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ABSTRACTThis thesis investigates the onstrained form of the spherial Minimax loation problemand the spherial Weber loation problem. Spei�ally, we onsider the problem of loatinga new faility on the surfae of the unit sphere in the presene of onvex spherial polygonalrestrited regions and forbidden regions suh that the maximum weighted distane fromthe new faility on the surfae of the unit sphere to m existing failities is minimized andthe sum of the weighted distane from the new faility on the surfae of the unit sphereto m existing failities is minimized . It is assumed that a forbidden region is an area onthe surfae of the unit sphere where travel and faility loation are not permitted and thatdistane is measured using the great irle ar distane.We represent a polynomial time algorithm for the spherial Minimax loation problem forthe speial ase where all the existing failities are loated on the surfae of a hemisphere.Further, we have developed algorithms for spherial Weber loation problem using barrierdistane on a hemisphere as well as on the unit sphere.Keywords: spherial loation, spherial onvex polygon,restrited and barrier regions, greatirle ar, barrier distane



1. INTRODUCTION1.1 Appliations and Literature SurveyFaility loation on the plane an be onsidered as to loate one or more new failitiesamong m given demand points (or existing failities ) on the plane. When we loate onlyone new faility, the optimality is ahieved :1. the sum of weighted distanes from the new faility to the demand point is minimized,or2. the maximum weighted distane from the new faility to the demand points is mini-mized or the minimum weighted distane from the new faility to the demand pointsis maximized.The weights usually represent the ost of delivery per unit distane, goods demanded, pop-ulation, et,. In eah of these optimality approahes, the planar distanes are used.The �rst formulation is referred as "Classial weber problem [22℄" or "median (min-isum)" formulation of the problem and the seond formulation is referred as "enter (mim-imax/maximin" [22℄) formulation of the problem.These two formulations, of ause, are still valid when all loations are on the surfae of asphere. For example, the problem of loating a store of emergeny supplies for the relief ofthe onsequene of natural or man-made disasters around the globe has the element of aminimax problem on the surfae of the sphere.When demand points are loated on the plane, the maximin faility loation problem is oflittle pratial signi�ane. That means, a faility an be loated "at in�nity" to maximizethe minimum weighted distane. But, on a sphere, the maximum distane is one-half ofthe maximum irumferene and , hene the problem is not trivial. Loating a faility asfar as possible from a given set of missile bases an be given as an appliation. The ob-jetive of this problem would be the maximization of the time before the arrival of a missile.



2 1. IntrodutionHowever, all the demand points are spread all over the globe, planar distanes are no longersuitable approximations in modelling. Therefore, many researhers onsider spherial dis-tanes instead of planar distanes to loate an appropriate loation over the globe. Thenthe relevant loation problem is as follows : Consider that all the demand points are loatedon the surfae of a sphere with known assoiated weights. Then the problem to �nd anoptimal loation on the surfae of the sphere is referred as "faility loation on the sphere"or "Spherial Loation Problem( SphereLo )".We onsider single faility spherial loation problems ( SphereLo ) of the medianand enter type. I.e., we solve
min
X∈S0

f(X) :=
m

∑

i=1

wid(X,Exi) WeberSphereLoand
min
X∈S0

h(X) :=
m

max
i=1

wid(X,Exi) CenterSphereLowhere Ex1, Ex2, . . . , Exm are given demand points (or existing loations) and X is theunknown loation of a new faility. All loations lie on the unit sphere S0 and possibledistane funtions d(X,Y ) between points X,Y ∈ S0 are disussed in detail later on.Appliations of spherial loation problems appear in military, ivil, naval, ommerialproblems. These are beoming global in the sense that the distanes involved are so largeon the globe that planar distanes are no longer suitable.As an illustration of this spherial loation problem, onsider the following example: aprodut is to be distributed to 15 ities by air, as shown in Table 1.1, where eah ity isde�ned by its latitude and longitude. The weights are the funtions of the overall demand.Our task is to �nd a best loation for the fatory in order to distribute the produt withminimum ost.Spherial loation problems with the measuring distane on the surfae of the sphere is theshortest length of ar (great irle distane ) ( see De�nition 1.2.8), is more omplex thanits ounterpart on the plane beause its objetive is not onvex as the distane funtion isnot onvex on the surfae of the sphere( see Theorem 1.2.1 ).



1.1. Appliations and Literature Survey 3City Latitude Longitude Weights1 London 51.5 0.4 0.122 Paris 48.9 2.3 0.073 Zurih 47.4 8.5 0.084 Rome 41.9 12.5 0.055 Copenhagen 55.7 12.6 0.086 Berlin 52.5 13.4 0.077 Stokholm 59.3 18.9 0.068 Athens 38.0 23.7 0.079 Ankara 39.9 32.8 0.0510 Tel-Aviv 32.1 34.8 0.0511 Mosow 55.7 37.7 0.0512 Teheran 35.4 51.4 0.0713 Bombay 18.9 72.8 0.0314 Manila 14.6 121.0 0.0515 Tokyo 35.6 139.7 0.10Tab. 1.1: Latitudes, Longitudes and orresponding weights of 15 itiesIn the literature various de�nitions of distanes d(X,Y ) are used, whih we will disuss insome details in setions 1.2 and 2.2. In the following brief summary of the literature wewill use orresponding notations. Some of the results are further detailed in this thesis.Drezner and Wesoloswsky [11℄, in 1978 onsidered the related problem where they used twoways of measuring distanes ( see setion 2.2 ) and used iterative heuristi method forsolving the WeberSphreLo problem with shortest ar distane.A short overview on loating a faility on a sphere an be found in the text book of RobertF. Love, James G. Morris and G.O. Wesolowsky [22℄. They onsider the median problemwhere d is the shortest ar distane and present a Weiszfeld-like iterative proedure on thesphere.



4 1. IntrodutionA. A. Aly, D.C. Kay, D.W. Litwhiler [1℄, in 1978 worked on the spherial median problemwith the shortest ar distane as distane measure. They found out that an optimal solu-tion to this problem must lie within the spherial onvex hull ( De�nition 1.2.14 ) of thedemands points if the demand points are not loated entirely on a great irle ar.Zvi Drezner [12℄, in 1981 onsidered the ase when all the demand points lie on a greatirle ar and he proposed that the optimal solution ours on a demand point in this situ-ation(Theorem 2.1.4 ).In 1979, Katz and Cooper [19℄ onsidered the problem, "Optimal Loation on the Sphere ".They use three di�erent metris as distanes between points on the surfae of the sphere:(1)Eulidean ; (2) squared Eulidean distanes; (3) geodesi or great irle distane.Both, "Kats and Cooper [19℄" and "Drezner and Wesolowskey [11℄" propose Weiszfeld -like algorithms for �nding an optimal faility loation on a sphere. However, onvergenehas never been proposed.In 1985, Zvi Drezner [14℄ proposed a onvergent algorithm for the solution to the minisumloation problem on the sphere with measuring distane on the surfae of the sphere is thelength of shortest ar. The proposed algorithm is presented in the setion 2.3.Drezner and Wesolowsky [13℄ dealt with minimax and maximin faility loation problem ona sphere in 1983. First they propose an algorithm for �nding a loal minimax point using anon linear programming approah. Then they develop an algorithm to determine the globalminimax points using the obtained loal mimimax points ( see setion 3.1 ).In 1994, Xue [32℄ proposed a globally onvergent algorithm to the minisum formulation ofthis problem with the shortest length of ar is the distane metri. In his paper, he provedthe hull property of the problem, i.e., every global minimizer of the problem must lie withinthe spherial onvex hull ( De�nition 1.2.14 ) of the existing failities. Also, he presentedoptimality onditions for the spherial faility loation problem in terms of the optimalityonditions for the orresponding Eulidean faility loation problem. Finally, a gradient



1.1. Appliations and Literature Survey 5algorithm for solving the spherial faility loation problem is presented and the global on-vergene of this algorithm was proved. He assumed that all of the existing failities areinluded within a spherial irle ( De�nition 1.2.11 ) of radius π/4.In 1994, Minnie H. Patel [24℄ dealt with the spherial minimax loation problem and for-mulated the spherial loation problem in the Cartesian oordinate system using Eulideannorm, instead of the spherial oordinate system using spherial ar distane measures. Itis shown that minimizing the maximum of the spherial ar distanes between the failitypoint and the demand points on the surfae of the sphere is equivalent to minimizing themaximum of the orresponding Eulidean distanes.Pierre Hansen, B. Jaumard and S. Krau [18℄, in 1994, presented an exat and prati-ally e�ient algorithm for the WeberSphereLo problem using a Branh-and-Bound ap-proah.This is an extension of the ontinuous branh-and-bound algorithm for loation of afaility in the plane, known as "Big Square Small Square(BSSS) [32℄". Further, four waysto ompute lower bounds are studied.In 1996, A.K. Sakar, P.K. Chaudhuri [27℄ and in 1998, P.Das, N.R. Chakraborty, P.K.Chaudhuri [4℄ developed two algorithms for the equally-weighted CenterSphereLo problemwhen all demand points lie on a hemisphere. Both yield an exat solution with the timeomplexity O(n2) in the worst ase. The methods of these approahes are basially geomet-rial and do not require the use of the nonlinear programming tehniques like most of theother papers. The di�erene between the two algorithms is that while the �rst algorithm in[27℄ heavily depends on properties of the spherial triangle ( De�nition 1.2.13 ), the seondin [4℄ depends on the maximization of the Eulidean distane (for more details, see setion3.4).P.Das, N.R. Chakraborti and P.K. Chaudhuri [5℄, in 1999 onsidered the CenterSphereLoproblem with respet to shortest ar distane. They assume that all the demand points areequally weighted and distributed over the sphere. The proedure they present is based onan enumeration tehniques and determines global optimal solutions in a �nite number ofsteps. This algorithm determines the exat solution of the global as well as the hemispher-



6 1. Introdutionial minimax loation problem with the time omplexity O(n3) (see setion 3.2).Kelly M. Betes [2℄, in 2001, analyze alternative solutions methodologies for the Weber(minisum) problem on the surfae of the sphere.Atsuo Suzuki [29℄ presents the results for ( multi-) faility loation problems on the spherebased on Voronoi diagrams. The problems whih are disussed here are the p-median prob-lem, the p-enter problem and the ompetitive loation problem. He assumes that all thedemand points are spread ontinuously on the sphere.Kokihi Sugihara [28℄ also uses on Voronoi diagrams as tools for spae analysis. Theonepts of the Voronoi diagram, various kinds of its generalizations and the methods foromputing them are surveyed from a user point of view. Partiular appliation of his stud-ies on voronoi diagrams is to plae them on a sphere, whih will be useful for faility layouton the spherial surfaes.Further, U.R. Dhar and J.R. Rao [7℄ in 1980 dealt with " A omparative study of threenorms for faility loation problem on spherial surfaes. "In 1981, U.R. Dhar and J.R. Rao [8℄ studied "multi soure loation problem on a sphere"and in 1982, U.R. Dhar and J.R. Rao [9℄ onsidered the problem of loating more than onenew failities among existing failities on surfae of the sphere. The optimality of this prob-lem is ahieved when the sum of all weighted distanes between new to new failities andnew to existing failities is minimized with the measuring distane on the surfae of a sphereis shortest length of ar. This problem is known as multi-faility spherial loation problem.Before, formulating of some solving methods for the spherial loation problems, it is im-portant to know whether or not all the demand points are on a hemisphere. In 1993,Mannie H. Patel, D.L. Nettles and S.J. Deutsh [23℄ represented a Linear-Programming-Based Method to determine this.



1.2. Review of Spherial Geometry 71.2 Review of Spherial GeometryWe assume that eah point X whih is onsidered in the following will lie on a unit sphere S0and the point X is de�ned by its latitude φ and longitude θ and is denoted by X = X(φ, θ)where −π/2 ≤ φ ≤ π/2 and 0 ≤ θ ≤ 2π.The Eulidean oordinates of point X are given by
x = cos φ cos θ

y = cos φ sin θ and
z = sinφ(see Figure 1.1) and it is denoted by X = X(x, y, z).

Z

X

Y

y

x

z

O

X=X(  ,  )φ θ

φ

θ

Fig. 1.1: Conversion of polar oordinates of a point X = X(φ, θ) on the unit sphere to artesianoordinates X = X(x, y, z) where −π/2 ≤ φ ≤ π/2 and 0 ≤ θ ≤ 2πDe�nition 1.2.1: Latitude is a north-south measurement of position on the Earth. It isde�ned by the angle measured from horizontal plane loated Earth's enter that perpen-



8 1. Introdutiondiular to the polar axis ( see De�nition 1.2.3 ). A irular line onneting all plaes ofthe same latitude is termed a parallel ( see Figure 1.2 ).

Fig. 1.2: Latitudes, longitude, meridian and prime meridianDe�nition 1.2.2: Longitude is a west-east measurement of the Earth. It is de�nedby the angle measured from a vertial plane running through the polar axis and primemeridian ( see de�nition 1.2.4 ). A irular line onneting all plaes of the same longitudeis termed a meridian ( see Figure 1.2 ).De�nition 1.2.3: Polar axis is a line drawn through the Earth around the planet rotates.The point at whih the polar axis interepts the Earth's surfae in the Northern hemisphereia alled theNorth pole. Likewise, the point at whih the polar axis interepts the Earth'ssurfae in Southern hemisphere is alled the South pole ( see Figure 1.3 ).De�nition 1.2.4: The loation from whih meridians of longitude measured is alled thePrime meridian. It has zero degrees of longitude. ( see Figure 1.2 )De�nition 1.2.5: Loation on the Earth that has a latitude of 0 degrees is alled theEquator ( see Figure 1.3 ).De�nition 1.2.6: Every plane setion of a sphere is a irle. The largest irle whih anbe drawn on the surfae of a sphere is a irle whose plane passes through the enter ofthe sphere. Suh a irle is alled a great irle. All other irles on the surfae of thesphere are alled small irles ( see Figure 1.4 ).



1.2. Review of Spherial Geometry 9

South pole

North pole

Porlar axis

Equator

Longitude

Latitude

Fig. 1.3: Equator, polar axis, north pole and south poleDe�nition 1.2.7: The poles of a great irle are the extremities of a diameter of thesphere that is perpendiular to the plane of the great irle. This diameter is also knownas the axis of the great irle.Note that the two poles for the a great irle are equidistant from its plane and the enterof the sphere. The poles and axes of small irles are similarly de�ned. However, sinethe plane of a small irle does not ontain the enter of the sphere, its two poles are at adi�erent distane from the plane of the small irle, one is nearer and the other is moredistant. For onveniene, refer to them as the nearer and distant poles of a small irle(see Figure 1.4).De�nition 1.2.8: The shortest distane between any two points on a sphere must bemeasured along the great irle passing through them and is the shorter of the two arsbetween the points. This distane is known as the great irle distane, α or shortestar distane ( see Figure 1.5 ).



10 1. Introdution
Nearer pole of C

Small circle Distant pole of

Great circle

X

X

Shortest length of arc
between X   & X

Axis

X

Y

Z

C
C

1

1

2

2Fig. 1.4: Cirles on a sphereNote that ar length, α(X1,X2) ( or ar(X1,X2 ) between two pints, X1 and X2 on theunit sphere is simply the angle ( measured in radians ) between the two rays emanatingfrom the enter of the sphere, one passing through X1 and the other through X2.The distanes d1 : 4 sin2(α/2) and d2 : π sin2(α/2) may be used to approximate squared ardistane on a hemisphere and also rough approximation for ar distane (see [11℄). Thedi�erene between d1 and d2 is only a multipliative onstant. In two �gures (Figure 1.6,Figure 1.7), d1 and d2 are plotted against α (shortest length of ar). Note that when thedistane between points is less than half the irumferene of the sphere (α ≤ π/2), d1 isa reasonably good approximation to the squared shortest ar distane. d2 an be thought ofas a rough approximation for α. Also, d1 is exatly the squared Eulidean distane throughthe sphere.



1.2. Review of Spherial Geometry 11
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Great circle through  X and1

X2Fig. 1.5: Shortest length of ar between X1 and X2
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1 π/2

1
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3

d1

2

Fig. 1.6: The graph of d1 Vs. αResult 1.2.1: Given two points ( See Figure 1.5 ) X1(φ1, θ1) , X2(φ2, θ2) on S0, the lengthof the shortest ar, α = ar(X1,X2) satis�es
cos α = cos φ1 cos φ2 cos(θ1 − θ2) + sin φ1 sin φ2 (1.1)



12 1. Introdution
α

α

π

1

2

3

1 2 3 π0

d2

Fig. 1.7: The graph of d2 Vs. α

Proof : Let X1(φ1, θ1) and X2(φ2, θ2) are two points on the surfae of the sphere. Then,aording to the osines low for plane triangles, the Eulidean distane between X1 and X2an be written as :
|X1X2|2 = |OX1|2 + |OX2|2 − 2|OX1||OX2| cos α (1.2)where |X1X2|2 = (x1−x2)

2 +(y1−y2)
2 +(z1−z2)

2. By applying the Eulidean oordinatesof the points X1 and X2 to (1.2), with |OX1| = |OX2| = 1 ( sine X1 and X2 are on thesurfae of the unit sphere ), we have the desired result. �De�nition 1.2.9: The length of the great irle ar from any point on the irumfereneof a small irle to its nearer pole is alled the spherial radius of the small irle.De�nition 1.2.10: The antipode of a given point is the point on the other side of thesphere on the line onneting the point with the enter of the sphere. The antipode of
X(φ, θ) is X̄(−φ, θ ± π).De�nition 1.2.11: A spherial irle C(X,α) ( see Figure 1.8 ) with a given enter Xand radius α is de�ned on a sphere by the lous of all points whose shortest ar distanefrom the enter is equal to that radius. A irle divides the sphere into two parts; A point



1.2. Review of Spherial Geometry 13is said to be within a irle only if the point and the enter of the irle are inluded inthe same part.De�nition 1.2.12: A spherial disk D(X,α) ( see Figure 1.8 ) is the set on the surfaeof the sphere whih is formed by a spherial irle and its interior.
a

X

and radius a

Spherical circle CFig. 1.8: Spherial irle and spherial diskDe�nition 1.2.13: The surfae area of a sphere that is bounded by ar segments of threegreat irles is alled a spherial triangle( see Figure 1.9 ). A spherial triangle withtwo equal sides ( or ar lengths ) is alled isoseles spherial triangle.Result 1.2.2: (Median Formula) Consider the spherial triangle X1X2X3. Let M bethe mid point of the arcX1X2. Then the arcX3M satis�es the following formula :
cos(arcX3M) =

cos(arcX1X3+arcX2X3

2 ) cos(arcX1X3−arcX2X3

2 )

cos(arcX1X2

2 )
. (1.3)
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X1

X2

X3

Fig. 1.9: Shaded area represents the spherial triangle with verties X1, X2 and X3

X

X

X

M

β 2

1

3

Fig. 1.10:Proof Consider the Figure 1.10. Let β designate the angle X3MX2. By osine formula,we have
cos arcX2X3 = cos arcX2M cos arcX3M + sin arcX2M sin arcX3M cos β (1.4)
cos arcX1X3 = cos arcX1M cos arcX3M − sin arcX1M sin arcX3M cos β (1.5)Multiply 1.4 by sin arcX1M , 1.5 by sin arcX2M , and add two. We get,
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sin arcX1M cos arcX2X3 + sin arcX2M cos arcX1X3 =

sin(arcX1M + arcX2M) cos arcX3M

⇒ cos arcX3M =
sin arcX2M cos arcX1X3 + sin arcX1M cos arcX2X3

sin(arcX1M + arcX2M)As arcX1M = arcX2M = 1
2arcX1X2, we have

cos arcX3M =
sin arcX1X2

2 (cos arcX1X3 + cos arcX2X3)

arcX1X2

=
cos(arcX1X3+arcX2X3

2 ) cos(arcX1X3−arcX2X3

2 )

cos arcX1X2

2

.

�De�nition 1.2.14: A spherial onvex set is de�ned on the surfae of a sphere as a setwhere for any two points of the set, the whole shortest ar onneting them is inluded inthe set. The spherial onvex hull of a set of points on the sphere is de�ned to be thesmallest spherial onvex set whih ontains the set of given points.De�nition 1.2.15: Let ρ = ρ(X1,X2, λ) be a point on the shortest ar between X1 and
X2 suh that the distane between X1 and ρ is λd(X1,X2) and between X2 and ρ is
(1 − λ)d(X1,X2) for λ ∈ [0, 1] where d(X1,X2) is the shortest length of ar between X1and X2.De�nition 1.2.16: f(X) is alled a spherial onvex funtion on a spherial onvexset D of a sphere if for every 0 ≤ λ ≤ 1 and X1,X2 ∈ D, we have

f(ρ(X1,X2, λ)) ≤ (1− λ)f(X1) + λf(X2). (1.6)
f(X) is alled a stritly spherial onvex funtion if the inequality ( 1.6 ) is stritwhen X1 6= X2 and λ ∈ (0, 1).De�nition 1.2.17: A spherial loation problem is in its normal form if it has onlypositive weights and there is no pair of demand points whih are antipodes to eah other.



16 1. Introdution
X

Y

O

Bisector of X and YFig. 1.11: The Bisetor of X and YDe�nition 1.2.18: The bisetor of spherial points X and Y de�ned with respet tothe great irle distane is given by the great irle that perpendiularly passes throughthe mid-point of the great irular ar onneting X and Y ('perpendiularly' means thatsu�iently small segments of the two great irles around the mid-point are orthogonal)(see Fig 1.11).The bisetor divides the sphere into two disjoint hemispheres.
X

X
X

X

O

1
2

3

4

Fig. 1.12: Shaded area represents a spherial polygon on a hemisphere



1.2. Review of Spherial Geometry 17De�nition 1.2.19: A spherial polygon is a losed geometri �gure on the surfaeof a sphere whih is formed by the ars of great irles. The spherial polygon is a gen-eralization of the spherial triangle. A spherial onvex polygon generated by points
X1,X2, . . . ,Xn is de�ned by the spherial polygon in whih the lesser ar of a great ir-le passing through any two points in the spherial polygon is embedded in the spherialpolygon. ( see Figure 1.12 )The great irle ar segments of the spherial polygon are alled the edges of the spherialpolygon and a point at whih two edges meet is alled a vertex or orner point of thespherial polygon.De�nition 1.2.20: The level set and level urves of the objetive funtion h(X) inCenterSphereLo with respet to the great irle ar distane, α is de�ned as follows :Level sets:L≤(z) := {X ∈ S0 : wi · max

i=1,2,...,m
α(Exi,X) ≤ z}Level urves:L=(z) := {X ∈ S0 : wi · max

i=1,2,...,m
α(Exi,X) = z}The ar segments of the level set are alled the edges of the level set. The end points ofthe edges are alled the verties or orner points of the level set.De�nition 1.2.21: Suppose fk is an edge ( or a faet ) of L≤(z) and Exi ∈ Ex. The point

Pik is de�ned as the projetion point of Exi on fk if(a) Pik ∈ fkand(b) α(Exi, Pik) = min{α(Exi,X) : X ∈ fk}.Result 1.2.3: (i) Sine
L≤(z) = {X ∈ S0 : wi · max

i=1,2,...,m
α(Exi,X) ≤ z}

= {X ∈ S0 : α(Exi,X) ≤ z/wi ∀i = 1, 2, . . . ,m}

=
⋂

i=1,2,...,m

{X ∈ S0 : α(Exi,X) ≤ z/wi},



18 1. Introdutionwe an write the level set as an intersetions of m spherial disks D(Exi, zi) entered atthe existing failities Exi, with spherial di�erent radius zi = z/wi; i = 1, 2, . . . ,m.(ii) The level urve in this ase is the boundary of intersetions of the m spherial disks(that is the boundary of the level set).(see Fig 1.13).

