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1. Introduction

1. Introduction

The globalization of trade has lead to an enormous growth in sea transportation over the last
years. A great mgjority of general cargo is containerized and, therefore, handled in container
terminals, which are essential hubs in sea transportation systems. Besides this growth, the
rising competition among the ports puts pressure on them to improve their performance.

A container terminal works under several objectives. Two of them are to minimize the
turnaround time, i.e. the average period of time a vessel stays in aterminal, and to maximize
the terminal throughput. The potential of cost saving is large, because of the fact that an
average cargo liner spends about 60% of its time in a port (e.g. see [5]). Therefore, the
terminals try to improve their turnaround time. The turnaround time and the throughput are
the results of several interrelated container flows in the terminal.

A container terminal can be divided into three areas: the quayside, the container yard, and the
gatehouse. At the quayside, the vessels are loaded or unloaded by quay cranes (QC). Internal
trucks are used to organize the transport of the containers between the quayside and the
container yard. In the yard, the containers are stored temporarily until they have to be loaded
onto another vessel or until they are taken out of the terminal on the road by external trucks.
Such external trucks enter the terminal through the gatehouse, which is the land entrance of
the terminal. Figure 1 shows the "K" LINE Tokyo Container Terminal. This picture allows an
easy identification of the three areas of a container terminal described above.

Figurel: "K" LINE Tokyo Contai ner Terminal
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In the yard, containers are grouped into blocks, which consist of about 20 containersin length,
SixX to eight containers in width and four to six containers in height. A row of such blocks is
caled a “yard zone”. Yard cranes are used in order to put the containers onto internal and
externa trucks or to unload the trucks. There are two types of yard cranes: rail-mounted
gantry cranes (RMGC) and rubber-tired gantry cranes (RTGC). The RMGC have to use the
rails and, therefore, can move only along an axis, i.e. within ayard zone, while the RTGC can
move freely among all blocks within the whole yard. Figure 2 and 3 show how these cranes
look likein reality; Figure 4 and 5 illustrate the difference in the possible movements for each
crane type.
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Figure2: RTGC inthe Port of Baltimore, USA Figure3: RMGC inthe Krakow Krzeslawice
Container Terminal, Poland
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Figure 4: Possible RTGC movement Figure 5: Possible RMGC movement

The space in a container yard is very limited. Nonetheless, thousands of containers have to be
handled every day and the turnaround times should be as low as possible. Therefore, the
workflow of a container terminal has to be very efficient. This is the reason why logistical
planning tries to assign and to coordinate the operations of port equipments, such as berth
space, quay cranes, yard space, yard cranes and trucks, as good as possible. Space allocation
and truck scheduling are important tools to optimize the workflow in a container terminal, but
those problems are out of the scope of this thesis. Moreover, the focus lies on the scheduling
of cranes in container terminals in order to improve the turnaround time of a port. These
cranes are very expensive and, therefore, their planning has strong impact on the performance
of the container terminal system.

In this thesis, models to schedule two crane types (RMGC and RTGC) are developed with
respect to their characteristic abilities. The suggested procedures and agorithms lead to crane
schedules which make the container workflow more efficient and improve the performance of
portsin agloba and highly competitive economy.
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2. Related work

The enormous cost saving potential makes logistic problems in a container termina an
interesting research topic. Each of the resources mentioned above (berth space, quay cranes,
yard space, yard cranes and trucks) plays an important role in the processes of a container
terminal. A comprehensive review of literature on severa models and aspects on how to
deploy these resourcesis published in [17].

In the following a short review of existing studies about more specific research related to
terminal resourcesis given:

Berths are an important resource in a terminal because under heavy traffic of vessels, it is
critical to allocate the berths to the vessels in order to minimize the time the vessel has to stay
in the port. Research on the berth allocation problem is done in [11] and [12]. In [4],
non-linear integer programming is used to analyze the problem, Chen and Hsieh work with
modified time-space networksin [1], whilein [10] simulation is used.

The scheduling of the container transfer between the quayside and the yard is investigated in
[8].

The research on crane scheduling can also be grouped in four categories. Scheduling of
RMGCs or RTGCs within a block, scheduling of RMGCs aong an axis within a yard zone,
scheduling of RTGCs within the whole container yard and the scheduling of QCs along the
berth. The first category is analyzed in [6] and [7]. The problem is formulated for a single
crane and solution methods are developed. In [9], it is tried to tackle this problem by using
simulation. For the second category, Ng and Mak developed in [14] a branch and bound
algorithm for a single crane problem. Ng proposed in [13] a scheduling heuristic for the
multiple crane case with respect to inter-crane interference. A Lagrangean heuristic for
problems of the third category is developed in [18] and [1] extends this work by another
solution procedure using nonlinear programming. The problem of scheduling quay cranes
along the berth is investigated in [3] and [15], where some scheduling principles are proposed
in order to get good solutions for this problem.
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In this section, two different types of crane scheduling problems are modeled as integer
programs. The first problem considered is the scheduling of RTGCs which can move fredly
among the blocks in a container yard. The second problem deals with the scheduling of
RMGCs within ayard zone. Thisis not just a special case of the first problem, because inter-
crane interferences have to be considered as well. For both problems two different models are
presented: the job model and the workload model. Both models are different ways to interpret
the work that has to be done by the cranes. In Figure 6, the problems are classified with
respect to the physical abilities of the cranes and to the two different models. After
introducing some general parameters and assumptions, that are identical in both models, the
characteristics of the two different models are described and the mathematical models are
developed. The objective of al the models below isto minimize the total unfinished workload
at the end of each time period. Thisideaisaso usedin[2] and in [18] and seemsto be a good
measurement for the effectiveness of crane schedules.

Models
Job Mode Workload Model
Cranes
RTGC: ) )
Rubber Tired Job Rubber Tired Workload
i — O8 Problem Problem
e — (RTJP) (RTWP)
1 3 O3 see section 3.2.1 see section 3.3.1
RMGC: . .
Rail Mounted Job Rail Mounted Workload
- Problem Problem
11 el § (RMJP) (RMWP)
see section 3.2.2 see section 3.3.2

Figure 6: Problem classification

3.1 General parameters and assumptions

» K denotes the number of cranes available

* Inal models, the cranes are regarded as identical machines

* Due to the physical size of the blocks and to the potential danger of crane collision,
the maximum number of cranes that can work simultaneously in a block is bounded
and denoted by K

» The planning horizon isdivided into T small time periods

* Theplanning horizon starts at timet = 1

* Time period t denotes the time between time t and t + 1; as a consequence, the
planning horizon ends at time T + 1

e One crane can do one unit of work in one time period

« Any crane movement can only start at the beginning of atime period
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e Work can only start at the beginning of atime period
* L denotes the number of blocks
* 7, denotesthetravel time of acrane from block | to block m

e Itisassumed that the travel times are symmetric and satisfy the triangle inequality

e my denotes the initial crane location (a block or a slot) of crane k at the beginning of
the planning horizon

* ¢ denotestheinitial number of cranesin block | at the beginning of period 1

* M represents a large number in the formulations. Although M could be replaced by an
expression formulated with the used parameters in every formulation, M is used to
keep the formulations ssimple.

3.2 The job models

The idea of the job model is based on scheduling theory. The work which has to be done by
the cranes is modeled as jobs. Each job | has a release date rj, a processing time p; and a
location l;. The release date is the earliest time possible the work which is summarized by job
j can be started by acrane. Itisassumed that r; <T forj =1, ..., J. The processing timep; is

the number of time units that one crane needs to process job j completely. The location |; or s
indicates in which block or in which dot the work summarized by job j occurs. In the job
model, it is assumed that every job is performed by a single crane and can not be interrupted
if it has been started once and it can not be started more than once. In the following, the two
problems mentioned above are modeled by using these parameters.

3.2.1 Thejob model for RTGC scheduling

One of the characteristics of RTGCs is that they can move freely among the blocks of the
container yard, so no interference conditions have to be taken in consideration in this case.
Further, it is assumed that a crane can always take the shortest path between two blocks. The
RTGC scheduling problem, described as a job model, is referred to as the “rubber tired job
problem” (RTJP). The following decision variables are used to formulate the RTJP:

1 if cranek startsjob j at timet
Xt =

0 else

1 if crane k staysin block | during period t
yklt =

0 else

Let p,(l)be the set of blocks that a yard crane located in block | can possibly bein at period
t-handlet s () betheset of blocks that ayard crane located in block | can possibly bein at

period t + h. Using these decision variables and sets, the RTJP_1 can be formulated as an
integer program as follows:
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Min i({ii[xm EE(t -1))p, J,r"‘“‘plz;t‘-tﬂ)(loj - h)m ’{Piixm ] [T -1, +1) p, ]

h=1

subject to
K T K T )
D DDt =1 DD % forj=1,...,J
k=1 t=1 k=1 t=1
K T
2 DD %<1 for j=1,...,J
k=1 t=1
J min(p;-LT-t)
(3) Z Xeiton S M (L= Xg) fork=1,...,K, j=1,...,3 p,>1,
.
t=1,..,T-1
min( p; -LT-t)
(4) > Vi, eon 2 Py e fork=1,...,K, j=1,...,3,t=1,..., T
h=0
t-1
(58 V<D, D Yimen fork=1,...,K, 1=1,...,L,
helnip,()
=2,...,T
T-t
Bb) Ve <D D Yiemeen fork=1,...,K, 1=1,...,L,
h=1 mCs, (I) o
=1,..T7-1
L
6 D Yus1 fork=1,...,K, t=1,..., T
1=1
K
M Dyu<K forl=1,...,L, t=1,...,T
k=1
® x,0{01 fork=1,...,K, j=1,...,3, t=1,..., T
@  v.O0{03y fork=1,...,K, I=1,...,L,
=1,..,T

As assumed above, the objective of this program is to minimize the remaining unfinished
workload at the end of each time period. The unfinished workload is calculated for each job |
and is summed up for all jobs. The unfinished workload for ajob j is calculated as follows: If

job | is started during the planning horizon, there exists exactly one x, for al k and for all t
which isequal to 1. If x, =1, then the t in the index is the starting time of job j. During the
time periods between the release date and the starting time (t —r,), the remaining unfinished
workload at the end of atime period equals the whole processing time of job j. When the job
is started at t, the workload is reduced by one unit in each time period until the job is done or

K T
until the end of the planning horizon is reached. In this case, > ) x, =1 and the second
k=1 t=1

term vanishes. If job j is not started during the planning horizon, i.e. X, =0 for al kand al t,
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then the first term vanishes and the unfinished workload is counted by the second term

