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Abstract

Based on the well-known results of classical potential theory, viz. the limit and jump
relations for layer integrals, a numerically viable and efficient multiscale method of
approximating the disturbing potential from gravity anomalies is established on regular
surfaces, i.e., on telluroids of ellipsoidal or even more structured geometric shape. The
essential idea is to use scale dependent regularizations of the layer potentials occurring
in the integral formulation of the linearized Molodensky problem to introduce scaling
functions and wavelets on the telluroid.
As an application of our multiscale approach some numerical examples are presented
on an ellipsoidal telluroid.
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1 Introduction

Wavelets are known as mathematical means for breaking up a complicated function (signal)
into many simple pieces at different scales and positions. Thus wavelets have become a
powerful and flexible tool for scientific computation and data handling. Basically, wavelet
analysis is done by convolving the function under consideration against ’dilated’ and ’shifted’
versions of one fixed function, viz. the ’mother wavelet’. Traditionally, applications of
wavelets have been signal analysis, image processing, noise cancellation, etc, but there is
also a growing interest in the numerical treatment of partial differential equations. How-
ever, wavelet methods are merely known for unfolding their computational economy and
efficiency when applied to problems on Euclidean spaces, the sphere or the torus. The aim
of this article is to present a new numerically viable and efficient wavelet approach to the
linearized Molodensky problem of physical geodesy corresponding to a telluroid of geomet-
rically complex structure, such as an ellipsoid or an approximation of the actual geoid (e.g.
the EGM96-geoid). Our purpose is to develop a multiscale theory on telluroids which are
understood as regular surfaces which at the same time establishes harmonic scaling functions
and wavelets in the outer space. Our concept is essentially based on a connection of classi-
cal results of potential theory with new methods of modern analysis and scientific computing.

In more detail, this paper follows the standard procedure in potential theory by transforming
the linearized Molodensky boundary–value problem corresponding to a telluroid understood
to be a low-scale approximation of the geoid into a Fredholm integral equation of the sec-
ond kind. We choose a single layer potential to be a solution of the Molodensky problem.
However, instead of applying conventional wavelet constructions oriented on Euclidean or
spherical theory for discretizing the integral equations in accordance with a collocational,
Galerkin or least squares procedure we use the kernels of the layer potentials themselves
to establish a new class of wavelets on (general) regular surfaces. In other words, a new
wavelet theory is developed on regular surfaces that arises naturally as a result of scale
discretization of the limit and jump relations of potential theory. The wavelet theory based
on layer potentials provides well–promising efficient and fast approximation methods for
the boundary–value problems of physical geodesy corresponding to geoscientifically relevant
telluroids. In particular, the Molodensky problem of determining the geoid from gravity
anomalies on a not-necessarily spherical or ellipsoidal telluroid becomes a numerically at-
tackable procedure. As a matter of fact it may be expected that, in combination with an
improved data situation in the near future, our wavelet approach opens new perspectives in
modelling geopotential level surfaces with an accuracy unattainable until now.

The outline of this paper is as follows: First we introduce the notations and preliminaries that
are needed for our wavelet approach to the solution of the Molodensky problem. We specify
regular surfaces on which our theory is established. Then we introduce in standard way the
boundary–value problem, i.e., the Molodensky problem, which we are concerned with. In
the next section we introduce potential operators with respect to the normal vector field of
the regular surface (telluroid) which are the main ingredients of this work. We develop the
limit and jump relations of the involved potential operators formulated in the framework of
the Hilbert space of square–integrable functions on the regular surface (telluroid). The setup
of a multiresolution analysis (i.e., scaling functions, scale spaces, wavelets, detail spaces) is
defined by interpreting the kernel functions of the limit and jump integral operators as scaling
functions on regular surfaces. In this context, the normal distance to the parallel surfaces of
the regular surface under consideration represents the scale level in the scaling function. At
the end we deal with the already mentioned discretization of the occurring Fredholm integral
equations in order to give a locally reflected multiscale representation of the solution of the
(exterior) Molodensky boundary–value problems (EMP) in three dimensions corresponding
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to geoscientifically relevant regular surfaces. The regular surface thereby represents a low-
scale approximation of the geoid.
At the end of the paper we discuss some examples of local multiscale approximation within
the global framework of the numerical solution of the Molodensky problem. In particular we
are interested in the zoom–in property and the detection of a high frequency perturbation
which are typical features within a wavelet framework.

2 Preliminaries and Notation

We start with introducing some basic notation and the nomenclature which is used in our
considerations.

A sphere of radius R centered around the origin is denoted by ΩR = {x ∈ R3 | |x| = R}.
In particular, Ω = Ω1 is the unit sphere in R3. We set Ωint

R for the ’inner space’ of ΩR,
Ωint

R = {x ∈ R3 | |x| < R} while Ωext
R = R3 \ Ωint

R is the ’outer space’ of ΩR. Clearly,
Ωext

R = {x ∈ R3 | |x| > R}. By Ω(R1,R2) we denote the open spherical shell with inner radius
R1 and outer radius R2 given by Ω(R1,R2) = {x ∈ R3 |R1 < |x| < R2}.
A major role in our considerations play regular surfaces which are introduced next.

Definition 2.1. A surface Σ ⊂ R3 is called regular, if it satisfies the following properties:

(i) Σ divides the three-dimensional Euclidean space R3 into the bounded region Σint

(inner space) and the unbounded region Σext (outer space) defined by Σext = R3\Σint,
Σint = Σint ∪ Σ,

(ii) Σint contains the origin,

(iii) Σ is a closed and compact surface free of double points,

(iv) Σ has a continuously differentiable unit normal field ν pointing into the outer space
Σext.

Geoscientifically regular surfaces Σ are, for example, sphere, ellipsoid, spheroid, geoid, (reg-
ular) Earth’s surface. In our approach to the Molodensky problem the telluroid will be
understood as a regular surface approximating closely the (actual) geoid.
Given a regular surface, then there exist positive constants α, β such that

α < σinf = inf
x∈Σ

|x| ≤ sup
x∈Σ

|x| = σsup < β. (1)

As usual, Aint, Bint (resp. Aext, Bext) denote the inner (resp. outer) space of the sphere A
(resp. B) around the origin with radius α (resp. β). Σinf

int, Σsup
int (resp. Σinf

ext, Σsup
ext ) denote

the inner (resp. outer) space of the sphere Σinf (resp. Σsup) around the origin with radius
σinf (resp. σsup).

The set Σ(τ) = {x ∈ R3|x = y + τν(y), y ∈ Σ} generates a parallel surface which is exterior
to Σ for τ > 0 and interior for τ < 0. It is well known from differential geometry (see e.g.
[30]) that if |τ | is sufficiently small, then the surface Σ(τ) is regular, and the normal to one
parallel surface is a normal to the other.

In what follows we discuss function spaces that are of particular significance in our approach.
Let Σ be a regular surface. Pot(Σint) denotes the space of all functions U ∈ C(2)(Σint)
satisfying Laplace’s equation in Σint, while Pot(Σext) denotes the space of all functions
U ∈ C(2)(Σext) satisfying Laplace’s equation in Σext and being regular at infinity (that is,
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Figure 1: Regular surface (geometrical illustration)

|U(x)| = O(|x|−1), |(∇U)(x)| = O(|x|−2) for |x| → ∞ uniformly with respect to all direc-
tions).

For k = 0, 1, . . . we denote by Pot(k)(Σext) the space of all U ∈ C(k)(Σext) such that U |Σext

is of class Pot(Σext).
In shorthand notation,

Pot(k)(Σint) = Pot(Σint) ∩ C(k)(Σint),

Pot(k)(Σext) = Pot(Σext) ∩ C(k)(Σext).

Let U be of class Pot(0)(Σext). Then the maximum/minimum principle gives

sup
x∈Σext

|U(x)| ≤ sup
x∈Σ

|U(x)|.

