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Abstract

By means of the limit and jump relations of classical potential theory with respect to the vectorial
Helmholtz equation a wavelet approach is established on a regular surface. The multiscale procedure
is constructed in such a way that the emerging scalar, vectorial and tensorial potential kernels act
as scaling functions. Corresponding wavelets are defined via a canonical refinement equation. A
tree algorithm for fast decomposition of a complex–valued vector field given on a regular surface is
developed based on numerical integration rules. By virtue of this tree algorithm, an efficient numerical
method for the solution of vectorial Fredholm integral equations on regular surfaces is discussed in
more detail. The resulting multiscale formulation is used to solve boundary–value problems for the
time harmonic Maxwell’s equations corresponding to regular surfaces.
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1 Introduction

During the last two decades, wavelets have become the mathematical tool of choice for breaking up a
complicated function into many simple pieces. The importance of wavelets is based on the fact that
they are ’building blocks’ that enable fast decorrelation of huge data sets. In consequence, three features
are incorporated in this way of thinking of wavelets, namely the basis property, decorrelation and fast
computation. Basically, wavelet analysis works by convolving the function under consideration against
’dilated’ and ’shifted’ versions of one fixed function, viz., the ’mother wavelet’. Traditionally, applica-
tions of wavelets have been signal analysis, image processing, denoising, etc. But there is also a growing
interest in the numerical treatment of partial differential equations. However, strategies of extending the
applicability of wavelet techniques to boundary-value problems corresponding to regular surfaces have
only rarely attempted. One promising approach is to construct wavelets from the limit and jump relations
of the layer potentials used as ansatz for transforming the differential equation under consideration into
an integral equation. For the Laplace equation in R3 this approach has been developed in [12] and for
the scalar Helmholtz equation in [13]. As a matter of fact, this concept offers multilevel approximation
of functions on regular surfaces by interpreting the emerging kernel functions as scaling functions within
a scale continuous wavelet framework. In doing so, the scale discretized approach follows by a canonical
discretization procedure on the regular surface by means of numerical integration techniques.
In this paper, we propose analogous techniques based on layer potential operators associated to the vec-
torial Helmholtz equation (i.e., time-harmonic Maxwell’s equations) for both the generation of complex–
valued scalar, vectorial and tensorial wavelets on regular surfaces and a multiscale approach for the
solution of vectorial integral equations corresponding to the vectorial Helmholtz equation. Instead of
applying a conventional wavelet construction oriented on Euclidean theory for discretizing the integral
equations in accordance with a collocational, Galerkin or least squares procedure we use the occurring
kernels of the layer potentials themselves to establish a new class of vectorial wavelets on regular surfaces.
In consequence, a new wavelet approach for complex–valued vector fields naturally grows out of the layer
potentials of the vectorial Helmholtz equation.
For the purpose of fast computation, our paper shows how a pyramid scheme can be developed ade-
quately within the setup of multiresolution analysis. In similar way, a new method for the solution of
the integral equations involving the time-harmonic Maxwell’s equations can be formulated and imple-
mented. Our approach is written down in such a way that not only complex vector fields on regular
surfaces can be approximated efficiently using vectorial wavelet transforms generated by Helmholtz layer
potentials, but also both single and double layer potentials themselves (and their combinations occurring
in integral equations corresponding to vectorial boundary-value problems) allow a canonical multiscale
reconstruction and decomposition within a pyramid scheme. Boundary integral equations of singular
type are replaced approximately by a resulting boundary integral equation of regular type. In doing so
the scale parameter acts as an indicator for regularization.
The outline of this paper is as follows: First we introduce the notation that is needed for our wavelet
approach. We define regular surfaces in three-dimensional Euclidian space R3 on which our whole theory
is established. Next, we introduce the classical potential operators with respect to the vectorial Helmholtz
differential equation. Their kernels are the constituting ingredients of this work. We list the limit and
jump relations of the potential operators and their dual counterparts formulated in the framework of
both the Banach space of continuous functions as well as the Hilbert space of square–integrable functions
on regular surfaces. The setup of a vectorial multiresolution analysis (i.e., scaling functions, scale spaces,
wavelets, detail spaces) is defined by interpreting the kernel functions of the limit and jump integral oper-
ators as scaling functions on regular surfaces. The distance to the parallel surfaces of the regular surface
under consideration defines the scale level of low-pass filtering by the scaling function. As a particularly
important example, we derive the spectral representation of the vectorial scaling function when restricted
to the sphere. After that we come to a scale discretization of our approach. As a significant aspect of
scientific computing we develop a pyramid scheme providing a fast wavelet transform (FWT). Finally, we
adapt a modification of this scheme to the vectorial boundary integral equations occurring in the solution
theory of the time-harmonic Maxwell’s equations.
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2 Preliminaries

At first we want to introduce some basic notations which we need for our wavelet approach. As usual, R3

denotes three–dimensional Euclidian space. For x, y ∈ R3, x = (x1, x2, x3)T , y = (y1, y2, y3)T the inner
product x · y and the tensor product x⊗ y are defined by

x · y = xT y =
3∑

i=1

xiyi, x⊗ y = xyT =




x1y1 x1y2 x1y3

x2y1 x2y2 x2y3

x3y1 x3y2 x3y3


 .