K T
(ZZ X 1S equal to zero). Because job | is not started, the unfinished workload at the end of

k=1 t=1
each period between the release date and the end of the planning horizon is the processing
timeof j.
Constraint (1) requires that job j can only be started after its release date. (2) guarantees that
every job is only started once and only by one crane, (3) ensures that a crane can only start a
new job if the old one has been completed. A crane aso has to stay in the block when it
processes a job in this block which is required by (4). (5a) and (5b) are crane movement
constraints. (6) ensures that a crane can at most be in one block. (7) gives an upper bound for
the number of cranesin ablock.
RTJP_1 seems to be a rather complicated formulation of the RTJP. In the following, it is
discussed how this formulation can be ssimplified.
One fact making RTJP_1 very complex is that it is not known whether or not the jobs are
started and finished within the planning horizon. In order to find a simpler formulation, it is
assumed that an upper bound 77 for the makespan of the jobs does exist. If this 77 is greater
than T, then the planning horizon is extended beyond T up to 7z, while the length of the time
periods remains constant. A method to find such a 77 is discussed in section 5.1. In a
formulation, that uses such an extended planning horizon, it can be assumed that all jobs are
completed within the planning horizon.
A planning horizon of 77 time periods allows to omit the second term of the objective
function, because all jobs are started within the planning horizon. Therefore, the new
objective function has the following form:

j=1 k=1 t=1

This function can be further ssimplified in the following way:

ZZZ[Xn[E(t)thJ] )

j=1 k=1 t=1

The last two terms can be omitted in the objective function, because they are constant. As a
consequence, the new objective function has the following form:

J K m

Min 3P0 2t

j=1 k=1 t=1

This new objective function could also be interpreted as the minimization of the weighted
sum of the starting times of the jobs, where the weights are given by the processing times of
the jobs. It is an interesting result that a minimization of the remaining processing time at the
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end of each time period is equivalent to the minimization of the weighted sum of the starting
times. If the original objective function value is of interest, i.e. the remaining processing time
a the end of each time period with a planning horizon of T time periods, then it can be
calculated backward by the following procedure:

Procedureto calculate the remaining processing time:

(1) Calculate the remaining processing time for each job j:
T—pJ +1 g

a If j is finished until T, i.e. ) > x, =1, then the remaining
t=1 k=1
processing timeis

T-p;+1 g pj-1

2 2 [ M=)y )+ 20,

t=1 k=1

T K
b) If j is started before T but finished after T,i.e. > > x, =1, thenthe

t=T-p; +2 k=1

remaining processing timeis

zT: zK:(ijt [é(t_rj)mj +T§l P; _h]]

t=T-p;+2 k=1

T K
c) If j is started after T, i.e. D_ ) x, =0, then the remaining processing
t=1 k=1
timeis

(T- I +1) Epj
(2) Sum up the remaining processing times of all jobs

A different problem in the formulation RTJP_1 could be caused by the sets p, () and s, (1) .

Those sets need to be determined for many different values of h and are hardly to handlein a
solution procedure. To overcome these problems, the variables vy, are replaced by the

following variables:

1 if crane k moves from block | to block m at the beginning of period t

Yim =
0 ese

Using the variables vy, instead of vy, , the RTJP can be formulated without using the sets

p.(1) and 5,(1) .
A formulation RTJP_2 of the RTJP with planning horizon 7z, with the smplified objective
function and with vy,,., asvariables for the crane movement is presented below:

10
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J K m
Min > p 2 Dtk
j=1 k=1 t=1
subject to
K
D DDtk =T, forj=1,...,J
k=1 t=1
K
2 D> x.=1 for j=1,...,J
k=1 t=1
J b1
B DD Xiwn SMA-xy) fork=1,...,K, j=1,...,3 p,>1,
B
t=1,..., 71— P, +1
-l
@ D Vi wen 2 Py fork=1,...,K, j=1,...,]
h=0

L L
B D Vam =D Vemier, FYenew  fork=1,.. K 1=1, .., Lt=2.., 77

m=1 m=1
m#|
K ~
©® D VasK forl=1,..,L,t=1,.., 77
k=1
7 x.0{01 fork=1,...,K, j=1,...,],
=1,.., 1
® Ve {01 fork=1,...,K, Im=1, ..., L,
=1,...,. 71

The constraints (1) — (4) correspond in their interpretation to the constraints (1) — (4) of
RTJP_1. (5) is the constraint for the possible crane movements and (6) corresponds in the
meaning to (6) of RTJP_1. RTJP_2 seemsto be smpler than RTJP_1 and is used to develop a
solution procedure for the RTJP.

3.2.2 Thejob model for RMGC scheduling

RMGCs are more limited in their possibilities to move than RTGCs. They can only move
along the rails on which they are mounted in arow of blocks within a yard zone. The RMGC
scheduling problem described as a job model is referred to as the “rail mounted job problem”
(RMJP). Although the formulation of the RMJP is based on the formulation of the RTJP,
some differences have to be considered: Because of the fact that several RMGCs are mounted
on the same rail, the model has to be extended by inter-crane interference constraints to avoid
crane collisions. It seems to be very difficult to model inter-crane interference with the
variables vy, , because too many cases have to be considered. Therefore, the crane movement

is modeled by using the variables y,, and the sets p, () and s,(I) . Because of the fact that

11
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the cranes can only move within a row of blocks, the sets p,(I) and s (l)are easy to
determine and they even do not occur explicitly in the formulation.

In the formulation of the RMJP, the whole yard zone is divided into slotss=1, ... , Sin the
following way: Every block is divided into K slots and it is assumed that the travel time
between two adjacent dlots is equal to 1. The space between two blocks is divided into 7
virtual dots, where 7 is the travel time of a crane between two adjacent blocks, so
S=LIK +(L-1)F. Ineach slot, there can only be one crane at a given timet.

The same decision variables as in RTJP_1 are used to formulate the RMJP. Further, the
planning horizon is aso extended as in RTJP_2 beyond T up to 77, which is an upper bound
for the makespan. In section 5.2, it is discussed how such an upper bound for the RMJP could
be found. W.l.o.g. it is assumed that the cranes are numbered in such a way that
m._, <m holdsfor all k=2, ... ,K. The RMJP can now be formulated as an integer program

asfollows:

J K

Min > p; > >t
j=1 k=1 t=1
subject to
K
D DDtk =T, for j=1,...,J
k=1 t=1
K
2 D> x.=1 for j=1,...,J
k=1 t=1
J b1
B DD Xiwn SMA-xy) fork=1,...,K, j=1,...,3 p,>1,
B
t=1,..., m-p; +1
Pl
@ D Vs on 2 P Dk fork=1,...,K, j=1,...,J
h=0

t=1,..., 71— P, +1
(53)  Yie < Yisaia T Yisir T Yesiwia fork=1,...,K, s=2,...,S-1,

t=2,..., 717
(5b) yllt S yl,l,t—l+ y1,2,t—l for t: 2’ et T
(5C) yKS s yK,S,t—1+ yK,S—l,t—l for t: 2’ e T
K
6 D Yesl fors=1,..,St=1,.., 7
k=1
S
@ D Yian S1-Yig fork=2,...,K, s=1,...,S
h=s
t=1,..., 7171
®  x,0{01 fork=1,...,K, j=1,...,J
t=1,..., 71
9 v.0{03 fork=1,...,K, s=1,...,S
t=1,..., 71

12
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The objective function remains the same as in RTJP_2. (1) — (4) correspond in the meaning
with (1) — (4) of RTJP_1. (5a) — (5c¢) are restrictions on crane movements. They correspond to
(58) and (5b) of RTJP_1, but they look simpler because the sets p, () and s,(I) are known

and can be expressed explicitly. Constraint (6) ensures that there can be at most one cranein
one slot a a given time. (7) is the inter-crane interference constraint which avoids crane
collisions on therail.

3.3 The workload models

The idea of the workload model is taken from [2]. In this model, the work which has to be
done by the cranes is regarded as an amount of workload measured in time units. It is
assumed that it is known how much time one crane needs to perform the work which occurs

in aspecific block | at a specific timet. The work in thismodel is given by the parametersw, .

The workload occurring in block | at timet is measured in time periods. Using the workload
model, the same problems as in section 3.2 can be modeled.

3.3.1 The workload model for RTGC scheduling

The RTGC scheduling problem described as a workload model is referred to as the “rubber
tired workload problem” (RTWP), which is already developed in [2]. By using the variables

X+ =number of cranes moving from block | to block m at the beginning of period t
u,, =unfinished workload in block | at the end of period t

the RTWP can be formulated as a mixed integer problem as follows:

T L
Min = > > u,

t=1 I1=1

subject to

L L
D D X 22xm’,’t_,n1 +X,,., forl=1,..,L t=2..,T
m=1 -1

m#|

L
2 D Xm=6 forl=1,...,L

1=1
3 x,<K forl=1,...,L,t=1,...,T
4) Upog W — U S Xy forl=1,...,L, t=1,...,T
(5) u, =0 forl=1,...,L,t=1,..., T

13
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(6) X =0, integer forlm=1,...,L, t=1,...,T

For explanations see[2].

3.3.2 The workload model for RMGC scheduling

The RMGC scheduling problem described as a workload model is referred to as the “rail
mounted workload problem” (RMWP). The yard zone is aso divided into sots as in the
formulation of the RMJP. The problem can be formulated as a combination of the RTWP and
the crane movement constraints of the RMJP in the following way:

subject to

(18 Yig < Yisaia T Yisir T Yesivia fork=1,...,K, s=2,...,S-1,

t=2,...,T
(1b) yllt = yl,l,t—1+ y1,2,t—1 for t= 2’ ’T
(1C) yKSt = yK,S,t—l+ yK,S—l,t—l for t= 2’ ’T
K
2  Dyesi fors=1,..,St=1,...,T
k=1
S
B D Vean S1- Vi fork=2,...,K, s=1,...,S t=1,...,T
h=s
K
(4 Uy tW, —Ug S DY fors=1,...,S t=1,...,T
k=1
) u, =20 fors=1,...,§5 t=1,...,T
6  v.0{03 fork=1,..,K,s=1,...,St=1,..., T

The objective function is taken from the formulation of the RTWP and (1a) - (3) correspond
to the crane movement constraints (5a) — (6) of the RMJP. (4) ensures that the workload that
isdonein aslot sduring period t, is smaller than or equal to the number of cranes in the dlot,
i.e. it issmaller than one, because there can be at most one crane in aslot during period t.

14
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4. Complexity

Theorem 4.1: The RTJP is NP-hard in the strong sense.