In C(0)(Σ) we have the inner product

(F, H)L2(Σ) =
∫

Σ

F (x)H(x) dω(x),

where dω denotes the surface element. The inner product (·, ·)L2(Σ) implies the norm

‖F‖L2(Σ) =
(
(F, F )L2(Σ)

)1/2
. The space (C(0)(Σ), (·, ·)L2(Σ)) is a pre-Hilbert space. For

every F ∈ C(0)(Σ) we have the norm-estimate ‖F‖L2(Σ) ≤
√
‖Σ‖ ‖F‖C(0)(Σ), where ‖Σ‖ =∫

Σ
dω(x) .

By L2(Σ) we denote the space of (Lebesgue) square-integrable functions on the regular surface
Σ. L2(Σ) is a Hilbert space with respect to the inner product (·, ·)L2(Σ) and a Banach space
with respect to the norm ‖ · ‖L2(Σ). L2(Σ) is the completion of C(0)(Σ) with respect to the
norm ‖ · ‖L2(Σ):

C(0)(Σ)
‖·‖L2(Σ) = L2(Σ) .
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3 Geodetic Background

The gravimetric determination of the geoid is a current research area in physical geodesy. It
has become even more important, since the GPS techniques deliver accurate measurements
with dense data coverage on continental areas. In particular, locally reflected approximation
methods resulting in high wavelength geoidal reconstructions are of great significance.
For the convenience of the reader we recapitulate roughly the derivation of the linearized
Molodensky problem.
The original problem of Molodensky can briefly be formulated as follows: Given, at all
points of the geoid ΣG, the gravity potential W and the gravity vector g to determine the
surface ΣG. It is clear by definition of the geoid, that W is constant on ΣG, such that only a
gauge value W0 has to be given. Furthermore, we will not discuss in detail, how the gravity
vector g is obtained on ΣG from measurements on the real Earth’s surface. For a detailed
discussion of this downward continuation of g from the Earth’s surface to the (apriori not
known) geoid, the reader is referred to [16] or [17].
Our description of the linearized Molodensky problem essentially follows the course of [28].

Figure 2: The telluroid Σ as an approximation of the geoid ΣG.

The geoidal height determination is based on the fact that the actual geoid ΣG is approx-
imated by a regular surface Σ called the telluroid with known gravitational potential U in
Σext. For example, the telluroid can be chosen to be the EGM96-geoid. In this case, the
normal potential is the EGM96 geopotential outside the EGM96-geoid. We assume that
there exists a one-to-one correspondence between ΣG and Σ (see Figure 2). W is the actual
potential and U is an approximation of W called normal potential. We define γ = ∇U which
is called the normal gravity and g = ∇W called the actual gravity which is given on ΣG.
Assume that, for given x ∈ Σ, the point y ∈ ΣG is the one associated to x by the one-to-one
correspondence between ΣG and Σ. The two points are connected by the vector v = y − x.
An equivalent formulation of the classical Molodensky problem is now to determine the
length of v, i.e., the distance of the geoid and the approximating telluroid along the one-to-
one correspondence between ΣG and Σ. To this end we introduce

δW = W |ΣG − U |Σ
δg = g|ΣG − γ|Σ

where δW is called the potential anomalie and δg is called gravity anomalie. Furthermore,
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we define the disturbing potential T by T = W − U, in Σext , such that we have

δW = T |ΣG + U |ΣG − U |Σ (2)
δg = g|ΣG − γ|Σ . (3)

Next, we linearize these equations, i.e., we develop U and γ by Taylor expansion in terms
of v and neglect terms of higher order in v which represents no substantial loss of accuracy
if a sufficiently close telluroid is chosen. This procedure results in the approximations

U(y) = U(x) + (∇U)(x) · v, y ∈ ΣG, x ∈ Σ, (4)
= U(x) + γ(x) · v ,

and
γ(y) = γ(x) + (∇γ)(x) · v, y ∈ ΣG, x ∈ Σ , (5)

where

∇γ =
(

∂2U

∂xi∂xj

)

i,j=1,...,3

= M

Using this notation, the identity (5) results in

γ(y) = γ(x) + M(x)v, y ∈ ΣG, x ∈ Σ .

Finally, we get for the disturbing potential T by Taylor expansion in terms of v

T (y) = T (x) + (∇T )(x) · v, y ∈ ΣG, x ∈ Σ . (6)

Because T is already of first order in v, ∇T is of second order and the second term in (6)
can be neglected such that we get

T (y) = T (x), y ∈ ΣG, x ∈ Σ .

Inserting these simplifications into (2) and (3) gives

δW = T (x) + γ(x) · v, x ∈ Σ

δg = g(y)− γ(y) + M(x)v, y ∈ ΣG, x ∈ Σ .

Observing that

g(y)− γ(y) = (∇W )(y)− (∇U)(y)

= (∇T )(y), y ∈ ΣG,

= (∇T )(x), x ∈ Σ

we finally arrive at

δW = T (x) + γ(x) · v, x ∈ Σ (7)
δg = (∇T )(x) + M(x)v, x ∈ Σ . (8)

Equation (7) may be understood as a generalized Bruns formula. Actually it connects the
disturbing potential T on the telluroid Σ with the geoid anomalies v, i.e., the anomalies
between the geoid ΣG and the telluroid Σ. If we assume that M(x) is invertible for all
x ∈ Σ, we get

v = M(x)−1(δg − (∇T )(x)), x ∈ Σ . (9)

Inserting the identity (9) into equation (8) gives

T (x)− γ(x)(M(x))−1(∇T )(x) = δW − γ(x)M(x)−1δg . (10)
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This is the fundamental boundary condition of physical geodesy (see [28]).

Following [28] the vector γ(x)(M(x))−1, for x ∈ Σ, can be shown in first order of v to
be oriented in the direction of the exterior unit normal field ν on the telluroid Σ. More
specifically,

γ(x)(M(x))−1 = −|x|
2

ν(x), x ∈ Σ . (11)

Inserting expression (11) into equation (10) therefore results in

ν(x) · (∇T )(x) +
2
|x| T (x) = F (x), x ∈ Σ, (12)

where we have used the abbreviation F (x) = δg + 2
|x| δW, for x ∈ Σ . The boundary condi-

tion (12) is rigorously equivalent to (10) transformed in an appropriate coordinate system.
Summarizing our considerations we are led to the following boundary–value problem
Exterior Linearized Molodensky Problem (EMP)
Find T ∈ C(2)(Σext) ∩ C(1)(Σext) such that

∆T (x) = 0 x ∈ Σext,

∂T

∂ν
(x) + λ(x)T (x) = F (x), x ∈ Σ,

T (x) = O

(
1
|x|

)
, |x| → ∞ .

where λ, F ∈ C(0)(Σ) are known functions on the regular surface Σ, i.e., λ(x) = 2/ |x|,
x ∈ Σ.
It should be noted that in the mathematical language the (linearized) Molodensky problem
is a special Robin problem.

Remark. In the case of Σ to be a sphere the problem becomes the well-known Stokes
problem (see [16] or [28]) and in the case of an ellipsoid it is called ellipsoidal Stokes problem
(see [17] or [28]).

Figure 3: Low frequent approximation of the EGM96 geoid. The geoid undulations are
inflated 10000 times. The linearized Molodensky problem can be solved on this telluroid as
regular reference surface following the ideas of our approach. Due to the low discrepancy
between the telluroid and the actual geoid, the errors caused by the linearizations in (4),
(5) and (6) are small compared to the approach when the telluroid is taken to be a sphere
or an ellipsoid.
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4 Basic Concepts

Next we introduce some settings which are standard in potential theory (see, for example,
[21], [25]) and which are needed to prove uniqueness and existence of the solution of the
aforementioned exterior Molodensky problem (EMP).

