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1. Introduction 
 
The globalization of trade has lead to an enormous growth in sea transportation over the last 
years. A great majority of general cargo is containerized and, therefore, handled in container 
terminals, which are essential hubs in sea transportation systems. Besides this growth, the 
rising competition among the ports puts pressure on them to improve their performance.  
A container terminal works under several objectives. Two of them are to minimize the 
turnaround time, i.e. the average period of time a vessel stays in a terminal, and to maximize 
the terminal throughput. The potential of cost saving is large, because of the fact that an 
average cargo liner spends about 60% of its time in a port (e.g. see [5]). Therefore, the 
terminals try to improve their turnaround time. The turnaround time and the throughput are 
the results of several interrelated container flows in the terminal. 
A container terminal can be divided into three areas: the quayside, the container yard, and the 
gatehouse. At the quayside, the vessels are loaded or unloaded by quay cranes (QC). Internal 
trucks are used to organize the transport of the containers between the quayside and the 
container yard. In the yard, the containers are stored temporarily until they have to be loaded 
onto another vessel or until they are taken out of the terminal on the road by external trucks. 
Such external trucks enter the terminal through the gatehouse, which is the land entrance of 
the terminal. Figure 1 shows the "K" LINE Tokyo Container Terminal. This picture allows an 
easy identification of the three areas of a container terminal described above. 
 

 
Figure1: "K" LINE Tokyo Container Terminal 
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In the yard, containers are grouped into blocks, which consist of about 20 containers in length, 
six to eight containers in width and four to six containers in height. A row of such blocks is 
called a “yard zone”. Yard cranes are used in order to put the containers onto internal and 
external trucks or to unload the trucks. There are two types of yard cranes: rail-mounted 
gantry cranes (RMGC) and rubber-tired gantry cranes (RTGC). The RMGC have to use the 
rails and, therefore, can move only along an axis, i.e. within a yard zone, while the RTGC can 
move freely among all blocks within the whole yard. Figure 2 and 3 show how these cranes 
look like in reality; Figure 4 and 5 illustrate the difference in the possible movements for each 
crane type. 
 

 
Figure 2:     RTGC in the Port of Baltimore, USA               Figure 3:  RMGC in the Krakow Krzeslawice  

Container Terminal, Poland 
 

 
Figure 4: Possible RTGC movement                                            Figure 5: Possible RMGC movement 
 
The space in a container yard is very limited. Nonetheless, thousands of containers have to be 
handled every day and the turnaround times should be as low as possible. Therefore, the 
workflow of a container terminal has to be very efficient. This is the reason why logistical 
planning tries to assign and to coordinate the operations of port equipments, such as berth 
space, quay cranes, yard space, yard cranes and trucks, as good as possible. Space allocation 
and truck scheduling are important tools to optimize the workflow in a container terminal, but 
those problems are out of the scope of this thesis. Moreover, the focus lies on the scheduling 
of cranes in container terminals in order to improve the turnaround time of a port. These 
cranes are very expensive and, therefore, their planning has strong impact on the performance 
of the container terminal system.  
In this thesis, models to schedule two crane types (RMGC and RTGC) are developed with 
respect to their characteristic abilities. The suggested procedures and algorithms lead to crane 
schedules which make the container workflow more efficient and improve the performance of 
ports in a global and highly competitive economy. 
 
 



2. Related work 
_________________________________________________________________________________________________________________ 

 5 

2. Related work 
 
The enormous cost saving potential makes logistic problems in a container terminal an 
interesting research topic. Each of the resources mentioned above (berth space, quay cranes, 
yard space, yard cranes and trucks) plays an important role in the processes of a container 
terminal. A comprehensive review of literature on several models and aspects on how to 
deploy these resources is published in [17].  
In the following a short review of existing studies about more specific research related to 
terminal resources is given: 
Berths are an important resource in a terminal because under heavy traffic of vessels, it is 
critical to allocate the berths to the vessels in order to minimize the time the vessel has to stay 
in the port. Research on the berth allocation problem is done in [11] and [12]. In [4],         
non-linear integer programming is used to analyze the problem, Chen and Hsieh work with 
modified time-space networks in [1], while in [10] simulation is used. 
The scheduling of the container transfer between the quayside and the yard is investigated in 
[8]. 
The research on crane scheduling can also be grouped in four categories: Scheduling of 
RMGCs or RTGCs within a block, scheduling of RMGCs along an axis within a yard zone, 
scheduling of RTGCs within the whole container yard and the scheduling of QCs along the 
berth. The first category is analyzed in [6] and [7]. The problem is formulated for a single 
crane and solution methods are developed. In [9], it is tried to tackle this problem by using 
simulation. For the second category, Ng and Mak developed in [14] a branch and bound 
algorithm for a single crane problem. Ng proposed in [13] a scheduling heuristic for the 
multiple crane case with respect to inter-crane interference. A Lagrangean heuristic for 
problems of the third category is developed in [18] and [1] extends this work by another 
solution procedure using nonlinear programming. The problem of scheduling quay cranes 
along the berth is investigated in [3] and [15], where some scheduling principles are proposed 
in order to get good solutions for this problem. 
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3. Mathematical models 
 
In this section, two different types of crane scheduling problems are modeled as integer 
programs. The first problem considered is the scheduling of RTGCs which can move freely 
among the blocks in a container yard. The second problem deals with the scheduling of 
RMGCs within a yard zone. This is not just a special case of the first problem, because inter-
crane interferences have to be considered as well. For both problems two different models are 
presented: the job model and the workload model. Both models are different ways to interpret 
the work that has to be done by the cranes. In Figure 6, the problems are classified with 
respect to the physical abilities of the cranes and to the two different models. After 
introducing some general parameters and assumptions, that are identical in both models, the 
characteristics of the two different models are described and the mathematical models are 
developed. The objective of all the models below is to minimize the total unfinished workload 
at the end of each time period. This idea is also used in [2] and in [18] and seems to be a good 
measurement for the effectiveness of crane schedules. 
 

Rail Mounted Workload 
Problem

( RMWP )

see section 3.3.2

Rail Mounted Job 
Problem

( RMJP )

see section 3.2.2

RMGC:

Rubber Tired Workload 
Problem

( RTWP )

see section 3.3.1

Rubber Tired Job 
Problem

( RTJP )

see section 3.2.1

RTGC:

Workload ModelJob Model
Models

Cranes

Rail Mounted Workload 
Problem

( RMWP )

see section 3.3.2

Rail Mounted Job 
Problem

( RMJP )

see section 3.2.2

RMGC:

Rubber Tired Workload 
Problem

( RTWP )

see section 3.3.1

Rubber Tired Job 
Problem

( RTJP )

see section 3.2.1

RTGC:

Workload ModelJob Model
Models

Cranes

22

 
                   Figure 6: Problem classification 
 
 

3.1 General parameters and assumptions 
 

• K denotes the number of cranes available 
• In all models, the cranes are regarded as identical machines 
• Due to the physical size of the blocks and to the potential danger of crane collision, 

the maximum number of cranes that can work simultaneously in a block is bounded 
and denoted by K

�
 

• The planning horizon is divided into T small time periods 
• The planning horizon starts at time t = 1 
• Time period t denotes the time between time t and t + 1; as a consequence, the 

planning horizon ends at time T + 1 
• One crane can do one unit of work in one time period 
• Any crane movement can only start at the beginning of a time period 
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• Work can only start at the beginning of a time period 
• L denotes the number of blocks  
• lmτ  denotes the travel time of a crane from block l to block m  

• It is assumed that the travel times are symmetric and satisfy the triangle inequality  
• mk denotes the initial crane location (a block or a slot) of crane k at the beginning of 

the planning horizon 
• cl denotes the initial number of cranes in block l at the beginning of period 1 
• M represents a large number in the formulations. Although M could be replaced by an 

expression formulated with the used parameters in every formulation, M is used to 
keep the formulations simple. 

 
 

3.2 The job models 
 
The idea of the job model is based on scheduling theory. The work which has to be done by 
the cranes is modeled as jobs. Each job j has a release date rj, a processing time pj and a 
location lj. The release date is the earliest time possible the work which is summarized by job 
j can be started by a crane. It is assumed that jr T≤  for j = 1, … , J. The processing time pj is 

the number of time units that one crane needs to process job j completely. The location lj or sj 
indicates in which block or in which slot the work summarized by job j occurs. In the job 
model, it is assumed that every job is performed by a single crane and can not be interrupted 
if it has been started once and it can not be started more than once. In the following, the two 
problems mentioned above are modeled by using these parameters. 
 
 

3.2.1 The job model for RTGC scheduling  
 
One of the characteristics of RTGCs is that they can move freely among the blocks of the 
container yard, so no interference conditions have to be taken in consideration in this case. 
Further, it is assumed that a crane can always take the shortest path between two blocks. The 
RTGC scheduling problem, described as a job model, is referred to as the “ rubber tired job 
problem” (RTJP). The following decision variables are used to formulate the RTJP: 
 
  1 if crane k starts job j at time t 

kjtx =  

  0 else 
 
  1 if crane k stays in block l during period t 

klty =  

  0 else 
 
Let ( )hp l be the set of blocks that a yard crane located in block l can possibly be in at period   

t - h and let ( )hs l  be the set of blocks that a yard crane located in block l can possibly be in at 

period  t + h. Using these decision variables and sets, the RTJP_1 can be formulated as an 
integer program as follows: 
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Min 
min( ; 1)

1 1 1 1 1 1

( ) ( ) 1 ( 1)
jp T tJ K T K T

kjt j j j kjt j j
j k t h k t

x t r p p h x T r p
− +

= = = = = =

� �� �� �� � � �� �� �
⋅ − + − + − ⋅ − +

� �� � � �� �� �� �� �� �� �� �� �� �� ��� � ���

  
subject to 

  

(1) 
1 1 1 1

K T K T

kjt j kjt
k t k t

t x r x
= = = =

⋅ ≥ ⋅
	
	 	�	

  for  j = 1, … , J                   

(2) 
1 1

1
K T

kjt
k t

x
= =

≤
	
	

    for  j = 1, … , J   

(3) 
min( 1; )

, ,
1 1

(1 )
jp T tJ

k i t h kjt
i h
i j

x M x
− −

+
= =
≠

≤ −
� �

 for k = 1, … , K,  j = 1, … , J: 1jp > ,                                      

t = 1, … ,T - 1 

(4) 
min( 1; )

, ,
0

j

j

p T t

k l t h j kjt
h

y p x
− −

+
=

≥ ⋅
�

  for k = 1, … , K,  j = 1, … ,J ,  t = 1, … , T 

(5a) 
1

, ,
1 ( )h

t

klt k m t h
h m p l

y y
−

−
= ∈

≤
� �

   for k = 1, … , K,  l = 1, … , L,   

t = 2, … , T 

(5b) , ,
1 ( )h

T t

klt k m t h
h m s l

y y
−

+
= ∈

≤
� �

   for k = 1, … , K,  l = 1, … , L,   

t = 1, … ,T - 1 

(6) 
1

1
L

klt
l

y
=

≤
�

    for k = 1, … , K,  t = 1, … , T 

(7) 
1

K

klt
k

y K
=

≤
� 


    for l = 1, … , L,  t = 1, … , T 

(8) { }0,1kjtx ∈     for k = 1, … , K,  j = 1, … , J,  t = 1, … , T 

(9) { }0,1klty ∈     for k = 1, … , K,  l = 1, … , L,   

t = 1, … , T 
 

 
As assumed above, the objective of this program is to minimize the remaining unfinished 
workload at the end of each time period. The unfinished workload is calculated for each job j 
and is summed up for all jobs. The unfinished workload for a job j is calculated as follows: If 
job j is started during the planning horizon, there exists exactly one kjtx  for all k and for all t 

which is equal to 1. If 1kjtx = , then the t in the index is the starting time of job j. During the 

time periods between the release date and the starting time ( jt r− ), the remaining unfinished 

workload at the end of a time period equals the whole processing time of job j. When the job 
is started at t, the workload is reduced by one unit in each time period until the job is done or 

until the end of the planning horizon is reached. In this case, 
1 1

1
K T

kjt
k t

x
= =

=
�
�

 and the second 

term vanishes. If job j is not started during the planning horizon, i.e. 0kjtx =  for all k and all t, 
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then the first term vanishes and the unfinished workload is counted by the second term 

(
1 1

K T

kjt
k t

x
= =

�
�
is equal to zero). Because job j is not started, the unfinished workload at the end of 

each period between the release date and the end of the planning horizon is the processing 
time of j. 
Constraint (1) requires that job j can only be started after its release date. (2) guarantees that 
every job is only started once and only by one crane, (3) ensures that a crane can only start a 
new job if the old one has been completed. A crane also has to stay in the block when it 
processes a job in this block which is required by (4). (5a) and (5b) are crane movement 
constraints. (6) ensures that a crane can at most be in one block. (7) gives an upper bound for 
the number of cranes in a block. 
RTJP_1 seems to be a rather complicated formulation of the RTJP. In the following, it is 
discussed how this formulation can be simplified. 
One fact making RTJP_1 very complex is that it is not known whether or not the jobs are 
started and finished within the planning horizon. In order to find a simpler formulation, it is 
assumed that an upper bound π  for the makespan of the jobs does exist. If this π  is greater 
than T, then the planning horizon is extended beyond T up to π , while the length of the time 
periods remains constant. A method to find such a π  is discussed in section 5.1.  In a 
formulation, that uses such an extended planning horizon, it can be assumed that all jobs are 
completed within the planning horizon. 
A planning horizon of π  time periods allows to omit the second term of the objective 
function, because all jobs are started within the planning horizon. Therefore, the new 
objective function has the following form: 
 

