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ABSTRACTThis thesis investigates the 
onstrained form of the spheri
al Minimax lo
ation problemand the spheri
al Weber lo
ation problem. Spe
i�
ally, we 
onsider the problem of lo
atinga new fa
ility on the surfa
e of the unit sphere in the presen
e of 
onvex spheri
al polygonalrestri
ted regions and forbidden regions su
h that the maximum weighted distan
e fromthe new fa
ility on the surfa
e of the unit sphere to m existing fa
ilities is minimized andthe sum of the weighted distan
e from the new fa
ility on the surfa
e of the unit sphereto m existing fa
ilities is minimized . It is assumed that a forbidden region is an area onthe surfa
e of the unit sphere where travel and fa
ility lo
ation are not permitted and thatdistan
e is measured using the great 
ir
le ar
 distan
e.We represent a polynomial time algorithm for the spheri
al Minimax lo
ation problem forthe spe
ial 
ase where all the existing fa
ilities are lo
ated on the surfa
e of a hemisphere.Further, we have developed algorithms for spheri
al Weber lo
ation problem using barrierdistan
e on a hemisphere as well as on the unit sphere.Keywords: spheri
al lo
ation, spheri
al 
onvex polygon,restri
ted and barrier regions, great
ir
le ar
, barrier distan
e



1. INTRODUCTION1.1 Appli
ations and Literature SurveyFa
ility lo
ation on the plane 
an be 
onsidered as to lo
ate one or more new fa
ilitiesamong m given demand points (or existing fa
ilities ) on the plane. When we lo
ate onlyone new fa
ility, the optimality is a
hieved :1. the sum of weighted distan
es from the new fa
ility to the demand point is minimized,or2. the maximum weighted distan
e from the new fa
ility to the demand points is mini-mized or the minimum weighted distan
e from the new fa
ility to the demand pointsis maximized.The weights usually represent the 
ost of delivery per unit distan
e, goods demanded, pop-ulation, et
,. In ea
h of these optimality approa
hes, the planar distan
es are used.The �rst formulation is referred as "Classi
al weber problem [22℄" or "median (min-isum)" formulation of the problem and the se
ond formulation is referred as "
enter (mim-imax/maximin" [22℄) formulation of the problem.These two formulations, of 
ause, are still valid when all lo
ations are on the surfa
e of asphere. For example, the problem of lo
ating a store of emergen
y supplies for the relief ofthe 
onsequen
e of natural or man-made disasters around the globe has the element of aminimax problem on the surfa
e of the sphere.When demand points are lo
ated on the plane, the maximin fa
ility lo
ation problem is oflittle pra
ti
al signi�
an
e. That means, a fa
ility 
an be lo
ated "at in�nity" to maximizethe minimum weighted distan
e. But, on a sphere, the maximum distan
e is one-half ofthe maximum 
ir
umferen
e and , hen
e the problem is not trivial. Lo
ating a fa
ility asfar as possible from a given set of missile bases 
an be given as an appli
ation. The ob-je
tive of this problem would be the maximization of the time before the arrival of a missile.



2 1. Introdu
tionHowever, all the demand points are spread all over the globe, planar distan
es are no longersuitable approximations in modelling. Therefore, many resear
hers 
onsider spheri
al dis-tan
es instead of planar distan
es to lo
ate an appropriate lo
ation over the globe. Thenthe relevant lo
ation problem is as follows : Consider that all the demand points are lo
atedon the surfa
e of a sphere with known asso
iated weights. Then the problem to �nd anoptimal lo
ation on the surfa
e of the sphere is referred as "fa
ility lo
ation on the sphere"or "Spheri
al Lo
ation Problem( SphereLo
 )".We 
onsider single fa
ility spheri
al lo
ation problems ( SphereLo
 ) of the medianand 
enter type. I.e., we solve
min
X∈S0

f(X) :=
m

∑

i=1

wid(X,Exi) WeberSphereLo
and
min
X∈S0

h(X) :=
m

max
i=1

wid(X,Exi) CenterSphereLo
where Ex1, Ex2, . . . , Exm are given demand points (or existing lo
ations) and X is theunknown lo
ation of a new fa
ility. All lo
ations lie on the unit sphere S0 and possibledistan
e fun
tions d(X,Y ) between points X,Y ∈ S0 are dis
ussed in detail later on.Appli
ations of spheri
al lo
ation problems appear in military, 
ivil, naval, 
ommer
ialproblems. These are be
oming global in the sense that the distan
es involved are so largeon the globe that planar distan
es are no longer suitable.As an illustration of this spheri
al lo
ation problem, 
onsider the following example: aprodu
t is to be distributed to 15 
ities by air, as shown in Table 1.1, where ea
h 
ity isde�ned by its latitude and longitude. The weights are the fun
tions of the overall demand.Our task is to �nd a best lo
ation for the fa
tory in order to distribute the produ
t withminimum 
ost.Spheri
al lo
ation problems with the measuring distan
e on the surfa
e of the sphere is theshortest length of ar
 (great 
ir
le distan
e ) ( see De�nition 1.2.8), is more 
omplex thanits 
ounterpart on the plane be
ause its obje
tive is not 
onvex as the distan
e fun
tion isnot 
onvex on the surfa
e of the sphere( see Theorem 1.2.1 ).



1.1. Appli
ations and Literature Survey 3City Latitude Longitude Weights1 London 51.5 0.4 0.122 Paris 48.9 2.3 0.073 Zuri
h 47.4 8.5 0.084 Rome 41.9 12.5 0.055 Copenhagen 55.7 12.6 0.086 Berlin 52.5 13.4 0.077 Sto
kholm 59.3 18.9 0.068 Athens 38.0 23.7 0.079 Ankara 39.9 32.8 0.0510 Tel-Aviv 32.1 34.8 0.0511 Mos
ow 55.7 37.7 0.0512 Teheran 35.4 51.4 0.0713 Bombay 18.9 72.8 0.0314 Manila 14.6 121.0 0.0515 Tokyo 35.6 139.7 0.10Tab. 1.1: Latitudes, Longitudes and 
orresponding weights of 15 
itiesIn the literature various de�nitions of distan
es d(X,Y ) are used, whi
h we will dis
uss insome details in se
tions 1.2 and 2.2. In the following brief summary of the literature wewill use 
orresponding notations. Some of the results are further detailed in this thesis.Drezner and Wesoloswsky [11℄, in 1978 
onsidered the related problem where they used twoways of measuring distan
es ( see se
tion 2.2 ) and used iterative heuristi
 method forsolving the WeberSphreLo
 problem with shortest ar
 distan
e.A short overview on lo
ating a fa
ility on a sphere 
an be found in the text book of RobertF. Love, James G. Morris and G.O. Wesolowsky [22℄. They 
onsider the median problemwhere d is the shortest ar
 distan
e and present a Weiszfeld-like iterative pro
edure on thesphere.



4 1. Introdu
tionA. A. Aly, D.C. Kay, D.W. Litwhiler [1℄, in 1978 worked on the spheri
al median problemwith the shortest ar
 distan
e as distan
e measure. They found out that an optimal solu-tion to this problem must lie within the spheri
al 
onvex hull ( De�nition 1.2.14 ) of thedemands points if the demand points are not lo
ated entirely on a great 
ir
le ar
.Zvi Drezner [12℄, in 1981 
onsidered the 
ase when all the demand points lie on a great
ir
le ar
 and he proposed that the optimal solution o

urs on a demand point in this situ-ation(Theorem 2.1.4 ).In 1979, Katz and Cooper [19℄ 
onsidered the problem, "Optimal Lo
ation on the Sphere ".They use three di�erent metri
s as distan
es between points on the surfa
e of the sphere:(1)Eu
lidean ; (2) squared Eu
lidean distan
es; (3) geodesi
 or great 
ir
le distan
e.Both, "Kats and Cooper [19℄" and "Drezner and Wesolowskey [11℄" propose Weiszfeld -like algorithms for �nding an optimal fa
ility lo
ation on a sphere. However, 
onvergen
ehas never been proposed.In 1985, Zvi Drezner [14℄ proposed a 
onvergent algorithm for the solution to the minisumlo
ation problem on the sphere with measuring distan
e on the surfa
e of the sphere is thelength of shortest ar
. The proposed algorithm is presented in the se
tion 2.3.Drezner and Wesolowsky [13℄ dealt with minimax and maximin fa
ility lo
ation problem ona sphere in 1983. First they propose an algorithm for �nding a lo
al minimax point using anon linear programming approa
h. Then they develop an algorithm to determine the globalminimax points using the obtained lo
al mimimax points ( see se
tion 3.1 ).In 1994, Xue [32℄ proposed a globally 
onvergent algorithm to the minisum formulation ofthis problem with the shortest length of ar
 is the distan
e metri
. In his paper, he provedthe hull property of the problem, i.e., every global minimizer of the problem must lie withinthe spheri
al 
onvex hull ( De�nition 1.2.14 ) of the existing fa
ilities. Also, he presentedoptimality 
onditions for the spheri
al fa
ility lo
ation problem in terms of the optimality
onditions for the 
orresponding Eu
lidean fa
ility lo
ation problem. Finally, a gradient



1.1. Appli
ations and Literature Survey 5algorithm for solving the spheri
al fa
ility lo
ation problem is presented and the global 
on-vergen
e of this algorithm was proved. He assumed that all of the existing fa
ilities arein
luded within a spheri
al 
ir
le ( De�nition 1.2.11 ) of radius π/4.In 1994, Minnie H. Patel [24℄ dealt with the spheri
al minimax lo
ation problem and for-mulated the spheri
al lo
ation problem in the Cartesian 
oordinate system using Eu
lideannorm, instead of the spheri
al 
oordinate system using spheri
al ar
 distan
e measures. Itis shown that minimizing the maximum of the spheri
al ar
 distan
es between the fa
ilitypoint and the demand points on the surfa
e of the sphere is equivalent to minimizing themaximum of the 
orresponding Eu
lidean distan
es.Pierre Hansen, B. Jaumard and S. Krau [18℄, in 1994, presented an exa
t and pra
ti-
ally e�
ient algorithm for the WeberSphereLo
 problem using a Bran
h-and-Bound ap-proa
h.This is an extension of the 
ontinuous bran
h-and-bound algorithm for lo
ation of afa
ility in the plane, known as "Big Square Small Square(BSSS) [32℄". Further, four waysto 
ompute lower bounds are studied.In 1996, A.K. Sakar, P.K. Chaudhuri [27℄ and in 1998, P.Das, N.R. Chakraborty, P.K.Chaudhuri [4℄ developed two algorithms for the equally-weighted CenterSphereLo
 problemwhen all demand points lie on a hemisphere. Both yield an exa
t solution with the time
omplexity O(n2) in the worst 
ase. The methods of these approa
hes are basi
ally geomet-ri
al and do not require the use of the nonlinear programming te
hniques like most of theother papers. The di�eren
e between the two algorithms is that while the �rst algorithm in[27℄ heavily depends on properties of the spheri
al triangle ( De�nition 1.2.13 ), the se
ondin [4℄ depends on the maximization of the Eu
lidean distan
e (for more details, see se
tion3.4).P.Das, N.R. Chakraborti and P.K. Chaudhuri [5℄, in 1999 
onsidered the CenterSphereLo
problem with respe
t to shortest ar
 distan
e. They assume that all the demand points areequally weighted and distributed over the sphere. The pro
edure they present is based onan enumeration te
hniques and determines global optimal solutions in a �nite number ofsteps. This algorithm determines the exa
t solution of the global as well as the hemispher-
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tioni
al minimax lo
ation problem with the time 
omplexity O(n3) (see se
tion 3.2).Kelly M. Betes [2℄, in 2001, analyze alternative solutions methodologies for the Weber(minisum) problem on the surfa
e of the sphere.Atsuo Suzuki [29℄ presents the results for ( multi-) fa
ility lo
ation problems on the spherebased on Voronoi diagrams. The problems whi
h are dis
ussed here are the p-median prob-lem, the p-
enter problem and the 
ompetitive lo
ation problem. He assumes that all thedemand points are spread 
ontinuously on the sphere.Koki
hi Sugihara [28℄ also uses on Voronoi diagrams as tools for spa
e analysis. The
on
epts of the Voronoi diagram, various kinds of its generalizations and the methods for
omputing them are surveyed from a user point of view. Parti
ular appli
ation of his stud-ies on voronoi diagrams is to pla
e them on a sphere, whi
h will be useful for fa
ility layouton the spheri
al surfa
es.Further, U.R. Dhar and J.R. Rao [7℄ in 1980 dealt with " A 
omparative study of threenorms for fa
ility lo
ation problem on spheri
al surfa
es. "In 1981, U.R. Dhar and J.R. Rao [8℄ studied "multi sour
e lo
ation problem on a sphere"and in 1982, U.R. Dhar and J.R. Rao [9℄ 
onsidered the problem of lo
ating more than onenew fa
ilities among existing fa
ilities on surfa
e of the sphere. The optimality of this prob-lem is a
hieved when the sum of all weighted distan
es between new to new fa
ilities andnew to existing fa
ilities is minimized with the measuring distan
e on the surfa
e of a sphereis shortest length of ar
. This problem is known as multi-fa
ility spheri
al lo
ation problem.Before, formulating of some solving methods for the spheri
al lo
ation problems, it is im-portant to know whether or not all the demand points are on a hemisphere. In 1993,Mannie H. Patel, D.L. Nettles and S.J. Deuts
h [23℄ represented a Linear-Programming-Based Method to determine this.



1.2. Review of Spheri
al Geometry 71.2 Review of Spheri
al GeometryWe assume that ea
h point X whi
h is 
onsidered in the following will lie on a unit sphere S0and the point X is de�ned by its latitude φ and longitude θ and is denoted by X = X(φ, θ)where −π/2 ≤ φ ≤ π/2 and 0 ≤ θ ≤ 2π.The Eu
lidean 
oordinates of point X are given by
x = cos φ cos θ

y = cos φ sin θ and
z = sinφ(see Figure 1.1) and it is denoted by X = X(x, y, z).

Z

X

Y

y

x

z

O

X=X(  ,  )φ θ

φ

θ

Fig. 1.1: Conversion of polar 
oordinates of a point X = X(φ, θ) on the unit sphere to 
artesian
oordinates X = X(x, y, z) where −π/2 ≤ φ ≤ π/2 and 0 ≤ θ ≤ 2πDe�nition 1.2.1: Latitude is a north-south measurement of position on the Earth. It isde�ned by the angle measured from horizontal plane lo
ated Earth's 
enter that perpen-



8 1. Introdu
tiondi
ular to the polar axis ( see De�nition 1.2.3 ). A 
ir
ular line 
onne
ting all pla
es ofthe same latitude is termed a parallel ( see Figure 1.2 ).

Fig. 1.2: Latitudes, longitude, meridian and prime meridianDe�nition 1.2.2: Longitude is a west-east measurement of the Earth. It is de�nedby the angle measured from a verti
al plane running through the polar axis and primemeridian ( see de�nition 1.2.4 ). A 
ir
ular line 
onne
ting all pla
es of the same longitudeis termed a meridian ( see Figure 1.2 ).De�nition 1.2.3: Polar axis is a line drawn through the Earth around the planet rotates.The point at whi
h the polar axis inter
epts the Earth's surfa
e in the Northern hemisphereia 
alled theNorth pole. Likewise, the point at whi
h the polar axis inter
epts the Earth'ssurfa
e in Southern hemisphere is 
alled the South pole ( see Figure 1.3 ).De�nition 1.2.4: The lo
ation from whi
h meridians of longitude measured is 
alled thePrime meridian. It has zero degrees of longitude. ( see Figure 1.2 )De�nition 1.2.5: Lo
ation on the Earth that has a latitude of 0 degrees is 
alled theEquator ( see Figure 1.3 ).De�nition 1.2.6: Every plane se
tion of a sphere is a 
ir
le. The largest 
ir
le whi
h 
anbe drawn on the surfa
e of a sphere is a 
ir
le whose plane passes through the 
enter ofthe sphere. Su
h a 
ir
le is 
alled a great 
ir
le. All other 
ir
les on the surfa
e of thesphere are 
alled small 
ir
les ( see Figure 1.4 ).
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South pole

North pole

Porlar axis

Equator

Longitude

Latitude

Fig. 1.3: Equator, polar axis, north pole and south poleDe�nition 1.2.7: The poles of a great 
ir
le are the extremities of a diameter of thesphere that is perpendi
ular to the plane of the great 
ir
le. This diameter is also knownas the axis of the great 
ir
le.Note that the two poles for the a great 
ir
le are equidistant from its plane and the 
enterof the sphere. The poles and axes of small 
ir
les are similarly de�ned. However, sin
ethe plane of a small 
ir
le does not 
ontain the 
enter of the sphere, its two poles are at adi�erent distan
e from the plane of the small 
ir
le, one is nearer and the other is moredistant. For 
onvenien
e, refer to them as the nearer and distant poles of a small 
ir
le(see Figure 1.4).De�nition 1.2.8: The shortest distan
e between any two points on a sphere must bemeasured along the great 
ir
le passing through them and is the shorter of the two ar
sbetween the points. This distan
e is known as the great 
ir
le distan
e, α or shortestar
 distan
e ( see Figure 1.5 ).
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Nearer pole of C

Small circle Distant pole of

Great circle

X

X

Shortest length of arc
between X   & X

Axis

X

Y

Z

C
C

1

1

2

2Fig. 1.4: Cir
les on a sphereNote that ar
 length, α(X1,X2) ( or ar
(X1,X2 ) between two pints, X1 and X2 on theunit sphere is simply the angle ( measured in radians ) between the two rays emanatingfrom the 
enter of the sphere, one passing through X1 and the other through X2.The distan
es d1 : 4 sin2(α/2) and d2 : π sin2(α/2) may be used to approximate squared ar
distan
e on a hemisphere and also rough approximation for ar
 distan
e (see [11℄). Thedi�eren
e between d1 and d2 is only a multipli
ative 
onstant. In two �gures (Figure 1.6,Figure 1.7), d1 and d2 are plotted against α (shortest length of ar
). Note that when thedistan
e between points is less than half the 
ir
umferen
e of the sphere (α ≤ π/2), d1 isa reasonably good approximation to the squared shortest ar
 distan
e. d2 
an be thought ofas a rough approximation for α. Also, d1 is exa
tly the squared Eu
lidean distan
e throughthe sphere.
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a

X1

X2

Arc(X , X )1 2

O

Great circle through  X and1

X2Fig. 1.5: Shortest length of ar
 between X1 and X2

α

α

π

1 π/2

1

2

3

d1

2

Fig. 1.6: The graph of d1 Vs. αResult 1.2.1: Given two points ( See Figure 1.5 ) X1(φ1, θ1) , X2(φ2, θ2) on S0, the lengthof the shortest ar
, α = ar
(X1,X2) satis�es
cos α = cos φ1 cos φ2 cos(θ1 − θ2) + sin φ1 sin φ2 (1.1)
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α

α

π

1

2

3

1 2 3 π0

d2

Fig. 1.7: The graph of d2 Vs. α

Proof : Let X1(φ1, θ1) and X2(φ2, θ2) are two points on the surfa
e of the sphere. Then,a

ording to the 
osines low for plane triangles, the Eu
lidean distan
e between X1 and X2
an be written as :
|X1X2|2 = |OX1|2 + |OX2|2 − 2|OX1||OX2| cos α (1.2)where |X1X2|2 = (x1−x2)

2 +(y1−y2)
2 +(z1−z2)

2. By applying the Eu
lidean 
oordinatesof the points X1 and X2 to (1.2), with |OX1| = |OX2| = 1 ( sin
e X1 and X2 are on thesurfa
e of the unit sphere ), we have the desired result. �De�nition 1.2.9: The length of the great 
ir
le ar
 from any point on the 
ir
umferen
eof a small 
ir
le to its nearer pole is 
alled the spheri
al radius of the small 
ir
le.De�nition 1.2.10: The antipode of a given point is the point on the other side of thesphere on the line 
onne
ting the point with the 
enter of the sphere. The antipode of
X(φ, θ) is X̄(−φ, θ ± π).De�nition 1.2.11: A spheri
al 
ir
le C(X,α) ( see Figure 1.8 ) with a given 
enter Xand radius α is de�ned on a sphere by the lo
us of all points whose shortest ar
 distan
efrom the 
enter is equal to that radius. A 
ir
le divides the sphere into two parts; A point
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al Geometry 13is said to be within a 
ir
le only if the point and the 
enter of the 
ir
le are in
luded inthe same part.De�nition 1.2.12: A spheri
al disk D(X,α) ( see Figure 1.8 ) is the set on the surfa
eof the sphere whi
h is formed by a spheri
al 
ir
le and its interior.
a

X

and radius a

Spherical circle CFig. 1.8: Spheri
al 
ir
le and spheri
al diskDe�nition 1.2.13: The surfa
e area of a sphere that is bounded by ar
 segments of threegreat 
ir
les is 
alled a spheri
al triangle( see Figure 1.9 ). A spheri
al triangle withtwo equal sides ( or ar
 lengths ) is 
alled isos
eles spheri
al triangle.Result 1.2.2: (Median Formula) Consider the spheri
al triangle X1X2X3. Let M bethe mid point of the arcX1X2. Then the arcX3M satis�es the following formula :
cos(arcX3M) =

cos(arcX1X3+arcX2X3

2 ) cos(arcX1X3−arcX2X3

2 )

cos(arcX1X2

2 )
. (1.3)



14 1. Introdu
tion
X1

X2

X3

Fig. 1.9: Shaded area represents the spheri
al triangle with verti
es X1, X2 and X3

X

X

X

M

β 2

1

3

Fig. 1.10:Proof Consider the Figure 1.10. Let β designate the angle X3MX2. By 
osine formula,we have
cos arcX2X3 = cos arcX2M cos arcX3M + sin arcX2M sin arcX3M cos β (1.4)
cos arcX1X3 = cos arcX1M cos arcX3M − sin arcX1M sin arcX3M cos β (1.5)Multiply 1.4 by sin arcX1M , 1.5 by sin arcX2M , and add two. We get,
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al Geometry 15
sin arcX1M cos arcX2X3 + sin arcX2M cos arcX1X3 =

sin(arcX1M + arcX2M) cos arcX3M

⇒ cos arcX3M =
sin arcX2M cos arcX1X3 + sin arcX1M cos arcX2X3

sin(arcX1M + arcX2M)As arcX1M = arcX2M = 1
2arcX1X2, we have

cos arcX3M =
sin arcX1X2

2 (cos arcX1X3 + cos arcX2X3)

arcX1X2

=
cos(arcX1X3+arcX2X3

2 ) cos(arcX1X3−arcX2X3

2 )

cos arcX1X2

2

.

�De�nition 1.2.14: A spheri
al 
onvex set is de�ned on the surfa
e of a sphere as a setwhere for any two points of the set, the whole shortest ar
 
onne
ting them is in
luded inthe set. The spheri
al 
onvex hull of a set of points on the sphere is de�ned to be thesmallest spheri
al 
onvex set whi
h 
ontains the set of given points.De�nition 1.2.15: Let ρ = ρ(X1,X2, λ) be a point on the shortest ar
 between X1 and
X2 su
h that the distan
e between X1 and ρ is λd(X1,X2) and between X2 and ρ is
(1 − λ)d(X1,X2) for λ ∈ [0, 1] where d(X1,X2) is the shortest length of ar
 between X1and X2.De�nition 1.2.16: f(X) is 
alled a spheri
al 
onvex fun
tion on a spheri
al 
onvexset D of a sphere if for every 0 ≤ λ ≤ 1 and X1,X2 ∈ D, we have

f(ρ(X1,X2, λ)) ≤ (1− λ)f(X1) + λf(X2). (1.6)
f(X) is 
alled a stri
tly spheri
al 
onvex fun
tion if the inequality ( 1.6 ) is stri
twhen X1 6= X2 and λ ∈ (0, 1).De�nition 1.2.17: A spheri
al lo
ation problem is in its normal form if it has onlypositive weights and there is no pair of demand points whi
h are antipodes to ea
h other.