4.1 Limit Formulae and Jump Relations

For τ 6= σ with |τ | , |σ| sufficiently small, the functions

(x, y) 7→ 1
|x + τν(x)− (y + σν(y))| , (x, y) ∈ Σ× Σ, (13)

are continuous. Thus the potential operators P (τ, σ) defined by

P (τ, σ)F (x) =
∫

Σ

F (y)
1

|x + τν(x)− (y + σν(y))| dω(y) (14)

form mappings from L2(Σ) into C(0)(Σ) and are continuous with respect to ‖ · ‖C(0)(Σ). For
all τ 6= σ the restrictions of P (τ, σ) on C(0)(Σ) are bounded with respect to ‖ · ‖L2(Σ).
By formal operations we obtain for F ∈ C(0)(Σ)

P (τ, 0)F (x) =
∫

Σ

F (y)
1

|x + τν(x)− y| dω(y) (15)

(P (τ, 0) : operator of the single–layer potential on Σ for values on Σ(τ)),

P|2(τ, 0)F (x) =
∂

∂σ
P (τ, σ)F (x)|σ=0 (16)

=
∫

Σ

F (y)
(

∂

∂ν(y)
1

|x + τν(x)− (y + σν(y))|
)

σ=0

dω(y)

=
∫

Σ

F (y)
ν(y) · (x + τν(x)− y)
|x + τν(x)− y|3 dω(y) (17)

(
P|2(τ, 0) : operator of the double–layer potential on Σ for values on Σ(τ)).

The notation P|i indicates differentiation with respect to the i-th variable. Analogously we
get

P|1(τ, 0)F (x) =
∂

∂τ
P (τ, σ)F (x)

∣∣
σ=0

, (18)

= −
∫

Σ

F (y)
ν(x) · (x + τν(x)− y)
|x + τν(x)− y|3 dω(y) (19)

and

P|2|1(τ, 0)F (x) =
∂2

∂τ∂σ
P (τ, σ)F (x)

∣∣
σ=0

(20)

for the operators of the normal derivatives.
If τ = σ = 0, the kernels of the potentials have weak singularities. The integrals formally
defined by

P (0, 0)F (x) =
∫

Σ

F (y)
1

|x− y| dω(y), (21)

P|2(0, 0)F (x) =
∫

Σ

F (y)
∂

∂ν(y)
1

|x− y| dω(y), (22)
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P|1(0, 0)F (x) =
∂

∂ν(x)

∫

Σ

F (y)
1

|x− y| dω(y), (23)

however, exist and define linear bounded operators in L2(Σ). P (0, 0), P|1(0, 0) and P|2(0, 0)
map C(0)(Σ) into itself (see [21]). Furthermore, the operators are continuous (even compact)
with respect to ‖ · ‖C(0)(Σ).
The operator P (τ, σ)∗ satisfying

(F, P (τ, σ)G)L2(Σ) = (P (τ, σ)∗F,G)L2(Σ) (24)

for all F, G ∈ L2(Σ) is called the adjoint operator of P (τ, σ) with respect to (·, ·)L2(Σ).
According to Fubini’s theorem it follows that

(F, P (τ, σ)G)L2(Σ) =
∫

Σ

F (x)
(∫

Σ

G(y)
|x + τν(x)− (y + σν(y))| dω(y)

)
dω(x) (25)

=
∫

Σ

G(y)
(∫

Σ

F (x)
|x + τν(x)− (y + σν(y))| dω(x)

)
dω(y)

= (P (σ, τ)∗F, G)L2(Σ) .

By comparison we thus have

P (τ, 0)∗F (x) = P (τ, σ)∗F (x)|σ=0 =
∫

Σ

F (y)
1

|y + τν(y)− x| dω(y). (26)

Analogously we can obtain expressions of P|1(τ, 0)∗ and P|2(τ, 0)∗.

The potential operators now enable us to give concise formulations of the classical limit
formulae and jump relations in potential theory. Let I be the identity operator in L2(Σ).
Suppose that, for all sufficiently small values τ > 0, L±i (τ), i = 1, 2, 3, and Ji(τ), i = 1, ..., 6,
respectively, define the following operators:

L±1 (τ) = P (±τ, 0)− P (0, 0), (27)
L±2 (τ) = P|1(±τ, 0)− P|1(0, 0)± 2πI, (28)

L±3 (τ) = P|2(±τ, 0)− P|2(0, 0)∓ 2πI, (29)

J1(τ) = P (τ, 0)− P (−τ, 0), (30)
J2(τ) = P|1(τ, 0)− P|1(−τ, 0) + 4πI, (31)
J3(τ) = P|2(τ, 0)− P|2(−τ, 0)− 4πI, (32)
J4(τ) = P|2|1(τ, 0)− P|2|1(−τ, 0), (33)
J5(τ) = P|1(τ, 0) + P|1(−τ, 0)− 2P|1(0, 0), (34)
J6(τ) = P|2(τ, 0) + P|2(−τ, 0)− 2P|2(0, 0). (35)

Then, for F ∈ C(0)(Σ), the main results of classical potential theory may be formulated by

lim
τ→0
τ>0

‖ L±i (τ)F ‖C(0)(Σ)= 0, lim
τ→0
τ>0

‖ Ji(τ)F ‖C(0)(Σ)= 0,

lim
τ→0
τ>0

‖ L±i (τ)∗F ‖C(0)(Σ)= 0, lim
τ→0
τ>0

‖ Ji(τ)∗F ‖C(0)(Σ)= 0.
(36)

The relations (36) can be generalized to the Hilbert space L2(Σ) (see [5], [22]):

Theorem 4.1. For all F ∈ L2(Σ)

lim
τ→0
τ>0

‖ L±i (τ)F ‖L2(Σ)= 0, lim
τ→0
τ>0

‖ Ji(τ)F ‖L2(Σ)= 0,

lim
τ→0
τ>0

‖ L±i (τ)∗F ‖L2(Σ)= 0, lim
τ→0
τ>0

‖ Ji(τ)∗F ‖L2(Σ)= 0.
(37)

A proof of Theorem 4.1 can be found in [13].
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5 Existence and Uniqueness

Next, we discuss the well-posedness of the Molodensky boundary–value problem correspond-
ing to a regular telluroidal surface Σ as introduced in Section 3. First, we will reformulate
the problem in a short notation. Then we will show uniqueness and existence of the solution
and at the end we will show the continuous dependency of the solution from the boundary
data.

5.1 Formulation, Uniqueness and Existence

We begin with the reformulation of the boundary–value problem using the notation of Sec-
tion 2.

Exterior Molodensky Problem (EMP):
Given F, λ ∈ C(0)(Σ), find T ∈ Pot(1)(Σext) such that
(

∂T+

∂νΣ
+ λT+

)
(x) = lim

τ→0
τ>0

(
ν(x) · (∇T )(x + τν(x)) + λ(x)T (x + τν(x))

)
= F (x), x ∈ Σ.

We recall the role of layer potentials in the solution theory of the aforementioned boundary–
value problem:

(EMP) The solution of the exterior Molodensky problem can be formulated in terms of a
single layer potential

T (x) =
∫

Σ

µ(y)
1

|x− y| dω(y), (38)

where µ ∈ C(0)(Σ) satisfies the integral equations

∂T+

∂νΣ
+ λT+ = (−2πI + P|1(0, 0) + λP (0, 0))µ = F, on Σ. (39)

Since the operator P|1(0, 0) + λP (0, 0) : C(0)(Σ) → C(0)(Σ) is compact, the Fredholm alter-
native is applicable. Thus, (39) is uniquely solvable for all F ∈ C(0)(Σ) which are orthogonal
to the non-trivial solutions of the homogenous adjoint equation. We define

N(Σ, λ) = {µ̃ ∈ C(0)(Σ) | (−2πI + P|2(0, 0) + λP (0, 0))µ̃ = 0} .

By orthogonal decomposition we have

C(0)(Σ) = (N(Σ, λ))⊥ ⊕N(Σ, λ)
‖·‖C(0)(Σ)

and obtain unique solvability of (39) for all F ∈ (N(Σ, λ))⊥ .

Uniqueness of the Molodensky problem has been extensively discussed in the geodetic liter-
ature (see [20], [28], [31], etc.). It has been shown for the case of the regular surface Σ to
be a sphere ΩR, R > 0, and for λ = 2/R, the space N(ΩR, λ) is the linear span of spherical
harmonics of degree 1 which is of dimension 3. It has also been shown that in the case of
an arbitrary regular surface Σ the dimension of N(Σ, Λ) is still 3 (see [28]).