Spherical disks at the demand
points X, X , X  with radii z

X

X

X

Restricted spherical
polygon

z

z

z

1

2

3

 31 2Fig. 1.13: Shaded area and the boundary of this region represents the level set and level urverespetively



1.2. Review of Spherial Geometry 19Property 1.2.1: Some properties of spherial triangles [30℄(a). The angles at the base of an isoseles spherial triangle (see de�nition 1.2.13) areequal.(b). If one angle of a spherial triangle is greater than another, the side opposite thegreater angle is greater than the side opposite the lesser angle.(). Any two sides of spherial triangle are together greater than the third side.Theorem 1.2.1: [11℄ Points within a irle of radius less or equal to π/4 ( spherial disk
D) on a unit sphere S0, form a spherial onvex set. The shortest ar distane from a givenpoint X on S0 is a spherial onvex funtion on a spherial disk of radius π/2 and enter
X. Every loal minimizer of a spherial onvex funtion on a spherial onvex set is alsoa global minimizer.Proof:The onvexity property of the spherial disk with radius less or equal π/2 is obvious.Aording to Figure 1.14, it is lear that the shortest ar between X3 and X4 is inludedwithin the spherial disk with spherial radius less than or equal π/2. This is true for anytwo points in this spherial disk.To prove the onvexity of the shortest ar distane α from a given point X, we assume wlogthat X is the north pole, i.e. X = X(π/2, 0). Take any two points X1(φ1, θ1), X2(φ2, θ2)with φ1, φ2 ≥ 0. Note that sine α is ontinuous, it is enough to prove that :

α[ρ(X1,X2, 0.5),X] ≤ 1/2[α(X1,X) + α(X2,X)]in order to prove onvexity.Then
α(X1,X) = π/2− φ1

α(X2,X) = π/2− φ2

α[ρ(X1,X2, 0.5),X] = π/2− φ0,where φ0 is the latitude of the enter of the ar onneting X1 and X2. By the medianformula (1.3),
sin φ0 = sin(

φ1 + φ2

2
) cos(

φ1 − φ2

2
)/ cos

α

2
. (1.7)



20 1. IntrodutionUsing equation(1.1) :
sinφ0 =

sin(φ1+φ2

2 )

[1− sin2[(θ1−θ2)/2] cos φ1 cos φ2

cos2[(φ1−φ2)/2]
]1/2

. (1.8)As, numerator of (1.8) is less than or equal 1 and φ0 ≤ π/2,
φ0 ≥ φ1+φ2

2 . Therefore
π/2− φ0 ≤

π/2− φ1 + π/2− φ2

2and
α[ρ(X1,X2, 0.5),X] ≤ 1

2
[α(X1,X) + α(X2,X)].Thus α is a onvex funtion north of the equator.Now we have to show that every loal minimizer of a spherial onvex set D is also a globalminimizer.To prove this, suppose that X∗

1 and X∗
2 are di�erent loal minima. The ar onneting X∗

1and X∗
2 is inluded in D. We know that

f [ρ(X∗
1 ,X∗

2 , λ)] ≤ λf(X∗
1 ) + (1− λ)f(X∗

2 ),∀λ ∈ (0, 1).Now suppose that f(X∗
1 ) < f(X∗

2 ). Then by replaing f(X∗
1 ) with f(X∗

2 ) in the aboveequation, we have
f [ρ(X∗

1 ,X∗
2 , λ)] < λf(X∗

2 ) + (1− λ)f(X∗
2 ) = f(X∗

2 )for λ > 0 obviously lose to 1.This ontradits the statement that X∗
2 is a loal minimum. �
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Spherical radius < π/2

Sphercal radius > π/2

X X

X

X

3

4

1 2

O

Fig. 1.14: Convexity of spherial disks





2. SPHERICAL WEBER PROBLEMWe assume that eah model whih is desribed in the following will deal with a unit sphere,
S0 where the radius is equal to one. Every point X on the sphere is de�ned by its latitude
φ and longitude θ and it is denoted by X(φ, θ).Consider m demand points (or existing failities) Exi, i = 1, 2, . . . ,m, on the surfae ofthe sphere with assoiated weights wi and some distane funtion d(X,Y ) measuring thedistanes between spherial points X and Y .We onsider single faility spherial loation problem ( SphereLo ) of the mediantype, i.e., we solve

min
X∈S0

f(X) :=
m

∑

i=1

wid(X,Exi) WeberSphereLo (2.1)where X is the unknown loation.In the usual Weber problem, it is assumed that wi ≥ 0. In the WeberSphereLo, we anomit this ondition beause this problem an be transformed into an equivalent "normalform" ( see De�nition 1.2.17 ) as follows :A point with negative weight an be replaed by its antipode with weight −wi and from apair of points whih are antipodes to eah other we an subtrat the smaller weight, thuseliminating at least one of the points. This normal problem has the same minimal point asthe original.In this hapter, I would like to disuss the behavior of the objetive funtion f(X) of We-berSphereLo problem and to represent di�erent approahes to solve this problem.



24 2. Spherial Weber Problem2.1 Convexity of the Objetive FuntionWe assume that the distane d of the objetive funtion f(X) is the shortest ar distane
α. I.e.,

min
X∈S0

f(X) :=
m

∑

i=1

wiarc(X,Exi) =
m

∑

i=1

wiαi(X,Exi) (2.2)Theorem 2.1.1: [19℄ If all demand points of the normal form of a problem are inludedin a disk D of radius π/4, then the objetive funtion f(X) is a spherial onvex funtionon D and attains its minimum in a unique point of D.Proof
•Demand points in D = D(Y, α) with α ≤ π/4 ⇒ distane arc(X1,X2) ≤ π/2

∀X1,X2 ∈ D
Th.1.2.1⇒ arc(X,Exi) onvex ∀X ∈ D
⇒ wi · arc(X,Exi) onvex

∀X ∈ D

⇒ f(X) onvex ∀X ∈ D
• D onvex, f(X) onvex Th.1.2.1⇒ f(X) attains its minimum in a unique point of D �Theorem 2.1.2: [8℄ The value π/4 in Theorem 2.1.1 is the maximum value of a radiusthat assures a unique minimum.Proof We give an example of points in a disk of radius π/4 + ǫ (for every ǫ > 0 ) on-taining two di�erent loal minima. The problem onsists of three demand points withparameters(ǫ > 0).
i wi φi θi1 1 + ǫ5 π/4 ǫ2 1 π/4 −ǫ3 ǫ2 π/4− ǫ π



2.2. Weiszfeld Approah 25By equation (2.13), for points 1 and 2 we get :
wk

[A2
k + B2

k]1/2
= 1 + (

√
2− 1)ǫ4 + O(ǫ5) for k = 1, 2.Whih means that points (φ1, θ1), (φ2, θ2) are loal minima with di�erent values of the ob-jetive funtion. This proves that π/4 is the largest possible radius that assures a uniqueminimum. �Theorem 2.1.3: [32℄ Suppose that all of the existing failities are inluded within aspherial irle C(X0, π/4) of enter X0 = X0(x0, y0, z0) and radius π/4. Then everyglobal minimizer of f(X) must lie within the spherial onvex hull of existing failities.Proof See Appendix.Theorem 2.1.4: If all of the existing failities lie on a great irle ar of length less thanor equal to π/2, then one of the existing failities is a global minimizer of the problem.Proof. Aording to the Theorem 2.1.1, there is global minimizer on the spherialonvex hull of the existing failities. In this ase, the spherial onvex hull of the existingfailities is the great irle segment passing through all the existing failities and havingtwo of the existing failities as ends. Straightening this great irle segment into a straightline segment, the spherial faility loation problem is transformed into a equivalent onedimensional Eulidean faility loation problem. Let the existing failities be ordered(fromone end to the other along the great irle segment) as Ex1

′, Ex′
2, . . . , Ex′

m. Find theinteger t suh that
t−1
∑

i=1

wi <
1

2

m
∑

i=1

wi ≤
t

∑

i=1

wi. (2.3)Then Ext is a global minimizer of the spherial faility loation problem. �2.2 Weiszfeld ApproahThe following approah dupliates the Weiszfeld proedure for planar, Eulidean loationproblems. It is due to Drezner and Wesolowsky [11℄ and an also be found in the textbook



26 2. Spherial Weber ProblemLove and Morris [22℄.Drezner and Wesolowsky onsidered the WeberSphereLo problem where they used twoways of measuring distanes. One is simply the shortest length of ar α. The other norm (
d1 = 4 sin2(α/2) and d2 = π sin2 α/2 ) may be used to approximate aquared ar distane ona hemisphere and also rough approximation for ar distane ( see the note under De�nition1.2.8 ). The di�erene between d1 and d2 is only a multipliative onstant. The optimumpoint using d1 is always the same as the one using d2 beause for the purpose of optimizingloation their problem, the onstant is irrelevant.Consider three distanes α, d1 and d2 are as the measuring distanes on the surfae ofthe sphere. Then from equation (2.1), we an write the objetive funtions Fα[X(φ, θ)],

Fd1
[X(φ, θ)], Fd2

[(X(φ, θ)] with respet to the above distanes as follows :
Fα(X) =

m
∑

i=1

wiαi. (2.4)
Fd1

(X) = 4

m
∑

i=1

wi sin
2(αi/2) (2.5)

Fd2
(X) = π

m
∑

i=1

wi sin
2(αi/2) (2.6)Let

F (X) =

m
∑

i=1

wi sin2(αi/2) (2.7)It is evident that the point that minimizes F is the same as that whih minimizes Fd1
and

Fd2
.Property 2.2.1: The sum of the objetive funtion evaluated at a point and at its an-tipode is a onstant, and equal to π

∑m
i=1 wi in distanes α and d2 and, 4

∑m
i=1 wi in d1.1. The shortest length of ar from the point X to the given demand point Exi is αi



2.2. Weiszfeld Approah 272. The shortest length of ar from the antipode X̄ of X to the demand point Exi is :
(π − αi)3. Sum of the of the objetive value at X and X̄ is
• in distane α : ∑m

i=1 αiwi +
∑m

i=1(π − αi)wi = π
∑m

i=1 wi

• in distane d1 : ∑m
i=1 4 sin2(αi)wi +

∑m
i=1 4 sin2(π − αi)wi = 4

∑m
i=1 wi

• in distane d2 : ∑m
i=1 π sin2(αi)wi +

∑m
i=1 π sin2(π − αi)wi = π

∑m
i=1 wiProperty 2.2.2: A point is the minimum to a problem if and only if its antipode is themaximum.Property 2.2.3: A point and its antipode with equal weights an be added to the problemwithout a hange in the optimal loation of the faility.Let the point Exm+1 with weight wm+1. Now add the this point and its antipode with thesame weight wm+1 to the set of demand points. Then the objetive funtion is

fNew(X) =
m

∑

i=1

wiαi + wm+1αm+1 + wm+1(π − αm+1).

=

m
∑

i=1

wiαi + πwi.As πwi is onstant, the optimal loation of the faility of fNew(X) is the same the optimumof f(X).Property 2.2.4: A point with weight wi an be replaed by its antipode with weight
−wi, without hanging the optimal loation of the faility.



28 2. Spherial Weber ProblemBy replaing the point Exj with weight wj , we have the objetive funtion
fNew(X) =

j−1
∑

i=1

wiαi + (−wj)(π − αj) +

m
∑

i=j+1

wiαi

=

m
∑

i=1

wiαi − πwj.As −πwj is onstant, the optimal loation of f(X) will not hange.Computation of Stationary PointsGiven two points X = X(φ, θ) and Xi = Xi(φi, θi), the shortest length of ar, αi =

αi(X,Xi) has the form (1.1)
αi = arccos[cos φ cos φi cos(θ − θi) + sin φ sin φi] (2.8)Now onsider the solution of the extremal onditions for the objetive funtions F (X) and

Fα(X) using shortest length of ar αi.Then the partial derivatives of F (X) are :
∂F

∂φ
= −1

2

m
∑

i=1

wi[− sin φ cos φi cos(θ − θi) + cos φ sin φi] (2.9)
∂F

∂θ
=

1

2
cos φ

m
∑

i=1

wi cos φi sin(θ − θi). (2.10)Note that at the poles, cos φ = 0 and thus ∂F
∂θ = 0. This simply means that here a hangein θ will not hange the point. ∂F

∂φ = ∂F
∂θ = 0 yields an expliit solution and derived by:

tan θ =

∑m
i=1 wi cos φi sin θi

∑m
i=1 wi cos φi cos θi

(2.11)
tan φ

sin θ
=

∑m
i=1 wi sin φi

∑m
i=1 wi cos φi sin θi

(2.12)Equations (2.11) and (2.12) produe two solutions for θ and φ whih are antipodes.



2.2. Weiszfeld Approah 29The following Theorem represents the onditions under whih a demand point at
Exk(φk, θk) is a loal optimum of Fα(X).Theorem 2.2.1: [22℄ There is a loal minimum at point Exk if and only if

wk ≥ (A2
k + B2

k)1/2, (2.13)where,
Ak =

m
∑

i=1,i6=k

wi

sin αik
[− sin φkcosφi cos(θk − θi) + cosφksinφi] (2.14)

Bk =

m
∑

i=1,i6=k

wi

sinαik
cos φisin(θi − θk) (2.15)with

αik = arccos[cos φk cos φi cos(θk − θi) + sinφk sin φi]be the shortest ar distane between points Exi and Exk.Proof Consider the objetive funtion Fα(X) =
∑m

i=1 wiαi. It an be shown that formovement from point Exk:
dFα(X) = wk[(dφ)2 + cos2 φk(dθ)2]1/2

− dφ

m
∑

i6=k

wi(− sin φk cos φi cos(θk − θi)

+ cos φk sin φ)/ sin αki

− dθ

m
∑

i6=k

wi(cos φk cos φi sin(θi − θk))/ sin αki.For a loal minimum, dFα(X) > 0, and hene, we must show
wk((dφ)2 + cos2 φk(dθ)2)1/2 −Akdφ−Bk cos φkdφk > 0.Letting L = dθ cos φk/dφ , we have

|dφ|wk(1 + L)1/2 > dφ(Ak + LBk)



30 2. Spherial Weber Problemand so :
wk > dφ(Ak + LBk)(1 + L2)−1/2/|dφ|.Note that dφ/|dφ| is ±1. It an be shown that :

−(A2
k + B2

k)1/2 ≤ (Ak + LBk)/(1 + L2)1/2

≤ (A2
k + B2

k)1/2and hene, the ondition
wk ≥ (A2

k + B2
k)1/2is neessary and su�ient for dFα(X) > 0 for every L. �We now onsider the extremal onditions for the objetive funtion Fα. The partial deriva-tives are:

∂Fα

∂φ
= −

m
∑

i=1

wi

sinαi
[−sinφcosφicos(θ − θi) + cosφsinφi] (2.16)

∂Fα

∂θ
= cos φ

m
∑

i=1

wi

sinαi
cos φi sin(θ − θi) (2.17)Further note that at the poles, cos φ = 0 and thus ∂Fα

∂θ = 0. Solution of ∂Fα

∂φ = ∂Fα

∂θ = 0yields :
tan θ =

∑m
i=1

wi

sinαi
cos φi sin θi

∑m
i=1

wi

sinαi
cos φi cos θi

(2.18)
tan φ

sin θ
=

∑m
i=1

wi

sin αi
sin φi

∑m
i=1

wi

sinαi
cos φi sin θi

(2.19)This is an impliit solution beause φ and θ are used in the alulation of the αi's.In equations (2.18) and (2.19), solutions are also ome in pairs of antipodes. One asolution is obtained, its antipode is also heked. Note also that (2.18) and (2.19) may giveus saddle points as well as loal minima or maxima.Therefore, (2.18) and (2.19) an be used iteratively in a manner analogous to the Weiszfeldproedure, to �nd the solution if we are lose enough to the loal minimum or maximum.



2.3. Approximate Algorithm Using Candidate Lists [14℄: 31The developed algorithm is as follows :Algorithm 2.2.1: (Weiszfeld for WeberSphereLo)Step 1. Choose a starting point φ(0), θ(0). Set k = 0.Step 2. Compute φ(k+1) and θ(k+1) by (2.18) and (2.19) using φ(k), θ(k) to alulate αi.Step 3. If |φ(k+1) − φ(k)|+ |θ(k+1) − θ(k)| > ǫ go to step 2.Step 4. [φ(k+1), θ(k+1)] and its antipode to get the minimal and maximal point.Note that the sum of the objetive funtion evaluated at a point and at its antipode is aonstant and equal to π
∑m

i=1 wi in distane α (see Property 2.2.1). The solutions of theabove algorithm ome in pairs of antipodes and one of these points is a minimum point andaording to the Property 2.2.3, the other point is the maximum for the problem.That means, if Fα < π/2
∑m

i=1 wi, then the point is a minimum.Remark : There might be several loal minima and we want to �nd the best of these.As a point and its antipode as starting points result same solution, we an hoose startingpoints only in one hemisphere. Further, there are various strategies in hoosing startingpoints: randomly, in a pattern, using the Norm d1 or d2 solution. In addition all demandpoints should be heked for loal minima by equation (2.13).2.3 Approximate Algorithm Using Candidate Lists [14℄:In this setion we disuss an always onvergent algorithm (Drezner [14℄) for the Weber-SphereLo problem using a given andidate set of points on the surfae of the sphere.In this approah we assume that the WeberSphereLo problem (2.1) is in the normalform (see De�nition 1.2.17).We onstrut here a lower bound on the optimal value of the objetive funtion based on agiven set of points on the surfae of the sphere. Therefore onsider a given set J of pointson the surfae of the sphere to onstrut a lower bound on the optimal value of the objetive



32 2. Spherial Weber Problemfuntion f(X). Note that the set J is di�erent from the set of demand points .Let fj = f(Xj) and d(X,Xj) be the distane between X = (φ, θ) and Xj = Xj(φj , θj) for
Xj ∈ J , and let w =

∑m
i=1 wi.The triangle inequality implies for all X ∈ S0 :

d(X,Xj) + d(X,Exi) ≥ d(Xj , Exi).Then we have
fj − f(X) =

m
∑

i=1

wi[d(Xj , Exi)− di(X,Exi)] ≤
∑

wid(X,Xj) = wd(X,Xj).Thus, f(X) ≥ fj − wd(X,Xj), and
f(X) ≥ maxj∈J{fj − wd(X,Xj)}. (2.20)Let f∗ be the optimal solution to problem (2.1). By equation (2.20): f∗ ≥ f0 where :

f0 = minX∈S0
{maxj∈J{fj − wd(X,Xj)}}. (2.21)Finding f0 in (2.21) is the minimax single faility loation problem whih an be optimallysolved [13℄. Based on this observation, we an minimize f(X) to within an ε of the optimalvalue of the objetive funtion for any ε > 0.The resulting algorithm an be represented as follows:Algorithm 2.3.1: (Candidate list for WeberSphereLo)Step 1. Let J be any two point subset of the sphere and set fm:= minj∈J{fj}.Step 2. Compute f0 by solving the minimization problem in (2.21). Add the solutionpoint to J. Update fm.Step 3. If f0 < fm − ε, go to Step 2.Step 4. stop with fm as the approximate optimal solution.



2.4. Steepest Desent Algorithm for WeberSphereLo [32℄ 33Note that if the solution point in Step 2 is a point in J, then f0 = fm and the algorithmterminates. But, when f0 < fm− ε, the solution to Problem (2.21) is at least ε/w from allpoints in J . Sine there is a limit to the number of points, one an arrange on the spherewhih are at least ε/w from eah other. Then f0 will get within an ε of fm. Then for afor a give ε > 0, the algorithm must be �nite.2.4 Steepest Desent Algorithm for WeberSphereLo [32℄Consider the WeberSphereLo problem (2.1) in the following form :
f(X) =

n
∑

i=1

wi arccos(ExT
i ·X). (2.22)where, the points Exi, i = 1, 2, . . . ,m and X are three dimensional points on the surfaeof the sphere and arccos(ExT

i X) is the shortest length of ar between Exi and X.Note that the dot produt (Exi · X) of Exi and X is equal to ‖ Exi ‖‖ X ‖ cos α, where
‖ Exi ‖=‖ X ‖= 1 and α = α(Exi,X) is the angle between two vetors Exi and X.So, we have α = arccos(Exi ·X) or α = arccos(ExT

i X).This objetive funtion (2.22) is de�ned only on the sphere S0. We extend the domain of
f to all X ∈ ℜ3 suh that X 6= 0. For any nonzero X ∈ ℜ3, the funtion value at X isde�ned to be f( X

‖X‖ ). Then the objetive funtion of WeberSphereLo an be written as
F (X) =

n
∑

i=1

wi cos
−1(X

(
i

X

‖X‖)) (2.23)and the only onstraint is X 6= 0.In the following we will assume that all of the existing failities of the WeberSphereLoproblem are inlude within a spherial disk of radius π/4. For onveniene, we will assumethat the enter of this spherial disk of radius π/4 is (0,0,1). Therefore, all the existingfailities are above the xy-plane. We proved that every global minimizer of this problemmust lie within the spherial onvex hull of the existing failities ( see Theorem 2.1.3 ).



