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Abstract

1 Introduction

In soil mechanics assumption of only vertical subsidence is often invoked
and this leads to the one-dimensional model of poroelasticity. The classical
model of linear poroelasticity is obtained by Biot [1], detailed derivation
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can be found e.g., in [2]. This model is applicable also to modelling certain
processes in geomechanics, hydrogeology, petroleum engineering (see, e.g.,
[3, 8], in biomechanics (e.g., [9, 10]), in filtration (e.g., filter cake formation,
see [15, 16, 17]), in paper manufacturing (e.g., [11, 12]), in printing (e.g.,
[13]), etc.
Finite element and finite difference methods were applied by many authors
for numerical solution of the Biot system of PDEs, see e.g. [3, 4, 5] and
references therein. However, as it is wellknown, the standard FEM and
FDM methods are subject to numerical instabilities at the first time steps.
To avoid this, discretization on staggered grid was suggested in [4, 5]. A
single layer deformable porous medium was considered there.
This paper can be viewed as extension of [4, 5] to the case of multilayered
deformable porous media. A finite volume discretization to the interface
problem for the classical one-dimensional Biot model of consolidation pro-
cess is applied here. Following assumptions are supposed to be valid: each of
the porous layers is composed of incompressible solid matrix, it is homoge-
neous and isotropic. Furthermore, one of two following assumptions is valid:
porous medium is not completely saturated and fluid is incompressible or
porous medium is completely saturated and fluid is slightly compressible.

The reminder of the paper is organised as follows. Next section presents the
mathematical model. Third section is devoted to the dicsretization of the
continuous problem. Fourth section contains the results from the numerical
experiments.

2 Mathematical model

2.1 Basic equations

Classical Biot model of consolidation process for one-dimensional case con-
sists of two following equations for unknown fluid pressure p(x, t) and dis-
placement of the solid skeleton u(x, t)

− ∂
∂x

(
(λ + 2µ)∂u

∂x

)
+ ∂p

∂x
= 0, x ∈ (0, l), t ∈ (0, T ],

∂
∂t

(
nβp + ∂u

∂x

) − ∂
∂x

(
k
η

∂p
∂x

)
= q(x, t), x ∈ (0, l), t ∈ (0, T ],

(1)

where λ and µ are Lame coefficients of the solid skeleton, n is porosity,
β is compressibility coefficient of the fluid, k is permeability of the porous
medium, η is viscosity of the fluid, q(x, t) is a source term, which is used to
describe forced extraction or injection process. Boundary conditions for (1)
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are following:

p = 0, (λ + 2µ)
∂u

∂x
= −u0, if x = 0, (2)

what means that this boundary is free to drain and some stress is applied on
it; another boundary condition is

u = 0,
∂p

∂x
= 0, if x = l, (3)

what means that this boundary is rigid and impermeable.
Initial condition

nβp +
∂u

∂x
= 0, for t = 0 (4)

means that the variation in water content is zero in the beginning of the
consolidation process.

Note that in the case of classical problem formulation (1) - (4) (it describes
fluid flow and skeleton deformation caused by the constant vertical load ap-
plied on the top of the column of soil, bounded with rigid and impermeable
bottom and lateral walls and a top, which is free to drain), system (1) can be
decoupled and then the problem can be solved separately for the fluid pres-
sure and subsequently for solid displacements. But in general case system
(1) might be supplemented with another types of boundary conditions, cor-
responding to different physical phenomena on the boundaries, what makes
decoupling impossible and simultaneous solution must be sought both for
pore pressure and displacement of the solid matrix. In this paper we deal
with the coupled model, what makes our approach more general and universal
for modeling of the consolidation process.

2.2 Interface Problem

Consider a multilayered porous medium, where each of the layers has different
physical properties. We are interested in the coupled fluid flow in the porous
medium and in deformations of the porous medium when certain stress is
applied to it. In this case, in addition to the basic equations given above,
we have to consider interface transmission closing conditions for (1) on the
interface between different layers. In the assumption of a perfect contact and
a two-layer medium, the interface conditions look as follows

[u] = 0,

[
(λ + 2µ)

∂u

∂x

]
= 0, [p] = 0,

[
k

η

∂p

∂x

]
= 0 for x = ξ, t ∈ [0, T ], (5)
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where 0 ≤ ξ ≤ l is the position of the interface between the two layers.
The coefficients of the governing equations are discontinuous across the in-
terface, i.e.