5.2 Regularity Theorems

From the maximum/minimum principle of potential theory we already know that

sup
x∈Σext

|T (x)| ≤ sup
x∈Σ

∣∣T+(x)
∣∣ (40)
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holds for T ∈ Pot(0)(Σext). Moreover, from the theory of integral equations it can be
easily detected (see e.g. [27]) that there exists a constant C (dependent on Σ) such that for
T ∈ Pot(1)(Σext)

sup
x∈Σext

|T (x)| ≤ C sup
x∈Σ

∣∣∣∣
∂T+

∂ν
(x)

∣∣∣∣ (41)

In what follows we want to verify analogous regularity theorems in the L2(Σ)-context for the
Molodensky problem.

Theorem 5.1. Let T be of class Pot(1)(Σext). Then, for every (sufficiently small) ρ > 0,
there exists a constant C(= C(k; K, Σ)) such that

sup
x∈K

∣∣∣
(
∇(k)T

)
(x)

∣∣∣ ≤ C

(∥∥∥∥
∂T+

∂ν

∥∥∥∥
L2(Σ)

+ ‖λ‖L2(Σ)

∥∥T+
∥∥

L2(Σ)

)
(42)

for all K ⊂ Σext with dist (K, Σ) ≥ ρ > 0 and for all k ∈ N0.

Proof. Recall that the exterior Molodensky problem (EMP) can be solved by (38), (39). The
operator Q defined by

Q = −2πI + P|1(0, 0) + λP (0, 0)

and its adjoint operator Q∗ with respect to ‖·‖L2(Σ) are bijective in the Banach space
(C(0)(Σ), ‖·‖C(0)(Σ)) (see e.g. [27]). By virtue of the open mapping theorem the operators Q

and Q−1 are linear and bounded with respect to ‖·‖C(0)(Σ). Furthermore, (Q∗)−1 = (Q−1)∗.
Therefore, by virtue of the technique due to P. Lax (1954) (cf. Theorem 4.1), Q and its
inverse operator Q−1 are bounded with respect to ‖·‖L2(Σ).
Now, for all sufficiently small values ρ > 0 and all points x ∈ K ⊂ Σint with dist(K,Σ) ≥ ρ,
the Cauchy-Schwarz inequality gives

∣∣∣
(
∇(k)T

)
(x)

∣∣∣ =
∣∣∣∣
∫

Σ

σ(y)
(
∇(k)

x

1
|x− y|

)
dω(y)

∣∣∣∣ (43)

≤
(∫

Σ

∣∣∣∣∇(k)
x

1
|x− y|

∣∣∣∣
2

dω(y)

) 1
2 (∫

Σ

|σ(y)|2 dω(y)
) 1

2

.

This shows us that

sup
x∈K

∣∣∣
(
∇(k)T

)
(x)

∣∣∣ ≤ D

(∫

Σ

|σ(y)|2 dωy)
) 1

2

, (44)

where we have used the abbreviation

D = sup
x∈K

(∫

Σ

∣∣∣∣∇(k)
x

1
|x− y|

∣∣∣∣
2

dω(y)

) 1
2

. (45)

However,

sup
x∈K

∣∣∣
(
∇(k)T

)
(x)

∣∣∣ < D

(∫

Σ

∣∣Q−1(F )(y)
∣∣2 dω(y)

) 1
2

. (46)

Because of the boundedness of Q−1 with respect to ‖·‖L2(Σ) this tells us that

sup
x∈K

∣∣∣
(
∇(k)T

)
(x)

∣∣∣ ≤ C
(∫

Σ

|F (y)|2 dω(y)
) 1

2

, (47)

with C = D
∥∥Q−1

∥∥
L2(Σ)

. Hence, the statement (Theorem 5.1) is true. ¤
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6 Multiscale Modelling in (L2(Σ), ‖·‖L2(Σ))

Writing out the limit and jump relations (Theorem 4.1) we obtain the following corollary.

Corollary 6.1. For F ∈ L2(Σ)

lim
τ→0
τ>0

∫

Σ

Φi
τ (·, y)F (y) dω(y) = Ai(F ), i = 1, . . . , 7 (48)

where we have set

Ai(F ) =





F , i = 2, 3, 5, 6
0 , i = 4, 7∫
Σ

1
|·−y|F (y) dω(y) , i = 1∫

Σ
∂

∂ν(·)
1

|·−y|F (y) dω(y) , i = 8∫
Σ

∂
∂ν(y)

1
|·−y|F (y) dω(y) , i = 9,

(49)

and

Φ1
±τ (x, y) =

1
|x± τν(x)− y| ,

Φ2
±τ (x, y) =

1
2π

(
(x± τν(x)− y) · ν(x)
|x± τν(x)− y|3 − (x− y) · ν(x)

|x− y|3
)

,

Φ3
±τ (x, y) =

1
2π

(
(x± τν(x)− y) · ν(y)
|x± τν(x)− y|3 − (x− y) · ν(y)

|x− y|3
)

,

Φ4
τ (x, y) =

1
|x + τν(x)− y| −

1
|x− τν(x)− y|

Φ5
τ (x, y) =

1
4π

(
(x + τν(x)− y) · ν(x)
|x + τν(x)− y|3 − (x− τν(x)− y) · ν(x)

|x− τν(x)− y|3
)

,

Φ6
τ (x, y) =

1
4π

(
(x + τν(x)− y) · ν(y)
|x + τν(x)− y|3 − (x− τν(x)− y) · ν(y)

|x− τν(x)− y|3
)

,

Φ7
τ (x, y) =

ν(x) · ν(y)
|x + τν(x)− y| −

ν(x) · ν(y)
|x− τν(x)− y|3

−3
((x + τν(x)− y) · ν(y))((x + τν(x)− y) · ν(y))

|x + τν(x)− y|5

+3
((x− τν(x)− y) · ν(y))((x + τν(x)− y) · ν(y))

|x− τν(x)− y|5 ,

Φ8
τ (x, y) =

1
2

(
(x + τν(x)− y) · ν(x)
|x + τν(x)− y|3 +

(x− τν(x)− y) · ν(x)
|x− τν(x)− y|3

)
,

Φ9
τ (x, y) =

1
2

(
(x + τν(x)− y) · ν(y)
|x + τν(x)− y|3 +

(x− τν(x)− y) · ν(y)
|x− τν(x)− y|3

)
,

τ > 0, (x, y) ∈ Σ× Σ.

6.1 Scaling and Wavelet Functions

For τ > 0 and i ∈ {1, . . . , 9}, the family {Φi
τ}τ>0 of kernels Φi

τ : Σ × Σ → R is called a
Σ–scaling function of type i. Moreover, Φi

1 : Σ × Σ → R (i.e.: τ = 1) is called the mother
kernel of the Σ–scaling function of type i.
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Correspondingly, for τ > 0 and i ∈ {1, . . . , 9}, the family {Ψi
τ}τ>0 of kernels Ψi

τ : Σ×Σ → R
given by

Ψi
τ (x, y) = −α(τ)−1 d

dτ
Φi

τ (x, y), x, y ∈ Σ, (50)

is called a Σ–wavelet function of type i.
In the remainder of this paper we particularly choose α(τ) = τ−1 (of course, other weight
functions than α(τ) = τ−1 can be chosen in (50)). Moreover, Ψi

1 : Σ× Σ → R (i.e.: τ = 1)
is called the mother kernel of the Σ–wavelet function of type i.

The differential equation (50) is called the (scale continuous) Σ–scaling equation of type i.

Definition 6.2. Let {Φi
τ}τ>0 be a Σ–scaling function of type i. Then the associated

Σ–wavelet transform of type i is defined by (WT )(i) : L2(Σ) → L2((0,∞)× Σ) with

(WT )(i)(F )(τ, x) =
∫

Σ

Ψi
τ (x, y)F (y) dω(y) .

