Hµ ∈ C3
(
Σext

)
for all µ

• ∆Hµ = 0 for all µ

• ∂νHµ = 0 for all ν ◮ µ

• ∂νHν = Hν 6= 0 for all ν

Assume furthermore

d =
∑

k

Dk∂k +D

where the D⊡ ∈ C∞(Σext

)
are smooth functions and at every point at least one of

the Di 6= 0.

Does there exist a sensible (non-zero) split operator ∆d for ∆ with respect to d ?

How does it look like? Which conditions does d have to fulfill?

Note that in terms of the operator notation in the last section we would have U = ∆,
D = d and hence UD = ∆d .

Remark

Because we assume all of our functions to be sufficiently smooth we have ∂i∂j = ∂j∂i

and hence can assume Aij = 0 for i > j.

Every elliptic or hyperbolic differential operator fulfills the above requirement be-

side the technical condition of the existence of the half order ◮ and the correspond-

ing functions H⊡.

Alternatively to 1 ≤ i ≤ j ≤ k ≤ 3 and j 6= 3 we could require µ not equalling

(1, 1, 1), (2, 2, 2), (3, 3, 3) or (3, 3) depending on what simplification is actually the

easiest to perform. Note that this is a minor alteration which does not change the

problem but just slightly how we deal with it.
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Lemma 2.8

The Laplace operator ∆ =
∑

i ∂i∂i fulfills the requirements imposed by the above

problem.

Proof

Using the notation of the above problem we have Aij = δij and A = Ai = 0 for all

possible i and j. This means that aij = ( 1 0
0 1 ) > 0 as required.

As order on the multi-index ν we choose the standard lexicographical order. Then

the technical condition, the existence of particular Hν , is fulfilled by the homoge-

neous harmonic polynomials up to degree 3 , namely [FGS98].

0H0
0 = 1

0H1
1 = x1

0H0
1 = x2

1H0
1 = x3

0H2
2 = x2

1 − x2
3

0H1
2 = x1x2

0H0
2 = x2

2 − x2
3

1H1
2 = x1x3

1H0
2 = x2x3

0H3
3 = x3

1 − 3x1x
2
3

0H2
3 = x2

1x2 − x2x
2
3

0H1
3 = x1x

2
2 − x1x

2
3

0H0
3 = x3

2 − 3x2x
2
3

1H2
3 = x2

1x3 −
x3

3

3
1H1

3 = x1x2x3
1H0

3 = x2
2x3 −

x3
3

3

This yields the proposition both for 1 ≤ i ≤ j ≤ k ≤ 3 and j 6= 3 or ν not equalling

(1, 1, 1), (2, 2, 2), (3, 3, 3) or (3, 3). q.e.d.

2.2.1 First Order Split Operators

Now we want to analyze possible split operators systematically. The first idea is taking
∆d to be a first order differential operator, i.e., ∆d d has second order. This search will
return a negative result.

Lemma 2.9

Let ∆ and d be as defined in the above problem.

Then there does not exist a nontrivial split operator in the form ∆d =
∑

iBi∂i+B,

where the Bi and B denote smooth functions, i.e., B⊡ ∈ C∞(Σext).

Proof

Without loss of generality we will assume D3 to be nonzero at the particular point

considered. Any other configuration could be obtained by mere permutation.
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First we need to compute ∆d d . Using the chain rule we obtain:

∆d d =
∑

i

Bi

∑

j

((∂iDj) ∂j +Dj∂i∂j)

+
∑

j

BDj∂j +
∑

i

Bi (∂iD +D∂i) +BD

=
∑

i,j

BiDj∂i∂j

+
∑

i

((
∑

j

Bi∂jDj

)
+BDi +BiD

)
∂i

+BD +
∑

i

Bi∂iD

Now we want to use the technical condition concerning the functions H⊡. As we

see we do not have a statement for ∂3∂3. Therefore we have to do the following

consideration.

We are just interested in solutions obeying ∆V = 0 and hence ∆d d V = 0. So

subtracting D3B3

A33
∆ ( A33 6= 0 because a13 is definite) does not change the set of

solutions and additionally will remove the ∂3∂3 term. Cleaning up the resulting

equation yields:

0 =

(
∆d d −

D3B3

A33

∆

)
V

=

(
∑

i

(
DiBi −

D3B3

A33

Aii

)
∂i∂i

+
∑

i<j

(
DjBi +DiBj −

D3B3

A33

Aij

)
∂i∂j

+
∑

i

((
∑

j

Bj∂jDi

)
+BDi +BiD − D3B3

A33
Ai

)
∂i

+BD +
∑

i

Bi∂iD − D3B3

A33
A

)
V

Now we can apply the technical condition we required to hold. Namely for all

differential operators {1, ∂i, ∂i∂j} with 1 ≤ i ≤ j ≤ 3 and j 6= 3 there exists a half

order ◮ on the multi-indices and functions H0, Hi, Hij which fulfill for all values

(ν, µ are multi-indices):

• ∆Hµ = 0 for all µ

• ∂νHµ = 0 for all ν ◮ µ

• ∂νHν = Hν 6= 0
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Using ν1 ◭ ν2 ◭ . . . ◭ ν9 (there are nine differentials of the above form left) we

can rewrite the above equation in the following terms:
(

9∑

i=1

Cνi∂νi

)
V = 0

where the Cνi are appropriate smooth functions.

Now inserting the Hνk in the above equation yields the following 9 equations:

0 =

(
9∑

i=1

Cνi∂νi

)
Hνk

=

(
∑

i<k

Cνi∂νiHνk

)
+ CνkHνk +

(
∑

i>k

Cνi∂νiHνk

)

=

(
∑

i<k

Cνi∂νiHνk

)
+ CνkHνk

which is structurally seen a triangular homogeneous linear system of linear equa-

tions. Using Hνk 6= 0 for all νk we immediately get Cνk = 0 for all νk.

Expanding the Cν again we get the following four sets of equations:

0 =BD +
∑

i

Bi∂iD − D3B3

A33
A

0 =

(
∑

j

Bj∂jDi

)
+BDi +BiD − D3B3

A33
Ai for all i

0 =BiDj +BjDi −
D3B3

A33
Aij for all i < j

0 =BiDi −
D3B3

A33
Aii for all i

Using the last two sets of equations we get:

0 =DiDj

(
BiDj +BjDi −

D3B3

A33

Aij

)

=BiDiD
2
j +BjDjD

2
i −DiDj

D3B3

A33
Aij

=
D3B3

A33

(
AiiD

2
j + AjjD

2
i −AijDiDj

)

= − D3B3

A33

(
−Dj Di

)(Aii Aij

0 Ajj

)(
−Dj

Di

)

= − D3B3

A33

(
−Dj Di

)
aij

(
−Dj

Di

)

We assumed every matrix of the type aij to be definite. In particular this means

that 0 = D3B3

A33
because we assumed D3 6= 0 and therefore (−Dj D3) 6= 0. As

D3

A33
6= 0 we get B3 = 0.
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Using the third set of equations this immediately yields BiD3 = 0 and hence Bi = 0

for all i. Then the second set of equations also yields BD3 = 0 and thus B = 0.

These arguments hold for all points in Σext and hence the operator ∆d = 0 is the

trivial operator. q.e.d.

2.2.2 Second Order Split Operators

As we have seen, first order differential operators are not appropriate candidates for
(bidirectional) split operators. Therefore we will try second order differential operators.

Definition 2.4

The second order differential operator ∆̃ is defined as

∆̃ =
∑

i≤j
Bij∂i∂j +

∑

i

Bi∂i +B

The B⊡ ∈ C∞(Σext) are assumed to be smooth functions.

∆̃ shall be our candidate for the (bidirectional) split operator ∆d as described in the last
problem.

Now we want to classify as many cases as possible. Therefore we will do the necessary
computations in several steps. For all steps we will use one of the computer algebra
systems Maple 7 with the PDEtools package or Singular, according to which one is more
appropriate.

Because of its length we have not included the whole calculations into this text and we
will just give the most important steps. The scripts itself may be requested electronically
from the author.

2.2.3 First Computations

Like beforehand our first task is applying our functions H⊡ to get a set of conditions
for our coefficients. Thus we will subtract a multiple of ∆ in order to cancel the ∂1∂1∂1,
∂2∂2∂2, ∂3∂3∂3 and ∂3∂3 terms.

∆̃d −
(
∑

i

Bii

Aii
Di∂i∆

+
1

A33

((
∑

i

B3i∂iD3 −
Bii

Aii
Di∂iA33

)

+B33∂3D3 −
B33

A33
D3A3 +B3D3 +B33D

)
∆

)

= +

(
B11D2 − A11

B22

A22
D2 +B12D1 − A12

B11

A11
D1

)
∂1∂1∂2

+

(
B22D1 − A22

B11

A11

D1 +B12D2 − A12
B22

A22

D2

)
∂1∂2∂2
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+

(
B11D3 − A11

B33

A33
D3 +B13D1 − A13

B11

A11
D1

)
∂1∂1∂3

+

(
B33D1 − A33

B11

A11

D1 +B13D3 − A13
B33

A33

D3

)
∂1∂3∂3

+

(
B22D3 − A22

B33

A33
D3 +B23D2 − A23

B22

A22
D2

)
∂2∂2∂3

+

(
B33D2 − A33

B22

A22
D2 +B23D3 − A23

B33

A33
D3

)
∂2∂3∂3

+

(
B23D1 − A23

B11

A11
D1 +B13D2 − A13

B22

A22
D2

+B12D3 − A12
B33

A33

D3

)
∂1∂2∂3

+ lower order parts

Note that Aii 6= 0 because of the definiteness of aij .
The subtraction of a multiple of ∆ enabled us to reduce all occurring coefficients to

the ones covered by the technical condition given in our problem setup. We did not write
down the result completely because it would cover roughly three pages right now.

Now we will apply the same strategy as shown beforehand. We will insert all different
Hν consecutively and hence get that all of the remaining coefficients in front of the ∂ν
are zero as shown in the last lemma.

2.2.4 Second Order Terms

First we will just take a look at the seven equations generated by the third order terms
in the above operator which are manageable because of their minor size:

0 =BiiDj −
Bjj

Ajj
AiiDj +BijDi −

Bii

Aii
AijDi for all i, j

0 =B23D1 −
B11

A11

A23D1 +B13D2 −
B22

A22

A13D2 +B12D3 −
B33

A33

A12D3

Now we want to take a closer look at these equations. Like in the preceding section we
can extract quite a lot of information out of them:

Lemma 2.10

Let ∆, d and ∆̃ be as defined beforehand. Then the second order parts of ∆ and ∆̃

are essentially the same. (In these terms essentially means “up to a factor”.)

Proof

Again all the considerations are made pointwise. We will use the first set of equa-

tions to get our results. As we can assume without loss of generality that D1 6= 0

we will just consider the pair (1, 2). However, all the arguments would be the same

for any other pair.
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Consider the two equations

0 =B11D2 −
B22

A22

A11D2 +B12D1 −
B11

A11

A12D1

0 =B22D1 −
B11

A11

A22D1 +B12D2 −
B22

A22

A12D2

As D1 6= 0 we can isolate B12 out of the first equation.

B12 = A12
B11

A11

− A11
D2

D1

(
B11

A11

− B22

A22

)

Substituting this result in the second one and multiplying with D1 yields:

0 =B22D
2
1 −

B11

A11
A22D

2
1 − B11D

2
2

+
B22

A22
A11D

2
2 +

B11

A11
A12D1D2 −

B22

A22
A12D1D2

= −
(
B11

A11
− B22

A22

)(
A11D

2
2 − A12D1D2 + A22D

2
1

)

= −
(
B11

A11
− B22

A22

)(
−D2 D1

)(A11 A12

0 A22

)(
−D2

D1

)

= −
(
B11

A11

− B22

A22

)(
−D2 D1

)
a12

(
−D2

D1

)

Using D1 6= 0 and the matrix a12 to be definite we get

B11

A11
=
B22

A22
=: C

where C denotes a smooth function. Hence

B11 = A11
B11

A11

= CA11 and B22 = A22
B22

A22

= CA22

Using this relation for the equation derived for B12 we get

B12 = CA12

As we could apply this method for the pair (1, 3) as well, we can finally derive

Bij = CAij for all (i, j) without (2, 3)

The equivalent equation for the last pair can be derived out of the equation B23D1−
B11

A11
A23D1 +B13D2 − B22

A22
A13D2 +B12D3 − B33

A33
A12D3 = D1 (B23 − CA23) = 0.

In order that our split operator makes any sense it is reasonable to assume C 6= 0.

(Otherwise ∆̃ is a first order operator which has to be zero by the last subsection.
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Hence ∆̃ would be trivial in this case.) Thus by substituting B⊡ = B⊡/C we can

assume C = 1. As the considerations were independent of the particular point

considered the second order part of ∆ and ∆̃ are identical up to a common factor.

q.e.d.

This result simplifies our operator considerably. However the equations we can derive
are still too complicated to have a chance of computing a symbolical solution.

2.2.5 Restriction to ∆ = ∆

We have seen that the second order part of ∆ does not change considerably. Thus
we can restrict our attention on ∆ = ∆, even if we want to use compositions of oblique
derivatives. This means in particular Bij = Aij = δij and Ai = A = 0 for all combinations

i and j, i.e., ∆̃ = ∆ +
∑

iBi∂i +B

Hence our differential operator looks:

∆̃d −
(
∑

i

Di∂i∆ +

((
∑

i

B3i∂iD3

)
+ ∂3D3 −D3A3 +B3D3 +D

)
∆

)

= + (2∂1D1 +B1D1 − 2∂3D3 − B3D3) ∂1∂1

+ (2∂2D2 +B2D2 − 2∂3D3 − B3D3) ∂2∂2

+ (2∂2D1 +B2D1 + 2∂1D2 +B1D2) ∂1∂2

+ (2∂3D1 +B3D1 + 2∂1D3 +B1D3) ∂1∂3

+ (2∂3D2 +B3D2 + 2∂2D3 +B2D3) ∂2∂3

+
(
∆̃D1 + 2∂1D +B1D

)
∂1

+
(
∆̃D2 + 2∂2D +B2D

)
∂2

+
(
∆̃D3 + 2∂3D +B3D

)
∂3

+
(
∆̃D

)

2.2.6 Further Conditions

Now we can extract further equations by the usage of the technical condition as shown
beforehand. Hence we end up at the following system of equations:

0 =∆̃Di + 2∂iD +BiD for all i

0 =2∂iDj +BiDj + 2∂jDi +BjDi for all i 6= j

0 =2∂iDi +BiDi − 2∂jDj − BjDj for all i 6= j

0 =∆̃D
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Introducing the differential operators bi = 2∂i + Bi we get the following much more
simple form:

0 =∆̃Di + biD for all i

0 =biDj + bjDi for all i 6= j

0 =biDi − bjDj for all i 6= j

0 =∆̃D

We have tried to translate the system in the language of non-commutative algebra.
This was done in collaboration with. V. Levandovskyy (Univ. of Kaiserslautern) using a
beta version of Singular [GPS01] which is capable of handling non-commutative problems
[Lev03].

However, up till now we were not able to get sufficient results this way. This seems
to be due to the fact that the above equations are extraordinarily symmetric. The
underlying Gröbner Basis approaches to solve such a problem basically work by breaking
the symmetries resulting in very bad results, if at all.

Therefore we will restrict our attention to the commutative case (i.e., the B⊡ and the
differential operators ∂i commute). This means in particular Bi = 2bi and B = b, where
b⊡ ∈ R which results in the following system:

0 =
∑

j

(∂j∂jDi + 2bj∂jDi) + bDi + 2∂iD + 2biD for all i

0 =∂iDj + biDj + ∂jDi + bjDi for all i 6= j

0 =∂iDi + biDi − ∂jDj + bjDj for all i 6= j

0 =
∑

j

(∂j∂jD + 2bj∂jD) + bD

2.2.7 Solving the System

We need to do some preparatory steps to solve this system using a method proposed
in [Sei94]. We transform the system of partial differential equations into a system of
polynomial equations, i.e., changing the language from PDE’s to commutative algebra.
In this case the differentials ∂i get the new variables which will be denoted by si from
now on. The other coefficients stay right the same. In particular we will write the real
variables bi = bi).

Now we are ready to solve the problem. We will order the different functions in the
following vector: (D1, D2, D3, D). The equations we derived now describe an ideal in a
four dimensional polynomial ring with the vector of variables (s1, s2, s3, b1, b2, b3, b).
Alternatively we can consider them as generators of a module with respect to the one
dimensional polynomial ring in the same variables. In order to get solutions to our prob-
lem we will now compute a standard basis to this particular ideal/module. The method
of choice is Buchberger’s algorithm to obtain a Gröbner Basis [GP02], the program used
is Singular [GPS01].

When we transfer this standard basis back in the language of PDE’s we obtain a
system without hidden integrability conditions [Sei94].
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We are mainly interested in solutions which are ordered in the different functions Di

and then according to the differentiations. Therefore we chose the order (c, dp(3), dp(4))
for our problem. For further instructions on the possible orderings, their advantages and
disadvantages we want to refer the reader to [GP02].

ring r=0,(s1,s2,s3,b1,b2,b3,b),(c,dp(3),dp(4));

vector v1=[s2+b2,s1+b1,0,0];

vector v2=[s3+b3,0,s1+b1,0];

vector v3=[0,s3+b3,s2+b2,0];

vector v4=[s1+b1,-s2-b2,0,0];

vector v5=[s1+b1,0,-s3-b3,0];

vector v6=[s1^2+s2^2+s3^2+2*b1*s1+2*b2*s2+2*b3*s3+b,0,0,2*b1+2*s1];

vector v7=[0,s1^2+s2^2+s3^2+2*b1*s1+2*b2*s2+2*b3*s3+b,0,2*b2+2*s2];

vector v8=[0,0,s1^2+s2^2+s3^2+2*b1*s1+2*b2*s2+2*b3*s3+b,2*b3+2*s3];

vector v9=[0,0,0,s1^2+s2^2+s3^2+2*b1*s1+2*b2*s2+2*b3*s3+b];

module m = v1,v2,v3,v4,v5,v6,v7,v8,v9;

std(m);

The first line of our result looks the following way:

_[1]= [0,0,0,b1^4+2*b1^2*b2^2+b2^4+2*b1^2*b3^2+2*b2^2*b3^2+b3^4

-2*b1^2*b -2*b2^2*b-2*b3^2*b+b^2]

Hence we have the equation

0 =b
4

1 + 2b
2

1b
2

2 + b
4

2 + 2b
2

1b
2

3 + 2b
2

2b
2

3 + b
4

3 − 2b
2

1b− 2b
2

2b− 2b
2

3b+ b
2

=(b
2

1 + b
2

2 + b
2

3 − b)2

which immediately implies b = b
2

1 + b
2

2 + b
2

3. Using this result we can run Singular again.

ring r=0,(s1,s2,s3,b1,b2,b3),(c,dp(3),dp(3));

vector v1= [s2+b2,s1+b1,0,0];

vector v2= [s3+b3,0,s1+b1,0];

vector v3= [0,s3+b3,s2+b2,0];

vector v4= [s1+b1,-s2-b2,0,0];

vector v5= [s1+b1,0,-s3-b3,0];

vector v6= [s1^2+s2^2+s3^2+2*b1*s1+2*b2*s2+2*b3*s3

+(b1^2+b2^2+b3^2),0,0,2*b1+2*s1];

vector v7= [0,s1^2+s2^2+s3^2+2*b1*s1+2*b2*s2+2*b3*s3

+(b1^2+b2^2+b3^2),0,2*b2+2*s2];

vector v8= [0,0,s1^2+s2^2+s3^2+2*b1*s1+2*b2*s2+2*b3*s3

+(b1^2+b2^2+b3^2),2*b3+2*s3];
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vector v9= [0,0,0,s1^2+s2^2+s3^2+2*b1*s1+2*b2*s2+2*b3*s3

+(b1^2+b2^2+b3^2)];

module m = v1,v2,v3,v4,v5,v6,v7,v8,v9;

std(m);

Running this script we get the following result:

_[1]=[0,0,0,s3^2+2*s3*b3+b3^2]

_[2]=[0,0,0,s2*s3+s2*b3+s3*b2+b2*b3]

_[3]=[0,0,0,s1*s3+s1*b3+s3*b1+b1*b3]

_[4]=[0,0,0,s2^2+s3^2+2*s2*b2+2*s3*b3+b2^2+b3^2]

_[5]=[0,0,0,s1*s2+s1*b2+s2*b1+b1*b2]

_[6]=[0,0,0,s1^2+s2^2+s3^2+2*s1*b1+2*s2*b2+2*s3*b3+b1^2+b2^2+b3^2]

_[7]=[0,0,s3^2+2*s3*b3+b3^2,-2*s3-2*b3]

_[8]=[0,0,s2*s3+s2*b3+s3*b2+b2*b3,-2*s2-2*b2]

_[9]=[0,0,s1*s3+s1*b3+s3*b1+b1*b3,-2*s1-2*b1]

_[10]=[0,0,s2^2+s3^2+2*s2*b2+2*s3*b3+b2^2+b3^2]

_[11]=[0,0,s1*s2+s1*b2+s2*b1+b1*b2]

_[12]=[0,0,s1^2+s2^2+s3^2+2*s1*b1+2*s2*b2+2*s3*b3+b1^2+b2^2+b3^2

,2*s3+2*b3]

_[13]=[0,s3+b3,s2+b2]

_[14]=[0,s2+b2,-s3-b3]

_[15]=[0,s1^2+s2^2+s3^2+2*s1*b1+2*s2*b2+2*s3*b3+b1^2+b2^2+b3^2,0

,2*s2+2*b2]

_[16]=[s3+b3,0,s1+b1]

_[17]=[s2+b2,s1+b1]

_[18]=[s1+b1,0,-s3-b3]

This result tells a lot about the different possible solutions. The number of solutions
can now be derived by a comprehensive method out of such an algebraic standard basis
[Sei94].

Therefore we will determine the corresponding Cauchy data set Γ; i.e., if {µ1, ..µn}
are the degrees of the leading monomials, then

Γ := N
3 \
(

n⋃

i=1

µi + N
3

)
.

The cardinality |Γ| returns the dimension of the vector space of solutions. In order to be
able to count easily, we will employ the technique of a Reid diagram [Sei94]. This means
that we will draw the degree of the leading coefficients (with respect to the chosen order
of the Gröbner basis) in a grid. All points covered from the sector starting at this point
do not need to be considered any more. So each free point just gives another degree of
freedom.
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Lemma 2.11

Our system of partial differential equations possesses a 14 dimensional space of

solutions. It can be parted in the following way.

• 3 degrees of freedom for choosing the bi.

• 4 degrees of freedom for choosing D for fixed bi.

• 4 degrees of freedom for choosing D3 for fixed bi, D.

• 2 degrees of freedom for choosing D2 for fixed bi, D, D3.

• 1 degree of freedom for choosing D1 for fixed bi, D, D3, D2.

Proof

The bi are independent real variables, hence we are having three degrees of freedom

for choosing them.

Now we consecutively show the relevant pictures for D, D3, D2 and D1. In these

pictures we denote the position of the leading monomial by a black dot, the area

which is covered by the intersection of the sectors stretched by these points are

shaded and the possible starting values (and hence degrees of freedom) are denoted

as white dots. In order to get a better overview the picture is sliced into different

layers with respect to the s3 component. Now we just need to count the white

dots.

Consider the first picture. For D we have s3
∧
2, s2 ∗ s3, s1 ∗ s3, s2∧2, s1 ∗ s2

and s1
∧
2 as leading polynomials. For s3

∧
2 we get the point (0, 0, 2), for s2 ∗ s3

the point (0, 1, 1), for s2∧2 the point (0, 2, 0), for s1 ∗ s2 the point (1, 1, 0) and for

s1
∧
2 the point (2, 0, 0)

This results in the following Reid diagram.

s3=0 s3=1 s3=2

s1

s2

s1

s2

s1

s2

Counting the dots we get 4 possible degrees of freedom.

For D3 we have s3∧2, s2∗s3, s1∗s3, s2∧2, s1 ∗ s2 and s1
∧
2 as leading polynomials

and hence the following points: (0, 0, 2), (0, 1, 1), (1, 0, 1), (0, 2, 0), (1, 1, 0) and

finally (2, 0, 0). As a result get the following Reid diagram.
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s3=0 s3=1 s3=2

s1

s2

s1

s2

s1

s2

These are 4 possible degrees of freedom.

For D2 we have s3, s2 and s1
∧
2 as leading polynomials and thus (0, 0, 1), (0, 1, 0)

and (2, 0, 0) to cover. Hence we get the following Reid diagram.

s3=0 s3=1 s3=2

s1

s2

s1

s2

s1

s2

These are 2 degrees of freedom.

For D2 we have s3, s2 and s1 and hence the points (0, 0, 1), (0, 1, 0) and (1, 0, 0).

So we get the following Reid diagram.

s3=0 s3=1 s3=2

s1

s2

s1

s2

s1

s2

So we are just having one degree of freedom for choosing the last solution.

This proves the proposition. q.e.d.

On the other hand Maple tells us the following 14 dimensional set of solutions. These
computations were made possible in an early state of the work because we incorpo-
rated some more assumptions suggested by Marcus Hausdorf (University of Mannheim)
[Hau02]. Combining this result with the last lemma we obtain that these are actually all
solutions.

Theorem 2.12
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When we set Bi = 2bi with bi constant, and assume that b = b is constant, then we

get the following result:

b = b
2

1 + b
2

2 + b
2

3

and

D =e
−(b1x1+b2x2+b3x3)(cq1x1 + cq2x2 + cq3x3 + c)

D1 =e
−(b1x1+b2x2+b3x3)(c1 + crx1 + c¬3x2 + c¬2x3

+ cq1(x
2
1 − x2

2 − x2
3) + 2cq2x1x2 + 2cq3x1x3)

D2 =e
−(b1x1+b2x2+b3x3)(c2 − c¬3x1 + crx2 + c¬1x3

+ cq1x1x2 + cq2(−x2
1 + x2

2 − x2
3) + 2cq3x2x3)

D3 =e
−(b1x1+b2x2+b3x3)(c3 − c¬2x1 − c¬1x2 + crx3

+ cq1x1x3 + 2cq2x2x3 + cq3(−x2
1 − x2

2 + x2
3))

These are all solutions of our problem under these conditions.

Proof

The above functions constitute a 14 dimensional space. By simple calculations

we can show that all of them are solutions. Hence, combined with the fact that

the space of solutions cannot have more then 14 dimensions we have shown the

proposition. q.e.d.

We see that the common prefactor e
−(b1x1+b2x2+b3x3) just changes the length, but not the

direction of our differential operator. Therefore we will drop it from now on and assume
furthermore b1 = b2 = b3 = 0. This implies B = B1 = B2 = B3 = 0 and hence ∆d = ∆.
So we get the following 11 dimensional vector space of solutions:

Theorem 2.13

If we have ∆ = ∆d and d =
∑

iDi∂i +D then the D⊡ have to fulfill the following

relations, where the c⊡ are real valued constants.