Proof: The proof is done by reducing the symmetric traveling salesman problem (STSP)
satisfying the triangle inequality, which is known to be NP-hard in the strong sense, to
the RTJP. Any instance of the STSP has a set of C cities, a positive integer D and

distances d(c,c,)0Z" between each par of cities ¢,c,. The distances are

symmetric and satisfy the triangle inequality. The instance asks whether or not there
exists a traveling salesman tour with length D or less. The associated instance of the
RTJP asks whether or not there exists a crane schedule, in which the weighted sum of
starting times of al jobs, where the weights are given by the processing times, is
smaller than or equal to E. For any instance of the STSP with C > 1, a corresponding
RTJP can be constructed in the following way:

J = C

L = C

T = C(D+C)

K = 1 (K=1)

m = 1

n = d(c,c,) forlm=1,...,L
I = D+C

r, = 1 for j=2,...,C
P, = (C-)(D+C)

P; = 1 for j=2,...,C
l; = C, for j=1,...,C
E = (C-)(D+C)(D+C+))

Depending on C, this construction can be done in polynomia time. In this instance of
the RTJP, there is only one crane located in block 1 at the beginning and there is one
job to do with processing time 1 in each of the blocks 2, ... , C. Attime D+C, ajob
in block 1 with processing time (C—-1)(D +C) occurs. For these two instances, the
following claim has to be shown.
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Clam:

Proof:

For the given STSP instance there exists a traveling salesman tour with length
D or less (i.e. theinstanceisa®yes’-instance) -

For the given RTJP there exists a crane schedule such that the sum of the
starting times weighted by the processing times is smaller or equal than E
(i.e. theinstanceis a“yes’-instance)

=": Let ¢ —¢ -..-¢_—¢ beatraveling salesman tour for the

given STSP with a total length of D or less and let w.l.o.g. |, =1.
Consider a schedule in which the crane travels among the blocks
according to the sequence |,,1,,...,I.,l;, where it handles the respective
job when it arrives at each block |,,...,I . The crane starts moving at
t =1; itstotal travel timeisat most D and it needs C —1 time periods to
do the jobs in blocks I,,...,I.. It will be back to block 1 at the
beginning of period D +C and will perform job 1 with the processing
time (C-1)(D+C). The weighted sum of starting times after period
t=12,...,C(D +C) can be estimated as follows:

s K

B Y0, + Y T,

=1 k=1 t=1 k=1 t=1 j=1 k=1 t=1

M-
Mx
0]
29

= (C-)(D+C)D +C)
+1+7,,)+@A+7,, +7,, +1)
+o+ A+, +otr  +(C-2)

= (C—1)(D+C)2+(C—1)+§:2h

+(C _1)T|1|2 +(C- 2)T|2|3 ot

C*lIC

IN

(C-1)(D +C)? +§h

+(C _1) T|1|2 Tt (C _1)7-|C,1|C + (C _1)7-|C|1

. (C—l)(D+C)2+—(C_21)C +(C-1)D

< (C-1)((D+C)*+(D+C))
= (C-)(D+C)(D+C+])
= E

“0 ™. Suppose that there exists a solution for the RTJP such that the weighted
sum of starting timesis smaller than or equal to E. (*)

Assume that the crane comes back to block 1 later than period D +C
to process the job in block 1. Then

16



4. Complexity

ipiiit&kﬁ > plqK:Z”:tD(kn

j=1 k=l t=1 k=1 t=1

v

(C-)(D+C)(D+C+))
= E

This would be a contradiction to (*). Therefore, the crane must come to
block 1 no later thanD +C.
Suppose now that there exists a job | in one of the blocks I,,...,I.,

which is processed after job 1. Then

J K K m K m
DD IP NS RN ADIY RIS HED I {5
j=1 k=1 t=1 k=1 t=1 k=1 t=1
K m K m
> P Dt Ky + D Dty + By
k=1 t=1 k=1 t=1
K K m
S PR LMY 3 LN
k=1 t=1 k=1 t=1

= (C-)(D+C)(D+C)+1)+(D+C)
> (C-)(D+C)(D+C+])
= E

Therefore, the objective value of such a schedule would also exceed E.
Hence, the crane hasto do the jobs in the blocks |,,...,I. and comes back
to block one at or before the period D +C to process job 1, so the travel
time of the crane will not exceed D. This implies that there is a solution

to the STSP with atotal length not greater than D.
|

The proof shows that the RTJP is NP-hard in the strong sense, even if K = 1. By using the
same argumentation, it can be proved that the RMJP is aso NP-hard in the strong sense
because for K = 1, the RMJP can be formulated as a RTJP. In [2], it is proved that the RTWP
is NP-hard in the strong sense by using the same idea, so it can be concluded that the RMWP
isaso NP-hard in the strong sense.
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5. Upper bound for the makespan

5. Upper bound for the makespan

5.1 Determine an upper bound 1t for the RTJP

The following procedure describes one way to find an upper bound 77 for the makespan for
an instance of the RTJP. W.l.0.g. it is assumed that r; <r,, for j=1,...,J- 1 Itisaso

assumedthat J =K . If J <K, then the same procedure can be used with just slight changes.
Procedureto determinea 77 for the RTJP:

(1) Assign dll jobsj to acrane k in an arbitrary order, e.g. assume that crane k processes
al jobs{j :k+hD<:h:O,...,FT_kJ}

(2) Determine the makespan that each crane k needs to process the jobs assigned to it
(3) The maximum makespan of all cranes can be used as 77

The following agorithm shows how this procedure could be implemented.

Algorithm to determine a 77 for the RTJP:

Input: Set of jobs {1,..., J}
Set of release dates {r; : j =1,..., 3}
Set of processing timeﬁ{ P i :l...,J}
Setofjoblocations{lj S :l...,J}
Set of cranes {1,..., K}
Set of initial crane locations {m, :k =1,...,K}

Output: Upper bound 77 for the makespan
Begin
Stepl: Fork=1toK do

L =Th 0, t B

Forh=1to F—_kJ do
K

tk = Mmax (tk + k() lieehik * Prern s T pk+h[B()

18



5. Upper bound for the makespan

Step 2: = kr_?a)f((tk)
End

5.2 Determine an upper bound 1t for the RMJP

The following procedure describes a way to find an upper bound 77 for the makespan for an
instance of the RMJP.

Procedureto determinea 77 for the RMJP:

(1) Assign all jobslocated in the slots 1,...,m, —1 to crane 1
(2) For k=2,...,K -1 assign al jobslocated in the slots m,,...,m,, —1to crane k
(3) Assign all jobs located in the slots m, ..., S to crane K

(4) Determine the makespan that each crane k needs to process the jobs assigned to it
(5) The maximum makespan of al cranes can be used as 77

Algorithm to determine a 77 for the RM JP:

Input: Set of jobs {1,..., J}
Set of release dates {r; : j =1,..., 3}
Set of processing timeﬁ{ [ :l...,J}
Setofjoblocations{lj S :l...,J}
Set of cranes {1,..., K}
Set of initial crane locations {m, 1k =1,...,K}

Output: Upper bound 77 for the makespan
Begin
Step1:Set n, =m, fork=1, ... K
Step2:Set t, =0 fork=1, ... K
Step3:Forj=1toJdo
If 1, <m, -1 then tlzmax(t1+rnl’,1 +p;r+ pj)
n =l

Else if | 2mcthen  t=max(t +7,, +pir+p))

ne =1,

19



5. Upper bound for the makespan

Else Fork=2toK-2do

If m <, <m,, then tk:max(tk+rnk,.l +pj;fj+pj)
n =1,

ax (t,)

=1,...K

End

The agorithm determines for each job j in which “crane area’ the job is located, i.e. which
crane has to perform this job. Anaogue to the agorithm above, the makespan that each crane
needs to process the jobs assigned to it, is stored in the variable t, . The variable n, is needed

to store the current position of crane k.
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6. Solution procedures

6. Solution procedures

6.1 Solution procedures for the RTJP

In section 4, it is proved that the RTJP is NP-hard in the strong sense. Therefore, the existence
of an efficient solution procedure of this problem is very unlikely. In this section, two similar
heuristics are proposed to get a good and feasible solutions for the RTJP. The heuristics will
provide the schedule for the jobs in the form of a Jx2 matrix S. Each row | contains the
information on how job j is scheduled: the matrix entry s, is the number of the crane which
performs job j in the schedule and the entry s, is the starting time of job j. This notation for

the schedule is much more compact than the notation developed in section 3. Using this
notation, it is also not necessary to determine an upper bound 77 for the makespan before a
solution procedure can be started.

6.1.1 The Earliest Release Date - Heuristic

The objective of the RTJP is to minimize the weighted sum of starting times of the jobs, but a
job can only be started at or after its release date, i.e. see constraint (1). The idea of the
Earliest Release Date - Heuristic (ERD-Heuristic) isto schedule jobs with a small release date
before jobs with a large release date, i.e. the jobs are scheduled according to their release
dates, starting with the smallest release date.

W.l.0.g. it is assumed that the jobs are indexed in such away that r, <r;,, for j=1, ... ,J-1.

The idea of how to assign the jobs to the cranes is that every job should be performed by the
crane which can be the first in the job location |, . Two cases have to be considered to specify

what is meant by “can be thefirstin |,”:

Case 1. No job is assigned to crane k so far.

Then cranek canbein |, after 7, | time units (that is the travel time of crane

ml;
k fromitsinitial crane location m, to thejob location I;).

Case 2: Jobs ..., il hD{1,..., 3 -1} with smaller release dates than r, have already
be assigned to crane k.
In this case, it is assumed that crane k has to perform thejobs jI/,..., j! before
it can travel to block |;. Therefore, the earliest time crane k can reach block |
is the sum of the completion time of jL"] and the travel time between the
location of ¥ and I .

Thevariables t, and n, areintroduced in order to simplify the notation:
t. is the earliest time crane k is available to process the next job. At the beginning of the
scheduling process, t, = Ofor al cranes. When ajob is assigned to crane k, then t, is updated,
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6. Solution procedures

i.e. it isincreased. If crane k can be in the block where the job is located before the release
date, t, isincreased by the release date. Otherwise it is increased by the travel time. In both
cases, it isalso increased by the processing time of the job.

n, is used to store the current location of crane k. At the beginning of the scheduling process,

n. =m, for al cranes. When ajob j is assigned to crane k, the crane moves to the location of
thejob and n, isupdated, i.e. itisset equal to I;.
Now, the procedure described above can be summarized in the following algorithm:

ERD-Heuristic:

Input: Set of jobs {1,..., 3}
Set of releasedateﬁ{rj ] :l...,J}
Set of processing times { p; : j =1...., 3}
Setofjoblocations{lj S :l...,J}
Set of cranes {1,..., K}
Set of initial crane locations {m, :k =1,..., K}

Output: Feasible schedule Sfor the RTJP

Begin

Stepl: Sett, =0, n=m fork=1,.. K

Step 2: Order thejobssuchthat r, <r,,, for j=1,...,J-1 (if necessary)
Step 3: Forj=1toJdo

Fork=1toK do

Determine the earliest time possible, at which crane k can bein
thejob location |}, i.e. calculate t, +7, |

Assign jobj to crane k , where IZzargmin(tk +T,, ) :

kH{1,...K}
s Sets; =k
« Ift+r, <1 then Sets,=r,
Sett;=r, +p,
else Sets].2:t|2+r%Ii
Set L =h+7,, +D
e Setn =I

End
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6. Solution procedures

The RTJP is formulated as an off-line problem. One advantage of the ERD-Heuristic is that it
would also work for the corresponding on-line problem.