In accordance with our construction we have

Ψ1
τ (x, y) =

τ(x + τν(x)− y) · ν(x)
|x + τν(x)− y|3

Ψ2
τ (x, y) =

−τ

2π

(
1

|x + τν(x)− y|3 − 3
((x + τν(x)− y) · ν(x))2

|x + τν(x)− y|5
)

,

Ψ3
τ (x, y) =

τ

2π

(
ν(y) · ν(x)

|x + τν(x)− y|3
)

− 3τ

2π

(
((x + τν(x)− y) · ν(x))((x + τν(x)− y) · ν(y))

|x + τν(x)− y|5
)

,

Ψ4
τ (x, y) = −τ

(
(x + τν(x)− y) · ν(x)
|x + τν(x)− y|3 +

(x− τν(x)− y) · ν(x)
|x− τν(x)− y|3

)
,

Ψ5
τ (x, y) =

−τ

4π

(
1

|x− τν(x)− y|3 +
1

|x− τν(x)− y|3
)

+
3τ

4π

(
((x + τν(x)− y) · ν(x))2

|x + τν(x)− y|5 +
((x− τν(x)− y) · ν(x))2

|x− τν(x)− y|5
)

,

Ψ6
τ (x, y) =

−τ

4π

(
ν(x) · ν(y)

|x + τν(x)− y|3 +
ν(x) · ν(y)

|x− τν(x)− y|3
)

+
3τ

4π

(
((x + τν(x)− y) · ν(x))((x + τν(x)− y) · ν(y))

|s + τν(x)− y|5

+
((x− τν(x)− y) · ν(x))((x− τν(x)− y) · ν(y))

|x− τν(x)− y|5
)

,

for x, y ∈ Σ. For simplicity, we omit the representations of Ψ7
τ (x, y), Ψ8

τ (x, y) and Ψ9
τ (x, y),

x, y ∈ Σ, but the reader should note that they are available in an explicit representation.

6.2 Scale Continuous Reconstruction Formula

It is not difficult to see that the wavelets Ψi
τ , i ∈ {1, . . . , 9}, behave like O(τ−1), hence, the

convergence of the following integrals in the reconstruction theorem is guaranteed.

Theorem 6.3. Let {Φi
τ}τ>0 be a Σ–scaling function of type i. Suppose that F is of class

L2(Σ). Then the reconstruction formula
∫ ∞

0

(WT )i(F )(τ, ·)dτ

τ
= Ai(F ), i = 1, . . . , 7
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τ (sectional illustration) for two values of τ
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holds in the sense of ‖ · ‖L2(Σ) where Ai(F ) is defined in Corollary 6.1

Proof. Let R > 0 be arbitrary. By observing Fubini’s theorem and the identity

Φi
R(x, y) =

∫ ∞

R

Ψi
τ (x, y)

dτ

τ
, (x, y) ∈ Σ× Σ,

we obtain
∫ ∞

R

(WT )i(F )(τ, ·)dτ

τ
=

∫ ∞

R

∫

Σ

Ψi
τ (·, y)F (y) dω(y)

dτ

τ
(51)

=
∫

Σ

∫ ∞

R

Ψi
τ (·, y)F (y) dω(y)

dτ

τ

=
∫

Σ

Φi
R(·, y)F (y) dω(y) .

The limit R → 0 in connection with Theorem 6.1 yields the desired result. ¤

Next, our interest is to reformulate the wavelet transform and the reconstruction theorem
by use of dilated and shifted versions of the mother kernel. For that purpose we introduce
the x–translation and the τ–dilation operator of a mother kernel as follows:

Tx : Ψi
1 7→ TxΨi

1 = Ψi
1;x = Ψi

1(x, ·), x ∈ Σ, (52)

Dτ : Ψi
1 → DτΨi

1 = Ψi
τ , τ > 0 . (53)

Consequently it follows that

TxDτΨi
1 = TxΨi

τ = Ψi
τ ;x = Ψi

τ (x, ·), (54)

i = 1, . . . , 9. In other words,

(WT )i(F )(τ ; x) =
∫

Σ

Ψτ ;x(y)F (y) dω(y), x ∈ Σ, τ > 0 . (55)

Moreover, we have the following limit results.

Theorem 6.4. For x ∈ Σ and F ∈ L2(Σ)

lim
R→0
R>0

∫

Σ

Φi
R;x(y)F (y) dω(y) = Ai(F ), i = 1, . . . , 7 (56)

Note that the properties of the Σ–wavelets of type i (analogously to variants of spherical
wavelets developed in [9], [10]) do not presume the zero–mean property of Ψi

τ . The wavelets
constructed in this way, therefore, do not satisfy a substantial condition of the Euclidean
concept. However, it should be pointed out that a construction of wavelets possessing the
zero-mean property (see [9]), is obvious and will not be discussed here.

6.3 Scale Discretized Reconstruction Formula

Until now we were concerned with a scale continuous approach to wavelets. In what follows,
scale discrete Σ–scaling functions and wavelets of type i will be introduced. We start with
the choice of a sequence which divides the continuous scale interval (0,∞) into discrete
pieces. More explicitly, (τj)j∈Z denotes a sequence of real numbers satisfying

lim
j→∞

τj = 0 and lim
j→−∞

τj = ∞ . (57)
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For example, one may choose τj = 2−j , j ∈ Z (note that in this case, 2τj+1 = τj , j ∈ Z).

Given a Σ–scaling function {Φi
τ}τ>0 of type i, then we clearly define the (scale) discretized

Σ–scaling function of type i by {Φi
τj
}j∈Z. In doing so, by Theorem 6.4, we immediately get

the following result.

Theorem 6.5. For F ∈ L2(Σ)

lim
j→∞

∫

Σ

Φi
τj

(·, y)F (y) dω(y) = Ai(F ), i = 1, . . . , 7 (58)

holds in the ‖cdot‖L2(Σ)–sense where Ai(F ) is defined in Corollary 6.1.

Our procedure canonically leads us to the following type of scale discretized wavelets.

Definition 6.6. Let {Φτj
}j∈Z be a discretized Σ–scaling function of type i. Then the

(scale) discretized Σ–wavelet function of type i is defined by

Ψi
τj

(·, ·) =
∫ τj

τj+1

Ψi
τ (·, ·)dτ

τ
, j ∈ Z (59)

In connection with (50) it follows that

Ψi
τj

(·, ·) = −
∫ τj

τj+1

τ
d

dτ
Φi

τ (·, ·)dτ

τ
= Φi

τj+1
(·, ·)− Φi

τj
(·, ·). (60)

Formula (60) is called (scale) discretized Σ–scaling equation of type i.
Assume now that F is a function of class L2(Σ). Observing the discretized Σ–scaling equation
of type i we get for J ∈ Z and N ∈ N

∫

Σ

Φi
τJ+N

(·, y)F (y) dω(y) =
∫

Σ

Φi
τJ

(·, y)F (y) dω(y) +
J+N−1∑

j=J

∫

Σ

Ψi
τj

(·, y)F (y) dω(y) .

Therefore we are able to formulate the following corollary.

Corollary 6.7. Let {Φi
τj
}j∈Z be a (scale) discretized Σ–scaling function of type i. Then

the multiscale representation of a function F ∈ L2(Σ)

+∞∑

j=−∞

∫

Σ

Ψi
τj

(·, y)F (y) dω(y) = Ai(F ), i = 1, . . . , 7 (61)

holds in the ‖ · ‖L2(Σ)–sense where Ai(F ) is defined in Corollary 6.1.

Corollary 6.7 admits the following reformulation.