λ =

{
λ1, x < ξ
λ2, x > ξ

µ =

{
µ1, x < ξ
µ2, x > ξ

k =

{
k1, x < ξ
k2, x > ξ

n =

{
n1, x < ξ
n2, x > ξ

Interface conditions (5) mean continuity of the displacements and of the
stress of the solid, as well as continuity of the pressure and of the velocity of
the fluid across the interface between the two layers.
Let us transform the governing equations and the interface conditions to
dimensionless form. The following scales are introduced

x :=
x

l
, t :=

(λ1 + 2µ1)k1t

ηl2
, p :=

p

u0

, u :=
(λ1 + 2µ1)u

u0l
,

ν :=
λ + 2µ

λ1 + 2µ1

, k :=
k

k1

.

Further, introducing new notations: a = nβ(λ1 + 2µ1), f(x, t) = l2η
u0k1

q(x, t),
we obtain following dimensionless form of the problem (1) - (5)

− ∂
∂x

(
ν ∂u

∂x

)
+ ∂p

∂x
= 0, x ∈ (0, 1), t ∈ (0, T ],

∂
∂t

(
ap + ∂u

∂x

) − ∂
∂x

(
k ∂p

∂x

)
= f(x, t), x ∈ (0, 1), t ∈ (0, T ],

ν ∂u
∂x

= −1, p = 0, if x = 0, t ∈ (0, T ],

u = 0, ∂p
∂x

= 0, if x = 1, t ∈ (0, T ],

ap + ∂u
∂x

= 0, if t = 0, x ∈ (0, 1),

[u] = 0,
[
ν ∂u

∂x

]
= 0, [p] = 0,

[
k ∂p

∂x

]
= 0 for x = ξ, t ∈ (0, T ].

(6)
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3 MAC type grid discretization.

3.1 Grids and finite volume discretization

We define two different grids: ωp to discretize pressure, and ωu to discretize
displacements

ωp = {xi | xi = ih, i = 0, . . . , N − 1} ,
ωu = {xi−0.5 | xi−0.5 = (i − 0.5)h, i = 1, . . . , N} .

(7)

We intoduse also a standard uniform grid in time with nodes tj = jτ , j =
0, 1..., M with a step size τ = T

M
. Represent now the position of the interface ξ

in the form ξ = xn−0.5+θh, where n is some integer and 0 ≤ θ < 1. Following
the basic principles of the finite volume method (method of balance, [6]), we
write balance equations for the first equation from (6) over each volume
Vi−0.5 = (xi−1, xi)

−
xi∫

xi−1

∂

∂x

(
ν
∂u

∂x

)
dx +

xi∫

xi−1

∂p

∂x
dx = 0 (8)

and for the second equation of (6) over each volume Vi = (xi−0.5, xi+0.5)

xi+0.5∫

xi−0.5

∂

∂t

(
ap +

∂u

∂x

)
dx −

xi+0.5∫

xi−0.5

∂

∂x

(
k

∂p

∂x

)
dx =

xi+0.5∫

xi−0.5

f(x, t)dx. (9)

Consider balance equations (8), (9) and replace integrals in these equations
by the following difference expressions

xi∫

xi−1

∂

∂x

(
ν
∂u

∂x

)
dx ≈ h (νpx̄)x,i−0.5 ,

xi∫

xi−1

∂p

∂x
dx ≈ hpx̄,i,

xi+0.5∫

xi−0.5

∂

∂t

(
ap +

∂u

∂x

)
dx ≈ h (aipi + ux̄,i+0.5)t , (10)

xi+0.5∫

xi−0.5

∂

∂x

(
k

∂p

∂x

)
dx ≈ h (kpσ

x̄)x,i ,
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where

νi =

⎛

⎝1

h

xi+0.5∫

xi−0.5

dx

ν(x)

⎞

⎠

−1

, (11)

ai =

xi+0.5∫

xi−0.5

a(x)dx, (12)

ki−0.5 =

⎛

⎝1

h

xi∫

xi−1

dx

k(x)

⎞

⎠

−1

(13)

and 0 ≤ σ ≤ 1 is some weight factor.
Note, that during approximation of integrals above we applied harmonic av-
eraging for coefficients ν(x) and k(x). Substituting approximate expressions
of integrals into balance equations (8) and (9), we obtain following finite-
difference scheme for problem (6):

for j = 0, . . . , M − 1

− ν
h
ûx̄,i−0.5 + p̂x̄,i = 0 , i = 2,

−(νûx̄)x,i−0.5 + p̂x̄,i = 0 , i = 3, . . . , N − 1,

(api + ux,i+0.5)t − (kpσ
x̄)x,i = φσ

i , i = 1, . . . , N − 2,

(api + ux,i+0.5)t − k
h
pσ

x̄ = φσ
i , i = N − 1,

p0 = 0, uN = 0.

ap0
i + u0

x,i+0.5 = 1
ν
, i = 1, . . . , N − 1, j = 0,

(14)

where coefficients ν, a and k are defined by formulas (11), (12), (13) respec-
tively, and

φi =
1

h

xi+0.5∫

xi−0.5

f(x, t)dx.

