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Abstract

In this paper we introduce a derivative-free, iterative method for solving nonlinear ill-
posed problems Fx = y, where instead of y noisy data yδ with ‖y − yδ‖ ≤ δ are given and
F : D(F ) ⊆ X → Y is a nonlinear operator between Hilbert spaces X and Y . This method
is defined by splitting the operator F into a linear part A and a nonlinear part G, such
that F = A + G. Then iterations are organized as Auk+1 = yδ − Guk. In the context of
ill-posed problems we consider the situation when A does not have a bounded inverse, thus
each iteration needs to be regularized. Under some conditions on the operators A and G we
study the behavior of the iteration error. We obtain its stability with respect to the iteration
number k as well as the optimal convergence rate with respect to the noise level δ, provided
that the solution satisfies a generalized source condition. As an example, we consider an
inverse problem of initial temperature reconstruction for a nonlinear heat equation, where the
nonlinearity appears due to radiation effects. The obtained iteration error in the numerical
results has the theoretically expected behavior. The theoretical assumptions are illustrated
by a computational experiment.
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1 Introduction

Let us consider a nonlinear inverse problem represented by the operator equation

Fu = y, (1)

with a nonlinear operator F : D(F ) ⊆ X → Y acting between some Hilbert spaces X and Y . The
inner product and the corresponding norm on each of these spaces will be denoted by (·, ·) and
‖ · ‖, respectively. It will be always clear from the context which space is considered.

We assume that (1) possesses a solution û, and this solution is unique at least in some ball
around û. We are interested in the case when (1) is ill-posed, i.e., the solution of (1) does not
depend continuously on the data y. In particular, given noisy data yδ, such that ‖y− yδ‖ ≤ δ, the
equation

Fu = yδ (2)

can have no solution, and even if the solution exists, its distance to û can be arbitrary large. Thus,
special methods, so-called regularization methods, are required for stabilizing (2) [8, 14, 10, 26].

There are basically two approaches to the regularization of (2).

Approach 1 (“regularization first”): Instead of the ill-posed nonlinear equation (2) one
considers some family of well-posed nonlinear equations

Fαu = yδ, (3)

with solutions {uα} depending on the regularization parameter α, and searches for such α = α(δ)
that the norm ‖û− uα‖ takes the (order-)optimal value with respect to the noise level δ. Realiza-
tions of this approach are Tikhonov regularization [32, 9, 20, 28], Lavrentiev regularization [31],
and the general regularization scheme introduced by Tautenhahn [29].

Approach 2 (“linearization first”): Here the operator F is approximated by some linear
operator Lv

Fu ≈ Lvu+ bv, (4)

which can depend on the point v ∈ X around which the linearization is made. One of the frequently
used linearization schemes involves the Fréchet derivative of F . In this case Lv = F ′

v := F ′(v) and
bv = Fv − F ′

vv. Having (4), one associates with (2) the following iterative procedure

Luk
uk+1 = yδ − buk

, k = 0, 1, . . . (5)

Frequently, the linearization of nonlinear ill-posed equations also leads to ill-posed equations.
That’s why each iteration (5) needs to be regularized. Thus, instead of (5) one has to consider

Lαuk
uk+1 = yδ − buk

, k = 0, 1, . . . , (6)

where Lαuk
is some regularized approximation of Luk

. But in (5) the noise of the right hand side
is uncontrollable, because in addition to the data noise we have the linearization error that is
unknown. Thus, within each iteration (6) it is impossible to choose the regularization parameter
α in such a way that the solutions of (6) would converge to the solution of the linearized equation
as δ → 0, because for such a choice the knowledge of the noise level is required [3]. The way out of
this situation is known as iterative regularization. It was proposed by Bakushinskii [4] and studied
in [5, 13, 12, 7]. The idea is to choose a sequence of regularization parameters {αk} that satisfies

1 ≤ αk
αk+1

≤ C, lim
k→∞

αk = 0,

with some constant C > 1. Then the iteration procedure (6) runs with this sequence and the
iteration number k is used as a regularization parameter.

In this paper we propose another approach for regularizing (2). We show, that for linearizations
satisfying some conditions it is possible to choose the regularization parameter within each iteration
in such a way that it will guarantee stability of the iterative process. Namely, the iteration error
‖û− uk‖ will decrease until some level and then remains below this level. Such a stable behavior
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is unusual for iterative processes used for ill-posed nonlinear equations, where one has to stop
iterations somewhere to avoid error explosion.

We consider a linearization of the operator F achieved by its splitting into a linear part A and
a nonlinear part G, i.e.,

Fu = Au+Gu. (7)

This splitting suggests a fixed-point iteration for solving (2):

Auk+1 = yδ −Guk. (8)

We are especially interested in the case when the operator A does not have a bounded inverse.
Thus, each fixed-point iteration (8) needs to be regularized. Within the framework of the general
regularization scheme [8, p. 71] a regularization method is generated by some operator valued
function α→ gα(A∗A), and the regularized approximate solution of (8) is given by choosing some
α = α(δ, k) and letting

uk+1 = gα(A∗A)A∗(yδ −Guk). (9)

