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ABSTRACT

This thesis investigates the constrained form of the spherical Minimax location problem
and the spherical Weber location problem. Specifically, we consider the problem of locating
a new facility on the surface of the unit sphere in the presence of convex spherical polygonal
restricted regions and forbidden regions such that the maximum weighted distance from
the new facility on the surface of the unit sphere to m existing facilities is minimized and
the sum of the weighted distance from the new facility on the surface of the unit sphere
to m existing facilities is minimized . It is assumed that a forbidden region is an area on
the surface of the unit sphere where travel and facility location are not permitted and that
distance is measured using the great circle arc distance.

We represent a polynomial time algorithm for the spherical Minimax location problem for
the special case where all the existing facilities are located on the surface of a hemisphere.
Further, we have developed algorithms for spherical Weber location problem using barrier

distance on a hemisphere as well as on the unit sphere.

Keywords: spherical location, spherical convex polygon,restricted and barrier regions, great

circle arc, barrier distance



1. INTRODUCTION

1.1 Applications and Literature Survey

Facility location on the plane can be considered as to locate one or more new facilities
among m given demand points (or existing facilities ) on the plane. When we locate only

one new facility, the optimality is achieved :

1. the sum of weighted distances from the new facility to the demand point is minimized,

or

2. the mazimum weighted distance from the new facility to the demand points is mini-
mized or the minimum weighted distance from the new facility to the demand points

18 mazimized.

The weights usually represent the cost of delivery per unit distance, goods demanded, pop-
ulation, etc,. In each of these optimality approaches, the planar distances are used.

The first formulation is referred as "Classical weber problem [22]" or "median (min-
isum)" formulation of the problem and the second formulation is referred as "center (mim-
imaz/mazimin” [22]) formulation of the problem.

These two formulations, of cause, are still valid when all locations are on the surface of a
sphere. For example, the problem of locating a store of emergency supplies for the relief of
the consequence of natural or man-made disasters around the globe has the element of a
minimaz problem on the surface of the sphere.

When demand points are located on the plane, the mazimin facility location problem is of
little practical significance. That means, a facility can be located "at infinity" to mazimize
the minimum weighted distance. But, on a sphere, the maximum distance is one-half of
the mazimum circumference and , hence the problem is not trivial. Locating a facility as
far as possible from a given set of missile bases can be given as an application. The ob-

jective of this problem would be the mazimization of the time before the arrival of a missile.
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Howewver, all the demand points are spread all over the globe, planar distances are no longer
suitable approzimations in modelling. Therefore, many researchers consider spherical dis-
tances instead of planar distances to locate an appropriate location over the globe. Then
the relevant location problem is as follows : Consider that all the demand points are located
on the surface of a sphere with known associated weights. Then the problem to find an
optimal location on the surface of the sphere is referred as "facility location on the sphere”
or "Spherical Location Problem( SphereLoc ).

We consider single facility spherical location problems ( SphereLoc ) of the median

and center type. Le., we solve

min f(X) := sz‘d(X7 Ex;) WeberSphereLoc
i=1

XeSo
and
)r(réigo hX) = r?glxwid(X, Ex;) CenterSphereLoc
where Exq, Exo, ..., Ex,, are given demand points (or existing locations) and X is the

unknown location of a new facility. All locations lie on the unit sphere Sy and possible

distance functions d(X,Y") between points X,Y € Sy are discussed in detail later on.

Applications of spherical location problems appear in military, civil, naval, commercial
problems. These are becoming global in the sense that the distances involved are so large
on the globe that planar distances are no longer suitable.

As an illustration of this spherical location problem, consider the following example: a
product is to be distributed to 15 cities by air, as shown in Table 1.1, where each city is
defined by its latitude and longitude. The weights are the functions of the overall demand.
Our task is to find a best location for the factory in order to distribute the product with

minimum cost.

Spherical location problems with the measuring distance on the surface of the sphere is the
shortest length of arc (great circle distance ) ( see Definition 1.2.8), is more complex than
its counterpart on the plane because its objective is not convex as the distance function is

not convex on the surface of the sphere( see Theorem 1.2.1 ).
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City Latitude | Longitude | Weights
1 | London 51.5 04 0.12
2 | Paris 48.9 2.3 0.07
3 | Zurich 47.4 8.5 0.08
4 | Rome 41.9 12.5 0.05
5 | Copenhagen 25.7 12.6 0.08
6 | Berlin 52.5 134 0.07
7 | Stockholm 59.3 18.9 0.06
8 | Athens 38.0 23.7 0.07
9 | Ankara 39.9 32.8 0.05
10 | Tel-Aviv 32.1 34.8 0.05
11 | Moscow 25.7 37.7 0.05
12 | Teheran 354 51.4 0.07
13 | Bombay 18.9 72.8 0.03
14 | Manila 14.6 121.0 0.05
15 | Tokyo 35.6 139.7 0.10

Tab. 1.1: Latitudes, Longitudes and corresponding weights of 15 cities

In the literature various definitions of distances d(X,Y") are used, which we will discuss in
some details in sections 1.2 and 2.2. In the following brief summary of the literature we

will use corresponding notations. Some of the results are further detailed in this thesis.

Drezner and Wesoloswsky [11], in 1978 considered the related problem where they used two
ways of measuring distances ( see section 2.2 ) and used iterative heuristic method for

solving the WeberSphreLoc problem with shortest arc distance.

A short overview on locating a facility on a sphere can be found in the text book of Robert
F. Love, James G. Morris and G.O. Wesolowsky [22]. They consider the median problem
where d 1s the shortest arc distance and present a Weiszfeld-like iterative procedure on the

sphere.
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A. A. Aly, D.C. Kay, D.W. Litwhiler [1], in 1978 worked on the spherical median problem
with the shortest arc distance as distance measure. They found out that an optimal solu-
tion to this problem must lie within the spherical convex hull ( Definition 1.2.14 ) of the

demands points if the demand points are not located entirely on a great circle arc.

Zvi Drezner [12], in 1981 considered the case when all the demand points lie on a great

circle arc and he proposed that the optimal solution occurs on a demand point in this situ-

ation(Theorem 2.1.4 ).

In 1979, Katz and Cooper [19] considered the problem, "Optimal Location on the Sphere .
They use three different metrics as distances between points on the surface of the sphere:(1)

Euclidean ; (2) squared Euclidean distances; (3) geodesic or great circle distance.

Both, "Kats and Cooper [19]" and "Drezner and Wesolowskey [11]" propose Weiszfeld -
like algorithms for finding an optimal facility location on a sphere. However, convergence

has never been proposed.

In 1985, Zvi Drezner [14] proposed a convergent algorithm for the solution to the minisum
location problem on the sphere with measuring distance on the surface of the sphere is the

length of shortest arc. The proposed algorithm is presented in the section 2.3.

Drezner and Wesolowsky [13] dealt with minimaz and mazimin facility location problem on
a sphere in 1983. First they propose an algorithm for finding a local minimaz point using a
non linear programming approach. Then they develop an algorithm to determine the global

minimaz points using the obtained local mimimaz points ( see section 3.1 ).

In 1994, Xue [32] proposed a globally convergent algorithm to the minisum formulation of
this problem with the shortest length of arc is the distance metric. In his paper, he proved
the hull property of the problem, i.e., every global minimizer of the problem must lie within
the spherical convexr hull ( Definition 1.2.14 ) of the existing facilities. Also, he presented
optimality conditions for the spherical facility location problem in terms of the optimality

conditions for the corresponding Euclidean facility location problem. Finally, a gradient
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algorithm for solving the spherical facility location problem is presented and the global con-
vergence of this algorithm was proved. He assumed that all of the existing facilities are

included within a spherical circle ( Definition 1.2.11 ) of radius 7/4.

In 1994, Minnie H. Patel [2}] dealt with the spherical minimazx location problem and for-
mulated the spherical location problem in the Cartesian coordinate system using Fuclidean
norm, instead of the spherical coordinate system using spherical arc distance measures. It
is shown that minimizing the maximum of the spherical arc distances between the facility
point and the demand points on the surface of the sphere is equivalent to minimizing the

mazimum of the corresponding Fuclidean distances.

Pierre Hansen, B. Jaumard and S. Krau [18], in 199/, presented an ezact and practi-
cally efficient algorithm for the WeberSphereLoc problem using a Branch-and-Bound ap-
proach. This is an extension of the continuous branch-and-bound algorithm for location of a
facility in the plane, known as "Big Square Small Square(BSSS) [32]". Further, four ways

to compute lower bounds are studied.

In 1996, A.K. Sakar, P.K. Chaudhuri [27] and in 1998, P.Das, N.R. Chakraborty, P.K.
Chaudhuri [4] developed two algorithms for the equally-weighted CenterSphereLoc problem
when all demand points lie on a hemisphere. Both yield an exact solution with the time
complezity O(n?) in the worst case. The methods of these approaches are basically geomet-
rical and do not require the use of the nonlinear programming techniques like most of the
other papers. The difference between the two algorithms is that while the first algorithm in
[27] heavily depends on properties of the spherical triangle ( Definition 1.2.13 ), the second

in [4] depends on the mazimization of the Euclidean distance (for more details, see section

3.4).

P.Das, N.R. Chakraborti and P.K. Chaudhuri [5], in 1999 considered the CenterSphereLoc
problem with respect to shortest arc distance. They assume that all the demand points are
equally weighted and distributed over the sphere. The procedure they present is based on
an enumeration techniques and determines global optimal solutions in a finite number of

steps. This algorithm determines the exact solution of the global as well as the hemispher-
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ical minimaz location problem with the time complezity O(n3) (see section 3.2).

Kelly M. Betes [2], in 2001, analyze alternative solutions methodologies for the Weber

(minisum) problem on the surface of the sphere.

Atsuo Suzuki [29] presents the results for ( multi-) facility location problems on the sphere
based on Voronoi diagrams. The problems which are discussed here are the p-median prob-
lem, the p-center problem and the competitive location problem. He assumes that all the

demand points are spread continuously on the sphere.

Kokichi Sugihara [28] also uses on Voronoi diagrams as tools for space analysis. The
concepts of the Voronoi diagram, various kinds of its generalizations and the methods for
computing them are surveyed from a user point of view. Particular application of his stud-
ies on voronoi diagrams is to place them on a sphere, which will be useful for facility layout

on the spherical surfaces.

Further, U.R. Dhar and J.R. Rao [7] in 1980 dealt with " A comparative study of three

norms for facility location problem on spherical surfaces. "

In 1981, U.R. Dhar and J.R. Rao [8] studied "multi source location problem on a sphere”
and in 1982, U.R. Dhar and J.R. Rao [9] considered the problem of locating more than one
new facilities among existing facilities on surface of the sphere. The optimality of this prob-
lem is achieved when the sum of all weighted distances between new to new facilities and
new to existing facilities is minimized with the measuring distance on the surface of a sphere

is shortest length of arc. This problem is known as multi-facility spherical location problem.

Before, formulating of some solving methods for the spherical location problems, it is im-
portant to know whether or not all the demand points are on a hemisphere. In 1993,
Mannie H. Patel, D.L. Nettles and S.J. Deutsch [23] represented a Linear-Programming-
Based Method to determine this.
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1.2 Review of Spherical Geometry

We assume that each point X which is considered in the following will lie on a unit sphere Sg
and the point X is defined by its latitude ¢ and longitude 6 and is denoted by X = X (¢, 0)
where —/2 < ¢ < 7/2 and 0 < 0 < 27.

The Euclidean coordinates of point X are given by

r = cos¢cosb
y = cos¢sind and
z = sing

(see Figure 1.1) and it is denoted by X = X(x,y, z).

Fig. 1.1: Conversion of polar coordinates of a point X = X(¢,0) on the unit sphere to cartesian
coordinates X = X (x,y,z) where —m/2 < ¢ <7/2 and 0 <0 <27

Definition 1.2.1: Latitude is a north-south measurement of position on the Earth. It is

defined by the angle measured from horizontal plane located Earth’s center that perpen-
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dicular to the polar axis ( see Definition 1.2.3 ). A circular line connecting all places of

the same latitude is termed a parallel ( see Figure 1.2 ).

N

!

Latitude Longitude

Pole

Meridian

(

Fig. 1.2: Latitudes, longitude, meridian and prime meridian

Definition 1.2.2: Longitude is a west-east measurement of the Earth. It is defined
by the angle measured from a vertical plane running through the polar axis and prime
meridian ( see definition 1.2.4 ). A circular line connecting all places of the same longitude

is termed a meridian ( see Figure 1.2 ).

Definition 1.2.3: Polar axis is a line drawn through the Earth around the planet rotates.
The point at which the polar axis intercepts the Earth’s surface in the Northern hemisphere
ia called the North pole. Likewise, the point at which the polar axis intercepts the Earth’s

surface in Southern hemisphere is called the South pole ( see Figure 1.3 ).

Definition 1.2.4: The location from which meridians of longitude measured is called the

Prime meridian. It has zero degrees of longitude. ( see Figure 1.2 )

Definition 1.2.5: Location on the Earth that has a latitude of 0 degrees is called the
Equator ( see Figure 1.3 ).

Definition 1.2.6: Every plane section of a sphere is a circle. The largest circle which can
be drawn on the surface of a sphere is a circle whose plane passes through the center of
the sphere. Such a circle is called a great circle. All other circles on the surface of the

sphere are called small circles ( see Figure 1.4 ).
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Porlar axis _\‘tj

Latitude

Equator

South pole

Fig. 1.3: Equator, polar axis, north pole and south pole

Definition 1.2.7: The poles of a great circle are the extremities of a diameter of the
sphere that is perpendicular to the plane of the great circle. This diameter is also known

as the axis of the great circle.

Note that the two poles for the a great circle are equidistant from its plane and the center
of the sphere. The poles and axes of small circles are similarly defined. However, since
the plane of a small circle does not contain the center of the sphere, its two poles are at a
different distance from the plane of the small circle, one is nearer and the other is more
distant. For convenience, refer to them as the nearer and distant poles of a small circle

(see Figure 1.4).

Definition 1.2.8: The shortest distance between any two points on a sphere must be
measured along the great circle passing through them and is the shorter of the two arcs
between the points. This distance is known as the great circle distance, o or shortest

arc distance ( see Figure 1.5 ).
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AZ
Nearer pole of ¢ Great circle
Axis
7'\“\\\\ Y
-t ~
X2
X .
Small circle ¢ Distant pole of ¢

Shortest length of arc
between X; & Xp

Fig. 1.4: Circles on a sphere

Note that arc length, (X1, Xs2) ( or arc(Xy,Xa ) between two pints, X1 and Xo on the
unit sphere is simply the angle ( measured in radians ) between the two rays emanating

from the center of the sphere, one passing through X1 and the other through Xo.

The distances dy : 4sin?(a/2) and dy : 7sin?(a/2) may be used to approvimate squared arc
distance on a hemisphere and also rough approzimation for arc distance (see [11]). The
difference between dy and dy is only a multiplicative constant. In two figures (Figure 1.6,
Figure 1.7), di and do are plotted against « (shortest length of arc). Note that when the
distance between points is less than half the circumference of the sphere (o < w/2), dy is
a reasonably good approximation to the squared shortest arc distance. ds can be thought of
as a rough approximation for o. Also, dy is exactly the squared Euclidean distance through

the sphere.
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Arc(X, , X,)

Great circle through X, and
X,

Fig. 1.5: Shortest length of arc between X1 and Xo

TA
2
3t (04
d1
2-_
1 4
1 2 s

Fig. 1.6: The graph of di Vs. «

Result 1.2.1: Given two points ( See Figure 1.5 ) X1 (¢1,601) , Xa2(¢2,62) on Sy, the length

of the shortest arc, o = arc(X1, Xo) satisfies

COS (v = €OS ¢ €Os g cos(01 — b2) + sin ¢y sin Py (1.1)
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A
Tt —
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Fig. 1.7: The graph of d2 Vs. «

Proof : Let X1(¢1,01) and Xa(pa,02) are two points on the surface of the sphere. Then,
according to the cosines low for plane triangles, the Fuclidean distance between X1 and Xo

can be written as :
1X1X5|% = |OX1? 4+ |0X5|* — 2|0X1]|OX3| cos o (1.2)

where | X1X5]? = (21 —22)? + (y1 —y2)? + (21 — 22). By applying the Euclidean coordinates
of the points X1 and X5 to (1.2), with |OX;| = |0X3| =1 ( since X1 and Xo are on the

surface of the unit sphere ), we have the desired result. |

Definition 1.2.9: The length of the great circle arc from any point on the circumference

of a small circle to its nearer pole is called the spherical radius of the small circle.

Definition 1.2.10: The antipode of a given point is the point on the other side of the
sphere on the line connecting the point with the center of the sphere. The antipode of
X(¢,0)is X(—¢,0 £ ).

Definition 1.2.11: A spherical circle C(X, «) ( see Figure 1.8 ) with a given center X
and radius « is defined on a sphere by the locus of all points whose shortest arc distance

from the center is equal to that radius. A circle divides the sphere into two parts; A point
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is said to be within a circle only if the point and the center of the circle are included in

the same part.

Definition 1.2.12: A spherical disk D(X, «) ( see Figure 1.8 ) is the set on the surface

of the sphere which is formed by a spherical circle and its interior.

Spherical disk with center X
and radius a

Spherical circle C

Fig. 1.8: Spherical circle and spherical disk

Definition 1.2.13: The surface area of a sphere that is bounded by arc segments of three
great circles is called a spherical triangle( see Figure 1.9 ). A spherical triangle with

two equal sides ( or arc lengths ) is called isosceles spherical triangle.

Result 1.2.2: (Median Formula) Consider the spherical triangle X X2X3. Let M be
the mid point of the arcX;X5. Then the arcX3M satisfies the following formula :

COS( aTcX1X312La7“cX2X3 ) COS( archngarcXng)

cos(arcXsM) = COS(GTC)gl‘Xz) . (1.3)
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Fig. 1.9: Shaded area represents the spherical triangle with vertices X1, X2 and X3

X3

Fig. 1.10:

Proof Consider the Figure 1.10. Let 3 designate the angle XsM Xo. By cosine formula,

we have

cos arcXoXg = cosarcXoM cos arcX3sM + sin arcXoM sin arceXsM cos f (1.4)
cosarcX1Xs = cosarcX1M cos arcX3sM — sin arc X, M sin arceXsM cos § (1.5)

Multiply 1.4 by sin arcX1 M, 1.5 by sin arcXoM , and add two. We get,
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sin arc X1 M cos arc X9 X3 + sin arcXoM cos arc X1 X3 =

sin(arc X1 M + arcXo M) cos arc XM

sin arcXoM cos arcX1 X3 + sin arc X1 M cos arc X2 X3
sin(arc X1 M + arcXo M)

= cos arcXsM =

As arce X1 M = arcXoM = %archXg, we have

sin 2231X2 (cos are X1 X3 + cos arc X2 X3)

arcX1X5
arc X1 Xs+arcXo X3 )
2

cos arcXsM =

( arc X1 Xs—arcXs X3 )
2

cos( cos

arc X1 X9
2

COS

Definition 1.2.14: A spherical convex set is defined on the surface of a sphere as a set
where for any two points of the set, the whole shortest arc connecting them is included in
the set. The spherical convex hull of a set of points on the sphere is defined to be the

smallest spherical convex set which contains the set of given points.

Definition 1.2.15: Let p = p(X1, X2, A) be a point on the shortest arc between X; and
X9 such that the distance between X; and p is Ad(X3, X2) and between X, and p is
(I —N)d(X1,X2) for A € [0,1] where d(X1, X2) is the shortest length of arc between X;
and Xo.

Definition 1.2.16: f(X) is called a spherical convex function on a spherical convex

set D of a sphere if for every 0 < A <1 and Xy, X5 € D, we have
f(p(X1, X2,A)) < (1= A)f(X1) + Af(X2). (1.6)

f(X) is called a strictly spherical convex function if the inequality ( 1.6 ) is strict
when X7 # X5 and A € (0,1).

Definition 1.2.17: A spherical location problem is in its normal form if it has only

positive weights and there is no pair of demand points which are antipodes to each other.
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Bisector of X and Y

Fig. 1.11: The Bisector of X and Y

Definition 1.2.18: The bisector of spherical points X and Y defined with respect to
the great circle distance is given by the great circle that perpendicularly passes through
the mid-point of the great circular arc connecting X and Y (’perpendicularly’ means that
sufficiently small segments of the two great circles around the mid-point are orthogonal)

(see Fig 1.11).

The bisector divides the sphere into two disjoint hemispheres.