16 1. Introdu
tion
X

Y

O

Bisector of X and YFig. 1.11: The Bise
tor of X and YDe�nition 1.2.18: The bise
tor of spheri
al points X and Y de�ned with respe
t tothe great 
ir
le distan
e is given by the great 
ir
le that perpendi
ularly passes throughthe mid-point of the great 
ir
ular ar
 
onne
ting X and Y ('perpendi
ularly' means thatsu�
iently small segments of the two great 
ir
les around the mid-point are orthogonal)(see Fig 1.11).The bise
tor divides the sphere into two disjoint hemispheres.
X

X
X

X

O

1
2

3

4

Fig. 1.12: Shaded area represents a spheri
al polygon on a hemisphere
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al Geometry 17De�nition 1.2.19: A spheri
al polygon is a 
losed geometri
 �gure on the surfa
eof a sphere whi
h is formed by the ar
s of great 
ir
les. The spheri
al polygon is a gen-eralization of the spheri
al triangle. A spheri
al 
onvex polygon generated by points
X1,X2, . . . ,Xn is de�ned by the spheri
al polygon in whi
h the lesser ar
 of a great 
ir-
le passing through any two points in the spheri
al polygon is embedded in the spheri
alpolygon. ( see Figure 1.12 )The great 
ir
le ar
 segments of the spheri
al polygon are 
alled the edges of the spheri
alpolygon and a point at whi
h two edges meet is 
alled a vertex or 
orner point of thespheri
al polygon.De�nition 1.2.20: The level set and level 
urves of the obje
tive fun
tion h(X) inCenterSphereLo
 with respe
t to the great 
ir
le ar
 distan
e, α is de�ned as follows :Level sets:L≤(z) := {X ∈ S0 : wi · max

i=1,2,...,m
α(Exi,X) ≤ z}Level 
urves:L=(z) := {X ∈ S0 : wi · max

i=1,2,...,m
α(Exi,X) = z}The ar
 segments of the level set are 
alled the edges of the level set. The end points ofthe edges are 
alled the verti
es or 
orner points of the level set.De�nition 1.2.21: Suppose fk is an edge ( or a fa
et ) of L≤(z) and Exi ∈ Ex. The point

Pik is de�ned as the proje
tion point of Exi on fk if(a) Pik ∈ fkand(b) α(Exi, Pik) = min{α(Exi,X) : X ∈ fk}.Result 1.2.3: (i) Sin
e
L≤(z) = {X ∈ S0 : wi · max

i=1,2,...,m
α(Exi,X) ≤ z}

= {X ∈ S0 : α(Exi,X) ≤ z/wi ∀i = 1, 2, . . . ,m}

=
⋂

i=1,2,...,m

{X ∈ S0 : α(Exi,X) ≤ z/wi},



18 1. Introdu
tionwe 
an write the level set as an interse
tions of m spheri
al disks D(Exi, zi) 
entered atthe existing fa
ilities Exi, with spheri
al di�erent radius zi = z/wi; i = 1, 2, . . . ,m.(ii) The level 
urve in this 
ase is the boundary of interse
tions of the m spheri
al disks(that is the boundary of the level set).(see Fig 1.13).

Spherical disks at the demand
points X, X , X  with radii z

X

X

X

Restricted spherical
polygon

z

z

z

1

2

3

 31 2Fig. 1.13: Shaded area and the boundary of this region represents the level set and level 
urverespe
tively
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al Geometry 19Property 1.2.1: Some properties of spheri
al triangles [30℄(a). The angles at the base of an isos
eles spheri
al triangle (see de�nition 1.2.13) areequal.(b). If one angle of a spheri
al triangle is greater than another, the side opposite thegreater angle is greater than the side opposite the lesser angle.(
). Any two sides of spheri
al triangle are together greater than the third side.Theorem 1.2.1: [11℄ Points within a 
ir
le of radius less or equal to π/4 ( spheri
al disk
D) on a unit sphere S0, form a spheri
al 
onvex set. The shortest ar
 distan
e from a givenpoint X on S0 is a spheri
al 
onvex fun
tion on a spheri
al disk of radius π/2 and 
enter
X. Every lo
al minimizer of a spheri
al 
onvex fun
tion on a spheri
al 
onvex set is alsoa global minimizer.Proof:The 
onvexity property of the spheri
al disk with radius less or equal π/2 is obvious.A

ording to Figure 1.14, it is 
lear that the shortest ar
 between X3 and X4 is in
ludedwithin the spheri
al disk with spheri
al radius less than or equal π/2. This is true for anytwo points in this spheri
al disk.To prove the 
onvexity of the shortest ar
 distan
e α from a given point X, we assume wlogthat X is the north pole, i.e. X = X(π/2, 0). Take any two points X1(φ1, θ1), X2(φ2, θ2)with φ1, φ2 ≥ 0. Note that sin
e α is 
ontinuous, it is enough to prove that :

α[ρ(X1,X2, 0.5),X] ≤ 1/2[α(X1,X) + α(X2,X)]in order to prove 
onvexity.Then
α(X1,X) = π/2− φ1

α(X2,X) = π/2− φ2

α[ρ(X1,X2, 0.5),X] = π/2− φ0,where φ0 is the latitude of the 
enter of the ar
 
onne
ting X1 and X2. By the medianformula (1.3),
sin φ0 = sin(

φ1 + φ2

2
) cos(

φ1 − φ2

2
)/ cos

α

2
. (1.7)



20 1. Introdu
tionUsing equation(1.1) :
sinφ0 =

sin(φ1+φ2

2 )

[1− sin2[(θ1−θ2)/2] cos φ1 cos φ2

cos2[(φ1−φ2)/2]
]1/2

. (1.8)As, numerator of (1.8) is less than or equal 1 and φ0 ≤ π/2,
φ0 ≥ φ1+φ2

2 . Therefore
π/2− φ0 ≤

π/2− φ1 + π/2− φ2

2and
α[ρ(X1,X2, 0.5),X] ≤ 1

2
[α(X1,X) + α(X2,X)].Thus α is a 
onvex fun
tion north of the equator.Now we have to show that every lo
al minimizer of a spheri
al 
onvex set D is also a globalminimizer.To prove this, suppose that X∗

1 and X∗
2 are di�erent lo
al minima. The ar
 
onne
ting X∗

1and X∗
2 is in
luded in D. We know that

f [ρ(X∗
1 ,X∗

2 , λ)] ≤ λf(X∗
1 ) + (1− λ)f(X∗

2 ),∀λ ∈ (0, 1).Now suppose that f(X∗
1 ) < f(X∗

2 ). Then by repla
ing f(X∗
1 ) with f(X∗

2 ) in the aboveequation, we have
f [ρ(X∗

1 ,X∗
2 , λ)] < λf(X∗

2 ) + (1− λ)f(X∗
2 ) = f(X∗

2 )for λ > 0 obviously 
lose to 1.This 
ontradi
ts the statement that X∗
2 is a lo
al minimum. �
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Spherical radius < π/2

Sphercal radius > π/2

X X

X

X

3

4

1 2

O

Fig. 1.14: Convexity of spheri
al disks





2. SPHERICAL WEBER PROBLEMWe assume that ea
h model whi
h is des
ribed in the following will deal with a unit sphere,
S0 where the radius is equal to one. Every point X on the sphere is de�ned by its latitude
φ and longitude θ and it is denoted by X(φ, θ).Consider m demand points (or existing fa
ilities) Exi, i = 1, 2, . . . ,m, on the surfa
e ofthe sphere with asso
iated weights wi and some distan
e fun
tion d(X,Y ) measuring thedistan
es between spheri
al points X and Y .We 
onsider single fa
ility spheri
al lo
ation problem ( SphereLo
 ) of the mediantype, i.e., we solve

min
X∈S0

f(X) :=
m

∑

i=1

wid(X,Exi) WeberSphereLo
 (2.1)where X is the unknown lo
ation.In the usual Weber problem, it is assumed that wi ≥ 0. In the WeberSphereLo
, we 
anomit this 
ondition be
ause this problem 
an be transformed into an equivalent "normalform" ( see De�nition 1.2.17 ) as follows :A point with negative weight 
an be repla
ed by its antipode with weight −wi and from apair of points whi
h are antipodes to ea
h other we 
an subtra
t the smaller weight, thuseliminating at least one of the points. This normal problem has the same minimal point asthe original.In this 
hapter, I would like to dis
uss the behavior of the obje
tive fun
tion f(X) of We-berSphereLo
 problem and to represent di�erent approa
hes to solve this problem.



24 2. Spheri
al Weber Problem2.1 Convexity of the Obje
tive Fun
tionWe assume that the distan
e d of the obje
tive fun
tion f(X) is the shortest ar
 distan
e
α. I.e.,

min
X∈S0

f(X) :=
m

∑

i=1

wiarc(X,Exi) =
m

∑

i=1

wiαi(X,Exi) (2.2)Theorem 2.1.1: [19℄ If all demand points of the normal form of a problem are in
ludedin a disk D of radius π/4, then the obje
tive fun
tion f(X) is a spheri
al 
onvex fun
tionon D and attains its minimum in a unique point of D.Proof
•Demand points in D = D(Y, α) with α ≤ π/4 ⇒ distan
e arc(X1,X2) ≤ π/2

∀X1,X2 ∈ D
Th.1.2.1⇒ arc(X,Exi) 
onvex ∀X ∈ D
⇒ wi · arc(X,Exi) 
onvex

∀X ∈ D

⇒ f(X) 
onvex ∀X ∈ D
• D 
onvex, f(X) 
onvex Th.1.2.1⇒ f(X) attains its minimum in a unique point of D �Theorem 2.1.2: [8℄ The value π/4 in Theorem 2.1.1 is the maximum value of a radiusthat assures a unique minimum.Proof We give an example of points in a disk of radius π/4 + ǫ (for every ǫ > 0 ) 
on-taining two di�erent lo
al minima. The problem 
onsists of three demand points withparameters(ǫ > 0).
i wi φi θi1 1 + ǫ5 π/4 ǫ2 1 π/4 −ǫ3 ǫ2 π/4− ǫ π



2.2. Weiszfeld Approa
h 25By equation (2.13), for points 1 and 2 we get :
wk

[A2
k + B2

k]1/2
= 1 + (

√
2− 1)ǫ4 + O(ǫ5) for k = 1, 2.Whi
h means that points (φ1, θ1), (φ2, θ2) are lo
al minima with di�erent values of the ob-je
tive fun
tion. This proves that π/4 is the largest possible radius that assures a uniqueminimum. �Theorem 2.1.3: [32℄ Suppose that all of the existing fa
ilities are in
luded within aspheri
al 
ir
le C(X0, π/4) of 
enter X0 = X0(x0, y0, z0) and radius π/4. Then everyglobal minimizer of f(X) must lie within the spheri
al 
onvex hull of existing fa
ilities.Proof See Appendix.Theorem 2.1.4: If all of the existing fa
ilities lie on a great 
ir
le ar
 of length less thanor equal to π/2, then one of the existing fa
ilities is a global minimizer of the problem.Proof. A

ording to the Theorem 2.1.1, there is global minimizer on the spheri
al
onvex hull of the existing fa
ilities. In this 
ase, the spheri
al 
onvex hull of the existingfa
ilities is the great 
ir
le segment passing through all the existing fa
ilities and havingtwo of the existing fa
ilities as ends. Straightening this great 
ir
le segment into a straightline segment, the spheri
al fa
ility lo
ation problem is transformed into a equivalent onedimensional Eu
lidean fa
ility lo
ation problem. Let the existing fa
ilities be ordered(fromone end to the other along the great 
ir
le segment) as Ex1

′, Ex′
2, . . . , Ex′

m. Find theinteger t su
h that
t−1
∑

i=1

wi <
1

2

m
∑

i=1

wi ≤
t

∑

i=1

wi. (2.3)Then Ext is a global minimizer of the spheri
al fa
ility lo
ation problem. �2.2 Weiszfeld Approa
hThe following approa
h dupli
ates the Weiszfeld pro
edure for planar, Eu
lidean lo
ationproblems. It is due to Drezner and Wesolowsky [11℄ and 
an also be found in the textbook



26 2. Spheri
al Weber ProblemLove and Morris [22℄.Drezner and Wesolowsky 
onsidered the WeberSphereLo
 problem where they used twoways of measuring distan
es. One is simply the shortest length of ar
 α. The other norm (
d1 = 4 sin2(α/2) and d2 = π sin2 α/2 ) may be used to approximate aquared ar
 distan
e ona hemisphere and also rough approximation for ar
 distan
e ( see the note under De�nition1.2.8 ). The di�eren
e between d1 and d2 is only a multipli
ative 
onstant. The optimumpoint using d1 is always the same as the one using d2 be
ause for the purpose of optimizinglo
ation their problem, the 
onstant is irrelevant.Consider three distan
es α, d1 and d2 are as the measuring distan
es on the surfa
e ofthe sphere. Then from equation (2.1), we 
an write the obje
tive fun
tions Fα[X(φ, θ)],

Fd1
[X(φ, θ)], Fd2

[(X(φ, θ)] with respe
t to the above distan
es as follows :
Fα(X) =

m
∑

i=1

wiαi. (2.4)
Fd1

(X) = 4

m
∑

i=1

wi sin
2(αi/2) (2.5)

Fd2
(X) = π

m
∑

i=1

wi sin
2(αi/2) (2.6)Let

F (X) =

m
∑

i=1

wi sin2(αi/2) (2.7)It is evident that the point that minimizes F is the same as that whi
h minimizes Fd1
and

Fd2
.Property 2.2.1: The sum of the obje
tive fun
tion evaluated at a point and at its an-tipode is a 
onstant, and equal to π

∑m
i=1 wi in distan
es α and d2 and, 4

∑m
i=1 wi in d1.1. The shortest length of ar
 from the point X to the given demand point Exi is αi



2.2. Weiszfeld Approa
h 272. The shortest length of ar
 from the antipode X̄ of X to the demand point Exi is :
(π − αi)3. Sum of the of the obje
tive value at X and X̄ is
• in distan
e α : ∑m

i=1 αiwi +
∑m

i=1(π − αi)wi = π
∑m

i=1 wi

• in distan
e d1 : ∑m
i=1 4 sin2(αi)wi +

∑m
i=1 4 sin2(π − αi)wi = 4

∑m
i=1 wi

• in distan
e d2 : ∑m
i=1 π sin2(αi)wi +

∑m
i=1 π sin2(π − αi)wi = π

∑m
i=1 wiProperty 2.2.2: A point is the minimum to a problem if and only if its antipode is themaximum.Property 2.2.3: A point and its antipode with equal weights 
an be added to the problemwithout a 
hange in the optimal lo
ation of the fa
ility.Let the point Exm+1 with weight wm+1. Now add the this point and its antipode with thesame weight wm+1 to the set of demand points. Then the obje
tive fun
tion is

fNew(X) =
m

∑

i=1

wiαi + wm+1αm+1 + wm+1(π − αm+1).

=

m
∑

i=1

wiαi + πwi.As πwi is 
onstant, the optimal lo
ation of the fa
ility of fNew(X) is the same the optimumof f(X).Property 2.2.4: A point with weight wi 
an be repla
ed by its antipode with weight
−wi, without 
hanging the optimal lo
ation of the fa
ility.



28 2. Spheri
al Weber ProblemBy repla
ing the point Exj with weight wj , we have the obje
tive funtion
fNew(X) =

j−1
∑

i=1

wiαi + (−wj)(π − αj) +

m
∑

i=j+1

wiαi

=

m
∑

i=1

wiαi − πwj.As −πwj is 
onstant, the optimal lo
ation of f(X) will not 
hange.Computation of Stationary PointsGiven two points X = X(φ, θ) and Xi = Xi(φi, θi), the shortest length of ar
, αi =

αi(X,Xi) has the form (1.1)
αi = arccos[cos φ cos φi cos(θ − θi) + sin φ sin φi] (2.8)Now 
onsider the solution of the extremal 
onditions for the obje
tive fun
tions F (X) and

Fα(X) using shortest length of ar
 αi.Then the partial derivatives of F (X) are :
∂F

∂φ
= −1

2

m
∑

i=1

wi[− sin φ cos φi cos(θ − θi) + cos φ sin φi] (2.9)
∂F

∂θ
=

1

2
cos φ

m
∑

i=1

wi cos φi sin(θ − θi). (2.10)Note that at the poles, cos φ = 0 and thus ∂F
∂θ = 0. This simply means that here a 
hangein θ will not 
hange the point. ∂F

∂φ = ∂F
∂θ = 0 yields an expli
it solution and derived by:

tan θ =

∑m
i=1 wi cos φi sin θi

∑m
i=1 wi cos φi cos θi

(2.11)
tan φ

sin θ
=

∑m
i=1 wi sin φi

∑m
i=1 wi cos φi sin θi

(2.12)Equations (2.11) and (2.12) produ
e two solutions for θ and φ whi
h are antipodes.



2.2. Weiszfeld Approa
h 29The following Theorem represents the 
onditions under whi
h a demand point at
Exk(φk, θk) is a lo
al optimum of Fα(X).Theorem 2.2.1: [22℄ There is a lo
al minimum at point Exk if and only if

wk ≥ (A2
k + B2

k)1/2, (2.13)where,
Ak =

m
∑

i=1,i6=k

wi

sin αik
[− sin φkcosφi cos(θk − θi) + cosφksinφi] (2.14)

Bk =

m
∑

i=1,i6=k

wi

sinαik
cos φisin(θi − θk) (2.15)with

αik = arccos[cos φk cos φi cos(θk − θi) + sinφk sin φi]be the shortest ar
 distan
e between points Exi and Exk.Proof Consider the obje
tive fun
tion Fα(X) =
∑m

i=1 wiαi. It 
an be shown that formovement from point Exk:
dFα(X) = wk[(dφ)2 + cos2 φk(dθ)2]1/2

− dφ

m
∑

i6=k

wi(− sin φk cos φi cos(θk − θi)

+ cos φk sin φ)/ sin αki

− dθ

m
∑

i6=k

wi(cos φk cos φi sin(θi − θk))/ sin αki.For a lo
al minimum, dFα(X) > 0, and hen
e, we must show
wk((dφ)2 + cos2 φk(dθ)2)1/2 −Akdφ−Bk cos φkdφk > 0.Letting L = dθ cos φk/dφ , we have

|dφ|wk(1 + L)1/2 > dφ(Ak + LBk)



30 2. Spheri
al Weber Problemand so :
wk > dφ(Ak + LBk)(1 + L2)−1/2/|dφ|.Note that dφ/|dφ| is ±1. It 
an be shown that :

−(A2
k + B2

k)1/2 ≤ (Ak + LBk)/(1 + L2)1/2

≤ (A2
k + B2

k)1/2and hen
e, the 
ondition
wk ≥ (A2

k + B2
k)1/2is ne
essary and su�
ient for dFα(X) > 0 for every L. �We now 
onsider the extremal 
onditions for the obje
tive fun
tion Fα. The partial deriva-tives are:

∂Fα

∂φ
= −

m
∑

i=1

wi

sinαi
[−sinφcosφicos(θ − θi) + cosφsinφi] (2.16)

∂Fα

∂θ
= cos φ

m
∑

i=1

wi

sinαi
cos φi sin(θ − θi) (2.17)Further note that at the poles, cos φ = 0 and thus ∂Fα

∂θ = 0. Solution of ∂Fα

∂φ = ∂Fα

∂θ = 0yields :
tan θ =

∑m
i=1

wi

sinαi
cos φi sin θi

∑m
i=1

wi

sinαi
cos φi cos θi

(2.18)
tan φ

sin θ
=

∑m
i=1

wi

sin αi
sin φi

∑m
i=1

wi

sinαi
cos φi sin θi

(2.19)This is an impli
it solution be
ause φ and θ are used in the 
al
ulation of the αi's.In equations (2.18) and (2.19), solutions are also 
ome in pairs of antipodes. On
e asolution is obtained, its antipode is also 
he
ked. Note also that (2.18) and (2.19) may giveus saddle points as well as lo
al minima or maxima.Therefore, (2.18) and (2.19) 
an be used iteratively in a manner analogous to the Weiszfeldpro
edure, to �nd the solution if we are 
lose enough to the lo
al minimum or maximum.



2.3. Approximate Algorithm Using Candidate Lists [14℄: 31The developed algorithm is as follows :Algorithm 2.2.1: (Weiszfeld for WeberSphereLo
)Step 1. Choose a starting point φ(0), θ(0). Set k = 0.Step 2. Compute φ(k+1) and θ(k+1) by (2.18) and (2.19) using φ(k), θ(k) to 
al
ulate αi.Step 3. If |φ(k+1) − φ(k)|+ |θ(k+1) − θ(k)| > ǫ go to step 2.Step 4. [φ(k+1), θ(k+1)] and its antipode to get the minimal and maximal point.Note that the sum of the obje
tive fun
tion evaluated at a point and at its antipode is a
onstant and equal to π
∑m

i=1 wi in distan
e α (see Property 2.2.1). The solutions of theabove algorithm 
ome in pairs of antipodes and one of these points is a minimum point anda

ording to the Property 2.2.3, the other point is the maximum for the problem.That means, if Fα < π/2
∑m

i=1 wi, then the point is a minimum.Remark : There might be several lo
al minima and we want to �nd the best of these.As a point and its antipode as starting points result same solution, we 
an 
hoose startingpoints only in one hemisphere. Further, there are various strategies in 
hoosing startingpoints: randomly, in a pattern, using the Norm d1 or d2 solution. In addition all demandpoints should be 
he
ked for lo
al minima by equation (2.13).2.3 Approximate Algorithm Using Candidate Lists [14℄:In this se
tion we dis
uss an always 
onvergent algorithm (Drezner [14℄) for the Weber-SphereLo
 problem using a given 
andidate set of points on the surfa
e of the sphere.In this approa
h we assume that the WeberSphereLo
 problem (2.1) is in the normalform (see De�nition 1.2.17).We 
onstru
t here a lower bound on the optimal value of the obje
tive fun
tion based on agiven set of points on the surfa
e of the sphere. Therefore 
onsider a given set J of pointson the surfa
e of the sphere to 
onstru
t a lower bound on the optimal value of the obje
tive



32 2. Spheri
al Weber Problemfun
tion f(X). Note that the set J is di�erent from the set of demand points .Let fj = f(Xj) and d(X,Xj) be the distan
e between X = (φ, θ) and Xj = Xj(φj , θj) for
Xj ∈ J , and let w =

∑m
i=1 wi.The triangle inequality implies for all X ∈ S0 :

d(X,Xj) + d(X,Exi) ≥ d(Xj , Exi).Then we have
fj − f(X) =

m
∑

i=1

wi[d(Xj , Exi)− di(X,Exi)] ≤
∑

wid(X,Xj) = wd(X,Xj).Thus, f(X) ≥ fj − wd(X,Xj), and
f(X) ≥ maxj∈J{fj − wd(X,Xj)}. (2.20)Let f∗ be the optimal solution to problem (2.1). By equation (2.20): f∗ ≥ f0 where :

f0 = minX∈S0
{maxj∈J{fj − wd(X,Xj)}}. (2.21)Finding f0 in (2.21) is the minimax single fa
ility lo
ation problem whi
h 
an be optimallysolved [13℄. Based on this observation, we 
an minimize f(X) to within an ε of the optimalvalue of the obje
tive fun
tion for any ε > 0.The resulting algorithm 
an be represented as follows:Algorithm 2.3.1: (Candidate list for WeberSphereLo
)Step 1. Let J be any two point subset of the sphere and set fm:= minj∈J{fj}.Step 2. Compute f0 by solving the minimization problem in (2.21). Add the solutionpoint to J. Update fm.Step 3. If f0 < fm − ε, go to Step 2.Step 4. stop with fm as the approximate optimal solution.



2.4. Steepest Des
ent Algorithm for WeberSphereLo
 [32℄ 33Note that if the solution point in Step 2 is a point in J, then f0 = fm and the algorithmterminates. But, when f0 < fm− ε, the solution to Problem (2.21) is at least ε/w from allpoints in J . Sin
e there is a limit to the number of points, one 
an arrange on the spherewhi
h are at least ε/w from ea
h other. Then f0 will get within an ε of fm. Then for afor a give ε > 0, the algorithm must be �nite.2.4 Steepest Des
ent Algorithm for WeberSphereLo
 [32℄Consider the WeberSphereLo
 problem (2.1) in the following form :
f(X) =

n
∑

i=1

wi arccos(ExT
i ·X). (2.22)where, the points Exi, i = 1, 2, . . . ,m and X are three dimensional points on the surfa
eof the sphere and arccos(ExT

i X) is the shortest length of ar
 between Exi and X.Note that the dot produ
t (Exi · X) of Exi and X is equal to ‖ Exi ‖‖ X ‖ cos α, where
‖ Exi ‖=‖ X ‖= 1 and α = α(Exi,X) is the angle between two ve
tors Exi and X.So, we have α = arccos(Exi ·X) or α = arccos(ExT

i X).This obje
tive fun
tion (2.22) is de�ned only on the sphere S0. We extend the domain of
f to all X ∈ ℜ3 su
h that X 6= 0. For any nonzero X ∈ ℜ3, the fun
tion value at X isde�ned to be f( X

‖X‖ ). Then the obje
tive fun
tion of WeberSphereLo
 
an be written as
F (X) =

n
∑

i=1

wi cos
−1(X

(
i

X

‖X‖)) (2.23)and the only 
onstraint is X 6= 0.In the following we will assume that all of the existing fa
ilities of the WeberSphereLo
problem are in
lude within a spheri
al disk of radius π/4. For 
onvenien
e, we will assumethat the 
enter of this spheri
al disk of radius π/4 is (0,0,1). Therefore, all the existingfa
ilities are above the xy-plane. We proved that every global minimizer of this problemmust lie within the spheri
al 
onvex hull of the existing fa
ilities ( see Theorem 2.1.3 ).