The paper is organized as follows. In Section 2 we derive an estimate for the iteration error
‖û−uk+1‖. The similarity of this estimate to the regularization error for linear problems allows the
application of the recently proposed adaptive strategy [18, 24], which is done in Section 3. Under
the general smoothness assumptions for the solution û, we are able to show that the iterative
process (9) gives the order-optimal convergence rate with respect to the noise level δ. We show
also that the error behavior is stable with respect to the iteration number k. The a-priori choice of
the regularization parameter is discussed in Section 4. This choice allows to obtain similar results
under more relaxed assumptions on the nonlinearity. In Section 5 we consider an inverse problem
of the initial temperature reconstruction for a nonlinear heat equation where the splitting (7)
naturally arises. We consider specifically the heat equation including radiation effects. In this case
the application of standard methods involving Fréchet derivatives is quite complicated, thus the
proposed splitting is an attractive alternative. Numerical results show the theoretically predicted
error behavior. The assumptions on the nonlinearity used in the theoretical considerations are
illustrated by a computational experiment. We give some final remarks in Section 6.

2 Structure of the Iteration Error

In (7) we restrict ourselves to the case of the compact operator A with infinite dimensional range.
Then, A admits a singular value decomposition

Ax =

∞
∑

k=1

sk(x, vk)wk,

here {vk} ⊂ X, {wk} ⊂ Y are some orthonormal systems, and a sequence {sk} is such that it holds
sk > 0, sk → 0 as k → ∞. Then,

gα(A∗A)x =
∞
∑

k=1

gα(s2k)(x, vk)vk.

Set a = ‖A‖2. Following [8, p. 72-74], we assume that for the family {gα} there are positive
constants γ1, γ2, γ3 and µ such that for all t ∈ [0, a] it holds that

|t gα(t)| ≤ γ1, (R1)

|
√
t gα(t)| ≤ γ2√

α
, (R2)

|1 − t gα(t)| tµ ≤ γ3 α
µ. (R3)

Example. For the famous Tikhonov-Phillips regularization the function gα(t) has the following
form

gα(t) =
1

α+ t
.

Then (R1)-(R3) are satisfied with γ1 = 1, γ2 = 1/2, γ3 = 1, µ = 1.
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Observe that the error ‖û− uk+1‖ of the iteration process (9) can be represented as

‖û− uk+1‖ = ‖û − gα(A∗A)A∗(yδ −Guk)‖
≤ ‖ (I − gα(A∗A)A∗A)û ‖+

‖gα(A∗A)A∗(y − yδ)‖+
‖gα(A∗A)A∗(Gû−Guk)‖.

(10)

Due to the property (R2), the so-called stability term ‖gα(A∗A)A∗(y − yδ)‖ can be estimated as

‖gα(A∗A)A∗(y − yδ)‖ ≤ γ2√
α
δ. (11)

To simplify the notations we introduce λ(α) =
√
α

γ2
. From [27] it follows that a non-trivial estimate

of the approximation error ‖ (I − gα(A∗A)A∗A)û ‖ can only be obtained under an additional
assumption regarding the smoothness of the solution û. The most general form of such an as-
sumption is known as generalized source condition and means that the solution û belongs to the
set

Aϕ = {x ∈ X |x = ϕ(A∗A)v, ‖v‖ ≤ 1}, (12)

where ϕ : [0, a] → R+ is the so-called index function, which we assume to be continuous, increasing
and satisfying ϕ(0) = 0. We also assume that ϕ satisfies the so-called ∆2 condition, i.e., there is
some constant C such that

ϕ(2t) ≤ C · ϕ(t) (13)

for all t ∈ [0, a/2].

Example. For simpler notation we use the asymptotic binary relation a(t) ³ b(t), i.e., there exist
some constants β1, β2 > 0 such that

β1b(t) ≤ a(t) ≤ β2b(t).

Index functions ϕ(t) ³ tν , ν > 0 are frequently used. In this case one says that the problem
of recovering the solution, which satisfies corresponding source condition (12), is moderately ill-
posed. Other frequently used index functions are ϕ(t) ³ log−ν 1

t
, ν > 0, which give rise to severely

(exponentially) ill-posed problem.

One more assumption is borrowed from [18] and describes the interplay of the index function
ϕ and the function gα generating the regularization method. We assume that there is a constant
γµ > 0 such that

γµ · αµ

ϕ(α)
≤ inf
t∈[α,a]

tµ

ϕ(t)
, α ∈ (0, a], (14)

where µ is the constant from (R3).

Example 1. Condition (14) is satisfied for gα taken as in the Tikhonov-Phillips regularization and
ϕ(t) ³ log−ν 1

t
. This means, in particular, that for severely ill-posed problems, Tikhonov-Phillips

regularization gives order-optimal accuracy, which was already pointed out in [23].

As it has been proven in [18] for any ϕ meeting (14) the following inequality holds true

sup
t∈(0,a]

|1 − t gα(t)|ϕ(t) ≤ γ3

γµ
· ϕ(α), α ∈ (0, a].

To simplify the notation we will deal with ψ(α) = γ3
γµ

· ϕ(α). Then, the approximation error can

be estimated as
‖(I − gα(A∗A)A∗A)û‖ ≤ sup

t∈(0,a]

|1 − t gα(t)|ϕ(t) ≤ ψ(α). (15)

The third term in (10) depends on the interaction of the linear and nonlinear components of
the splitting (7). To estimate it we introduce the following assumption:

Assumption. For any u ∈ Br(û) = {x ∈ X | ‖x− û‖ ≤ r} there is v(u) ∈ X such that

Gû−Gu = Av(u), (A1)

‖v(u)‖ ≤ ρ ‖û− u‖, (A2)
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where ρ > 0 is some constant.