34 2. Spherial Weber ProblemNext, we onsider the optimality onditions for the spherial faility loation problem interms of the optimality onditions for the orresponding Eulidean faility loation problem.To show this, let X be a point on the surfae of the sphere whih does not oinide withany of the existing failities. Then F (X) is di�erentiable at X, with gradient given by
∇F (X) =

m
∑

i=1

wi
−1

√

1− ((X/‖X‖)T Exi)2
‖X‖Exi −XT Exi(X/‖X‖)

‖X‖2

=

m
∑

i=1

wi

X − Exi

(X/‖X‖)T Exi

‖X − Exi

(X/‖X‖)T Exi
‖
. (2.24)If X oinides with one of existing failities, Ext , then F (X) is not di�erentiable at X.In this ase, for any nonzero vetor d, the diretional derivative F ′(Ext; d) of F (X) atpoint Ext in diretion d is given by

F ′(Ext; d) = dT
m

∑

i=1,i6=t

wi
Ext − (Exi/ExT

t Exi)

‖Ext − (Exi/ExT
t Exi)‖

+ wt

√

‖d‖2 − (ExT
t d)2. (2.25)Notie that all of the n points Exi

(X/‖X‖)T Exi
, i = 1, 2, . . . ,m lie on the plane whih is tangentto the sphere, S at point X. For any given X on the surfae of the sphere, de�ne

ExX
i =

Exi

(X/‖X‖)T Exi
, i =1, 2, . . . , m. (2.26)Now, we have a planner Eulidean faility loation problem de�ned on the plane as follows:

minFX(y) =

m
∑

i=1

wi‖y − ExX
i ‖. (2.27)If X does not oinide with any of the ExX

i 's, then FX(y) is di�erentiable at X withgradient given by
∇FX(X) =

∑

wi
X − ExX

i

‖X − ExX
i ‖

. (2.28)If X oinides with ExX
t , the FX(y) is not di�erentiable at X. In this ase, for anynonzero vetor d, the diretional derivative F ′

X(Ext; d) of FX(y) at point Ext in diretion
d is given by

F ′
X(Ext; d) = dT

m
∑

i=1,i6=t

wi
X −ExX

i

‖X −ExX
i ‖

+ wt‖d‖. (2.29)From the optimality onditions for the planner faility loation problem [22℄, we have theoptimality onditions for the planner loation problem (2.27) as follows :



2.4. Steepest Desent Algorithm for WeberSphereLo [32℄ 35(i) An existing faility Ext is a global minimizer of (2.27) if and only if
‖

m
∑

i=1,i6=t

wi

Ext − Exi

ExT
t Exi

‖Ext − (Exi/ExT
t Exi)‖

‖ ≤ wt. (2.30)(ii) A smooth point X is a global minimizer of (2.27) if and only if
m

∑

i=1

wi

X − Exi

(X/‖X‖)T Exi

‖X − Exi

(X/‖X‖)T Exi

= 0. (2.31)Note that the above optimality onditions are also the optimality onditions for the spherialfaility loation problem(2.22).Theorem 2.4.1: An existing faility Ext is a global minimizer of (2.22) if and only if
‖

m
∑

i=1,i6=t

wi

Ext − Exi

ExT
t Exi

‖Ext − (Exi/ExT
t Exi)‖

‖ ≤ wt. (2.32)A smooth point X is a global minimizer of (2.22) if and only if
m

∑

i=1

wi

X − Exi

(X/‖X‖)T Exi

‖X − Exi

(X/‖X‖)T Exi

= 0. (2.33)Proof Let us onsider the non-smooth ase �rst. Suppose that
‖

m
∑

i=1,i6=t

wi

Ext − Exi

ExT
t Exi

‖Ext − (Exi/ExT
t Exi)‖

‖ ≥ wt. (2.34)Let d = −∑m
i=1,i6=t wi

Ext−
Exi

ExT
t

Exi

‖Ext−(Exi/ExT
t Exi)‖

. Then ExT
t d = 0 beause d is on the plane with

Ext as its normal vetor. Therefore, it follows follows from (2.25) that
F ′(Ext; d) = dT

m
∑

i=1,i6=t

wi
Ext − (Exi/ExT

t Exi)

‖Ext − (Exi/ExT
t Exi)‖

+ wt‖d‖ = ‖d‖(wt − ‖d‖) < 0. (2.35)This means that d is a desent diretion of F (X) at point Ext. Therefore, Ext ould notbe a loal minimizer. This proves that (2.32) is a neessary ondition for Ext to be aminimizer of (2.22).Now we have to prove that (2.32) is also a su�ient ondition for the global optimality of
Ext of the problem (2.22). Suppose that Ext is not a global minimizer of (2.22). Then there



36 2. Spherial Weber Problemexists a point Y within the spherial onvex hull of the existing failities suh that f(Y ) <

f(Ext). Sine f(X) is spherially onvex, every point on the arc(Ext, Y ) (exept Ext) hasa funtion value smaller than f(Ext). Therefore, we may assume that ExT
t Y 6= 0 withoutloss of generality. De�ne Ȳ = (Y/ExT

t Y ). Then F (Ȳ ) = F (Y ) < F (Ext). For any
λ ∈ (0, 1), de�ne ρ̄(Ext, Y, λ) = ρ(Ext, Y, λ)/ExT

t ρ(Ext, Y, λ). Let β = arccos(ExT
t Y ).Then for any λ ∈ (0, 1), we have

F ((1− tan(λβ)

tan(β)
)Ext +

tan(λβ)

tan(β)
Ȳ ) = F (ρ̄(Ext, Y, λ)) = f(ρ(Ext, Y, λ)) (2.36)

≤ (1− λ)f(Ext) + λ(f(Y ))

= F (Ext) + λ(F (Ȳ )− F (Ext)).This implies that F ′(Ext; d) ≤ F (Ȳ )−F (Ext) < 0, where d = Ȳ −Ext. Sine ExT
t d = 0,it follows from (2.25) and (2.32) that F ′(Ext; d) ≥ 0. This ontradition proves that (2.32)is a su�ient ondition for the optimality of Ext of (2.22).Now onsider the smooth ase. It is lear that (2.33) is a neessary ondition for Xto be a minimizer of (2.22). Suppose that X is not a global minimizer of (2.22).Thenthere exits a point Y within the spherial onvex hull of the existing failities suh that

f(Y ) < f(X). As in the non-smooth ase, we may assume that XT Y 6= 0 without loss ofgenerality. De�ne Ȳ = Y/XT Y . Then F (Ȳ ) = F (Y ) < F (X). For any λ ∈ (0, 1), de�ne
ρ̄(X,Y, λ) = ρ(X,Y, λ)/XT ρ(X,Y, λ). Let β = arccos(XT Y ). Then for any λ ∈ (0, 1), wehave

F ((1− tan(λβ)

tan(β)
)X +

tan(λβ)

tan(β)
Ȳ ) = F (ρ̄(X,Y, λ)) = f(ρ(X,Y, λ)) (2.37)

≤ (1− λ)f(X) + λf(Y )

= F (X) + λ(F (Ȳ )− F (X)).

⇒ F ′(X; d) ≤ F (Ȳ )− F (X) < 0, where d = Ȳ −X.However, F ′(Ext; d) must be zero sine ∇F (X) = 0. This is a ontradition and provesthe Theorem. �In the next step of this proedure, we will present an algorithm for solving the weber spher-ial faility loation problem. The algorithm �rst heks if any of the existing failities isa global minimizer of the problem. If this doesn't, the algorithm generates a sequene of



2.4. Steepest Desent Algorithm for WeberSphereLo [32℄ 37desent searh diretions and iteration points with dereasing funtion values.The relevant algorithm is as follows:Algorithm 2.4.1: Algorithm 3 (Desent algorithm for WeberSphereLo)Input: Existing failities Exi, i = 1, . . . ,m ontained in a spherial disk of radius α ≤ π/4.Step 1. Find an existing faility Ext, suh that f(Ext) ≤ f(Exi) for all i = 1, 2, . . . ,m.Chek the optimality onditions for Ext. If Ext is an optimal solution, Stop.Step 2. Let d = −∑m
i=1,i6=t wi(Ext − ExExt

i )/‖Ext −ExExt

i ‖where, ExExt

i = Exi

(Ext/‖Ext‖)T Exi
. Find a small step size β > 0 suh that the point

Ext + βd lies in the onvex hull of ExExt

i , i = 1, 2, . . . ,m, and that X1 = Ext +

αd/‖Ext + αd‖ has a funtion value less than f(Ext). Let k = 1.Step 3. Compute ExXk

i for i = 1, 2, . . . ,m.Compute dk = −∑m
i=1 wi(X

k −ExiX
k)/‖Xk −ExiX

k‖. If dk = 0, Stop; Otherwiseompute βk = 1
∑m

i=1
wi/‖Xk−ExiXk‖

.Step 4. Set Xk+1 = Xk + βkdk/‖Xk + βkdk‖. If f(Xk+1) ≤ f(Xk) − 0.1βk‖dk‖2, thenreplae k with k +1 and goto Step 3; Otherwise replae βk with 0.5βk and goto Step4.Note that Step 1 and Step 2 are used to eliminate non smooth points from further onsid-eration. Let Ext be an existing faility whose objetive funtion value is minimum amongall the existing failities. If Ext satis�es the optimality ondition (2.32), then it is also aglobal minimizer of the problem. If Ext does not satisfy the optimality ondition (2.32),
d omputed in Step 2 is a desent diretion of f(X) at point Ext. Step 3 omputes thesearh diretion dk, whih is the negative of the gradient. If dk = 0, then Xk satis�es theoptimality ondition (2.33), and therefore it is a global minimizer. If dk 6= 0 , then it is adesent diretion and Step 4 �nds a better loation.It is lear that the desription of the algorithm that the whole iteration sequene {Xk} liein the spherial onvex hull of the existing failities.



38 2. Spherial Weber ProblemIn the next step, we will prove global onvergene of the algorithm. In Lemma 2.4.1, we willprove that when the algorithm stops after a �nite number of iterations, it stops at a globalminimizer and if the algorithm does not stop after a �nite number of iterations, then theWeberSphereLo problem has a stritly spherial onvex objetive funtion and thereforehas only one loal minimizer (also global minimizer) whih is inside of the spherial onvexhull of the existing failities.In Lemma 2.4.2, we prove that every aumulation point of the in�nite sequene generatedby the algorithm is a global minimizer of the WeberSphereLo problem.Lemma 2.4.1: If Algorithm 3 stops at Xk after a �nite number of iterations, then Xkis a global minimizer of the WeberSphereLo problem. If the algorithm generates anin�nite sequene {Xk}, then then the objetive funtion (2.22) is stritly spherial onvex,and therefore, the problem has only one loal minimizer (also a global minimizer) whihis inside of the spherial onvex hull of the existing failities.Proof If the algorithm stops in Step 1, then Ext must satisfy the optimality ondition(2.32). Therefore,it is a non smooth global minimizer. If the algorithm stops in Step 3,then dk must be zero. In this ase, Xk satis�es the optimality ondition (2.33). Therefore,it is a smooth global minimizer.Now, we will onsider the ase that the algorithm generates an in�nite sequene {Xk}. Itfollows from Theorem 2.1.4 that all of the existing failities do not lie on a great irlesegment. This implies that all the existing failities lie within the spherial disk of radiusless than π/4. It then follows that the objetive funtion (2.22) is stritly spherial on-vex. Therefore, the WeberSphereLo problem has only one loal minimizer (also a globalminimizer) whih is inside of the spherial onvex hull of the existing failities. �Lemma 2.4.2: Let X̄ be an aumulation point of {Xk}, i.e., there is a subsequene {Xk
t }whih onverges to X̄. Then X̄ is a global minimizer of the WeberSphereLo problem.Proof Assume that X̄ is not a global minimizer. Let d̄ = −∑m

i=1 wi(X̄ − ExX̄
i )/ ‖

X̄ − ExX̄
i ‖. Sine X̄ is not a global minimizer, d 6= 0. Therefore, there exists a pos-



2.5. Big Region-Small Region Algorithm [18℄ 39itive number β̄ ≤ 1
∑m

i=1 wi/‖X̄−ExX̄
i ‖

suh that for all β ∈ (0, β̄], we have
F (X̄ + βd̄) ≤ F (X̄)− 0.2β ‖ d̄ ‖2< F (X̄)− 0.1β ‖ d̄ ‖2 . (2.38)From the de�nition, we an easily prove that {dk

t } onverges to d̄ and that
{∑m

i=1
wi

‖Xkt−ExXkt
i ‖
} onverges to {∑m

i=1
wi

‖X̄−ExX̄
i ‖
}. It is then follows from the ontinuityof F (·) at X̄ that there exits integers T and l suh that for t ≥ T , we have

βk
t

△
=

1

2l

1
∑m

i=1 wi/ ‖ Xkt − EXXt

i ‖
∈ (0, β̄], (2.39)and that

F (Xkt + γktdkt) < F (X̄)− 0.1γkt ‖ dkt ‖2 . (2.40)Therefore, for t ≥ T , we have βk
t ≥ γkt and that

F (Xkt + 1) ≤ F (Xkt)− 0.1γkt ‖ dkt ‖2 . (2.41)Sine {f(Xk)} is stritly dereasing and that F (X) is ontinuous at X̄, the sequene
{f(Xk)} onverges to f(X̄). Taking limit in (2.41) when t approahes ∞, we get

F (X̄) ≤ F (X̄)− 0.1
1

2l

1
∑m

i=1 wi/ ‖ X̄ − EXX̄
i ‖
‖ d̄ ‖2< F (X̄). (2.42)This is a ontradition. �Theorem 2.4.2: Algorithm 2.4.1 either stops at a global minimizer after a �nite numberof iterations; or generates an in�nite sequene {Xk} whih onverges to a global minimizerof the WeberSphereLo problem.Combining the two lemmas 2.4.1 and 2.4.2, proves the Theorem. �2.5 Big Region-Small Region Algorithm [18℄In their paper, they disussed the unonstrained Weber problem and the onstrained Weberproblem on the sphere. The unonstrained Weber problem is simply the WeberSphere-Lo problem whih we are disussing in our artile. In the onstrained Weber problem



40 2. Spherial Weber Problem(WeberSphereLocconstraint), the new faility X must belong to a given (not neessarilyonvex or onneted) subset F of the surfae of the sphere S0. This subset an usually beapproximated with su�ient preision by a set of n spherial triangles Tj : F = ∪n
j=1Tj.This onstrained problem is the omplement of the restrited spherial loation problem be-ause in the restrited problem, the new faility should not be positioned in a given set (notneessarily onvex or onneted) on S0.Now, we will disuss the algorithm for (WeberSphereLocconstraint) problem. This algo-rithm is a generalization of the "Big Square - Small Square (BSSS)" algorithm [17℄ withnew bounding rules. The BSSS algorithm proeeds by(i) partitioning the smallest square ontaining the set of possible loations (feasible set)into sub squares;(ii) omputing a lower bound of the objetive funtion for those sub squares that intersetthe feasible set;(iii) deleting the sub squares for whih the lower bound exeeds the value of the best existingsolution; and(vi) iterating until the length of a side of a square is smaller than a given tolerane.We refer the generalized algorithm for spherial Weber problem as Big Region - Small Re-gion (BRSR) and this is based on branh - and- bound method in a ontinuous spae. Itproeeds as follows :(i) partitioning the surfae of the sphere S0 into regions Qi de�ned by two latitudes andtwo longitudes ( we start with an initial partitioning of S0 into 8 equal regions );(ii) deleting those regions whih do not interset the feasible region F ;(iii) omputing lower bounds f

i
on f on the remaining regions Qi and deleting those regionsfor whih the lower bound is greater than or equal to the value fopt of the best solution

Xopt yet obtained;



2.5. Big Region-Small Region Algorithm [18℄ 41(iv) omputing the value of a feasible point in eah remaining region Qi and updating foptand Xopt if a point with a smaller value than that of the inumbent is found;(v) hoosing the remaining region Qi with smallest lower bound f
i
and partitioning it intofour new regions;(vi) iterating the tests on the new regions Qi obtained until the relative error fopt−f

i

fopt
issmaller than a given tolerane ǫ.
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Fig. 2.1:The detailed rules of (BRSR) are as follows:a) Initialization Q1 ←− S;
I ←− {1}; (I is the index set of unsolved subproblems)
Inew ←− {1};(Inew is the index set of subproblems for whih a lower bound has not



42 2. Spherial Weber Problembeen omputed)
Xopt ←− randomly generated point in F(if one an be found, else Xopt ←−∞, i.e., a onventional value);
fopt ←− f(Xopt) if a point in F has been found, else fopt ←−∞;b) Feasibility Test For all Qi suh that i ∈ Inew doompute Qi ∩ F ;if Qi ∩ F = ∅ delete i from Inew;EndFor;) Optimality Test) For all Qi suh that i ∈ Inew doompute a lower bound f

i
onf(X) for X ∈ Qi;if f

i
≥ fopt delete i from Inew;EndFor;(d) Improved Solution Test( see Figure 2.5 )For all Qi suh that i ∈ Inew doif, for some j ∈ {1, . . . , n}, Qi ⊂ Tj ,ompute the value f(Xi) of the entral point Xi of Qi;if, for some j ∈ {1, . . . , n}, Tj ⊂ Qi,ompute the value f(Xi) of an arbitrary hosen extreme point Xi of Tj ;else, for some j ∈ {1, . . . , n} suh that Tj ∩Qi 6= ∅,ompute the value f(Xi) of a point Xi on the boundaries of Tj and Qi; if f(Xi) < fopt,set fopt ←− f(Xi) and Xopt ←− Xi; EndFor;add all indies i ∈ Inew to I;(e) Branhing and stopping onditionsIf I = ∅, stop : The problem is infeasible; else selet Qi suh that f

i
= minj∈If j

.If fopt−f
i

f
i

≤ ǫ : stop, an ǫ-optimal solution Xopt with value fopt has been found, elsepartition Qi into four new regions Qij , j = 1, 2, 3, 4;Remove i from I and set Inew equal to the set of indies of the new regions;Return to b).



2.5. Big Region-Small Region Algorithm [18℄ 43The algorithmi sheme presented here an be simpli�ed for the WeberSphereLo prob-lem as follows :(i) Step (b) is omitted (ii) Step (d) redues to the �rst ase.It remains to speify how regions are partitioned. The easiest way to handle regions is tode�ne them by a pair of latitudes and longitudes. Then four new regions of Qi are obtainedby taking as new boundaries the average of the two latitudes and the two longitudes.





3. SPHERICAL CENTER PROBLEMAs in the ase of WeberSphereLo, we assume that eah model whih is desribed in thishapter will deal with a unit sphere, S0 where the radius is equal to one. Every point X onthe sphere is de�ned by its latitude φ and longitude θ and it is denoted by X = X(φ, θ).Consider m demand points ( or existing loations ) Exi, i = 1, 2, . . . ,m, on the surfae ofthe sphere with assoiated weights wi and some distane funtion d(X,Y ), whih measuresthe distanes between spherial points X and Y .We onsider single faility spherial loation problem ( SphereLo ) of the entertype. I.e., we solve
min
X∈S0

h(X) :=
m

max
i=1

wid(X,Exi) CenterSphereLo (3.1)where X is the unknown loation.Unlike on the plane, the CenterSphereLo problem (as well as WeberSphereLo) hasundesirable properties, suh as non-onvexity and non di�erentiability of the objetive fun-tion at both the demand points and a the orresponding antipodal points, and restrition onthe domain of the objetive funtion. Analogous to the Theorem 1.2.1, if all the demandpoints are inluded within a spherial disk of radius π/4, then h(X) is onvex (and thusevery loal optimum is also global).However, if it an be predetermined that all the demand points lie on a hemisphere, one anapply mathematial programming or geometrial solution methods for the minimax loationproblems in the Eulidean plane to solve the CenterSphereLo problem.In this hapter, we will disuss some solution approahes to solve the CenterSphereLoproblem on the unit sphere S0 as well as on a hemisphere.



46 3. Spherial Center Problem3.1 An Iterative Proedure to �nd the Global Optimum for CenterSphereLo [13℄Consider the CenterSphereLo problem with great irle ar distane αi = arc(Exi,X)( see (1.1) ) between the demand point Exi and the new loation X on the surfae of thesphere. I.e., we want to minimize
h(X) =

m
max
i=1

wiarc(X,Exi) =
m

max
i=1

wiαi(X,Exi) (3.2)over all X = X(φ, θ) ∈ S0.We an formulate the spherial maximin problem analogously.The following Theorem shows that spherial maximin and minimax loation problems areequivalent.Theorem 3.1.1: [13℄: Let the optimal solution to the spherial maximin problem be X∗.If a minimax problem is formed by replaing the demand points Exi, i = 1, . . . ,m withtheir antipodes Ēxi, i = 1, . . . ,m and by adding the onstant c = −πwi to wiᾱi then theoptimal solution to this minimax problem is also X∗.Proof : The distane ᾱi between X and Ēxi ( the antipode of Exi) is π−αi as any greatirle ontaining Exi also ontains Ēxi. Now onsider the minimax problem :
min
X∈S0

m
max
i=1

wiᾱi + (πwi) = min
X∈S0

m
max
i=1

wi(π − αi)− πwi

= min
X∈S0

m
max
i=1

(−)wiαi

= min
X∈S0

{(−)
m

min
i=1

wiαi}

= (−) max
X∈S0

m
min
i=1

wiαiIt follows the Theorem. �Theorem 3.1.2: [13℄: Let X l_opt be a loal minimum of h(X). Let E ′x be the set of all
i suh that h(X l_opt) = wiαi. Then, if αi < π/2 for i ∈ E ′x, then X l_opt is the globalminimum.



3.1. An Iterative Proedure to �nd the Global Optimum for CenterSphereLo [13℄ 47Proof
αi < π/2 ⇒ all Exi ∈ E ′x in the hemisphereentered at X l_opt

Th.1.2.1⇒ E ′x is a onvex set
Th.1.2.1⇒ αi is onvex on E ′xThen h(X) is a onvex funtion on E ′x
Th.1.2.1⇒ X l_opt is the global minimum.

�Note that when αi < π/2, then all the demand points in E ′x are in the hemisphere enteredat X l_opt. Further, the value of the objetive funtion for the modi�ed problem based onthe demand points in E ′x is only a lower bound for the value of the objetive funtion forthe problem based on all demand points.Finding a loal minimax point :Here, we propose a method of �nding a loal minimum for h(X) is a version of steepestdesent for minimax problems. The proposed method is as follows :De�ne
hi(X) = wiαi, for i=1, . . . , m (3.3)Then we have

h(X) = max
i
{hi(X)}Also de�ne

Iǫ(X) = {i|hi(X) ≥ h(X) − ǫ}, (3.4)where ǫ is a small onstant. Then onstrut the following quadrati programming problemin order to �nd a feasible vetor Y = (φy, θy) in the diretion of the steepest desent of
h(X).

minimize u = φy
2 + θy

2, (3.5)
subject to [∂hi/∂φ]φy + [∂hi/∂θ]θy ≤ −1, for i ∈ Iǫ(X).