Fig. 1.12: Shaded area represents a spherical polygon on a hemisphere
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Definition 1.2.19: A spherical polygon is a closed geometric figure on the surface
of a sphere which is formed by the arcs of great circles. The spherical polygon is a gen-
eralization of the spherical triangle. A spherical convex polygon generated by points
X1, Xs,...,X, is defined by the spherical polygon in which the lesser arc of a great cir-
cle passing through any two points in the spherical polygon is embedded in the spherical
polygon. ( see Figure 1.12 )

The great circle arc segments of the spherical polygon are called the edges of the spherical
polygon and a point at which two edges meet is called a vertex or corner point of the

spherical polygon.

Definition 1.2.20: The level set and level curves of the objective function A(X) in

CenterSphereLoc with respect to the great circle arc distance, « is defined as follows :

Level sets:L<(z) :={X € Sp 1 w; - max o«(Ex;, X) <z}

i=1,2,....m

Level curves:L_(2) :={X € So : w; - max «(Fzx;,X) =z}

i=1,2,....m
The arc segments of the level set are called the edges of the level set. The end points of

the edges are called the vertices or corner points of the level set.

Definition 1.2.21: Suppose f; is an edge ( or a facet ) of L<(z) and Ex; € &,. The point
P is defined as the projection point of Fx; on f; if

(a) P € f
and

(b) a(Ex;, Py) = min{a(Fz;, X) : X € fi}.

Result 1.2.3: (i) Since

Le(2) = {X €S8 wi- max oBz;,X) <z}

1=1,2,....m

= {X €& :a(Br;,X)<z/w, Vi=12,...,m}
= ﬂ {Xe€eS&:a(Ezx;, X) < z/w;},

i=1,2,...m
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we can write the level set as an intersections of m spherical disks D(Ex;, z;) centered at

the existing facilities Ex;, with spherical different radius z; = z/w;;i = 1,2,...,m.

(ii) The level curve in this case is the boundary of intersections of the m spherical disks
(that is the boundary of the level set).
(see Fig 1.13).

Restricted spherical
polygon

Spherical disks at the demand
points X4 X5, X5 with radii z

Fig. 1.13: Shaded area and the boundary of this region represents the level set and level curve

respectively
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Property 1.2.1: Some properties of spherical triangles [30]

(a). The angles at the base of an isosceles spherical triangle (see definition 1.2.13) are

equal.

(b). If one angle of a spherical triangle is greater than another, the side opposite the

greater angle is greater than the side opposite the lesser angle.

(c). Any two sides of spherical triangle are together greater than the third side.

Theorem 1.2.1: [11] Points within a circle of radius less or equal to 7/4 ( spherical disk
D) on a unit sphere Sp, form a spherical convex set. The shortest arc distance from a given
point X on &y is a spherical convex function on a spherical disk of radius 7/2 and center
X. Every local minimizer of a spherical convex function on a spherical convex set is also

a global minimizer.

Proof: The convezity property of the spherical disk with radius less or equal 7/2 is obvious.
According to Figure 1.1/, it is clear that the shortest arc between X3 and X4 is included
within the spherical disk with spherical radius less than or equal 7/2. This is true for any
two points in this spherical disk.

To prove the convexity of the shortest arc distance o from a given point X, we assume wlog
that X is the north pole, i.e. X = X(w/2,0). Take any two points Xi(¢p1,01), Xa(p2,62)

with ¢1, 2 > 0. Note that since v 1s continuous, it is enough to prove that :
alp(Xy, X2,0.5), X] < 1/2[a(X1, X) + a(X2, X)]

in order to prove convexity.
Then
a(Xl,X) = 7T/2 - ¢1

Oé(XQ,X) = 7T/2 - ¢2
Oé[p(Xl,XQ,O.5),X] = 7T/2 - ¢0,

where ¢q is the latitude of the center of the arc connecting X1 and Xo. By the median

formula (1.8),
1 — ¢2
2

(bl;_@ ) cos <. (1.7)

sin ¢p = sin( 5

) cos(
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Using equation(1.1) :

sin( ¢>1J2r¢>2 )

sin ¢ = __ sin®[(61—62)/2] cos ¢1 cos g2 ] 1/2 ’

cos2[(p1—¢2)/2]

As, numerator of (1.8) is less than or equal 1 and ¢y < /2,

b0 > % Therefore
[2—¢1+7/2 — ¢
2

7T/2_¢0§7T

and

a[p(Xl,Xg,O.S),X] < [a(Xl,X)—f—a(Xg,X)].

N |

Thus o 1s a convez function north of the equator.

Now we have to show that every local minimizer of a spherical convex set D is also a global
minimazer.

To prove this, suppose that X{ and X5 are different local minima. The arc connecting X7

and X3 s included in D. We know that
Flo(XT, X2, V] < AF(X7) + (1 = A f(X3), VA € (0, 1).

Now suppose that f(X7) < f(X3). Then by replacing f(X7) with f(X3) in the above

equation, we have
Flp(XT, X5, ] < Af(X3) + (1= N f(X3) = f(X3)

for A > 0 obviously close to 1.

This contradicts the statement that X3 is a local minimum. [
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Spherical radius < /2

Sphercal radius > /2

Fig. 1.14: Convezity of spherical disks






2. SPHERICAL WEBER PROBLEM

We assume that each model which is described in the following will deal with a unit sphere,
So where the radius is equal to one. FEvery point X on the sphere is defined by its latitude
¢ and longitude 0 and it is denoted by X (¢, 0).

Consider m demand points (or existing facilities) Ex;,i = 1,2,...,m, on the surface of
the sphere with associated weights w; and some distance function d(X,Y) measuring the

distances between spherical points X and Y.

We consider single facility spherical location problem ( SphereLoc ) of the median

type, i.e., we solve

i X) = id(X, Ex; WeberSphereL 2.1
)I(Iélélof( ) Z-le ( x;) eberSphereLoc (2.1)

where X 1s the unknown location.

In the usual Weber problem, it is assumed that w; > 0. In the WeberSphereLoc, we can
omit this condition because this problem can be transformed into an equivalent "normal
form" ( see Definition 1.2.17 ) as follows :

A point with negative weight can be replaced by its antipode with weight —w; and from a
pair of points which are antipodes to each other we can subtract the smaller weight, thus
eliminating at least one of the points. This normal problem has the same minimal point as

the original.

In this chapter, I would like to discuss the behavior of the objective function f(X) of We-

berSphereLoc problem and to represent different approaches to solve this problem.
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2.1 Convexity of the Objective Function

We assume that the distance d of the objective function f(X) is the shortest arc distance

a. Le.,

m m
i X) = ; X, Ex;) = o (X, Ex; 2.2
)I(Iélgo f(X) ;wzarc( , Ex;) ;wzaz( , Br;) (2.2)

Theorem 2.1.1: [19] If all demand points of the normal form of a problem are included
in a disk D of radius 7/4, then the objective function f(X) is a spherical convex function

on D and attains its minimum in a unique point of D.
Proof

e Demand points in D = D(Y,«) witha < /4 = distance arc(X1, Xo) < w/2

vX,,Xo €D
Thi2d arc(X, Ex;) convexr VX € D
=  w;-arc(X, Ex;) convex
vXeD

= f(X) convez VX € D

e D convez, f(X) convex Thizl f(X) attains its minimum in a unique point of D |

Theorem 2.1.2: [8] The value 7/4 in Theorem 2.1.1 is the maximum value of a radius

that assures a unique minimum.

Proof We give an example of points in a disk of radius w/4 + € (for every e > 0 ) con-
taining two different local minima. The problem consists of three demand points with

parameters(e > 0).

L ow i 0;
1|1+6 /4 €
2 1 /4 —€
3| & T/d—e| 7
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By equation (2.13), for points 1 and 2 we get :

__ Wk
T B
Which means that points (¢1,61), (P2, 02) are local minima with different values of the ob-

=1+ (V2= +0() fork =1, 2.

jective function. This proves that w/4 is the largest possible radius that assures a unique

minimum. [ |

Theorem 2.1.3: [32] Suppose that all of the existing facilities are included within a
spherical circle C(Xg,m/4) of center Xy = Xo(xo,v0,20) and radius n/4. Then every

global minimizer of f(X) must lie within the spherical convex hull of existing facilities.

Proof See Appendiz.

Theorem 2.1.4: If all of the existing facilities lie on a great circle arc of length less than

or equal to 7/2, then one of the existing facilities is a global minimizer of the problem.

Proof. According to the Theorem 2.1.1, there is global minimizer on the spherical
convex hull of the existing facilities. In this case, the spherical convexr hull of the existing
facilities is the great circle segment passing through all the existing facilities and having
two of the existing facilities as ends. Straightening this great circle segment into a straight
line segment, the spherical facility location problem is transformed into a equivalent one
dimensional Euclidean facility location problem. Let the existing facilities be ordered(from
one end to the other along the great circle segment) as Exy',Ex), ... Ex), . Find the

integer t such that
t—1 1 m t
Zwi<52wi§2wi. (2.3)
=1 =1 =1

Then Ex: is a global minimizer of the spherical facility location problem. |

2.2  Weiszfeld Approach

The following approach duplicates the Weiszfeld procedure for planar, Euclidean location

problems. It is due to Drezner and Wesolowsky [11] and can also be found in the textbook
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Love and Morris [22].

Drezner and Wesolowsky considered the WeberSphereLoc problem where they used two
ways of measuring distances. One is simply the shortest length of arc . The other norm (
dy = 4sin®(a/2) and dy = msin® a/2 ) may be used to approzimate aquared arc distance on
a hemisphere and also rough approzimation for arc distance ( see the note under Definition
1.2.8 ). The difference between dy and ds is only a multiplicative constant. The optimum
point using dy is always the same as the one using do because for the purpose of optimizing

location their problem, the constant is irrelevant.

Consider three distances «, di and ds are as the measuring distances on the surface of
the sphere. Then from equation (2.1), we can write the objective functions Fy[X(¢,0)],
Fi, [X(4,0)], Fa,[(X(¢,0)] with respect to the above distances as follows :

Fo(X) = wja. (2.4)
=1
Fg (X) =4 w;sin®(e;/2) (2.5)
=1
Fp(X) =7 w;sin®(e;/2) (2.6)
=1

Let .
F(X) =) w;sin®(0;/2) (2.7)
=1

It is evident that the point that minimizes F' is the same as that which minimizes Fg, and
Fy

o

Property 2.2.1: The sum of the objective function evaluated at a point and at its an-

tipode is a constant, and equal to 7Y ;" w; in distances « and dp and, 43" | w; in di.

1. The shortest length of arc from the point X to the given demand point Ex; is oy
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2. The shortest length of arc from the antipode X of X to the demand point Ex; is :

(m — )
3. Sum of the of the objective value at X and X is

o in distance o : Y ;0w + > i (T — ag)wy =T wy
e in distance dy : > 1, 4sin?(q;)w; + Y 4sin® (1 — ay)w; =430 w;

e in distance dy : Y ;" 7 sin? (g )w; + oy msin?(m — a)w; =7 Yo w;

Property 2.2.2: A point is the minimum to a problem if and only if its antipode is the

maximum.

Property 2.2.3: A point and its antipode with equal weights can be added to the problem

without a change in the optimal location of the facility.

Let the point Exp, 11 with weight wpy,11. Now add the this point and its antipode with the

same weight wy,+1 to the set of demand points. Then the objective function is

m
fNew(X) = Zwiai + Wmr1m1 + wm+1(7T - aerl)-
=1

m
= g w; o + TW;.
=1

As mwj is constant, the optimal location of the facility of fnew(X) is the same the optimum

of f(X).

Property 2.2.4: A point with weight w; can be replaced by its antipode with weight

—w;, without changing the optimal location of the facility.
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By replacing the point Ex; with weight w;, we have the objective funtion

Jj—1 m
FYUX) =Y i + (—wy)(m — o) + Y wiay
=1

i=j+1

m
= E Wiy — TWj.
i=1

As —mwj is constant, the optimal location of f(X) will not change.

Computation of Stationary Points
Given two points X = X(¢,0) and X; = X;(¢;,0;), the shortest length of arc, o; =
a;(X, X;) has the form (1.1)

o = arccos|cos ¢ cos ¢; cos(0 — 6;) + sin ¢ sin ¢;] (2.8)

Now consider the solution of the extremal conditions for the objective functions F(X) and

Fo(X) using shortest length of arc «;.

Then the partial derivatives of F(X) are :

F 1 &
?3_¢ =3 Z w;[— sin ¢ cos ¢; cos(8 — ;) + cos ¢ sin ¢;] (2.9)
i=1
F 1 =
%—0 = §cos¢2wi cos ¢; sin(f — 6;). (2.10)
i=1
Note that at the poles, cos ¢ = 0 and thus %_1; = 0. This simply means that here a change

in 0 will not change the point. %—g = %—g = 0 yields an explicit solution and derived by:

>t w; cos ¢; sin b;

Yoty w; cos ¢; cos b;

tan = (2.11)

tang D" w;sin gy
sinf >, w; cos ¢ sin b;

Equations (2.11) and (2.12) produce two solutions for 6 and ¢ which are antipodes.

(2.12)
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The following Theorem represents the conditions under which a demand point at
Exi (¢, 0k) is a local optimum of F,(X).
Theorem 2.2.1: [22] There is a local minimum at point Ezy if and only if
wy, > (A2 + B2, (2.13)
where,
Ap = Z — [ sin ¢rcos; cos(0y, — 0;) + cosprsing;] (2.14)
< sin o
i1=1,i#k
B, = ! sin(6; — .
b= Z prre pisin(; — 0y, (2.15)
i=1,i#k
with

Qi = arccos|cos ¢y, cos ¢; cos(O — 0;) + sin ¢y, sin ¢;]

be the shortest arc distance between points Ex; and Exy.

Proof Consider the objective function Fo(X) = > /" wicy. It can be shown that for

movement from point Exy:

dF,(X) = wi[(dp)? + cos? ¢y (df)?]M/?

— dgwai(—sin ¢y cos ¢; cos (b, — 0;)
i#k
+ cos ¢p sin @)/ sin ay;

— db Z w; (cos @, cos ¢; sin(0; — Ox))/ sin ag;.
itk

For a local minimum, dF,(X) > 0, and hence, we must show
wy,((dp)? + cos® ¢ (d0)?)/? — Apdd — By, cos ¢rpddy, > 0.
Letting L = df cos ¢ /d¢ , we have

|do|wy, (1 + L)% > dp(Ay + LBy)
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and so :

wy > dp(Ay + LBy)(1 + L) ™Y?/|dg|.

Note that d¢/|d¢| is £1. It can be shown that :

—(A3+B)Y? < (Ap+LBy)/(1+L)1/2
< (A} +B})Y?

and hence, the condition

wy 2> (A + BY)'/?

is necessary and sufficient for dF,(X) > 0 for every L. |

We now consider the extremal conditions for the objective function F,. The partial deriva-

tives are:
8Fa - (0 . .
o _ _ . _ 0. . 21
9 E: sinai[ singcospicos(0 — 0;) + cospsing;] (2.16)
8Fa “ Wy .
g = s o) ;1 P cos ¢; sin(0 — ;) (2.17)

Further note that at the poles, cos¢ = 0 and thus 88% = 0. Solution of 88% = 88% =0

yields :

S i cos ¢ sin ;

=1 sin oy

tanf = : 2.18

Yo e €Os ¢; cos 0; (2.18)

tang Dot sk sin g 210
sing Y, She- €os ¢; sin6; :

This is an implicit solution because ¢ and 0 are used in the calculation of the «;’s.

In equations (2.18) and (2.19), solutions are also come in pairs of antipodes. Once a
solution is obtained, its antipode is also checked. Note also that (2.18) and (2.19) may give
us saddle points as well as local minima or mazrima.

Therefore, (2.18) and (2.19) can be used iteratively in a manner analogous to the Weiszfeld

procedure, to find the solution if we are close enough to the local minimum or mazimum.
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The developed algorithm is as follows :

Algorithm 2.2.1: (Weiszfeld for WeberSphereLoc)

Step 1. Choose a starting point ¢(9, 0, Set k = 0.

Step 2. Compute ¢*+1) and #*+1) by (2.18) and (2.19) using ¢*), 0% to calculate .
Step 3. If [p(+D) — ¢®)| 4 |9+ — g(F)| > ¢ go to step 2.

Step 4. [p(+1D) 9*k+1)] and its antipode to get the minimal and maximal point.

Note that the sum of the objective function evaluated at a point and at its antipode is a
constant and equal to w )" w; in distance o (see Property 2.2.1). The solutions of the
above algorithm come in pairs of antipodes and one of these points is a minimum point and
according to the Property 2.2.3, the other point is the mazimum for the problem.

That means, if Fo, < 7/2% ", w;, then the point is a minimum.

Remark :  There might be several local minima and we want to find the best of these.
As a point and its antipode as starting points result same solution, we can choose starting
points only in one hemisphere. Further, there are various strategies in choosing starting
points: randomly, in a pattern, using the Norm dy or dy solution. In addition all demand

points should be checked for local minima by equation (2.13).

2.3 Approximate Algorithm Using Candidate Lists [14]:

In this section we discuss an always convergent algorithm (Drezner [14]) for the Weber-

SphereLoc problem using a given candidate set of points on the surface of the sphere.

In this approach we assume that the WeberSphereLoc problem (2.1) is in the normal
form (see Definition 1.2.17).

We construct here a lower bound on the optimal value of the objective function based on a
given set of points on the surface of the sphere. Therefore consider a given set J of points

on the surface of the sphere to construct a lower bound on the optimal value of the objective
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function f(X). Note that the set J is different from the set of demand points .

Let f; = f(X;) and d(X, X;) be the distance between X = (¢,0) and X; = X;(¢;,0;) for
X;eJ, and let w=73 ", w;.

The triangle inequality implies for all X € Sy :

d(X,X;)+d(X,Ez;) > d(X;, Ex;).
Then we have

fi—f(X)= iwi [d(X;, Bx;) — di(X, Bx;)] <> wid(X, X;) = wd(X, X;).
i=1

Thus, f(X) > f; —wd(X, X;), and

f(X) =2 maxjes{f; — wd(X, X;)}. (2.20)
Let f* be the optimal solution to problem (2.1). By equation (2.20): f* > f° where :

fo = minXGSo{maijJ{fj - wd(X’ XJ)}} (2'21)

Finding f° in (2.21) is the minimaz single facility location problem which can be optimally
solved [13]. Based on this observation, we can minimize f(X) to within an € of the optimal

value of the objective function for any € > 0.

The resulting algorithm can be represented as follows:

Algorithm 2.3.1: (Candidate list for WeberSphereLoc)
Step 1. Let J be any two point subset of the sphere and set f™:= min;c;{f;}.

Step 2. Compute f° by solving the minimization problem in (2.21). Add the solution
point to J. Update f™.

Step 3. If fO < f™ — ¢, go to Step 2.

Step 4. stop with f™ as the approximate optimal solution.
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Note that if the solution point in Step 2 is a point in J, then fO = f™ and the algorithm
terminates. But, when fO < f™ —¢, the solution to Problem (2.21) is at least £/w from all
points in J. Since there is a limit to the number of points, one can arrange on the sphere
which are at least /w from each other. Then fO will get within an ¢ of f™. Then for a

for a give € > 0, the algorithm must be finite.

2.4 Steepest Descent Algorithm for WeberSphereLoc [32]

Consider the WeberSphereLoc problem (2.1) in the following form :

n
F(X) =) w;arccos(Ex] - X). (2.22)
i=1
where, the points Ex;,i = 1,2,...,m and X are three dimensional points on the surface

of the sphere and arccos(Ex;-rX) 1s the shortest length of arc between Ex; and X.

Note that the dot product (Ex;- X) of Ex; and X is equal to || Ex; ||| X || cosa, where
| Ex; ||=] X ||=1 and o = a(Ex;, X) is the angle between two vectors Ex; and X.

So, we have o = arccos(Ez; - X) or a = arccos(Ex! X).

This objective function (2.22) is defined only on the sphere Sy. We extend the domain of
f to all X € R3 such that X # 0. For any nonzero X € R3, the function value at X is
defined to be f(ﬁ) Then the objective function of WeberSphereLoc can be written as

F(X) = Z;w cos_l(Xi(Hi—H)) (2.23)

and the only constraint is X # 0.