The essence of the imposed assumption is that Gû − Gu lies always in the range of the operator
A. This ensures well-posedness of the iteration steps in the procedure (8) applied for the noise-free
data y.

This assumption leads to the estimate

‖gα(A∗A)A∗(Gû−Guk)‖ ≤ γ1ρ‖û− uk‖. (16)

Combining (11), (15) and (16) we obtain

‖û− uk+1‖ ≤ ψ(α) +
δ

λ(α)
+ γ1ρ‖û− uk‖. (17)

This estimate will be used for analysing the behavior of the iteration error. It is clear that due to
the data noise, ‖û− uk+1‖ can not go to zero. In the case when our initial guess is the solution û
itself the data noise in the equation

Au = yδ −Gû

does not allow the exact reconstruction. Under rather general conditions on the operator A and
the index function ϕ, [18, Theorem 1] gives the best possible order of accuracy b(δ) = ϕ(θ−1(δ)),
that can be guaranteed for the recovery of the solution û ∈ Aϕ from this noisy equation. Here
θ(t) =

√
t ϕ(t).

Example. For moderatively ill-posed problems the best possible order of accuracy is b(δ) ³ δ
ν

ν+1/2 ,
as it can be easily checked. For severely ill-posed problems b(δ) ³ log−ν 1

δ
and we refer to [16, 30]

for details.

In the following it will be shown that the order b(δ) can be reached by the regularized fixed-point
iteration (9) with properly chosen regularization parameters.

3 Adaptive Choice of the Regularization Parameters

In view of estimate (17) it would be reasonable to choose the regularization parameters α
(k+1)
opt

such that

ψ
(

α
(k+1)
opt

)

+ γ1ρ‖û− uk‖ =
δ

λ
(

α
(k+1)
opt

) . (18)

Let us denote by αopt the regularization parameter satisfying

ψ(αopt) =
δ

λ(αopt)
. (19)

This choice corresponds to the situation when ‖û− uk‖ = 0.

Proposition 1. It holds that α
(k+1)
opt ≤ αopt.

Proof. This inequality follows from the monotonicity of ψ, λ and the obvious relation

ψ
(

α
(k+1)
opt

)

λ
(

α
(k+1)
opt

)

≤ ψ
(

α
(k+1)
opt

)

λ
(

α
(k+1)
opt

)

+ γ1ρ‖û− uk‖λ
(

α
(k+1)
opt

)

= ψ(αopt)λ(αopt).

Lemma 1. There is a constant cψ > 0 such that

ψ(αopt) < cψb(δ).

Proof. Note that b(δ) = ϕ(ᾱ) with ᾱ satisfying
√
ᾱϕ(ᾱ) = δ.

On the other hand, by definition

√
αoptϕ(αopt) =

γ2 γµ
γ3

δ.
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If
γ2 γµ

γ3
≤ 1, then due to the monotonicity of

√
tϕ(t) we get that αopt ≤ ᾱ and

ψ(αopt) =
γ3

γµ
ϕ(αopt) ≤

γ3

γµ
ϕ(ᾱ) ≤ cψb(δ),

with cψ = γ3
γµ

. If
γ2 γµ

γ3
> 1 then we have αopt > ᾱ and proceed as

ψ(αopt) =
γ2δ√
αopt

≤ γ2δ√
ᾱ

= cψb(δ)

with cψ = γ2.

There are two difficulties in choosing α
(k+1)
opt . The first one is connected with the index function

ψ that is usually unknown. The same difficulty appears for linear problems. The second difficulty
is due to the nonlinearity. It is connected with a lack of knowledge of the previous iteration
error ‖û− uk‖. In recent papers [18, 24] a parameter choice criterion for linear problems has been
introduced that adapts automatically to the unknown index function. It appears that this criterion
can also be used for adaptation to the unknown term in the left hand side of (18).

As usual, we choose a regularization parameter from the following discrete set

∆q
m = {αi = α0q

i | i = 0, 1, . . . ,m}, q > 1. (20)

Then, on the (k + 1)-th iteration we compute regularized solutions

uαi

k+1 := gαi
(A∗A)A∗(yδ −Guk), (21)

for each αi ∈ ∆q
m. Consider the following two subsets of ∆q

m

Mk
∗ (∆q

m) :=
{

α ∈ ∆q
m

∣

∣

∣ψ(α) + γ1ρ‖û− uk‖ ≤ δ
λ(α)

}

,

Mk
+(∆q

m) :=
{

αi ∈ ∆q
m

∣

∣

∣ ‖uαi

k+1 − u
αj

k+1‖ ≤ 4 δ
λ(αj)

, j = 0, 1, . . . , i− 1
}

,

(22)

and denote
α

(k+1)
∗ := maxMk

∗ (∆q
m),

α
(k+1)
+ := maxMk

+(∆q
m).

The regularization parameter α
(k+1)
∗ can be considered as the best approximation for α

(k+1)
opt from

the set ∆q
m. But in contrast to the parameter α

(k+1)
+ it can not be determined. Note, that the

error produced by u
α

(k+1)
opt

k+1 is estimated as

‖û− u
α

(k+1)
opt

k+1 ‖ ≤ 2
(

ψ
(

α
(k+1)
opt

)

+ γ1ρ‖û− uk‖
)

.