D =cq1x1 + cq2x2 + cq3x3 + c

D1 =c1 + crx1 + c¬3x2 + c¬2x3

+ cq1(x
2
1 − x2

2 − x2
3) + 2cq2x1x2 + 2cq3x1x3

D2 =c2 − c¬3x1 + crx2 + c¬1x3

+ 2cq1x1x2 + cq2(−x2
1 + x2

2 − x2
3) + 2cq3x2x3

D3 =c3 − c¬2x1 − c¬1x2 + crx3

+ 2cq1x1x3 + 2cq2x2x3 + cq3(−x2
1 − x2

2 + x2
3)
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2.2.8 Kernels

Now we want to take a closer look at the possible differential operators resulting from the
preceding classification procedure. Therefore we will especially emphasize the following
points which are important in the geoscientifical context:

• Shape of the differential operators (i.e., the underlying vector fields).

• Their interaction with harmonics.

• Their kernel spaces.

In order to analyze these operators we will consider the underlying vector fields which
are constituted by (D1 D2 D3)

T : R3 → R
3

First we want to consider some of them which are playing the role of the odd one
out: Revolving vector fields. W.l.o.g. we just display the one with x1 axis and neglect
the non-differential part:
drev = (x2

1 − x2
2 − x2

3)∂1 + 2x1x2∂2 + 2x1x3∂3 + x1
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Figure 2.1: revolving vector field

We will not consider the revolving vector fields further because they have a severe
disadvantage. For any practical application we will never exactly measure such a mixed
differential operator, but pure ones, either the identity or pure first order differentials.
Additionally for applications in geodesy we mostly cannot measure the identity. There-
fore this differential is of no particular use for us in most applications in gravity deter-
mination. However, there may be other applications (e.g., magnetics), where such a field
could prove suitable.

So from this point onwards we will concentrate on the left over 8 dimensional solution
space:

D =c

D1 =c1 + crx1 + c¬3x2 + c¬2x3

D2 =c2 − c¬3x1 + crx2 + c¬1x3

D3 =c3 − c¬2x1 − c¬1x2 + crx3
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More detailed considerations can be found in the chapter about integration.

If we turn our attention to the kernel spaces now, we observe using the above result
that sker(d ) = ker(d ). This is a direct consequence of the well-known Min-Max principle
for harmonic functions.

This yields in particular that we do not have to test, if a solution of the easier
problem with the split operator is really a solution of the whole problem. The only thing
which is still left are the kernels of our differential operators which circumvent an exact
reconstruction.

Because it will be rather hard to consider the kernels of the composite operators we
will first take a look at the separate components and their kernels.

• Identity operator d id = 1.

The functionality of this operator is clear and does not need any further remark.

• Constant vector fields (w.l.o.g. just x1 direction): dconst = ∂1.

These differential operators may be used to shift the next two classes of differential
operators around.
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Figure 2.2: constant vector field

In the kernel are all functions which are constant in the x1 direction.

• Radial differential operators drad = x1∂1 + x2∂2 + x3∂3.
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Figure 2.3: radial vector field

In the kernel are all functions which are constant on each ray originating from
0. We are dealing with smooth functions, hence these can just be the constant
functions.

• Cylindrical differential operators (w.l.o.g. just x3 axis): dcyl = x2∂1 − x1∂2.
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Figure 2.4: cylindrical vector field

In the kernel are all functions which are constant on each cylinder around the x3

axis.

Now we will turn our attention to the kernel spaces. As the operators are invariant
towards a rotation of the coordinate system we will pick just one of the three different
prototypes. The next results will be proven in the next chapter.

Differential Operator dconst The kernel just consists of the 0. (Again, Min-Max
principle)
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Differential Operator drad As there are no constant harmonics V which are defined
in Σext and fulfill |V (x)| = O(||x||−1) , the kernel just consists of the 0.

Differential Operator dcyl For every degree of the spherical harmonics there is exactly
one in the kernel. (In terms of spherical harmonics: The zonal spherical harmonics are
in the kernel.)

In particular this result indicates that the size of the kernel space is comparably
small. If we consider any two different differential operators the information obtained is
sufficient to get a complete reconstruction of the original information when considering
unbiased data.

2.2.9 Composition of Solutions for Pure Second Order Opera-

tors

Now we want to generate pure second order differential operators d out of first order
differential operators which have the split operator ∆d = ∆.

Of course, these are infinitely many, hence we need again a kind of classification

procedure. In particular we will show, that we may rely on the following collection of

prototypes which form a real vector space. For the sake of easier notation we introduce:

Definition 2.5

Define the following differential operators

did =1

dx1 =∂1 , dx2 =∂2 , dx3 =∂3

d¬x1=x3∂2 − x2∂3 , d¬x2 =x3∂1 − x1∂3 , d¬x3 =x2∂1 − x1∂2

dr =x1∂1 + x2∂2 + x3∂3 , dr = x1∂1 + x2∂2+x3∂3−1

Lemma 2.14

The differential operators shown below are pure second order operators which read

the following way: (i+ k shall denote (i+ k mod 3) + 1)

dxidxj =∂i∂j for all i ≤ j

d¬xidxj=xi+2∂i+1∂j − xi+1∂i+2∂j for all i, j

In both situations we do not allow i = j = 3.
(
drdxi=x1∂1∂i + x2∂2∂i + x3∂3∂i ∀i

)

drd¬xi =(−x2
i+1

+ x2
i+2

)∂i+1∂i+2 + xi+2xi∂i+1∂i − xi+1xi∂i+2∂i

+ xi+1xi+2∂i+1∂i+1 − xi+1xi+2∂i+2∂i+2 ∀i
drdr =x2

1∂1∂1 + x2
2∂2∂2 + x2

3∂3∂3

+ 2x1x2∂1∂2 + 2x1x3∂1∂3 + 2x2x3∂2∂3
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Remark

Note that the five solutions which are excluded in the 17 + 5 solutions above can

be obtained as a linear combination of the others and by using the fact that we are

dealing with harmonic functions (i.e., ∂1∂1 + ∂2∂2 + ∂3∂3 = ∆ = 0).

In order to show that these are all possibilities we will need the next section.

2.3 Split Operators with Respect to a Purely Second

Order Operator Condition

Because of a huge number of complications arising we will not seek a split operator for
a general second order operator but we will restrict ourselves to an operator ∆ whose
second order part equals the normal Laplace operator ∆ = ∂1∂1 + ∂2∂2 + ∂3∂3.

The restrictions which we have to impose on V , ∆ and d are the same as in the last
section.

Problem 2.6

Assume

∆ =
∑

i

∂i∂i +
∑

i

Ai∂i + A

where the A⊡ ∈ C∞(Σext) denote smooth functions.

Additionally ∆ should fulfill the following technical condition. For all differential

operators {1, ∂i, ∂k∂l, ∂j∂k∂l, ∂i∂j∂k∂l} with 1 ≤ i ≤ j ≤ k ≤ l ≤ 3 and k 6= 3 there

should exist an half order ◮ on the multi-indices and functions H,Hi, Hij, Hijk, Hijkl

which fulfill for all values (ν, µ are multi-indices):

• Hµ ∈ C4(Σext) for all µ

• ∆Hµ = 0 for all µ

• ∂νHµ = 0 for all ν ◮ µ

• ∂νHν = Hν 6= 0 for all ν

Assume furthermore

d =
∑

i≤j
Dij∂i∂j

where the D⊡ ∈ C∞(Σext) are smooth functions.

Furthermore we demand that for a fixed α at every point there is at least one of

the Dij − αδij 6= 0. (Due to ∆V = 0 we can replace d by d − α∆ without facing

problems).

Does there exist a sensible split operator ∆d for ∆ with respect to d ? How does it

look like? Which conditions has d to fulfill?
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Lemma 2.15

The Laplace operator ∆ fulfills the above requirements.

Proof

This proof works exactly as the one for first order differential operators in the last

section. Additionally we take the functions

0H0
4 = x4

1 − 6x2
1x

2
3 + x4

3
0H1

4 = x3
1x2 − 3x1x2x

2
3

0H2
4 = x2

1x
2
2 − x2

1x
2
3 − x2

2x
2
3 +

1

3
x4

3
0H3

4 = x1x
3
2 − 3x1x2x

2
3

0H4
4 = x4

2 − 6x2
2x

2
3 + x4

3

1H0
4 = x3

1x3 − x1x
3
3

1H1
4 = x2

1x2x3 −
1

3
x2x

3
3

1H2
4 = x1x

2
2x3 −

1

3
x1x

3
3

1H3
4 = x3

2x3 − x2x
2
3

in order to fulfill the technical condition. q.e.d.

Again, a first order split operator does not make too much sense, hence we will skip
this step this time and directly continue with a second order split operator. For our
convenience we assume that the proposed split operator ∆d is denoted by

∆̃ =
∑

i≤j
Bij∂i∂j +

∑

i

Bi∂i +B

In the sequel we will employ exactly the same strategy as in the part about the first
order differential operator. Therefore we will considerably shorten the argumentation
and just point out the major steps and essential parts.

2.3.1 First Computations

First we will remove all terms with ∂3∂3 parts using the fact that we are working with
split operators, i.e., we just need the case ∆V = 0 directly implying ∆̃d V = 0. So we
are dealing with the following revised operator:

∆̃d +
(
B11D11∂1∂1

+ (B12D11 +B11D12)∂1∂2

+ (B13D11 +B11D13)∂1∂3

+ (B22D11 +B11D22 −B11D11 +B12D12)∂2∂2

+ (B23D11 +B11D23 +B12D13 +B13D12)∂2∂3

+ (B33D11 +B11D33 −B11D11 +B13D13)∂3∂3

+ (B1D11 + 2∂1D11)∂1

+ (B1D12 + 2∂2D11 + 2∂1D12 +B2D11)∂2

+ (B1D13 + 2∂3D11 + 2∂1D13 +B3D11)∂3

+ (∂1∂1D11 + ∂2∂2D22 + ∂3∂3D11

+B1∂1D11 +B2∂2D11 +B3∂3D11 + bD11)
)
∆
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Because of its length we have not displayed this revised operator at this point but
we will consider the different parts consecutively. The interested reader may contact the
author to obtain the corresponding Maple 7 script.

Like in the section beforehand, the application of the functions Hµ yields, that all
factors in front of the ∂µ are 0. We will use this information step by step in the following
parts.

2.3.2 Second order terms

The equations obtained from the fourth order terms of the above formula read:

0 =(Bii − Bjj)Dij + (Dii −Djj)Bij for all i < j

0 =(Bii − Bjj)(Dii −Djj) −BijDij for all i < j

0 =(D11 −D33)B23 + (B11 − B33)D23 +B13D12 +B12D13

0 =(D22 −D11)B13 + (B22 − B11)D13 +B12D23 +B23D12

0 =(D33 −D22)B12 + (B33 − B22)D12 +B23D13 +B13D23

Lemma 2.16

If d is a non-trivial second order operator we get that ∆̃ is essentially the Laplace

operator, i.e., the second order part equals F∆, where F is a smooth function

Proof

As last time all considerations are made pointwise. Rewriting the first two sets of

equations we get:

0 =

(
Dij Dii −Djj

Dii −Djj −Dij

)(
Bii − Bjj

Bij

)
for all i < j

Obviously we have det
(

Dij Dii−Djj
Dii−Djj −Dij

)
= −

(
D2
ij + (Dii −Djj)

2).
Hence we get for each pair (i, j) that either Dii − Djj = Dij = 0 or Bii − Bjj =

Bij = 0.

So we have to consider 8 different cases. Because of symmetry reasons we can

restrict ourselves to three of them.

Case 1: B11 − B22 = B12 = B11 − B33 = B13 = B22 −B33 = B23 = 0

Obviously we get B11 = B22 = B33 6= 0 and B12 = B13 = B23 = 0 which means

that ∆̃ is essentially the Laplace operator.

Case 2: D11 −D22 = D12 = D11 −D33 = D13 = D22 −D33 = D23 = 0

Again we would get D11 = D22 = D33 and D12 = D13 = D23 = 0 which implies

that d is essentially the Laplace operator. Hence choosing α = D11 we have

Dij − αδij = 0 contradicting our conditions.

Case 3: D11 −D22 = D12 = D11 −D33 = D13 = B22 − B33 = B23 = 0.
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Hence we additionally get D22 −D33 = 0. If we do not want to get case 2 we have

to assume D23 6= 0.

Using the set of the last three equations we get:

0 =(B11 −B33)D23

0 =B12D23

0 =B13D23

Thus we arrive in case 1 and the claim is proved. q.e.d.

There is strong evidence that we could get the above result even if we did not claim that
∆ is essentially the Laplace operator.

2.3.3 Further equations

Using the result that ∆̃ is essentially the Laplace operator we can deduce without loss
of generality that D33 = 0 everywhere.

For simplicity we will now assume that ∆ = ∆ = ∆̃. Otherwise the equations we
get will be very large and seem to be unsolvable with current methods. Hence we get
the following set of twelve equations, where we already incorporated the knowledge of
D33 = 0. Of course we associate Dij with Dji whenever i > j.

0 =∆Dij for all i ≤ j

0 =∂jDii − ∂jDjj + ∂iDij for all i 6= j

0 =∂1D23 + ∂2D13 + ∂3D12

2.3.4 Number of Solutions

For determining the number of solutions of the above system of coupled linear partial
differential equations we will translate the system into the language of commutative
algebra and employ Singular [GPS01] again. The notation is exactly taken from the last
section.

ring r=0,(s1,s2,s3),(c,dp(3));

vector v1= [s1^2+s2^2+s3^2,0,0,0,0];

vector v2= [0,s1^2+s2^2+s3^2,0,0,0];

vector v3= [0,0,s1^2+s2^2+s3^2,0,0];

vector v4= [0,0,0,s1^2+s2^2+s3^2,0];

vector v5= [0,0,0,0,s1^2+s2^2+s3^2];

vector v6= [0,0,s3,s2,s1];

vector v7= [s2,-s2,s1,0,0];

vector v8= [-s1,s1,s2,0,0];

vector v9= [s3,0,0,s1,0];

vector v10=[-s1,0,0,s3,0];
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vector v11=[0,s3,0,0,s2];

vector v12=[0,-s2,0,0,s3];

module m = v1,v2,v3,v4,v5,v6,v7,v8,v9,v10,v11,v12;

std(m);

This results in the following output.

_[1]=[0,0,0,0,s2^2+s3^2]

_[2]=[0,0,0,0,s1^2]

_[3]=[0,0,0,0,s3^3]

_[4]=[0,0,0,0,s2*s3^2]

_[5]=[0,0,0,0,s1*s3^2]

_[6]=[0,0,0,0,s1*s2*s3]

_[7]=[0,0,0,s3^2,2*s1*s2]

_[8]=[0,0,0,s2*s3,s1*s3]

_[9]=[0,0,0,s1*s3,-s2*s3]

_[10]=[0,0,0,s2^2]

_[11]=[0,0,0,2*s1*s2,s3^2]

_[12]=[0,0,0,s1^2+s3^2]

_[13]=[0,0,s3,s2,s1]

_[14]=[0,0,s2^2,-s2*s3,s1*s3]

_[15]=[0,0,s1*s2,-s1*s3]

_[16]=[0,0,s1^2,s2*s3,-s1*s3]

_[17]=[0,s3,0,0,s2]

_[18]=[0,s2,0,0,-s3]

_[19]=[0,s1,s2,-s3]

_[20]=[s3,0,0,s1]

_[21]=[s2,0,s1,0,-s3]

_[22]=[s1,0,0,-s3]

Lemma 2.17

Our system of partial differential equations possesses a 17 dimensional space of

solutions. It can be parted in the following way.

• 8 degrees of freedom for choosing D23.

• 4 degrees of freedom for choosing D13 for fixed D23.

• 3 degrees of freedom for choosing D12 for fixed D23, D13.

• 1 degree of freedom for choosing D22 for fixed D23, D13, D12.

• 1 degree of freedom for choosing D11 for fixed D23, D13, D12, D22.
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Proof

We consecutively show the relevant Reid diagrams for D23, D13, D12, D22 and D11.

In these pictures we denote the position of the leading polynomial by a black dot

in the grid, the area which is covered by the intersection of the sectors stretched

by these points are shaded and the possible starting values (and hence degrees of

freedom) are denoted as white dots. In order to get a better overview the picture

is sliced into different layers with respect to the s3 component.

In order to get the possible degrees of freedom we just need to count the white dots

then and hence determine the cardinality of the Cauchy data set.

Let’s consider the first picture. For D23 we have s2
∧
2, s1

∧
2, s3

∧
3,s2 ∗ s3

∧
2,

s1 ∗ s3∧2, s1 ∗ s2 ∗ s3, as leading polynomials. Hence we get the points (0, 2, 0),

(2, 0, 0), (0, 0, 3), (0, 1, 2), (1, 0, 2), (1, 1, 1) to cover.

This results in the following Reid diagram.

s3=0 s3=1 s3=2

s1

s2

s1

s2

s1

s2

s3=3

s1

s2

Counting the dots we get 8 possible degrees of freedom.

For D13 we have s3∧2, s2∗s3, s1∗s3, s2∧2, s1∗s2 and s1
∧
2 as leading polynomials

and hence the following points: (0, 0, 2), (0, 1, 1), (1, 0, 1), (0, 2, 0), (1, 1, 0) and

finally (2, 0, 0). As a result we get the following Reid diagram.

s3=0 s3=1 s3=2

s1

s2

s1

s2

s1

s2

Counting the dots we get 4 different possible degrees of freedom.

For D12 we have s3, s2
∧
2, s1 ∗ s2 and s1

∧
2 as leading polynomials and hence

the following points: (0, 0, 1), (0, 2, 0), (1, 1, 0) and (2, 0, 0). As a result we get the
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following Reid diagram.

s3=0 s3=1 s3=2

s1

s2

s1

s2

s1

s2

Counting the dots we observe 3 degrees of freedom.

For D22 we have s3, s2 and s1 and hence the points (0, 0, 1), (0, 1, 0) and (1, 0, 0).

So we get the following Reid diagram.

s3=0 s3=1 s3=2

s1

s2

s1

s2

s1

s2

So we are just having one degree of freedom for choosing the solution.

For D11 we have again s3, s2 and s1 and hence the points (0, 0, 1), (0, 1, 0) and

(1, 0, 0). So we get the following Reid diagram.

s3=0 s3=1 s3=2

s1

s2

s1

s2

s1

s2

So we are just having one degree of freedom for choosing the last solution.

This proves our claim. q.e.d.

On the other hand we already know the 17-dimensional space of solutions obtained by
iterating the solutions for the first order derivative operator in the last section. Hence
we get the following theorem:

Theorem 2.18

The above system of differential equations has the following solutions: (The names

of the variables are chosen appropriately to the results beforehand.)
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D11 =cr,r(x
2
1 − x2

3) + cr,¬3x1x2 − 2cr,¬2x1x3 + cr,¬1x2x3

+ c¬2,3x1 − c¬3,1x2 + c¬1,3x2 + c¬2,1x3 + c1,1

D22 =cr,r(x
2
2 − x2

3) − cr,¬3x1x2 − cr,¬2x1x3 + 2cr,¬1x2x3

+ c¬2,3x1 − c¬3,2x1 + c¬1,3x2 − c¬1,2x3 + c2,2

D12 =cr,¬3(x
2
2 − x2

1) + 2cr,rx1x2 + cr,¬1x1x3 − cr,¬2x3x2

+ c¬3,1x1 + c¬3,2x2 − c¬2,2x3 − c¬1,1x3 + c1,2

D13 =cr,¬2(x
2
1 − x2

3) − cr,¬1x1x2 + 2cr,rx1x3 + cr,¬3x3x2

− c¬2,1x1 + c¬1,1x2 + c¬2,3x3 + c1,3

D23 =cr,¬1(x
2
3 − x2

2) + cr,¬2x1x2 − cr,¬3x1x3 + 2cr,rx2x3

+ c¬2,2x1 + c¬1,2x2 + c¬1,3x3 + c2,3

Proof

Simple checking shows that these are solutions. On the other hand we know from

the last lemma that we are dealing with a seventeen dimensional vector space,

hence these are actually all solutions. q.e.d.

For simplicity we can include D33 again and hence get the following system:

Theorem 2.19

If we have ∆ = ∆d and d =
∑

i≤j Dij∂i∂j then the D⊡ have to fulfill the following

relations, where the c⊡ are real valued constants.

D11 =cr,rx
2
1 + cr,¬3x1x2 − cr,¬2x1x3 − c¬3,1x2 + c¬2,1x3 + c1,1

D22 =cr,rx
2
2 − cr,¬3x1x2 + cr,¬1x2x3 − c¬3,2x1 − c¬1,2x3 + c2,2

D33 =cr,rx
2
3 + cr,¬2x1x3 − cr,¬1x2x3 − c¬2,3x1 − c¬1,3x2(+c3,3)

D12 =cr,¬3(x
2
2 − x2

1) + 2cr,rx1x2 + cr,¬1x1x3 − cr,¬2x3x2

+ c¬3,1x1 + c¬3,2x2 − c¬2,2x3 − c¬1,1x3 + c1,2

D13 =cr,¬2(x
2
1 − x2

3) − cr,¬1x1x2 + 2cr,rx1x3 + cr,¬3x3x2

− c¬2,1x1 + c¬1,1x2 + c¬2,3x3 + c1,3

D23 =cr,¬1(x
2
3 − x2

2) + cr,¬2x1x2 − cr,¬3x1x3 + 2cr,rx2x3

+ c¬2,2x1 + c¬1,2x2 + c¬1,3x3 + c2,3

As the remarks concerning the behavior and kernel spaces of these operators are very
similar to the ones we made beforehand for the split operator of the first order differential
operators we will skip this right now. This similarity is not surprising because we are
just dealing with a composition of our first order operators right now.
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2.4 Conclusion

The initial question for this chapter was the following one:

How can one solve the oblique derivative problem occurring in the geoscien-
tifical context?

We could give one possible solution ansatz. Assume that d is our oblique derivative which
constitutes the side condition and the Laplace operator ∆ constitutes the underlying
differential equation. We have shown that the only (geoscientifically interesting) second
order operator ∆d which fulfills ∆d (d V ) = 0 for all V which fulfill ∆V = 0 is the Laplace
operators, i.e., ∆d = ∆.

The possible d are now displayed, where the c⊡ are real valued constants:

• First order differential operator d =
∑3

i=1Di∂i +D.



D1

D2

D3


 =




cr c¬3 c¬2

−c¬3 cr c¬1

−c¬2 −c¬1 cr





x1

x2

x3


+



c1
c2
c3




D = c

• Purely second order differential operator d =
∑3

i=1

∑3
j=iDij∂i∂j .

D11 =cr,rx
2
1 + cr,¬3x1x2 − cr,¬2x1x3 − c¬3,1x2 + c¬2,1x3 + c1,1

D22 =cr,rx
2
2 − cr,¬3x1x2 + cr,¬1x2x3 − c¬3,2x1 − c¬1,2x3 + c2,2

D33 =cr,rx
2
3 + cr,¬2x1x3 − cr,¬1x2x3 − c¬2,3x1 − c¬1,3x2(+c3,3)

D12 =cr,¬3(x
2
2 − x2

1) + 2cr,rx1x2 + cr,¬1x1x3 − cr,¬2x3x2

+ c¬3,1x1 + c¬3,2x2 − c¬2,2x3 − c¬1,1x3 + c1,2

D13 =cr,¬2(x
2
1 − x2

3) − cr,¬1x1x2 + 2cr,rx1x3 + cr,¬3x3x2

− c¬2,1x1 + c¬1,1x2 + c¬2,3x3 + c1,3

D23 =cr,¬1(x
2
3 − x2

2) + cr,¬2x1x2 − cr,¬3x1x3 + 2cr,rx2x3

+ c¬2,2x1 + c¬1,2x2 + c¬1,3x3 + c2,3

As important facts regarding these operators we observed:

• Any of the differential operators d have the Laplace operator ∆ = ∆d as split
operator and hence the differentiated solution is also a potential, i.e., ∆V = 0 ⇒
∆d V = 0.

• We can use the same basis systems to solve the underlying boundary value type
problem as for the radial derivatives or non-derived data.

• Solving an oblique derivative problem with purely second order side conditions
specified above is as difficult as solving an oblique derivative problem with the first
order side conditions given above (in the Laplace case!).
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From the mathematical point of view one might add the following remark:

• If we restrict our attention to the Laplace operator as split operator we obtained a
complete classification of possible first and pure second order differential operators.
This means in particular that we do not have to search.

• The method is general enough to tackle other related problems with complicated
side conditions.

• Many results also hold or can be easily extended to all dimensions ≥ 2.

The big advantage in comparison to other solution methods for the oblique derivative
problem is that we can operate as if we actually would not have any oblique derivative.
This means that we can rely on standard techniques for solving the oblique derivative
problem which have been proven to be reliable in practice.

In particular we do not have any restrictions on our data location, every one which
is suitable for the standard problem without derivatives as side conditions does the job.
Especially for boundary value problems, where even a small quantity of derivatives which
are sufficiently near to the tangent plane pose enormous problems this is really a leap
forward. Additionally we can work with standard basis systems and do not have to
switch to differentiated (anisotropic) ones.

However the most obvious advantage is that one has a particularly easy solution
method for higher derivatives as side conditions. Even for derivatives higher than the
second order ones we considered the approach transfers without major problems.
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Chapter 3

Integration

How does the “integration” (i.e., inversion of the differential operator) look

like with respect to the differential operators in the last chapter?

Do we have uniqueness in the reconstruction or do we have to take care of
some kernel spaces? How do they look like?

As we know a precise answer to this question is just possible for a special basis of our
underlying function space. Therefore we will restrict our attention to the L2(Σ)-complete
orthonormal system of spherical harmonics. Other possible basis systems which we have
not discussed here can be found in [FM03b].

It does not matter if one has a description of the integration or of the differentiation
because the two of them are inverse operators of each other. Therefore we will restrict
ourselves to the differentiation part. However, the problem of finding the corresponding
differentiation matrices is rather complicated. Therefore we will not launch a direct attack
but we will first solve the problem for a basis system which allows easy differentiation.
Afterwards we will do a basis change to the spherical harmonics.

3.1 Preliminaries

We will use the following results of potential theory taken from [ABR91, FGS98, Kel67,
Néd01, Wal71] and therefore want to shortly cite them mostly without proof:

3.1.1 Kelvin Transform

First we want to introduce harmonics:

Definition 3.1 (Harmonics)

Take a smooth regular surface Σ in R
3 ∪ {∞} which divides R

3 in a bounded part

Σint and an unbounded part Σext, i.e., ∞ ∈ Σext, where each part is assumed to be

path connected. I.e., we have R
3 = Σint ∪∗ Σ∪∗ Σext, where ∪∗ denotes the disjoint

union. Without loss of generality assume 0 ∈ Σint. Furthermore Σ should be a

smooth surface.
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All functions V : Σint → R which fulfill

V ∈ C(∞)(Σint) ∩ C(0)(Σint)

(∆V )|Σint = 0

constitute the space Pot(Σint).

