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Abstract

We introduce splines for the approximation of harmonic functions on a 3–dimensional ball.
Those splines are combined with a multiresolution concept. More precisely, at each step of
improving the approximation we add more data and, at the same time, reduce the hat–width
of the used spline basis functions. Finally, a convergence theorem is proved. One possible
application, that is discussed in detail, is the reconstruction of the Earth’s density distribu-
tion from gravitational data obtained at a satellite orbit. This is an exponentially ill–posed
problem where only the harmonic part of the density can be recovered since its orthogonal
complement has the potential 0. Whereas classical approaches use a truncated singular value
decomposition (TSVD) with the well–known disadvantages like the non–localizing character
of the used spherical harmonics and the bandlimitedness of the solution, modern regulariza-
tion techniques use wavelets allowing a localized reconstruction via convolutions with kernels
that are only essentially large in the region of interest. The essential remaining drawback of
a TSVD and the wavelet approaches is that the integrals (i.e. the inner product in case of
a TSVD and the convolution in case of wavelets) are calculated on a spherical orbit, which
is not given in reality. Thus, simplifying modelling assumptions, that certainly include a
modelling error, have to be made. The splines introduced here have the important advan-
tage, that the given data need not be located on a sphere but may be (almost) arbitrarily
distributed in the outer space of the Earth. This includes, in particular, the possibility to
mix data from different satellite missions (different orbits, different derivatives of the grav-
itational potential) in the calculation of the Earth’s density distribution. Moreover, the
approximating splines can be calculated at varying resolution scales, where the differences
for increasing the resolution can be computed with the introduced spline–wavelet technique.
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2 1 PRELIMINARIES AND INTRODUCTION

1 Preliminaries and Introduction

As usual, the set of all positive integers is denoted by N, where N0 represents the set of all non–
negative integers. R stands for the set of all real numbers, such that R

n is the n–dimensional
Euclidean vector space with the inner product x · y :=

∑n
i=1 xiyi and the norm |x| :=

√
x · x

(x = (x1, ..., xn)T ∈ R
n).

The function spaces L2(D) and C(D) represent the sets of all square–Lebesgue–integrable, re-
spectively, continuous bounded functions from D ⊂ R

n into R, where the elements of L2(D) are,
more precisely, equivalence classes of almost everywhere identical functions. L2(D) equipped
with the inner product

(F, G)L2(D) :=

∫

D
F (x)G(x) dx; F, G ∈ L2(D);

is a Hilbert space (with norm ‖F‖L2(D) :=
√

(F, F )L2(D), F ∈ L2(D)). Moreover, C(D) equipped

with the norm
‖F‖C(D) := sup

x∈D
|F (x)|, F ∈ C(D),

is a Banach space and we have the relation

‖F‖L2(D) ≤
√

λ(D) ‖F‖C(D), F ∈ C(D), (1)

where λ(D) is the n–dimensional Lebesgue measure of D, provided that D ⊂ R
n is Lebesgue

measurable with finite measure.
Canonically, we denote by ∆ the Laplace operator and by ∇ the gradient, such that ∇ ⊗ ∇F

stands for the Hessian of a twice continuously differentiable (scalar) function F .
Furthermore, a twice continuously differentiable function F : D → R on an open domain D ⊂ R

3

is called harmonic if it satisfies the Laplace equation

∆xF (x) =

(

(

∂

∂x1

)2

+

(

∂

∂x2

)2

+

(

∂

∂x3

)2
)

F (x) = 0, x ∈ D.

If X and Y are Banach spaces then L(X, Y ) denotes the space of all continuous, linear mappings
from X into Y . A basic theorem of functional analysis says that a linear mapping S : X → Y

between two Banach spaces (X, ‖.‖X) and (Y, ‖.‖Y ) is continuous if and only if it is bounded,
which means that the operator norm

‖S‖L := sup
x∈X, x 6=0

‖Sx‖Y

‖x‖X
= sup

x∈X,‖x‖X=1
‖Sx‖Y = sup

x∈X,‖x‖X≤1
‖Sx‖Y

is finite.
The unit sphere in R

3 is denoted by Ω. The restrictions of homogeneous harmonic polynomials
in (x1, x2, x3) of degree n to Ω are called spherical harmonics and are collected in the space
Harmn(Ω). Correspondingly, we define the spaces

Harm0..n(Ω) :=
n
⊕

i=0

Harmi(Ω),
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Harm0..∞(Ω) :=
∞
⋃

i=0

Harm0..i(Ω).

It is well–known that dim(Harmn(Ω)) = 2n + 1 for all n ∈ N0 and Harm0..∞(Ω) is dense
in (L2(Ω), ‖.‖L2(Ω)). Thus, we assume that a system {Yn,j}n∈N0;j=1,...,2n+1 is given such that
{Yn,j}j=1,...,2n+1 is a complete L2(Ω)–orthonormal system in Harmn(Ω) for all n ∈ N0. Since
Harmn(Ω) is L2(Ω)–orthogonal to Harmm(Ω) for n 6= m, such a system {Yn,j}n∈N0;j=1,...,2n+1

is automatically a complete orthonormal system of L2(Ω). Analogously, by defining Y B
n,j(x) :=

1
β Yn,j

(

x
|x|

)

for some fixed β > 0, we obtain a complete orthonormal system {Y B
n,j}n∈N0;j=1,...,2n+1

of L2(B), where B is the sphere with center 0 and radius β. Moreover, each system of that type
(Y Ω

n,j = Yn,j) satisfies the addition theorem for spherical harmonics

2n+1
∑

j=1

Yn,j(ξ)Yn,j(η) =
2n + 1

4π
Pn(ξ · η); ξ, η ∈ Ω; n ∈ N0; (2)

where Pn is the Legendre polynomial of degree n, which is uniquely determined by the require-
ments

(i) Pn is a polynomial of degree n for all n ∈ N0.

(ii)
∫ 1
−1 Pn(t)Pm(t) dt = 0 for all n, m ∈ N0 with n 6= m.

(iii) Pn(1) = 1 for all n ∈ N0.