For elements x ∈ R3, x = (x1, x2, x3)T , different from the origin, we have

x = rξ, r = |x| = √
x · x =

√
x2

1 + x2
2 + x2

3,

where ξ = (ξ1, ξ2, ξ3)T is the uniquely determined directional unit vector of x. The unit sphere in R3 is
denoted by Ω. If the vectors ε1, ε2, ε3 form the canonical orthonormal basis in R3, the points ξ ∈ Ω may
be represented in polar coordinates by

ξ = tε3 +
√

1− t2
(
cosϕε1 + sin ϕε2

)
t = cos ϑ, ϑ ∈ [0, π] , ϕ ∈ [0, 2π) .

Next we introduce some settings which are standard in potential theory (see, for example, [17], [21], [25],
[26]). We begin our considerations by introducing the notation of a regular surface:

Definition 2.1 A surface Σ ⊂ R3 is called regular, if it satisfies the following properties:

(i) Σ divides the three-dimensional Euclidean space R3 into the bounded region Σint (inner space) and
the unbounded region Σext (outer space) defined by Σext = R3\Σint, Σint = Σint ∪ Σ,

(ii) Σint contains the origin,

(iii) Σ is a closed and compact surface free of double points,

(iv) Σ has a continuously differentiable unit normal field ν pointing into the outer space Σext.

Geoscientifically regular surfaces Σ are, for example, sphere, ellipsoid, spheroid, geoid, (regular) Earth’s
surface.
Given a regular surface, then there exist positive constants α, β such that

α < σinf = inf
x∈Σ

|x| ≤ sup
x∈Σ

|x| = σsup < β.

As usual, Aint, Bint (resp. Aext, Bext) denote the inner (resp. outer) space of the sphere A (resp. B)
around the origin with radius α (resp. β). Σinf

int, Σsup
int (resp. Σinf

ext, Σsup
ext ) denote the inner (resp. outer)

space of the sphere Σinf (resp. Σsup) around the origin with radius σinf (resp. σsup).

The set
Σ(τ) = {x ∈ R3|x = y + τν(y), y ∈ Σ}

generates a parallel surface which is exterior to Σ for τ > 0 and interior for τ < 0. It is well known
from differential geometry (see, e.g., [24]) that if |τ | is sufficiently small, then the surface Σ(τ) is regular,
and the normal to one parallel surface is a normal to the other. According to our regularity assumptions
imposed on Σ the functions

(x, y) 7→ |ν(x)−ν(y)|
|x−y| , (x, y) ∈ Σ× Σ, x 6= y

(x, y) 7→ |ν(x)·(x−y)|
|x−y|2 , (x, y) ∈ Σ× Σ, x 6= y

are bounded. Hence, there exists a constant M > 0 such that

|ν(x)− ν(y)| ≤ M |x− y|,
|ν(x) · (x− y)| ≤ M |x− y|2,
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Figure 1: Regular surface (geometrical illustration)

for all (x, y) ∈ Σ× Σ. Moreover, it is easy to see that

inf
x,y∈Σ

|x + τν(x)− (y + σν(y))| = |τ − σ|

provided that |τ |, |σ| are sufficiently small.

A variety of function spaces will be needed in this article. Let C(U) be the set of all continuous, complex-
valued functions defined on a set U ⊂ R3, equipped with the standard supremum norm. A function is
said to be of class C(k)(U), 0 ≤ k ≤ ∞, if it is k−times continuously differentiable on U . If U ⊂ R3 is a
measurable subset of R3, the set of scalar functions F : U → R which are measurable and for which

‖F‖Lp(U) =
(∫

U

|F (x)|p dx

) 1
p

< ∞

is denoted by Lp(U), where dx denotes the volume element in U . Note that in the case of U = Σ where
Σ is a regular surface we write dωΣ(x) (or simply dω(x)) instead of dx and dωR(x) instead of dωΩR

(x) if
Σ is a sphere with radius R > 0.

In analogy to the scalar case we define function spaces of vector valued functions. These spaces will
normally be symbolized by lower-case letters. Let c(U) be the set of all vector valued, continuous
functions f : U → R3 defined on the set U ⊂ R3, equipped with the norm ‖f‖c(U) = supx∈U |f(x)|. A
vector field f is said to be of class c(k)(U), 0 ≤ k ≤ ∞, if every component function f · εi, i = 1, . . . , n, of
f is k−times continuously differentiable on U . The set of vector fields f : U → R which are measurable
and for which

‖f‖lp(U) =
(∫

U

|f(x)|p dx

) 1
p

< ∞

is denoted by lp(U). If U = Σ, the space c(k)(Σ) can be split naturally into a subspace c(k)
tan(Σ) containing

vector fields which are purely tangential to the regular surface Σ and a subspace c(k)
nor(Σ) which contains

purely normal fields, i.e.,
c(k)(Σ) = c(k)

tan(Σ)⊕ c(k)
nor(Σ).

The spaces l2tan(Σ) and l2nor(Σ) are the completion of c(0)
tan(Σ) resp. c(0)

tan(Σ) with respect to the ‖·‖l2(Σ)–
norm, i.e.,

c(0)
tan(Σ)

‖·‖l2(Σ)

= l2tan(Σ), c(0)
nor(Σ)

‖·‖l2(Σ)

= l2nor(Σ).
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3 Limit Formulae and Jump Relations

Definition 3.1 Let let k ∈ R \ {0} and Gk : R3 × R3 → R be the fundamental solution of the scalar
Helmholtz equation given by

Gk(x, y) =
exp(ik |x− y|)

|x− y| , x, y ∈ R3, x 6= y.