Min 
1 1 1 1

( )
jpJ K

kjt j j
j k t h

x t r p h
π

= = = =

� �� �
⋅ − +

� �� �� �� �� �� ��
��� �
 

 
This function can be further simplified in the following way: 
 

1 1 1 1

( )
jpJ K

kjt j j
j k t h

x t r p h
π

= = = =

� �� �
⋅ − +

� �� �� �� �� �� ��
��� �
 =

1 1 1 1 1 1 1

( )
jpJ K J K

kjt j j kjt
j k t j k t h

x t r p x h
π π

= = = = = = =

� �� �
− + ⋅

� �� �� �� �� �� ��
��� � �
� �
 

      =
1 1 1 1 1 1 1 1

jpJ K J K J

kjt j kjt j j
j k t j k t j h

x t p x r p h
π π

= = = = = = = =

⋅ ⋅ − ⋅ ⋅ +
�
��� �
��� �
�

 

      =
1 1 1 1 1 1

.

jpJ K J J

j kjt j j
j k t j j h

const

p t x r p h
π

= = = = = =

⋅ − ⋅ +
� ��� � ���

��������������� �  

 
The last two terms can be omitted in the objective function, because they are constant. As a 
consequence, the new objective function has the following form: 
 

Min 
1 1 1

J K

j kjt
j k t

p t x
π

= = =

⋅
� ���

 

 
This new objective function could also be interpreted as the minimization of the weighted 
sum of the starting times of the jobs, where the weights are given by the processing times of 
the jobs. It is an interesting result that a minimization of the remaining processing time at the 
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end of each time period is equivalent to the minimization of the weighted sum of the starting 
times. If the original objective function value is of interest, i.e. the remaining processing time 
at the end of each time period with a planning horizon of T time periods, then it can be 
calculated backward by the following procedure: 
 
Procedure to calculate the remaining processing time: 
 

(1) Calculate the remaining processing time for each job j: 

a) If j is finished until T, i.e. 
1

1 1

1
jT p K

kjt
t k

x
− +

= =

=
� �

, then the remaining 

processing time is  
 

( )
1 1

1 1 1

( )
j jT p pK

kjt j j
t k h

x t r p h
− + −

= = =

⋅ − ⋅ +
� � �

. 

 

b) If j is started before T but finished after T, i.e. 
2 1

1
j

T K

kjt
t T p k

x
= − + =

=
� �

, then the 

remaining processing time is  
 

1

2 1 1

( )
j

T K T t

kjt j j j
t T p k h

x t r p p h
− −

= − + = =

� �� �
⋅ − ⋅ + −

� �� �� �� �� � �
 

 

c) If j is started after T, i.e. 
1 1

0
T K

kjt
t k

x
= =

=
�
�

, then the remaining processing 

time is  
 

( 1)j jT r p− + ⋅  

 
(2) Sum up the remaining processing times of all jobs 

 
A different problem in the formulation RTJP_1 could be caused by the sets ( )hp l  and ( )hs l . 

Those sets need to be determined for many different values of h and are hardly to handle in a 
solution procedure. To overcome these problems, the variables klty are replaced by the 

following variables: 
 
  1 if crane k moves from block l to block m at the beginning of period t 

klmty =  

  0 else 
 
Using the variables klmty  instead of klty , the RTJP can be formulated without using the sets 

( )hp l  and ( )hs l . 

A formulation RTJP_2 of the RTJP with planning horizon π , with the simplified objective 
function and with klmty  as variables for the crane movement is presented below: 
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Min 
1 1 1

J K

j kjt
j k t

p t x
π

= = =

⋅
� ���

 

 
subject to 

 

(1) 
1 1

K

kjt j
k t

t x r
π

= =
⋅ ≥

�
�
   for  j = 1, … , J 

(2) 
1 1

1
K

kjt
k t

x
π

= =
=

�
�
    for  j = 1, … , J 

(3) 
1

, ,
1 1

(1 )
jpJ

k i t h kjt
i h
i j

x M x
−

+
= =
≠

≤ −
� �

  for k = 1, … , K,  j = 1, … , J: 1jp > ,   

t = 1, … , 1jpπ − +  

(4) 
1

, , ,
0

j

j j

p
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h

y p x
−

+
=

≥ ⋅
�

   for k = 1, … , K,  j = 1, … , J,   

t = 1, … , 1jpπ − +  

(5) , , , , , , 1
1 1

ml

L L

klmt k m l t k l l t
m m

m l

y y yτ− −
= =

≠

= +
� �

 for k = 1, … , K,  l = 1, … , L, t = 2,…, π  

(6) 
1

K

kllt
k

y K
=

≤
� 


    for l = 1, … , L,  t = 1, … , π  

(7) { }0,1kjtx ∈     for k = 1, … , K,  j = 1, … , J,   

t = 1, … , π   
(8) { }0,1klmty ∈     for k = 1, … , K,  l,m = 1, … , L,   

t = 1, …, π  
 

 
The constraints (1) – (4) correspond in their interpretation to the constraints (1) – (4) of 
RTJP_1. (5) is the constraint for the possible crane movements and (6) corresponds in the 
meaning to (6) of RTJP_1. RTJP_2 seems to be simpler than RTJP_1 and is used to develop a 
solution procedure for the RTJP. 
 
 

3.2.2 The job model for RMGC scheduling 
 
RMGCs are more limited in their possibilities to move than RTGCs. They can only move 
along the rails on which they are mounted in a row of blocks within a yard zone. The RMGC 
scheduling problem described as a job model is referred to as the “ rail mounted job problem”  
(RMJP). Although the formulation of the RMJP is based on the formulation of the RTJP, 
some differences have to be considered: Because of the fact that several RMGCs are mounted 
on the same rail, the model has to be extended by inter-crane interference constraints to avoid 
crane collisions. It seems to be very difficult to model inter-crane interference with the 
variables klmty , because too many cases have to be considered. Therefore, the crane movement 

is modeled by using the variables klty  and the sets ( )hp l  and ( )hs l . Because of the fact that 
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the cranes can only move within a row of blocks, the sets ( )hp l  and ( )hs l are easy to 

determine and they even do not occur explicitly in the formulation. 
In the formulation of the RMJP, the whole yard zone is divided into slots s = 1, … , S in the 
following way: Every block is divided into K



 slots and it is assumed that the travel time 

between two adjacent slots is equal to 1. The space between two blocks is divided into τ  
virtual slots, where τ  is the travel time of a crane between two adjacent blocks, so 

( 1)S L K L τ= ⋅ + − ⋅



. In each slot, there can only be one crane at a given time t.  
The same decision variables as in RTJP_1 are used to formulate the RMJP. Further, the 
planning horizon is also extended as in RTJP_2 beyond T up to π , which is an upper bound 
for the makespan. In section 5.2, it is discussed how such an upper bound for the RMJP could 
be found. W.l.o.g. it is assumed that the cranes are numbered in such a way that 

1k km m− < holds for all k = 2, … ,K. The RMJP can now be formulated as an integer program 

as follows: 
 

 Min 
1 1 1

J K

j kjt
j k t

p t x
π

= = =

⋅
� ���

 

 
 subject to 
 

(1) 
1 1
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kjt j
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�
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1
K

kjt
k t

x
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�
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1
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+
= =
≠

≤ −
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k s t h j kjt
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+
=

≥ ⋅
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   for k = 1, … , K,  j = 1, … , J,   

t = 1, … , 1jpπ − +  

(5a) , 1, 1 , , 1 , 1, 1kst k s t k s t k s ty y y y− − − + −≤ + +  for k = 1, … , K,  s = 2, … , S - 1,   

t = 2,…, π  
(5b) 11 1,1, 1 1,2, 1t t ty y y− −≤ +    for  t = 2, … , π  

 (5c) , , 1 , 1, 1KSt K S t K S ty y y− − −≤ +   for  t = 2, … , π  

 (6) 
1

1
K

kst
k

y
=

≤
�

    for s = 1, … , S, t = 1, … , π  

(7) 1, , 1
S

k h t kst
h s

y y−
=

≤ −
�

   for k = 2, … , K,  s = 1, … , S,   

t = 1, …, π  
(8) { }0,1kjtx ∈     for k = 1, … , K,  j = 1, … , J,   

t = 1, … , π  
(9) { }0,1ksty ∈     for k = 1, … , K,  s = 1, … , S,   

t = 1, … , π  
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The objective function remains the same as in RTJP_2. (1) – (4) correspond in the meaning 
with (1) – (4) of RTJP_1. (5a) – (5c) are restrictions on crane movements. They correspond to 
(5a) and (5b) of RTJP_1, but they look simpler because the sets ( )hp l  and ( )hs l are known 

and can be expressed explicitly. Constraint (6) ensures that there can be at most one crane in 
one slot at a given time. (7) is the inter-crane interference constraint which avoids crane 
collisions on the rail. 
 
 

3.3 The workload models 
 
The idea of the workload model is taken from [2]. In this model, the work which has to be 
done by the cranes is regarded as an amount of workload measured in time units. It is 
assumed that it is known how much time one crane needs to perform the work which occurs 
in a specific block l at a specific time t. The work in this model is given by the parameters ltw . 

The workload occurring in block l at time t is measured in time periods. Using the workload 
model, the same problems as in section 3.2 can be modeled. 
 
 

3.3.1 The workload model for RTGC scheduling  
 
The RTGC scheduling problem described as a workload model is referred to as the “ rubber 
tired workload problem” (RTWP), which is already developed in [2]. By using the variables 
 

lmtx = number of cranes moving from block l to block m at the beginning of period t 

 

ltu = unfinished workload in block l at the end of period t 

 
the RTWP can be formulated as a mixed integer problem as follows: 
 

 Min 
1 1

T L

lt
t l

u
= =

�
�
 

  
subject to 
 

(1) , , , , 1
1 1

ml

L L

lmt m l t l l t
m m

m l

x x xτ− −
= =

≠

≥ +
� �

 for l = 1, … , L,  t = 2, … , T 

(2) 1
1

L

lm l
l

x c
=

=
�

   for l = 1, … , L 

(3) lltx K≤ !    for l = 1, … , L,  t = 1, … , T 

(4) , 1l t lt lt lltu w u x− + − ≤   for l = 1, … , L,  t = 1, … , T 

(5) 0ltu ≥     for l = 1, … , L,  t = 1, … , T 
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 (6) 0lmtx ≥ , integer  for l,m = 1, … , L,  t = 1, … , T 

 
For explanations see [2]. 
 
 

3.3.2 The workload model for RMGC scheduling 
 
The RMGC scheduling problem described as a workload model is referred to as the “ rail 
mounted workload problem” (RMWP). The yard zone is also divided into slots as in the 
formulation of the RMJP. The problem can be formulated as a combination of the RTWP and 
the crane movement constraints of the RMJP in the following way: 

 

Min 
1 1

T S

st
t s

u
= =

�
�
 

  
subject to 
 
(1a) , 1, 1 , , 1 , 1, 1kst k s t k s t k s ty y y y− − − + −≤ + +  for k = 1, … , K,  s = 2, … , S - 1,   

t = 2,…, T  
(1b) 11 1,1, 1 1,2, 1t t ty y y− −≤ +    for  t = 2, … , T 

 (1c) , , 1 , 1, 1KSt K S t K S ty y y− − −≤ +   for  t = 2, … , T 

 (2) 
1

1
K

kst
k

y
=

≤
�

    for s = 1, … , S, t = 1, … , T 

(3) 1, , 1
S

k h t kst
h s

y y−
=

≤ −
�

   for k = 2, … , K,  s = 1, … , S,  t = 1, …, T 

(4) , 1
1

K

s t st st kst
k

u w u y−
=

+ − ≤
�

  for s = 1, … , S,  t = 1, … , T 

(5) 0stu ≥      for s = 1, … , S,  t = 1, … , T 

 (6) { }0,1ksty ∈     for k = 1, … , K, s = 1, … , S,  t = 1, … , T 

 
The objective function is taken from the formulation of the RTWP and (1a) - (3) correspond 
to the crane movement constraints (5a) – (6) of the RMJP. (4) ensures that the workload that 
is done in a slot s during period t, is smaller than or equal to the number of cranes in the slot, 
i.e. it is smaller than one, because there can be at most one crane in a slot during period t. 
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4. Complexity 
 
Theorem 4.1: The RTJP is NP-hard in the strong sense. 
 
Proof: The proof is done by reducing the symmetric traveling salesman problem (STSP) 

satisfying the triangle inequality, which is known to be NP-hard in the strong sense, to 
the RTJP. Any instance of the STSP has a set of C cities, a positive integer D and 
distances ( , )l md c c +∈ "  between each pair of cities ,l mc c . The distances are 

symmetric and satisfy the triangle inequality. The instance asks whether or not there 
exists a traveling salesman tour with length D or less. The associated instance of the 
RTJP asks whether or not there exists a crane schedule, in which the weighted sum of 
starting times of all jobs, where the weights are given by the processing times, is 
smaller than or equal to E. For any instance of the STSP with C > 1, a corresponding 
RTJP can be constructed in the following way: 

 
    J =  C 
 
    L =  C 
 
    π  = ( )C D C+  
 
    K = 1   ( 1K =



) 

 
    1m  = 1 

    
    lmτ  = ( , )l md c c   for l,m = 1, … , L 

 
    1r  = D C+  

 
    jr  = 1   for  j = 2, … , C  

     
    1p  = ( 1)( )C D C− +  

 
    jp  = 1   for  j = 2, … , C 

 
    jl  = jc    for  j = 1, … , C 

  
    E = ( 1)( )( 1)C D C D C− + + +  
 
 Depending on C, this construction can be done in polynomial time. In this instance of 

the RTJP, there is only one crane located in block 1 at the beginning and there is one 
job to do with processing time 1 in each of the blocks 2, … , C. At time D C+ , a job 
in block 1 with processing time ( 1)( )C D C− +  occurs. For these two instances, the 
following claim has to be shown. 
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Claim: For the given STSP instance there exists a traveling salesman tour with length 
D or less (i.e. the instance is a “yes”-instance) ⇔  

 For the given RTJP there exists a crane schedule such that the sum of the 
starting times weighted by the processing times is smaller or equal than E    
(i.e. the instance is a “yes”-instance) 

 
Proof:  “ # ” :  Let 

1 2 1
...