48 3. Spherial Center ProblemIf Y ∗ = (φy∗ , θy∗) is a feasible solution to the quadrati programming problem, it guaranteesthat Y ∗ and {Exi : i ∈ Iǫ(X)} lie on a a hemisphere.Property 3.1.1: If there is no feasible solution (3.5)at X, then
h(X) − h(X l_opt) ≤ ǫ,where X l_opt is a loal minimax solution.Property 3.1.2: If there is a feasible solution to (3.5) at X, then Y ∗ = (φy∗ , θy∗) , theoptimal solution to (3.5), is a vetor in the diretion of the steepest desent of h(X).Therefore, if there is a feasible solution to (3.5), we an travel to a lower value of h(X)along the great irle de�ned by Y ∗.Now, we have to �nd the global minimax point to problem. In the following we will explainthe priniples behind a proedure guaranteed to �nd the global minimax point :Suppose that a loal minimax point X l_opt of h(X) has been found. Let the interse-tion I, of m spherial disks Di, i = 1, 2, . . . ,m with enters at points Exi and with radii

h(X l_opt)/wi. Note that I may be disjoint. A better solution an be found in the set Iand if I is formed by only of the points ( and not ars ) the loal minimax point is alsothe global one. Otherwise, if we obtain a starting point in an area of I, the quadratiprogramming formulation (3.5) an be used to �nd better loal minimax point. Note thatthis area is thereby "removed," If this proess is repeated, the disk shrink, the �nite numberof areas in I is redued, and the global minimax point must eventually be found.Now, we will propose an e�ient method in order to obtain a staring point within the areaof I. Note that the area of I must be bounded by ar segments ut from the irumferenesof the spherial disks with enters Exi. Therefore, at least one suh ar must be insideall other disks. Suppose that we start with the irle around any disk. Then we an hekother irles to see if the �rst irle has an ar in its interior. If the intersetion of suhar segments B is not empty, then this intersetion forms parts of a boundary of area of
I. Then, we an use the enter of B as the starting point for the quadrati programmingimprovement of the solution.The algorithm for �nding the optimal minimax solution is as follows:



3.1. An Iterative Proedure to �nd the Global Optimum for CenterSphereLo [13℄ 49Algorithm 3.1.1: ( �nding the global minimax point:)Input: Set of existing failities Ex = {Exi; i = 1, 2, . . . ,m : Exi ∈ S0}Step 1 Choose a starting point.Step 2 Use (3.5) to obtain a loal minimax point X l_opt.Step 3 Using Theorem 3.1.2, hek to see if X l_opt is a global minimax point; if so termi-nate the proedure.Step 4 Apply Algorithm 3.1.2 for the group E ′x de�ned in Theorem 3.1.2. If I has onlypoints, terminate the proedure as X l_opt is the global minimax point.Step 5 Apply Algorithm 3.1.2 for the whole group of irles. If I has only points now,
X l_opt is the global minimax point.Step 6 Go to Step 2 with the starting point found by Algorithm 3.1.2 .Let k be the number of spherial disks whose intersetion we seek.Algorithm 3.1.2: ( �nding an area of I ):Step 1 set i = 1, j = 2.Step 2 De�ne B to be the entire irumferene of irle i.Step 3 If i = j, go to Step 7.Step 4 Find that ar of irle i that is ut by disk j.Step 5 Let B be the intersetion between the urrentB and the ar formed in Step 4.Step 6 If B is empty and i = k, terminate the proedure: The intersetion I has no areas.If I(arcs) is empty and i < k, set i = i + 1 and go to Step 2.Step 7 If j < k go to Step 3 with j = j + 1. If j = k designate the enter of any ar of Bas a new starting point in Algorithm 3.1.1 and terminate this proedure.



50 3. Spherial Center Problem3.2 Enumeration Tehnique for Determining Global Optimum ofCenterSphereLo [5℄Here, we present an enumeration proedure of �nding a minimax loation of the Center-SphereLo problem with the distant norm is the shortest ar distane on the surfae of thesphere. This proedure determines global optimal solutions in a �nite number of steps. Inthe following, we represent some notations and de�nitions whih will be used in developingof the algorithm.Consider three points X1,X2 and X3 on the surfae of the sphere.
X1X̂2X3 ≡ the spherial angle subtended from a point X2 by the sh-orter ar, arc(X1X3).
△X1X2X3 ≡ the plane triangle with verties at points X1,X2 and X3.

∠X1,∠X2 and ∠X3 ≡ angles of △X1X2X3.The spherial angle X1X̂2X3 is measured as angle between two straight lines tangentialat point X2 to the two great irles, one passing through X1&X2 and the other through
X2&X3.De�nition 3.2.1: Given three distint points, X1,X2 and X3 on the surfae of the sphere,
P(X1,X2,X3) denote the unique plane passing through the three points and biseting thesphere(see Figure 3.1).De�nition 3.2.2: C(X1,X2,X3) denotes the irle traed by the plane P(X1,X2,X3)utting through the sphere(see Figure 3.1).De�nition 3.2.3: Let X1 and X2 are not diametrially opposite. Denote the mid pointof the (shorter) ar as the point P . Then, C(X1,X2) represents the small irle that goesthrough points X1 and X2 and has its nearer pole loated at point P .De�nition 3.2.4: ΓC(X1,X2) and ΓC(X1,X2,X3) denote the surfae area of a sphere thatontains the nearer pole and is bounded by C(X1,X2) and C(X1,X2,X3), respetively.
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3Fig. 3.1: Plane P bisets the sphereDe�nition 3.2.5: RC(X1,X2) and RC(X1,X2,X3) denote the surfae area of a spherethat ontains the distant pole and is bounded by C(X1,X2) and C(X1,X2,X3), respetively.Next, We will represent some results regarding poles and small irles.Lemma 3.2.1: Let P be the nearer pole of C(X1,X2,X3), where △X1X2X3 is an autetriangle. Let Q(6= P ) be any point on ΓC(X1,X2,X3) and within the spherial triangle
X1X2X3. Then, the spherial radius of C(X1,X2,X3) is greater thanminimum{arc(QX1), arc(QX2), arc(QX3)}.Proof : See Appendix.Lemma 3.2.2: Let P ′ be the distant pole of C(X1,X2,X3) where △X1X2X3 is an autetriangle. Let Q1 be a point on RC(X1,X2,X3) and Q1 6= P ′. If Q1 is su�iently lose to
P ′ thenmaximum{arc(Q1X1), arc(Q1X2), arc(Q1X3)} > arc(X1P

′).



52 3. Spherial Center ProblemProof : See Appendix.Lemma 3.2.3: Let X1,X2 and X3 be three di�erent points on a unit sphere with ∠X3 >

π/2. Let P and P ′ be the nearer and distant poles of C(X1,X2,X3) respetively. Thenthere exits a point Q, lose to P ′ suh that
maximum{arc(X1Q), arc(X2Q), arc(X3Q} < arc(X1P

′) = arc(X2P
′) = arc(X3P

′).Proof : See Appendix.Corollary 3.2.1: C(X1,X2,X3) may ontain demand points other than X1,X2, and X3.Assume that all other demand points lie in RC(X1,X2,X3) − C(X1,X2,X3). Then thedistant pole of C(X1,X2,X3) is not a solution of the spherial minimax problem if notriplet of demand points on C(X1,X2,X3) forms an aute triangle.Proof In this ase the demand points on C(X1,X2,X3) lie on an a of a semiirle. Theresults diretly follows from Lemma 3.2.3.Theorem 3.2.1: (i) If △(X1X2X3) is an aute and ΓC(X1,X2,X3) may ontain all de-mand points the n the nearer pole of C(X1,X2,X3) is the unique faility point.(ii) If ΓC(X1,X2) ontains all demand points, then the nearer pole of C(X1,X2) is therequired faility point.Proof Let P be the nearer pole of C(X1,X2,X3). As △(X1X2X3) aute, we have
X̂1 < X̂2 + X̂3, X̂2 < X̂1 + X̂3, and X̂3 < X̂1 + X̂3.Take any point X on ΓC(X1,X2,X3). Join XP by the ar of the great irle. Sine P iswithin the spherial triangle X1X2X3, we have

X1P̂X2 + X2P̂X3 > π,

X2P̂X3 + X3P̂X1 > π,and
X3P̂X1 + X1P̂X2 > π,
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Fig. 3.2:hene, we onlude that at least one of the spherial angles X1P̂X,X3P̂X and X2P̂X mustbe greater than π/2. In Figure (3.2), for example, X1P̂X > π/2, and onsequently fromthe spherial triangle X1PX, arc(X1X) > arc(X1P ).Similarly,
X3P̂X > π/2 ⇒ arc(X3X) > arc(X3P ) and X2P̂X > π/2 ⇒ arc(X2X) > arc(X2P ).This implies that P is the unique faility point.Consider the spherial irle C(X1,X2) with nearer pole S.From the spherial triangle PX1X2, we have by the Property 1.2.1 (),

arc(X1P ) + arc(X2P ) > arc(X1X2) = arc(X1S) + arc(SX2)

⇒ 2 · arc(X1P ) > 2 · arc(X1S)

⇒ arc(X1P ) > arc(X1S).This implies that there exits a small irle C(X1,X2) of a smaller spherial radius than
arc(X1P ) suh that all the demand points are ontained on ΓC(X1,X2). That is , thenearer pole S of C(X1,X2) is the required faility point.Corollary 3.2.2: C(X1,X2,X3) may ontain demand points other than X1,X2, and X3.



54 3. Spherial Center ProblemAssume that all other demand points lie in ΓC(X1,X2,X3)−C(X1,X2,X3). If all triplets ofdemand points on C(X1,X2,X3) form obtuse triangle, then the nearer pole of C(X1,X2,X3)is not the required faility point.Proof : The result follows from Theorem 3.2.1.Theorem 3.2.2: If there exists a triplet (X1,X2,X3) of demand points suh that(i) △(X1X2X3) is aute,(ii) The enter of the sphere and all demand points lie on the same side of P(X1,X2,X3),and(iii) (X1,X2,X3) generates the plane losest to the enter of the sphere, then the distantpole of C(X1,X2,X3) is the required faility point.Proof : From Lemma 3.2.3, we know that the triplet of points forming an obtuse triangleannot yield an optimal solution. Further, Lemma 3.2.2 represents that the distant poleof the small irle de�ned by a triplet satisfying (i) and (ii) is a loal minimum and (iii)implies the optimality.Theorem 3.2.3: If RC(X1,X2)−C(X1,X2) ontains all demand points other than X1,X2,then the distant pole of C(X1,X2) annot be a minimax loation.Proof : See Appendix.Corollary 3.2.3: Assume C(X1,X2) ontains a demand point(s) other than P1 and P2.Let all the demand points lie on RC(X1,X2)−C(X1,X2). If not triplet of demand points on
C(X1,X2) forms an aute triangle, then the distant pole of C(X1,X2) annot be a failitypoint.Proof : The results follows from Theorem 3.2.3.Lemma 3.2.2 shows that if all the demand points lie in RC(X1,X2,X3), every point in asmall neighborhood of distant pole, P ′ has an objetive funtion value that is greater than



3.2. Enumeration Tehnique for Determining Global Optimum of CenterSphereLo [5℄ 55the one at P ′. Thus P ′ is loally optimal. In the ase that all the demand points lie in ahemisphere, Theorem 3.2.1 disuss the solution to the required problem when all demandpoints lie in a hemisphere and Theorem 3.2.2 haraterizes a solution when all the demandpoints are distributed all over the sphere.Next, will present the developed algorithm for solving the spherial minimax loation prob-lem.In the following algorithm, we onsider that Ex = {Exi : i = 1, . . . ,m} denote the set ofdemand points and Exk, Exl, and Exm be three distint element of Ex.Then de�ne the following :
l(Exk, Exl, Exm) : the Eulidean distane from the enter of the sphere to the enterof the irle C(Exk, Exl, Exm).

u(Exk, Exl, Exm) =







0 if △ExkExlExm is obtuse;
1 otherwise.

v(Exk, Exl, Exm) =







0 if points lie on both sides of P(Exk, Exl, Exm) ;
1 otherwise.This algorithm bellow examines all possible pairs of demand points to �nd minimax loa-tions. To prevent a pair of demand points, (Exi, Exj) being examined twie, the followingrules are imposed to update the indies of the pair to be examined next.Rule 1. If j < m, then set i = i and j = j + 1Rule 2. If j = m and i < m− 1, then set i = i + 1 and j = j + 1.Together with the above de�nitions and two rules, the algorithm an be presented as follows :Algorithm 5 (An algorithm for CenterSphereLo problem)



56 3. Spherial Center ProblemInput The set Ex = {Exi : i = 1, . . . ,m} of demand points on the unit sphere.Initialization. Set i = 1, j = 2,Opt∗ = ∅, k = 1, l = 2, lbest = 1. Go to step 1.Step 1. If ΓC(Exk, Exl) ontains every other demand points, stop and nearer pole of
C(Exk, Exl) is the minimax loation. Otherwise, go to Step 2.Step 2. If i = (m − 1), stop and every point in Opt∗ is a minimax loation. Otherwise,go to Step 3.Step 3. Let Exp and Exq be two demand points other than Exk and Exl suh that
P(Exk, Exl, Exp) and P(Exk, Exl, Exq) yield the minimum and the maximum, re-spetively, inlination with the plane Γ(Exk, Exl).If u(Exk, Exl, Exr) = 1 and all the demand points lie on ΓC(Exk, Exl, Exr for r = por r = q, then stop and the nearer pole of C(Exk, Exl, Exr) is the minimax loation.Otherwise, go to Step 4.Step 4. For r = p and r = q, do one of the following:If u(Exk, Exl, Exr) = 1, v(Exk , Exl, Exr) = 1 and l(Exk, Exl, Exr) = lbest, thenadd the distant pole of C(Exk, Exl, Exr) to Opt∗.If u(Exk, Exl, Exr) = 1, v(Exk, Exl, Exr) = 1 and l(Exk, Exl, Exr) < lbest, then set
lbest = l(Exk, Exl, Exr) and replae Opt∗ with a set that ontains only the distantpole of C(Exk, Exl, Exr).Update i and j aording to the two rules and set Exk = Exi and Exl = Exj . Goto Step1.If the algorithm stops in Step 1, the Theorem 3.2.1 guarantees that the nearer pole of

C(Exk, Exl) is the optimum loation. The set Opt is formed by the distane poles of
C(Exk, Exl, Exr). If the algorithm terminates in Step 2, Theorem 3.2.3 justi�es that thepoints Exk, Exl, and Exr; r = p, q on C(Exk, Exl, Exr) forms an aute triangle and thisjusti�es the optimality of every point in Opt. Consider the Step 3. The plane P(Exk, Exl)divides the sphere into two disjoint surfaes. If Exm ∈ ΓC(Exk, Exl) − C(Exk, Exl),then ExkÊxmExl is obtuse and then the poles of C(Exk, Exl, Exm) an not be a opti-mal loation. When Exm ∈ RC(Exk, Exl) − C(Exk, Exl) then ExkÊxmExl is aute. If,in addition, every demand points lie on ΓC(Exk, Exl, Exm), then by Theorem 3.2.1, thenearer pole of C(Exk, Exl, Exm) is the optimal loation. Otherwise, Step 4 examines the



3.3. Algorithm Based on Fatored Seant Update Tehnique [24℄ 57possibility to have a distane pole of C(Exk, Exl, Exm) as a optimal loation.Further, in Step 3, we are looking for a third demand point Exm on C(Exk, Exl) in suha way that all the other demand points lie on one side of the plane P(Exk, Exl, Exm).There are no more than (m − 2) planes that pass through demand points Exk, Exl, andanother point Exm in RC(Exk, Exl). Among these planes, at most two planes an haveall the demand points other than Exk, Exl, and Exm all on one side. These two planesare the ones that yield the minimum and maximum inlinations with the plane C(Exk, Exl).3.3 Algorithm Based on Fatored Seant Update Tehnique [24℄In this paper, the author disussed CenterSphereLo problem in the artesian oordi-nate system using the Eulidean norm. He justi�ed that minimizing the maximum ofthe shortest ar distanes between the faility and the demand points on the unit sphereis equivalent to minimizing the maximum of the orresponding Eulidean distanes. Usingthe Karush-Kuhn-Tuker (KKT) neessary optimality onditions, he obtained a set of non-linear equations whih an be solved by a method of fatored seant update tehnique (see[6℄). He made attention for the following speial ases :1. All the demand points are on a hemisphereand2. One or more point-antipodal point(s) are inluded in the set of demand points.3.3.1 The Behavior of the Eulidean Distanes in Spherial Loation ProblemsHere, we will show that minimizing the maximum of the shortest ar distane between thefaility to be loated and the demand points is equivalent to minimizing the maximum ofthe orresponding Eulidean distanes.From (1.1), we have
α = arccos{cos φ1 cos φ2 cos(θ1 − θ2) + sin φ1 sin φ2} (3.6)



58 3. Spherial Center Problembe the shortest ar distane between two points X1 = X1(φ1, θ1) and X2 = X2(φ2, θ2) on
S0. Let d be the orresponding Eulidean distane between these two points. Sine α is alsothe angle between the two lines drawn from the enter of the sphere to two points X1 and
X2, ( see Figure 3.3 )
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Fig. 3.3:
d2 = ‖ OX1 ‖2 + ‖ OX2 ‖2 −2× ‖ OX1 ‖ × ‖ OX2 ‖ cos α

d2 = ‖ 1 ‖2 + ‖ 1 ‖2 −2× ‖ 1 ‖ × ‖ 1 ‖ cos α

d2 = 2− 2 cos α

α = arccos(1− d2

2
), 0 ≤ d ≤ 2 (3.7)The equation 3.7 shows that there is a one-to-one orrespondene between α and d. Inaddition, α is an inreasing funtion of d. This means that �nding the minimax point us-ing the great irle distane, α is equivalent to �nding minimax point using the Eulideandistane, d.



3.3. Algorithm Based on Fatored Seant Update Tehnique [24℄ 593.3.2 Formulation of the Problem with Eulidean DistaneA mathematial formulation of the CenterSphereLo problem with Eulidean distane isas follows :
min H (3.8)subjet to (xi − x0)

2 + (yi − y0)
2 + (zi − z0)

2 ≤ H for i = 1, . . . ,m (3.9)
x2

0 + y2
0 + z2

0 = 1 (3.10)wherem is the number of existing failities ,
(xi, yi, zi) are the artesian oordinates of the existing failities Exi,
(x0, y0, z0) are the oordinates of a point X0 on S0,H is the variable that measures the maximum of the squares of the Eulideandistanes from X0 to the existing faility Exi.Now we onsider the orresponding KKT neessary optimality onditions for the the min-imax problem (3.8) - (3.10).

m
∑

i=1

λi = −1 (3.11)
(µ +

m
∑

i=1

λi)x0 =

m
∑

i=1

λixi (3.12)
(µ +

m
∑

i=1

λi)y0 =
m

∑

i=1

λiyi (3.13)
(µ +

m
∑

i=1

λi)z0 =
m

∑

i=1

λizi (3.14)(3.15)
λisi = 0 for i = 1, . . . , n (3.16)

(xi − x0)
2 + (yi − y0)

2 + (zi − z0)
2 − F + s2

i = 0 for i = 1, . . . , n (3.17)
x2

0 + y2
0 + z2

0 − 1 = 0 (3.18)
λi + p2

i = 0 for i = 1, . . . , n (3.19)



60 3. Spherial Center Problemwhere
λi is the Lagrange multiplier orresponding to the onstraint set (3.9) ,
µ is the Lagrange multiplier orresponding to onstraint (3.10),
si are the slak variables of inequality (3.9),
pi are the slak variables of the non positivity onditions on λi.The set of equations (3.11)- (3.19) are the set of nonlinear equations whih an be solvedby using the method of fatored seant update with a �nite di�erene approximation to theJaobian. 3.3.3 Some Examples for Solving CenterSphereLoIn order to apply the theory whih we disussed here, we onsider three examples :1. when the demand points are on a hemisphere and at least one point-antipodal pointpair is inluded in the set of demand points,2. when the demand points are on a hemisphere and no point - antipodal point pair isinluded in the set of demand points,3. when the demand points are not on a hemisphere.Example 1We onsider 17 points all loated in the Northern Hemisphere. Eah point's latitude, longi-tude, and the orresponding Cartesian oordinates ate inluded in Table 3.1. The last twopoints form a point - antipodal point pair on the equator.For this example, a minimax point an be obtained quikly as follows (see [23℄):
• Selet a demand demand point Exi = (xi, xi, zi) whose antipode

Ēxi = (−xi,−yi,−zi) is also inluded in the set Ex of demand points.



3.3. Algorithm Based on Fatored Seant Update Tehnique [24℄ 61City Latitude Longitude x y z1 London 51.5 N 0.4 E 0.6025 0.0043 0.78262 Paris 48.9 N 2.3 E 0.6568 0.0264 0.75363 Zurih 47.4 N 8.5 E 0.6694 0.1000 0.73614 Rome 41.9 N 12.5 E 0.7267 0.1611 0.66785 Copenhagen 55.7 N 12.6 E 0.5500 0.1229 0.82616 Berlin 52.5 N 13.4 E 0.5922 0.1411 0.79347 Stokholm 59.3 N 18.9 E 0.4830 0.1654 0.86008 Athens 38.0 N 23.7 E 0.7216 0.3167 0.61579 Ankara 39.9 N 32.8 E 0.6449 0.4156 0.641510 Tel-Aviv 32.1 N 34.8 E 0.6956 0.4835 0.531411 Mosow 55.7 N 37.7 E 0.4459 0.3446 0.826112 Teheran 35.4 N 51.4 E 0.5085 0.6370 0.579313 Bombay 18.9 N 72.8 E 0.2798 0.9038 0.323914 Manila 14.6 N 121.0 E -0.4984 0.8295 0.252115 Tokyo 35.6 N 139.7 E -0.6201 0.5260 0.582016 Point 16 0.0 30.0 E 0.8660 0.5000 0.000017 Point 17 0.0 150.0 W -0.8660 -0.5000 -0.0000Tab. 3.1: Latitudes, Longitudes, and orresponding Cartesian oordinates of 17 points. Points 16and 17 form a point-antipodal point pair on the Equator
• Consider a plane passing through the points (0, 0, 0), Exi, and Ēxi suh that theremaining points Exj, with j 6= i lie on one side of the plane.
• If suh a plane exists, then all the points inluding the point-antipodal pair are on ahemisphere.
• To hek whether suh a plane exits, we an solve the following linear programmingproblem with dummy objetive g:
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max g (3.20)
s.t. axi + byi + czi = 0

axj + byj + czj ≤ 0 for all (xj , yj, zj) 6= ±(xi, yi, zi)

g ≤ 1

a, b, c are unrestrited in sign.
• Consider a solution (a, b, c) obtained by solving the linear programming formulation(3.20)
• This vetor is normal to the plane ax + by + cz = 0 that divides the unit sphere intohemispheres suh that the demand points lie on a hemisphere.
• This vetor is direted towards the hemisphere that does not ontain any of the de-mand points.
• Then the minimax point is given by

x0 = − a√
a2 + b2 + c2

; y0 = − b√
a2 + b2 + c2

; z0 = − c√
a2 + b2 + c2

(3.21)
• This minimax point is simply the enter of the spherial disk with radius π/2 (thehemisphere whih bears all the demand points).As the linear programming formulation (3.20) has multiple optimal solutions whenever thegreat irle that divides the hemispheres ontains only the point-antipodal point pair, thisminimax point may not be unique. In this ase the minimax loation problem will havemultiple solutions with the same maximum spherial distane π/2 from the minimax pointto the demand points.Using the method mention above, example 1 gives the minimax point (-0.463, 0.803, 0.376).The same problem is also solved using the KKT onditions (3.11) - (3.19) iteratively. Itgives the minimax point (-0.356, 0.616, 0.703).