For further details on spherical harmonics and on Legendre polynomials we refer to [10, 20].
In this paper we assume that the Earth has the shape of a ball with radius β > 0. The surface,
i.e. the sphere with center 0 and radius β, here denoted by B, has an inner space Bint which is
the open ball with radius β representing the Earth’s interior. The outer space of B is denoted by
Bext := R

3 \Bint. In contrast to the spherical situation, the harmonic functions on the ball Bint

are not dense in L2 (Bint). More precisely, the space Harm (Bint) of all harmonic functions on
Bint is a closed linear strict subspace of L2 (Bint). A complete orthonormal system in Harm (Bint)
is given by the system of inner harmonics

HB
n,j(x) :=

√

2n + 3

β3

( |x|
β

)n

Yn,j

(

x

|x|

)

, x ∈ Bint,

n ∈ N0, j ∈ {1, ..., 2n + 1} (see [16]).
The relation between the gravitational potential V of the Earth and the density distribution
ρ ∈ L2 (Bint) is given by the Fredholm integral equation of first kind

(Tρ)(y) :=

∫

Bint

ρ(x)

|x − y| dx = V (y), y ∈ Bext. (3)

The inverse problem of determining ρ out of V is called gravimetry problem. It is well–known
(see, for example, [11, 15, 16, 21]) that the L2 (Bint)–orthogonal space of Harm (Bint),

Anharm (Bint) :=
{

F ∈ L2 (Bint)
∣

∣(F, H)L2(Bint) = 0 for all H ∈ Harm (Bint)
}

,
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of so–called anharmonic functions is the infinite–dimensional null space of the operator T . Thus,
only the harmonic part of the Earth’s density distributions can be recovered from gravitational
data. For this reason, we restrict our attention in this paper to the treatment of the harmonic
part of the solution of the integral equation (3). Concerning strategies for the treatment of the
null space we refer to, for example, [1, 2, 3, 4, 11, 16, 18].
Let us have a closer look at Hadamard’s criteria, according to which a problem is called well–
posed if and only if a solution exists, is unique, and continuously depends on the given data.
Otherwise it is called ill–posed. The inverse gravimetric problem given by (3) is ill–posed for
the following reasons: Errors in measuring V can, for example, destroy the harmonicity of the
function such that the problem becomes unsolvable. As we already mentioned above, the solution
is not unique. Finally, the inverse operator of the restriction of T to Harm (Bint) (note that the
restriction is necessary to gain invertibility) is not continuous. If V is sampled at a positive
distance σ − β > 0 to the Earth, for example at a satellite orbit, then we have an exponentially
ill–posed problem in the sense that the singular value (T∧(n))−1 of T−1, given by THB

n,j =

T∧(n) 1
σYn,j(

.
|.|) exponentially diverges to infinity as n → ∞. This means that measuring errors,

which become, in particular, for large degrees n relevant, are extremely strengthened in this
inversion process.
The mentioned results of the discussion of Hadamard’s criteria remain true if derivatives of V

are given instead of V . For more details we refer to [18]. This exponential ill–posedness requires
an adequate regularization procedure which is able to calculate a sequence of approximations to
the harmonic density with the following requirements:

1. Every approximation must be computable even if the right hand side V is not in the image
im (T ) of the operator T .

2. Every approximation continuously depends on V .

3. The sequence of approximations converges in an appropriate topology (like L2 (Bint)) to
the exact harmonic solution of (3).

Some wavelet based regularization methods for this purpose have already been presented in
[11, 15, 16, 17, 18, 19]. In this work we will, for the first time, introduce spline–wavelets as
regularization method for the satellite–data based gravimetry problem motivated by an alterna-
tive spline–wavelet method for various problems in potential theory presented in [11]. Our new
spline–wavelet approach has several advantages: First, it includes, in particular, the smoothing
and best approximating properties of splines. Second, the satellite data can be arbitrarily dis-
tributed in the outer space of the Earth. This is an essential improvement, since the methods
developed in [15, 16, 17, 18, 19] require data on a spherical domain and, though, the approach
in [11] allows data given on a general regular surface, the theory assumes the knowledge of a
complete orthonormal system of the L2–space of that surface, which is usually not given for
computational purposes.
In Section 2 we introduce the spline method based on inner harmonics on a ball in R

3. They are
contained in certain Sobolev spaces H which are given by a sequence {An}n∈N0 that satisfies a
summability condition. Furthermore, we discuss the special spline basis functions obtained for
the gravimetry problem. Since the sequence {An}n∈N0 allows us to control the had–width of
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the basis functions we use this phenomenon to construct a multiscale spline concept in Section
3. There a family {Φ∧

J (n)}n∈N0 , J ∈ N0, of sequences generates a family of Sobolev spaces HJ ,
J ∈ N0. Under some conditions on the values Φ∧

J (n) these Sobolev spaces represent a multires-
olution of the set of harmonic functions on the ball. The larger the scale J , the smaller is the
hat–width of the spline basis functions. This is compensated by adding more and more data
to the spline interpolation problem. Then we prove in Section 4 a convergence theorem for the
limit J → ∞. Finally, in Section 5 the results are summarized and an outlook is given.

2 Harmonic Splines on a Ball

In analogy to [7, 8, 9, 10], where the cases of a sphere and the outer space, respectively, are
discussed, we introduce harmonic splines on Bint.

Definition 2.1 Let {An}n∈N0 be a real sequence. By E := E({An}; Bint) we denote the space of
all F ∈ Harm (Bint) with

(

F, HB
n,j

)

L2(Bint)
= 0 for all n ∈ N0 withAn = 0

and
∞
∑

n=0
An 6=0

2n+1
∑

j=1

A−2
n

(

F, HB
n,j

)2

L2(Bint)
< +∞.

For F, G ∈ E we introduce the inner product

(F, G)H({An};Bint) :=
∞
∑

n=0
An 6=0

2n+1
∑

j=1

A−2
n

(

F, HB
n,j

)

L2(Bint)

(

G, HB
n,j

)

L2(Bint)
. (4)

The norm ‖.‖H({An};Bint) is induced by ‖F‖H({An};Bint) :=
√

(F, F )H({An};Bint).

Note that the Cauchy–Schwarz inequality shows that the inner product of (4) is always finite.

Definition 2.2 The completion of E({An}; Bint) with respect to (., .)H({An};Bint) is denoted by
the Sobolev space H({An}; Bint). If no confusion is likely to arise, we will simply write H instead
of H({An}; Bint).

Definition 2.3 A real sequence {An}n∈N0 is called summable if

∞
∑

n=0

A2
n

(2n + 3)(2n + 1)

4πβ3
< +∞.

Assumption 2.4 We always assume that the used sequences {An}n∈N0 are summable.

The summability of the sequence {An}n∈N0 automatically guarantees that every element of
the Hilbert space H({An}; Bint) can be related to a continuous bounded function such that
H({An}; Bint) ⊂ C(Bint).
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Lemma 2.5 (Sobolev Lemma) Every F ∈ H({An}; Bint) corresponds to a continuous func-
tion on Bint. Moreover, F is even harmonic on Bint and the Fourier series

F =
∞
∑

n=0

2n+1
∑

j=1

(

F, HB
n,j

)

L2(Bint)
HB

n,j

is uniformly convergent on Bint.