In the following we will assume that all of the existing facilities of the WeberSphereLoc
problem are include within a spherical disk of radius w/4. For convenience, we will assume
that the center of this spherical disk of radius w/4 is (0,0,1). Therefore, all the existing
facilities are above the zy-plane. We proved that every global minimizer of this problem

must lie within the spherical convex hull of the existing facilities ( see Theorem 2.1.3 ).
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Next, we consider the optimality conditions for the spherical facility location problem in
terms of the optimality conditions for the corresponding Euclidean facility location problem.
To show this, let X be a point on the surface of the sphere which does not coincide with
any of the existing facilities. Then F(X) is differentiable at X, with gradient given by

VF(X) = i —1 \|X||E$i—XT€$i(X/HX||)
(X/IXIDT Es)? X
m — Ex;
_ Zwi (X/”);'Q'E)iTE“ . (2.24)

= X - |
If X coincides with one of existing facilities, Exy , then F(X) is not differentiable at X.
In this case, for any nonzero vector d, the directional derivative F'(Exy;d) of F(X) at

point Ex; in direction d is given by

- Ex; — (Ex;/Exl Ex;)
F/(Bzid)=d" Y w + wir/||d||2 — (ExTd)2. (2.25)
L 1Bey = (Bi/Ea] Bay)| \/ ¢

Notice that all of the n points 1=1,2,...,m lie on the plane which is tangent

FEx;
(X/IXINT Ex;?
to the sphere, S at point X. For any given X on the surface of the sphere, define

ExzX E;

= =1, 2, ..., m. 2.26

Now, we have a planner Fuclidean facility location problem defined on the plane as follows

minFx (y ZwZHy EzX|. (2.27)

If X does not coincide with any of the ExX s, then Fx(y) is differentiable at X with
gradient given by

X — E:c
VF 2.28
X Z wl |X E:CX ” ( )

If X coincides with ExX, the Fx(y) is not differentiable at X. In this case, for any
nonzero vector d, the directional derivative Fy(Ext;d) of Fx(y) at point Exy in direction

d is given by

m

Fy(Bryd)=d" Y w
i=1,i#t

XE.’E

m +’U)t”dH. (2.29)
7

From the optimality conditions for the planner facility location problem [22], we have the

optimality conditions for the planner location problem (2.27) as follows :
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(i) An existing facility Exy is a global minimizer of (2.27) if and only if

| Wi el < (2.30)
i:;# "|Exz; — (Bx;/Exl Ex;)||

(ii) A smooth point X is a global minimizer of (2.27) if and only if

m Fx; -
Z X/||X||>—Exz o (2.31)
= | (X/IIXII)TE:EZ

Note that the above optimality conditions are also the optimality conditions for the spherical

facility location problem(2.22).

Theorem 2.4.1: An existing facility Ex; is a global minimizer of (2.22) if and only if

E Tt — Ea:EijEl'a:
w; t < wy. 2.32
Z N Bz, — (Exi/ExtTExi)HH_ K (2.32)

1=1,i#t

A smooth point X is a global minimizer of (2.22) if and only if

m X _ EﬁiT
3wV, (2.33)
o X - e

Proof Let us consider the non-smooth case first. Suppose that

Yy Bri — ptes,
Z-%-:# "|Ex; — (Exi/Ex] Ex;)|
Ex

FEri——F2—
- Exz"Eac,L

Let d = — Z:il’#t [ Bw—(Bay EaT B Then Exld = 0 because d is on the plane with
Ex; as its normal vector. Therefore, it follows follows from (2.25) that

m

Ex; — (Ex;/Ex! Ex;)
i;# 1Bz, — (Ewi/ Exf Ea)|

This means that d is a descent direction of F(X) at point Exy. Therefore, Ex; could not
be a local minimizer. This proves that (2.32) is a necessary condition for Ex; to be a
minimizer of (2.22).

Now we have to prove that (2.32) is also a sufficient condition for the global optimality of
Ex; of the problem (2.22). Suppose that Ex; is not a global minimizer of (2.22). Then there
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exists a point Y within the spherical convex hull of the existing facilities such that f(Y) <
f(Ex). Since f(X) is spherically convez, every point on the arc(Ex:,Y) (except Exy) has
a function value smaller than f(Ex;). Therefore, we may assume that Ex]Y # 0 without
loss of generality. Define Y = (Y/ExlY). Then F(Y) = F(Y) < F(Ex;). For any
A € (0,1), define p(Exs,Y,)\) = p(Exy,Y,\)/Ex] p(Exs,Y,)\). Let 3 = arccos(Ex]Y).
Then for any A € (0,1), we have

t?;ln((Aﬂﬁ))Y) = F(p(Ex, Y, X)) = f(p(Exe, Y, ) (2.36)

< (A=Nf(Ez) + A(f(Y))
= F(Exy) +MNF(Y) - F(Exy)).

_ tan(A3)

)

)Emt +

This implies that F'(Exy;d) < F(Y) — F(Ex) < 0, where d =Y — Ex;. Since Ex] d = 0,
it follows from (2.25) and (2.32) that F'(Ex;d) > 0. This contradiction proves that (2.32)
is a sufficient condition for the optimality of Exy of (2.22).

Now consider the smooth case. It is clear that (2.33) is a necessary condition for X
to be a minimizer of (2.22). Suppose that X is not a global minimizer of (2.22).Then
there exits a point Y within the spherical conver hull of the existing facilities such that
fY) < f(X). As in the non-smooth case, we may assume that XTY # 0 without loss of
generality. Define Y =Y/XTY. Then F(Y) = F(Y) < F(X). For any X € (0,1), define
p(X,Y,\) = p(X,Y,\)/XTp(X,Y,\). Let 3 = arccos(XTY). Then for any A € (0,1), we

have

_ tan(AB)
tan(0)

tan(AS3) - B
tan(g) ) = FOEY ) =FpXY0) (237

< A=NfX)+Af(Y)
= F(X)+MF(Y) - F(X)).

F((1 )X +

= F'(X;d) < F(Y)—-F(X) <0, whered=Y — X.
However, F'(Exy;d) must be zero since VF(X) = 0. This is a contradiction and proves

the Theorem. [ |

In the next step of this procedure, we will present an algorithm for solving the weber spher-
ical facility location problem. The algorithm first checks if any of the existing facilities is

a global minimizer of the problem. If this doesn’t, the algorithm generates a sequence of
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descent search directions and iteration points with decreasing function values.

The relevant algorithm is as follows:

Algorithm 2.4.1: Algorithm 3 (Descent algorithm for WeberSphereLoc)
Input: Existing facilities Fx;,7 = 1,..., m contained in a spherical disk of radius a < 7 /4.

Step 1. Find an existing facility Exy, such that f(Ex;) < f(Ex;) for all i =1,2,...,m.
Check the optimality conditions for Fx;. If Fx; is an optimal solution, Stop.

Step 2. Let d = — ZQZM# wi(Fry — EmZEzt)/HEmt - EmZEth
where, Exfxt = m Find a small step size § > 0 such that the point
Ex; + (d lies in the convex hull of E:ciE“,i =1,2,...,m, and that X! = Ex; +

ad/||Ez; 4+ ad|| has a function value less than f(Ex;). Let k = 1.

Step 3. Compute EnvZXIc fori=1,2,...,m.
Compute d* = — Y7 w;(X* — Ex; X*) /| X* — Bx; X*||. If ¥ = 0, Stop; Otherwise

k _ 1
compute % = T X B XA

Step 4. Set Xkl = XF* 4 gkak /| X* + grdk||. 1f f(X**1) < f(XF) —0.18%|d*||?, then
replace k with k4 1 and goto Step 3; Otherwise replace 8* with 0.54% and goto Step
4,

Note that Step 1 and Step 2 are used to eliminate non smooth points from further consid-
eration. Let Exy be an existing facility whose objective function value is minimum among
all the existing facilities. If Ex; satisfies the optimality condition (2.32), then it is also a
global minimizer of the problem. If Ex; does not satisfy the optimality condition (2.52),
d computed in Step 2 is a descent direction of f(X) at point Exy. Step 3 computes the
search direction d*, which is the negative of the gradient. If d* = 0, then X* satisfies the
optimality condition (2.33), and therefore it is a global minimizer. If d* # 0 , then it is a

descent direction and Step 4 finds a better location.

It is clear that the description of the algorithm that the whole iteration sequence {X*} lie

in the spherical convex hull of the existing facilities.
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In the next step, we will prove global convergence of the algorithm. In Lemma 2.4.1, we will
prove that when the algorithm stops after a finite number of iterations, it stops at a global
manimizer and if the algorithm does not stop after a finite number of iterations, then the
WeberSphereLoc problem has a strictly spherical convex objective function and therefore
has only one local minimizer (also global minimizer) which is inside of the spherical convex

hull of the existing facilities.

In Lemma 2.4.2, we prove that every accumulation point of the infinite sequence generated

by the algorithm is a global minimizer of the WeberSphereLoc problem.

Lemma 2.4.1: If Algorithm 3 stops at X* after a finite number of iterations, then X
is a global minimizer of the WeberSphereLoc problem. If the algorithm generates an
infinite sequence { X%}, then then the objective function (2.22) is strictly spherical convex,
and therefore, the problem has only one local minimizer (also a global minimizer) which

is inside of the spherical convex hull of the existing facilities.

Proof If the algorithm stops in Step 1, then Ex; must satisfy the optimality condition
(2.32). Therefore,it is a non smooth global minimizer. If the algorithm stops in Step 3,
then d* must be zero. In this case, X* satisfies the optimality condition (2.33). Therefore,

it 15 a smooth global minimizer.

Now, we will consider the case that the algorithm generates an infinite sequence {X*}. It
follows from Theorem 2.1.4 that all of the existing facilities do not lie on a great circle
segment. This implies that all the existing facilities lie within the spherical disk of radius
less than w/4. It then follows that the objective function (2.22) is strictly spherical con-
vex. Therefore, the WeberSphereLoc problem has only one local minimizer (also a global

minimizer) which is inside of the spherical convexr hull of the existing facilities. |

Lemma 2.4.2: Let X be an accumulation point of {X*}, i.e., there is a subsequence {X}'}

which converges to X. Then X is a global minimizer of the WeberSphereLoc problem.

Proof Assume that X is not a global minimizer. Let d = — " wi(X — EzX)/ ||

X - EacZX |. Since X is not a global minimizer, d # 0. Therefore, there exists a pos-
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itive number 3 < Z;’;lwi/ﬁX—Exfll such that for all B € (0, 3], we have

F(X+6d) <F(X)—-028|d|*’< F(X)-018 | d|?>. (2.38)

From the definition, we can easily prove that {dk} converges to d and that

it e
of F(-) at X that there exits integers T and | such that for t > T, we have

} converges to {> ", m} It is then follows from the continuity

A 1 1 _
= — 0, 5], 2.39
T T —mxry 23
and that
F(XF 4 abrghty < F(X) — 0195 || db |2 . (2.40)
Therefore, fort > T, we have ﬂf >~k and that
F(X* 41) < F(XF) — 01498 || b |12 (2.41)

Since {f(X")} is strictly decreasing and that F(X) is continuous at X, the sequence
{f(X™)} converges to f(X). Taking limit in (2.41) when t approaches oo, we get

1 1
0.1=
2y wif | X~ BX] |

This is a contradiction. [ |

F(X)< F(X) - | d|*< F(X). (2.42)

Theorem 2.4.2: Algorithm 2.4.1 either stops at a global minimizer after a finite number
of iterations; or generates an infinite sequence { X*} which converges to a global minimizer

of the WeberSphereLoc problem.

Combining the two lemmas 2.4.1 and 2.4.2, proves the Theorem. |

2.5  Big Region-Small Region Algorithm [18]

In their paper, they discussed the unconstrained Weber problem and the constrained Weber
problem on the sphere. The unconstrained Weber problem is simply the WeberSphere-

Loc problem which we are discussing in our article. In the constrained Weber problem
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(W eber SphereLoc st ) - the new facility X must belong to a given (not necessarily
convez or connected) subset F of the surface of the sphere Sg. This subset can usually be

approzimated with sufficient precision by a set of n spherical triangles Tj : F = Ui 1.

This constrained problem is the complement of the restricted spherical location problem be-
cause in the restricted problem, the new facility should not be positioned in a given set (not

necessarily convex or connected) on Sp.

Now, we will discuss the algorithm for (W eberSphereLoc®sr @t ) problem. This algo-
rithm is a generalization of the "Big Square - Small Square (BSSS)" algorithm [17] with
new bounding rules. The BSSS algorithm proceeds by

(1) partitioning the smallest square containing the set of possible locations (feasible set)

into sub squares;

(11) computing a lower bound of the objective function for those sub squares that intersect

the feasible set;

(iii) deleting the sub squares for which the lower bound exceeds the value of the best existing

solution; and
(vi) iterating until the length of a side of a square is smaller than a given tolerance.

We refer the generalized algorithm for spherical Weber problem as Big Region - Small Re-
gion (BRSR) and this is based on branch - and- bound method in a continuous space. It

proceeds as follows :

(i) partitioning the surface of the sphere Sy into regions Q; defined by two latitudes and

two longitudes (we start with an initial partitioning of Sy into 8 equal regions );
(ii) deleting those regions which do not intersect the feasible region F;

(iii) computing lower bounds L on [ on the remaining regions Q; and deleting those regions
for which the lower bound is greater than or equal to the value f,,; of the best solution

Xopt yet obtained;
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(iv) computing the value of a feasible point in each remaining region @Q; and updating fopt

and Xopt if a point with a smaller value than that of the incumbent is found;

(v) choosing the remaining region Q; with smallest lower bound L and partitioning it into

four new regions;

(vi) iterating the tests on the new regions Q; obtained until the relative error fo;z;ii 18

smaller than a given tolerance e.

T CQj

EXi
/
TOQ £

TCQ QT

Fig. 2.1:

The detailed rules of (BRSR) are as follows:

a) Initialization Q1 «— S;
I —— {1}; (1 is the index set of unsolved subproblems)

Inew < {1};(Inew is the index set of subproblems for which a lower bound has not
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been computed)
Xopt < randomly generated point in F
(if one can be found, else Xy «—— 00, i.e., a conventional value);

Jopt < f(Xopt) if a point in F has been found, else fop «— 00;

b) Feasibility Test For all Q; such that i € Iy do

compute Q; N F;
if QiNF =0 delete i from Lyew;
EndFor;

c¢) Optimality Test) For all Q; such that i € Ipeq do
compute a lower bound Lonf(X) for X € Qy;
if L > fopt delete i from Iy
EndFor;

(d) Improved Solution Test( see Figure 2.5 )

For all Q; such that i € I,y do

if, for some j € {1,...,n},Q; C T},

compute the value f(X;) of the central point X; of Q;;

if, for some j € {1,...,n},Tj C Qy,

compute the value f(X;) of an arbitrary chosen extreme point X; of T};

else, for some j € {1,...,n} such that T; N Q; # 0,

compute the value f(X;) of a point X; on the boundaries of T and Q;; if f(X;) < fopt,
set fopr «— f(Xi) and Xopr «—— X;; EndFor;

add all indices i € Iy to I;

(e) Branching and stopping conditions

If I =0, stop : The problem is infeasible; else select Q; such that L = mmjelij-
If

f < € : stop, an e-optimal solution X,y with value fop: has been found, else
partition Q; into four new regions Q;;,j = 1,2,3,4;

Remove i from I and set Lney equal to the set of indices of the new regions;

Return to b).
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The algorithmic scheme presented here can be simplified for the WeberSphereLoc prob-
lem as follows :

(1) Step (b) is omitted (ii) Step (d) reduces to the first case.

It remains to specify how regions are partitioned. The easiest way to handle regions is to
define them by a pair of latitudes and longitudes. Then four new regions of QQ; are obtained

by taking as new boundaries the average of the two latitudes and the two longitudes.






3. SPHERICAL CENTER PROBLEM

As in the case of WeberSphereLoc, we assume that each model which is described in this
chapter will deal with a unit sphere, So where the radius is equal to one. Fvery point X on
the sphere is defined by its latitude ¢ and longitude 6 and it is denoted by X = X (¢,0).

Consider m demand points ( or existing locations ) Ex;,i = 1,2,...,m, on the surface of
the sphere with associated weights w; and some distance function d(X,Y"), which measures

the distances between spherical points X and Y.

We consider single facility spherical location problem ( SphereLoc ) of the center

type. Le., we solve

min 7(X) := maxw;d(X, Ez;)  CenterSphereLoc (3.1)
XeSy =1

where X 1is the unknown location.

Unlike on the plane, the CenterSphereLoc problem (as well as WeberSphereLoc) has
undesirable properties, such as non-convexity and non differentiability of the objective func-
tion at both the demand points and a the corresponding antipodal points, and restriction on
the domain of the objective function. Analogous to the Theorem 1.2.1, if all the demand
points are included within a spherical disk of radius 7/4, then h(X) is convex (and thus
every local optimum is also global).

However, if it can be predetermined that all the demand points lie on a hemisphere, one can
apply mathematical programming or geometrical solution methods for the minimaz location
problems in the Fuclidean plane to solve the CenterSphereLoc problem.

In this chapter, we will discuss some solution approaches to solve the CenterSphereLoc

problem on the unit sphere Sg as well as on a hemisphere.
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3.1 An Iterative Procedure to find the Global Optimum for CenterSphereLoc [13]

Consider the CenterSphereLoc problem with great circle arc distance a; = arc(Ex;, X)
( see (1.1) ) between the demand point Ex; and the new location X on the surface of the

sphere. Le., we want to minimize

h(X) = max warce(X, Ex;) = maxw;o; (X, Bx;) (3.2)

=1 =1

over all X = X (¢,0) € Sp.
We can formulate the spherical maximin problem analogously.

The following Theorem shows that spherical maximin and minimax location problems are

equivalent.

Theorem 3.1.1: [13]: Let the optimal solution to the spherical maximin problem be X*.
If a minimax problem is formed by replacing the demand points Fx;,¢ = 1,...,m with
their antipodes Ex;,i = 1,...,m and by adding the constant ¢ = —7w; to w;@; then the

optimal solution to this minimax problem is also X*.

Proof : The distance a; between X and Ex; ( the antipode of Ex;) is © — oy as any great

circle containing Ex; also contains Ex;. Now consider the minimazx problem :

min max w;@; + (Tw;) min max w;(r — o) — 7w
w4 (Tw:) = < wi (T — o) — Tws
Xesy i=1 " ! XeSy i=1 ! !
in max(—)
= min max(—)w;q;
XeSy i=1 e
. m
= min {(—) min w;q;
XeSo{( )z‘:1 i}
m
= (—) max minw;q;
( )XGSO =1
It follows the Theorem. |

Theorem 3.1.2: [13]: Let X' be a local minimum of h(X). Let &£, be the set of all
i such that h(X'-P") = w;ay. Then, if a; < 7/2 for i € &, then X'-P! is the global

minimum.
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Proof

a; <m/2 = all Ex; € &, in the hemisphere
centered at X'-oPt

& 1is a conver set

o; is convex on &,

Then h(X) is a convex function on &,

Th.1.2.1 . .
= X0t s the global minimum.

|
Note that when o; < 7/2, then all the demand points in E., are in the hemisphere centered
at X' Pt Further, the value of the objective function for the modified problem based on
the demand points in E. is only a lower bound for the value of the objective function for

the problem based on all demand points.

Finding a local minimax point :
Here, we propose a method of finding a local minimum for h(X) is a version of steepest
descent for minimaz problems. The proposed method is as follows :
Define

hi(X) = wia, fori=1, ..., m (3.3)
Then we have

h(X) = max{h;(X)}
1

Also define

I.(X) = {i|h;(X) > h(X) — €}, (3.4)

where € is a small constant. Then construct the following quadratic programming problem
in order to find a feasible vector Y = (¢y,0,) in the direction of the steepest descent of
h(X).

minimize u=¢,>+ 0,7 (3.5)

subject to [Oh;/0p|py + [0h;/00]0, < —1, for i€ I(X).
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IfY* = (¢y,0y+) is a feasible solution to the quadratic programming problem, it guarantees

that Y* and {Ez; : i € I.(X)} lie on a a hemisphere.

Property 3.1.1: If there is no feasible solution (3.5)at X, then
h(X) — h(X'-oPt) < e,
where X' P! is a local minimax solution.

Property 3.1.2: If there is a feasible solution to (3.5) at X, then Y* = (¢y=,60,+) , the
optimal solution to (3.5), is a vector in the direction of the steepest descent of h(X).
Therefore, if there is a feasible solution to (3.5), we can travel to a lower value of h(X)

along the great circle defined by Y™*.

Now, we have to find the global minimax point to problem. In the following we will explain
the principles behind a procedure guaranteed to find the global minimax point :

Suppose that a local minimaz point X'-°P' of h(X) has been found. Let the intersec-
tion I, of m spherical disks D;,i = 1,2,...,m with centers at points Ex; and with radii
h(X!'-°P*) Jw;. Note that T may be disjoint. A better solution can be found in the set T
and if T is formed by only of the points ( and not arcs ) the local minimaz point is also
the global one. Otherwise, if we obtain a starting point in an area of I, the quadratic
programming formulation (3.5) can be used to find better local minimaz point. Note that
this area is thereby "remowved," If this process is repeated, the disk shrink, the finite number
of areas in I is reduced, and the global minimax point must eventually be found.

Now, we will propose an efficient method in order to obtain a staring point within the area
of Z. Note that the area of T must be bounded by arc segments cut from the circumferences
of the spherical disks with centers FEx;. Therefore, at least one such arc must be inside
all other disks. Suppose that we start with the circle around any disk. Then we can check
other circles to see if the first circle has an arc in its interior. If the intersection of such
arc segments B is not empty, then this intersection forms parts of a boundary of area of
Z. Then, we can use the center of B as the starting point for the quadratic programming

improvement of the solution.

