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Abstract

The paper at hand deals with the modeling of turbulence effects on the dynamics of a long
slender elastic fiber. Independent of the choice of the drag model, a general aerodynamic force
concept is derived on the basis of the velocity field for the randomly fluctuating component
of the flow. Its construction as centered differentiable Gaussian field complies thereby with the
requirements of the stochastic k-ε turbulence model and Kolmogorov’s universal equilibrium theory
on local isotropy.
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Introduction 

The understanding of fiber-fluid interactions is of great interest for research, development and
production in the textiles manufacturing. In the melt-spinning process of nonwoven materials,
hundreds of individual endless fibers being obtained by continuous extrusion of a melted polymer
are stretched and entangled by highly turbulent air flows to finally form a web. The quality of
this web and the resulting nonwoven material depends essentially on the dynamics of the fibers.

Fiber-turbulence interaction is hereby a complex phenomenon that is governed by many factors,
including nature of flow field, turbulent length scales, concentration and size of fibers. Thin
fibers decrease the turbulent intensity by increasing the apparent viscosity, whereas fibers whose
thickness induces Reynolds numbers greater than some critical one intensify the turbulence due to
vortex shedding [4]. Both mechanisms are strongly affected by the concentration. In the considered
application, however, the turbulence is not significantly influenced by the fibers. Hence, the
turbulent flow is here determined under neglect of suspended fibers, and its effect is theoretically
studied on a single long, slender fiber using a general drag model.

The fiber dynamics is described by the Kirchhoff-Love equations for the motion of a Cosserat
rod capable of large bending deformations in Sec 2. In terms of these the fiber slenderness
allows the formulation of a wavelike system of nonlinear PDEs of 4th order with the algebraic
constraint of inextensibility. The behavior of this system relies on the model for the external force
imposed on the fiber by the turbulent flow, in particular on the choice of the air drag coefficients.
The modeling of a generally valid aerodynamic force in Sec 4 is based on the splitting of the
flow velocity into mean and fluctuation part in the Reynolds-averaged Navier-Stokes equations.
Thus, a centered differentiable Gaussian field for the randomly fluctuating component of the flow
velocity is derived under the Global-from-Local Assumption of underlying locally isotropic and
homogeneous turbulence in Sec 3. The construction of the initial condition for the respective local
double-velocity correlation tensors satisfies thereby Kolmogorov’s universal equilibrium theory as
well as the local distribution of kinetic energy k and dissipation ε provided by the stochastic
k-ε turbulence model. The dynamic behavior of the local correlation tensors is described by an
advection equation whose solution coincides with Taylor’s hypothesis of frozen turbulence pattern.
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The temporal change of the global coherences is included by the averaging procedure. In Sec 4 the
developed local velocity fluctuation fields hand their properties to the corresponding correlated
local stochastic forces along the fiber. Gluing them together yields the global aerodynamic force
that represents the turbulence effects on the fiber motion. Considering a wide class of feasible
air drag models, the stated Global-from-Local Force Concept in combination with a linearization

∞ansatz enables a good L2 and L -approximation of the correlated force by Gaussian white noise
with flow-dependent amplitude in case of a macroscopic description of the fiber.

2 Fiber Dynamics 

In the actual spinning process the fiber is endless and its deposition plays a crucial role for the
generation of the nonwoven material. However, as this paper focuses exclusively on the description
of its dynamics due to the turbulent flow, the following considerations are restricted on a long
slender elastic polymer fiber that is fixed with one end, suspended in a highly turbulent air stream.
Let l denote its length and d its diameter with slenderness ratio δ = d/l � 1. To describe its
motion an 1D-model is derived on the dynamical Kirchhoff-Love theory for a Cosserat rod being
capable of large, geometrically nonlinear deformations [2].

2.1 Equations of Motion 

Treat the fiber in the reference configuration as body B given within a fixed Cartesian frame
e1, e2, e3. Define p(z, t) to be the position of the material point z ∈ B at time t, then p(., t) states
the actual configuration of the closure clB of B at time t. Introduce the curvilinear coordinates
x := (x1, x2, s) ∈ R×R×[0, l] on B with s denoting the arc length. Then define ˜ z(x), t)p(x, t) := p(˜
where ˜ p(., ., s, t) describes the actual configuration ofz assigns z ∈ clB to each x. In particular, ˜
the cross-section B(s) at time t.

The fiber model is now developed under the assumption that the position field p̃ is determined
by three vector-valued functions r(s, t), d1(s, t) and d2(s, t), i.e.

p̃(x, t) = r(s, t) + j(r(s, t),d1(s, t),d2(s, t),x, t), (1)

where the fiber line r(s, t) might be interpreted as the actual configuration of the center line
at time t and the orthonormal directors d1(s, t) and d2(s, t) state the orientation of the actual
configuration of B(s) at time t. Let additionally d3(s, t) = d1(s, t) × d2(s, t). In terms of these
functions, the feasible deformations of the fiber, e.g. flexure κ1, κ2, torsion τ , shear w1, w2 and
dilatation w3, are then expressed using the relations ∂sdi = b × di, b = κ1d1 + κ2d2 + τd3 and
∂sr =

P3 widi. Thus,i=1 

κ1 = −d2 · ∂sd3, κ2 = −d3 · ∂sd1, τ = −d1 · ∂sd2,

wi = ∂sr · di.

According to Bernoulli’s hypothesis that cross-sections never experience warping as consequence of
deformation, the function j of Eq (1) can moreover be prescribed by j(r,d1,d2,x, t) = x1d1+x2d2.
Assuming the reference configuration B to be a homogeneous (with respect to the density distri-
bution), cylindrical body with circular cross-sections of constant radius, the linear and angular
impulse-momentum laws for B read [2]

∂sq + f = ρA∂ttr, (2)

2 

∂sm + ∂sr × q + l = ρI
X

(∂ttdi × di). (3)
i=1 

Here, ρ denotes density, A = πd2/4 cross-sectional area and I = πd4/64 moment of inertia.
Closing the system by means of constitutive laws for inner force q and moment m as well as given
outer line force f and moment l, the Kirchhoff-Love equations (2), (3) yield the description for
fiber line and directors r, d1, d2. The orthonormality of d1 and d2 reduces hereby the number
of unknowns down to six. As no outer moment is acting on the fiber, l = 0.

Constitutive laws for elastic materials look in general like

m = M(κ1, κ2, τ, w1, w2, w3, s), q = Q(κ1, κ2, τ, w1, w2, w3, s).
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We apply here in particular Bernoulli-Euler beam theory that the inner moment m arises due to
bending and torsion

m = EI(κ1d1 + κ2d2) + GJτd3 (4)

with Young’s modulus E, shear modulus G, polar moment of inertia J = πd4/32. Moreover,
we interpret q as vectorial Lagrangian multiplier and impose instead of a material law for q the
following constraints on d3 and ∂sr

∂sr
d3 = , ‖∂sr‖2 = 1. (5)‖∂sr‖2 

This excludes shear and extensional deformation from the model. The restrictions are reasonable
for a long slender fiber because shear and elongation are negligibly small in comparison to bending.

Apart from this, the slenderness enables a further simplification of system (2), (3). Non-
D
P2dimensionalizing Eq (3) yields ∂sm + ∂sr× q = δ2 

ttdi ×di) with negligibly small righti=1(∂
2 

hand side as the slenderness ratio δ satisfies δ � 1 and D = O(1). Setting the right hand side to
zero, i.e.

∂sm + ∂sr × q = 0, (6)

and using Eq (5) we obtain ∂sτ = 0. Consequently, the torsion over the whole fiber equals the
introduced torsion at the ends τ = τ0. Rewriting Eq (4) gives thus m = EI(d3 ×∂sd3)+GJτ0d3 

where ∂sd3 represents the curvature vector ∂ssr = κn with κ =
p

κ2 
1 + κ2 and n normal vector.2 

Splitting the inner force q into tangential and normal part with respect to the fiber position yields

q = (q · d3)d3 + d3 × (q × d3)

(6)
= (q · d3 + EI (∂ssd3 · d3))d3 − EI (d3 · d3) ∂ssd3 + GJτ0 d3 × ∂sd3.

Defining

T := q · d3 + EI (∂ssd3 · d3)

(5) 
2 = q · ∂sr− EI ‖∂ssr‖2 ,

| {z } | {z }
tension curvature due to bending 

as modified tractive force, q depends exclusively on fiber line r and scalar Lagrangian multiplier
T , and thus two more degrees of freedom vanish which is consistent with the removing of the
unknown directors di. Plugging

(5) 
∂sq = ∂s(T ∂sr) − EI ∂ssssr + GJτ0 ∂sr× ∂sssr

into Eq (2), the dynamics of a freely swinging fiber that is fixed at one end (cf. Fig 1) is described
by

ρA∂ttr(s, t) = ∂s[T (s, t)∂sr(s, t)] − EI ∂ssssr(s, t) + GJτ0 ∂sr(s, t) × ∂sssr(s, t)

+ fgrav + fair(r(.), s, t), (7)

‖∂sr(s, t)‖2 = 1, (8)

for (s, t) ∈ (0, l) × R
+ with Dirichlet conditions at the fixed end (s = l) and Neumann at the free

one (s = 0)

r(l, t) = 0, ∂ssr(0, t) = 0,

∂sr(l, t) = e3, ∂sssr(0, t) = 0,

T (0, t) = 0

as well as appropriate initial conditions (t = 0), e. g.

r(s, 0) = (s − l) e3 ∂tr(s, 0) = 0.

The Neumann conditions might be interpreted as natural boundary conditions, the ending s = 0
is free of stress. Thus, neither outer moment nor force are acting on it. Moreover, T (0, t) viewed
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Figure 1: Fiber dynamics caused by external forces 

as tractive force vanishes. The Lagrangian multiplier T (s, t) is thereby related to the algebraic
constraint (8) of conservation of length. The behavior of our fiber system (7), (8) – but definitely
also of the original one (2), (3) – is strongly affected by the external line forces that arise due to
gravitational fgrav = ρAg and aerodynamic forces fair. We prescribe the aerodynamic force as
function depending on arc length s, time t and additionally on the fiber line r : [0, l] × R

+ 
0 → R

3 

in a functional sense.
In this work, we initially introduce no twisting at the fiber ends, τ0 = 0, such that Eq (7)

simplifies to a wavelike system of nonlinear partial differential equations of 4th order, if the feasible
functional dependence of the aerodynamic force is localized on the fiber point, e.g. fair(r(.), s, t) =
fair(r(s, t), ∂sr(s, t), ∂tr(s, t), s, t).

2.2 Air Drag 

The description of the fiber dynamics in a turbulent flow relies essentially on the model for the
aerodynamic force fair that is imposed on the fiber by the fluid. Neglecting the fiber influence
on the flow, a dimensionless air drag coefficient cdrag based on Reynolds (Re), Mach and Froude
number can be associated to fair [14]. If just frictional and inertial forces occur in the flow around
the fiber, cdrag is particularly determined by

‖fair‖2drag =c
5 ρair d ‖v‖20. 2 

with air density ρair, fiber diameter d and relative velocity between fluid flow and fiber v =
u − ∂tr. Thus, the magnitude of the line force is proportional to Bernoulli’s dynamic pressure
p = 0.5ρair‖v‖2 

2 acting along d. In general, we characterize a feasible air drag model by a function
f : R

3 × R
2 → R

3 depending on a given velocity and a normalized direction. In this context, the
aerodynamic force of Eq (7) reads

fair(r(.), s, t) = f(u(r(s, t), t) − ∂tr(s, t), ∂sr(s, t)) (9)

where the flow velocity u : R
3 × R

+ → R
3 acts as outer input parameter to the fiber problem.0 

However, as this instantaneous flow velocity is not available from a stochastic description of a
turbulent flow, we derive a concept for a random Gaussian aerodynamic force in this work. Note
that this concept utilizes exclusively the functional relation f and is hence generally applicable to
a wide class of air drag models.
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3 Model for Velocity Fluctuation Field 

Consider the flow to be subsonic, highly turbulent with small pressure gradients and Mach number
Ma < 1/3. Then it can be modeled as an incompressible Newtonian fluid using the incompressible
Navier-Stokes equations (NSE). Solving NSE by means of Direct Numerical Simulation (DNS)
gives the exact velocity field needed for the determination of the force of Eq (9). However, DNS
presupposes the resolution of all vortices ranging from the large energy-bearing ones of length lT to
the smallest, viscously determined Kolmogorov vortices of size η with lT/η = Re3/4 [16]. Therefore,
the number of grid points that are required for the refinement of a 3D domain is proportional to
Re9/4 . Though recent high speed performances, DNS is thus still restricted to simple, small
Reynolds number flow. The stochastic turbulence models in contrast represent a reasonable
compromise between accuracy and computational efficiency [5]. They are based on the Reynolds-
averaged Navier-Stokes equations (RANS) where the instantaneous velocity u : R

3 × R
+ 
0 → R

3 is
expressed as sum of a mean u and a fluctuating part u′¯

u(x, t) = ū(x, t) + u′(x, t).

Applying in particular the standard k-ε model [10] yields a deterministic description of mean
velocity ū : R

3 × R
+ → R

3, turbulent kinetic energy k : R
3 × R

+ → R
+ and dissipation rate0 0 

ε : R
3 × R

+ → R
+ . Hereby, the variables k and ε might be interpreted as parameters of a0 

R
3-valued differentiable random field representing the fluctuations (ux,t, (x, t) ∈ R

3 × R
+ 
0 )

1 ′k(x, t) = E[u′(x, t) · u (x, t)], (10)
2

ε(x, t) = ν E[∇u′(x, t) : ∇u (x, t)]. (11)

E[uTo conform the notations of probability theory and turbulence literature, note that the mean ]
equals the averaged quantity u′. Constructing a suitable fluctuation field requires the analysis
of the turbulent behavior of the flow which is characterized by means of statistic quantities,
i.e. double-velocity correlations revealing spatial and temporal relations within a domain.

Definition 1 (Velocity Fluctuation Field)
Let (Ω,A, P) be a probability space. The velocity fluctuation field of a turbulent flow is said to be
a centered R

3-valued random field (Φx,t, (x, t) ∈ R
3 ×R

+ 
0 ) with Φx,t ∈ L2(Ω,A, P). Its correlation

tensor reads

Γ(x, t,y, τ ) = E[Φ(x, t) ⊗ Φ(y, τ )].

Classifying turbulence, we face shear turbulence in practice. Although it can be simulated via
RANS models, this kind of flow is hardly understood. Physical interpreting and mathemati-
cal handling of the statistic quantities is extremely difficult. Therefore, it is helpful to consider
approximations like homogeneous and/or isotropic turbulent flows. Isotropy has obviously a hy-
pothetical character, but knowledge of its characteristics form a fundamental basis for the study
of actual, anisotropic turbulent flows. Certain theoretical considerations concerning the energy
transfer through the eddy-size spectrum from the larger to the smaller eddies lead to the con-
clusion that the fine structure of anisotropic turbulent flows is almost isotropic, Kolmogorov’s
local isotropy hypothesis [7]. Thus, many features of isotropic turbulence apply to phenomena in
actual turbulence that are mainly determined by the fine-scale structure. Even if we consider the
anisotropic large-scale structure of an actual turbulence, it is possible to treat such a turbulence
for purposes of a first approximation as isotropic. The differences are mostly sufficiently small [8].
As velocity fluctuations in an isotropic flow are Gaussian [6], we restrict to Gaussian flows that
are uniquely determined by their correlation tensor. This motivates our

Global-from-Local Assumption
y,τ

0 ), (y, τ ) ∈ R
3 ×R

+Let (Ω,A, P) be a probability space. Let {(wx,t , (x, t) ∈ R
3 ×R

+
0 } be a family of

local velocity fluctuation fields that correspond to spatially and temporally homogeneous, isotropic
γy,τ : (R3 ×R

+and incompressible Gaussian flows with respect to the points (y, τ ). Let ˜ 0 )
2 → R

3×3 

denote their respective correlation tensors. For each local field the quantities k = k(y, τ ), ε =
¯ ¯ε(y, τ ) and u = u(y, τ ) are taken as constant. Then we assume that our actual global fluctuation

field u′ can be constructed as

u (x, t) =< wy,τ (x, t) >M(x,t) (12)
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0 | ‖x − y − ¯with M(x, t) = {(y, τ ) ∈ R
3 × R

+ u(x, t)(t − τ )‖2 ≤ lT ∧ |t − τ | ≤ tT}, |M(x, t)| =
dy dτ and turbulent large-scale length lT and time tT. The brackets < . > represent

R
M(x,t) 

the Gaussian average that is uniquely prescribed by expectation and covariance resp. correlations
according to

Z
1

E[u′(x, t)] = E[wy,τ (x, t)] dy dτ = 0|M(x, t)|
M(x,t) 

Z 

˜Cov(u′(x1, t1),u (x2, t2)) = p
1

γy,τ (x1, t1, x2, t2) dy dτ|M(x1, t1)||M(x2, t2)|
M(x1,t1)∩M(x2,t2) 

= Γ′(x1, t1,x2, t2).

Note that the used terminology is explained in the course of this section. The construction rule (12)
enables the realization of a globally inhomogeneous and anisotropic turbulent flow on the basis
of a very limited number of data stemming from general turbulence theory and specific, case-
dependent k-ε simulations. So far, it was not clear at all, if such a differentiable turbulent field
exists. The underlying local fluctuation fields wy,τ that can be interpreted as fine-scale structure
of the turbulence satisfy Kolmogorov’s local isotropy hypothesis as well as the local kinetic energy
k and dissipation ε distribution of the k-ε model. Averaging their statistical parameters over a
region M where the local stochastic quantities only slightly differ glues them together to the global
fluctuation field u′, the anisotropic large-scale structure. The respective global quantities ku′ and
εu′ are thus prescribed as averages of the hardly varying local ones. This is indicated by using the
turbulent large-scale length lT and time tT. Presuming global homogeneity, the global and local
quantities coincide and obey Eqs (10), (11) as desired.

In the following, we deal with the generation of the centered local fluctuation fields by mod-
eling their correlation tensors. Therefore we skip the superscript denoting the respective point.
To determine the temporal behavior of the correlations, we firstly construct an initial condition
for the correlation tensor satisfying the assumptions of homogeneity and isotropy as well as the
requirements of the k-ε model and Kolmogorov’s energy spectrum, Sec 3.1-3.4. This initial condi-
tion meets the smoothness demands and guarantees the differentiability of the actual global field.
Then we formulate an advection equation for the dynamics whose solution coincides with Taylor’s
hypothesis of frozen turbulence, Sec 3.5. In Sec 3.6 we finally formulate the global fluctuation field
as Ito-integral over the local fields which yields the positive definite correlation tensor proposed
in the Global-from-Local Assumption.

3.1 Locally Homogeneous, Isotropic Turbulence 

Definition 2 (Homogeneous Turbulence)
Let (Ω,A, P) be a probability space. Let (Φx,t, (x, t) ∈ R

3 × R
+ 
0 ) be a velocity fluctuation field

with correlation tensor Γ. A turbulent flow is said to be spatially homogeneous if Γ is invariant
regarding spatial translations, i.e.

Γ(x, t,y, τ ) = Γ(x − a, t,y − a, τ ) ∀ a ∈ R
3 .

A turbulent flow is said to be temporally homogeneous if Γ is invariant regarding time shifts, i.e.

Γ(x, t,y, τ ) = Γ(x, t − a,y, τ − a) ∀ a ∈ R.

Definition 3 (Isotropic Turbulence)
Let (Ω,A, P) be a probability space. Let (Φx,t, (x, t) ∈ R

3 ×R
+ 
0 ) be a velocity fluctuation field with

correlation tensor Γ. A turbulent flow is said to be isotropic if Γ is invariant regarding rotations
and reflections, i.e.

−1Γ(x, t,y, t) = S Γ(S−1 x, t,S y, t) St ∀S ∈ O(3). (13)

The correlation tensor ˜ γ(x, t,y, τ ) = E[w(x, t) ⊗γ corresponding to a local fluctuation field w, ˜
w(y, τ )], depends only on the spatial and temporal difference of its arguments due to homogeneity.
Thus, we define

γ(z, ς) =γ̃(x + z, t + ς,x, t). (14)
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To derive the structure of the initial correlation tensor in the following, we focus now on

γ0(z) = γ(z, 0) or γ0(x,y) = ˜˜ γ(x, t,y, t).

Properties of the Initial Correlation Tensor
The correlation tensor corresponding to an homogeneous, isotropic turbulent flow has the following
properties:

γ0(z) =γ0(−z) (15)

γ0(z) symmetric (16)

γ0(0) =cI, c 
= 0 (17)

γ0(z) has two different eigenvalues: (18)

z
c1(z) in

z
and c2(z) in the respective normal plane.

γ0(z) =
c1(z) − c2(z)

z2 
z ⊗ z + c2(z)I, z = ‖z‖2 (19)

Hereby, the symmetry of γ0 (16) results directly from its definition and the permutability of
the arguments (15) that is concluded from the translation and reflection invariance. Applying
additionally rotation invariance yields Eq (17) and Eq (18). The general form (19) is deduced
from the spectral theorem using the eigenvalues of Eq (18).

∞(R+The one-dimensional functions c1 and c2 ∈ C 0 ) can be interpreted as longitudinal and
lateral correlation [8]. In general c1 
= c2, but for z → 0 we have c2(z) → c1(z) → c with c given
in Eq (17).

As a turbulent flow contains a continuous spectrum of scales, it is convenient to introduce the
spectral density M depending on the wave vector κ. Assuming absolute Lebesgue-continuity of
the spectrum of the underlying fluctuation velocity field [3], the spectral density M is the Fourier
transform of the correlation tensor γ0 

Z

M(κ) =
1

e−iz·κγ0(z) dz. (20)
(2π)3 

R3 

Then, the spectral energy distribution (energy spectrum) E is defined by

E(κ) =
1
κ2 

Z 

tr(M(κe)) de (21)
2

S2 

with κ = ‖κ‖2, unit sphere S2 and unit vector e ∈ S2 .

Properties of the Spectral Density
The spectral density corresponding to an homogeneous, isotropic turbulent flow has the following
properties:

e1(κ) − e2(κ)
M(κ) = κ ⊗ κ + e2(κ)I (22)

κ2 

1 E(κ)
trM(κ) = . (23)

2π κ2 

Due to the Fourier relation (20), M inherits the isotropic property (13) from γ0 and has therefore
∞(R+an analogous representation with the one-dimensional spectral functions e1, e2 ∈ C 0 ). The

connection (23) between trace trM and energy spectrum E can be concluded from Eq (21).
Because of isotropy the sphere integral becomes

R
S2 tr(M(κe))de = 4π trM(κ).

In our case of an incompressible local flow field w, the presented characteristics and dependencies
of correlation and spectral functions can be simplified which halves the number of unknowns and
results in a well-structured Sine-Fourier relation between c1 and E.
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Influence of Incompressibility on Correlations and Spectral Density
Assuming incompressibility, the following relation for the correlation functions c1 and c2 : R

+ 
0 → R 

is valid:

z
c1(z) + ∂zc1(z) = c2(z). (24)

2

Moreover, the spectral functions e1 and e2 : R
+ 
0 → R are given by

1 E(κ)
e1(κ) = 0, e2(κ) = . (25)

4π κ2 

Relation (24) is concluded from the incompressibility using

γ0(x,y) =0 = E[(∇x · w(x, t))w(y, t)] = ∇x · ˜
z:=x−y ∇z · γ0(z)

and substituting Eq (19). Analogously to the correlation functions, the number of unknown
spectral functions can be reduced to one. In particular, Eq (25) is deduced by combining 0 =

iκ·z∇z · γ0(z) = i
R

R
3 e M(κ)κ dκ and thus M(κ)κ = 0 for all κ ∈ R

3 with Eq (23).
For an incompressible isotropic and homogeneous turbulent flow, the correlation tensor γ0 

of 2nd order can thus be expressed by the single one-dimensional correlation function c1. In
particular,

trγ0(z) = 3c1(z) + z ∂zc1(z) =
1

∂z (z3 c1(z)). (26)
z2 

Consequently, the whole local fluctuation velocity field is uniquely determined by c1 whose relation
to E will be useful for the further realization of the initial correlations.

Relation between Correlation Function and Energy Spectrum
Let c1 be the correlation function and E the energy spectrum corresponding to an homogeneous,
isotropic and incompressible turbulent flow. This implies their finiteness over the whole definition
range. Then the following relations are valid:

2
∞Z

1
„

E(κ)
«

c1(z) = ∂κ sin(κz) dκ (27)
3 κ κz

0 

∞Z
κ 1 3E(κ) = ∂z (z c1(z)) sin(κz) dz. (28)
π z

0 

The Sine-Fourier relations follow from the respective connections of c1 and E to the Fourier
transforms γ0 and M. Plugging Eqs (26) and (23) into

∞Z 2π 1 ZZ
iκzqκ2 trM(κ) dq dφ dκ =

4π
∞Z

κ trM(κ) sin(κz) dκtrγ0(z) = e
z

0 0 −1 0 

gives ∂z(z
3 c1(z)) = 2z

R
0 

∞
E(κ)/κ sin(κz) dκ and consequently after some algebraic manipulations

Eq (27).

Further Decisive Coherences
Further relevant relations between longitudinal correlation function c1 and energy spectrum E are
formulated as

c1(0) =
2

∞Z 

3
0 

2

E(κ)dκ (29)

∞Z
2∂zzc1(0) = − E(κ)κ dκ. (30)

15
0 

By means of partial integration, Eq (27) can be rewritten as

∞Z
E(κ)

sin(κz) − κz cos(κz)

k3z3 
c1(z) = 2 dκ,

0 
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from that L’Hospitale yields directly Eqs (29) and (30).

Finally, the differentiability of an homogeneous Gaussian flow can be concluded from
Z

(ln(1 + κ))α κ2p M(κ)dκ < ∞, for α > 3. (31)

R
3 

According to [9], Eq (31) ensures the existence of an almost surely p-times sample differentiable
modification that we equate to the considered flow for purposes of an intuitive notation. As for
our isotropic incompressible local flow field, the differentiability can thus be formulated as an
requirement on the decay of the energy spectrum E by rewriting the volume integral of Eq (31)
with help of Eqs (22), (25) as

∞Z Z ∞Z
E(κ) 2α 2p α κ2p E(κ)dκ I. (32)(ln(1 + κ)) κ (I− e ⊗ e) de dκ = (ln(1 + κ))
4π 3

0 S2 0 

3.2 Parameters from k-ε Model 

The kinetic turbulent energy k and the dissipation rate ε stemming from the k-ε turbulence
model act as parameters for the differentiable local fluctuation fields. Presupposing an isotropic,
homogeneous and incompressible Gaussian flow, they can be expressed in terms of the correlation
c1 resp. the energy function E.