We show that the error estimate for uk+1 := u
α

(k+1)
+

k+1 is worse only by a constant factor.

Lemma 2. Let Mk
∗ (∆q

m) be a proper subset of ∆q
m, i.e., Mk

∗ (∆q
m) 6= ∅ and ∆q

m \M∗(∆
q
m) 6= ∅.

Then it holds that
‖û− uk+1‖ ≤ 3

√
q · 2

(

ψ
(

α
(k+1)
opt

)

+ γ1ρ‖û− uk‖
)

.

Proof. The proof is based on Theorem 1.1 from [24]. Let {s, t} ⊂ {0, 1, . . . ,m} are such indexes
that

α
(k+1)
∗ = αs

α
(k+1)
+ = αt.

We claim that αs ≤ αt. For this, it is sufficient to show that Mk
∗ (∆q

m) ⊂ Mk
+(∆q

m). Indeed, for
any αi > αj such that {αi, αj} ⊂Mk

∗ (∆q
m) we have

‖uαi

k+1 − u
αj

k+1‖ ≤ ‖û− uαi

k+1‖ + ‖û− u
αj

k+1‖

≤ ψ(αi) + γ1ρ‖û− uk‖ + ψ(αj) + γ1ρ‖û− uk‖ + δ
λ(αi)

+ δ
λ(αj)

≤ 2δ
λ(αi)

+ 2δ
λ(αj)

≤ 4δ
λ(αj)

.
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Thus, Mk
∗ (∆q

m) ⊂ Mk
+(∆q

m) and that’s why αs ≤ αt. From the definition of αs it follows that for
αs+1 = qαs

(ψ(αs+1) + γ1ρ‖û− uk‖)λ(αs+1) > δ =
(

ψ
(

α
(k+1)
opt

)

+ γ1ρ‖û− uk‖
)

λ
(

α
(k+1)
opt

)

.

Since the functions ψ and λ are increasing, we get that αs+1 ≥ α
(k+1)
opt and

λ
(

α
(k+1)
opt

)

=
1

γ2

√

α
(k+1)
opt ≤ 1

γ2

√
qαs =

√
qλ(αs).

Now we get the desired estimate of the iteration error for uk+1

‖û− uk+1‖ = ‖û− uαt

k+1‖ ≤ ‖û− uαs

k+1‖ + ‖uαs

k+1 − uαt

k+1‖

≤ ψ(αs) + γ1ρ‖û− uk‖ + δ
λ(αs) + 4 δ

λ(αs)

≤ 6 δ
λ(αs) ≤ 6

√
q δ

λ
“

α
(k+1)
opt

”

= 3
√
q · 2

(

ψ
(

α
(k+1)
opt

)

+ γ1ρ‖û− uk‖
)

.

Theorem 1. Let gα fulfill (R1)-(R3). Further, assume that conditions (A1),(A2) are satisfied
with ρ < 1

6γ1
, where γ1 is the constant from (R1). Consider uk+1 = gα(A∗A)A∗(yδ − Guk),

α = α
(k+1)
+ = maxMk

+(∆q
m) with 1 < q <

(

1
6γ1ρ

)2

. If û ∈ Aϕ and ϕ meet (13),(14) then there

exist constants σ ∈ (0, 1), K ∈ N, c > 0 such that:

‖û− uk+1‖ ≤ σk+1‖û− u0‖, for all k ≤ K;

‖û− uk+1‖ ≤ c · b(δ), for all k > K.

Proof. Let us introduce

B >
6
√
qγ1ρ

1−6
√
qγ1ρ

,

c := 6
√
q (B + 1) cψ,

σ := 6
√
q B+1

B
γ1ρ < 1,

where cψ is the constant from Lemma 1. We show that for such c and σ the statement of the
theorem holds true.

As long as the iteration error ‖û− uk‖ of k-th iteration is so large that it holds

ψ
(

α
(k+1)
opt

)

≤ 1

B
γ1ρ‖û− uk‖,

the iteration error of the next iteration can be estimated as

‖û− uk+1‖ ≤ 6
√
q
(

ψ
(

α
(k+1)
opt

)

+ γ1ρ‖û− uk‖
)

≤ 6
√
qB+1

B
γ1ρ‖û− uk‖

= σ‖û− uk‖,
and we observe error decrease.

Let K be the iteration number when for the first time

ψ
(

α
(K)
opt

)

>
1

B
γ1ρ‖û− uK−1‖.

Then in view of Proposition 1 and Lemma 1 the iteration error ‖û− uK‖ is bounded by

‖û− uK‖ ≤ 6
√
q
(

ψ
(

α
(K)
opt

)

+ γ1ρ‖û− uK−1‖
)

≤ 6
√
q(B + 1)ψ

(

α
(K)
opt

)

≤ c · b(δ). (23)
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Now we show by induction that for all l ≥ K the bound (23) holds. The basis of induction for
l = K holds true. For some l > K assume

‖û− ul‖ ≤ c · b(δ).

Then for the error of the (l + 1)-th iteration we have the estimate

‖û− ul+1‖ ≤ 6
√
q
(

ψ
(

α
(l+1)
opt

)

+ γ1ρ‖û− ul‖
)

≤ 6
√
q(ψ(αopt) +B σ cψ b(δ) )

≤ c · b(δ),

as claimed.