In formulas (14) we used following notations u = uj, p = pj , û = uj+1,
p̂ = pj+1, pσ = (1 − σ)pj + σpj+1.
One can show that in the case of piecewise-constant coefficients ν(x), k(x)
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and a(x) formulas (11), (13) and (12) give us following expressions for coef-
ficients

νi =

⎧
⎨

⎩

ν1, i = 1, . . . , n − 1,
ν1ν2

(1−θ)ν1+θν2
, i = n,

ν2, i = n + 1, . . . , N,

(15)

ai =

⎧
⎨

⎩

a1, i = 1, . . . , n − 1,
θa1 + (1 − θ)a2, i = n,

a2, i = n + 1, . . . , N,
(16)

ki+0.5 =

⎧
⎨

⎩

k1, i = 1, . . . , n − 2,
k1k2

(0.5−θ)k1+(0.5+θ)k2
, i = n − 1,

k2, i = n, . . . , N,

for θ ≤ 0.5 (17)

and

ki+0.5 =

⎧
⎨

⎩

k1, i = 1, . . . , n − 1,
k1k2

(1.5−θ)k1+(θ−0.5)k2
, i = n

k2, i = n + 1, . . . , N,

for θ > 0.5. (18)

In the case of continuous coefficients (single layered porous media), second
order convergence in operator norms is proven in [4]. Theoretical analysis of
(6) in the case of discontinuous coefficients is in progress and will be reported
in a forthcoming paper.

3.2 Numerical results

Two sets of numerical experiments were carried out. The first set of exper-
iments was performed in order to study numerically the convergence rate
of the scheme (14). Remind, that this scheme approximates the differential
problem (6), which describes deformation and fluid flow in the column, con-
sisting of two layers of soils with different physical properties. The top of
this column is free to drain, and some load is applied on it, the bottom is
impermeable and rigid. We are interested in the following physical charac-
teristics of this process: fluid pressure, fluid velocity, displacements of the
solid skeleton and stresses therein.
Example 1. For the first test we choose the following values for the coeffi-

cients: ν1 = 1, ν2 =
tan( 1

12
) tan( 10π

3
)

8π
≈ 0.0058, k1 = 1, k2 = 1

8π tan( 1
12

) tan( 10π
3

)
≈

0.275, a1 = 0, a2 = 0 and f(x, t) = 0. Position of the interface between
two media is given by ξ = 1

6
. Then exact solution of a problem like (6) (but

satisfying another initial conditions) is
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p(x, t) =

⎧
⎨

⎩

cos(10π
3

) sin(0.5x)e−0.25t, x ≤ 1
6
,

sin( 1
12

) cos(4π(1 − x))e−0.25t, x > 1
6
,

u(x, t) =

⎧
⎪⎨

⎪⎩

−2 cos(10π
3

) cos(0.5x)e−0.25t, x ≤ 1
6
,

−2 cos( 1
12

)

tan( 10π
3

)
sin( 1

12
) sin(4π(1 − x))e−0.25t, x > 1

6
.

These functions satisfy boundary value problem (6), the initial conditions are
calculated from the above formulae at t = 0. Analytical expressions for the
fluid velocity and for the stress of the solid are calculated from the Darcy law
v(x, t) = −k ∂p(x,t)

∂x
and from the stress-strain relationship s(x, t) = ν ∂u(x,t)

∂x
,

respectively. The resulting formulae are:

v(x, t) =

⎧
⎪⎨

⎪⎩

cos(10π
3

) cos(0.5x)e−0.25t, x ≤ 1
6
,

cos( 1
12

)

8π tan( 10π
3

)
sin( 1

12
) sin(4π(1 − x))e−0.25t, x > 1

6
,

s(x, t) =

⎧
⎨

⎩

cos(10π
3

) sin(0.5x)e−0.25t, x ≤ 1
6
,

sin( 1
12

) cos(4π(1 − x))e−0.25t, x > 1
6
.