3.3. Algorithm Based on Fatored Seant Update Tehnique [24℄ 63These two solutions on�rms that multiple solutions are possible for this problem.Example 2In this example, we onsider the �rst 15 points of Table 3.1 all loated in the NorthernHemisphere. This problem is solved by using KKT onditions (3.11) - (3.19) and it givesa unique globally optimal solution whenever the demand points lie on a hemisphere.Example 3 City/Point Latitude φ Longitude θ x y z1 Point 1 56.2 N 23.4 E 0.5105 0.2209 0.83102 Point 2 25.0 N 9.1 W 0.8949 -0.1433 0.42263 Point 3 7.0 S 43.2 E 0.7235 0.6794 -0.12194 Point 4 12.8 N 45.0 W 0.6895 -0.6895 0.22155 Point 5 0.0 100.5 E -0.1822 0.9832 0.00006 Point 6 27.0 N 84.5 W 0.0854 -0.8869 0.45407 Point 7 9.5 S 110.3 W 0.3422 -0.9250 -0.16508 Point 8 32.5 S 87.0 E 0.0411 0.8422 -0.53739 Point 9 30.0 S 60.0 W 0.4330 -0.7500 -0.500010 Point 10 60.0 N 60.0 W 0.2500 -0.4330 0.866011 Point 11 45.0 N 75.0 E 0.1830 0.6830 0.707112 Point 12 85.0 N 0.0 0.0872 0.0000 0.996213 Point 13 15.0 S 130.0 W -0.6209 -0.7399 -0.258814 Point 14 60.0 N 115.0 E -0.2113 0.4532 0.8660Tab. 3.2: Latitudes, Longitudes, and orresponding Cartesian oordinates of 14 points spread overthe entire globe.In this example, we onsider the situation when all the demand points are not on a hemi-sphere. The table 3.2 represents 14 points with eah point's latitudes, longitudes, and theorresponding Cartesian oordinates .



64 3. Spherial Center ProblemIt gives di�erent loally optimal solutions in eah di�erent starting values. The minimumvalue obtained among all of these loally optimal solutions may be a globally optimal solu-tion. Next, we add the �fteenth in Table 3.2. This point is the antipode of Point 3 in thistable. The KKT onditions (3.11) - (3.19) is solved with a same starting vales and it givesthe same optimal solution as that obtained for the 14 points in Table 3.2. This on�rmsthat adding an antipode of one of the demand points may not always alter a loally optimalsolution.Note: For the �rst example, the KKT neessary optimality onditions (3.11)-(3.19) neednot be solved. The vetor (a, b, c) that is normal to the plane ax + by + cz = 0 passingthrough the enter (0, 0, 0) of the sphere and dividing the plane into hemispheres suh thatthe demand points are on a hemisphere, is direted towards the hemisphere that does notontain any of the points. The optimal loation of CenterSphereLo is then the nor-malized vetor (−a,−b,−c). For the other two examples, KKT onditions (3.11)-(3.19)need to be solved. There are (3n + 5) equations involved in these (3.11)-(3.19). Thus thenumber of equations inreases by 3 whenever a new demand point is added. Also it shouldbe mentioned that the resulting KKT system of equations, (3.11)-(3.19), is very nonlinear.3.4 Geometrial Approahes for CenterSphereLo Problem on a Hemisphere[27℄,[4℄Consider the CenterSphereLo problem on a hemisphere with equal weights. In bothmethods, we use the shortest ar distane as the measure of distane on the hemisphere.The solution method whih is desribed in [27℄ depends heavily on properties of the spher-ial triangles. The seond approah whih is desribed in [4℄ is based on the properties ofa plane triangle. During the development of these algorithms, we use the notations whihare desribed in the setion 3.2.In the �rst step, we desribe the Sakar - Chaudhuri[27℄ algorithm is as follows:Let Ex = {Exi, i ∈ I and I = {1, 2, . . . ,m}} be the set of demands points on the surfaeof a hemisphere. The basi idea of this approah is to over Ex by a portion of a spherebounded by a small irle. The next step onsists of reduing the radius of this irle so that



3.4. Geometrial Approahes for CenterSphereLo Problem on a Hemisphere [27℄,[4℄ 65demand points ontinue to remain within the portion of the sphere bounded by this irle.The algorithm is designed in suh a manner that eah iteration at leat one demand pointould be eliminated and no future iteration would need any information about this point.Algorithm 3.4.1: (algorithm based on the properties of the spherial triangles)Input Ex = {Exi : i ∈ I = {1, . . . ,m}} be the set of existing failities in a hemisphere
SH

0 .Initialization. Choose any point X on the surfae of the hemisphere whih ontains allthe demand points. Let Exk be the farthest demand point from X. Denote thispoint by A.
I ← I − {k}.Let Ai be a point on the great irle arc(AX) suh that :
arc(AAi) = arc(AiExi), where i ∈ I. Denote the point Ai for whih XAi is mini-mum by Y and orresponding index by k. Let this demand point Exk be denotedby B. I ← I − {k}.Step 1. If all the demand points lie on ΓC(A,B), then the nearer pole P of C(A,B) is therequired faility point. Stop.Else X ← Y , and go to step 2.Step 2. Let D be the mid point of the arc(AB). Find a point Ai on the great irle
arc(XD) suh that arc(AiA) = arc(AiExi), i ∈ I. Denote the point Ai for whihthe arc(XAi) is minimum by Y and the orresponding index by k. Let the demandpoint Exk be denoted by C.If Â < B̂ + Ĉ, B̂ < Â + Ĉ and Ĉ < Â + B̂, then the nearer pole P of C(A,B,C)isthe required faility point. Stop.Else go to Step 3.Step 3. If ExkÊxiExj > Exi

ˆExjExk + Exj
ˆExkExi, where Exi, Exj , Exk ∈ {A,B,C}and i, j, k are all di�erent, then Exi is exluded from all future iterations. Denotethe points Exj and Exk by A and B respetively. I ← I − {i} and repeat Step 1.



66 3. Spherial Center ProblemIf the Algorithm 3.4.1 stops in Step 1, and Step 2 then Theorem 3.2.1 guaranties that theoptimality of the nearer poles of C(A,B) and C(A,B,C) respetively.In order to explain the next algorithm[4℄ whih is based on the properties of planner triangle,�rst we will onsider the following lemma.Lemma 3.4.1: Let X1 and X2 are any two points on the surfae of the sphere that donot ontain the ends of a diameter of the sphere. Let X3 be an any point on the surfaeof the sphere suh that X3 /∈ ΓC(X1,X2). Then ∠X1X3X2 is aute.Proof: Construt the sphere, S′ with C(X1,X2) as a great irle. Clearly all the pointsof ΓC(X1,X2)−C(X1,X2) lie within S′ and all the points of S0−ΓC(A,B) lie outside S′.Now X3 is a point whih is lie outside of S′. It is obvious that ∠X1X3X2 is an aute angle.Corollary 3.4.1: Consider any three points X1,X2 and X3 on the surfae of the spheresuh that △X1X2X3 is an aute triangle and C(X1,X2,X3) is a small irle. Let O′ be theenter of C(X1,X2,X3). Further assume that Y be a point on the surfae of the spherewith Y /∈ ΓC(X1,X2,X3). Then O′Y > O′X1 = O′X2 = O′X3.Proof : Let S′′ be the sphere of whih C(X1,X2,X3) is a great irle. Sine Y is outsideof S′′, the proof is immediately follows from the Lemma 3.4.1.Then we represent the Das - Chakraborti [4℄ algorithm as follows:Algorithm 3.4.2: (Algorithm based on the properties of the planner triangles)Input Ex = {Exi : i ∈ I = {1, . . . ,m}} be the set of existing failities ontained in aspherial disk of radius α ≤ π/4.Initialization. Take any two demand points Exi and Exj . Go to Step 1.Step 1. If all demands points lie on ΓC(Exi, Exj), then nearer pole of C(Exi, Exj) is therequired faility point. Stop.Else hoose a demand point, say Exk, not in ΓC(Exi, Exj) suh that ∠ExiExkExj



3.4. Geometrial Approahes for CenterSphereLo Problem on a Hemisphere [27℄,[4℄ 67is minimum. Goto Step 2.Step 2. If all the demand points lie on ΓC(Exi, Exj , Exk) and △ExiExkExj is an autetriangle then stop. The nearer pole of C(Exi, Exk, Exj) is the required faility point.Else goto Step 3.Step 3. If △ExiExkExj is not an aute triangle then all the extremities of the largestside of the triangle by Exi and Exj . Return to Step 1.Else �nd a demand point, Exl, in S0 − ΓC(Exi, Exj , Exk) suh that the distane of
Exl from the enter of the C(Exi, Exj , Exk) is maximum. Go to Step 4.Step 4. Find the maximum distane of Exl from Exi, Exj , Exk. Denote the point havinga maximum distane from Exl by Exi and rename the other two points by Exj and
Exk. Denote the minimum{ ∠ExiExjExl,∠ExiExkExl} by ∠ExiExjExl.If ∠ExiExjExl is greater than or equal to right angle,then Exj ← Exl and repeat Step 1.Else Exk ← Exl and return to Step 2.The optimality onditions in Step 1 and Step 2 in this algorithm are diretly follows fromthe Theorem 3.2.1.It is lear that the optimal solution of the CenterSphereLo problem on hemispherialsurfae is the nearer pole of C(Exi, Exj) or C(Exi, Exj , Exk) whenever all the demandpoints lie on the ΓC(Exi, Exj) or ΓC(Exi, Exj , Exk). This simply says that a hemispherialminimax loation redues to �nding a small irle of maximum radius on the surfae of thesphere whih ontains either two demand points at the end of a diameter or the threedemands points forming an aute triangle suh that all the demand points lie on one sideof the plane of the small irle and the enter of the sphere on the other side.





4. RESTRICTED SPHERICAL CENTER LOCATION PROBLEMGiven set a Ex = {Exi; i = 1, 2, . . . ,m} of m demand points on the surfae of a spherewith assoiated weights wi; i = 1, 2, . . . ,m, our goal is to �nd a loation for a new failityin order to minimize the maximum weighted distane to the demand points with respet toa given distane of measure.That is, we are looking for a point X∗ on the surfae of the sphere in whih
min
X∈S0

max
i=1,2,...,m

wid(X,Exi) CenterSphereLo (4.1)is attained. Here d(X,Y ) is the distane between two points X and Y on the surfae ofthe sphere and S0 denote the surfae area of the sphere.In pratial situations, X∗ will not be a feasible loation. That means, there will be someregions in whih the plaement of a new faility is forbidden, but transportation is still pos-sible. These regions often referred to as forbidden ( or restrited ) regions. These an beused to model, for example, state parks, lakes or other proteted areas, or regions where thegeographi harateristis are not allowed to onstrut the desired new faility. Therefore,�nding an optimal solution(s) XR of CenterSphereLo problem an be onsidered as a"restrited faility loation problem" on the spherial surfae. This problem is known as"Restrited Spherial Center( or minimax) (RestritedCenterSphereLo) prob-lem " (see Figure 4.1).We assume here that , some spherial polygon (De�nition 1.2.19) R is given suh that thenew faility loation X is not allowed to be ontained in the interior, int(R) of R.i.e., we want to solve
min
X∈F

max
i=1,2,...,m

wid(X,Exi) RestrictedCenterSphereLoc (4.2)
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2 31Fig. 4.1: Optimal loation X∗ is loated in a restrited region Rwhere F := S0 \ int(R).In the following setion, we restrit our problem to the speial ase where all the demandspoints lie on the surfae of a hemisphere. Unrestrited version of this problem an be solvedusing some known methods ( see [4℄, [26℄, [27℄ ).4.1 Basi Results for Hemispherial CenterSphereLo Problem using Level Setsand Level CurvesNow, onsider the hemispherial loation problem with the shortest length of ar (greatirle distane)(see De�nition 1.2.8) as the distane of measure d and a onvex spheri-al polygon (see De�nition 1.2.19 ) as a restrited polygon, R. Further we assume that
wi = 1; ∀i = 1, . . . ,m.i.e., we want to solve

min
X∈F

h(X) = max
i=1,2,...,m

α(X,Exi) (4.3)



4.1. Basi Results for Hemispherial CenterSphereLo Problem using Level Sets and Level Curves 71where F := SH
0 \ int(R).Here α(X,Y ) is the great irle ar distane between two points X and Y on the surfaeof the sphere and SH

0 denote the surfae area of a hemisphere.Let X∗ be the unique optimal solution of CenterSphereLo problem and XR be anyoptimal loation of the RestritedCenterSphereLo problem. Further, let z∗ and zRrepresent the orresponding optimal objetive values, respetively.That is,
z∗ = max

i=1,2,...,m
α(X∗, Exi)and

zR = max
i=1,2,...,m

α(XR, Exi) et.If X∗ ∈ SH
0 \ int(R), then XR = X∗ and the restrited problem is trivially solved. There-fore, we assume that X∗ ∈ int(R).If X∗ ∈ int(R), the following Theorem shows that XR should be lie on the boundary, ∂Rof the restrited polygon, R.Theorem 4.1.1: If the set of optimal loations ofCenterSphereLo, opt∗ ⊆ int(R) thenthe set of optimal loations, opt∗(R) of the hemispherial RestritedCenterSphereLoproblem is a subset of the boundary of R (i.e., opt∗(R) ⊆ ∂R )Proof Let X∗ ∈ opt∗ and X 6∈ R. Now we have to show X 6∈ opt∗(R).Sine opt∗ ⊆ int(R) and X 6∈ R, we know h(X∗) < h(X).Choose any δ suh that XB = δX∗ + (1− δ)X ∈ ∂R.Sine h(X) is a onvex funtion on the surfae of the hemisphere, we have

h(XB) = h(δX∗ + (1− δ)X) ≤ δh(X∗) + (1− δ)h(X).

⇒ h(XB) < δh(X) + (1− δ)h(X) = h(X).I.e., there exists a point XB on the ∂R whih is better than X. This means X 6∈ opt∗(R). �In the following, we will show that how an the optimal solutions XR be haraterized usinglevel urves and level sets ( see De�nition 1.2.20 ).



72 4. Restrited Spherial Center Loation ProblemLemma 4.1.1: zR is the optimal value for the restrited hemispherial enter loationproblem if and only if zR = min{z ∈ IR : L=(z) \ int(R) 6= ∅}.Proof ” =⇒ ” Let zR be optimal. Then there exists XR with h(XR) = zR and XR 6∈
int(R).
⇒ XR ∈ L=(zR) \ int(R) 6= ∅.Assume ∃z̃ < zR s.t. L=(z̃) \ int(R) 6= ∅.Then hoose X̃ ∈ L=(z̃)\int(R) feasible and h(X̃) < h(XR) = zR. This is a ontraditionfor the optimality of XR. This implies
zR = min{z ∈ IR : L=(z) \ int(R) 6= ∅}.
”⇐= ” Let zR = min{z ∈ IR : L=(z) \ int(R) 6= ∅}.Take X ∈ L=(zR) \ int(R) with h(X) = zR.We have to show X is optimal :Suppose X is not optimal. I.e., ∃X̃ s.t. z̃ = h(X̃) < h(X) = zR and X̃ 6∈ int(R).
⇒ L=(z̃) \ int(R) 6= ∅. This is a ontradition sine z̃ < zR.
⇒ X is optimal. �Therefore, if X∗ ∈ int(R), we need to inrease z∗ until the boundary of the level set touhesthe boundary of the restrited region. The following Theorem presents the onditions whihneeds to be onsidered when we inrease the value of z∗.Theorem 4.1.2: zR is the optimal objetive value of the restrited hemispherial enterloation problem if and only if(1) L≤(zR) ⊆ R and(2) L=(zR) ∩ ∂R 6= ∅Proof ” =⇒ ” : Let zR is optimal. Take X ∈ opt∗(R) with h(X) = zR; i.e., X ∈ L=(zR).Theorem 4.1.1 ⇒ X ∈ ∂R.Then we have ∂R ∩ L=(zR) 6= ∅.
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Lemma 4.1.1 ⇒ L=(z) \ int(R) = ∅ ∀z < zR.

⇒ L=(zR) \ R = ∅

⇒ L=(zR) ⊆ R

⇒ ∪z≤zRL=(z) ⊆ R

⇒ L≤(zR) ⊆ R.

”⇐= ” : Let L=(zR) ∩ ∂R 6= ∅ and L≤(zR) ⊆ R .
⇒ L=(zR) \ int(R) 6= ∅ but
L=(z) \ int(R) = ∅ ∀z < zR.Lemma 4.1.1 ⇒ zR is optimal. �Note that the optimal value z∗ of the unrestrited problem is the smallest value z with
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2Fig. 4.2: X∗ Represents the unique optimal loation

L≤(z) 6= ∅. In this ase L≤(z∗) = {X∗} (see Figure 4.2). For z > z∗, L≤(z) is an area inthe hemisphere whih is bounded by great irle ar segments (see Figure 4.3).If X∗ ∈ int(R) is not feasible for the hemispherial CenterSphereLo problem we need



74 4. Restrited Spherial Center Loation Problemto inrease z∗ until onditions (1) and (2) of Theorem 4.1.2 are satis�ed. Sine L≤(zR)
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1 2 3Fig. 4.3: L≤(z) is the shaded area.an be expressed as intersetions of the spherial disks D(Exi, z) entered at the existingfailities Exi with radii z ( see Result 1.2.3), the level set touhes the boundary of therestrited region R in two di�erent ways as shown in Figures 4.4 and 4.5. Now, thereforewe an identify the optimal solutions for the hemispherial RestritedCenterSphereLoproblem as follows:Suppose that the restrited set R is a onvex spherial polygon with faets f1, f2, . . . , fk.Theorem 4.1.3: If X∗ ∈ int(R), then there exists an optimal solution XR to hemispher-ial RestritedCenterSphereLo problem with objetive value
zR = maxi=1,2,...,m α(Exi,X

R) and zR > z∗, whih satis�es :(a) XR ∈ ∂R∩Bisector(Exi, Exj), i, j ∈ {1, 2, . . . ,m}. ( see Figure 4.5. ),or(b) XR is a projetion point of Exi on fk, k = 1, 2, . . . ,K; i = 1, 2, . . . ,m. (see Figure4.4).
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76 4. Restrited Spherial Center Loation ProblemProof Theorem 4.1.2 implies that L≤(zR) ⊆ R and L=(zR)∩∂R 6= ∅. Sine R is onvexspherial polygon, the intersetion of spherial irles (i.e., level urve) touhes R frominside either at a orner point of L≤(zR) or an edge of R is tangent to L≤(zR).Case(a) A orner point ( see Figure 4.5 ):
Xij is a orner point of L≤(zR) if and only if there exists Exi, Exj suh that
Xij ∈ C(Exi, z

R) ∩ C(Exj , z
R). Hene α(Exi,Xij) = α(Exj ,Xij) and Xij ∈

Bisector(Exi, Exj).Case(b) An edge fk of R is tangent to L≤(zR) (see Figure 4.4):
Xik is tangeny point i� fk touhes one of the spherial irles; i.e,. there exists
i ∈ {1, 2, . . . ,m} suh that fk is tangent to C(Exi, z

R). i.e., Xik is a projetion pointfrom Exi onto fk. �

4.2 Polynomial Algorithm for Hemispherial RestritedCenterSphereLo ProblemTheorem 4.1.3 haraterizes the andidates for being optimal loations of the restritedproblem.Algorithm 4.2.1:Input: {Exi : i = 1, 2, . . . ,m}, the set of existing failities.
R : Convex spherial polygon with faets f1, f2, . . . , fK .Output: OptR : set of all optimal loations.
zR : optimal objetive value.Step 1. Solve the unrestrited CenterSphereLo problem to get the optimal loation
X∗ with objetive value z∗.



4.2. Polynomial Algorithm for Hemispherial RestritedCenterSphereLo Problem 77Step 2 If X∗ 6∈ int(R) then output OptR = {X∗}Else : goto Step 3.Step 3. Calulate
A = {(Pik, z) : Pik is a projetion point from Exi onto fk, i = 1, 2, . . . ,m; k =

1, 2, . . . ,K, z = α(Pik, Exi)}.
B = {(Pij , z) : Pij is intersetion point of bisetor (Exi, Exj) with ∂R, i, j =

1, 2, . . . ,m, & z = α(Pij , Exi)}.Step 4. For all (Pij , z) ∈ A ∪B with z > z∗, test:if L≤(z) ⊆ R and L=(z) ∩ ∂R 6= ∅. If this is the aseOutput : OptR = L=(z) ∩ ∂R, zR = z.In Case (a) of the Theorem 4.1.3, if the number of intersetion points of the Bisector(Exi, Exj)with ∂R is two or less, they are inluded in the andidate list. As there are m(m − 1)/2bisetors of existing failities, we will have maximum m(m− 1) intersetion points in thisase. There are m × K projetion points of the existing failities Exi; i = 1, 2, . . . ,m tothe K faets of R in Case (b) of Theorem 4.1.3.The omplexity of the Algorithm 4.2.1 is dominated by Step 1 and Step 4. The omplexityof Step 4 is O(m3) + O(m2K). If we solve the unrestrited hemispherial enter loationproblem with the polynomial time algorithm, Algorithm 3.4.2, we get overall omplexity of
O(m3) + O(m2K).4.2.1 Computation of a Projetion Point Pik from Exi onto fkSuppose Xk(1) and Xk(2) be the two end points of edge fk of the restrited polygon R.
• Let Xk(1) and Xk(2) be two unit vetors pointing from the enter of the sphere to-wards points Xk(1) and Xk(2).