(26)
With E[w(x, t) · w(x, t)] = trγ0(0) = 3 c1(0), we obtain

∞Z
1 3 (29) 

k = E[w(x, t) · w(x, t)] = c1(0) E(κ)dκ. (33)=
2 2

0 

˜As for ε, we consider E[∇w(x, t)⊗∇w(y, t)] = ∇x∇yγ0(x,y) = −∇z∇zγ0(z) with z = x−y.
Thus, the dissipation reads

ε = ν E[∇w(x, t) : ∇w(x, t)] = −ν ∇z · ∇ztr(γ0(z))|z=0 = −3ν ∂zztrγ0(z)|z=0 

and with Eq (26) and the differentiability of c1 

ε = −15ν ∂zzc1(0)
(30)
= 2ν

∞Z
E(κ)κ2dκ (34)

0 

The even extension c1(z) = c1(−z) for z ≤ 0 in combination with the Fourier relation (27)
results in a global differentiability of c1 on R such that its odd derivatives vanish at z = 0.
Therefore, the parameters k and ε describe the behavior of c1 for small z by a Taylor expansion
up to 4th order

1 ε 2 c1(z) =
2
k − z + O(z4).

3 30 ν

3.3 Kolmogorov’s Energy Spectrum 

For the construction of the complete correlation function c1, we need additional physical infor-
mation about the flow that can be gained from the energy spectrum E. The energy spectrum of
isotropic turbulence was a well studied topic of research during the last century (see references in
[7, 8]). In particular, Kolmogorov’s work (1941) was trend setting. Based on dimensional analy-
sis he derived not only the characteristic ranges but also the typical run of the spectrum which
agree with later coming physical concepts and experiments [1]. In the following, we briefly state
Kolmogorov’s 5/3-Law and his hypothesis of local isotropy.

By Eq (21), the energy spectrum depends on the wave number κ. Moreover, observing that
turbulence is strongly driven by the large eddies, E can certainly be expected to be a function of
the length lT of the larger energy-containing eddies and the mean strain rate feeding the turbulence
through direct interaction between mean flow and large eddies. Since turbulence is dissipative it
should additionally depend on ν and ε. Assuming a wide separation of energy κe and dissipation
κd scales, Kolmogorov formulated his

9 



ε ε

κ

E(κ) 

∼ κ4 

∼ κ

εt2 

ν

∼ κ−5/3 

∼ κ−7 

κe = l−1 
T κd = η−1 

eddies 

= const  

largest eddies 
of permanent 
character 

energy-containing inertial subrange viscous range 

universal equilibrium range 

Figure 2: Sketch of energy spectrum for isotropic turbulence 

Universal Equilibrium Theory [7]

1. If κe < κd, there exists a range for wave numbers κ > κe, in which the turbulence is in a
statistic equilibrium and exclusively determined by dissipation ε and kinematic viscosity ν.
This equilibrium state is universal, i.e. it occurs in isotropic as well as anisotropic turbulence.
(Local isotropy hypothesis)

2. If κe � κd, there exists an inertial subrange for wave numbers κe < κ < κd in which the
energy spectrum is just a function of dissipation ε and wave number κ.

By means of dimensional analysis the first hypothesis leads to the Kolmogorov scales for length
η, time tK and velocity vK 

”1/2 

η =

„
ν3 
«1/4 

, tK =
“ν

, vK = (ν ε)1/4 

with characteristic wave number κK = η−1 ≈ κd. The Kolmogorov length η is the smallest
characteristic turbulence length. The second hypothesis yields Kolmogorov’s 5/3-Law

−5/3E(κ) = CK ε
2/3κ , κe < κ < κd (35)

with Kolmogorov constant CK. Here, CK = 0.5 is supposed to be an appropriate estimate accord-
ing to the experiments of Yeung et al. [17].

The form of the energy spectrum sketched in Fig 2 is also designed by Batchelor and Proudman
−7(1956). They derived that E(κ) ∼ κ4 for κ → 0, whereas Heisenberg (1948) deduced E(κ) ∼ κ

for κ → ∞.

3.4 Initial Local Correlations 

Having provided the mathematical and physical fundamental ideas, we model now the initial
correlation tensor of a local, homogeneous, L2-continuous and differentiable Gaussian fluctuation
field that satisfies the k-ε model and Kolmogorov’s 5/3-Law. For this purpose, we introduce an
admissible underlying spectral energy distribution function.

Model for the Initial Local Correlation Tensor
Let (Ω,A, P) be a probability space. Let (wx,t, (x, t) ∈ R

3×R
+ 
0 ) be the Gaussian velocity fluctuation

field of an isotropic, homogeneous and incompressible turbulent flow with wx,t ∈ L2(Ω,A,P). Let
kinetic energy k and dissipation rate ε be constant. Construct the initial correlation function

∞(R+ c1 ∈ C 0 )

Z∞ «
2 1

„
E(κ)

c1(z) = ∂κ sin(κz) dκ
z3 κ κ

0 

2(R+by choosing E ∈ C 0 ) as
8 −5/3 P6 > Kκ1 aj ( κ )j κ < κ1j=4 

E(κ) =
< 

Kκ−5/3 
κ1 

κ1 ≤ κ ≤ κ2 (36)
>: −5/3 P9 )−jbj ( κ κ > κ2Kκ2 j=7 κ2 
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ε

′

′

where κ1 and κ2 are implicitly given by

∞Z ∞Z
2E(κ) dκ = k and E(κ)κ dκ = . (37)

2ν
0 0 

The parameters are fixed as a4 = 230/9, a5 = −391/9, a6 = 170/9, b7 = 209/9, b8 = −352/9,
b9 = 152/9, K = CK ε

2/3 , CK = 0.5 and viscosity ν.
Then, (wx,t, (x, t) ∈ R

3 ×R
+ 
0 ) is differentiable and fulfills the requirements of the Kolmogorov’s

5/3-Law as well as of the k-ε model

1
k = E[w(x, t) · w(x, t)], ε = ν E[∇w(x, t) : ∇w(x, t)].

2

According to Eq (27), the presented nonnegative function E satisfies the requirements on a spectral
energy distribution function. Furthermore, it coincides with the run of Kolmogorov’s energy

1(R+spectrum (35). The differentiability of the local flow field, i.e. (ln(1 + κ))α κ2 E(κ) ∈ L 0 )
for α > 3 (cf. Eq (32)), is ensured by the constructed decay of E(κ) ∼ κ−7 for κ → ∞. The
information coming from the k-ε model are finally included in the defined moments of E on basis
of Eqs (33) and (34).

Alternatively, also smoother variants of the energy spectrum are imaginable, but E given by
Eqs (36), (37) turns out to satisfy successfully our demands.

3.5 Dynamics of Local Correlations 

The dynamics of a local correlation tensor γ might be described by an advection equation according
to the observation that the decay of the mean properties is rather slow with respect to the time
scale of the fluctuating fine-scale structures

∂ςγ(z, ς) + ū · ∇zγ(z, ς) = 0.

Its solution

γ(z, ς) = γ0(z − ūς). (38)

coincides with Taylor’s hypothesis of frozen turbulence [15], i.e. fluctuations arise due to so-called
frozen turbulence pattern that are transported by the mean flow without changing their structure.

Equation (38) completes the construction of the local correlation tensor γ . Consequently, we
deal here locally with homogeneous, isotropic, incompressible turbulence moving with the mean
flow velocity ū, whose spectral energy distribution E fulfills the demands of the k-ε model as well
as of Kolmogorov’s universal equilibrium theory.

3.6 Construction of Global Turbulence 
′ ∈( ), tx,,txThe Global-from-Local Assumption (12) prescribes the actual global fluctuation field (u

y,τ
R

3 × R
+ 
0 ) on the basis of the family of underlying parameterized local fields {(wx,t , (x, t) ∈
0 ), (y, τ ) ∈ R

3 × R
+

R
3 × R

+
0 } However, so far the positive definiteness of its proposed correlation.

tensor Γ′ is not proved, but it might be concluded from an explicit formulation of u .

Explicit Formulation of the Global Fluctuation Field
′ 3∈( ) R, tx,,tx × R

+ 
0 ) be given as Ito-integral over the family ofLet the global fluctuation field (u

y,τ
0 ), (y, τ ) ∈ R

3 × R
+the local fields {(wx,t , (x, t) ∈ R

3 × R
+

0 }
1

Z
y,τ (x, t) dW(x, t) = y,τ , (39)u wp|M(x, t)|

M(x,t) 

+M(x, t) = {(y, τ ) ∈ R
3 × R0 | ‖x − y − ū(x, t)(t − τ )‖2 ≤ lT ∧ |t − τ | ≤ tT},

where (Wy,τ , (y, t) ∈ R
3 ×R

+ 
0 ) represents a Wiener process (Brownian motion). Then the field of

Eq (39) satisfies the probability distribution, expectation and covariance structure of the averaging
procedure < . > in the Global-from-Local Assumption.

The global field results from linear superpositions of joint Gaussians and is thus also Gaussian. Due
to the permutability of expectation and integration with respect to space and time following from

11 



′
Fubini’s Theorem, it inherits the centered property from the local fields so that the constructed
(ux,t, (x, t) ∈ R

3 × R
+ 
0 ) satisfies the definition of a turbulent Gaussian flow. Additionally, it is

differentiable. Its correlation tensor reads

1
Γ′(x1, t1,x2, t2) =p (40)|M(x1, t1)| |M(x2, t2)|

» Z –

E wy1,τ1(x1, t1) dWy1,τ1 ⊗
Z 

wy2,τ2(x2, t2) dWy2,τ2 .

M(x1,t1) M(x2,t2) 

By means of the Ito-calculus, the expectation of the dyadic product of the integrals can be ex-
pressed by

» Z –

E wy1,τ1(x1, t1) dWy1,τ1 ⊗
Z 

wy2,τ2(x2, t2) dWy2,τ2 

M(x1,t1) M(x2,t2) 
» Z –

y,τ= E w (x1, t1) ⊗ wy,τ (x2, t2) dy dτ .

M(x1,t1)∩M(x2,t2) 

Plugging this relation into Eq (40), we obtain the proposed covariance of the Global-from-Local
Assumption for the in general inhomogeneous, anisotropic global flow

Z 

˜Γ′(x1, t1,x2, t2) =p
1

γy,τ (x1, t1,x2, t2) dy dτ.|M(x1, t1)| |M(x2, t2)|
M(x1,t1)∩M(x2,t2) 

Due to its derivation from the random field of Eq (39), Γ′ is undoubtedly a positive definite
function which is necessary for the numerical realization of u′.

The global quantities for kinetic energy ku′ and dissipation rate εu′ are the averages over a
region M where the local, RANS-based quantities k and ε only slightly differ. This region is
determined by means of the turbulent large-scale length lT and time tT and under regard of the
advective influence of the mean flow in Eq (38)

Z
1

ku′(x, t) = k(y, τ ) dy dτ,|M(x, t)|
M(x,t) 
Z

1
εu′(x, t) = ε(y, τ ) dy dτ.|M(x, t)|

M(x,t) 

In case of global homogeneity we achieve in particular the conformity of the global and local
statistic quantities.

In spite of weaking the conditions on the global turbulent flow, Γ′ still keeps the correlation
structure of the local fields. Let λT be the turbulent fine-scale length, then γy,τ (x1 − x2 −0 

¯ u(y, τ )(t1 − t2)‖2 > λT, (y, τ ) ∈ R
3 × R

+ u(y, τ )(t1 − t2)) ≈ 0 for ‖x1 − x2 − ¯ 0 . Gluing the local
correlations together yields Γ′(x1, t1, x2, t2) ≈ 0, even if M(x1, t1) ∩ M(x2, t2) 
= ∅ as λT � lT.
Thus, Γ′ states no wrong, absurd correlations.

4 General Aerodynamic Force Concept 

In the course of this section, the aerodynamic force that is acting on the fiber is modeled on top of
the RANS-based description for the turbulent flow. Thus, we introduce the mean relative velocity
v(s, t) = ¯¯ u(r(s, t), t) − ∂tr(s, t). Then,

fair(s, t) = f(¯˜ v(s, t) + u′(r(s, t), t), ∂sr(s, t)) (41)

prescribes a stochastic force ( s̃,t , (s, t) ∈ [0, l] × R
+fair
0 ) as – generally nonlinear – function on the

derived global fluctuation field u′. However, the efficient numerical handling of this inhomogeneous
construct (41) seems to be hopeless because of its complexity. Thus, we follow the Global-from-
Local ansatz once more.

Global-from-Local Force Concept
σ,τLet f : R

3 ×R
2 → R

3 be an arbitrary chosen air drag model. Let {(gs,t , (s, t) ∈ [0, l]×R
+ 
0 ), (σ, τ ) ∈

12 



[0, l]×R
+ 
0 } be a family of homogeneous local aerodynamic forces that are imposed by local Gaussian

velocity fluctuation fields on the locally linear fiber around the respective fiber points (σ, τ ). Then,
the global aerodynamic force is constructed as Gaussian

fair(r(.), s, t) = < gσ,τ(s, t) >N(r(.),s,t) (42)

with

N(r(.), s, t) ={(σ, τ ) ∈ [0, l] × R
+| (43)0 

‖r(s, t) − r(σ, τ ) − ū(r(s, t), t)(t − τ )‖2 ≤ lT ∧ |t − τ | ≤ tT},
and mean flow velocity ū, turbulent large-scale length lT and time tT as well as averaging brackets
< . > defined analogously to Eq (12).

In analogy to the velocity fluctuations in Sec 3, this concept (42) realizes a Gaussian global
aerodynamic force along the fiber on the basis of a family of homogeneous local random forces.
Focusing on the construction of these forces, correlated local forces are deduced from the restriction
of our derived Gaussian local velocity fields on the fiber in Sec 4.1. The proposed linearization
approach of Sec 4.2 enables their approximation by Gaussian white noise with flow-dependent
amplitude for a macroscopic description of the fiber. Therefor, L2 and L∞-similarity estimates
are stated in Sec 4.3. In Sec 4.4 we finally present the corresponding correlated global aerodynamic
force and its uncorrelated asymptotic limit.

4.1 Correlated Local Force 

Define the family {(gs,t , (s, t) ∈ [0, l] × R
+

0 } of local aerodynamic forces byσ,τ
0 ), (σ, τ ) ∈ [0, l] × R

+ 

g (s, t) = f(¯σ,τ v(σ, τ ) + wσ,τ(s, t), ∂sr(σ, τ )) (44)f

σ,τ(s, t) = wr(σ,τ),τw (r(σ, τ ) + (s − σ)∂sr(σ, τ ) + (t − τ )∂tr(σ, τ ), t). (45)f

Presupposing a linear fiber around the point (σ, τ ), the centered local Gaussian velocity fluctuation
fields of Sec 3 keep their homogeneous correlation structure for their respective restrictions on the
fiber in Eq (45)

E[wσ,τ r(σ,τ),τ
(s1, t1) ⊗ wσ,τ(s2, t2)] = γ ((s1 − s2)∂sr(σ, τ ) − (t1 − t2)v̄(σ, τ ))f f 0 

= γσ,τ (s1 − s2, t1 − t2). (46)f

Locally, for small spatial and temporal differences, the assumption of the fiber linearity is reason-
able, whereas for large ones γσ,τ ≈ 0 anyway due to the decay of the correlations. By means off

the transformation theorem of random variables, the homogeneous property is handed on gσ,τ for
all feasible drag models f in Eq (44). Indeed, the chosen drag model determines the probability
distributions of gσ,τ that are in general not Gaussian. Averaging over the prescribed homoge-
neous local forces along the fiber in Eq (42) results in a correlated global aerodynamic force that
represents the turbulence effects on the fiber motion in Eq (7). Be aware that the stated Global-
from-Local Force Concept generates here a functional dependence between fair and r so that the
fiber dynamics is not modeled by a system of partial differential equations as in the deterministic
flow case of Eq (9).

4.2 Linearization Approach 

The numerical realization of the correlated Gaussian global aerodynamic force fair depends cru-
cially on the determination of the probability distributions of gσ,τ , in particular on the compu-
tation of the integrals for expectation and covariance according to the definition of the averaging
brackets < . >, cf. Eq (12). The degree of difficulty is thereby mainly determined by the air
drag model. For practical reasons, we hence propose an linearization ansatz for gσ,τ that yields
Gaussian local forces

g (s, t) = f(¯σ,τ v(σ, τ ) + wσ,τ(s, t), ∂sr(σ, τ ))f

≈ f(¯ σ,τv(σ, τ ), ∂sr(σ, τ )) + Lf (σ, τ ) w (s, t)f

σ,τ= gcc (s, t). (47)
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cc

where the linear operator Lf is induced by the air drag model f . The finite-dimensional distribu-
tions of gσ,τ are uniquely given by expectation and covariance

E[gcc (s, t)] = f(¯σ,τ v(σ, τ ), ∂sr(σ, τ )) = µσ,τ ,

σ,τ σ,τ fCov(gcc (s1, t1),gcc (s2, t2)) = Lf (σ, τ ) γσ,τ(s1 − s2, t1 − t2) (L (σ, τ ))t
f

= Γσ,τ
g,cc(s1 − s2, t1 − t2) (48)

whose evaluation is directly deduced from the centered, homogeneous Gaussian wσ,τ , see Eq (46).f

4.3 Limit to Uncorrelated Local Force 
σ,τThe correlated Gaussian local forces gcc contain all turbulent coherences explicitely in their

g,cc : [0, l] × R
+covariance function Γσ,τ
0 → R

3×3 of Eq (48). Alternatively, uncorrelated generalized
σ,τGaussian local forces guc might be introduced whose flow-dependent amplitude represents the

mean turbulent coherences. Their covariance functions read

Γσ,τ
g,uc(s, t) =

Z

Γσ,τ
g,cc(ξ, ς) dξ dς δ0(s) δ0(t) (49)

R2 

with the real one-dimensional Dirac function δ0. If their effects, i.e. their correlations, are com-
σ,τpared on a macroscopic fiber scale that includes the whole covariance structure of gcc , the family

σ,τ σ,τof the uncorrelated forces guc is a good approximation for the one of the correlated gcc . In the
following, L2 and L∞-estimates for their similarity take center stage.

Define the family {((guc )s,t, (s, t) ∈ [0, l]×R
+

0 } of local uncorrelated aerody-σ,τ
0 ), (σ, τ ) ∈ [0, l]×R

+ 

namic forces by

gσ,τ
uc (s, t) = f(v̄(σ, τ ), ∂sr(σ, τ )) + Lf (σ, τ ) zσ,τ (s, t) (50)

zσ,τ (s, t) = Dσ,τ pσ,τ(s, t). (51)

σ,τThe centered uncorrelated local velocity fluctuation fields (zs,t , (s, t) ∈ [0, l]×R
+ 
0 ) along the fiber

σ,τare particularly given by Gaussian white noise (ps,t , (s, t) ∈ [0, l] × R
+ 
0 ) with flow-dependent

amplitude

Dσ,τ =

Zvu
u
t 

R
2 

γσ,τ(ξ, ς) dξ dς (52)f

that contains the integral correlations of wσ,τ . The existence of Dσ,τ presupposes the linearf

independence of the fiber tangent ∂sr(σ, τ ) and the relative velocity v̄(σ, τ ) as it can be concluded
from the definition of γσ,τ in Eq (46). The velocity correlations are then described byf

E[zσ,τ 2(s1, t1) ⊗ zσ,τ(s2, t2)] = (Dσ,τ) δ0(s1 − s2) δ0(t1 − t2)

= δσ,ς(s1 − s2, t1 − t2) (53)f

with the real one-dimensional Dirac function δ0. In this sense, δσ,τ is the uncorrelated analogonf

to γσ,τ and induces the desired integral dependence (49) between Γσ,τ and Γσ,τ due to the linearg,uc g,ccf

construction in Eqs (50) and (47).
Focusing on an arbitrarily chosen fiber point (σ, τ ), we skip the superscripts of the quantities

in the following and deduce a formulation for the force amplitude D in terms of the manageable
energy spectrum E of Eq (21). Therefor, we presume the linear independence of fiber tangent
t = ∂sr and mean relative velocity v, so that they induce the intuitive choice of a right-hand¯
orthonormal basis, i.e. t, n = (¯ v · t)t)/‖¯ v · t)t‖2, b = t × n.v − (¯ v − (¯

Relation between Local Fiber Correlations and Spectral Quantities
Assume t and v to be linearly independent, Let γf (ξ, ς) = γ0(ξt − ς¯¯ v), (ξ, ς) ∈ R

2 be the local
velocity correlation tensor along the fiber. Then, its negative Fourier transform m = Fγf

is
expressed by the spectral density M of Eq (20)

m(λ1, λ2) =

Z

v · κ) dκ.M(κ) δ0(λ1 − t · κ) δ0(λ2 + ¯ (54)

R
3 
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The integral correlations are prescribed by m(0, 0) = (2π)−2 
R 

γf (ξ, ς) dξ dς = Fδf
. In particular,

1
m(0, 0) =

∞Z
E(κ)

2πv̄n κ2 

0 

dκ Pt,n, (55)

where Pt,n := t⊗t+n⊗n denotes the projector onto the plane spanned by t and n, and v̄n := v̄·n.

Inserting the Fourier relation (20) for γ0 and M into the definition of m and evaluating the
two-dimensional integral over the exponential function yields relation (54). Using isotropy and
incompressibility of M, Eqs (22), (25), the dependence on the energy spectrum follows

1
Z

E(κ) 1
m(λ1, λ2) = (I− κ ⊗ κ) δ0(λ1 − t · κ) δ0(λ2 + v̄ · κ) dκ, (56)

κ2 κ24π
R

3 

with κ = ‖κ‖2. Consider the matrix mt,n,b that represents the tensor m in the (t, v̄)-induced
basis and substitute t · κ = κt, n · κ = κn and b · κ = κb. Integration over κt and κn givesR∞
then mt,n,b(0, 0) =

0 
E(κ)/κ2dκ/(2πv̄n) diag(1, 1, 0) and with the spectral theorem on the

eigenvalues the invariant form (55) of the tensor.

Relation between Force Amplitude and Energy Spectrum
Let D be the force amplitude and E the energy spectrum corresponding to an homogeneous,
isotropic and incompressible local velocity fluctuation field. Then the following relation holds:

D =

v
u
u
u
t 

2π
∞Z

E(κ)

v̄n κ2 

0 

dκ Pt,n (57)

Relation (57) results directly from Eqs (52) and (55). It allows the interesting observation that
the uncorrelated local velocity fluctuation field z of Eq (51) has no component in the binormal
direction b of the fiber. The reason for this behavior is the incompressibility of the underlying
flow field, since

∞Z ∞ZZ

Pb γf (ξ, ς) dξ dς = Pb zc2(z) dz = Pb e1(κ) dκ = 0, Pb = b ⊗ b

R2 0 0 

due to Eq (25) or respectively to Eq (24) and partial integration.

Proceeding with the general similarity estimates for the correlated and uncorrelated local force, it
is sufficient to study the effects of the centered local velocity fluctuation fields on a macroscopic
fiber scale because of their linear relation, Eqs (47), (50). For this purpose, we consider the
respective macroscopic velocity fields that are gained from spatially and temporally smoothing
along the fiber and compare their correlation tensors.

Let wf and z be a correlated and uncorrelated local velocity fluctuation field. The introduction
of the normalized spatial and temporal smoothing functions Gα : R

2 → R, α = (αs, αt) ∈ (R+ 
0 )

2 

enables then the definition of two families of macroscopic velocity fields along the fiber
Z

Z 

Wα(s, t) =

Zα(s, t) =

Gα(s − φ, t − ψ) wf (φ, ψ) dψ dφ, (58)

Gα(s − φ, t − ψ) z(φ, ψ) dψ dφ (59)

with their correlation tensors
Z

Z 

ΓWα(ξ, ς) = Hα(ξ − φ, ς − ψ) γf (φ,ψ) dψ dφ, (60)

ΓZα (ξ, ς) = Hα(ξ − φ, ς − ψ) δf (φ, ψ) dψ dφ, (61)

where Hα(ξ, ς) =
R 

Gα(ξ − φ, ς − ψ) Gα(φ, ψ) dψ dφ are also normalized smoothing functions.
Taking the convolution keeps the properties of the local fields so that Wα and Zα are Gaussian,
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centered and homogeneous for all smoothing parameters α ∈ (R+ 
0 )

2 . The Gaussian property
follows thereby directly from the linear superposition of joint Gaussians. The centered and homo-
geneous property are deduced by using the permutability of expectation and integration according
to Fubini’s Theorem.

Choice of Smoothing Operators
Let the smoothing functions Gα : R

2 → R, α = (αs, αt) ∈ (R+ 
0 )

2 be defined as products of spatial
and temporal characteristic functions

Gα(ξ, ς) = αsαt χ
[ −1 , 1 ]

(ξ)χ
[ 2αt

, 1 ]
(ς). (62)−1 

2αs 2αs 2αt

Then, Hα : R
2 → R are given by the products of the hat functions, and their respective negative

Fourier transforms are

Hα(ξ, ς) = αs αt (1 − |αs ξ|) (1 − |αt ς|) χ −1 , 1 ](ξ)χ
[ −1 1 ](ς)[

αt
,

αs αs αt«„
κ1 κ2 1 1 − cos(κ1/αs) 1 − cos(κ2/αt)FHα(κ1, κ2) = FH1 , = . (63)
αs αt π2 (κ1/αs)2 (κ2/αt)2 

The relation between FHα and FH1 results directly from their definition by using Hα(ξ, ς) =
αs αt H1(αs ξ, αt ς).