The algorithm for finding the optimal minimax solution is as follows:
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Algorithm 3.1.1: ( finding the global minimax point:)
Input: Set of existing facilities &, = {Fz;;1 =1,2,...,m: Ex; € S}
Step 1 Choose a starting point.

Step 2 Use (3.5) to obtain a local minimax point X*‘-Pt,

Step 3 Using Theorem 3.1.2, check to see if X'~°P! is a global minimax point; if so termi-

nate the procedure.

Step 4 Apply Algorithm 3.1.2 for the group &, defined in Theorem 3.1.2. If Z has only

points, terminate the procedure as X' °P* is the global minimax point.

Step 5 Apply Algorithm 3.1.2 for the whole group of circles. If Z has only points now,

X'_oPt i5 the global minimax point.

Step 6 Go to Step 2 with the starting point found by Algorithm 3.1.2 .

Let k be the number of spherical disks whose intersection we seek.

Algorithm 3.1.2: ( finding an area of 7 ):

Step 1 set i =1,7 = 2.

Step 2 Define B to be the entire circumference of circle i.

Step 3 If i = j, go to Step 7.

Step 4 Find that arc of circle 4 that is cut by disk j.

Step 5 Let B be the intersection between the current8 and the arc formed in Step 4.

Step 6 If B is empty and ¢ = k, terminate the procedure: The intersection Z has no areas.

If I(arcs) is empty and i < k, set ¢ =4+ 1 and go to Step 2.

Step 7 If j < k go to Step 3 with j = j + 1. If j = k designate the center of any arc of B

as a new starting point in Algorithm 3.1.1 and terminate this procedure.
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3.2 Enumeration Technique for Determining Global Optimum of
CenterSphereLoc [5]

Here, we present an enumeration procedure of finding a minimaz location of the Center-
SphereLoc problem with the distant norm is the shortest arc distance on the surface of the
sphere. This procedure determines global optimal solutions in a finite number of steps. In
the following, we represent some notations and definitions which will be used in developing

of the algorithm.

Consider three points X1, Xa and X3 on the surface of the sphere.

X1XoX3 = the spherical angle subtended from a point Xo by the sh-
orter arc, arc(X1X3).
AX1X5X3 = the plane triangle with vertices at points X1, Xo and X3.
/X1, /Xy and /X3 = angles of AX1X5Xs5.

The spherical angle X1X2X5 is measured as angle between two straight lines tangential
at point Xo to the two great circles, one passing through X1&Xs and the other through
Xo& X3.

Definition 3.2.1: Given three distinct points, X7, X5 and X3 on the surface of the sphere,
P(X1, X2, X3) denote the unique plane passing through the three points and bisecting the
sphere(see Figure 3.1).

Definition 3.2.2: C(X;, Xy, X3) denotes the circle traced by the plane P(X7, X2, X3)
cutting through the sphere(see Figure 3.1).

Definition 3.2.3: Let X; and X5 are not diametrically opposite. Denote the mid point
of the (shorter) arc as the point P. Then, C(X1, X2) represents the small circle that goes
through points X; and X, and has its nearer pole located at point P.

Definition 3.2.4: I'C(X;, X2) and I'C(X1, X, X3) denote the surface area of a sphere that
contains the nearer pole and is bounded by C(X1, X2) and C(X7, X2, X3), respectively.
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P(X4X5,X3)

C (X 3XaX9

Fig. 3.1: Plane P bisects the sphere

Definition 3.2.5: RC(X1, X2) and RC(X1, X, X3) denote the surface area of a sphere
that contains the distant pole and is bounded by C(X7, X3) and C(X1, Xs, X3), respectively.

Next, We will represent some results regarding poles and small circles.

Lemma 3.2.1: Let P be the nearer pole of C(X;, X2, X3), where AX;X5X3 is an acute
triangle. Let Q(3# P) be any point on I'C(X1, X2, X3) and within the spherical triangle
X1X2X3. Then, the spherical radius of C(X1, X, X3) is greater than
minimum{arc(QX1), arc(QXs2), arc(QX3)}.

Proof : See Appendiz.

Lemma 3.2.2: Let P’ be the distant pole of C(X7, X2, X3) where AX;X5X3 is an acute
triangle. Let 1 be a point on RC(X71, Xo, X3) and Q1 # P’. If @ is sufficiently close to
P’ then

maximum{ arc(Q1X1), arc(Q1X2), arc(Q1X3)} > arc(X 1 P').
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Proof : See Appendiz.

Lemma 3.2.3: Let X1, X5 and X3 be three different points on a unit sphere with ZX3 >
/2. Let P and P’ be the nearer and distant poles of C(X7, X2, X3) respectively. Then
there exits a point @, close to P’ such that

maximum{arc(X1Q), arc(X2Q), arc(XsQ} < arc(X1P') = arc(XoP') = arc(X3sP').

Proof : See Appendiz.

Corollary 3.2.1: C(X;, X2, X3) may contain demand points other than X, X2, and X3.
Assume that all other demand points lie in RC(X1, X2, X3) — C(X1, X2, X3). Then the
distant pole of C(X1, X2, X3) is not a solution of the spherical minimax problem if no

triplet of demand points on C(X7, X2, X3) forms an acute triangle.

Proof In this case the demand points on C(X1, X2, X3) lie on an ac of a semicircle. The

results directly follows from Lemma 3.2.5.

Theorem 3.2.1: (i) If A(X;X2X3) is an acute and I'C(X, X, X3) may contain all de-
mand points the n the nearer pole of C(X1, X2, X3) is the unique facility point.
(ii) If IC(X1, X2) contains all demand points, then the nearer pole of C(X1, X2) is the

required facility point.

Proof Let P be the nearer pole of C(X1, X2, X3). As A(X1X2X3) acute, we have

X1 < Xo+ X3, X5 < X1 + X3, and X3 < X1 + Xs.

Take any point X on I'C(X1, X9, X3). Join X P by the arc of the great circle. Since P is
within the spherical triangle X1 X2 X3, we have

X1PXy+ XoPXs >
XoPX5+ XsPX, >
and

XsPX,1 4+ X1PXy >
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X

Fig. 3.2:

hence, we conclude that at least one of the spherical angles leX, XsPX and XoPX must
be greater than 7/2. In Figure (3.2), for ezample, X,PX > 7/2, and consequently from
the spherical triangle X1 PX, arc(X1X) > arc(X1P).

Similarly,

X3PX > 7/2 = arce(X3X) > arc(X3P) and XoPX > 71/2 = arc(X2X) > arc(XyP).
This implies that P is the unique facility point.

Consider the spherical circle C(X1, X2) with nearer pole S.
From the spherical triangle PX;Xs, we have by the Property 1.2.1 (c),

arc(X 1 P) 4+ arc(XoP) > arc(X1Xs2) = arc(X15) + arc(SX7)
= 2-arc(X1P) > 2-arc(XyS)
= arc(X1P) > arc(X19).
This implies that there exits a small circle C(X1,X2) of a smaller spherical radius than

arc(X1P) such that all the demand points are contained on I'C(X1,Xs). That is , the
nearer pole S of C(X1, X2) is the required facility point.

Corollary 3.2.2: C(X;, X3, X3) may contain demand points other than X, X2, and X3.
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Assume that all other demand points lie in I'C( X7, X, X3)—C(X1, X2, X3). If all triplets of
demand points on C(X1, X, X3) form obtuse triangle, then the nearer pole of C(X7, Xo, X3)

is not the required facility point.

Proof : The result follows from Theorem 3.2.1.

Theorem 3.2.2: If there exists a triplet (X7, X2, X3) of demand points such that

(i) A(X1X2X3) is acute,

(ii) The center of the sphere and all demand points lie on the same side of P(X1, Xo, X3),
and

(iii) (X7, X2, X3) generates the plane closest to the center of the sphere, then the distant

pole of C(X7, X2, X3) is the required facility point.

Proof: From Lemma 3.2.8, we know that the triplet of points forming an obtuse triangle
cannot yield an optimal solution. Further, Lemma 3.2.2 represents that the distant pole
of the small circle defined by a triplet satisfying (i) and (i1) is a local minimum and (iii)
implies the optimality.

Theorem 3.2.3: If RC(X1, X2)—C(X71, X2) contains all demand points other than X7, Xo,

then the distant pole of C(X;, X2) cannot be a minimax location.

Proof : See Appendiz.

Corollary 3.2.3: Assume C(X;, X) contains a demand point(s) other than P; and Ps.
Let all the demand points lie on RC(X1, X2)—C(X7, X2). If not triplet of demand points on
C(X1, X2) forms an acute triangle, then the distant pole of C(X;, X3) cannot be a facility

point.

Proof : The results follows from Theorem 3.2.3.

Lemma 3.2.2 shows that if all the demand points lie in RC(X1, Xo, X3), every point in a

small neighborhood of distant pole, P’ has an objective function value that is greater than
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the one at P'. Thus P’ is locally optimal. In the case that all the demand points lie in a
hemisphere, Theorem 3.2.1 discuss the solution to the required problem when all demand
points lie in a hemisphere and Theorem 3.2.2 characterizes a solution when all the demand

points are distributed all over the sphere.

Next, will present the developed algorithm for solving the spherical minimaz location prob-

lem.

In the following algorithm, we consider that €, = {Ex; : i = 1,...,m} denote the set of
demand points and Exy, Ex;, and Ex,, be three distinct element of &,.

Then define the following :

l(Exy, Ex;, Exy,) @ the Euclidean distance from the center of the sphere to the center
of the circle C(Exy, Ex;, Exy,).

0 if AEzxpEx FEx,, is obtuse;
u(Exyg, Bz, Ex,y,) = / RS
1 otherwise.

0 if points lie on both sides of P(Exy, Ex;, Exy,) ;
v(Emk,Exl,Exm) _ fp f ( k l m)
1 otherwise.

This algorithm bellow examines all possible pairs of demand points to find minimaz loca-
tions. To prevent a pair of demand points, (Ex;, Ex;) being examined twice, the following

rules are imposed to update the indices of the pair to be examined next.

Rule 1. Ifj <m, then seti =t and j=7+1
Rule 2. Ifj=mandi<m—1, then seti =1+ 1 and j =7+ 1.

Together with the above definitions and two rules, the algorithm can be presented as follows :

Algorithm 5 (An algorithm for CenterSphereLoc problem)
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Input The set &, = {Fx; :i=1,...,m} of demand points on the unit sphere.
Initialization. Seti=1,7=2,0pt* =0,k = 1,1 = 2, lpess = 1. Go to step 1.

Step 1. If I'C(Exy, Ex;) contains every other demand points, stop and nearer pole of

C(Exy, Ex;) is the minimaz location. Otherwise, go to Step 2.

Step 2. Ifi = (m — 1), stop and every point in Opt* is a minimaz location. Otherwise,

go to Step 3.

Step 3. Let Ex, and Ex, be two demand points other than Exj and Ex; such that
P(Exy, Ex;, Exp) and P(Exy, Ex;, Ex,) yield the minimum and the mazimum, re-
spectively, inclination with the plane T'(Exy, Exy).

If w(Exy, Ex;, Ex,) = 1 and all the demand points lie on T'C(Exy, Ex;, Ex, forr =p
or r = q, then stop and the nearer pole of C(Exy, Ex;, Ex,) is the minimaz location.

Otherwise, go to Step 4.

Step 4. Forr =p and r = q, do one of the following:
If u(Exy, Ex), Ex,) = 1,v(Ezy, Ex;, Ex,) = 1 and [(Exy, Ex), Ex,) = lpest, then
add the distant pole of C(Exy, Ex;, Ex,) to Opt*.
If w(Exy, Exy, Ex,) = 1,v(Exy, Ex;, Ex,) = 1 and [(Exy, Exy, Ex,) < lpest, then set
lbest = L(Exy, Exy, Ex,) and replace Opt* with a set that contains only the distant
pole of C(Exy, Exy, Ex,).
Update i and j according to the two rules and set Ex, = Ex; and Ex; = Exj. Go
to Stepl.

If the algorithm stops in Step 1, the Theorem 3.2.1 guarantees that the mearer pole of
C(Exy, Ex;) is the optimum location. The set Opt is formed by the distance poles of
C(Ezy, Ex;, Ex,). If the algorithm terminates in Step 2, Theorem 3.2.3 justifies that the
points Exy, Ex;, and Ex.;r = p,q on C(Exy, Ex;, Ex,) forms an acute triangle and this
jJustifies the optimality of every point in Opt. Consider the Step 3. The plane P(Exy, Ex;)
divides the sphere into two disjoint surfaces. If Ex,, € T'C(Exy, Ex;) — C(Exy, Ex;),
then EmkEmexl is obtuse and then the poles of C(Exy, Ex;, Ex,,) can not be a opti-
mal location. When Ex,, € RC(Exy,Ex)) — C(Exy, Ex;) then ExyEx,Ex; is acute. If,
in addition, every demand points lie on IU'C(Exy, Ex;, Ex,y,), then by Theorem 3.2.1, the

nearer pole of C(Exy, Exy, Exy,) is the optimal location. Otherwise, Step 4 examines the
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possibility to have a distance pole of C(Exy, Ex;, Ex,,) as a optimal location.

Further, in Step 3, we are looking for a third demand point Ex,, on C(Exy, Ex;) in such
a way that all the other demand points lie on one side of the plane P(Exy, Ex;, Exy,).
There are no more than (m — 2) planes that pass through demand points Exy, Ex;, and
another point Ex,, in RC(Exy, Ex;). Among these planes, at most two planes can have
all the demand points other than Exi, Ex;, and Ex,, all on one side. These two planes

are the ones that yield the minimum and mazimum inclinations with the plane C(Exy, Ex;).

3.3 Algorithm Based on Factored Secant Update Technique [24]

In this paper, the author discussed CenterSphereLoc problem in the cartesian coordi-
nate system using the FEuclidean norm. He justified that minimizing the maximum of
the shortest arc distances between the facility and the demand points on the unit sphere
1s equivalent to minimizing the mazimum of the corresponding Euclidean distances. Using
the Karush-Kuhn-Tucker (KKT) necessary optimality conditions, he obtained a set of non-
linear equations which can be solved by a method of factored secant update technique (see

[6]). He made attention for the following special cases :

1. All the demand points are on a hemisphere
and

2. One or more point-antipodal point(s) are included in the set of demand points.

3.3.1 The Behavior of the Euclidean Distances in Spherical Location Problems

Here, we will show that minimizing the mazimum of the shortest arc distance between the
facility to be located and the demand points is equivalent to minimizing the mazimum of

the corresponding Fuclidean distances.

From (1.1), we have

a = arccos{cos ¢1 cos ¢y cos(fy — O2) + sin @1 sin ¢o } (3.6)
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be the shortest arc distance between two points X1 = X1(p1,601) and Xo = Xao(¢o,02) on
So. Let d be the corresponding Euclidean distance between these two points. Since o is also
the angle between the two lines drawn from the center of the sphere to two points X1 and

Xo, ( see Figure 3.3 )

arc(X,Xo

Euclidean distance d

Great circle through X and X,

Fig. 3.3:
& = [|OX1 [P+ OXz ||? —2x | OXy || x || OXz || cosa
d = 1P+ 1]*=2x 1] x 1] cosa
d> = 2—-2cosa
d2
a = arccos(l — ?),0 <d<2 (3.7)

The equation 3.7 shows that there is a one-to-one correspondence between o and d. In
addition, « is an increasing function of d. This means that finding the minimazx point us-
ing the great circle distance, « is equivalent to finding minimaz point using the Fuclidean

distance, d.
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3.3.2 Formulation of the Problem with Euclidean Distance

A mathematical formulation of the CenterSphereLoc problem with Euclidean distance is

as follows :

min  H (3.8)
subject to (i —20)* + (yi —yo)? + (i —20)2 < H fori=1,...,m (3.9)
T2y + 22 =1 (3.10)

where

m is the number of existing facilities |

(zi,vyi,2i)  are the cartesian coordinates of the existing facilities Ex;,

(z0,Y0,20) are the coordinates of a point Xy on Sp,

H 1s the variable that measures the maximum of the squares of the Euclidean

distances from Xg to the existing facility Fx;.
Now we consider the corresponding KKT necessary optimality conditions for the the min-

imaz problem (3.8) - (3.10).

i)\i = -1 (3.11)
=1
(1 + i)\z‘)ﬂﬁo = i)\ixi (3.12)
i=1 i=1
(u+§;/\i)yo = f;Aiyi (3.13)
(n+ i)\z’)zo = i)\m (3.14)
i=1 i=1

)\isi =
(2 —20)® + (¥ —y0)> + (21 —20)° — F+s7 =

s typ+ap—1 =

o o o o

)\i—i-p% =
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where

Ai 1is the Lagrange multiplier corresponding to the constraint set (3.9) ,
W is the Lagrange multiplier corresponding to constraint (3.10),
s; are the slack variables of inequality (3.9),

p; are the slack variables of the non positivity conditions on \;.
The set of equations (3.11)- (3.19) are the set of nonlinear equations which can be solved

by using the method of factored secant update with a finite difference approzimation to the

Jacobian.

3.3.3 Some Examples for Solving CenterSphereLoc

In order to apply the theory which we discussed here, we consider three examples :

1. when the demand points are on a hemisphere and at least one point-antipodal point

pair is included in the set of demand points,

2. when the demand points are on a hemisphere and no point - antipodal point pair is

included in the set of demand points,

3. when the demand points are not on a hemisphere.

Example 1

We consider 17 points all located in the Northern Hemisphere. Each point’s latitude, longi-
tude, and the corresponding Cartesian coordinates ate included in Table 3.1. The last two

points form a point - antipodal point pair on the equator.

For this example, a minimax point can be obtained quickly as follows (see [23]):

e Select a demand demand point Ex; = (x;, z;, z;) whose antipode

Ex; = (—x;, —yi, —2i) is also included in the set £, of demand points.
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City Latitude | Longitude X y zZ
1 | London 51.5 N 04 E 0.6025 | 0.0043 | 0.7826
2 | Paris 489 N 23 E 0.6568 | 0.0264 | 0.7536
3 | Zurich 474 N 85 E 0.6694 | 0.1000 | 0.7361
4 | Rome 419 N 125 E 0.7267 | 0.1611 | 0.6678
5 | Copenhagen | 55.7 N 12.6 E 0.5500 | 0.1229 | 0.8261
6 | Berlin 52.5 N 134 E 0.5922 | 0.1411 | 0.7934
7 | Stockholm 59.3 N 189 E 0.4830 | 0.1654 | 0.8600
8 | Athens 38.0 N 23.7TE 0.7216 | 0.3167 | 0.6157
9 | Ankara 399 N 328 E 0.6449 | 0.4156 | 0.6415
10 | Tel-Aviv 32.1 N 348 E 0.6956 | 0.4835 | 0.5314
11 | Moscow 55.7 N 37.7E 0.4459 | 0.3446 | 0.8261
12 | Teheran 35.4 N 514 E 0.5085 | 0.6370 | 0.5793
13 | Bombay 189 N 728 E 0.2798 | 0.9038 | 0.3239
14 | Manila 14.6 N 121.0 E | -0.4984 | 0.8295 | 0.2521
15 | Tokyo 35.6 N 139.7 E | -0.6201 | 0.5260 | 0.5820
16 | Point 16 0.0 30.0 E 0.8660 | 0.5000 | 0.0000
17 | Point 17 0.0 150.0 W | -0.8660 | -0.5000 | -0.0000

Tab. 3.1: Latitudes, Longitudes, and corresponding Cartesian coordinates of 17 points. Points 16

and 17 form a point-antipodal point pair on the Equator

e Consider a plane passing through the points (0,0,0), Ex;, and Ex; such that the

remaining points Exj, with j # 1 lie on one side of the plane.

o If such a plane exists, then all the points including the point-antipodal pair are on a

hemisphere.

o To check whether such a plane exits, we can solve the following linear programming

problem with dummy objective g:
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max g (3.20)
s.t. ax; +by; +cz; =0
axrj+by; +cz; <0 forall (xj,y;,25) # £(xi,Yi, 2i)
g<1
a,b,c are unrestricted in sign.

e Consider a solution (a,b,c) obtained by solving the linear programming formulation

(3.20)

o This vector is normal to the plane ax + by + cz = 0 that divides the unit sphere into

hemispheres such that the demand points lie on a hemisphere.

e This vector is directed towards the hemisphere that does not contain any of the de-

mand points.

o Then the minimax point is given by

a b c
— Y= ——— ) = ————
a? +b% + 2 vaz 4+ b2+ 2 a? + b + ¢?

e This minimaz point is simply the center of the spherical disk with radius 7/2 (the

Trog = —

(3.21)

hemisphere which bears all the demand points).