Proof: Application of the Cauchy–Schwarz inequality yields for F ∈ H({An}; Bint) the estimate

∣

∣

∣

∣

∣

∣

∞
∑

n=N

2n+1
∑

j=1

(

F, HB
n,j

)

L2(Bint)
HB

n,j(x)

∣

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∣

∣

∞
∑

n=N
An 6=0

2n+1
∑

j=1

(

F, HB
n,j

)

L2(Bint)
A−1

n AnHB
n,j(x)

∣

∣

∣

∣

∣

∣

∣

≤







∞
∑

n=N
An 6=0

2n+1
∑

j=1

(

F, HB
n,j

)2

L2(Bint)
A−2

n







1/2





∞
∑

n=N
An 6=0

2n+1
∑

j=1

A2
n

2n + 3

β3

( |x|
β

)2n(

Yn,j

(

x

|x|

))2







1/2

≤ ‖F‖H({An};Bint)







∞
∑

n=N
An 6=0

A2
n

(2n + 3)(2n + 1)

4πβ3
Pn(1)







1/2

−→
N→∞

0,

where the right hand side converges as N → ∞ uniformly with respect to x ∈ Bint due to the
summability condition. �

Essential for the construction of the splines here is the existence of a reproducing kernel. This is
also guaranteed by the summability of the sequence {An}n∈N0 . Note that a reproducing kernel
is always unique if it exists.

Theorem 2.6 H has a unique reproducing kernel KH : Bint × Bint → R satisfying

(i) KH(x, .), KH(., x) ∈ H for all x ∈ Bint.

(ii) (KH(x, .), F )H = (KH(., x), F )H = F (x) for all F ∈ H and all x ∈ Bint.

Furthermore, KH is given by

KH(x, y) =
∞
∑

n=0

2n+1
∑

j=1

A2
nHB

n,j(x)HB
n,j(y)

=
∞
∑

n=0

A2
n

(2n + 3)(2n + 1)

4πβ3
Pn

(

x

|x| ·
y

|y|

)( |x| |y|
β2

)n

.

The proof of this theorem is analogous to the proof in the spherical case (see, for example [10]).
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Definition 2.7 Let F := {F1, ...,FN} ⊂ L(H, R) be a linearly independent system of bounded
linear functionals from H into R. A function S ∈ H of the form

S(x) =
N
∑

k=1

akFkKH(., x), x ∈ Bint,

a = (a1, ..., aN )T ∈ R
N , is called harmonic spline in H({An}; Bint) relative to F . Such splines

are collected in the space Spline({An};F).

A harmonic spline interpolation problem can be formulated by a system of linearly indepen-
dent functionals F = {F1, ...,FN} ⊂ L(H, R) and a vector y = (y1, ..., yN )T ∈ R

N as follows:
Determine S ∈ Spline({An};F) such that

FiS = yi for all i = 1, ..., N

or, equivalently, determine a ∈ R
N such that

N
∑

j=1

ajFiFjKH(., .) = yi for all i = 1, ..., N.

This yields a linear equation system with the matrix

(FiFjKH(., .))i,j=1,...,N (5)

which is positive definite according to the following considerations. First, we realize the validity
of the following lemma as a consequence of a general theorem in [5], p. 318.

Lemma 2.8 Let F ∈ L(H, R) be arbitrary. Then y 7→ FxKH(x, y) is in H and

F(F ) = (F,FxKH(x, .))H

for all F ∈ H.

Here, FxKH(x, .) means that F is applied to the function x 7→ KH(x, y) where y is arbitrary
but fixed. Finally, we get the following result.

Theorem 2.9 Let F = {F1, ...,FN} ⊂ L(H, R) be a system of functionals. This system is
linearly independent if and only if the matrix (5) is positive definite.

Proof: Due to Lemma 2.8 we see that (5) is a Gram matrix since

(Fi)x(Fj)yKH(x, y) = ((Fj)yKH(., y), (Fi)xKH(x, .))H .

By definition the linear independence of {(Fi)xKH(x, .)}i=1,...,N implies that

G(y) :=
N
∑

i=1

ai(Fi)xKH(x, y) = 0 for all y ∈ Bint ⇔ ai = 0 for all i = 1, ..., N.



8 2 HARMONIC SPLINES ON A BALL

According to Lemma 2.8 this is equivalent to the statement that

(F, G)H =
N
∑

i=1

aiFiF = 0 for all F ∈ H ⇔ ai = 0 for all i = 1, ..., N.

This is true if and only if F is linearly independent. Since a Gram matrix is positive definite
if and only if the corresponding system of vectors is linearly independent, the statement of the
theorem is valid. �

Consequently, the formulated spline interpolation problem is always uniquely solvable.

In case of the discussed gravimetry problem the following types of functionals are of particular
interest.

G(0)
k F =

∫

Bint

F (y)

|y − xk|
dy, xk ∈ Bext fixed,

G(1)
k F = −

(

x

|x| · ∇x

∫

Bint

F (y)

|y − x| dy

)∣

∣

∣

∣

x=xk

, xk ∈ Bext fixed,

G(2)
k F =

(

x

|x| ·
((

∇x ⊗∇x

∫

Bint

F (y)

|y − x| dy

)

x

|x|

))∣

∣

∣

∣

x=xk

, xk ∈ Bext fixed. (6)

Due to, for example, [12] and [18] we have

G(0)
k HB

n,j =
4π

2n + 1

√

β3

2n + 3

(

β

|xk|

)n 1

|xk|
Yn,j

(

xk

|xk|

)

,

G(1)
k HB

n,j =
n + 1

|xk|
4π

2n + 1

√

β3

2n + 3

(

β

|xk|

)n 1

|xk|
Yn,j

(

xk

|xk|

)

,

G(2)
k HB

n,j =
(n + 1)(n + 2)

|xk|2
4π

2n + 1

√

β3

2n + 3

(

β

|xk|

)n 1

|xk|
Yn,j

(

xk

|xk|

)

as well as the representation

G(i)
k F =

∞
∑

n=0

2n+1
∑

j=1

q(i)
n

4π

2n + 1

√

β3

2n + 3

(

β

|xk|

)n
(

F, HB
n,j

)

L2(Bint)

1

|xk|
Yn,j

(

xk

|xk|

)

for all F ∈ L2 (Bint), where q
(i)
n is polynomial in n with maximal degree 2 and {(F, HB

n,j)L2(Bint)}n,j

is bounded due to the square–integrability of F . This series is obviously convergent since |xk| > β

and ‖Yn,j‖C(Ω) ≤
√

(2n + 1)(4π)−1. The estimate

∣

∣

∣
G(i)

k F
∣

∣

∣
≤







∞
∑

n=0
An 6=0

2n+1
∑

j=1

(

q(i)
n

4π

2n + 1

√

β3

2n + 3

(

β

|xk|

)n 1

|xk|
Yn,j

(

xk

|xk|

)