In our tests we compare obtained numerical solutions to the known analyt-
ical solutions and calculate relative discrete L2-norm and relative discrete
maximum norm (C-norm) of solution errors

‖εw‖c =
max
xi∈ωw̄

|wex(xi, tj) − wapp
i |

max
xi∈ωw̄

|wex(xi, tj)|
and

‖εw‖L2 =

∑

xi∈ωw̄

|wex(xi, tj) − wapp
i |

max
ωw̄

|wex(xi, tj)| ,

where wex and wapp stand for the analytical and numerical solutions respec-
tively, and w = {u, p, v, s}. We assign σ = 0.5 to the weight parameter, what
allows us to obtain second order of convergence in time.
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�x �t ‖εu‖L2 ‖εp‖L2 ‖εv‖l2 ‖εs‖L2

0.1 0.1 0.222E-02 0.155E+00 0.130E+00 0.739E-01
0.025 0.025 0.508E-03 0.243E-01 0.153E-01 0.106E-01
0.00625 0.00625 0.368E-04 0.105E-02 0.789E-03 0.488E-03
0.015625 0.015625 0.222E-05 0.634E-04 0.639E-04 0.298E-04
0.000390625 0.000390625 0.137E-06 0.393E-05 0.657E-05 0.185E-05

Table 1: test 1 - convergence in L2-norm at the time moment t=0.1

�x �t ‖εu‖L2 ‖εp‖L2 ‖εv‖l2 ‖εs‖L2

0.1 0.1 0.276E-01 0.559E-01 0.737E-01 0.273E-01
0.025 0.025 0.178E-02 0.248E-02 0.399E-02 0.156E-02
0.00625 0.00625 0.107E-03 0.157E-03 0.248E-03 0.973E-04
0.015625 0.015625 0.662E-05 0.977E-05 0.159E-04 0.607E-05
0.000390625 0.000390625 0.413E-06 0.610E-06 0.110E-05 0.379E-06

Table 2: test 1 - convergence in L2-norm at the last time moment t=1

�x �t ‖εu‖c ‖εp‖c ‖εv‖c ‖εs‖c

0.1 0.1 0.518E-02 0.226E+00 0.322E+00 0.196E+00
0.025 0.025 0.306E-02 0.304E-01 0.833E-01 0.273E-01
0.00625 0.00625 0.337E-03 0.139E-02 0.470E-02 0.114E-02
0.015625 0.015625 0.224E-04 0.841E-04 0.107E-02 0.712E-04
0.000390625 0.000390625 0.142E-05 0.522E-05 0.262E-03 0.442E-05

Table 3: test 1 - convergence in maximum norm at the time moment t=0.1

�x �t ‖εu‖c ‖εp‖c ‖εv‖c ‖εs‖c

0.1 0.1 0.645E-01 0.963E-01 0.145E+00 0.581E-01
0.025 0.025 0.620E-02 0.481E-02 0.619E-02 0.277E-02
0.00625 0.00625 0.382E-03 0.284E-03 0.387E-03 0.151E-03
0.015625 0.015625 0.238E-04 0.174E-04 0.832E-04 0.913E-05
0.000390625 0.000390625 0.148E-05 0.108E-05 0.210E-04 0.566E-06

Table 4: test 1 - convergence in maximum norm at the last time moment
t=1
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Figure 1: test 1 - convergence of displacements
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Figure 3: test 1 - convergence of velocity
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Convergence results are summarized in Tables 1 - 4. Note, that values of
the grid steps are decreased in a way, preserving a constant value for the
parameter θ in the expression ξ = xn−0.5 + θh.
¿From numerical experiments we conclude that displacement and pressure
converge with second order in time and space both in L2 and in maximum
norms. We also observe second order of convergence for the stress and first
order convergence for the fluid velocity. Fig.5 and Fig.6 illustrate these con-
vergence orders. Fig.1 - Fig.4 represent the analytical solution and numerical
solutions calculated on different grids.

Example 2. Input data for the second test are as follows:

ν1 = 1, ν2 =
tan( 2

3
) tan( 23

3
)

23
≈ 0.1805, k1 = 1, k2 = 1

23 tan( 2
3
) tan( 23

3
)
≈ 0.0105,

a1 = 0, a2 = 0, f(x, t) = 0. Position of the interface is ξ = 2
3
.