4 A-priori Choice of the Regularization Parameter

Theorem 1 guarantees a stable behavior of the iteration process (9) under two conditions, where
the first one is connected with the constant ρ in (A2). For Tikhonov-Phillips regularization, when
γ1 = 1, this condition reads as 0 < ρ < 1/6. It is interesting to note that if A has a bounded
inverse then the convergence of (8) can be guaranteed under the mild assumption that 0 < ρ < 1.
In this case

‖û− uk+1‖ ≤ δ‖A−1‖1 − ρk+1

1 − ρ
+ ρk+1‖û− u0‖.

Thus, the stronger requirement ρ < 1/6 could be seen as a “payment” for dealing with an ill-posed
problem. But as we will see below, it is just a payment for the lack of knowledge of the solution
smoothness, or a payment for adaptation.

Indeed, if the index function ϕ in (12) is known, then one can take a-priori any α = α̃ such
that

β1
δ

λ(α̃)
≤ ψ(α̃) ≤ β2ψ(αopt), (24)

where β1, β2 > 0 do not depend on δ. If this value of the regularization parameter is fixed for all
iterations, then the iteration process (9) exhibits the same behavior as in Theorem 1 under the
assumption that 0 < ρ < 1

γ1
. For Tikhonov-Phillips regularization it reads as 0 < ρ < 1.

Theorem 2. Assume gα fulfill (R1)-(R3). Further, assume that conditions (A1),(A2) are satisfied
with ρ < 1

γ1
, where γ1 is the constant from (R1). Consider uk+1 = gα̃(A∗A)A∗(yδ −Guk), where

α̃ satisfies (24). If û ∈ Aϕ and ϕ meet (13),(14), then there exist constants σ ∈ (0, 1), K ∈ N,
c > 0 such that:

‖û− uk+1‖ ≤ σk+1‖û− u0‖, for all k ≤ K;

‖û− uk+1‖ ≤ c · b(δ), for all k > K.

Proof. Let us introduce
B > γ1ρ

1−γ1ρ
,

c := (B + 1)
(

1 + 1
β1

)

β2 cψ,

σ := B+1
B

γ1ρ < 1,

where β1, β2 are from (24) and cψ is from Lemma 1. We show that with such chosen constants
the statement of the theorem follows. Indeed, as long as

ψ(α̃) +
δ

λ(α̃)
≤ 1

B
γ1ρ‖û− uk‖,

we have the estimate

‖û− uk+1‖ ≤ ψ(α̃) + δ
λ(α̃) + γ1ρ‖û− uk‖

≤ σ‖û− uk‖,
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and error decrease follows. Now let K be the iteration number when for the first time

ψ(α̃) +
δ

λ(α̃)
>

1

B
γ1ρ‖û− uk‖.

Then we have the estimate

‖û− uK‖ ≤ ψ(α̃) + δ
λ(α̃) + γ1ρ‖û− uK−1‖

≤ c · b(δ).

Similarly to the proof of Theorem 1 we obtain the desired bound for all k > K by induction.

Remark 1. We would like to note an important consequence of the above result for severely ill-posed
problems. This is of special interest for us, since we will consider an application of the iterative
process (9) to one of the inverse heat conduction problems, which are known to be severely ill-
posed. For such problems ψ(α) ³ log−µ 1

α
with some µ > 0, which may be unknown. As it follows

from [11], even with unknown µ, the regularization parameter chosen a-priori as

α = c2δ
p, c2 > 0, 0 < p < 2,

meets (24) and gives the oder optimal accuracy.

5 Initial Temperature Reconstruction

for a Nonlinear Heat Equation

We now give an example of a nonlinear inverse problem where a splitting of the type (7) is quite
natural. Consider the heat equation

∂T

∂t
=
∂2T

∂z2
−B(T ), (25)

which describes the evolution of the temperature T (z, t) in some material in one space dimension
z ∈ [0, 1] during the time t ∈ (0, tf ]. The nonlinear function B(T ) represents the heat source or
sink. Equation (25) is additionally equipped with boundary and initial conditions

∂T

∂z
= 0 z ∈ {0, 1}, t ∈ (0, tf ],

T (z, 0) = u(z) z ∈ [0, 1].

(26)

In many cooling processes of hot materials, e.g., in glass cooling [25], polymer processing [21, 22],
the initial temperature is inaccessible. The only available data is the boundary temperature y at
some part of the boundary, i.e.,

y(t) = T (0, t), t ∈ [0, tf ].

Thus, letting F be the operator that maps the initial temperature u into the boundary temperature
y, we obtain an inverse problem of the type (1). We would like to note that this inverse problem
of the initial temperature reconstruction only from boundary measurements has been relatively
ignored in the literature. In the case of the linear heat equation, we are aware only of the engineering
works [21, 22]. As it is pointed out in [21], in the existing publications concerning the initial
temperature reconstruction one usually uses some additional temperature measurements inside
the material. However, in the above mentioned applications such data is unavailable. To our
knowledge, [25] is the first work where this inverse problem is considered for a nonlinear heat
equation. The approach proposed in [25] consists in applying a splitting of the operator F of the
type (7). To present this splitting, consider for a moment a linear heat equation

∂T

∂t
=
∂2T

∂z2
− b(z, t) (27)

with conditions (26). Let us examine an operator L that maps both u and b into the boundary
temperature y. Then, the inverse problem for u reads as

L(u, b) = y. (28)

9



This problem is still nonlinear, but using the affine decomposition [6]

L(u, b) = L(u, 0) + L(0, b), (29)

one obtains the linear problem for u

L(u, 0) = y − L(0, b).