For k ∈ R \ 0, τ 6= σ with |τ | and |σ| sufficiently small we define the operators P (τ, σ; k) : l2tan(Σ) →
c∞tan(Σ), Pcurl(τ, σ; k) : l2tan(Σ) → c∞tan(Σ) and Q(τ, σ; k) : l2tan(Σ) → c∞tan(Σ) by

P (τ, σ; k)f(x) =
∫

Σ

f(y)Gk(x + τν(x), y + σν(y))dω(y),

Pcurl(τ, σ; k)f(x) = ν(x) ∧
∫

Σ

f(y) ∧ (∇yGk) (x + τν(x), y + σν(y))dω(y),

Q(τ, σ; k)f(x) = ν(x) ∧
∫

Σ

(
f(y)Gk + ((f(y)∇y)∇yGk)

)
(x + τν(x), y + σν(y))dω(y)

= ν(x) ∧
∫

Σ

(
∇y ⊗∇y + I

)
Gk(x + τν(x), y + σν(y))f(y)dω(y).

3.1 Formulation in (c(Σ), ‖·‖c(Σ))

For f ∈ ctan(Σ), the functions P (τ, σ; k)f , Pcurl(τ, σ; k)f and Q(τ, σ; k)f can be continued continuously
to the surface Σ, but the limits depend from which parallel surface (inner or outer) the points x tend
to Σ. On the other hand, the functions P (τ, σ; k)f , Pcurl(τ, σ; k) and Q(τ, σ; k)f , also are defined on
the surface Σ, i.e., the integrals exist and are continuous for τ = σ = 0. However, the integrals do not
coincide, in general, with the inner or outer limits of the potentials (cf. [1]).
If τ = σ = 0, the kernels of the potentials have weak singularities. The integrals formally defined by

P (0, 0; k)f(x) =
∫

Σ

f(y)
exp(ik |x− y|

|x− y| dω(y),

Pcurl(0, 0; k)f(x) = ν(x) ∧
∫

Σ

f(y) ∧ (x− y)
exp(ik |x− y|

|x− y|
(

ik − 1
|x− y|

)
dω(y),

and
Q(0, 0; k)f(x) = ν(x) ∧

∫

Σ

f(y)Gk(x, y) +
(
(f(y)∇y)∇yGk

)
(x, y)dω(y)

however, exist and define linear bounded operators in l2(Σ). P (0, 0; k), Pcurl(0, 0; k) and Q(0, 0; k) map
c(0)
tan(Σ) into itself (see [23, 25]). Furthermore, the operators are continuous (even compact) with respect

to ‖·‖c(0)(Σ).
The operators P (τ, σ; k)∗, Pcurl(τ, σ; k)∗ and Q(τ, σ; k)∗ satisfying

(f, P (τ, σ; k)g)l2(Σ) = (P (τ, σ; k)∗f, g)l2(Σ)

(f, Pcurl(τ, σ; k)g)l2(Σ) = (Pcurl(τ, σ; k)∗f, g)l2(Σ)

(f, Q(τ, σ; k)g)l2(Σ) = (Q(τ, σ; k)∗f, g)l2(Σ)

for all f, g ∈ l2(Σ) are called the adjoint operator of P (τ, σ; k), Pcurl(τ, σ; k) and Q(τ, σ; k) with respect
to l2(Σ)−inner-product.
A relation between the operators P (τ, σ; k), Pcurl(τ, σ; k) and Q(τ, σ; k) and their adjoint operators is
given by the following result.

Lemma 3.2 For τ 6= σ and k ∈ R\0, let P ∗(τ, σ; k) and Q∗(τ, σ; k) be the adjoint operators of P (τ, σ; k),
resp. Q(τ, σ; k) with respect to the l2(Σ)−inner-product. Then we have

P ∗(τ, σ; k) = TP (σ, τ ;−k)T
Q∗(τ, σ; k) = TQ(σ, τ ;−k)T
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where the tangential projection operator T is the canonical extension of the operator T : c(Σ) → ctan(Σ)
given by Tf(x) = ν(x) ∧ (f(x) ∧ ν(x)), x ∈ Σ, to l2(Σ).

The lemma can be proved by a straightforward calculation.
The potential operators now enable us to give concise formulations of the classical limit formulae and jump
relations in potential theory. Let I be the identity operator in l2(Σ). Suppose that, for all sufficiently
small values τ > 0, L±i (τ), i = 1, 2, 3 and Ji(τ), i = 1, ..., 5, respectively, define the following operators:

L±1 (τ ; k) = P (±τ, 0; k)− P (0, 0; k),
L±2 (τ ; k) = Pcurl(±τ, 0; k)− Pcurl(0, 0; k)± 2πI

L±3 (τ ; k) = Q(±τ, 0; k)−Q(0, 0),

J1(τ ; k) = P (τ, 0; k)− P (−τ, 0; k)
J2(τ ; k) = Pcurl(τ, 0; k)− Pcurl(−τ, 0; k) + 4πI,

J3(τ ; k) = Q(τ, 0; k)−Q(−τ, 0; k),
J4(τ ; k) = P (τ, 0; k) + P (−τ, 0; k)− 2P (0, 0; k),
J5(τ ; k) = Pcurl(τ, 0; k) + Pcurl(−τ, 0; k)− 2Pcurl(0, 0; k).