The derivation of the similarity estimates depends decisively on the behavior of the symmetric,
nonnegative, differentiable function E : R

2 → R
+ 
0 that is defined by means of the energy spectrum

E
Z 

E(‖(κ1, κ2, l)‖2)E(κ1, κ2) := dl. (64)
(κ1, κ2, l)2 

R 

It is radially decaying with maximum in the origin, i.e. maxκ E(κ1, κ2) = E(0, 0) and g(κ) :=
E(κ, aκ), κ ∈ R

+ strictly monotonically decreasing for a ∈ R.0 

Similarity Estimates
Choose the smoothing functions Gα : R

2 → R, α = (αs, αt) ∈ (R+ 
0 )

2 of Eq (62) for the definition
of the families of macroscopic velocity fields according to Eqs (58) and (59). Then the following
estimates hold:
L2-similarity:

IL2 := ‖ΓWα − ΓZα‖L2(l2(R2)) 

√ „ « „ «
v̄2 α2 8E2 α3αs αt

s 

t t α3 tS2 α2≤ √
6π v̄n 

s (1 +
v̄2 

) +
v̄2 

+
3π

0 
s +

(¯
(65)

n n vn + |v̄t|)3 

L∞-similarity:

IL∞ := ‖ΓWα − ΓZα‖L∞(l2(R2)) 
««

v̄t 

„
c 1

« 
αt

„
c

+ ln(
v̄n + |v̄t|≤

√
2αs αt

»

S
„ 

αs (1 + ) + ln( ) + )
π2 v̄n v̄n 2 αs v̄n 2 αt

„ «–
αt

+ E0 αs + (66)
v̄n + |v̄t|

where
Z

‖Γ‖L2(l2(R2)) := ( Γ(ξ, ς) : Γ(ξ, ς) dξ dς)1/2 

R2 

‖Γ‖L∞(l2(R2)) := sup(ξ,ς)∈R
2(Γ(ξ, ς) : Γ(ξ, ς))1/2 .

The quantities E0 = E(0, 0) and S = supκ∈[0,1]2 ‖∇κE(κ1, κ2)‖2 are defined by the energy moment

¯ ¯of Eq (64). Moreover, v̄t = v · t, v̄n = v · n and c =
R
0

1
(1 − cos ι)/ι dι.
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Proof
ad L2-similarity:
The norm in L2(l2(R2)) is conserved under the Fourier transformation according to the Plancherel
Theorem as the operator : induces a scalar product in the l2 -space. Using the fact that the Fourier
transform of a convolution equals the product of the respective Fourier transforms gives then

2‖ΓWα − ΓZα‖L2(l2(R2)) = (2π)2 ‖(Fγf
− Fδf

)FHα‖2 
L2(l2(R2)) (67)

2 

Z 
2= (2π) ‖m(λ1, λ2) − m(0, 0)‖l2 F2 

Hα
(λ1, λ2) dλ1dλ2.

R
2 

With Eq (56) and

1 1 (κ · ι)2 
(I− κ ⊗ κ) : (I− ι ⊗ ι) = 1 + ≤ 2, (68)

κ2 ι2 κ2ι2 

we obtain
Z Z „ «

2 1 E(‖κ‖2) E(‖ι‖2) (κ · ι)2 ‖m(λ1, λ2) − m(0, 0)‖l2 = 1 +
(4π)2 κ2 ι2 κ2ι2 

R
3 

R
3 

(δ0(λ1 − t · κ)δ0(λ2 + ¯ v · κ))v · κ) − δ0(t · κ)δ0(¯

(δ0(λ1 − t · ι)δ0(λ2 + ¯ v · ι)) dκ dι.v · ι) − δ0(t · ι)δ0(¯

Inserting this relation in (67) and integrating over λ1 and λ2 kills two Dirac functions. The other
two vanish after choosing the (t, ¯ vt = ¯v)-induced basis. Applying Eqs (64) and (68) yields with ¯ v·t

vn = ¯ v − (¯and ¯ v · n = ‖¯ v · t)t‖2 > 0

I2 

Z 

L2 ≤ 1
[
`E2(κ1, κ2) − 2E(κ1, κ2)E(0, 0)

´ F2 vtκ1 + ¯Hα
(κ1,−(¯ vnκ2)) dκ1 dκ2

2v̄n 

R
2 
Z

+
1 E2(0, 0) F2 

Hα
(λ1, λ2) dλ1 dλ2]

v̄n 

R
2 

Z„ 

=
αsαt E(αsι1,

1
(αtι2 − αsv̄tι1)) − E(0, 0)

«2 

F2 
H1

(ι1, ι2) dι1 dι2. (69)
2¯nv2 v̄n 

R2 

vtκ1 + ¯The latter calculation is based on the substitution κ1 = αsι1, ¯ vnκ2 = αtι2, λ1 = αsι1,
λ2 = αtι2 and the properties of the even smoothing functions (63). Positivity and radial decay of
E induce the splitting of the integral in Eq (69)

I2 αsαt
(JU + J

R
2\U ). (70)L2 ≤

v22¯n 

with regard to the domain decomposition R
2 = U ∪ (R2 \ U) where

−1 −1 −1 vn + |v̄t|), α−1(¯U := {(ι1, ι2) | ι1 ∈ [−αs , αs ] ∧ ι2 ∈ [−αt (¯ vn + |v̄t|)]}.t

The energy difference in JU can be estimated by means of its differentiability, for (E(αsι1, ¯
−1(αtι2−vn 

−1 2αsv̄tι1)) − E(0, 0))2 ≤ S2 ‖(αsι1, v̄n (αtι2 − αsv̄tι1))‖2. Thus,

„ «
2 

2 v̄t 2 α2 
t 2 v̄t F2JU ≤ S2 

Z 

αs(1 +
¯2 

)ι1 +
¯2 

ι2 − 2αsαt ι1ι2 H1
(ι1, ι2) dι1 dι2 

¯2vn vn vn 
U

The odd term vanishes by the integration. Using the equivalence of the integrand in the four
quadrants we obtain with Eq (63)

−1αt (¯ vt|) α−1 
„ vn+|¯ Zs

JU ≤ 4S2 

Z 2 
2 v̄t 2 α2 

t 2

« 

F2αs(1 +
¯2 

) ι1 +
¯2 

ι2 H1
(ι1, ι2) dι1 dι2 

vn vn 
0 0 

„ «
v̄t
2 α2S2

2 t≤
3π2 

αs(1 +
v̄2 

) +
v̄2 

, (71)
n n 
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where the compact integration domain is replaced by (R+ 
0 )

2 . On the other hand, the energy
difference in J

R
2\U can be estimated by its maximum E0 due to the strict decay of E . The

equivalence of the integrand in the quadrants leads then to

α−1 ∞ Z∞ Zs

J
R

2\U ≤ 4E2 

„Z∞ Z 

H1
(ι1, ι2) dι1 dι2 + F2 

«

F2 
H1

(ι1, ι2) dι1 dι20 

0 −1 −1αs vn+|¯αt (¯ vt|) 0 

„ 
α38E2

3 t≤ 0 αs +

« 

(72)
9π3 (v̄n + |v̄t|)3 

where the integration interval of ι1 in the second summand is replaced by R
+ . Inserting Eqs (71)0 

and (72) in Eq (70) yields the L2-estimate.

ad L∞-similarity:
The L∞-estimate is derived in analogy to the L2-estimate. Consider therefor

Z
2 2‖(ΓWα − ΓZα)(σ)‖l2 = ‖ eiλ·σ (m(λ) − m(0))FHα(λ) dλ‖l2 

R2 

Z Z Z Z «
1 i(λ+µ)·σ E(‖κ‖2) E(‖ι‖2)

„ 
(κ · ι)2 

= e FHα(λ)FHα(µ) 1 +
(4π)2 κ2 ι2 κ2ι2 

R2 R2 R3 R3 

(δ0(λ1 − t · κ)δ0(λ2 + ¯ v · κ))v · κ) − δ0(t · κ)δ0(¯

(δ0(µ1 − t · ι)δ0(µ2 + ¯ v · ι)) dκ dι dλ dµv · ι) − δ0(t · ι)δ0(¯

according to Eqs (56) and (68). Following the calculations of the L2-estimate gives

2‖(ΓWα − ΓZα)(σ)‖l2

„Z „ «

Fα2 α2 

≤ s t ei(αsι1,−αtι2)·σ E(αsι1,
1

(αtι2 − αsv̄tι1)) − E(0, 0) H1(ι)dι

«2 

8π2 v̄2 v̄nn 
R

2 

„Z «2
α2 α2 

≤ s t

˛
˛
˛
˛ 

1
˛
˛
˛
˛ E(αsι1, (αtι2 − αsv̄tι1)) − E(0, 0) FH1(ι) dι

¯28π2 vn v̄n 

R2 

Repeating then the splitting ansatz for the integral and the estimation arguments for the energy
difference in JU and J

R
2\U yields

−1 vn+|¯ ZsZ
4S αt

JU ≤
αt (¯ vt|) α−1 

„ 

αs(1 +
|v̄t|

) ι1 + ι2 

« 

FH1(ι1, ι2) dι1 dι2 
π2 v̄n v̄n

0 0

α−1 
„Z1 Zs «

4S 1 − cos ι 1 − cos ι 1 − cos ι≤
Z∞

dι

„ 

αs (1 +
|v̄t|

) dι + dι
π2 ι2 v̄n ι ι

0 0 1 

−1 vn+|¯„Z1 αt (¯ vt|) ««Z
αt 1 − cos ι 1 − cos ι

+ dι + dι
v̄n ι ι

0 1 
« 

αt

„ ««
2S „ v̄t 

„ 
1≤ αs (1 + ) c + 2 ln( ) + c + 2 ln(

v̄n + |v̄t|
)

π v̄n αs v̄n αt

with c =
R
0

1
(1 − cos ι)/ι dι and

α−1 
„Z∞ Z∞ Z∞ Zs «

J
R2\U ≤ 4E0 FH1(ι1, ι2) dι1 dι2 + FH1(ι1, ι2) dι1 dι2 

0 −1 −1αs vn+|¯αt (¯ vt|) 0 

«
4E0 

„ 
αt≤ αs + .

π (v̄n + |v̄t|)
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In the limit αi → 0, i = s, t, the support of the smoothing function Gα tends to be the whole R
2 .

This is unrealistic as the fiber length l prescribes a natural upper bound for the spatial smoothing
parameter αs. Thus, αs = lT/l is certainly a reasonable value for the macroscopic smoothing
of the turbulent flow effects on the fiber. The temporal flow and fiber scales are related to the

u and ∂tr. The choice of αt = αs‖∂tr‖2/‖u‖2 seems likely.spatial ones by the respective velocities ¯ ¯
Consequently, the actual quality of the similarity estimates (65) and (66) is determined by the
scales of the considered fiber-flow problem. Moreover, it depends crucially on the relation between
fiber direction t and mean relative velocity v̄. Be aware that the estimates do not hold for linear
dependence, because the amplitude D of the underlying uncorrelated velocity fluctuation field z
is then not defined, cf. Eqs (51), (57). However, these events might be viewed as elements of a
nullset, since the perturbing influence of the turbulence and the fiber inertia prevents the fiber
from moving continuously within the mean streamlines.

4.4 Correlated and Uncorrelated Global Force 
σ,τAfter having provided the correlated local forces gcc and their uncorrelated asymptotic limits

σ,τguc , we conclude this section with the statement of the corresponding global forces. According to
the Global-from-Local Force Concept (42) and the linearization approach of Eq (47), the correlated
and uncorrelated global aerodynamic forces read

air σ,τfcc (r(.), s, t) = 〈gcc (s, t)〉N(r(.),s,t) (73)

= 〈f(¯ σ,τv(σ, τ), ∂sr(σ, τ ))〉N(r(.),s,t) + 〈Lf (σ, τ) wf (s, t)〉N(r(.),s,t),

air σ,τfuc (r(.), s, t) = 〈guc (s, t)〉N(r(.),s,t) (74)

= 〈f(¯ σ,τv(σ, τ), ∂sr(σ, τ ))〉N(r(.),s,t) + 〈Lf (σ, τ) z (s, t)〉N(r(.),s,t) 

where

〈Lf (σ, τ ) zσ,τ (s, t)〉N(r(.),s,t) =
q

〈Lf (σ, τ)(Dσ,τ)2(Lf (σ, τ ))t〉N(r(.),s,t) p(s, t)

=

v
u
u
t 

Z
1

Lf (σ, τ)(Dσ,τ)2(Lf (σ, τ ))t dσ dτ p(s, t)|N(r(.), s, t)|
N(r(.),s,t) 

by means of Ito-calculus and the integration rule of independent Gaussian random fields. Here,
(ps,t, (s, t) ∈ [0, l] × R

+ 
0 ) describes as R

3-valued Gaussian white noise a centered homogeneous
generalized Gaussian random field on a two-dimensional parameter set, i.e.

lim(�s,�t)→0 

p
�s�t p(s, t) ∼ N (0, I).

The global forces (73), (74) inherit thereby the proven approximation quality of the local forces
on a macroscopic fiber scale because of the applied linear averaging procedure < . >.

The local flow quantities hardly ever differ in the fiber region N , since it is contained in the
turbulence domain M of Eq (12). This fact in combination with the assumption of a locally linear
fiber motivates the skipping of the averaging procedure. For the further theoretical and numerical
treatment in [12] it is hence convenient to consider the following approximative forces

airfcc (r(.), s, t) = f(¯ σ,τˆ v(s, t), ∂sr(s, t)) + Lf (s, t) 〈wf (s, t)〉N(r(.),s,t), (75)

airfuc (r(.), s, t) = f(¯ˆ v(s, t), ∂sr(s, t)) + Lf (s, t) Ds,t p(s, t). (76)

Analogously to Eq (39), the averaging brackets in Eq (75) can be explicitly formulated as Ito-
integral with the Wiener process / Brownian motion (Wσ,τ , (σ, τ ) ∈ [0, l] × R

+ 
0 )

Z
1σ,τ σ,τ(s, t)〉 (s, t) dWw = w σ,τ .N(r(.),s,t) pf f|N(r(.), s, t)|

N(r(.),s,t) 

Whereas the functional dependence between ĉcfair and r remains as consequence of the realiza-
σ,τtion of the correlation structure of the underlying local velocity fluctuation fields wf , the

fairapplied simplification localizes the uncorrelated global force in Eq (76), i.e. ûc (r(.), s, t) =
f̂air(r(s, t), ∂sr(s, t), ∂tr(s, t), s, t). Thus, the resulting fiber motion is given by a wavelike sys-
tem of stochastic partial differential equations with algebraic constraint.
uc
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5 Conclusions and Outlook 

Our presented Global-from-Local Force Concept in combination with the linearization approach
(47) allows the approximation of the constructed correlated random aerodynamic force by Gaus-
sian white noise with flow-dependent amplitude in case of a macroscopic description of the fiber
dynamics. The stated general results are applicable to concrete practical problems with fiber-
turbulence interaction scales that yield negligibly small deviations in the L2 and L∞-estimates
of Eqs (65), (66). Choose therefor a specific air drag model f and derive an appropriate linear

fairdrag operator Lf , then the global aerodynamic force ûc of Eq (76) leads to a stochastic partial
differential system with additive white noise for the fiber dynamics, Eq (7), that can efficiently
be handled numerically. For the exemplary choice of an empirically motivated, nearly quadratic
drag model in a melt-spinning process, the effects of the correlated global force and its uncor-
related asymptotic limit that are imposed on the fiber by the turbulent flow are quantified and
numerically compared in [12].
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Abstract 

In [12], an aerodynamic force concept for a general air drag model is derived on top of a
stochastic k-ε description for a turbulent flow field. The turbulence effects on the dynamics of
a long slender elastic fiber are particularly modeled by a correlated random Gaussian force and
in its asymptotic limit on a macroscopic fiber scale by Gaussian white noise with flow-dependent
amplitude. The paper at hand now presents quantitative similarity estimates and numerical
comparisons for the concrete choice of a Taylor drag model in a given application.

Keywords: Flexible fibers; k-ε turbulence model; Fiber-turbulence interaction scales; Air drag;
Random Gaussian aerodynamic force; White noise; Stochastic differential equations; ARMA pro-
cess

AMS Classification: 74F10, 76F60, 35R60, 65C20

Introduction 

The understanding of the motion of long flexible fibers suspended in highly turbulent air flows is
of great interest for textiles manufacturing in the melt-spinning process of nonwoven materials.
Neglecting the fiber’s influence on the flow, a stochastic partial differential system that describes
the dynamics of a single slender elastic fiber in a turbulent flow is stated in [12]. Thereby,
the turbulence effects are modeled by a correlated Gaussian aerodynamic force. Applying a
Global-from-Local Force Concept for general air drag models, it is particularly derived on basis
of homogeneous Gaussian fields for the randomly fluctuating local velocity components of the
flow. Their construction satisfies the requirements of the stochastic k-ε turbulence model and
Kolmogorov’s universal equilibrium theory on local isotropy. On macroscopic scales, white noise
with flow-dependent amplitude turns out be a good approximation for the original correlated force
according to L2 and L∞-similarity estimates. In the following, we show the applicability of this
general force concept under conditions of a real melt-spinning process by choosing exemplarily
an empirically motivated Taylor drag. Then, the simplified force model satisfies the demands of
accuracy on the relevant fiber scale while facilitates drastically the numerical computations at the
same time.

For convenience we start with a brief summary of the models for fiber dynamics and aero-
dynamic force. Dimensional analysis of turbulence and fiber behavior reveals the characteristic
interaction scales for our application in Sec 2. On the fiber macro scale the mean flow dominates
the swinging of the fiber whereas the energy-bearing turbulent vortices of the meso scale cause the
entanglement and fine loop forming on the fiber that are crucial for the quality of the resulting
nonwoven materials. The interest in a macroscopic description of the fiber dynamics justifies the
use of the simplified force model as it contains all crucial correlation informations of the meso
scale according to the stated quantitative similarity estimates. From the choice of the Taylor drag
model, we derive a linear drag operator and thus the concrete correlated and uncorrelated global
forces in Sec 3. Their effects on the fiber dynamics are numerically compared in Sec 4 by using
an introduced curvature measure which yields very convincing results.
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Figure 1: From left to right: Turbulent flow in melt-spinning process, mean velocity flow
field by k-ε model, turbulence effects on fiber dynamics. Photo by industrial partner

1.1 General Aerodynamic Force Model 

In the following, we recall the basic models from [12] that are crucially for the description of the
fiber dynamics in a turbulent flow. Consider a single long flexible fiber that is fixed at one end,
suspended in a subsonic highly turbulent air flow with small pressure gradients and Mach number
Ma < 1/3. Let l denote the fiber length and d its diameter with slenderness ratio d/l � 1.
Whereas the fiber influence on the turbulence is negligibly small due to the slender geometry, the
turbulent flow determines essentially the dynamics of the fiber. The motion is particularly modeled
by a system of stochastic partial differential equations with algebraic constraint of inextensibility
that is deduced from the dynamical Kirchhoff-Love equations for a Cosserat rod being capable of
large, geometrically nonlinear deformations

ρA∂ttr(s, t) = ∂s[T (s, t)∂sr(s, t)] − EI ∂ssssr(s, t) + ρAg + fair(r(.), s, t) (1)

‖∂sr(s, t)‖2 = 1, (2)

with Dirichlet boundary conditions at the fixed end, Neumann at the free one and the position
of rest as initial condition. Here, r : [0, l] × R

+ → R
3 might be interpreted as center line of the0

fiber with arc length s and time t, its constant line weight is denoted by ρA. The internal line
forces stem from bending stiffness indicated by Young’s modulus E and moment of inertia I as
well as from traction. In this spirit, the Lagrangian multiplier T : [0, l] × R

+ → R can be viewed0
2 2as modified tractive force T = Tt +EI‖∂ssr‖2 containing tension Tt and curvature ‖∂ssr‖2 due to

bending. The external line forces acting on the fiber arise from gravity g and aerodynamics fair.
The aerodynamic force term acts as additive Gaussian noise in Eq (1) due to the applied

general Global-from-Local Force Concept that is based on the stochastic k-ε description of the
underlying turbulent flow. In particular, we consider here a correlated Gaussian aerodynamic
force fair and its uncorrelated asymptotic limit on macroscopic scales fair

cc uc

σ,τw (s, t) dWσ,τ
fcc (r(.), s, t) = f(¯air v(s, t), ∂sr(s, t)) + Lf (s, t)

R
N(r(.),s,t) f

(3)
dσ dτ)1/2(

R
N(r(.),s,t)

airfuc (r(.), s, t) = f(v̄(s, t), ∂sr(s, t)) + Lf (s, t) Ds,t p(s, t) (4)

that depend on the chosen air drag model f : R
3 × R

2 → R
3 and its respective linear drag

operator Lf . A feasible air drag model is prescribed as function of the mean relative velocity
between fluid and fiber, i.e. ¯ ¯v(s, t) = u(r(s, t), t) − ∂tr(s, t), and the fiber tangent ∂sr(s, t). In

¯analogy to the k-ε turbulence model, the forces are split into a deterministic part f resulting from
the mean flow velocity ū : R

3 × R
+ → R

3 and a stochastic part f ′ coming from the turbulent0

fluctuations that are characterized by the turbulent kinetic energy k : R
3 × R

+ → R
+ and the0

dissipation rate ε : R
3 × R

+ → R
+. In Eq (3) the random fluctuations are modeled as Ito-0

integral over a family of locally isotropic, homogeneous, incompressible Gaussian velocity fields

0 ), (σ, τ ) ∈ [0, l]×R
+

R
+along the fiber {(wσ,τ)s,t, (s, t) ∈ [0, l]×R

+
0 }, where (Wσ,τ , (σ, τ ) ∈ [0, l]× 0 )f

denotes a Wiener process (Brownian motion). The underlying fiber region N(r(.), s, t) = {(σ, τ ) ∈
0 | ‖r(s, t) − r(σ, τ ) − ¯[0, l] × R
+ u(r(s, t), t)(t − τ )‖2 ≤ lT ∧ |t − τ | ≤ tT} is determined by the

turbulent large-scale length lT and time tT. Moreover, the construction of the correlation tensors
γσ,τ that correspond to the centered velocity fields complies with the requirements of the k-ε0
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Fiber
diameter d 3.0 · 10−5 m
length l 2.5 m
line weight ρA 9.0 · 10−7 kg/m
bending stiffness EI 4.7 · 10−10 Nm2 

absolute velocity W 1.0 · 101 m/s
acceleration of gravity g 9.81 m/s2 

suspended height H 1 m
Flow

ρair density 1.22 kg/m3 

¯absolute mean velocity u 1.0 · 102 m/s
turbulent kinetic energy k 1.0 · 102 m2/s2 

dissipation rate ε 1.0 · 105 m2/s3 

viscosity ν 1.5 · 10−5 m2/s

Table 1: Typical fiber and flow parameter values in melt-spinning processes

model, Kolmogorov’s universal equilibrium theory on local isotropy as well as Taylor’s hypothesis
2(R+of frozen turbulence pattern by choosing the following energy spectra Eσ,τ ∈ C 0 )

8
>

:

<

>

Kσ,τ κ
−5/3 P6 aj ( κ )j κ < κ11 j=4 κ1 

Kσ,τ κ−5/3 κ1 ≤ κ ≤ κ2 (5)

Kσ,τ κ
−5/3 P9 bj ( κ )−j κ > κ22 j=7 κ2 

Eσ,τ(κ) =

∞Z ∞Z
Eσ,τ(κ) κ2 dκ

ε(r(σ, τ ), τ )
=

2ν
(6)Eσ,τ(κ) dκ = k(r(σ, τ ), τ ),

0 0

with viscosity ν, Kolmogorov constant Kσ,τ = CK ε(r(σ, τ ), τ )2/3 and further prescribed constant
fitting parameters aj , bj . In Eq (4) in contrast, the integral effects of the localized random
fluctuations are incorporated in the amplitude Ds,t of the Gaussian white noise (ps,t, (s, t) ∈
[0, l] × R

+
0 ). In particular,

2π
∞Z

Es,t(κ)
«1/2

dκ

„ 

Ds,t = Pt,n(s,t) (7)
v̄n(s, t) κ2

0

is proportional to the projector onto the plane spanned by fiber tangent t = ∂sr and normal
n = (¯ v · t)t)/‖v − (¯ ¯v − (¯ ¯ v · t)t‖2, where v̄n = v · n. Note that the existence of the amplitude in
Eq (7) and thus of the uncorrelated force in Eq (4) presupposes the linear independence of fiber
tangent and mean relative velocity.

2 Fluid-Fiber Interaction Scales 

The handling of fiber-turbulence interaction is very difficult as it is governed by many complex
factors, including nature of flow field, turbulent length scales, size and behavior of the fiber. The
applicability of the uncorrelated aerodynamic force fair particularly depends on the characteristicuc

interaction scales of the considered fiber-flow problem. In a typical melt-spinning process, fiber and
flow are specified by the parameter values of Tab 1. These yield the following quantitative scales
and similarity estimates between the correlated and the uncorrelated force by using dimensional
analysis.

2.1 Turbulence Scales 

Turbulence is characterized by its wide range of length and time scales. As their significance plays
a decisive role in the coming analysis we focus on them and their interpretation.

Due to the underlying k-ε turbulence model we already distinguish between the length and
time scales of the mean motion and the ones of the fluctuations. The mean motion and its scales

3



ε ε

ε

ε

ε

are concluded from the boundary conditions (geometry) and the absolute mean flow velocity u.¯
On the other hand, the fluctuations might be interpreted as the turbulent effects of overlapping
vortices of different sizes that are indicated by the turbulent kinetic energy k, dissipation rate ε
and viscosity ν. The smallest, viscously determined vortices are given by the Kolmogorov scales

”1/2

η =

„
ν3
«1/4

, tK =
“ν

.