Note, that the nonlinear source term B in (25) can be considered as dependent on the initial
temperature. Indeed, let S denote the solution operator of equation (25) that maps u into T .
Then,

B(T ) = B(S(u) ) =: B(u).

Thus, the affine decomposition (29) suggests the following splitting of F

Fu = L(u,B(u)) = L(u, 0) + L(0,B(u))
= Au+Gu,

with
Au := L(u, 0),
Gu := L(0,B(u)).

(30)

For checking the numerical performance of the iterative process (9), we take a specific example
of the heat equation (25) that models cooling of a hot glass plate. It is well-known that for
processes involving high temperatures, heat radiation needs to be taken into account. We consider
the situation when the glass can be assumed to be a grey material. Then, equation (25) has the
following form (see, e.g., [19, p. 714])

∂T

∂t
=
∂2T

∂z2
− κ






4σT 4 − 2π

∫

[−1,1]

Idµ






, (31)

where κ is the absorption coefficient — material characteristic responsible for the influence of
radiation effects; σ = 5.67051 ·10−8 is the dimensionless Stefan-Boltzmann constant. The function
I = I(z, µ) is the so-called radiative intensity that depends on the position z and on the direction
coordinate along the plate thickness µ ∈ [−1, 1]. This function is related to the temperature
through the radiative transfer equation that for glass cooling processes [15] can be taken as

µ
∂I

∂z
= κ

(σ

π
T 4 − I

)

. (32)

We assume that it is equipped with the so-called black surface boundary conditions [19, p. 309]

I(0, µ) = σ
π
T 4
a , µ > 0

I(1, µ) = σ
π
T 4
a , µ < 0

(33)

where Ta is the ambient temperature.
Although equations (31) and (32) are coupled, equation (31) can still be seen as a particular

case of (25). The source term B in this case depends on the temperature in a nonlinear and
especially nonlocal way. In the Appendix we outline a numerical treatment of (31)-(32) that is
used for calculating Fu and Gu.

It is well-known, that inverse problems associated with parabolic problems are severely (expo-
nentially) ill-posed [6, 11]. Thus, in our case each iteration (8) is a severely ill-posed operator equa-
tion. According to Example 1, Tikhonov-Phillips regularization is appropriate for such problems.
That’s why in the regularized procedure (9) we take gα(t) = 1

α+t . Then (9) can be alternatively
written as

(αI +A∗A)uk+1 = A∗(yδ −Guk). (34)

The numerical solution of equation (34) requires its discretization. We will use a Galerkin
method for this purpose. It requires a collection of finite dimensional subspaces {XN} such that

dimXN = N and
∞
⋃

N=1

XN = X. For the problem under consideration, the Hilbert space X

10



consists of functions u that are used as initial conditions in (26). We take X = L2(0, 1). Let
{ϕi}Ni=1 be a basis of XN . For a fixed discretization parameter N , the Galerkin approximate

solution uNk+1 =
N
∑

j=1

cj ϕj of (34) is found by solving the linear system

α
N
∑

j=1

cj (ϕj , ϕi) +
N
∑

j=1

cj (Aϕj , Aϕi) = (yδ −Guk, Aϕi), i = 1, ..., N. (35)

In our numerical experiments we increase N until some convergence criterion is satisfied, e.g.,

‖uNk+1 − uN−1
k+1 ‖

‖uN−1
k+1 ‖

< tol, (36)

where tol > 0 is a chosen tolerance.
The choice of the basis {ϕi} is suggested by the special structure of the operator A, namely its

relation to (27). It is easy to see that for u(z) = cos(π(i− 1)z), b(z, t) ≡ 0 the solution of (27) is

T (z, t) = cos(π(i− 1)z) · e−π2(i−1)2t. Thus,

A[ cos(π(i− 1)z) ] = e−π
2(i−1)2t.

Clearly, ϕi(z) = cos(π(i− 1)z) is a basis in L2(0, 1).

5.1 Numerical results

As it was pointed out in [17] for discretized problems one should consider the following modification
of the set Mk

+(∆q
m) from (22)

M̃k
+(∆q

m) :=

{

αi ∈ ∆q
m

∣

∣

∣

∣

‖uαi

k+1 − u
αj

k+1‖ ≤ 4 ε
δ

λ(αj)
, j = 0, 1, . . . , i− 1

}

,

where ε is a tuning parameter that depends on the problem and needs to be chosen by the user.
Making a lot of numerical experiments with different initial conditions and noise levels, we discov-
ered that for our problem ε = 0.07 is a good choice.

Now we present the numerical results for one initial temperature profile. Such a profile arises
frequently in practice when a piece of glass is cooled uniformly on both boundaries. It is constructed
in two steps. First, we consider the function

ûscl(z) = 1.5 +

8
∑

i=1

− 8

(2i)4
cos(π(2i)z).

Then we scale it such that its range is in the interval [800, 1200], i.e.,

ûscl = 800 + ( ûscl − min(ûscl) )
400

max(ûscl) − min(ûscl)
.