Then, for f ∈ ctan(Σ), the limit and jump relations of classical potential theory may be formulated by

lim
τ→0
τ>0

‖ L±i (τ)f ‖c(0)(Σ)= 0, lim
τ→0
τ>0

‖ Jj(τ)f ‖c(0)(Σ)= 0,

lim
τ→0
τ>0

‖ L±i (τ)∗f ‖c(0)(Σ)= 0, lim
τ→0
τ>0

‖ Jj(τ)∗f ‖c(0)(Σ)= 0;
(1)

for i = 1, 2, 3, and j = 1, . . . , 5.

3.2 Formulation in (l2(Σ), ‖·‖l2(Σ))

The limit and jump relations (1) can be generalized to the Hilbert space l2(Σ) as follows:

Theorem 3.3 For all f ∈ l2tan(Σ), i = 1, 2, 3, and j = 1, . . . , 5

lim
τ→0
τ>0

‖ L±i (τ)f ‖l2(Σ)= 0, lim
τ→0
τ>0

‖ Jj(τ)f ‖l2(Σ)= 0,

lim
τ→0
τ>0

‖ L±i (τ)∗f ‖l2(Σ)= 0, lim
τ→0
τ>0

‖ Jj(τ)∗f ‖l2(Σ)= 0.

Proof. Denote by T (τ) one of the operators L±i (τ), i = 1, 2, 3, Jj(τ), i = 1, . . . , 5. Then, by virtue of the
norm estimate,

‖f‖l2(Σ) <
√
‖Σ‖ ‖f‖c(0)(Σ) , ‖Σ‖ =

∫

Σ

dω, f ∈ c(0)(Σ), (2)

we obtain
lim
τ→0
τ>0

‖T (τ)f‖l2(Σ) = 0, lim
τ→0
τ>0

‖T (τ)∗f‖l2(Σ) = 0

for all f ∈ ctan(Σ). Therefore there exists a constant D(f) > 0 such that

‖T (τ)f‖L2(Σ) < D(f), ‖T (τ)∗f‖L2(Σ) < D(f)

for all τ ≤ τ0 (τ0 sufficiently small). The uniform boundedness principle of functional analysis (see, e.g.,
[16]) then shows us that there exists a constant M > 0 such that

∥∥∥T (τ)|c(0)(Σ)
∥∥∥

l2(Σ)
≤ M,

∥∥∥T (τ)∗|c(0)(Σ)
∥∥∥

l2(Σ)
≤ M
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for all τ ≤ τ0. The operators (T (τ)∗T (τ)) are self-adjoint, and their restrictions to the Banach space
c(0)(Σ) are continuous. We now modify a technique due to [20]. According to the Cauchy-Schwarz
inequality we get for f ∈ c(0)

tan(Σ)
(
‖T (τ)f‖l2(Σ)

)2

= (T (τ)f, T (τ)f)l2(Σ)

= (f, (T (τ)∗T (τ))f)l2(Σ)

≤ ‖f‖l2(Σ) ‖(T (τ)∗T (τ))f‖l2(Σ) .

Consequently it follows that
(
‖T (τ)f‖l2(Σ)

)22

≤
(
‖f‖l2(Σ)

)2 (
‖T (τ)∗T (τ)F‖l2(Σ)

)2

≤
(
‖f‖l2(Σ)

)2

‖f‖l2(Σ)

∥∥(T (τ)∗T (τ))2f
∥∥

l2(Σ)
.

Induction yields (
‖T (τ)f‖l2(Σ)

)2n

≤
(
‖f‖l2(Σ)

)2n−1 ∥∥∥(T (τ)∗T (τ))2
n−1

f
∥∥∥

l2(Σ)

for all positive integers n. According to the norm estimate (2) and the boundedness of the operators
T (τ), T (τ)∗ for all τ ≤ τ0 there exists a positive constant K such that

(
‖T (τ)f‖l2(Σ)

)2n

≤
√
‖Σ‖ K2n

(
‖f‖l2(Σ)

)2n−1

‖f‖c(0)(Σ) .

Therefore, for positive integers n and all f ∈ ctan(Σ) with f 6= 0, we find

‖T (τ)f‖l2(Σ)

‖f‖l2(Σ)

≤ K

(√
‖Σ‖ ‖f‖c(Σ)

‖f‖l2(Σ)

)2−n

.

Letting n tend to infinity we obtain for all f 6= 0

lim
n→∞

(√
‖Σ‖ ‖f‖c(0)(Σ)

‖f‖l2(Σ)

)2−n

= 1.