All functions V : Σext → R which fulfill

V ∈ C(∞)(Σext) ∩ C(0)(Σext)

|V (x)| = O(||x||−1)

(∆V )|Σext = 0

constitute the space Pot(Σext).

Remark

Any V ∈ Pot(S) where S either Σint or Σext is uniquely determined by the restric-

tion V |Σ.

There is an operation which transfers Pot(Σint) to Pot(Σext) and vice versa, the
Kelvin transform. Mathematically seen this is nothing but an inversion at the sphere.

Definition 3.2 (Kelvin Transform)

Let {0} ⊂ S ⊂ R
3∪{∞}. Define K(S) =

{
x ∈ R

3 ∪ {∞}
∣∣∣ x
|x|2 ∈ S

}
. Furthermore,

if V ∈ Pot(S) define

V̆ = K(V ) (x) =
1

|x| V
(

x

|x|2
)

The operator K is called Kelvin Transform.

Lemma 3.1 (Kelvin Transform)

We have the following two properties (Id is the identity operator ):

• K(K(·)) = Id

• K(Pot(S)) = Pot(K(S))

Please note that in the above lemma S and K(S) have two different surfaces.
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3.1.2 Homogeneous Harmonic Polynomials

Definition 3.3 (Homogeneous Harmonic Polynomials)

A polynomial Hn is called homogeneous of degree n if it fulfills

Hn(x) = ||x||nHn

(
x

||x||

)
∀x ∈ R

3 \ {0}

If furthermore Hn ∈ Pot(Σint) it is called homogeneous harmonic polynomial of

degree n, the corresponding space of all such polynomials is called Potn(Σint).

Lemma 3.2

Any homogeneous harmonic polynomial Hn of degree n can be represented in the

form

Hn(x) = Hn(x1, x2, x3) =

n∑

j=0

An−j(x1, x2) x
j
3

where Ak denotes a homogeneous polynomial of degree k in the variables x1 and x2.

Furthermore, the A⊡ fulfill the following relation

An−j−2(x1, x2) = − 1

(j + 1) (j + 2)
(∂1∂1 + ∂2∂2)An−j(x1, x2)

The dimension of the space of homogeneous harmonic polynomials of degree n is

2n + 1 = dim(Potn(Σint)).

Any harmonic polynomial can be written in terms of convergent series of homoge-

neous harmonic polynomials.

Remark

Hence homogeneous harmonic polynomials are fully determined by their xk1x
n−k−i
2 xi3

part, where i ∈ {0, 1} and 0 ≤ k ≤ n.

So the following basis of the space of harmonic functions is well-defined.

Definition 3.4

Define Hn ∈ Potn(Σint) and H̆n = K(Hn) as its Kelvin transformed counterpart.

Let furthermore iHk
n denote the homogeneous harmonic polynomial with the leading

term xk1x
n−k−i
2 xi3, where n ≥ k ≥ 0 and i ∈ {0, 1}.

Again denote its Kelvin transformed counterpart by iH̆k
n = K

(
iHk

n

)
.

In order to keep our notation simple we will assume that iH̆k
n = iHk

n = 0 if k < 0

or k > n− i.

Thus the iHk
n constitute a L2(Σ)-complete basis of Pot(Σint) and the Kelvin transformed

counterparts iH̆k
n constitute a L2(Σ)-complete basis of Pot(Σext).
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Remark

Neither the iHk
n are an orthonormal basis for Pot(Σint) nor the iH̆k

n for Pot(Σext)

(with respect to the standard L2(Σ) inner product).

The homogeneous harmonic polynomials behave particularly nice under the Kelvin trans-
form.

Lemma 3.3

Let Hn be a homogeneous harmonic polynomial of the degree n. The Kelvin trans-

formed spherical harmonic K(Hn) = H̆n is given by

K(Hn) (x) =
1

|x|2n+1
Hn(x)

Proof

Straightforward using K(Hn) (x) = 1
|x| Hn

(
x

|x|2

)
and the homogeneity. q.e.d.

3.1.3 Kelvin Transform and Derivatives

Now we want to give a transition formula which allows to convert relations we found for
ordinary homogeneous harmonic polynomialsHn to their Kelvin transformed counterpart
H̆n.

Lemma 3.4

We have

∂iH̆n(x) =
(x2

1 + x2
2 + x2

3) ∂iHn(x) − (2n+ 1)xiHn(x)

|x|2n+3

Proof

Straightforward calculations yield

∂iH̆n(x) = ∂i
Hn(x)

|x|2n+1

=
|x|2n+1∂iHn(x) − Hn(x) ∂i|x|2n+1

|x|4n+2

=
|x|2n+1∂iHn(x) − (2n + 1) |x|2n xi|x|Hn(x)

|x|4n+2

=
(x2

1 + x2
2 + x2

3) ∂iHn(x) − (2n+ 1)xiHn(x)

|x|2n+3
q.e.d.
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3.2 Homogeneous Harmonic Polynomials

As we have seen above we may have two different kind of homogeneous harmonic poly-
nomials in order to approximate functions. The one version could be used for inner
Dirichlet problems, the Kelvin transformed version for outer Dirichlet problems.

We are mainly interested in harmonics in Pot(Σext) , because this the case we observe
when we are talking about the geopotential field. However, we need the ones in Pot(Σint)
to determine the derivatives of the ones in Pot(Σext) . So, for the sake of completeness
we will include a treatment of both versions in this text.

Because all second order differential operators we considered in the last section are
an iteration of first order operators we just need to do our considerations for first order
differential operators

did , dxi , d¬xi , dr ∀i < j

which we will apply to our basis iHk
n of homogeneous harmonic polynomials in Pot(Σint)

and afterwards rewrite this result in terms of homogeneous harmonic polynomials iH̆k
n

in Pot(Σext) .

We will strongly use two facts for our computations without pointing out every time
when we apply them.

• Applying any of the above differential operators to a harmonic function leaves the
function harmonic

• In order to categorize a harmonic polynomial we just need to consider the part
consisting of xk1x

n−k−i
2 xi3, where n ≥ k ≥ 0 and i ∈ {0, 1}.

3.2.1 Differential Operator did

Obviously we do not need to anything because we trivially have that every harmonic
function and hence every harmonic polynomial stays the way it is.

3.2.2 Differential Operator dxi

3.2.2.1 Ordinary Homogeneous Harmonic Polynomials

Lemma 3.5

dx1

iHk
n = k iHk−1

n−1

dx2

iHk
n = (n− k − i) iHk

n−1

dx3

1Hk
n = 0Hk

n−1

dx3

0Hk
n = −k (k − 1) 1Hk−2

n−1 − (n− k) (n− k − 1) 1Hk
n−1
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Proof

In the sequel we will use P (x) and Q(x) for arbitrary polynomials in x1, x2 and x3.

In particular, P (x) and Q(x) are different in every equation.

Furthermore we define ∂ix
0
i = x−1

i = 0 = x−2
i = ∂i∂ix

0
i for the sake of simpler

notation. Hence we get

dx1

iHk
n =∂1

iHk
n

=∂1

(
xk1x

n−k−i
2 xi3 + x2

3P (x)
)

=kxk−1
1 xn−k−i2 xi3 + x2

3Q(x)

=k iHk−1
n−1

dx2

iHk
n =∂2

iHk
n

=∂2

(
xk1x

n−k−i
2 xi3 + x2

3P (x)
)

= (n− k − i) xk1x
n−k−i−1
2 xi3 + x2

3Q(x)

= (n− k − i) iHk
n−1

dx3

1Hk
n =∂3

1Hk
n

=∂3

(
xk1x

n−k−1
2 x3 + x3

3P (x)
)

=xk1x
n−k−1
2 + x2

3Q(x)

= 0Hk
n−1

The only difficult part is while regarding 0Hk
n. We have

0Hk
n =xk1x

n−k
2 − 1

2

(
∂2

1 + ∂2
2

) (
xk1x

n−k
2

)
x2

3 + (P (x)) x4
3

=xk1x
n−k
2 + (P (x)) x4

3

− 1

2

(
k (k − 1)xk−2

1 xn−k2 + (n− k) (n− k − 1)xk1x
n−k−2
2

)
x2

3

Thus we have:

dx3

0Hk
n =∂3

0Hk
n

=Q(x) x3
3

−
(
k (k − 1)xk−2

1 xn−k2 + (n− k) (n− k − 1)xk1x
n−k−2
2

)
x3

= − k (k − 1) 1Hk−2
n−1 − (n− k) (n− k − 1) 1Hk

n−1

This proves our lemma. q.e.d.
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Remark

The resulting systems of linear equations are underdetermined because we have

dx1

iH0
n = 0

dx2

iHn−i
n = 0

Of course this fact also holds for dx3 and mixed derivatives of such kind. The

most easy way to see that is using a standard basis transformation which maps our

differential to dx1 .

3.2.2.2 Kelvin Transformed Homogeneous Harmonic Polynomials

Lemma 3.6

dx1

iH̆k
n =k iH̆k−1

n+1 − (2n+ 1 − k) iH̆k+1
n+1

dx2

iH̆k
n = − (n+ k + i+ 1) iH̆k

n+1 + (n− k − i) iH̆k+2
n+1

dx3

1H̆k
n = 0H̆k

n+1 + 0H̆k+2
n+1

dx3

0H̆k
n = − k (k − 1) 1H̆k−2

n+1 − (n− k) (n− k − 1) 1H̆k+2
n−1

− (k (k − 1) + (n− k) (n− k − 1) + (2n+ 1)) 1H̆k
n−1

Proof

As stated beforehand we have a formula which allows us to write the derivatives of

the Kelvin transformed homogeneous polynomials in terms of the derivative of the

original polynomial. Among others we will use this fact strongly.

Again we will denote polynomials we do not need with P (x) and Q(x) which are

different in each equation.

First we will consider the case k = 0 for the first equation. Then we get

dx1

iH̆0
n =∂1

iH̆0
n

=
(x2

1 + x2
2 + x2

3) ∂1
iH0

n − (2n+ 1)x1
iH0

n

|x|2n+3

=
− (2n + 1)x1

iH0
n

|x|2n+3

= − (2n+ 1)

(
x1x

n−i
2 xi3 + x2

3P (x)
)

|x|2n+3

= − (2n+ 1)
iH1

n+1

|x|2(n+1)+1

= − (2n+ 1) iH̆1
n+1

=k iH̆k−1
n+1 − (2n+ 1 − k) iH̆k+1

n+1
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Now we will consider the first equation for k > 0. In particular we have ∂1
iHk

n 6= 0

dx1

iH̆k
n =∂1

iH̆k
n

=
(x2

1 + x2
2 + x2

3) ∂1
iHk

n − (2n+ 1) x1
iHk

n

|x|2n+3

=
(x2

1 + x2
2 + x2

3) k
iHk−1

n−1 − (2n+ 1)x1
iHk

n

|x|2n+3

=
kxk−1

1 xn−k+2−i
2 xi3 − (2n+ 1 − k) xk+1

1 xn−k−i2 xi3 + x2
3P (x)

|x|2n+3

=
k iHk−1

n+1 − (2n+ 1 − k) iHk+1
n+1

|x|2(n+1)+1

=k iH̆k−1
n+1 − (2n+ 1 − k) iH̆k+1

n+1

Now we will prove the second equation. First consider the case k = n− i:

dx2

iH̆n−i
n =∂2

iH̆n−i
n

=
(x2

1 + x2
2 + x2

3) ∂2
iHn−i

n − (2n+ 1)x2
iHn−i

n

|x|2n+3

=
− (2n+ 1) x2

iHn−i
n

|x|2n+3

= − (2n+ 1)
xn−i1 x1

2x
i
3 + x2

3P (x)

|x|2n+3

= − (2n+ 1)
iHn−i

n+1

|x|2(n+1)+1

= − (2n+ 1) iH̆n−i
n+1

= − (n+ k + i+ 1) iH̆k
n+1 + (n− k − i) iH̆k+2

n+1

Now we will assume k < n− i. Hence we get:

dx2

iH̆k
n =∂2

iH̆k
n

=
(x2

1 + x2
2 + x2

3) ∂2
iHk

n − (2n+ 1) x2
iHk

n

|x|2n+3

=
(x2

1 + x2
2 + x2

3) (n− k − i) iHk
n−1 − (2n+ 1)x2

iHk
n

|x|2n+3

=
(n− k − i) xk+2

1 xn−i−1−k
2 xi3

|x|2n+3

− (n+ 1 + k + i) xk1x
n+1−k−i
2 xi3 + x2

3P (x)

|x|2n+3

=
(n− k − i) iHk+2

n+1 − (n+ k + i+ 1) iHk
n+1

|x|2(n+1)+1

= − (n+ k + i+ 1) iH̆k
n+1 + (n− k − i) iH̆k+2

n+1
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The next equation will be considered the same way.

dx3

1H̆k
n =∂3

1H̆k
n

=
(x2

1 + x2
2 + x2

3) ∂3
1Hk

n − (2n+ 1)x3
1Hk

n

|x|2n+3

=
(x2

1 + x2
2 + x2

3)
0Hk

n−1 − (2n + 1)x3
1Hk

n

|x|2n+3

=
(x2

1 + x2
2 + x2

3)x
k
1x

n−k−1
2 − (2n+ 1) xk1x

n−k−1
2 x2

3 + x2
3P (x)

|x|2n+3

=
xk+2

1 xn−k−1
2 + xk1x

n−k+1
2 + x2

3Q(x)

|x|2n+3

=
0Hk+2

n+1 + 0Hk
n+1

|x|2(n+1)+1

= 0H̆k
n+1 + 0H̆k+2

n+1

The last equation is also the most complicated one. The special cases k < 2 and

k > n− 2 should be treated separately. However, as it works the same way we will

skip this step end immediately introduce the main case.

dx3

0H̆k
n =∂3

0H̆k
n

=
(x2

1 + x2
2 + x2

3) ∂3
0Hk

n − (2n+ 1)x3
0Hk

n

|x|2n+3

=
(x2

1 + x2
2 + x2

3)
(
−k (k − 1) 1Hk−2

n−1

)

|x|2n+3

− (x2
1 + x2

2 + x2
3)
(
(n− k) (n− k − 1) 1Hk

n−1

)

|x|2n+3

− (2n+ 1)x3
0Hk

n

|x|2n+3

=
−k (k − 1)xk−2

1 xn−k+2
2 x3

|x|2n+3

− (2n+ 1 + k (k − 1) + (n− k) (n− k − 1))xk1x
n−k
2 x3

|x|2n+3

+
− (n− k) (n− k − 1)xk+2

1 xn−k−2
2 x3 + x2

3Q(x)

|x|2n+3

=
−k (k − 1) 1Hk−2

n+1

|x|2(n+1)+1

+
− (2n+ 1 + k (k − 1) + (n− k) (n− k − 1)) 1Hk

n+1

|x|2(n+1)+1

+
− (n− k) (n− k − 1) 1Hk+2

n+1

|x|2(n+1)+1
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= − k (k − 1) 1H̆k−2
n+1 − (n− k) (n− k − 1) 1H̆k+2

n−1

− (k (k − 1) + (n− k) (n− k − 1) + (2n+ 1)) 1H̆k
n−1

This shows our proposition. q.e.d.

Remark

In contrast to the non-Kelvin transformed case we now map from a smaller to a

bigger vector space. Obviously the kernel of this map is {0} because otherwise we

would have a harmonic in Pot(Σext) which is non-zero at infinity which would be

a contradiction.

3.2.3 Differential Operator d¬xi

3.2.3.1 Ordinary Spherical Harmonics

Lemma 3.7

d¬x1

0Hk
n =k (k − 1) 1Hk−2

n + (n− k)2 1Hk
n

d¬x1

1Hk
n = − 0Hk

n

d¬x2

0Hk
n =k2 1Hk−1

n + (n− k) (n− k − 1) 1Hk+1
n

d¬x2

1Hk
n = − 0Hk+1

n

d¬x3

iHk
n =k iHk−1

n − (n− k − i) iHk+1
n

Proof

For this task we may use the relations we got while differentiating with ∂i. Hence

we get:

d¬x1

0Hk
n = (x3∂2 − x2∂3)

0Hk
n

= (n− k)x3
0Hk

n−1 + k (k − 1) x2
1Hk−2

n−1

+ (n− k) (n− k − 1)x2
1Hk

n−1

= (n− k) 1Hk
n + k (k − 1) 1Hk−2

n

+ (n− k) (n− k − 1) 1Hk
n

=k (k − 1) 1Hk−2
n + (n− k)2 1Hk

n

d¬x1

1Hk
n = (x3∂2 − x2∂3)

1Hk
n

= (n− k − 1)x3
1Hk

n−1 − x2
0Hk

n−1

=0 − 0Hk
n

= − 0Hk
n
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d¬x2

0Hk
n = (x3∂1 − x1∂3)

0Hk
n

=k x3
0Hk−1

n−1 + k (k − 1)x1
1Hk−2

n−1

+ (n− k) (n− k − 1)x1
1Hk

n−1

=k 1Hk−1
n + k (k − 1) 1Hk−1

n

+ (n− k) (n− k − 1) 1Hk+1
n

=k2 1Hk−1
n + (n− k) (n− k − 1) 1Hk+1

n

d¬x2

1Hk
n = (x3∂1 − x1∂3)

1Hk
n

=k x3
1Hk−1

n−1 − x1
0Hk

n−1

=0 − 0Hk+1
n

= − 0Hk+1
n

d¬x3

iHk
n =(x2∂1 − x1∂2)

iHk
n

=k x2
iHk−1

n−1 − (n− k − i) x1
iHk

n−1

=k iHk−1
n − (n− k − i) iHk+1

n

This proves our claim. q.e.d.

Remark

Again, the kernel of this map is obviously non-zero. We can see this particularly

easy for the operators d¬x1 and d¬x2 because we cannot reach 0Hn
n and 0H0

n

respectively.

Again, a coordinate transformation transfers this result to d¬x3.

3.2.3.2 Kelvin Transformed Spherical Harmonics

Lemma 3.8

d¬x1

0H̆k
n = (n− k)2 1H̆k

n + k (k − 1) 1H̆k−2
n

d¬x1

1H̆k
n = − 0H̆k

n

d¬x2

0H̆k
n =k2 1H̆k−1

n + (n− k) (n− k − 1) 1H̆k+1
n

d¬x2

1H̆k
n = − 0H̆k+1

n

d¬x3

iH̆k
n =k iH̆k−1

n − (n− k − i) iH̆k+1
n
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Proof

We have

xj∂iH̆n(x) =
(x2

1 + x2
2 + x2

3)xj∂iHn − (2n+ 1)xixjHn

|x|2n+3

=
xj∂iHn(x)

|x|2n+1
− (2n + 1)xixjHn(x)

|x|2n+3

And thus

(xj∂i − xi∂j) H̆n(x) =
(xj∂i − xi∂j)Hn(x)

|x|2n+1

So, using the last lemma yields the above result. q.e.d.

Remark

In particular this means that we are having structurally seen the same kernel in

the normal and in the Kelvin transformed case. The kernel of these operators are

exactly the rotationally invariant harmonic functions.

3.2.4 Differential Operator dr

3.2.4.1 Ordinary Spherical Harmonics

Lemma 3.9

dr
iHk

n = n iHk
n

Proof

Again we may use the result of the previous subsections. For n = 0 we trivially get

the above result. Hence we may assume that n > 0.

dr
0Hk

n =(x1∂1 + x2∂2 + x3∂3)
0Hk

n

=k x1
0Hk−1

n−1 + (n− k) x2
0Hk

n−1

− x3

(
k (k − 1) 1Hk−2

n−1 + (n− k) (n− k − 1) 1Hk
n−1

)

=k 0Hk
n + (n− k) 0Hk

n + 0

=n 0Hk
n

and

dr
1Hk

n =(x1∂1 + x2∂2 + x3∂3)
1Hk

n

=kx1
1Hk−1

n−1 + (n− k − 1) x2
1Hk

n−1 + x3
0Hk

n−1

=k 1Hk
n + (n− k − 1) 1Hk

n + 1Hk
n

=n 1Hk
n

which proves the above proposition. q.e.d.
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Remark

In this special case integration is just multiplication by n−1 and hence a fast and

numerically stable task.

3.2.4.2 Kelvin Transformed Spherical Harmonics

We have the following lemma:

Lemma 3.10

dr
iH̆k

n = − (n+ 1) iH̆k
n

Proof

Using the lemmas beforehand we get:

dr
iH̆k

n = (x1∂1 + x2∂2 + x3∂3)
iH̆k

n

=
∑

i

xi∂i
iHk

n

|x|2n+1
− (2n+ 1)

∑

i

x2
i
iHk

n

|x|2n+3

=n
iHk

n

|x|2n+1
− (2n+ 1)

iHk
n

|x|2n+1

= − (n+ 1)
iHk

n

|x|2n+1

= − (n+ 1) iH̆k
n

which yields the above result. q.e.d.

Remark

Again integration is just an easy to perform division. But this time all occurring

kernels are 0 and hence we do not encounter any problems.

Note that this is the well known solution we already had for our radial derivative case.

3.3 Kernel Spaces and other Remarks

Concluding we observe the following three stunning facts (some of them are old, but the
collection is still worthwhile to consider): Our operators (if considered purely)

• map harmonics to harmonics

• map Pot(Σint) to Pot(Σint) and Pot(Σext) to Pot(Σext).

• obey the degree of the harmonics, i.e., harmonics of the equal degree map to equal
degree.
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This enables us to consider differentiation and integration as a finite dimensional matrix
operation.

However there is a drawback. If we want to stay finite dimensional we cannot combine
the dxi derivatives with the other derivative operators because harmonics are not degree
invariant under this operation.

This makes it particularly difficult to consider the occurring kernel spaces explicitly.
However, we can observe that our linear combination of all the above vector fields incor-
porates not just the rotational vector fields we are dealing with a finite dimensional (in
most cases one or zero dimensional) overall kernel. (E.g., 2∗did+dr has a one dimensional
kernel!)

Just if we are dealing with purely rotational invariant vector fields we observe that we
have a one dimensional kernel in every degree and hence an infinite dimensional kernel.

These remarks also hold for the next section because spherical harmonics are nothing
but an orthonormal system of the harmonic polynomials.

3.4 Spherical Harmonics

The basis system for the harmonics Pot(Σext) we used beforehand is not the standardly
used one. Therefore we will introduce the system of spherical harmonics [Hob55]:

Definition 3.5 (Spherical Harmonics)

Define the spherical harmonics Y l
n in polar coordinates by:

Y l
n = C l

nP
|l|
n (sinϕ)





cos lλ l ≥ 0

sin |l|λ l < 0

= εl
√

2n+ 1

√
(n− |l|)!
(n+ |l|)!P

|l|
n (sinϕ)





cos lλ l ≥ 0

sin |l|λ l < 0

where

εl =





1 l = 0
√

2 otherwise

and Pm
n is the associated Legendre function fulfilling

Pm
n (x) =

(−1)m

2nn!
(1 − x2)m/2

∂n+m

∂xn+m
(x2 − 1)n

This particular system fulfills the following properties.

Lemma 3.11

The spherical harmonics Y l
n constitute a complete orthonormal system under the

standard L2 inner product on the unit sphere.
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Furthermore, when continued over the rim of the sphere by multiplication with new

radius rn (for harmonics in Pot(Σint) ) and r−n−1 (for harmonics in Pot(Σext) )

respectively, these function constitute a basis of Pot(Σint) and Pot(Σext) harmonics,

respectively.

We will introduce the necessary conversion formulae between the two systems in use.
Afterwards we will use these formulae to determine a direct way to integrate and differ-
entiate the spherical harmonics.

3.4.1 Basis Change Matrices

The old basis of homogeneous harmonic polynomials was written in Cartesian coordinates
which made differentiations more easy. Hence we need the transformation into polar
coordinates (y1, y2, y3) by now.

y1 = r cosϕ cosλ

y2 = r cosϕ sinλ

y3 = r sinϕ

Note that we have not told right now which of the xi of our original Cartesian coor-
dinate system is assigned to which element of the triple (y1, y2, y3).

For the following computations we will use the following formulae [AS68, BS79] (l ≥ 0,
l > 0 respectively).

cos lλ =

[ l2 ]∑

m=0

(−1)m
(
l

2m

)
sin2m λ cosl−2m λ

sin lλ =

[ l−1
2 ]∑

m=0

(−1)m
(

l

2m+ 1

)
sin2m+1 λ cosl−2m−1 λ

and

Pn(t) =2−n
[n2 ]∑

m=0

(−1)m
(
n

m

)(
2n− 2m

n

)
tn−2m

P |l|
n (t) =

(
1 − t2

)l/2 ∂l
∂tl

Pn(t)

=2−n
(
1 − t2

)l/2
[n−l2 ]∑

m=0

(−1)m
(
n

m

)(
2n− 2m

n

)
(n− 2m)!

(n− 2m− l)!
tn−2m−l

=
l!

2n
(
1 − t2

)l/2
[n−l2 ]∑

m=0

(−1)m
(
n

m

)(
2n− 2m

n

)(
n− 2m

l

)
tn−2m−l
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For the next computations we will strongly rely on the fact that we know that the Y l
n

are homogeneous harmonic polynomials of degree n. In order to get this degree we will
use the property

1 = cos2 + sin2

which will enable us to additionally get higher dimensions.
For reasons of simplicity we will just drop the constant C l

n
l!
2n

right now. (I.e: Ỹ l
nC

l
n
|l|!
2n

=
Y l
n). Thus we get:

Ỹ l
n =

1

|l|!P
|l|
n (sinϕ)

{
cos lλ l ≥ 0

sin |l|λ l < 0

= cos|l| ϕ

[n−|l|
2 ]∑

m=0

(−1)m
(
n

m

)(
2n− 2m

n

)(
n− 2m

|l|

)
sinn−2m−|l| ϕ





∑[ l2 ]
m=0 (−1)m

(
l

2m

)
sin2m λ cosl−2m λ l ≥ 0

∑[ |l|−1
2 ]

m=0 (−1)m
(

l
2m+1

)
sin2m+1 λ cosl−2m−1 λ l < 0

=






∑[ l2 ]
m=0 (−1)m

(
l

2m

)
y2m

2 yl−2m
1 l ≥ 0

∑[ |l|−1
2 ]

m=0 (−1)m
( |l|
2m+1

)
y2m+1

2 y
|l|−2m−1
1 l < 0

[n−|l|
2 ]∑

m=0

(−1)m
(
n

m

)(
2n− 2m

n

)(
n− 2m

|l|

)

sinn−2m−|l| ϕ
(
sin2 ϕ cos2 ϕ

)m

=






∑[ l2 ]
m=0 (−1)m

(
l

2m

)
y2m

2 yl−2m
1 l ≥ 0

∑[ |l|−1
2 ]

m=0 (−1)m
( |l|
2m+1

)
y2m+1

2 y
|l|−2m−1
1 l < 0

[n−|l|
2 ]∑

m=0

(−1)m
(
n

m

)(
2n− 2m

n

)(
n− 2m

|l|

)
y
n−2m−|l|
3

(
y2

1 + y2
2 + y2

3

)m

We just want to remind the reader that for the definition of the homogeneous harmonic
polynomial basis the terms which had a term of x3 in a power higher than 1 were not
relevant. In order to minimize the complexity of the matrices we now choose

y1 := x1

y2 := x3

y3 := x2

Hence we just need the polynomials which contain at most one y2 in the previous formula.