An

)2






1
2
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·







∞
∑

n=0
An 6=0

2n+1
∑

j=1

(

F, HB
n,j

)2

L2(Bint)
A−2

n







1
2

=







∞
∑

n=0
An 6=0

(

q(i)
n

√

β3

2n + 3

(

β

|xk|

)n 1

|xk|

)2
4π

2n + 1
A2

n







1
2

‖F‖H,

F ∈ H, in connection with the summability condition shows that each linear functional G(i)
k :

H → R is continuous. Note that weaker conditions on {An} than the summability condition

such as |An| ≤ 1 also suffice here to see the continuity of the functionals G(i)
k . This includes, in

particular, the case H({1}; Bint) = Harm (Bint). Hence, the matrix components have the form:

G(l)
i G(m)

k KH(., .) =
∞
∑

n=0

2n+1
∑

j=1

A2
n

(

G(l)
i HB

n,j

)(

G(m)
k HB

n,j

)

=

∞
∑

n=0

A2
n

4π

2n + 1

β3

2n + 3

(

β2

|xi| |xk|

)n

Pn

(

xi

|xi|
· xk

|xk|

)

·











































































1
|xi| |xk| ; l = 0, m = 0,

n+1
|xi| |xk|2 ; l = 0, m = 1,

n+1
|xi|2|xk| ; l = 1, m = 0,
(n+1)2

|xi|2|xk|2 ; l = 1, m = 1,
(n+1)(n+2)
|xi| |xk|3 ; l = 0, m = 2,

(n+1)(n+2)
|xi|3|xk| ; l = 2, m = 0,

(n+1)2(n+2)
|xi|2|xk|3 ; l = 1, m = 2,

(n+1)2(n+2)
|xi|3|xk|2 ; l = 2, m = 1,

(n+1)2(n+2)2

|xi|3|xk|3 ; l = 2, m = 2,

=
∞
∑

n=0

A2
n

4π

2n + 1

β3

2n + 3

(

β2

|xi| |xk|

)n

Pn

(

xi

|xi|
· xk

|xk|

)

(n + 1)δl,1+δm,1
(

n2 + 3n + 2
)δl,2+δm,2

|xi|1+l|xk|1+m
.

In general, the name “spline” refers to the property of minimizing a certain non–smoothness
measure among all interpolating functions. In the classical Euclidean case the natural cubic
spline s minimizes the linearized deformation energy ‖s′′‖L2 . For the spherical spline approach
(see, for instance, [7, 8, 9, 10]) and further spline concepts based on this spherical approach (such
as the anharmonic splines in [16]) this optimization problem is transferred to the minimization
of a different norm such as a Sobolev norm. Therefore, we obtain in our case the two typical
minimum properties in analogy to the proofs in the references listed above.

Theorem 2.10 (1st Minimum Property) Let y ∈ R
N be given and F = {F1, ...,FN} ⊂

L(H, R) be linearly independent. If S∗ is the unique spline satisfying FiS
∗ = yi for all i =

1, ..., N , then S∗ is the unique minimizer of

‖S∗‖H = min {‖F‖H|F ∈ H, FiF = yi ∀ i = 1, ..., N} .
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Theorem 2.11 (2nd Minimum Property, Best Approximation Property) Let F ∈ H
be given and F = {F1, ...,FN} ⊂ L(H, R) be linearly independent. If S∗ ∈ Spline({An};F) is
the unique spline satisfying FiS

∗ = FiF for all i = 1, ..., N , then S∗ is the unique minimizer of

‖F − S∗‖H = min {‖F − S‖H|S ∈ Spline({An};F)} .

Thus, if F represents an unknown harmonic function on Bint, then the interpolating spline S∗

represents the best possible approximation to F among all splines, measured with respect to the
metric induced by the Sobolev norm ‖ · ‖H. Moreover, among all functions in H that fit to the
known data yi the spline S∗ is the “smoothest” (in the ‖.‖H–sense). Note that we use values FiF

related to the unknown function F to construct the approximation to F . For this purpose, we
are in particular enabled to include various types of data into the calculations (e.g. 1st and 2nd
radial derivative of the Earth’s gravitational potential as derivable from recent satellite missions;
spaceborne, airborne, and surface based data).

In analogy to [10] we are able to prove a Shannon Sampling Theorem.

Theorem 2.12 (Shannon Sampling Theorem) Any spline function S ∈ Spline({An};F) is
representable by its “samples” FiS as

S(x) =
N
∑

k=1

(FkS)Lk(x), x ∈ Bint, (7)

where

Lk(x) =
N
∑

j=1

a
(k)
j FjKH(x, ·), x ∈ Bint, (8)

with a
(k)
j given as solutions of the linear equation systems

N
∑

j=1

a
(k)
j FiFjKH(·, ·) = δi,k ∀ i = 1, ..., N ; ∀ k = 1, ..., N. (9)

Proof: The set of equation systems in (9) guarantees that

FiLk = δi,k,

such that

Fi

(

N
∑

k=1

(FkS) Lk

)

=

N
∑

k=1

FkS FiLk = FiS

for all i = 1, ..., N . Thus, the uniqueness of the interpolating spline implies (7). �
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3 Spline–Wavelets

The idea of the new concept introduced here is to increase step by step the resolution of the
approximating spline. We will then arrive at a multiresolution spline method. Typically, mul-
tiresolutions are generated by scaling functions, where wavelets provide band pass filters rep-
resenting the step from one resolution to another. Here, we will use a weakened concept of a
scaling function.
For alternative spline–wavelet approaches for different geomathematical problems we refer, for
example, to [9] and [11].

Definition 3.1 Let F represent a given, fixed (countable) system of linear and continuous func-
tionals F = {F1,F2, ...} ⊂ L(H, R). Moreover, let F (NJ ) = {F1, ...,FNJ

} ⊂ F ⊂ L(H, R) be
a linearly independent subsystem and y(J) ∈ R

NJ be a given vector for every J ∈ N0 where
(NJ)J∈N0 is a monotonically increasing sequence of positive integers. Those notations are valid
throughout this section.

Definition 3.2 If the family of sequences {Φ∧
J (n)}n∈N0, J ∈ N0, satisfies the conditions

(i) 0 ≤ Φ∧
J (n) ≤ Φ∧

J+1(n) ≤ 1 for all n, J ∈ N0,

(ii) {Φ∧
J (n)}n∈N0 is summable for all J ∈ N0,

(iii) for every fixed n ∈ N0 the sequence {Φ∧
J (n)}J∈N0 is not identical to 0, i.e. there exists jn

such that Φ∧
J (n) > 0 for all J ≥ jn,

then the elements of VJ := Spline({Φ∧
J (n)};F (NJ )) are called spline–scaling functions.