Apart from that, the local correlation tensor γ0 [11, 12] provides additional information about
the size of the present turbulent structures. The structures in the dissipation area (small lengths,
thus high frequencies) are determined by the run of the one-dimensional longitudinal correlationR∞
function c1(z) = 2/z3

0
∂κ(E(κ)/κ) sin(κz) dκ, z ∈ R

+ around the origin and hence by k and ε,0
4see Eq (6). For z � 1, then c1(z) = 2/3k−ε/(30 ν) z2 +O(z ) describes a parabola that intersects

the z-axis at the dissipation length λT, i.e. c1(λT) = 0. Thus,

«1/2„
20kν

λT =

represents as turbulent fine or micro scale the decay of the correlations.
The large, macro or integral scale

R∞
trγ0(z) dz

R∞
E(κ)/κ dκπ 0=ΛT = 0

trγ0(0) 2
R∞

E(κ) dκ
0

in contrast, characterizes the mean coherence scale independently of longitudinal and lateral
correlations and can be be interpreted as typical size of the energy-bearing vortices. In this
context, the turbulent length proposed by the k-ε model

k3/2

lT =

can be understood as the leading order term of ΛT. Consider therefor the modeled energy spectrum
of Eq (5), it gives

π CK ε2/3 “
A1κ

−5/3 −5/3
ΛT = 1 + B1κ2

” 

2 k

where κ1 and κ2 with κ2 > κ1 > 0 are the solutions of the nonlinear system

−2/3 −2/3
=

k
Akκ1 + Bkκ2 CKε2/3

= fk,

ε1/3 fk4/3 4/3
= = fε =

δ2
, (8)Aεκ1 + Bεκ2 2CKν

stemming from Eq (6). After non-dimensionalizing, δ = (2kν/ε)1/2 ∼ O(λT) with λT/H � 1 turns
out to be small, whereas the other coefficients Ai, Bi, fk ∼ O(1). Thereby, Ai, Bi, i = 1, k, ε denote
linear combinations of the fitting parameters arising in Eq (5) and CK = 0.5 the Kolmogorov

constant. Substituting xi = κ
2
i
/3

, i = 1, 2, we write x1 = fk/Ak − Bk/Ak x2. Plugging this
expression into Eq (8) yields a 4th order equation for x2 that has two complex, a negative and a

positive solution. The feasible positive solution can be expanded in δ as x2 = x
(1)

δ+x
(3)

δ3+O(δ4)2 2

which results straightforward in a δ-series for ΛT

π A1
ΛT = F1 lT + O(δ), with F1 =

3/2 5/2
≈ 1.05. (9)

2 CK Ak

Though the use of Ai in Eq (9), the magnitude of F1 can be treated as independent of the
differentiability order of the underlying chosen energy model. An ansatz for a smoother energy

l(R+spectrum, E ∈ C 0 ), l ≥ 3, contains certainly more fitting parameters but their influence
cancels out in the definition of F1. In this work, we refer to lT as turbulent large-scale length.

Concerning the turbulent time scale for the decay of the energy-bearing vortices, the length
lT and velocity scale uT = k1/2 of the k-ε model imply

k
tT = .
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¯ ε ¯

0

1

As this scale disregards the advective influence of the mean flow, we suggest additionally

lT k3/2

tA = = .
u u

Moreover, the amplitude D of the uncorrelated force in Eq (7) might be also expressed by k
and ε, since it contains a moment of the energy spectrum. In our case, we get

R∞
E(κ)/κ2 dκ =

−8/3 −8/3
CKε2/3(A2κ + B2κ2 ), where A2, B2 ∼ O(1) are linear combinations of the fitting parame-
ters. Following the approach above and introducing the small parameter δ, the expansion for the
energy moment reads

∞Z 
E(κ) k4 A2

κ2
dκ = F2

ε2
+ O(δ), with F2 =

C3 A4
≈ 0.80, (10)

K k
0

In leading order, the amplitude is consequently given by

«1/2
k2

D(0) =

„
2πF2

Pt,n (11)
v̄n ε

Thus, the resulting correlations along the fiber (D(0))2 δ0(s) δ0(t) can be interpreted to be pro-
portional to the turbulent energy k acting over the mean coherence length lT and over the char-

facteristic turbulent fiber time τT = lT/v̄n that depends on the geometrical relation between fiber
orientation and mean relative velocity.

2.2 Fiber Scales 

For a better understanding of the fiber behavior in the turbulent flow, dimensional analysis is
applied on the fiber system (1), (2). Therefor, we introduce a dimensionless zooming parameter
h = L/H as ratio of the typical varying length of interest L and the fixed height of the suspended
fiber H .

Apart from H , the problem contains nine further parameters: diameter d, line weight ρA,
bending stiffness EI , fiber velocity W , acceleration of gravity g, flow density ρair, mean flow

¯velocity u, mean relative velocity between flow and fiber v̄ and kinetic turbulent energy k. The
number of parameters can be reduced to four dimensionless

W 2
¯ d ρair H3 v̄2 d ρair H3 k1/2 v̄

Fr = , Gr =
ρAg H3

, P = , P′ = .
g H EI EI EI

The Froude number Fr states the ratio of kinetic and gravitational potential energy, the dimen-
¯sionless gravity Gr the ratio of gravitational and flexural energies and the dimensionless mean P

resp. fluctuating aerodynamic force P′ the ratio of aerodynamic and flexural energies. Introducing
dimensionless variables gives

∗ ∗ ∗ EI ∗ ∗ ∗r(s, t) = H r (s , t ), Tt(s, t) = Tt (s , t ),
L H

¯
“ ”2 ”

¯∗ ∗ ∗ air ′∗ ∗ ∗f(s, t) = d ρair v̄
f (s , t ), f ′(s, t) = d ρ k1/2

“ v̄
f (s , t ),

h h

∗ ∗with s = L s and t = (L/W ) t . The use of different length scalings for r and s are motivated
from our interest to keep the whole spatial domain of the fiber line while focusing on the fiber
behavior arising on typical lengths. Hence, the interplay of fixed outer H and varying inner length
L appears also in the factor of the tension part Tt. The bending part is treated separately due to
the composed structure of T . For the scaling of the aerodynamic force fair, it is sufficient to utilize

2 ∼ dρair‖ 2its proportionality to the dynamic pressure, since ‖fair‖ v‖2 in the following. Thereby,
the deterministic force part f is based on the quadratic mean relative velocity and the stochastic¯

part f ′ on the product of mean relative velocity and flow fluctuations that are expressed by k1/2.
The magnitude of the mean relative velocity v̄ depends particularly on the direction of mean flow
and fiber velocity according to

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗v(s, t) = ‖u ¯ ¯ v/h) ¯¯ ¯u − W/h ∂t∗r ‖2 v (s , t ) = (¯ v (s , t ). (12)
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¯It is minimal if u � and ∂t�r � are similar directed, maximal if they are opposite directed, thus
¯ ¯v̄ ∈ [ |hu − W |, |hu + W | ]. The time scaling in Eq (12) that is chosen with respect to the fiber

dynamics of the typical length L incorporates here the zooming ratio h in the definition of v̄.
Then, the dimensionless fiber system reads

−1 Tt
� + h−4 � �Fr Gr ∂tt�r � = ∂s�((h ‖∂ss�r �‖2

2)∂s�r ) − h−2 ∂ssss�r − h2 Gr e3 

¯ ¯ ′ ′�+ P f� + h P f
2(∂s�r �)2 = h .

For a melt-spinning process, the typical fiber and flow parameter values listed in Tab 1 yield

4 ¯ , P′
j 

107 − 108, h ∼ 1
Fr ∼ 101, Gr ∼ 10 , P ∼

j 
108 − 109, h ∼ 1 ∼
106 − 107, h � 1 106 − 107, h � 1

¯where the aerodynamic similarity quantities P and P′ are roughly estimated by means of the range
of ¯.v

Varying the length of interest L and thus the zooming parameter h reveals three characteristic
scales that are worth to consider in more detail, cf. Fig 2. In the following we suppress the

∗superscript to keep the expressions short.

Macro scale: 1 ≥ h > 10−1 

¯ ¯FrGr ∂ttr = −h2 Gr e3 + P f + h P f

Over the whole length of the fiber l, the fiber dynamics is caused by the external forces. In
particular, the mean flow affects the fiber swinging.

Meso scale: 10−1 ≥ h > 10−3 

−4
2)∂sr) − h−2 ′¯ ¯Fr Gr ∂ttr = ∂s((h

−1Tt + h ‖∂ssr‖2 ∂ssssr + P f + h P′ f

This fiber scale coincides with the turbulent large-scale lT of the energy-bearing vortices. Here,
the inner and outer forces acting on the fiber balance each other. But the fluctuating part of the
aerodynamic force f ′ causes entanglement and fine-loop forming which crucially determine the
fiber dynamics.

Micro scale: h ≤ 10−3 

¯ ¯∂s(h
−4‖∂ssr‖2

2 ∂sr) = 0, Fr Gr ∂ttr = −h−2 ∂ssssr + P f 

The inner forces, in particular the bending stiffness, dominate the total fiber behavior. In contrast,
the effects of the fine-scale λT and Kolmogorov vortices of size η are irrelevant for the fiber
dynamics, here η < d.

The time scales of the problem provide no further information as they are related to the length
scales using the reciprocal of the fiber velocity W as proportionality factor. Due to its inertia, the
fiber shows thus no reaction to turbulent structures decaying faster than tinertia ∼ 10−4 s which
includes the whole fine-scale turbulence. The natural decay of the large-scale vortices in contrast
is indicated by tT ∼ 10−3 s and under consideration of advection by the mean flow by tA ∼ 10−4 s.

Summing up, fine-scale vortices do absolutely not affect a fiber in the melt-spinning process
due to its bending stiffness. Thus, their influence (correlations) might be neglected in the model
of the stochastic aerodynamic force. The turbulent large-scale vortices in contrast cause entan-
glement and loop-forming that play a decisive role for the fiber behavior. But instead of resolving
their effects explicitely, it is sufficient to model them on the macro scale, as our interest focuses
exclusively on a macroscopic description for the fiber dynamics. This motivates the idea of ap-
proximating the correlated force by an integrated – still correlated – force. In the following,
the introduced uncorrelated aerodynamic force fair of Eq (4) that contains the mean turbulentuc

coherences (integral correlations) turns out to satisfy the stated demands on approximability.
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Figure 2: Scales of fiber-turbulence interactions

2.3 Quantitative Similarity Estimates 

To justify the applicability of the uncorrelated force as substitute of the original correlated force in
our problem, we analyze its approximation properties by means of the similarity estimates taken
from [12].

Similarity Estimates 
Let αs and αt ∈ R

+ be spatial and temporal smoothing parameters of the fiber-flow problem. Define0

E(κ1, κ2) :=
R

R 
E(‖κ1, κ2, l‖2)/(κ1, κ2, l)

2 dl with E0 := E(0, 0) and S := supκ∈[0,1]2‖∇κE(κ1, κ2)‖2.
Then, the approximability of the correlated by the uncorrelated aerodynamic force given in Eqs (3),
(4) is expressed by the following estimates:
L2-similarity:

√ „ „ «
v̄2 2 α3

t t2 α2IL2 ≤ √αs αt

s 

S s (1 +
¯
t
2
) +

α2
«

+
8E0 α3 +

(¯
(13)

¯26π v̄n vn vn 3π
s

vn + |v̄t|)3

L∞-similarity:

√
2αs αt

»

S
„ ««

v̄t

„
c 1

« 
αt

„
c

+ ln(
v̄n + |v̄t|IL∞≤ αs (1 + ) + ln( ) + )

π2 v̄n v̄n 2 αs v̄n 2 αt
„ «–

αt
+ E0 αs + (14)

v̄n + |v̄t|
where v̄t, v̄n are the tangential and normal component of the mean relative velocity with respect to
the (t, v̄)-induced fiber basis of Sec 1.1 and c =

R
0

1
(1 − cos ι)/ι dι.

The limit αi → 0, i = s, t describes the smoothing over the whole R
2. This is unrealistic as the

fiber length l prescribes a natural upper bound for the spatial smoothing parameter αs. Thus,
αs = lT/l is certainly a reasonable value for the macroscopic description of the turbulent flow
effects on the fiber. The temporal flow and fiber scales are related to the spatial ones by the

¯ u.respective velocities u and W which motivates the choice of αt = tAW/l = αsW/¯
Inserting the typical parameter values of Tab 1 yields for the non-dimensionalized quantities

αs ∼ 10−2, αt ∼ 10−3, S ∼ 1 and E0 ∼ k4/ε2 ∼ 10−2 according to Eq (10). The order of the
relative velocity can be approximated by v̄ ∼ 102 which implies |v̄t| ∈ [0, 102] and v̄n ∈ [0, 102].
Thus, quantitative similarity estimates in SI-units depend drastically on the relation between fiber
direction t = ∂sr and mean relative velocity v̄ as they are expressed by

2 <IL2 ∼ 10−10 ¯−2 −4 < −1 −2vn + 10−6 v̄n , IL∞ ∼ 10−8 v̄n + 10−6 v̄n .

<
v − (¯ v − (¯ v, we have ¯with n = (¯ v · t)t)/‖¯ v · t)t‖2. In case of t ⊥ ¯ vn ∼ 102 such that IL2 ∼ 10−7

<
and IL∞ ∼ 10−10 indicate very good approximation properties. But even for smaller normal
velocity components – down to ¯critvn ∼ 10−1 – the uncorrelated force is a good substitute for the
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< <
correlated one, since the deviations are little, i.e. IL2 ∼ 10−1, IL∞ ∼ 10−4. In fact, v̄n ∼ 1 in

vn < ¯critgeneral, and the events ¯ vn might be viewed as elements of a nullset, because the perturbing
influence of turbulence and fiber inertia prevents the fiber from moving continuously within the
mean streamlines. However, the further numerical realization requires also their treatment so that
we will deal with the arising singularity for v̄n → 0 in Sec 3.3 which results from the definition of
the force amplitude D, Eq (7).

3 Air Drag Model and its Consequences 

The numerical simulations of the fiber dynamics imposed by the correlated and/or uncorrelated
aerodynamic force rely essentially on the choice of an appropriate air drag model f and the
derivation of the corresponding linear drag operator Lf . We particularly distinguish between
linear and quadratic drag relations and discuss their applicability as well as their consequences
for our application.

3.1 Choice of Drag Model 

Stokes Drag for Turbulent Flow 
For slow viscous flows with Re < 1, Cox [4] has developed an insightful analytical series approx-
imation for the force distribution along the length l of a straight fiber. As Reynolds number
based on the fiber diameter d approaches zero, the drag force per unit length along the fiber is
proportional to the relative velocity between fluid and fiber v(s, t) = u(r(s, t), t)−∂tr(s, t) at fiber
point s and time t. So,

f(v, t) = Cdrag(t) v, Cdrag(t) = ct t ⊗ t + cn (I − t ⊗ t) (15)

gives the linear Stokes drag relation, where the drag tensor Cdrag depends on the fiber orientation
t = ∂sr in the surrounding flow. From the Stokes flow approximation, Keller and Rubinow [9]
have determined the drag coefficients cn, ct up to leading order for smooth ellipsoidal filaments
which also conform for small surface variations [1]. Götz [7], in contrast, has derived an integral
equation model for the drag force by applying a matching principle to the asymptotic expansions
of the flow field around slender ellipsoidal and cylindrical fibers of circular cross-sections in the
framework of Stokes’ and Oseen’s equations. Then with µ = ρairν

ellipsoid =
8πµ

„ 

ln(
2l 1

«−1
ellipsoid =

4πµ
„ 

ln(
2l 1

«−1

cn Re d
) +

2
, ct Re d

) −
2

,

cylinder =
8πµ

„ 

ln(
4l 1

«−1
cylinder =

4πµ
„ 

ln(
4l 3

«−1

cn ) − , c ) − .
Re d 2 t Re d 2

However, there is no slender-body theory that is strictly valid for the turbulent flow with
high Re that is of interest here, Re ≈ 200. In the analysis of turbulence effects on particles, a
linear Stokes drag has successfully been applied to predict particle motions in turbulent flows
[14, 15, 17, 19]. Drag relations based on empirical correlations have also been used [3, 13] as
well as a modified Stokes drag that takes into account particle oscillations [8]. As a necessary
simplification, the form of the drag force, Eq (15), on the fiber under creeping flow conditions is
assumed to be retained for high Re turbulent flows. But Eq (15) has been derived for a small
Reynolds number flow. Thus, it is only valid for infinitely thin little fibers with d ≤ η and l ≤ η.
Anyhow, the relation is conferrable to longer fibers suspended in turbulent flow by imposing the
free-draining approximation which has been used to model flexible fiber motion [16] and polymer
dynamics [6]. In this model, the fiber is considered to be composed of a series of elements of length
∆l, where ∆l ≤ η. Each element meets the necessary conditions for Eq (15) to be valid. Assuming
hydrodynamic independence of each element allows Eq (15) to be applied to all elements and thus
to the entire fiber.

Taylor Drag 
For high Reynolds number flow indicated by Re ∈ (20, 106), Taylor [18] has investigated the
behavior of drag forces experimentally. Thereby, he has discovered the nonlinear relation between
drag and angle α enclosed by flow direction and center line of an immersed straight slender body as
well as the influence of the surface roughness on the drag, which Lee [10] has applied successfully
to long, flexible fibers within a carding process.
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As the drag force f lies in the plane spanned by the fiber tangent and the relative velocity, it
can be split into a tangential ft and a normal component fn with respect to the fiber orientation,
i.e. t = ∂sr, n = (v − (v · t)t)/‖v − (v · t)t‖2, cf. Fig 3. Then,

f(v, t) = fn(v, t) + ft(v, t), (16)

where
!

2

r
sin3 α

fn = 0.5 ρair dv sin2 α + 4 n, (17)
Re
!

2ft = 0.5 ρair dv 5.4 cos α

r
sin α

t, (18)
Re

with sin α = (v · n)/‖v‖2, cos α = (v · t)/‖v‖2 and Re =

α( )s, t

s1
dv/ν respectively. Equations (17), (18) suggest that a r(s, t) n(s, t)
straight fiber with smooth surface does not feel any drag
when it is aligned parallel to the direction of the incoming
flow. This does not correspond to the experiments [18] re- ∂sr(s, t) v(s, t)

vealing that for small α, α → 0, ft can be approximated = t(s, t)
by ft(α

◦ = π/36). For a rough surface in contrast, this
situation of zero drag does not appear because the Taylor s2 > s1

expression reads

2

»„ – Figure 3: Drag relevant angle 
4 sin α

f = 0.5 ρair dv sin2 α + √
« 

n + cos α t . (19) α ∈ [0, π] enclosed by relative 
Re velocity v and fiber tangent ∂sr 

For technical reasons, we rewrite Eqs (17)-(19) as

fn = 0.5 ρair d cn ‖vn‖2 vn, ft = 0.5 ρair d ct ‖vt‖2 vt. (20)

with the empirical drag coefficients for smooth resp. rough fibers

smooth smooth 2ctcn = 1 + 4
p

ν/(d‖vn‖2), = 5.4
q

ν‖vn‖2/(d‖vt‖2), (21)

rough 2 rough
tcn = 1 + 4

q
ν‖v‖2/(d‖vn‖2), c = ‖v‖2/‖vt‖2.

The high Reynolds number flow and the presence of very small vortices indicated by the rela-
tion η < d in our application conflicts with the use of the heuristic linear Stokes drag. Hence, we
determine the aerodynamic forces on the smooth polymer fiber under consideration by means of
the empirically motivated nearly quadratic Taylor drag (20), (21), although this concept is only
examined for high Re, but still laminar inflow regime. Additionally, to exclude the zero drag in
case of parallelism of t and v, we suggest a slight modification of the drag coefficient csmooth thatt

provides a better consistence to reality. As a smooth fiber lying parallel to the direction of the
relative velocity experiences the same tangential drag force as one being rotated by α◦ and as
vn = v − (v · t)t, we define

j
◦ vn, c◦ ≥ ‖vt‖2/‖v‖2

vn := v − sgn(v · t)c◦‖v‖2 t, else
(22)

with c◦ = cos α◦. Here, the sign function, sgn(x) = 1 if x ≥ 0, sgn(x) = −1 else, includes equal
◦and opposite directed vectors t and v. We have ‖vn‖2 = 0, if and only if ‖v‖2 = 0. Setting

smooth ◦ 2ct = 5.4
q

ν‖vn‖2/(d‖vt‖2) (23)

yields thus a reasonable tangential drag model that is not only continuous but proves to be also
differentiable.
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3.2 Linear Drag Operator 

Proceeding with the derivation of the linear drag operator Lf , we consider a generalized lineariza-
tion approach for the modified Taylor drag model f 

f(¯ ′ v, t) + Lf (¯v + u , t) ≈ f(¯ v, t, k) u ′, (24)

with mean relative velocity between fluid and fiber v̄ and random Gaussian fluctuation of the flow
velocity u ′. In the context of Eqs (3), (4), the first term represents the deterministic part of the
aerodynamic forces and the second term the stochastic one.

Model for Linear Drag Operator 
Let f : R

3 × R
2 → R

3 be the modified Taylor drag model of Eqs (20)-(23). Then construct the
linear drag operator Lf as continuous composition

8
>> ∇vf(v̄, t), � > 1

Lf (v̄, t, k) =
< 

>> (1 − �)
`
an0(k) (I − Pt) + at0(k) Pt

´ (25)

: 
+� ∇vf(�

−1 v̄, t), � ≤ 1

with � = ‖v̄‖2 (2k)−1/2. The parameters are given by

√ √ √
2 k1/2

´1/2
an0(k) =

`
2a k + 5 25/ 33/2π gam(5/4)an1an2k

3/4 + 16/ 3π a2 (26)n1 n2

1/4at0(k) =
q

8/(3π)1/2 atk (27)

√ ◦with an1 = 0.5ρaird, an2 = ρair dν, at = 1.35an2 , c◦ = cos α and gamma function gam.

Let the projectors on fiber tangent t = ∂sr, normal n = (¯ v · t)t)/‖v − (¯v − (¯ ¯ v · t)t‖2 and binormal
b = t × n be described by P[x,y] = x ⊗ y. In particular, we abbreviate Px := P[x,x] and
Px,y := Px + Py, x,y ∈ R

3. Then, the operator ∇vf resulting from Eqs (20)-(23) reads

∇vf(¯ vn‖2 + 2an2‖vn‖1/2
) Pn,b + (an1‖vn‖2 + an2‖vn‖1/2

) Pnv, t) = (an1‖¯ ¯ ¯ ¯2 2

◦‖−1/2
(¯+ 2at‖¯◦‖1/2

Pt + at‖¯v v v · t)P[t, ¯ ‖−1]◦vn 
◦vn ‖¯2 2n n

+ χ(¯ vn‖−3/2 ◦ vt‖2‖¯ −1 vt‖2 Pt + (¯ vn‖2 P[t,n])v, t) at‖¯◦ c (c◦ − ‖¯ v‖2 )(‖¯ 2 v · t)‖¯2

Though the use of the indicator function χ(¯ vt‖2‖¯ −1 v, t) = 0 else,v, t) = 1 for (‖¯ v‖2 ) ≥ c◦ and χ(¯
◦ ¯the introduction of vn in Eq (22) yields a continuous Gateaux derivative. In the limit to t‖v, it

stays additionally bounded which is a big difference to an ansatz based on Taylor’s original zero
drag model with missing tangential component.

The Gateaux derivative ∇vf(v̄, t)u ′ is a good representative for the stochastic part in Eq (24)
if the mean relative velocity is much higher than the fluctuations that are characterized by the

v‖2 � E[u ′2] = 2k. In case of ¯turbulent kinetic energy k, i.e. ‖¯ 2 v = 0 in contrast, it would provide
a zero drag, since

′)2 ′)2f(¯ ′
¯v + u , t)|v=0 = f(0, t) + ∇vf(0, t)u ′ + O((u ) = 0 + O((u ),

which is absurd as the velocity fluctuations affect the fiber though vanishing mean relative velocity

′ ′ 1/2 ′ ◦ 1/2 ′f(u ′, t) = (an1‖un‖2 + 2an2‖un‖ ) u ′n + 2at‖un ‖2 ut. (28)2

Note that in Eq (28) the direction n is exceptionally determined by u , i.e. un = u ′−ut. The fact
that the expectations of drag and velocity fluctuations are equal, i.e. E[f(u ′, t)] = E[u ] = 0, mo-
tivates the stated extension of the linearized approach for v̄ = 0. Keeping the directional vectors
un, ut, the coefficients with the specific norms are replaced by the respective averaged quantity
expressed by the kinetic energy k such that the variance is correctly reproduced. Abbreviate
therefor f := f(u ′, t) and consider

2 2
E[f ⊗ f ] = E[(f · t)2] t ⊗ t + E[(f · n1) ]n1 ⊗ n1 + E[(f · n2) ]n2 ⊗ n2 

+ E[(f · t) (f · n1)] (t ⊗ n1 + n1 ⊗ t)

+ E[(f · t) (f · n2)] (t ⊗ n2 + n2 ⊗ t)

+ E[(f · n1) (f · n2)] (n1 ⊗ n2 + n2 ⊗ n1)

10
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ε

ε

2

with arbitrarily chosen orthogonal normal vectors n1, n2. The mixed expectations vanish thereby
due to the independence and odd appearance of the underlying velocity components, as for E[f ]
above. Because of the identical distribution of the drag in the normal plane, we have E[(f ·n1)2] =

′2
E[(f · n2)2] such that it is sufficient to consider E[(f · n)2]. Using E[u ] = 2k and the identical
distribution of the velocity components yields their variance E[(u ′ · e)2] = σ2 = 2k/3 with unit
vector e. The general (centered) moments are prescribed by the gamma function according to

2m 2m
E[|u ′ · e| ] = (2πσ2)−1/2

R 
x e−x2/(2σ2) dx = (2σ2)m gam(m + 1/2)/

√
π, m ∈ R

+. Then,

2 ′ ◦ 2 2
E[(f · t)2] = 4at E[|u · n |] E[(u ′ · t) ] = (at0(k) σ)

2 4 ′ 2 3
n1 n2E[(f · n)2] = a E[(u ′ · n) ] + 4an1an2E[|u · n|7/2] + 4a E[|u ′ · n| ] = (an0(k) σ) ,

by means of Eqs (26), (27), such that

f0(u ′, t, k) := an0(k)un + at0(k)ut = an0(k) (u − ut) + at0(k)ut 

describes a Gaussian random variable that has the same stochastic parameters, i.e. expectation
and variance, as the original drag of Eq (28). Moreover, it is linear in u ′, though the suggestion of
its coefficients depending on k. The turbulent kinetic energy has to be viewed as input parameter
for the generation of the flow fluctuations in the context of this work. Hence, Lf (v̄, t, k) =

¯an0(k) (I − Pt) + at0(k) Pt is taken as drag operator in the case v = 0.
For the secant complement that combines the two determined drag operators, all functional de-

pendencies of � might be imaginable, e.g. squared, linear or quadratic in ‖v̄‖2. But because of the
lack of information about this intermediate domain, i.e. ‖¯ 2 ∈ (0, 2k), they are mathematicallyv‖2

and physically as less motivated as our proposed linear ansatz in Eq (25).