34 2. Spheri
al Weber ProblemNext, we 
onsider the optimality 
onditions for the spheri
al fa
ility lo
ation problem interms of the optimality 
onditions for the 
orresponding Eu
lidean fa
ility lo
ation problem.To show this, let X be a point on the surfa
e of the sphere whi
h does not 
oin
ide withany of the existing fa
ilities. Then F (X) is di�erentiable at X, with gradient given by
∇F (X) =

m
∑

i=1

wi
−1

√

1− ((X/‖X‖)T Exi)2
‖X‖Exi −XT Exi(X/‖X‖)

‖X‖2

=

m
∑

i=1

wi

X − Exi

(X/‖X‖)T Exi

‖X − Exi

(X/‖X‖)T Exi
‖
. (2.24)If X 
oin
ides with one of existing fa
ilities, Ext , then F (X) is not di�erentiable at X.In this 
ase, for any nonzero ve
tor d, the dire
tional derivative F ′(Ext; d) of F (X) atpoint Ext in dire
tion d is given by

F ′(Ext; d) = dT
m

∑

i=1,i6=t

wi
Ext − (Exi/ExT

t Exi)

‖Ext − (Exi/ExT
t Exi)‖

+ wt

√

‖d‖2 − (ExT
t d)2. (2.25)Noti
e that all of the n points Exi

(X/‖X‖)T Exi
, i = 1, 2, . . . ,m lie on the plane whi
h is tangentto the sphere, S at point X. For any given X on the surfa
e of the sphere, de�ne

ExX
i =

Exi

(X/‖X‖)T Exi
, i =1, 2, . . . , m. (2.26)Now, we have a planner Eu
lidean fa
ility lo
ation problem de�ned on the plane as follows:

minFX(y) =

m
∑

i=1

wi‖y − ExX
i ‖. (2.27)If X does not 
oin
ide with any of the ExX

i 's, then FX(y) is di�erentiable at X withgradient given by
∇FX(X) =

∑

wi
X − ExX

i

‖X − ExX
i ‖

. (2.28)If X 
oin
ides with ExX
t , the FX(y) is not di�erentiable at X. In this 
ase, for anynonzero ve
tor d, the dire
tional derivative F ′

X(Ext; d) of FX(y) at point Ext in dire
tion
d is given by

F ′
X(Ext; d) = dT

m
∑

i=1,i6=t

wi
X −ExX

i

‖X −ExX
i ‖

+ wt‖d‖. (2.29)From the optimality 
onditions for the planner fa
ility lo
ation problem [22℄, we have theoptimality 
onditions for the planner lo
ation problem (2.27) as follows :



2.4. Steepest Des
ent Algorithm for WeberSphereLo
 [32℄ 35(i) An existing fa
ility Ext is a global minimizer of (2.27) if and only if
‖

m
∑

i=1,i6=t

wi

Ext − Exi

ExT
t Exi

‖Ext − (Exi/ExT
t Exi)‖

‖ ≤ wt. (2.30)(ii) A smooth point X is a global minimizer of (2.27) if and only if
m

∑

i=1

wi

X − Exi

(X/‖X‖)T Exi

‖X − Exi

(X/‖X‖)T Exi

= 0. (2.31)Note that the above optimality 
onditions are also the optimality 
onditions for the spheri
alfa
ility lo
ation problem(2.22).Theorem 2.4.1: An existing fa
ility Ext is a global minimizer of (2.22) if and only if
‖

m
∑

i=1,i6=t

wi

Ext − Exi

ExT
t Exi

‖Ext − (Exi/ExT
t Exi)‖

‖ ≤ wt. (2.32)A smooth point X is a global minimizer of (2.22) if and only if
m

∑

i=1

wi

X − Exi

(X/‖X‖)T Exi

‖X − Exi

(X/‖X‖)T Exi

= 0. (2.33)Proof Let us 
onsider the non-smooth 
ase �rst. Suppose that
‖

m
∑

i=1,i6=t

wi

Ext − Exi

ExT
t Exi

‖Ext − (Exi/ExT
t Exi)‖

‖ ≥ wt. (2.34)Let d = −∑m
i=1,i6=t wi

Ext−
Exi

ExT
t

Exi

‖Ext−(Exi/ExT
t Exi)‖

. Then ExT
t d = 0 be
ause d is on the plane with

Ext as its normal ve
tor. Therefore, it follows follows from (2.25) that
F ′(Ext; d) = dT

m
∑

i=1,i6=t

wi
Ext − (Exi/ExT

t Exi)

‖Ext − (Exi/ExT
t Exi)‖

+ wt‖d‖ = ‖d‖(wt − ‖d‖) < 0. (2.35)This means that d is a des
ent dire
tion of F (X) at point Ext. Therefore, Ext 
ould notbe a lo
al minimizer. This proves that (2.32) is a ne
essary 
ondition for Ext to be aminimizer of (2.22).Now we have to prove that (2.32) is also a su�
ient 
ondition for the global optimality of
Ext of the problem (2.22). Suppose that Ext is not a global minimizer of (2.22). Then there



36 2. Spheri
al Weber Problemexists a point Y within the spheri
al 
onvex hull of the existing fa
ilities su
h that f(Y ) <

f(Ext). Sin
e f(X) is spheri
ally 
onvex, every point on the arc(Ext, Y ) (ex
ept Ext) hasa fun
tion value smaller than f(Ext). Therefore, we may assume that ExT
t Y 6= 0 withoutloss of generality. De�ne Ȳ = (Y/ExT

t Y ). Then F (Ȳ ) = F (Y ) < F (Ext). For any
λ ∈ (0, 1), de�ne ρ̄(Ext, Y, λ) = ρ(Ext, Y, λ)/ExT

t ρ(Ext, Y, λ). Let β = arccos(ExT
t Y ).Then for any λ ∈ (0, 1), we have

F ((1− tan(λβ)

tan(β)
)Ext +

tan(λβ)

tan(β)
Ȳ ) = F (ρ̄(Ext, Y, λ)) = f(ρ(Ext, Y, λ)) (2.36)

≤ (1− λ)f(Ext) + λ(f(Y ))

= F (Ext) + λ(F (Ȳ )− F (Ext)).This implies that F ′(Ext; d) ≤ F (Ȳ )−F (Ext) < 0, where d = Ȳ −Ext. Sin
e ExT
t d = 0,it follows from (2.25) and (2.32) that F ′(Ext; d) ≥ 0. This 
ontradi
tion proves that (2.32)is a su�
ient 
ondition for the optimality of Ext of (2.22).Now 
onsider the smooth 
ase. It is 
lear that (2.33) is a ne
essary 
ondition for Xto be a minimizer of (2.22). Suppose that X is not a global minimizer of (2.22).Thenthere exits a point Y within the spheri
al 
onvex hull of the existing fa
ilities su
h that

f(Y ) < f(X). As in the non-smooth 
ase, we may assume that XT Y 6= 0 without loss ofgenerality. De�ne Ȳ = Y/XT Y . Then F (Ȳ ) = F (Y ) < F (X). For any λ ∈ (0, 1), de�ne
ρ̄(X,Y, λ) = ρ(X,Y, λ)/XT ρ(X,Y, λ). Let β = arccos(XT Y ). Then for any λ ∈ (0, 1), wehave

F ((1− tan(λβ)

tan(β)
)X +

tan(λβ)

tan(β)
Ȳ ) = F (ρ̄(X,Y, λ)) = f(ρ(X,Y, λ)) (2.37)

≤ (1− λ)f(X) + λf(Y )

= F (X) + λ(F (Ȳ )− F (X)).

⇒ F ′(X; d) ≤ F (Ȳ )− F (X) < 0, where d = Ȳ −X.However, F ′(Ext; d) must be zero sin
e ∇F (X) = 0. This is a 
ontradi
tion and provesthe Theorem. �In the next step of this pro
edure, we will present an algorithm for solving the weber spher-i
al fa
ility lo
ation problem. The algorithm �rst 
he
ks if any of the existing fa
ilities isa global minimizer of the problem. If this doesn't, the algorithm generates a sequen
e of



2.4. Steepest Des
ent Algorithm for WeberSphereLo
 [32℄ 37des
ent sear
h dire
tions and iteration points with de
reasing fun
tion values.The relevant algorithm is as follows:Algorithm 2.4.1: Algorithm 3 (Des
ent algorithm for WeberSphereLo
)Input: Existing fa
ilities Exi, i = 1, . . . ,m 
ontained in a spheri
al disk of radius α ≤ π/4.Step 1. Find an existing fa
ility Ext, su
h that f(Ext) ≤ f(Exi) for all i = 1, 2, . . . ,m.Che
k the optimality 
onditions for Ext. If Ext is an optimal solution, Stop.Step 2. Let d = −∑m
i=1,i6=t wi(Ext − ExExt

i )/‖Ext −ExExt

i ‖where, ExExt

i = Exi

(Ext/‖Ext‖)T Exi
. Find a small step size β > 0 su
h that the point

Ext + βd lies in the 
onvex hull of ExExt

i , i = 1, 2, . . . ,m, and that X1 = Ext +

αd/‖Ext + αd‖ has a fun
tion value less than f(Ext). Let k = 1.Step 3. Compute ExXk

i for i = 1, 2, . . . ,m.Compute dk = −∑m
i=1 wi(X

k −ExiX
k)/‖Xk −ExiX

k‖. If dk = 0, Stop; Otherwise
ompute βk = 1
∑m

i=1
wi/‖Xk−ExiXk‖

.Step 4. Set Xk+1 = Xk + βkdk/‖Xk + βkdk‖. If f(Xk+1) ≤ f(Xk) − 0.1βk‖dk‖2, thenrepla
e k with k +1 and goto Step 3; Otherwise repla
e βk with 0.5βk and goto Step4.Note that Step 1 and Step 2 are used to eliminate non smooth points from further 
onsid-eration. Let Ext be an existing fa
ility whose obje
tive fun
tion value is minimum amongall the existing fa
ilities. If Ext satis�es the optimality 
ondition (2.32), then it is also aglobal minimizer of the problem. If Ext does not satisfy the optimality 
ondition (2.32),
d 
omputed in Step 2 is a des
ent dire
tion of f(X) at point Ext. Step 3 
omputes thesear
h dire
tion dk, whi
h is the negative of the gradient. If dk = 0, then Xk satis�es theoptimality 
ondition (2.33), and therefore it is a global minimizer. If dk 6= 0 , then it is ades
ent dire
tion and Step 4 �nds a better lo
ation.It is 
lear that the des
ription of the algorithm that the whole iteration sequen
e {Xk} liein the spheri
al 
onvex hull of the existing fa
ilities.



38 2. Spheri
al Weber ProblemIn the next step, we will prove global 
onvergen
e of the algorithm. In Lemma 2.4.1, we willprove that when the algorithm stops after a �nite number of iterations, it stops at a globalminimizer and if the algorithm does not stop after a �nite number of iterations, then theWeberSphereLo
 problem has a stri
tly spheri
al 
onvex obje
tive fun
tion and thereforehas only one lo
al minimizer (also global minimizer) whi
h is inside of the spheri
al 
onvexhull of the existing fa
ilities.In Lemma 2.4.2, we prove that every a

umulation point of the in�nite sequen
e generatedby the algorithm is a global minimizer of the WeberSphereLo
 problem.Lemma 2.4.1: If Algorithm 3 stops at Xk after a �nite number of iterations, then Xkis a global minimizer of the WeberSphereLo
 problem. If the algorithm generates anin�nite sequen
e {Xk}, then then the obje
tive fun
tion (2.22) is stri
tly spheri
al 
onvex,and therefore, the problem has only one lo
al minimizer (also a global minimizer) whi
his inside of the spheri
al 
onvex hull of the existing fa
ilities.Proof If the algorithm stops in Step 1, then Ext must satisfy the optimality 
ondition(2.32). Therefore,it is a non smooth global minimizer. If the algorithm stops in Step 3,then dk must be zero. In this 
ase, Xk satis�es the optimality 
ondition (2.33). Therefore,it is a smooth global minimizer.Now, we will 
onsider the 
ase that the algorithm generates an in�nite sequen
e {Xk}. Itfollows from Theorem 2.1.4 that all of the existing fa
ilities do not lie on a great 
ir
lesegment. This implies that all the existing fa
ilities lie within the spheri
al disk of radiusless than π/4. It then follows that the obje
tive fun
tion (2.22) is stri
tly spheri
al 
on-vex. Therefore, the WeberSphereLo
 problem has only one lo
al minimizer (also a globalminimizer) whi
h is inside of the spheri
al 
onvex hull of the existing fa
ilities. �Lemma 2.4.2: Let X̄ be an a

umulation point of {Xk}, i.e., there is a subsequen
e {Xk
t }whi
h 
onverges to X̄. Then X̄ is a global minimizer of the WeberSphereLo
 problem.Proof Assume that X̄ is not a global minimizer. Let d̄ = −∑m

i=1 wi(X̄ − ExX̄
i )/ ‖

X̄ − ExX̄
i ‖. Sin
e X̄ is not a global minimizer, d 6= 0. Therefore, there exists a pos-



2.5. Big Region-Small Region Algorithm [18℄ 39itive number β̄ ≤ 1
∑m

i=1 wi/‖X̄−ExX̄
i ‖

su
h that for all β ∈ (0, β̄], we have
F (X̄ + βd̄) ≤ F (X̄)− 0.2β ‖ d̄ ‖2< F (X̄)− 0.1β ‖ d̄ ‖2 . (2.38)From the de�nition, we 
an easily prove that {dk

t } 
onverges to d̄ and that
{∑m

i=1
wi

‖Xkt−ExXkt
i ‖
} 
onverges to {∑m

i=1
wi

‖X̄−ExX̄
i ‖
}. It is then follows from the 
ontinuityof F (·) at X̄ that there exits integers T and l su
h that for t ≥ T , we have

βk
t

△
=

1

2l

1
∑m

i=1 wi/ ‖ Xkt − EXXt

i ‖
∈ (0, β̄], (2.39)and that

F (Xkt + γktdkt) < F (X̄)− 0.1γkt ‖ dkt ‖2 . (2.40)Therefore, for t ≥ T , we have βk
t ≥ γkt and that

F (Xkt + 1) ≤ F (Xkt)− 0.1γkt ‖ dkt ‖2 . (2.41)Sin
e {f(Xk)} is stri
tly de
reasing and that F (X) is 
ontinuous at X̄, the sequen
e
{f(Xk)} 
onverges to f(X̄). Taking limit in (2.41) when t approa
hes ∞, we get

F (X̄) ≤ F (X̄)− 0.1
1

2l

1
∑m

i=1 wi/ ‖ X̄ − EXX̄
i ‖
‖ d̄ ‖2< F (X̄). (2.42)This is a 
ontradi
tion. �Theorem 2.4.2: Algorithm 2.4.1 either stops at a global minimizer after a �nite numberof iterations; or generates an in�nite sequen
e {Xk} whi
h 
onverges to a global minimizerof the WeberSphereLo
 problem.Combining the two lemmas 2.4.1 and 2.4.2, proves the Theorem. �2.5 Big Region-Small Region Algorithm [18℄In their paper, they dis
ussed the un
onstrained Weber problem and the 
onstrained Weberproblem on the sphere. The un
onstrained Weber problem is simply the WeberSphere-Lo
 problem whi
h we are dis
ussing in our arti
le. In the 
onstrained Weber problem



40 2. Spheri
al Weber Problem(WeberSphereLocconstraint), the new fa
ility X must belong to a given (not ne
essarily
onvex or 
onne
ted) subset F of the surfa
e of the sphere S0. This subset 
an usually beapproximated with su�
ient pre
ision by a set of n spheri
al triangles Tj : F = ∪n
j=1Tj.This 
onstrained problem is the 
omplement of the restri
ted spheri
al lo
ation problem be-
ause in the restri
ted problem, the new fa
ility should not be positioned in a given set (notne
essarily 
onvex or 
onne
ted) on S0.Now, we will dis
uss the algorithm for (WeberSphereLocconstraint) problem. This algo-rithm is a generalization of the "Big Square - Small Square (BSSS)" algorithm [17℄ withnew bounding rules. The BSSS algorithm pro
eeds by(i) partitioning the smallest square 
ontaining the set of possible lo
ations (feasible set)into sub squares;(ii) 
omputing a lower bound of the obje
tive fun
tion for those sub squares that interse
tthe feasible set;(iii) deleting the sub squares for whi
h the lower bound ex
eeds the value of the best existingsolution; and(vi) iterating until the length of a side of a square is smaller than a given toleran
e.We refer the generalized algorithm for spheri
al Weber problem as Big Region - Small Re-gion (BRSR) and this is based on bran
h - and- bound method in a 
ontinuous spa
e. Itpro
eeds as follows :(i) partitioning the surfa
e of the sphere S0 into regions Qi de�ned by two latitudes andtwo longitudes ( we start with an initial partitioning of S0 into 8 equal regions );(ii) deleting those regions whi
h do not interse
t the feasible region F ;(iii) 
omputing lower bounds f

i
on f on the remaining regions Qi and deleting those regionsfor whi
h the lower bound is greater than or equal to the value fopt of the best solution

Xopt yet obtained;



2.5. Big Region-Small Region Algorithm [18℄ 41(iv) 
omputing the value of a feasible point in ea
h remaining region Qi and updating foptand Xopt if a point with a smaller value than that of the in
umbent is found;(v) 
hoosing the remaining region Qi with smallest lower bound f
i
and partitioning it intofour new regions;(vi) iterating the tests on the new regions Qi obtained until the relative error fopt−f

i

fopt
issmaller than a given toleran
e ǫ.
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Fig. 2.1:The detailed rules of (BRSR) are as follows:a) Initialization Q1 ←− S;
I ←− {1}; (I is the index set of unsolved subproblems)
Inew ←− {1};(Inew is the index set of subproblems for whi
h a lower bound has not



42 2. Spheri
al Weber Problembeen 
omputed)
Xopt ←− randomly generated point in F(if one 
an be found, else Xopt ←−∞, i.e., a 
onventional value);
fopt ←− f(Xopt) if a point in F has been found, else fopt ←−∞;b) Feasibility Test For all Qi su
h that i ∈ Inew do
ompute Qi ∩ F ;if Qi ∩ F = ∅ delete i from Inew;EndFor;
) Optimality Test) For all Qi su
h that i ∈ Inew do
ompute a lower bound f

i
onf(X) for X ∈ Qi;if f

i
≥ fopt delete i from Inew;EndFor;(d) Improved Solution Test( see Figure 2.5 )For all Qi su
h that i ∈ Inew doif, for some j ∈ {1, . . . , n}, Qi ⊂ Tj ,
ompute the value f(Xi) of the 
entral point Xi of Qi;if, for some j ∈ {1, . . . , n}, Tj ⊂ Qi,
ompute the value f(Xi) of an arbitrary 
hosen extreme point Xi of Tj ;else, for some j ∈ {1, . . . , n} su
h that Tj ∩Qi 6= ∅,
ompute the value f(Xi) of a point Xi on the boundaries of Tj and Qi; if f(Xi) < fopt,set fopt ←− f(Xi) and Xopt ←− Xi; EndFor;add all indi
es i ∈ Inew to I;(e) Bran
hing and stopping 
onditionsIf I = ∅, stop : The problem is infeasible; else sele
t Qi su
h that f

i
= minj∈If j

.If fopt−f
i

f
i

≤ ǫ : stop, an ǫ-optimal solution Xopt with value fopt has been found, elsepartition Qi into four new regions Qij , j = 1, 2, 3, 4;Remove i from I and set Inew equal to the set of indi
es of the new regions;Return to b).



2.5. Big Region-Small Region Algorithm [18℄ 43The algorithmi
 s
heme presented here 
an be simpli�ed for the WeberSphereLo
 prob-lem as follows :(i) Step (b) is omitted (ii) Step (d) redu
es to the �rst 
ase.It remains to spe
ify how regions are partitioned. The easiest way to handle regions is tode�ne them by a pair of latitudes and longitudes. Then four new regions of Qi are obtainedby taking as new boundaries the average of the two latitudes and the two longitudes.





3. SPHERICAL CENTER PROBLEMAs in the 
ase of WeberSphereLo
, we assume that ea
h model whi
h is des
ribed in this
hapter will deal with a unit sphere, S0 where the radius is equal to one. Every point X onthe sphere is de�ned by its latitude φ and longitude θ and it is denoted by X = X(φ, θ).Consider m demand points ( or existing lo
ations ) Exi, i = 1, 2, . . . ,m, on the surfa
e ofthe sphere with asso
iated weights wi and some distan
e fun
tion d(X,Y ), whi
h measuresthe distan
es between spheri
al points X and Y .We 
onsider single fa
ility spheri
al lo
ation problem ( SphereLo
 ) of the 
entertype. I.e., we solve
min
X∈S0

h(X) :=
m

max
i=1

wid(X,Exi) CenterSphereLo
 (3.1)where X is the unknown lo
ation.Unlike on the plane, the CenterSphereLo
 problem (as well as WeberSphereLo
) hasundesirable properties, su
h as non-
onvexity and non di�erentiability of the obje
tive fun
-tion at both the demand points and a the 
orresponding antipodal points, and restri
tion onthe domain of the obje
tive fun
tion. Analogous to the Theorem 1.2.1, if all the demandpoints are in
luded within a spheri
al disk of radius π/4, then h(X) is 
onvex (and thusevery lo
al optimum is also global).However, if it 
an be predetermined that all the demand points lie on a hemisphere, one 
anapply mathemati
al programming or geometri
al solution methods for the minimax lo
ationproblems in the Eu
lidean plane to solve the CenterSphereLo
 problem.In this 
hapter, we will dis
uss some solution approa
hes to solve the CenterSphereLo
problem on the unit sphere S0 as well as on a hemisphere.



46 3. Spheri
al Center Problem3.1 An Iterative Pro
edure to �nd the Global Optimum for CenterSphereLo
 [13℄Consider the CenterSphereLo
 problem with great 
ir
le ar
 distan
e αi = arc(Exi,X)( see (1.1) ) between the demand point Exi and the new lo
ation X on the surfa
e of thesphere. I.e., we want to minimize
h(X) =

m
max
i=1

wiarc(X,Exi) =
m

max
i=1

wiαi(X,Exi) (3.2)over all X = X(φ, θ) ∈ S0.We 
an formulate the spheri
al maximin problem analogously.The following Theorem shows that spheri
al maximin and minimax lo
ation problems areequivalent.Theorem 3.1.1: [13℄: Let the optimal solution to the spheri
al maximin problem be X∗.If a minimax problem is formed by repla
ing the demand points Exi, i = 1, . . . ,m withtheir antipodes Ēxi, i = 1, . . . ,m and by adding the 
onstant c = −πwi to wiᾱi then theoptimal solution to this minimax problem is also X∗.Proof : The distan
e ᾱi between X and Ēxi ( the antipode of Exi) is π−αi as any great
ir
le 
ontaining Exi also 
ontains Ēxi. Now 
onsider the minimax problem :
min
X∈S0

m
max
i=1

wiᾱi + (πwi) = min
X∈S0

m
max
i=1

wi(π − αi)− πwi

= min
X∈S0

m
max
i=1

(−)wiαi

= min
X∈S0

{(−)
m

min
i=1

wiαi}

= (−) max
X∈S0

m
min
i=1

wiαiIt follows the Theorem. �Theorem 3.1.2: [13℄: Let X l_opt be a lo
al minimum of h(X). Let E ′x be the set of all
i su
h that h(X l_opt) = wiαi. Then, if αi < π/2 for i ∈ E ′x, then X l_opt is the globalminimum.



3.1. An Iterative Pro
edure to �nd the Global Optimum for CenterSphereLo
 [13℄ 47Proof
αi < π/2 ⇒ all Exi ∈ E ′x in the hemisphere
entered at X l_opt

Th.1.2.1⇒ E ′x is a 
onvex set
Th.1.2.1⇒ αi is 
onvex on E ′xThen h(X) is a 
onvex fun
tion on E ′x
Th.1.2.1⇒ X l_opt is the global minimum.