Writing
˜̃
Y l
n + y2

2P (y1, y2, y3) = Ỹ l
n, where

˜̃
Y l
n does not contain any higher power of y2
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and doing the above substitution we get:

˜̃
Y l
n =

{
xl1 l ≥ 0

|l|x|l|−1
1 x3 l < 0

[n−|l|
2 ]∑

m=0

(−1)m
(
n

m

)(
2n− 2m

n

)(
n− 2m

|l|

)
x
n−2m−|l|
2

(
x2

1 + x2
2

)m

=x
|l|−1
1

{
x1 l ≥ 0

|l|x3 l < 0

[n−|l|
2 ]∑

m=0

(−1)m
(
n

m

)(
2n− 2m

n

)(
n− 2m

|l|

) m∑

k=0

(
m

k

)
x
n−|l|−2k
2 x2k

1

=x
|l|−1
1

{
x1 l ≥ 0

|l|x3 l < 0

[n−|l|
2 ]∑

m=0

m∑

k=0

(−1)m
(
n

m

)(
2n− 2m

n

)(
n− 2m

|l|

)(
m

k

)
x
n−|l|−2k
2 x2k

1

=x
|l|−1
1

{
x1 l ≥ 0

|l|x3 l < 0

[n−|l|
2 ]∑

k=0

x2k
1 x

n−|l|−2k
2

[n−|l|
2 ]∑

m=k

(−1)m
(
n

m

)(
2n− 2m

n

)(
n− 2m

|l|

)(
m

k

)

Hence we have

Ỹ l
n =

[
n−|l|

2
]∑

k=0

{
0
H

|l|+2k
n l ≥ 0

|l| 1H |l|+2k−1
n l < 0

[n−|l|
2

]∑

m=k

(−1)m
(
n

m

)(
2n− 2m

n

)(
n− 2m

|l|

)(
m

k

)

Thus we get for l ≥ 0

Y l
n =εl

√
2n+ 1

√
(n− l)!

(n + l)!

l!

2n

[n−l2 ]∑

k=0

0H l+2k
n

[n−l2 ]∑

m=k

(−1)m
(
n

m

)(
2n− 2m

n

)(
n− 2m

l

)(
m

k

)

=εl
√

2n+ 1

√
(n− l)!

(n + l)!
2−n

[n−l2 ]∑

k=0

0H l+2k
n

[n−l2 ]∑

m=k

(−1)m
(2n− 2m)!

(n−m)! (n− 2m− l)!k! (m− k)!
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and for l > 0

Y −l
n =

√
2
√

2n+ 1

√
(n− l)!

(n + l)!

l!

2n
l

[n−l2 ]∑

k=0

1H l−1+2k
n

[n−l2 ]∑

m=k

(−1)m
(
n

m

)(
2n− 2m

n

)(
n− 2m

l

)(
m

k

)

=
√

2
√

2n+ 1

√
(n− l)!

(n + l)!
2−nl

[n−l2 ]∑

k=0

1H l−1+2k
n

[n−l2 ]∑

m=k

(−1)m
(2n− 2m)!

(n−m)! (n− 2m− l)!k! (m− k)!

Taking a closer look on the structure of the corresponding basis change matrices we
observe that they correspond to triangular matrices when we reorder the Y l

n according to
positive and negative and odd and even l. Correspondingly we need to reorder the iHk

n

according to the value of i and positive and negative k.

3.4.2 Direct Integration

Using the conversion formulae above and the results we obtained for the differentiation
of the homogeneous harmonic polynomials we can determine the differentiation formulae
for the spherical harmonics in Pot(Σext) . The following differentials are an analogue to
the old ones just with the new coordinate system (y1, y2, y3), where again ∂i differentiates
in the yi direction.

Conjecture

In order to make the formulae simpler we will denote (for |l| > 1):

l+ =




l + 1 if l > 1

l − 1 if l < −1
l− =




l − 1 if l > 1

l + 1 if l < −1

i.e., the “+” shifts the l one away from 0, the “−” does the inverse operation.

Furthermore denote the sign of −l by ls

Due to easier notation all spherical harmonics with impossible coefficients are as-

sumed to be zero.

Sometimes the cases for |l| ≤ 1 are displayed separately. The following formulae

for general l is then just holding for |l| ≥ 2, of course.

Differential Operator did = 1

didY
l
n = 1 · Y l

n

Differential Operator dr = y1∂1 + y2∂2 + y3∂3

drY
l
n = − (n+ 1) · Y l

n
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Differential Operator dy1 = ∂1

dy1Y
0
n = −

√
2n+ 1

2n+ 3

√
(n+ 1) (n+ 2)

2
· Y 1

n+1

dy1Y
−1
n = −

√
2n+ 1

2n+ 3

√
(n+ 2) (n+ 3)

4
· Y −2

n+1

dy1Y
1
n = +

√
2n+ 1

2n+ 3

√
n (n+ 1)

2
· Y 0

n+1

−
√

2n+ 1

2n+ 3

√
(n+ 2) (n+ 3)

4
· Y 2

n+1

dy1Y
l
n = +

√
2n+ 1

2n+ 3

√
(n− |l| + 1) (n− |l| + 2)

4
· Y l−

n+1

−
√

2n+ 1

2n+ 3

√
(n+ |l| + 1) (n + |l| + 2)

4
· Y l+

n+1

Differential Operator dy2 = ∂2

dy2Y
0
n = −

√
2n+ 1

2n+ 3

√
(n+ 1) (n+ 2)

2
· Y −1

n+1

dy2Y
1
n = −

√
2n+ 1

2n+ 3

√
(n+ 2) (n+ 3)

4
· Y −2

n+1

dy2Y
−1
n = +

√
2n+ 1

2n+ 3

√
n (n+ 1)

2
· Y 0

n+1

+

√
2n+ 1

2n+ 3

√
(n + 2) (n+ 3)

4
· Y 2

n+1

dy2Y
l
n = ls

√
2n + 1

2n + 3

√
(n− |l| + 1) (n− |l| + 2)

4
· Y −l−

n+1 +

ls

√
2n + 1

2n + 3

√
(n+ |l| + 1) (n + |l| + 2)

4
· Y −l+

n+1

Differential Operator dy3 = ∂3

dy3Y
l
n = −

√
2n+ 1

2n+ 3

√
(n+ 1 − l) (n+ 1 + l) · Y l

n

Differential Operator d¬y1 = y3∂2 − y2∂3

d¬y1Y
0
n = −

√
n (n + 1)

2
· Y −1

n

d¬y1Y
1
n = −

√
(n− 1) (n+ 2)

4
· Y −2

n

d¬y1Y
−1
n = +

√
n (n+ 1)

2
· Y 0

n

+

√
(n− 1) (n+ 2)

4
· Y 2

n
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d¬y1Y
l
n = ls

√
(n− |l| + 1) (n+ |l|)

4
· Y −l−

n +

ls

√
(n− |l|) (n+ |l| + 1)

4
· Y −l+

n+1

Differential Operator d¬y2 = y3∂1 − y1∂3

d¬y2Y
0
n = −

√
n (n+ 1)

2
· Y 1

n

d¬y2Y
−1
n = −

√
(n− 1) (n+ 2)

4
· Y −2

n

d¬y2Y
1
n = +

√
n (n+ 1)

2
· Y 0

n

−
√

(n− 1) (n+ 2)

4
· Y 2

n

d¬y2Y
l
n = +

√
(n− |l| + 1) (n+ |l|)

4
· Y l−

n

−
√

(n− |l|) (n+ |l| + 1)

4
· Y l+

n+1

Differential Operator d¬y3 = y2∂1 − y1∂2

d¬y3Y
l
n = l · Y −l

n

The proof consists of simple, but very lengthy calculations using the differentiation for-
mulae for the homogeneous harmonic polynomials and the conversion formulae of the
spherical harmonics to homogeneous harmonic polynomials we have obtained before-
hand. This proof would just fill dozens of pages with incomprehensible formulae but
would not really add to a deeper understanding of the matter and would give the whole
topic a weight in this thesis which it does not have considering its mathematical impact.
That’s why we omitted it.

Furthermore, at least for the d¬yi we can find these differentials in books about quan-
tum mechanics [Edm64, Mes61], where d¬yi can be interpreted as an angular momentum.
Additionally the result for dr is well known and can be found e.g., in [FGS98].

3.5 Other Basis Systems

As we have seen the calculations are getting very lengthy even for the most easy case of
spherical harmonics.

Therefore we will not determine the corresponding derivatives of other widely used
approximation functions or their kernels respectively. On the contrary we will rely on
the fact that for most kernels we actually know an expansion into spherical harmonics,
where we could let our operator act on.

This approach to general basis systems is not really elegant. However it is applicable
and hence we may leave the derivatives of these more general basis functions as subject
for future research. We want to emphasize that this is not a restriction to the method of
old basis systems like spherical harmonics but just the first building block which could
be used as foundation for the usage within modern approximation schemes.
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3.6 Conclusion

The important facts which we can extract out of this chapter are the following:

• We can invert each of the differential operators we found in the last chapter and
have an explicit representation of the corresponding operators.

• We obtained some insight in the kernel spaces.

• We know which kind of data are easily combinable.
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Chapter 4

Geoscientifical Problems

Which mathematical tasks do we have to perform for the oblique boundary
value problem and especially for the oblique satellite problem?

After having described what kind of oblique derivative problems we are able to tackle
we want to turn our attention to the problems occurring in the determination of the
gravitational field of the Earth.

Therefore we will first show the data situation. Afterwards we will give a brief math-
ematical description of the oblique boundary value and oblique satellite problem. We
will see that there is just one major difference between the two problems, the downward-
continuation. We will attack this severely ill-posed problem in the chapter “Noise and
Regularization”.

4.1 Data Situation and Open Problems

Now we want to give a rough overview on the raw data which are available for the
gravitational potential V . Please note that we are just having data at discrete points.
We will assume further that these data are free of non-gravitational effects and the
exterior space of the earth has no gravitational sources.

Observable Location Observation method

V (x) x ∈ ocean Satellite Altimetry
|∇V (x)| x ∈ continent Gravimetry
∇V (x)
|∇V (x)| x ∈ continent Geometric-Astronomical Levelling

(∇⊗∇)V (x) x ∈ continent Terrestrial Gradiometry

∇V (x) x ∈ satellite track Satellite-to-Satellite Tracking (SST)
(∇⊗∇)V (x) x ∈ satellite track Satellite Gravity Gradiometry (SGG)

At least for satellite data we cannot easily choose the points, where the measurements
should be taken. In particular the satellites are descending slowly in the direction of the
Earth such that we only get measurements in a spherical shell and not on a surface.
Therefore we cannot expect several measurements at the same point for error reduction.

As we have seen above the data are coming from various different sources. Usually
their error level can just be estimated. Even within one satellite mission we observe



70 4. Geoscientifical Problems

different error levels, e.g., for GOCE the six directions of the Hesse tensor (∇⊗∇) are
determined with different accuracy.

4.2 Mathematical Description

Now we will shortly present our problem in mathematical terms. Again, we assume all
other sources of gravity outside the Earth (including the atmosphere) to be negligible.
The following considerations are mostly taken from [FGS98, Fre99].

4.2.1 The Gravitational Field

The gravitational potential V is an harmonic in the outer space (i.e., V ∈ Pot(Σext)) as
defined in [Fre99]. The space Pot(Σext) is a separable Hilbert space with the standard
L2(Σ) inner product.

4.2.2 Spectral Representation

We would like to have V in spectral representation, i.e., we have a L2(Σ)-complete basis
system of Pot(Σext) and a Fourier expansion of V in this basis system. As we know
from potential theory (see e.g., [ABR91, Kel67]) it is sufficient to have a representation
with a complete basis system {Un}n∈N on the boundary Σ. The corresponding Fourier
coefficients are denoted by {V ∧(n)}n∈N.

V |Σ =
∑

n∈N
V ∧(n)Un

This Fourier expansion is meant in the L2(Σ) sense, where the harmonic continuation of
the Un provides a locally compact approximation in Σext (i.e., in any compact subset we
have uniform convergence).

Equivalently we can define a spectral representation at satellite height with respect
to the satellite orbit ΣS and at plane height ΣF for airborne campaigns.

From now on we will restrict our attention to the case, where the underlying surface
Σ, ΣF or ΣS is a sphere. In principle all (orthonormal) basis systems would suit our
purposes. However, we chose the basis of spherical harmonics which allows a particularly
easy numerical treatment in the end.

4.2.3 From Data to a Solution

Now we want to analyze mathematically the steps we have to perform in order to solve
our problem out of one input data set with respect to the oblique derivative d , one time
when we are facing an oblique satellite problem, another time when we have a boundary
value problem.
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4.2.3.1 Oblique Satellite Problem

Input Data Our data are now given in the form {d (V )(pk)} with {pk} = ΣD is the set
of points, where a measurement has been done. d can be either a first or second order
differential, depending on the underlying measurement method.

In the sequel we will address this kind of information by discrete (input) data.

Approximation If we assume that d has ∆ as split operator we can approximate V
on the data location ΣD which we assume to be a subset of a sphere. Hence we get a
solution for V for the space outside of ΣD

We need to approximate the data with a suitable basis system and hence get a
differentiated version of the gravitational field in spectral representation which will now
be called differentiated data.

Integration Out of the differentiated data d V we need to reconstruct V , both on ΣD.
We will demand that this reconstruction is also given in spectral representation on ΣD.
Depending on the differential operator d the function V does neither need to exist or to
be unique.

The corresponding solution will be called integrated data.

Downward-Continuation Using the assumption that the way between ΣD and Σ is
source free we can extend the solution down to the Earth. In the standard topology this
is a severely (exponentially) ill-posed problem [FGS98] i.e., small perturbations in the
discrete input data result in a large error of our solution.

We are not just interested in a pure regularization but in an optimal regularization,
i.e., we want to get as close as possible to the real solution. Assuming that we do not
have further information on the error in the data and on the behavior of the solution
this is an unsolved problem, yet. Important is the appropriate choice of a regularization
parameter/stopping criterion.

The data after downward continuation will be called regularized data.

4.2.3.2 Oblique Boundary Value Problem

The only difference to the oblique satellite problem is the downward continuation which
is unnecessary because we are already at the desired height. This rather small difference
results in the fact that the oblique boundary value problem is well-posed.

4.2.3.3 Combination

We do not just have data for one differential operator d but for several different ones.
Furthermore we can have data from different satellite missions and ground based cam-
paigns. These solutions have to be combined in order to get a final solution.

4.2.3.4 Remarks

Please note that sometimes several or even all of the above steps are combined to realize
gains both in speed and accuracy. Furthermore the order of the steps is not necessarily
fixed but it can be changed according to the utilized algorithm.
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4.3 Conclusion

In order to be able to solve an oblique satellite problem we have at least to show a
possible regularization technique which will be part of the next chapter. After having
accomplished this task the oblique satellite problem and the oblique derivative problem
are rather similar in their treatment.



Chapter 5

Noise and Regularization

Does there exist a sensible stopping criterion for the inverse problem “down-

ward continuation”?

We need to know an approximate error level of our solution after regulariza-
tion.

When we consider satellite problem we do not want to know the solution at satellite
height but down at the Earth. This problem is known as downward-continuation problem
which is severely ill-posed [Fre99].

Please note that if we are dealing with satellite data we are facing another severe
problem. Our data and hence also our data error are given in the space domain. However,
there is no regularization method which does not require the knowledge of these in the
frequency domain. In order to have a manageable base we will assume that our data are
given on a (spherical) integration grid near the satellite orbit which allows an easy way
to change from space to frequency domain and vice versa.

We know that the transfer of the data from the satellite track to such an integration
grid is non-trivial and structurally seen ill-posed. One of the most elaborated procedures
we know to obtain a solution on this problem is the one presented by [Fen02] which
utilizes localizing spline techniques.

5.1 Data Error for the Satellite Problem

For the regularization process a profound knowledge of the behavior of the error we face
is indispensable. Therefore we will first investigate how the error transfers from the space
to the frequency domain.

Satellites measuring the gravitational field have to fly in a very low orbit which results
in a short mission time. Hence, we can just expect that we have one measurement at
each point which means in particular that we cannot rely on a time series which is the
standard tool in statistics.

On the other hand we are having quite a variety of data at different points. The
behavior of the noise in this case was estimated relying on personal communications
with Dr. J-P. Stockis [Sto03].
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5.1.1 Integration Grid

For approximation purposes we need to know a good integration grid on the sphere.
The problem of most integration grids is that one does not know the weight coefficients.
Therefore we mostly rely on the Driscoll-Healy grid [May01]:

Definition 5.1

The Driscoll-Healy Grid of dimension m is defined by the point system
(
s π

2m+1
, r 2π

2m+1

)

and the integration weights

Ws,r =
2π

2m+ 1

4

2m+ 1
sin

(
sπ

2m+ 1

)m−1∑

l=0

1

2l + 1
sin

(
(2l + 1)sπ

2m+ 1

)

Lemma 5.1

The Driscoll-Healy grid of dimension m allows exact integration for all spherical

harmonics up to degree m by the formula:

∫

Ω

F (ω) dω =

2m∑

s=0

2m∑

r=0

Ws,rF

(
s

π

2m+ 1
, r

2π

2m+ 1

)

5.1.2 Stochastical Preliminaries

We just want to present some basic definitions and facts and notation concerning sto-
chastics. A much more thorough treatment may be found in [BD96], e.g..

ξ ∈ (Ω,Σ,P) is called random variable of the space Ω with the underlying sigma
algebra Σ and the probability measure P.

The expectation of a random variable ξ is denoted by E(ξ) and the variance of a
random variable ξ is denoted by E

(
(ξ − E(ξ))2)

A random variable ξ is chosen according to the Gaussian distribution (normal distri-
bution) N (0, σ2) with expectation E(ξ) = 0 and variance E(ξ2) = σ2 if

N
(
0, σ2

)
(x) =

1

σ
√

2π
exp

(
− x2

2σ2

)

Expectation and variance fulfill the following particular useful lemma [Bos96]:

Lemma 5.2

Let ζ and ξ be random variables with zero expectation which are independent (i.e.,

E(ζξ) = 0). Then the random variable ζ + rξ has the expectation E(ζ + rξ) =

E(ζ) + rE(ξ) and the variance E
(
(ζ + rξ)2

)
= E(ζ2) + r2E(ξ2), where r ∈ R.

5.1.3 Uncorrelated Noise Case

Now we can reformulate our satellite problem mathematically.
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Problem 5.1

Let GN be an integration grid (incorporating N points) on the sphere Ω which allows

exact integration of the orthonormal system {Y k
n }n≤m,|k|≤n up to order 2m.

On each point x ∈ GN of the integration grid a random variable F (x) with distrib-

ution N (0, δ2) is given.

Consider the truncated Fourier transform of this given random function F :

F ≈
m∑

n=0

n∑

k=−n
F∧(n, k)Y k

n

where
∫

Ω

FY k
n dω ≈ F∧(n, k) =

∑

p∈GN

W (p)Y k
n (p)F (p)

The F∧(n, k) are random variables.

How are they distributed?

In order to keep notation simple we will write:

Definition 5.2

The grid constant G∧
N(n, k) is defined by

G
∧
N (n, k) =

∑

p∈GN

W (p)2Y k
n (p)2

Using this notation we obtain:

Lemma 5.3

The Fourier coefficients F∧(n, k) are random variables with distribution

N
(
0, δ2

G
∧
N (n, k)

)

Proof

We know about the expectation

E(F∧(n, k)) =E

(
∑

p∈GN

W (p)Y k
n (p)F (p)

)

=
∑

x∈GN

W (p)Y k
n (p)E(F (p))

=
∑

x∈GN

W (p)Y k
n (p)0

=0
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Furthermore we have for the variance

E(F∧(n, k))2 =
∑

p∈GN

W (p)2Y k
n (p)2

E(F (p)2)

=
∑

p∈GN

W (p)2Y k
n (p)2δ2

= δ2
∑

p∈GN

W (p)2Y k
n (p)2

= δ2
G

∧
N(n, k)

This yields the desired result because the sum of normally distributed random

variables is normally distributed. q.e.d.

We see that the chosen integration grid influences heavily the result we get. On the other
hand we did not use the fact that we are working on the sphere. Hence our result should
in special cases be the same as the ones normally known in probability theory. This gives
rise to the following remark:

Remark

If GN is (almost) equally distributed we have

W (p) ≈ N−1 ∀p ∈ GN

Substituting this result in the formula we derived in the last lemma, we get using

the fact ||Y k
n || = 1

E(F∧(n, k))2 ≈ N−1δ2

This result is known from the general theory [BD96].

5.1.4 Correlated Noise Case

After having covered the easy case of uncorrelated noise we will include correlations in
our model. These correlations are likely to enter because of outer interferences which are
similar at points near to each other or mathematically imposed by the transfer from the
satellite track to the integration grid.

Mathematically seen this corresponds to the following problem.

Problem 5.2

Let GN be an integration grid on the sphere Ω which allows exact integration of the

orthonormal system {Y k
n }n≤m,|k|≤n up to order 2m.

On each point p ∈ GN of the integration grid a random variable G(p) is given which

is of the following form:

G(p) =
∑

q∈G

W (q)K(p, q)F (q)
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where the F (p) are distributed with N (0, δ2). Consider the truncated Fourier trans-

form of this given random function G:

G ≈
m∑

n=0

n∑

k=−n
G∧(n, k)Y k

n

where

∫

Ω

GY k
n dω ≈ G∧(n, k) =

∑

p∈GN

W (p)Y k
n (p)G(p)

The G∧(n, k) are random variables.

How are they distributed?

As we see the problem strongly depends on the choice of K(·, ·). We do not know how our
error looks like in reality. But in order to have the possibility to draw further conclusions
we may assume K(·, ·) is symmetric and translation invariant.

A good and easy to handle choice seems to be the Abel-Poisson kernel [FGS98]

Kh(p, q) =
1

4π

1 − h2

(1 + h2 − 2hp · q)3/2

=

∞∑

n=0

2n+ 1

4π
hnPn(p · q)

=
∞∑

n=0

n∑

k=−n
hnY k

n (p)Y k
n (q)

The particular advantage of the above kernel is that it is self reproducing [FGS98], i.e.,

< Kh(p, ·), Y k
n (·) >=hnY k

n (p)
(

=
∑

q∈GN

W (q)Kh(p, q)Y
k
n (q)

)

We will do our next considerations just for this special kernel. However, we could
do them with any one which has a self-reproducing structure as above, the Abel-Poisson
kernel is just a (physically motivated) example.

Lemma 5.4

The Fourier coefficients G∧(n, k) are random variables and have the distribution

N
(
0, δ2h2n

G
∧
N (n, k)

)

if we choose the Abel-Poisson Kernel Kh as correlation.
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Proof

First we will rewrite G∧(n, k) in terms of F (x).

G∧(n, k) =
∑

p∈GN

W (p)Y k
n (p)G(p)

=
∑

p∈GN

W (p)Y k
n (p)

∑

q∈GN

W (q)Kh(p, q)F (q)

=
∑

p,q∈GN

W (p)W (q)Kh(p, q)Y
k
n (p)F (q)

=
∑

q∈GN

W (q)F (q)
∑

p∈GN

W (p)Kh(p, q)Y
k
n (p)

=
∑

q∈GN

hnW (q)F (q)Y k
n (q)

= hn
∑

x∈GN

W (p)F (p)Y k
n (p)

The proposition now directly follows from the uncorrelated case. q.e.d.

5.1.5 Combinations

Of course it is not reasonable to assume that we have pure correlated or pure uncorrelated
noise in our data.

So we will consider a combination of the two noise types above. Assuming that the
noise level for the uncorrelated case is cuδ and for the uncorrelated one ccδ we get noise
with distribution

N (0, δ2(c2u + c2ch
2n)G∧

N(n, k))

for the coefficient of Y k
n .

Note that for low coefficients we have a domination of the correlated noise and for
high Fourier coefficients a domination of the uncorrelated noise.

5.1.6 Noise Estimation

In order to get an idea what kind of noise we are having on our satellite data we may
employ the following strategy.

First we will simulate noisy satellite data on the real track. These can be fitted with
the three parameter function c2u + c2ch

2n.

Lemma 5.5

Assume that the constants cu, cc and h are given. Assume furthermore that we have

random variables F∧(n, k) for the Fourier coefficients of Y k
n which are

N (0, δ2(c2u + c2ch
2n)G∧

N(n, k))

distributed up to degree m.
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Then the best possible estimate for the noise level δ is given by

1

n + 1

√√√√
l∑

n=0

n∑

k=−n

(F∧(n, k))2

(c2u + c2ch
2n)G∧

N(n, k)

The proof just consists out of standard methods from stochastics [BD96]. Note that this
approach is rather rough and just constitutes one possibility. However, we may draw two
important conclusions out of these calculations.

• It is reasonable to assume that our Fourier coefficients are biased with Gaussian
white noise depending on the degree of the Fourier coefficients. Comparing two
different coefficients this noise can be assumed as uncorrelated. Because any other
basis like wavelets or splines has a representation in that particular standard basis
this results again in uncorrelated white noise for the coefficients of the new basis.

• It is likely that the variance in the Fourier coefficients is bounded and asymptoti-
cally a constant.

Both of these observations indicate that the method of choice should not be a regular-
ization method for deterministic but for stochastic noise.

5.2 Auto-Regularization

Now we will strongly rely on some results which we will present in a very condensed form
in the next few pages (without proofs). Please note that a lot of the subsequent inverse
problem results are based on the recent work of Prof. S. Pereverzev [Per03a, Per03b],
whereas the theorems using stochastical methods were mostly obtained in cooperation
with Dr. J-P. Stockis [Sto03]. Some information on stochastical noise and wavelets can
be found in [FP01].

For the sake of readability we indexed the occurring probabilities and expectations
with the random variable it originally refers to. Please observe that in this section we
are requiring a large number of different constants which are not important in itself.
Therefore, if not stated otherwise all of them just have a scope of the particular theorem
or lemma, where they were introduced and no further.

5.2.1 Functional Analysis Preliminaries

In this part we want to introduce the necessary results to be capable to regularize our
problem including some notation.