78 4. Restrited Spherial Center Loation Problem
• Take ross-produt of Xk(1) and Xk(2) and normalize the result to get a vetor G:

G = (Xk(1) ×Xk(2))/ | Xk(1) ×Xk(2) |.
• G is normal to the plane of the great irle joining Xk(1) and Xk(2).
• Now take the ross-produt of G with Exi, the unit vetor orresponding to point Exi:

F = G× Exi

• F is perpendiular to Exi, so the great irle it de�nes passes through Exi. It is alsoperpendiular to G, so the great irle it de�nes is perpendiular to the great irlede�nes by G.
• Now take the ross-produt of F and G and normalize the result to get a vetor:

N = F×G
||F×G|| .

• one of ±N is the projetion point Pik of the point Exi to fk.
• ±N are antipodal points.4.2.2 Computation of Intersetion Points Iij of Perpendiular Bisetor Mij of Exi and

Exj with ∂RAs the restrited region R is formed by interseting great irles, an edge of R is a greatirle segment. Also note that the bisetor of Exi and Exj is a great irle. Therefore,we have to look the intersetion of two great irles in order to get intersetion points ofbisetors with ∂R.Proedure of �nding intersetion points of two great irles



4.3. Hemispherial CenterSphereLo Problem with Weights wi(> 0) 6= 1 791. Let M be the mid point of the great irle arc(Exi, Exj).2. Take ross-produt A, of Exi and Exj . This vetor is normal to the plane of greatirle passing through Exi and Exj .3. Take ross-produt B, of A with M . This vetor is normal to the plane of great irlepassing through A and M .4. Let Xk(m),m = 1, 2 be unit vetors pointing from the enter of the sphere towardsthe end points Xk(m),m = 1, 2 of the edge fk of R.5. Now take ross-produt C, of Xk(1) and Xk(2).6. ±B×C
‖B×C‖ are the intersetion points of Mij and fk.Note : The andidate intersetions are antipodal points.4.3 Hemispherial CenterSphereLo Problem with Weights wi(> 0) 6= 1In this ase, the level sets of the objetive funtion an be de�ned as follows :

L ≤ (z) = {X ∈ S0 : max
i=1,2,...,m

wiα(Exi,X) ≤ z}

= {X ∈ S0 : α(Exi,X) ≤ z/wi ∀i = 1, 2, . . . ,m}

= ∩i=1,2,...,m{X ∈ S0 : α(X,Exi) ≤ z/wi}.That is, the level set an be obtained by interseting all the spherial disks D(Exi,
z
wi

) withenters Exi and radii z
wi

, i = 1, 2, . . . ,m. It is lear that spherial disks D((Exi,
z
wi

) havedi�erent sizes.



80 4. Restrited Spherial Center Loation ProblemAs in the ase of weights wi = 1, the set of possible loations for the hemispherial Re-stritedCenterSphereLo problem with weights wi > 0(6= 1), onsists of all projetionpoints of existing failities to the faets of R and of all orner points of L≤(zR) (see The-orem 4.1.2, Figures 4.4 and 4.5), even if D((Exi,
z
wi

) have di�erent sizes.Therefore, we have to hek:(i) all projetion points Xiq from existing faility Exi to any faet fq,and(ii) all points X whih satisfy wiα(Exi,X) = wjα(Exj ,X) for any pair of existing faili-ties Exi and Exj .That means, to get orner points we have to alulate intersetion points of {X ∈ S :

wiα(Exi,X) = wjα(Exj ,X)} with ∂R for all i < j; i, j ∈ {1, 2, . . . ,m}.Then we an apply the above algorithm by hanging the set B in step 3 as follows :
B′ = {(X, z) : X is a intersetion point of the set

{X ∈ S : wiα(X,Exi) = wjα(Exj ,X)} with
∂R, i, j ∈ {1, 2, . . . ,m}; z = wiα(X,Exi) = wjα(X,Exj)}.



5. SPHERICAL LOCATION PROBLEMS WITH POLYGONAL BARRIERSIn development of spherial loation models we deal with a geometri representation of theproblem, and the geographial reality has to be inorporated into this representation. Inalmost every real-life situation we have to deal with restritions and onstraints of varioustypes. As restrited or forbidden regions (see Chapter 4) in the ontext of spherial loationmodels, there are many areas in whih the plaement of a new faility and transportationare ompletely forbidden or even impossible. These regions (or areas) often referred to asbarrier regions . To give some examples of possible barrier regions, onsider military areas,mountain ranges and lakes on the globe.Consider a �nite set of onvex, losed and pieewise disjoint barrier regions {B1, . . . , BN}on the surfae of the sphere. We onsider the union of these barrier regions by B :=
⋃N

i=1 Biand the �nite set of extreme points and faets of B by Ext(B) and Facet(B), respetively.The interior of these barrier regions is forbidden for the plaement of a new faility, andadditionally, travelling through int(B) is prohibited. Thus the feasible region F on thespherial surfae for new loations and for travelling is given by
F = S0 \ int(B).Further, we assume that the measure of distane on the surfae of the sphere S0 is lengthof shortest ar ( or great irle distane ), α = α(X,Y ) for all X,Y ∈ S0.De�nition 5.0.1: Given two points X,Y ∈ F the barrier distane αB(X,Y ) with respetto α is the length of a shortest path between X and Y not interseting the interior of abarrier region.A permitted X-Y path with length αB(X,Y ) will be alled a α-shortest permitted path. Fur-ther, we all two points X and Y in F α− visible if they satisfy αB(X,Y ) = α(X,Y ), i.e.,



82 5. Spherial Loation Problems with Polygonal Barriersthe distane between X and Y is not lengthened by the barrier regions.Given set a Ex = {Exi; i = 1, 2, . . . ,m} of m demand points on the surfae of a spherewith assoiated weights ( or demands ) wi > 0; i = 1, 2, . . . ,m, spherial enter loation(CenterSphereLo) problem and spherial Weber loation (WeberSphereLo) problemwith polygonal barriers an be formulated respetively with this barrier distane αB(X,Y ),as
minimize

hB(X) = max
i=1,2,...,m

wiαB(X,Exi) BarrierCenterSphereLo (5.1)
s.t X ∈ Fand

minimize

fB(X) =
∑

i=1,2,...,m

wiαB(X,Exi) BarrierWeberSphereLo (5.2)
s.t X ∈ F .Note that the shortest ar distane, α is not onvex. Further, the barrier distane αB(X,Y )is in general not-onvex and therefore fB and hB are also not onvex funtions.5.1 Shortest Paths in the Presene of Barrier RegionsDe�nition 5.1.1: The set of points Y ∈ F that are not α−visible from a point X ∈ F isalled the shadow of X with respet to α, i.e.,

shadowα(X ) := {Y ∈ F : αB(X ,Y ) > α(X ,Y )}.(See Figure 5.1).The following results shows that for any two points X,Y ∈ F ,X 6= Y there always existsa α-shorted permitted path onneting X and Y that is a pieewise shortest ar path with
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X
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αShadow  (X)

Boundary of shadow  (X)α

Barrier

Fig. 5.1: Shaded area represents the shadow of Xbreaking points only in extreme points of a barrier region.Lemma 5.1.1: Let α = α(X,Y ) be the shortest ar distane between X and Y , where
X,Y ∈ F . Then there exists a α-shortest permitted path SP onneting X and Y withthe following property.Property 5.1.1: : SP is a pieewise shortest ar length path with breaking points onlyon extreme points of barrier regions.Proof Let X,Y ∈ F and let SP be α- shortest permitted path onneting X and Y in Fthat satis�es Property 5.1.1. Then onsider two onseutive ar segments arc(Xj ,Xj+1 )and arc(Xj+1 ,Xj+2 ) on SP. Without loss of generality they may be assumed not to beurvilinear as otherwise Xj+1 would be irrelevant and ould be deleted.Let X ′ and X ′′ denote points on ars arc(Xj ,Xj+1 ) and arc(Xj+1 ,Xj+2 ) respetively atan arbitrary small distane ε > 0 from Xj+1.The path omposed of ars arc(Xj ,X

′), arc(X ′,X ′′), arc(X ′′,Xj+2 ) is stritly shorter thanthe path omposed of arc(Xj ,Xj+1 ) and arc(Xj+1 ,Xj+2 ) due to a property that any two



84 5. Spherial Loation Problems with Polygonal Barrierssides of a spherial triangle are together greater than the third side.As the latter path is feasible by the hypothesis, the former one an only be non-feasible forall positive ε if Xj+1 is a vertex of a barrier region with a ar segment rossing arc(X ′,X ′′)(see Figure 5.2). �
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Fig. 5.2: Shortest path SP for proof of Lemma 5.1.1Therefore, using Property 5.1.1 in Lemma 5.1.1, the barrier distane αB(X,Y );X,Y ∈ Fan be alulated with respet to a so-alled intermediate point IX,Y , i.e., a breaking pointon a α-shortest permitted path so that IX,Y is α-visible from Y . Note also that if X and
Y are α-visible then the intermediate point IX,Y equals X.Corollary 5.1.1: Let α = α(X,Y ) be the shortest ar distane between X,Y ∈ F . Fur-thermore, let SP be a α-shortest permitted X − Y path with Property 5.1.1 and the point
IX,Y 6= Y be a breaking point on SP that is α-visible from Y . Then

αB(X,Y ) = αB(X, IX,Y ) + α(IX,Y , Y ). (5.3)



5.2. Reduing the Non-onvex BarrierSphereLo Problem to a Set of Sub problems 85Note that the intermediate points IX,Y are not neessarily unique.De�nition 5.1.2: The boundary of shadowα(X),
∂(shadowα(X)) := {Y ∈ F : D(Y, ε) ∩ shadowα(Y ) 6= ∅and D(Y, ε) 6⊆ shadowα(Y ) ∀ε > 0}, (5.4)where D(Y, ε) is a spherial disk with enter Y and radius ε > 0.Note that the ∂(shadowα(X)) is a onneted set of shortest length of ars on the surfaeof the sphere.Obviously, those parts of ∂(shadowα(X)) that are of the boundary of a barrier region arealso shortest length of ars on the spherial surfae. For all other parts of ∂(shadowα(X)),onsider a point Y on ∂(shadowα(X)) and let IX,Y be an intermediate point on a α-visibleshortest permitted X − Y path with Property 5.1.1. Note that in this ase Y is α-visiblefrom X. If all the points Z on the line segment starting at IX,Y passing through Y andending as soon as it intersets the interior of a barrier region are α-visible from X.5.2 Reduing the Non-onvex BarrierSphereLo Problem to a Set of Sub problemsHere, we onsider a partitioning of the feasible region F into �nite set of subregions usingthe grid Gα on the surfae of the sphere.The grid Gα is de�ned by the boundaries of the shadows of all existing failities Exi, i =

1, 2, . . . ,m and of all extreme points Ext(B) of the barrier region B, plus all the faetsFaet(B) of the barrier regions, i.e.,
Gα := {

⋃

X∈Ex

⋃

Ext(B)

∂(shadowα(X))} ∪ Facet(B) (5.5)Sine the barriers are onvex polygons and also the boundary of shadowα(X ) is set of arsegments for all X ∈ F , the grid Gα onsists of a �nite set of shortest length of ar seg-ments in F .
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Fig. 5.3: The grids on the surfae of the hemisphereDe�nition 5.2.1: A ell of grid Gα is a smallest set (not neessarily onvex or losed)polygon not interseted by an ar segment in Gα (see Figure 5.3).We denote the set of ells of Gα as C(Gα).To see how the barrier distane de�nes from an existing faility to a point X in a ell C,we onsider a following example with three existing failities and one barrier region withfour extreme points tj ; j = 1, . . . , 4 (see Figure 5.4). Then the barrier distane from X to
Ex2, αB(X,Ex2) an be alulated as

αB(X,Ex2) = αB(Ex2, I2) + α(I2 + X) ∀X ∈ Cwhere αB(Ex2, I2) = α(Ex2, t1) + α(t1, I2) and I2 = IEx2,X = t2.Therefore, we an generally onsider a ell C ∈ C(Gα) and let X ∈ C. So if we let
Ii := IExi,X , i = 1, 2, . . . ,m is an intermediate point on a α-shorted permitted X − Exi-path with Property 5.1.1 that is α-visible from X, then the barrier distane between X andthe existing faility Exi, i = 1, 2, . . . ,m an be written as
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Fig. 5.4: The grids for the example problem with one barrier region and three existing failities
αB(X,Exi) = α(X, Ii) + αB(Ii, Exi) ∀X ∈ C (5.6)A visibility graph ( as proposed in Butt and Cavalier [3℄) an be used to determine distanesbetween the failities and all those points that are andidates of intermediate points on a

α-shorted permitted path between an existing faility and a point X ∈ F . Let the node setof this visibility graph G is V (G) := Ex ∪ Ext(B) and ar set of G is E(G), where E(G)onsists of all the ars that onnet two nodes vi, vj in V (G) if the orresponding nodeson the surfae of the sphere (hemisphere) are α-visible and have the distane α(vi, vj). In�gure 5.5, an example is given for the ase that single barrier region presents in the loationproblemThen the barrier distane αB(Exi,X) between an existing faility Exi ∈ Ex and a point
X ∈ F an be now alulated as

αB(Exi,X) = αG(Exi, IExi,X) + α(IExi,X ,X), (5.7)where αG(Exi, IExi,X) denotes the length of a shortest path between Exi and the interme-
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Fig. 5.5: The visibility graph for an example problem where a single barrier region is presents onthe surfae of the hemisphere
diate point IExi,X in the visibility graph G.Thus for any X ∈ C, barrier distane hX(X) from X to all the existing failities an bealulated using (5.6).Hene, we ould �nd the optimal faility loations for (5.1) and (5.2) within C by solvingsubproblems whih are de�ned on C.In the rest of this setion, we will fous only on the BarrierWeberSphereLo problem.All the arguments whih are made on this problem, are analogously true for the Barrier-CenterSphereLo problem.Now onsider the BarrierWeberSphereLo problem. For any X ∈ C sum of the weighteddistanes, fX(X) from X to all the existing failities an be alulated using the barrierdistane, (5.6) as follows:
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minimize

(SP1) fX(X) =

m
∑

i=1

wi{αB(Exi, Ii) + α(Ii,X)} (5.8)
s.t X ∈ C. (5.9)Beause, αB(Ii, Exi) is a onstant we an reformulate the objetive funtion (5.9) as

minfX(X) = {f̃X(X) =

m
∑

i=1

wiα(Ii,X)} + const (5.10)
s.t X ∈ C.where

const =
m

∑

i=1

wiαB(Exi, Ii) (5.11)(5.12)and we an solve SP1, by equivalently solving
minimize

(SP2) f̃X(X) =

m
∑

i=1

wiα(X, Ii)

s.t X ∈ C (5.13)Further, if we relax the onstraint of SP2, then we have the following unonstraint problem:
minimize

SP3 f̃X(X) =

m
∑

i=1

wiα(X, Ii) (5.14)(5.15)Note that SP3 is simply a WeberSphereLo problem with existing failities Ii; i =

1, 2, . . . ,m.



90 5. Spherial Loation Problems with Polygonal BarriersCorollary 5.2.1: Let C ∈ C(Gα) be a ell and let X ∈ C a feasible solution for the Bar-rierWeberSphereLo problem. Then
fB(X) =

m
∑

i=1

wiαB(X,Exi) = fX(X), (5.16)where fX(Y ) :=

m
∑

i=1

wi{α(Y, I1) + c1, . . . , α(Y, Im) + cm},

= f(α(Y, I1) + c1, . . . , α(Y, Im) + cm) Y ∈ S0 (5.17)and ci := αB(Ii, Exi), i = 1, . . . ,m. (5.18)and where Ii := IExi,X 6= X; i = 1, 2, . . . ,m is an intermediate point on a α-shortestpermitted X − Exi-path with Property 5.1.1 that is α-visible from X.Aording to the Corollary 5.2.1, the BarrierWeberSphereLo problem an be reduedto a �nite set of orresponding unonstrained ( or WeberSphereLo ) problems with theshortest ar distane as the measure of distane.5.3 BarrierWeberSphereLo Problem on the Surfae of a HemisphereAs a result that the WeberSphereLo problem on the surfae of a hemisphere is a on-vex problem, the funtion, fX(Y ) whih is de�ned in Corollary 5.2.1, is also onvex onthe surfae of the hemisphere sine it an be interpreted as the omposition of the onvexnondereasing funtion f and the onvex funtions α(Y, Ii) + ci; i = 1, 2, . . . ,m, where ciis a onstant not depending on hoie of Y .Lemma 5.3.1: Let C ∈ C(Gα) be a ell and let X ∈ C. Then
FX(Y ) ≥ FY (Y ) ∀Y ∈ C, (5.19)where FX and FY are de�ned aording to (5.17) and (5.18) and the intermediate points

Im,m ∈M are hosen suh that they are α- visible from X and Y respetively.Proof Let FX(Y ) = f(α(Y, I1) + c1, . . . , α(Y, Im) + cm), where ci = αB(Ii, Exi) and theintermediate points Ii = IExi,X are hosen suh that they are α−visible from all points



5.3. BarrierWeberSphereLo Problem on the Surfae of a Hemisphere 91in C, i = 1, 2, . . . ,m. Due to the spherial triangle inequality, α(Y, Ii) + ci = αB(Y, Ii) +

αB(Ii, Exi) ≥ αB(Y,Exi) holds for all i = 1, 2, . . . ,m and Y ∈ C. Then
FX(Y ) = f(α(Y, I1) + c1, . . . , α(Y, Im) + cm)

≥ f(αB(Y,Ex1), . . . , αB(Y,Exm))

= FY (Y ).

�Theorem 5.3.1: Let C ∈ C(Gα) be a ell and let X∗
B ∈ C be an optimal solution of theBarrierWeberSphereLo problem . Then X∗

B is an optimal solution to the orrespond-ing onvex problem
min FX∗

B
(Y )

s.t Y ∈ C, (5.20)where FX∗

B
(Y ) is de�ned aording to (5.17) and (5.18) and the intermediate points Ii, i =

1, 2, . . . ,m are hosen suh that they are α- visible from X∗
B.Proof Let X∗

B ∈ C, FX∗

B
(Y ) be de�ned aording to (5.17) and (5.18), and let Ii, i =

1, 2, . . . ,m be the orresponding intermediate points on α−shortest permitted Exi − X∗
Bpaths, satisfying the the property Property 5.1.1, that are α−visible from all points in C.Lemma 5.19 implies that

FX∗

B
(Y ) ≥ FY (Y ) = fB(Y ) (5.21)holds for all Y ∈ C. Using Corollary 5.2.1 and the assumption that X∗

B is an optimalsolution of BarrierWeberSphereLo problem, we obtain
FX∗

B
(Y ) ≥ fB(Y ) ≥ fB(X∗

B) = FX∗

B
(X∗

B) ∀Y ∈ C.

�Theorem 5.3.1 implies that BarrierWeberSphereLo problem on a hemisphere an beredued to a �nite set of onvex subproblems within eah ell in C(Gα) even though the



92 5. Spherial Loation Problems with Polygonal Barriersoriginal objetive funtion fB(X) is in general non-onvex within the ells.If an optimal solution X∗
B of BarrierWeberSphereLo problem is loated in the interiorof a ell, the following result proves that this solution an be found by solving a �nite setof onvex subproblems with the objetive funtion FX(Y ) de�ned aording to (5.17) and(5.18).Theorem 5.3.2: Let C ∈ C(Gα) be a ell and let X∗

B ∈ int(C) an optimal solution ofBarrierWeberSphereLo problem with barrier distane αB. Then X∗
B is an optimalsolution to the orresponding onvex problem

min FX∗

B
(Y ) (5.22)

s.t Y ∈ SH
0where FX∗

B
(Y ) is de�ned aording to (5.17) and (5.18) and the intermediate points Ii, i =

1, 2, . . . ,m are hosen suh that they are α- visible from X∗
B.Proof Let X∗

B ∈ int(C). Sine X∗
B ∈ C, Theorem 5.3.1 implies that X∗

B minimizes FX∗

B
inthe ell C. Using the fat that FX∗

B
(Y ) is onvex funtion of Y on a hemisphere and that

X∗
B ∈ int(C), we an onlude that X∗

B minimize the FX∗

B
(Y ) on a hemisphere. �Theorem 5.3.3: Let C be a ell in C(Gα) and X∗

B be a global optimal solution to theonvex problem
min FX(Y ) (5.23)

s.t Y ∈ SH
0where FX(Y ) is de�ned aording to (5.17) and (5.18) and the intermediate points Ii, i =

1, 2, . . . ,m are hosen suh that they are α- visible from any X ∈ C. If X∗
B ∈ int(C), then

X∗
B is at least a loal optimal solution to the BarrierWeberSphereLo problem on ahemisphere.



5.3. BarrierWeberSphereLo Problem on the Surfae of a Hemisphere 93Proof First, given that X∗
B ∈ int(C), it is lear that FX(X∗

B) is a lower bound to theoptimal objetive value of (5.20); that is FX(X∗
B) ≤ FX(Y ) for eah Y ∈ C.That is X∗

B is the global optimal solution of the onvex subproblem whih is de�ned on C.Therefore, there exists an ǫ-neighborhood of X∗
B, Nǫ(X

∗
B) ⊂ int(C), suh that

FX(X∗
B) ≤ FX(Y ) for eah Y ∈ Nǫ(X

∗
B).But sine

Nǫ(X
∗
B) ⊂ int(C) ⊂ Gα,it follows that fB(X∗

B) = FX(X∗
B) ≤ FX(Y ) = fB(Y ) for eah

Y ∈ Nǫ(X
∗
B) = Gα ∪Nǫ(X

∗
B) (5.24)This omplete the proof, sine (5.24) de�nes a loal optimal solution of BarrierWebwer-SphereLo. �5.3.1 Iterative Spherial Convex HullAording to Theorems 5.3.1 and 5.3.2, it is lear that there are some relationship betweenSphereLo problems and BarrierSphereLo problems on a hemisphere. Therefore, someof the general properties of SphereLo an be transferred to the BarrierSphereLo prob-lems. As an example, the optimal loations ofWeberSphereLo and CenterSphereLoproblems on a hemisphere lie within the spherial onvex hull of the existing failities ( see2.1.3 ). An analogous property an be proven for the BarrierSphereLo problems byde�ning an iterative spherial onvex hull Iconvex of the existing failities and the barrierregions.De�nition 5.3.1: Let B be the union of a �nite set of losed onvex and pairwise disjointspherial polygons on a hemisphere. Iterative onvex hull Iconvex is de�ned as thesmallest spherial onvex hull in the surfae of the hemisphere suh that

{Exi; i = 1, 2, . . . ,m} ⊂ Iconvex and ∂Iconvex ∩ int(B) = ∅.(see Figure 5.6).
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Barrier regionFig. 5.6: The shaded area represents the iterative spherial onvex hullTheorem 5.3.4: Let X∗
B 6∈ Gα be an optimal solution for the BarrierWeberSphereLoproblem on a hemisphere .If for all orresponding WeberSphereLo subproblems with objetive funtion FX as de-�ned in (5.17) and (5.18), the set of optimal solutions is ontained in the spherial onvexhull of the existing failities, then

X∗
B ∈ (Iconvex ∩ F).Proof Let X∗

B be an optimal solution of BarrierWebwerSphereLo suh that X∗
B ∈

int(C) for some ell C ∈ C(Gα).Suppose that X∗
B 6∈ Iconvex. Wlog, we assume that there exits no barrier in SH

0 \ Iconvex,sine this assumption does not inrease the objetive value of any point X ∈ (Iconvex ∩F).Theorem 5.3.2 =⇒ X∗
B is an optimal solution of problem (5.22) with respet to some in-termediate points Ii ∈ {Exi; i = 1, 2, . . . ,m} ∪Ext(B) for i = 1, 2, . . . ,m. This problem isan WeberSphereLo problem with the objetive funtion FX and thus X∗

B ∈ conv{Ii : i =

1, 2, . . . ,m} ∩ F . Sine Iconvex is the spherial onvex hull of all existing failities and all



5.3. BarrierWeberSphereLo Problem on the Surfae of a Hemisphere 95barrier regions, we an onlude that
conv{Ii : i = 1, 2, . . . ,m} ∩ F ⊆ conv({Exi; i = 1, 2, . . . ,m} ∪Ext(B)) ∩ F ⊆ Iconvex ∩ F .