Example 3.3 Various examples of such sequences are known from the spherical wavelet theory
(cf. [10]). We distinguish bandlimited sequences such as the Shannon sequence

Φ∧
J (n) =

{

1, 0 ≤ n < 2J ,

0, n ≥ 2J

and the sequence generated by a cubic polynomial

Φ∧
J (n) =

{
(

1 − 2−Jn
)2 (

1 + 21−Jn
)

, 0 ≤ n < 2J ,

0, n ≥ 2J

from non–bandlimited sequences such as the Abel–Poisson sequence

Φ∧
J (n) = exp

(

−R2−Jn
)

, R > 0,

the Gauß–Weierstraß sequence

Φ∧
J (n) = exp

(

−R2−Jn
(

2−Jn + 1
))

, R > 0,

and the Tykhonov–Philips sequence

Φ∧
J (n) =

1

1 + γ2
J,n

where in the last case γJ,n must satisfy the requirements
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(i) γ2
J,n ≥ γ2

J+1,n for all n, J ∈ N0,

(ii) {Φ∧
J (n)}n∈N0 is summable for all fixed J ∈ N0.

Note that in case of the Abel–Poisson reproducing kernel

KH({Φ∧
J (n)};Bint)(x, y) =

∞
∑

n=0

exp
(

−R2−Jn
)2 (2n + 3)(2n + 1)

4πβ3
Pn

(

x

|x| ·
y

|y|

)( |x| |y|
β2

)n

=
1

4πβ3

∞
∑

n=0

(2n + 3)(2n + 1)

(

exp
(

−R21−J
) |x| |y|

β2

)n

Pn

(

x

|x| ·
y

|y|

)

we can derive a closed representation. From [10] we know that

∞
∑

n=0

(2n + 1)hnPn(t) =
1 − h2

(1 + h2 − 2ht)3/2

for all t ∈ [−1, 1] and all h ∈ [0, 1[. By differentiating with respect to h and observing the
uniform convergence of the summandwise derived series with respect to h ∈ [0, h0], 0 < h0 < 1,
we obtain

∞
∑

n=1

(2n + 1)nhn−1Pn(t) =
−5h + h3 + h2t + 3t

(1 + h2 − 2ht)5/2

such that
∞
∑

n=0

(2n + 3)(2n + 1)hnPn(t) =
3 − 10h2 + 8h3t − h4

(1 + h2 − 2ht)5/2

for all t ∈ [−1, 1] and all h ∈ [0, 1[. Consequently, we get

KH({exp(−R2−Jn)};Bint)(x, y) =
1

4πβ3

3 − 10h̃2 + 8h̃3t − h̃4

(1 + h̃2 − 2h̃t)5/2
, h̃ = exp

(

−R21−J
) |x| |y|

β2
, t =

x

|x| ·
y

|y| ;

x, y ∈ Bint.
Another special case is given by

Φ∧
J (n) =

{ 1√
n(2n+3)(2n+1)

exp
(

−R2−Jn
)

, n ≥ 1,

1√
3
, n = 0,

which will be called here the modified Abel–Poisson sequence, since the corresponding reproducing
kernel

KH({Φ∧
J (n)};Bint)(x, y) =

1

4πβ3
+

1

4πβ3

∞
∑

n=1

1

n
exp

(

−R21−Jn
)

( |x| |y|
β2

)n

Pn

(

x

|x| ·
y

|y|

)
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may, according to [13], be written in the closed representation

KH({Φ∧
J (n)};Bint)(x, y) =

1

4πβ3

(

1 − log

(

1

2

(

1 − |x| |y|
β2

(

x

|x| ·
y

|y|

)

exp
(

−R21−J
)

+

√

1 − 2
|x| |y|
β2

(

x

|x| ·
y

|y|

)

exp (−R21−J) +
|x|2|y|2

β4
exp (−R22−J)

)))

=
1

4πβ3

(

1 − log

(

1

2

(

1 − x · y
β2

exp
(

−R21−J
)

+

√

1 − 2
x · y
β2

exp (−R21−J) +
|x|2|y|2

β4
exp (−R22−J)

)))

.

Note that it might be reasonable (but not necessary) to require that limJ→∞ Φ∧
J (n) = 1 for all

n ∈ N0. In this case the modified Abel–Poisson kernel is not applicable but the Abel–Poisson
kernel itself is. To the knowledge of the authors no non–bandlimited kernel for the gravimetry
problem has been known before.

The Sobolev spaces defined by the symbol {Φ∧
J (n)} represent a multiresolution analysis as the

following theorem shows.

Theorem 3.4 Let {Φ∧
J (n)}n∈N0, J ∈ N0, satisfy the conditions of Definition 3.2. Then the

Sobolev spaces HJ := H({Φ∧
J (n)}; Bint) satisfy the properties

(i) HJ ⊂ HJ+1 ⊂ H({ϕ(n)}; Bint) for all J ∈ N0,

(ii)
⋃

J∈N0
HJ

‖.‖H({ϕ(n)};Bint) = H({ϕ(n)}; Bint),

where ϕ(n) := limJ→∞ Φ∧
J (n) for every n ∈ N0.

Proof: We first mention that for fixed n ∈ N0 the sequence {Φ∧
J (n)}J∈N0 is monotonically

increasing and bounded and, therefore, convergent. Moreover, the third requirement for a
scaling function implies in combination with the monotonicity that this limit ϕ(n) is greater
than 0.
Now let F ∈ HJ be an arbitrary element of the Sobolev space at scale J . Hence, the condition

∞
∑

n=0
Φ∧

J
(n) 6=0

2n+1
∑

j=1

(

Φ∧
J (n)

)−2 (
F, HB

n,j

)2

L2(Bint)
< +∞

must be satisfied. Due to the monotonicity of the symbol we conclude that

∞
∑

n=0
Φ∧

J+1
(n) 6=0

2n+1
∑

j=1

(

Φ∧
J+1(n)

)−2 (
F, HB

n,j

)2

L2(Bint)
≤

∞
∑

n=0
Φ∧

J
(n) 6=0

2n+1
∑

j=1

(

Φ∧
J (n)

)−2 (
F, HB

n,j

)2

L2(Bint)
< +∞
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such that F ∈ HJ+1. Note that (F, HB
n,j)L2(Bint) = 0 for all n ∈ {m ∈ N0 |Φ∧

J (m) = 0} ⊃ {m ∈
N0 |Φ∧

J+1(m) = 0}. In analogy, we obtain that F ∈ H({ϕ(n)}; Bint) since ϕ(n) ≥ Φ∧
J (n).