Cl l l lc c c c− − − − be a traveling salesman tour for the  

given STSP with a total length of D or less and let w.l.o.g. 1 1l = . 

Consider a schedule in which the crane travels among the blocks 
according to the sequence 1 2 1, ,..., ,Cl l l l , where it handles the respective 

job when it arrives at each block 2,..., Cl l . The crane starts moving at 

1t = ; its total travel time is at most D and it needs 1C −  time periods to 
do the jobs in blocks 2,..., Cl l . It will be back to block 1 at the 

beginning of period D C+  and will perform job 1 with the processing 
time ( 1)( )C D C− + . The weighted sum of starting times after period 

1,2,..., ( )t C D C= + can be estimated as follows: 
 

1 1 1

J K

j kjt
j k t

p t x
π

= = =

⋅
� ���

 = 1 1
1 1 1 1 1

K J K

k t kjt
k t j k t

p t x t x
π π

= = = = =

⋅ ⋅ + ⋅
�
� ���
�

 

 
   = ( 1)( ) ( )C D C D C− + ⋅ +   

    
1 2 1 2 2 3

(1 ) (1 1)l l l l l lτ τ τ+ + + + + +  

    
1 2 2 3 1

... (1 ... ( 2))
C Cl l l l l l Cτ τ τ

−
+ + + + + + + −  

 

   = 
2

2

1

( 1)( ) ( 1)
C

h

C D C C h
−

=

− + + − +
�

 

    
1 2 2 3 1

( 1) ( 2) ...
C Cl l l l l lC Cτ τ τ

−
+ − + − + +   

   ≤  
1

2

1

( 1)( )
C

h

C D C h
−

=

− + +
�

 

    
1 2 1 1

( 1) ... ( 1) ( 1)
C C Cl l l l l lC C Cτ τ τ

−
+ − + + − + −  

         

      = 2 ( 1)
( 1)( ) ( 1)

2

C C
C D C C D

−− + + + −

      ≤  2( 1)(( ) ( ))C D C D C− + + +  
    
   = ( 1)( )( 1)C D C D C− + + +   
    
   = E 
 

“ ⇐ ” : Suppose that there exists a solution for the RTJP such that the weighted 
sum of starting times is smaller than or equal to E. (* ) 

 
 Assume that the crane comes back to block 1 later than period D C+  

to process the job in block 1. Then 
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1 1 1

J K

j kjt
j k t

p t x
π

= = =

⋅
� ���

 > 1 1
1 1

K

k t
k t

p t x
π

= =

⋅ ⋅
�
�

 

 
    ≥  ( 1)( )( 1)C D C D C− + + +  
 
    =  E 
 
 This would be a contradiction to (* ). Therefore, the crane must come to 

block 1 no later than D C+ . 
 Suppose now that there exists a job j



 in one of the blocks 2,..., Cl l , 

which is processed after job 1. Then 
 

 
1 1 1

J K

j kjt
j k t

p t x
π

= = =

⋅
� ���

 ≥  1 1
1 1 1 1

K K

k t kjt
k t k t

p t x t x
π π

= = = =

⋅ ⋅ + ⋅
�
� ��� $

 

 

    ≥  1 1 1 1
1 1 1 1

K K

k t k t
k t k t

p t x t x p
π π

= = = =

⋅ ⋅ + ⋅ +
�
� �
�

 

 

    = 1 1 1
1 1 1 1

1
K K

k t k t
k t k t

p t x t x
π π

= = = =

� �
⋅ + + ⋅� �� ��
� �
�

 

 
    = ( 1)( ) (( ) 1) ( )C D C D C D C− + ⋅ + + + +  
 
    > ( 1)( )( 1)C D C D C− + + +  
     
    = E 
 
 Therefore, the objective value of such a schedule would also exceed E. 

Hence, the crane has to do the jobs in the blocks 2,..., Cl l  and comes back 

to block one at or before the period D C+  to process job 1, so the travel 
time of the crane will not exceed D. This implies that there is a solution 
to the STSP with a total length not greater than D. 

             � 
 

The proof shows that the RTJP is NP-hard in the strong sense, even if K = 1. By using the 
same argumentation, it can be proved that the RMJP is also NP-hard in the strong sense 
because for K = 1, the RMJP can be formulated as a RTJP. In [2], it is proved that the RTWP 
is NP-hard in the strong sense by using the same idea, so it can be concluded that the RMWP 
is also NP-hard in the strong sense. 
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5. Upper bound for the makespan 
 

5.1 Determine an upper bound π  for the RTJP 
 
The following procedure describes one way to find an upper bound π  for the makespan for 
an instance of the RTJP. W.l.o.g. it is assumed that 1j jr r +≤  for  j = 1, … , J - 1. It is also 

assumed that J K≥ . If J K< , then the same procedure can be used with just slight changes. 
 
Procedure to determine a π  for the RTJP: 
 

(1) Assign all jobs j to a crane k in an arbitrary order, e.g. assume that crane k processes 

all jobs : 0,...,
J k

j k h K h
K

%
− &' (

= + ⋅ =
) *' (+ ,- .   

(2) Determine the makespan that each crane k needs to process the jobs assigned to it 
(3) The maximum makespan of all cranes can be used as π  

 
The following algorithm shows how this procedure could be implemented. 
 
Algorithm to determine a π  for the RTJP: 
 
Input:  Set of jobs { }1,..., J  

  Set of release dates { }: 1,...,jr j J=  

  Set of processing times { }: 1,...,jp j J=  

  Set of job locations { }: 1,...,jl j J=  

Set of cranes { }1,...,K  

Set of initial crane locations { }: 1,...,km k K=  

 
 
Output: Upper bound π  for the makespan  
 
Begin 
 
Step1:  For k = 1 to K do 

 
 ,k kk m l kt pτ= +  

 

 For h = 1 to 
J k

K

−
/ 0/ 01 2  do 

 

  
( )( )1 ,max ;

k h Kk h Kk k l l k h K k h K k h Kt t p r pτ
+ ⋅+ − ⋅ + ⋅ + ⋅ + ⋅= + + +  
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Step 2:  
1,...,

max ( )k
k K

tπ
=

=  

End 
 
 

5.2 Determine an upper bound π  for the RMJP 
 
The following procedure describes a way to find an upper bound π  for the makespan for an 
instance of the RMJP. 
 
Procedure to determine a π  for the RMJP: 
 

(1) Assign all jobs located in the slots 21,..., 1m −  to crane 1 

(2) For 2,..., 1k K= −  assign all jobs located in the slots 1,..., 1k km m + − to crane k 

(3) Assign all jobs located in the slots ,...,Km S  to crane K 

(4) Determine the makespan that each crane k needs to process the jobs assigned to it 
(5) The maximum makespan of all cranes can be used as π  

 
Algorithm to determine a π  for the RMJP: 
 
Input:  Set of jobs { }1,..., J  

  Set of release dates { }: 1,...,jr j J=  

  Set of processing times { }: 1,...,jp j J=  

  Set of job locations { }: 1,...,jl j J=  

Set of cranes { }1,...,K  

Set of initial crane locations { }: 1,...,km k K=  

 
Output: Upper bound π  for the makespan  
 
Begin 
 
Step 1: Set k kn m=  for k = 1, … ,K 

 
Step 2: Set 0kt =  for k = 1, … ,K 

 
Step 3: For j = 1 to J do 
 

  If 2 1jl m≤ −  then ( )11 1 ,max ;
jn l j j jt t p r pτ= + + +  

     1 jn l=  

 

  Else if j Kl m≥ then  ( ),max ;
K jK K n l j j jt t p r pτ= + + +  

      K jn l=  
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   Else For k = 2 to K - 2 do 
 

     If 1k j km l m +≤ ≤  then ( ),max ;
k jk k n l j j jt t p r pτ= + + +  

        k jn l=  

 
Step 4: ( )

1,...,
max k

k K
tπ

=
=  

End 
 
The algorithm determines for each job j in which “crane area”  the job is located, i.e. which 
crane has to perform this job. Analogue to the algorithm above, the makespan that each crane 
needs to process the jobs assigned to it, is stored in the variable kt . The variable kn  is needed 

to store the current position of crane k. 
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6. Solution procedures 
 
 

6.1 Solution procedures for the RTJP 
 
In section 4, it is proved that the RTJP is NP-hard in the strong sense. Therefore, the existence 
of an efficient solution procedure of this problem is very unlikely. In this section, two similar 
heuristics are proposed to get a good and feasible solutions for the RTJP. The heuristics will 
provide the schedule for the jobs in the form of a 2J ×  matrix S. Each row j contains the 
information on how job j is scheduled: the matrix entry 1js  is the number of the crane which 

performs job j in the schedule and the entry 2js  is the starting time of job j. This notation for 

the schedule is much more compact than the notation developed in section 3. Using this 
notation, it is also not necessary to determine an upper bound π  for the makespan before a 
solution procedure can be started. 
 
 

6.1.1 The Earliest Release Date - Heuristic 
 
The objective of the RTJP is to minimize the weighted sum of starting times of the jobs, but a 
job can only be started at or after its release date, i.e. see constraint (1). The idea of the 
Earliest Release Date - Heuristic (ERD-Heuristic) is to schedule jobs with a small release date 
before jobs with a large release date, i.e. the jobs are scheduled according to their release 
dates, starting with the smallest release date. 
W.l.o.g. it is assumed that the jobs are indexed in such a way that 1j jr r +≤  for  j = 1, … ,J-1. 

The idea of how to assign the jobs to the cranes is that every job should be performed by the 
crane which can be the first in the job location jl . Two cases have to be considered to specify 

what is meant by “can be the first in jl ” : 

 
Case 1: No job is assigned to crane k so far. 

Then crane k can be in jl  after ,k jm lτ  time units (that is the travel time of crane 

k from its initial crane location km  to the job location jl ).   

 

Case 2: Jobs [ ] [ ] { }1 ,..., , 1,..., 1k k
hj j h J∈ − with smaller release dates than jr  have already 

be assigned to crane k. 

 In this case, it is assumed that crane k has to perform the jobs [ ] [ ]
1 ,...,k k

hj j  before 

it can travel to block jl . Therefore, the earliest time crane k can reach block jl  

is the sum of the completion time of [ ]k
hj  and the travel time between the 

location of [ ]k
hj  and jl . 

 
The variables kt and kn  are introduced in order to simplify the notation: 

kt  is the earliest time crane k is available to process the next job. At the beginning of the 

scheduling process, 0kt = for all cranes. When a job is assigned to crane k, then kt  is updated, 
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i.e. it is increased. If crane k can be in the block where the job is located before the release 
date, kt  is increased by the release date. Otherwise it is increased by the travel time. In both 

cases, it is also increased by the processing time of the job. 

kn  is used to store the current location of crane k. At the beginning of the scheduling process, 

k kn m=  for all cranes. When a job j is assigned to crane k, the crane moves to the location of 

the job and kn  is updated, i.e. it is set equal to jl .  

Now, the procedure described above can be summarized in the following algorithm: 
 
ERD-Heuristic: 
 
Input:  Set of jobs { }1,..., J  

  Set of release dates { }: 1,...,jr j J=  

  Set of processing times { }: 1,...,jp j J=  

  Set of job locations { }: 1,...,jl j J=  

Set of cranes { }1,...,K  

Set of initial crane locations { }: 1,...,km k K=  

 
Output: Feasible schedule S for the RTJP  
 
Begin 
 
Step1:  Set 0kt = ,  k kn m=  for k = 1, … ,K 

 
Step 2:  Order the jobs such that 1j jr r +≤  for  j = 1, … , J - 1  (if necessary) 

 
Step 3:  For j = 1 to J do 
 
   For k = 1 to K do 
 

Determine the earliest time possible, at which crane k can be in 
the job location jl , i.e. calculate ,k jk n lt τ+  

 

   Assign job j to crane k3 , where 
{ }

( ),
1,...,

argmin
k jk n l

k K

k t τ
∈

= +
4

: 

 

• Set 1js k=



 

• If , jkn l jk
t rτ+ ≤56  then Set 2j js r=  

Set j jk
t r p= +7  

else Set 2 , jkj n lk
s t τ= + 56  

Set , jkn l jk k
t t pτ= + +56 6  

• Set jk
n l=7     

End  
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The RTJP is formulated as an off-line problem. One advantage of the ERD-Heuristic is that it 
would also work for the corresponding on-line problem.   
 
 

6.1.2 The Quotient-Heuristic 
 
One disadvantage of the ERD-Heuristic is that it does not take the weights, i.e. the processing 
times of the jobs, into account. The Quotient-Heuristic tries to overcome this problem by 

considering the quotient j

j

p

r
 and by scheduling the jobs in the order of these quotients, 

starting with the largest quotient. The job order is influenced by the release dates as well as by 

the weights of the jobs. The quotient j

j

p

r
 could be regarded as a measurement for the 

“ importance”  of a job: The greater the weight jp  and the smaller the release date jr , the 

greater is the importance of the job. With this interpretation, one can say that the Quotient-
Heuristic schedules the jobs with respect to their importance, starting with the most important 
job. The rest of the procedure is equivalent to ERD-Heuristic. 
 