6.1.2 The Quotient-Heuristic

One disadvantage of the ERD-Heuristic is that it does not take the weights, i.e. the processing
times of the jobs, into account. The Quotient-Heuristic tries to overcome this problem by

considering the quotient % and by scheduling the jobs in the order of these quotients,
j
starting with the largest quotient. The job order is influenced by the release dates as well as by

the weights of the jobs. The quotient B could be regarded as a measurement for the
r.
J

“importance” of a job: The greater the weight p; and the smaller the release date r;, the

greater is the importance of the job. With this interpretation, one can say that the Quotient-
Heuristic schedules the jobs with respect to their importance, starting with the most important
job. Therest of the procedure is equivalent to ERD-Heuristic.

Quotient-Heuristic:

Input: Set of jobs {1..., J}
Set of release dates {r; : j =1,..., 3}
Set of processing timeﬁ{ [ :l...,J}
Set of job locations {1 : j =1,..., 3}
Set of cranes {1,...,K}
Set of initial crane locations {m, :k =1,...,K}

Output: Feasible schedule Sfor the RTJP

Begin

Stepl: asin ERD-Heuristic

Step 2: Order the jobs such that Py P g j=1,...,J-1
ror
J j+1

Step 3: asin ERD-Heuristic

End
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6. Solution procedures

6.2 Solution procedures for the RMJP

Ng proposes in [13] a two-phase scheduling heuristic for the RMJP: In the first phase, the
yard zone is partitioned into K non-overlapping yard ranges. One crane is assigned to each of
these yard ranges to handle all the jobs located in this range. A dynamic programming
approach is used to determine an efficient partition. In the second phase, a job reassignment
procedure is used to improve the schedule obtained in phase one. Although this heuristic is
developed for the special case p; = p for j =1, ..., J, it can aso be applied to the general
case.

The ERD-Heuristic and the Quotient-Heuristic from section 6.1 can be modified in order to
provide a solution for the RMJP. Step 1 and step 2 can remain unchanged; the only
modification which has to be done isin step 3. There are at most two canes which have to be
taken in consideration to perform ajob j: the crane which is the nearest to the job location |,

on the |eft hand side, and the crane which is the nearest to the job location |; on the right hand

side. From these two cranes, that one is chosen to perform job j which can be the earliest in
;. Then Step 3 would have the following form:

Forj=1toJdo

Determine the crane, which is the nearest to Ij on the left hand side:

Assignjobj to crane k , where k :argmin(tk +T, )
ko ke } <

6.3 Example

In this section, an example for the heuristics developed above is presented. The example
should give an impression on how the ERD-Heuristic and the Quotient-Heuristic work.

The container yard in the example consists of nine blocks which are arranged in three rows
with three blocks in each row. There are three jobs and two cranes are available to perform

them. The positions of the cranes n, and the locations of the jobs |, are given by a vector

(r,c), where r indicates the row and c the column of the respective block in the container

yard. It is assumed that the travel times of the cranes are rectilinear, i.e. the cranes can not
move diagonally. The travel time between two adjacent blocks within the same row is one
time period while the travel time between two adjacent blocks in the same column is two time
periods. Figure 7 contains the job characteristics and Figure 8 illustrates the initial situation in
the container yard. The transparent boxes in the blocks represent the jobs and the black boxes
symbolize the cranes.
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Jobs ri o l; 3
1 1 5 (21
1 2
2 2 5 (2,3)
3 15 5 (1,3
Figure 7: Job characteristics Figure 8: Initia situation

In this example, the order and the parameters of the jobs are chosen in such a way that

P, Pia
i T

This means that this example can be read as an example for the ERD-Heuristic as well as for

the Quotient-Heuristic.

Step lisidentical for both heuristics. The following setting is donein Step 1:

r<r, ad for j =1, ..., 3, sothejobs are in the right order for both heuristics.

¢ t=t,=0
« n=(12) and n,=(373)

Step 2 can be omitted because the jobs are in the right order for both heuristics.

For the same reason, job 1 isthe first job to be scheduled in step 3. It is easy to see that crane
1 needs one horizontal and one vertical move to reach the location of job 1, while crane 2
would need two horizontal and one vertical move. Therefore, job 1 is assigned to crane 1

(s, =1). Crane 1 starts its movement at t=1. It needs one time period for the horizontal
move and two time periods for the vertical move; so it reaches the location of job 1 at the
beginning of time period 4. At thistime, job 1 is already released, so job 1 is started at time
period 4 (s12 = 4) . Job 1 has a processing time of five time periods. Therefore, crane 1 is not

available until time period 9 and t, is set equal to 9. The next job that has to be scheduled is

job 2. Crane 1 would start from the location of job 1 and would therefore need two horizonta
moves to come to the location of job 2, but it could not start before time period 9. Crane 1
would reach the location of job 2 at time period 11. Therefore, the second job is assigned to

crane 2 (sZl = 2) . This crane needs also two time periods for the vertical move to come to
job 2, but it can start at period 1, so it reaches the location of job 2 at time period 3. Thejob is
already released at this time, so the starting time is equal to 3 (322 :3). Now, crane 2 is not

available until time period 8 and t, is set equa to 8. The last job which has to be done is

job 3. Crane 1 could start at time period 9 from the location of job 1 and would need two
horizontal moves and one vertica move to reach the location of job 3. Therefore, it could start
job 3 at the beginning of period 13. Crane 2 can start to move at period 8 from the location of
job 2 and needs two time periods for a vertical move to come to job 3, so it could start job 3
before crane 1, i.e. at the beginning of period 11, and job 3 is assigned to crane 2 (s;, = 2).

Job 3 is not released until time period 15, i.e. t, +7,, ,, =8+2=10<15=r;. Therefore, the

starting time of job 3 is equa to 15. Figure 9 summarizes the schedule determined by the
heuristics; Figure 10 illustrates the crane movements.
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| I |
Jobs Crane Start I R (I
i : :
1 1 4 L1 1 1—1
T 1 L1 E:: ‘
1 -t 2 |
2 2 3 [ 1 = Jd
1
: 2 15 L .
Figure 9: Schedule Figure 10: Illustration of crane movements

6.4 ldeafor a Branch and Bound procedure

In this section, another idea is presented which could be used to develop an dternative
solution procedure. In this thesis, the idea is not developed up to an agorithm, but it could be
an inspiration for further research topics.

In section 3.2.1, the RTJP is formulated as an integer program. Two types of binary variables
are used: x, and Y, . The only relation between these variables is given by constraint (4).

In any other constraints, only one of the two types occurs. Therefore, it seems to be likely to
work with Lagrangian relaxation to find a good lower bound for the RTJP. A Langrangian
relaxation could be used to design a branch and bound algorithm for the RTJP. In section
6.4.1, Lagrangian relaxation is used to divide the RTJP into two independent subproblems. In
the sections 6.4.2 and 6.4.3, these subproblems are analyzed.

6.4.1 Lagrangian relaxation
Now, constraint (4) in the RTJP formulation of section 3.2.1 is placed in the objective
function by Lagrangian relaxation with multipliers u,, for k =1, ... , K, j =1, ...,
t=1,..., 7= p, +1. Therelaxed problem has the following form:
_ J K J K 7T-pj+l p;-1
L(!): Min z pjzzt (e _ZZ Ut DEZ Yii 0 0en = B D(kjt]
j=1  k=1t=1 j=l k=1 t= h=0
subject to
K
D DDtk =T, forj=1,...,J
k=1 t=1
K o
@ D> %=1 forj=1,...,J
k=1 t=1
J pj-1
(3 Xeieh = ML=X%,) fork=1,...,K, j=1,...,3 p, >1,

[y

Rl
p—
oy
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(4)

()
(6)

(7)

z Yim = z Yiemitz, T Yiiiia

m=1
m¢|

K ~
z Yar <K
k=1

0{o.3

Yare 0{0.}

fork=1, ...

forl =

fork=1, ...

t=1, ...

fork=1, ...
t=1, ...,

’K1|:1’ ,L,t:2,
,L, t=1, ,IT
1K!J=11" 1J!

L IT
K, Im=1, ..., L,

Vid

The relaxed problem can be decomposed into two independent subproblems, such that

fork=1, ... K,

J
o J

K, j=1..,3 p >1,

,ﬂ—pj+1

1K1 J=11 1‘]1 t=11
’K’ I:l’ ;L,t:2,
L t=1, ..., 7

K, Im=1 L

L(u)=L(u)+ L, (u)
where
K J K 7p;j+l
( ) Min szzztD(th+zz z Kt l:pi D(kit
k=1 t=1 j=1 k=1 t=l
subject to
K
D DDtk =T, for j =
k=1 t=1
K o
@ XY %=1 for j =
k=1 t=1
J b1
B 22 X SMA-%g) for k=1
e "
t=1,.
@  x,0{01] fork=1
and
) J K 7mptl p;-1
L, (9) =Min zz e EE Yici, 1, e
j=1 k=1 t=1 h=0
subject to
«y zyklmt zykmltrml Yl fork=1, ...
m=1
. T#I
2 z Yure K forl =
k=1
@ Ve 0{03
=1,
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6. Solution procedures

6.4.2 The subproblem L, (u)

Theorem 6.1: L, (u) isNP-hard in the strong sense.

Proof: Consider an instance of L, (u) with u=0. Then the objective function of L, (u) has
the following form:

J K
Min ZkaZZthqt
] =1 t=1

J

Now, the constant term z pj2 is added to the objective function. Then the function
j=1

can be modified as follows:

ipift%@pj = Z YK+ p,]

j=1 k=1 t=1 j= k=1 t=1

This objective function together with the constraints of L (u) form the problem L (u):

L, (u) =Min Zp, ift% p,]

k=1 t=1
subject to
K
D DDt =T, forj=1,...,J
k=1 t=1
K
@ D> %=1 forj=1,...,J
k=1 t=1
J b1
B) DD Xein SM@-xy) fork=1, ..., K,
B
j=1...,3 p, >1,
t=1,..., 71-p; +1
@  x,0{01 fork=1,...,K, j=1,...,3,

t=1, ..., 717

L, (u) is equivalent to L, (u), because the problems only differ in a constant term in

the objective function. Obvioudy, L[ (u) is aso equivalent to the following
scheduling problem:
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Plr,[>wC; :  ScheduleJjobswith release dates r; on Pidentical machinesin
order to minimize the sum of weighted completion times.

K m
The cranes are P identical machines. By definition of x,, > >tk isthe starting

k=1 t=1

K
time of job j and, therefore, Y > tX, + p; is the completion time C, of job j. The

k=1 t=1
weights w, are given by the processing times p; .
This problem is known to be NP-hard in the strong sense, e.g. see[16].
This proves that even the special case L, (0Q) is NP-hard in the strong sense and,

therefore, L, (u) is NP-hard in the strong sense as well.

The theorem implies that it is hard to find the optimal objective value of Li(g) , but alower
bound could be determined by an appropriate procedure.