The considered range is a typical temperature range in Kelvin that appears in glass production.
Numerical results are presented in Figure 1 for two different noise levels 1% and 0.1% (de-

scription of the noise generation procedure is presented in Appendix). The monotone decrease of
the iteration error corresponds to Theorem 1. It was also observed, that the error remains the
same if the iterative process is performed further, which is predicted as well. We would like to
note the small number of iterations needed to achieve the stable stage of the process. The final
approximation is improved with the decrease of the noise.

5.2 Validation of assumptions by a computational experiment

One observes that there is quite strong and complicated coupling between (31) and (32). This makes
an analysis of the corresponding nonlinear operators F and G extremely complicated. That’s why
there is little hope that assumptions (A1)-(A2) can be checked analytically, and especially to obtain
a sharp estimate of the constant ρ in (A2). This situation is quite frequent in inverse problems
arising from real applications (see for example remark in [8, p. 284]). In a view of this, we decided
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Figure 1: Reconstruction of û for different noise levels.

to try the approach of the so-called “computational experiment” introduced in the late 80-th by the
Russian mathematician K. I. Babenko (see, e.g., [1, 2]). The idea is to design a numerical procedure
which could show that assumptions (A1)-(A2) are reasonable as well as giving an estimate on the
constant ρ. We propose the following procedure:

1. Generate randomly a certain amount M of function pairs {(u(j)
1 , u

(j)
2 ), j = 1...M}.

2. For each pair find v(j) such that

Av(j) = Gu
(j)
1 −Gu

(j)
2 . (37)

3. Compute

ρj =
‖v(j)‖

‖u(j)
1 − u

(j)
2 ‖

.

4. Finally, the quantity ρ̃ = max
j
ρj can be considered as an estimate of ρ in (A2).

In this procedure the most difficult part is step 2. In our case, the inverse of the operator
A is severely ill-posed. This makes a numerical solution of Au = y, even with unnoisy data y,
impossible without regularization due to round-off errors. In the case of (37), additional errors
will appear due to the discretization of G and these errors will be unknown. As it was pointed
out in [24], the noise-free analog of the adaptive criterion used in Section 3 corresponds to the
so-called quasi-optimality criterion, which was first introduced in [32]. It consists in choosing a

regularization parameter α
(k+1)
qo := αj such that

‖uαj

k+1 − u
αj−1

k+1 ‖ = min{‖uαi

k+1 − u
αi−1

k+1 ‖, i = 1, ...,m}. (38)

We will use this criterion for choosing the regularization parameter in (37).
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Let us describe now a possible realization of the step 1. The random functions will be taken

from the set of piecewise linear splines with Nd equidistant knots K :=
{

i
Nd−1 , i = 0, ..., Nd − 1

}

.

Since in the noise-free case all iterative solutions have the same value at z = 0 (uk(0) = y(0)), the
assumption (A1) is sufficient to check for functions û(0) = u(0). That’s why the spline set will be
also considered with this property

S(Nd, Tmid, Tstep, Nstep) =
{

s is a piecewise linear spline with knots K |

s(0) = Tmid, s

(

i

Nd − 1

)

∈ {Tmid + j · Tstep, j = −Nstep, ..., Nstep},

i = 1, ..., Nd − 1
}

.

Then random choice of a function srnd from this set is realized as

srnd

(

i

Nd − 1

)

= Tmid + ξi Tstep, i = 1, ..., Nd − 1,

where {ξi} are independent random variables uniformly distributed over {−Nstep, ..., Nstep}.
In our computations we consider the following values of the involved parameters: M = 800,

Nd = 5, Tmid = 1000, Tstep = 100, Nstep = 3. Let us also note, that the parameter κ in (31) has a
crucial influence on the operators F and G — the bigger it is, the bigger is the difference between
operator F and its linearization A. We did computations for three different values of κ, namely —
0.1, 0.5, 1, and observe how the estimate of ρ depends on them. The discretization of the operator
G was chosen fine enough to obtain numerical results in some reasonable time (see Section A.3).

One random pair (u1, u2), as well as corresponding Gu1 − Gu2, v and Av are presented in
Figure 2. The numerical values obtained in this random realization are gathered in Table 1. Note
the good correspondence between Av and Gu1−Gu2 in Figure 2(d). All computed {ρj} for different
κ are presented in Figure 3. One observes that for κ = 0.1 the estimate ρ̃ is less than 1/6 that
suggests the applicability of Theorem 1, whereas for other values of κ Theorem 2 with Remark 1
can be used.

6 Final Remarks

First of all, we note that satisfactory numerical results were obtained in cases when the constant ρ
in (A2) is bigger then required by Theorem 1. In particular, the results in Section 5.1 were obtained
in the case when the estimate of ρ according to the computational experiment is bigger then 1/6.
This is not a contradiction, because Theorem 1 guarantees the order-optimal convergence rate for
small enough ρ and for bigger ρ the iteration error can still have a stable behavior but possibly not
the order-optimal convergence. In the future work we will study this situation in more detail. Note
that for severely ill-posed problems the theoretical justification of the regularization procedure (34)
with fixed α is given by Theorem 2 and Remark 1 under the much milder assumption ρ < 1.