This shows us that the norm ‖T (τ)‖l2(Σ) of the operator T (τ), τ ≤ τ0, can be estimated by K, i.e.,

‖T (τ)f‖l2(Σ) ≤ K ‖f‖l2(Σ) (3)

for all f ∈ c(0)
tan(Σ) and all τ ≤ τ0. The same argument holds true for the adjoint operators, i.e.,

‖T (τ)∗f‖l2(Σ) ≤ K ‖f‖l2(Σ) (4)

for all f ∈ c(0)
tan(Σ) and all τ ≤ τ0. The space c

(0)
tan(Σ) is as a linear subspace dense in l2tan(Σ). Thus,

by the Hahn-Banach theorem (cf. [16]), we can extend the operators T (τ) and T (τ)∗ from c(0)
tan(Σ) to

l2tan(Σ) without enlarging their norms.
Now let f ∈ l2tan(Σ) be given, then there exists a sequences of functions {fn}n∈N ⊂ c(0)

tan(Σ), such that for
every ε > 0 there is an N(ε) ∈ N with

‖f − fn‖l2(Σ) < ε,

for all n ≥ N(ε). Then we have using Eq. (3) and Eq. (4)

0 ≤ ‖T (τ)f‖l2(Σ) ≤ ‖T (τ)fn‖l2(Σ) + ‖T (τ)(f − fn‖l2(Σ)

≤ ‖T (τ)fn‖l2(Σ) + K ‖f − fn‖l2(Σ)

and, thus, by using f ∈ c(0)
tan(Σ)

0 < lim
τ→0

‖T (τ)f‖l2(Σ) ≤ D ‖f − fn‖l2(Σ)

for all n ∈ N. The limit n →∞ now yields the desired result. ¤
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4 Multiscale Modelling in (l2(Σ), ‖·‖l2(Σ))

Writing out the limit and jump relations (Theorem 3.3) explicitly we obtain the following corollary.

Corollary 4.1 For f ∈ l2tan(Σ)

lim
τ→0
τ>0

∫

Σ

Φi
τ (·, y)f(y) dω(y) =

{
P (0, 0; k)f , i = 1, 2
0 , i = 3,

lim
τ→0
τ>0

ν(·) ∧
∫

Σ

ϕi
τ (·, y) ∧ f(y) dω(y) =

{
f , i = 4, 5
Pcurl(0, 0; k)f , i = 6,

lim
τ→0
τ>0

ν(·) ∧
∫

Σ

Φi
τ (·, y)f(y) dω(y) =

{
Q(0, 0; k)f , i = 7, 8,
0 , i = 9

holds in the sense of the ‖·‖l2(Σ)−norm, where the scalar kernel functions Φi
τ (x, y) with x, y ∈ Σ and

i = 1, 2, 3 are given by

Φ1
±τ (x, y) =

exp(ik |x± τν(x)− y|)
|x± τν(x)− y| ,

Φ2
τ (x, y) =

1
2

(
exp(ik |x + τν(x)− y|)

|x + τν(x)− y| +
exp(ik |x− τν(x)− y|)

|x− τν(x)− y|
)

,

Φ3
τ (x, y) =

(
exp(ik |x + τν(x)− y|)

|x + τν(x)− y| − exp(ik |x− τν(x)− y|)
|x− τν(x)− y|

)
.

The vectorial kernel functions ϕi
τ (x, y) with x, y ∈ Σ and i = 4, 5, 6 are given by

ϕ4
±τ (x, y) =

1
2π

(
(x + τν(x)− y)

exp(ik |x + τν(x)− y|)
|x + τν(x)− y|2

(
ik − 1

|x + τν(x)− y|
)

−(x− y)
exp(ik |x− y|)

|x− y|2
(

ik − 1
|x− y|

))
,

ϕ5
τ (x, y) =

1
4π

(
(x + τν(x)− y)

exp(ik |x + τν(x)− y|)
|x + τν(x)− y|2

(
ik − 1

|x + τν(x)− y|
)

−(x− τν(x)− y)
exp(ik |x− τν(x)− y|)

|x− τν(x)− y|2
(

ik − 1
|x− τν(x)− y|

))
,

ϕ6
τ (x, y) =

1
2

(
(x + τν(x)− y)

exp(ik |x + τν(x)− y|)
|x + τν(x)− y|2

(
ik − 1

|x + τν(x)− y|
)

+(x− τν(x)− y)
exp(ik |x− τν(x)− y|)

|x− τν(x)− y|2
(

ik − 1
|x− τν(x)− y|

))
.

The tensorial kernel functions Φi
τ (x, y) with x, y ∈ Σ and i = 7, 8, 9 are given by

Φ7
±τ (x, y) = (∇y ⊗∇y + I)Gk(x± τν(x), y),

=
exp(ik |x± τν(x)− y|)

|x± τν(x)− y|

[(
3

|x± τν(x)− y|3 −
ik

|x± τν(x)− y|2 −
k2

|x± τν(x)− y|

)
(y ⊗ y)

+
(

1
|x± τν(x)− y| − ik + 1

)
I

]
,

Φ8
τ (x, y) =

1
2

((∇y ⊗∇y + I) Gk(x + τν(x), y) + (∇y ⊗∇y + I)Gk(x− τν(x), y)) ,

Φ9
τ (x, y) = (∇y ⊗∇y + I)Gk(x + τν(x), y)− (∇y ⊗∇y + I)Gk(x− τν(x), y).
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Here, I stands for the identity operator as well as for the identity matrix.
It should be noted, that explicit representation of the tensorial kernel functions Φi

τ (x, y), i = 8, 9, can be
calculated as well. They are not given here for simplicity.

4.1 Scaling and Wavelet Functions

Definition 4.2 For τ > 0 and i ∈ {1, 2, 3}, the family {Φi
τ}τ>0 of kernels Φi

τ : Σ × Σ → R is called a
scalar Σ–scaling function of type i. Moreover, Φi

1 : Σ × Σ → R (i.e., τ = 1) is called the scalar mother
kernel of the scalar Σ–scaling function of type i.