6.4.3 The subproblem L, (u)

The objective function of L, ( g) can be modified in the following way:

m-p; +1 pj-1

e EE Y, 1, e
h=0

J K
= ZZ(_ukjl[éyk,lj,lj,l-i-"'-'-yk,IJ,IJ,pJ )_Uka [éyk,lj,ll,z+"'+yk,lj,lj,pj+l)
_"'_uk,j,rr—pj+1[(]yk,lj,lj,ﬂ—pj+1+"'+yk,Ii,Ii,lT))
J K
= ZZ(_ukjl Eyk,lj,lj,l_(ukjl+ukj2)|:yk,lj,lj,2

_--'_(ukjl +"'+uk,j,pj )q/k,h,']xpj —(Uka +...+Uk’j’pj+1) |1k,|1,|1,131+il.
_-"_(uk,j,n—zmjﬂ +”'+uk,j1”_p]+l) Wk,lj,lj,n—pjﬂ
_(uk’j’ﬂ_2m1+2 +...+Uk’j’ﬂ_pj+1) EIKJJJJJT—DJ*'Z

e T p Eyk,lj,lj,ﬂ)

3 K 7 min(t;rr—pj+l)
= ZZZ[ z ukjh]l:ykljljt

h:max(l;t— p; +1)
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min(t;n— p; +1)

J K 71
with a, = >  uy,, the objective function can be formulated as ZZZajt K77

h:max(l;t— p; +l)

djaljs

With by, = > a, , the subproblem L, (u) can be formulated as follows:

;=

L L
) z Yiam = z Yiemii-r, T Yaiiia

m=1 m=1
m#|

@ XY sK
®  Yum 0{0.3}

fork=1, ... ,K, I=1,...,L,t=2,..., 7

forl=1,...,L, t=1,..., 7

fork=1, ..., K, Im=1, ..., L,
t=1,..., 7171

Note that b, is afunction of the Lagrangian multiplier u, i.e. b, =b, (g) In order to solve

L, (u), the following problem is considered:

L,(u)=Min 33 h 0z,

1=1 t=1

subject to

L L
) z 4y = z Zoiir, T4

m=1 m:ll
L

2 DzZm=¢
m=1

@ z<K

(©)) z,, 20, integer

forl=1,...,L,t=2,..., 7

forl=1,...,L

forl=1,...,L,t=1,..., 7
forlm=1,...,L, t=1,..., 7

where z, is the number of cranes leaving block | to travel to block m at the beginning of
period t. L,(u) and L,(u) describe nearly the same problem. The difference is that in
L, (u), the movement of every single crane is considered while in L, (u), the cranes which

move from the same block | to the same block m at the same time, are “summarized” in the
variables z_,. Now it is shown, how I:2 (g) can be solved efficiently and how an optimal

solution of L, (u) can easily be transferred to an optimal solution of L, (u):
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Theorem 6.2: Problem L, (u) isa minimum cost network flow problem.

Proof: The following proof is aready done in [2]. It is repeated here to introduce the
notation for the network which is used in further steps of the solution procedure.

Let G=(V,A) beadirected graph with the set of vertices

V={v 1=1..,Lt=1..,7+1 0{7}
and the set of arcs

A={ (v

mt+7,,

D{(wt,w’t+l):l =1..,L;t =L...,n}
O{(W err¥):1 =2, L}

)l m=1., Gl # mt=1.. 77, +1}

Vertex v, represents block | at the beginning of period t. The vertex v, ., represents
block | at the end of the last period. The nodes v, are the sources of the network with

L

asupply of ¢, while V isthe sink of the network with a demand of ZQ . The arcs
1=1

between the vertices represent the possible crane movements. The arcs

{(vn,v,m):l =L...,L;t=1...,n} have unit costs —ulh, and a capacity of K. All

other arcs have zero costs and infinite capacity. It is obvious that I:Z(u) is equivalent

to the minimum cost network flow problem (with multiple source nodes) in the
network G.
|

The theorem implies that L, (u) can be solved efficiently. The following procedure describes
how an optimal solution z* of I:2 (g) can be transformed into an optimal solution y* of

L, (u).

Proceduretotransform z* into y*:

(1) Construct a directed graph G =(V, A) with the same set of vertices and the same
set of arcs asin the network constructed in the proof of Theorem 6.2.

(2) The capacity of each arc is set equal to the value of the flow in z* onthisarc, i.e.

mt+7,,

the capacity of the arcs {(v,t,v ):I,m:l..., L;I #mt :l...,n—r,m+]} is set
equal to z*, ., the capacity of thearcs{(v,t,v,m):l =1..L;t :1,...,77} is set equal

to z*,,, and the capacity of thearcs{(v,'ml,v):l =1.., L} isset equal to z*

|V, r+1 "
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6. Solution procedures

(3) Fork=1toK do

a) Determineapath from m, to v

b) Set eachvariable vy, corresponding to this path equal to 1
c) Reduce the capacity of each arc occurring in the path by 1

(4) All y,,, which arenot set equal to 1 in step 3 are set equal to 0.

Theorem 6.3; This procedure transforms an optimal solution z* of I:2 (g) into an optimal
solution y* of L, (u).

Proof: Define

C.(w)=  Sum of capacities of adl arcs {(v,v,):vOV,(v,v,)OA in
iteration k
(C)(v,) could be regarded as the “incoming capacity” of
vertex v, )

Co(v)=  Sum of capacities of al arcs {(v,,v):vOV,(v,,v)OA in
iteration k
(CP(v,) could be regarded as the “outgoing capacity” of
vertex v, )

C, (v,) and C?2(v,,) are the corresponding val ues at the beginning.

Assume that there exists a k such that there exists no path from m. to V in
iteration K.

= There exists a v, such that there exists a path from m. to v, but no path from
Vtov,,, foralm=1,... L

= Ci(v)>0and C2(v,)=0

= Ci(vi)>CZ(v)

In each iteration k, C, (v,) and C2(v,) are reduced by the same value (They are

reduced by 1 if v, ison the path determined or they are both not reduced if v, is
not on the path).

= Cy (Vi) > Co (V)

L L
* * *
= ZZ mit-r, TZ I,I,t—l>zz Imt

m=1 m=1
m#|
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6. Solution procedures

This is a contradiction to the feasibility of z* for L,(u), so for each
k=1, ..,K, apah from m to V can be determined. This implies that the
solution y* generated by the procedure, satisfies condition (1) of L, (g) for

k=1,..,K, I=1,..,Lt=2..., .

K
Zy*k,,t is smaller than or equa to the capacity of the arc (v“,vml) a the
=1

beginning, because the capacity is reduced by 1 for each crane using this arc.

K
* *
= zy Wie S 27

k=1

* . < K because z* isfeasiblefor L, (u)

= zy k||tS

Thismeansthat y* satisfies condition (2) of L,(u) forl=1,... L, t=1,..., 7.

Either v, 1S set equal to 1 in step 3.b) or it is set equal to O in step 4, soO
condition (3) of L,(u) is aso satisfied for k=1, ... , K, Im=1, ..., L,
t=1,..., .

Therefore, y* isfeasiblefor L,(u).

Assume now that y* isnot optimal for L, (u).
Then there exists asolution y** such that

L K &

L K s
ZQ Ey**kllt <ZZth Ey*k,l,l,t
1=1 k=1 t=1 1=1 k=1 t=1
Then define

Z** L = Y R, forlm=1, . L, t=1, ..., 7

It is easy to check that z** isfeasiblefor L,(u) and

L

2.2

1=1 t=1

M:

—
!
[y

B B %10
0™

b,

11t

—
I
=

M 1M 1M
M=

N
M- M- 2
M~ x

*
Y i

1
oy
—

Il
[y
x

=1
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6. Solution procedures

T

iiz_u [ﬂh Q*ut

j=1 k=1 t=

IN

This is a contradiction to the optimality of z* for IZZ (g) Therefore, y*

generated by the procedure is optimal for L, (u).

6.5 Solution procedures for the RTWP

Cheung et a. propose in [2] two efficient solution procedures for the RTWP: the Lagrangian
Decomposition Method and the Successive Piecewise-Linear Approximation Method. For
detaillssee[2].

6.6 Solution procedures for the RMWP

The RMWP is strongly related to the RTWP. The RMWP is not discussed in [2], but the
solution procedures for the RTWP presented in [2] can be modified to solve the RMWP. In
the following two sections, the necessary modifications of the procedures are discussed. Some
parts of the solution procedures are copied from [2]. This is done for severa reasons. The
notation introduced so far can be used. It is aso easier to follow the solution procedure and to
realize where modifications are necessary and where new ideas comein.

6.6.1 The Lagrangian Decomposition Method for the RMWP
The first step of the Lagrangian Decomposition Method is the decomposition of the RMWP,

which is equivalent to section 2.1in [2]:
Thevariable z, fors=1,...,St=1, ..., T isintroduced, which is the number of cranesin

slot sduring time period t. Then the RMWP can be formulated as follows:

subject to

(1a) Yie € Yisria T Yiesir ¥ Yesivia fork=1,...,K, s=2,...,S5-1,

=2,...,T

(1b) yllt = yl,l,t—1+ y1,2,t—1 for t= 2’ ’T
(1C) yKS s yK,S,t—l+ yK,S—l,t—l for t: 2’ ’T

K
2  DVesl fors=1,..,St=1,...,T

k=1

S
B D Vean S1- Vi fork=2,...,K, s=1,...,S t=1,...,T

h=s
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@@=

5) Ugy +_\l/vﬂ —Uy < Z,
(6) u, =20

7 v« D0{03

® z0{0y

fors=1,

fors=1,
fors=1,

e St=1 ., T
S t=1, 00T
S t=1, T

fork=1, ... ,K,s=1,...,5 t=1,...,T
fors=1,...,5 t=1,...,T

Now, constraint (4) is relaxed and placed in the objective function with Lagrangian
multipliers a, . The relaxed problem has the following form:

L(a) = Min ii(ug +a, [EZ“ —gykgj]

t=1 s=1

subject to

(1a) ylc-t < yk,s—l,t—l + yk,s,t—l + yk,s+l,t—l

(1b) yllt = yl,l,t—l + yl,2,t—l
(1C) yKS < yK,S,t—l + yK,S—l,t—l

@ Y Yasl

® Zy <1-y,
@ U - <7,
(5) u, =0

®  ye0{03

7  z0{03

fork=1,...,K, s=2,...,5-1,
t=2,...,T

fort=2,...,T

fort=2,...,T

fors=1,...,5t=1, T
fork=2,...,K, s=1,...,5 t=1,...,T
fors=1,...,§5 t=1,...,T
fors=1,...,§5 t=1,...,T
fork=1,...,K,s=1,...,5 t=1,...,T

fors=1,...,§5 t=1,...,T

The relaxed problem L(a) can be decomposed into two independent subproblems. One of
them can be further separated into S smaller subproblems. The decomposition can be done as

follows:

L@ =L@+ L@,

where
) T S K
L'(@)=Min Y>> -a, ¥
t=1 s=1 k=1
subject to

(1a) ylc-t < yk,s—l,t—l + yk,s,t—l + yk,s+l,t—l
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6. Solution procedures

(1b) yllt s yl,l,t—1+ y1,2,t—1 for t= 2’ ’T
(1C) yKSt s yK,S,t—l+ yK,S—l,t—l for t= 2’ ’T
K
2  Dyesi fors=1,...,St=1,...,T
k=1
S
B D Vin: S1- Vi fork=2,...,K, s=1,...,S t=1,...,T
h=s
(4) 0{o,3 fork=1,...,K,;s=1,...,§t=1,....T
and
.
Li@=Min 3 (u, +a, )
t=1
subject to
(4) Ug s ¥ W, —Ug S Z fort=2,...,T
5 u, =20 fort=2,...,T
(6) 0{o,3 fork=1,...,K t=1,...,T
7 z0{031 fort=1,...,T

Theorem 6.4: Problem L'(a) isa minimum cost network flow problem.