3.3 Technical Modification of Force Amplitude 

Since the defined drag operator Lf has a finite, non-vanishing limit for v̄n → 0, it is unable to
balance the arising singularity of the force amplitude in Eq (7)

„
2π

∞Z
E(κ)

«1/2 «1/2
(11)

„
2πF2 k2

dκ ≈D = Pt,n Pt,n.
v̄n κ2 v̄n ε

0

Consequently, the uncorrelated aerodynamic force fair diverges in case of linear dependence of tuc

and v, whereas the correlated one fair stays bounded, as we have already seen in the similarity¯ cc

estimates (13), (14). Although the occurrence of this single discrepancy is negligibly small, the
further numerical realization requires its handling. Thus, we suggest a slight technical modification
of the amplitude that has no influence on the proved approximation quality of the uncorrelated
force. Replace D by

D̆ = (2πF2)
1/2 k2

8
< 

: 

−1/2
v̄n Pt,n, ω > 1

(1 − ω) (¯crit)−1/2 −1/2
vn (Pt + (I − Pt)/2) + ω v̄n Pt,n, ω ≤ 1

(29)

vn/¯critwith ω = ¯ vn , then

8
>>

:

<

>>

l|| Pt p, � > 1

((1 − �) (an0(k)/2 (I −Pt) + at0(k) Pt)

+� l|| Pt) p, � ≤ 1

«1/2
air

„
2πF2 k2

lim fuc = f +
vcritv̄n→0 ¯n

coincides with the limit of the correlated force regarding the formal structure of the terms. Here,
the deterministic force part given by the modified Taylor drag, Eqs (20), (23), reads f = ft for
v‖2 �‖¯ = 0 and f = 0 else, and furthermore

„ ◦)¯2v̄t (c◦ 2 − c vt

«

l|| := at
◦ 1/22v̄ + +n ◦ 1/2 ◦ 3/2

v̄n v̄n

¯◦ v · t)c◦)‖¯with vn = (1 − sgn(¯ v‖2 < ∞. The modification in Eq (29) can be interpreted as
cutting the amplitude D at the critical velocity v̄n = ¯critvn and matching it continuously with a
linear extension. As the underlying (t, v̄)-induced set {t, n, b} looses its basis properties in the
limit v̄n = 0, we distinguish between the tangential and the remaining projectors and introduce

11



�

the normal independent splitting (Pt + (I − Pt)/2) instead of the original (Pt + Pn). Thus,
the direction of fair is not longer specified by the mean relative velocity for � → 0 as alreadyuc

indicated by fair.cc

The needed technical modification of the amplitude reveals the deficiency of the modeled
fluctuation velocity fields wσ,τ whose dynamics is based on locally frozen turbulence pattern.f

Hence, the fiber experiences no temporal change of the correlations, if it moves within the mean
streamlines, i.e. v̄n = 0. Alternatively to the modification, one might question the underlying
concept of frozen turbulence that neglects the natural decay of vortices because of its large time
tT and slow turbulent velocity scale uT = k1/2 in comparison to the advection scales of the mean
flow tA, ū. However, for a fiber suspended in turbulence, the actual temporal change of the

fexperienced turbulent coherences is prescribed by the velocity vT = max{v̄n, uT}. This could be
crit˘incorporated in the definition of the flow-dependent force amplitude D by substituting v̄n by

uT. Then the characteristic turbulent fiber time reads τ f = min{lT/v̄n, tT}. The consequences ofT

vn are illustrated in the numerical results of the next section.the choice of the parameter ¯crit

4 Numerical Simulations 

The input flow data for the following numerical simulations of the fiber dynamics stem from k-
ε computations of FLUENT 6.1 that has been adapted with user-specific procedures to reflect
the realistic turbulent flow behavior of a melt-spinning process. The implementation of the fiber
system (1), (2) is based on a standard method of lines. The use of spatial finite differences of
higher order yields thereby the appropriate approximation of the algebraic constraint (2). The
time integration is realized by a semi-implicit Euler method where an adaptive time step control
ensures stability and accuracy. The arising nonlinear system of equations is iteratively solved
by a modified Newton-Raphson method. As the Jacobian matrices show a band structure, the
computational effect of an iteration step is proportional to the number of fiber points. Note that
the aerodynamic forces are explicitly included. Their quality depends crucially on the available
flow data that is linearly interpolated on the spatial and temporal fiber grid.

In the following, we briefly present the numerical algorithms for the realization of the correlated
and uncorrelated aerodynamic forces, before we then compare their effects on the fiber dynamics
by means of an introduced curvature measure.

4.1 Algorithms 

Let In = {l ∈ N0 |m ≤ l ≤ n}. Let the spatial and temporal fiber discretization be given by
si = i∆s and tj = tj−1 + ∆tj−1, t0 = 0 with fixed space increment ∆s and adaptive time step

m

∆tj , (i, j) ∈ In × Im. Then denote the respective function values at the fiber point si at time tj
j

0 0

with subscript i and superscript j , e.g. r = r(si, tj).i

The numerical generation of the correlated aerodynamic force fair utilizes ARMA processes [2]cc

for the centered, homogeneous independent local fluctuation velocity fields wσ,τ along the fiber,f

whereas the implementation of the uncorrelated force fair is exclusively based on Gaussian whiteuc

noise p,
jlim (∆s∆tj)

1/2 p ∼ N (0, I).i
(∆s,∆tj)→0 

Algorithm 1 (Computation of Correlated Force) 
Choose lT and tT as characteristic turbulent large scales of the problem. Consider a fixed fiber
and time point that is indicated by the index tuple (i, j) ∈ In × Im.0 0

1. Determine its corresponding index set Nj
i

τ jNj = {(φ, τ ) | ‖rj − rφ − ūi i i

−j τX 

=1q

∆tj+1−q‖2 ≤ lT ∧
−j τX 

=1q

∆tj+1−q ≤ tT}

× Ij−1) ∪ (Iiwith feasible tuples (φ, τ ) ∈ (In
0 × Ij

j).0 0

2. Compute the centered homogeneous local fluctuations (wf )j for all � = (�1, �2) ∈ Nj . Fori i

this purpose, consider a fixed �:

)1/2(a) Set the turbulent fine scale length λ�
T = (20k�ν/ε� .

12



�

� � �

�

� �

′

(b) Determine the correlation index set (J�)j
i

T}τ ��)j = {(φ, τ ) | ‖rj − rφ − ūi i

−j τX 

=1q

∆tj+1−q‖2 ≤ λ(J

with feasible tuples

Ii−1 × I�2 
�1 �2 

, �2 = j, �1 < i

(In × I�2 
�2 

) ∪ (Ii−1 × Ij
j), �2 = j − 1�1 0

(In × I�2 × Ij−1
�2 

) ∪ (In
�2+1) ∪ (Ii−1 × Ij

j), �2 < j − 1

∅, otherwise.
�1 0 0

(φ, τ ) ∈

8
>>

:

<

>>

(c) If (J�)j �= ∅,i

then:

i. Define a bijective mapping ρ : {1, ..., |(J�)j
i |} → (J�)j and set ρ(0) = (i, j).i

ii. Consider the vectorial ARMA process

j
i |X 

=1q

(J�)

Aq(w 

|

f )j = (wf )ρ(0)i = f )ρ(q) + (ξ�)j
i(w (30)

with unknown coefficients Aq ∈ R
3×3 and noise (ξ�)j ∼ N (0,K) that is assumedi

to be independent of (wf )ρ(q).

iii. Define C(p,q) := E[(wf )ρ(p) ⊗ (wf )ρ(q)] for p, q = 0, ..., |(J�)j |, by means ofi

the correlation tensor γ� in the canonical basis representation. Then particularly,0

C(p,p) = γ�
0(0) and C(p,q) = C(q,p) hold.

� 2iv. Approximate the lateral correlation function of γ� by c1(z) = 2k�/3 − ε�z /(30ν),0

i.e. γ�
0(z) = (c1(z) + z∂zc1(z)/2)I − ∂zc1(z)/(2z)z ⊗ z, z = ‖z‖2 [12].

v. Compute the coefficients Aq by solving

j
i(J�)| |X 

=1q

C(p,q) Aq = C(p,0), p = 0, ..., |(J�)j
i | − 1. (31)

vi. Calculate the covariance K of the noise term (ξ�)j fromi

j
i(J�)| |X 

=1p

TK = C(0,0) − ApC(p,p)Ap

j
i

j
i

j
i

j
i(J�

X 

=1p

|−1 (J�

X 

=1p

(J� |−1 (J�| | | | | |) ) ) )X X
T T− −ApC(p,q)A AqC(q,p)Ap .q

q=p+1 q=p+1

vii. Generate the correlated noise term (ξ�)j = (ξ1, ξ2, ξ3) according to its covariancei

K = (Kpq)p,q=1,2,3 and the following ansatz

ξ1 ∼ N (0, K11)

ξ2 = αξ1 + ξ′ (32)2

ξ3 = β1ξ1 + β2ξ2 + ξ3,

where the parameters α, β1, β2 and the independent random numbers ξ′ ξ′ are2, 3

prescribed by

α = K22/K12 and
P2

q=1 Kpq βq = Kp3, for p = 2, 3,

ξ′2 ∼ N (0, K22 − α2K11),

ξ′3 ∼ N (0, K33 − β2
2K22 − 2β1β2K12).1K11 − β2

viii. Plug the determined coefficients Aq of Eq (31) and the correlated noise (ξ�)j ofi

Eq (32) into the ARMA process, Eq (30).

else, (J�)j = ∅:i

Set

� �)j(wf )j =

„
2k�

«1/2

(ξ i , with (ξ�)j ∼ N (0, I). (33)i 3 i
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ε

�

�

+� �

�

v

3. Determine the correlated aerodynamic force

j
i )

X−1/2 (w air j
i = f(v̄j

i , t
j
i ) + Lair j

i , t
j
i , k

�
f )j

i . (34)(f ) (v̄cc |Nj
i |

�∈N

Algorithm 2 (Computation of Uncorrelated Force) 

j
i

j
i =m

0
n I×0 . Set �Consider a fixed fiber and time point that is indicated by the index tuple (i, j) ∈ I

j
i ‖2/(2kj

i )
1/2, ωj

i = (v̄n)j
i

crit¯ /v̄n and let the projectors P depend on space and time discretization.
Then, the uncorrelated aerodynamic force is determined by

s
j
i )

22πF2 (kair j
i

j
i

j
i ) + φj

i= f(v̄(f ) (35), tuc q
(v̄n)

∆s∆tj j
i

j
i

where

j
i

j
i

j
i ,

j
i

j
i

8
>>>>>>>>>>>>>>>>>>>>>>>>

∇vf(v̄ ) P
(t,n)

ξ > 1, ω > 1, t j
i

)
q

ωj
i

j
i

j
i

j
i

j
i

j
i ,)

ˆ
(1 − ω

`
P 
t

)/2
´

+ ω
˜∇ + (I − P 

t
vvf(¯ P

(t,n)
ξ, t j

i
j
i

j
i

j
i

j
i ≤ 1> 1, ω

j
i

j
i

j
i

ˆ
(1 − � )

`
a

´
t0(k ) P 

t n0(k ) P 
n

+ aj
i

j
i

<
φj

i = j
i

j
i

j
i

j
i

j
i

j
i

j
i)−1 v̄

˜∇ ≤ 1, ωvf((� ) P
(t,n)

ξ > 1, t j
i

,>>>>>>>>>>>>>>>>>>>>>>>>

)
q

ωj
i

j
i

j
i

j
i

j
i

j
i

j
i

j
i)−1 v̄

ˆˆ
(1 − � )

˜
(1 − ω∇) at0(k ) I + � vf((� P 

t
, t j

i
j
i

j
i

j
i+(1 − � ) at0(k )ω P 

t
j
i

j
i

j
i

j
i ∇ j

i
j
i

j
i)−1 v̄+

ˆ
(1 − � )

˜
) an0(k ) I + � vf((� , t

)
q

ωj
i

j
i

j
i ξj

i
j
i

j
i

ˆ
(1 − ω j

i

˜˜
(I −P 

t
≤ 1, ω ≤ 1)/2 + ω P

(t,n)
:

j
i

,

j
i

j
i∼ N (0, I), i.e. the components (ξl) ∼ N (0, 1), l = 1, 2, 3, are independent and normallyand ξ

distributed.

Regarding memory and computational effort, Alg 1 is extremely costly. Apart from the two
searching procedures in Step 1 and 2.b, it requires in general the solving of |N | linear systems of
3|J | equations for each fiber and time point specified by (i, j), Step 2.c.v. Thereby, the cardinal
numbers |N | and |J | depend not only on the fiber dynamics at (i, j), but also crucially on the
spatial and temporal grid size which should be chosen to be a compromise between computational
capacity and desirable accuracy of the correlation structures to be realized. The required 3|N |
Gaussian deviates for Step 2.c.vii are here generated by the Box-Muller Method [5]. In comparison
to Alg 1, Alg 2 is obviously enormously cheaper and faster. Its evaluation is independent of the
chosen discretization and needs only 3 Gaussian deviates per fiber and time point.

j
iof large-scale resolution, where N {(i, j)} and (J�

is obviously approximated numerically by the uncorrelated

j
i ∅ for all (i, j) in Alg 1,In case )= =

the correlated aerodynamic force fair
cc

fair, since Eqs (33), (34) correspond to the white noise approach of Alg 2 with ∆s ∼ lT and
∆t ∼ tT in Eq (35). But, also for fine-scale resolution, the respective numerical representatives
match very well as far as their effects on the fiber dynamics are concerned. To show the statistical
coincidence of their influence, we analyze the imposed fiber dynamics by means of a curvature
measure in the following. Thereby, we restrict the comparison exemplarily on a fixed appropriate
fiber discretization because of the extremely long run-time and the enormous memory demands
of Alg 1.

uc

4.2 Results 

Simulating the motion of an inextensible slender fiber swinging freely in a turbulent flow field, we
show the similarity of the macroscopic effects on the fiber that are caused by the correlated and
uncorrelated force model. For this purpose, we introduce the following curvature measure.

Definition 1 (Curvature Measure) 
j
iLet r , (i, j) ∈ In

0 ×Im
0 be the spatially and temporally discretized fiber line that is imposed by the
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Figure 4: k-ε simulation results for turbulent flow. Top to bottom: Stationary 2D vertical
mean stream ‖ū‖2, kinetic energy k in SI-units

aerodynamic forces according to Eqs (1), (2). Then, its curvature measure at time tj is defined by

n−1

=
X

Kj 1 ‖∆ssr
j
i‖2

n − 1
i=1

j j jusing the central difference ∆ssr
j = (r − 2ri + ri−1)/∆s2.i i+1

Evaluating the fiber line over a certain time interval gives statistically comparable parameters for
K, i.e. its mean µ and its standard deviation σ.

Apart from the similarity, the curvature measure states the significance of the turbulent aero-
dynamic force for entanglement and loop forming of the fiber. To illustrate these effects, we
consider a fiber that is initially hanging in the symmetry axis of a stationary, vertically directed
two-dimensional mean flow field u (cf. Fig 4). The turbulent fluctuations are prescribed by the¯

¯stationary kinetic energy k and dissipation rate ε. Then, the resulting deterministic force part f is
mainly vertically directed and the stochastic part f ′ determine almost exclusively the small hori-
zontal fiber oscillations. Hence, under neglect of the turbulent influence, the fiber is not excited
out of its position of rest. It has the characteristic curvature properties µ = 0 and σ = 0 which
will prescribe our reference state. The used underlying flow data represent a realistic turbulent
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stream as it might be expected in the deposition region of a melt-spinning process. Note that the
illustrated geometry in Fig 4 is distorted in width to stress the flow behavior around the symmetry
axis, e3-axis.

Exposing the fiber to the stochastic force models, we obtain the representatives of a momentary
fiber position that are visualized in Fig 6. Apart from the correlated force, we distinguish hereby
between the uncorrelated force effects by choosing two variants for v̄crit

n , i.e. v̄crit
n = 10−3 m/s

and v̄crit
n = (2k)1/2. On the first glance, the behavior of the fibers seems to be straight and

meaningless due to the chosen draw ratio of meters. But, indeed, all three representatives show
similar curvatures which becomes evident by zooming into the two-dimensional fiber projections,
Fig 6 (right). Near the mounting, they hang down almost straight for the first 2 · 10−1 m before
they start to form loops. The observed oscillations have then a typical range of 10−3 up to 10−2 m
which corresponds with our asymptotic analysis of Sec 2.2, Fig 2. Considering the respective fiber
motions for a period of 5 · 10−2 s, further results are provided by the curvature measures K that
are plotted and statistically evaluated for comparable samples of 500 time points, see Fig 5 and
Tab 2. Thereby, all temporal evolutions turn out to be normally distributed. The mean curvature
measure of the uncorrelated force, v̄crit

n = 10−3 m/s, differs less than 1% from the one of the
correlated force. And also, the standard deviations fit very well, we obtain only differences of
2%. This is an incredibly good coincidence. This choice of v̄crit

n overcomes simply the singularity
stemming from the underlying correlated frozen turbulence pattern and yields therefore better
approximation properties than the other variant that incorporates additionally the decay of the
vortices.

Summing up, the uncorrelated force model is undeniably a good substitute for the correlated
one on the macroscopic fiber scale. Causing a statistically similar fiber behavior, it requires –
instead of days – only a few minutes of computational time for the simulation of 5 · 10−2 s real
time motion. Thus, it makes long-time fiber studies possible which is essential for the practical
application. Note that the bisection of CPU-time for the deterministic reference case that is listed
in Tab 2 comes not only from the skip of Alg 2 and but also from an increase of the (adaptive)
time step of one order, up to ∆t ∼ 10−5 s. All calculations have been performed on an Intel Xeon
processor, 2.8 GHz.
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Figure 5: Curvature measures K over 500 time points for fiber exposed to stochastic forces
for 5 · 10−2 s. From left to right: Results for fair

cc , fair
uc with v̄crit

n = 10−3 m/s resp. v̄crit
n =

(2k)1/2

Stochastic Correlated Uncorrelated Without
Force v̄crit

n = 10−3[m/s] v̄crit
n = (2k)1/2

K [1/m]
µ 86.93 (100%) 86.33 (−0.69%) 82.99 (−4.53%) 0
σ 13.83 (100%) 14.10 (+2.00%) 14.94 (+8.03%) 0

CPU-time days ∼4.5min ∼4min ∼1.5min

Table 2: Statistic parameters for the curvature measures K of Fig 5
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Conclusions and Outlook 

In [12], a general aerodynamic force concept is derived on basis of a stochastic k-ε turbulence
model for the flow field. The turbulence effects on the dynamics of a long slender elastic fiber are
modeled by a correlated Gaussian force and in its asymptotic limit on a macroscopic fiber scale
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by Gaussian white noise with flow-dependent amplitude. Choosing a specific Taylor drag model,
this paper has shown the applicability of the force concept for the handling of the complex fiber-
turbulence interactions as they occur in a typical melt-spinning process of nonwoven materials.
Moreover, it has stated the very good theoretical and numerical approximation properties of the
uncorrelated force. The introduction of the uncorrelated aerodynamic force changes the character
of the perturbation term into a localized linear integrator such that the fiber dynamics is described
by a system of partial differential equations with additive Gaussian white noise. This enables not
only a theoretical analysis but also an efficient numerical realization. Adapting the fiber system
with appropriate boundary and initial conditions, one can parallelize the presented algorithm and
simulate the turbulent deposition region of a melt-spinning process with hundreds of individual
endless fibers. However, for this purpose, other aspects have to be taken into account, like fiber-
fiber interactions, sticky fiber bunches, conveyor belt effects or the affection of the turbulence by
higher concentrated fiber curtains.
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1.  D. Hietel, K. Steiner, J. Struckmeier

A Finite - Volume Particle Method for 
Compressible Flows
We derive a new class of particle methods for con-
 ser va tion laws, which are based on numerical fl ux 
functions to model the in ter ac tions between moving 
particles. The der i va tion is similar to that of classi-
cal Finite-Volume meth ods; except that the fi xed grid 
structure in the Fi nite-Volume method is sub sti tut ed 
by so-called mass pack ets of par ti cles. We give some 
numerical results on a shock wave solution for Burgers 
equation as well as the well-known one-dimensional 
shock tube problem.
(19 pages, 1998)

2.  M. Feldmann, S. Seibold

Damage Diagnosis of Rotors: Application 
of  Hilbert Transform and Multi-Hypothe-
sis Testing
In this paper, a combined approach to damage diag-
nosis of rotors is proposed. The intention is to employ 
signal-based as well as model-based procedures for an 
im proved detection of size and location of the damage. 
In a fi rst step, Hilbert transform signal processing tech-
 niques allow for a computation of the signal envelope 
and the in stan ta neous frequency, so that various types 
of non-linearities due to a damage may be identifi ed 
and clas si fi ed based on measured response data. In a 
second step, a multi-hypothesis bank of Kalman Filters 
is employed for the detection of the size and location 
of the damage based on the information of the type of 
damage pro vid ed by the results of the Hilbert trans-
form. 
Keywords: Hilbert transform, damage diagnosis, Kal-
man fi ltering, non-linear dynamics
(23 pages, 1998)

3.  Y. Ben-Haim, S. Seibold

Robust Reliability of Diagnostic Multi-
Hypothesis Algorithms: Application to 
Rotating Machinery
Damage diagnosis based on a bank of Kalman fi l-
ters, each one conditioned on a specifi c hypothesized 
system condition, is a well recognized and powerful 
diagnostic tool. This multi-hypothesis approach can 
be applied to a wide range of damage conditions. In 
this paper, we will focus on the diagnosis of cracks in 
rotating machinery. The question we address is: how to 
optimize the multi-hypothesis algorithm with respect 
to the uncertainty of the spatial form and location of 
cracks and their re sult ing dynamic effects. First, we 
formulate a measure of the re li abil i ty of the diagnos-
tic algorithm, and then we dis cuss modifi cations of 
the diagnostic algorithm for the max i mi za tion of the 
reliability. The reliability of a di ag nos tic al go rithm is 
measured by the amount of un cer tain ty con sis tent with 
no-failure of the diagnosis. Un cer tain ty is quan ti ta tive ly 
represented with convex models. 
Keywords: Robust reliability, convex models, Kalman 
fi l ter ing, multi-hypothesis diagnosis, rotating machinery, 
crack di ag no sis
(24 pages, 1998)

4.  F.-Th. Lentes, N. Siedow

Three-dimensional Radiative Heat Transfer 
in Glass Cooling Processes
For the numerical simulation of 3D radiative heat trans-
 fer in glasses and glass melts, practically applicable 
math e mat i cal methods are needed to handle such 
prob lems optimal using workstation class computers. 

Since the ex act solution would require super-computer 
ca pa bil i ties we concentrate on approximate solu-
tions with a high degree of accuracy. The following 
approaches are stud ied: 3D diffusion approximations 
and 3D ray-tracing meth ods. 
(23 pages, 1998)

5.  A. Klar, R. Wegener

A hierarchy of models for multilane 
vehicular traffi c 
Part I: Modeling
In the present paper multilane models for vehicular 
traffi c are considered. A mi cro scop ic multilane model 
based on reaction thresholds is developed. Based on 
this mod el an Enskog like kinetic model is developed. 
In particular, care is taken to incorporate the correla-
tions between the ve hi cles. From the kinetic model a 
fl uid dynamic model is de rived. The macroscopic coef-
fi cients are de duced from the underlying kinetic model. 
Numerical simulations are presented for all three levels 
of description in [10]. More over, a comparison of the 
results is given there.
(23 pages, 1998)

Part II: Numerical and stochastic 
investigations
In this paper the work presented in [6] is continued. 
The present paper contains detailed numerical inves-
tigations of the models developed there. A numerical 
method to treat the kinetic equations obtained in [6] 
are presented and results of the simulations are shown. 
Moreover, the stochastic correlation model used in [6] 
is described and investigated in more detail.
(17 pages, 1998)

6. A. Klar, N. Siedow

Boundary Layers and Domain De com po s-
i tion for Radiative Heat Transfer and Dif fu -
sion Equa tions: Applications to Glass Man u -
fac tur ing Processes
In this paper domain decomposition methods for 
ra di a tive transfer problems including conductive heat 
transfer are treated. The paper focuses on semi-trans-
parent ma te ri als, like glass, and the associated condi-
tions at the interface between the materials. Using 
asymptotic anal y sis we derive conditions for the cou-
pling of the radiative transfer equations and a diffu-
sion approximation. Several test cases are treated and a 
problem appearing in glass manufacturing processes is 
computed. The results clearly show the advantages of a 
domain decomposition ap proach. Accuracy equivalent 
to the solution of the global radiative transfer solu-
tion is achieved, whereas com pu ta tion time is strongly 
reduced.
(24 pages, 1998)

7.  I. Choquet

Heterogeneous catalysis modelling and 
numerical simulation in rarifi ed gas fl ows
Part I: Coverage locally at equilibrium 
A new approach is proposed to model and simulate 
nu mer i cal ly heterogeneous catalysis in rarefi ed gas 
fl ows. It is developed to satisfy all together the follow-
ing points: 
1) describe the gas phase at the microscopic scale, as 
required in rarefi ed fl ows, 
2) describe the wall at the macroscopic scale, to avoid 
prohibitive computational costs and consider not only 
crystalline but also amorphous surfaces, 
3) reproduce on average macroscopic laws correlated 
with experimental results and 
4) derive analytic models in a systematic and exact 
way. The problem is stated in the general framework 
of a non static fl ow in the vicinity of a catalytic and 
non porous surface (without aging). It is shown that 
the exact and systematic resolution method based 
on the Laplace trans form, introduced previously by 
the author to model col li sions in the gas phase, can 
be extended to the present problem. The proposed 
approach is applied to the mod el ling of the Eley Rideal 
and Langmuir Hinshel wood re com bi na tions, assuming 
that the coverage is locally at equilibrium. The mod-
els are developed con sid er ing one atomic species and 

extended to the general case of sev er al atomic species. 
Numerical calculations show that the models derived in 
this way reproduce with accuracy be hav iors observed 
experimentally.
(24 pages, 1998)

8.  J. Ohser, B. Steinbach, C. Lang

Effi cient Texture Analysis of Binary Images
A new method of determining some characteristics 
of binary images is proposed based on a special linear 
fi l ter ing. This technique enables the estimation of the 
area fraction, the specifi c line length, and the specifi c 
integral of curvature. Furthermore, the specifi c length 
of the total projection is obtained, which gives detailed 
information about the texture of the image. The 
in fl u ence of lateral and directional resolution depend-
ing on the size of the applied fi lter mask is discussed in 
detail. The technique includes a method of increasing 
di rec tion al resolution for texture analysis while keeping 
lateral resolution as high as possible.
(17 pages, 1998)