Finally, let F ∈ H({ϕ(n)}; Bint) be arbitrary. Hence, F satisfies

∞
∑

n=0

2n+1
∑

j=1

ϕ(n)−2
(

F, HB
n,j

)2

L2(Bint)
< +∞. (10)

After defining the sequence {GJ}J∈N0 of functions by

GJ :=
∞
∑

n=0

2n+1
∑

j=1

Φ∧
J (n)

ϕ(n)

(

F, HB
n,j

)

L2(Bint)
HB

n,j

we observe that GJ ∈ HJ for all J ∈ N0 since

∞
∑

n=0
Φ∧

J
(n) 6=0

2n+1
∑

j=1

Φ∧
J (n)

−2 (
GJ , HB

n,j

)2

L2(Bint)
≤

∞
∑

n=0

2n+1
∑

j=1

ϕ(n)−2
(

F, HB
n,j

)2

L2(Bint)
< +∞.

Moreover, we observe that the series of the Parseval identity

‖F − GJ‖2
H({ϕ(n)};Bint)

=
∞
∑

n=0

2n+1
∑

j=1

(ϕ(n))−2

(

1 − Φ∧
J (n)

ϕ(n)

)2
(

F, HB
n,j

)2

L2(Bint)

converges uniformly with respect to J ∈ N0 due to (10) and the fact that 0 ≤ Φ∧
J (n)

ϕ(n) ≤ 1.
Consequently, we obtain

lim
J→∞

‖F − GJ‖2
H({ϕ(n)};Bint)

=
∞
∑

n=0

2n+1
∑

j=1

(ϕ(n))−2 lim
J→∞

(

1 − Φ∧
J (n)

ϕ(n)

)2
(

F, HB
n,j

)2

L2(Bint)
= 0.

This implies the second property of the multiresolution analysis. �

This result means that we can obtain a sequence of approximating splines SJ ∈ VJ where

each spline SJ is the smoothest function of HJ that satisfies the given equations FnSJ = y
(J)
n ;

n = 1, ..., NJ . Since the kernel and, therefore, usually also the basis functions become more and
more localizing as the symbol Φ∧

J (n) increases with respect to J , the resolution is expected to
increase and, thus, more data have be taken into account (NJ ≤ NJ+1). This is illustrated by
Figure 1. There we plot in the left column the spline basis functions (see (6) for the definition

of the functionals G(m)
k )

G(m)
k KHJ

(., x) =
∞
∑

n=0

2n+1
∑

j=1

(

Φ∧
J (n)

)2
(

G(m)
k HB

n,j

)

HB
n,j(x)

=
∞
∑

n=0

(

Φ∧
J (n)

)2
( |x|
|xk|

)n 1

|xk|1+m Pn

(

xk

|xk|
· x

|x|

)

(n + 1)δm,1
(

n2 + 3n + 2
)δm,2
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Figure 1: Plot of the spline basis for different scales (magenta: J = 2, red: J = 4, cyan: J = 6,
green: J = 8, blue: J = 10, and black: J = 12) in the left column and the difference of spline
bases of consecutive scales in the right column, the calculations have been performed for the
0th, 1st, and 2nd derivative (see 1st, 2nd, and 3rd row, respectively); see text for details.
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for the different orders m ∈ {0, 1, 2}. Note that m refers to the order of the radial derivative of
the gravitational potential given at the location xk, which is here assumed to be 400 km above
the Earth’s surface (with radius 6371 km). The kernel is plotted for x ∈ B in dependence of t ∈
[−π, π] with xk

|xk| ·
x
|x| = cos t. In the right column we plot the difference kernels G(m)

k (KHJ+1
(., x)−

KHJ
(., x)) which can be interpreted in an abstract sense as a spline–wavelet basis. In each case

we used the Tykhonov–Philips sequence with γ2
J,n = 2−Jn3 for Φ∧

J (n). The series of the kernels
were truncated at degree 1000 and were calculated via the Clenshaw algorithm (see [6] for details
on the algorithm).
Note that the additional requirement limJ→∞ Φ∧

J (n) = 1 mentioned above implies that the “limit
space” H({ϕ(n)}; Bint) is Harm(Bint), i.e. the set of all harmonic functions on Bint. Be aware
of the fact that {ϕ(n)}n∈N0 need not be summable.

The approximating harmonic spline at scale J ∈ N0 may now be calculated by solving the system
of linear equations given by

NJ
∑

k=1

a
(J)
k FlFkKHJ

(., .) = y
(J)
l ; l = 1, ..., NJ .

The corresponding spline is then given by

SJ(x) =

NJ
∑

k=1

a
(J)
k FkKHJ

(., x).

The differences SJ+1 − SJ can be interpreted as spline–wavelets.
Note that the described method represents a regularization of the ill–posed problem.

Theorem 3.5 Let SJ ∈ VJ be the unique spline satisfying the conditions FlSJ = y
(J)
l ; l =

1, ..., NJ ; then the spline continuously depends on the given data.

Proof: This result is an immediate consequence of the linearity of the relation and the finite
dimension of the involved spaces. �

4 A Convergence Theorem

By adding more and more data and decreasing the hat–width of the basis functions at the
same time we obtain a sequence of approximating splines. We will prove in this section that
this sequence converges to the underlying unknown function. Here we will use the notations
introduced in Section 3. Before we can prove the main result we have to verify some lemmata.

Lemma 4.1 The dual spaces H∗
J := L(HJ , R), J ∈ N0, satisfy

H∗
∞ ⊂ H∗

J+1 ⊂ H∗
J ⊂ H∗

0

for all J ∈ N0, where H∞ := H({ϕ(n)}; Bint).
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Proof: A functional T ∈ H∗
J+1 is a linear mapping T : HJ+1 → R which is bounded, i.e.

‖T ‖H∗
J+1

= sup
‖F‖HJ+1

≤1

F∈HJ+1

|T F | < +∞.

Obviously, its restriction T |HJ
: HJ → R is also linear and satisfies

‖T ‖H∗
J

= sup
‖F‖HJ

≤1

F∈HJ

|T F | ≤ sup
‖F‖HJ+1

≤1

F∈HJ

|T F | ≤ sup
‖F‖HJ+1

≤1

F∈HJ+1

|T F | = ‖T ‖H∗
J+1

< +∞,

since ‖F‖HJ+1
≤ ‖F‖HJ

for all F ∈ HJ and HJ ⊂ HJ+1(⊂ H∞), such that the unit ball in HJ

is a subset of the unit ball in HJ+1. �

Lemma 4.2 For all F ∈ HJ̃ , J̃ ∈ N0, we have

lim
J→∞
J≥J̃

‖F‖HJ
= ‖F‖H∞ .