Proof:

The poof is similar to the proof in section 2.2 of [2], but this proof is done for the

RTWP. For the RMWP, the network has to be designed in a different way,
because other constraints, especialy the inter-crane interference constraint, have to

be taken into account.
Let G=(V,A) beadirected graph with the set of vertices

{va

and the set of arcs

{

0

V=

V,

Sﬁ’v

Sm):szj,...,s;t:1...,T}
V)51, S-1t=1..,T}
Vo Vosion) 1 S=L. S-1t =1, T}
st Vorsrnpon) - S= Lo, S=LE =1, T}

slS}

O d

V,

S,

|

V,

SST+1’

{(vee
{
{
{
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6. Solution procedures

The node V has capacity K while al other nodes have capacity 1. The arcs
(Vg Veersa) have unit costs of —a, and all other arcs have zero costs. Figure 11

illustrates how the network looks likefor S=3and T =3.

Figure 11: Illustration of the constructed network

The construction of the network is based on the same ideas as in the proof in [2]:
Vertex v, represents sot s at the beginning of period t. Each node vy has
capacity 1. This ensures that there can only be one crane in a certain slot at any
time. The arcs (vg,v ) are used by cranes which stay in a certain slot s during

s,s,t+1
time period t. The nodes v, ,,, and al arcs connected to them ensure that two
cranes can not pass each other. Assume there are two cranes in two adjacent
blocks s and s+1. If the left crane wants to move to the right slot and the right

crane wants to move to the left slot at the same time, then this is not possible in
reality. It is aso not possible in the network, because both cranes would have to

pass the node v, ,,, in the network. This node has capacity 1 and therefore, a flow

,S+1t

of two units can not pass this node at the same time. The supply of the nodes v, is

set equal to the number of cranesin aslot at the beginning of the planning horizon
and the demand of the node V is set equal to K. The rest of the proof follows the
argumentation of the proof in[2].

|

Theorem 6.4 implies that L'(a) can be solved efficiently by a minimum cost network flow

algorithm. The node capacities could aso be represented by arc capacities. This can be done
by doubling the nodes and connecting them with arcs which have the original node capacity.

Such agraph G'=(V', A') would have the following set of vertices

V' o= {vgl:szl...,s}D{v'ssm:s:l...,s}
D{v;st 's=1..St =2,...,T} D{vfSt 's=1..,St= 2,...,T}
O{V, e 8=1., S=Lt =1, T} O{V2,,, 15=1..,.S-Lt =1, T} O{v}

S, s,s+Lt *

and the following set of arcs
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A= (v )s 1..5t=2..T]

)
Vgao Vs )51, S-Lt=1...T}
Vo Vi )i5=1.0, 81t =1, T}

o
{(
{(
{(VorseVhs )i 5=1, 821 =2, T}
{(
{(
{(

Vo Vhn) 521, St =1, T}

O o o O

Vgs+lt’ sst+1 :S= :L S 11t_11 T}
Ss+lt’ s+ls+1t+1) S=l...,S—l‘t=L...,T}
V;T,” s=1... S}

|
<

0

The solution of L!(a)and the construction of the overall solution procedure is analogue to the
sections 2.3 and 2.4 of [2] and do not have to be repeated here.

6.6.2 The Successive Piecewise-Linear Approximation Method for the
RMWP

The Successive Piecewise-Linear Approximation Method can also be applied to the RMWP.
The procedure has to be modified in some parts because the crane movement constraints are
different. Other parts can be simplified because the crane movement constraints are
formulated with binary variables instead of integer variables. In the following, the Successive
Piecewise-Linear Approximation Method for the RMWP is explained. The changes and
modifications to section 3 of [2] are discussed in detail. Other Parts, which are similar to
section 3 of [2] and which are necessary to understand the procedure, are presented in a more
compact way.

In this approach, the RMWP is reformulated as a nonlinear programming problem with
network flow constraints. The objective function is approximated by a function which is
separable. The resulting problem is reformulated as a minimum cost network flow problem
and a procedure to update the approximation is presented.

The RMWP can be rewritten as:

Min f(Z)
subject to

(1a) Yie < Yiesara ¥ Yiesia T Yesisia fork=1,...,K, s=2,...,5-1,

=2,...,T
(1b) yllt S yl,l,t—l + y1,2,t—l for t = 2’ e T
(10 Yea < Yisia T Yeosiia for t=2,...,T
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6. Solution procedures

K

2  Dyast fors=1,...,St=1,...,T
K=

B D Vian S1-Yig fork=2,...,K, s=1,...,S t=1,...,T
h=s

@  vy.0{03 fork=1,...,K,s=1,...,S t=1,...,T

where

fy)=

T S
Min = > > ug

t=1 s=1
subject to

K
(1) Ugg T Wy —Ug < Z Yist
k=1

@ u,=0

f (X) isseparableins. Let y, =ZK:ym and y, =(Yq,
k=1

f(y)=2 f(y.)

s=1

where

f(y:)=

Min > u,
t=1
subject to

(1) Ui Wy —Ug S Yy
(2 Uy 2 0

fors=1,...,5 t=1,...,T

fors=1,...,5 t=1,...,T

Yo ) - Then f(Z) can be written as:

fort=1,...,T
fort=1,...,T

The optimal solution of f, ( Xs) can easily be determined by the following recursion:

ug = max{usyt_l +W, — yg,O}

For the proof, see[2].

fort=1,.... T

Now, the function fs(Xs) is approximated by afunction, which is separablein t:
Let F=f(0). Then f (l’) is approximated by
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6. Solution procedures

where each function f; (y4) isanonincreasing, linear function of y, D[O,l] , which satisfies

the condition f, (0)=0. Let c, be the slope of the line between the points (O, f (O)) and

A ~ S T K
(L7.(2). Then fu(va)=c,Ou and f(y)=F+> Y c, 0. Replacing y, by 2 Ve

s=1 t=1

leads to the following problem:

subject to

(18 Yie < Yisria T Yiesir T Yesiwia fork=1,... K, s=2,...,51, t=2,...,T

(D) Vi S Vigea t Yioe fort=2,...,T
(1C) yKS = yK,S,t—l + yK,S—l,t—l for t= 2’ ’T
K
2  Dyasi fors=1,..,St=1,...,T
k=1
S
B D Vint S1- Vi fork=2,... K, s=1,...,S t=1,...,T
h=s
@  y.0{01 fork=1,... K,s=1,...,St=1,....T

Similar to the subproblem L'(a)in section 6.6.1, this is a minimum cost network flow
problem and can be solved efficiently for any given set of objective function coefficientsc, .

These coefficients are obtained asin section 3.3 of [2]: f (l’s) issolved for agiven y, . Then,
Y, is changed in the Tl component and the problem is solved again. c, is estimated by the

difference of the objective function values of y, =0 and y, =1. The overal solution
procedure can be constructed analogue to the SPLA Procedurein [2].
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7. Lower bound

In this section, a procedure to determine a lower bound for the objective value of the job
models is presented. This lower bound can be used to evaluate the performance of the
heuristics developed in the sections 6.1.1 and 6.1.2. The basic idea for the procedure is the
same as in section 6 of [13], but some problem specific changes and modifications have to be
done. Thefirst step isto find asimpler formulation for the problems.

Let

1 if jobj isthei”‘job handled by crane k
ik

0 ese

and z2=(2y,,2,,...2, ). Let T, (2) be the starting time of job j done by crane k as the

i™ job for agiven z. The problem of finding an optimal crane schedule can be formulated in
the following way:

subject to
J K
O D>z = for j=1,...,J
i=1 k=1
J
2 Dlzps<1 fori=1,...,J, k=1,...,K
j=1
®? z,0{01 fori,j=1,...,J, k=1,... ,K

This formulation holds for the RTJP and for the RMJP. The objective is the minimization of
the weighted sum of starting times. Constraint (1) ensures that all jobs are performed and
constraint (2) guarantees that each crane is only used once at a certain time. This integer

program is equivalent to the assignment problem except that T, ( ;) in the objective function

is an unknown function of z. The calculation of T, (;) is as hard as solving the original

problem. Therefore, it is NP-hard in the strong sense, but it can be used to determine a lower
bound. Let 'Fjik be alower bound for the earliest time that a crane k can start job | asthe it job

in its schedule; obviously, T, isalower bound for T, (z). If T, (z) isreplaced by T, in
the formul ation above, then the following assignment problem is obtai ned.
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7. Lower bound

J K
O DDz = for j=1,...,J
i=1 k=1
J
2 Dlzps<1 fori=1,...,J, k=1,...,K
j=1
3 z,0{03 fori,j=1,...,J, k=1,... ,K

This problem is easy to solve, because it is obvious that the constraint matrix is totally
unimodular and, therefore, the region of feasible solutions is an integral polyhedron. A
solution for this problem is a lower bound for the objective value of the original problem. In
the following, a procedure for finding a 'ITJ.ik IS presented.

It follows from the definition of T, that

Ty =max(z,,, +1r,) for j=1,...,J, k=1,...,K
and

Procedureto determine alower bound:

(1) Determine T, fori,j=1,...,J, k=
above.

(2) Solve Problem LB with these 'Tjik and set the lower bound equal to the objective
value of the solution of the problem LB.