Quotient-Heuristic: 
 
Input:  Set of jobs { }1,..., J  

  Set of release dates { }: 1,...,jr j J=  

  Set of processing times { }: 1,...,jp j J=  

  Set of job locations { }: 1,...,jl j J=  

Set of cranes { }1,...,K  

Set of initial crane locations { }: 1,...,km k K=  

 
Output: Feasible schedule S for the RTJP  
 
Begin 
 
Step1:  as in ERD-Heuristic 
 

Step 2:  Order the jobs such that 1

1

j j

j j

p p

r r
+

+

≥  for  j = 1, … , J - 1    

 
Step 3:  as in ERD-Heuristic 
 
End 
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6.2 Solution procedures for the RMJP 
 
Ng proposes in [13] a two-phase scheduling heuristic for the RMJP: In the first phase, the 
yard zone is partitioned into K non-overlapping yard ranges. One crane is assigned to each of 
these yard ranges to handle all the jobs located in this range. A dynamic programming 
approach is used to determine an efficient partition. In the second phase, a job reassignment 
procedure is used to improve the schedule obtained in phase one. Although this heuristic is 
developed for the special case jp p=  for  j = 1, … , J, it can also be applied to the general 

case. 
The ERD-Heuristic and the Quotient-Heuristic from section 6.1 can be modified in order to 
provide a solution for the RMJP. Step 1 and step 2 can remain unchanged; the only 
modification which has to be done is in step 3. There are at most two canes which have to be 
taken in consideration to perform a job j: the crane which is the nearest to the job location jl  

on the left hand side, and the crane which is the nearest to the job location jl  on the right hand 

side. From these two cranes, that one is chosen to perform job j which can be the earliest in 

jl . Then Step 3 would have the following form:  

 
For j = 1 to J do 

 
  Determine the crane, which is the nearest to jl  on the left hand side: 

   
   ( )

:
max

l
k j

k k
k n l

n n
≤

=  

 
  Determine the crane, which is the nearest to jl  on the right hand side: 

 
   ( )

:
min

r
k j

k k
k n l

n n
≥

=  

 

  Assign job j to crane k
4

, where 
{ }

( ),
,

argmin
k j

l r

k n l
k k k

k t τ
∈

= +
4

 

 
 

6.3 Example 
 
In this section, an example for the heuristics developed above is presented. The example 
should give an impression on how the ERD-Heuristic and the Quotient-Heuristic work. 
The container yard in the example consists of nine blocks which are arranged in three rows 
with three blocks in each row. There are three jobs and two cranes are available to perform 
them. The positions of the cranes kn  and the locations of the jobs jl  are given by a vector 

( ),r c , where r indicates the row and c the column of the respective block in the container 

yard. It is assumed that the travel times of the cranes are rectilinear, i.e. the cranes can not 
move diagonally. The travel time between two adjacent blocks within the same row is one 
time period while the travel time between two adjacent blocks in the same column is two time 
periods. Figure 7 contains the job characteristics and Figure 8 illustrates the initial situation in 
the container yard. The transparent boxes in the blocks represent the jobs and the black boxes 
symbolize the cranes. 
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Figure 7: Job characteristics          Figure 8: Initial situation 
 
In this example, the order and the parameters of the jobs are chosen in such a way that 

1j jr r +≤  and 1

1

j j

j j

p p

r r
+

+

≥  for  j = 1, …, 3, so the jobs are in the right order for both heuristics. 

This means that this example can be read as an example for the ERD-Heuristic as well as for 
the Quotient-Heuristic. 
Step 1 is identical for both heuristics. The following setting is done in Step 1: 
 

• 1 2 0t t= =  

• ( )1 1,2n =  and ( )2 3,3n =  

 
Step 2 can be omitted because the jobs are in the right order for both heuristics.  
For the same reason, job 1 is the first job to be scheduled in step 3. It is easy to see that crane 
1 needs one horizontal and one vertical move to reach the location of job 1, while crane 2 
would need two horizontal and one vertical move. Therefore, job 1 is assigned to crane 1 

( )11 1s = . Crane 1 starts its movement at 1t = . It needs one time period for the horizontal 

move and two time periods for the vertical move; so it reaches the location of job 1 at the 
beginning of time period 4. At this time, job 1 is already released, so job 1 is started at time 
period 4 ( )12 4s = . Job 1 has a processing time of five time periods. Therefore, crane 1 is not 

available until time period 9 and 1t  is set equal to 9. The next job that has to be scheduled is 

job 2. Crane 1 would start from the location of job 1 and would therefore need two horizontal 
moves to come to the location of job 2, but it could not start before time period 9. Crane 1 
would reach the location of job 2 at time period 11. Therefore, the second job is assigned to 
crane 2 ( )21 2s = . This crane needs also two time periods for the vertical move to come to   

job 2, but it can start at period 1, so it reaches the location of job 2 at time period 3. The job is 
already released at this time, so the starting time is equal to 3 ( )22 3s = . Now, crane 2 is not 

available until time period 8 and 2t  is set equal to 8. The last job which has to be done is     

job 3. Crane 1 could start at time period 9 from the location of job 1 and would need two 
horizontal moves and one vertical move to reach the location of job 3. Therefore, it could start 
job 3 at the beginning of period 13. Crane 2 can start to move at period 8 from the location of 
job 2 and needs two time periods for a vertical move to come to job 3, so it could start job 3 
before crane 1, i.e. at the beginning of period 11, and job 3 is assigned to crane 2 ( 31 2s = ). 

Job 3 is not released until time period 15, i.e. ( ) ( )1 32,3 , 1,3 8 2 10 15t rτ+ = + = < = . Therefore, the 

starting time of job 3 is equal to 15. Figure 9 summarizes the schedule determined by the 
heuristics; Figure 10 illustrates the crane movements. 

1 2 

3 

2 

1 

2 (1,3)5153

(2,3)522

(2,1)511

ljpjrjJobs

(1,3)5153

(2,3)522

(2,1)511

ljpjrjJobs
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Figure 9: Schedule           Figure 10: Illustration of crane movements 

 
 

6.4 Idea for a Branch and Bound procedure  
 
In this section, another idea is presented which could be used to develop an alternative 
solution procedure. In this thesis, the idea is not developed up to an algorithm, but it could be 
an inspiration for further research topics. 
In section 3.2.1, the RTJP is formulated as an integer program. Two types of binary variables 
are used: kjtx  and klmty . The only relation between these variables is given by constraint (4). 

In any other constraints, only one of the two types occurs. Therefore, it seems to be likely to 
work with Lagrangian relaxation to find a good lower bound for the RTJP. A Langrangian 
relaxation could be used to design a branch and bound algorithm for the RTJP. In section 
6.4.1, Lagrangian relaxation is used to divide the RTJP into two independent subproblems. In 
the sections 6.4.2 and 6.4.3, these subproblems are analyzed. 
 
 

6.4.1 Lagrangian relaxation 
 
Now, constraint (4) in the RTJP formulation of section 3.2.1 is placed in the objective 
function by Lagrangian relaxation with multipliers kjtu  for k = 1, … , K,  j = 1, … , J,              

t = 1, … , 1jpπ − + . The relaxed problem has the following form: 

 

( )L u =  Min 
1 1

, , ,
1 1 1 1 1 1 0

j j

j j

p pJ K J K

j kjt kjt k l l t h j kjt
j k t j k t h

p t x u y p x
ππ − + −

+
= = = = = = =

8 9
⋅ − ⋅ − ⋅

: ;: ;< => >�> >
> > >
 

 
subject to 

 

(1) 
1 1

K

kjt j
k t

t x r
π

= =
⋅ ≥

>
>
   for  j = 1, … , J 

(2) 
1 1

1
K

kjt
k t

x
π

= =
=

>
>
    for  j = 1, … , J 

(3) 
1

, ,
1 1

(1 )
jpJ

k i t h kjt
i h
i j

x M x
−

+
= =
≠

≤ −
� �

  for k = 1, … , K,  j = 1, … , J: 1jp > ,  

t = 1, … , 1jpπ − +   

1 2 

3 

2 

1 

2 1523

322

411

StartCraneJobs 

1523

322

411

StartCraneJobs 
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(4) , , , , , , 1
1 1

ml

L L

klmt k m l t k l l t
m m

m l

y y yτ− −
= =

≠

= +
> >

 for k = 1, … , K,  l = 1, … , L, t = 2,…, π  

(5) 
1

K

kllt
k

y K
=

≤
> 


    for l = 1, … , L,  t = 1, … , π  

(6) { }0,1kjtx ∈     for k = 1, … , K,  j = 1, … ,J,  

t = 1, … , π  
(7) { }0,1klmty ∈     for k = 1, … , K,  l,m = 1, … , L,   

t = 1, …, π  
 
The relaxed problem can be decomposed into two independent subproblems, such that 
 
 ( ) ( ) ( )1 2L u L u L u= +  

where 

( )1L u =  Min 
1

1 1 1 1 1 1

jpJ K J K

j kjt kjt j kjt
j k t j k t

p t x u p x
ππ − +

= = = = = =

⋅ + ⋅ ⋅
> >�> >�> >

 

 
subject to 

 

(1) 
1 1

K

kjt j
k t

t x r
π

= =
⋅ ≥

>
>
   for  j = 1, … ,J 

(2) 
1 1

1
K

kjt
k t

x
π

= =
=

>
>
    for  j = 1, … ,J 

(3) 
1

, ,
1 1

(1 )
jpJ

k i t h kjt
i h
i j

x M x
−

+
= =
≠

≤ −
� �

  for k = 1, … ,K,  j = 1, … ,J: 1jp > , 

       t = 1, … , 1jpπ − +  

 
(4) { }0,1kjtx ∈     for k = 1, … ,K,  j = 1, … ,J,  t = 1, … , π  

 
and 

( )2L u = Min 
1 1

, , ,
1 1 1 0

j j

j j

p pJ K

kjt k l l t h
j k t h

u y
π − + −

+
= = = =

− ⋅
>
> > >

 

 
subject to 
 

(1) , , , , , , 1
1 1

ml

L L

klmt k m l t k l l t
m m

m l

y y yτ− −
= =

≠

= +
> >

 for k = 1, … ,K,  l = 1, … ,L, t = 2,…,π  

(2) 
1

K

kllt
k

y K
=

≤
> 


    for l = 1, … ,L,  t = 1, … , π  

(3) { }0,1klmty ∈     for k = 1, … ,K,  l,m = 1, … ,L,  

t = 1, …, π  
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6.4.2 The subproblem L1 (u)  
 
Theorem 6.1: ( )1L u  is NP-hard in the strong sense. 

 
Proof: Consider an instance of ( )1L u  with 0u = . Then the objective function of ( )1L u  has 

the following form: 
 

  Min 
1 1 1

J K

j kjt
j k t

p t x
π

= = =

⋅
� ���

 

 

Now, the constant term 2

1

J

j
j

p
=

�
 is added to the objective function. Then the function 

can be modified as follows: 
 

  2

1 1 1 1

J K J

j kjt j
j k t j

p t x p
π

= = = =

⋅ +
� �
� �

 = 
1 1 1

J K

j kjt j
j k t

p t x p
π

= = =

8 9
⋅ ⋅ +: ;< => >
>

 

 
This objective function together with the constraints of 1( )L u  form the problem 1( )L u! : 

 

1( )L u =! Min 
1 1 1

J K

j kjt j
j k t

p t x p
π

= = =

8 9
⋅ ⋅ +: ;< => >
>

 

 
subject to 

 

(1) 
1 1

K

kjt j
k t

t x r
π

= =
⋅ ≥

>
>
   for  j = 1, … , J 

(2) 
1 1

1
K

kjt
k t

x
π

= =
=

>
>
    for  j = 1, … , J 

(3) 
1

, ,
1 1

(1 )
jpJ

k i t h kjt
i h
i j

x M x
−

+
= =
≠

≤ −
� �

  for k = 1, … , K,   

j = 1, … , J: 1jp > , 

 t = 1, … , 1jpπ − +  

 
(4) { }0,1kjtx ∈     for k = 1, … , K,  j = 1, … , J,  

t = 1, … , π  
  

( )1L u
?

 is equivalent to ( )1L u , because the problems only differ in a constant term in 

the objective function. Obviously, ( )1L u
?

 is also equivalent to the following 

scheduling problem: 
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j j jP r w C
@

   : Schedule J jobs with release dates jr  on P identical machines in  

order to minimize the sum of weighted completion times. 
 

The cranes are P identical machines. By definition of kjtx , 
1 1

K

kjt
k t

t x
π

= =
⋅

>
>
is the starting 

time of job j and, therefore, 
1 1

K

kjt j
k t

t x p
π

= =
⋅ +

>
>
is the completion time jC  of job j. The 

weights jw  are given by the processing times jp .  

This problem is known to be NP-hard in the strong sense, e.g. see [16].  
This proves that even the special case ( )1 0L  is NP-hard in the strong sense and, 

therefore, ( )1L u  is NP-hard in the strong sense as well. 

                                                                                                                                  � 
 
The theorem implies that it is hard to find the optimal objective value of ( )1L u , but a lower 

bound could be determined by an appropriate procedure. 
 