�5.3.2 Line Searh Proedure on a Hemispherial SurfaeSuppose X = (x1, y1, z1) and Y = (x2, y2, z2) are two points (= position vetors) on theunit sphere S0. To �nd the great irle that passes through X and Y , let
W = Y − ProjX(Y ) = Y − X · Y

X ·X X

= Y − (X · Y )X sine X ·X = 12.The vetor W is perpendiular to X, but its length may not be one.
W

X

Y

W

Y
X

α

Fig. 5.7: Great irle that passes through X and YThus, we re-sale to obtain a vetor YX of the form
YX =

1

‖|W ||W (5.25)



96 5. Spherial Loation Problems with Polygonal BarriersIf we now de�ne the urve
X(t) = cos(t)X + sin(t)YX (5.26)then X ′′(t) = −X(t), whih implies that the aeleration of X(t) is normal to the sphere.Moreover, beause X and YX are orthogonal, we have

X(t) ·X(t) = cos2(t)X ·X + 2 sin(t) cos(t)X · YX + sin2(t)YX · YX

= 12 cos2(t) + 0 + 12 sin2(t)

= 12Thus ||X(t)|| = 1 for all t, whih implies that X(t) is on the unit sphere. As a result,
X(t) = cos(t)X + sin(t)YX is the great irle that passes through both X and Y .Indeed, if we let

α = α(X,Y ) = arccos(X · Y ) (5.27)then it an be shown that X(0) = X and X(α) = Y.That means, given two points X and Y on the surfae of the unit sphere, any point X(t)on the great irle ar, ar(X,Y), has the following parametri form :
X(t) = cos(t)X + sin(t)YX = (xt, yt, zt) (5.28)where t ∈ [0, α].Suppose that g is a onvex funtion on the surfae of a hemisphere S0. As an example, gmay be WeberSphereLo or CtenterSphereLo problems on S0. Now, our goal is to mini-mize g on grids Gα.That is, we want to minimize

g(X(t)) (5.29)
s.t X(t) ∈ arc(X,Y )



5.3. BarrierWeberSphereLo Problem on the Surfae of a Hemisphere 97where X,Y ∈ S0, t ∈ [0, α], with α(X,Y ) = arccos(X · Y ) and X(t) is de�ned as (5.28).Line searh proedure on the great irle arConsider two points X and Y on the surfae of the unit sphere. Let X(t) be any point onthe great irle ar , ar(X,Y). Then X(t) has the form (5.28) where t ∈ [0, α] and α isde�ned as (5.27).Now onsider the line searh proedure to minimize g(X(t)) subjet to 0 ≤ t ≤ α. Aswe don't know the exat solution of the minimum of g over [0, α] on the greet irle ar,ar(X,Y), the interval [0, α] is alled interval of unertainty.During the searh proedure if we an exlude points of this interval that do not ontainthe minimum, then the interval on unertainty is redued.The following Theorem shows that if the funtion g(X(t)) is spherial onvex then the in-terval of unertainty an be redued by evaluating g at two points within the interval.Theorem 5.3.5: Let g(X(t)) be onvex over the arc(X,Y ) with the interval of uner-tainty [0, α]. Let λ, µ ∈ [0, α] suh that λ < µ. If g(X(λ)) > g(X(µ)), then g(X(z)) ≥
g(X(µ)) for all z ∈ [0, λ). If g(X(λ)) ≤ g(X(µ)), then g(X(z)) ≥ g(X(λ)) for all z ∈ (µ, α].Proof Suppose that g(X(λ)) > g(X(µ)) and let z ∈ [0, λ).By ontradition, suppose that g(X(z)) < g(X(µ)). Sine λ an be written as a onvexombination of z and µ, and by the onvexity of g, we have

g(X(λ)) = g(βX(z) + (1− β)X(µ)) ≤ βg(X(z)) + (1− β)g(X(µ))

< βg(X(µ)) + (1− β)g(X(µ)) = g(X(µ))ontraditing g(X(λ)) > g(X(µ)). Hene , g(X(z)) ≥ g(X(µ)). The seond part of thetheorem an be proved similarly.Remark From the Theorem 5.3.5, if g(X(λ)) > g(X(µ)), then the new interval of uner-tainty is [λ, α] under the onvexity of g. On the other hand, if g(X(λ)) ≤ g(X(µ)), the



98 5. Spherial Loation Problems with Polygonal Barriersinterval of unertainty is [0, µ] (see �gure 5.8).

λ0 µ α 0 λ µ α

g(X (λ))

g(X(µ)) g

(Xg

(X(λ))
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Fig. 5.8: Reduing the interval of unertaintyThe Fibonai searhSuppose g(X(t)) is onvex on the great irle ar ar(X,Y) over a bounded interval [0, α].This proedure makes two funtional evaluations at the �rst iteration and then only oneevaluation at eah of the subsequent iterations. During this proedure, the interval of un-ertainty varies from one iteration to another.Consider the Fibonai sequene {Fν} de�ned as follows:
Fν = Fν + Fν−1, ν = 1, 2, . . .

F0 = F1 = 1 (5.30)At eah iteration k, suppose that the interval of unertainty is [ak, bk]. Consider the twopoints λk, and µk given bellow, where n is the number of funtional evaluations planned.



5.3. BarrierWeberSphereLo Problem on the Surfae of a Hemisphere 99
λk = ak +

Fn−k−1

Fn−k+1
(bk − ak), k = 1, 2, . . . , n− 1 (5.31)

µk = ak +
Fn−k

Fn−k+1
(bk − ak), k = 1, 2, . . . , n− 1 (5.32)By Theorem 5.3.5, the new interval of unertainty is given by [λk, bk] if g(X(λk)) >

g(X(µk)) and is given by [ak, µk] if g(X(λk)) ≤ g(X((µk)).Case 1 : If g(X(λk)) > g(X(µk))From (5.31) and letting ν = n− k in (5.30), we get
bk+1 − ak+1 = bk − λk

= bk − ak −
Fn−k−1

Fn−k+1
(bk − ak)

= bk − ak − (1− Fn−k

Fn−k−1
)(bk − ak)

=
Fn−k

Fn−k+1
(bk − ak) (5.33)Case 2 : If g(X(λk)) ≤ g(X(µk))

bk+1 − ak+1 = µk − ak

= ak +
Fn−k

Fn−k+1
(bk − ak)− ak

=
Fn−k

Fn−k+1
(bk − ak) (5.34)Thus in both ase, the interval of unertainty is redued by the fator Fn−k

Fn−k+1
.Now onsider iteration k + 1.Suppose g(X(λk)) > g(X(µk)). Then by Theorem 5.3.5, ak+1 = λk, and bk+1 = bk.By replaing k with k + 1 in (5.31), we get
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λk+1 = ak+1 + bk+1 − ak+1)

Fn−k−2

Fn−k

= λk +
Fn−k−2

Fn−k
(bk − λk) (5.35)Substituting for λk from (5.31), we have

λk+1 = ak +
Fn−k−1

Fn−k+1
(bk − ak) +

Fn−k−2

Fn−k
(bk − ak −

Fn−k−1

Fn−k+1
(bk − ak))

= ak +
Fn−k−1

Fn−k+1
(bk − ak) +

Fn−k−2

Fn−k
(1− Fn−k−1

Fn−k+1
)(bk − ak) (5.36)Letting ν = n− k in (5.30), we have 1− Fn−k−1

Fn−k+1
=

Fn−k

Fn−k+1
.Then from (5.36), we have

λk+1 = ak +
(Fn−k−1 + Fn−k−2)

Fn−k+1
(bk − ak).Now letting ν = n − k − 1 in (5.30), we have Fn−k = Fn−k−1 + Fn−k−2. Then from theabove equation we have

λk+1 = ak +
Fn−k

Fn−k+1
(bk − ak) = µkSimilarly, if g(X(λk)) ≤ g(X(µk)), we an show that µk+1 = λk.Thus at iteration k + 1, either λk+1 = µk or µk+1 = λk. Thus in either ase only oneobservation is needed at iteration k + 1.To summarize, at the �rst iteration two observations are made and at eah subsequentiteration only one observation is neessary.Thus, at the end of iteration n− 2, we have to omplete n− 1 funtional evaluations. Fur-ther, for k = n− 1, it follows from (5.31) and (5.32), that λn−1 = µn−1 = 1

2 (an−1 + bn−1).



5.3. BarrierWeberSphereLo Problem on the Surfae of a Hemisphere 101Sine either λn−1 = µn−2, or µn−1 = λn−2, theoretially no new observations are to bemade at this stage. However, in order to further redue the interval of unertainty, the lastobservation is plaed slightly to the right or the left of the midpoint λn−1 = µn−1, so that
1
2(bn−1 − an−1) is the length of the �nal interval of unertainty [an, bn].The Fibonai method requires that the total number of observations n hosen beforehand.This is beause of the plaement of the observations is given by (5.31) and (5.32) and,hene is dependent on n. From (5.33) and (5.34), the length of the interval of unertaintyis redued at iteration k by the fator Fn−k

Fn−k+1
. Hene, at the end of n − 1 iteration, where

n total observations have been made, the length of the interval of unertainty is reduedfrom b1− a1 to bn− an = (b1− a1)/Fn. Therefore n must be hosen suh that (b1− a1)/Fnre�ets the auray required.Algorithm for the Fibonai searh methodThe following is a summary of the Fibonai searh method for minimizing spherial onvexfuntion on a great irle ar segment over the interval [0, α].Algorithm 5.3.1:Input: X,Y : two points on the surfae of the hemisphere with the length of the ar(X,Y ) =

α (see (5.27)).Output: X∗ : optimal loation.
Z∗ : optimal objetive value.Step 0: l > 0 : allowable �nal length of unertainty
ǫ > 0 : distinguishibility onstant
[a1, b1] : initial interval of unertainty
n : number of observations to be taken suh that Fn > (b1 − a1)/lStep 1: Let λ1 = a1 + (Fn−2/Fn)(b− 1− a1) and
µ1 = a1 + (Fn−1/Fn)(b1 − a1).Evaluate g(X(λ1)) and g(X(µ1)), let k = 1, and goto Step 2.



102 5. Spherial Loation Problems with Polygonal BarriersStep 2: If g(X(λk)) > g(X(µk)), goto Step 3, and if g(X(λk)) ≤ g(X(µk)), goto Step 4.Step 3: Let ak+1 = λk and bk+1 = bk. Furthermore, let λk+1 = µk, and let µk+1 = ak+1 +

(
Fn−k−1

Fn−k
)(bk+1 − ak+1). If k = n − 2, goto Step 6; Otherwise, evaluate g(X(µk+1))and goto Step 5.Step 4: Let ak+1 = ak and bk+1 = µk. Furthermore, let µk+1 = λk, and let λk+1 =

ak+1+
Fn−k−2

Fn−k
(bk+1−ak+1). If k = n−2, goto Step 6; Otherwise evaluate g(X(µk+1))and goto Step 5.Step 5: Replae k by k + 1 and goto Step 2.Step 6: Let λn = λn−1, and µn = µn−1 + ǫ. If If g(X(λn)) > g(X(µn)), let an = λn and

bn = bn−1. Otherwise, if g(X(λn)) ≤ g(X(µn)), let an = an−1 and bn = λn. Stop;the optimal solution X∗ lies in the interval [an, bn] with X∗ ∈ar(X(an),X(bn)).5.4 Algorithm for BarrierWeberSphereLo Problem on a HemisphereAording to the result of Theorem 5.3.2, the BarrierWeberSphereLo problem an beredued to a set of onvex WeberSphereLo subproblems. In this situation, two di�erentases may our. An optimal solution X∗
B of BarrierWeberSphereLo may be loated(a). on the grid Gα,or(b). in the interior of a ell C ∈ C(Gα).Therefore, a two step algorithm an be suggested to solve the BarrierWeberSphereLoas follows. In the �rst step, a line searh proedure on great irle ars ( see Setion 5.3.2)an be applied on eah ar segment of the grid Gα. In the seond step, a loal minimuman be found (see Theorem 5.3.3) in the interior of a ell in F \ Gα by solving onvexsubproblems (5.22) for all feasible reformulations fB(Y ) = FX(Y ) of the objetive fun-tion. For eah solution Y ∗, fB(Y ∗) = FX(Y ∗) has to be veri�ed to test the feasibility of Y ∗.Algorithm 5.4.1:



5.4. Algorithm for BarrierWeberSphereLo Problem on a Hemisphere 103Input: Ex = {Exi : i = 1, 2, . . . ,m}, the set of existing failities.
B : Convex spherial polygon with sets of extreme points Ext(B) and faets Facet(B).Output: Opt∗B : set of all optimal loations.
Z∗
B : optimal objetive value.Step 1: Construt the grid Gα.Step 2: Find the minimum of the problem (5.2) on grid Gα.Step 3: For all feasible reformulations of the objetive funtion, i.e., for all feasible assign-ments of intermediate points to the existing failities,(a) Find an optimal solution Y ∗ of the orresponding unrestrited problem

min FX(Y ), Y ∈ SH
0 .(b) If fB(Y ∗) = FX(Y ∗), the solution Y ∗ is a andidate for an optimal solution.Step 4: Determine the set of global minima from the andidate set found in Steps 2 and3.The time omplexity of Steps 1 and Step 2 of Algorithm 5.4.1 depends on the size of thegrids Gα and thus on the number of existing failities and the number of extreme pointsof the barrier regions. Therefore, the number of intersetion points in Gα is bounded by

O((|Ex|+ |Ext(B)|)2 · |Ext(B)|2), and the number of ells in Gα is bounded by
O((|Ex|+ |Ext(B)|)2 · |Ext(B)|2).The overall time omplexity of Algorithm 5.4.1 is in general dominated by Step 3. If noadditional information is available to redue the number of possible assignments of existingfailities to intermediate points, the number of subproblems is exponential in the numberof existing failities and in the number of extreme points of the barrier regions. Thus, theAlgorithm 5.4.1 is omputationally expensive when no additional information is availableon the struture of the problem and hene a heuristi strategy an alternatively be applied.Instead of evaluating all the theoretially possible assignments of existing failities to inter-mediate points, a sample set S of points an be onstruted in Iconvex ∩F . For an example



104 5. Spherial Loation Problems with Polygonal Barriersthis sample set S an be onstruted by hoosing the grid points of an equidistant grid in
Iconvex or by hoosing spei� points on the visibility grid Gα. All the points in this sampleset an be used as starting points to determine FX for the unonstrained loation problem(5.22). As in Algorithm 5.4.1, the orresponding optimal solution Y ∗ of FX an be put inthe andidate set if Y ∗ is feasible, i.e., if fB(Y ∗) = FX(Y ∗).Algorithm 5.4.2:Input: Ex = {Exi : i = 1, 2, . . . ,m}, the set of existing failities.

wi : Assoiated weights.
B : Convex spherial polyhedron with sets of extreme point Ext(B) and faets
Facet(B).Output: Opt∗B : set of all optimal loations.
Z∗
B : optimal objetive value.Step 1: Construt the grid Gα.Step 2: Find the minimum of the problem (5.2) on grid Gα.Step 3: De�ne a sample set S of grid points in Iconvex.Step 4: For eah grid point X ∈ S(a) Find an optimal solution X∗ of the orresponding unrestrited problem

min fX(Y ), Y ∈ SH
0 .(b) If fB(X∗) = fX(X∗), the solution X∗ is a andidate for an optimal solution.Step 5: Determine the set of global minima from the andidate set found in Steps 2 and4.5.5 BarrierWeberSphereLo Problem on the Surfae of the Unit SphereAording to the Corollary 5.2.1 in Setion 5.2, BarrierWeberSphereLo problem anbe redued to a �nite set of orresponding unonstrained ( or WeberSphereLo ) prob-lems with the shortest ar distane α as the measure of distane.



5.5. BarrierWeberSphereLo Problem on the Surfae of the Unit Sphere 105As the objetive funtion fB(X) of theWeberSphereLo problem is in general non-onvexwithin the ells, the resulting orresponding subproblems are also in general non-onvex.Therefore, the di�ulty of the problem is not redued as in the ase where the existingfailities lie on a hemisphere.Theorem 5.5.1: Let C ∈ C(Gα) be a ell and let X ∈ C. Let X∗
B represents the globaloptimal solution to the non onvex problem

minimize

FX(Y ) (5.37)
s.t Y ∈ S0where FX(Y ) is de�ned aording to (5.17) and (5.18) and the intermediate points Ii, i =

1, 2, . . . ,m are hosen suh that they are α-visible from X.Then FX(X∗
B) is a lower bound to the optimal objetive value of

minimize

FX(Y ) (5.38)
s.t Y ∈ C.

That is
FX(X∗

B) ≤ FX(Y ) ∀Y ∈ C.Further, if X∗
B ∈ C, or equivalently, if X∗

B is a feasible solution to the problem (5.38), then
X∗

B is the best optimal solution (5.38). �Theorem 5.5.2: Let X∗
B represent the global solution to the problem (5.37). If X∗

B ∈
int(C), then X∗

B is at least a loal optimal solution to BarrierWeberSphereLo problem.



106 5. Spherial Loation Problems with Polygonal BarriersProof First, given that X∗
B ∈ int(C), we know from Theorem 5.5.1 that
FX(X∗

B) ≤ FX(Y ) for eahY ∈ C.That is, X∗
B is the global optimal solution to (5.38). Therefore, there exists an ε-neighborhoodof X∗

B, Nε(X
∗
B) ⊂ int(C), suh that

fX(X∗
B) ≤ fX(Y ) for eahY ∈ Nε(X

∗
B).But sine

Nε(X
∗
B) ⊂ int(C) ⊂ Gα,it follows that FX(X∗

B) ≤ FX(Y ) for eah
Y ∈ Nε(X

∗
B) = Gα ∩Nε(X

∗
B) (5.39)This omplete the proof sine (5.39) de�nes a loal optimal solution to BarrierWeber-SphereLo problem. �Heuristi Algorithm for BarrierWeberSphereLo problemFrom the visibility graph G(V, E) (see setion 5.2) on S0, we an easily de�ne the shortestpath from eah existing faility loation Exi; i = 1, . . . ,m to X in a ell,C. From thesepaths, we an then determine the visible nodes Ii in the shortest-permitted Exi − X-pathfor i = 1, . . . ,m. Now suppose that minimizing (5.37) (i.e., solving WeberSphereLoproblem with existing failities Ii, i = 1, . . . ,m and weights, wi, i = 1, . . . ,m), results in theoptimal loation X∗

B. From Theorem 5.5.1, we know that if X∗
B ∈ C, then X∗

B is a globalfaility loation in C. And from Theorem 5.5.2, if X∗
B ∈ int(C), then X∗

B must also be atleast a loal optimal solution to the BarrierWeberSphereLo problem.We an verify that X∗
B ∈ int(C) by showing that the distane funtions, or equivalently thevisible nodes, assoiated with X and X∗

B are not only idential, but unique. If the distanefuntions are not unique (i.e., there are at least two paths to X∗
B from some existing fa-ility loation Exi, suh that the lengths of the paths are equivalent), then X∗

B is on theboundary of C (∂C). If X∗
B ∈ ∂C, then an ǫ-neighborhood may also ontain points whihare elements of adjaent regions. Therefore, in this ase, to be assured of a loal optimal



5.5. BarrierWeberSphereLo Problem on the Surfae of the Unit Sphere 107solution to the BarrierWeberSphereLo, we must also verify that X∗
B is a loal optimalsolution in eah adjaent region for whih X∗

B ∈ C. Based on this, we propose the followingheuristi algorithm for the barrier weber problem on the spherial surfae.Algorithm 5.5.1:Input: Ex = {Exi : i = 1, 2, . . . ,m}, the set of existing failities.
wi : Assoiated weights
B : Convex spherial polyhedron with sets of extreme point Ext(B) and faets
Facet(B).Output: Opt∗B : set of all optimal loations.
Z∗
B : optimal objetive value.Step 1: Construt the grid Gα. Choose a ell C and initial point X0 ∈ CStep 2: Find the minimum X∗

B of the problem (5.37).Step 3: If :(a) X∗
B 6∈ C, then hoose an another ell. Go to Step2.(b) X∗
B ∈ ∂C, then for eah adjaent region for whih X∗

B ∈ C, reapply the Algorithm5.5.1 using X∗
B as the initial point.() X∗

B ∈ int(C), then STOP: X∗
B is a loal optimal faility loation to the Barri-erWeberSphereLo.