When we have a solution Xδ
α of the equation

AX = Z

with respect to the noisy data Zδ our error has the two components regularization error
ψ(α) which mainly depends on the smoothness of our function X and the data error
which is δ

2
√
α

when we use Tikhonov-Phillips regularization, for example, i.e.

||X −Xδ
α|| ≤ ψ(α) +

δ

2
√
α
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Although the common theory is dealing with deterministic noise we observe in practice
mainly stochastic noise. Therefore we will introduce the necessary notions to handle
stochastic noise as well. The next few pages are purely working along the lines given by
[Per03b]. Further background information can be obtained from [GP00, MP03]. In order
to keep the introduction short we will just present the major results.

From now on let X and Z be separable Hilbert spaces with inner products < ·, · >X
and < ·, · >Z with basis {Uk}k∈N and {Vk}k∈N respectively. If no confusion is likely to
arise we will denote the inner product just by < ·, · >. Additionally assume X ∈ X and
Z ∈ Z if not stated otherwise.

Furthermore assume A is a map A : X → Z which is a continuous linear compact
operator with infinite rank. A shall admit a singular value decomposition

AX =

∞∑

k=1

skVk 〈Uk, X〉

where sk ≥ sk+1 > 0 for all k ∈ N. Hence the adjoint operator has the representation

A
∗Z =

∞∑

k=1

skUk 〈Vk, Z〉

The inverse operator has the formal representation

A
−1Z =

∞∑

k=1

s−1
k Uk 〈Vk, Z〉

Definition 5.3

The Moore Penrose inverse is defined as: A+ = (A∗A)−1
A∗

Lemma 5.6 (Picard Criterion)

A
∗
AX = A

∗Z is solvable in X iff
∑∞

k=1 s
−2
k 〈Vk, Z〉2 <∞

Now we will introduce an approach to regularization which is rather general. Therefore

we need the following

Definition 5.4

Let A : X → X be self-adjoint and F a real valued continuous function. Then F (A)

is defined by

F (A) =
∞∑

k=1

F (sk)Uk 〈Uk, ·〉

Remark

Inversion of an operator can be written in this notation as well. We simply have

A−1 = F (A) using F : λ 7→ λ−1

Furthermore
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Definition 5.5

The family of bounded real valued functions {Gα}α∈R+ is called regularization family

for A if for all α > 0

• ∃c : |λGα(λ)| ≤ c

• ∀λ ∈ ]0, ||A||2] : limα→0Gα(λ) = λ−1

This yields the following result:

Lemma 5.7

Let Z fulfill the Picard criterion. Then

lim
α→0

∣∣∣∣A−1Z −Gα(A
∗
A) A

∗Z
∣∣∣∣ = 0

Remark

Examples for regularization families are

• Cut-Off scheme

Gα(λ) =




λ−1 λ ≥ α

0 0 < λ < α

• Tikhonov - Phillips

Gα(λ) = (α+ λ)−1

In order to compare the different methods we can introduce the following definitions:

Definition 5.6

Define the constants γ0, γ− 1
2

and γ−1 by

• supλ∈[0,||A||2[ |1 −Gα(λ)λ| ≤ γ0

• supλ∈[0,||A||2[

∣∣∣Gα(λ)λ
1
2

∣∣∣ ≤
γ
− 1

2

α
1
2

• supλ∈[0,||A||2[ |Gα(λ)| ≤ γ−1

α

Definition 5.7 (Qualification)

The qualification of a regularization family {Gα} is the maximal p such that there

is a γq:

sup
λ∈[0,||A||2[

|1 −Gα(λ)λ|λp ≤ γqα
p
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Remark

Simplifying one may say that the bigger the qualification, the better the perfor-

mance of the particular regularization scheme.

This is due to the fact that for all p ≥ q > 1 even for the much stronger norm

||g||λq = supλ∈[0,||A||2[ λ
q|g(λ) | the term ||λ−1 − Gα(λ) ||λq converges. If the quali-

fication is ∞ and if we are having uniform convergence it even follows pointwise

convergence. This means in particular that the function λ−1 gets approximated in

an optimal way.

If the qualification is not high enough we cannot guarantee to reach the best possible
order of approximation. In particular we will have some results requiring a minimum
qualification. For the two regularization methods proposed above the constants adopt
the following values:

Remark

The qualification of the spectral cut-off scheme is ∞, whereas Tikhonov-Phillips

just has qualification 1. However, the advantage of the Tikhonov-Phillips regular-

ization is that we do not require the knowledge of the singular value decomposition.

Both spectral cut-off scheme as well as Tikhonov-Phillips regularization fulfill the

above definition with constants γ0 = γ− 1
2

= γ1 = 1 and γ0 = γ1 = 1 and γ− 1
2

=
√

2

respectively.

In the sequel we will consider two mutually different noise models:

Definition 5.8 (Deterministic Noise)

The data Zδ are biased with deterministic noise (in comparison to Z) if ||Z−Zδ|| ≤
δ, i.e., there exists a (random) vector ξ with ||ξ|| ≤ 1 such that Zδ = Z + δξ.

Definition 5.9 (Stochastic Noise)

Let (Ω,Σ,P) be the ordinary probability space. Furthermore Zδ = Z + δξ, where ξ

is a random vector fulfilling

• For all Z ∈ Z we have that ξZ(ω) = 〈Z, ξ〉, where ξZ(ω) : Ω → R is a random

variable. Assume furthermore ∀t : {ω |ω ∈ Ω, ξZ(ω) ≤ t} ∈ Σ

• Eξ 〈Z, ξ〉 = 0

• Eξ 〈Z, ξ〉2 = ||Z||Z

• ξZ is normally distributed around 0.

Then Zδ is called to be biased with stochastic noise.
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Remark

For most results the condition ξZ Gaussian is not necessary. In order to be more

accurate we could introduce different variances for each basis vector Vi. However,

the general results presented in the sequel transfer without a problem to this more

general situation.

After having introduced the error we need to consider the smoothness separately:

Definition 5.10

Let ψ : [0, ||A||2] → R
+ be non-decreasing with ψ(0) = 0. Z = AX has the

smoothness ψ if

∞∑

k=1

〈Uk, Z〉2
s2
kψ

2(s2
k)
<∞

Furthermore the generalized smoothness assumption is defined as

(
A

+Z =
)
X+ ∈ Aψ(r) = {z ∈ X |z = ψ(A∗

A) z̃, ||z̃|| ≤ r}

Definition 5.11

Let ψ defined as above. Then define θ(λ) =
√
λψ(λ).

Definition 5.12

ψ is called to fulfill the ∆2 condition if:

∃̟ > 1∀λ ∈
[
0, ||A||2

]
: ψ (2λ) ≤ ̟ψ(λ)

This means that the smoothness should not decrease faster than an exponential function.

Now we consider the accuracy of our methods:

Definition 5.13

The best order of accuracy with respect to A and δ is defined by:

sup
X∈Aψ(R)

inf
Gα

sup
Zδ,Z

||Z−Zδ||≤δ

||X −Gα(A
∗
A) A

∗Zδ||

If we assume deterministic noise this order can be obtained by the cut-off scheme as well

as by Tikhonov-Phillips regularization as long as the qualification covers the smoothness

(i.e. λp

ψ(λ)
→λ→∞ ∞ for qualification p ).

Lemma 5.8

Let ψ be s.t. θ is strictly increasing and ψ
((

(θ2)
−1
)
(λ)
)

concave. Furthermore let

ψ fulfill the ∆2 condition.

Under the above conditions we have for the deterministic noise model the best possi-

ble order of accuracy is ψ(θ−1(δ)) which can be reached by either the cut-off scheme

or Tikhonov Phillips regularization if the qualification covers the smoothness.
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Remark

For the standard smoothness ψ(λ) = λµ we have the well known best order of

accuracy δ
µ

µ+ 1
2 .

If we work along a Hilbert scale [EHN96] (which we do not want to define in this

text) with d||u||Xν−a ≤ ||Au||Zν ≤ D||u||Xν−a we have the best possible order of

accuracy δ
µ
µ+a .

Now we will consider the case of stochastic instead of deterministic noise where we use
the obvious adaptation of the best order of accuracy, namely

supX∈Aψ(R)
infGα Eξ||X −Gα(A

∗A) A∗ (AX + δξ) ||2

Definition 5.14

Define θs(λ) = λ
2s+1
4s ψ(λ), where we have for the singular values sk of A: ∃c1, c2 :

c1, c2 : c1k
−s ≤ sk ≤ c2k

−s.

Lemma 5.9

Assume that θs is increasing and that ψ fulfills the ∆2 condition. Furthermore there

should exist a p s.t. λp

ψ(λ)
is increasing.

Then for the stochastic noise model the best order of accuracy is ψ(θ−1
s (δ)) which

can be reached by either the cut-off scheme or Tikhonov Phillips regularization if

the qualification covers the smoothness.

Remark

For the standard smoothness ψ(λ) = λµ we have δ
µ

µ+ 1
2+ 1

4s as best order of accuracy

which is slightly worse than for the deterministic noise case.

This difference vanishes for the exponentially ill-posed problem.

For all these regularization methods we need quite a lot of a priori knowledge in order to
use them successfully. In particular there is the following remarkable result, which will
be presented with proof (taken from [Per03b]):

Lemma 5.10 (Bakushinskii, 1984)

If the regularization operator R does not depend explicitly on the noise level δ, then

for any (infinite rank) compact operator A there is an Z ∈ Dom(A+) for which

lim
δ→0

sup
Zδ

||Z−Zδ||≤δ

||RZδ − A
+Z|| > 0
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Proof

Suppose there exists such an operator A s.t. for all Z ∈ Dom(A+) fulfilling

lim
δ→0

sup
Zδ

||Z−Zδ||≤δ

||RZδ − A
+Z|| = 0

Dom(A+) is a closed subspace of Z. A+ is a linear but not a continuous operator

mapping Dom A+ → X because A is an infinite rank compact operator.

Now, we will show that under the above assumption A
+ has to be continuous.

Assume Z1 ∈ Dom(A+). Then our assumption yields that for any ε > 0 there

exists δ > 0 s.t.

sup
Zδ

||Z1−Zδ||≤δ

||RZδ − A
+Z1|| <

ε

2

Then for all Z2 ∈ Dom(A+) with ||Z1 − Z2|| ≤ δ we have

||RZ2 − A
+Z1|| <

ε

2

Using our assumption again we have a δ2 fulfilling

sup
Zδ2

||Z2−Zδ2 ||≤δ2

||RZδ − A
+Z2|| <

ε

2

which directly implies

||RZ2 − A
+Z2|| <

ε

2

Applying the triangle inequality we finally get

||A+Z2 − A
+Z1|| ≤ ||RZ2 − A

+Z1|| + ||RZ2 − A
+Z2|| < ε

which is just another formulation for A+ being continuous. This is a contradiction.

q.e.d.

Remark

Note that one does not really need the noise level δ. E.g., if we know the smoothness

of the solution we can get enough information to get a sufficiently good estimate

for the noise level.

However, if we know neither smoothness nor noise level we have no possibility to

regularize our solution. We cannot guarantee that we get near to the real solution.
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5.2.2 The Situation

Assume the sequence of operators {An} converging to A. We will consider the following
noisy solutions of our operator equation (noise element δξ with the standard formulation
for a stochastical noise element ξ):

Xδ
n = A

+
n (AX + δξ) = (A∗

nAn)
−1

A
∗
n(AX + δξ) = X0

n + δηξn

where

ηξn = A
+
n ξ = (A∗

nAn)
−1

A
∗
nξ

where ηξn is a Gaussian random element. (The spectral cut-off scheme fulfills this property,

e.g.). From now on we assume that there exist functions ρ and ψ fulfilling:

Definition 5.15

Define ρ : [1,∞[→ [0, a] to be a decreasing function which fulfills

• ρ(n+ 1) ≥ cρ(n) for a constant c

• Eξ||ηξn||2 ≤ 1
ρ2(n)

Furthermore define the decreasing function ψ : [1,∞[→ [0, a] to be such that

||X −X0
n|| ≤ ψ(n).

Remark

The function ρ may be associated with a kind of error spread by the operator A

over the various frequencies, whereas the function ψ denotes the smoothness of the

solution.

If we assume that X is in the Sobolev space Hr we can set ψ(n) = cXn
−r, where

cX ∈ R.

Before starting with the main results we need the following supporting lemma:

Lemma 5.11

The following probability estimate holds:

Pξ

{
||ηξn||ρ(n) > τ

}
≤ 4 exp

(
−τ

2

8

)

Proof

We have using Eξ||ηξn||2 ≤ 1
ρ2(n)

and the probability estimate for Gaussian random

vectors [LT91]:

Pξ

{
||ηξn||ρ(n) > τ

}
=Pξ

{
||ηξn|| >

τ

ρ(n)

}

≤4 exp

(
− τ 2

8ρ(n)2Eξ||ηξn||2

)

≤4 exp

(
−τ

2

8

)
q.e.d.
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5.2.3 Regularization with Known Smoothness

Now we can determine the optimal regularization parameter via the following result
which still needs the input of smoothness and error level but works for the stochastical
noise case:

Lemma 5.12

When choosing

nopt = min

{
n : ψ(n) ≤ δ

ρ(n)

}

we have

√
Eξ||X −Xδ

nopt||2 ≤
√

2

c
ψ
(
(ψρ)−1 (δ)

)

The proof is taken from [Per03b]:

Proof

We have:

Eξ||X −Xδ
n||2 =Eξ

〈
X −X0

n − δηξn, X −X0
n − δηξn

〉

=Eξ

〈
X −X0

n, X −X0
n

〉
− 2δEξ

〈
X −X0

n, η
ξ
n

〉

+ δ2
Eξ

〈
ηξn, η

ξ
n

〉

=||X −X0
n||2 − 2δEξ

〈
X −X0

n, (A
∗
nAn)

−1
A

∗
nξ
〉

+ δ2
Eξ||ηξn||2

=||X −X0
n||2 − 2δEξ

〈
An(A

∗
nAn)

−1(X −X0
n), ξ

〉

+ δ2
Eξ||ηξn||2

=||X −X0
n||2 + δ2

Eξ||ηξn||2

≤ψ2(n) +
δ2

ρ2(n)

The only non-obvious point in the above equation is

Eξ

〈
An(A

∗
nAn)

−1(X −X0
n), ξ

〉
= 0

which holds because for every set M we have Pξ(ξ ∈M) = Pξ(−ξ ∈M)

Balancing for the best possible order of accuracy yields that we need a n0 fulfilling

ψ(n0)ρ(n0) = δ. On the one hand we have:

ψ(nopt)ρ(nopt) ≤ δ = ψ(n0)ρ(n0)

On the other hand

ψ(nopt − 1)ρ(nopt − 1) > δ = ψ(n0)ρ(n0)
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Hence nopt is optimal. This yields

Eξ||X −Xδ
nopt||2 ≤ψ2(nopt) +

δ2

ρ2(nopt)

≤ 2δ2

ρ2(nopt)

≤ψ
2(n0)ρ

2(n0)

ρ2(n0 + 1)

≤ 2

c2
ψ2(n0)

=
2

c2
ψ2
(
(ψρ)−1 (δ)

)
q.e.d.

Remark

This can be formulated for deterministic noise as well.

If we have ψ(n) = n−r and ρ(n) = n−a then we would get

ψ
(
(ψρ)−1 (δ)

)
= δ

r
r+a

which coincides which is the best possible order of accuracy for this kind of problem.

A similar result obviously holds for severely ill-posed problems.

5.2.4 Regularization with Unknown Smoothness

The above result has an obvious problem. Normally we do not know the smoothness of
our solution. Therefore consider for n < m and n,m ∈ {k : ψ(k) ≤ κδ

ρ(k)
} the following

picture:

nopt n m

ψ(n)

κδ
ρ(n)
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Then we have

||Xδ
n −Xδ

m|| ≤||X −Xδ
n|| + ||X −Xδ

m||
≤ψ(n) + δ||ηξn|| + ψ(m) + δ||ηξm||

≤ 2κδ

ρ(n)
+

2κδ

ρ(m)

≤ 4κδ

ρ(m)

Now we use an idea by Lepskĳ [Lep90] and take

n∗ = min

{
n : ||Xδ

n −Xδ
m|| ≤

4κδ

ρ(m)
, N = ρ−1(δ) > m > n

}

Remark

In real applications it might be better to choose

n∗ = min

{
n : ||Xδ

n −Xδ
m|| ≤

2κδ

ρ(n)
+

2κδ

ρ(m)
, N = ρ−1(δ) > m > n

}

However, for the subsequent proofs we will use the simpler version.

This yields the following remarkable result which is an enhanced and re-engineered ver-
sion of a similar theorem presented in [Per03b]. The major difference is another treatment
of the important constant κ which now enables us to consider a larger variety of different
cases and problem types.

Theorem 5.13

Let n∗ be chosen as above with κ ≥ 1. Then we have:

Eξ||X −Xδ
n∗
||2 ≤ C1ρ

−1(δ) exp

(
−κ

2

16

)
+ C2κ

2ψ2
(
(ψρ)−1 (δ)

)

where C1 = 36 · 211/2 and C2 = 36
c2

in the stochastical noise case.

In the deterministic noise case we have C1 = 0 from a certain δ onward.

Proof

First consider another notation for the expectation when we have the normal prob-

ability space (Ω,Σ,P):

Eξ||X −Xδ
n||2 =

∫

Ω

||X −Xδ
n||2dPξ(ω)

Now define

Ξρ(ω) = max
1≤n≤N

||ηξn||ρ(n)
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We divide the probability space in two subspaces:

Ωκ = {ω : Ξρ(ω) ≤ κ} and Ωκ = Ω \ Ωκ

The proof is mainly consisting of two different parts. The first one estimates the

behavior for all “nice” cases Ωκ. The second one deals with the “bad” cases,

where the stochastic noise property produces results far away from the average Ωκ

. Therefore the second part has a strong emphasis on the probability when this

case actually occurs.

Note that the second part has probability 0 as long as we are dealing with deter-

ministic noise and δ is small enough.

Part 1: (“good” event ω ∈ Ωκ)

Consider

nopt = min

{
n : ψ(n) ≤ δ

ρ(n)

}

We want to show that nopt ≥ n∗. For all n ≥ nopt we have (using κδ
ρ(n)

≥ ψ(n) and

ρ(n) < ρ(nopt) because n ≥ nopt):

||Xδ
n −Xδ

nopt|| ≤||X −Xδ
n|| + ||X −Xδ

nopt||
≤ψ(n) + δ||ηξn|| + ψ(nopt) + δ||ηξnopt||

≤ψ(n) +
κδ

ρ(n)
+ ψ(nopt) +

δ

ρ(nopt)

≤ψ(n) +
κδ

ρ(n)
+ ψ(nopt) +

κδ

ρ(nopt)

≤ 2κδ

ρ(n)
+

2κδ

ρ(nopt)

≤ 4κδ

ρ(n)

which tells that

n∗ = min

{
n : ||Xδ

n −Xδ
m|| ≤

4κδ

ρ(n)
, N = ρ−1(δ) > m > n

}
≤ nopt

Then we have for all ω ∈ Ωκ using nopt ≥ n∗ and the last lemma
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||X −Xδ
n∗
|| ≤||X −Xδ

nopt|| + ||Xδ
nopt −Xδ

n∗
||

≤ψ(nopt) +
δ

ρ(nopt)
+

4κδ

ρ(nopt)

≤ 2δ

ρ(nopt)
+

4κδ

ρ(nopt)

≤ 2κδ

ρ(nopt)
+

4κδ

ρ(nopt)

≤6
κ

c

(
c

δ

ρ(nopt)

)

≤6
κ

c
ψ
(
(ψρ)−1 (δ)

)

Hence we get

∫

Ωκ

||X −Xδ
n∗
||2dPξ(ω) ≤ |Ωκ| ||X −Xδ

n∗
||2 ≤ 36

κ2

c2
ψ2
(
(ψρ)−1 (δ)

)

Part 2: (“bad” event ω ∈ Ωκ)

Remember that we defined nopt ≤ N = ρ−1(δ). Hence we get δ
ρ(N)

= 1 and

ψ(N) ≤ δ||ηξN || and thus

||X −Xδ
n∗
|| ≤||X −Xδ

N || + ||Xδ
N −Xδ

n∗
||

≤ψ(N) + δ||ηξN || +
4κδ

ρ(N)

≤2δ||ηξN || +
4κδ

ρ(N)

≤2
δ||ηξN ||ρ(N)

ρ(N)
+ 4κ

≤2Ξρ + 4Ξρ = 6Ξρ

Using this result we obtain:

∫

Ωκ

||X −Xδ
n∗
||2dPξ(ω) ≤36

∫

Ωκ

Ξ2
ρ(ω)dPξ(ω)

≤36

√∫

Ωκ

Ξ4
ρ(ω)dPξ(ω)

√∫

Ωκ

1dPξ(ω)

Now we estimate the two parts separately:

Consider F (τ) = Pξ{Ξρ(ω) ≤ τ} for τ > κ. Then
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G(τ) = 1 − F (τ) =Pξ {Ξρ(ω) > τ}

≤
N∑

n=1

Pξ

{
||ηξn||ρ(n) > τ

}

≤4N exp

(
−τ

2

8

)

So we get:

∫

Ωκ

Ξ4
ρdPξ(ω) = −

∫ ∞

κ

τ 4d(1 − F (τ))

≤−
∫ ∞

0

τ 4dG(τ)

= − τ 4G(τ)|∞0 + 4

∫ ∞

0

τ 3G(τ)dτ

=4

∫ ∞

0

τ 3G(τ)dτ

≤4N

∫ ∞

0

τ 3 exp

(
−τ

2

8

)
dτ

=29N

∫ ∞

0

u exp(−u)du

=29N

The other part gets:

∫

Ωκ

1dPξ(ω) ≤ 4 exp

(
−κ

2

8

)

Hence we get

∫

Ωκ

Ξ2
ρdPξ(ω) ≤211/2N exp

(
−κ

2

16

)

≤211/2ρ−1(δ) exp

(
−κ

2

16

)

This yields

Eξ||X −Xξ
n∗
||2 ≤ 36 · 211/2ρ−1(δ) exp

(
−κ

2

16

)
+ 36

κ2

c2
ψ2
(
(ψρ)−1 (δ)

)

This is exactly the proposition. q.e.d.

Now the main task will be choosing an appropriate κ for different possible scenarios.
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5.2.4.1 Remarks on Smoothness and Error Spread

As we have seen above the bound for the square of the total error consists of two parts.
The second part ψ2((ψρ)−1(δ)) is just the best order of accuracy we can reach in a
various number of cases. So we want that the first part ρ−1(δ) exp(−κ2

16
) is negligible in

comparison to the second one. It entered the equation when we considered the “bad”
case ω ∈ Ωκ.

As remarked in the proof this part cancels automatically for deterministic noise:

Corollary 5.14

Assume that we are in the deterministic noise case. Then we have for κ = 1 in the

above theorem the following estimate:

√
Eξ||X −Xδ

n∗
||2 ≤ 6

c
ψ
(
(ψρ)−1 (δ)

)

Remark

This is the optimal order of convergence in this case.

Under weak restrictions we can do a straightforward balancing process for the stochastical
noise case which yields the following result:

Lemma 5.15

Assume that we are in the stochastic noise case. Further assume that we know

F (δ) ln ρ−1(δ) ≤ ln
(
ψ
(
(ψρ)−1 (δ)

))

for all δ < δ0.

Now choose in the κ in the above theorem

κ = 4
√

ln ρ−1(δ)
√

−2F (δ) + 1

Then we have for an appropriate constant C for δ < δ0:

Eξ||X −Xδ
n∗
||2 ≤ C (1 − 2F (δ)) ln

(
ρ−1 (δ)

)
ψ2
(
(ψρ)−1 (δ)

)

Proof

We just need to show that the term imposed by the stochastical noise condition

ρ−1(δ) exp(−κ2

16
) is decreasing at least as strong as the general regularization term

ψ2((ψρ)−1(δ)).

We have for δ < δ0:

ρ−1(δ) exp

(
−κ

2

16

)
=ρ−1(δ) exp

(
−
(
ln ρ−1 (δ)

)
(−2F (δ) + 1)

)

=ρ−1(δ)
(
ρ−1(δ)

)2F (δ)−1

=
(
ρ−1(δ)

)2F (δ)

≤ψ2
(
(ψρ)−1 (δ)

)
q.e.d.
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Now we want to give some short remarks what the terms ρ−1 and ψ((ρψ)−1) actually
mean in practice. Assume that we have ψ(n) = n−r which means in particular that our
solution is rather smooth, namely in the Sobolev space X ∈ Hr.

Then we can distinguish the following two cases. Note that in both cases we do not
need to consider a separate pre-factor because in an application we could not distinguish
this one from δ.

Ordinarily Ill-Posed Problem For an ordinarily ill-posed problem we have ρ(n) is
a function fulfilling ln ρ(n) ≍ lnn−1 (i.e., there exist c1 and c2 such that c1 lnn−1 ≤
ln ρ(n) ≤ c2 lnn−1 ).

In order to simplify our considerations we just assume that ρ(n) = n−a. Then we
have the following two properties:

ρ−1(δ) = δ−
1
a

ψ
(
(ψρ)−1 (δ)

)
= δ

r
r+a

Severely Ill-Posed Problem For a severely ill-posed problem we have ρ(n) = p(n) exp(anβ),
where ln p(n) ≍ lnn−1. Again for reasons of simplicity we will assume ρ(n) = n−µ exp(anβ).
Then we have:

ρ−1(δ) ≈
(

ln δ−1

a

) 1
β

ψ
(
(ψρ)−1 (δ)

)
≈
(

ln δ−1

a

)− r
β

The approximate sign is due to the fact that the functions above are not algebraically
invertible, but on the other hand for big n the term lnn becomes negligible in comparison
to n.

5.2.4.2 Further implications

For these specific cases we may choose κ now according to our needs.

Corollary 5.16

Assume we have stochastic noise and furthermore our problem is ordinarily ill-

posed, i.e., we have ln 1
u
≍ ln ρ−1(u). (i.e., there exist constants µ1 and µ2 such

that µ1 ln 1
u
≤ ln ρ−1(u) ≤ µ2 ln 1

u
).

If δ is small enough one can choose the κ defined in the above theorem as κ = χκ̂,

where κ̂ = 4
√
p ln ρ−1(δ) ≍ ln

1
2 1
δ

and p such that 2
11
2 (ρ−1(δ))−p+1 = δ2.

Writing π1 = 1 + 2
µ2

and π2 = 1 + 2
µ1

we get

Eξ||X −Xδ
n∗
||2 ≤ Cδ2δ

−µ2
π2
π1

(1−χ2) + Cχ2
(
ln δ−1

)
ψ2
(
(ψρ)−1 (δ)

)
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Proof

First we want to turn our attention to the constant p. We have

(
ρ−1(δ)

)−p+1
= 2−

11
2 δ2

and hence

(−p + 1) ln ρ−1(δ) = −11

2
ln 2 + 2 ln δ

which can be solved for p:

p− 1 =
11
2

ln 2 − 2 ln δ

ln ρ−1(δ))

≍
11
2

ln 2 − 2 ln δ

ln δ−1

=
−11

2
ln 2

− ln δ
+ 2 −→

δ→0
2

This means in particular that p is bounded by constants π1 ≤ p ≤ π2 independent

of the error level δ. (The constants just depend on µ1 and µ2, where π1 = 1 + 2
µ2

and π2 = 1 + 2
µ1

for the case δ small enough.)