Corollary 6.8. Under the assumption of Corollary 6.7

P i
τJ

(F ) +
+∞∑

j=J

∫

Σ

Ψi
τj

(·, y)F (y) dω(y) = Ai(F ), i = 1, . . . , 7 (62)

for every J ∈ Z (in the sense of the ‖ · ‖L2(Σ)–norm), where P i
τJ

(F ) is given by

P i
τJ

(F ) =
∫

Σ

Φi
τJ

(·, y)F (y) dω(y) .
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Continuous Formulation Discrete Formulation

Scaling Functions
Φi

τ (x, y) ⇒ Φi
J(x, y) = Φi

τJ
(x, y)

Wavelets
Ψi

τ (x, y) = −τ d
dτ Φi

τ (x, y) ⇒ Ψi
j(x, y) = Φi

j+1(x, y)− Φi
j(x, y)

Convergence Relations
F = lim

τ→0
(F ∗ Φi

τ ) ⇒ F = lim
J→∞

(F ∗ Φi
J )

F =
∞∫
0

(F ∗Ψi
τ ) 1

τ dτ ⇒ F =
∞∑

j=−∞
(F ∗Ψi

j)

Table 1: Comparison of continuous and discrete formulation

The scale discretized Σ–wavelets allow the following formulation

TxDτj Ψ
i
1 = TxΨi

τj
= Ψi

τj;x
= Ψi

τj
(x, ·) (63)

for i = 1, . . . , 9 and x ∈ Σ.

The (scale) discretized Σ–wavelet transform of type i is defined by

(WT )i : L2(Σ) 7→


H : Z× Σ → R

∣∣∣
∞∑

j=−∞

∫

Σ

(H (j; y))2 dω(y) < ∞




with
(WT )i(F )(τj ;x) =

∫

Σ

Ψi
τj;x

(y)F (y) dω(y) .

Theorem 6.9. Let {Φi
τj
}j∈Z be a (scale) discretized Σ–scaling function of type i. Then, for

all F ∈ L2(Σ), the reconstruction formula

+∞∑

j=−∞
(WT )i(F )(τj ; ·) = Ai(F ), i = 1, . . . , 7 (64)

holds in ‖ · ‖L2(Σ)–sense.

Comparing this result with the continuous analogue Theorem 6.3 we notice that the subdi-
vision of the continuous scale interval (0,∞) into discrete pieces means substitution of the
integral over τ by an associated discrete sum. A comparison of the discrete formulation and
the continuous formulation can be found Table 1.

6.4 Scale and Detail Spaces

As in the spherical theory of wavelets (see [7], [8]), the operators Ri
τj

, P i
τj

defined by

Ri
τj

(F ) =
∫

Σ

Ψi
τj

(·, y)F (y) dω(y), F ∈ L2(Σ), (65)

P i
τj

(F ) =
∫

Σ

Φi
τj

(·, y)F (y) dω(y), F ∈ L2(Σ) (66)
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may be understood as band pass and low pass filter, respectively. The scale spaces Vi
τj

and
the detail spaces W i

τj
of type i are defined by

Vi
τj

= P i
τj

(
L2(Σ)

)
=

{
P i

τj
(F )

∣∣F ∈ L2(Σ)
}

, (67)

Wi
τj

= Ri
τj

(
L2(Σ)

)
=

{
Ri

τj
(F )

∣∣F ∈ L2(Σ)
}

, (68)

respectively. From the identity
∫

Σ

Φi
τJ+1

(·, y)F (y) dω(y) =
∫

Σ

Φi
τJ

(·, y)F (y) dω(y) +
∫

Σ

Ψi
τJ

(·, y)F (y) dω(y) (69)

i.e.
P i

τJ+1
(F ) = P i

τJ
(F ) + Ri

τJ
(F ) (70)

for all J ∈ Z it easily follows that

Vi
τj+1

= Vi
τj

+Wi
τj

. (71)

However, it should be remarked that the sum (71) generally is neither direct nor orthogonal.
The equation (71) may be interpreted in the following way: The set Vi

τj
contains a P i

τj
−fil-

tered version of a function belonging to the class L2(Σ). The lower the scale, the stronger the
intensity of filtering. By adding ’Ri

τj
−details‘ contained in the space Wi

τj
the space Vi

τj+1
is

created, which consists of a filtered versions at resolution j + 1. Obviously, for i = 2, 3, 5, 6,

∞⋃

j=−∞
Vi

τj

‖·‖L2(Σ)

= L2(Σ) .

Our purpose is to establish a multiresolution analysis for the Σ−wavelet function.

Definition 6.10. A family of subspaces {V i
τ (Σ)}τ∈(0,∞) ⊂ L2(Σ), i ∈ {1, . . . , 9}, is called

a multiresolution analysis if it satisfies the following properties:

(i) {0} ⊂ V i
τ (Σ) ⊂ V i

τ ′(Σ) ⊂ L2(Σ) for 0 ≤ τ ′ ≤ τ ≤ ∞,

(ii) {limτ→∞
(∫

Σ
Φi

τ (., y)F (y) dω(y)
) |F ∈ L2(Σ)} = {0},

(iii) {F ∈ L2(Σ)|F ∈ V i
τ (Σ) for some τ ∈ (0,∞)}‖·‖L2(Σ) = L2(Σ).

The following lemma summarizes results which were listed in the previous section.

Lemma 6.11. For the scale spaces V i
τ , i = 5, 6, of the Σ−scaling function of type 5 and 6

defined in (67), respectively, the following statements are true:

(i) V i
τ ⊂ L2(Σ) for all τ ∈ (,∞),

(ii) {limτ→∞
(∫

Σ
Φi

τ (., y)F (y) dω(y)
) |F ∈ L2(Σ)} = {0},

(iii) V i
τ is a linear subspace of L2(Σ),

(iv) {F ∈ L2(Σ)|F ∈ V i
τ (Σ) for some τ ∈ (0,∞)}‖·‖L2(Σ) = L2(Σ).

Proof. Statement (i) is clear by the definition of the scale spaces. Moreover, statement (ii)
follows from the fact that the Σ−scaling functions of type 5 and 6 tend to 0 for τ → ∞.
Finally, property (iii) is a result of the linearity of the integral, while (iv) has been shown
in the last section. ¤
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It should be noted that for the case of Σ to be a sphere property (i) of Definition 6.10 has
been shown in [13] by transcribing the scaling functions and wavelets generated by layer
potentials into a nomenclature of the spherical wavelet theory. Spherical wavelets generated
by layer potentials of this type will be discussed in a future master thesis in the context of
solving the Stokes problem of physical geodesy.

6.5 A Tree Algorithm

Next we deal with some aspects of scientific computing (for a similar approach in spherical
theory see [12]). We are interested in a pyramid scheme for the (approximate) recursive
computation of the integrals P i

τj
(F ) and Ri

τj
(F ) starting from an initial approximation of a

given function F ∈ L2(Σ). The tree algorithm (pyramid scheme) is based on the existence
of a ‘reproducing kernel function‘ on the regular surface Σ.
A pyramid scheme is a tree algorithm with the following ingredients. Starting from a suffi-
ciently large J ∈ N such that for all x ∈ Σ

P i
τJ

(F ) '
NJ∑

k=1

a
Nj

k Φi
τJ

(x, yNJ

k ) ' Ai(F ), i = 1, . . . , 7 (72)

we want to calculate coefficients

aNj ∈ RNj , aNj =
(
a

Nj

1 , . . . , a
Nj

Nj

)T

, j = J0, . . . , J,

such that the following statements hold true:

1. The vectors aNj , j = J0, . . . , J−1, are obtainable by recursion starting from the vector
aNJ .

2. For j = J0, . . . , J

P i
τj

(F )(x) =
∫

Σ

Φi
τj

(x, y)F (y) dω(y) '
Nj∑

k=1

a
Nj

k Φi
τj

(
x, y

Nj

k

)
.

For j = J0 + 1, . . . , J

Ri
τj−1

(F )(x) =
∫

Σ

Ψi
τj−1

(x, y)F (y) dω(y) '
Nj−1∑

k=1

a
Nj−1
k Ψi

τj−1

(
x, y

Nj−1
k

)
.

(the symbol ’'‘ always means that the error is assumed to be negligible).