1, ..., K by using the recursive equations
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8. Approximation bounds

If a problem can not be solved to optimality and heuristics have to be used to get feasible
solutions, it isinteresting to know, how well these heuristics approximate the optimal solution
in the worst case, i.e. it is nice to have a kind of performance guarantee for the heuristics. In
this section, such approximation bounds are determined for the RTJP and the RMJP. In both
cases, the bounds are the same for the ERD-Heuristic and for the Quotient-Heuristic. It is
obvious that an “absolute” approximation bound independent of the parameters for these
heuristics does not exist, because it is easy to construct instances in which the gap between
the optimal objective value and the solution determined by the heuristics depends on the
values of the parameters. Therefore, the approximation bound determined in this section is a
function of the following parameters of the instances:

e J
¢« K
.o, i=1,...,J
P, i=1,...,J
T I,m=1,...,L

The following notation is used to devel op the approximation bounds:
s s, =dtarting time of job j in the schedule determined by the heuristic

J
« C= Z P, [$, , objective value for the schedule determined by the heuristic

=1

J
e C*= z p; f; , lower bound for the optimal objective value
j=1

In order to avoid misunderstandings in the notation, it is assumed w.l.0.g. that J >K . The
argumentation would also hold (and would be simpler) if J<K . It is also assumed w.l.0.g.
that the jobs are ordered according to the heuristic which is used, i.e. the jobs are ordered in
such away that r, <r,, for j =1, ...,J-1if the ERD-Heuristic is used or the jobs are

j+1

ordered such that &sh for j=1,...,J- 1if the Quotient-Heuristic is used.

rj rj +1
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8.1 Approximation bound for the RTJP

Let

n

= _ J
S = jD{(n—l)[K[rll,?,)r(nin(J;nEK)}(Sj) for n —1,,"?—‘

Assume that each of the first K jobs would be done by a different crane and each crane would
have to take the longest way possible to reach the location of its job. This worst-case-
consideration provides the following upper bound for the starting time of the first K jobsin a
schedule determined by the heuristic:

Q) sjsmax(rmaX +J;rj) forj=1,... K
Assume further that each of the next K jobs, i.e. the jobs K +1,...,2[K , would aso be
handled by a different crane and each crane would aso have to take the longest possible way

to reach the job location. But each crane has to finish its first job before it can travel to the
location of the next job. An upper bound for the completion time of each of the first K jobsis

S + P - Therefore, each crane reaches its second job no later than s, + P, + T, aNd it
follows that

2 sjsmax(iw+pmax+rmax;rj) forj=K+1,...,2[K
This argumentation can be repeated and it leads to the following upper bound
B s smax(§2;+pmax+rmax;rj) for j=(n-1)K +1,...,nK

Replace now r; by r.., in(1), (2) and (3) and define

§nl1ax = max(rmax +l. rmax)

and
St = MX (S + P + Ty T ) for n:2,...,[i—‘
ax ax aX aX aX K
It follows that
(4 5 <5 =MaX(Tpy t1T ) for j=1,... K

(B5) s<% :max(sj]ax+pmax+rmax;rmax) for j =K+1, ... ,2[K

n-1

6) s <30 :max(snax+pmax+rmax;rmax) for j=(n-1)K +1..,nK
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Now, the second argument in the function max(+;+), i.e. the r., , can be omitted in all

max ?

inequalities expressed by (5) and (6) because 5h + P, +7 >S50 =1 for n:2,...,[%—‘.
Therefore, (5) and (6) can be simplified in the following way:

() S <F = S + Proa H T for j =K+1, ... ,2[K

(8) S <Smx = Sma * Prua + T for j=(n-1)K +1...,nK

Theinequalities (4), (7) and (8) can be summarized as follows:

9 s smax (7, +J;rmax)+g%—‘—1][ﬂpmax +1,,) forj=1,..,3

Using inequality (9), the following upper bound for the weighted sum of starting timesin a
schedule determined by an heuristic can be obtained:

< ZJ: p, [Emax(rmax +17) +U%W —1][q P + Tmax)]

= max (7, +1 rmax)E,ﬁ:; P; + (P *7) Eﬁ:[ P, [@H_ln

j=1

Together with the lower bound C* defined above, the following approximation bound is
obtained:

c" < C*+(ma><(rmax +1 rmax)ﬁji: P; *+( P +Tmax)ﬁil(pj E@H‘l]]‘i P) mi]

Theorem 8.1: This bound istight for the Quotient-Heuristic.
Proof: Consider the following instance of the RTJP:

* ThereareL blocks which are arranged in one row

* Thereisonecranewhichisinitialy located in block 1

* Thetravel time between two adjacent blocksis equal to 1 and, therefore,
.. isequaltolL -1

* There aretwo jobs with the following job characteristics:

45



8. Approximation bounds

Job 1 2
r L+1 1
P L+2 1
I L 1
In such an instance with J =2 and K =1, MaX (7, +1L . ) = e and the upper

bound for the weighted sum of starting times developed above has the following
form:

o 2150 ) S )

=
=j-1

rImax[qpl-k p2)+(pmax+rmax)l:p2

plmmax + p2 |:qrmax + pmax +Tmax)

If the Quotient-Heuristic is applied, job 1 is handled before job 2 because

+ .
b t—j >1= &. Therefore, the crane has to travel to block L and reachesiit at
r‘1 r‘2

time 1+(L-1) = L. The crane starts job 1 at its release date L +1, which is equal

to r., . Job 1 isfinished at time (L +1)+(L +2). The crane travels to block 1 in

order to perform job 2. The travel timeis L —1, so the second job is started at time
Mo T Prax T T - S0 if the Quotient-Heuristic is applied to such an instance, the

obj ective function value reaches its upper bound.
If job 2 would be handled before job 1, both jobs could be started at their release
dates. So there exists a feasible solution with an objective value equal to the lower

J
bound Z p; [f, . This example shows that the approximation bound determined
=1

aboveistight for the Quotient-Heuristic.

8.2 Approximation bound for the RMJP

For the RMJP, it can not be assumed that the first K jobs can be performed by K different
cranes, because the crane movement constraints in the formulation in section 3.2.2 may not
allow such an assignment. In the worst case, these jobs have to be done by only one crane. In
this case, the problem can be regarded as a problem in which K is equal to 1. An instance of
the RMJP with only one crane can be treated as an instance of the RTJP in which al blocks
are arranged in one row. Therefore, the argumentation in section 8.1 can be repeated for the
RMJP with K is equal to 1 and the following approximation bound for the RMJP is obtained:
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J J J
cH sC*+(max(rrnax +L 00 ) D P+ (P + T ) D By 5 -2) =Dy [,
j=1 j=1 =

By the same proof asin section 8.1, it can be shown that this bound is tight for the Quotient-
Heuristic.
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9. Computational experiments

In this section, the performance of the heuristics developed in section 6 is tested with
randomly generated problem instances. The heuristics are coded in C++. The C++ program
generates also a data file for AMPL. AMPL is used to calculate the lower bound described in
section 7. For further details about the implementation see the CD attached to this thesis. All
tests are run on an AMILO M 7424 Notebook with an Intel Pentium M, FSB: 400 MHz
processor. In section 9.1, it is described how the random problem instances are generated and
in section 9.2, the results of the computational experiments are analyzed.

9.1 Problem generation

In this section, it is described how the problem instances are generated and how the
parameters of the instances are set.

9.1.1 Problem instances for the RTJP

The RTJP is characterized by the number of blocks, the arrangement of the blocks, the
number of time periods, the number of cranes available and the job characteristics. In every
instance, there are four rows of blocks with five blocks in each row, so there is atotal number
of 20 blocks in the container yard. There are eight cranes available in the container yard. The
number of cranes which can work simultaneously in a block is set equal to two. The initial
location of each crane is determined randomly by a uniform distribution over the whole
container yard. One time period is assumed to be three minutes and the problem instances are
generated for a short time planning horizon of one hour and for a long time planning horizon
of eight hours. Therefore, T is set equal to 20 in the first series and equal to 160 in a second
series. It is assumed that the travel times of the cranes are rectilinear, i.e. the cranes can not
move diagonaly. In order to analyze the performance of the heuristics under different
conditions, two settings for the travel times are considered: In a first setting, the travel time
between two adjacent blocks in the same row is one time period, while the travel time
between two adjacent blocks in the same column is two time periods. In a further test series,
the travel time between two blocks in the same row is five time periods and the travel time
between two blocks in the same column is ten time periods. Therefore, the travel effort is
small with respect to the processing times of the jobs in the first series and it is large in the
second series. The job parameters p,,r; and |, are determined randomly by uniform

distributions. The job location of each job is chosen randomly in the whole container yard, the
release dates are distributed randomly over the whole planning horizon and the processing
times lie between one and ten time periods. The number of jobs per hour is estimated as
follows. One hour has 20 time periods and there are eight cranes available in the container
yard. Therefore, at most 208 =160 units of work can be done during one hour. An average

job takes 5,5 time units. Therefore, a number of %z 29,1 jobs can be regarded as an

estimation for the capacity of the system. (This estimation does not consider the travel times
of the cranes.) The heuristics are tested with 30 jobs per hour to simulate a busy system
working on capacity and with 15 jobs per hour to simulate a system when there is not much
work to do. With two planning horizons, two settings for the travel time and two possibilities
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for the number of jobs per hour, there are eight different test cases. Each case is tested with
five instances, so 40 tests are done for the RTJP.

9.1.2 Problem instances for the RMJP

The RMJP is aso characterized by the number of blocks, the number of time periods, the
number of cranes available and the job characteristics. In every instance, a row of ten blocks
is considered. There are four cranes available in such a row to have the same crane-block-

ration as in the RTJP instances and K is aso set equal to two. The initia location of the
cranes is determined randomly by a uniform distribution over the row of container blocks.
According to the ideas and the argumentation of section 3.2.2, the row of blocks has to be

divided into slots: One block is divided into two slots, because K =2 and the space between
two blocks is represented by one dlot. Therefore, each instance has a total number of
10[2+9=29 dots. A time period is assumed to be one minute, because the rail mounted
cranes can move faster than the rubber tired cranes. In some papers on rail mounted cranes,
the travel time of the cranes is even neglected. T is set equal to 60 and to 480 respectively to
consider the same planning horizons as in the RTJP. Similar to the RTJP instances, two
settings for the travel times are considered: In afirst series, the travel time between two slots
is equal to one and in a second series the travel time is set equa to ten. The job parameters
p;,r; and |, are also determined randomly by uniform distributions as in the instances of the

RTJP. The processing times lie between 1 and 30 time periods, because a time period in the
RMJP is shorter than atime period in the RTJP. With the same argumentation as for the RTJP

instances, % =15,5 job per hour could be regarded as an upper bound for the capacity of

the system. This estimate does also not consider the travel times. Furthermore, the movement
of the cranes is much more restricted in the RMJP than in the RITP. That’s why the heuristics
are tested with ten jobs per hour instead of 15 jobs to simulate a busy system and with five
jobs per hour to model a system when there is not much work to do. As well as in section
9.1.1, there are eight different tests cases. Each case is also tested with five instances, so
40 tests are done for the RMJP, too.

9.2 Results

In this section, the outcome of the computational experiments is discussed and analyzed.
When the performance of a heuristic is analyzed, two properties of the heuristic are of
interest: the computation time and the quality of the derived solution.

The computation time is the time a computer needs to calculate a solution based on the
heuristic for a given problem instance. The tests show that a solution based on the heuristics
can be calculated in rea time or within several seconds for both problem types (RTJP and
RMJP). So the computation time is not a critical factor for real world applications of the
heuristics. For this reason, the computation time is not measured or further analyzed in this
section.