�Note that when αi < π/2, then all the demand points in E ′x are in the hemisphere 
enteredat X l_opt. Further, the value of the obje
tive fun
tion for the modi�ed problem based onthe demand points in E ′x is only a lower bound for the value of the obje
tive fun
tion forthe problem based on all demand points.Finding a lo
al minimax point :Here, we propose a method of �nding a lo
al minimum for h(X) is a version of steepestdes
ent for minimax problems. The proposed method is as follows :De�ne
hi(X) = wiαi, for i=1, . . . , m (3.3)Then we have

h(X) = max
i
{hi(X)}Also de�ne

Iǫ(X) = {i|hi(X) ≥ h(X) − ǫ}, (3.4)where ǫ is a small 
onstant. Then 
onstru
t the following quadrati
 programming problemin order to �nd a feasible ve
tor Y = (φy, θy) in the dire
tion of the steepest des
ent of
h(X).

minimize u = φy
2 + θy

2, (3.5)
subject to [∂hi/∂φ]φy + [∂hi/∂θ]θy ≤ −1, for i ∈ Iǫ(X).



48 3. Spheri
al Center ProblemIf Y ∗ = (φy∗ , θy∗) is a feasible solution to the quadrati
 programming problem, it guaranteesthat Y ∗ and {Exi : i ∈ Iǫ(X)} lie on a a hemisphere.Property 3.1.1: If there is no feasible solution (3.5)at X, then
h(X) − h(X l_opt) ≤ ǫ,where X l_opt is a lo
al minimax solution.Property 3.1.2: If there is a feasible solution to (3.5) at X, then Y ∗ = (φy∗ , θy∗) , theoptimal solution to (3.5), is a ve
tor in the dire
tion of the steepest des
ent of h(X).Therefore, if there is a feasible solution to (3.5), we 
an travel to a lower value of h(X)along the great 
ir
le de�ned by Y ∗.Now, we have to �nd the global minimax point to problem. In the following we will explainthe prin
iples behind a pro
edure guaranteed to �nd the global minimax point :Suppose that a lo
al minimax point X l_opt of h(X) has been found. Let the interse
-tion I, of m spheri
al disks Di, i = 1, 2, . . . ,m with 
enters at points Exi and with radii

h(X l_opt)/wi. Note that I may be disjoint. A better solution 
an be found in the set Iand if I is formed by only of the points ( and not ar
s ) the lo
al minimax point is alsothe global one. Otherwise, if we obtain a starting point in an area of I, the quadrati
programming formulation (3.5) 
an be used to �nd better lo
al minimax point. Note thatthis area is thereby "removed," If this pro
ess is repeated, the disk shrink, the �nite numberof areas in I is redu
ed, and the global minimax point must eventually be found.Now, we will propose an e�
ient method in order to obtain a staring point within the areaof I. Note that the area of I must be bounded by ar
 segments 
ut from the 
ir
umferen
esof the spheri
al disks with 
enters Exi. Therefore, at least one su
h ar
 must be insideall other disks. Suppose that we start with the 
ir
le around any disk. Then we 
an 
he
kother 
ir
les to see if the �rst 
ir
le has an ar
 in its interior. If the interse
tion of su
har
 segments B is not empty, then this interse
tion forms parts of a boundary of area of
I. Then, we 
an use the 
enter of B as the starting point for the quadrati
 programmingimprovement of the solution.The algorithm for �nding the optimal minimax solution is as follows:



3.1. An Iterative Pro
edure to �nd the Global Optimum for CenterSphereLo
 [13℄ 49Algorithm 3.1.1: ( �nding the global minimax point:)Input: Set of existing fa
ilities Ex = {Exi; i = 1, 2, . . . ,m : Exi ∈ S0}Step 1 Choose a starting point.Step 2 Use (3.5) to obtain a lo
al minimax point X l_opt.Step 3 Using Theorem 3.1.2, 
he
k to see if X l_opt is a global minimax point; if so termi-nate the pro
edure.Step 4 Apply Algorithm 3.1.2 for the group E ′x de�ned in Theorem 3.1.2. If I has onlypoints, terminate the pro
edure as X l_opt is the global minimax point.Step 5 Apply Algorithm 3.1.2 for the whole group of 
ir
les. If I has only points now,
X l_opt is the global minimax point.Step 6 Go to Step 2 with the starting point found by Algorithm 3.1.2 .Let k be the number of spheri
al disks whose interse
tion we seek.Algorithm 3.1.2: ( �nding an area of I ):Step 1 set i = 1, j = 2.Step 2 De�ne B to be the entire 
ir
umferen
e of 
ir
le i.Step 3 If i = j, go to Step 7.Step 4 Find that ar
 of 
ir
le i that is 
ut by disk j.Step 5 Let B be the interse
tion between the 
urrentB and the ar
 formed in Step 4.Step 6 If B is empty and i = k, terminate the pro
edure: The interse
tion I has no areas.If I(arcs) is empty and i < k, set i = i + 1 and go to Step 2.Step 7 If j < k go to Step 3 with j = j + 1. If j = k designate the 
enter of any ar
 of Bas a new starting point in Algorithm 3.1.1 and terminate this pro
edure.



50 3. Spheri
al Center Problem3.2 Enumeration Te
hnique for Determining Global Optimum ofCenterSphereLo
 [5℄Here, we present an enumeration pro
edure of �nding a minimax lo
ation of the Center-SphereLo
 problem with the distant norm is the shortest ar
 distan
e on the surfa
e of thesphere. This pro
edure determines global optimal solutions in a �nite number of steps. Inthe following, we represent some notations and de�nitions whi
h will be used in developingof the algorithm.Consider three points X1,X2 and X3 on the surfa
e of the sphere.
X1X̂2X3 ≡ the spheri
al angle subtended from a point X2 by the sh-orter ar
, arc(X1X3).
△X1X2X3 ≡ the plane triangle with verti
es at points X1,X2 and X3.

∠X1,∠X2 and ∠X3 ≡ angles of △X1X2X3.The spheri
al angle X1X̂2X3 is measured as angle between two straight lines tangentialat point X2 to the two great 
ir
les, one passing through X1&X2 and the other through
X2&X3.De�nition 3.2.1: Given three distin
t points, X1,X2 and X3 on the surfa
e of the sphere,
P(X1,X2,X3) denote the unique plane passing through the three points and bise
ting thesphere(see Figure 3.1).De�nition 3.2.2: C(X1,X2,X3) denotes the 
ir
le tra
ed by the plane P(X1,X2,X3)
utting through the sphere(see Figure 3.1).De�nition 3.2.3: Let X1 and X2 are not diametri
ally opposite. Denote the mid pointof the (shorter) ar
 as the point P . Then, C(X1,X2) represents the small 
ir
le that goesthrough points X1 and X2 and has its nearer pole lo
ated at point P .De�nition 3.2.4: ΓC(X1,X2) and ΓC(X1,X2,X3) denote the surfa
e area of a sphere that
ontains the nearer pole and is bounded by C(X1,X2) and C(X1,X2,X3), respe
tively.
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1
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3Fig. 3.1: Plane P bise
ts the sphereDe�nition 3.2.5: RC(X1,X2) and RC(X1,X2,X3) denote the surfa
e area of a spherethat 
ontains the distant pole and is bounded by C(X1,X2) and C(X1,X2,X3), respe
tively.Next, We will represent some results regarding poles and small 
ir
les.Lemma 3.2.1: Let P be the nearer pole of C(X1,X2,X3), where △X1X2X3 is an a
utetriangle. Let Q(6= P ) be any point on ΓC(X1,X2,X3) and within the spheri
al triangle
X1X2X3. Then, the spheri
al radius of C(X1,X2,X3) is greater thanminimum{arc(QX1), arc(QX2), arc(QX3)}.Proof : See Appendix.Lemma 3.2.2: Let P ′ be the distant pole of C(X1,X2,X3) where △X1X2X3 is an a
utetriangle. Let Q1 be a point on RC(X1,X2,X3) and Q1 6= P ′. If Q1 is su�
iently 
lose to
P ′ thenmaximum{arc(Q1X1), arc(Q1X2), arc(Q1X3)} > arc(X1P

′).



52 3. Spheri
al Center ProblemProof : See Appendix.Lemma 3.2.3: Let X1,X2 and X3 be three di�erent points on a unit sphere with ∠X3 >

π/2. Let P and P ′ be the nearer and distant poles of C(X1,X2,X3) respe
tively. Thenthere exits a point Q, 
lose to P ′ su
h that
maximum{arc(X1Q), arc(X2Q), arc(X3Q} < arc(X1P

′) = arc(X2P
′) = arc(X3P

′).Proof : See Appendix.Corollary 3.2.1: C(X1,X2,X3) may 
ontain demand points other than X1,X2, and X3.Assume that all other demand points lie in RC(X1,X2,X3) − C(X1,X2,X3). Then thedistant pole of C(X1,X2,X3) is not a solution of the spheri
al minimax problem if notriplet of demand points on C(X1,X2,X3) forms an a
ute triangle.Proof In this 
ase the demand points on C(X1,X2,X3) lie on an a
 of a semi
ir
le. Theresults dire
tly follows from Lemma 3.2.3.Theorem 3.2.1: (i) If △(X1X2X3) is an a
ute and ΓC(X1,X2,X3) may 
ontain all de-mand points the n the nearer pole of C(X1,X2,X3) is the unique fa
ility point.(ii) If ΓC(X1,X2) 
ontains all demand points, then the nearer pole of C(X1,X2) is therequired fa
ility point.Proof Let P be the nearer pole of C(X1,X2,X3). As △(X1X2X3) a
ute, we have
X̂1 < X̂2 + X̂3, X̂2 < X̂1 + X̂3, and X̂3 < X̂1 + X̂3.Take any point X on ΓC(X1,X2,X3). Join XP by the ar
 of the great 
ir
le. Sin
e P iswithin the spheri
al triangle X1X2X3, we have

X1P̂X2 + X2P̂X3 > π,

X2P̂X3 + X3P̂X1 > π,and
X3P̂X1 + X1P̂X2 > π,
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Fig. 3.2:hen
e, we 
on
lude that at least one of the spheri
al angles X1P̂X,X3P̂X and X2P̂X mustbe greater than π/2. In Figure (3.2), for example, X1P̂X > π/2, and 
onsequently fromthe spheri
al triangle X1PX, arc(X1X) > arc(X1P ).Similarly,
X3P̂X > π/2 ⇒ arc(X3X) > arc(X3P ) and X2P̂X > π/2 ⇒ arc(X2X) > arc(X2P ).This implies that P is the unique fa
ility point.Consider the spheri
al 
ir
le C(X1,X2) with nearer pole S.From the spheri
al triangle PX1X2, we have by the Property 1.2.1 (
),

arc(X1P ) + arc(X2P ) > arc(X1X2) = arc(X1S) + arc(SX2)

⇒ 2 · arc(X1P ) > 2 · arc(X1S)

⇒ arc(X1P ) > arc(X1S).This implies that there exits a small 
ir
le C(X1,X2) of a smaller spheri
al radius than
arc(X1P ) su
h that all the demand points are 
ontained on ΓC(X1,X2). That is , thenearer pole S of C(X1,X2) is the required fa
ility point.Corollary 3.2.2: C(X1,X2,X3) may 
ontain demand points other than X1,X2, and X3.



54 3. Spheri
al Center ProblemAssume that all other demand points lie in ΓC(X1,X2,X3)−C(X1,X2,X3). If all triplets ofdemand points on C(X1,X2,X3) form obtuse triangle, then the nearer pole of C(X1,X2,X3)is not the required fa
ility point.Proof : The result follows from Theorem 3.2.1.Theorem 3.2.2: If there exists a triplet (X1,X2,X3) of demand points su
h that(i) △(X1X2X3) is a
ute,(ii) The 
enter of the sphere and all demand points lie on the same side of P(X1,X2,X3),and(iii) (X1,X2,X3) generates the plane 
losest to the 
enter of the sphere, then the distantpole of C(X1,X2,X3) is the required fa
ility point.Proof : From Lemma 3.2.3, we know that the triplet of points forming an obtuse triangle
annot yield an optimal solution. Further, Lemma 3.2.2 represents that the distant poleof the small 
ir
le de�ned by a triplet satisfying (i) and (ii) is a lo
al minimum and (iii)implies the optimality.Theorem 3.2.3: If RC(X1,X2)−C(X1,X2) 
ontains all demand points other than X1,X2,then the distant pole of C(X1,X2) 
annot be a minimax lo
ation.Proof : See Appendix.Corollary 3.2.3: Assume C(X1,X2) 
ontains a demand point(s) other than P1 and P2.Let all the demand points lie on RC(X1,X2)−C(X1,X2). If not triplet of demand points on
C(X1,X2) forms an a
ute triangle, then the distant pole of C(X1,X2) 
annot be a fa
ilitypoint.Proof : The results follows from Theorem 3.2.3.Lemma 3.2.2 shows that if all the demand points lie in RC(X1,X2,X3), every point in asmall neighborhood of distant pole, P ′ has an obje
tive fun
tion value that is greater than
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hnique for Determining Global Optimum of CenterSphereLo
 [5℄ 55the one at P ′. Thus P ′ is lo
ally optimal. In the 
ase that all the demand points lie in ahemisphere, Theorem 3.2.1 dis
uss the solution to the required problem when all demandpoints lie in a hemisphere and Theorem 3.2.2 
hara
terizes a solution when all the demandpoints are distributed all over the sphere.Next, will present the developed algorithm for solving the spheri
al minimax lo
ation prob-lem.In the following algorithm, we 
onsider that Ex = {Exi : i = 1, . . . ,m} denote the set ofdemand points and Exk, Exl, and Exm be three distin
t element of Ex.Then de�ne the following :
l(Exk, Exl, Exm) : the Eu
lidean distan
e from the 
enter of the sphere to the 
enterof the 
ir
le C(Exk, Exl, Exm).

u(Exk, Exl, Exm) =







0 if △ExkExlExm is obtuse;
1 otherwise.

v(Exk, Exl, Exm) =







0 if points lie on both sides of P(Exk, Exl, Exm) ;
1 otherwise.This algorithm bellow examines all possible pairs of demand points to �nd minimax lo
a-tions. To prevent a pair of demand points, (Exi, Exj) being examined twi
e, the followingrules are imposed to update the indi
es of the pair to be examined next.Rule 1. If j < m, then set i = i and j = j + 1Rule 2. If j = m and i < m− 1, then set i = i + 1 and j = j + 1.Together with the above de�nitions and two rules, the algorithm 
an be presented as follows :Algorithm 5 (An algorithm for CenterSphereLo
 problem)



56 3. Spheri
al Center ProblemInput The set Ex = {Exi : i = 1, . . . ,m} of demand points on the unit sphere.Initialization. Set i = 1, j = 2,Opt∗ = ∅, k = 1, l = 2, lbest = 1. Go to step 1.Step 1. If ΓC(Exk, Exl) 
ontains every other demand points, stop and nearer pole of
C(Exk, Exl) is the minimax lo
ation. Otherwise, go to Step 2.Step 2. If i = (m − 1), stop and every point in Opt∗ is a minimax lo
ation. Otherwise,go to Step 3.Step 3. Let Exp and Exq be two demand points other than Exk and Exl su
h that
P(Exk, Exl, Exp) and P(Exk, Exl, Exq) yield the minimum and the maximum, re-spe
tively, in
lination with the plane Γ(Exk, Exl).If u(Exk, Exl, Exr) = 1 and all the demand points lie on ΓC(Exk, Exl, Exr for r = por r = q, then stop and the nearer pole of C(Exk, Exl, Exr) is the minimax lo
ation.Otherwise, go to Step 4.Step 4. For r = p and r = q, do one of the following:If u(Exk, Exl, Exr) = 1, v(Exk , Exl, Exr) = 1 and l(Exk, Exl, Exr) = lbest, thenadd the distant pole of C(Exk, Exl, Exr) to Opt∗.If u(Exk, Exl, Exr) = 1, v(Exk, Exl, Exr) = 1 and l(Exk, Exl, Exr) < lbest, then set
lbest = l(Exk, Exl, Exr) and repla
e Opt∗ with a set that 
ontains only the distantpole of C(Exk, Exl, Exr).Update i and j a

ording to the two rules and set Exk = Exi and Exl = Exj . Goto Step1.If the algorithm stops in Step 1, the Theorem 3.2.1 guarantees that the nearer pole of

C(Exk, Exl) is the optimum lo
ation. The set Opt is formed by the distan
e poles of
C(Exk, Exl, Exr). If the algorithm terminates in Step 2, Theorem 3.2.3 justi�es that thepoints Exk, Exl, and Exr; r = p, q on C(Exk, Exl, Exr) forms an a
ute triangle and thisjusti�es the optimality of every point in Opt. Consider the Step 3. The plane P(Exk, Exl)divides the sphere into two disjoint surfa
es. If Exm ∈ ΓC(Exk, Exl) − C(Exk, Exl),then ExkÊxmExl is obtuse and then the poles of C(Exk, Exl, Exm) 
an not be a opti-mal lo
ation. When Exm ∈ RC(Exk, Exl) − C(Exk, Exl) then ExkÊxmExl is a
ute. If,in addition, every demand points lie on ΓC(Exk, Exl, Exm), then by Theorem 3.2.1, thenearer pole of C(Exk, Exl, Exm) is the optimal lo
ation. Otherwise, Step 4 examines the



3.3. Algorithm Based on Fa
tored Se
ant Update Te
hnique [24℄ 57possibility to have a distan
e pole of C(Exk, Exl, Exm) as a optimal lo
ation.Further, in Step 3, we are looking for a third demand point Exm on C(Exk, Exl) in su
ha way that all the other demand points lie on one side of the plane P(Exk, Exl, Exm).There are no more than (m − 2) planes that pass through demand points Exk, Exl, andanother point Exm in RC(Exk, Exl). Among these planes, at most two planes 
an haveall the demand points other than Exk, Exl, and Exm all on one side. These two planesare the ones that yield the minimum and maximum in
linations with the plane C(Exk, Exl).3.3 Algorithm Based on Fa
tored Se
ant Update Te
hnique [24℄In this paper, the author dis
ussed CenterSphereLo
 problem in the 
artesian 
oordi-nate system using the Eu
lidean norm. He justi�ed that minimizing the maximum ofthe shortest ar
 distan
es between the fa
ility and the demand points on the unit sphereis equivalent to minimizing the maximum of the 
orresponding Eu
lidean distan
es. Usingthe Karush-Kuhn-Tu
ker (KKT) ne
essary optimality 
onditions, he obtained a set of non-linear equations whi
h 
an be solved by a method of fa
tored se
ant update te
hnique (see[6℄). He made attention for the following spe
ial 
ases :1. All the demand points are on a hemisphereand2. One or more point-antipodal point(s) are in
luded in the set of demand points.3.3.1 The Behavior of the Eu
lidean Distan
es in Spheri
al Lo
ation ProblemsHere, we will show that minimizing the maximum of the shortest ar
 distan
e between thefa
ility to be lo
ated and the demand points is equivalent to minimizing the maximum ofthe 
orresponding Eu
lidean distan
es.From (1.1), we have
α = arccos{cos φ1 cos φ2 cos(θ1 − θ2) + sin φ1 sin φ2} (3.6)
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al Center Problembe the shortest ar
 distan
e between two points X1 = X1(φ1, θ1) and X2 = X2(φ2, θ2) on
S0. Let d be the 
orresponding Eu
lidean distan
e between these two points. Sin
e α is alsothe angle between the two lines drawn from the 
enter of the sphere to two points X1 and
X2, ( see Figure 3.3 )

2

α

X 

X 

O

Great circle through X   and X

Euclidean distance d

1

1

1

2

2

arc(X ,X )

Fig. 3.3:
d2 = ‖ OX1 ‖2 + ‖ OX2 ‖2 −2× ‖ OX1 ‖ × ‖ OX2 ‖ cos α

d2 = ‖ 1 ‖2 + ‖ 1 ‖2 −2× ‖ 1 ‖ × ‖ 1 ‖ cos α

d2 = 2− 2 cos α

α = arccos(1− d2

2
), 0 ≤ d ≤ 2 (3.7)The equation 3.7 shows that there is a one-to-one 
orresponden
e between α and d. Inaddition, α is an in
reasing fun
tion of d. This means that �nding the minimax point us-ing the great 
ir
le distan
e, α is equivalent to �nding minimax point using the Eu
lideandistan
e, d.



3.3. Algorithm Based on Fa
tored Se
ant Update Te
hnique [24℄ 593.3.2 Formulation of the Problem with Eu
lidean Distan
eA mathemati
al formulation of the CenterSphereLo
 problem with Eu
lidean distan
e isas follows :
min H (3.8)subje
t to (xi − x0)

2 + (yi − y0)
2 + (zi − z0)

2 ≤ H for i = 1, . . . ,m (3.9)
x2

0 + y2
0 + z2

0 = 1 (3.10)wherem is the number of existing fa
ilities ,
(xi, yi, zi) are the 
artesian 
oordinates of the existing fa
ilities Exi,
(x0, y0, z0) are the 
oordinates of a point X0 on S0,H is the variable that measures the maximum of the squares of the Eu
lideandistan
es from X0 to the existing fa
ility Exi.Now we 
onsider the 
orresponding KKT ne
essary optimality 
onditions for the the min-imax problem (3.8) - (3.10).

m
∑

i=1

λi = −1 (3.11)
(µ +

m
∑

i=1

λi)x0 =

m
∑

i=1

λixi (3.12)
(µ +

m
∑

i=1

λi)y0 =
m

∑

i=1

λiyi (3.13)
(µ +

m
∑

i=1

λi)z0 =
m

∑

i=1

λizi (3.14)(3.15)
λisi = 0 for i = 1, . . . , n (3.16)

(xi − x0)
2 + (yi − y0)

2 + (zi − z0)
2 − F + s2

i = 0 for i = 1, . . . , n (3.17)
x2

0 + y2
0 + z2

0 − 1 = 0 (3.18)
λi + p2

i = 0 for i = 1, . . . , n (3.19)



60 3. Spheri
al Center Problemwhere
λi is the Lagrange multiplier 
orresponding to the 
onstraint set (3.9) ,
µ is the Lagrange multiplier 
orresponding to 
onstraint (3.10),
si are the sla
k variables of inequality (3.9),
pi are the sla
k variables of the non positivity 
onditions on λi.The set of equations (3.11)- (3.19) are the set of nonlinear equations whi
h 
an be solvedby using the method of fa
tored se
ant update with a �nite di�eren
e approximation to theJa
obian. 3.3.3 Some Examples for Solving CenterSphereLo
In order to apply the theory whi
h we dis
ussed here, we 
onsider three examples :1. when the demand points are on a hemisphere and at least one point-antipodal pointpair is in
luded in the set of demand points,2. when the demand points are on a hemisphere and no point - antipodal point pair isin
luded in the set of demand points,3. when the demand points are not on a hemisphere.Example 1We 
onsider 17 points all lo
ated in the Northern Hemisphere. Ea
h point's latitude, longi-tude, and the 
orresponding Cartesian 
oordinates ate in
luded in Table 3.1. The last twopoints form a point - antipodal point pair on the equator.For this example, a minimax point 
an be obtained qui
kly as follows (see [23℄):
• Sele
t a demand demand point Exi = (xi, xi, zi) whose antipode

Ēxi = (−xi,−yi,−zi) is also in
luded in the set Ex of demand points.



3.3. Algorithm Based on Fa
tored Se
ant Update Te
hnique [24℄ 61City Latitude Longitude x y z1 London 51.5 N 0.4 E 0.6025 0.0043 0.78262 Paris 48.9 N 2.3 E 0.6568 0.0264 0.75363 Zuri
h 47.4 N 8.5 E 0.6694 0.1000 0.73614 Rome 41.9 N 12.5 E 0.7267 0.1611 0.66785 Copenhagen 55.7 N 12.6 E 0.5500 0.1229 0.82616 Berlin 52.5 N 13.4 E 0.5922 0.1411 0.79347 Sto
kholm 59.3 N 18.9 E 0.4830 0.1654 0.86008 Athens 38.0 N 23.7 E 0.7216 0.3167 0.61579 Ankara 39.9 N 32.8 E 0.6449 0.4156 0.641510 Tel-Aviv 32.1 N 34.8 E 0.6956 0.4835 0.531411 Mos
ow 55.7 N 37.7 E 0.4459 0.3446 0.826112 Teheran 35.4 N 51.4 E 0.5085 0.6370 0.579313 Bombay 18.9 N 72.8 E 0.2798 0.9038 0.323914 Manila 14.6 N 121.0 E -0.4984 0.8295 0.252115 Tokyo 35.6 N 139.7 E -0.6201 0.5260 0.582016 Point 16 0.0 30.0 E 0.8660 0.5000 0.000017 Point 17 0.0 150.0 W -0.8660 -0.5000 -0.0000Tab. 3.1: Latitudes, Longitudes, and 
orresponding Cartesian 
oordinates of 17 points. Points 16and 17 form a point-antipodal point pair on the Equator
• Consider a plane passing through the points (0, 0, 0), Exi, and Ēxi su
h that theremaining points Exj, with j 6= i lie on one side of the plane.
• If su
h a plane exists, then all the points in
luding the point-antipodal pair are on ahemisphere.
• To 
he
k whether su
h a plane exits, we 
an solve the following linear programmingproblem with dummy obje
tive g:
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max g (3.20)
s.t. axi + byi + czi = 0

axj + byj + czj ≤ 0 for all (xj , yj, zj) 6= ±(xi, yi, zi)

g ≤ 1

a, b, c are unrestri
ted in sign.
• Consider a solution (a, b, c) obtained by solving the linear programming formulation(3.20)
• This ve
tor is normal to the plane ax + by + cz = 0 that divides the unit sphere intohemispheres su
h that the demand points lie on a hemisphere.
• This ve
tor is dire
ted towards the hemisphere that does not 
ontain any of the de-mand points.
• Then the minimax point is given by

x0 = − a√
a2 + b2 + c2

; y0 = − b√
a2 + b2 + c2

; z0 = − c√
a2 + b2 + c2

(3.21)
• This minimax point is simply the 
enter of the spheri
al disk with radius π/2 (thehemisphere whi
h bears all the demand points).As the linear programming formulation (3.20) has multiple optimal solutions whenever thegreat 
ir
le that divides the hemispheres 
ontains only the point-antipodal point pair, thisminimax point may not be unique. In this 
ase the minimax lo
ation problem will havemultiple solutions with the same maximum spheri
al distan
e π/2 from the minimax pointto the demand points.Using the method mention above, example 1 gives the minimax point (-0.463, 0.803, 0.376).The same problem is also solved using the KKT 
onditions (3.11) - (3.19) iteratively. Itgives the minimax point (-0.356, 0.616, 0.703).