In the scheme we base the numerical integration on certain approximate formulae associated
to known weights w

Nj

k ∈ R and prescribed knots y
Nj

k ∈ Σ, j = J0, . . . , J . This may
be established, for example, by transforming the integrals over the regular surface Σ to
integrals over the (unit) sphere Ω in case an explicit transformation Θ : Ω → Σ is given (see
[6], [26]). Note that j denotes the scale of the discretized scaling function, Nj is the number
of integration points to the accompanying scale j, and k denotes the index of the integration
knot within the integration formulae under consideration, i.e.:

P i
τj

(F )(x) '
Nj∑

k=1

w
Nj

k F
(
y

Nj

k

)
Φi

τj

(
x, y

Nj

k

)
, (73)
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j = J0, . . . J ,

Ri
τj−1

(F )(x) '
Nj−1∑

k=1

w
Nj−1
k F

(
y

Nj−1
k

)
Ψi

τj−1

(
x, y

Nj−1
k

)
, (74)

j = J0 + 1, . . . , J .

The pyramid scheme – as every recursive implementation – is divided into two parts, the
initial step and the recursion step, here called the pyramid step.

Initial Step. For a suitable large integer J , P i
τJ

(x) is sufficiently close to the right hand side
of (72) for all x ∈ Σ. Thus we simply get by (73)

aNJ

k = wNJ

k F (yNJ

k ), k = 1, . . . , NJ . (75)

Pyramid Step. The essential idea for the development of our recursive scheme is the existence
of a (symmetric) kernel function Ξi

j : Σ× Σ → R such that

Φi
τj

(x, y) '
∫

Σ

Φi
τj

(z, x)Ξi
j(y, z) dω(z) (76)

and
Ξi

j(x, y) '
∫

Σ

Ξi
j(z, x)Ξi

j+1(y, z) dω(z) (77)

for j = J0, . . . , J .

Since our scaling functions are non–bandlimited, the scale spaces V i
τj

are infinite–dimensio-
nal. This leads us to choose the functions Ξj , for example, to be equal to

Ξi
j = Φl

τJ+L
, j = J0, . . . , J ; l ∈ {2, 3, 5, 6} .

for suitable L ∈ N0. By virtue of the approximate integration rules on the sphere we thus
get

∫

Σ

Φi
τj

(·, y)F (y) dω(y) '
∫

Σ

Ξi
j(y, z)

∫

Σ

Φi
τj

(·, z)F (y) dω(z) dω(y)

'
∫

Σ

Φi
τj

(·, z)
∫

Σ

Ξi
j(y, z)F (y) dω(y) dω(z)

'
Nj∑

k=1

a
Nj

k Φi
τj

(·, yNj

k ) (78)

for j = J0, . . . , J − 1, where we have set

a
Nj

k = w
Nj

k

∫

Σ

Ξi
j

(
y

Nj

k , y
)

F (y) dω(y) (79)

for j = J0, . . . , J − 1 and k = 1, . . . , Nj . Hence, in connection with (78), we find

a
Nj

k = w
Nj

k

∫

Σ

Ξi
j

(
y

Nj

k , y
)

F (y) dω(y) (80)

' w
Nj

k

∫

Σ

∫

Σ

Ξi
j+1(z, y)Ξi

j(y
Nj

k , z) dω(z)F (y) dω(y)

' w
Nj

k

Nj+1∑

l=1

w
Nj+1
l Ξi

j

(
y

Nj

k , y
Nj+1
l

)∫

Σ

Ξi
j+1

(
y

Nj+1
l , y

)
F (y) dω(y)

= w
Nj

k

Nj+1∑

l=1

w
Nj+1
l Ξj

(
y

Nj

k , y
Nj+1
l

)
a

Nj+1
l .
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for j = J − 1, . . . , J0 and k = 1, . . . , Nj .

We see that the coefficients a
NJ−1
k can be calculated recursively from aNJ

l for the initial level
J, a

NJ−2
k can be deduced from a

NJ−1
l , etc. Finally, we get as a reconstruction scheme

P i
τj

(F ) '
Nj∑

k=1

a
Nj

k Φi
τj

(
·, yNj

k

)
, j = J0, . . . , J, (81)

Ri
τj−1

(F ) '
Nj−1∑

k=1

a
Nj−1
k Ψi

τj−1

(
·, yNj−1

k

)
, j = J0 + 1, . . . , J . (82)

Note that the coefficients aNJ in the initial step do not depend on the choice of Ξi
J = Φl

τJ+L
.

Furthermore, the functions Ξi
j , j = J0, . . . , J−1, can be chosen independently of the scaling

function {Φi
τj
}j∈Z used in (81) and (82).

Table 2: Pyramid Scheme (Tree Algorithm)

Initial step: For J sufficiently large

aNJ

k = wNJ

k F (yNJ

k ), k = 1, . . . , NJ

Pyramid step: For j = J0, . . . , J − 1 and k = 1, . . . , Nj

a
Nj

k = w
Nj

k

Nj+1∑

l=1

Ξi
j

(
y

Nj

k , y
Nj+1
l

)
a

Nj+1
l

In conclusion, the above considerations lead us to the following decomposition and recon-
struction scheme:

F → aNJ → aNJ−1 → . . . → aNJ0+1 → aNJ0 → P i
τJ0

(F )
↓ ↓ ↓ ↓

Ri
τJ

(F ) Ri
τJ−1

(F ) Ri
τJ0+1

(F ) Ri
τJ0

(F )

(decomposition scheme)

aNJ0 aNJ0+1 aNJ−1

↓ ↓ ↓
Ri

τJ0
(F ) Ri

τJ0+1
(F ) Ri

τJ−1
(F )

↘ ↘ ↘
P i

τJ0
(F ) → + → P i

τJ0+1
→ + → P i

τJ−1
(F ) → + → PτJ (F )

(reconstruction scheme).

The numerical effort of a pyramid step can drastically be reduced by use of a panel–clustering
method (e.g. fast multipole procedures as developed by [18]). In doing so, the evaluations
take advantage of the localizing structure of the kernels Ξi

j . Roughly spoken, the kernel is
split into a near field and a far field component. The far field component is approximated by
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a certain expression obtaining the ’low frequency contributions’. For the points close to the
evaluation position the evaluation uses the exact near field of the kernel. For the remaining
points, the approximate far field contributions are put together.

The numerical results (based on the types i = 5, 6) presented in the Diploma thesis [26]
illustrate the efficiency and economy in applications of our wavelet method for different types
of regular surfaces (e.g. sphere, ellipsoid, Cassini‘s surfaces, etc). Figure 7 demonstrates
the functionality of the multiscale analysis. The mechanism is as follows: To a scale–
reconstruction at scale J = 5 the detail–structure at scale J = 5 has to be added to get
the scale–reconstruction at scale J = 6. This can be done globally as shown in Figure 7 or
locally as shown in Figure 8 without getting any oscillations because of the space–localizing
properties of the scaling functions.
Finally three important applications of wavelet decomposition and reconstruction should be
mentioned:

(i) The ’zoom–in‘ property allows a local high–scale reconstruction of fine structure based
on global data. For the evaluation of a functional value under consideration, only
wavelet coefficients close to the point have to be taken into account. This aspect of
functional evaluation enables us to derive local features within a global model. This is
demonstrated in Figure 6 by a reconstruction of the EGM96–geopotential model [24] on
the reference ellipsoid from discrete data in local areas (for example, South–America).

(ii) Because of the space localizing property of scaling functions and wavelets it is possible
to perform a local multiresolution analysis. This is done in Figure 8 using the EGM96–
geopotential model over Italy on the ellipsoidal telluroid.

(iii) In Figure 9 the detection of a high frequency phenomena is demonstrated. We added
within the EGM96–model a mass point lying 63km under the (ellipsoidal) Earth’s
surface and at 80o West and 30o South to the EGM96 disturbing potential model.
50% of the total energy of this mass point are located in a spherical cap with a
diameter of 8o. It is well known that phenomena with such short wavelengths cannot be
detected with the spherical or ellipsoidal harmonic techniques known in the literature.
A maximum spherical harmonic degree of N = 300 would be necessary to resolve such
small scale phenomena.

In conclusion, as mentioned in our introduction, three essential features are incorporated
in this way of thinking about wavelets generated by layer potentials, namely the basis
property, the zoom–in ability, and fast computation. In particular, these facts justify the
characterization of our wavelets as ’building blocks’ that enable fast decorrelation of data
given on a regular surface.