6. NUMERICAL RESULTSWe develop the ode in Visual C++ 6.0 for the Algorithm 4.2.1 whih is presented inSetion 4.2. The ode is implemented on a omputer AMD Athlon(tm)XP 1500+ at 1.34GHZ.First, onsider the following example with �fteen existing failities (ities) and four extremepointed spherial polygon as the existing restrited region in the Northern hemisphere. Ta-bles 6.1 and 6.2 below list the latitude and longitude as well as the orresponding Cartesianoordinates of these �fteen ities and of the extreme points of the restrited spherial poly-gons respetively.
The algorithm generates the optimal loation for RestritedCenterSphereLo problemin the Northern hemisphere with the artesian oordinates (0.6019,−0.5504, 0.5784) andwith the orresponding latitude and longitude (35.34N, 42.43W ). The orresponding opti-mal objetive value is 0.9064. The intersetion point of the spherial bisetor of the 8thand the 12th existing failities with faet generated by the 1st and the 2nd extreme points ofthe given spherial polygon is the required faility point. The CPU time of the algorithmfor this example is 5.0 seonds.Note that the unrestrited CenterSphereLo problem is solved by applying the polynomialtime algorithm, Algorithm 3.4.2.Consider now 10 sets ontaining 10, 20, 30, 40, 50, 60, 70, 80, 90 and 100 demandpoints distributed randomly over the Northern hemisphere and 3 sets ontaining 3, 4, and5 extreme pointed spherial polygons for eah data set suh that the optimal loation for theCenterSphereLo problem in the hemisphere is ontained within the spherial polygons.Eah of the above sets is randomly generated ten times. Table 6.3 shows the averageomputation time ( in seonds ) of the Algorithm 4.2.1. Figure 6.1 shows distribution of



110 6. Numerial Results
Latitude,φ Longitude, θ x y z1 51.5N 0.4E 0.6225 0.0043 0.78262 48.9N 2.3E 0.6568 0.0264 0.75363 47.5N 8.5E 0.6694 0.1000 0.73614 41.9N 12.5E 0.7267 0.1611 0.66785 55.7N 12.6E 0.5500 0.1229 0.82616 52.5N 13.4E 0.5922 0.1411 0.79347 59.3N 18.9E 0.4830 0.1654 0.86008 38.0N 23.7E 0.7216 0.3167 0.61579 39.9N 32.8E 0.6449 0.4156 0.641510 32.1N 34.8E 0.6956 0.4835 0.531411 55.7N 37.7E 0.4459 0.3446 0.826112 35.4N 51.4E 0.5058 0.6370 0.579313 18.9N 72.8E 0.2798 0.9038 0.323914 14.6N 121.0E -0.4984 0.8295 0.252115 35.6N 139.7E -0.6201 0.5260 0.5820Tab. 6.1: Latitudes, Longitudes and orresponding Cartesian oordinates of 15 ities

Latitude, φ Longitude, θ x y z1 41.96N 46.73W 0.5096 -0.5414 0.66862 28.47N 84.80E 0.0796 0.8754 0.47673 35.54N 104.33W -0.7883 -0.2014 0.58134 18.72N 26.62W 0.8466 -0.4243 0.3209Tab. 6.2: Latitudes, Longitudes and orresponding Cartesian oordinates of the extreme points ofthe restrited spherial polygon



111the CPU time of the algorithm aording to the inreasing number of demand points andthe shapes of the restrited regions.Runtime(in seonds) with the polygon havingNo. of Demand points 3 extreme points 4 extreme points 5 extreme points10 0.03 0.03 0.0420 0.07 0.35 1.0430 1.69 2.96 4.2640 4.27 6.41 8.4850 7.70 10.84 13.9460 11.81 16.21 20.8570 16.57 22.31 28.2880 21.67 29.66 37.6790 28.06 38.09 47.92100 34.87 46.87 61.01Tab. 6.3: Average CPU time ( in seonds ) for 10 di�erent set of demand points with 3 di�erentshapes of restrited spherial polygonsFurther, some test runs for samples of 200, 300,400, 500 and 1000 of demand points withsame shape of of restrited regions were tested and the omputational time of these samplesare inluded in the Table 6.4. Visual Version C++ 6.0 is used on the same omputer foromputation.Now, we represent some results for the BarrierWeberSphereLo problem using thedeveloped algorithms, Algorithm 5.4.1 and Algorithm 5.4.2. Consider again the 15 existingities given in Table 6.1 and a single barrier region with 4 extreme points whih is givenin Table 6.2 in the northern hemisphere. We developed the C++ odes for the Algorithm5.4.1 and (0.5662, 0.6490, 0.9088) was resulted as the optimal loation for the hemispherialWeber loation problem with the optimal objetive value 2.9542. The omputational timein this example is 56.36 seonds.In this solution approah, as we are onsidering all possible feasible assignments of exist-ing failities to intermediate points, this is omputationally expensive. Therefore, Insteadof evaluating all the theoretially possible assignments of existing failities to intermediate
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Fig. 6.1: Distribution of CPU time of the Algorithm 4.2.1
Runtime(in seonds) with the polygon havingNo. of Demand points 3 extreme points 4 extreme points 5 extreme points200 145.129 193.919 242.589300 327.110 429.598 537.623400 579.453 772.291 952.529500 914.265 956.796 1509.061000 1670.27 1967.98 2296.730Tab. 6.4: CPU time ( in seonds ) for large sets of demand points with 3 di�erent shapes ofrestrited spherial polygons. ⋆ : these samples were not tested.



113points, a suitable sample set S of points an be spei�ed in Iconvex∩F to apply the developedAlgorithm 5.4.2.Now we onsider the same hemispherial BarrierWeberSphereLo problem with 15 ex-isting ities and the single barrier for applying Algorithm 5.4.2 on the seleted sample set
S. Consider all the spherial triangles whih are generated by the existing failities and theextreme points of the barrier in whih the extreme points of eah spherial triangle that are
α−visible from eah other. Then a sample set S for this problem an be formed by ran-domly generated points from these spherial triangles. The Algorithm 5.4.2 generated thesame loation (0.5662, 0.6490, 0.9088) as the new faility for the BarrierWeberSphere-Lo problem on the Northern hemisphere with same objetive value in 14.8 seonds.To see the distribution of run time of the Algorithm 5.4.2, 10 randomly generated set ofdemand points on the Northern hemisphere with 5,10,15,20,25,30, 35, 40, 45 and 50 pointswith a spherial triangle as the polygonal barrier. The Algorithm was tested 5 times on eahsample set and the resulted run time of the Algorithm in eah ase is given by the followingTable, 6.5. Number of demand points Run time (in seonds)1 5 0.5022 10 372.8133 15 782.6714 20 1247.6435 25 1941.7566 30 2875.9037 35 4143.5728 40 6241.7439 45 8732.90410 50 11995.761Tab. 6.5: Average CPU time (in seonds) of the Algorithm 5.4.2Figure 6.2 shows the distribution of run time of the Algorithm 5.4.2 in inreasing numberof demand points.
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Fig. 6.2: Distribution of CPU time of the Algorithm 5.5.1Further, some test runs on the sample sets of 100, 200 and 500 demand points were testedwith Algorithm 5.5.1, and 38465.091, 107231.742 and 344362.056 seonds respetively wereresulted as the CPU time.Now, we will present some omputational result for the WeberSphereLo problem usingthe developed Algorithm 5.5.1 in setion 5.5. The test sample sets with 10,20,30,40, 50,60, 70, 80, 90 and 100 demand points on the sphere were generated randomly. A spherialtriangle is exposed in to the sets of demand points in eah ase as the polygonal barrier.The Algorithm is tested 5 times on eah ase and the resulted run time is shown in thefollowing Table 6.6. This algorithm was also tested for large samples of 200, 300, 400, 500and 1000 demand points. The required run time for these samples are shown in the Table6.7Figure 6.3 shows distribution of the CPU time of the algorithm aording to the inreasingnumber of demand points.



115Number of demand points Run time (in seonds)1 10 13.2992 20 20.6713 30 28.2814 40 36.8745 50 47.9396 60 62.0177 70 79.4378 80 103.7719 90 137.00310 100 184.423Tab. 6.6: Average CPU time (in seonds) of the Algorithm 5.5.1
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Fig. 6.3: Distribution of CPU time of the Algorithm 5.5.1
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Number of demand points Run time (in seonds)1 200 237.5892 300 541.4233 400 988.4724 500 1668.1065 1000 3496.450Tab. 6.7: CPU time (in seonds) of the Algorithm 5.5.1



7. CONCLUSIONS AND FUTURE RESEARCHIn this thesis, di�erent solution approahes for the spherial enter loation ( Center-SphereLo ) problem and the spherial weber loation (WeberSphereLo ) problemhave been investigated and uni�ed presentation has been provided. Furthermore, as a newidea, the onepts "Restrited and Barrier regions" have been exposed in to spherial loa-tion problems and some solution strategies of these restrited and barrier spherial loation(RestritedSphereLo and BarrierSphereLo respetively ) problems have been pre-sented.Basially, throughout this work the great "irle ar distane" ( shortest ar length ) onthe surfae of the unit sphere has been used in developing the mathematial models for theRestritedSphereLo and BarrierSphereLo problems.As a result that the great irle ar distane is non onvex funtion on the surfae of thesphere, some restritions have to be made on the feasible region in order to disuss thesolution riteria for the restrited enter sphere loation (RestritedCenterSphereLoproblem. Therefore, In Chapter 4, some basi results for the hemispherial Restrited-CenterSphereLo problem have been developed using the onept, "level sets" and "levelurves" and a resulted "polynomial time " algorithm has been developed. In this algorithm,all the demand weights, wi, i = 1, 2, . . . ,m have been assigned to be equal to one. Whenthe demand weights are wi > 0 but wi 6= 1, a solution approah has been disuss in setion4.3. In this situation the weighted bisetors on the surfae of the unit sphere have to beused to obtain the optimal loation for the new faility.A solution strategy for the BarrierSphereLo problems has been presented using par-titioning the feasible region into some subsets with the help of visibility phenomena inChapter 5. Here, the onept "barrier distane" has been used in developing algorithms



118 7. Conlusions and Future Researhin both "spherial" and "hemispherial" ases. Also, "visibility graph" and a "line searhproedure " on the spherial surfae have been disussed in this Chapter.In Chapter 6, some numerial results for the developed algorithms for both (Restrited-CenterSphereLo and BarrierSphereLo problems have been inluded. Aording tothese results, the algorithm whih has been developed for the hemispherial Restriterd-CenterSphereLo problem gives the solution for the new loation in polynomial time.One an observe that the running time of the Algorithms 5.4.1, 5.4.2 and 5.5.1 is highlydependent on the number of existing failities and on the no of extreme points of the barrierregions.The possible future researh work is to propose di�erent distane norms on the surfae ofthe sphere to have better solution with better CPU time. Further, if we have di�erent dis-tane norm, like l∞ distane norm in Eulidean spae, one an partition the surfae areaof the sphere into two regions and then an apply both ar distane and the newly de�neddistane in eah region to have another algorithmi approah for the BarrierSphereLoproblem.Further, in radiation therapy, when the target volume has been irradiated in three dimen-sional way, the problem is to �nd better radiation therapy planing an be onsidered as arestrited or barrier spherial loation problem on the spherial surfae. Finally, �ndingweighted bisetors on the surfae of the unit is also still a open problem for the future work.



8. APPENDIXProof for Theorem 2.1.3 For the onveniene, we will assume that the enter of thespherial irle is (0, 0, 1). Therefore, all of the existing failities are above the XY -plane.Let X∗ = X∗(x∗, y∗, z∗) be a global minimizer of f(X).Claim 1: z∗ ≥ 0.Suppose z∗ < 0 and X ′ = X ′(x∗, y∗,−z∗)All the existing failities are above XY - plane ⇒ arc(X ′, Exi) < arc(X∗, Exi) ∀i =

1, 2, . . . ,m.
⇒ f(X ′) < f(X∗).This ontradits the global optimality assumption of X∗.Now, assume that X∗ is on or above the XY -plane.If X∗ is in the spherial onvex hull of the existing failities, we are done. Therefore,suppose that X∗ is not in the spherial onvex hull of the existing failities.Claim 2: There must be at least one existing faility, say Exj suh that arc(X∗, Exj) ≤
π/4. This is true beause otherwise f((0, 0, 1)) < f(X∗) and this ontradits the globaloptimality assumption of X∗.Let P be the orthogonal projetion of X∗ onto the onvex one generated by the existingfailities.
Claim1⇒ P 6= O = O(0, 0, 0).We will show that f(P ) < F (X∗):Let P be the plane passing through P and orthogonal to line segment OP. Let Ex′

i be theintersetion of ray OExi with P for all i = 1, 2, . . . ,m.We want to show that for any i,
∠X∗OEx′

i > ∠POEx′
i. (8.1)

Exi is above the XY -plane ⇒ Ex′
i must also be above the XY -plane.

X∗ is on or above the XY -plane ⇒ P must also be on or above the XY -plane.
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Fig. 8.1: The projetion P of X∗ has a better funtion value than X∗Therefore, ∠X∗OEx′
i,∠POEx′

i ∈ [0, π). Therefore, we only need to prove
cos(∠POEx′

i) > cos(∠X∗OEx′
i). (8.2)Sine P is the projetion of X∗ onto a onvex one and that Ex′

i is a point in that one,we know that from onvex analysis, ∠X∗PEx′
i ≥ 90◦. Therefore, (X∗Ex′

i)
2 ≥ (X∗P )2 +

(Ex′
iP )2.Sine ( Figure 8.1 ) cos(∠POEx′

i) = OP/OEx′
i, cos(∠X∗OEx′

i) = ((OX∗)2 + (OExi)
2 −

(X∗Ex′
i)

2)/(2 ·OX∗), we only need to prove
2 ·OX∗ ·OP ≥ (OX∗)2 + (OExi)

2 − (X∗Ex′
i)

2. (8.3)Again from Figure 8.1 , we have (OX∗)2 = (OP )2 + (X∗P )2 and (OExi)
2 = (OP )2 +

(Ex′
iP )2. Therefore, inequality (8.3) is true and the Theorem is proved. �Proof for Theorem2.2.1 Consider the objetive funtion f(X) =

∑n
i=1 wiαi. It an beshown that for movement from point Xk:
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df(X) = wk[(dφ)2 + cos2 φk(dθ)2]1/2

− dφ
∑

i6=k

wi(− sin φk cos φi cos(θk − θi)

+ cos φk sin φ)/ sin αki

− dθ
∑

i6=k

wi(cos φk cos φi sin(θi − θk))/ sin αki.For a loal minimum, df(p) > 0, and hene, we must show
wk((dφ)2 + cos2 φk(dθ)2)1/2 −Akdφ−Bk cos φkdφk > 0.Letting L = dθ cos φk/dφ , we have

|dφ|wk(1 + L)1/2 > dφ(Ak + LBk)and so :
wk > dφ(Ak + LBk)(1 + L2)−1/2/|dφ|.Note that dφ/|dφ| is ±1. It an be shown that :

−(A2
k + B2

k)1/2 ≤ (Ak + LBk)/(1 + L2)1/2

≤ (A2
k + B2

k)1/2and hene, the ondition
wk ≥ (A2

k + B2
k)1/2is neessary and su�ient for df(p) > 0 for every L.

�Proof for Lemma 3.2.1 Consider the Figure 8.2. O′ denote the enter of the irle
C(X1,X2,X3). Then X̄1, X̄2 and X̄3 are the points on the irumferene of the irle thatare diametrially opposite of X1,X2 and X3 respetively. Sine △X1X2X3 is aute, points
X2 and X3 annot lie on the same side of the line joining X1 and X̄1. The same is truefor points X3 and X1 and the line joining X2 and X̄2, and points X1 and X2 and theline joining X3 and X̄3. Let X be any point of the irumferene of C(X1,X2,X3), thenobviously

minimum{∠X1O
′X,∠X2O

′X,∠X3O
′X} < π/2.
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Fig. 8.2:Extend the ar from P passing through Q to meet the irumferene of C(X1,X2,X3) atpoint X. Without loss of generality, assume that
∠X1O

′X < π/2, i.e., QP̂X1 < π/2 and ∠X1O
′X ≤ ∠X2O′X.If Q lies on arc(PX1), then the proof is omplete. When Q does not lie on arc(PX1), let

M be the midpoint of the shorter ar segment between points X1 and X2 on the irumfer-ene of C(X1,X2,X3)(see Figure 8.2 b). Construt two great irle ars, one joining points
P and M and the other joining points X1 and Q. Extend arc(X1Q) to meet arc(PM) atpoint Y .By onstrution arc(X2M) and arc(X1M) are the same. Sine P is the nearer pole of
C(X1,X2,X3), arc(X1P ) arc(X2P ) are also the same. Thus, spherial triangles X1MPand X2MP are ongruent and X1M̂P = π/2.Then from Artile 42 in [30℄,

cos(arc(PX1)) = cos(arc(PM)) cos(arc(X1M)) (8.4)and
cos(arc(Y X1)) = cos(arc(Y M)) cos(arc(X1M)). (8.5)



123Now, using the result arc(PM) > arc(TM), and (8) and (8),
arc(PX1) > arc(Y X1) ≥ arc(QX1).Sine arc(PX1) is the spherial radius of C(X1,X2,X3), we reeive

arc(XX1) > minimum{arc(QX1), arc(QX2), arc(QX3)}.

�Proof for Lemma 3.2.2 Let P be the nearer pole of C(X1,X2,X3). Let Q be the dia-metrially opposite point to Q1. Obviously, Q is on ΓC(X1,X2,X3) and P 6= Q. Sine
Q1 is su�iently lose to P ′ and P is in the spherial triangle X1X2X3, Q must be in thespherial triangle as well. Assume that

arc(QX1) = minimum{arc(QX1), arc(QX2), arc(QX3)}.From Lemma 3.2.1, it we have arc(QX1) < arc(PX1). Construt two great irle ars,one joining X1 to P ′ and the other joining X1 to Q1. Sine P and Q are diametriallyopposite of P ′ and Q1 respetively, we have
arc(X1P ) + arc(X1P

′) = π = arc(X1Q) + arc(X1Q1).Now arc(QP1) < arc(PX1) =⇒ arc(X1P
′) < arc(X1Q1).

=⇒ arc(X1P
′) < maximum{arc(X1Q1), arc(X2Q1), arc(X3Q1)}.

�Proof for Lemma 3.2.3Refer �gure 8.3. P and P ′ are nearer and distant poles of the small irle C(X1,X2,X3). Mdenotes the mid point of arc(X1X2). Take a point Q, in an arbitrary small neighborhoodof P ′ on the great irle arc(PMP ′). Construt arc(QX3), arc(QX2), arc(X3P
′), and

arc(X2P
′). Now draw the great irle arc(PX1P

′). Sine P ′ is the distant pole of smallirle C(X1,X2,X3), we have
arc(X1P

′) = arc(X2P
′) = arc(X3P

′) (8.6)Hene spherial triangles X1MP ′ and X2MP ′ are ongruent and
X2M̂P ′ = X1M̂P ′ = π/2. (8.7)
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Fig. 8.3:
∠X3 > π/2 implies that X3 lies on the (shorter) ar, arc(X1X2) of small irle C(X1,X2,X3).Without loss of generality, assume that X2 and X3 lie on the same hemisphere de�ned bythe great irle passing through P,M, and P ′. In the spherial triangle X2X3P

′, arc(X2P
′)= arc(X3P

′). Therefore, Property 1.2.1(a) of spherial triangles (see setion 1.2) ⇒
X3X̂2P

′ = X2X̂3P
′ (8.8)Consider the property that two great irles interset at points whih are diametriallyopposite and the assumptions that Q,X3,X2, and P ′ lie on the same hemisphere.Then

X3X̂2P
′ = X3X̂2Q + QX̂2P

′ ⇒ X3X̂2P
′ > X3X̂2Q and (8.9)

X2X̂3Q = X2X̂3P
′ + QX̂3P

′ ⇒ X2X̂3Q > X2X̂3P
′ (8.10)From Property 1.2.1(b), and results (8.8) through (8.8) =⇒

arc(X2Q) > arc(X3Q) (8.11)Using (8.7), from spherial triangles X2MQ and X2MP ′ we have
cos(arc(X2Q)) = cos(arc(X2M)) cos(arc(MQ)) and (8.12)

cos(arc(X2P
′)) = cos(arc(X2M)) cos(arc(MP ′)) (8.13)Sine arc(MQ) < arc(MP ′), (8.12) and (8.13) ⇒
arc(X2Q) < arc(X2P

′) (8.14)



125Sine spherial triangles X1MQ and X2MQ are ongruent, we have
arc(X1Q) = arc(X2Q) (8.15)Combining (8.6), (8.11), (8.14) and (8.15), we have

maximum{arc(X1Q), arc(X2Q), arc(X3Q)} < arc(X1P
′) = arc(X2P

′) = arc(X3P
′).

�Proof for Theorem 3.2.3 P and P ′ in Figure 8.4 represent the nearer and distant pole of
C(X1,X2). Consider the great irle PX1P

′X2. Now onstrut the great irle ar joining
P and P ′ through the mid point, M , of the smaller great irle ar, arc(X1X2). For anydemand point Exi(6= X1orX2),

arc(ExiP
′) < arc(X2P

′) = arc(X1P
′).

X X

P'

P

Q

1 2

i

M

Fig. 8.4:In partiular, there exists a su�iently small ǫ > 0 suh that
arc(ExiP

′) < arc(X2P
′)− 2ǫ. (8.16)Let Qi be a point on the ar PMP ′ that is su�iently near P ′ so that

arc(ExiQi) < arc(ExiP
′) + ǫ. (8.17)



126 8. AppendixFrom (8.16) and (8.17),
arc(ExiQi) < arc(X2P

′)− ǫ. (8.18)Sine triangles X1PQi and X2PQi are ongruent,
arc(X1Qi) = arc(X2Qi). (8.19)In the spherial triangle X2P

′Qi, X2P̂ ′Qi = π/2.The the osine rule gives
cos(arc(X2Qi)) = cos(arc(X2P

′)) cos(arc(QiP
′)).Note that arc(X2P

′) > π/2 as all the demand points are not on a hemisphere. Togetherthis fat and the assumption that Qi lies on the ar PMP ′ and is in the ǫ-neighborhood of
P ′, we have

cos(arc(X2Qi)) > cos(arc(X2P
′)).Hene,

arc(X2Qi) < arc(X2P
′). (8.20)Sine, limQi−P ′arc(X2Qi) = arc(X2P

′), there exists a small neighborhood around P ′ suhthat if Qi is in this neighborhood, then
arc(X2Qi) > arc(X2P

′)− ǫ. (8.21)Therefore, it follows from (8.18), (8.20) and (8.21) that
arc(ExiQi) < arc(X2Qi) < arc(X2P

′). (8.22)The results (8.17) through (8.21) are not only true for Qi but also for any Q on the ar
P ′Qi, i.e.,

arc(ExiQ) < arc(X2Q) < arc(X2P
′). (8.23)Therefore,orresponding to eah demand point Exi, there exists a point Qi on the ar P ′Msuh that an inequality of the type (8.22) holds. let

arc(P ′Q) = minimum{arc(ExiQi) : Exi(6= X1 or X2) is any demand point}.However, (8.23) implies that the distanes from Q to eah demand point are shorter thanthe distane from P ′ to X2. Thus, P ′ annot be a minimax loation. �
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