For τ > 0 and i ∈ {4, 5, 6}, the family {ϕi
τ}τ>0 of kernels ϕi

τ : Σ×Σ → R is called a vectorial Σ–scaling
function of type i. Moreover, ϕi

1 : Σ × Σ → R (i.e., τ = 1) is called the vectorial mother kernel of the
vectorial Σ–scaling function of type i.

For τ > 0 and i ∈ {7, 8, 9}, the family {Φi
τ}τ>0 of kernels Φi

τ : Σ×Σ → R is called a tensorial Σ–scaling
function of type i. Moreover, Φi

1 : Σ × Σ → R (i.e., τ = 1) is called the tensorial mother kernel of the
tensorial Σ–scaling function of type i.

Correspondingly, for τ > 0, families of scalar, vectorial and tensorial wavelets are defined as follows.

Definition 4.3 For τ > 0 and i ∈ {1, 2, 3}, the family {Ψi
τ}τ>0 of scalar kernels Ψi

τ : Σ×Σ → R given
by

Ψi
τ (x, y) = −α(τ)−1 d

dτ
Φi

τ (x, y), x, y ∈ Σ, (5)

is called a scalar Σ–wavelet function of type i.

For τ > 0 and i ∈ {4, 5, 6}, the family {ψi
τ}τ>0 of vectorial kernels ψi

τ : Σ× Σ → R given by

ψi
τ (x, y) = −α(τ)−1 d

dτ
ϕi

τ (x, y), x, y ∈ Σ, (6)

is called a vectorial Σ–wavelet function of type i.

For τ > 0 and i ∈ {7, 8, 9}, the family {Ψi
τ}τ>0 of tensorial kernels Ψi

τ : Σ× Σ → R given by

Ψi
τ (x, y) = −α(τ)−1 d

dτ
Φi

τ (x, y), x, y ∈ Σ, (7)

is called a tensorial Σ–wavelet function of type i.

In the remainder of this paper we particularly choose α(τ) = τ−1 (of course, other weight functions than
α(τ) = τ−1 can be chosen in (5), (6) and (7). The differential equations (5), (6) and (7) are called the
(scale continuous) Σ–scaling equation of type i.

Definition 4.4 Let {Φi
τ}τ>0 {ϕi

τ}τ>0 and {Φi
τ}τ>0 be a scalar, vectorial resp. tensorial Σ–scaling

function of type i. Then the associated scalar, vectorial and tensorial Σ–wavelet transforms of type i are
defined by

(WT )(i) : l2tan(Σ) → l2((0,∞)× Σ)

(WT )(i)(f)(τ, x) =





∫

Σ

Ψi
τ (x, y)f(y) dω(y) , i = 1, 2, 3

ν(x) ∧
∫

Σ

ψi
τ (x, y) ∧ f(y) dω(y) , i = 4, 5, 6

ν(x) ∧
∫

Σ

Ψi
τ (x, y)f(y) dω(y) , i = 7, 8, 9.

For simplicity we omit at this point the explicit representation of the Σ−wavelet functions but the reader
should note that they can be calculated.
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Figure 2: Real part of the vectorial Σ–scaling–function ϕ5
τ for τ = 0.25 and k = 1 on the unit sphere

Σ = Ω (left) and a sectional illustration of its absolute value along the equator (right)
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Figure 3: Real part of the vectorial Σ–scaling–function ϕ5
τ for τ = 0.125 and k = 1 on the unit sphere

Σ = Ω (left) and a sectional illustration of its absolute value along the equator (right)
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Figure 4: Real part of the vectorial Σ–scaling–function ϕ5
τ for τ = 0.0625 and k = 1 on the unit sphere

Σ = Ω (left) and a sectional illustration of its absolute value along the equator (right)
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4.2 Scale Continuous Reconstruction Formula

It is not difficult to see that the wavelet functions Ψi
τ , i ∈ {1, . . . , 3}, ψi

τ , i ∈ {4, . . . , 6} and Ψi
τ ,

i ∈ {7, . . . , 9} behave like O(τ−1), hence, the convergence of the following integrals in the reconstruction
theorem is guaranteed.

Theorem 4.5 Let f be of class l2tan(Σ). Then the reconstruction formula

∫ ∞

0

(WT )i(f)(τ, ·)dτ

τ
=





P (0, 0; k)f , i = 1, 2
0 , i = 3, 9
f , i = 4, 5
Pcurl(0, 0; k)f , i = 6
Q(0, 0; k)f , i = 8, 9

holds in the sense of ‖·‖l2(Σ).

Proof. Let R > 0 be arbitrary. Let Φi
R be a scalar Σ−scaling function of type i, i = 1, 2, 3. Then we have

by observing Fubini’s theorem

Φi
R(x, y) =

∫ ∞

R

Ψi
τ (x, y)

dτ

τ
, (x, y) ∈ Σ× Σ.

Thus, we obtain, for f ∈ l2tan(Σ),
∫ ∞

R

(WT )i(f)(τ, ·)dτ

τ
=

∫ ∞

R

∫

Σ

Ψi
τ (·, y)f(y) dω(y)

dτ

τ

=
∫

Σ

∫ ∞

R

Ψi
τ (·, y)

dτ

τ
f(y) dω(y)

=
∫

Σ

Φi
R(·, y)f(y) dω(y).