As the linear programming formulation (3.20) has multiple optimal solutions whenever the
great circle that divides the hemispheres contains only the point-antipodal point pair, this
minimaz point may not be unique. In this case the minimazx location problem will have
multiple solutions with the same mazimum spherical distance 7/2 from the minimaz point
to the demand points.

Using the method mention above, example 1 gives the minimax point (-0.463, 0.803, 0.376).

The same problem is also solved using the KKT conditions (3.11) - (3.19) iteratively. It
gives the minimaz point (-0.356, 0.616, 0.703).
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These two solutions confirms that multiple solutions are possible for this problem.
Example 2
In this example, we consider the first 15 points of Table 3.1 all located in the Northern

Hemisphere. This problem is solved by using KKT conditions (3.11) - (3.19) and it gives

a unique globally optimal solution whenever the demand points lie on a hemisphere.

Example 3
City /Point | Latitude ¢ | Longitude 6 X y 7
1 | Point 1 56.2 N 234 E 0.5105 | 0.2209 | 0.8310
2 | Point 2 25.0 N 9.1 W 0.8949 | -0.1433 | 0.4226
3 | Point 3 7.08 432 E 0.7235 | 0.6794 | -0.1219
4 | Point 4 128 N 45.0 W 0.6895 | -0.6895 | 0.2215
5 | Point 5 0.0 100.5 E -0.1822 | 0.9832 | 0.0000
6 | Point 6 27.0 N 84.5 W 0.0854 | -0.8869 | 0.4540
7 | Point 7 958 110.3 W 0.3422 | -0.9250 | -0.1650
8 | Point 8 325 S 87.0 E 0.0411 | 0.8422 | -0.5373
9 | Point 9 30.0 S 60.0 W 0.4330 | -0.7500 | -0.5000
10 | Point 10 60.0 N 60.0 W 0.2500 | -0.4330 | 0.8660
11 | Point 11 45.0 N 75.0 E 0.1830 | 0.6830 | 0.7071
12 | Point 12 85.0 N 0.0 0.0872 | 0.0000 | 0.9962
13 | Point 13 15.0 S 130.0 W | -0.6209 | -0.7399 | -0.2588
14 | Point 14 60.0 N 115.0 E -0.2113 | 0.4532 | 0.8660

Tab. 3.2: Latitudes, Longitudes, and corresponding Cartesian coordinates of 14 points spread over

the entire globe.

In this example, we consider the situation when all the demand points are not on a hemi-
sphere. The table 3.2 represents 14 points with each point’s latitudes, longitudes, and the

corresponding Cartesian coordinates .
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It gives different locally optimal solutions in each different starting values. The minimum
value obtained among all of these locally optimal solutions may be a globally optimal solu-
tion. Next, we add the fifteenth in Table 3.2. This point is the antipode of Point 3 in this
table. The KKT conditions (3.11) - (3.19) is solved with a same starting vales and it gives
the same optimal solution as that obtained for the 1 points in Table 3.2. This confirms
that adding an antipode of one of the demand points may not always alter a locally optimal

solution.

Note: For the first ezample, the KKT necessary optimality conditions (3.11)-(3.19) need
not be solved. The vector (a,b,c) that is normal to the plane ax 4+ by + cz = 0 passing
through the center (0,0,0) of the sphere and dividing the plane into hemispheres such that
the demand points are on a hemisphere, is directed towards the hemisphere that does not
contain any of the points. The optimal location of CenterSphereLoc is then the nor-
malized vector (—a, —b, —c). For the other two examples, KKT conditions (3.11)-(3.19)
need to be solved. There are (3n + 5) equations involved in these (3.11)-(3.19). Thus the
number of equations increases by 3 whenever a new demand point is added. Also it should

be mentioned that the resulting KK'T system of equations, (3.11)-(3.19), is very nonlinear.

3.4 Geometrical Approaches for CenterSphereLoc Problem on a Hemisphere

[27].[4]

Consider the CenterSphereLoc problem on a hemisphere with equal weights. In both
methods, we use the shortest arc distance as the measure of distance on the hemisphere.
The solution method which is described in [27] depends heavily on properties of the spher-
ical triangles. The second approach which is described in [4] is based on the properties of
a plane triangle. During the development of these algorithms, we use the notations which

are described in the section 3.2.

In the first step, we describe the Sakar - Chaudhuri[27] algorithm is as follows:
Let &, = {Ez;,i €I and I ={1,2,...,m}} be the set of demands points on the surface
of a hemisphere. The basic idea of this approach is to cover &, by a portion of a sphere

bounded by a small circle. The next step consists of reducing the radius of this circle so that
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demand points continue to remain within the portion of the sphere bounded by this circle.
The algorithm 1is designed in such a manner that each iteration at leat one demand point

could be eliminated and no future iteration would need any information about this point.

Algorithm 3.4.1: (algorithm based on the properties of the spherical triangles)

Input & ={Ez; :i €I ={l,...,m}} be the set of existing facilities in a hemisphere

SH

Initialization. Choose any point X on the surface of the hemisphere which contains all
the demand points. Let Fxj be the farthest demand point from X. Denote this
point by A.

I —1—{k}.

Let A; be a point on the great circle arc(AX) such that :

arc(AA;) = arc(A;Ex;), where i € I. Denote the point A; for which X A4; is mini-
mum by Y and corresponding index by k. Let this demand point Ezj; be denoted
by B. I — I —{k}.

Step 1. If all the demand points lie on I'C(A, B), then the nearer pole P of C(A, B) is the
required facility point. Stop.
Else X « Y, and go to step 2.

Step 2. Let D be the mid point of the arc(AB). Find a point A; on the great circle
arc(X D) such that arc(A;A) = arc(A;Ex;),i € I. Denote the point A; for which
the arc(X A;) is minimum by Y and the corresponding index by k. Let the demand
point Exi be denoted by C.

IfA<B+C,B<A+C and C < A+ B, then the nearer pole P of C(A, B,C)is
the required facility point. Stop.
Else go to Step 3.

Step 3. If ExyFEx;Fx; > Ex;Ex;jEx), + ExjFEx,Ex;, where Ex;, Exj, Ex), € {A, B,C}
and 1, 7, k are all different, then Fx; is excluded from all future iterations. Denote

the points Ex; and Exj, by A and B respectively. I « I — {i} and repeat Step 1.
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If the Algorithm 3.4.1 stops in Step 1, and Step 2 then Theorem 3.2.1 guaranties that the
optimality of the nearer poles of C(A, B) and C(A, B, C) respectively.

In order to explain the next algorithm[4] which is based on the properties of planner triangle,

first we will consider the following lemma.

Lemma 3.4.1: Let X; and X5 are any two points on the surface of the sphere that do
not contain the ends of a diameter of the sphere. Let X3 be an any point on the surface

of the sphere such that X3 ¢ I'C(X;, X3). Then £X;X3X5 is acute.

Proof: Construct the sphere, S" with C(X1, X2) as a great circle. Clearly all the points
of TC(X1, Xo) — C(X1, Xo) lie within S and all the points of Sy — T'C(A, B) lie outside S'.
Now X3 is a point which is lie outside of S’. It is obvious that /X1 X3Xs is an acute angle.

Corollary 3.4.1: Consider any three points X7, Xo and X3 on the surface of the sphere
such that AX; X5 X3 is an acute triangle and C(X7, X2, X3) is a small circle. Let O’ be the
center of C(X1, X9, X3). Further assume that Y be a point on the surface of the sphere
with Y ¢ T'C(X1, X2, X3). Then O'Y > 0'X; = 0'Xy = O'X3.

Proof : Let S” be the sphere of which C(X1, Xo, X3) is a great circle. Since'Y is outside
of S”, the proof is immediately follows from the Lemma 3.4.1.
Then we represent the Das - Chakraborti [4] algorithm as follows:

Algorithm 3.4.2: (Algorithm based on the properties of the planner triangles)

Input & = {Ez; : i € I = {1,...,m}} be the set of existing facilities contained in a
spherical disk of radius o < 7/4.

Initialization. Take any two demand points Ex; and Ex;. Go to Step 1.

Step 1. If all demands points lie on I'C(Ex;, Ex;), then nearer pole of C(Ex;, Ex;) is the
required facility point. Stop.
Else choose a demand point, say Exzy, not in [C(Ex;, Ex;) such that ZEx;ExpEx;
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is minimum. Goto Step 2.

Step 2. If all the demand points lie on I'C(Ex;, Exj, Exy) and AExz; Ex,Ex; is an acute
triangle then stop. The nearer pole of C(Ex;, Exy, Ex;) is the required facility point.
Else goto Step 3.

Step 3. If AEx;FEx,Ex; is not an acute triangle then call the extremities of the largest
side of the triangle by Ex; and Ex;. Return to Step 1.
Else find a demand point, Ex;, in Sg — I'C(Ex;, Exj, Exy) such that the distance of
Ez; from the center of the C(Exz;, Exj, Exy) is maximum. Go to Step 4.

Step 4. Find the maximum distance of Ex; from Ez;, Exj, Exj. Denote the point having
a maximum distance from Ex; by Fx; and rename the other two points by Fx; and
Ezy,. Denote the minimum{ Z/FEz;Ex;jEx;, /Ex;ExyEx} by ZEx;ExjEx.
If ZEx;Ex;Ex; is greater than or equal to right angle,
then Ex; < Ex; and repeat Step 1.
Else Exj « FEx; and return to Step 2.

The optimality conditions in Step 1 and Step 2 in this algorithm are directly follows from
the Theorem 3.2.1.

It is clear that the optimal solution of the CenterSphereLoc problem on hemispherical
surface is the nearer pole of C(Ex;, Exj) or C(Ex;, Ex;, Exy) whenever all the demand
points lie on the I'C(Ex;, Exj) or IC(Ex;, Exj, Exy). This simply says that a hemispherical
minimaz location reduces to finding a small circle of mazimum radius on the surface of the
sphere which contains either two demand points at the end of a diameter or the three
demands points forming an acute triangle such that all the demand points lie on one side

of the plane of the small circle and the center of the sphere on the other side.






4. RESTRICTED SPHERICAL CENTER LOCATION PROBLEM

Given set a €, = {Ez;;i = 1,2,...,m} of m demand points on the surface of a sphere
with associated weights w;;i = 1,2,...,m, our goal is to find a location for a new facility
in order to minimize the maximum weighted distance to the demand points with respect to
a given distance of measure.

That is, we are looking for a point X* on the surface of the sphere in which

min  max w;d(X, Ex;) CenterSphereLoc (4.1)
X8 i=1,2,...;m

is attained. Here d(X,Y) is the distance between two points X and Y on the surface of
the sphere and Sy denote the surface area of the sphere.

In practical situations, X* will not be a feasible location. That means, there will be some
regions in which the placement of a new facility is forbidden, but transportation is still pos-
sible. These regions often referred to as forbidden ( or restricted ) regions. These can be
used to model, for example, state parks, lakes or other protected areas, or regions where the
geographic characteristics are not allowed to construct the desired new facility. Therefore,
finding an optimal solution(s) X of CenterSphereLoc problem can be considered as a
"restricted facility location problem" on the spherical surface. This problem is known as
"Restricted Spherical Center( or minimax) (RestrictedCenterSphereLoc) prob-
lem " (see Figure 4.1).

We assume here that , some spherical polygon (Definition 1.2.19) R is given such that the
new facility location X is not allowed to be contained in the interior, int(R) of R.

1.e., we want to solve

min  max w;d(X, Ex;) RestrictedCenterSphereLoc (4.2)
XEF i=1,2,sm
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Restricted spherical
polygon

g4 = ‘~

Spherical disks at the demand points
X1 ,X2,X3 with radii z*

Fig. 4.1: Optimal location X* is located in a restricted region R

where F := 8y \ int(R).

In the following section, we restrict our problem to the special case where all the demands
points lie on the surface of a hemisphere. Unrestricted version of this problem can be solved

using some known methods ( see [4], [26], [27] ).

4.1 Basic Results for Hemispherical CenterSphereL.oc Problem using Level Sets

and Level Curves

Now, consider the hemispherical location problem with the shortest length of arc (great
circle distance)(see Definition 1.2.8) as the distance of measure d and a convexr spheri-
cal polygon (see Definition 1.2.19 ) as a restricted polygon, R. Further we assume that
w,=1; Vi=1,...,m.

1.e., we want to solve

in h(X) = X, Ex; 4.
e )
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where F := S§T \ int(R).
Here a(X,Y) is the great circle arc distance between two points X and Y on the surface

of the sphere and Séq denote the surface area of a hemisphere.

Let X* be the unique optimal solution of CenterSphereLoc problem and X™ be any
optimal location of the RestrictedCenterSphereLoc problem. Further, let z* and 2™

represent the corresponding optimal objective values, respectively.

That is,
2f = i:%?f}f,ma(X*’ Ex;)
and
2R = max (X%, Ex;) et

1=1,2,....m
If X* € ST\ int(R), then X® = X* and the restricted problem is trivially solved. There-
fore, we assume that X* € int(R).

If X* € int(R), the following Theorem shows that X should be lie on the boundary, OR
of the restricted polygon, R.

Theorem 4.1.1: If the set of optimal locations of CenterSphereLoc, opt* C int(R) then
the set of optimal locations, opt*(R) of the hemispherical RestrictedCenterSphereLoc
problem is a subset of the boundary of R (i.e., opt*(R) C OR )

Proof Let X* € opt* and X ¢ R. Now we have to show X & opt*(R).
Since opt* Cint(R) and X ¢ R, we know h(X*) < h(X).
Choose any & such that XP = 5X* + (1 — §)X € OR.

Since h(X) is a convex function on the surface of the hemisphere, we have

hMXP)=h(X* 4+ (1 —6)X) < Sh(X™) + (1 — §)h(X).

= h(XP) < h(X)+ (1 - 6)h(X) = h(X).
Le., there exists a point X B on the OR which is better than X. This means X ¢ opt*(R). R

In the following, we will show that how can the optimal solutions X be characterized using

level curves and level sets ( see Definition 1.2.20 ).
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Lemma 4.1.1: 2® is the optimal value for the restricted hemispherical center location

problem if and only if 2% = min{z € R: L_(z) \ int(R) # 0}.

Proof 7 = " Let 2 be optimal. Then there exists X with h(X) = 2R and X® ¢
int(R).

= XR e L_(zR) \int(R) # 0.

Assume 3% < 2% s.t. L_(2) \ int(R) # 0.

Then choose X € L_(%)\int(R) feasible and h(X) < h(X®) = 2R. This is a contradiction
for the optimality of X™. This implies

2R =min{z € R: L_(z) \ int(R) # 0}.

" =" Let z° =min{z € R: L_(2) \ int(R) # 0}.

Take X € L_(2%)\ int(R) with h(X) = z®.

We have to show X s optimal :

Suppose X is not optimal. Le., 3X s.t. 2 =h(X) < h(X) = 2R and X & int(R).

= L_(2) \ int(R) # 0. This is a contradiction since Z < 2.

= X s optimal. |

Therefore, if X* € int(R), we need to increase z* until the boundary of the level set touches
the boundary of the restricted region. The following Theorem presents the conditions which

needs to be considered when we increase the value of z*.

Theorem 4.1.2: z® is the optimal objective value of the restricted hemispherical center

location problem if and only if

(1) L<(2®) C R and

(2) L_(zR)N IR £ 0

Proof " = " : Let z® is optimal. Take X € opt*(R) with h(X) = 2%, i.e., X € L_(z%).
Theorem 4.1.1 = X € OR.
Then we have OR N L_(zR) # 0.
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Lemma 4.1.1

L

=" Let LL(2R)NOR #0 and L<(2R)C R .

= L_(2%) \int(R) # 0 but

L_(2)\int(R) =0 Vz< 2~

Lemma 4.1.1 = 2% is optimal. |

Note that the optimal value z* of the unrestricted problem is the smallest value z with

Restricted spherical
polygon

Spherical disks at the demand
points X, Xz’ X5 with radii z*

Fig. 4.2: X* Represents the unique optimal location

L<(z) # 0. In this case L<(z*) = {X*} (see Figure 4.2). For z > z*, L<(z) is an area in
the hemisphere which is bounded by great circle arc segments (see Figure 4.3).

If X* € int(R) is not feasible for the hemispherical CenterSphereLoc problem we need
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to increase z* until conditions (1) and (2) of Theorem 4.1.2 are satisfied. Since L<(z®)

Restricted spherical
polygon

Level set

Spherical disks at the demand
points X,, X5 X, with radii z

Fig. 4.3: L<(z) is the shaded area.

can be expressed as intersections of the spherical disks D(Ex;, z) centered at the existing
facilities Ex; with radii z ( see Result 1.2.3), the level set touches the boundary of the
restricted region R in two different ways as shown in Figures 4.4 and 4.5. Now, therefore
we can identify the optimal solutions for the hemispherical RestrictedCenterSphereLoc
problem as follows:

Suppose that the restricted set R is a convex spherical polygon with facets fi, fo,..., fi.

Theorem 4.1.3: If X* € int(R), then there exists an optimal solution X to hemispher-
ical RestrictedCenterSphereLoc problem with objective value
R ma(Bx;, X®) and 2® > z*, which satisfies :

Z¥ = max;—1.9

(a) X® € OR N Bisector(Ex;, Exj),i,5 € {1,2,...,m}. ( see Figure 4.5. ),
or

(b) X is a projection point of Ex; on fr,k = 1,2,...,K;i = 1,2,...,m. (see Figure
4.4).
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Restricted spherical
polygon

Level set

Spherical disks at the demand
points X,, X, Xgwith radii z®

Fig. 4.4: An edge of the level set L<(z®) touches a facet of R

Restricted sphercal
polygon

Level set

Spherical disks at the demand
points X, X,, X5with radii zR

Fig. 4.5: A corner point of the level set L<(2™) touches an edge of R
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Proof Theorem 4.1.2 implies that L<(2%) C R and L_(2®)NOR # 0. Since R is convex
spherical polygon, the intersection of spherical circles (i.e., level curve) touches R from

inside either at a corner point of L<(2™) or an edge of R is tangent to L<(z%).

Case(a) A corner point ( see Figure 4.5 ):
Xi; 45 a corner point of L<(2%) if and only if there exists Ex;, Ex; such that
X,;j € C(Ex;,2®) N C(Ex,2%). Hence a(Ex;, X;;) = o(Exj,X;j) and X;; €
Bisector(Ex;, Exj).

Case(b) An edge fi, of R is tangent to L<(z") (see Figure 4.4):
Xk 1s tangency point iff fr touches one of the spherical circles; i.e,. there exists
i €{1,2,...,m} such that fy is tangent to C(Ex;, z%). i.e., X, is a projection point
from Ex; onto f. |

4.2 Polynomial Algorithm for Hemispherical RestrictedCenterSphereLoc Problem

Theorem 4.1.8 characterizes the candidates for being optimal locations of the restricted

problem.

Algorithm 4.2.1:

Input: {Ex; :i=1,2,...,m}, the set of existing facilities.
R : Convex spherical polygon with facets fi, fo,..., fx.

Output: Opt™ : set of all optimal locations.

2R optimal objective value.

Step 1. Solve the unrestricted CenterSphereLoc problem to get the optimal location

X* with objective value z*.
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Step 2 If X* & int(R) then output Opt® = {X*}
Else : goto Step 3.

Step 3. Calculate
A = {(Py,z) : Py is a projection point from Ex; onto fr,i = 1,2,...,m; k =
1,2,...,K, z= «a(Py, Fx;)}.
B = {(P;,z) : Py is intersection point of bisector (Ex;, Fx;) with OR, i,j =
1,2,...,m, & z=a(Pj, Ex;)}.

Step 4. For all (P;;,z) € AU B with z > 2*, test:
if L<(z) C R and L—(z) N IR # 0. If this is the case
Output : Opt® = L_(2) NOR,2* = 2.

In Case (a) of the Theorem 4.1.3, if the number of intersection points of the Bisector(Ex;, Ex;)
with OR is two or less, they are included in the candidate list. As there are m(m — 1)/2
bisectors of existing facilities, we will have mazimum m(m — 1) intersection points in this
case. There are m X K projection points of the existing facilities Ex;;1 = 1,2,...,m to
the K facets of R in Case (b) of Theorem 4.1.3.

The complezity of the Algorithm 4.2.1 is dominated by Step 1 and Step 4. The complexity

of Step 4 is O(m3) + O(m2K). If we solve the unrestricted hemispherical center location
problem with the polynomial time algorithm, Algorithm 3.4.2, we get overall complezity of
O(m?®) + O(m?*K).