The exact solution is given by

p(x, t) =

⎧
⎨

⎩

cos(23
3
) sin(x)e−t, x ≤ 2

3
,

sin(2
3
) cos(23(1 − x))e−t, x > 2

3
,

u(x, t) =

⎧
⎨

⎩

− cos(23
3
) cos(x)e−t, x ≤ 2

3
,

− 1
23 tan( 2

3
) tan( 23

3
)
sin(2

3
) sin(23(1 − x))e−t, x > 2

3
.

v(x, t) =

⎧
⎨

⎩

cos(23
3
) cos(x)e−t, x ≤ 2

3
,

1
23 tan( 2

3
) tan( 23

3
)
sin(2

3
) sin(23(1 − x))e−t, x > 2

3
,

s(x, t) =

⎧
⎨

⎩

cos(23
3
) sin(x)e−t, x ≤ 2

3
,

sin(2
3
) cos(23(1 − x))e−t, x > 2

3
.

Example 2 is similar to example 1, but with different ratios of the discon-
tinuous coefficients. Convergence results for example 2 are summarized in
Table 5 - Table 8. The convergence order for all the variables is the same as
in example 1, as it can be also seen from Fig. 11 and Fig. 12. Figures 7 - 10
represent the analytical and the numerical solutions. Note that compared to
example 1, coarse grid solutions in this example are less accurate.
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�x �t ‖εu‖c ‖εp‖c ‖εv‖c ‖εs‖c

0.1 0.1 0.341E+00 0.221E+00 0.391E+00 0.187E+00
0.025 0.025 0.270E-01 0.217E-01 0.532E-01 0.167E-01
0.00625 0.00625 0.159E-02 0.132E-02 0.119E-01 0.103E-02
0.015625 0.015625 0.977E-04 0.811E-04 0.291E-02 0.637E-04
0.000390625 0.000390625 0.608E-05 0.504E-05 0.723E-03 0.397E-05

Table 5: test 2 - convergence in maximum norm at the time moment t=0.1

�x �t ‖εu‖c ‖εp‖c ‖εv‖c ‖εs‖c

0.1 0.1 0.341E+00 0.221E+00 0.391E+00 0.187E+00
0.025 0.025 0.270E-01 0.217E-01 0.532E-01 0.167E-01
0.00625 0.00625 0.159E-02 0.132E-02 0.119E-01 0.103E-02
0.015625 0.015625 0.977E-04 0.811E-04 0.291E-02 0.637E-04
0.000390625 0.000390625 0.608E-05 0.504E-05 0.723E-03 0.397E-05

Table 6: test 2 - convergence in maximum norm at the last time moment
t=1

�x �t ‖εu‖L2 ‖εp‖L2 ‖εv‖l2 ‖εs‖L2

0.1 0.1 0.335E-01 0.903E-01 0.642E+00 0.940E-01
0.025 0.025 0.435E-02 0.516E-02 0.579E-01 0.565E-02
0.00625 0.00625 0.263E-03 0.321E-03 0.633E-02 0.341E-03
0.015625 0.015625 0.164E-04 0.201E-04 0.768E-03 0.212E-04
0.000390625 0.000390625 0.251E-05 0.172E-05 0.194E-04 0.174E-05

Table 7: test 2 - convergence in L2 norm at the time moment t=0.1

�x �t ‖εu‖L2 ‖εp‖L2 ‖εv‖l2 ‖εs‖L2

0.1 0.1 0.176E+00 0.816E-01 0.148E+00 0.815E-01
0.025 0.025 0.109E-01 0.744E-02 0.108E-01 0.752E-02
0.00625 0.00625 0.653E-03 0.448E-03 0.126E-02 0.454E-03
0.015625 0.015625 0.403E-04 0.276E-04 0.156E-03 0.280E-04
0.000390625 0.000390625 0.251E-05 0.172E-05 0.194E-04 0.174E-05

Table 8: test 2 - convergence in L2 norm at the last time moment t=1
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Figure 7: test 2 - convergence of displacement
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Figure 8: test 2 - convergence of pressure
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Figure 9: test 2 - convergence of velocity
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Figure 10: test 2 - convergence of stress
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Figure 11: test 2 - pressure and displacement errors
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Figure 12: test 2 - velocity and stress errors
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�x �t ‖εu‖c ‖εp‖c ‖εv‖c ‖εs‖c