9.  J. Orlik

Homogenization for viscoelasticity of the 
integral type with aging and shrinkage
A multi phase composite with periodic distributed 
in clu sions with a smooth boundary is considered in this 
con tri bu tion. The composite component materials are 
sup posed to be linear viscoelastic and aging (of the non-
convolution integral type, for which the Laplace trans-
 form with respect to time is not effectively ap pli ca ble) 
and are subjected to isotropic shrinkage. The free 
shrinkage deformation can be considered as a fi cti-
tious temperature deformation in the behavior law. The 
pro ce dure presented in this paper proposes a way to 
de ter mine average (effective homogenized) viscoelastic 
and shrinkage (temperature) composite properties and 
the homogenized stress fi eld from known properties 
of the components. This is done by the extension of 
the as ymp tot ic homogenization technique known for 
pure elastic non homogeneous bodies to the non homo-
geneous thermo viscoelasticity of the integral non con-
volution type. Up to now, the homogenization theory 
has not covered viscoelasticity of the integral type.
Sanchez Palencia (1980), Francfort & Suquet (1987) (see 
[2], [9]) have considered homogenization for vis coelas -
tic i ty of the differential form and only up to the fi rst 
de riv a tive order. The integral modeled viscoelasticity 
is more general then the differential one and includes 
almost all known differential models. The homogeni-
zation pro ce dure is based on the construction of an 
asymptotic so lu tion with respect to a period of the 
composite struc ture. This reduces the original problem 
to some auxiliary bound ary value problems of elastic-
ity and viscoelasticity on the unit periodic cell, of the 
same type as the original non-homogeneous problem. 
The existence and unique ness results for such problems 
were obtained for kernels satisfying some constrain 
conditions. This is done by the extension of the Volterra 
integral operator theory to the Volterra operators with 
respect to the time, whose 1 ker nels are space linear 
operators for any fi xed time vari ables. Some ideas of 
such approach were proposed in [11] and [12], where 
the Volterra operators with kernels depending addi-
tionally on parameter were considered. This manuscript 
delivers results of the same nature for the case of the 
space operator kernels.
(20 pages, 1998)

10.  J. Mohring

Helmholtz Resonators with Large Aperture
The lowest resonant frequency of a cavity resona-
tor is usually approximated by the clas si cal Helmholtz 
formula. However, if the opening is rather large and 
the front wall is narrow this formula is no longer valid. 
Here we present a correction which is of third or der 
in the ratio of the di am e ters of aperture and cavity. In 
addition to the high accuracy it allows to estimate the 
damping due to ra di a tion. The result is found by apply-
ing the method of matched asymptotic expansions. The 
correction contains form factors de scrib ing the shapes 
of opening and cavity. They are computed for a num-
ber of standard ge om e tries. Results are compared with 
nu mer i cal computations.
(21 pages, 1998)



11.  H. W. Hamacher, A. Schöbel

On Center Cycles in Grid Graphs
Finding “good” cycles in graphs is a problem of great 
in ter est in graph theory as well as in locational analy-
sis. We show that the center and median problems are 
NP hard in general graphs. This result holds both for 
the vari able cardinality case (i.e. all cycles of the graph 
are con sid ered) and the fi xed cardinality case (i.e. only 
cycles with a given cardinality p are feasible). Hence 
it is of in ter est to investigate special cases where the 
problem is solvable in polynomial time. In grid graphs, 
the variable cardinality case is, for in stance, trivially 
solvable if the shape of the cycle can be chosen freely. 
If the shape is fi xed to be a rectangle one can ana-
lyze rectangles in grid graphs with, in sequence, fi xed 
di men sion, fi xed car di nal i ty, and vari able cardinality. 
In all cases a complete char ac ter iza tion of the opti-
mal cycles and closed form ex pres sions of the optimal 
ob jec tive values are given, yielding polynomial time 
algorithms for all cas es of center rect an gle prob lems. 
Finally, it is shown that center cycles can be chosen as 
rectangles for small car di nal i ties such that the center 
cy cle problem in grid graphs is in these cases com-
 plete ly solved.
(15 pages, 1998)

12.  H. W. Hamacher, K.-H. Küfer

Inverse radiation therapy planning - 
a multiple objective optimisation ap proach
For some decades radiation therapy has been proved 
successful in cancer treatment. It is the major task of 
clin i cal radiation treatment planning to realize on the 
one hand a high level dose of radiation in the cancer 
tissue in order to obtain maximum tumor control. On 
the other hand it is obvious that it is absolutely neces-
sary to keep in the tissue outside the tumor, particularly 
in organs at risk, the unavoidable radiation as low as 
possible. 
No doubt, these two objectives of treatment planning 

- high level dose in the tumor, low radiation outside the 
tumor - have a basically contradictory nature. Therefore, 
it is no surprise that inverse mathematical models with 
dose dis tri bu tion bounds tend to be infeasible in most 
cases. Thus, there is need for approximations com-
 pro mis ing between overdosing the organs at risk and 
un der dos ing the target volume. 
Differing from the currently used time consuming 
it er a tive approach, which measures de vi a tion from an 
ideal (non-achievable) treatment plan us ing re cur sive ly 
trial-and-error weights for the organs of in ter est, we 
go a new way trying to avoid a priori weight choic es 
and con sid er the treatment planning problem as a mul-
tiple ob jec tive linear programming problem: with each 
organ of interest, target tissue as well as organs at risk, 
we as so ci ate an objective function measuring the maxi-
mal de vi a tion from the prescribed doses. 
We build up a data base of relatively few effi cient 
so lu tions rep re sent ing and ap prox i mat ing the vari-
ety of Pare to solutions of the mul ti ple objective linear 
programming problem. This data base can be easily 
scanned by phy si cians look ing for an ad e quate treat-
ment plan with the aid of an appropriate on line tool.
(14 pages, 1999)

13.  C. Lang, J. Ohser, R. Hilfer

On the Analysis of Spatial Binary Images
This paper deals with the characterization of mi cro -
scop i cal ly heterogeneous, but macroscopically homo-
geneous spatial structures. A new method is presented 
which is strictly based on integral-geometric formulae 
such as Crofton’s intersection formulae and Hadwiger’s 
recursive defi nition of the Euler number. The corre-
sponding al go rithms have clear advantages over other 
techniques. As an example of application we con-
sider the analysis of spatial digital images produced by 
means of Computer Assisted Tomography.
(20 pages, 1999)

14.  M. Junk

On the Construction of Discrete Equilibrium 
Distributions for Kinetic Schemes
A general approach to the construction of discrete 
equi lib ri um distributions is presented. Such distribu-
tion func tions can be used to set up Kinetic Schemes as 
well as Lattice Boltzmann methods. The general prin-

ciples are also applied to the construction of Chapman 
Enskog dis tri bu tions which are used in Kinetic Schemes 
for com press ible Navier-Stokes equations.
(24 pages, 1999)

15.  M. Junk, S. V. Raghurame Rao

A new discrete velocity method for Navier-
Stokes equations
The relation between the Lattice Boltzmann Method, 
which has recently become popular, and the Kinetic 
Schemes, which are routinely used in Computational 
Flu id Dynamics, is explored. A new discrete veloc-
ity model for the numerical solution of Navier-Stokes 
equa tions for incompressible fl uid fl ow is presented by 
com bin ing both the approaches. The new scheme can 
be interpreted as a pseudo-compressibility method and, 
for a particular choice of parameters, this interpretation 
carries over to the Lattice Boltzmann Method.
(20 pages, 1999)

16.  H. Neunzert

Mathematics as a Key to Key Technologies
The main part of this paper will consist of examples, 
how mathematics really helps to solve industrial prob-
 lems; these examples are taken from our Institute for 
Industrial Mathematics, from research in the Tech no-
math e mat ics group at my university, but also from 
ECMI groups and a company called TecMath, which 
orig i nat ed 10 years ago from my university group and 
has already a very suc cess ful history.
(39 pages (4 PDF-Files), 1999)

17.  J. Ohser, K. Sandau

Considerations about the Estimation of the 
Size Distribution in Wicksell’s Corpuscle 
Prob lem
Wicksell’s corpuscle problem deals with the estima-
tion of the size distribution of a population of particles, 
all hav ing the same shape, using a lower dimensional 
sampling probe. This problem was originary formulated 
for particle systems occurring in life sciences but its 
solution is of actual and increasing interest in materials 
science. From a mathematical point of view, Wicksell’s 
problem is an in verse problem where the interest-
ing size distribution is the unknown part of a Volterra 
equation. The problem is often regarded ill-posed, 
because the structure of the integrand implies unsta-
ble numerical solutions. The ac cu ra cy of the numeri-
cal solutions is considered here using the condition 
number, which allows to compare different numerical 
methods with different (equidistant) class sizes and 
which indicates, as one result, that a fi nite section 
thickness of the probe reduces the numerical problems. 
Furthermore, the rel a tive error of estimation is com-
puted which can be split into two parts. One part con-
sists of the relative dis cret i za tion error that increases 
for in creas ing class size, and the second part is related 
to the rel a tive statistical error which increases with 
decreasing class size. For both parts, upper bounds 
can be given and the sum of them indicates an optimal 
class width depending on some specifi c constants.
(18 pages, 1999)

18.  E. Carrizosa, H. W. Hamacher, R. Klein, 
S. Nickel

Solving nonconvex planar location prob-
lems by fi nite dominating sets
It is well-known that some of the classical location 
prob lems with polyhedral gauges can be solved in 
poly no mi al time by fi nding a fi nite dominating set, i. e. 
a fi nite set of candidates guaranteed to contain at least 
one op ti mal location. 
In this paper it is fi rst established that this result holds 
for a much larger class of problems than currently con-
 sid ered in the literature. The model for which this result 
can be prov en includes, for instance, location prob lems 
with at trac tion and repulsion, and location-al lo ca tion 
prob lems. 
Next, it is shown that the ap prox i ma tion of general 
gaug es by polyhedral ones in the objective function of 
our gen er al model can be analyzed with re gard to the 
sub se quent error in the optimal ob jec tive value. For 
the ap prox i ma tion problem two different ap proach es 
are described, the sand wich procedure and the greedy 

al go rithm. Both of these approaches lead - for fi xed 
epsilon - to polyno mial ap prox i ma tion algorithms with 
accuracy epsilon for solving the general model con-
 sid ered in this paper.
Keywords: Continuous Location, Polyhedral Gauges, 
Finite Dom i nat ing Sets, Approximation, Sandwich Al go -
rithm, Greedy Algorithm
(19 pages, 2000)

19. A. Becker

A Review on Image Distortion Measures
Within this paper we review image distortion mea-
sures. A distortion measure is a criterion that assigns a 

“quality number” to an image. We distinguish between 
math e mat i cal distortion measures and those distortion 
mea sures in-cooperating a priori knowledge about the 
im ag ing devices ( e. g. satellite images), image pro-
cessing al go rithms or the human physiology. We will 
consider rep re sen ta tive examples of different kinds of 
distortion mea sures and are going to discuss them.
Keywords: Distortion measure, human visual system
(26 pages, 2000)

20. H. W. Hamacher, M. Labbé, S. Nickel, 
T. Sonneborn

Polyhedral Properties of the Uncapacitated 
Multiple Allocation Hub Location Problem 
We examine the feasibility polyhedron of the un ca -
pac i tat ed hub location problem (UHL) with multiple 
al lo ca tion, which has applications in the fi elds of air 
passenger and cargo transportation, telecommuni-
cation and postal delivery services. In particular we 
determine the di men sion and derive some classes of 
facets of this polyhedron. We develop some general 
rules about lifting facets from the uncapacitated facility 
location (UFL) for UHL and pro ject ing facets from UHL 
to UFL. By applying these rules we get a new class of 
facets for UHL which dom i nates the inequalities in the 
original formulation. Thus we get a new formulation of 
UHL whose constraints are all facet–defi ning. We show 
its superior computational per for mance by benchmark-
ing it on a well known data set.
Keywords: integer programming, hub location, facility 
location, valid inequalities, facets, branch and cut
(21 pages, 2000)

21. H. W. Hamacher, A. Schöbel

Design of Zone Tariff Systems in Public 
Trans por ta tion
Given a public transportation system represented by its 
stops and direct connections between stops, we con-
sider two problems dealing with the prices for the cus-
tomers: The fare problem in which subsets of stops are 
already aggregated to zones and “good” tariffs have 
to be found in the existing zone system. Closed form 
solutions for the fare problem are presented for three 
objective functions. In the zone problem the design 
of the zones is part of the problem. This problem is NP 
hard and we there fore propose three heuristics which 
prove to be very successful in the redesign of one of 
Germany’s trans por ta tion systems.
(30 pages, 2001)

22. D. Hietel, M. Junk, R. Keck, D. Teleaga

The Finite-Volume-Particle Method for 
Conservation Laws
In the Finite-Volume-Particle Method (FVPM), the 
weak formulation of a hyperbolic conservation law is 
dis cretized by restricting it to a discrete set of test func-
tions. In con trast to the usual Finite-Volume approach, 
the test func tions are not taken as characteristic func-
tions of the con trol volumes in a spatial grid, but are 
chosen from a par ti tion of unity with smooth and 
overlapping partition func tions (the particles), which 
can even move along pre - scribed velocity fi elds. The 
information exchange be tween particles is based on 
standard numerical fl ux func tions. Geometrical infor-
mation, similar to the surface area of the cell faces 
in the Finite-Volume Method and the cor re spond ing 
normal directions are given as integral quan ti ties of the 
partition functions. After a brief der i va tion of the Finite-
Volume-Particle Meth od, this work fo cus es on the role 
of the geometric coeffi cients in the scheme.
(16 pages, 2001)



23. T. Bender, H. Hennes, J. Kalcsics, 
M. T. Melo, S. Nickel

Location Software and Interface with GIS 
and Supply Chain Management
The objective of this paper is to bridge the gap 
between location theory and practice. To meet this 
objective focus is given to the development of soft-
ware capable of ad dress ing the different needs of a 
wide group of users. There is a very active commu-
nity on location theory en com pass ing many research 
fi elds such as operations re search, computer science, 
mathematics, engineering, geography, economics and 
marketing. As a result, people working on facility loca-
tion problems have a very diverse background and also 
different needs regarding the soft ware to solve these 
problems. For those interested in non-commercial 
applications (e. g. students and re search ers), the library 
of location algorithms (LoLA can be of considerable 
assistance. LoLA contains a collection of effi cient algo-
rithms for solving planar, network and dis crete facility 
location problems. In this paper, a de tailed description 
of the func tion al ity of LoLA is pre sent ed. In the fi elds 
of geography and marketing, for in stance, solv ing facil-
ity location prob lems requires using large amounts of 
demographic data. Hence, members of these groups (e. 
g. urban planners and sales man ag ers) often work with 
geo graph i cal information too s. To address the specifi c 
needs of these users, LoLA was inked to a geo graph i cal 
information system (GIS) and the details of the com-
 bined functionality are de scribed in the paper. Fi nal ly, 
there is a wide group of prac ti tio ners who need to 
solve large problems and require special purpose soft-
 ware with a good data in ter face. Many of such users 
can be found, for example, in the area of supply chain 
management (SCM). Lo gis tics activities involved in 
stra te gic SCM in clude, among others, facility lo ca tion 
plan ning. In this paper, the development of a com-
 mer cial location soft ware tool is also described. The 
too is em bed ded in the Ad vanced Planner and Op ti -
miz er SCM software de vel oped by SAP AG, Walldorf, 
Germany. The paper ends with some conclusions and 
an outlook to future ac tiv i ties.
Keywords: facility location, software development, 
geo graph i cal information systems, supply chain man-
 age ment
(48 pages, 2001)

24. H. W. Hamacher, S. A. Tjandra

Mathematical Mod el ling of Evacuation 
Problems: A State of Art
This paper details models and algorithms which can 
be applied to evacuation problems. While it con cen -
trates on building evac u a tion many of the results are 
ap pli ca ble also to regional evacuation. All models con-
sider the time as main parameter, where the travel time 
between com po nents of the building is part of the 
input and the over all evacuation time is the output. The 
paper dis tin guish es between macroscopic and micro-
scopic evac u a tion mod els both of which are able to 
capture the evac u ees’ move ment over time. 
Macroscopic models are mainly used to produce good 
lower bounds for the evacuation time and do not con-
 sid er any individual behavior during the emergency 
sit u a tion. These bounds can be used to analyze exist-
ing build ings or help in the design phase of planning a 
build ing. Mac ro scop ic approaches which are based on 
dynamic network fl ow models (min i mum cost dynamic 
fl ow, max i mum dynamic fl ow, universal maximum 
fl ow, quickest path and quickest fl ow) are described. A 
special feature of the presented approach is the fact, 
that travel times of evacuees are not restricted to be 
constant, but may be density dependent. Using mul ti -
cri te ria op ti mi za tion pri or i ty regions and blockage due 
to fi re or smoke may be considered. It is shown how 
the modelling can be done using time parameter either 
as discrete or con tin u ous parameter. 
Microscopic models are able to model the individual 
evac u ee’s char ac ter is tics and the interaction among 
evac u ees which infl uence their move ment. Due to the 
cor re spond ing huge amount of data one uses sim u -
la tion ap proach es. Some probabilistic laws for indi-
vidual evac u ee’s move ment are presented. Moreover 
ideas to mod el the evacuee’s movement using cellular 
automata (CA) and resulting software are presented. 
In this paper we will focus on macroscopic models and 
only summarize some of the results of the microscopic 

approach. While most of the results are applicable to 
general evacuation situations, we concentrate on build-
 ing evacuation. 
(44 pages, 2001)

25. J. Kuhnert, S. Tiwari

Grid free method for solving the Poisson 
equa tion
A Grid free method for solving the Poisson equation 
is presented. This is an it er a tive method. The method 
is based on the weight ed least squares approximation 
in which the Poisson equation is enforced to be satis-
fi ed in every iterations. The boundary conditions can 
also be enforced in the it er a tion process. This is a local 
ap prox i ma tion procedure. The Dirichlet, Neumann and 
mixed boundary value problems on a unit square are 
pre sent ed and the analytical so lu tions are compared 
with the exact so lu tions. Both solutions matched per-
fectly.
Keywords: Poisson equation, Least squares method, 
Grid free method
(19 pages, 2001)

26.  T. Götz, H. Rave, D. Rei nel-Bitzer, 
K. Steiner, H. Tiemeier

Simulation of the fi ber spinning process
To simulate the infl uence of pro cess parameters to the 
melt spinning process a fi ber model is used and cou-
pled with CFD calculations of the quench air fl ow. In 
the fi ber model energy, momentum and mass balance 
are solved for the polymer mass fl ow. To calculate the 
quench air the Lattice Bolt z mann method is used. Sim-
 u la tions and ex per i ments for dif fer ent process param-
eters and hole con fi g u ra tions are com pared and show 
a good agree ment.
Keywords: Melt spinning, fi ber mod el, Lattice 
Bolt z mann, CFD
(19 pages, 2001)

27. A. Zemitis 

On interaction of a liquid fi lm with an 
obstacle 
In this paper mathematical models for liquid fi lms 
gen er at ed by impinging jets are discussed. Attention 
is stressed to the interaction of the liquid fi lm with 
some obstacle. S. G. Taylor [Proc. R. Soc. London Ser. 
A 253, 313 (1959)] found that the liquid fi lm gener-
ated by impinging jets is very sensitive to properties 
of the wire which was used as an obstacle. The aim of 
this presentation is to propose a modifi cation of the 
Taylor’s model, which allows to sim u late the fi lm shape 
in cases, when the angle between jets is different from 
180°. Numerical results obtained by dis cussed models 
give two different shapes of the liquid fi lm similar as 
in Taylors experiments. These two shapes depend on 
the regime: either droplets are produced close to the 
obstacle or not. The difference between two re gimes 
becomes larger if the angle between jets de creas es. 
Existence of such two regimes can be very essential for 
some applications of impinging jets, if the generated 
liquid fi lm can have a contact with obstacles.
Keywords: impinging jets, liquid fi lm, models, numeri-
cal solution, shape
(22 pages, 2001)

28.  I. Ginzburg, K. Steiner

Free surface lattice-Boltzmann method to 
model the fi ll ing of expanding cavities by 
Bingham Fluids
The fi lling process of viscoplastic metal alloys and plas-
tics in expanding cavities is modelled using the lattice 
Bolt z mann method in two and three dimensions. These 
mod els combine the regularized Bingham model for 
vis co plas tic with a free-interface algorithm. The latter 
is based on a modifi ed immiscible lattice Boltzmann 
model in which one species is the fl uid and the other 
one is con sid ered as vacuum. The boundary conditions 
at the curved liquid-vac u um interface are met without 
any geo met ri cal front re con struc tion from a fi rst-order 
Chapman-Enskog expansion. The numerical results 
obtained with these models are found in good agree-
ment with avail able theoretical and numerical analysis. 
Keywords: Generalized LBE, free-surface phenomena, 

interface bound ary conditions, fi lling processes, Bing-
 ham vis co plas tic model, regularized models
(22 pages, 2001)

29. H. Neunzert

»Denn nichts ist für den Menschen als Men-
 schen etwas wert, was er nicht mit Leiden-
 schaft tun kann«
Vortrag anlässlich der Verleihung des 
Akademie preises des Landes Rheinland-
Pfalz am 21.11.2001
Was macht einen guten Hochschullehrer aus? Auf diese 
Frage gibt es sicher viele verschiedene, fachbezogene 
Antworten, aber auch ein paar allgemeine Ge sichts -
punk te: es bedarf der »Leidenschaft« für die Forschung 
(Max Weber), aus der dann auch die Begeiste rung für 
die Leh re erwächst. Forschung und Lehre gehören 
zusammen, um die Wissenschaft als lebendiges Tun 
vermitteln zu kön nen. Der Vortrag gibt Beispiele dafür, 
wie in an ge wand ter Mathematik Forschungsaufgaben 
aus prak ti schen Alltagsproblemstellun gen erwachsen, 
die in die Lehre auf verschiedenen Stufen (Gymnasium 
bis Gra du ier ten kol leg) einfl ießen; er leitet damit auch 
zu einem aktuellen Forschungsgebiet, der Mehrskalen-
analyse mit ihren vielfältigen Anwendungen in Bildver-
arbeitung, Material ent wicklung und Strömungsmecha-
nik über, was aber nur kurz gestreift wird. Mathematik 
erscheint hier als eine moderne Schlüssel technologie, 
die aber auch enge Beziehungen zu den Geistes- und 
So zi al wis sen schaf ten hat.
Keywords: Lehre, Forschung, angewandte Mathematik, 
Mehr ska len ana ly se, Strömungsmechanik
(18 pages, 2001)

30. J. Kuhnert, S. Tiwari

Finite pointset method based on the pro jec -
tion method for simulations of the in com -
press ible Navier-Stokes equations
A Lagrangian particle scheme is applied to the pro-
jection method for the incompressible Navier-Stokes 
equations. The approximation of spatial derivatives is 
obtained by the weighted least squares method. The 
pressure Poisson equation is solved by a local iterative 
procedure with the help of the least squares method. 
Numerical tests are performed for two dimensional 
cases. The Couette fl ow, Poiseuelle fl ow, decaying 
shear fl ow and the driven cavity fl ow are presented. 
The numerical solutions are ob tained for stationary as 
well as instationary cases and are com pared with the 
analytical solutions for channel fl ows. Finally, the driven 
cavity in a unit square is con sid ered and the stationary 
solution obtained from this scheme is compared with 
that from the fi nite element method.
Keywords: Incompressible Navier-Stokes equations, 
Mesh free method, Projection method, Particle scheme, 
Least squares approximation 
AMS subject classifi cation: 76D05, 76M28
(25 pages, 2001)

31.  R. Korn, M. Krekel

Optimal Portfolios with Fixed Consumption 
or Income Streams
We consider some portfolio op ti mi s a tion problems 
where either the in ves tor has a desire for an a priori 
spec i fi ed consumption stream or/and follows a de ter -
min is tic pay in scheme while also trying to max i mize 
expected utility from fi nal wealth. We derive explicit 
closed form so lu tions for continuous and discrete mon-
 e tary streams. The math e mat i cal method used is clas-
 si cal stochastic control theory. 
Keywords: Portfolio optimisation, stochastic con trol, 
HJB equation, discretisation of control problems.
(23 pages, 2002)

32.  M. Krekel

Optimal portfolios with a loan dependent 
credit spread
If an investor borrows money he generally has to pay 
high er interest rates than he would have received, if 
he had put his funds on a savings account. The clas-
sical mod el of continuous time portfolio op ti mi s a tion 
ignores this effect. Since there is ob vi ous ly a connec-
tion between the default prob a bil i ty and the total 



percentage of wealth, which the investor is in debt, we 
study portfolio optimisation with a control dependent 
in ter est rate. As sum ing a logarithmic and a power util-
ity func tion, re spec tive ly, we prove ex plic it formulae of 
the optimal con trol. 
Keywords: Portfolio op ti mi s a tion, sto chas tic control, 
HJB equation, credit spread, log utility, power utility, 
non-linear wealth dynamics
(25 pages, 2002)

33.  J. Ohser, W. Nagel, K. Schladitz

The Euler number of discretized sets - on 
the choice of adjacency in homogeneous 
lattices 
Two approaches for determining the Euler-Poincaré 
char ac ter is tic of a set observed on lattice points are 
con sid ered in the context of image analysis { the inte-
gral geo met ric and the polyhedral approach. Informa-
tion about the set is assumed to be available on lattice 
points only. In order to retain properties of the Euler 
number and to provide a good approximation of the 
true Euler number of the original set in the Euclidean 
space, the ap pro pri ate choice of adjacency in the lat-
tice for the set and its back ground is crucial. Adjacen-
cies are defi ned using tes sel la tions of the whole space 
into polyhedrons. In R 3 , two new 14 adjacencies 
are introduced additionally to the well known 6 and 
26 adjacencies. For the Euler num ber of a set and its 
complement, a consistency re la tion holds. Each of the 
pairs of ad ja cen cies (14:1; 14:1), (14:2; 14:2), (6; 26), 
and (26; 6) is shown to be a pair of com ple men ta ry 
adjacencies with respect to this relation. That is, the 
approximations of the Euler numbers are consistent if 
the set and its background (complement) are equipped 
with this pair of adjacencies. Furthermore, suffi cient 
con di tions for the correctness of the ap prox i ma tions 
of the Euler number are given. The analysis of selected 
mi cro struc tures and a simulation study illustrate how 
the es ti mat ed Euler number depends on the cho sen 
adjacency. It also shows that there is not a unique ly 
best pair of ad ja cen cies with respect to the estimation 
of the Euler num ber of a set in Euclidean space.
Keywords: image analysis, Euler number, neighborhod 
relationships, cuboidal lattice
(32 pages, 2002)