Proof: Obviously, the series (note that (F, HB
n,j)L2(Bint) = 0 if Φ∧

J̃
(n) = 0)

‖F‖2
HJ

=
∞
∑

n=0

2n+1
∑

j=1

pJ(n)
(

F, HB
n,j

)2

L2(Bint)

≤
∞
∑

n=0
Φ∧

J
(n) 6=0

2n+1
∑

j=1

pJ̃(n)
(

F, HB
n,j

)2

L2(Bint)

=

∞
∑

n=0

2n+1
∑

j=1

pJ̃(n)
(

F, HB
n,j

)2

L2(Bint)
< +∞,

J ≥ J̃ , where we use the abbreviation

pJ(n) =

{

0, if Φ∧
J (n) = 0

(Φ∧
J (n))−2

, if Φ∧
J (n) 6= 0

,

is uniformly convergent with respect to J ≥ J̃ . Hence,

lim
J→∞
J≥J̃

‖F‖2
HJ

=
∞
∑

n=0

2n+1
∑

j=1

(

lim
J→∞

pJ(n)

)

(

F, HB
n,j

)2

L2(Bint)

=
∞
∑

n=0

2n+1
∑

j=1

(ϕ(n))−2
(

F, HB
n,j

)2

L2(Bint)

= ‖F‖2
H∞

.

�
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Lemma 4.3 Every H∗
J , J ∈ N, is dense in H∗

0. Moreover, H∗
∞ is also dense in H∗

0.

Proof: Let T ∈ H∗
0 be given. Due to the Riesz representation theorem there exists a function

FT ∈ H0 ⊂ H∞ such that T G = (FT , G)H0 for all G ∈ H0. Now let

F̃
(N)
T :=

N
∑

n=0
Φ∧

0 (n) 6=0

2n+1
∑

j=1

(

ϕ(n)

Φ∧
0 (n)

)2
(

FT , HB
n,j

)

L2(Bint)
HB

n,j ∈ H0

be given for all N ∈ N. Then we obtain

∣

∣

∣

∣

(

F̃
(N)
T , G

)

H∞

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∣

∣

N
∑

n=0
Φ∧

0 (n) 6=0

2n+1
∑

j=1

1

(Φ∧
0 (n))2

(

FT , HB
n,j

)

L2(Bint)

(

G, HB
n,j

)

L2(Bint)

∣

∣

∣

∣

∣

∣

∣

≤







N
∑

n=0
Φ∧

0 (n) 6=0

2n+1
∑

j=1

(ϕ(n))2

(Φ∧
0 (n))4

(

FT , HB
n,j

)2

L2(Bint)







1
2 



∞
∑

n=0

2n+1
∑

j=1

1

(ϕ(n))2
(

G, HB
n,j

)2

L2(Bint)





1
2

for all G ∈ H∞. Hence, the operators

T (N) : H∞ → R

G 7→
(

F̃
(N)
T , G

)

H∞

,

N ∈ N, are linear and bounded and satisfy

∥

∥

∥
T − T (N)

∥

∥

∥

H∗
0

= sup
G∈H0
G 6=0

∣

∣

(

T − T (N)
)

G
∣

∣

‖G‖H0

= sup
G∈H0
G 6=0

∣

∣

∣

∣

∣

∣

∣

∞
∑

n=0
Φ∧

0 (n) 6=0

2n+1
∑

j=1

(

Φ∧
0 (n)

)−2 (
FT , HB

n,j

)

L2(Bint)

(

G, HB
n,j

)

L2(Bint)

−
N
∑

n=0
Φ∧

0 (n) 6=0

2n+1
∑

j=1

(

Φ∧
0 (n)

)−2 (
FT , HB

n,j

)

L2(Bint)

(

G, HB
n,j

)

L2(Bint)

∣

∣

∣

∣

∣

∣

∣

1

‖G‖H0

≤ sup
G∈H0
G 6=0









∞
∑

n=N+1
Φ∧

0 (n) 6=0

2n+1
∑

j=1

(

Φ∧
0 (n)

)−2 (
FT , HB

n,j

)2

L2(Bint)









1
2

·









∞
∑

n=N+1
Φ∧

0 (n) 6=0

2n+1
∑

j=1

(

Φ∧
0 (n)

)−2 (
G, HB

n,j

)2

L2(Bint)









1
2

1

‖G‖H0
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≤









∞
∑

n=N+1
Φ∧

0 (n) 6=0

2n+1
∑

j=1

(

Φ∧
0 (n)

)−2 (
FT , HB

n,j

)2

L2(Bint)









1
2

.

Consequently, limN→∞ ‖T − T (N)‖H∗
0

= 0 where T (N) ∈ H∗
∞ for every N ∈ N. �

Now we can prove a convergence theorem for the multiresolution spline method.

Theorem 4.4 (Convergence Theorem) Let F ∈ ⋃J∈N0
HJ be a given function, F = {Fi}i∈N

be a linearly independent system of linear and continuous functionals in H∗
∞ such that span{Fi}i∈N

is dense in H∗
∞. Let there exist subsystems F (NJ ) := {F1, ...,FNJ

} ⊂ F , J ∈ N0, with
NJ ≤ NJ+1 for all J ∈ N0 and limJ→∞ NJ = ∞. Moreover, let the sequence of spline–scaling
functions (SJ)J∈N0 be given by

SJ ∈ VJ = Spline
(

{Φ∧
J (n)};F (NJ )

)

FiSJ = FiF for all i = 1, ..., NJ . (11)

Then
lim

J→∞
‖SJ − F‖H∞

= 0.

Proof: 1) Let T ∈ H∗
0 and ε > 0 be arbitrary. Due to Lemma 4.3 there exists T̃ ∈ H∗

∞ with

‖T − T̃ ‖H∗
0

< ε
2 . For T̃ there exists a linear combination

∑Ñ
i=1 ciFi with

∥

∥

∥

∥

∥

∥

T̃ −
Ñ
∑

i=1

ciFi

∥

∥

∥

∥

∥

∥

H∗
∞

<
ε

2
.

Thus,

∥

∥

∥

∥

∥

∥

T −
Ñ
∑

i=1

ciFi

∥

∥

∥

∥

∥

∥

H∗
0

≤
∥

∥

∥
T − T̃

∥

∥

∥

H∗
0

+

∥

∥

∥

∥

∥

∥

T̃ −
Ñ
∑

i=1

ciFi

∥

∥

∥

∥

∥

∥

H∗
0

≤
∥

∥

∥
T − T̃

∥

∥

∥

H∗
0

+

∥

∥

∥

∥

∥

∥

T̃ −
Ñ
∑

i=1

ciFi

∥

∥

∥

∥

∥

∥

H∗
∞

< ε.