0.1 0.1 0.542E-02 0.270E-01 0.696E-01 0.308E-01
0.025 0.025 0.116E-02 0.210E-02 0.468E-02 0.209E-02
0.00625 0.00625 0.730E-04 0.151E-03 0.581E-03 0.139E-03
0.015625 0.015625 0.453E-05 0.963E-05 0.132E-03 0.907E-05
0.000390625 0.000390625 0.282E-06 0.608E-06 0.322E-04 0.575E-06

Table 9: test 3 - convergence in maximum norm at the time level t=0.1

Example 3. In the third test we consider compressible fluid (a1 and a2 are
nonzero). The following values for the coefficients are used:

ν1 = 1, ν2 =
tan( 2

3
) tan( 10

3
)

10
≈ 0.0153, k1 = 1, k2 = 1

10 tan( 2
3
) tan( 10

3
)
≈ 0.6547,

a1 = 0.01, a2 = 10.1
tan( 2

3
) tan( 10

3
)
≈ 0.6547, f(x, t) = 0. Position of the interface

is ξ = 2
3
. Exact solution is

p(x, t) =

⎧
⎨

⎩

cos(10
3
) sin(x)e−

100
101

t, x ≤ 2
3
,

sin(2
3
) cos(10(1 − x))e−

100
101

t, x > 2
3
,

u(x, t) =

⎧
⎪⎨

⎪⎩

− cos(10
3
) cos(x)e−

100
101

t, x ≤ 2
3
,

− 1
10 tan( 2

3
) tan( 10

3
)
sin(2

3
) sin(10(1 − x))e−

100
101

t, x > 2
3
.

v(x, t) =

⎧
⎪⎨

⎪⎩

cos(10
3
) cos(x)e−

100
101

t, x ≤ 2
3
,

1
10 tan( 2

3
) tan( 10

3
)
sin(2

3
) sin(10(1 − x))e−

100
101

t, x > 2
3
,

s(x, t) =

⎧
⎨

⎩

cos(10
3
) sin(x)e−

100
101

t, x ≤ 2
3
,

sin(2
3
) cos(10(1 − x))e−

100
101

t, x > 2
3
.

Convergence results for example 3 are summarized in the Tables 9 - 12. The
convergence orders for the compressible case are the same as for the incom-
pressible as it is illustrated in Fig.17 and Fig.18. Analytical and numerical
solutions are plotted on Fig.13 - Fig.16.
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�x �t ‖εu‖c ‖εp‖c ‖εv‖c ‖εs‖c

0.1 0.1 0.631E-01 0.621E-01 0.301E-01 0.422E-01
0.025 0.025 0.471E-02 0.423E-02 0.183E-02 0.231E-02
0.00625 0.00625 0.300E-03 0.265E-03 0.107E-03 0.149E-03
0.015625 0.015625 0.188E-04 0.165E-04 0.206E-04 0.937E-05
0.000390625 0.000390625 0.118E-05 0.103E-05 0.477E-05 0.586E-06

Table 10: test 3 - convergence in maximum norm at the last time level t=1

�x �t ‖εu‖L2 ‖εp‖L2 ‖εv‖l2 ‖εs‖L2

0.1 0.1 0.289E-02 0.128E-01 0.358E-01 0.139E-01
0.025 0.025 0.275E-03 0.938E-03 0.194E-02 0.861E-03
0.00625 0.00625 0.163E-04 0.689E-04 0.125E-03 0.641E-04
0.015625 0.015625 0.101E-05 0.443E-05 0.931E-05 0.419E-05
0.000390625 0.000390625 0.627E-07 0.279E-06 0.859E-06 0.264E-06

Table 11: test 3 - convergence in L2 norm at the time level t=0.1

�x �t ‖εu‖L2 ‖εp‖L2 ‖εv‖l2 ‖εs‖L2

0.1 0.1 0.277E-01 0.219E-01 0.967E-02 0.206E-01
0.025 0.025 0.183E-02 0.169E-02 0.530E-03 0.152E-02
0.00625 0.00625 0.117E-03 0.108E-03 0.324E-04 0.974E-04
0.015625 0.015625 0.733E-05 0.681E-05 0.217E-05 0.613E-05
0.000390625 0.000390625 0.459E-06 0.426E-06 0.171E-06 0.384E-06

Table 12: test 3 - convergence in L2 norm at the last time level t=1
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Figure 13: test 3 - convergence of displacement
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Figure 14: test 3 - convergence of pressure
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Figure 15: test 3 - convergence of velocity
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Figure 16: test 3 - convergence of stress
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Figure 17: test 3 - pressure and displacement errors
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Figure 18: test 3 - velocity and stress errors
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�x �t ‖εu‖c ‖εp‖c ‖εv‖c ‖εs‖c