34.  I. Ginzburg, K. Steiner 

Lattice Boltzmann Model for Free-Surface 
fl ow and Its Application to Filling Process in 
Casting 
A generalized lattice Boltzmann model to simulate free-
surface is constructed in both two and three di men -
sions. The proposed model satisfi es the interfacial 
bound ary conditions accurately. A distinctive feature 
of the model is that the collision processes is carried 
out only on the points occupied partially or fully by the 
fl uid. To maintain a sharp interfacial front, the method 
in cludes an anti-diffusion algorithm. The unknown 
dis tri bu tion functions at the interfacial region are con-
structed according to the fi rst order Chapman-Enskog 
analysis. The interfacial bound ary conditions are satis-
fi ed exactly by the co ef fi  cients in the Chapman-Enskog 
expansion. The dis tri bu tion functions are naturally 
expressed in the local in ter fa cial coordinates. The mac-
roscopic quantities at the in ter face are extracted from 
the least-square so lu tions of a locally linearized system 
obtained from the known dis tri bu tion functions. The 
proposed method does not require any geometric front 
construction and is robust for any interfacial topology. 
Simulation results of realistic fi lling process are pre-
sented: rectangular cavity in two di men sions and Ham-
mer box, Campbell box, Shef fi eld box, and Motorblock 
in three dimensions. To enhance the stability at high 
Reynolds numbers, various upwind-type schemes are 
developed. Free-slip and no-slip boundary conditions 
are also discussed. 
Keywords: Lattice Bolt z mann models; free-surface 
phe nom e na; interface bound ary conditions; fi lling 
processes; injection molding; vol ume of fl uid method; 
interface bound ary conditions; ad vec tion-schemes; 
upwind-schemes
(54 pages, 2002)

35. M. Günther, A. Klar, T. Materne, 
R. We ge ner 

Multivalued fundamental diagrams and 
stop and go waves for continuum traffi c 
equa tions 
In the present paper a kinetic model for vehicular traf-
fi c leading to multivalued fundamental diagrams is 
de vel oped and investigated in detail. For this model 
phase transitions can appear depending on the local 
density and velocity of the fl ow. A derivation of asso-
ciated mac ro scop ic traffi c equations from the kinetic 
equation is given. Moreover, numerical experiments 
show the ap pear ance of stop and go waves for high-
way traffi c with a bottleneck. 
Keywords: traffi c fl ow, macroscopic equa tions, kinetic 
derivation, multivalued fundamental di a gram, stop and 
go waves, phase transitions
(25 pages, 2002)

36. S. Feldmann, P. Lang, D. Prätzel-Wolters 

Parameter infl uence on the zeros of net-
work  determinants
To a network N(q) with determinant D(s;q) depend-
ing on a parameter vector q Î Rr via identifi cation of 
some of its vertices, a network N^ (q) is assigned. The 
paper deals with procedures to fi nd N^ (q), such that 
its determinant D^  (s;q) admits a factorization in the 
determinants of appropriate subnetworks, and with 
the estimation of the deviation of the zeros of D^   
from the zeros of D. To solve the estimation problem 
state space methods are applied. 
Keywords: Networks, Equicofactor matrix polynomials, 
Realization theory, Matrix perturbation theory
(30 pages, 2002)

37. K. Koch, J. Ohser, K. Schladitz 

Spectral theory for random closed sets and 
estimating the covariance via frequency 
space
A spectral theory for stationary random closed sets 
is developed and provided with a sound mathemati-
cal ba sis. Defi nition and proof of existence of the 
Bartlett spec trum of a stationary random closed set as 
well as the proof of a Wiener-Khintchine theorem for 
the power spectrum are used to two ends: First, well 
known sec ond order characteristics like the covariance 
can be es ti mat ed faster than usual via frequency space. 
Second, the Bartlett spectrum and the power spectrum 
can be used as second order characteristics in fre-
quency space. Examples show, that in some cases infor-
mation about the random closed set is easier to obtain 
from these char ac ter is tics in frequency space than from 
their real world counterparts.
Keywords: Random set, Bartlett spectrum, fast Fourier 
transform, power spectrum
(28 pages, 2002)

38. D. d’Humières, I. Ginzburg

Multi-refl ection boundary conditions for 
lattice Boltzmann models
We present a unifi ed approach of several boundary 
con di tions for lattice Boltzmann models. Its general 
frame work is a generalization of previously intro-
duced schemes such as the bounce-back rule, linear or 
qua drat ic interpolations, etc. The objectives are two 
fold: fi rst to give theoretical tools to study the existing 
bound ary conditions and their corresponding accu-
racy; sec ond ly to design formally third- order accurate 
boundary conditions for general fl ows. Using these 
boundary con di tions, Couette and Poiseuille fl ows are 
exact solution of the lattice Boltzmann models for a 
Reynolds number Re = 0 (Stokes limit). 
Numerical comparisons are given for Stokes fl ows in 
pe ri od ic arrays of spheres and cylinders, linear peri-
odic array of cylinders between moving plates and for 
Navier-Stokes fl ows in periodic arrays of cylinders for 
Re < 200. These results show a signifi cant improve-
ment of the over all accuracy when using the linear 
interpolations instead of the bounce-back refl ection 
(up to an order of mag ni tude on the hydrodynam-
ics fi elds). Further im prove ment is achieved with the 
new multi-refl ection bound ary con di tions, reaching a 

level of accuracy close to the qua si-analytical reference 
solutions, even for rath er mod est grid res o lu tions and 
few points in the nar row est chan nels. More impor-
tant, the pressure and velocity fi elds in the vicinity of 
the ob sta cles are much smoother with multi-refl ection 
than with the other boundary con di tions. 
Finally the good stability of these schemes is high-
 light ed by some sim u la tions of moving obstacles: a cyl-
 in der be tween fl at walls and a sphere in a cylinder.
Keywords: lattice Boltzmann equation, boudary condis-
 tions, bounce-back rule, Navier-Stokes equation
(72 pages, 2002)

39. R. Korn

Elementare Finanzmathematik
Im Rahmen dieser Arbeit soll eine elementar gehaltene 
Einführung in die Aufgabenstellungen und Prinzipien 
der modernen Finanzmathematik gegeben werden. 
Ins be son dere werden die Grundlagen der Modellierung 
von Aktienkursen, der Bewertung von Optionen und 
der Portfolio-Optimierung vorgestellt. Natürlich können 
die verwendeten Methoden und die entwickelte Theo-
rie nicht in voller Allgemeinheit für den Schuluntericht 
ver wen det werden, doch sollen einzelne Prinzipien so 
her aus gearbeitet werden, dass sie auch an einfachen 
Beispielen verstanden werden können.
Keywords: Finanzmathematik, Aktien, Optionen, Port-
folio-Optimierung, Börse, Lehrerweiterbildung, Math e -
ma tikun ter richt
(98 pages, 2002)

40. J. Kallrath, M. C. Müller, S. Nickel

Batch Presorting Problems:
Models and Complexity Results
In this paper we consider short term storage sys-
tems. We analyze presorting strategies to improve the 
effi ency of these storage systems. The presorting task 
is called Batch PreSorting Problem (BPSP). The BPSP is a 
variation of an assigment problem, i. e., it has an assig-
ment problem kernel and some additional constraints.
We present different types of these presorting prob-
lems, introduce mathematical programming formula-
tions and prove the NP-completeness for one type of 
the BPSP. Experiments are carried out in order to com-
pare the different model formulations and to investi-
gate the behavior of these models.
Keywords: Complexity theory, Integer programming, 
Assigment, Logistics
(19 pages, 2002)

41. J. Linn

On the frame-invariant description of the 
phase space of the Folgar-Tucker equation 
The Folgar-Tucker equation is used in fl ow simula-
tions of fi ber suspensions to predict fi ber orientation 
depending on the local fl ow. In this paper, a complete, 
frame-invariant description of the phase space of this 
differential equation is presented for the fi rst time. 
Key words: fi ber orientation, Folgar-Tucker equation, 
injection molding
(5 pages, 2003)

42. T. Hanne, S. Nickel 

A Multi-Objective Evolutionary Algorithm 
for Scheduling and Inspection Planning in 
Software Development Projects 
In this article, we consider the problem of planning 
inspections and other tasks within a software develop-
ment (SD) project with respect to the objectives quality 
(no. of defects), project duration, and costs. Based on a 
discrete-event simulation model of SD processes com-
prising the phases coding, inspection, test, and rework, 
we present a simplifi ed formulation of the problem as 
a multiobjective optimization problem. For solving the 
problem (i. e. fi nding an approximation of the effi cient 
set) we develop a multiobjective evolutionary algo-
rithm. Details of the algorithm are discussed as well as 
results of its application to sample problems. 
Key words: multiple objective programming, project 
management and scheduling, software development, 
evolutionary algorithms, effi cient set
(29 pages, 2003)



43. T. Bortfeld , K.-H. Küfer, M. Monz, 
A. Scherrer, C. Thieke, H. Trinkaus

Intensity-Modulated Radiotherapy - A 
Large Scale Multi-Criteria Programming 
Problem -
Radiation therapy planning is always a tight rope walk 
between dangerous insuffi cient dose in the target 
volume and life threatening overdosing of organs at 
risk. Finding ideal balances between these inherently 
contradictory goals challenges dosimetrists and physi-
cians in their daily practice. Today’s planning systems 
are typically based on a single evaluation function that 
measures the quality of a radiation treatment plan. 
Unfortunately, such a one dimensional approach can-
not satisfactorily map the different backgrounds of 
physicians and the patient dependent necessities. So, 
too often a time consuming iteration process between 
evaluation of dose distribution and redefi nition of the 
evaluation function is needed. 
In this paper we propose a generic multi-criteria 
approach based on Pareto’s solution concept. For each 
entity of interest - target volume or organ at risk a 
structure dependent evaluation function is defi ned 
measuring deviations from ideal doses that are calcu-
lated from statistical functions. A reasonable bunch of 
clinically meaningful Pareto optimal solutions are stored 
in a data base, which can be interactively searched by 
physicians. The system guarantees dynamical planning 
as well as the discussion of tradeoffs between differ-
ent entities. 
Mathematically, we model the upcoming inverse prob-
lem as a multi-criteria linear programming problem. 
Because of the large scale nature of the problem it is 
not possible to solve the problem in a 3D-setting with-
out adaptive reduction by appropriate approximation 
schemes. 
Our approach is twofold: First, the discretization of the 
continuous problem is based on an adaptive hierarchi-
cal clustering process which is used for a local refi ne-
ment of constraints during the optimization procedure. 
Second, the set of Pareto optimal solutions is approxi-
mated by an adaptive grid of representatives that are 
found by a hybrid process of calculating extreme com-
promises and interpolation methods. 
Keywords: multiple criteria optimization, representa-
tive systems of Pareto solutions, adaptive triangulation, 
clustering and disaggregation techniques, visualization 
of Pareto solutions, medical physics, external beam 
radiotherapy planning, intensity modulated radio-
therapy
(31 pages, 2003)

44. T. Halfmann, T. Wichmann

Overview of Symbolic Methods in Industrial 
Analog Circuit Design 
Industrial analog circuits are usually designed using 
numerical simulation tools. To obtain a deeper cir-
cuit understanding, symbolic analysis techniques can 
additionally be applied. Approximation methods which 
reduce the complexity of symbolic expressions are 
needed in order to handle industrial-sized problems. 
This paper will give an overview to the fi eld of symbolic 
analog circuit analysis. Starting with a motivation, the 
state-of-the-art simplifi cation algorithms for linear as 
well as for nonlinear circuits are presented. The basic 
ideas behind the different techniques are described, 
whereas the technical details can be found in the cited 
references. Finally, the application of linear and non-
linear symbolic analysis will be shown on two example 
circuits. 
Keywords: CAD, automated analog circuit design, sym-
bolic analysis, computer algebra, behavioral modeling, 
system simulation, circuit sizing, macro modeling, dif-
ferential-algebraic equations, index
(17 pages, 2003)

45. S. E. Mikhailov, J. Orlik

Asymptotic Homogenisation in Strength 
and Fatigue Durability Analysis of 
Composites
Asymptotic homogenisation technique and two-scale 
convergence is used for analysis of macro-strength 
and fatigue durability of composites with a periodic 
structure under cyclic loading. The linear damage 
accumulation rule is employed in the phenomenologi-

cal micro-durability conditions (for each component of 
the composite) under varying cyclic loading. Both local 
and non-local strength and durability conditions are 
analysed. The strong convergence of the strength and 
fatigue damage measure as the structure period tends 
to zero is proved and their limiting values are estimated. 
Keywords: multiscale structures, asymptotic homogeni-
zation, strength, fatigue, singularity, non-local condi-
tions
(14 pages, 2003)

46. P. Domínguez-Marín, P. Hansen, 
N. Mladenovi ́c , S. Nickel

Heuristic Procedures for Solving the 
Discrete Ordered Median Problem
We present two heuristic methods for solving the 
Discrete Ordered Median Problem (DOMP), for which 
no such approaches have been developed so far. The 
DOMP generalizes classical discrete facility location 
problems, such as the p-median, p-center and Unca-
pacitated Facility Location problems. The fi rst proce-
dure proposed in this paper is based on a genetic algo-
rithm developed by Moreno Vega [MV96] for p-median 
and p-center problems. Additionally, a second heuristic 
approach based on the Variable Neighborhood Search 
metaheuristic (VNS) proposed by Hansen & Mladenovic 
[HM97] for the p-median problem is described. An 
extensive numerical study is presented to show the effi -
ciency of both heuristics and compare them.
Keywords: genetic algorithms, variable neighborhood 
search, discrete facility location
(31 pages, 2003)

47. N. Boland, P. Domínguez-Marín, S. Nickel, 
J. Puerto

Exact Procedures for Solving the Discrete 
Ordered Median Problem
The Discrete Ordered Median Problem (DOMP) gener-
alizes classical discrete location problems, such as the 
N-median, N-center and Uncapacitated Facility Loca-
tion problems. It was introduced by Nickel [16], who 
formulated it as both a nonlinear and a linear integer 
program. We propose an alternative integer linear 
programming formulation for the DOMP, discuss rela-
tionships between both integer linear programming 
formulations, and show how properties of optimal 
solutions can be used to strengthen these formulations. 
Moreover, we present a specifi c branch and bound 
procedure to solve the DOMP more effi ciently. We test 
the integer linear programming formulations and this 
branch and bound method computationally on ran-
domly generated test problems.
Keywords: discrete location, Integer programming
(41 pages, 2003)

48. S. Feldmann, P. Lang

Padé-like reduction of stable discrete linear 
systems preserving their stability 
A new stability preserving model reduction algorithm 
for discrete linear SISO-systems based on their impulse 
response is proposed. Similar to the Padé approxi-
mation, an equation system for the Markov param-
eters involving the Hankel matrix is considered, that 
here however is chosen to be of very high dimension. 
Although this equation system therefore in general 
cannot be solved exactly, it is proved that the approxi-
mate solution, computed via the Moore-Penrose 
inverse, gives rise to a stability preserving reduction 
scheme, a property that cannot be guaranteed for the 
Padé approach. Furthermore, the proposed algorithm 
is compared to another stability preserving reduction 
approach, namely the balanced truncation method, 
showing comparable performance of the reduced sys-
tems. The balanced truncation method however starts 
from a state space description of the systems and in 
general is expected to be more computational demand-
ing. 
Keywords: Discrete linear systems, model reduction, 
stability, Hankel matrix, Stein equation
(16 pages, 2003)

49. J. Kallrath, S. Nickel

A Polynomial Case of the Batch Presorting 
Problem 
This paper presents new theoretical results for a special 
case of the batch presorting problem (BPSP). We will 
show tht this case can be solved in polynomial time. 
Offl ine and online algorithms are presented for solving 
the BPSP. Competetive analysis is used for comparing 
the algorithms.
Keywords: batch presorting problem, online optimi-
zation, competetive analysis, polynomial algorithms, 
logistics
(17 pages, 2003)

50. T. Hanne, H. L. Trinkaus

knowCube for MCDM – 
Visual and Interactive Support for 
Multicriteria Decision Making
In this paper, we present a novel multicriteria decision 
support system (MCDSS), called knowCube, con-
sisting of components for knowledge organization, 
generation, and navigation. Knowledge organization 
rests upon a database for managing qualitative and 
quantitative criteria, together with add-on informa-
tion. Knowledge generation serves fi lling the data-
base via e. g. identifi cation, optimization, classifi cation 
or simulation. For “fi nding needles in haycocks”, the 
knowledge navigation component supports graphi-
cal database retrieval and interactive, goal-oriented 
problem solving. Navigation “helpers” are, for instance, 
cascading criteria aggregations, modifi able metrics, 
ergonomic interfaces, and customizable visualizations. 
Examples from real-life projects, e.g. in industrial engi-
neering and in the life sciences, illustrate the applica-
tion of our MCDSS.
Key words: Multicriteria decision making, knowledge 
management, decision support systems, visual inter-
faces, interactive navigation, real-life applications.
(26 pages, 2003)

51. O. Iliev, V. Laptev

On Numerical Simulation of Flow Through 
Oil Filters
This paper concerns numerical simulation of fl ow 
through oil fi lters. Oil fi lters consist of fi lter housing 
(fi lter box), and a porous fi ltering medium, which com-
pletely separates the inlet from the outlet. We discuss 
mathematical models, describing coupled fl ows in the 
pure liquid subregions and in the porous fi lter media, 
as well as interface conditions between them. Fur-
ther, we reformulate the problem in fi ctitious regions 
method manner, and discuss peculiarities of the numer-
ical algorithm in solving the coupled system. Next, we 
show numerical results, validating the model and the 
algorithm. Finally, we present results from simulation of 
3-D oil fl ow through a real car fi lter. 
Keywords: oil fi lters, coupled fl ow in plain and porous 
media, Navier-Stokes, Brinkman, numerical simulation
(8 pages, 2003)

52. W. Dörfl er, O. Iliev, D. Stoyanov, D. Vassileva

On a Multigrid Adaptive Refi nement Solver 
for Saturated Non-Newtonian Flow in 
Porous Media
A multigrid adaptive refi nement algorithm for non-
Newtonian fl ow in porous media is presented. The sat-
urated fl ow of a non-Newtonian fl uid is described by 
the continuity equation and the generalized Darcy law. 
The resulting second order nonlinear elliptic equation 
is discretized by a fi nite volume method on a cell-cen-
tered grid. A nonlinear full-multigrid, full-approxima-
tion-storage algorithm is implemented. As a smoother, 
a single grid solver based on Picard linearization and 
Gauss-Seidel relaxation is used. Further, a local refi ne-
ment multigrid algorithm on a composite grid is devel-
oped. A residual based error indicator is used in the 
adaptive refi nement criterion. A special implementation 
approach is used, which allows us to perform unstruc-
tured local refi nement in conjunction with the fi nite 
volume discretization. Several results from numerical 
experiments are presented in order to examine the per-
formance of the solver. 
Keywords: Nonlinear multigrid, adaptive refi nement, 
non-Newtonian fl ow in porous media
(17 pages, 2003)



53. S. Kruse

On the Pricing of Forward Starting Options 
under Stochastic Volatility
We consider the problem of pricing European forward 
starting options in the presence of stochastic  volatility. 
By performing a change of measure using the asset 
price at the time of strike determination as a numeraire, 
we derive a closed-form solution based on Heston’s 
model of stochastic volatility. 
Keywords: Option pricing, forward starting options, 
Heston model, stochastic volatility, cliquet options
(11 pages, 2003)

54. O. Iliev, D. Stoyanov

Multigrid – adaptive local refi nement solver 
for incompressible fl ows
A non-linear multigrid solver for incompressible Navier-
Stokes equations, exploiting fi nite volume discretization 
of the equations, is extended by adaptive local refi ne-
ment. The multigrid is the outer iterative cycle, while 
the SIMPLE algorithm is used as a smoothing proce-
dure. Error indicators are used to defi ne the refi nement 
subdomain. A special implementation approach is used, 
which allows to perform unstructured local refi nement 
in conjunction with the fi nite volume discretization. 
The multigrid - adaptive local refi nement algorithm is 
tested on 2D Poisson equation and further is applied to 
a lid-driven fl ows in a cavity (2D and 3D case), compar-
ing the results with bench-mark data. The software 
design principles of the solver are also discussed. 
Keywords: Navier-Stokes equations, incompress-
ible fl ow, projection-type splitting, SIMPLE, multigrid 
methods, adaptive local refi nement, lid-driven fl ow in 
a cavity 
(37 pages, 2003)

55. V. Starikovicius 

The multiphase fl ow and heat transfer in 
porous media 
In fi rst part of this work, summaries of traditional 
Multiphase Flow Model and more recent Multiphase 
Mixture Model are presented. Attention is being paid 
to attempts include various heterogeneous aspects into 
models. In second part, MMM based differential model 
for two-phase immiscible fl ow in porous media is con-
sidered. A numerical scheme based on the sequential 
solution procedure and control volume based fi nite dif-
ference schemes for the pressure and saturation-con-
servation equations is developed. A computer simulator 
is built, which exploits object-oriented programming 
techniques. Numerical result for several test problems 
are reported. 
Keywords: Two-phase fl ow in porous media, vari-
ous formulations, global pressure, multiphase mixture 
model, numerical simulation
(30 pages, 2003)

56. P. Lang, A. Sarishvili, A. Wirsen

Blocked neural networks for knowledge 
extraction in the software development 
process
One of the main goals of an organization develop-
ing software is to increase the quality of the software 
while at the same time to decrease the costs and the 
duration of the development process. To achieve this, 
various decisions e.ecting this goal before and dur-
ing the development process have to be made by the 
managers. One appropriate tool for decision support 
are simulation models of the software life cycle, which 
also help to understand the dynamics of the software 
development process. Building up a simulation model 
requires a mathematical description of the interactions 
between di.erent objects involved in the development 
process. Based on experimental data, techniques from 
the .eld of knowledge discovery can be used to quan-
tify these interactions and to generate new process 
knowledge based on the analysis of the determined 
relationships. In this paper blocked neuronal networks 
and related relevance measures will be presented as 
an appropriate tool for quanti.cation and validation 
of qualitatively known dependencies in the software 
development process.
Keywords: Blocked Neural Networks, Nonlinear Regres-
sion, Knowledge Extraction, Code Inspection
(21 pages, 2003)

57. H. Knaf, P. Lang, S. Zeiser 

Diagnosis aiding in Regulation 
Thermography using Fuzzy Logic 
The objective of the present article is to give an over-
view of an application of Fuzzy Logic in Regulation 
Thermography, a method of medical diagnosis support. 
An introduction to this method of the complementary 
medical science based on temperature measurements 

– so-called thermograms – is provided. The process of 
modelling the physician’s thermogram evaluation rules 
using the calculus of Fuzzy Logic is explained.
Keywords: fuzzy logic,knowledge representation, 
expert system
(22 pages, 2003)

58. M.T. Melo, S. Nickel, F. Saldanha da Gama 

Large scale models for dynamic multi-
commodity capacitated facility location 
In this paper we focus on the strategic design of supply 
chain networks. We propose a mathematical modeling 
framework that captures many practical aspects of net-
work design problems simultaneously but which have 
not received adequate attention in the literature. The 
aspects considered include: dynamic planning horizon, 
generic supply chain network structure, external supply 
of materials, inventory opportunities for goods, distri-
bution of commodities, facility confi guration, availabil-
ity of capital for investments, and storage limitations. 
Moreover, network confi guration decisions concern-
ing the gradual relocation of facilities over the plan-
ning horizon are considered. To cope with fl uctuating 
demands, capacity expansion and reduction scenarios 
are also analyzed as well as modular capacity shifts. 
The relation of the proposed modeling framework with 
existing models is discussed. For problems of reason-
able size we report on our computational experience 
with standard mathematical programming software. In 
particular, useful insights on the impact of various fac-
tors on network design decisions are provided. 
Keywords: supply chain management, strategic 
planning, dynamic location, modeling
(40 pages, 2003)

59. J. Orlik 

Homogenization for contact problems with 
periodically rough surfaces
We consider the contact of two elastic bodies with 
rough surfaces at the interface. The size of the micro-
peaks and  valleys is very small compared with the 
macrosize of the bodies’ domains. This makes the 
direct application of the FEM for the calculation of the 
contact problem prohibitively costly. A method is devel-
oped that allows deriving a macrocontact condition 
on the interface. The method involves the two scale 
asymptotic homogenization procedure that takes into 
account the microgeometry of the interface layer and 
the stiffnesses of materials of both domains. The mac-
rocontact condition can then be used in a FEM model 
for the contact problem on the macrolevel. The aver-
aged contact stiffness obtained allows the replacement 
of the interface layer in the macromodel by the macro-
contact condition. 
Keywords: asymptotic homogenization, contact prob-
lems
(28 pages, 2004)

60. A. Scherrer, K.-H. Küfer, M. Monz, F. Alonso, 
T. Bortfeld

IMRT planning on adaptive volume struc-
tures – a signifi cant advance of computa-
tional complexity
In intensity-modulated radiotherapy (IMRT) planning 
the oncologist faces the challenging task of fi nding a 
treatment plan that he considers to be an ideal com-
promise of the inherently contradictive goals of deliver-
ing a suffi ciently high dose to the target while widely 
sparing critical structures. The search for this a priori 
unknown compromise typically requires the computa-
tion of several plans, i.e. the solution of several optimi-
zation problems. This accumulates to a high computa-
tional expense due to the large scale of these problems 

- a consequence of the discrete problem formulation. 
This paper presents the adaptive clustering method as a 
new algorithmic concept to overcome these diffi culties. 