 

6.4.3 The subproblem L2 (u)  
 
The objective function of ( )2L u  can be modified in the following way: 

 

 
1 1

, , ,
1 1 1 0

j j

j j

p pJ K

kjt k l l t h
j k t h

u y
π − + −

+
= = = =

− ⋅
>
> > >

  

 

= ( )( ( )1 , , ,1 , , , 2 , , ,2 , , , 1
1 1

... ...
j j j j j j j j j j

J K

kj k l l k l l p kj k l l k l l p
j k

u y y u y y +
= =

− ⋅ + + − ⋅ + +
�
�

 

    ( )), , 1 , , , 1 , , ,... ...
j j j j j jk j p k l l p k l lu y yπ π π− + − +− − ⋅ + +  

  = ( )( 1 , , ,1 1 2 , , ,2
1 1

j j j j

J K

kj k l l kj kj k l l
j k

u y u u y
= =

− ⋅ − + ⋅
�
�

 

    ( ) ( )1 , , , , , 2 , , 1 , , , 1... ... ...
j j j j j j j jkj k j p k l l p kj k j p k l l pu u y u u y+ +− − + + ⋅ − + + ⋅  

    ( ), , 2 1 , , 1 , , , 1... ...
j j j j jk j p k j p k l l pu u yπ π π− ⋅ + − + − +− − + + ⋅   

    ( ), , 2 2 , , 1 , , , 2...
j j j j jk j p k j p k l l pu u yπ π π− ⋅ + − + − +− + + ⋅  

    ), , 1 , , ,...
j j jk j p k l lu yπ π− +− − ⋅  

        

= 
( )

( )min ; 1

, , ,
1 1 1 max 1; 1

j

j j

j

t pJ K

kjh k l l t
j k t h t p

u y
ππ − +

= = = = − +

A BC D
⋅C DE F�
��� �
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With 
( )

( )min ; 1

max 1; 1

j

j

t p

jt kjh
h t p

a u
π − +

= − +

=
>

, the objective function can be formulated as , , ,
1 1 1

j j

J K

jt k l l t
j k t

a y
π

= = =

⋅
�
���

. 

With 
: j

lt jt
j l l

b a
=

=
>

, the subproblem ( )2L u  can be formulated as follows: 

 

( )2L u = Min , , ,
1 1 1

L K

lt k l l t
l k t

b y
π

= = =
⋅

>
>�>
 

 
subject to 
 

(1) , , , , , , 1
1 1

ml

L L

klmt k m l t k l l t
m m

m l

y y yτ− −
= =

≠

= +
> >

 for k = 1, … , K,  l = 1, … , L, t = 2,…, π  

(2) 
1

K

kllt
k

y K
=

≤
> 


    for l = 1, … , L,  t = 1, … , π  

(3) { }0,1klmty ∈     for k = 1, … , K,  l,m = 1, … , L,   

t = 1, …, π  
 

Note that ltb  is a function of the Lagrangian multiplier u , i.e. ( )lt ltb b u= . In order to solve 

( )2L u , the following problem is considered: 

 

( )2L u =
?

Min 
1 1

L

lt llt
l t

b z
π

= =
⋅

>
>
 

 
subject to 
 

(1) , , , , 1
1 1

ml

L L

lmt m l t l l t
m m

m l

z z zτ− −
= =

≠

= +
> >

  for l = 1, … , L, t = 2,…, π  

(2) 1
1

L

lm l
m

z c
=

=
>

    for l = 1, … , L 

(2) lltz K≤ !     for l = 1, … , L,  t = 1, … , π  

(3) 0lmtz ≥ , integer   for l,m = 1, … , L,  t = 1, …, π  

 
where lmtz  is the number of cranes leaving block l to travel to block m at the beginning of 

period t. ( )2L u  and ( )2L u
?

 describe nearly the same problem. The difference is that in 

( )2L u , the movement of every single crane is considered while in ( )2L u
?

, the cranes which 

move from the same block l to the same block m at the same time, are “summarized”  in the 
variables lmtz . Now it is shown, how ( )2L u

?
 can be solved efficiently and how an optimal 

solution of ( )2L u
?

 can easily be transferred to an optimal solution of ( )2L u : 
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Theorem 6.2: Problem ( )2L u
?

 is a minimum cost network flow problem. 

 
Proof: The following proof is already done in [2]. It is repeated here to introduce the 

notation for the network which is used in further steps of the solution procedure. 
 Let ( ),G V A=  be a directed graph with the set of vertices 

 
  { } { }: 1,..., ; 1,..., 1ltV v l L t vπ= = = + ∪

?
 

 
 and the set of arcs  

 

  ( ){ },, : , 1,..., ; ; 1,..., 1
lmlt m t lmA v v l m L l m tτ π τ+= = ≠ = − +    

         ( ){ }, 1, : 1,..., ; 1,...,lt l tv v l L t π+∪ = =  

         ( ){ }, 1, : 1,...,lv v l Lπ +∪ =



. 

  
 Vertex ltv  represents block l at the beginning of period t. The vertex , 1lv π +  represents 

block l at the end of the last period. The nodes 1lv are the sources of the network with 

a supply of lc , while vG  is the sink of the network with a demand of 
1

L

l
l

c
=

>
. The arcs 

between the vertices represent the possible crane movements. The arcs 

( ){ }, 1, : 1,..., ; 1,...,lt l tv v l L t π+ = =  have unit costs ltu b− ⋅  and a capacity of K



. All 

other arcs have zero costs and infinite capacity. It is obvious that 2( )L uG  is equivalent 

to the minimum cost network flow problem (with multiple source nodes) in the 
network G. 

                      � 
 
The theorem implies that ( )2L u

?
 can be solved efficiently. The following procedure describes 

how an optimal solution *z  of  ( )2L u
?

 can be transformed into an optimal solution *y  of 

( )2L u . 

 
Procedure to transform *z  into *y : 

 
(1) Construct a directed graph ( ),G V A=  with the same set of vertices and the same 

set of arcs as in the network constructed in the proof of Theorem 6.2.  
 
(2) The capacity of each arc is set equal to the value of the flow in *z  on this arc, i.e. 

the capacity of the arcs ( ){ },, : , 1,..., ; ; 1,..., 1
lmlt m t lmv v l m L l m tτ π τ+ = ≠ = − +  is set 

equal to * lmtz , the capacity of the arcs ( ){ }, 1, : 1,..., ; 1,...,lt l tv v l L t π+ = = is set equal 

to * lltz , and the capacity of the arcs ( ){ }, 1, : 1,...,lv v l Lπ + =



is set equal to , , 1* l vz π +
7 . 

 
 



6. Solution procedures 
_________________________________________________________________________________________________________________ 

 32 

(3) For k = 1 to K do 
 

a) Determine a path from km  to vG  
b) Set each variable klmty  corresponding to this path equal to 1 

c) Reduce the capacity of each arc occurring in the path by 1 
 

(4) All klmty  which are not set equal to 1 in step 3 are set equal to 0. 

 
Theorem 6.3: This procedure transforms an optimal solution *z  of  ( )2L u

?
into an optimal 

solution *y  of ( )2L u . 

 
Proof: Define 
 

( )I
k ltC v =      Sum of capacities of all arcs ( ) ( ){ }, : , ,lt ltv v v V v v A∈ ∈  in 

iteration k  
 ( ( )I

k ltC v  could be regarded as the “ incoming capacity”  of   

vertex ltv )  

 

( )O
k ltC v =     Sum of capacities of all arcs ( ) ( ){ }, : , ,lt ltv v v V v v A∈ ∈  in 

iteration k  
 ( ( )O

k ltC v  could be regarded as the “outgoing capacity”  of   

vertex ltv )  

 

0 ( )I
ltC v and 0 ( )O

ltC v are the corresponding values at the beginning. 

 

 Assume that there exists a k
?

 such that there exists no path from 
k

m 7  to vG  in 

iteration k
?

. 
 H

 There exists a ltv  such that there exists a path from 
k

m 7  to ltv  but no path from 

ltv  to , 1m tv +  for all m = 1, … ,L H
 ( ) 0I

ltk
C v >6  and  ( ) 0O

ltk
C v =6  H

 ( ) ( )I O
lt ltk k

C v C v>6 6  

 
 In each iteration k, ( )I

k ltC v  and ( )O
k ltC v  are reduced by the same value (They are 

reduced by 1 if ltv  is on the path determined or they are both not reduced if ltv  is 

not on the path). 
 H

 0 0( ) ( )I O
lt ltC v C v>  H

 , , , , 1
1 1

* * *
ml

L L

m l t l l t lmt
m m
m l

z z zτ− −
= =
≠

+ >
> >
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This is a contradiction to the feasibility of  *z  for ( )2L u
?

, so for each                    

k = 1, … , K, a path from km  to vG  can be determined. This implies that the 

solution *y  generated by the procedure, satisfies condition (1) of ( )2L u  for          

k = 1, … , K,  l = 1, … , L, t = 2,…, π . 
 

1

*
K

kllt
k

y
=

>
 is smaller than or equal to the capacity of the arc ( ), 1,lt l tv v +  at the 

beginning, because the capacity is reduced by 1 for each crane using this arc. 
 H

 
1

* *
K

kllt llt
k

y z
=

≤
>

 

 
* lltz K≤ G  because *z  is feasible for ( )2L u

?
 

 H
 

1

*
K

kllt
k

y K
=

≤
> 


 

  
This means that *y  satisfies condition (2) of ( )2L u  for l = 1, … ,L,  t = 1, … , π . 

 
Either klmty  is set equal to 1 in step 3.b) or it is set equal to 0 in step 4, so  

condition (3) of  ( )2L u  is also satisfied for k = 1, … , K,  l,m = 1, … , L,                

t = 1, …, π . 
Therefore, *y  is feasible for ( )2L u . 

 
Assume now that *y  is not optimal for ( )2L u . 

Then there exists a solution * *y  such that  

 , , , , , ,
1 1 1 1 1 1

* * *
L K L K

lt k l l t lt k l l t
l k t l k t

b y b y
π π

= = = = = =

⋅ < ⋅
>
>�> >
>�>

 

 
Then define 

 
1

* * * *
K

lmt klmt
k

z y
=

=
>

 for l,m = 1, … ,L,  t = 1, …, π  

 
It is easy to check that * *z  is feasible for ( )2L u

?
 and 

 

 
1 1

* *
L

lt llt
l t

b z
π

= =

⋅
>
>

 =  , , ,
1 1 1

* *
L K

lt k l l t
l k t

b y
π

= = =

⋅
>
>
>

 

    <  , , ,
1 1 1

*
L K

lt k l l t
l k t

b y
π

= = =

⋅
>
>�>

 

    =  
1 1 1

*
L K

lt kllt
l t k

b y
π

= = =

>
> >
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    ≤  
1 1 1

*
J K

lt llt
j k t

u b z
π

= = =

− ⋅ ⋅
�
���

 

 
This is a contradiction to the optimality of  *z  for  ( )2L u

?
. Therefore, *y  

generated by the procedure is optimal for ( )2L u . 

                                                                                                                                                    � 
 
 

6.5 Solution procedures for the RTWP 
 
Cheung et al. propose in [2] two efficient solution procedures for the RTWP: the Lagrangian 
Decomposition Method and the Successive Piecewise-Linear Approximation Method. For 
details see [2]. 
 
 

6.6 Solution procedures for the RMWP 
 
The RMWP is strongly related to the RTWP. The RMWP is not discussed in [2], but the 
solution procedures for the RTWP presented in [2] can be modified to solve the RMWP. In 
the following two sections, the necessary modifications of the procedures are discussed. Some 
parts of the solution procedures are copied from [2]. This is done for several reasons: The 
notation introduced so far can be used. It is also easier to follow the solution procedure and to 
realize where modifications are necessary and where new ideas come in. 
 
 

6.6.1 The Lagrangian Decomposition Method for the RMWP 
 
The first step of the Lagrangian Decomposition Method is the decomposition of the RMWP, 
which is equivalent to section 2.1 in [2]: 
The variable stz  for s = 1, … , S, t = 1, … , T  is introduced, which is the number of cranes in 

slot s during time period t. Then the RMWP can be formulated as follows: 
 

Min 
1 1

T S

st
t s

u
= =

>
>
 

  
subject to 
 
(1a) , 1, 1 , , 1 , 1, 1kst k s t k s t k s ty y y y− − − + −≤ + +  for k = 1, … , K,  s = 2, … , S - 1,  

t = 2,…, T  
(1b) 11 1,1, 1 1,2, 1t t ty y y− −≤ +    for  t = 2, … , T 

 (1c) , , 1 , 1, 1KSt K S t K S ty y y− − −≤ +   for  t = 2, … , T 

 (2) 
1

1
K

kst
k

y
=

≤
>

    for s = 1, … , S, t = 1, … , T 

(3) 1, , 1
S

k h t kst
h s

y y−
=

≤ −
>

   for k = 2, … , K,  s = 1, … , S,  t = 1, …, T 
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(4) 
1

K

st kst
k

z y
=

=
>

    for s = 1, … , S, t = 1, … , T 

(5) , 1s t st st stu w u z− + − ≤    for s = 1, … , S,  t = 1, … ,T 

(6) 0stu ≥      for s = 1, … , S,  t = 1, … ,T 

 (7) { }0,1ksty ∈     for k = 1, … , K, s = 1, … , S,  t = 1, … ,T 

 (8) { }0,1stz ∈     for s = 1, … , S,  t = 1, … , T 

 
Now, constraint (4) is relaxed and placed in the objective function with Lagrangian 
multipliers stα . The relaxed problem has the following form: 

 