0.1 0.1 0.632E+00 0.105E+01 0.197E+02 0.101E+01
0.025 0.025 0.151E+00 0.157E+00 0.549E+01 0.142E+00
0.00625 0.00625 0.991E-02 0.102E-01 0.134E+01 0.909E-02
0.015625 0.015625 0.617E-03 0.641E-03 0.326E+00 0.568E-03
0.000390625 0.000390625 0.388E-04 0.400E-04 0.808E-01 0.355E-04

Table 13: test 4 - convergence in maximum norm at the time layer t=0.1

Example 4. In the fourth test we consider again incompressible fluid, but the
ratio between coefficients k1 and k2 is large (about four orders of magnitude).
The values for the coefficients are the following:
ν1 = 1, ν2 = 1

100
tan( 8

15
) tan(80

3
) ≈ 0.1601, k1 = 1, k2 = 1

tan(100 8
15

) tan( 80
3

)
≈

6.2479 · 10−4, a1 = 0, a2 = 0, f(x, t) = 0. Position of the interface is ξ = 2
3
.

The exact solution of the problem (6) (with another initial conditions) is
given by

p(x, t) =

⎧
⎨

⎩

cos(10
3
) sin(4

5
x)e−

16
25

t, x ≤ 2
3
,

sin( 8
15

) cos(80(1 − x))e−
16
25

t, x > 2
3
,

u(x, t) =

⎧
⎪⎨

⎪⎩

−5
4
cos(10

3
) cos(4

5
x)e−

16
25

t, x ≤ 2
3
,

− 5 cos( 8
15

)

4 tan( 80
3

)
sin(80(1 − x))e−

16
25

t, x > 2
3
.

v(x, t) =

⎧
⎪⎨

⎪⎩

cos(10
3
) cos(4

5
x)e−

16
25

t, x ≤ 2
3
,

cos 8
15

100 tan( 80
3

)
sin(80(1 − x))e−

16
25

t, x > 2
3
,

s(x, t) =

⎧
⎨

⎩

cos(10
3
) sin(4

5
x)e−

16
25

t, x ≤ 2
3
,

sin( 8
15

) cos(80(1 − x))e−
16
25

t, x > 2
3
.

Convergence resultes are summarized in Tables 13 - 16. It is seen that con-
vergence order does not depend on the jumps of coefficients (see also Fig.23
- Fig.24). At the same time, the numerical solution on very coarse grids can
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�x �t ‖εu‖c ‖εp‖c ‖εv‖c ‖εs‖c

0.1 0.1 0.155E+01 0.138E+01 0.189E+01 0.114E+01
0.025 0.025 0.185E+00 0.380E-01 0.867E+00 0.401E-01
0.00625 0.00625 0.138E-01 0.413E-02 0.165E+00 0.401E-02
0.015625 0.015625 0.811E-03 0.226E-03 0.379E-01 0.224E-03
0.000390625 0.000390625 0.496E-04 0.135E-04 0.928E-02 0.136E-04

Table 14: test 4 - convergence in maximum norm at the last time moment
t=1

�x �t ‖εu‖L2 ‖εp‖L2 ‖εv‖l2 ‖εs‖L2

0.1 0.1 0.258E+00 0.455E+00 0.804E+01 0.455E+00
0.025 0.025 0.656E-01 0.602E-01 0.101E+01 0.615E-01
0.00625 0.00625 0.454E-02 0.380E-02 0.115E+00 0.387E-02
0.015625 0.015625 0.285E-03 0.238E-03 0.140E-01 0.242E-03
0.000390625 0.000390625 0.179E-04 0.148E-04 0.174E-02 0.151E-04

Table 15: test 4 - convergence in L2 norm at the time moment t=0.1

�x �t ‖εu‖L2 ‖εp‖L2 ‖εv‖l2 ‖εs‖L2

0.1 0.1 0.843E+00 0.542E+00 0.754E+00 0.521E+00
0.025 0.025 0.757E-01 0.823E-02 0.204E+00 0.819E-02
0.00625 0.00625 0.480E-02 0.123E-02 0.186E-01 0.124E-02
0.015625 0.015625 0.296E-03 0.773E-04 0.209E-02 0.774E-04
0.000390625 0.000390625 0.184E-04 0.481E-05 0.254E-03 0.481E-05