The second property, i.e. the quality of the solution, has to be further specified: A heuristic
can not deliver an optimal solution in general, but it should calculate a good solution with an
objective value which is close to the optimal objective value. A good heuristic provides a
solution with a small gap between the objective value of the solution and the optimal
objective value. Unfortunately, the optimal objective value is not known for a given instance
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and this gap can not be measured directly. Therefore, alower bound for the optimal objective
valueis calculated (see section 7). The quotient of the objective value of the solution derived
by the heuristic and the lower bound is used as a measurement for the quality of the heuristics.
Figure 12 summarizes the tests for the RTJP and Figure 13 contains the test results for the
RMJP. In both tables, the first three columns characterize the eight different test cases (see
section 9.1). Each case is tested with five instances and for each instance, the quotient of the
objective value derived by the heuristic and the lower bound is calculated. Column 4 and 5
contain the average of the five quotients of each test case for the respective heuristic. The
heuristics are evaluated with the lower bound LB developed in section 7. In order to get an
impression of the quality of this lower bound LB, it is tested with the trivial lower bound

J
LB* :Z p, [f, using the same principles as for the evaluation of the heuristics. LB* is
j=1
obviously a lower bound for the objective value, because the release date is by definition a
lower bound for the starting time of a job. Column 6 contains the outcome of this evaluation.
The original test datais stored on the CD attached to thisthesis.

Computational Results for the RITP
Travel Time | TimeHorizon | Jobsper hour | ERD/LB | Quotient/LB LB/LB*
15 1,04 1,05 1,02
20
30 1,48 1,43 1,05
1/2
15 1,01 1,19 1,00
160
30 1,50 1,51 1,00
15 1,27 1,23 1,30
20
30 1,86 1,66 1,47
5/10
15 1,39 1,42 1,01
160
30 2,63 2,37 1,01

Figure 12: Computational results for the RJITP

In the following statements, the analysis of the computationa results for the RJTP is
summarized:

* The results show that both heuristics perform better for the first travel time setting.
The heuristics provide very good results if the travel times are small with respect to
the processing times of the jobs. If the travel times are large compared to the
processing times, the results are still acceptable, but they are not as good as for the
first setting of the travel times. This fact suggests, that one could try to improve the
heuristics in such a way that the travel times are taken more into account than in the
ERD-Heuristic or in the Quotient-Heuristic.
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It is interesting to see that the quotients do not differ a lot for the same travel time
setting and the same number of jobs per hour, so the different time horizons do
obviously not influence the performance of the heuristics. Although the difference
becomes larger for the second travel time setting in a busy system (30 jobs per hour),
it can be concluded for the RJTP that the time horizon seems not to be one of the key
parameters for the performance of the heuristics.

The level of work seems to be a relevant parameter: In every setting, the quotient of
the objective value determined by the heuristic and LB increases considerably when
the number of jobs per hour is increased. This fact suggests that the heuristics are
better for systems in which there is not much work to do than for busy systems. A
further reason for this effect could be that for instances representing a busy system, the
lower bound LB is probably not as close to the optimal objective value as for the other
systems. With more jobs per hour, there are more constraints making the feasible
region smaller. This fact is not taken into account when the lower bound LB is
determined.

The quotients in the last column, which are al close to 1, express the relation between
the lower bound LB from section 7 and the trivial lower bound LB*. The bounds are
very close to each other, so the bound LB is not a very strong lower bound and should
be improved. But when the heuristics are evaluated with a lower bound which is too
small, the performance of the heuristic is obviously better than it is suggested by the
valuesin Figure 12.

Computational Resultsfor the RMTP
Travel Time | TimeHorizon | Jobs per hour ERD/LB | Quotient/LB LB/LB*
5 1,17 1,14 1,00
60
10 1,55 1,19 1,04
1
5 1,11 1,18 1,00
480
10 1,38 1,39 1,00
5 1,15 1,12 2,47
60
10 1,30 1,33 2,14
10
5 1,44 1,48 1,03
480
10 3,07 2,60 1,12

Figure 13: Computational results for the RMTP
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The following statements contain an analysis of the computational results for the RM TP

e While the travel time setting causes differences in the performance of the RJTP test
series, the influence of the travel time setting in the RMJP is not really relevant. The
performance is even better in some cases when the travel timeislarger. One reason for
this behaviour of the heuristics could be that the inter-crane interference constraints
which are not relevant for the RTJP, condition the crane movement stronger than the

travel times.

* Asinthetest seriesfor the RTJP, it can be observed that the different time horizons do
not have much influence on the performance of the heuristics. Although the difference
becomes larger for the test series in the last row of Figure 13, the time horizon seems

not to be an important parameter for the heuristics.

¢ When the number of jobs per hour is increased, the same effect can be observed asin

the RJTP test series and the same argumentation holds.

e The quotient of the lower bounds LB and LB* is nearly equal to 1 for the test series
with the first travel time setting and for the two test series with the second travel time
setting and the large time horizon. This fact underlines the thesis that the lower bound
LB is not very strong and should be improved. With the second travel time setting and
the short planning horizon, the quotient of the lower bounds is greater than 2 and the
heuristic solutions are acceptable for both levels of work. These are the only test series
for which the calculation of the lower bound LB leads to a real improvement in the

analysis of the results.

The computational results for both problem types (RTJP and RMJP) show in all test series
that there is no difference in the performance of the ERD-Heuristic and the Quotient-
Heuristic. Therefore, it is enough to run one of them for practical applications. If the problem
instances have a special structure, it could make sense to prefer one of the heuristics, but for

arbitrary instances, it does not matter which one is chosen.

52



10. Specia Cases

10. Special Cases

In this section, two specia cases of the problems presented in section 3 are discussed. It is not
intended to find a new solution procedure for these specia cases. They are just discussed to
provide a better understanding for the problems.

10.1 K=1

For a container yard in which only one crane is available, the problems RTJP and RMJP as
well as the problems RTWP and RMWP are equivalent, because no inter-crane interference
constraints have to be considered. For practical applications, the different travel time settings
have to be taken into account: In the RTJP or in the RTWP, horizontal and vertical
movements are possible, which differ in their travel effort (see the test cases in section 9). In
the RMJP and in the RMWP, only horizontal moves within ayard zone are possible. But for a

given travel time matrix (7, )i=.... , the mathematical formulation of the RTJP and the RMJP

m=1,...,,L
coincide for K =1 and the problems can be tackled by the same heuristics. This also holds for
the RTWP and the RMWP. It is hard to find a solution procedure which provides an optimal
solution for this special case, because the proof in section 4 and the proof in [2] are done for
this case. Therefore, the problem is NP-hard in the strong sense for the job model and for the
workload model even if K isequal to 1.
Ng and Mak propose in [14] a branch and bound algorithm for this problem with another
objective function. They try to minimize the sum of the job waiting times.
The problem formulation developed in section 3 could be ssimplified for K =1, but for only
one crane, it seems to be reasonable to formulate the problem with other variables. An
aternative formulation for the problem is presented below. The formulation is based on the
ideas of the formulation in [14].
Let s, bethe starting time of job j and

1 if job i ishandled beforejob |
X =
0 else

With these variables, the problem can be formulated as follows:

J
Min = > p 5

j=1
subject to
(1) S forj=1,...,J
(2 S, —§ 2r,i‘,j+p,—M[G1—>gj) fori,j=1,...,J1#]
(3) X +x; =1 fori,j=1,..., i #]
@ x0{03 fori,j=1,...,Ji#]j
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10. Specia Cases

) s, 20, integer forj=1,...,J

The objective is the minimization of the weighted sum of starting times of the jobs as in the
models of section 3. Constraint (1) guarantees that every job is started at or after its release
date. Constraint (2) ensures that a job j can only be started when its predecessor has been
completed and the crane has reached the location of job j. Constraint (3) guarantees that either
job i is processed before job j or job | is processed before job i. This formulation is simpler
than the formulation of section 3 and can be handled better. The special case, in which only
one craneis available, could be relevant in practice for small container terminal systems.

10.2 pj =1

When the jobs in a container yard are very similar and the processing times are small
compared to the travel times of the cranes, a specia case with small, constant processing
times could be relevant in practice. p, =1 for al jobs is the easiest case of constant
processing times. Moreover, this specia case is aso interesting from a theoretical point of
view. When p, =1 forj=1, ..., J, each job is completed in the same time period in which it
is started. Therefore, all constraints which ensure that a job can not be interrupted if it is
started once can be neglected. That means that the job model and the workload model
coincidein this special case. Therefore, each instance for the job model can be transferred into

an instance for the workload model and visa versa without loosing information. A job model
instance can be transformed into a workload model instance by the following setting:

W, :ZI p,=[{i03:1; =1, =]
jilj=
=t

When a workload model instance should be transformed into an instance for the job model,
then the jobs and the job characteristics are determined as follows:

Forl=1toL do

Fort=1toTdo

Generate w, jobswith
° p] = 1

L T
Such an instance for the job model would have J = ZZWIt jobs. While this transformation
1=1 t=1
is possible for an arbitrary instance, the transformation of a job model instance into a
workload model instance without loosing information is only possible in this special case.

Besides the two models, the two heuristics developed in section 6.1 also coincide if p; =1 for



10. Specia Cases

j =1, ..., J, because sorting the jobs such that r, <r,,, for j=1,...,J- lisequivaent to

sorting the jobs such that lzi for j=1,...,J3-1.

rrr

J j+1
The statements above hold for the RTJP and the RTWP as well as for the RMJP and the
RMWP.
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11. Conclusion

This diploma thesis examines logistic problems occurring in a container terminal. The thesis
focuses on the scheduling of cranes handling containersin a port. Two problems are discussed
in detail: the yard crane scheduling of rubber-tired gantry cranes (RMGC) which move freely
among the container blocks, and the scheduling of rail-mounted gantry cranes (RMGC) which
can only move within a yard zone. The problems are formulated as integer programs. For
each of the two problems discussed, two models are presented: In one model, the crane tasks
are interpreted as jobs with release times and processing times while in the other mode, it is
assumed that the tasks can be modeled as generic workload measured in crane minutes. It is
shown that the problems are NP-hard in the strong sense. Heuristic solution procedures are
developed and evaluated by numerical results. Further ideas which could lead to other
solution procedures are presented and some interesting special cases are discussed.

The computational experiments show that both heuristics developed in this thesis could be
improved. One drawback of both algorithmsisthat in each iteration only one job, i.e. the next
job to be scheduled, is considered. It could be an interesting approach to consider more jobs
simultaneously in order to minimize the travel effort of the cranes and to get more efficient
solutions. Another outcome of the experiments is that is seems to be likely to find a better
lower bound than the one presented in section 7. This would lead to a more accurate
evaluation of the heuristics. Beside the problems discussed in this thesis, modified problem
formulations could be an interesting field for further studies. It might be interesting for some
practical applications to work with other objective functions or to take due dates of jobs into
account. The scheduling of cranes within the container yard is only one part of the workflow
in a container terminal. Further research on other logistic problems in an container yard,
e.g. the loading and unloading of ships at the quayside, the scheduling of the internal trucks or
all the location problems occurring in the container yard, would help to improve the workflow
and the turnaround times of container terminals.
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