( )L α = Min 
1 1 1

T S K

st st st kst
t s k

u z yα
= = =

I JI J
+ ⋅ −

K LK LM NM NO
O O
 

  
subject to 

 
(1a) , 1, 1 , , 1 , 1, 1kst k s t k s t k s ty y y y− − − + −≤ + +  for k = 1, … , K,  s = 2, … , S - 1,   

t = 2,…, T  
(1b) 11 1,1, 1 1,2, 1t t ty y y− −≤ +    for  t = 2, … , T 

 (1c) , , 1 , 1, 1KSt K S t K S ty y y− − −≤ +   for  t = 2, … , T 

 (2) 
1

1
K

kst
k

y
=

≤
>

    for s = 1, … , S, t = 1, … , T 

(3) 1, , 1
S

k h t kst
h s

y y−
=

≤ −
>

   for k = 2, … , K,  s = 1, … , S,  t = 1, …, T 

(4) , 1s t st st stu w u z− + − ≤    for s = 1, … , S,  t = 1, … , T 

(5) 0stu ≥      for s = 1, … , S,  t = 1, … , T 

 (6) { }0,1ksty ∈     for k = 1, … , K, s = 1, … , S,  t = 1, … , T 

 (7) { }0,1stz ∈     for s = 1, … , S,  t = 1, … , T 

 
The relaxed problem ( )L α can be decomposed into two independent subproblems. One of 
them can be further separated into S smaller subproblems. The decomposition can be done as 
follows: 

 
1

( ) ( ) ( )
S

s
s

L L Lα α α
=

′ ′′= +
>

, 

where 
 

( )L α′ = Min  
1 1 1

T S K

st kst
t s k

yα
= = =

− ⋅
>
>
>

 

 
subject to 

 
(1a) , 1, 1 , , 1 , 1, 1kst k s t k s t k s ty y y y− − − + −≤ + +  for k = 1, … , K,  s = 2, … , S - 1,   

t = 2,…, T  
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(1b) 11 1,1, 1 1,2, 1t t ty y y− −≤ +    for  t = 2, … , T 

 (1c) , , 1 , 1, 1KSt K S t K S ty y y− − −≤ +   for  t = 2, … , T 

 (2) 
1

1
K

kst
k

y
=

≤
>

    for s = 1, … , S, t = 1, … , T 

(3) 1, , 1
S

k h t kst
h s

y y−
=

≤ −
>

   for k = 2, … , K,  s = 1, … , S,  t = 1, …, T 

 (4) { }0,1ksty ∈     for k = 1, … , K, s = 1, … , S,  t = 1, … ,T 

 
and 
 

( )sL α′′ = Min ( )
1

T

st st st
t

u zα
=

+ ⋅
>

 

 
 subject to 
 

(4) , 1s t st st stu w u z− + − ≤    for t = 2, … , T 

(5) 0stu ≥      for t = 2, … , T 

 (6) { }0,1ksty ∈     for k = 1, … , K, t = 1, … , T 

 (7) { }0,1stz ∈     for t = 1, … , T 

 
Theorem 6.4: Problem ( )L α′  is a minimum cost network flow problem. 
 
Proof: The poof is similar to the proof in section 2.2 of [2], but this proof is done for the 

RTWP. For the RMWP, the network has to be designed in a different way, 
because other constraints, especially the inter-crane interference constraint, have to 
be taken into account. 
Let ( ),G V A=  be a directed graph with the set of vertices 

 

  V = { } { } { }, 1,: 1,..., ; 1,..., 1 : 1,..., 1; 1,...,sst s s tv s S t T v s S t T v+= = + ∪ = − = ∪ P
    

 and the set of arcs  
 

  A = ( ){ }, , 1, : 1,..., ; 1,...,sst s s tv v s S t T+ = =  

   ( ){ }, 1,, : 1,..., 1; 1,...,sst s s tv v s S t T+∪ = − =  

   ( ){ }, 1, , , 1, : 1,..., 1; 1,...,s s t s s tv v s S t T+ +∪ = − =  

   ( ){ }, 1, 1, 1, 1, : 1,..., 1; 1,...,s s t s s tv v s S t T+ + + +∪ = − =  

   ( ){ }, , 1, : 1,...,s s Tv v s S+∪ =



. 
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 The node vP  has capacity K  while all other nodes have capacity 1. The arcs 

( ), , 1,sst s s tv v +  have unit costs of stα−  and all other arcs have zero costs. Figure 11 

illustrates how the network looks like for 3S =  and 3T = . 
 

  
 Figure 11: Illustration of the constructed network 
 
 The construction of the network is based on the same ideas as in the proof in [2]: 

Vertex sstv  represents slot s at the beginning of period t. Each node sstv  has 

capacity 1. This ensures that there can only be one crane in a certain slot at any 

time. The arcs ( ), , 1,sst s s tv v +  are used by cranes which stay in a certain slot s during 

time period t. The nodes , 1,s s tv +  and all arcs connected to them ensure that two 

cranes can not pass each other. Assume there are two cranes in two adjacent 
blocks s and 1s + . If the left crane wants to move to the right slot and the right 
crane wants to move to the left slot at the same time, then this is not possible in 
reality. It is also not possible in the network, because both cranes would have to 
pass the node , 1,s s tv +  in the network. This node has capacity 1 and therefore, a flow 

of two units can not pass this node at the same time. The supply of the nodes 1ssv  is 

set equal to the number of cranes in a slot at the beginning of the planning horizon 
and the demand of the node vP  is set equal to K. The rest of the proof follows the 
argumentation of the proof in [2]. 
                                                                                                                                  � 

 
Theorem 6.4 implies that ( )L α′  can be solved efficiently by a minimum cost network flow 
algorithm. The node capacities could also be represented by arc capacities. This can be done 
by doubling the nodes and connecting them with arcs which have the original node capacity. 
Such a graph ( ),G V A′ ′ ′=  would have the following set of vertices 

 

V ′    = { } { }1 1: 1,..., : 1,...,O I
ss ssTv s S v s S+= ∪ =  

  { } { }: 1,..., ; 2,..., : 1,..., ; 2,...,I O
sst sstv s S t T v s S t T∪ = = ∪ = =  

  { }, 1, : 1,..., 1; 1,...,I
s s tv s S t T+∪ = − = { }, 1, : 1,..., 1; 1,...,O

s s tv s S t T+∪ = − = { }v∪
?

 

    
and the following set of arcs  

121v

111v 112v 113v 114v

221v 222v 223v 224v

122v 123v

231v

331v 332v 333v 334v

232v 233v

vQ
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 A′    = ( ){ }, : 1,..., ; 2,...,I O
sst sstv v s S t T= =  

( ){ }, , 1, : 1,..., ; 1,...,O I
sst s s tv v s S t T+∪ = =      

 ( ){ }, 1, , 1,, : 1,..., 1; 1,...,I O
s s t s s tv v s S t T+ +∪ = − =  

  ( ){ }, 1,, : 1,..., 1; 1,...,O I
sst s s tv v s S t T+∪ = − =  

  ( ){ }1, 1, , 1,, : 1,..., 1; 1,...,O I
s s t s s tv v s S t T+ + +∪ = − =  

  ( ){ }, 1, , , 1, : 1,..., 1; 1,...,O I
s s t s s tv v s S t T+ +∪ = − =  

  ( ){ }, 1, 1, 1, 1, : 1,..., 1; 1,...,O I
s s t s s tv v s S t T+ + + +∪ = − =  

  ( ){ }, : 1,...,I
ssTv v s S∪ =



. 

 
 
The solution of ( )sL α′′ and the construction of the overall solution procedure is analogue to the 

sections 2.3 and 2.4 of [2] and do not have to be repeated here.  
 
 

6.6.2 The Successive Piecewise-Linear Approximation Method for the 
RMWP 
 
The Successive Piecewise-Linear Approximation Method can also be applied to the RMWP. 
The procedure has to be modified in some parts because the crane movement constraints are 
different. Other parts can be simplified because the crane movement constraints are 
formulated with binary variables instead of integer variables. In the following, the Successive 
Piecewise-Linear Approximation Method for the RMWP is explained. The changes and 
modifications to section 3 of [2] are discussed in detail. Other Parts, which are similar to 
section 3 of [2] and which are necessary to understand the procedure, are presented in a more 
compact way. 
In this approach, the RMWP is reformulated as a nonlinear programming problem with 
network flow constraints. The objective function is approximated by a function which is 
separable. The resulting problem is reformulated as a minimum cost network flow problem 
and a procedure to update the approximation is presented. 
The RMWP can be rewritten as: 
 

Min ( )f y  

  
subject to 
 
(1a) , 1, 1 , , 1 , 1, 1kst k s t k s t k s ty y y y− − − + −≤ + +  for k = 1, … , K,  s = 2, … , S - 1,   

t = 2,…, T  
(1b) 11 1,1, 1 1,2, 1t t ty y y− −≤ +    for  t = 2, … , T 

 (1c) , , 1 , 1, 1KSt K S t K S ty y y− − −≤ +   for  t = 2, … , T 
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 (2) 
1

1
K

kst
k

y
=

≤
>

    for s = 1, … , S, t = 1, … , T 

(3) 1, , 1
S

k h t kst
h s

y y−
=

≤ −
>

   for k = 2, … , K,  s = 1, … , S,  t = 1, …, T 

 (4) { }0,1ksty ∈     for k = 1, … , K, s = 1, … , S,  t = 1, … , T 

   
where 
 

( )f y =  Min 
1 1

T S

st
t s

u
= =

>
>
 

 
  subject to 
 

  (1) , 1
1

K

s t st st kst
k

u w u y−
=

+ − ≤
>

  for s = 1, … ,S,  t = 1, … ,T 

   (2) 0stu ≥      for s = 1, … ,S,  t = 1, … ,T 

  

( )f y  is separable in s. Let 
1

K

st kst
k

y y
=

=
>

 and ( )1,...,s s sTy y y= . Then ( )f y  can be written as: 

 

 ( ) ( )
1

S

s s
s

f y f y
=

=
>

 

 
where 
 

 ( )s sf y =   Min 
1

T

st
t

u
=

>
 

  
  subject to 
 
  (1) , 1s t st st stu w u y− + − ≤    for t = 1, … ,T 

   (2) 0stu ≥      for t = 1, … ,T 

 

The optimal solution of ( )s sf y  can easily be determined by the following recursion: 

 

{ }* *
, 1max ,0st s t st stu u w y−= + −      for t = 1, … ,T 

 
For the proof, see [2].  

Now, the function ( )s sf y  is approximated by a function, which is separable in t: 

Let ( )0F f= . Then ( )f y  is approximated by  

 

 ( ) ( )
1 1

ˆ
S T

st st
s t

f y F f y
= =

≈ +
>
>
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where each function ( )ŝt stf y  is a nonincreasing, linear function of [ ]0,1sty ∈ , which satisfies 

the condition ( )ˆ 0 0stf = . Let stc  be the slope of the line between the points ( )( )ˆ0, 0stf  and 

( )( )ˆ1, 1stf . Then ( )ŝt st st stf y c y= ⋅  and ( )
1 1

S T

st st
s t

f y F c y
= =

≈ + ⋅
>
>

. Replacing sty  by 
1

K

kst
k

y
=

>
 

leads to the following problem: 
 

 Min 
1 1 1

T S K

st kst
t s k

F c y
= = =

+ ⋅
>
>�>

 

 
 subject to 
 

(1a) , 1, 1 , , 1 , 1, 1kst k s t k s t k s ty y y y− − − + −≤ + +  for k = 1, … ,K,  s = 2, … ,S-1,  t = 2,…, T  

(1b) 11 1,1, 1 1,2, 1t t ty y y− −≤ +    for  t = 2, … , T 

 (1c) , , 1 , 1, 1KSt K S t K S ty y y− − −≤ +   for  t = 2, … , T 

 (2) 
1

1
K

kst
k

y
=

≤
>

    for s = 1, … ,S, t = 1, … , T 

(3) 1, , 1
S

k h t kst
h s

y y−
=

≤ −
>

   for k = 2, … ,K,  s = 1, … ,S,  t = 1, …, T 

 (4) { }0,1ksty ∈     for k = 1, … ,K, s = 1, … ,S,  t = 1, … ,T 

 
Similar to the subproblem ( )L α′ in section 6.6.1, this is a minimum cost network flow 

problem and can be solved efficiently for any given set of objective function coefficients stc . 

These coefficients are obtained as in section 3.3 of [2]: ( )s sf y  is solved for a given sy . Then, 

sy  is changed in the tth component and the problem is solved again. stc  is estimated by the 

difference of the objective function values of 0sty =  and 1sty = . The overall solution 

procedure can be constructed analogue to the SPLA Procedure in [2]. 
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7. Lower bound 
 
In this section, a procedure to determine a lower bound for the objective value of the job 
models is presented. This lower bound can be used to evaluate the performance of the 
heuristics developed in the sections 6.1.1 and 6.1.2. The basic idea for the procedure is the 
same as in section 6 of [13], but some problem specific changes and modifications have to be 
done. The first step is to find a simpler formulation for the problems.  
Let 
 
  1 if job j is the ith job handled by crane k  

jikz =  

  0 else 
 
and ( )111 112, ,..., JJKz z z z= . Let ( )jikT z  be the starting time of job j done by crane k as the      

ith job for a given z . The problem of finding an optimal crane schedule can be formulated in 
the following way: 
 

 Min ( )
1 1 1

J J K

j jik jik
j i k

p z T z
= = =

⋅ ⋅
O
O�O

 

 
 subject to 
 

 (1) 
1 1

1
J K

jik
i k

z
= =

=
>
>

    for  j = 1, … , J 

 (2) 
1

1
J

jik
j

z
=

≤
O

    for  i = 1, … , J,  k = 1, … , K 

 (3) { }0,1jikz ∈     for  i, j = 1, … , J,  k = 1, … , K 

 
This formulation holds for the RTJP and for the RMJP. The objective is the minimization of 
the weighted sum of starting times. Constraint (1) ensures that all jobs are performed and 
constraint (2) guarantees that each crane is only used once at a certain time. This integer 
program is equivalent to the assignment problem except that ( )jikT z  in the objective function 

is an unknown function of z . The calculation of ( )jikT z  is as hard as solving the original 

problem. Therefore, it is NP-hard in the strong sense, but it can be used to determine a lower 
bound. Let jikT  be a lower bound for the earliest time that a crane k can start job j as the ith job 

in its schedule; obviously, jikT  is a lower bound for ( )jikT z . If ( )jikT z  is replaced by jikT  in 

the formulation above, then the following assignment problem is obtained. 
 