Table 16: test 4 - convergence in L2 norm at the last time moment t=1
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Figure 19: test 4 - convergence of displacement
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Figure 20: test 4 - convergence of pressure
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Figure 21: test 4 - convergence of velocity

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−0.3

−0.2

−0.1

0

0.1

0.2

0.3

x

s

Stress (after the final time step)

exact solution                           
approximate solution, dh=0.1, dt=0.1     
approximate solution, dh=0.025, dt=0.025 
approximate solution,dh=0.0042, dt=0.0042

Figure 22: test 4 - convergence of stress
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Figure 23: test 4 - pressure and displacement errors
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Figure 24: test 4 - velocity and stress errors
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give a bad approximation to the exact solution. This can be observed on
Fig.19 - Fig.22, where analytical and numerical solutions are plotted.

In the second set of numerical experiments we satisfy all boundary and initial
conditions corresponding to the continuous model. Consider the case when
pore fluid is incopressible. In such situation initially whole vertical load is
taken by the pore fluid and there is a very little compression of the soil sample
immediately after placing the load. This means following initial conditions:

p(x, 0) = σ0, u(x, 0) = 0.

Then during the consolidation process fluid pressure is dissipating and si-
multaneously effective stress of the solid is increasing. There is no known
analytical solution in this case. Note that all paramenters in the tests below
are non-dimensional and all results are also plotted non-dimensionally.
Example 5. In this test we consider consolidation of medium consisted of two
layers of equal depth. The upper layer is four times more permeable than the
lower one and the elasic properties of both layers are identical. This means
following values for parameters: k1 = 1, k2 = 0.25, ν1 = 1, ν2 = 1. External
load is σ0 = 1.
Figure 25 shows the degree of consolidation d(x, t) = 1− p(x,t)

p0(x,t)
inside the soil

profile for different time moments; space grid in these calculations consists of
40 nodes. Figure 26 shows consolidation degree at time t = 0.62 calculated
on grids of different thickness. Results, plotted in Fig. 25 show quite good
agreement with results published in the monograph [18], but we suppose that
our results are more accurate. (?)
Example 6. In this test material properties of layers are following: k1 = 1.0,
k2 = 10.0, ν1 = 1.0, ν2 = 0.1. It means that upper layer is ten times less
permeable, but ten times stiffer. Figures 27, 28 and 29 show pore pressure,
stress of the solid and fluid velocity distributions respectively for the soil pro-
file at different moments of time. Figure 30 shows rate of surface settlement
in time. Remind that in this set of numerical experiments exact solution
of the problem is unknown and we can not comare it to our numerical re-
sults, we can only analyse behaviour of the numerical solution during the
grid thickening. Figures 31 - 35 show all quantities of the process calculated
on grids of different thickness for a fixed time value t = 0.05
Example 7. In this test we change the location of layers from example 6.
Now upper layer is ten times more permeable and ten times less stiff. Values
of parameters are: k1 = 1.0, k2 = 0.1, ν1 = 1.0, ν2 = 10.0. Results for this
situation are plotted in figures 36, 37, 38 and 39. Figures 40 - 44 show results
calculated on grids of different thickness for a fixed time value t = 0.05.
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Figure 25: test 5 - degree of consolidation at different moments in time: grid
with 40 nodes in space.
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Figure 26: test 5 - degree of consolidation,....
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Figure 27: test 6 - pore pressure distribution at different moments in time
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Figure 28: test 6 - stress of the solid at different moments in time
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Figure 29: test 6 - fluid velocity at different moments in time
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Figure 30: test 6 - rate of settlement of the soil surface
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Figure 31: test 6 - displacement of the solid
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Figure 32: test 6 - pore pressure
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Figure 33: test 6 - stress of the solid
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Figure 34: test 6 - fluid velocity
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Figure 35: test 6 - rate of settlement of the soil surface

Distributions of pore pressure and rate of settlement obtained in the previous
two numerical experiments were compared to results published in the paper
[14], and a very good qualitative agreement was observed.
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Figure 36: test 7 - pore pressure distribution at different moments in time
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Figure 37: test 7 - stress of the solid at different moments in time
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Figure 38: test 7 - fluid velocity at different moments in time
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Figure 39: test 7 - rate of settlement of the soil surface
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Figure 40: test 7 - displacement of the solid
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Figure 41: test 7 - pore pressure
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Figure 42: test 7 - stress of the solid
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Figure 43: test 7 - fluid velocity
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