4.2.1 Computation of a Projection Point Py, from Ex; onto fy

Suppose Xi(1) and Xy (2) be the two end points of edge fi of the restricted polygon R.

o Let Xp(1) and Xy(2) be two unit vectors pointing from the center of the sphere to-
wards points X (1) and X (2).
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e Take cross-product of Xi(1) and Xi(2) and normalize the result to get a vector G:
G = (Xi(1) x Xp(2))/ | Xi(1) x Xi(2) |-

e (G is normal to the plane of the great circle joining X(1) and X(2).

e Now take the cross-product of G with Ex;, the unit vector corresponding to point Ex;

FZGXE%‘Z‘

e Fis perpendicular to Ex;, so the great circle it defines passes through Ex;. It is also

perpendicular to G, so the great circle it defines is perpendicular to the great circle

defines by G.

o Now take the cross-product of F and G and normalize the result to get a vector:

N = FxG ]
[[FXG|

e one of =N is the projection point Pj. of the point Ex; to fi.

e +N are antipodal points.

4.2.2 Computation of Intersection Points I;; of Perpendicular Bisector M;; of Ex; and
Ex; with OR

As the restricted region R is formed by intersecting great circles, an edge of R is a great
circle segment. Also note that the bisector of Ex; and Ex; is a great circle. Therefore,
we have to look the intersection of two great circles in order to get intersection points of

bisectors with OR.

Procedure of finding intersection points of two great circles
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1. Let M be the mid point of the great circle arc(Ex;, Ex;).

2. Take cross-product A, of Ex; and Exj. This vector is normal to the plane of great

circle passing through Ex; and Ex;.

3. Take cross-product B, of A with M. This vector is normal to the plane of great circle
passing through A and M.

4. Let Xi(m),m = 1,2 be unit vectors pointing from the center of the sphere towards

the end points Xi(m), m = 1,2 of the edge fr of R.

5. Now take cross-product C, of Xy(1) and X (2).

6. |T—LBBXXC(ﬂ are the intersection points of M;; and f.

Note : The candidate intersections are antipodal points.

4.3 Hemispherical CenterSphereLoc Problem with Weights w;(> 0) # 1

In this case, the level sets of the objective function can be defined as follows :

L<(z) = {X€&: max wa(Ez;,X) <z}

=1,4,...,

= {XeS:a(Er;,X) <z/w, Yi=12,...,m}
= ﬂi:1727m7m{X €Sy Oé(X, Exz) < z/wi}.

That is, the level set can be obtained by intersecting all the spherical disks D(Ex;, wiz) with

centers Ex; and radii =i =1,2,...,m. It is clear that spherical disks D((Ex;, =) have

different sizes.
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As in the case of weights w; = 1, the set of possible locations for the hemispherical Re-
strictedCenterSphereLoc problem with weights w; > 0(# 1), consists of all projection
points of existing facilities to the facets of R and of all corner points of LS(ZR) (see The-
orem 4.1.2, Figures 4.4 and 4.5), even if D((Ex;, =) have different sizes.

w;
Therefore, we have to check:

(i) all projection points X,q from existing facility Ex; to any facet f,,

and

(i) all points X which satisfy wioa(Ex;, X) = wja(Ex;, X) for any pair of existing facili-
ties Ex; and Ex;.

That means, to get corner points we have to calculate intersection points of {X € S :
wia(Ex;, X) = wjo(Exj, X)} with OR for all i < j; 4,5 € {1,2,...,m}.
Then we can apply the above algorithm by changing the set B in step 3 as follows :

B’ = {(X,z): X is a intersection point of the set
{X € S:wa(X,Er;) =wjo(Exj, X)} with
OR,i,j €{1,2,...,m};z = w;a(X, Ex;) = wja(X, Ex;)}.



5. SPHERICAL LOCATION PROBLEMS WITH POLYGONAL BARRIERS

In development of spherical location models we deal with a geometric representation of the
problem, and the geographical reality has to be incorporated into this representation. In
almost every real-life situation we have to deal with restrictions and constraints of various
types. As restricted or forbidden regions (see Chapter 4) in the context of spherical location
models, there are many areas in which the placement of a new facility and transportation
are completely forbidden or even impossible. These regions (or areas) often referred to as
barrier regions . To give some examples of possible barrier regions, consider military areas,

mountain ranges and lakes on the globe.

Consider a finite set of convez, closed and piecewise disjoint barrier regions {B1,..., By}
on the surface of the sphere. We consider the union of these barrier regions by B := Uf\il B;
and the finite set of extreme points and facets of B by Ext(B) and Facet(B), respectively.
The interior of these barrier regions is forbidden for the placement of a new facility, and
additionally, travelling through int(B) is prohibited. Thus the feasible region F on the

spherical surface for new locations and for travelling is given by

F =8\ int(B).

Further, we assume that the measure of distance on the surface of the sphere Sg is length

of shortest arc ( or great circle distance ), « = a(X,Y) for all X,Y € Sp.

Definition 5.0.1: Given two points X,Y € F the barrier distance ap(X,Y’) with respect
to « is the length of a shortest path between X and Y not intersecting the interior of a

barrier region.

A permitted X-Y path with length ap(X,Y) will be called a a-shortest permitted path. Fur-
ther, we call two points X and Y in F o — visible if they satisfy ap(X,Y) = a(X,Y), i.e.,
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the distance between X and Y is not lengthened by the barrier regions.

Given set a €, = {Ez;;i = 1,2,...,m} of m demand points on the surface of a sphere
with associated weights ( or demands ) w; > 0;i = 1,2,...,m, spherical center location
(CenterSphereLoc) problem and spherical Weber location (WeberSphereLoc) problem

with polygonal barriers can be formulated respectively with this barrier distance ap(X,Y),

as
minimize
hp(X) = max wiag(X, Ex;) BarrierCenterSphereLoc (5.1)
i=1,2,....m
s.t XeF
and
minimize
B(X) = Z wiap(X, Ex;) BarrierWeberSphereLoc (5.2)
i=1,2,...,m
s.t XekF.

Note that the shortest arc distance, « is not convex. Further, the barrier distance ag(X,Y)

is in general not-conver and therefore fg and hp are also not convexr functions.

5.1 Shortest Paths in the Presence of Barrier Regions

Definition 5.1.1: The set of points Y € F that are not a—visible from a point X € F is
called the shadow of X with respect to a, i.e.,

shadows (X) :={Y e F:ap(X,Y)>a(X,Y)}.

(See Figure 5.1).

The following results shows that for any two points X, Y € F, X # Y there always ezists

a a-shorted permitted path connecting X and Y that is a piecewise shortest arc path with
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Shadow (X)

Barrier

"

_

S

X

Fig. 5.1: Shaded area represents the shadow of X

breaking points only in extreme points of a barrier region.

Lemma 5.1.1: Let o = «(X,Y) be the shortest arc distance between X and Y, where
X,Y € F. Then there exists a a-shortest permitted path SP connecting X and Y with
the following property.

Property 5.1.1: : SP is a piecewise shortest arc length path with breaking points only

on extreme points of barrier regions.

Proof Let X,Y € F and let SP be «- shortest permitted path connecting X and Y in F
that satisfies Property 5.1.1. Then consider two consecutive arc segments arc(Xj, Xjq1)
and arc(Xj11,Xj42) on SP. Without loss of generality they may be assumed not to be
curvilinear as otherwise X; 1 would be irrelevant and could be deleted.

Let X' and X" denote points on arcs arc(Xj, Xjy1) and arc(Xjy1, Xj+2) respectively at
an arbitrary small distance € > 0 from X;i1.

The path composed of arcs arc(Xj, X'), arc(X’, X"), arc(X", Xj12) is strictly shorter than
the path composed of arc(Xj, Xj41) and arc(X;11, Xj42) due to a property that any two
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sides of a spherical triangle are together greater than the third side.
As the latter path is feasible by the hypothesis, the former one can only be non-feasible for
all positive € if Xj,1 is a vertex of a barrier region with a arc segment crossing arc(X', X")

(see Figure 5.2). [

Path SP

Fig. 5.2: Shortest path SP for proof of Lemma 5.1.1

Therefore, using Property 5.1.1 in Lemma 5.1.1, the barrier distance ap(X,Y); X, Y € F
can be calculated with respect to a so-called intermediate point Ix y, i.e., a breaking point
on a a-shortest permitted path so that Ixy is c-visible from Y. Note also that if X and

Y are a-visible then the intermediate point Ixy equals X.

Corollary 5.1.1: Let a = «a(X,Y) be the shortest arc distance between X,Y € F. Fur-
thermore, let SP be a a-shortest permitted X — Y path with Property 5.1.1 and the point
Ixy #Y be a breaking point on SP that is a-visible from Y. Then

aB(X,Y) = aB(X,Ixyy)—l-a(IX,y,Y). (53)
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Note that the intermediate points Ixy are not necessarily unique.

Definition 5.1.2: The boundary of shadow,(X),

d(shadow, (X)) = {Y € F:D(Y,e) N shadow,(Y) # ()
and D(Y,e) € shadow,(Y) Ve > 0}, (5.4)

where D(Y, ¢) is a spherical disk with center Y and radius € > 0.

Note that the O(shadowq (X)) is a connected set of shortest length of arcs on the surface
of the sphere.

Obviously, those parts of O(shadow, (X)) that are of the boundary of a barrier region are
also shortest length of arcs on the spherical surface. For all other parts of O(shadow, (X)),
consider a point Y on 0(shadow, (X)) and let Ixy be an intermediate point on a c-visible
shortest permitted X —Y path with Property 5.1.1. Note that in this case Y is a-visible
from X. If all the points Z on the line segment starting at Ixy passing through Y and

ending as soon as it intersects the interior of a barrier region are a-visible from X.

5.2 Reducing the Non-convex BarrierSphereLoc Problem to a Set of Sub problems

Here, we consider a partitioning of the feasible region F into finite set of subregions using
the grid G, on the surface of the sphere.

The grid G, ts defined by the boundaries of the shadows of all existing facilities Fx;,i =
1,2,...,m and of all extreme points Ext(B) of the barrier region B, plus all the facets
Facet(B) of the barrier regions, i.e.,

Go = { U d(shadowq (X))} U Facet(B) (5.5)

Xe&x | Ext(B)
Since the barriers are convezr polygons and also the boundary of shadow,(X) is set of arc
segments for all X € F, the grid G, consists of a finite set of shortest length of arc seg-

ments in F.
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Existing Facilities

Acelll C

Restricted region B

Fig. 5.3: The grids on the surface of the hemisphere

Definition 5.2.1: A cell of grid G, is a smallest set (not necessarily convex or closed)

polygon not intersected by an arc segment in G, (see Figure 5.3).

We denote the set of cells of Go as C(Ga).

To see how the barrier distance defines from an existing facility to a point X in a cell C,
we consider a following example with three existing facilities and one barrier region with
four extreme points tj;j =1,...,4 (see Figure 5.4). Then the barrier distance from X to

Exo, ag(X, Exg) can be calculated as

ag(X, Exy) = ag(Exa, Ir) + a(ly + X) VX el

where ap(Exg, I) = a(Exg, t1) + aty, I2) and Iy = g, x = ta.

Therefore, we can generally consider a cell C € C(Gy) and let X € C. So if we let
Ii == Ipg, x,i = 1,2,...,m is an intermediate point on a «-shorted permitted X — Ex;-
path with Property 5.1.1 that is a-visible from X, then the barrier distance between X and

the existing facility Fx;, 1 =1,2,...,m can be written as
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CellC

Barrier region with four
extreame points

Fig. 5.4: The grids for the example problem with one barrier region and three existing facilities

ag(X, Ex;) = o(X, ;) + ag(I;, Ex;) VX eC (5.6)

A wisibility graph ( as proposed in Butt and Cavalier [3]) can be used to determine distances
between the facilities and all those points that are candidates of intermediate points on a
a-shorted permitted path between an existing facility and a point X € F. Let the node set
of this visibility graph G is V(G) := &, U Ext(B) and arc set of G is E(G), where E(G)
consists of all the arcs that connect two nodes v;,vj in V(G) if the corresponding nodes
on the surface of the sphere (hemisphere) are a-visible and have the distance o(v;,v;). In
figure 5.5, an example is given for the case that single barrier region presents in the location
problem

Then the barrier distance ap(Ex;, X) between an existing facility Ex; € &, and a point

X € F can be now calculated as

ag(Exi, X) = ag(Ezi, [gg, x) + a(Igz, x, X), (5.7)

where ag(Ex;, Ipy, x) denotes the length of a shortest path between Ex; and the interme-



88 5. Spherical Location Problems with Polygonal Barriers

Extreme points

Barrier region B

Fig. 5.5: The wvisibility graph for an example problem where a single barrier region is presents on

the surface of the hemisphere

diate point Ip,, x in the visibility graph G.

Thus for any X € C, barrier distance hx(X) from X to all the existing facilities can be
calculated using (5.6).

Hence, we could find the optimal facility locations for (5.1) and (5.2) within C' by solving
subproblems which are defined on C.

In the rest of this section, we will focus only on the Barrier WeberSphereLoc problem.
All the arguments which are made on this problem, are analogously true for the Barrier-
CenterSphereLoc problem.

Now consider the BarrierWeberSphereLoc problem. For any X € C sum of the weighted
distances, fx(X) from X to all the existing facilities can be calculated using the barrier

distance, (5.6) as follows:
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minimaize .
(SPY)  fx(X) = Y wi{as(Bxi, L) + o, X)} (5.8)
s.t ;?16 C.
(5.9)
Because, ag(I;, Ex;) is a constant we can reformulate the objective function (5.9) as
minfx(X) = {fx(X) = iwia(li,X)} + const (5.10)
s.t j;le C.
where
const = iwiaB(Exi,Ii) (5.11)
- (5.12)
and we can solve SPY, by equivalently solving
minimize .
(SP?)  fx(X) = > wia(X,I;)
s.t j;le C (5.13)

Further, if we relax the constraint of SP?, then we have the following unconstraint problem

minimize
SP?  fx(X) = ) wia(X, L) (5.14)
i=1

(5.15)

Note that SP3 is simply a WeberSphereLoc problem with existing facilities I;;i =

1,2,....m.
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Corollary 5.2.1: Let C' € C(Gy) be a cell and let X € C' a feasible solution for the Bar-
rierWeberSphereLoc problem. Then

f8(X) => wiap(X, Ex;) = fx(X), (5.16)

i=1

where fX(Y) = sz{a(y7ll) +Cla"'7a(Y’ Im) +Cm})

i=1
:f(a(Y,Il)—|—Cl,...,(X(Y,Im)—|—Cm) Y €8y (517)
and ¢ = ag(l;, Ex;), i=1,...,m. (5.18)
and where I; := Ig;; x # X;i = 1,2,...,m is an intermediate point on a a-shortest

permitted X — Ez;-path with Property 5.1.1 that is a-visible from X.

According to the Corollary 5.2.1, the BarrierWeberSphereLoc problem can be reduced
to a finite set of corresponding unconstrained ( or WeberSphereLoc ) problems with the

shortest arc distance as the measure of distance.

5.3 BarrierWeberSphereLoc Problem on the Surface of a Hemisphere

As a result that the WeberSphereLoc problem on the surface of a hemisphere is a con-
ver problem, the function, fx(Y) which is defined in Corollary 5.2.1, is also conver on
the surface of the hemisphere since it can be interpreted as the composition of the convex
nondecreasing function f and the convex functions o(Y,I;) + ¢;;i = 1,2,...,m, where ¢;

s a constant not depending on choice of Y.

Lemma 5.3.1: Let C' € C(G,) be a cell and let X € C. Then
Fx(Y)> Fy(Y) VY ec, (5.19)

where F'x and Fy are defined according to (5.17) and (5.18) and the intermediate points

I,,m € M are chosen such that they are a- visible from X and Y respectively.

Proof Let Fx(Y) = f(a(Y, 1) + c1,...,a(Y, I,y) + ), where ¢; = ap(l;, Ex;) and the

intermediate points I; = Igy, x are chosen such that they are a—wisible from all points
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in Cyi = 1,2,...,m. Due to the spherical triangle inequality, o(Y,I;) + ¢; = a(Y,I;) +
ap(l;, Ex;) > ag(Y, Ex;) holds for alli=1,2,... ,m and Y € C. Then

Fx(Y)

flaY, L) +c1,y...,a(Y, In) + em)
> flap(Y,Exy),...,ap(Y, Exy))
= Fy(Y).

Theorem 5.3.1: Let C € C(G,) be a cell and let X3 € C be an optimal solution of the
BarrierWeberSphereLoc problem . Then X} is an optimal solution to the correspond-

ing convex problem

min  Fxz(Y)
st YedC, (5.20)

where Fx(Y) is defined according to (5.17) and (5.18) and the intermediate points I;,i =

1,2,...,m are chosen such that they are a- visible from X3.

Proof Let X € C, Fx;(Y) be defined according to (5.17) and (5.18), and let I;,i =
1,2,...,m be the corresponding intermediate points on a—shortest permitted Ex; — X
paths, satisfying the the property Property 5.1.1, that are a—wvisible from all points in C.
Lemma 5.19 implies that

Fyy (V) > Fy(Y) = f(Y) (5.21)

holds for all Y € C. Using Corollary 5.2.1 and the assumption that X3 is an optimal

solution of BarrierWeberSphereLoc problem, we obtain
Fx(Y) > f8(Y) > f5(Xp) = Fx;(X5) VY e C.

|
Theorem 5.3.1 implies that BarrierWeberSphereLoc problem on a hemisphere can be

reduced to a finite set of convex subproblems within each cell in C(G,) even though the
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original objective function fp(X) is in general non-conver within the cells.

If an optimal solution X3 of BarrierWeberSphereLoc problem is located in the interior
of a cell, the following result proves that this solution can be found by solving a finite set
of convex subproblems with the objective function Fx(Y') defined according to (5.17) and
(5.18).

Theorem 5.3.2: Let C' € C(G,) be a cell and let X} € int(C) an optimal solution of
BarrierWeberSphereLoc problem with barrier distance ag. Then Xy is an optimal

solution to the corresponding convex problem

man FXZ% (Y) (5.22)
st YeSH

where Fx(Y') is defined according to (5.17) and (5.18) and the intermediate points I;,i =

1,2,...,m are chosen such that they are a- visible from X3.

Proof Let X € int(C). Since Xj € C, Theorem 5.3.1 implies that Xy minimizes Fx in
the cell C. Using the fact that FX;(Y) is convex function of Y on a hemisphere and that
X5 € int(C), we can conclude that X minimize the Fx(Y) on a hemisphere. |

Theorem 5.3.3: Let C be a cell in C(G,) and X} be a global optimal solution to the

convex problem

min  Fx(Y) (5.23)

st YeSH

where Fx(Y') is defined according to (5.17) and (5.18) and the intermediate points [;,i =
1,2,...,m are chosen such that they are a- visible from any X € C. If Xj; € int(C), then
Xp is at least a local optimal solution to the BarrierWeberSphereLoc problem on a

hemisphere.



5.3. BarrierWeberSphereLoc Problem on the Surface of a Hemisphere 93

Proof First, given that Xj5 € int(C), it is clear that Fx(Xg5) is a lower bound to the
optimal objective value of (5.20); that is Fx(Xj5) < Fx(Y) for each Y € C.

That is X is the global optimal solution of the convex subproblem which is defined on C.
Therefore, there exists an e-neighborhood of Xf, N(X}) C int(C), such that

Fx(X5) < Fx(Y) for each Y € N (X}).

But since

N(X3) C int(C) C Ga,

it follows that fg(Xp3) = Fx(Xg) < Fx(Y) = fs(Y) for each

Y € N(X}) = GaUNJ(XE) (5.24)

This complete the proof, since (5.24) defines a local optimal solution of BarrierWebwer-
SphereLoc. |

5.3.1 Iterative Spherical Convex Hull

According to Theorems 5.3.1 and 5.3.2, it is clear that there are some relationship between
SphereLoc problems and BarrierSphereLoc problems on a hemisphere. Therefore, some
of the general properties of SphereLoc can be transferred to the BarrierSphereLoc prob-
lems. As an example, the optimal locations of WeberSphereLoc and CenterSphereLoc
problems on a hemisphere lie within the spherical convex hull of the existing facilities ( see
2.1.83 ). An analogous property can be proven for the BarrierSphereLoc problems by
defining an iterative spherical convexr hull I°°™¢T of the existing facilities and the barrier

TegIONS.

Definition 5.3.1: Let B be the union of a finite set of closed convex and pairwise disjoint
spherical polygons on a hemisphere. Iterative convex hull [°""®* is defined as the

smallest spherical convex hull in the surface of the hemisphere such that

{Ez;;i=1,2,...,m} C I" and 9I°"* Nint(B) = 0.

(see Figure 5.6).
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Existing facilities

Barrier region

Iterative convex hull

Fig. 5.6: The shaded area represents the iterative spherical convex hull

Theorem 5.3.4: Let X3 ¢ G, be an optimal solution for the BarrierWeberSphereLoc
problem on a hemisphere .