This implies in particular 4
√

π1

π2
≤ κ

ln ρ−1(δ)
≤ 4

√
π2

π1
, i.e., for µ1 near to µ2 and δ

not too small we have κ = 4 as a good solution.

Hence using the choice of κ we get

211/2ρ−1(δ) exp

(
−κ

2

16

)
=211/2ρ−1(δ) exp

(
−χ

2κ̂2

16

)

≤211/2ρ−1(δ) exp

(
−16χ2p ln ρ−1(δ)

16

)

=211/2
(
ρ−1(δ)

)1−pχ2

≤δ2
(
ρ−1(δ)

)p(1−χ2)

≤δ2
(
ρ−1(δ)

)π2
π1

(1−χ2)

Using ln ρ−1(δ) ≍ ln δ−1 we can deduce that ρ−1(δ) ≤ δ−µ2 which immediately

yields the proposition. q.e.d.

This additional factor χ will enable us to neglect the first term if χ→δ→0 1 fast enough.
However this will be part of later discussion and we will just consider the case χ = 1
right now:

Corollary 5.17

Assume that we have stochastic noise and furthermore that our problem is not

severely ill-posed, i.e., we have ln 1
u
≍ ln ρ−1(u). (i.e., there exist constants µ1 and

µ2 such that µ1 ln 1
u
≤ ln ρ−1(u) ≤ µ2 ln 1

u
).
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If δ is small enough one can choose the κ defined in the above theorem as κ =

4
√
p ln ρ−1(δ) ≍ ln

1
2 1
δ

and p such that 2
11
2 (ρ−1(δ))−p+1 = δ2 which yields

√
Eξ||X −Xδ

n∗
||2 ≤ C

√
ln δ−1ψ

(
(ψρ)−1 (δ)

)
+ o(δ)

For the severely ill-posed case we will do again some balancing process:

Corollary 5.18

Assume that our problem is severely ill-posed with stochastical noise and polynomial

smoothness of the solution ψ. Now choose κ = χ4 ln ln δ−1.

Then we have

Eξ||X −Xδ
n∗
||2 ≤ C

(
ln
(
δ−1
)) 1

β
−χ2 ln ln δ−1

+ Cχ2
(
ln ln δ−1

)2
ψ2
(
(ψρ)−1 (δ)

)

Proof

Inserting κ we obtain

C1ρ
−1(δ) exp

(
−κ

2

16

)
+ C2κ

2ψ2
(
(ψρ)−1 (δ)

)

≍
(
ln δ−1

) 1
β
(
ln δ−1

)−χ2 ln ln δ−1

+ κ2ψ2
(
(ψρ)−1 (δ)

)

=
(
ln
(
δ−1
)) 1

β
−χ2 ln ln δ−1

+ χ2
(
ln ln δ−1

)2
ψ2
(
(ψρ)−1 (δ)

)

which yields the assertion. q.e.d.

Corollary 5.19

Assume that our problem is severely ill-posed with stochastical noise and polynomial

smoothness of the solution ψ. Now choose κ = 4 ln ln δ−1.

Then we have if δ small enough

√
Eξ||X −Xδ

n∗
||2 ≤ C

(
ln ln δ−1

)
ψ
(
(ψρ)−1 (δ)

)

Proof

For a severely ill-posed problem with polynomial smoothness ψ we have as seen

above

ρ−1(δ) ≍
(

ln δ−1

a

) 1
β
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and

ψ
(
(ψρ)−1 (δ)

)
≍
(

ln δ−1

a

)− r
β

Hence using the fact that from some point onward

ln ln δ−1 − 1

β
≥ 2

r

β

we get (using χ = 1):

(
ln
(
δ−1
)) 1

β
−ln ln δ−1

+
(
ln ln δ−1

)2
ψ2
(
(ψρ)−1 (δ)

)

≍
(
ln
(
δ−1
)) 1

β
−ln ln δ−1

+
(
ln ln δ−1

)2 (
ln
(
δ−1
))−2 r

β

≍
(
ln ln δ−1

)2 (
ln
(
δ−1
))−2 r

β

≍
(
ln ln δ−1

)2
ψ2
(
(ψρ)−1 (δ)

)
q.e.d.

Remark

Note that κ is just increasing very slowly with decreasing δ and hence for practical

applications could just be set to 4.

Furthermore, if we actually know (or have an idea) about the smoothness of the

solution we can easily incorporate this knowledge in κ in order to get the above

estimate already for much bigger δ.

This theorem and its corollaries are a really remarkable result. It tells, under certain
conditions we just need the error (and error spread) and can obtain an (sometimes even
order optimal) regularization procedure. This tells us further that the knowledge of δ is
not just necessary as proposed in the lemma of Bakushinskii but also sufficient.

Another fact one could observe from the corollaries is that for big δ (and this is
the case we are normally facing in practice) a good choice of κ seems to be near to 4
although such a fixed κ would, of course, not yield an order optimal solution procedure
for δ tending to 0.

5.2.5 Estimations

As we have seen the above results still hold even if we introduce an additional parame-
ter χ. Of course, in practice no-one would like to obstruct our optimal κ by purpose.
However, when we work with estimated constants, for example δ, we automatically get
different values for 4κδ

ρ(m)
which are just due to the estimation process for ρ, κ, δ and the

other underlying constants and functions.

Now we may consider the (multiplicative) difference between the actual and the esti-
mated value exactly as the χ we have artificially introduced in the above corollaries.
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If we write the estimated version of the various constants and functions with a tilde
we have:

4χ(m)κδ

ρ(m)
=

4κ̃δ̃

ρ̃(m)

which yields

χ(m) =

4κ̃δ̃
ρ̃(m)

4κδ
ρ(m)

=
κ̃δ̃

κδ

ρ(m)

ρ̃(m)

Now define

χ = max
χ(m)

m∈{1...max{N,Ñ}}

{
χ(m), χ(m)−1

}

i.e., we are interested in the χ which has multiplicatively seen the biggest distance from
1.

As we have seen this parameter χ does not pose too many problems as long it is close
enough to 1. Now we want to analyze if we can actually guarantee this if we have control
over the differences between the original and the estimated version of the values.

Because we have different properties for the ordinary and severely ill-posed case we
will also distinguish between these two cases in the sequel.

5.2.5.1 Ordinary Ill-Posed Problems

For technical reasons we will further assume that µ1 ≈ µ ≈ µ2, i.e., we have the slightly
harder restriction ρ−1(δ) ≈ δ−µ in the above theorem.

Lemma 5.20

Assume that we estimated µ̃ and δ̃ by some method and δ small enough. Define

µmax = max{µ̃, µ} and µmin = min{µ̃, µ}

and

δmax = max{δ̃, δ} and δmin = min{δ̃, δ}

and furthermore δdiff = δmax−δmin and µdiff = µmax−µmin. Then we can estimate

χ for the original µ and δ by

(
δmin
δmax

)1+ε (
δ−µmaxmin

)−µdiff ≤ χ ≤
(
δmax
δmin

)1+ε (
δ−µmaxmin

)µdiff

Furthermore there exist constants λ⊡

⊡
which are at most linearly dependent on µ

and δ−1 such that:

(
1 − λ1

1δdiff
)2 (

1 − λ2
1µdiff

)
≤ χ ≤

(
1 + λ1

2δdiff
)2 (

1 + λ2
2µdiff

)
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Proof

In order to distinguish between the original and the estimated version we will use

a tilde for each variable which depends on estimated values.

In order to get χ we need to calculate the ratio between 4κ̃δ̃
ρ̃(m)

(the estimated κ) and
4κδ
ρ(m)

(the optimal κ). Using the calculations of p done beforehand we get:

χ(m) =

4κ̃δ̃
ρ̃(m)

4κδ
ρ(m)

=
κ̃δ̃ρ(m)

κδρ̃(m)
=

√
p̃ ln ρ̃−1(δ̃)δ̃ρ(m)

√
p ln ρ−1(δ)δρ̃(m)

=

(
δ̃

δ

)1+ε

mµ−µ̃

ε compensates the ln δ terms which occur when expanding p. It can be either

positive or negative but is rather small and fulfills ε →δ→0 0.

Considering the above equation we observe that the best case is m = 1, whereas

the worst case is

m = max
{
N, Ñ

}
= max

{
ρ−1(δ), ρ̃−1(δ̃)

}
≤ δ−µmaxmin

Inserting this estimate yields

(
δmin
δmax

)1+ε (
δ−µmaxmin

)−µdiff ≤ χ ≤
(
δmax
δmin

)1+ε (
δ−µmaxmin

)µdiff

Using for 0 ≤ ς ≤ 1
2

exp(ς) =
∞∑

n=0

ςn

n!
≤ 1 + ς

∞∑

n=0

ςn = 1 + 2ς

(The same holds for −1
2
≤ ς ≤ 0). Hence for 1

2
(µmax − µmin) small enough the

above formula can be relaxed to :

(
δmin
δmax

)1+ε (
1 − µmax ln(δ−1

min)(µmax − µmin)
)
≤ χ

≤
(
δmax
δmin

)1+ε (
1 + µmax ln(δ−1

min)(µmax − µmin)
)

or using ⊡diff and some constants λ⊡

⊡
at most linearly depending on µ and δ−1

(again for δ and µdiff small enough) and choosing |ε| = 1
2

(
1 − λ1

1δdiff
)2 (

1 − λ2
1µdiff

)
≤ χ ≤

(
1 + λ1

2δdiff
)2 (

1 + λ2
2µdiff

)

which is the desired result. q.e.d.

Remark

Hence we just need that our estimates are getting close enough. Then χ tends to

1 and hence −µ2
π2

π1
(1−χ2) gets bigger than −1. This immediately implies that we

get the same rate of convergence as in the case when χ = 1.
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5.2.5.2 Severely Ill-Posed Problems

Now we will do some similar estimates in the severely ill-posed case. For technical reasons
we will assume that the same restrictions hold as described in the remarks beforehand.

Lemma 5.21

Let for µ, δ, a and β the versions ⊡̃, ⊡min, ⊡max and ⊡diff be defined analogously

to the lemma above. Then we have

(
δmin
δmax

)1+ε(
ln δ−1

min

amin

)−µdiff
βmin

(δ−1
min)

0� amin
amax

�
ln δ−1

min
amin

� βmin
βmax

−1

−1

1A
≤ χ

≤
(
δmax
δmin

)1+ε(
ln δ−1

min

amin

)µdiff
βmin

(δ−1
min)

0�amax
amin

�
ln δ−1

min
amin

�βmax
βmin

−1

−1

1A
and

(
1 − λ1

1δdiff
)2 (

1 − λ1
2µdiff

) (
1 − λ1

3βdiff
) (

1 − λ1
4adiff

)
≤ χ

≤
(
1 + λ2

1δdiff
)2 (

1 + λ2
2µdiff

) (
1 + λ2

3βdiff
) (

1 + λ2
4adiff

)

for appropriate constants λ⊡

⊡
which are just linearly dependent on the parameters

µ, δ, a and β.

Proof

In order to distinguish between the original and the estimated version we will use

a tilde for each variable which is dependent on estimated values.

In order to get χ we need to calculate the ratio between 4κ̃δ̃
ρ̃(m)

(the estimated κ) and
4κδ
ρ(m)

(the optimal κ). Using the calculations of p done beforehand we get:

χ(m) =

4κ̃δ̃
ρ̃(m)

4κδ
ρ(m)

=
κ̃δ̃ρ(m)

κδρ̃(m)
=

(ln ln δ̃−1)δ̃ρ(m)

(ln ln δ−1)δρ̃(m)

=

(
δ̃

δ

)1+ε
p(m) exp

(
−amβ

)

p̃(m) exp
(
−ãmβ̃

)

=

(
δ̃

δ

)1+ε

mµ̃−µ exp
(
ãmβ̃ − amβ

)

holding for a very small (not necessarily positive) ε (depending on δ) which should

compensate for neglecting the logarithms.
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Again, like in the last lemma, the worst case which could happen (in terms of big

χ) is

m = max
{
N, Ñ

}
= max

{
ρ−1(δ), ρ̃−1(δ̃)

}

= max






(
ln δ−1

a

) 1
β

,

(
ln δ̃−1

ã

) 1
β̃




 ≤
(

ln δ−1
min

amin

) 1
βmin

Hence using that all of the differences ⊡diff are relatively small and ε is small (so

we can apply exp(ς) ≤ 1 + 2ς) we get:

χ ≤
(
δ̃

δ

)1+ε(
ln δ−1

min

amin

) µ̃−µ
βmin

exp



amax
(

ln δ−1
min

amin

)βmax
βmin

− amin

(
ln δ−1

min

amin

)βmin
βmin





=

(
δ̃

δ

)1+ε(
ln δ−1

min

amin

) µ̃−µ
βmin

exp

(
(ln δ−1

min)

(
amax
amin

(
ln δ−1

min

amin

)βmax
βmin

−1

− 1

))

=

(
δmax
δmin

)1+ε(
ln δ−1

min

amin

) µ̃−µ
βmin

(δ−1
min)

0�amax
amin

�
ln δ−1

min
amin

�βmax
βmin

−1

−1

1A
≤(1 + λ2

1δdiff )
2(1 + λ2

2µdiff )

(
1+λ∗

(
amax
amin

(
ln δ−1

min

amin

)βmax
βmin

−1

− 1

))

≤(1 + λ2
1δdiff )

2(1 + λ2
2µdiff )

(
1 + λ∗

(
(
1 + λadiff

)( ln δ−1
min

amin

)βmax
βmin

−1

− 1

))

≤(1 + λ2
1δdiff )

2(1 + λ2
2µdiff )(

1 + λ∗
((

1 + λadiff
) (

1 + λ̃βdiff

)
− 1
))

≤(1 + λ2
1δdiff )

2(1 + λ2
2µdiff )(1 + λ2

3βdiff )(1 + λ2
4adiff )

The various constants λ⊡

⊡
are at most linearly dependent on δ, µ, a and β.

The other part of the inequality follows easily, which yields the proposition. q.e.d.

In the situation β = β̃ we get:
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Corollary 5.22

Let for µ, δ and a the versions ⊡̃, ⊡min, ⊡max and ⊡diff be defined analogously to

the lemma and the remark above. Then we have

(
δmin
δmax

)1+ε(
ln δ−1

min

amin

)−µdiff
βmin

(δ−1
min)

− adiff
amax ≤ χ

≤
(
δmax
δmin

)1+ε(
ln δ−1

min

amin

)µdiff
βmin

(δ−1
min)

adiff
amin

and

(
1 − λ1

1δdiff
)2 (

1 − λ1
2µdiff

) (
1 − λ1

3adiff
)
≤ χ

≤
(
1 + λ2

1δdiff
)2 (

1 + λ2
2µdiff

) (
1 + λ2

3adiff
)

for appropriate constants λ⊡

⊡
which are just linearly dependent on the parameters

µ, δ, a and β.

Remark

Note that the corollary of the last section indicates that we just need to bound χ

for the severely ill-posed problems.

The two last lemmas guarantee that we can reach the proposed level of convergence
(which is not optimal, but really close to this) if we can estimate the relevant constants
sufficiently good.

Remark

Note that in all of our above inequalities we can substitute
(
δmax
δmin

)±1

by (1 ± λδdiff )

for a constant just depends on δ−1.

5.3 Noise Estimation out of Two Start Values

In practice we neither know the error level δ nor the error spread ρ. Now we will turn our
attention on how one can obtain such information. Note that the lemma of Bakushinskii
just tells that if we have one function as input data we cannot do anything. But in
practice it is often possible to do get three sets of spectral data. (In particular the
satellite missions generate enough data to justify such an idea).

So we will try the following ansatz. For reasons of simplicity we will restrict ourselves
to the spectral cut-off scheme as regularization procedure.

• Invert the first two data sets, we get the sequences of regularized solutions (X1,n)n∈N
and (X2,n)n∈N depending on the input data sets Z1 and Z2.

• Subtract pairwise the two sequences (X1,n−X2,n)n∈N = (Xdiff,n)n∈N. This is now
consisting of pure error δA+

n (ξ1 − ξ2) = δ
(
ηξ1n − ηξ2n

)
.
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• As we assumed the error is behaving like δ
ρ(n)

for every Xdiff
n = ||Xdiff,n||.

• Under some further assumptions on ρ we can estimate the parameters which de-
scribe this function. In particular we will show that we can estimate every of these
parameters with arbitrary precision.

• We choose the highest possible precision and regularize the third data set Z with
our resulting estimate for δ

ρ
.

It is equivalent if we determine the behavior of either δ
ρ(n)

or δ2

ρ(n)2
or δ2ρ̂(n)2 := δ2

ρ(n)2
−

δ2

ρ(n−1)2
because δ

ρ(n)
=
√∑n

i=1 δ
2ρ̂(n)2.

The particular advantage of the last method is that for the spectral cut-off scheme
the errors of (X̂diff

n )2 := (Xdiff
n )2 − (Xdiff

n−1 )2 for each n are independent of each other
and so do not impose practical difficulties for estimating δρ̂(n).

When we assume that δ
ρ

is behaving like δkµ exp(akβ)F (k) for the severely ill-posed

case and like δkµF (k) for the ordinarily ill-posed case (where F is assumed to be known)

we get that δρ̂ is behaving like δ̂kbµ exp(akβ)F̂ (k) respectively like δ̂kbµF̂ (k). As we know

F we can calculate F̂ and so can assume to know it. Furthermore we can easily determine
δ, µ (and a) out of δ̂, µ̂ (and a). Because we are having a smooth function between these

it is sufficient to estimate δ̂, µ̂ (and a) with arbitrary precision in order to get δ, µ (and
a) with arbitrary precision, as we will see later on.

Please note that although the estimation results will now be obtained for the simplified
case a similar procedure would work in order to get an estimation of δ

ρ
directly. However

the independence of the random variables will simplify the proofs considerably.

First we will do the estimation part which was generated in cooperation with Dr.
J-P. Stockis [Sto03]. Therefore we will introduce some further notation [BD96]:

Definition 5.16

A sequence {xn} of random variables is called asymptotically normally distributed

with mean xn and “standard deviation” σn if n sufficiently large and σ−1
n (xn − xn)

converges (in the sense of distributions) to N (0, 1).

This property is denoted by {xn} is AN (xn, σ
2
n).

Definition 5.17

The sequence {xn} of random k-vectors is called asymptotically normal with “mean

vector” xn and “covariance matrix” Σn if

• Σn has no zero diagonal elements

• For all λT ∈ R
k we have λxn is asymptotically normal

• Σn is positive definite

for all sufficiently large n.

This property is denoted by {xn} is AN (xn,Σn).
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Lemma 5.23

Assume

X̂diff
k = δ̂kbµ exp(akβ)F (k)

where β 6= 0 and F̂ (k) 6= 0 are assumed to be known and a, µ̂ and δ̂ need to be

estimated.

Assume that (δ̂n, µ̂n, an) is the best estimation obtained using the first n values of

(Xdiff
k )k∈N. Then the sequence (ln δ̂k, µ̂k, ak)k∈N is asymptotically normally distrib-

uted. Furthermore one can estimate these parameters with arbitrary precision out

of the (Xdiff
k )k∈N if one chooses n big enough.

Proof

Reformulated we may say that the X̂diff
k are described by

X̂diff
k =

(
δ̂kbµ exp

(
akβ
)
F̂ (k)

)
|εk|

where εk is independently N (1, σ2) distributed for some σ > 0. This yields

ln

(
X̂diff
k

F̂ (k)

)
= ln(δ̂) + µ̂ ln(k) + akβ + ln |εk|

Note that the expectation of ln |εk| is finite, because we have:

0 < E ln |εk| =

∫ ∞

−∞
ln |x|

(
1

σ
√

2π
exp

(
−(x− 1)2

2σ2

))
dx

≤−
∫ −1

−∞
x

(
1

σ
√

2π
exp

(
−(x− 1)2

2σ2

))
dx

+

∫ 1

−1

ln |x| 1

σ
√

2π
dx

+

∫ ∞

1

x

(
1

σ
√

2π
exp

(
−(x− 1)2

2σ2

))
dx

<∞

Equivalently one can show that all other moments are finite as well. (The same and

also the following considerations would hold for many other possible distributions,

as long as for each moments there is a bound independent of k).

Now set X
diff

k = ln
( bXdiff

kbF (k)

)
, δ = ln δ̂ + E ln |εk| and εk = ln |εk| − E ln |εk| which

is independently identically distributed around 0 with finite variance σε. Hence we

get

X
diff

k = δ + µ̂ ln(k) + akβ + εk



5.3. Noise Estimation out of Two Start Values 105

This defines a three dimensional system of n linear equations, namely

xn = wn



δn

µ̂n

an




where

wn =




1 ln 1 1β

2 ln 2 2β

...
...

...

i ln i iβ

...
...

...

n lnn nβ




and xn =




X
diff

1

X
diff

2
...

X
diff

i
...

X
diff

n




Now we have the following two properties [DS81]:

Eξ1−ξ2

((
δn µ̂n an

)T)
=
(
w
T
nwn

)−1
w
T
nxn

and

Eξ1−ξ2

((
δn µ̂n an

)T (
δn µ̂n an

))
= σ2

ε

(
w
T
nwn

)−1

Define:

Cn3 =

n∑

k=1

k2 ≍n3

Cn2 lnn =

n∑

k=1

k ln k ≍n2 lnn

Cnβ+2 =
n∑

k=1

kβ+1 ≍nβ+2

Cn ln2 n =
n∑

k=1

(ln k)2 ≍n ln2 n

Cnβ+1 lnn=

n∑

k=1

kβ ln k≍nβ+1 lnn

Cn2β+1 =

n∑

k=1

k2β ≍n2β+1

Then we have

w
T
nwn =




Cn3 Cn2 lnn Cnβ+2

Cn2 lnn Cn ln2 n Cnβ+1 lnn

Cnβ+2 Cnβ+1 lnn Cn2β+1
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Using Maple we get:

(wT
nwn)

−1 =
1

Cn5+2β ln2 n



Cn2+2β ln2 n Cn3+2β lnn Cn3+β ln2 n

Cn3+2β lnn Cn4+2β Cn4+β lnn

Cn3+β ln2 n Cn4+β lnn Cn4 ln2




where the CG(n) denote functions which behave asymptotically as G(n), respec-

tively. Furthermore using Maple we obtain that (wT
nwn)

−1 is positive definite.

Hence Eξ1−ξ2

((
δn µ̂n an

)T (
δn µ̂n an

))
is decreasing with at least ln2 n

n
for an

increasing number n of observables and the sequence of estimations for
(
δn, µ̂n, an

)

is asymptotically normally distributed [BD96, DS81].

This yields the proposition. q.e.d.

Remark

Note that there is an obvious adaptation to the non-severely ill-posed case. There

we can set a = 0 right from the beginning and get a slightly simpler version of the

above lemma.

Lemma 5.24

Assume

X̂diff
k = δ̂kbµF̂ (k)

where F̂ (k) 6= 0 is assumed to be known and µ̂ and δ̂ need to be estimated.

Assume that (δ̂n, µ̂n) is the best estimation obtained using the first n values of

(Xdiff
k )k∈N. Then the sequence (ln δ̂k, µ̂k)k∈N is asymptotically normally distributed.

Furthermore one can estimate these parameters with arbitrary precision out of the

(Xdiff
k )k∈N if one chooses n big enough.

Proof

Reformulated we may say that the X̂diff
k are described by

X̂diff
k =

(
δ̂kbµF̂ (k)

)
|εn|

where εk is independently N (1, σ2) distributed for some σ > 0. This yields

ln

(
X̂diff
k

F̂ (k)

)
= ln(δ̂) + µ̂ ln(k) + ln |εk|
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Again we may set X
diff

k = ln
( bXdiff

kbF (k)

)
, δ = ln δ̂+ E ln |εk| and εk = ln |εk| −E ln |εk|

which is independently identically distributed around 0 with finite variance σε.

Hence we get

X
diff

k = δ + µ̂ ln(k) + εk

This defines a two dimensional system of n linear equations, namely

xn = wn

(
δ

µ̂n

)

where

wn =




1 ln 1

2 ln 2
...

...

i ln i
...

...

n lnn




and xn =




X
diff

1

X
diff

2
...

X
diff

i
...

X
diff

n




Again we have the following two properties [DS81]:

Eξ1−ξ2

((
δn µ̂n

)T)
=
(
w
T
nwn

)−1
w
T
nxn

and

Eξ1−ξ2

((
δn µ̂n

)T (
δn µ̂n

))
= σ2

ε

(
w
T
nwn

)−1

Defining the CG(n) as beforehand we get:

w
T
nwn =

(
Cn3 Cn2 lnn

Cn2 lnn Cn ln2 n

)

Using Maple we get:

(wT
nwn)

−1 =
1

Cn4 ln2

(
Cn ln2 n Cn2 lnn

Cn2 lnn Cn3

)

where the CG(n) denote functions which behaves asymptotically as G(n), respec-

tively. Furthermore using Maple we obtain that (wT
nwn)

−1 is positive definite.

Hence Eξ1−ξ2

((
δn µ̂n

)T (
δn µ̂n

))
is decreasing with at least ln2 n

n
for an increasing

number n of observables and the sequence of estimations for
(
δn, µ̂n

)
is asymptot-

ically normally distributed [BD96, DS81].

This yields the proposition. q.e.d.
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Remark

As we have seen in both theorems we can estimate the values we need as exactly

as we want. In particular the variance of our approximation is tending to zero.

Using the above remark the following lemmas gets especially interesting:

Lemma 5.25

Let the k-vector xn be asymptotically normally distributed AN (x, c2nΣn), where

• Σn is symmetric and positive definite.

• ||Σn||2 = 1 and limn→∞ Σn = Σ which is also symmetric and positive definite.

• limn→∞ cn = 0

Let furthermore G : Rk → R be a smooth function around x with derivative d =

(∂g
∂i

)i=1...k(x). If d
TΣd is non-zero, then we have:

G(xn) is AN (G(x), c2nd
TΣnd).

This is a slightly modified version of a theorem which can be found in [BD96].

When we denote the estimates for δ, µ (and a) which we get out of the first n of the

(Xdiff
k )k∈N by δn, µn (and an) this yields the following corollary.

Corollary 5.26

(δn, µn, an) (respectively (δn, µn) for the ordinarily ill-posed case) are asymptotically

normal distributed with variances tending to 0.