3.3. Algorithm Based on Fa
tored Se
ant Update Te
hnique [24℄ 63These two solutions 
on�rms that multiple solutions are possible for this problem.Example 2In this example, we 
onsider the �rst 15 points of Table 3.1 all lo
ated in the NorthernHemisphere. This problem is solved by using KKT 
onditions (3.11) - (3.19) and it givesa unique globally optimal solution whenever the demand points lie on a hemisphere.Example 3 City/Point Latitude φ Longitude θ x y z1 Point 1 56.2 N 23.4 E 0.5105 0.2209 0.83102 Point 2 25.0 N 9.1 W 0.8949 -0.1433 0.42263 Point 3 7.0 S 43.2 E 0.7235 0.6794 -0.12194 Point 4 12.8 N 45.0 W 0.6895 -0.6895 0.22155 Point 5 0.0 100.5 E -0.1822 0.9832 0.00006 Point 6 27.0 N 84.5 W 0.0854 -0.8869 0.45407 Point 7 9.5 S 110.3 W 0.3422 -0.9250 -0.16508 Point 8 32.5 S 87.0 E 0.0411 0.8422 -0.53739 Point 9 30.0 S 60.0 W 0.4330 -0.7500 -0.500010 Point 10 60.0 N 60.0 W 0.2500 -0.4330 0.866011 Point 11 45.0 N 75.0 E 0.1830 0.6830 0.707112 Point 12 85.0 N 0.0 0.0872 0.0000 0.996213 Point 13 15.0 S 130.0 W -0.6209 -0.7399 -0.258814 Point 14 60.0 N 115.0 E -0.2113 0.4532 0.8660Tab. 3.2: Latitudes, Longitudes, and 
orresponding Cartesian 
oordinates of 14 points spread overthe entire globe.In this example, we 
onsider the situation when all the demand points are not on a hemi-sphere. The table 3.2 represents 14 points with ea
h point's latitudes, longitudes, and the
orresponding Cartesian 
oordinates .
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al Center ProblemIt gives di�erent lo
ally optimal solutions in ea
h di�erent starting values. The minimumvalue obtained among all of these lo
ally optimal solutions may be a globally optimal solu-tion. Next, we add the �fteenth in Table 3.2. This point is the antipode of Point 3 in thistable. The KKT 
onditions (3.11) - (3.19) is solved with a same starting vales and it givesthe same optimal solution as that obtained for the 14 points in Table 3.2. This 
on�rmsthat adding an antipode of one of the demand points may not always alter a lo
ally optimalsolution.Note: For the �rst example, the KKT ne
essary optimality 
onditions (3.11)-(3.19) neednot be solved. The ve
tor (a, b, c) that is normal to the plane ax + by + cz = 0 passingthrough the 
enter (0, 0, 0) of the sphere and dividing the plane into hemispheres su
h thatthe demand points are on a hemisphere, is dire
ted towards the hemisphere that does not
ontain any of the points. The optimal lo
ation of CenterSphereLo
 is then the nor-malized ve
tor (−a,−b,−c). For the other two examples, KKT 
onditions (3.11)-(3.19)need to be solved. There are (3n + 5) equations involved in these (3.11)-(3.19). Thus thenumber of equations in
reases by 3 whenever a new demand point is added. Also it shouldbe mentioned that the resulting KKT system of equations, (3.11)-(3.19), is very nonlinear.3.4 Geometri
al Approa
hes for CenterSphereLo
 Problem on a Hemisphere[27℄,[4℄Consider the CenterSphereLo
 problem on a hemisphere with equal weights. In bothmethods, we use the shortest ar
 distan
e as the measure of distan
e on the hemisphere.The solution method whi
h is des
ribed in [27℄ depends heavily on properties of the spher-i
al triangles. The se
ond approa
h whi
h is des
ribed in [4℄ is based on the properties ofa plane triangle. During the development of these algorithms, we use the notations whi
hare des
ribed in the se
tion 3.2.In the �rst step, we des
ribe the Sakar - Chaudhuri[27℄ algorithm is as follows:Let Ex = {Exi, i ∈ I and I = {1, 2, . . . ,m}} be the set of demands points on the surfa
eof a hemisphere. The basi
 idea of this approa
h is to 
over Ex by a portion of a spherebounded by a small 
ir
le. The next step 
onsists of redu
ing the radius of this 
ir
le so that



3.4. Geometri
al Approa
hes for CenterSphereLo
 Problem on a Hemisphere [27℄,[4℄ 65demand points 
ontinue to remain within the portion of the sphere bounded by this 
ir
le.The algorithm is designed in su
h a manner that ea
h iteration at leat one demand point
ould be eliminated and no future iteration would need any information about this point.Algorithm 3.4.1: (algorithm based on the properties of the spheri
al triangles)Input Ex = {Exi : i ∈ I = {1, . . . ,m}} be the set of existing fa
ilities in a hemisphere
SH

0 .Initialization. Choose any point X on the surfa
e of the hemisphere whi
h 
ontains allthe demand points. Let Exk be the farthest demand point from X. Denote thispoint by A.
I ← I − {k}.Let Ai be a point on the great 
ir
le arc(AX) su
h that :
arc(AAi) = arc(AiExi), where i ∈ I. Denote the point Ai for whi
h XAi is mini-mum by Y and 
orresponding index by k. Let this demand point Exk be denotedby B. I ← I − {k}.Step 1. If all the demand points lie on ΓC(A,B), then the nearer pole P of C(A,B) is therequired fa
ility point. Stop.Else X ← Y , and go to step 2.Step 2. Let D be the mid point of the arc(AB). Find a point Ai on the great 
ir
le
arc(XD) su
h that arc(AiA) = arc(AiExi), i ∈ I. Denote the point Ai for whi
hthe arc(XAi) is minimum by Y and the 
orresponding index by k. Let the demandpoint Exk be denoted by C.If Â < B̂ + Ĉ, B̂ < Â + Ĉ and Ĉ < Â + B̂, then the nearer pole P of C(A,B,C)isthe required fa
ility point. Stop.Else go to Step 3.Step 3. If ExkÊxiExj > Exi

ˆExjExk + Exj
ˆExkExi, where Exi, Exj , Exk ∈ {A,B,C}and i, j, k are all di�erent, then Exi is ex
luded from all future iterations. Denotethe points Exj and Exk by A and B respe
tively. I ← I − {i} and repeat Step 1.



66 3. Spheri
al Center ProblemIf the Algorithm 3.4.1 stops in Step 1, and Step 2 then Theorem 3.2.1 guaranties that theoptimality of the nearer poles of C(A,B) and C(A,B,C) respe
tively.In order to explain the next algorithm[4℄ whi
h is based on the properties of planner triangle,�rst we will 
onsider the following lemma.Lemma 3.4.1: Let X1 and X2 are any two points on the surfa
e of the sphere that donot 
ontain the ends of a diameter of the sphere. Let X3 be an any point on the surfa
eof the sphere su
h that X3 /∈ ΓC(X1,X2). Then ∠X1X3X2 is a
ute.Proof: Constru
t the sphere, S′ with C(X1,X2) as a great 
ir
le. Clearly all the pointsof ΓC(X1,X2)−C(X1,X2) lie within S′ and all the points of S0−ΓC(A,B) lie outside S′.Now X3 is a point whi
h is lie outside of S′. It is obvious that ∠X1X3X2 is an a
ute angle.Corollary 3.4.1: Consider any three points X1,X2 and X3 on the surfa
e of the spheresu
h that △X1X2X3 is an a
ute triangle and C(X1,X2,X3) is a small 
ir
le. Let O′ be the
enter of C(X1,X2,X3). Further assume that Y be a point on the surfa
e of the spherewith Y /∈ ΓC(X1,X2,X3). Then O′Y > O′X1 = O′X2 = O′X3.Proof : Let S′′ be the sphere of whi
h C(X1,X2,X3) is a great 
ir
le. Sin
e Y is outsideof S′′, the proof is immediately follows from the Lemma 3.4.1.Then we represent the Das - Chakraborti [4℄ algorithm as follows:Algorithm 3.4.2: (Algorithm based on the properties of the planner triangles)Input Ex = {Exi : i ∈ I = {1, . . . ,m}} be the set of existing fa
ilities 
ontained in aspheri
al disk of radius α ≤ π/4.Initialization. Take any two demand points Exi and Exj . Go to Step 1.Step 1. If all demands points lie on ΓC(Exi, Exj), then nearer pole of C(Exi, Exj) is therequired fa
ility point. Stop.Else 
hoose a demand point, say Exk, not in ΓC(Exi, Exj) su
h that ∠ExiExkExj



3.4. Geometri
al Approa
hes for CenterSphereLo
 Problem on a Hemisphere [27℄,[4℄ 67is minimum. Goto Step 2.Step 2. If all the demand points lie on ΓC(Exi, Exj , Exk) and △ExiExkExj is an a
utetriangle then stop. The nearer pole of C(Exi, Exk, Exj) is the required fa
ility point.Else goto Step 3.Step 3. If △ExiExkExj is not an a
ute triangle then 
all the extremities of the largestside of the triangle by Exi and Exj . Return to Step 1.Else �nd a demand point, Exl, in S0 − ΓC(Exi, Exj , Exk) su
h that the distan
e of
Exl from the 
enter of the C(Exi, Exj , Exk) is maximum. Go to Step 4.Step 4. Find the maximum distan
e of Exl from Exi, Exj , Exk. Denote the point havinga maximum distan
e from Exl by Exi and rename the other two points by Exj and
Exk. Denote the minimum{ ∠ExiExjExl,∠ExiExkExl} by ∠ExiExjExl.If ∠ExiExjExl is greater than or equal to right angle,then Exj ← Exl and repeat Step 1.Else Exk ← Exl and return to Step 2.The optimality 
onditions in Step 1 and Step 2 in this algorithm are dire
tly follows fromthe Theorem 3.2.1.It is 
lear that the optimal solution of the CenterSphereLo
 problem on hemispheri
alsurfa
e is the nearer pole of C(Exi, Exj) or C(Exi, Exj , Exk) whenever all the demandpoints lie on the ΓC(Exi, Exj) or ΓC(Exi, Exj , Exk). This simply says that a hemispheri
alminimax lo
ation redu
es to �nding a small 
ir
le of maximum radius on the surfa
e of thesphere whi
h 
ontains either two demand points at the end of a diameter or the threedemands points forming an a
ute triangle su
h that all the demand points lie on one sideof the plane of the small 
ir
le and the 
enter of the sphere on the other side.





4. RESTRICTED SPHERICAL CENTER LOCATION PROBLEMGiven set a Ex = {Exi; i = 1, 2, . . . ,m} of m demand points on the surfa
e of a spherewith asso
iated weights wi; i = 1, 2, . . . ,m, our goal is to �nd a lo
ation for a new fa
ilityin order to minimize the maximum weighted distan
e to the demand points with respe
t toa given distan
e of measure.That is, we are looking for a point X∗ on the surfa
e of the sphere in whi
h
min
X∈S0

max
i=1,2,...,m

wid(X,Exi) CenterSphereLo
 (4.1)is attained. Here d(X,Y ) is the distan
e between two points X and Y on the surfa
e ofthe sphere and S0 denote the surfa
e area of the sphere.In pra
ti
al situations, X∗ will not be a feasible lo
ation. That means, there will be someregions in whi
h the pla
ement of a new fa
ility is forbidden, but transportation is still pos-sible. These regions often referred to as forbidden ( or restri
ted ) regions. These 
an beused to model, for example, state parks, lakes or other prote
ted areas, or regions where thegeographi
 
hara
teristi
s are not allowed to 
onstru
t the desired new fa
ility. Therefore,�nding an optimal solution(s) XR of CenterSphereLo
 problem 
an be 
onsidered as a"restri
ted fa
ility lo
ation problem" on the spheri
al surfa
e. This problem is known as"Restri
ted Spheri
al Center( or minimax) (Restri
tedCenterSphereLo
) prob-lem " (see Figure 4.1).We assume here that , some spheri
al polygon (De�nition 1.2.19) R is given su
h that thenew fa
ility lo
ation X is not allowed to be 
ontained in the interior, int(R) of R.i.e., we want to solve
min
X∈F

max
i=1,2,...,m

wid(X,Exi) RestrictedCenterSphereLoc (4.2)
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ted Spheri
al Center Lo
ation Problem
X*

Spherical disks at the demand points
X  ,X  ,X   with radii z*

X

X

X

Restricted spherical
polygon

z*

z*

z*

1

2

3

2 31Fig. 4.1: Optimal lo
ation X∗ is lo
ated in a restri
ted region Rwhere F := S0 \ int(R).In the following se
tion, we restri
t our problem to the spe
ial 
ase where all the demandspoints lie on the surfa
e of a hemisphere. Unrestri
ted version of this problem 
an be solvedusing some known methods ( see [4℄, [26℄, [27℄ ).4.1 Basi
 Results for Hemispheri
al CenterSphereLo
 Problem using Level Setsand Level CurvesNow, 
onsider the hemispheri
al lo
ation problem with the shortest length of ar
 (great
ir
le distan
e)(see De�nition 1.2.8) as the distan
e of measure d and a 
onvex spheri-
al polygon (see De�nition 1.2.19 ) as a restri
ted polygon, R. Further we assume that
wi = 1; ∀i = 1, . . . ,m.i.e., we want to solve

min
X∈F

h(X) = max
i=1,2,...,m

α(X,Exi) (4.3)



4.1. Basi
 Results for Hemispheri
al CenterSphereLo
 Problem using Level Sets and Level Curves 71where F := SH
0 \ int(R).Here α(X,Y ) is the great 
ir
le ar
 distan
e between two points X and Y on the surfa
eof the sphere and SH

0 denote the surfa
e area of a hemisphere.Let X∗ be the unique optimal solution of CenterSphereLo
 problem and XR be anyoptimal lo
ation of the Restri
tedCenterSphereLo
 problem. Further, let z∗ and zRrepresent the 
orresponding optimal obje
tive values, respe
tively.That is,
z∗ = max

i=1,2,...,m
α(X∗, Exi)and

zR = max
i=1,2,...,m

α(XR, Exi) et
.If X∗ ∈ SH
0 \ int(R), then XR = X∗ and the restri
ted problem is trivially solved. There-fore, we assume that X∗ ∈ int(R).If X∗ ∈ int(R), the following Theorem shows that XR should be lie on the boundary, ∂Rof the restri
ted polygon, R.Theorem 4.1.1: If the set of optimal lo
ations ofCenterSphereLo
, opt∗ ⊆ int(R) thenthe set of optimal lo
ations, opt∗(R) of the hemispheri
al Restri
tedCenterSphereLo
problem is a subset of the boundary of R (i.e., opt∗(R) ⊆ ∂R )Proof Let X∗ ∈ opt∗ and X 6∈ R. Now we have to show X 6∈ opt∗(R).Sin
e opt∗ ⊆ int(R) and X 6∈ R, we know h(X∗) < h(X).Choose any δ su
h that XB = δX∗ + (1− δ)X ∈ ∂R.Sin
e h(X) is a 
onvex fun
tion on the surfa
e of the hemisphere, we have

h(XB) = h(δX∗ + (1− δ)X) ≤ δh(X∗) + (1− δ)h(X).

⇒ h(XB) < δh(X) + (1− δ)h(X) = h(X).I.e., there exists a point XB on the ∂R whi
h is better than X. This means X 6∈ opt∗(R). �In the following, we will show that how 
an the optimal solutions XR be 
hara
terized usinglevel 
urves and level sets ( see De�nition 1.2.20 ).
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ted Spheri
al Center Lo
ation ProblemLemma 4.1.1: zR is the optimal value for the restri
ted hemispheri
al 
enter lo
ationproblem if and only if zR = min{z ∈ IR : L=(z) \ int(R) 6= ∅}.Proof ” =⇒ ” Let zR be optimal. Then there exists XR with h(XR) = zR and XR 6∈
int(R).
⇒ XR ∈ L=(zR) \ int(R) 6= ∅.Assume ∃z̃ < zR s.t. L=(z̃) \ int(R) 6= ∅.Then 
hoose X̃ ∈ L=(z̃)\int(R) feasible and h(X̃) < h(XR) = zR. This is a 
ontradi
tionfor the optimality of XR. This implies
zR = min{z ∈ IR : L=(z) \ int(R) 6= ∅}.
”⇐= ” Let zR = min{z ∈ IR : L=(z) \ int(R) 6= ∅}.Take X ∈ L=(zR) \ int(R) with h(X) = zR.We have to show X is optimal :Suppose X is not optimal. I.e., ∃X̃ s.t. z̃ = h(X̃) < h(X) = zR and X̃ 6∈ int(R).
⇒ L=(z̃) \ int(R) 6= ∅. This is a 
ontradi
tion sin
e z̃ < zR.
⇒ X is optimal. �Therefore, if X∗ ∈ int(R), we need to in
rease z∗ until the boundary of the level set tou
hesthe boundary of the restri
ted region. The following Theorem presents the 
onditions whi
hneeds to be 
onsidered when we in
rease the value of z∗.Theorem 4.1.2: zR is the optimal obje
tive value of the restri
ted hemispheri
al 
enterlo
ation problem if and only if(1) L≤(zR) ⊆ R and(2) L=(zR) ∩ ∂R 6= ∅Proof ” =⇒ ” : Let zR is optimal. Take X ∈ opt∗(R) with h(X) = zR; i.e., X ∈ L=(zR).Theorem 4.1.1 ⇒ X ∈ ∂R.Then we have ∂R ∩ L=(zR) 6= ∅.
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al CenterSphereLo
 Problem using Level Sets and Level Curves 73
Lemma 4.1.1 ⇒ L=(z) \ int(R) = ∅ ∀z < zR.

⇒ L=(zR) \ R = ∅

⇒ L=(zR) ⊆ R

⇒ ∪z≤zRL=(z) ⊆ R

⇒ L≤(zR) ⊆ R.

”⇐= ” : Let L=(zR) ∩ ∂R 6= ∅ and L≤(zR) ⊆ R .
⇒ L=(zR) \ int(R) 6= ∅ but
L=(z) \ int(R) = ∅ ∀z < zR.Lemma 4.1.1 ⇒ zR is optimal. �Note that the optimal value z∗ of the unrestri
ted problem is the smallest value z with

Spherical disks at the demand
points X , X , X  with radii z
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X

X

Restricted spherical
polygon
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2Fig. 4.2: X∗ Represents the unique optimal lo
ation

L≤(z) 6= ∅. In this 
ase L≤(z∗) = {X∗} (see Figure 4.2). For z > z∗, L≤(z) is an area inthe hemisphere whi
h is bounded by great 
ir
le ar
 segments (see Figure 4.3).If X∗ ∈ int(R) is not feasible for the hemispheri
al CenterSphereLo
 problem we need



74 4. Restri
ted Spheri
al Center Lo
ation Problemto in
rease z∗ until 
onditions (1) and (2) of Theorem 4.1.2 are satis�ed. Sin
e L≤(zR)

Spherical  disks at the demand
points X, X , X  with radii z

X

X

X

Restricted spherical
polygon

Level set 

1

2

3

1 2 3Fig. 4.3: L≤(z) is the shaded area.
an be expressed as interse
tions of the spheri
al disks D(Exi, z) 
entered at the existingfa
ilities Exi with radii z ( see Result 1.2.3), the level set tou
hes the boundary of therestri
ted region R in two di�erent ways as shown in Figures 4.4 and 4.5. Now, thereforewe 
an identify the optimal solutions for the hemispheri
al Restri
tedCenterSphereLo
problem as follows:Suppose that the restri
ted set R is a 
onvex spheri
al polygon with fa
ets f1, f2, . . . , fk.Theorem 4.1.3: If X∗ ∈ int(R), then there exists an optimal solution XR to hemispher-i
al Restri
tedCenterSphereLo
 problem with obje
tive value
zR = maxi=1,2,...,m α(Exi,X

R) and zR > z∗, whi
h satis�es :(a) XR ∈ ∂R∩Bisector(Exi, Exj), i, j ∈ {1, 2, . . . ,m}. ( see Figure 4.5. ),or(b) XR is a proje
tion point of Exi on fk, k = 1, 2, . . . ,K; i = 1, 2, . . . ,m. (see Figure4.4).
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Z
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Z
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RFig. 4.4: An edge of the level set L≤(zR) tou
hes a fa
et of R
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Z
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Z
R

Z
R

RFig. 4.5: A 
orner point of the level set L≤(zR) tou
hes an edge of R



76 4. Restri
ted Spheri
al Center Lo
ation ProblemProof Theorem 4.1.2 implies that L≤(zR) ⊆ R and L=(zR)∩∂R 6= ∅. Sin
e R is 
onvexspheri
al polygon, the interse
tion of spheri
al 
ir
les (i.e., level 
urve) tou
hes R frominside either at a 
orner point of L≤(zR) or an edge of R is tangent to L≤(zR).Case(a) A 
orner point ( see Figure 4.5 ):
Xij is a 
orner point of L≤(zR) if and only if there exists Exi, Exj su
h that
Xij ∈ C(Exi, z

R) ∩ C(Exj , z
R). Hen
e α(Exi,Xij) = α(Exj ,Xij) and Xij ∈

Bisector(Exi, Exj).Case(b) An edge fk of R is tangent to L≤(zR) (see Figure 4.4):
Xik is tangen
y point i� fk tou
hes one of the spheri
al 
ir
les; i.e,. there exists
i ∈ {1, 2, . . . ,m} su
h that fk is tangent to C(Exi, z

R). i.e., Xik is a proje
tion pointfrom Exi onto fk. �

4.2 Polynomial Algorithm for Hemispheri
al Restri
tedCenterSphereLo
 ProblemTheorem 4.1.3 
hara
terizes the 
andidates for being optimal lo
ations of the restri
tedproblem.Algorithm 4.2.1:Input: {Exi : i = 1, 2, . . . ,m}, the set of existing fa
ilities.
R : Convex spheri
al polygon with fa
ets f1, f2, . . . , fK .Output: OptR : set of all optimal lo
ations.
zR : optimal obje
tive value.Step 1. Solve the unrestri
ted CenterSphereLo
 problem to get the optimal lo
ation
X∗ with obje
tive value z∗.
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al Restri
tedCenterSphereLo
 Problem 77Step 2 If X∗ 6∈ int(R) then output OptR = {X∗}Else : goto Step 3.Step 3. Cal
ulate
A = {(Pik, z) : Pik is a proje
tion point from Exi onto fk, i = 1, 2, . . . ,m; k =

1, 2, . . . ,K, z = α(Pik, Exi)}.
B = {(Pij , z) : Pij is interse
tion point of bise
tor (Exi, Exj) with ∂R, i, j =

1, 2, . . . ,m, & z = α(Pij , Exi)}.Step 4. For all (Pij , z) ∈ A ∪B with z > z∗, test:if L≤(z) ⊆ R and L=(z) ∩ ∂R 6= ∅. If this is the 
aseOutput : OptR = L=(z) ∩ ∂R, zR = z.In Case (a) of the Theorem 4.1.3, if the number of interse
tion points of the Bisector(Exi, Exj)with ∂R is two or less, they are in
luded in the 
andidate list. As there are m(m − 1)/2bise
tors of existing fa
ilities, we will have maximum m(m− 1) interse
tion points in this
ase. There are m × K proje
tion points of the existing fa
ilities Exi; i = 1, 2, . . . ,m tothe K fa
ets of R in Case (b) of Theorem 4.1.3.The 
omplexity of the Algorithm 4.2.1 is dominated by Step 1 and Step 4. The 
omplexityof Step 4 is O(m3) + O(m2K). If we solve the unrestri
ted hemispheri
al 
enter lo
ationproblem with the polynomial time algorithm, Algorithm 3.4.2, we get overall 
omplexity of
O(m3) + O(m2K).4.2.1 Computation of a Proje
tion Point Pik from Exi onto fkSuppose Xk(1) and Xk(2) be the two end points of edge fk of the restri
ted polygon R.
• Let Xk(1) and Xk(2) be two unit ve
tors pointing from the 
enter of the sphere to-wards points Xk(1) and Xk(2).
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ted Spheri
al Center Lo
ation Problem
• Take 
ross-produ
t of Xk(1) and Xk(2) and normalize the result to get a ve
tor G:

G = (Xk(1) ×Xk(2))/ | Xk(1) ×Xk(2) |.
• G is normal to the plane of the great 
ir
le joining Xk(1) and Xk(2).
• Now take the 
ross-produ
t of G with Exi, the unit ve
tor 
orresponding to point Exi:

F = G× Exi

• F is perpendi
ular to Exi, so the great 
ir
le it de�nes passes through Exi. It is alsoperpendi
ular to G, so the great 
ir
le it de�nes is perpendi
ular to the great 
ir
lede�nes by G.
• Now take the 
ross-produ
t of F and G and normalize the result to get a ve
tor:

N = F×G
||F×G|| .