LB = Min 
1 1 1

J J K

j jik jik
j i k

p T z
= = =

⋅ ⋅
O
O
O

 

 
 subject to 
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 (1) 
1 1

1
J K

jik
i k

z
= =

=
>
>

    for  j = 1, … , J 

 (2) 
1

1
J

jik
j

z
=

≤
O

    for  i = 1, … , J,  k = 1, … , K 

 (3) { }0,1jikz ∈     for  i, j = 1, … , J,  k = 1, … , K 

 
This problem is easy to solve, because it is obvious that the constraint matrix is totally 
unimodular and, therefore, the region of feasible solutions is an integral polyhedron. A 
solution for this problem is a lower bound for the objective value of the original problem. In 
the following, a procedure for finding a jikT  is presented.      

It follows from the definition of jikT  that  

 

( )1 ,max 1;
k jj k m l jT rτ= +    for  j = 1, … , J,  k = 1, … , K 

 and 
 

 ( ), 1, ,{1,..., }
max min ;

q jjik q i k q l l j
q J

q j

T T p rτ−∈
≠

I JK L
= + +K LM N  for  j = 1, … , J,  i = 2, … , J, k = 1, … , K 

 
Procedure to determine a lower bound: 
 

(1) Determine jikT  for i, j = 1, … , J,  k = 1, … , K  by using the recursive equations 

above. 
(2) Solve Problem LB with these jikT  and set the lower bound equal to the objective 

value of the solution of the problem LB. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



8. Approximation bounds 
_________________________________________________________________________________________________________________ 

 43 

8. Approximation bounds 
 
If a problem can not be solved to optimality and heuristics have to be used to get feasible 
solutions, it is interesting to know, how well these heuristics approximate the optimal solution 
in the worst case, i.e. it is nice to have a kind of performance guarantee for the heuristics. In 
this section, such approximation bounds are determined for the RTJP and the RMJP. In both 
cases, the bounds are the same for the ERD-Heuristic and for the Quotient-Heuristic. It is 
obvious that an “absolute”  approximation bound independent of the parameters for these 
heuristics does not exist, because it is easy to construct instances in which the gap between 
the optimal objective value and the solution determined by the heuristics depends on the 
values of the parameters. Therefore, the approximation bound determined in this section is a 
function of the following parameters of the instances: 
 

• J 
• K 
• jr ,   j = 1, … , J 

• jp , j = 1, … , J 

• lmτ , l, m = 1, … , L 

 
The following notation is used to develop the approximation bounds: 
 

• js = starting time of job j in the schedule determined by the heuristic 

• 
1

J
H

j j
j

C p s
=

= ⋅
O

, objective value for the schedule determined by the heuristic 

• 
1

*
J

j j
j

C p r
=

= ⋅
O

, lower bound for the optimal objective value 

• 
{ }

( )max
1,...,

max j
j J

r r
∈

=  

• 
{ }

( )max
1,...,

max j
j J

p p
∈

=  

• 
{ }

( )max
, 1,...,
max lm

l m L
τ τ

∈
=  

 
In order to avoid misunderstandings in the notation, it is assumed w.l.o.g. that J K> . The 
argumentation would also hold (and would be simpler) if J K≤ . It is also assumed w.l.o.g. 
that the jobs are ordered according to the heuristic which is used, i.e. the jobs are ordered in 
such a way that 1j jr r +≤  for  j = 1, … , J - 1 if the ERD-Heuristic is used or the jobs are 

ordered such that 1

1

j j

j j

p p

r r
+

+

≤  for  j = 1, … , J - 1 if the Quotient-Heuristic is used. 
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8.1 Approximation bound for the RTJP 
 
Let  

( ) ( ){ } ( )max
1 1,...,min ;

maxn
j

j n K J n K
s s

∈ − ⋅ + ⋅
=   for 1,...,

J
n

K

RTS
= U VU V  

 
Assume that each of the first K jobs would be done by a different crane and each crane would 
have to take the longest way possible to reach the location of its job. This worst-case-
consideration provides the following upper bound for the starting time of the first K jobs in a 
schedule determined by the heuristic: 
 

(1) ( )maxmax 1;j js rτ≤ +     for j = 1, … ,K 

 
Assume further that each of the next K jobs, i.e. the jobs 1,...,2K K+ ⋅ , would also be 
handled by a different crane and each crane would also have to take the longest possible way 
to reach the job location. But each crane has to finish its first job before it can travel to the 
location of the next job. An upper bound for the completion time of each of the first K jobs is 

1
max maxs p+ . Therefore, each crane reaches its second job no later than 1

max max maxs p τ+ +  and it 

follows that  
 

(2) ( )1
max max maxmax ;j js s p rτ≤ + +   for j = K + 1, … ,2 K⋅  

 
This argumentation can be repeated and it leads to the following upper bound 
 

(3) ( )1
max max maxmax ;n

j js s p rτ−≤ + +   for ( )1 1,...,j n K n K= − ⋅ + ⋅  

 
Replace now jr  by maxr  in (1), (2) and (3) and define 

 
 ( )1

max max maxmax 1;s rτ= +  

and 

 ( )1
max max max max maxmax ;n ns s p rτ−= + +    for 2,...,

J
n

K

RTS
= U VU V  

 
It follows that 
 

(4) ( )1
max max maxmax 1;js s rτ≤ = +   for  j = 1, … ,K 

(5) ( )2 1
max max max max maxmax ;js s s p rτ≤ = + +  for  j = K+1, … ,2 K⋅  

   W  
(6) ( )1

max max max max maxmax ;n n
js s s p rτ−≤ = + +  for ( )1 1,...,j n K n K= − ⋅ + ⋅  
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Now, the second argument in the function ( )max ;XYX , i.e. the maxr , can be omitted in all 

inequalities expressed by (5) and (6) because 1 1
max max max max
n ns p s rτ− −+ + > ≥  for 2,...,

J
n

K

RTS
= U VU V . 

Therefore, (5) and (6) can be simplified in the following way: 
 

(7) 2 1
max max max maxjs s s p τ≤ = + +   for  j = K+1, … ,2 K⋅  

   W  
(8) 1

max max max max
n n

js s s p τ−≤ = + +   for ( )1 1,...,j n K n K= − ⋅ + ⋅  

 
The inequalities (4), (7) and (8) can be summarized as follows: 
 

(9) ( ) ( )max max max maxmax 1; 1j

j
s r p

K
τ τ

8 9RTS
≤ + + − ⋅ +: ;U VU V< =  for  j = 1, … , J 

 
Using inequality (9), the following upper bound for the weighted sum of starting times in a 
schedule determined by an heuristic can be obtained: 
 
  

 HC  
1

J

j j
j

p s
=

= ⋅
O

 

   

  ( ) ( )max max max max
1

max 1; 1
J

j
j

j
p r p

K
τ τ

=

I JI JZT[
≤ ⋅ + + − ⋅ +

K LK L\ ]\ ]M NM NO
 

   

  ( ) ( )max max max
1 1

max 1; 1
J J

j j
j j

j
r p p p

K
τ τ

= =

I JI JZ^[
= + ⋅ + + ⋅ ⋅ −

K LK L\ ]\ ]M NM NO O
 

 
Together with the lower bound *C  defined above, the following approximation bound is 
obtained: 
 

 HC  ( ) ( )max max max max
1 1 1

* max 1; 1
J J J

j j j j
j j j

j
C r p p p p r

K
τ τ

= = =

8 98 98 9RTS
≤ + + ⋅ + + ⋅ ⋅ − − ⋅

: ;: ;: ;U V: ;U V< =< =< => > >
 

 
Theorem 8.1: This bound is tight for the Quotient-Heuristic. 
 
Proof: Consider the following instance of the RTJP: 
 

• There are L blocks which are arranged in one row 
• There is one crane which is initially located in block 1 
• The travel time between two adjacent blocks is equal to 1 and, therefore, 

maxτ  is equal to L - 1 

• There are two jobs with the following job characteristics: 
 



8. Approximation bounds 
_________________________________________________________________________________________________________________ 

 46 

 
 
 
   

 
 
  
 In such an instance with 2J =  and 1K = , ( )max max maxmax 1;r rτ + =  and the upper 

bound for the weighted sum of starting times developed above has the following 
form: 

 

  ( ) ( ) ( )
2

max max 1 2 max max
1

1

max 1; 1
1j

j

j

j
r p p p pτ τ

=

= −

8 9: ;8 9R_S
+ ⋅ + + + ⋅ ⋅ −

: ;: ;U`VU`V: ;< =: ;< =
>

acb�d�b�e  

   = ( ) ( )max 1 2 max max 2r p p p pτ⋅ + + + ⋅  

 
= ( )1 max 2 max max maxp r p r p τ⋅ + ⋅ + +   

 
 If the Quotient-Heuristic is applied, job 1 is handled before job 2 because 

1 2

1 2

2
1

1

p pL

r L r

+= > =
+

. Therefore, the crane has to travel to block L and reaches it at 

time ( )1 1L L+ − = . The crane starts job 1 at its release date 1L + , which is equal 

to maxr . Job 1 is finished at time ( ) ( )1 2L L+ + + . The crane travels to block 1 in 

order to perform job 2. The travel time is 1L − , so the second job is started at time 

max max maxr p τ+ + . So if the Quotient-Heuristic is applied to such an instance, the 

objective function value reaches its upper bound. 
 If job 2 would be handled before job 1, both jobs could be started at their release 

dates. So there exists a feasible solution with an objective value equal to the lower 

bound 
1

J

j j
j

p r
=

⋅
O

. This example shows that the approximation bound determined 

above is tight for the Quotient-Heuristic. 
                                                                                                                               � 
   
 

8.2 Approximation bound for the RMJP 
 
For the RMJP, it can not be assumed that the first K jobs can be performed by K different 
cranes, because the crane movement constraints in the formulation in section 3.2.2 may not 
allow such an assignment. In the worst case, these jobs have to be done by only one crane. In 
this case, the problem can be regarded as a problem in which K is equal to 1. An instance of 
the RMJP with only one crane can be treated as an instance of the RTJP in which all blocks 
are arranged in one row. Therefore, the argumentation in section 8.1 can be repeated for the 
RMJP with K is equal to 1 and the following approximation bound for the RMJP is obtained: 
 

Job 1 2 

jr  L + 1 1 

jp  L + 2 1 

jl  L 1 
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By the same proof as in section 8.1, it can be shown that this bound is tight for the Quotient-
Heuristic. 
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9. Computational experiments 
 
In this section, the performance of the heuristics developed in section 6 is tested with 
randomly generated problem instances. The heuristics are coded in C++. The C++ program 
generates also a data file for AMPL. AMPL is used to calculate the lower bound described in 
section 7. For further details about the implementation see the CD attached to this thesis. All 
tests are run on an AMILO M7424 Notebook with an Intel Pentium M, FSB: 400 MHz 
processor. In section 9.1, it is described how the random problem instances are generated and 
in section 9.2, the results of the computational experiments are analyzed. 
 
 

9.1 Problem generation 
 
In this section, it is described how the problem instances are generated and how the 
parameters of the instances are set. 
 
 

9.1.1 Problem instances for the RTJP 
 
The RTJP is characterized by the number of blocks, the arrangement of the blocks, the 
number of time periods, the number of cranes available and the job characteristics. In every 
instance, there are four rows of blocks with five blocks in each row, so there is a total number 
of 20 blocks in the container yard. There are eight cranes available in the container yard. The 
number of cranes which can work simultaneously in a block is set equal to two. The initial 
location of each crane is determined randomly by a uniform distribution over the whole 
container yard. One time period is assumed to be three minutes and the problem instances are 
generated for a short time planning horizon of one hour and for a long time planning horizon 
of eight hours. Therefore, T is set equal to 20 in the first series and equal to 160 in a second 
series. It is assumed that the travel times of the cranes are rectilinear, i.e. the cranes can not 
move diagonally. In order to analyze the performance of the heuristics under different 
conditions, two settings for the travel times are considered: In a first setting, the travel time 
between two adjacent blocks in the same row is one time period, while the travel time 
between two adjacent blocks in the same column is two time periods. In a further test series, 
the travel time between two blocks in the same row is five time periods and the travel time 
between two blocks in the same column is ten time periods. Therefore, the travel effort is 
small with respect to the processing times of the jobs in the first series and it is large in the 
second series. The job parameters ,j jp r  and jl  are determined randomly by uniform 

distributions. The job location of each job is chosen randomly in the whole container yard, the 
release dates are distributed randomly over the whole planning horizon and the processing 
times lie between one and ten time periods. The number of jobs per hour is estimated as 
follows: One hour has 20 time periods and there are eight cranes available in the container 
yard. Therefore, at most 20 8 160⋅ =  units of work can be done during one hour. An average 

job takes 5,5 time units. Therefore, a number of 
160

29,1
5,5

≈  jobs can be regarded as an 

estimation for the capacity of the system. (This estimation does not consider the travel times 
of the cranes.) The heuristics are tested with 30 jobs per hour to simulate a busy system 
working on capacity and with 15 jobs per hour to simulate a system when there is not much 
work to do. With two planning horizons, two settings for the travel time and two possibilities 
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for the number of jobs per hour, there are eight different test cases. Each case is tested with 
five instances, so 40 tests are done for the RTJP. 
 