For every of the estimates δn, µn (and an which we just have in the severely ill-posed case)

we get a specific χ, namely χn. Using the inequalities we have obtained beforehand for χ

we now get the following bounds which are again depending of the level of approximation

n:

Corollary 5.27

In the case, where

(
1 − λ1

1δdiff,n
)2 (

1 − λ1
2µdiff,n

) (
1 − λ1

3adiff,n
)
≤ χn

≤
(
1 + λ2

1δdiff,n
)2 (

1 + λ2
2µdiff,n

) (
1 + λ2

3adiff,n
)

the bounds for χn and χ−1
n are asymptotically normally distributed where the vari-

ances are tending to 0. This also holds when a is assumed to be known (e.g.,

normally ill-posed case) and hence adiff,n = adiff = 0.

This gets especially useful because of the following lemma:
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Lemma 5.28

For every constant c2 > 0 there exists an n0 such that for all n > n0 every member

χn of the sequence (χn)n∈N fulfills for τ > 1:

Pξ1−ξ2{χn > τ} ≤ c1 exp (−c2 (τ − 1))

and

Pξ1−ξ2{χ−1
n > τ} ≤ c1 exp (−c2 (τ − 1))

Furthermore c1 is globally bounded from above.

Proof

The bounds of χn are asymptotically normal distributed with variances tending to

0. The result is now a straightforward consequence of Bernstein’s inequality [Bos96]

which holds because of the behavior of the moments for an (asymptotically) normal

distribution [JK77]. q.e.d.

Remark

The result is quite natural because variances tending to 0 means that the distrib-

utions tend to the Dirac distribution, the property asymptotically normal implies

that the higher moments are behaving not too bad, i.e. the function is falling fast

enough.

From now on we choose a χ = χn such that the constant c2 is high enough for the

subsequent theorems.

This yields the following remarkable theorem combining the results of the regularization
theorems, the estimation of χ and the last results.

Please note that the variable χ in these theorems was introduced as completely in-
dependent from all other quantities. This holds in particular for the error in the input
data.

5.3.1 Ordinary Ill-Posed Case

Theorem 5.29

Assume that we are in the stochastic noise case and furthermore that our problem

is not severely ill-posed, i.e., we have ln 1
u
≍ ln ρ−1(u). (i.e., there exist constants

µ1 and µ2 such that µ1 ln 1
u
≤ ln ρ−1(u) ≤ µ2 ln 1

u
).

We assume three non-regularized input data sets Z, Z1 and Z2 as given, which are

biased in the same way. Assume furthermore that Z1 is uncorrelated to Z2 and

Z1 − Z2 is uncorrelated to Z which is the input we want to regularize.

Assume for our convenience that ρ(n) = n−µ, at least asymptotically.
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Then denote the estimates we got from the last theorems for δ as δ̃ and for µ as µ̃;

there exists an approximation level which is sufficiently high to guarantee the later

result (see proof of this theorem). Using µ̃ we get an estimated version ρ̃(n).

If δ is small enough one can choose κ = 4
√
p ln ρ̃−1(δ̃) and p such that we have

2
11
2 (ρ̃−1(δ̃))−p+1 = δ̃2.

Now choose the cutting point as :

n∗ = min

{
n : ||Xn −Xm|| ≤

4κδ̃

ρ̃(m)
, N = ρ̃−1(δ̃) > m > n

}

Then we have for δ small enough:

Eξ1−ξ2
(
Eξ||X −Xδ

n∗
||2
)
≤ C ln δ−1ψ2

(
(ψρ)−1 (δ)

)

for an appropriate constant C.

Proof

The noise on Z is uncorrelated to the one on Z1 − Z2 and hence the noise on

X1,m −X2,m is uncorrelated to the one on Xn which implies that the noise on Xn,

i.e. ηξn is uncorrelated to χ holding for all pairs (n,m).

χ was just considered as an arbitrary variable in the theorems estimating Eξ||X −
Xδ
n∗
||2. Hence using the uncorrelatedness to ξ we can consider the following term

which is an expectation in ξ1 − ξ2 and so in χ:

Eξ1−ξ2
(
Eξ||X −Xδ

n∗
||2
)
≤ Eξ1−ξ2 (Π(χ))

where the function Π(χ) is defined as

Π(χ) = Cδ2δ−c(1−χ2) + Cχ2
(
ln δ−1

)
ψ2
(
(ψρ)−1 (δ)

)

as in the theorem estimating Eξ||X −Xδ
n∗
||2 in the ordinarily ill-posed case where

c = µ2

1+ 2
µ1

1+ 2
µ2

> 0.

In order to have an easier access to the separate parts of Π(χ) we define:

Π1(χ) =δ−c(1−χ
2)

Π2(χ) =χ2

and hence

Π(χ) = Cδ2 Π1(χ) + C
(
ln δ−1

)
ψ2
(
(ψρ)−1 (δ)

)
Π2(χ)

For technical reasons we choose an ε > 0, such that ψ((ψρ)−1 (δ)) is decreasing at

least as fast as δ1−ε/2 which we will use later on.
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Now we want to get an estimate for

Eξ1−ξ2 (Π(χ))

=

∫ ∞

0

Π (τ) dPξ1−ξ2{χ < τ}

=Cδ2

∫ ∞

0

Π1(τ)dPξ1−ξ2{χ < τ}

+ C
(
ln δ−1

)
ψ2
(
(ψρ)−1 (δ)

) ∫ ∞

0

Π2(τ)dPξ1−ξ2{χ < τ}

So it suffices to estimate the parts
∫∞
0

Π⊡(τ)dPξ1−ξ2{χ < τ} separately (δ < 1 is

assumed to hold!). We furthermore require the parameter α =
(√

1 − ε
c

)−1
> 1

which is chosen such that Π1(α
−1) = δ−ε

∫ ∞

0

Π1(τ)dPξ1−ξ2{χ < τ}

=

∫ 0

∞
Π1(τ

−1)dPξ1−ξ2{χ−1 > τ}

= Π1

(
τ−1
)

Pξ1−ξ2{χ−1 > τ}
∣∣0
∞

−
∫ 0

∞
Pξ1−ξ2{χ−1 > τ}dΠ1(τ

−1)

=0 − 0 +

∫ ∞

0

Pξ1−ξ2{χ−1 > τ}dΠ1(τ
−1)

=

∫ ∞

0

Pξ1−ξ2{χ−1 > τ} ∂
∂τ

Π1(τ
−1)dτ

≤
∫ α

0

∂

∂τ
Π1(τ

−1)dτ

+

∫ ∞

α

Pξ1−ξ2{χ−1 > τ}2c
(
ln δ−1

)
τ−3δ−c(1−τ−2)dτ

=Π1(α
−1) − 0

+ 2c
(
ln δ−1

) ∫ ∞

α

Pξ1−ξ2{χ−1 > τ}τ−3δ−c(1−τ−2)dτ

≤δ−ε + 2c
(
ln δ−1

) ∫ ∞

α

c1 exp (−c2 (τ − 1)) τ−3δ−c(1−τ
−2)dτ

≤δ−ε + 2c c1
(
ln δ−1

)
δ−c(1−0)

∫ ∞

α

exp (−c2 (τ − 1)) dτ

=δ−ε + 2c c1
(
ln δ−1

)
δ−cc−1

2 exp (−c2 (α− 1))

≤δ−ε + Ĉ

≤C̃δ−ε

where Ĉ and hence C̃ are constants which can be bounded intendant of δ because

we are free to choose c2 as high as we want, like remarked beforehand.



112 5. Noise and Regularization

The second term can be evaluated in a similar way:
∫ ∞

0

Π2(τ)dPξ1−ξ2{χ < τ}

=

∫ ∞

0

τ 2d (1 − Pξ1−ξ2{χ > τ})

= −
∫ ∞

0

τ 2dPξ1−ξ2{χ > τ}

= −τ 2
Pξ1−ξ2{χ > τ}

∣∣∞
0

+

∫ ∞

0

Pξ1−ξ2{χ > τ}dτ 2

=0 − 0 +

∫ ∞

0

2τPξ1−ξ2{χ > τ}dτ

=

∫ 2

0

2τPξ1−ξ2{χ > τ}dτ +

∫ ∞

2

2τPξ1−ξ2{χ > τ}dτ

≤
∫ 2

0

2τdτ +

∫ ∞

2

2τc1 exp (−c2 (τ − 1)) dτ

=4 + 2c1c
−2
2 (1 + 2c2) exp (−c2)

≤C̃

which can be assured when c2 is chosen big enough.

Hence we get using these results:

Eξ1−ξ2
(
Eξ||X −Xδ

n∗
||2
)

=Cδ2

∫ ∞

0

Π1(τ)dPξ1−ξ2{χ < τ}

+ C
(
ln δ−1

)
ψ2
(
(ψρ)−1 (δ)

) ∫ ∞

0

Π2(τ)dPξ1−ξ2{χ < τ}

≤Cδ2C̃δ−ε + C
(
ln δ−1

)
ψ2
(
(ψρ)−1 (δ)

)
C̃

=CC̃δ2−ε + CC̃
(
ln δ−1

)
ψ2
(
(ψρ)−1 (δ)

)

≤C
(
ln δ−1

)
ψ2
(
(ψρ)−1 (δ)

)

The last inequality holds because we chose ε in such a way that δ1−ε/2 decreases at

least as fast as ψ
(
(ψρ)−1 (δ)

)
. The whole inequality is exactly our assertion which

consequently holds. q.e.d.

5.3.2 Severely Ill-Posed Case

The theorem and the proof are analogous to the ordinary ill-posed case:

Theorem 5.30

Assume that our problem is severely ill-posed with stochastical noise and polynomial

smoothness of the solution ψ.
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We assume three non-regularized input data sets Z, Z1 and Z2 as given, which are

biased in the same way. Assume furthermore that Z1 is uncorrelated to Z2 and

Z1 − Z2 is uncorrelated to Z which is the input we want to regularize.

Assume for our convenience that ρ(n) = n−µ exp(anβ), at least asymptotically, β

shall be known exactly.

Then denote the estimates we got from the last theorems for δ as δ̃, for µ as µ̃

and for a as ã; there exists an approximation level which is sufficiently high to

guarantee the later result (see proof of this theorem). Using µ̃ and ã we get an

estimated version ρ̃(n).

If δ is small enough one can choose κ = 4 ln ln δ̃−1

Now choose the cutting point as :

n∗ = min

{
n : ||Xn −Xm|| ≤

4κδ̃

ρ̃(m)
, N = ρ̃−1(δ̃) > m > n

}

Then we have for δ small enough:

Eξ1−ξ2
(
Eξ||X −Xδ

n∗
||2
)
≤ C

(
ln ln δ−1

)2
ψ2
(
(ψρ)−1 (δ)

)

for an appropriate constant C.

Proof

The noise on Z is uncorrelated to the one on Z1 − Z2 and hence the noise on

X1,m −X2,m is uncorrelated to the one on Xn which implies that the noise on Xn,

i.e. ηξn is uncorrelated to χ holding for all pairs (n,m).

χ was just considered as an arbitrary variable in the theorems estimating Eξ||X −
Xδ
n∗
||2. Hence using the uncorrelatedness to ξ we can consider the following term

which is an expectation in ξ1 − ξ2 and so in χ:

Eξ1−ξ2
(
Eξ||X −Xδ

n∗
||2
)
≤ Eξ1−ξ2 (Π(χ))

where the function Π(χ) is defined as

Π(χ) = C
(
ln δ−1

) 1
β
−χ2 ln ln δ−1

+ χ2
(
ln ln δ−1

)2
ψ2
(
(ψρ)−1 (δ)

)

as in the theorem estimating Eξ||X −Xδ
n∗
||2 in the severely ill-posed case.

In the severely ill-posed case we have that (ln δ−1)
− r
β is descending at least as fast

as ψ((ψρ)−1 (δ)). Now, as in the ordinarily ill-posed case we introduce functions

Π⊡:
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Π1(χ) =
(
ln δ−1

)2 r
β
+ 1
β
−χ2 ln ln δ−1

Π2(χ) =χ2

and hence

Π(χ) = C
(
ln δ−1

)−2 r
β Π1(χ) + C

(
ln ln δ−1

)2
ψ2
(
(ψρ)−1 (δ)

)
Π2(χ)

Now we want to get an estimate for

Eξ1−ξ2 (Π(χ))

=

∫ ∞

0

Π (τ) dPξ1−ξ2{χ < τ}

=C
(
ln δ−1

)−2 r
β

∫ ∞

0

Π1(τ)dPξ1−ξ2{χ < τ}

+ C
(
ln ln δ−1

)2
ψ2
(
(ψρ)−1 (δ)

) ∫ ∞

0

Π2(τ)dPξ1−ξ2{χ < τ}

So it suffices to estimate the parts
∫∞
0

Π⊡(τ)dPξ1−ξ2{χ < τ} separately. We will

now assume δ to be small enough, i.e. such that ln ln δ−1 > 1 and furthermore

2 r
β

+ 1
β
− 1

4
ln ln δ−1 < 0 and hence get:

∫ ∞

0

Π1(τ)dPξ1−ξ2{χ < τ}

=

∫ 0

∞
Π1(τ

−1)dPξ1−ξ2{χ−1 > τ}

= Π1

(
τ−1
)

Pξ1−ξ2{χ−1 > τ}
∣∣0
∞

−
∫ 0

∞
Pξ1−ξ2{χ−1 > τ}dΠ1(τ

−1)

=0 − 0 +

∫ ∞

0

Pξ1−ξ2{χ−1 > τ}dΠ1(τ
−1)

=

∫ ∞

0

Pξ1−ξ2{χ−1 > τ} ∂
∂τ

Π1(τ
−1)dτ

≤
∫ 2

0

∂

∂τ
Π1(τ

−1)dτ

+

∫ ∞

2

Pξ1−ξ2{χ−1 > τ}

2
(
ln ln δ−1

)2
τ−3

(
ln δ−1

)2 r
β
+ 1
β
−τ−2 ln ln δ−1

dτ

≤Π1

(
1

2

)
− 0

+ 2
(
ln ln δ−1

)2 (
ln δ−1

)2 r
β
+ 1
β
−0 ln ln δ−1

∫ ∞

2

Pξ1−ξ2{χ−1 > τ}τ−3dτ
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≤
(
ln δ−1

)2 r
β
+ 1
β
− 1

4
ln ln δ−1

+ 2
(
ln ln δ−1

)2 (
ln δ−1

)2 r
β
+ 1
β
−0 ln ln δ−1

∫ ∞

2

Pξ1−ξ2{χ−1 > τ}τ−3dτ

≤1 + 2
(
ln ln δ−1

)2 (
ln δ−1

)2 r
β
+ 1
β

∫ ∞

2

c1 exp (−c2 (τ − 1)) τ−3dτ

≤1 + 2
(
ln ln δ−1

)2 (
ln δ−1

)2 r
β
+ 1
β

∫ ∞

2

c1 exp (−c2 (τ − 1)) dτ

≤1 + 2
(
ln ln δ−1

)2 (
ln δ−1

)2 r
β
+ 1
β c1c

−1
2 exp(−c2)

≤C̃

where C̃ is a constant which can be bounded intendant of δ because we are free to

choose c2 as high as we want, like remarked beforehand.

The second term can be evaluated in a similar way:
∫ ∞

0

Π2(τ)dPξ1−ξ2{χ < τ}

=

∫ ∞

0

τ 2d (1 − Pξ1−ξ2{χ > τ})

= −
∫ ∞

0

τ 2dPξ1−ξ2{χ > τ}

= −τ 2
Pξ1−ξ2{χ > τ}

∣∣∞
0

+

∫ ∞

0

Pξ1−ξ2{χ > τ}dτ 2

=0 − 0 +

∫ ∞

0

2τPξ1−ξ2{χ > τ}dτ

=

∫ 2

0

2τPξ1−ξ2{χ > τ}dτ +

∫ ∞

2

2τPξ1−ξ2{χ > τ}dτ

≤
∫ 2

0

2τdτ +

∫ ∞

2

2τc1 exp (−c2 (τ − 1)) dτ

=4 + 2c1c
−2
2 (1 + 2c2) exp (−c2)

≤C̃

which can be assured when c2 is chosen big enough.

Hence we get using these results:

Eξ1−ξ2
(
Eξ||X −Xδ

n∗
||2
)

=C
(
ln δ−1

)−2 r
β

∫ ∞

0

Π1(τ)dPξ1−ξ2{χ < τ}

+ C
(
ln ln δ−1

)2
ψ2
(
(ψρ)−1 (δ)

) ∫ ∞

0

Π2(τ)dPξ1−ξ2{χ < τ}

≤C
(
ln δ−1

)−2 r
β C̃
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+ C
(
ln ln δ−1

)2
ψ2
(
(ψρ)−1 (δ)

)
C̃

≤C
(
ln ln δ−1

)
ψ2
(
(ψρ)−1 (δ)

)

The last inequality holds because (ln δ−1)
− r
β is descending at least as fast as the term

ψ((ψρ)−1 (δ)). This whole inequality is exactly our assertion which consequently

holds. q.e.d.

Remark

The usage of three different input data sets Z1, Z2 and additionally Z in reality is

inconvenient and impracticable. However we propose the following way out of this

dilemma.

We use the following property of Z := 1
2
(Z1 + Z2):

E 〈Z1 − Z2, Z〉 =
1

2

(
E||Z1||2 − E||Z2||2

)
= 0

because we assumed the same distribution for the Z1 and Z2.

This implies that as long as Z1 and Z2 are biased with Gaussian white noise that

Z and Z1 − Z2 are uncorrelated.

Because we are dealing with linear problems the computation of 1
2
(Z1 + Z2), Z1−Z2

and the corresponding regularized solutions can be done in a negligible time out of

the ones of Z1 and Z2. Although the above argument is not rigorous the proposal

seems to be the method of choice.

5.4 Conclusion

Now we want to summarize the results of this chapter shortly and explain their relevance
to our satellite missions. We could show the following points:

• It is reasonable to assume that our data in the frequency domain are biased with
stochastical noise rather than deterministic noise. Our regularization method has
to be suitable for this harder case.

• Out of one set of spectral data one cannot get an optimal regularization. (Lemma
of Bakushinskii).

• If one adds some knowledge to one set of spectral data (e.g., error behavior) one
can get an optimal regularization.

• Out of two sets of spectral data one can get a reasonable estimate on the overall
error and error behavior in the spectral data.

• Using such an error model we obtain a regularization procedure which is asymp-
totically near to optimal, even under the hard assumption of stochastical noise.

This means in particular that we were able to obtain the results we demanded in the
begin of the chapter.



Chapter 6

Combining Data in a Unified Setup

How can one combine data from different sources , e.g., different differential
components of the satellite and/or different measurement campaigns, in a
sensible way? What conditions do we have to impose on the data?

Of course, one can calculate a solution for each input data set and afterwards just aver-
aging the results. However, this does not need to be the most efficient method and does
not necessarily possess a good behavior towards measurement errors. If we want to do
it otherwise we are facing two major problems:

• Different satellites are flying at different heights with different (unknown) error
levels in their measurements. Therefore it is at least problematic to combine these
data without preprocessing.

• Not every differential component one can choose actually yields the possibility to
do a complete reconstruction of the geopotential field, i.e., the differential maps
some non-zero functions to zero and hence we have a non-zero kernel.

6.1 Order of the Solution Scheme

In the face of the above obstacles we have to decide in what order we will have to do the
following solution steps:

• Approximation of data at the height of the satellite track.

• Inverting the differentiation operator (integration).

• Downward-continuation.

• Data combination.

6.1.1 Approximation

As any other mathematical task including integration and downward-continuation re-
quires data in the spectral domain as input in our ansatz we need to transform the
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discrete input data to a spectral version. This solution of the oblique boundary value
problem (if at Earth’s height) or oblique satellite problem (if at satellite height) has to
be done by approximation with an appropriate system of trial functions.

We explicitly do not want to mix the approximation process with integration or
downward-continuation. So we have to perform this step at first place. As a result we
get differentiated data in spectral representation.

6.1.2 Downward-Continuation

There are two major arguments which strongly recommend that we should do the
downward-continuation directly after the approximation step.

• After the downward continuation all data are all on the Earth’s and hence the same
surface Σ and as a consequence much easier to combine.

• The total error level gets smaller. This is due to the following simplified argument:
(just given as an illustration, a more rigorous treatment of the background in
functional analysis can be found in the preceding chapter)

We are dealing with a severely ill posed problem, hence an error level of δ results (as-
ymptotically) in an error level of (ln(δ−1))−k after regularization. For convenience
assume k = 1. (Similar arguments will hold for any other k and for non-severely
ill-posed problems). Assume that we are having 4 independent data sets with error
level δ.

If we combine them beforehand, our error level will get δ/2 before and (ln 2 +
ln(δ−1))−1 after regularization. In comparison, a combination afterwards will yield
an error level of (2 ln(δ−1))−1 which is almost twice as good if δ is not extremely
large.

6.1.3 Integration

Obviously, the integration now needs to be done in the last place. This has the particular
advantage that this is the first place, where we actually need to take care if our differential
operator D has a non-zero kernel because we were just dealing with ordinary functions
beforehand.

6.2 The Combination

Our situation is the following, now: We assume that we have approximated and regular-
ized data given at the height of the Earth’s surface Σ. The data are assumed to be given
in the spectral domain, i.e., as a sum of weighted (basis) functions.

Note that differentiation and integration are linear operators. Hence if we have “in-
complete” information (non-zero kernel of the operator, for example; ground based cam-
paign over small regions) from several sources we may combine them with a least squares
approach. In particular this would enable us to use differential operators which are
tangential to the satellite orbit.

These remarks directly give rise to the following mathematical problem setup:
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Problem 6.1

Let U and (Vk)k=1...n be separable Hilbert spaces and (Dk)k=1...n be a set of contin-

uous linear operators mapping

Dk : U → Vk

Assume V ∈ U and assume that we have given the data DkV = Datak ∈ Vk in

spectral representation for each k.

What does V look like?

Remark

In our case U is the space of harmonics Pot(Σext) and Dk the set of observables, e.g.,

differential operators. Then the Vk are the corresponding Sobolev spaces. Having

the Datak we want to determine the gravitational potential V .

Observe that we can rewrite the above problem in the following way (the operator ⊕
shall denote the Euclidean direct sum in every place):

DV =




D1

D2
...

Dn


V =




D1V
D2V

...
DnV


 =




Data1

Data2
...

Datan


 = Data

where the operator D =
⊕n

k=1 Dk maps from the space U to the separable Hilbert space
V =

⊕n
k=1 Vk.

D : U → V

Furthermore define Data =
⊕n

k=1Datak.
This is obviously an overdetermined system for most cases. The standard solution

technique for such kind of problems is a least squares approach (with a diagonal weight
operator W assigning one weight to each solution):

(DT
WD)V =

(
n∑

k=1

WkD
T
kDk

)
V =

n∑

k=1

WkD
T
kDatak = D

T
WData

Observe that this is an operator equation and hence not finite dimensional.
In order to get this approach in a finite dimensional setup we need to impose some

more requirements on our original problem. The reformulated version gets:

Problem 6.2

Let U and (Vk)k=1...n be separable Hilbert spaces and (Dk)k=1...n be a set of contin-

uous linear operators mapping

Dk : U → Vk
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Assume V ∈ U and assume that we have given the data DkV = Datak ∈ Vk in

spectral representation for each k.

Assume furthermore that U , the spaces Vk and the operators Dk decompose in the

following way:

U =

N+1⊕

m=1

Um for all k ∈ {1, . . . , n}

Vk =
N+1⊕

m=1

Vmk for all k ∈ {1, . . . , n}

Dk =

N+1⊕

m=1

D
m
k for all k ∈ {1, . . . , n}

such that

D
m
k : Um → Vmk for all k ∈ {1, . . . , n}

This implies that our data have an analogous representation:

Datak =

N+1⊕

m=1

Datamk for all k ∈ {1, . . . , n}

All of the spaces Um and Dm
k shall be finite dimensional up to N . (This immediately

implies Dm
k to be finite dimensional operators, i.e., matrices).

What does V look like?

Remark

In practice we can just consider finite dimensional spaces. So the last point is not

a severe restriction. For our practical case a possible division along the spaces of

homogeneous harmonic polynomials of same degree Um = Harmm ( see [FGS98]).

Generally one can state the smaller the subdivision gets the smaller are the computational
efforts. In order to get a better idea we just give a sketch about the above situation for
two different operators:
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Hence we can split our problem and just need to solve the following problem for each
of the spaces Um.

D
mV =




Dm
1

Dm
2
...

D
m
n


V =




Dm
1 V

Dm
2 V
...

D
m
n V


 =




Datam1
Datam2

...
Datamn


 = Datam for all m ≤ N

Again this gets a least squares problem, but now for each subspace Um:

(
n∑

k=1

Wm
k (Dm

k )TD
m
k

)
V =

n∑

k=1

Wm
k (Dm

k )TDatamk for all m ≤ N

Please note that the solvability of the above equations depends on the kernels of the
matrices Dm

k . We will discuss this point again when we are having some more specific
information on these.

Another important point is the possibility to use different weights Wm
k for each of the

subspaces Um and operators Dk. This allows us to incorporate valuable information into
our solution process.

6.3 Error and Weights

Now we want to take a closer look on the interplay between error and optimal corre-
sponding weight. Assume that we know that our Datamk are biased with an error of εmk .
I.e., we have

εmk =

√
E (Datamk − E (Datamk ))2
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The combined error gets when we use our weights introduced above [BD96]:

εm =

√√√√
(

n∑

k=1

Wm
k

)−2 n∑

k=1

(Wm
k ε

m
k )2

Then we minimize the error for each subspace Um when choosing :

Wm
k = (εmk )−2

Hence the combined error gets:

εm =

(
n∑

k=1

Wm
k

)−1/2

=

(
n∑

k=1

(εmk )−2

)−1/2

The subspaces Um are orthogonal to each other, hence we also minimize the overall error.
These weights get particularly important for our satellite case. Assume that the Um

are the spaces of homogeneous harmonic polynomials of degree m and assume that we
observe data originating from satellites flying at different heights. Hence the error for
each degree m can be roughly described by δ

(
Radius of Satellite Orbit

Radius of Earth

)m
.

Choose for example εm1 = 1 · 1.03m and εm2 = 0.1 · 1.06m which results in
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10

−1

10
0

10
1

10
2

10
3

Degree

lo
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E
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or
)

Error 1
Error 2
Combined Error

In the picture we observe the behavior indicated by the formula for the error, the
combined error always behaves like the smallest error function.

6.4 Final Algorithm

Concluding we end up with the following still rather rough algorithm:

1. Approximate or interpolate the differentiated data with respect to Dk at the height
of the satellite track.
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2. Determine a weight factors which should represent the reliability of the above
approximation for each space Um.

3. Solve the inverse problem “downward-continuation”. Using the error level will
enhance the reliability considerably.

4. Solve the least squares problem for each of the subspaces Um which is posed by
the inversion of the differential operators Dm

k (integration) and combination of the
data Datamk from different sources.

6.5 Conclusion and Demands

Now we want to summarize the results of this chapter shortly and explain their relevance
to our problem of determining V . Roughly we could show the following points.