Consequently, span{Fi}i∈N is also dense in H∗
0.

2) We prove the property for F ∈ HJ̃ for an arbitrary but fixed scale J̃ ∈ N0, see [9], pp. 128
for a related spherical case without multiresolution.

2a) We prove the weak convergence of SJ to F with respect to (., .)H∞ . Let T ∈ H∗
∞ be arbitrary.

We have to show that T SJ → T F for J → ∞. Let ε > 0 be given. Since span{Fi}i∈N is dense
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in H∗
∞, there exists a finite linear combination T̃ =

∑N
i=1 biFi ∈ H∗

∞ (⊂ H∗
J for all J ∈ N0) such

that ‖T − T̃ ‖H∗
∞

≤ ε. Now let J0 be sufficiently large such that NJ0 ≥ N and J0 ≥ J̃ . Then we
have for all J ≥ J0 due to (11)

T̃ SJ =
N
∑

i=1

biFiSJ =
N
∑

i=1

biFiF = T̃ F.

Hence, Lemma 2.8 and the Cauchy–Schwarz inequality imply that

|T SJ − T F | =
∣

∣

∣
T SJ − T̃ SJ −

(

T F − T̃ F
)∣

∣

∣

=

∣

∣

∣

∣

(

SJ ,
(

T − T̃
)

x
KHJ

(x, .)
)

HJ

−
(

F,
(

T − T̃
)

x
KHJ

(x, .)
)

HJ

∣

∣

∣

∣

≤
(

‖SJ‖HJ
+ ‖F‖HJ

)∥

∥

∥

(

T − T̃
)

x
KHJ

(x, .)
∥

∥

∥

HJ

for all J ≥ J0. Note that
∥

∥

∥

(

T − T̃
)

x
KHJ

(x, .)
∥

∥

∥

2

HJ

=
((

T − T̃
)

x
KHJ

(x, .),
(

T − T̃
)

x
KHJ

(x, .)
)

HJ

=
(

T − T̃
)

y

(

T − T̃
)

x
KHJ

(x, y)

≤
∥

∥

∥T − T̃
∥

∥

∥

H∗
J

∥

∥

∥

(

T − T̃
)

x
KHJ

(x, .)
∥

∥

∥

HJ

such that
∥

∥

∥

(

T − T̃
)

x
KHJ

(x, .)
∥

∥

∥

HJ

≤
∥

∥

∥T − T̃
∥

∥

∥

H∗
J

≤
∥

∥

∥T − T̃
∥

∥

∥

H∗
∞

.

We conclude from the 1st minimum property that for all J ≥ J0

|T SJ − T F | ≤ 2‖F‖HJ

∥

∥

∥T − T̃
∥

∥

∥

H∗
∞

≤ 2‖F‖H
J̃

ε.

Hence, limJ→∞ T SJ = T F for all T ∈ H∗
∞.

2b) We prove that limJ→∞ ‖SJ‖H∞ = ‖F‖H∞ . Without loss of generality we may assume that
F 6= 0 since otherwise ‖SJ‖HJ

≤ ‖F‖HJ
= 0 implies that SJ = 0 for all J (≥ J̃). Without

loss of generality we may further assume that a given value ε > 0 is sufficiently small such that
0 < ε < ‖F‖H

J̃
. According to a well–known fact from functional analysis (see, for example, [22],

p. 91) we have
‖F‖H∞ = sup

T ∈span{Fi}i∈N

‖T ‖H∗
∞

≤1

|T F |.

We, therefore, find T̃ =
∑N

i=1 diFi ∈ H∗
∞ (⊂ H∗

J for all J ∈ N0) with ‖T̃ ‖H∗
∞

≤ 1 and

‖F‖H∞ ≤ |T̃ F | + ε. Moreover, due to Lemma 4.2 there exists J0 ≥ J̃ such that for all J ≥ J0

the inequality 0 ≤ ‖F‖HJ
− ‖F‖H∞ ≤ ε holds. Thus, if we choose J1 such that J1 ≥ J0 and

NJ1 ≥ N we obtain for all J ≥ J1 the result

‖F‖H∞ ≤
∣

∣

∣
T̃ F
∣

∣

∣
+ ε =

∣

∣

∣
T̃ SJ

∣

∣

∣
+ ε ≤

∥

∥

∥
T̃
∥

∥

∥

H∗
∞

‖SJ‖H∞
+ ε

≤ ‖SJ‖H∞
+ ε ≤ ‖SJ‖HJ

+ ε ≤ ‖F‖HJ
+ ε ≤ ‖F‖H∞ + 2ε
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such that

lim
J→∞

‖SJ‖H∞
= ‖F‖H∞ .

2c) Combining 2a) and 2b) we see that

lim
J→∞

‖SJ − F‖H∞
= 0

for all F ∈ ⋃J∈N0
HJ . �

Note that it is enough to find a sufficiently large J̃ such that F ∈ HJ̃ , where
⋃

J∈N0
HJ is dense

in H∞. Thus, we have in practice a large enough set of approximatable functions.

5 Conclusions

A multiscale spline interpolation method for harmonic functions on the 3–dimensional ball was
introduced. We discussed, in particular, its applicability to an exponentially ill–posed problem
in geophysics. With this tool we are enabled to determine approximations to the harmonic mass
density distribution of the Earth out of gravitational information given outside the Earth.
Essential advantages of this approach are the following features: The method represents a reg-
ularization, i.e. every spline continuously depends on the given pointwise information. More-
over, due to the development of a spline–wavelet method we obtain a multiresolution analysis of
Sobolev spaces. Each spline is the smoothest among all Sobolev space elements that produce the
same gravitational data. Furthermore, the method can be better adapted to the data situation
than present wavelet methods, since the data need not be located on a sphere (as approximation
to the satellite orbit) any more and different types of data, in particular, different derivatives,
can be combined. In addition, the resolution of the obtained solution can locally be varied by
increasing the data points in the corresponding area. The larger the scale of the Sobolev space,
the smaller is the hat–width of the basis function. Thus, the scale can be chosen in accordance
to the density of the data grid. Finally, a new convergence theorem was proved.
In future research numerical aspects should be discussed in detail. Moreover, the method should
also be extendable to vectorial and tensorial data since for various cases singular value decom-
positions of the involved operators are known (see, for example, [18, 19]). Moreover, it should
be noted that the method basically only requires a complete orthonormal system in a Hilbert
space and, therefore, appears to be applicable to various other problems.
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