If for all corresponding WeberSphereLoc subproblems with objective function Fx as de-
fined in (5.17) and (5.18), the set of optimal solutions is contained in the spherical convex

hull of the existing facilities, then

X € (17 1 F).

Proof Let Xj be an optimal solution of BarrierWebwerSphereLoc such that Xj; €
int(C) for some cell C € C(Gy).

Suppose that X ¢ 1°7°**. Wlog, we assume that there exits no barrier in Sé{ \ Jeonver
since this assumption does not increase the objective value of any point X € (1" N F).
Theorem 5.8.2 => Xj; is an optimal solution of problem (5.22) with respect to some in-
termediate points I; € {Ex;;i=1,2,...,m}UExt(B) fori=1,2,...,m. This problem is
an WeberSphereLoc problem with the objective function Fx and thus Xj € conv{l; : i =

1,2,...,m} NF. Since I®" is the spherical convex hull of all existing facilities and all
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barrier regions, we can conclude that

conv{l; :i=1,2,...,m}NF Cconv({Ez;;i=1,2,...,m} U Ext(B)) N F C [ NF.

5.3.2 Line Search Procedure on a Hemispherical Surface

Suppose X = (x1,y1,21) and Y = (x9,y2, 22) are two points (= position vectors) on the

unit sphere So. To find the great circle that passes through X and Y, let
XY

W =Y - Projx(Y) = Y —
rojx(¥) XX
= Y- (X-V)X  sineX-X=1%

The vector W is perpendicular to X, but its length may not be one.

Yy

Fig. 5.7: Great circle that passes through X and'Y

Thus, we re-scale to obtain a vector Yx of the form

1
Yx = —W (5.25)
W]
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If we now define the curve
X(t) = cos(t) X + sin(t)Yx (5.26)

then X" (t) = —X(t), which implies that the acceleration of X (t) is normal to the sphere.
Moreover, because X and Yx are orthogonal, we have
X(t)-X(t) = cos?(t)X - X + 2sin(t) cos(t)X - Yx 4 sin®(t)Yy - Yy
= 12cos?(t) 4+ 0 + 1% sin?(¢)
= 12

Thus || X(t)|| = 1 for all t, which implies that X (t) is on the unit sphere. As a result,
X (t) = cos(t)X + sin(t)Yx is the great circle that passes through both X and Y.

Indeed, if we let
a=a(X,Y) = arccos(X-Y) (5.27)

then it can be shown that X(0) = X and X(a) =Y.

That means, given two points X and Y on the surface of the unit sphere, any point X (t)

on the great circle arc, arc(X,Y), has the following parametric form :

X(t) = cos(t)X +sin(t)Yx = (x¢, yt, 2t) (5.28)

where t € [0, a.

Suppose that g is a convex function on the surface of a hemisphere Sy. As an example, g
may be WeberSphereLoc or CtenterSphereLoc problems on Sy. Now, our goal is to mini-
mize g on grids Ge.

That s, we want to minimize

9(X(1)) (5.29)
st X(t) € are(X,Y)
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where X, Y € Sy, t € [0, ], with a(X,Y) = arccos(X - Y) and X (t) is defined as (5.28).

Line search procedure on the great circle arc

Consider two points X and'Y on the surface of the unit sphere. Let X (t) be any point on
the great circle arc , arc(X,Y). Then X (t) has the form (5.28) where t € [0,a] and « is
defined as (5.27).

Now consider the line search procedure to minimize g(X(t)) subject to 0 < t < . As
we don’t know the exact solution of the minimum of g over [0,«] on the greet circle arc,
arc(X,Y), the interval [0, ] is called interval of uncertainty.

During the search procedure if we can exclude points of this interval that do not contain
the minimum, then the interval on uncertainty is reduced.

The following Theorem shows that if the function g(X(t)) is spherical convex then the in-

terval of uncertainty can be reduced by evaluating g at two points within the interval.

Theorem 5.3.5: Let g(X(¢)) be convex over the arc(X,Y) with the interval of uncer-
tainty [0,«]. Let A\,u € [0,¢] such that A < p. If g(X(X)) > g(X(p)), then g(X(2)) >
9(X () for all z € [0, A). If g(X (X)) < g(X(u)), then g(X(2)) = g(X()) for all z € (u, al.

Proof Suppose that g(X (X)) > g(X(p)) and let z € [0, ).
By contradiction, suppose that g(X(z)) < g(X(un)). Since A can be written as a convex

combination of z and p, and by the convexity of g, we have

g(X(N) =9(BX(2) + (1 = B)X(n) < Bg(X(2)) + (1 —B)g(X(n))
< Bg(X () + (1 - B)g(X () = g(X (1)

contradicting g(X (X)) > g(X(n)). Hence , g(X(z)) > g(X(u)). The second part of the

theorem can be proved similarly.

Remark From the Theorem 5.3.5, if g(X (X)) > g(X(n)), then the new interval of uncer-
tainty is [\, «] under the convexity of g. On the other hand, if g(X(\)) < g(X(u)), the
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interval of uncertainty is [0, u] (see figure 5.8).

gX () g(Xw)

QX (W) gxX)

0 A 1) o O A v o

new interval

N
N

new interval

Fig. 5.8: Reducing the interval of uncertainty

The Fibonacci search

Suppose g(X(t)) is convex on the great circle arc arc(X,Y) over a bounded interval [0, «].
This procedure makes two functional evaluations at the first iteration and then only one
evaluation at each of the subsequent iterations. During this procedure, the interval of un-

certainty varies from one iteration to another.

Consider the Fibonacci sequence {F,} defined as follows:

F, = F,+F,_,v=12...
F = =1 (5.30)

At each iteration k, suppose that the interval of uncertainty is [ax,bg]. Consider the two

points A, and ux given bellow, where n is the number of functional evaluations planned.
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Fr i

A = ap+ n—k l(bk—ak),kzl,Q,...,n—l (5.31)
Fr k41

Hy = ar+ (bk—ak),k:—l,Q,...,n—l (532)
n—k+1

By Theorem 5.3.5, the new interval of uncertainty is given by [Ag,bx] if g(X(\x)) >
9(X () and is given by [ax, ] if (X (M) < g(X ((1x))-

Case 1 : If g(X(\)) > g(X (1))

From (5.31) and letting v =n — k in (5.30), we get

b1 — a1 = bp — A

= (b, — ax,) (5.33)

Case 2 : If g(X (M) < g(X(ur))

bry1 — ape1 = g — ag
ank

= ag+ (bx — ar) — ay,

Fn k41
F,_
Fn—k—l—l

ank
oy py1”

Thus in both case, the interval of uncertainty is reduced by the factor

Now consider iteration k + 1.
Suppose g(X (M) > g(X(ug)). Then by Theorem 5.3.5, apt1 = Mg, and by = by.
By replacing k with k 4+ 1 in (5.31), we get
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Fyr
Akl = Qg1+ bg1 — Aggr) jo Aot
n—k
oo
= Ap+ =2k — Ay (5.35)
ank
Substituting for A\ from (5.31), we have
o Frn k-1 Fo g2 Fn k1
Akl = ap+ i (bk —ar) + o (bk — ak i (bx — ay))
Fo k1 Fn k2 Fn k1
= ap+ b —ap) + ——(1— —=——)(by —a 5.36
K Fn—k+1( k= k) o ( Fn—k+1)( K — k) (5.36)
- _ _ : _ Frnk—1 _ Ernk
Letting v =n — k in (5.50), we have 1 vy = Fopar
Then from (5.36), we have
Fyri4 Fo
A1 = ap+ et : 2)(bk—-ak)

Fo k1
Now letting v =n —k — 1 in (5.30), we have F,,_y = F,__1 + F,_k_2. Then from the

above equation we have

Fn—k
Fo k1

A4l = ag+ (bx — ar) = p

Similarly, if g(X(A\x)) < g(X(pk)), we can show that pg11 = Ag.

Thus at iteration k + 1, either Ag41 = pg or pgr1 = Ag. Thus in either case only one

observation is needed at iteration k -+ 1.

To summarize, at the first iteration two observations are made and at each subsequent

iteration only one observation is necessary.

Thus, at the end of iteration n — 2, we have to complete n — 1 functional evaluations. Fur-

ther, for k =n—1, it follows from (5.81) and (5.32), that A\py—1 = pin—1 = %(%-1 +bp—1).
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Since either \p_1 = fn—2, OT fin—1 = An—2, theoretically no new observations are to be
made at this stage. However, in order to further reduce the interval of uncertainty, the last
observation is placed slightly to the right or the left of the midpoint A\p_1 = pn—1, so that

%(bn—l — ap—1) is the length of the final interval of uncertainty [ay,, by].

The Fibonacci method requires that the total number of observations n chosen beforehand.
This 1is because of the placement of the observations is given by (5.31) and (5.82) and,
hence is dependent on n. From (5.83) and (5.34), the length of the interval of uncertainty

Fn—k
Fppy1”

1s reduced at iteration k by the factor Hence, at the end of n — 1 iteration, where

n total observations have been made, the length of the interval of uncertainty is reduced
from by —ay to by, — a, = (by —a1)/F,. Therefore n must be chosen such that (by —ay)/F,

reflects the accuracy required.

Algorithm for the Fibonacci search method

The following is a summary of the Fibonacci search method for minimizing spherical convex

function on a great circle arc segment over the interval [0, a].

Algorithm 5.3.1:

Input: X,Y : two points on the surface of the hemisphere with the length of the arc(X,Y) =
a (see (5.27)).

Output: X* : optimal location.

Z* . optimal objective value.

Step 0: [ > 0 : allowable final length of uncertainty
e > 0 : distinguishibility constant
[a1,b1] : initial interval of uncertainty

n : number of observations to be taken such that F,, > (by —aq)/I

Step 1: Let \y = a1 + (Fy—2/F,)(b—1—ay) and
p1 = a1+ (F_1/F,) (b1 — a1).
Evaluate g(X (1)) and g(X(u1)), let k =1, and goto Step 2.
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Step 2: If g(X(Ar)) > g(X (1)), goto Step 3, and if g(X(Ay)) < g(X(ux)), goto Step 4.

Step 3: Let agyr1 = Ax and bgy1 = by. Furthermore, let Agy1 = pg, and let ppy1 = agq +

(F}*f:)(bkﬂ —agy1). If k= n — 2, goto Step 6; Otherwise, evaluate g(X (x11))

and goto Step 5.

Step 4: Let agy1 = ap and bgy1 = pg. Furthermore, let prpi1 = Ag, and let A\pyq =

—2
k

Qg1+ F}T‘lf (b1 —ags1). If k = n—2, goto Step 6; Otherwise evaluate g(X (pg41))

and goto Step 5.
Step 5: Replace k by k 4+ 1 and goto Step 2.

Step 6: Let A\, = Ap—1, and py, = pp—1 + €. I If g(X(N\y)) > g(X (1)), let a, = A, and
b, = by—1. Otherwise, if g(X(\,)) < g(X (1)), let a, = ap—1 and b, = A,. Stop;
the optimal solution X* lies in the interval [a,, b,] with X* €arc(X (a,), X (bn)).

5.4 Algorithm for BarrierWeberSphereLoc Problem on a Hemisphere

According to the result of Theorem 5.8.2, the BarrierWeberSphereLoc problem can be
reduced to a set of conver WeberSphereLoc subproblems. In this situation, two different

cases may occur. An optimal solution X} of BarrierWeberSphereLoc may be located
(a). on the grid G,

or

(b). in the interior of a cell C € C(Gy).

Therefore, a two step algorithm can be suggested to solve the BarrierWeberSphereLoc
as follows. In the first step, a line search procedure on great circle arcs ( see Section 5.3.2)
can be applied on each arc segment of the grid G,. In the second step, a local minimum
can be found (see Theorem 5.3.3) in the interior of a cell in F \ G, by solving convex
subproblems (5.22) for all feasible reformulations fg(Y) = Fx(Y) of the objective func-
tion. For each solution Y™, fp(Y*) = Fx(Y™) has to be verified to test the feasibility of Y™*.

Algorithm 5.4.1:
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Input: & = {Ex; :i=1,2,...,m}, the set of existing facilities.
B : Convex spherical polygon with sets of extreme points Ext(B) and facets Facet(B).

Output: Opty : set of all optimal locations.

Zy : optimal objective value.
Step 1: Construct the grid G,.
Step 2: Find the minimum of the problem (5.2) on grid G,.

Step 3: For all feasible reformulations of the objective function, i.e., for all feasible assign-

ments of intermediate points to the existing facilities,

(a) Find an optimal solution Y* of the corresponding unrestricted problem
min  Fx(Y), Y eSE.

(b) If f(Y*) = Fx(Y™), the solution Y* is a candidate for an optimal solution.

Step 4: Determine the set of global minima from the candidate set found in Steps 2 and

3.

The time complezity of Steps 1 and Step 2 of Algorithm 5.4.1 depends on the size of the
grids G, and thus on the number of existing facilities and the number of extreme points
of the barrier regions. Therefore, the number of intersection points in G, is bounded by
O((|&x| + |Ext(B)|)? - |Ext(B)|*), and the number of cells in G, is bounded by

O((|€:] + |Ext(B)])? - | Ext(B)[*).

The overall time complexity of Algorithm 5.4.1 is in general dominated by Step 3. If no
additional information is available to reduce the number of possible assignments of existing
facilities to intermediate points, the number of subproblems is exponential in the number
of existing facilities and in the number of extreme points of the barrier regions. Thus, the
Algorithm 5.4.1 is computationally expensive when no additional information is available
on the structure of the problem and hence a heuristic strateqy can alternatively be applied.
Instead of evaluating all the theoretically possible assignments of existing facilities to inter-

mediate points, a sample set S of points can be constructed in 1€°"** N F. For an example
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this sample set S can be constructed by choosing the grid points of an equidistant grid in

ICOTLU€$

or by choosing specific points on the visibility grid G,. All the points in this sample
set can be used as starting points to determine Fx for the unconstrained location problem
(5.22). As in Algorithm 5.4.1, the corresponding optimal solution Y* of Fx can be put in
the candidate set if Y* is feasible, i.e., if fg(Y*) = Fx(Y™).

Algorithm 5.4.2:

Input: &, = {Ex; :i=1,2,...,m}, the set of existing facilities.
w; : Associated weights.
B : Convex spherical polyhedron with sets of extreme point Ezt(B) and facets
Facet(B).

Output: Opty : set of all optimal locations.

Zy : optimal objective value.

Step 1: Construct the grid G,.

Step 2: Find the minimum of the problem (5.2) on grid G,.
Step 3: Define a sample set S of grid points in [€"VeT,
Step 4: For each grid point X € §
(a) Find an optimal solution X* of the corresponding unrestricted problem
min  fx(Y), Y eS8
(b) If f(X*) = fx(X™), the solution X* is a candidate for an optimal solution.

Step 5: Determine the set of global minima from the candidate set found in Steps 2 and

4.

5.5 BarrierWeberSphereLoc Problem on the Surface of the Unit Sphere

According to the Corollary 5.2.1 in Section 5.2, BarrierWeberSphereLoc problem can
be reduced to a finite set of corresponding unconstrained ( or WeberSphereLoc ) prob-

lems with the shortest arc distance o as the measure of distance.
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As the objective function fg(X) of the WeberSphereLoc problem is in general non-convex
within the cells, the resulting corresponding subproblems are also in general non-convexr.
Therefore, the difficulty of the problem is not reduced as in the case where the existing

facilities lie on a hemisphere.

Theorem 5.5.1: Let C € C(G,) be a cell and let X € C. Let X} represents the global

optimal solution to the non convex problem

minimize
Fx(Y) (5.37)
s.t Y es

where Fx(Y') is defined according to (5.17) and (5.18) and the intermediate points [;,i =
1,2,...,m are chosen such that they are a-visible from X.

Then Fx(X}j) is a lower bound to the optimal objective value of

minimize
Fx(Y) (5.38)
s.t Y eC.

That is

Further, if X5 € C, or equivalently, if X} is a feasible solution to the problem (5.38), then
X} is the best optimal solution (5.38). [

Theorem 5.5.2: Let X} represent the global solution to the problem (5.37). If X} €

int(C), then X} is at least a local optimal solution to BarrierWeberSphereLoc problem
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Proof First, given that Xj € int(C), we know from Theorem 5.5.1 that
Fx(Xg) < Fx(Y) for eachY € C.

That is, X} is the global optimal solution to (5.38). Therefore, there exists an e-neighborhood
of X5, No(Xj) Cint(C), such that

Ix(Xg) < fx(Y) for eachY € N.(Xp).

But since

N.(X}) € int(C) C Ga,

it follows that Fx(X3) < Fx(Y) for each

Y € N.(X}) = Go N N(X3) (5.39)

This complete the proof since (5.39) defines a local optimal solution to BarrierWeber-
SphereLoc problem. |

Heuristic Algorithm for BarrierWeberSphereLoc problem

From the visibility graph G(V, E) (see section 5.2) on Sy, we can easily define the shortest
path from each existing facility location Ex;;i = 1,...,m to X in a cell,C. From these
paths, we can then determine the visible nodes I; in the shortest-permitted Ex; — X -path
fori=1,...,m. Now suppose that minimizing (5.37) (i.e., solving WeberSphereLoc
problem with existing facilities I;,i = 1,...,m and weights, w;,i = 1,...,m), results in the
optimal location Xj. From Theorem 5.5.1, we know that if Xg € C, then Xg is a global
facility location in C. And from Theorem 5.5.2, if X}; € int(C'), then X3 must also be at
least a local optimal solution to the Barrier WeberSphereLoc problem.

We can verify that X} € int(C) by showing that the distance functions, or equivalently the
visible nodes, associated with X and Xj are not only identical, but unique. If the distance
functions are not unique (i.e., there are at least two paths to Xj from some existing fa-
cility location Ex;, such that the lengths of the paths are equivalent), then Xj is on the
boundary of C (0C). If X € 0C, then an e-neighborhood may also contain points which

are elements of adjacent regions. Therefore, in this case, to be assured of a local optimal
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solution to the BarrierWeberSphereLoc, we must also verify that X3 is a local optimal
solution in each adjacent region for which Xz € C. Based on this, we propose the following

heuristic algorithm for the barrier weber problem on the spherical surface.

Algorithm 5.5.1:

Input: &, = {Ex; :i=1,2,...,m}, the set of existing facilities.
w; : Associated weights
B : Convex spherical polyhedron with sets of extreme point Ezt(B) and facets
Facet(B).

Output: Opty : set of all optimal locations.

Zy : optimal objective value.

Step 1: Construct the grid G,. Choose a cell C' and initial point X° € C

Step 2: Find the minimum X} of the problem (5.37).

Step 3: If :

(a) X & C, then choose an another cell. Go to Step2.

(b) X3 € 0C, then for each adjacent region for which X}; € C, reapply the Algorithm
5.5.1 using Xy as the initial point.

(c) X3 € int(C), then STOP: X is a local optimal facility location to the Barri-
erWeberSphereLoc.






6. NUMERICAL RESULTS

We develop the code in Visual C++ 6.0 for the Algorithm 4.2.1 which is presented in
Section 4.2. The code is implemented on a computer AMD Athlon(tm)XP 1500+ at 1.3/
GHZ.

First, consider the following example with fifteen ezisting facilities (cities) and four extreme
pointed spherical polygon as the existing restricted region in the Northern hemisphere. Ta-
bles 6.1 and 6.2 below list the latitude and longitude as well as the corresponding Cartesian
coordinates of these fifteen cities and of the extreme points of the restricted spherical poly-

gons respectively.

The algorithm generates the optimal location for RestrictedCenterSphereLoc problem
in the Northern hemisphere with the cartesian coordinates (0.6019, —0.5504,0.5784) and
with the corresponding latitude and longitude (35.34N,42.43W). The corresponding opti-
mal objective value is 0.9064. The intersection point of the spherical bisector of the 8"
and the 12" existing facilities with facet generated by the 1°¢ and the 2" extreme points of
the given spherical polygon is the required facility point. The CPU time of the algorithm
for this example is 5.0 seconds.

Note that the unrestricted CenterSphereLoc problem is solved by applying the polynomial
time algorithm, Algorithm 3.4.2.

Consider now 10 sets containing 10, 20, 30, 40, 50, 60, 70, 80, 90 and 100 demand
points distributed randomly over the Northern hemisphere and 8 sets containing 3, 4, and
5 extreme pointed spherical polygons for each data set such that the optimal location for the
CenterSphereLoc problem in the hemisphere is contained within the spherical polygons.