• Out of mathematical considerations we obtain a good order for the mathematical
treatment of the data, namely:

1. Approximation

2. Regularization

3. Combination

• Combination should be done with a least squares approach using a reasonable error
estimates on the data.
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Chapter 7

Aspects of Scientific Computing

Does the method proposed in the solutions above actually work on data, derived
from a geophysically relevant modell?

In particular we want to show the following points separately:

• The auto-regularization works and is competitive to other known methods

• A problem with second order oblique derivatives can be solved.

• The combination of data from different sources is possible.

Note that it is not our goal to provide a numerically competitive solution but to give a
proof of concept. Program sources and numerical results may be obtained electronically
from the author.

7.1 Restrictions and Model

In order to be able to give a proof of concept we restricted ourselves to an easier scenario,
where we could do some numerical experiments which are on the one hand sufficiently
near to the real world situation and on the other hand still in our control.

7.1.1 Satellite Data

We have decided not to use satellite data because of several reasons. The first and
perhaps most simple reason is just a lack of resources and knowledge in high performance
computing. Therefore we would not have been able to provide a numerically competitive
solution, neither in speed nor in accuracy.

Furthermore the computation with “real” data has another severe mathematical im-
plication. We cannot judge anymore if a solution is actually good or bad because one
never knows who used the “better” method when we compare two solutions.



126 7. Aspects of Scientific Computing

7.1.2 Approximation

The choice of an appropriate basis system is a very difficult topic because both global
(e.g., spherical harmonics) and local (e.g., splines, wavelets) ones have particular advan-
tages and disadvantages. We just intend to do a proof of concept and hence chose the
old but very well understood orthonormal system of spherical harmonics which is easy
to use in numerical terms.

However, as remarked in the last chapters, in principle every possible basis system is
capable of providing a reasonable structure to use the auto-regularization procedure and
the new scheme for dealing with oblique derivatives.

We just calculated our data up to degree 128 which is not a principal restriction but
again a sensible constraint completely sufficient for our model assumptions. Any higher
degree could be considered but would of course enlarge the requirements for RAM and
computation time.

Just for the data combination problem we chose to calculate 150 data points in order
to have a better view on the occurring effects.

7.1.3 Data Distribution

We assumed our data to be given on an integration grid on the sphere. This has the
advantage that we do not have to bother about the (ill-posed) problem of transferring
data from a satellite track to such a grid and consequently evades several sources of
additional error. Furthermore this enables us to study our new methods in an unbiased
environment.

We used a Driscoll-Healy grid at an orbit height of 3% and 6% of the Earth radius.
This roughly corresponds to an average satellite height of 200 km (like GOCE) and
400 km (like CHAMP). We generated the data globally on a grid which allows exact
integration up to degree 180. Just for the combination of data from different sources we
chose to use a grid which allows exact integration up to degree 300.

Although we just go up to degree 128 (150, respectively) in our computations this
higher integration precision seemed to have stabilized the numerics, perhaps due to a
suboptimal implementation.

7.1.4 Data Generation

7.1.4.1 Derivative Generation

All second derivatives are computed at each grid point in a satellite’s coordinate system
(i.e., x̃1 in flight direction, x̃2 perpendicular to x̃1 pointing east and x̃3 in the radial
direction). This task was done with a stable Clenshaw algorithm which is proposed in
the paper of Rod Deakin [Dea98] who also provided the necessary source code which just
needed small adaptations to the object oriented implementation.

7.1.4.2 Gravitational Field

We used a stable Clenshaw algorithm [Dea98]. We always used the spectral model
EGM96 as input and reference data.
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7.1.4.3 Noise

The above data (both potential and derivatives) are modified with some additional sto-
chastical noise which was proposed in the last chapter. We chose a ratio of 1 : 1 (i.e.,
cu = cc = 0.5) between the general error and the noise spread with h = 0.9 to the
neighboring region.

For the error level we chose different scenarios:

• Auto-Regularization Test:

δ = 0.5 for the 200km case, δ = 0.05 for the 400km case.

• Second Order Oblique Derivatives Test and Combination:

δ = 5 · 10−12 low noise level,

δ = 1 · 10−11 middle noise level and

δ = 2 · 10−11 high noise level,

all at ∼200 km height

• Combination Test:

δ = 2.5 · 10−7 for SST-like data at ∼400km

δ = 2 · 10−11 for SGG-like data at ∼200km

Generally one can say that the error level is in near the order of magnitude as the data
we are awaiting (when we neglect the first 3 Fourier coefficients). Note that the relative
error is about 3 orders of magnitude lower in the ∂fx1

∂fx1
, ∂fx2

∂fx2
and ∂fx3

∂fx3
direction in

comparison to the mixed ∂fx1∂fx2 , ∂fx1∂fx3 and ∂fx2∂fx3 derivative directions.

7.1.5 Regularization Method

Another difficult topic is the choice of a good regularization method. Although our
regularization procedure is capable to handle different types of methods we restricted
ourselves to the spectral cut-off scheme because of one single fact: It is the only sensible
regularization scheme which leaves the Fourier coefficients unchanged and hence allows
some deeper insight in our usage of split operators and allows an easy control over the
regularization in our setting.

7.1.6 Auto - Regularization

7.1.6.1 Noise Estimation

We generated a small second data set of degrees 4 – 15 (i.e., about 200 actual data,
for the combination case) and another of degrees 8–32 (i.e., about 900 actual data,
for the other cases) and compared it with the biased approximation of our noisy data.
Note that one could have also used a second noisy approximation. But this would have
just increased computation time without giving any mathematical valuable information.
We only need to consider more Fourier coefficients to obtain the same accuracy in the
estimation (approximately degrees 4 –18, or 8–36 respectively).
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7.1.6.2 Parameters

We did the downward continuation and the regularization by the method proposed in the
last chapter. The important parameter is κ, which was chosen by experience. For our
purposes we observed that a κ = 0.25 (κ = 0.276 for the older oblique derivative part)
seems to be a good choice which corresponds (roughly) to an accepted Signal/Noise ratio
of 1:1 at the cutting point.

7.1.7 Data Combination

The data combination is done like proposed in the unified setup chapter. Please note
that for the combination of SST like and SGG like “data” we made two small alterations:

• We used the data even after the cut-off point for combination. (If they are biased
with high noise they will have a low weight, and hence improve the solution).
Relevant at this point is just the highest cut-off point.

• We had to normalize the error estimate of the SST like data in comparison to the
SGG like data with a factor of 2n+ 1 for each degree in order to counter the error
amplification due to the different derivative.

7.1.8 Implementation, Time and Accuracy

A limitation on our experiments is imposed by the available computer equipment. The
maximal sensible degree of spherical harmonics we are capable to consider is around 128
(with our newest machine 150). In order to study the auto-regularization we therefore
needed to use a rather big error which was assumed to be near the order of magnitude
of the data we actually wanted to study.

The implementation of our program was done with KDevelop in C++ on a Linux
machine running the gcc2.96 compiler series. The program was executed on several
Pentium III/IV machines in the 1GHz region with at least 512Mb RAM. The combination
was done on a 3.2GHz Pentium with 2GB Ram.

Because the program was written for the ease of use (i.e., object oriented) we think
that we are at least a factor of 2 away from a time efficient implementation. For each
experiment (which considers all possible derivatives) we can expect an execution time of
roughly 18 – 24 h depending on the machine in use; for the combination roughly three
days.

7.2 Numerical Tests

We performed three kinds of completely different experiments. In the first one we wanted
to assess the new auto-regularization. In the second test series we were interested in
the information we can retrieve out of the oblique derivatives and how well the auto-
regularization works for these examples. In the third one we had an emphasis on the
data combination.
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7.2.1 Auto-Regularization

For the test of the auto-regularization we generated a biased potential field at satellite
height and did the downward continuation. In order to compare this method with another
stop strategy we chose the widely applied L-curve method [Fen02].

In order to test two differently severely ill-posed problems we chose to use two different
satellite heights, the first data set generated for 3% (roughly 200km) and the second for
6% (roughly 400km) of the Earth’s radius. The noise was chosen in a way such that
theoretically the noise to error ratio had to pass 1.0 around the degree of 80.

Further note that the noise is chosen at random and hence every run gives different
results. For this numerical test an averaging over several runs is not sensible, which left
us with choosing the examples to present. In general we can say that in every run our
new method performed much better than the L-curve method and almost every time the
regularization parameter was chosen in the region, where the degree-wise noise to signal
ratio was between 0.5 and 1.5.

7.2.1.1 Some Notation and the L-curve method

The given data at satellite height (projected toHarm128) shall be called d, our regularized
solution x and the upward continuation operator A. Hence the size of x gets ||x||2 and
the error occurring when choosing x gets ||Ax− d||2.

The L-curve method now tries to estimate the point, where the curve (||x||2, ||Ax−
d||2) is bending the most. As we will see in the next pictures this point is rather hard
to obtain, especially because there are a big number of possible points nearby. Within
these limitations we want to see our guess for an appropriate regularization parameter
using the L-curve method. The point ◦ marked in the following pictures could also mark
another degree in the range of 35–45 without really changing too much. But this also
signifies that in the choice of the regularization parameter via this method is a rather
big random element.

For a better readability of both the table and the pictures we rescaled the occurring
values by a factor of (105, 106).

The Noise
Signal

ratio is displayed for each degree of the solution. The optimal regularization
point is, where this value changes to values greater than 1.
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7.2.1.2 Data

First we will present the L-curves corresponding to our two input data sets:
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Figure 7.1: Data set at 200km
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Figure 7.2: Data set at 400km

We displayed the optimal regularization point (i.e., noise
signal

= 1) by •, the regularization
point proposed by the L-curve method by ◦ and the regularization point found by the
auto-regularization method by ∗.

The noise/signal behavior is shown in the next curve. For a better observability we
chose a log scale.
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Figure 7.3: Noise/Signal ratio with respect to the degrees

Now we will present the table of data values. Due to space restrictions we chose the
most interesting region:
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Data Set 1 Data Set 2
Degree ||x||2 ||Ax− d||2 Noise

Signal
||x||2 ||Ax− d||2 Noise

Signal

3 0.2970 9.3820 0.0003 0.2970 7.4766 0.0001
4 0.4557 6.6642 0.0005 0.4557 4.9830 0.0001
· · · · · · · · · · · · · · · · · · · · ·
38 1.1321 0.4295 0.1433 1.1315 0.0823 0.0348
39 1.1372 0.4137 0.1452 1.1364 0.0771 0.0340
40 1.1417 0.3977 0.1695 1.1408 0.0721 0.0399
41 1.1462 0.3840 0.1747 1.1452 0.0679 0.0393
42 1.1508 0.3704 0.1817 1.1498 0.0638 0.0411
43 1.1552 0.3571 0.2100 1.1540 0.0598 0.0472
· · · · · · · · · · · · · · · · · · · · ·
61 1.2241 0.2011 0.4196 1.2208 0.0236 0.2808
62 1.2271 0.1956 0.4277 1.2239 0.0227 0.3016
63 1.2304 0.1907 0.4542 1.2270 0.0219 0.3348
64 1.2335 0.1855 0.5121 1.2300 0.0211 0.3940
65 1.2365 0.1809 0.5500 1.2328 0.0204 0.4376
66 1.2397 0.1766 0.5301 1.2357 0.0197 0.4363
67 1.2429 0.1719 0.5576 1.2388 0.0191 0.4727
68 1.2460 0.1676 0.5925 1.2418 0.0185 0.5192
69 1.2495 0.1634 0.6020 1.2451 0.0179 0.5430
70 1.2523 0.1589 0.7311 1.2479 0.0173 0.6805
71 1.2553 0.1553 0.7592 1.2510 0.0169 0.7270
72 1.2586 0.1516 0.6886 1.2540 0.0164 0.6788
73 1.2616 0.1477 0.8026 1.2571 0.0159 0.8126
74 1.2648 0.1442 0.7290 1.2607 0.0155 0.7578
75 1.2681 0.1406 0.8573 1.2640 0.0150 0.9144
76 1.2711 0.1371 0.9374 1.2671 0.0146 1.0299
77 1.2742 0.1339 0.9501 1.2705 0.0142 1.0720
78 1.2774 0.1307 0.9901 1.2739 0.0138 1.1522
79 1.2806 0.1274 1.0123 1.2775 0.0135 1.2194
80 1.2838 0.1244 1.0903 1.2811 0.0131 1.3589
81 1.2872 0.1214 1.0126 1.2849 0.0128 1.3088
82 1.2905 0.1183 0.9891 1.2891 0.0124 1.3241
83 1.2943 0.1153 1.0683 1.2934 0.0121 1.4802
84 1.2976 0.1121 1.2364 1.2977 0.0117 1.7747
85 1.3010 0.1093 1.3210 1.3022 0.0114 1.9532
86 1.3045 0.1066 1.2775 1.3070 0.0111 1.9411
87 1.3080 0.1038 1.4173 1.3120 0.0108 2.1954
88 1.3117 0.1012 1.5114 1.3172 0.0104 2.3725
89 1.3153 0.0984 1.6167 1.3226 0.0101 2.5698
90 1.3191 0.0958 1.8239 1.3281 0.0098 2.9426
· · · · · · · · · · · · · · · · · · · · ·
127 1.5560 0.0049 7.3559 1.9532 0.0005 27.5285
128 1.5666 0.0024 8.8348 1.9936 0.0002 33.8520
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7.2.1.3 Discussion

The data above indicate that the auto-regularization method is at least not worse and
perhaps even superior to the L-curve method, which itself has been proven to be reliable
in a wide number of cases.

Furthermore we will see in the next section when we post-process the data that even
under these suboptimal conditions the new auto-regularization cuts quite reliably in the
range Noise

Signal
∈ [0.5, 1.5].

Both facts indicate that the new method should be the method of choice for such
regularization problems.

7.2.2 Oblique Derivatives

7.2.2.1 Directions of Derivatives

In order to get a broad overview we utilized a large of vector fields to test our new
method. In particular we used all the ones proposed in the chapter on split operators.

At this point we get our first problem. As remarked beforehand, not every possible
vector field actually enables us to do a reconstruction on its own, because of its small
but nevertheless non-zero kernels. In order to get an idea of the behavior of such a single
vector field, we therefore added a very small perturbation (10−7) of the identity, which
now enabled us to invert the occurring matrices.

Note that this is just necessary if one wants to get information concerning one par-
ticular direction. The combination of the results was done by using the error levels we
observed in the regularization part.

7.2.2.2 Data Selection

Beside the look on single directions which were just incorporated for testing purposes
we also looked at the combinations we proposed in the general strategy section. At this
point one faces a severe problem. Which solutions to choose? Of course one could use
the ones with the smallest error level, but perhaps one looses valuable information. One
could just block the data of a certain kind and have a look. Or one could use all possible
approximations and hope the best.

Particularly, we decided to incorporate the following quantities (notation as in the
chapter on split operators):∑

i≤j dxidxj ,
∑

i d¬xidxi,
∑

i drdxi,
∑

i drd¬xi and
∑

ALL

These sums are of course not actually the sum of the particular derivatives, but this
shall denote that we considered the weighted sum of the results standing within the sum.
As given in the “Combining Data in a Unified Setup” chapter we use the inverse of the
square of the error as weight factor.

The combination was done with the integration matrices obtained in the chapter on
“Integration”, of course. The “trash” parts of the solutions were not considered.

Please note in particular the comparison to the solution in the two times radial
derivative direction.
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7.2.2.3 Notation

Now we want to present the actual numerical results. For each noise level we did seven
runs. For each direction we will give the following data (average always means average
over the seven runs):

• deg := average degree at what point we cut

• degmin := minimal degree at which we cut

• err := average relative error

• err⊡ := average relative error at degree (high noise: ⊡ = 33 ,middle noise: ⊡ = 55,
low noise: ⊡ = 85); if it is not possible to give this result: —

• errlast := average relative error of the last considered degree

Note that the error was computed neglecting the first three degrees every time. The
error at a degree is the error at the degree specified, i.e.,

errn :=

√∑n
k=−n (akn − ãkn)

2

√∑n
k=−n (akn)

2

when akn denote the unbiased Fourier coefficients corresponding to Y k
n , ãkn the computed

ones. This can be also seen as the noise to signal ratio at this specific degree. The value
err⊡ was picked to give a better comparison between the particular results, because all
of them have a different degree considered and hence are not easily comparable.

The results we considered as most important are printed in bold letters.

7.2.2.4 Combination

The data combination was done using the regularized solutions without considering de-
grees which were cut. This approach was chosen because it allowed best to compare
combined data with non-combined ones. However, for a more realistic example one has
to think about another more elaborate strategy for choosing the data and for the cut-off
point of the combined data.
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7.2.2.5 Low Noise

Derivative deg degmin err err85 errlast

dx1dx1 117.00 112 0.0524 0.8228 2.0195

dx1dx2 120.57 116 0.0233 0.2880 0.8379

dx1dx3 109.00 96 0.0263 0.2578 0.4824

dx2dx2 120.43 115 0.0516 0.8410 2.2474

dx2dx3 118.43 112 0.0218 0.2532 0.5230

dx3dx3 117.00 111 0.0206 0.1214 0.2450

d¬x1dx1 114.43 105 0.0631 0.8050 2.0586

d¬x1dx2 117.57 109 0.1648 2.7000 6.3670

d¬x1dx3 116.57 108 0.0607 0.8846 1.7476

d¬x2dx1 111.14 104 0.1698 3.0976 5.6204

d¬x2dx2 113.43 102 0.0577 0.5821 2.1693

d¬x2dx3 105.00 88 0.0675 0.9721 1.6252

d¬x3dx1 126.57 126 0.0304 0.3493 0.9348

d¬x3dx2 126.71 126 0.0287 0.3785 1.0143

d¬x3dx3 125.86 125 0.0191 0.1819 0.3844

drdx1 115.86 108 0.0242 0.2590 0.5615

drdx2 122.43 118 0.0201 0.2555 0.5938

drdx3 120.00 115 0.0174 0.1085 0.2347

drd¬x1 119.57 112 0.0645 0.8993 1.9926

drd¬x2 109.00 94 0.0746 1.1165 2.0630

drd¬x3 127.71 127 0.0171 0.1820 0.4356

drdr 123.29 120 0.0153 0.1052 0.2456

∑
i≤j dxi

dxj
107.86 96 0.0092 0.0742 0.1211

∑
i d¬xidxi 113.43 102 0.0183 0.2031 0.4913

∑
i drdxi 115.00 108 0.0105 0.0898 0.1668

∑
i drd¬xi 107.86 94 0.0128 0.1190 0.1982

∑
ALL 102.43 88 0.0089 0.0756 0.1066
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7.2.2.6 Middle Noise

Derivative deg degmin err err55 errlast

dx1dx1 98.43 77 0.0994 0.7884 2.6715

dx1dx2 98.14 80 0.0462 0.3549 0.8786

dx1dx3 102.29 90 0.0442 0.2878 0.8394

dx2dx2 97.86 81 0.0901 0.7443 2.4191

dx2dx3 91.29 69 0.0519 0.2720 0.5498

dx3dx3 101.43 78 0.0444 0.1357 0.3485

d¬x1dx1 83.43 59 0.1237 0.7709 1.8627

d¬x1dx2 89.29 67 0.3400 3.4458 8.6777

d¬x1dx3 86.14 61 0.1131 0.8022 1.8005

d¬x2dx1 89.43 61 0.2973 2.1247 7.3039

d¬x2dx2 80.57 58 0.1260 0.7961 2.0600

d¬x2dx3 97.43 82 0.1040 0.9597 2.2164

d¬x3dx1 123.86 121 0.0588 0.4265 1.9956

d¬x3dx2 124.43 122 0.0551 0.4203 1.5748

d¬x3dx3 120.57 118 0.0370 0.2041 0.8450

drdx1 110.71 102 0.0418 0.2836 1.0223

drdx2 100.71 78 0.0465 0.2714 0.6833

drdx3 106.14 88 0.0372 0.1263 0.3383

drd¬x1 91.14 64 0.1214 0.7891 2.2205

drd¬x2 102.86 89 0.1118 1.2004 2.6853

drd¬x3 125.71 125 0.0350 0.1892 0.9184

drdr 112.57 100 0.0321 0.1240 0.3633

∑
i≤j dxi

dxj
84.43 69 0.0193 0.0901 0.1497

∑
i d¬xidxi 80.43 58 0.0328 0.2548 0.4066

∑
i drdxi 98.00 78 0.0213 0.1080 0.2230

∑
i drd¬xi 91.00 64 0.0277 0.1468 0.2654

∑
ALL 72.57 58 0.0187 0.0933 0.1160
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7.2.2.7 High Noise

Derivative deg degmin err err33 errlast

dx1dx1 79.29 56 0.1728 0.8688 4.0037

dx1dx2 86.43 69 0.0858 0.3848 1.2796

dx1dx3 68.43 34 0.1008 0.3695 0.7593

dx2dx2 78.71 57 0.1546 0.6871 2.6736

dx2dx3 76.43 58 0.0886 0.3857 0.8506

dx3dx3 84.00 64 0.0818 0.2261 0.4541

d¬x1dx1 71.86 51 0.2000 1.2588 2.5687

d¬x1dx2 70.86 43 0.5335 2.5049 8.6636

d¬x1dx3 70.71 51 0.1988 1.0510 2.7945

d¬x2dx1 70.29 41 0.5201 2.9703 11.5575

d¬x2dx2 71.43 50 0.2083 1.1070 2.2107

d¬x2dx3 61.29 28 0.2453 — 2.3011

d¬x3dx1 117.43 114 0.1029 0.6796 2.9495

d¬x3dx2 117.29 105 0.1080 0.6163 3.8420

d¬x3dx3 110.71 103 0.0684 0.3447 1.2096

drdx1 80.00 47 0.0875 0.3430 0.8329

drdx2 85.00 68 0.0805 0.3835 1.0773

drdx3 90.14 70 0.0672 0.2067 0.4515

drd¬x1 75.14 55 0.2183 1.0513 3.0887

drd¬x2 68.14 35 0.2505 0.9609 2.6787

drd¬x3 121.43 116 0.0648 0.3066 1.7171

drdr 98.29 79 0.0594 0.1951 0.5194

∑
i≤j dxi

dxj
56.86 34 0.0423 0.1329 0.1788

∑
i d¬xidxi 69.86 50 0.0636 0.2950 0.6364

∑
i drdxi 70.00 47 0.0465 0.1557 0.2733

∑
i drd¬xi 62.43 35 0.0480 0.2040 0.2981

∑
ALL 48.00 28 0.0380 — 0.1563
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7.2.2.8 Noise/Signal

For the first two cases we also want to include a more detailed picture about the
noise/signal behavior in each degree.
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Figure 7.4: Low Noise case: Noise/Signal ratio
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Figure 7.5: Middle Noise case: Noise/Signal ratio
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From the pictures above we observe that the inclusion of the data different from the
radial direction enhances the reliability of the solution, though the other directions had
a quite high bias. Furthermore it seems to be sufficient to restrict our attention to the
relatively small set of

∑
i≤j dxidxj because even the choice of all considered directions did

not lead to significant enhancements in the error level.
Similarly for a state space reconstruction of a low noise model we get the following

picture:

Figure 7.6: Reconstruction

These figures show a very good reconstruction of the EGM96 model (as expected).
Only at the pole we have a concentration of the error which is due to the generation of
our noise which has a particular higher variance (in comparison to the area) in the polar
region. Beside the pole we see that most errors smoothed away.

7.2.2.9 Discussion

Looking at the tables beforehand we observe that the different kinds of derivatives have a
particularly different behavior. This is understandable because our error was about three
orders of magnitudes higher for the mixed directions than for the pure ones. However
it is interesting to note that the radial derivative drdr seems to be quite good in all
cases. Particularly bad behaves dxidx¬j for i 6= j. Additionally it seems that dx3 and d¬x3

returns better results than the x1 and x2 counterparts.
But as we know it is not really the strength of the method to get out of a single
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Figure 7.7: Error

direction a really effective approximation, but the interaction of the different solutions is
worthwhile to consider.

And there we observe that the combination of all derivatives dxidxj yields results
which are about 40% better than the ones we would get for the double radial derivative.
Equally good (although it incorporates quite a number of really bad solutions) is the
weighted combination of all derivatives we computed.

In practice with other noise distributions it might be worth to try a bunch of possible
derivatives in order to find the ones which give the best result in the end.

7.2.2.10 Regularization

We were really surprised how well the auto-regularization actually performed in this more
realistic environment. As we used a rather low κ we were ready to accept that we cut
at a point, where it is quite sure that our data is not dominated by noise. And this job
was done really well as long as the noise level was not chosen too high. Just in this case
we observed problems, sometimes. These seemed partly to be due to the fact that noise
in the first coefficients was jumping so violently that no good noise estimator could be
obtained.

As we see in the tables the average last error is in total more or less centered around
1, i.e., we have got the point, where we switch from data to bias. Because we did the
averaging process afterwards we see a rather small error there. But this is not the fault
of the regularization, but the consequence of more data delivering a better result and
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smoothing away the error.

This may be countered easily by choosing a larger κ.

7.2.3 Data Combination

Now we want to show the combination of data from different sources, in this case SST
like and SGG like data on different satellite heights (∼ 400km and ∼ 200km).

7.2.3.1 Directions

For our numerical experiment we chose all possible directional derivatives dxi for the
SST case and dxidxj for SGG case because their combination provided the best results
for combined data as we saw in the last section.

7.2.3.2 Data

In the sequel we have the picture of the noise/signal ratio for the SST like case, the SGG
like case and their combination.

The proposed cut-off points for the single data sets are:

SST

• dx1 : 134

• dx2 : 91

• dx3 : 123

SGG

• dx1dx1 : 34

• dx1dx2 : 35

• dx1dx3 : 51

• dx2dx2 : 51

• dx2dx3 : 51

• dx3dx3 : 131

As the SGG case is expected to give better results for higher degrees due to its lower
orbit, it is sensible to assume that the second derivative data are the ones which “decide”,
where to cut-off in the end. So the cut-off level would be at 131 or slightly lower (because
of the other proposed low cut-off’s). At degree 131 the noise/signal ratio is 1.594, at 120
it is 1.246. The optimal cut-off point would be degree 111.
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Figure 7.8: Middle Noise case: Noise/Signal ratio

7.2.3.3 Discussion

If we purely look at the data combination it was well done and returned reasonable
results, which still leave room to some interpretation.

On the other hand this example shows that at the point of the determination of an
optimal κ (with respect to the underlying problem) much work has to be done. However
this is not a surprise because the proposed κ is just valid for the error level tending to 0
and hence does not necessarily also provide excellent results for real world problems.

7.3 Conclusion

Our method has passed the numerical tests comparably well. In particular we can remark
the following results:

• The reconstruction from the possible set of oblique derivatives works within its
specified limitations.

• The auto-regularization works and finds roughly the point, where the data/bias
ratio gets 1, although we operated with a simplified error model.

• The combination of different directions results in a considerably better solution.
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Consequently we can call our new method promising. Further investigations need to be
done in order to determine if this result also transfers to real satellite data. But at least
from the mathematical point of view there is no argument to doubt this.
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