Another point is connected with further applications of the proposed method. Similar splittings
can be done for the reconstruction of the initial temperature in the nonlinear backward heat
equation. We would like to stress once again the derivative-free nature of the proposed iterative
method. In the considered example the use of the Fréchet derivative in computations is rather
complicated due to the implicit definition of the forward operator. But even for problems where the
Fréchet derivative is known, its iterative update and regularized inversion is very time consuming.
Whereas in the proposed method, one needs to invert fixed linear operators only once. The
advantage of the much easier implementation is clear in this case. However, it is not clear whether
the overall time needed to achieve a desired approximation by Newton-like methods is bigger than
by the proposed one, because the above mentioned inversion of the linear operators should be done
for several values of the regularization parameter. Hence, it is interesting to apply our method for
nonlinear inverse problems with known Fréchet derivative, and to compare it with derivative-based
methods.

The implementation of the considered technique for multidimensional problems is straightfor-
ward. However, in this case a number of difficulties arise. In general, it can not be expected that the
functions {Aϕi} in (35) will be known exactly. As it is pointed out in [25], one should be concerned
with the choice of the discretization parameter in this case. Also, in multidimensional problems
one needs to deal with a larger amount of basis functions that increases the size of matrices in
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Figure 2: Example of one random realization in the computational experiment: (a) – random
functions u1 and u2; (b) – corresponding images Gu1 and Gu2; (c) – approximate solution v of the
equation (37); (d) – functions Av (solid line) and Gu1 − Gu2 (dash-dot line). Calculations were
done with κ = 0.1

‖u1 − u2‖ = 189.2969

‖Gu1 −Gu2‖ = 2.9564

‖v‖ = 30.1724

ρ = 0.15939

Table 1: Numerical values obtained in the random realization from Figure 2.
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κ = 0.1, ρ̃ < 1/6 κ = 0.5, ρ̃ < 0.4

0 100 200 300 400 500 600 700 800
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

experiment number
0 100 200 300 400 500 600 700 800

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

experiment number

κ = 1.0, ρ̃ < 0.5

0 100 200 300 400 500 600 700 800
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

experiment number

Figure 3: Computed {ρj} for different κ. Line corresponds to the value 1/6.

(35). This complicates the application of direct methods to (35). Therefore, in multidimensional
problems one probably should apply iterative methods for computing discretized solutions.
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A Appendix

Let us briefly outline the numerical procedure that was used to solve equations (31)-(32). First, we
show how the source term in (31) can be computed for a given temperature T . For this purpose,
we consider the approximation of the integral

∫

[−1,1]

· dµ by the so-called Discrete Ordinate Method

(Sp-approximation) [19, Ch. 15], which consists in choosing {µi, ωi}pi=1 such that

∫

[−1,1]

I(z, µ)dµ ≈
p
∑

i=1

I(z, µi)ωi.

The functions I(z, µi) are determined from the equations

µi
∂I(z,µi)
∂z

= κ
(

σ
π
T 4 − I(z, µi)

)

, i = 1, . . . , p

I(0, µi) = σ
π
T 4
a , µi > 0,

I(1, µi) = σ
π
T 4
a , µi < 0.

(39)

Thus, each equation (39) is a linear hyperbolic partial differential equation. Its numerical solution
can be done by a finite difference approximation of the derivative ∂

∂z
for a given T .

Having a numerical procedure to compute the source term in (31) for a given temperature T ,
the whole solution of (31) can be made by the standard finite difference method with explicitly
incorporated nonlinear source term. In this case, one deals with space and time discretizations

{

zi = i
Nz
, i = 0, ..., Nz

}

{

tj = j
Nt
tf , j = 0, ..., Nt

}

and obtains a discretized solution T̃ (zi, tj). Consequently, the discretized approximation ỹ of the
y = Fu is a piece-wise linear spline with knots {tj} and values

ỹ(tj) = T̃ (0, tj).

The approximation of Gu was done by first running a numerical procedure for (31) with u in the
initial condition. This gives the discretized source term. Then we run a numerical procedure for
(27) with that discretized source term and zero as initial condition.

A.1 Generation of the noise

For a given initial temperature û we obtain a discretized approximation ỹ of Fû that is known in
(Nt + 1) points. Corresponding noisy data yδ is obtained from ỹ by the following steps:

• first, consider ỹ on a more coarse time discretization N c
t = Nt/k

c, which gives ỹc defined as

ỹc(tj kc) = ỹ(tj kc), j = 0, ..., N c
t ;

• then perturb ỹc with random noise

yδ(tj kc) = ỹc(tj kc) + δr · ξj ,

where δr > 0 is a noise level and {ξj} are independent random variables with uniform
distribution over [−1, 1];

• the final noisy data yδ is considered to be a piece-wise linear spline with knots {tj kc , j =
0, ..., N c

t }.

16



A.2 Parameters used in the simulations

For the numerical results presented in Section 5.1 the following model parameters were used:
tf = 0.1, κ = 0.5, Ta = 300 (temperature in Kelvin). For the approximation of the nonlinear
operators F and G, space and time discretization were taken as Nz = 400, Nt = 400; in the
Discrete Ordinate Method we used p = 8 (see [19, p. 546] for corresponding values of {µi, ωi}).

For the discrete set of regularization parameters (20) we used α0 = 10−10, q = 2, m = 25. The
value for the tolerance in (36) was tol = 10−5.

For the noise generation we used kc = 4 and two noise levels δr ∈ {10, 1}. Since the average
temperature of the used function û is 1000, these noise levels can be considered as 1% and 0.1%
respectively.

A.3 Parameters used in the computational experiment

We used Nz = 201, Nt = 1601 as discretization parameters for the results in Section 5.2. All other
parameters, except of κ, were taken as in previous subsection.
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