Each of the above sets is randomly generated ten times. Table 6.3 shows the average

computation time (in seconds ) of the Algorithm 4.2.1. Figure 6.1 shows distribution of
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Latitude,¢ | Longitude, 6 X y 7
1 | 51.5N 04E 0.6225 | 0.0043 | 0.7826
2 | 489N 2.3E 0.6568 | 0.0264 | 0.7536
3 | 47.5N 8.5E 0.6694 | 0.1000 | 0.7361
4 | 41.9N 12.5E 0.7267 | 0.1611 | 0.6678
5 | 55.7N 12.6E 0.5500 | 0.1229 | 0.8261
6 | 52.5N 13.4E 0.5922 | 0.1411 | 0.7934
7 | 59.3N 18.9E 0.4830 | 0.1654 | 0.8600
8 | 38.0N 23.7E 0.7216 | 0.3167 | 0.6157
9 | 39.9N 32.8E 0.6449 | 0.4156 | 0.6415
10 | 32.1N 34.8E 0.6956 | 0.4835 | 0.5314
11 | 55.7N 37.7TE 0.4459 | 0.3446 | 0.8261
12 | 35.4N 51.4E 0.5058 | 0.6370 | 0.5793
13 | 18.9N 72.8E 0.2798 | 0.9038 | 0.3239
14 | 14.6N 121.0E -0.4984 | 0.8295 | 0.2521
15 | 35.6N 139.7E -0.6201 | 0.5260 | 0.5820

Tab. 6.1: Latitudes, Longitudes and corresponding Cartesian coordinates of 15 cities

Latitude, ¢ | Longitude, X y Vi
1| 41.96N 46.73W 0.5096 | -0.5414 | 0.6686
2 | 28.47N 84.80E 0.0796 | 0.8754 | 0.4767
3 | 35.54N 104.33W -0.7883 | -0.2014 | 0.5813
4 | 18.72N 26.62W 0.8466 | -0.4243 | 0.3209

Tab. 6.2: Latitudes, Longitudes and corresponding Cartesian coordinates of the extreme points of

the restricted spherical polygon
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the CPU time of the algorithm according to the increasing number of demand points and

the shapes of the restricted regions.

Runtime(in seconds) with the polygon having
No. of Demand points | 3 extreme points | 4 extreme points | 5 extreme points

10 0.03 0.03 0.04
20 0.07 0.35 1.04
30 1.69 2.96 4.26
40 4.27 6.41 8.48
50 7.70 10.84 13.94
60 11.81 16.21 20.85
70 16.57 22.31 28.28
80 21.67 29.66 37.67
90 28.06 38.09 47.92
100 34.87 46.87 61.01

Tab. 6.3: Average CPU time ( in seconds ) for 10 different set of demand points with 3 different

shapes of restricted spherical polygons

Further, some test runs for samples of 200, 300,400, 500 and 1000 of demand points with
same shape of of restricted regions were tested and the computational time of these samples
are included in the Table 6.4. Visual Version C++ 6.0 is used on the same computer for
computation.

Now, we represent some results for the BarrierWeberSphereLoc problem using the
developed algorithms, Algorithm 5.4.1 and Algorithm 5.4.2. Consider again the 15 existing
cities given in Table 6.1 and a single barrier region with 4 extreme points which is given
in Table 6.2 in the northern hemisphere. We developed the C++ codes for the Algorithm
5.4.1 and (0.5662,0.6490,0.9088) was resulted as the optimal location for the hemispherical
Weber location problem with the optimal objective value 2.9542. The computational time
i this example is 56.36 seconds.

In this solution approach, as we are considering all possible feasible assignments of exist-
ing facilities to intermediate points, this is computationally expensive. Therefore, Instead

of evaluating all the theoretically possible assignments of existing facilities to intermediate
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Fig. 6.1: Distribution of CPU time of the Algorithm 4.2.1

Runtime(in seconds) with the polygon having
No. of Demand points | 3 extreme points | 4 extreme points | 5 extreme points
200 145.129 193.919 242.589
300 327.110 429.598 537.623
400 579.453 772.291 952.529
500 914.265 956.796 1509.06
1000 1670.27 1967.98 2296.730

Tab. 6.4: CPU time ( in seconds ) for large sets of demand points with 3 different shapes of

restricted spherical polygons. % : these samples were not tested.
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points, a suitable sample set S of points can be specified in I°™**NF to apply the developed
Algorithm 5.4.2.

Now we consider the same hemispherical BarrierWeberSphereLoc problem with 15 ex-
isting cities and the single barrier for applying Algorithm 5.4.2 on the selected sample set
S. Consider all the spherical triangles which are generated by the existing facilities and the
extreme points of the barrier in which the extreme points of each spherical triangle that are
a—wisible from each other. Then a sample set S for this problem can be formed by ran-
domly generated points from these spherical triangles. The Algorithm 5.4.2 generated the
same location (0.5662,0.6490,0.9088) as the new facility for the BarrierWeberSphere-

Loc problem on the Northern hemisphere with same objective value in 14.8 seconds.

To see the distribution of run time of the Algorithm 5.4.2, 10 randomly generated set of
demand points on the Northern hemisphere with 5,10,15,20,25,30, 35, 40, 45 and 50 points
with a spherical triangle as the polygonal barrier. The Algorithm was tested 5 times on each
sample set and the resulted run time of the Algorithm in each case is given by the following

Table, 6.5.

Number of demand points | Run time (in seconds)

1 2 0.502

2 10 372.813
3 15 782.671
4 20 1247.643
) 25 1941.756
6 30 2875.903
7 35 4143.572
8 40 6241.743
9 45 8732.904
10 50 11995.761

Tab. 6.5: Average CPU time (in seconds) of the Algorithm 5.4.2

Figure 6.2 shows the distribution of run time of the Algorithm 5.4.2 in increasing number

of demand points.
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Fig. 6.2: Distribution of CPU time of the Algorithm 5.5.1

Further, some test runs on the sample sets of 100, 200 and 500 demand points were tested
with Algorithm 5.5.1, and 88465.091, 107231.742 and 344362.056 seconds respectively were
resulted as the CPU time.

Now, we will present some computational result for the WeberSphereLoc problem using
the developed Algorithm 5.5.1 in section 5.5. The test sample sets with 10,20,30,40, 50,
60, 70, 80, 90 and 100 demand points on the sphere were generated randomly. A spherical
triangle is exposed in to the sets of demand points in each case as the polygonal barrier.
The Algorithm is tested 5 times on each case and the resulted run time is shown in the
following Table 6.6. This algorithm was also tested for large samples of 200, 300, 400, 500
and 1000 demand points. The required run time for these samples are shown in the Table
6.7

Figure 6.3 shows distribution of the CPU time of the algorithm according to the increasing

number of demand points.
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Number of demand points

Run time (in seconds)
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60
70
80
90
100

13.299

20.671

28.281

36.874
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62.017

79.437
103.771
137.003
184.423

Tab. 6.6: Average CPU time (in seconds) of the Algorithm 5.5.1
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Number of demand points | Run time (in seconds)
1 200 237.589
2 300 041.423
3 400 988.472
4 200 1668.106
5 1000 3496.450

Tab. 6.7: CPU time (in seconds) of the Algorithm 5.5.1



7. CONCLUSIONS AND FUTURE RESEARCH

In this thesis, different solution approaches for the spherical center location ( Center-
SphereLoc ) problem and the spherical weber location (WeberSphereLoc ) problem
have been investigated and unified presentation has been provided. Furthermore, as a new
idea, the concepts "Restricted and Barrier regions” have been exposed in to spherical loca-
tion problems and some solution strategies of these restricted and barrier spherical location
(RestrictedSphereLoc and BarrierSphereLoc respectively ) problems have been pre-

sented.

Basically, throughout this work the great "circle arc distance” ( shortest arc length ) on
the surface of the unit sphere has been used in developing the mathematical models for the

RestrictedSphereLoc and BarrierSphereLoc problems.

As a result that the great circle arc distance is non convez function on the surface of the
sphere, some restrictions have to be made on the feasible region in order to discuss the
solution criteria for the restricted center sphere location (RestrictedCenterSphereLoc
problem. Therefore, In Chapter 4, some basic results for the hemispherical Restricted-
CenterSphereLoc problem have been developed using the concept, "level sets” and "level
curves" and a resulted "polynomial time " algorithm has been developed. In this algorithm,
all the demand weights, w;, i = 1,2,...,m have been assigned to be equal to one. When
the demand weights are w; > 0 but w; # 1, a solution approach has been discuss in section
4.8. In this situation the weighted bisectors on the surface of the unit sphere have to be

used to obtain the optimal location for the new facility.

A solution strategy for the BarrierSphereLoc problems has been presented using par-
titioning the feasible region into some subsets with the help of wvisibility phenomena in

Chapter 5. Here, the concept "barrier distance” has been used in developing algorithms
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in both "spherical” and "hemispherical” cases. Also, "visibility graph" and a "line search

procedure " on the spherical surface have been discussed in this Chapter.

In Chapter 6, some numerical results for the developed algorithms for both (Restricted-
CenterSphereLoc and BarrierSphereLoc problems have been included. According to
these results, the algorithm which has been developed for the hemispherical Restricterd-
CenterSphereLoc problem gives the solution for the new location in polynomial time.
One can observe that the running time of the Algorithms 5.4.1, 5.4.2 and 5.5.1 is highly
dependent on the number of existing facilities and on the no of extreme points of the barrier
regions.

The possible future research work is to propose different distance norms on the surface of
the sphere to have better solution with better CPU time. Further, if we have different dis-
tance norm, like lo distance norm in Euclidean space, one can partition the surface area
of the sphere into two regions and then can apply both arc distance and the newly defined
distance in each region to have another algorithmic approach for the BarrierSphereLoc
problem.

Further, in radiation therapy, when the target volume has been irradiated in three dimen-
sional way, the problem is to find better radiation therapy planing can be considered as a
restricted or barrier spherical location problem on the spherical surface. Finally, finding

weighted bisectors on the surface of the unit is also still a open problem for the future work.



8. APPENDIX

Proof for Theorem 2.1.3 For the convenience, we will assume that the center of the
spherical circle is (0,0,1). Therefore, all of the existing facilities are above the XY -plane.
Let X* = X*(z*,y*, 2") be a global minimizer of f(X).

Claim 1: z* > 0.

Suppose z* < 0 and X' = X' (xx, y*, —2*)

All the existing facilities are above XY - plane = arc(X', Fx;) < arc(X*, Ex;) Vi =
1,2,...,m.

S F(XY) < F(X).

This contradicts the global optimality assumption of X*.

Now, assume that X* is on or above the XY -plane.

If X* is in the spherical conver hull of the existing facilities, we are done. Therefore,
suppose that X™* 1s not in the spherical convex hull of the existing facilities.

Claim 2: There must be at least one existing facility, say Ex; such that arc(X*, Exj) <
/4. This is true because otherwise f((0,0,1)) < f(X*) and this contradicts the global
optimality assumption of X*.

Let P be the orthogonal projection of X* onto the convex cone generated by the existing
facilities.

Claml p 2 0 = 0(0,0,0).

We will show that f(P) < F(X™):

Let P be the plane passing through P and orthogonal to line segment OP. Let Ex) be the
intersection of ray OFEx; with P for all t =1,2,... m.

We want to show that for any 1,
/X*OEx; > /POEuz,. (8.1)

Ex; is above the XY -plane = Ex must also be above the XY -plane.
X* is on or above the XY -plane = P must also be on or above the XY -plane.
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O

Ex;
X*

Fig. 8.1: The projection P of X* has a better function value than X*

Therefore, ZX*OFEx,, /ZPOEx € [0,7). Therefore, we only need to prove

cos(/POEx}) > cos(£{X*OEx). (8.2)

Sine P is the projection of X* onto a convex cone and that Ex) is a point in that cone,
we know that from conver analysis, ZX*PEx} > 90°. Therefore, (X*Ex})?> > (X*P)? +
(ExiP)?.

Since ( Figure 8.1 ) cos(£/POEx:) = OP/OEz!,cos(£{X*OFExz}) = (0X*)? + (OEx;)? —
(X*Ex})?)/(2- OX*), we only need to prove

2-0X*-OP > (0X*)* 4+ (OEx;)* — (X*Ex})% (8.3)

Again from Figure 8.1 , we have (OX*)? = (OP)? + (X*P)? and (OEx;)?> = (OP)? +
(Ex:P)%. Therefore, inequality (8.3) is true and the Theorem is proved. |

Proof for Theorem?2.2.1 Consider the objective function f(X) = >""  wicey. It can be

shown that for movement from point Xj:
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df(X) = wyl(dp)? + cos® pi(df)*]"/?

— do Z w; (— sin ¢y, cos ¢; cos(0 — 6;)
itk

+ cos ¢ sin @)/ sin ayy

— db Z w;(cos ¢ cos ¢; sin(0; — b))/ sin ag;.
itk

For a local minimum, df (p) > 0, and hence, we must show

wi ((dg)? + cos? ¢ (d0)?)Y/? — Aydd — By, cos drdey, > 0.

Letting L = df cos ¢ /d¢ , we have
|d|wi(1+ L)"/? > dé(Ay, + LBy)

and so :
wy, > dp(Ay, + LBy)(1+ L) 7V2/|dg].
Note that d¢/|d¢| is £1. It can be shown that :
—(A? 4+ BHY? < (Ap +LBy)/(1+ L*)1)2
< (Ap+Bp'?
and hence, the condition
wy, > (A + Bf)'/?

is necessary and sufficient for df (p) > 0 for every L.
|

Proof for Lemma 3.2.1 Consider the Figure 8.2. O’ denote the center of the circle
C(X1, X2, X3). Then X1, X2 and X3 are the points on the circumference of the circle that

are diametrically opposite of X1, Xo and X3 respectively. Since NX1X2X3 is acute, points

Xs and X3 cannot lie on the same side of the line joining X, and X,. The same is true

for points X3 and X1 and the line joining Xo and Xo, and points X1 and Xo and the

line joining X3 and X3. Let X be any point of the circumference of C(X1, Xo, X3), then

obviously

minimum{/X,10'X, /X,0'X, /X30' X} < /2.
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Figure a Figure b

Fig. 8.2:

Eztend the arc from P passing through Q to meet the circumference of C(X1, Xo, X3) at
point X. Without loss of generality, assume that

/X,0'X <7/2, ie., QPX, <7w/2 and £X,0'X < /X501X.

If Q lies on arc(PXy), then the proof is complete. When @Q does not lie on arc(PXy), let
M be the midpoint of the shorter arc segment between points X1 and X9 on the circumfer-
ence of C(X1, Xo, X3)(see Figure 8.2 b). Construct two great circle arcs, one joining points
P and M and the other joining points X1 and Q. Extend arc(X1Q) to meet arc(PM) at
point Y.

By construction arc(XoM) and arc(X1M) are the same. Since P is the nearer pole of
C(X1, X2, X3), arc(X1P) arc(X2P) are also the same. Thus, spherical triangles XM P
and XoMP are congruent and XlMP =m/2.

Then from Article 42 in [30],

cos(arc(PX1)) = cos(arc(PM)) cos(arc(X1M)) (8.4)

and

cos(arc(Y Xy)) = cos(arc(Y M)) cos(arc(X1M)). (8.5)
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Now, using the result arc(PM) > arc(T'M), and (8) and (8),
arc(PX1) > arc(Y X1) > arc(QX).
Since arc(PX1) is the spherical radius of C(X1, X2, X3), we receive
arc(X X1) > minimum{arc(QX1), arc(QX2), arc(QX3)}.

|
Proof for Lemma 3.2.2 Let P be the nearer pole of C(X1, X2, X3). Let Q be the dia-
metrically opposite point to Q1. Obviously, @ is on I'C(X1, X2, X3) and P # Q. Since
Q1 is sufficiently close to P’ and P is in the spherical triangle X1 X2 X3, Q must be in the

spherical triangle as well. Assume that
arc(QX1) = minimum{ arc(QX1), arc(QX2), arc(QX3)}.

From Lemma 3.2.1, it we have arc(QX1) < arc(PXy). Construct two great circle arcs,
one joining X1 to P’ and the other joining X1 to Q1. Since P and Q are diametrically
opposite of P' and Q1 respectively, we have

arc(X1P) + arc(X1P) = m = arc(X1Q) + arc(X1Q1).
Now arc(QP;) < arc(PX1) = arc(X1P') < arc(X1Q1).
= arc(X1P") < mazimum{arc(X1Q1), arc(X2Q1), arc(X3Q1)}-

[ |
Proof for Lemma 3.2.3

Refer figure 8.3. P and P’ are nearer and distant poles of the small circle C(X1, X2, X3). M
denotes the mid point of arc(X1Xs). Take a point Q, in an arbitrary small neighborhood
of P' on the great circle arc(PMP'). Construct arc(QX3s),arc(QXs2),arc(XsP’), and
arc(XoP'). Now draw the great circle arc(PX,1P"). Since P’ is the distant pole of small
circle C(X1, Xo, X3), we have

arc(X1 P') = arc(XoP') = arc(X3P') (8.6)
Hence spherical triangles X1 M P' and XoM P’ are congruent and

XoMP' = X\MP' =7/2. (8.7)
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Fig. 8.3:

£ X3 > m/2 implies that X3 lies on the (shorter) arc, arc(X1X2) of small circle C(X1, X2, X3).
Without loss of generality, assume that Xo and X3 lie on the same hemisphere defined by
the great circle passing through P, M, and P’. In the spherical triangle Xo X3P', arc(XoP")
= arc(XsP'"). Therefore, Property 1.2.1(a) of spherical triangles (see section 1.2) =

X3X,P' = X, X3P (8.8)

Consider the property that two great circles intersect at points which are diametrically

opposite and the assumptions that QQ, X3, X, and P’ lie on the same hemisphere. Then
X3XoP' = X3X5Q + QXoP' = X3XoP' > X3X5Q and (8.9)
X2X3Q = X2X3Pl + QXgP/ = X2X3Q > X2X3Pl (810)

From Property 1.2.1(b), and results (8.8) through (8.8) =

arc(X2Q) > arc(X3Q) (8.11)

Using (8.7), from spherical triangles XoM@Q and XoM P" we have
cos(arc(X2Q)) = cos(arc(XoM)) cos(arc(MQ)) and (8.12)
cos(arc(XoP")) = cos(arc(XoM)) cos(arc(MP")) (8.13)

Since arc(MQ) < arc(MP"), (8.12) and (8.13) =

arc(X2Q) < arc(X2P') (8.14)
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Since spherical triangles X1 MQ and XoM@Q are congruent, we have
arc(X1Q) = arc(X2Q) (8.15)
Combining (8.6), (8.11), (8.14) and (8.15), we have
mazimum{arc(X1Q), arc(X2Q), arc(X3Q)} < arc(X1P') = arc(XyP') = arc(X3P').

|
Proof for Theorem 3.2.3 P and P’ in Figure 8.4 represent the nearer and distant pole of
C(X1, X2). Consider the great circle PX1P'X5. Now construct the great circle arc joining
P and P’ through the mid point, M, of the smaller great circle arc, arc(X1Xs). For any
demand point Ex;(# Xi0orXs),

arc(Ez;P") < arc(XyP') = arc(X, P').

Fig. 8.4

In particular, there exists a sufficiently small € > 0 such that
arc(Ex;P") < arc(XaP') — 2. (8.16)
Let Q; be a point on the arc PM P’ that is sufficiently near P’ so that

arc(Ez;Q;) < arc(Ex;P') + e. (8.17)
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From (8.16) and (8.17),
arc(Ez;Q;) < arc(XaP') — €. (8.18)

Since triangles X1 PQ; and XoPQ; are congruent,
arc(X1Q;) = arc(X2Q;). (8.19)
In the spherical triangle XoP'Q);, XQplQi = 7/2.The the cosine rule gives
cos(arc(X2Q;)) = cos(arc(XoP')) cos(arc(Q; P)).

Note that arc(XoP') > w/2 as all the demand points are not on a hemisphere. Together
this fact and the assumption that Q; lies on the arc PM P’ and is in the e-neighborhood of
P', we have

cos(arc(X20Q);)) > cos(arc(XaP')).

Hence,

arc(X2Q;) < arc(XoP'). (8.20)

Since, limg,—prarc(X2Q;) = arc(XoP'), there exists a small neighborhood around P’ such
that if Q; is in this neighborhood, then

arc(X2Q;) > arc(XoP') —e. (8.21)
Therefore, it follows from (8.18), (8.20) and (8.21) that
arc(BEx;Q;) < arc(X2Q;) < arc(XoP'). (8.22)

The results (8.17) through (8.21) are not only true for Q; but also for any Q on the arc
PIQZ‘, z'.e.,
arc(Ex;Q) < arc(X2Q) < arc(XoP'). (8.23)

Therefore,corresponding to each demand point Ex;, there erists a point Q; on the arc P'M

such that an inequality of the type (8.22) holds. let
arc(P'Q) = minimum{arc(Ez;Q;) : Ex;(# X1 or X3) is any demand point}.

However, (8.23) implies that the distances from @Q to each demand point are shorter than

the distance from P’ to Xo. Thus, P’ cannot be a minimaz location. |
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