6 MULTISCALE MODELLING IN (L2(Σ), ‖·‖L2(Σ)) 22

Figure 6: Illustration of the zoom–in property. In order to reconstruct a function on a
local area, only data in a certain neighborhood of this area are used. Since global high–
scale reconstruction of fine structure is very time–consuming, only the area of interest is
reconstructed which can be done with a considerably fewer effort.
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(a) global scale–reconstruction at scale J = 5

(b) global detail–reconstruction at scale J = 5

(c) global scale–reconstruction at scale J = 6

Figure 7: Scale–reconstruction at scale J = 6 (c) consists of detail–reconstruction at scale
J = 5 (b) added to scale–reconstruction at scale J = 5 (a).
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(a) local scale reconstruction with Σ−scaling
function Φ6

τj
at scale j = 6

(b) local wavelet reconstruction with
Σ−wavelet Ψ6

τj
at scale j = 6

(c) local wavelet reconstruction with
Σ−wavelet Ψ6

τj
at scale j = 7

(d) local wavelet reconstruction with
Σ−wavelet Ψ6

τj
at scale j = 8

(e) local scale reconstruction with Σ−scaling
function Φ6

τj
at scale j = 9

(f) error of the local scale reconstruction at
scale j = 9 to the EGM96 model

Figure 8: Local multiresolution analysis with Σ−scaling functions and wavelets of the
EGM96–geopotential model over Italy.
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(a) local reconstruction with Σ−scaling func-
tion Φ6

τj
at scale j = 5

(b) local reconstruction with Σ−wavelet
function Ψ6

τj
at scale j = 5

(c) local reconstruction with Σ−wavelet
function Ψ6

τj
at scale j = 6

(d) local reconstruction with Σ−wavelet
function Ψ6

τj
at scale j = 7

(e) local reconstruction with Σ−scaling func-
tion Ψ6

τj
at scale j = 8

(f) local reconstruction with Σ−scaling func-
tion Φ6

τj
at scale j = 9

Figure 9: Detection of high frequency perturbation within a local area of the EGM96–
geopotential model. The buried mass point at 80o West, 30o South is clearly detected,
especially in the wavelet reconstruction at scale 8.
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7 Multiscale Modelling of Boundary Value Problems

(EMP) For given F ∈ C(0)(Σ), the solution T ∈ Pot(1)(Σext) with ∂T+

∂νΣ
= F of the exterior

Molodensky problem (EMP) can be written as layer potential (38), where the single layer
µ ∈ C(0)(Σ) satisfies the integral equation

−2πµ(x) +
∫

Σ

(
Φ8

τL
(x, y) + λ(x)Φ1

τL
(x, y)

)
µ(y) dω(y) ' F (x) (83)

for all x ∈ Σ (L ∈ N sufficiently large). An approximation of scale J

P̂ i
τJ

(Q)(x) =
NJ∑

l=1

âNJ

l Φi
τJ

(
x, ŷNJ

l

)
, x ∈ Σ (84)

(with i ∈ {2, 3, 5, 6}, âNJ

l ∈ R, ŷNJ

l ∈ Σ, l = 1, . . . , NJ and J,NJ ∈ N sufficiently large)
is deducible from (83) by solving a system of linear equations obtained by an appropriate
approximation method such as collocation, Galerkin procedure, least squares approximation,
etc .
For solving the linear systems fast multipole methods (FMM) are applicable (see e.g. [18]).
The aforementioned observations concerning the (exterior) Molodensky problem lead us to
tree algorithms with the following ingredients:

Starting from âNJ ∈ RNJ , âNJ =
(
âNJ
1 , . . . , âNJ

NJ

)T

, the coefficients

âNj ∈ RNj , âNj =
(
â

Nj

1 , . . . , â
Nj

Nj

)T

, j = J0, . . . , J − 1, (85)

are determined such that the following rules hold true:

1. The vectors âNj , j = J0, . . . , J − 1 are given by recursion (see Section 6.5)

â
Nj

k = w
Nj

k

Nj+1∑

l=1

Ξi
j

(
ŷ

Nj

k , y
Nj+1
l

)
â

Nj+1
l . (86)

2. For j = J0, . . . J

P̂ i
τj

(Q)(x) '
Nj∑

k=1

â
Nj

k Φi
τj

(
x, ŷ

Nj

k

)
, x ∈ Σ . (87)

For j = J0 + 1, . . . J

R̂i
τj−1

(Q)(x) '
Nj∑

k=1

â
Nj

k Ψi
τj−1

(
x, ŷ

Nj

k

)
, x ∈ Σ (88)

where
R̂i

τj−1
(Q)(x) = P̂ i

τj
(Q)(x)− P̂ i

τj−1
(Q)(x) . (89)

Theorem 7.1. Let Σ be a regular surface such that (1) holds true. For given F ∈ C(0)(Σ),
let U be the potential of class Pot(1)(Σext) with ∂T+

∂νΣ
+λT+ = F . The function FJ ∈ C(0)(Σ)
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given by

FJ (x) =
NJ0∑

l=1

â
NJ0
l

(
−2πΦi

τJ0

(
x, ŷ

NJ0
l

)
+

∫

Σ

Φ8
τL

(x, y)Φi
τJ0

(
y, ŷ

NJ0
l

)
dω(y)

λ(x)
∫

Σ

Φ1
τL

(x, y)Φi
τJ0

(
y, ŷ

NJ0
l

)
dω(y)

)

+
J−1∑

j=J0

Nj+1∑

l=1

â
Nj+1
l

(
−2πΨi

τj+1

(
x, ŷ

Nj+1
l

)
+

∫

Σ

Φ8
τL

(x, y)Ψi
τj+1

(
y, ŷ

Nj+1
l

)
dω(y)

λ(x)
∫

Σ

Φ1
τL

(x, y)Ψi
τj+1

(
y, ŷ

Nj+1
l

)
dω(y)

)

(90)

x ∈ Σ, represents a J−scale approximation of F ∈ C(0)(Σ) in the ‖·‖L2(Σ)−sense, while

UJ ∈ Pot(0)(Σext) given by

UJ(x) =
NJ0∑

l=1

â
NJ0
l

∫

Σ

Φi
τJ0

(
y, ŷ

NJ0
l

) 1
|x− y|dω(y)

+
J−1∑

j=J0

Nj+1∑

l=1

â
Nj+1
l

∫

Σ

Ψi
τj

(
y, ŷ

Nj+1
l

) 1
|x− y|dω(y)

represents a J−scale approximation of U in the ‖·‖C(0)(K)−sense for every K ⊂ Σext with
dist(K, Σ) > 0. Furthermore

sup
x∈K

∣∣∣∇(k)U(x)−∇(k)UJ(x)
∣∣∣ ≤ C ‖F − FJ‖L2(Σ) (91)

for all k ∈ N0.

In other words, the tree algorithm developed above uses an approximation method by solv-
ing a linear system for the initial step and integration rules with known weights and knots
for the subsequent pyramid steps.
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Birkhäuser, Boston, 2004.

[15] M. Gutting, Multiscale Gravitational Field Modeling from Oblique Derivatives,
Diploma Thesis, Department of Mathematics, Geomathematics Group, University of
Kaiserslautern, 2002.

[16] W. A. Heiskanen, H. Moritz, Physical Geodesy, (W. H. Freeman and Company 1967).

[17] Z. Martinec, Boundary-value Problems for Gravimetric Determination of a Precise
Geoid, (Springer, Berlin, Heidelberg, New York 1999).

[18] O. Glockner, On Numerical Aspects of Gravitational Field Modeling from SST and SGG
by Harmonic Splines and Wavelets (With Application to CHAMP Data), Ph.D-Thesis,
Department of Mathematics, Geomathematics Group, Shaker, Aachen, 2001.



REFERENCES 29

[19] K. Hesse, Domain Decomposition Methods in Multiscale Geopotential Determination
from SST and SGG, Ph.D-Thesis, Department of Mathematics, Geomathematics Group,
Shaker, Aachen, 2003.
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