• one of ±N is the proje
tion point Pik of the point Exi to fk.
• ±N are antipodal points.4.2.2 Computation of Interse
tion Points Iij of Perpendi
ular Bise
tor Mij of Exi and

Exj with ∂RAs the restri
ted region R is formed by interse
ting great 
ir
les, an edge of R is a great
ir
le segment. Also note that the bise
tor of Exi and Exj is a great 
ir
le. Therefore,we have to look the interse
tion of two great 
ir
les in order to get interse
tion points ofbise
tors with ∂R.Pro
edure of �nding interse
tion points of two great 
ir
les



4.3. Hemispheri
al CenterSphereLo
 Problem with Weights wi(> 0) 6= 1 791. Let M be the mid point of the great 
ir
le arc(Exi, Exj).2. Take 
ross-produ
t A, of Exi and Exj . This ve
tor is normal to the plane of great
ir
le passing through Exi and Exj .3. Take 
ross-produ
t B, of A with M . This ve
tor is normal to the plane of great 
ir
lepassing through A and M .4. Let Xk(m),m = 1, 2 be unit ve
tors pointing from the 
enter of the sphere towardsthe end points Xk(m),m = 1, 2 of the edge fk of R.5. Now take 
ross-produ
t C, of Xk(1) and Xk(2).6. ±B×C
‖B×C‖ are the interse
tion points of Mij and fk.Note : The 
andidate interse
tions are antipodal points.4.3 Hemispheri
al CenterSphereLo
 Problem with Weights wi(> 0) 6= 1In this 
ase, the level sets of the obje
tive fun
tion 
an be de�ned as follows :

L ≤ (z) = {X ∈ S0 : max
i=1,2,...,m

wiα(Exi,X) ≤ z}

= {X ∈ S0 : α(Exi,X) ≤ z/wi ∀i = 1, 2, . . . ,m}

= ∩i=1,2,...,m{X ∈ S0 : α(X,Exi) ≤ z/wi}.That is, the level set 
an be obtained by interse
ting all the spheri
al disks D(Exi,
z
wi

) with
enters Exi and radii z
wi

, i = 1, 2, . . . ,m. It is 
lear that spheri
al disks D((Exi,
z
wi

) havedi�erent sizes.



80 4. Restri
ted Spheri
al Center Lo
ation ProblemAs in the 
ase of weights wi = 1, the set of possible lo
ations for the hemispheri
al Re-stri
tedCenterSphereLo
 problem with weights wi > 0(6= 1), 
onsists of all proje
tionpoints of existing fa
ilities to the fa
ets of R and of all 
orner points of L≤(zR) (see The-orem 4.1.2, Figures 4.4 and 4.5), even if D((Exi,
z
wi

) have di�erent sizes.Therefore, we have to 
he
k:(i) all proje
tion points Xiq from existing fa
ility Exi to any fa
et fq,and(ii) all points X whi
h satisfy wiα(Exi,X) = wjα(Exj ,X) for any pair of existing fa
ili-ties Exi and Exj .That means, to get 
orner points we have to 
al
ulate interse
tion points of {X ∈ S :

wiα(Exi,X) = wjα(Exj ,X)} with ∂R for all i < j; i, j ∈ {1, 2, . . . ,m}.Then we 
an apply the above algorithm by 
hanging the set B in step 3 as follows :
B′ = {(X, z) : X is a interse
tion point of the set

{X ∈ S : wiα(X,Exi) = wjα(Exj ,X)} with
∂R, i, j ∈ {1, 2, . . . ,m}; z = wiα(X,Exi) = wjα(X,Exj)}.



5. SPHERICAL LOCATION PROBLEMS WITH POLYGONAL BARRIERSIn development of spheri
al lo
ation models we deal with a geometri
 representation of theproblem, and the geographi
al reality has to be in
orporated into this representation. Inalmost every real-life situation we have to deal with restri
tions and 
onstraints of varioustypes. As restri
ted or forbidden regions (see Chapter 4) in the 
ontext of spheri
al lo
ationmodels, there are many areas in whi
h the pla
ement of a new fa
ility and transportationare 
ompletely forbidden or even impossible. These regions (or areas) often referred to asbarrier regions . To give some examples of possible barrier regions, 
onsider military areas,mountain ranges and lakes on the globe.Consider a �nite set of 
onvex, 
losed and pie
ewise disjoint barrier regions {B1, . . . , BN}on the surfa
e of the sphere. We 
onsider the union of these barrier regions by B :=
⋃N

i=1 Biand the �nite set of extreme points and fa
ets of B by Ext(B) and Facet(B), respe
tively.The interior of these barrier regions is forbidden for the pla
ement of a new fa
ility, andadditionally, travelling through int(B) is prohibited. Thus the feasible region F on thespheri
al surfa
e for new lo
ations and for travelling is given by
F = S0 \ int(B).Further, we assume that the measure of distan
e on the surfa
e of the sphere S0 is lengthof shortest ar
 ( or great 
ir
le distan
e ), α = α(X,Y ) for all X,Y ∈ S0.De�nition 5.0.1: Given two points X,Y ∈ F the barrier distan
e αB(X,Y ) with respe
tto α is the length of a shortest path between X and Y not interse
ting the interior of abarrier region.A permitted X-Y path with length αB(X,Y ) will be 
alled a α-shortest permitted path. Fur-ther, we 
all two points X and Y in F α− visible if they satisfy αB(X,Y ) = α(X,Y ), i.e.,



82 5. Spheri
al Lo
ation Problems with Polygonal Barriersthe distan
e between X and Y is not lengthened by the barrier regions.Given set a Ex = {Exi; i = 1, 2, . . . ,m} of m demand points on the surfa
e of a spherewith asso
iated weights ( or demands ) wi > 0; i = 1, 2, . . . ,m, spheri
al 
enter lo
ation(CenterSphereLo
) problem and spheri
al Weber lo
ation (WeberSphereLo
) problemwith polygonal barriers 
an be formulated respe
tively with this barrier distan
e αB(X,Y ),as
minimize

hB(X) = max
i=1,2,...,m

wiαB(X,Exi) BarrierCenterSphereLo
 (5.1)
s.t X ∈ Fand

minimize

fB(X) =
∑

i=1,2,...,m

wiαB(X,Exi) BarrierWeberSphereLo
 (5.2)
s.t X ∈ F .Note that the shortest ar
 distan
e, α is not 
onvex. Further, the barrier distan
e αB(X,Y )is in general not-
onvex and therefore fB and hB are also not 
onvex fun
tions.5.1 Shortest Paths in the Presen
e of Barrier RegionsDe�nition 5.1.1: The set of points Y ∈ F that are not α−visible from a point X ∈ F is
alled the shadow of X with respe
t to α, i.e.,

shadowα(X ) := {Y ∈ F : αB(X ,Y ) > α(X ,Y )}.(See Figure 5.1).The following results shows that for any two points X,Y ∈ F ,X 6= Y there always existsa α-shorted permitted path 
onne
ting X and Y that is a pie
ewise shortest ar
 path with
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X

B

αShadow  (X)

Boundary of shadow  (X)α

Barrier

Fig. 5.1: Shaded area represents the shadow of Xbreaking points only in extreme points of a barrier region.Lemma 5.1.1: Let α = α(X,Y ) be the shortest ar
 distan
e between X and Y , where
X,Y ∈ F . Then there exists a α-shortest permitted path SP 
onne
ting X and Y withthe following property.Property 5.1.1: : SP is a pie
ewise shortest ar
 length path with breaking points onlyon extreme points of barrier regions.Proof Let X,Y ∈ F and let SP be α- shortest permitted path 
onne
ting X and Y in Fthat satis�es Property 5.1.1. Then 
onsider two 
onse
utive ar
 segments arc(Xj ,Xj+1 )and arc(Xj+1 ,Xj+2 ) on SP. Without loss of generality they may be assumed not to be
urvilinear as otherwise Xj+1 would be irrelevant and 
ould be deleted.Let X ′ and X ′′ denote points on ar
s arc(Xj ,Xj+1 ) and arc(Xj+1 ,Xj+2 ) respe
tively atan arbitrary small distan
e ε > 0 from Xj+1.The path 
omposed of ar
s arc(Xj ,X

′), arc(X ′,X ′′), arc(X ′′,Xj+2 ) is stri
tly shorter thanthe path 
omposed of arc(Xj ,Xj+1 ) and arc(Xj+1 ,Xj+2 ) due to a property that any two



84 5. Spheri
al Lo
ation Problems with Polygonal Barrierssides of a spheri
al triangle are together greater than the third side.As the latter path is feasible by the hypothesis, the former one 
an only be non-feasible forall positive ε if Xj+1 is a vertex of a barrier region with a ar
 segment 
rossing arc(X ′,X ′′)(see Figure 5.2). �

X j

B

X

"X

'

X
j+1

X j+2

ε

ε

Path SP

Y

X = 

Fig. 5.2: Shortest path SP for proof of Lemma 5.1.1Therefore, using Property 5.1.1 in Lemma 5.1.1, the barrier distan
e αB(X,Y );X,Y ∈ F
an be 
al
ulated with respe
t to a so-
alled intermediate point IX,Y , i.e., a breaking pointon a α-shortest permitted path so that IX,Y is α-visible from Y . Note also that if X and
Y are α-visible then the intermediate point IX,Y equals X.Corollary 5.1.1: Let α = α(X,Y ) be the shortest ar
 distan
e between X,Y ∈ F . Fur-thermore, let SP be a α-shortest permitted X − Y path with Property 5.1.1 and the point
IX,Y 6= Y be a breaking point on SP that is α-visible from Y . Then

αB(X,Y ) = αB(X, IX,Y ) + α(IX,Y , Y ). (5.3)



5.2. Redu
ing the Non-
onvex BarrierSphereLo
 Problem to a Set of Sub problems 85Note that the intermediate points IX,Y are not ne
essarily unique.De�nition 5.1.2: The boundary of shadowα(X),
∂(shadowα(X)) := {Y ∈ F : D(Y, ε) ∩ shadowα(Y ) 6= ∅and D(Y, ε) 6⊆ shadowα(Y ) ∀ε > 0}, (5.4)where D(Y, ε) is a spheri
al disk with 
enter Y and radius ε > 0.Note that the ∂(shadowα(X)) is a 
onne
ted set of shortest length of ar
s on the surfa
eof the sphere.Obviously, those parts of ∂(shadowα(X)) that are of the boundary of a barrier region arealso shortest length of ar
s on the spheri
al surfa
e. For all other parts of ∂(shadowα(X)),
onsider a point Y on ∂(shadowα(X)) and let IX,Y be an intermediate point on a α-visibleshortest permitted X − Y path with Property 5.1.1. Note that in this 
ase Y is α-visiblefrom X. If all the points Z on the line segment starting at IX,Y passing through Y andending as soon as it interse
ts the interior of a barrier region are α-visible from X.5.2 Redu
ing the Non-
onvex BarrierSphereLo
 Problem to a Set of Sub problemsHere, we 
onsider a partitioning of the feasible region F into �nite set of subregions usingthe grid Gα on the surfa
e of the sphere.The grid Gα is de�ned by the boundaries of the shadows of all existing fa
ilities Exi, i =

1, 2, . . . ,m and of all extreme points Ext(B) of the barrier region B, plus all the fa
etsFa
et(B) of the barrier regions, i.e.,
Gα := {

⋃

X∈Ex

⋃

Ext(B)

∂(shadowα(X))} ∪ Facet(B) (5.5)Sin
e the barriers are 
onvex polygons and also the boundary of shadowα(X ) is set of ar
segments for all X ∈ F , the grid Gα 
onsists of a �nite set of shortest length of ar
 seg-ments in F .
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Ex
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Ex

Ex
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3

B

A celll C

Restricted region B

Existing Facilities

Fig. 5.3: The grids on the surfa
e of the hemisphereDe�nition 5.2.1: A 
ell of grid Gα is a smallest set (not ne
essarily 
onvex or 
losed)polygon not interse
ted by an ar
 segment in Gα (see Figure 5.3).We denote the set of 
ells of Gα as C(Gα).To see how the barrier distan
e de�nes from an existing fa
ility to a point X in a 
ell C,we 
onsider a following example with three existing fa
ilities and one barrier region withfour extreme points tj ; j = 1, . . . , 4 (see Figure 5.4). Then the barrier distan
e from X to
Ex2, αB(X,Ex2) 
an be 
al
ulated as

αB(X,Ex2) = αB(Ex2, I2) + α(I2 + X) ∀X ∈ Cwhere αB(Ex2, I2) = α(Ex2, t1) + α(t1, I2) and I2 = IEx2,X = t2.Therefore, we 
an generally 
onsider a 
ell C ∈ C(Gα) and let X ∈ C. So if we let
Ii := IExi,X , i = 1, 2, . . . ,m is an intermediate point on a α-shorted permitted X − Exi-path with Property 5.1.1 that is α-visible from X, then the barrier distan
e between X andthe existing fa
ility Exi, i = 1, 2, . . . ,m 
an be written as
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Fig. 5.4: The grids for the example problem with one barrier region and three existing fa
ilities
αB(X,Exi) = α(X, Ii) + αB(Ii, Exi) ∀X ∈ C (5.6)A visibility graph ( as proposed in Butt and Cavalier [3℄) 
an be used to determine distan
esbetween the fa
ilities and all those points that are 
andidates of intermediate points on a

α-shorted permitted path between an existing fa
ility and a point X ∈ F . Let the node setof this visibility graph G is V (G) := Ex ∪ Ext(B) and ar
 set of G is E(G), where E(G)
onsists of all the ar
s that 
onne
t two nodes vi, vj in V (G) if the 
orresponding nodeson the surfa
e of the sphere (hemisphere) are α-visible and have the distan
e α(vi, vj). In�gure 5.5, an example is given for the 
ase that single barrier region presents in the lo
ationproblemThen the barrier distan
e αB(Exi,X) between an existing fa
ility Exi ∈ Ex and a point
X ∈ F 
an be now 
al
ulated as

αB(Exi,X) = αG(Exi, IExi,X) + α(IExi,X ,X), (5.7)where αG(Exi, IExi,X) denotes the length of a shortest path between Exi and the interme-
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Fig. 5.5: The visibility graph for an example problem where a single barrier region is presents onthe surfa
e of the hemisphere
diate point IExi,X in the visibility graph G.Thus for any X ∈ C, barrier distan
e hX(X) from X to all the existing fa
ilities 
an be
al
ulated using (5.6).Hen
e, we 
ould �nd the optimal fa
ility lo
ations for (5.1) and (5.2) within C by solvingsubproblems whi
h are de�ned on C.In the rest of this se
tion, we will fo
us only on the BarrierWeberSphereLo
 problem.All the arguments whi
h are made on this problem, are analogously true for the Barrier-CenterSphereLo
 problem.Now 
onsider the BarrierWeberSphereLo
 problem. For any X ∈ C sum of the weighteddistan
es, fX(X) from X to all the existing fa
ilities 
an be 
al
ulated using the barrierdistan
e, (5.6) as follows:
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minimize

(SP1) fX(X) =

m
∑

i=1

wi{αB(Exi, Ii) + α(Ii,X)} (5.8)
s.t X ∈ C. (5.9)Be
ause, αB(Ii, Exi) is a 
onstant we 
an reformulate the obje
tive fun
tion (5.9) as

minfX(X) = {f̃X(X) =

m
∑

i=1

wiα(Ii,X)} + const (5.10)
s.t X ∈ C.where

const =
m

∑

i=1

wiαB(Exi, Ii) (5.11)(5.12)and we 
an solve SP1, by equivalently solving
minimize

(SP2) f̃X(X) =

m
∑

i=1

wiα(X, Ii)

s.t X ∈ C (5.13)Further, if we relax the 
onstraint of SP2, then we have the following un
onstraint problem:
minimize

SP3 f̃X(X) =

m
∑

i=1

wiα(X, Ii) (5.14)(5.15)Note that SP3 is simply a WeberSphereLo
 problem with existing fa
ilities Ii; i =

1, 2, . . . ,m.



90 5. Spheri
al Lo
ation Problems with Polygonal BarriersCorollary 5.2.1: Let C ∈ C(Gα) be a 
ell and let X ∈ C a feasible solution for the Bar-rierWeberSphereLo
 problem. Then
fB(X) =

m
∑

i=1

wiαB(X,Exi) = fX(X), (5.16)where fX(Y ) :=

m
∑

i=1

wi{α(Y, I1) + c1, . . . , α(Y, Im) + cm},

= f(α(Y, I1) + c1, . . . , α(Y, Im) + cm) Y ∈ S0 (5.17)and ci := αB(Ii, Exi), i = 1, . . . ,m. (5.18)and where Ii := IExi,X 6= X; i = 1, 2, . . . ,m is an intermediate point on a α-shortestpermitted X − Exi-path with Property 5.1.1 that is α-visible from X.A

ording to the Corollary 5.2.1, the BarrierWeberSphereLo
 problem 
an be redu
edto a �nite set of 
orresponding un
onstrained ( or WeberSphereLo
 ) problems with theshortest ar
 distan
e as the measure of distan
e.5.3 BarrierWeberSphereLo
 Problem on the Surfa
e of a HemisphereAs a result that the WeberSphereLo
 problem on the surfa
e of a hemisphere is a 
on-vex problem, the fun
tion, fX(Y ) whi
h is de�ned in Corollary 5.2.1, is also 
onvex onthe surfa
e of the hemisphere sin
e it 
an be interpreted as the 
omposition of the 
onvexnonde
reasing fun
tion f and the 
onvex fun
tions α(Y, Ii) + ci; i = 1, 2, . . . ,m, where ciis a 
onstant not depending on 
hoi
e of Y .Lemma 5.3.1: Let C ∈ C(Gα) be a 
ell and let X ∈ C. Then
FX(Y ) ≥ FY (Y ) ∀Y ∈ C, (5.19)where FX and FY are de�ned a

ording to (5.17) and (5.18) and the intermediate points

Im,m ∈M are 
hosen su
h that they are α- visible from X and Y respe
tively.Proof Let FX(Y ) = f(α(Y, I1) + c1, . . . , α(Y, Im) + cm), where ci = αB(Ii, Exi) and theintermediate points Ii = IExi,X are 
hosen su
h that they are α−visible from all points



5.3. BarrierWeberSphereLo
 Problem on the Surfa
e of a Hemisphere 91in C, i = 1, 2, . . . ,m. Due to the spheri
al triangle inequality, α(Y, Ii) + ci = αB(Y, Ii) +

αB(Ii, Exi) ≥ αB(Y,Exi) holds for all i = 1, 2, . . . ,m and Y ∈ C. Then
FX(Y ) = f(α(Y, I1) + c1, . . . , α(Y, Im) + cm)

≥ f(αB(Y,Ex1), . . . , αB(Y,Exm))

= FY (Y ).

�Theorem 5.3.1: Let C ∈ C(Gα) be a 
ell and let X∗
B ∈ C be an optimal solution of theBarrierWeberSphereLo
 problem . Then X∗

B is an optimal solution to the 
orrespond-ing 
onvex problem
min FX∗

B
(Y )

s.t Y ∈ C, (5.20)where FX∗

B
(Y ) is de�ned a

ording to (5.17) and (5.18) and the intermediate points Ii, i =

1, 2, . . . ,m are 
hosen su
h that they are α- visible from X∗
B.Proof Let X∗

B ∈ C, FX∗

B
(Y ) be de�ned a

ording to (5.17) and (5.18), and let Ii, i =

1, 2, . . . ,m be the 
orresponding intermediate points on α−shortest permitted Exi − X∗
Bpaths, satisfying the the property Property 5.1.1, that are α−visible from all points in C.Lemma 5.19 implies that

FX∗

B
(Y ) ≥ FY (Y ) = fB(Y ) (5.21)holds for all Y ∈ C. Using Corollary 5.2.1 and the assumption that X∗

B is an optimalsolution of BarrierWeberSphereLo
 problem, we obtain
FX∗

B
(Y ) ≥ fB(Y ) ≥ fB(X∗

B) = FX∗

B
(X∗

B) ∀Y ∈ C.

�Theorem 5.3.1 implies that BarrierWeberSphereLo
 problem on a hemisphere 
an beredu
ed to a �nite set of 
onvex subproblems within ea
h 
ell in C(Gα) even though the
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tive fun
tion fB(X) is in general non-
onvex within the 
ells.If an optimal solution X∗
B of BarrierWeberSphereLo
 problem is lo
ated in the interiorof a 
ell, the following result proves that this solution 
an be found by solving a �nite setof 
onvex subproblems with the obje
tive fun
tion FX(Y ) de�ned a

ording to (5.17) and(5.18).Theorem 5.3.2: Let C ∈ C(Gα) be a 
ell and let X∗

B ∈ int(C) an optimal solution ofBarrierWeberSphereLo
 problem with barrier distan
e αB. Then X∗
B is an optimalsolution to the 
orresponding 
onvex problem

min FX∗

B
(Y ) (5.22)

s.t Y ∈ SH
0where FX∗

B
(Y ) is de�ned a

ording to (5.17) and (5.18) and the intermediate points Ii, i =

1, 2, . . . ,m are 
hosen su
h that they are α- visible from X∗
B.Proof Let X∗

B ∈ int(C). Sin
e X∗
B ∈ C, Theorem 5.3.1 implies that X∗

B minimizes FX∗

B
inthe 
ell C. Using the fa
t that FX∗

B
(Y ) is 
onvex fun
tion of Y on a hemisphere and that

X∗
B ∈ int(C), we 
an 
on
lude that X∗

B minimize the FX∗

B
(Y ) on a hemisphere. �Theorem 5.3.3: Let C be a 
ell in C(Gα) and X∗

B be a global optimal solution to the
onvex problem
min FX(Y ) (5.23)

s.t Y ∈ SH
0where FX(Y ) is de�ned a

ording to (5.17) and (5.18) and the intermediate points Ii, i =

1, 2, . . . ,m are 
hosen su
h that they are α- visible from any X ∈ C. If X∗
B ∈ int(C), then

X∗
B is at least a lo
al optimal solution to the BarrierWeberSphereLo
 problem on ahemisphere.
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B ∈ int(C), it is 
lear that FX(X∗

B) is a lower bound to theoptimal obje
tive value of (5.20); that is FX(X∗
B) ≤ FX(Y ) for ea
h Y ∈ C.That is X∗

B is the global optimal solution of the 
onvex subproblem whi
h is de�ned on C.Therefore, there exists an ǫ-neighborhood of X∗
B, Nǫ(X

∗
B) ⊂ int(C), su
h that

FX(X∗
B) ≤ FX(Y ) for ea
h Y ∈ Nǫ(X

∗
B).But sin
e

Nǫ(X
∗
B) ⊂ int(C) ⊂ Gα,it follows that fB(X∗

B) = FX(X∗
B) ≤ FX(Y ) = fB(Y ) for ea
h

Y ∈ Nǫ(X
∗
B) = Gα ∪Nǫ(X

∗
B) (5.24)This 
omplete the proof, sin
e (5.24) de�nes a lo
al optimal solution of BarrierWebwer-SphereLo
. �5.3.1 Iterative Spheri
al Convex HullA

ording to Theorems 5.3.1 and 5.3.2, it is 
lear that there are some relationship betweenSphereLo
 problems and BarrierSphereLo
 problems on a hemisphere. Therefore, someof the general properties of SphereLo
 
an be transferred to the BarrierSphereLo
 prob-lems. As an example, the optimal lo
ations ofWeberSphereLo
 and CenterSphereLo
problems on a hemisphere lie within the spheri
al 
onvex hull of the existing fa
ilities ( see2.1.3 ). An analogous property 
an be proven for the BarrierSphereLo
 problems byde�ning an iterative spheri
al 
onvex hull Iconvex of the existing fa
ilities and the barrierregions.De�nition 5.3.1: Let B be the union of a �nite set of 
losed 
onvex and pairwise disjointspheri
al polygons on a hemisphere. Iterative 
onvex hull Iconvex is de�ned as thesmallest spheri
al 
onvex hull in the surfa
e of the hemisphere su
h that

{Exi; i = 1, 2, . . . ,m} ⊂ Iconvex and ∂Iconvex ∩ int(B) = ∅.(see Figure 5.6).
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Ex1

Ex

Ex

Ex

4

3

2

B

Iterative convex hull

Existing facilities

Barrier regionFig. 5.6: The shaded area represents the iterative spheri
al 
onvex hullTheorem 5.3.4: Let X∗
B 6∈ Gα be an optimal solution for the BarrierWeberSphereLo
problem on a hemisphere .If for all 
orresponding WeberSphereLo
 subproblems with obje
tive fun
tion FX as de-�ned in (5.17) and (5.18), the set of optimal solutions is 
ontained in the spheri
al 
onvexhull of the existing fa
ilities, then

X∗
B ∈ (Iconvex ∩ F).Proof Let X∗

B be an optimal solution of BarrierWebwerSphereLo
 su
h that X∗
B ∈

int(C) for some 
ell C ∈ C(Gα).Suppose that X∗
B 6∈ Iconvex. Wlog, we assume that there exits no barrier in SH

0 \ Iconvex,sin
e this assumption does not in
rease the obje
tive value of any point X ∈ (Iconvex ∩F).Theorem 5.3.2 =⇒ X∗
B is an optimal solution of problem (5.22) with respe
t to some in-termediate points Ii ∈ {Exi; i = 1, 2, . . . ,m} ∪Ext(B) for i = 1, 2, . . . ,m. This problem isan WeberSphereLo
 problem with the obje
tive fun
tion FX and thus X∗

B ∈ conv{Ii : i =

1, 2, . . . ,m} ∩ F . Sin
e Iconvex is the spheri
al 
onvex hull of all existing fa
ilities and all
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an 
on
lude that
conv{Ii : i = 1, 2, . . . ,m} ∩ F ⊆ conv({Exi; i = 1, 2, . . . ,m} ∪Ext(B)) ∩ F ⊆ Iconvex ∩ F .