 

9.1.2 Problem instances for the RMJP 
 
The RMJP is also characterized by the number of blocks, the number of time periods, the 
number of cranes available and the job characteristics. In every instance, a row of ten blocks 
is considered. There are four cranes available in such a row to have the same crane-block-
ration as in the RTJP instances and K



 is also set equal to two. The initial location of the 

cranes is determined randomly by a uniform distribution over the row of container blocks.  
According to the ideas and the argumentation of section 3.2.2, the row of blocks has to be 
divided into slots: One block is divided into two slots, because 2K =



 and the space between 

two blocks is represented by one slot. Therefore, each instance has a total number of 
10 2 9 29⋅ + =  slots. A time period is assumed to be one minute, because the rail mounted 
cranes can move faster than the rubber tired cranes. In some papers on rail mounted cranes, 
the travel time of the cranes is even neglected. T is set equal to 60 and to 480 respectively to 
consider the same planning horizons as in the RTJP. Similar to the RTJP instances, two 
settings for the travel times are considered: In a first series, the travel time between two slots 
is equal to one and in a second series the travel time is set equal to ten. The job parameters 

,j jp r  and jl  are also determined randomly by uniform distributions as in the instances of the 

RTJP. The processing times lie between 1 and 30 time periods, because a time period in the 
RMJP is shorter than a time period in the RTJP. With the same argumentation as for the RTJP 

instances, 
60 4

15,5
15,5

⋅ ≈  job per hour could be regarded as an upper bound for the capacity of 

the system. This estimate does also not consider the travel times. Furthermore, the movement 
of the cranes is much more restricted in the RMJP than in the RJTP. That’s why the heuristics 
are tested with ten jobs per hour instead of 15 jobs to simulate a busy system and with five 
jobs per hour to model a system when there is not much work to do. As well as in section 
9.1.1, there are eight different tests cases. Each case is also tested with five instances, so       
40 tests are done for the RMJP, too. 
 
 

9.2 Results 
 
In this section, the outcome of the computational experiments is discussed and analyzed. 
When the performance of a heuristic is analyzed, two properties of the heuristic are of 
interest: the computation time and the quality of the derived solution. 
The computation time is the time a computer needs to calculate a solution based on the 
heuristic for a given problem instance. The tests show that a solution based on the heuristics 
can be calculated in real time or within several seconds for both problem types (RTJP and 
RMJP). So the computation time is not a critical factor for real world applications of the 
heuristics. For this reason, the computation time is not measured or further analyzed in this 
section. 
The second property, i.e. the quality of the solution, has to be further specified: A heuristic 
can not deliver an optimal solution in general, but it should calculate a good solution with an 
objective value which is close to the optimal objective value. A good heuristic provides a 
solution with a small gap between the objective value of the solution and the optimal 
objective value. Unfortunately, the optimal objective value is not known for a given instance 
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and this gap can not be measured directly. Therefore, a lower bound for the optimal objective 
value is calculated (see section 7). The quotient of the objective value of the solution derived 
by the heuristic and the lower bound is used as a measurement for the quality of the heuristics. 
Figure 12 summarizes the tests for the RTJP and Figure 13 contains the test results for the 
RMJP. In both tables, the first three columns characterize the eight different test cases (see 
section 9.1). Each case is tested with five instances and for each instance, the quotient of the 
objective value derived by the heuristic and the lower bound is calculated. Column 4 and 5 
contain the average of the five quotients of each test case for the respective heuristic. The 
heuristics are evaluated with the lower bound LB developed in section 7. In order to get an 
impression of the quality of this lower bound LB, it is tested with the trivial lower bound 

1

*
J

j j
j

LB p r
=

= ⋅
O

 using the same principles as for the evaluation of the heuristics. LB* is 

obviously a lower bound for the objective value, because the release date is by definition a 
lower bound for the starting time of a job. Column 6 contains the outcome of this evaluation. 
The original test data is stored on the CD attached to this thesis. 
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      Figure 12: Computational results for the RJTP 
 
In the following statements, the analysis of the computational results for the RJTP is 
summarized: 
 

• The results show that both heuristics perform better for the first travel time setting. 
The heuristics provide very good results if the travel times are small with respect to 
the processing times of the jobs. If the travel times are large compared to the 
processing times, the results are still acceptable, but they are not as good as for the 
first setting of the travel times. This fact suggests, that one could try to improve the 
heuristics in such a way that the travel times are taken more into account than in the 
ERD-Heuristic or in the Quotient-Heuristic. 
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• It is interesting to see that the quotients do not differ a lot for the same travel time 

setting and the same number of jobs per hour, so the different time horizons do 
obviously not influence the performance of the heuristics. Although the difference 
becomes larger for the second travel time setting in a busy system (30 jobs per hour), 
it can be concluded for the RJTP that the time horizon seems not to be one of the key 
parameters for the performance of the heuristics. 

 
• The level of work seems to be a relevant parameter: In every setting, the quotient of 

the objective value determined by the heuristic and LB increases considerably when 
the number of jobs per hour is increased. This fact suggests that the heuristics are 
better for systems in which there is not much work to do than for busy systems. A 
further reason for this effect could be that for instances representing a busy system, the 
lower bound LB is probably not as close to the optimal objective value as for the other 
systems. With more jobs per hour, there are more constraints making the feasible 
region smaller. This fact is not taken into account when the lower bound LB is 
determined. 

 
• The quotients in the last column, which are all close to 1, express the relation between 

the lower bound LB from section 7 and the trivial lower bound LB*. The bounds are 
very close to each other, so the bound LB is not a very strong lower bound and should 
be improved. But when the heuristics are evaluated with a lower bound which is too 
small, the performance of the heuristic is obviously better than it is suggested by the 
values in Figure 12. 
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      Figure 13: Computational results for the RMTP 
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The following statements contain an analysis of the computational results for the RMTP: 
 

• While the travel time setting causes differences in the performance of the RJTP test 
series, the influence of the travel time setting in the RMJP is not really relevant. The 
performance is even better in some cases when the travel time is larger. One reason for 
this behaviour of the heuristics could be that the inter-crane interference constraints 
which are not relevant for the RTJP, condition the crane movement stronger than the 
travel times. 

 
• As in the test series for the RTJP, it can be observed that the different time horizons do 

not have much influence on the performance of the heuristics. Although the difference 
becomes larger for the test series in the last row of Figure 13, the time horizon seems 
not to be an important parameter for the heuristics. 

 
• When the number of jobs per hour is increased, the same effect can be observed as in 

the RJTP test series and the same argumentation holds. 
 

• The quotient of the lower bounds LB and LB* is nearly equal to 1 for the test series 
with the first travel time setting and for the two test series with the second travel time 
setting and the large time horizon. This fact underlines the thesis that the lower bound 
LB is not very strong and should be improved. With the second travel time setting and 
the short planning horizon, the quotient of the lower bounds is greater than 2 and the 
heuristic solutions are acceptable for both levels of work. These are the only test series 
for which the calculation of the lower bound LB leads to a real improvement in the 
analysis of the results. 

 
The computational results for both problem types (RTJP and RMJP) show in all test series 
that there is no difference in the performance of the ERD-Heuristic and the Quotient-
Heuristic. Therefore, it is enough to run one of them for practical applications. If the problem 
instances have a special structure, it could make sense to prefer one of the heuristics, but for 
arbitrary instances, it does not matter which one is chosen.  
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10. Special Cases 
 
In this section, two special cases of the problems presented in section 3 are discussed. It is not 
intended to find a new solution procedure for these special cases. They are just discussed to 
provide a better understanding for the problems. 
 
 

10.1 K = 1 
 
For a container yard in which only one crane is available, the problems RTJP and RMJP as 
well as the problems RTWP and RMWP are equivalent, because no inter-crane interference 
constraints have to be considered. For practical applications, the different travel time settings 
have to be taken into account: In the RTJP or in the RTWP, horizontal and vertical 
movements are possible, which differ in their travel effort (see the test cases in section 9). In 
the RMJP and in the RMWP, only horizontal moves within a yard zone are possible. But for a 
given travel time matrix ( ) 1,...,

1,...,
l Llm
m L

τ =
=

, the mathematical formulation of the RTJP and the RMJP 

coincide for 1K =  and the problems can be tackled by the same heuristics. This also holds for 
the RTWP and the RMWP. It is hard to find a solution procedure which provides an optimal 
solution for this special case, because the proof in section 4 and the proof in [2] are done for 
this case. Therefore, the problem is NP-hard in the strong sense for the job model and for the 
workload model even if K is equal to 1.  
Ng and Mak propose in [14] a branch and bound algorithm for this problem with another 
objective function. They try to minimize the sum of the job waiting times. 
The problem formulation developed in section 3 could be simplified for 1K = , but for only 
one crane, it seems to be reasonable to formulate the problem with other variables. An 
alternative formulation for the problem is presented below. The formulation is based on the 
ideas of the formulation in [14]. 
Let js  be the starting time of job j and 

 
  1 if job i is handled before job j 

ijx =  

  0 else 
 
With these variables, the problem can be formulated as follows: 
 

Min 
1

J

j j
j

p s
=

⋅
O

 

  
subject to 
 
(1) j js r≥      for j = 1, … , J 

(2) ( ), 1
i jj i l l i ijs s p M xτ− ≥ + − ⋅ −  for i, j = 1, … , J: i j≠  

(3) 1ij jix x+ =     for i, j = 1, … , J: i j≠  

(4) { }0,1ijx ∈     for i, j = 1, … , J: i j≠  
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(5) 0js ≥ , integer    for j = 1, … , J 

  
The objective is the minimization of the weighted sum of starting times of the jobs as in the 
models of section 3. Constraint (1) guarantees that every job is started at or after its release 
date. Constraint (2) ensures that a job j can only be started when its predecessor has been 
completed and the crane has reached the location of job j. Constraint (3) guarantees that either 
job i is processed before job j or job j is processed before job i. This formulation is simpler 
than the formulation of section 3 and can be handled better. The special case, in which only 
one crane is available, could be relevant in practice for small container terminal systems. 
 
 

10.2 pj = 1      
 
When the jobs in a container yard are very similar and the processing times are small 
compared to the travel times of the cranes, a special case with small, constant processing 
times could be relevant in practice. 1jp =  for all jobs is the easiest case of constant 

processing times. Moreover, this special case is also interesting from a theoretical point of 
view. When 1jp =  for j = 1, … , J, each job is completed in the same time period in which it 

is started. Therefore, all constraints which ensure that a job can not be interrupted if it is 
started once can be neglected. That means that the job model and the workload model 
coincide in this special case. Therefore, each instance for the job model can be transferred into 
an instance for the workload model and visa versa without loosing information. A job model 
instance can be transformed into a workload model instance by the following setting: 

 

{ }
:

: ,
j

j

lt j j j
j l l
r t

w p j J l l r t
=
=

= = ∈ = =
>

 

 
When a workload model instance should be transformed into an instance for the job model, 
then the jobs and the job characteristics are determined as follows: 
 
 For l = 1 to L do 
 
  For t = 1 to T do 
   
   Generate ltw  jobs with 

• 1jp =  

• jr t=  

• jl l=  

 

Such an instance for the job model would have 
1 1

L T

lt
l t

J w
= =

=
>
>

 jobs. While this transformation 

is possible for an arbitrary instance, the transformation of a job model instance into a 
workload model instance without loosing information is only possible in this special case. 
Besides the two models, the two heuristics developed in section 6.1 also coincide if 1jp =  for 
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j = 1, … , J, because sorting the jobs such that 1j jr r +≤  for  j = 1, … , J - 1 is equivalent to 

sorting the jobs such that 
1

1 1

j jr r +

≥  for  j = 1, … , J - 1 .    

The statements above hold for the RTJP and the RTWP as well as for the RMJP and the 
RMWP. 
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11. Conclusion 
 
This diploma thesis examines logistic problems occurring in a container terminal. The thesis 
focuses on the scheduling of cranes handling containers in a port. Two problems are discussed 
in detail: the yard crane scheduling of rubber-tired gantry cranes (RMGC) which move freely 
among the container blocks, and the scheduling of rail-mounted gantry cranes (RMGC) which 
can only move within a yard zone. The problems are formulated as integer programs. For 
each of the two problems discussed, two models are presented: In one model, the crane tasks 
are interpreted as jobs with release times and processing times while in the other model, it is 
assumed that the tasks can be modeled as generic workload measured in crane minutes. It is 
shown that the problems are NP-hard in the strong sense. Heuristic solution procedures are 
developed and evaluated by numerical results. Further ideas which could lead to other 
solution procedures are presented and some interesting special cases are discussed. 
The computational experiments show that both heuristics developed in this thesis could be 
improved. One drawback of both algorithms is that in each iteration only one job, i.e. the next 
job to be scheduled, is considered. It could be an interesting approach to consider more jobs 
simultaneously in order to minimize the travel effort of the cranes and to get more efficient 
solutions. Another outcome of the experiments is that is seems to be likely to find a better 
lower bound than the one presented in section 7. This would lead to a more accurate 
evaluation of the heuristics. Beside the problems discussed in this thesis, modified problem 
formulations could be an interesting field for further studies. It might be interesting for some 
practical applications to work with other objective functions or to take due dates of jobs into 
account. The scheduling of cranes within the container yard is only one part of the workflow 
in a container terminal. Further research on other logistic problems in an container yard,     
e.g. the loading and unloading of ships at the quayside, the scheduling of the internal trucks or 
all the location problems occurring in the container yard, would help to improve the workflow 
and the turnaround times of container terminals. 
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