The limit R → 0 in connection with Corollary 4.1 yields the desired result.
Now let φi

R be a vectorial Σ−scaling function of type i, i = 4, 5, 6. Then we again have by Fubini’s
theorem

ϕi
R(x, y) =

∫ ∞

R

ψi
τ (x, y)

dτ

τ
, (x, y) ∈ Σ× Σ,

and obtain, for f ∈ l2tan(Σ),
∫ ∞

R

(WT )i(f)(τ, ·)dτ

τ
=

∫ ∞

R

ν(·) ∧
∫

Σ

ψi
τ (·, y) ∧ f(y) dω(y)

dτ

τ

= ν(·) ∧
∫

Σ

(∫ ∞

R

ψi
τ (·, y)

dτ

τ

)
∧ f(y) dω(y)

= ν(·) ∧
∫

Σ

ϕi
R(·, y) ∧ f(y) dω(y).

The limit R → 0 in connection with Corollary 4.1 again yields the desired result.
For the case of the tensorial Σ− scaling functions and wavelets, i.e., i = 7, 8, 9, the proof can be performed
analogously. ¤

Note that the properties of the scalar, vectorial and tensorial Σ–wavelets of type i, i = 1, . . . , 9, (analo-
gously to variants of spherical wavelets developed in [9], [10]) do not presume the zero–mean property of
Ψi

τ , ψi
τ or Ψi

τ . The wavelets constructed in this way, therefore, do not satisfy a substantial condition of
the Euclidean concept.
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4.3 Spectral Representation

In this section we consider the case Σ = Ωα, i.e., the regular surface is a sphere with radius α > 0. Since
the vectorial Σ−scaling function ϕ5

τ is most important for constructive approximation of vector fields, we
show, that it can be represented in the form

ϕ5
τ (x, y) =

∞∑
n=0

2n + 1
4πα2

(ϕ5
τ )∧(1; n)ξPn(ξ · η) +

∞∑
n=1

2n + 1
4πα2

1√
n(n + 1)

(ϕ5
τ )∧(2; n)∇∗ξPn(ξ · η)

with x = αξ, y = αη, ξ, η ∈ Ω, where Pn is the Legendre polynomial of degree n and ∇∗ is the surface
gradient. This is the standard representation in the theory of vectorial product kernels and vectorial
multiresolution theory presented in [9].

Theorem 4.6 Restricted to a sphere Ωα the scaling function ϕ5
τ with k 6= 0 admits the following repre-

sentation

ϕ5
τ (x, y) =

∞∑
n=0

2n + 1
4πα2

(ϕ5
τ )∧(1; n)ξPn(ξ · η) +

∞∑
n=1

2n + 1
4πα2

1√
n(n + 1)

(ϕ5
τ )∧(2; n)∇∗ξPn(ξ · η)

with x = αξ, y = αη, ξ, η ∈ Ω and

(ϕ5
τ )∧(1; n) =

iπα2

2
√

α

(
−
√

α + τ

2α
Jn+1/2(kα)H(1)

n+1/2(k(α + τ)) ,

+
1√

α + τ
kJ ′n+1/2(kα)H(1)

n+1/2(k(α + τ)),

+
√

α− τ

2α
Jn+1/2(k(α− τ))H(1)

n+1/2(kα),

− 1√
α− τ

kJn+1/2(k(α− τ))H(1)′

n+1/2(kα)
)

, n ∈ N0,

(ϕ5
τ )∧(2; n) =

iπα2
√

n(n + 1)

2
√

α3

( 1√
α + τ

Jn+1/2(kα)H(1)
n+1/2(k(α + τ)) ,

+
1√

α− τ
Jn+1/2(k(α− τ))H(1)

n+1/2(kα)
)

, n ∈ N,

τ ∈ (0, α) and α > 0. Jν and H
(1)
ν are, as usual, the Bessel and Hankel functions of order ν.

Proof. The desired result can be obtained by some easy but lengthy calculations using the identity (see
[23])

exp(ik |x− y|)
|x− y| =

iπ

2
√
|x| |y|

∞∑
n=0

(2n + 1)Jn+1/2(k |x|)H(1)
n+1/2(k |y|)Pn(ξ · η)

with x = |x| ξ, y = |y| η, ξ, η ∈ Ω, |x| < |y| and

|x + τν(x)| = α + τ, x ∈ Ωα, τ ∈ (−α,∞) .

¤

The representation in Theorem 4.6 is the standard spectral representation for product kernels as used
in [9]. It is worth mentioning, that the restriction τ < α does not really matter since we are finally
interested in the limit τ → 0.