�5.3.2 Line Sear
h Pro
edure on a Hemispheri
al Surfa
eSuppose X = (x1, y1, z1) and Y = (x2, y2, z2) are two points (= position ve
tors) on theunit sphere S0. To �nd the great 
ir
le that passes through X and Y , let
W = Y − ProjX(Y ) = Y − X · Y

X ·X X

= Y − (X · Y )X sine X ·X = 12.The ve
tor W is perpendi
ular to X, but its length may not be one.
W

X

Y

W

Y
X

α

Fig. 5.7: Great 
ir
le that passes through X and YThus, we re-s
ale to obtain a ve
tor YX of the form
YX =

1

‖|W ||W (5.25)
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ation Problems with Polygonal BarriersIf we now de�ne the 
urve
X(t) = cos(t)X + sin(t)YX (5.26)then X ′′(t) = −X(t), whi
h implies that the a

eleration of X(t) is normal to the sphere.Moreover, be
ause X and YX are orthogonal, we have

X(t) ·X(t) = cos2(t)X ·X + 2 sin(t) cos(t)X · YX + sin2(t)YX · YX

= 12 cos2(t) + 0 + 12 sin2(t)

= 12Thus ||X(t)|| = 1 for all t, whi
h implies that X(t) is on the unit sphere. As a result,
X(t) = cos(t)X + sin(t)YX is the great 
ir
le that passes through both X and Y .Indeed, if we let

α = α(X,Y ) = arccos(X · Y ) (5.27)then it 
an be shown that X(0) = X and X(α) = Y.That means, given two points X and Y on the surfa
e of the unit sphere, any point X(t)on the great 
ir
le ar
, ar
(X,Y), has the following parametri
 form :
X(t) = cos(t)X + sin(t)YX = (xt, yt, zt) (5.28)where t ∈ [0, α].Suppose that g is a 
onvex fun
tion on the surfa
e of a hemisphere S0. As an example, gmay be WeberSphereLo
 or CtenterSphereLo
 problems on S0. Now, our goal is to mini-mize g on grids Gα.That is, we want to minimize

g(X(t)) (5.29)
s.t X(t) ∈ arc(X,Y )
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e of a Hemisphere 97where X,Y ∈ S0, t ∈ [0, α], with α(X,Y ) = arccos(X · Y ) and X(t) is de�ned as (5.28).Line sear
h pro
edure on the great 
ir
le ar
Consider two points X and Y on the surfa
e of the unit sphere. Let X(t) be any point onthe great 
ir
le ar
 , ar
(X,Y). Then X(t) has the form (5.28) where t ∈ [0, α] and α isde�ned as (5.27).Now 
onsider the line sear
h pro
edure to minimize g(X(t)) subje
t to 0 ≤ t ≤ α. Aswe don't know the exa
t solution of the minimum of g over [0, α] on the greet 
ir
le ar
,ar
(X,Y), the interval [0, α] is 
alled interval of un
ertainty.During the sear
h pro
edure if we 
an ex
lude points of this interval that do not 
ontainthe minimum, then the interval on un
ertainty is redu
ed.The following Theorem shows that if the fun
tion g(X(t)) is spheri
al 
onvex then the in-terval of un
ertainty 
an be redu
ed by evaluating g at two points within the interval.Theorem 5.3.5: Let g(X(t)) be 
onvex over the arc(X,Y ) with the interval of un
er-tainty [0, α]. Let λ, µ ∈ [0, α] su
h that λ < µ. If g(X(λ)) > g(X(µ)), then g(X(z)) ≥
g(X(µ)) for all z ∈ [0, λ). If g(X(λ)) ≤ g(X(µ)), then g(X(z)) ≥ g(X(λ)) for all z ∈ (µ, α].Proof Suppose that g(X(λ)) > g(X(µ)) and let z ∈ [0, λ).By 
ontradi
tion, suppose that g(X(z)) < g(X(µ)). Sin
e λ 
an be written as a 
onvex
ombination of z and µ, and by the 
onvexity of g, we have

g(X(λ)) = g(βX(z) + (1− β)X(µ)) ≤ βg(X(z)) + (1− β)g(X(µ))

< βg(X(µ)) + (1− β)g(X(µ)) = g(X(µ))
ontradi
ting g(X(λ)) > g(X(µ)). Hen
e , g(X(z)) ≥ g(X(µ)). The se
ond part of thetheorem 
an be proved similarly.Remark From the Theorem 5.3.5, if g(X(λ)) > g(X(µ)), then the new interval of un
er-tainty is [λ, α] under the 
onvexity of g. On the other hand, if g(X(λ)) ≤ g(X(µ)), the
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ertainty is [0, µ] (see �gure 5.8).

λ0 µ α 0 λ µ α

g(X (λ))

g(X(µ)) g

(Xg

(X(λ))

new  interval
new  interval

(µ))

Fig. 5.8: Redu
ing the interval of un
ertaintyThe Fibona

i sear
hSuppose g(X(t)) is 
onvex on the great 
ir
le ar
 ar
(X,Y) over a bounded interval [0, α].This pro
edure makes two fun
tional evaluations at the �rst iteration and then only oneevaluation at ea
h of the subsequent iterations. During this pro
edure, the interval of un-
ertainty varies from one iteration to another.Consider the Fibona

i sequen
e {Fν} de�ned as follows:
Fν = Fν + Fν−1, ν = 1, 2, . . .

F0 = F1 = 1 (5.30)At ea
h iteration k, suppose that the interval of un
ertainty is [ak, bk]. Consider the twopoints λk, and µk given bellow, where n is the number of fun
tional evaluations planned.
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λk = ak +

Fn−k−1

Fn−k+1
(bk − ak), k = 1, 2, . . . , n− 1 (5.31)

µk = ak +
Fn−k

Fn−k+1
(bk − ak), k = 1, 2, . . . , n− 1 (5.32)By Theorem 5.3.5, the new interval of un
ertainty is given by [λk, bk] if g(X(λk)) >

g(X(µk)) and is given by [ak, µk] if g(X(λk)) ≤ g(X((µk)).Case 1 : If g(X(λk)) > g(X(µk))From (5.31) and letting ν = n− k in (5.30), we get
bk+1 − ak+1 = bk − λk

= bk − ak −
Fn−k−1

Fn−k+1
(bk − ak)

= bk − ak − (1− Fn−k

Fn−k−1
)(bk − ak)

=
Fn−k

Fn−k+1
(bk − ak) (5.33)Case 2 : If g(X(λk)) ≤ g(X(µk))

bk+1 − ak+1 = µk − ak

= ak +
Fn−k

Fn−k+1
(bk − ak)− ak

=
Fn−k

Fn−k+1
(bk − ak) (5.34)Thus in both 
ase, the interval of un
ertainty is redu
ed by the fa
tor Fn−k

Fn−k+1
.Now 
onsider iteration k + 1.Suppose g(X(λk)) > g(X(µk)). Then by Theorem 5.3.5, ak+1 = λk, and bk+1 = bk.By repla
ing k with k + 1 in (5.31), we get
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λk+1 = ak+1 + bk+1 − ak+1)

Fn−k−2

Fn−k

= λk +
Fn−k−2

Fn−k
(bk − λk) (5.35)Substituting for λk from (5.31), we have

λk+1 = ak +
Fn−k−1

Fn−k+1
(bk − ak) +

Fn−k−2

Fn−k
(bk − ak −

Fn−k−1

Fn−k+1
(bk − ak))

= ak +
Fn−k−1

Fn−k+1
(bk − ak) +

Fn−k−2

Fn−k
(1− Fn−k−1

Fn−k+1
)(bk − ak) (5.36)Letting ν = n− k in (5.30), we have 1− Fn−k−1

Fn−k+1
=

Fn−k

Fn−k+1
.Then from (5.36), we have

λk+1 = ak +
(Fn−k−1 + Fn−k−2)

Fn−k+1
(bk − ak).Now letting ν = n − k − 1 in (5.30), we have Fn−k = Fn−k−1 + Fn−k−2. Then from theabove equation we have

λk+1 = ak +
Fn−k

Fn−k+1
(bk − ak) = µkSimilarly, if g(X(λk)) ≤ g(X(µk)), we 
an show that µk+1 = λk.Thus at iteration k + 1, either λk+1 = µk or µk+1 = λk. Thus in either 
ase only oneobservation is needed at iteration k + 1.To summarize, at the �rst iteration two observations are made and at ea
h subsequentiteration only one observation is ne
essary.Thus, at the end of iteration n− 2, we have to 
omplete n− 1 fun
tional evaluations. Fur-ther, for k = n− 1, it follows from (5.31) and (5.32), that λn−1 = µn−1 = 1

2 (an−1 + bn−1).
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e either λn−1 = µn−2, or µn−1 = λn−2, theoreti
ally no new observations are to bemade at this stage. However, in order to further redu
e the interval of un
ertainty, the lastobservation is pla
ed slightly to the right or the left of the midpoint λn−1 = µn−1, so that
1
2(bn−1 − an−1) is the length of the �nal interval of un
ertainty [an, bn].The Fibona

i method requires that the total number of observations n 
hosen beforehand.This is be
ause of the pla
ement of the observations is given by (5.31) and (5.32) and,hen
e is dependent on n. From (5.33) and (5.34), the length of the interval of un
ertaintyis redu
ed at iteration k by the fa
tor Fn−k

Fn−k+1
. Hen
e, at the end of n − 1 iteration, where

n total observations have been made, the length of the interval of un
ertainty is redu
edfrom b1− a1 to bn− an = (b1− a1)/Fn. Therefore n must be 
hosen su
h that (b1− a1)/Fnre�e
ts the a

ura
y required.Algorithm for the Fibona

i sear
h methodThe following is a summary of the Fibona

i sear
h method for minimizing spheri
al 
onvexfun
tion on a great 
ir
le ar
 segment over the interval [0, α].Algorithm 5.3.1:Input: X,Y : two points on the surfa
e of the hemisphere with the length of the ar
(X,Y ) =

α (see (5.27)).Output: X∗ : optimal lo
ation.
Z∗ : optimal obje
tive value.Step 0: l > 0 : allowable �nal length of un
ertainty
ǫ > 0 : distinguishibility 
onstant
[a1, b1] : initial interval of un
ertainty
n : number of observations to be taken su
h that Fn > (b1 − a1)/lStep 1: Let λ1 = a1 + (Fn−2/Fn)(b− 1− a1) and
µ1 = a1 + (Fn−1/Fn)(b1 − a1).Evaluate g(X(λ1)) and g(X(µ1)), let k = 1, and goto Step 2.
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ation Problems with Polygonal BarriersStep 2: If g(X(λk)) > g(X(µk)), goto Step 3, and if g(X(λk)) ≤ g(X(µk)), goto Step 4.Step 3: Let ak+1 = λk and bk+1 = bk. Furthermore, let λk+1 = µk, and let µk+1 = ak+1 +

(
Fn−k−1

Fn−k
)(bk+1 − ak+1). If k = n − 2, goto Step 6; Otherwise, evaluate g(X(µk+1))and goto Step 5.Step 4: Let ak+1 = ak and bk+1 = µk. Furthermore, let µk+1 = λk, and let λk+1 =

ak+1+
Fn−k−2

Fn−k
(bk+1−ak+1). If k = n−2, goto Step 6; Otherwise evaluate g(X(µk+1))and goto Step 5.Step 5: Repla
e k by k + 1 and goto Step 2.Step 6: Let λn = λn−1, and µn = µn−1 + ǫ. If If g(X(λn)) > g(X(µn)), let an = λn and

bn = bn−1. Otherwise, if g(X(λn)) ≤ g(X(µn)), let an = an−1 and bn = λn. Stop;the optimal solution X∗ lies in the interval [an, bn] with X∗ ∈ar
(X(an),X(bn)).5.4 Algorithm for BarrierWeberSphereLo
 Problem on a HemisphereA

ording to the result of Theorem 5.3.2, the BarrierWeberSphereLo
 problem 
an beredu
ed to a set of 
onvex WeberSphereLo
 subproblems. In this situation, two di�erent
ases may o

ur. An optimal solution X∗
B of BarrierWeberSphereLo
 may be lo
ated(a). on the grid Gα,or(b). in the interior of a 
ell C ∈ C(Gα).Therefore, a two step algorithm 
an be suggested to solve the BarrierWeberSphereLo
as follows. In the �rst step, a line sear
h pro
edure on great 
ir
le ar
s ( see Se
tion 5.3.2)
an be applied on ea
h ar
 segment of the grid Gα. In the se
ond step, a lo
al minimum
an be found (see Theorem 5.3.3) in the interior of a 
ell in F \ Gα by solving 
onvexsubproblems (5.22) for all feasible reformulations fB(Y ) = FX(Y ) of the obje
tive fun
-tion. For ea
h solution Y ∗, fB(Y ∗) = FX(Y ∗) has to be veri�ed to test the feasibility of Y ∗.Algorithm 5.4.1:
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 Problem on a Hemisphere 103Input: Ex = {Exi : i = 1, 2, . . . ,m}, the set of existing fa
ilities.
B : Convex spheri
al polygon with sets of extreme points Ext(B) and fa
ets Facet(B).Output: Opt∗B : set of all optimal lo
ations.
Z∗
B : optimal obje
tive value.Step 1: Constru
t the grid Gα.Step 2: Find the minimum of the problem (5.2) on grid Gα.Step 3: For all feasible reformulations of the obje
tive fun
tion, i.e., for all feasible assign-ments of intermediate points to the existing fa
ilities,(a) Find an optimal solution Y ∗ of the 
orresponding unrestri
ted problem

min FX(Y ), Y ∈ SH
0 .(b) If fB(Y ∗) = FX(Y ∗), the solution Y ∗ is a 
andidate for an optimal solution.Step 4: Determine the set of global minima from the 
andidate set found in Steps 2 and3.The time 
omplexity of Steps 1 and Step 2 of Algorithm 5.4.1 depends on the size of thegrids Gα and thus on the number of existing fa
ilities and the number of extreme pointsof the barrier regions. Therefore, the number of interse
tion points in Gα is bounded by

O((|Ex|+ |Ext(B)|)2 · |Ext(B)|2), and the number of 
ells in Gα is bounded by
O((|Ex|+ |Ext(B)|)2 · |Ext(B)|2).The overall time 
omplexity of Algorithm 5.4.1 is in general dominated by Step 3. If noadditional information is available to redu
e the number of possible assignments of existingfa
ilities to intermediate points, the number of subproblems is exponential in the numberof existing fa
ilities and in the number of extreme points of the barrier regions. Thus, theAlgorithm 5.4.1 is 
omputationally expensive when no additional information is availableon the stru
ture of the problem and hen
e a heuristi
 strategy 
an alternatively be applied.Instead of evaluating all the theoreti
ally possible assignments of existing fa
ilities to inter-mediate points, a sample set S of points 
an be 
onstru
ted in Iconvex ∩F . For an example



104 5. Spheri
al Lo
ation Problems with Polygonal Barriersthis sample set S 
an be 
onstru
ted by 
hoosing the grid points of an equidistant grid in
Iconvex or by 
hoosing spe
i�
 points on the visibility grid Gα. All the points in this sampleset 
an be used as starting points to determine FX for the un
onstrained lo
ation problem(5.22). As in Algorithm 5.4.1, the 
orresponding optimal solution Y ∗ of FX 
an be put inthe 
andidate set if Y ∗ is feasible, i.e., if fB(Y ∗) = FX(Y ∗).Algorithm 5.4.2:Input: Ex = {Exi : i = 1, 2, . . . ,m}, the set of existing fa
ilities.

wi : Asso
iated weights.
B : Convex spheri
al polyhedron with sets of extreme point Ext(B) and fa
ets
Facet(B).Output: Opt∗B : set of all optimal lo
ations.
Z∗
B : optimal obje
tive value.Step 1: Constru
t the grid Gα.Step 2: Find the minimum of the problem (5.2) on grid Gα.Step 3: De�ne a sample set S of grid points in Iconvex.Step 4: For ea
h grid point X ∈ S(a) Find an optimal solution X∗ of the 
orresponding unrestri
ted problem

min fX(Y ), Y ∈ SH
0 .(b) If fB(X∗) = fX(X∗), the solution X∗ is a 
andidate for an optimal solution.Step 5: Determine the set of global minima from the 
andidate set found in Steps 2 and4.5.5 BarrierWeberSphereLo
 Problem on the Surfa
e of the Unit SphereA

ording to the Corollary 5.2.1 in Se
tion 5.2, BarrierWeberSphereLo
 problem 
anbe redu
ed to a �nite set of 
orresponding un
onstrained ( or WeberSphereLo
 ) prob-lems with the shortest ar
 distan
e α as the measure of distan
e.
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 Problem on the Surfa
e of the Unit Sphere 105As the obje
tive fun
tion fB(X) of theWeberSphereLo
 problem is in general non-
onvexwithin the 
ells, the resulting 
orresponding subproblems are also in general non-
onvex.Therefore, the di�
ulty of the problem is not redu
ed as in the 
ase where the existingfa
ilities lie on a hemisphere.Theorem 5.5.1: Let C ∈ C(Gα) be a 
ell and let X ∈ C. Let X∗
B represents the globaloptimal solution to the non 
onvex problem

minimize

FX(Y ) (5.37)
s.t Y ∈ S0where FX(Y ) is de�ned a

ording to (5.17) and (5.18) and the intermediate points Ii, i =

1, 2, . . . ,m are 
hosen su
h that they are α-visible from X.Then FX(X∗
B) is a lower bound to the optimal obje
tive value of

minimize

FX(Y ) (5.38)
s.t Y ∈ C.

That is
FX(X∗

B) ≤ FX(Y ) ∀Y ∈ C.Further, if X∗
B ∈ C, or equivalently, if X∗

B is a feasible solution to the problem (5.38), then
X∗

B is the best optimal solution (5.38). �Theorem 5.5.2: Let X∗
B represent the global solution to the problem (5.37). If X∗

B ∈
int(C), then X∗

B is at least a lo
al optimal solution to BarrierWeberSphereLo
 problem.



106 5. Spheri
al Lo
ation Problems with Polygonal BarriersProof First, given that X∗
B ∈ int(C), we know from Theorem 5.5.1 that
FX(X∗

B) ≤ FX(Y ) for ea
hY ∈ C.That is, X∗
B is the global optimal solution to (5.38). Therefore, there exists an ε-neighborhoodof X∗

B, Nε(X
∗
B) ⊂ int(C), su
h that

fX(X∗
B) ≤ fX(Y ) for ea
hY ∈ Nε(X

∗
B).But sin
e

Nε(X
∗
B) ⊂ int(C) ⊂ Gα,it follows that FX(X∗

B) ≤ FX(Y ) for ea
h
Y ∈ Nε(X

∗
B) = Gα ∩Nε(X

∗
B) (5.39)This 
omplete the proof sin
e (5.39) de�nes a lo
al optimal solution to BarrierWeber-SphereLo
 problem. �Heuristi
 Algorithm for BarrierWeberSphereLo
 problemFrom the visibility graph G(V, E) (see se
tion 5.2) on S0, we 
an easily de�ne the shortestpath from ea
h existing fa
ility lo
ation Exi; i = 1, . . . ,m to X in a 
ell,C. From thesepaths, we 
an then determine the visible nodes Ii in the shortest-permitted Exi − X-pathfor i = 1, . . . ,m. Now suppose that minimizing (5.37) (i.e., solving WeberSphereLo
problem with existing fa
ilities Ii, i = 1, . . . ,m and weights, wi, i = 1, . . . ,m), results in theoptimal lo
ation X∗

B. From Theorem 5.5.1, we know that if X∗
B ∈ C, then X∗

B is a globalfa
ility lo
ation in C. And from Theorem 5.5.2, if X∗
B ∈ int(C), then X∗

B must also be atleast a lo
al optimal solution to the BarrierWeberSphereLo
 problem.We 
an verify that X∗
B ∈ int(C) by showing that the distan
e fun
tions, or equivalently thevisible nodes, asso
iated with X and X∗

B are not only identi
al, but unique. If the distan
efun
tions are not unique (i.e., there are at least two paths to X∗
B from some existing fa-
ility lo
ation Exi, su
h that the lengths of the paths are equivalent), then X∗

B is on theboundary of C (∂C). If X∗
B ∈ ∂C, then an ǫ-neighborhood may also 
ontain points whi
hare elements of adja
ent regions. Therefore, in this 
ase, to be assured of a lo
al optimal



5.5. BarrierWeberSphereLo
 Problem on the Surfa
e of the Unit Sphere 107solution to the BarrierWeberSphereLo
, we must also verify that X∗
B is a lo
al optimalsolution in ea
h adja
ent region for whi
h X∗

B ∈ C. Based on this, we propose the followingheuristi
 algorithm for the barrier weber problem on the spheri
al surfa
e.Algorithm 5.5.1:Input: Ex = {Exi : i = 1, 2, . . . ,m}, the set of existing fa
ilities.
wi : Asso
iated weights
B : Convex spheri
al polyhedron with sets of extreme point Ext(B) and fa
ets
Facet(B).Output: Opt∗B : set of all optimal lo
ations.
Z∗
B : optimal obje
tive value.Step 1: Constru
t the grid Gα. Choose a 
ell C and initial point X0 ∈ CStep 2: Find the minimum X∗

B of the problem (5.37).Step 3: If :(a) X∗
B 6∈ C, then 
hoose an another 
ell. Go to Step2.(b) X∗
B ∈ ∂C, then for ea
h adja
ent region for whi
h X∗

B ∈ C, reapply the Algorithm5.5.1 using X∗
B as the initial point.(
) X∗

B ∈ int(C), then STOP: X∗
B is a lo
al optimal fa
ility lo
ation to the Barri-erWeberSphereLo
.