The computations are performed on an individually 
adapted structure of voxel clusters rather than on the 
original voxels leading to a decisively reduced computa-
tional complexity as numerical examples on real clinical 
data demonstrate. In contrast to many other similar 
concepts, the typical trade-off between a reduction in 
computational complexity and a loss in exactness can 
be avoided: the adaptive clustering method produces 
the optimum of the original problem. This fl exible 
method can be applied to both single- and multi-crite-
ria optimization methods based on most of the convex 
evaluation functions used in practice.
Keywords: Intensity-modulated radiation therapy 
(IMRT), inverse treatment planning, adaptive volume 
structures, hierarchical clustering, local refi nement, 
adaptive clustering, convex programming, mesh gen-
eration, multi-grid methods
(24 pages, 2004)

61. D. Kehrwald

Parallel lattice Boltzmann simulation 
of complex fl ows
After a short introduction to the basic ideas of lat-
tice Boltzmann methods and a brief description of 
a modern parallel computer, it is shown how lattice 
Boltzmann schemes are successfully applied for simu-
lating fl uid fl ow in microstructures and calculating 
material properties of porous media. It is explained 
how lattice Boltzmann schemes compute the gradi-
ent of the velocity fi eld without numerical differentia-
tion. This feature is then utilised for the simulation of 
pseudo-plastic fl uids, and numerical results are pre-
sented for a simple benchmark problem as well as for 
the simulation of liquid composite moulding.
Keywords: Lattice Boltzmann methods, parallel com-
puting, microstructure simulation, virtual material 
design, pseudo-plastic fl uids, liquid composite mould-
ing
(12 pages, 2004)

62. O. Iliev, J. Linn, M. Moog, D. Niedziela, 
V. Starikovicius

On the Performance of Certain Iterative 
Solvers for Coupled Systems Arising in 
Discretization of Non-Newtonian Flow 
Equations
Iterative solution of large scale systems arising after 
discretization and linearization of the unsteady non-
Newtonian Navier–Stokes equations is studied. cross 
WLF model is used to account for the non-Newtonian 
behavior of the fl uid. Finite volume method is used 
to discretize the governing system of PDEs. Viscosity 
is treated explicitely (e.g., it is taken from the previ-
ous time step), while other terms are treated implicitly. 
Different preconditioners (block–diagonal, block–tri-
angular, relaxed incomplete LU factorization, etc.) are 
used in conjunction with advanced iterative methods, 
namely, BiCGStab, CGS, GMRES. The action of the pre-
conditioner in fact requires inverting different blocks. 
For this purpose, in addition to preconditioned BiC-
GStab, CGS, GMRES, we use also algebraic multigrid 
method (AMG). The performance of the iterative solv-
ers is studied with respect to the number of unknowns, 
characteristic velocity in the basic fl ow, time step, 
deviation from Newtonian behavior, etc. Results from 
numerical experiments are presented and discussed. 
Keywords: Performance of iterative solvers, Precondi-
tioners, Non-Newtonian fl ow
(17 pages, 2004)

63. R. Ciegis, O. Iliev, S. Rief, K. Steiner 

On Modelling and Simulation of Different 
Regimes for Liquid Polymer Moulding 
In this paper we consider numerical algorithms for 
solving a system of nonlinear PDEs arising in modeling 
of liquid polymer injection. We investigate the par-
ticular case when a porous preform is located within 
the mould, so that the liquid polymer fl ows through a 
porous medium during the fi lling stage. The nonlinear-
ity of the governing system of PDEs is due to the non-
Newtonian behavior of the polymer, as well as due to 
the moving free boundary. The latter is related to the 
penetration front and a Stefan type problem is formu-
lated to account for it. A fi nite-volume method is used 



to approximate the given differential problem. Results 
of numerical experiments are presented. 
We also solve an inverse problem and present algo-
rithms for the determination of the absolute preform 
permeability coeffi cient in the case when the velocity 
of the penetration front is known from measurements.
In both cases (direct and inverse problems) we empha-
size on the specifi cs related to the non-Newtonian 
behavior of the polymer. For completeness, we discuss 
also the Newtonian case. Results of some experimental 
measurements are presented and discussed. 
Keywords: Liquid Polymer Moulding, Modelling, Simu-
lation, Infiltration, Front Propagation, non-Newtonian 
flow in porous media 
(43 pages, 2004)

64. T. Hanne, H. Neu

Simulating Human Resources in 
Software Development Processes
In this paper, we discuss approaches related to the 
explicit modeling of human beings in software develop-
ment processes. While in most older simulation models 
of software development processes, esp. those of the 
system dynamics type, humans are only represented as 
a labor pool, more recent models of the discrete-event 
simulation type require representations of individual 
humans. In that case, particularities regarding the per-
son become more relevant. These individual effects are 
either considered as stochastic variations of produc-
tivity, or an explanation is sought based on individual 
characteristics, such as skills for instance. In this paper, 
we explore such possibilities by recurring to some basic 
results in psychology, sociology, and labor science. 
Various specifi c models for representing human effects 
in software process simulation are discussed.
Keywords: Human resource modeling, software pro-
cess, productivity, human factors, learning curve
(14 pages, 2004)

65. O. Iliev, A. Mikelic, P. Popov

Fluid structure interaction problems in de-
formable porous media: Toward permeabil-
ity of deformable porous media
In this work the problem of fl uid fl ow in deformable 
porous media is studied. First, the stationary fl uid-
structure interaction (FSI) problem is formulated in 
terms of incompressible Newtonian fl uid and a linear-
ized elastic solid. The fl ow is assumed to be character-
ized by very low Reynolds number and is described by 
the Stokes equations. The strains in the solid are small 
allowing for the solid to be described by the Lame 
equations, but no restrictions are applied on the mag-
nitude of the displacements leading to strongly cou-
pled, nonlinear fl uid-structure problem. The FSI prob-
lem is then solved numerically by an iterative procedure 
which solves sequentially fl uid and solid subproblems. 
Each of the two subproblems is discretized by fi nite ele-
ments and the fl uid-structure coupling is reduced to an 
interface boundary condition. Several numerical exam-
ples are presented and the results from the numerical 
computations are used to perform permeability compu-
tations for different geometries. 
Keywords: fl uid-structure interaction, deformable 
porous media, upscaling, linear elasticity, stokes, fi nite 
elements
(28 pages, 2004)

66. F. Gaspar, O. Iliev, F. Lisbona, A. Naumovich, 
P. Vabishchevich 

On numerical solution of 1-D poroelasticity 
equations in a multilayered domain
Finite volume discretization of Biot system of poroelas-
ticity in a multilayered domain is presented. Staggered 
grid is used in order to avoid non physical oscillations of 
the numerical solution, appearing when a collocated 
grid is used. Various numerical experiments are pre-
sented in order to illustrate the accuracy of the fi nite 
difference scheme. In the fi rst group of experiments, 
problems having analytical solutions are solved, and 
the order of convergence for the velocity, the pressure, 
the displacements, and the stresses is analyzed. In the 
second group of experiments numerical solution of real 
problems is presented. 
Keywords: poroelasticity, multilayered material, fi nite 
volume discretization, MAC type grid
(41 pages, 2004)

67. J. Ohser, K. Schladitz, K. Koch, M. Nöthe

Diffraction by image processing and its ap-
plication in materials science
A spectral theory for constituents of macroscopically 
homogeneous random microstructures modeled as 
homogeneous random closed sets is developed and 
provided with a sound mathematical basis, where the 
spectrum obtained by Fourier methods corresponds to 
the angular intensity distribution of x-rays scattered by 
this constituent. It is shown that the fast Fourier trans-
form applied to three-dimensional images of micro-
structures obtained by micro-tomography is a power-
ful tool of image processing. The applicability of this 
technique is is demonstrated in the analysis of images 
of porous media. 
Keywords: porous microstructure, image analysis, 
random set, fast Fourier transform, power spectrum, 
Bartlett spectrum
(13 pages, 2004)

68. H. Neunzert

Mathematics as a Technology: Challenges 
for the next 10 Years
No doubt: Mathematics has become a technology in 
its own right, maybe even a key technology. Technol-
ogy may be defi ned as the application of science to the 
problems of commerce and industry. And science? Sci-
ence maybe defi ned as developing, testing and improv-
ing models for the prediction of system behavior; the 
language used to describe these models is mathematics 
and mathematics provides methods to evaluate these 
models. Here we are! Why has mathematics become a 
technology only recently? Since it got a tool, a tool to 
evaluate complex, “near to reality” models: Computer! 
The model may be quite old – Navier-Stokes equations 
describe fl ow behavior rather well, but to solve these 
equations for realistic geometry and higher Reynolds 
numbers with suffi cient precision is even for powerful 
parallel computing a real challenge. Make the models 
as simple as possible, as complex as necessary – and 
then evaluate them with the help of effi cient and reli-
able algorithms: These are genuine mathematical tasks.
Keywords: applied mathematics, technology, modelling, 
simulation, visualization, optimization, glass processing, 
spinning processes, fi ber-fl uid interaction, trubulence 
effects, topological optimization, multicriteria optimiza-
tion, Uncertainty and Risk, fi nancial mathematics, Mal-
liavin calculus, Monte-Carlo methods, virtual material 
design, fi ltration, bio-informatics, system biology
(29 pages, 2004)

69. R. Ewing, O. Iliev, R. Lazarov, 
A. Naumovich

On convergence of certain fi nite difference 
discretizations for 1 D poroelasticity inter-
face problems 
Finite difference discretizations of 1 D poroelasticity 
equations with discontinuous coeffi cients are analyzed. 
A recently suggested FD discretization of poroelas-
ticity equations with constant coeffi cients on stag-
gered grid, [5], is used as a basis. A careful treatment 
of the interfaces leads to harmonic averaging of the 
discontinuous coeffi cients. Here, convergence for the 
pressure and for the displacement is proven in certain 
norms for the scheme with harmonic averaging (HA). 
Order of convergence 1.5 is proven for arbitrary located 
interface, and second order convergence is proven for 
the case when the interface coincides with a grid node. 
Furthermore, following the ideas from [3], modifi ed HA 
discretization are suggested for particular cases. The 
velocity and the stress are approximated with second 
order on the interface in this case. It is shown that for 
wide class of problems, the modifi ed discretization 
provides better accuracy. Second order convergence for 
modifi ed scheme is proven for the case when the inter-
face coincides with a displacement grid node. Numeri-
cal experiments are presented in order to illustrate our 
considerations.
Keywords: poroelasticity, multilayered material, fi nite 
volume discretizations, MAC type grid, error estimates 
(26 pages,2004)

70. W. Dörfl er, O. Iliev, D. Stoyanov, D. Vassileva 

On Effi cient Simulation of Non-Newto-
nian Flow in Saturated Porous Media with a 
Multigrid Adaptive Refi nement Solver 
Flow of non-Newtonian in saturated porous media can 
be described by the continuity equation and the gener-
alized Darcy law. Effi cient solution of the resulting sec-
ond order nonlinear elliptic equation is discussed here. 
The equation is discretized by a fi nite volume method 
on a cell-centered grid. Local adaptive refi nement of 
the grid is introduced in order to reduce the number 
of unknowns. A special implementation approach is 
used, which allows us to perform unstructured local 
refi nement in conjunction with the fi nite volume dis-
cretization. Two residual based error indicators are 
exploited in the adaptive refi nement criterion. Second 
order accurate discretization on the interfaces between 
refi ned and non-refi ned subdomains, as well as on 
the boundaries with Dirichlet boundary condition, are 
presented here, as an essential part of the accurate and 
effi cient algorithm. A nonlinear full approximation stor-
age multigrid algorithm is developed especially for the 
above described composite (coarse plus locally refi ned) 
grid approach. In particular, second order approxima-
tion around interfaces is a result of a quadratic approxi-
mation of slave nodes in the multigrid - adaptive 
refi nement (MG-AR) algorithm. Results from numeri-
cal solution of various academic and practice-induced 
problems are presented and the performance of the 
solver is discussed. 
Keywords: Nonlinear multigrid, adaptive renement, 
non-Newtonian in porous media
(25 pages, 2004)

71. J. Kalcsics, S. Nickel, M. Schröder 

Towards a Unifi ed Territory Design Ap-
proach – Applications, Algorithms and GIS 
Integration 
Territory design may be viewed as the problem of 
grouping small geographic areas into larger geographic 
clusters called territories in such a way that the latter 
are acceptable according to relevant planning crite-
ria. In this paper we review the existing literature for 
applications of territory design problems and solution 
approaches for solving these types of problems. After 
identifying features common to all applications we 
introduce a basic territory design model and present in 
detail two approaches for solving this model: a classical 
location–allocation approach combined with optimal 
split resolution techniques and a newly developed com-
putational geometry based method. We present com-
putational results indicating the effi ciency and suitabil-
ity of the latter method for solving large–scale practical 
problems in an interactive environment. Furthermore, 
we discuss extensions to the basic model and its inte-
gration into Geographic Information Systems. 
Keywords: territory desgin, political districting, sales 
territory alignment, optimization algorithms, Geo-
graphical Information Systems
(40 pages, 2005)

72. K. Schladitz, S. Peters, D. Reinel-Bitzer, 
A. Wiegmann, J. Ohser 

Design of acoustic trim based on geomet-
ric modeling and flow simulation for non-
woven 
In order to optimize the acoustic properties of a 
stacked fiber non-woven, the microstructure of the 
non-woven is modeled by a macroscopically homoge-
neous random system of straight cylinders (tubes). That 
is, the fibers are modeled by a spatially stationary ran-
dom system of lines (Poisson line process), dilated by a 
sphere. Pressing the non-woven causes anisotropy. In 
our model, this anisotropy is described by a one para-
metric distribution of the direction of the fibers. In the 
present application, the anisotropy parameter has to be 
estimated from 2d reflected light microscopic images of 
microsections of the non-woven. 
After fitting the model, the flow is computed in digi-
tized realizations of the stochastic geometric model 
using the lattice Boltzmann method. Based on the flow 
resistivity, the formulas of Delany and Bazley predict 
the frequency-dependent acoustic absorption of the 
non-woven in the impedance tube. 



Using the geometric model, the description of a non-
woven with improved acoustic absorption properties is 
obtained in the following way: First, the fiber thick-
nesses, porosity and anisotropy of the fiber system are 
modified. Then the flow and acoustics simulations are 
performed in the new sample. These two steps are 
repeatedc for various sets of parameters. Finally, the set 
of parameters for the geometric model leading to the 
best acoustic absorption is chosen. 
Keywords: random system of fibers, Poisson line 
process, flow resistivity, acoustic absorption, Lattice-
Boltzmann method, non-woven
(21 pages, 2005)

73. V. Rutka, A. Wiegmann

Explicit Jump Immersed Interface Method 
for virtual material design of the effective 
elastic moduli of composite materials 
Virtual material design is the microscopic variation of 
materials in the computer, followed by the numerical 
evaluation of the effect of this variation on the materi-
al‘s macroscopic properties. The goal of this procedure 
is an in some sense improved material. Here, we give 
examples regarding the dependence of the effective 
elastic moduli of a composite material on the geometry 
of the shape of an inclusion. A new approach on how 
to solve such interface problems avoids mesh genera-
tion and gives second order accurate results even in the 
vicinity of the interface. 
The Explicit Jump Immersed Interface Method is a 
fi nite difference method for elliptic partial differential 
equations that works on an equidistant Cartesian grid 
in spite of non-grid aligned discontinuities in equa-
tion parameters and solution. Near discontinuities, the 
standard fi nite difference approximations are modi-
fi ed by adding correction terms that involve jumps in 
the function and its derivatives. This work derives the 
correction terms for two dimensional linear elasticity 
with piecewise constant coeffi cients, i. e. for composite 
materials. It demonstrates numerically convergence and 
approximation properties of the method. 
Keywords: virtual material design, explicit jump 
immersed interface method, effective elastic moduli, 
composite materials
(22 pages, 2005)

74. T. Hanne

Eine Übersicht zum Scheduling von 
Baustellen
Im diesem Dokument werden Aspekte der formalen 
zeitlichen Planung bzw. des Scheduling für Bauprojekte 
anhand ausgewählter Literatur diskutiert. Auf allge-
meine Aspekte des Scheduling soll dabei nicht einge-
gangen werden. Hierzu seien als Standard-Referenzen 
nur Brucker (2004) und Pinedo (1995) genannt. Zu 
allgemeinen Fragen des Projekt-Managements sei auf 
Kerzner (2003) verwiesen.
Im Abschnitt 1 werden einige Anforderungen und 
Besonderheiten der Planung von Baustellen diskutiert. 
Diese treten allerdings auch in zahlreichen anderen 
Bereichen der Produktionsplanung und des Projektma-
nagements auf. In Abschnitt 2 werden dann Aspekte 
zur Formalisierung von Scheduling-Problemen in der 
Bauwirtschaft diskutiert, insbesondere Ziele und zu 
berücksichtigende Restriktionen. Auf eine mathema-
tische Formalisierung wird dabei allerdings verzichtet. 
Abschnitt 3 bietet eine Übersicht über Verfahren und 
grundlegende Techniken für die Berechnung von Sche-
dules. In Abschnitt 4 wird ein Überblick über vorhan-
dene Software, zum einen verbreitete Internationale 
Software, zum anderen deutschsprachige Branchen-
lösungen, gegeben. Anschließend werden Schlussfol-
gerungen gezogen und es erfolgt eine Aufl istung der 
Literaturquellen.
Keywords: Projektplanung, Scheduling, Bauplanung, 
Bauindustrie
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75. J. Linn

The Folgar–Tucker Model as a Differen-
tial Algebraic System for Fiber Orientation 
 Calculation 
The Folgar–Tucker equation (FTE) is the model most 
frequently used for the prediction of fi ber orientation 
(FO) in simulations of the injection molding process for 
short–fi ber reinforced thermoplasts. In contrast to its 

widespread use in in jection molding simulations, little 
is known about the mathematical properties of the 
FTE: an investigation of e. g. its phase space MFT has 
been presented only recently [12]. The restriction of the 
dependent variable of the FTE to the set MFT turns the 
FTE into a differential algebraic system (DAS), a fact 
which is commonly neglected when devising numeri-
cal schemes for the integration of the FTE. In this article 
we present some recent results on the problem of trace 
stability as well as some introductory material which 
complements our recent paper [12]. 
Keywords: fi ber orientation, Folgar–Tucker model, 
invariants, algebraic constraints, phase space, trace 
stability
(15 pages, 2005)

76. M. Speckert, K. Dreßler, H. Mauch, 
A. Lion, G. J. Wierda

Simulation eines neuartigen Prüf systems 
für Achserprobungen durch MKS-Model-
lierung einschließlich  Regelung
Testing new suspensions based on real load data is 
performed on elaborate multi channel test rigs. Usually, 
wheel forces and moments measured during driving 
maneuvers are reproduced by the test rig. Because 
of the complicated interaction between test rig and 
suspension each new rig confi guration has to prove 
its effi ciency with respect to the requirements and the 
confi guration might be subject to optimization.
This paper deals with mathematical and physical mod-
eling of a new concept of a test rig which is based on 
two hexapods. The model contains the geometric con-
fi guration as well as the hydraulics and the controller. 
It is implemented as an ADAMS/Car template and can 
be combined with different suspension models to get 
a complete assembly representing the entire test rig. 
Using this model, all steps required for a real test run 
such as controller adaptation, drive fi le iteration and 
simulation can be performed. Geometric or hydraulic 
parameters can be modifi ed easily to improve the setup 
and adapt the system to the suspension and the given 
load data.
The model supports and accompanies the introduction 
of the new rig concept and can be used to prepare real 
tests on a virtual basis. Using both a front and a rear 
suspension the approach is described and the poten-
tials coming with the simulation are pointed out. 
Keywords: virtual test rig, suspension testing, multi-
body simulation, modeling hexapod test rig, optimiza-
tion of test rig confi guration
(20 pages, 2005)
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77. K.-H. Küfer, M. Monz, A. Scherrer, P. Süss, 
F. Alonso, A. S. A. Sultan, Th. Bortfeld, 
D. Craft, Chr. Thieke 

Multicriteria optimization in intensity mod-
ulated radiotherapy planning 
Inverse treatment planning of intensity modulated 
radiothrapy is a multicriteria optimization problem: 
planners have to find optimal compromises between 
a suffi ciently highdose intumor tissuethat garantuee a 
high tumor control, and, dangerous overdosing of criti-
cal structures, in order to avoid high normal tissue com-
plcication problems. 
The approach presented in this work demonstrates how 
to state a flexible generic multicriteria model of the 
IMRT planning problem and how to produce clinically 
highly relevant Pareto-solutions. The model is imbed-
ded in a principal concept of Reverse Engineering, a 
general optimization paradigm for design problems. 
Relevant parts of the Pareto-set are approximated by 
using extreme compromises as cornerstone solutions, 
a concept that is always feasible if box constraints 
for objective funtions are available. A major practical 
drawback of generic multicriteria concepts trying to 
compute or approximate parts of the Pareto-set is the 
high computational effort. This problem can be over-
come by exploitation of an inherent asymmetry of the 
IMRT planning problem and an adaptive approxima-
tion scheme for optimal solutions based on an adaptive 
clustering preprocessing technique. Finally, a coherent 
approach for calculating and selecting solutions in a 
real-timeinteractive decision-making process is pre-
sented. The paper is concluded with clinical examples 

and a discussion of ongoing research topics. 
Keywords: multicriteria optimization, extreme solutions, 
real-time decision making, adaptive approximation 
schemes, clustering methods, IMRT planning, reverse 
engineering 
(51 pages, 2005)

78. S. Amstutz, H. Andrä 

A new algorithm for topology optimization 
using a level-set method
The level set method has been recently introduced in 
the fi eld of shape optimization, enabling a smooth 
representation of the boundaries on a fi xed mesh and 
therefore leading to fast numerical algorithms. How-
ever, most of these algorithms use a Hamilton Jacobi 
equation to connect the evolution of the level set 
function with the deformation of the contours, and 
consequently they cannot create any new holes in the 
domain (at least in 2D). In this work, we propose an 
evolution equation for the level set function based on a 
generalization of the concept of topological gradient. 
This results in a new algorithm allowing for all kinds of 
topology changes. 
Keywords: shape optimization, topology optimization, 
topological sensitivity, level-set
(22 pages, 2005)

79. N. Ettrich

Generation of surface elevation 
models for urban drainage simulation
Traditional methods fail for the purpose of simulat-
ing the complete fl ow process in urban areas as a 
consequence of heavy rainfall and as required by the 
European Standard EN-752 since the bi-directional 
coupling between sewer and surface is not properly 
handled. The methodology, developed in the BMBF/ 
EUREKA-project RisUrSim, solves this problem by carry-
ing out the runoff on the basis of shallow water equa-
tions solved on high-resolution surface grids. Exchange 
nodes between the sewer and the surface, like inlets 
and manholes, are located in the computational grid 
and water leaving the sewer in case of surcharge is fur-
ther distributed on the surface.
So far, it has been a problem to get the dense topo-
graphical information needed to build models suitable 
for hydrodynamic runoff calculation in urban areas. 
Recent airborne data collection methods like laser scan-
ning, however, offer a great chance to economically 
gather densely sampled input data. This paper stud-
ies the potential of such laser-scan data sets for urban 
water hydrodynamics.
Keywords: Flooding, simulation, urban elevation 
models, laser scanning
(22 pages, 2005)

80. H. Andrä, J. Linn, I. Matei, I. Shklyar, 
K. Steiner, E. Teichmann

OPTCAST – Entwicklung adäquater Struk-
turoptimierungsverfahren für Gießereien 
Technischer Bericht (KURZFASSUNG)
Im vorliegenden Bericht werden die Erfahrungen und 
Ergebnisse aus dem Projekt OptCast zusammenge-
stellt. Das Ziel dieses Projekts bestand (a) in der Anpas-
sung der Methodik der automatischen Strukturopti-
mierung für Gussteile und (b) in der Entwicklung und 
Bereitstellung von gießereispezifischen Optimierungs-
tools für Gießereien und Ingenieurbüros. 
Gießtechnische Restriktionen lassen sich nicht auf 
geometrische Restriktionen reduzieren, sondern sind 
nur über eine Gießsimulation (Erstarrungssimulation 
und Eigenspannungsanalyse) adäquat erfassbar, da die 
lokalen Materialeigenschaften des Gussteils nicht nur 
von der geometrischen Form des Teils, sondern auch 
vom verwendeten Material abhängen. Wegen dieser 
Erkenntnis wurde ein neuartiges iteratives Topologie-
optimierungsverfahren unter Verwendung der Level-
Set-Technik entwickelt, bei dem keine variable Dichte 
des Materials eingeführt wird. In jeder Iteration wird 
ein scharfer Rand des Bauteils berechnet. Somit ist die 
Gießsimulation in den iterativen Optimierungsprozess 
integrierbar. 
Der Bericht ist wie folgt aufgebaut: In Abschnitt 2 wird 
der Anforderungskatalog erläutert, der sich aus der 
Bearbeitung von Benchmark-Problemen in der ersten 
Projektphase ergab. In Abschnitt 3 werden die Bench-
mark-Probleme und deren Lösung mit den im Projekt 



entwickelten Tools beschrieben. Abschnitt 4 enthält die 
Beschreibung der neu entwickelten Schnittstellen und 
die mathematische Formulierung des Topologieopti-
mierungsproblems. Im letzten Abschnitt wird das neue 
Topologieoptimierungsverfahren, das die Simulation 
des Gießprozesses einschließt, erläutert. 
Keywords: Topologieoptimierung, Level-Set-Methode, 
Gießprozesssimulation, Gießtechnische Restriktionen, 
CAE-Kette zur Strukturoptimierung
(77 pages, 2005)

81. N. Marheineke, R. Wegener

Fiber Dynamics in Turbulent Flows 
Part I: General Modeling Framework 
The paper at hand deals with the modeling of turbu-
lence effects on the dynamics of a long slender elastic 
fiber. Independent of the choice of the drag model, a 
general aerodynamic force concept is derived on the 
basis of the velocity field for the randomly fluctuating 
component of the flow. Its construction as centered 
differentiable Gaussian field complies thereby with the 
requirements of the stochastic k-ε turbulence model 
and Kolmogorov’s universal equilibrium theory on local 
isotropy. 
Keywords: fi ber-fluid interaction; Cosserat rod; turbu-
lence modeling; Kolmogorov’s energy spectrum; dou-
ble-velocity correlations; differentiable Gaussian fields 

Part II: Specific Taylor Drag 
In [12], an aerodynamic force concept for a general 
air drag model is derived on top of a stochastic k-ε 
description for a turbulent flow field. The turbulence 
effects on the dynamics of a long slender elastic fiber 
are particularly modeled by a correlated random Gauss-
ian force and in its asymptotic limit on a macroscopic 
fiber scale by Gaussian white noise with flow-depen-
dent amplitude. The paper at hand now presents quan-
titative similarity estimates and numerical comparisons 
for the concrete choice of a Taylor drag model in a 
given application. 
Keywords: fl exible fibers; k-ε turbulence model; 
fi ber-turbulence interaction scales; air drag; random 
 Gaussian aerodynamic force; white noise; stochastic 
differential equations; ARMA process 
(38 pages, 2005)
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