6. NUMERICAL RESULTSWe develop the 
ode in Visual C++ 6.0 for the Algorithm 4.2.1 whi
h is presented inSe
tion 4.2. The 
ode is implemented on a 
omputer AMD Athlon(tm)XP 1500+ at 1.34GHZ.First, 
onsider the following example with �fteen existing fa
ilities (
ities) and four extremepointed spheri
al polygon as the existing restri
ted region in the Northern hemisphere. Ta-bles 6.1 and 6.2 below list the latitude and longitude as well as the 
orresponding Cartesian
oordinates of these �fteen 
ities and of the extreme points of the restri
ted spheri
al poly-gons respe
tively.
The algorithm generates the optimal lo
ation for Restri
tedCenterSphereLo
 problemin the Northern hemisphere with the 
artesian 
oordinates (0.6019,−0.5504, 0.5784) andwith the 
orresponding latitude and longitude (35.34N, 42.43W ). The 
orresponding opti-mal obje
tive value is 0.9064. The interse
tion point of the spheri
al bise
tor of the 8thand the 12th existing fa
ilities with fa
et generated by the 1st and the 2nd extreme points ofthe given spheri
al polygon is the required fa
ility point. The CPU time of the algorithmfor this example is 5.0 se
onds.Note that the unrestri
ted CenterSphereLo
 problem is solved by applying the polynomialtime algorithm, Algorithm 3.4.2.Consider now 10 sets 
ontaining 10, 20, 30, 40, 50, 60, 70, 80, 90 and 100 demandpoints distributed randomly over the Northern hemisphere and 3 sets 
ontaining 3, 4, and5 extreme pointed spheri
al polygons for ea
h data set su
h that the optimal lo
ation for theCenterSphereLo
 problem in the hemisphere is 
ontained within the spheri
al polygons.Ea
h of the above sets is randomly generated ten times. Table 6.3 shows the average
omputation time ( in se
onds ) of the Algorithm 4.2.1. Figure 6.1 shows distribution of
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al Results
Latitude,φ Longitude, θ x y z1 51.5N 0.4E 0.6225 0.0043 0.78262 48.9N 2.3E 0.6568 0.0264 0.75363 47.5N 8.5E 0.6694 0.1000 0.73614 41.9N 12.5E 0.7267 0.1611 0.66785 55.7N 12.6E 0.5500 0.1229 0.82616 52.5N 13.4E 0.5922 0.1411 0.79347 59.3N 18.9E 0.4830 0.1654 0.86008 38.0N 23.7E 0.7216 0.3167 0.61579 39.9N 32.8E 0.6449 0.4156 0.641510 32.1N 34.8E 0.6956 0.4835 0.531411 55.7N 37.7E 0.4459 0.3446 0.826112 35.4N 51.4E 0.5058 0.6370 0.579313 18.9N 72.8E 0.2798 0.9038 0.323914 14.6N 121.0E -0.4984 0.8295 0.252115 35.6N 139.7E -0.6201 0.5260 0.5820Tab. 6.1: Latitudes, Longitudes and 
orresponding Cartesian 
oordinates of 15 
ities

Latitude, φ Longitude, θ x y z1 41.96N 46.73W 0.5096 -0.5414 0.66862 28.47N 84.80E 0.0796 0.8754 0.47673 35.54N 104.33W -0.7883 -0.2014 0.58134 18.72N 26.62W 0.8466 -0.4243 0.3209Tab. 6.2: Latitudes, Longitudes and 
orresponding Cartesian 
oordinates of the extreme points ofthe restri
ted spheri
al polygon



111the CPU time of the algorithm a

ording to the in
reasing number of demand points andthe shapes of the restri
ted regions.Runtime(in se
onds) with the polygon havingNo. of Demand points 3 extreme points 4 extreme points 5 extreme points10 0.03 0.03 0.0420 0.07 0.35 1.0430 1.69 2.96 4.2640 4.27 6.41 8.4850 7.70 10.84 13.9460 11.81 16.21 20.8570 16.57 22.31 28.2880 21.67 29.66 37.6790 28.06 38.09 47.92100 34.87 46.87 61.01Tab. 6.3: Average CPU time ( in se
onds ) for 10 di�erent set of demand points with 3 di�erentshapes of restri
ted spheri
al polygonsFurther, some test runs for samples of 200, 300,400, 500 and 1000 of demand points withsame shape of of restri
ted regions were tested and the 
omputational time of these samplesare in
luded in the Table 6.4. Visual Version C++ 6.0 is used on the same 
omputer for
omputation.Now, we represent some results for the BarrierWeberSphereLo
 problem using thedeveloped algorithms, Algorithm 5.4.1 and Algorithm 5.4.2. Consider again the 15 existing
ities given in Table 6.1 and a single barrier region with 4 extreme points whi
h is givenin Table 6.2 in the northern hemisphere. We developed the C++ 
odes for the Algorithm5.4.1 and (0.5662, 0.6490, 0.9088) was resulted as the optimal lo
ation for the hemispheri
alWeber lo
ation problem with the optimal obje
tive value 2.9542. The 
omputational timein this example is 56.36 se
onds.In this solution approa
h, as we are 
onsidering all possible feasible assignments of exist-ing fa
ilities to intermediate points, this is 
omputationally expensive. Therefore, Insteadof evaluating all the theoreti
ally possible assignments of existing fa
ilities to intermediate
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Fig. 6.1: Distribution of CPU time of the Algorithm 4.2.1
Runtime(in se
onds) with the polygon havingNo. of Demand points 3 extreme points 4 extreme points 5 extreme points200 145.129 193.919 242.589300 327.110 429.598 537.623400 579.453 772.291 952.529500 914.265 956.796 1509.061000 1670.27 1967.98 2296.730Tab. 6.4: CPU time ( in se
onds ) for large sets of demand points with 3 di�erent shapes ofrestri
ted spheri
al polygons. ⋆ : these samples were not tested.



113points, a suitable sample set S of points 
an be spe
i�ed in Iconvex∩F to apply the developedAlgorithm 5.4.2.Now we 
onsider the same hemispheri
al BarrierWeberSphereLo
 problem with 15 ex-isting 
ities and the single barrier for applying Algorithm 5.4.2 on the sele
ted sample set
S. Consider all the spheri
al triangles whi
h are generated by the existing fa
ilities and theextreme points of the barrier in whi
h the extreme points of ea
h spheri
al triangle that are
α−visible from ea
h other. Then a sample set S for this problem 
an be formed by ran-domly generated points from these spheri
al triangles. The Algorithm 5.4.2 generated thesame lo
ation (0.5662, 0.6490, 0.9088) as the new fa
ility for the BarrierWeberSphere-Lo
 problem on the Northern hemisphere with same obje
tive value in 14.8 se
onds.To see the distribution of run time of the Algorithm 5.4.2, 10 randomly generated set ofdemand points on the Northern hemisphere with 5,10,15,20,25,30, 35, 40, 45 and 50 pointswith a spheri
al triangle as the polygonal barrier. The Algorithm was tested 5 times on ea
hsample set and the resulted run time of the Algorithm in ea
h 
ase is given by the followingTable, 6.5. Number of demand points Run time (in se
onds)1 5 0.5022 10 372.8133 15 782.6714 20 1247.6435 25 1941.7566 30 2875.9037 35 4143.5728 40 6241.7439 45 8732.90410 50 11995.761Tab. 6.5: Average CPU time (in se
onds) of the Algorithm 5.4.2Figure 6.2 shows the distribution of run time of the Algorithm 5.4.2 in in
reasing numberof demand points.
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Fig. 6.2: Distribution of CPU time of the Algorithm 5.5.1Further, some test runs on the sample sets of 100, 200 and 500 demand points were testedwith Algorithm 5.5.1, and 38465.091, 107231.742 and 344362.056 se
onds respe
tively wereresulted as the CPU time.Now, we will present some 
omputational result for the WeberSphereLo
 problem usingthe developed Algorithm 5.5.1 in se
tion 5.5. The test sample sets with 10,20,30,40, 50,60, 70, 80, 90 and 100 demand points on the sphere were generated randomly. A spheri
altriangle is exposed in to the sets of demand points in ea
h 
ase as the polygonal barrier.The Algorithm is tested 5 times on ea
h 
ase and the resulted run time is shown in thefollowing Table 6.6. This algorithm was also tested for large samples of 200, 300, 400, 500and 1000 demand points. The required run time for these samples are shown in the Table6.7Figure 6.3 shows distribution of the CPU time of the algorithm a

ording to the in
reasingnumber of demand points.



115Number of demand points Run time (in se
onds)1 10 13.2992 20 20.6713 30 28.2814 40 36.8745 50 47.9396 60 62.0177 70 79.4378 80 103.7719 90 137.00310 100 184.423Tab. 6.6: Average CPU time (in se
onds) of the Algorithm 5.5.1
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Fig. 6.3: Distribution of CPU time of the Algorithm 5.5.1
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Number of demand points Run time (in se
onds)1 200 237.5892 300 541.4233 400 988.4724 500 1668.1065 1000 3496.450Tab. 6.7: CPU time (in se
onds) of the Algorithm 5.5.1



7. CONCLUSIONS AND FUTURE RESEARCHIn this thesis, di�erent solution approa
hes for the spheri
al 
enter lo
ation ( Center-SphereLo
 ) problem and the spheri
al weber lo
ation (WeberSphereLo
 ) problemhave been investigated and uni�ed presentation has been provided. Furthermore, as a newidea, the 
on
epts "Restri
ted and Barrier regions" have been exposed in to spheri
al lo
a-tion problems and some solution strategies of these restri
ted and barrier spheri
al lo
ation(Restri
tedSphereLo
 and BarrierSphereLo
 respe
tively ) problems have been pre-sented.Basi
ally, throughout this work the great "
ir
le ar
 distan
e" ( shortest ar
 length ) onthe surfa
e of the unit sphere has been used in developing the mathemati
al models for theRestri
tedSphereLo
 and BarrierSphereLo
 problems.As a result that the great 
ir
le ar
 distan
e is non 
onvex fun
tion on the surfa
e of thesphere, some restri
tions have to be made on the feasible region in order to dis
uss thesolution 
riteria for the restri
ted 
enter sphere lo
ation (Restri
tedCenterSphereLo
problem. Therefore, In Chapter 4, some basi
 results for the hemispheri
al Restri
ted-CenterSphereLo
 problem have been developed using the 
on
ept, "level sets" and "level
urves" and a resulted "polynomial time " algorithm has been developed. In this algorithm,all the demand weights, wi, i = 1, 2, . . . ,m have been assigned to be equal to one. Whenthe demand weights are wi > 0 but wi 6= 1, a solution approa
h has been dis
uss in se
tion4.3. In this situation the weighted bise
tors on the surfa
e of the unit sphere have to beused to obtain the optimal lo
ation for the new fa
ility.A solution strategy for the BarrierSphereLo
 problems has been presented using par-titioning the feasible region into some subsets with the help of visibility phenomena inChapter 5. Here, the 
on
ept "barrier distan
e" has been used in developing algorithms



118 7. Con
lusions and Future Resear
hin both "spheri
al" and "hemispheri
al" 
ases. Also, "visibility graph" and a "line sear
hpro
edure " on the spheri
al surfa
e have been dis
ussed in this Chapter.In Chapter 6, some numeri
al results for the developed algorithms for both (Restri
ted-CenterSphereLo
 and BarrierSphereLo
 problems have been in
luded. A

ording tothese results, the algorithm whi
h has been developed for the hemispheri
al Restri
terd-CenterSphereLo
 problem gives the solution for the new lo
ation in polynomial time.One 
an observe that the running time of the Algorithms 5.4.1, 5.4.2 and 5.5.1 is highlydependent on the number of existing fa
ilities and on the no of extreme points of the barrierregions.The possible future resear
h work is to propose di�erent distan
e norms on the surfa
e ofthe sphere to have better solution with better CPU time. Further, if we have di�erent dis-tan
e norm, like l∞ distan
e norm in Eu
lidean spa
e, one 
an partition the surfa
e areaof the sphere into two regions and then 
an apply both ar
 distan
e and the newly de�neddistan
e in ea
h region to have another algorithmi
 approa
h for the BarrierSphereLo
problem.Further, in radiation therapy, when the target volume has been irradiated in three dimen-sional way, the problem is to �nd better radiation therapy planing 
an be 
onsidered as arestri
ted or barrier spheri
al lo
ation problem on the spheri
al surfa
e. Finally, �ndingweighted bise
tors on the surfa
e of the unit is also still a open problem for the future work.



8. APPENDIXProof for Theorem 2.1.3 For the 
onvenien
e, we will assume that the 
enter of thespheri
al 
ir
le is (0, 0, 1). Therefore, all of the existing fa
ilities are above the XY -plane.Let X∗ = X∗(x∗, y∗, z∗) be a global minimizer of f(X).Claim 1: z∗ ≥ 0.Suppose z∗ < 0 and X ′ = X ′(x∗, y∗,−z∗)All the existing fa
ilities are above XY - plane ⇒ arc(X ′, Exi) < arc(X∗, Exi) ∀i =

1, 2, . . . ,m.
⇒ f(X ′) < f(X∗).This 
ontradi
ts the global optimality assumption of X∗.Now, assume that X∗ is on or above the XY -plane.If X∗ is in the spheri
al 
onvex hull of the existing fa
ilities, we are done. Therefore,suppose that X∗ is not in the spheri
al 
onvex hull of the existing fa
ilities.Claim 2: There must be at least one existing fa
ility, say Exj su
h that arc(X∗, Exj) ≤
π/4. This is true be
ause otherwise f((0, 0, 1)) < f(X∗) and this 
ontradi
ts the globaloptimality assumption of X∗.Let P be the orthogonal proje
tion of X∗ onto the 
onvex 
one generated by the existingfa
ilities.
Claim1⇒ P 6= O = O(0, 0, 0).We will show that f(P ) < F (X∗):Let P be the plane passing through P and orthogonal to line segment OP. Let Ex′

i be theinterse
tion of ray OExi with P for all i = 1, 2, . . . ,m.We want to show that for any i,
∠X∗OEx′

i > ∠POEx′
i. (8.1)

Exi is above the XY -plane ⇒ Ex′
i must also be above the XY -plane.

X∗ is on or above the XY -plane ⇒ P must also be on or above the XY -plane.
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'
i

O

X*

P Ex

Fig. 8.1: The proje
tion P of X∗ has a better fun
tion value than X∗Therefore, ∠X∗OEx′
i,∠POEx′

i ∈ [0, π). Therefore, we only need to prove
cos(∠POEx′

i) > cos(∠X∗OEx′
i). (8.2)Sine P is the proje
tion of X∗ onto a 
onvex 
one and that Ex′

i is a point in that 
one,we know that from 
onvex analysis, ∠X∗PEx′
i ≥ 90◦. Therefore, (X∗Ex′

i)
2 ≥ (X∗P )2 +

(Ex′
iP )2.Sin
e ( Figure 8.1 ) cos(∠POEx′

i) = OP/OEx′
i, cos(∠X∗OEx′

i) = ((OX∗)2 + (OExi)
2 −

(X∗Ex′
i)

2)/(2 ·OX∗), we only need to prove
2 ·OX∗ ·OP ≥ (OX∗)2 + (OExi)

2 − (X∗Ex′
i)

2. (8.3)Again from Figure 8.1 , we have (OX∗)2 = (OP )2 + (X∗P )2 and (OExi)
2 = (OP )2 +

(Ex′
iP )2. Therefore, inequality (8.3) is true and the Theorem is proved. �Proof for Theorem2.2.1 Consider the obje
tive fun
tion f(X) =

∑n
i=1 wiαi. It 
an beshown that for movement from point Xk:
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df(X) = wk[(dφ)2 + cos2 φk(dθ)2]1/2

− dφ
∑

i6=k

wi(− sin φk cos φi cos(θk − θi)

+ cos φk sin φ)/ sin αki

− dθ
∑

i6=k

wi(cos φk cos φi sin(θi − θk))/ sin αki.For a lo
al minimum, df(p) > 0, and hen
e, we must show
wk((dφ)2 + cos2 φk(dθ)2)1/2 −Akdφ−Bk cos φkdφk > 0.Letting L = dθ cos φk/dφ , we have

|dφ|wk(1 + L)1/2 > dφ(Ak + LBk)and so :
wk > dφ(Ak + LBk)(1 + L2)−1/2/|dφ|.Note that dφ/|dφ| is ±1. It 
an be shown that :

−(A2
k + B2

k)1/2 ≤ (Ak + LBk)/(1 + L2)1/2

≤ (A2
k + B2

k)1/2and hen
e, the 
ondition
wk ≥ (A2

k + B2
k)1/2is ne
essary and su�
ient for df(p) > 0 for every L.

�Proof for Lemma 3.2.1 Consider the Figure 8.2. O′ denote the 
enter of the 
ir
le
C(X1,X2,X3). Then X̄1, X̄2 and X̄3 are the points on the 
ir
umferen
e of the 
ir
le thatare diametri
ally opposite of X1,X2 and X3 respe
tively. Sin
e △X1X2X3 is a
ute, points
X2 and X3 
annot lie on the same side of the line joining X1 and X̄1. The same is truefor points X3 and X1 and the line joining X2 and X̄2, and points X1 and X2 and theline joining X3 and X̄3. Let X be any point of the 
ir
umferen
e of C(X1,X2,X3), thenobviously

minimum{∠X1O
′X,∠X2O

′X,∠X3O
′X} < π/2.
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Fig. 8.2:Extend the ar
 from P passing through Q to meet the 
ir
umferen
e of C(X1,X2,X3) atpoint X. Without loss of generality, assume that
∠X1O

′X < π/2, i.e., QP̂X1 < π/2 and ∠X1O
′X ≤ ∠X2O′X.If Q lies on arc(PX1), then the proof is 
omplete. When Q does not lie on arc(PX1), let

M be the midpoint of the shorter ar
 segment between points X1 and X2 on the 
ir
umfer-en
e of C(X1,X2,X3)(see Figure 8.2 b). Constru
t two great 
ir
le ar
s, one joining points
P and M and the other joining points X1 and Q. Extend arc(X1Q) to meet arc(PM) atpoint Y .By 
onstru
tion arc(X2M) and arc(X1M) are the same. Sin
e P is the nearer pole of
C(X1,X2,X3), arc(X1P ) arc(X2P ) are also the same. Thus, spheri
al triangles X1MPand X2MP are 
ongruent and X1M̂P = π/2.Then from Arti
le 42 in [30℄,

cos(arc(PX1)) = cos(arc(PM)) cos(arc(X1M)) (8.4)and
cos(arc(Y X1)) = cos(arc(Y M)) cos(arc(X1M)). (8.5)



123Now, using the result arc(PM) > arc(TM), and (8) and (8),
arc(PX1) > arc(Y X1) ≥ arc(QX1).Sin
e arc(PX1) is the spheri
al radius of C(X1,X2,X3), we re
eive

arc(XX1) > minimum{arc(QX1), arc(QX2), arc(QX3)}.

�Proof for Lemma 3.2.2 Let P be the nearer pole of C(X1,X2,X3). Let Q be the dia-metri
ally opposite point to Q1. Obviously, Q is on ΓC(X1,X2,X3) and P 6= Q. Sin
e
Q1 is su�
iently 
lose to P ′ and P is in the spheri
al triangle X1X2X3, Q must be in thespheri
al triangle as well. Assume that

arc(QX1) = minimum{arc(QX1), arc(QX2), arc(QX3)}.From Lemma 3.2.1, it we have arc(QX1) < arc(PX1). Constru
t two great 
ir
le ar
s,one joining X1 to P ′ and the other joining X1 to Q1. Sin
e P and Q are diametri
allyopposite of P ′ and Q1 respe
tively, we have
arc(X1P ) + arc(X1P

′) = π = arc(X1Q) + arc(X1Q1).Now arc(QP1) < arc(PX1) =⇒ arc(X1P
′) < arc(X1Q1).

=⇒ arc(X1P
′) < maximum{arc(X1Q1), arc(X2Q1), arc(X3Q1)}.

�Proof for Lemma 3.2.3Refer �gure 8.3. P and P ′ are nearer and distant poles of the small 
ir
le C(X1,X2,X3). Mdenotes the mid point of arc(X1X2). Take a point Q, in an arbitrary small neighborhoodof P ′ on the great 
ir
le arc(PMP ′). Constru
t arc(QX3), arc(QX2), arc(X3P
′), and

arc(X2P
′). Now draw the great 
ir
le arc(PX1P

′). Sin
e P ′ is the distant pole of small
ir
le C(X1,X2,X3), we have
arc(X1P

′) = arc(X2P
′) = arc(X3P

′) (8.6)Hen
e spheri
al triangles X1MP ′ and X2MP ′ are 
ongruent and
X2M̂P ′ = X1M̂P ′ = π/2. (8.7)
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Fig. 8.3:
∠X3 > π/2 implies that X3 lies on the (shorter) ar
, arc(X1X2) of small 
ir
le C(X1,X2,X3).Without loss of generality, assume that X2 and X3 lie on the same hemisphere de�ned bythe great 
ir
le passing through P,M, and P ′. In the spheri
al triangle X2X3P

′, arc(X2P
′)= arc(X3P

′). Therefore, Property 1.2.1(a) of spheri
al triangles (see se
tion 1.2) ⇒
X3X̂2P

′ = X2X̂3P
′ (8.8)Consider the property that two great 
ir
les interse
t at points whi
h are diametri
allyopposite and the assumptions that Q,X3,X2, and P ′ lie on the same hemisphere.Then

X3X̂2P
′ = X3X̂2Q + QX̂2P

′ ⇒ X3X̂2P
′ > X3X̂2Q and (8.9)

X2X̂3Q = X2X̂3P
′ + QX̂3P

′ ⇒ X2X̂3Q > X2X̂3P
′ (8.10)From Property 1.2.1(b), and results (8.8) through (8.8) =⇒

arc(X2Q) > arc(X3Q) (8.11)Using (8.7), from spheri
al triangles X2MQ and X2MP ′ we have
cos(arc(X2Q)) = cos(arc(X2M)) cos(arc(MQ)) and (8.12)

cos(arc(X2P
′)) = cos(arc(X2M)) cos(arc(MP ′)) (8.13)Sin
e arc(MQ) < arc(MP ′), (8.12) and (8.13) ⇒
arc(X2Q) < arc(X2P

′) (8.14)
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e spheri
al triangles X1MQ and X2MQ are 
ongruent, we have
arc(X1Q) = arc(X2Q) (8.15)Combining (8.6), (8.11), (8.14) and (8.15), we have

maximum{arc(X1Q), arc(X2Q), arc(X3Q)} < arc(X1P
′) = arc(X2P

′) = arc(X3P
′).

�Proof for Theorem 3.2.3 P and P ′ in Figure 8.4 represent the nearer and distant pole of
C(X1,X2). Consider the great 
ir
le PX1P

′X2. Now 
onstru
t the great 
ir
le ar
 joining
P and P ′ through the mid point, M , of the smaller great 
ir
le ar
, arc(X1X2). For anydemand point Exi(6= X1orX2),

arc(ExiP
′) < arc(X2P

′) = arc(X1P
′).

X X

P'

P

Q

1 2

i

M

Fig. 8.4:In parti
ular, there exists a su�
iently small ǫ > 0 su
h that
arc(ExiP

′) < arc(X2P
′)− 2ǫ. (8.16)Let Qi be a point on the ar
 PMP ′ that is su�
iently near P ′ so that

arc(ExiQi) < arc(ExiP
′) + ǫ. (8.17)
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arc(ExiQi) < arc(X2P

′)− ǫ. (8.18)Sin
e triangles X1PQi and X2PQi are 
ongruent,
arc(X1Qi) = arc(X2Qi). (8.19)In the spheri
al triangle X2P

′Qi, X2P̂ ′Qi = π/2.The the 
osine rule gives
cos(arc(X2Qi)) = cos(arc(X2P

′)) cos(arc(QiP
′)).Note that arc(X2P

′) > π/2 as all the demand points are not on a hemisphere. Togetherthis fa
t and the assumption that Qi lies on the ar
 PMP ′ and is in the ǫ-neighborhood of
P ′, we have

cos(arc(X2Qi)) > cos(arc(X2P
′)).Hen
e,

arc(X2Qi) < arc(X2P
′). (8.20)Sin
e, limQi−P ′arc(X2Qi) = arc(X2P

′), there exists a small neighborhood around P ′ su
hthat if Qi is in this neighborhood, then
arc(X2Qi) > arc(X2P

′)− ǫ. (8.21)Therefore, it follows from (8.18), (8.20) and (8.21) that
arc(ExiQi) < arc(X2Qi) < arc(X2P

′). (8.22)The results (8.17) through (8.21) are not only true for Qi but also for any Q on the ar

P ′Qi, i.e.,

arc(ExiQ) < arc(X2Q) < arc(X2P
′). (8.23)Therefore,
orresponding to ea
h demand point Exi, there exists a point Qi on the ar
 P ′Msu
h that an inequality of the type (8.22) holds. let

arc(P ′Q) = minimum{arc(ExiQi) : Exi(6= X1 or X2) is any demand point}.However, (8.23) implies that the distan
es from Q to ea
h demand point are shorter thanthe distan
e from P ′ to X2. Thus, P ′ 
annot be a minimax lo
ation. �
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