Lemma 4.7 For the symbols (ϕ5
τ )∧(1; n), n ∈ N0, and (ϕ5

τ )∧(2; n), n ∈ N, of the spherical vectorial
scaling function ϕ5

τ we obtain

lim
τ→0
τ>0

(ϕ5
τ )∧(1; n) = −1 for all n ∈ N0,

lim
τ→0
τ>0

(ϕ5
τ )∧(2; n) = 0 for all n ∈ N.
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Proof. Taking the limit τ → 0 for (ϕ5
τ )∧(1; n) we find

lim
τ→0
τ>0

(ϕ5
τ )∧(1; n) =

iπα2

2
√

α

(
−
√

α

2α
Jn+1/2(kα)H(1)

n+1/2(kα) +
1√
α

kJ ′n+1/2(kα)H(1)
n+1/2(k(α),

+
√

α

2α
Jn+1/2(kα)H(1)

n+1/2(kα)− 1√
α

kJn+1/2(kα)H(1)
n+1/2(kα)

)

=
iπkα

2

(
J ′n+1/2(kα)H(1)

n+1/2(kα)− Jn+1/2(kα)H(1)′

n+1/2(kα)
)

for n ∈ N0. Using the Wronskian of two Bessel functions we get

lim
τ→0
τ>0

(ϕ5
τ )∧(1; n) =

iπkα

2

(
2i

πkα

)
= −1

which is the desired result for (ϕ5
τ )∧(1; n), n ∈ N0. The result for the symbol (ϕ5

τ )∧(2; n) immediately
follows from the continuity of the Bessel and Hankel functions. ¤

The above lemma can be used to prove a kind of reassurement of the jump relation vor the potential Pcurlf

in the spectral sense. For this proof, let f ∈ c(0)
tan(Ωα) be given. Observing the Helmholtz decomposition

theorem for continuous spherical vector fields (see [9], there exist scalar fields F2, F3 ∈ C(0)(Ωα) such
that

f(x) = (∇∗F2)(x) + (L∗F3)(x), x ∈ Ωα,

where ∇∗ is the surface gradient and L∗ is the surface curl gradient (see [9]).
Thus, we get, with x = αξ, y = αη, ξ, η ∈ Ω

∫

Ωα

ϕ5
τ (x, y) ∧ f(y) dω(y)

=
∫

Ωα

∞∑
n=0

2n + 1
4πα2

(ϕ5
τ )∧(1; n)ξPn(ξ · η) ∧ ((∇∗F2)(y) + (L∗F3)(y)) dω(y)

+
∫

Ωα

∞∑
n=0

2n + 1
4πα2

1√
n(n + 1)

(ϕ5
τ )∧(2; n)∇∗ξPn(ξ · η) ∧ ((∇∗F2)(y) + (L∗F3)(y)) dω(y)

=
∫

Ωα

∞∑
n=0

2n + 1
4πα2

(ϕ5
τ )∧(1; n)Pn(ξ · η) ((L∗F2)(y)− (∇∗F3)(y)) dω(y)

+
∫

Ωα

∞∑
n=0

2n + 1
4πα2

1√
n(n + 1)

(ϕ5
τ )∧(2; n)∇∗ξPn(ξ · η) ∧ ((∇∗F2)(y) + (L∗F3)(y)) dω(y) (8)

Now, the scalar kernel

Φ5
τ (x, y) =

∞∑
n=0

2n + 1
4πα2

(ϕ5
τ )∧(1; n)Pn(ξ · η), x, y ∈ Ωα

can be interpreted as a scalar scaling function which fulfills

lim
τ→0
τ>0

∫

Ωα

Φ5
τ (x, y)f(y)dω(y) = −f(x), x ∈ Ωα,

for all f ∈ c(0)
tan(Ωα) Since the symbol (ϕ5

τ )∧(2; n) tends to 0 for τ tending to 0 the second summand in
(8) vanishes in the limit τ → 0. Thus we obtain

lim
τ→0
τ>0

∫

Ωα

ϕ5
τ (x, y) ∧ f(y) dω(y) = −(L∗F2)(x) + (∇∗F3)(x), x ∈ Ωα.
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Finally we get

lim
τ→0
τ>0

ν(x) ∧
∫

Ωα

ϕ5
τ (x, y) ∧ f(y) dω(y) = ν(x) ∧ lim

τ→0
τ>0

∫

Ωα

ϕ5
τ (x, y) ∧ f(y) dω(y)

= ξ ∧ lim
τ→0
τ>0

∫

Ωα

ϕ5
τ (x, y) ∧ f(y) dω(y)

= ξ ∧ (−(L∗F2)(x) + (∇∗F3)(x))
= (∇∗F2)(x) + (L∗F3)(x)
= f(x), x ∈ Ωα,

which is the desired result.

4.4 Scale Discretized Reconstruction Formula

Until now we were concerned with a scale continuous approach to wavelets. In what follows, scale discrete
Σ–scaling functions and wavelets of type i will be introduced. We start with the choice of a sequence
which divides the continuous scale interval (0,∞) into discrete pieces. More explicitly, (τj)j∈Z denotes a
sequence of real numbers satisfying

lim
j→∞

τj = 0 lim
j→−∞

τj = ∞ .

For example, one may choose τj = 2−j , j ∈ Z (note that in this case, 2τj+1 = τj , j ∈ Z).

Given a scalar Σ–scaling function {Φi
τ}τ>0 of type i, i = 1, 2, 3, then we clearly define the (scale)

discretized scalar Σ–scaling functions of type i by {Φi
τj
}j∈Z. Analogously we proceed with the vectorial

and tensorial Σ–scaling functions and get (scale) discretized vectorial Σ–scaling functions of type i by
{ϕi

τj
}j∈Z, i = 4, 5, 6, and (scale) discretized tensorial Σ–scaling functions of type i by {Φi

τj
}j∈Z, i = 7, 8, 9.

In doing so, by Corollary 4.1, we immediately get the following result.

Theorem 4.8 For f ∈ l2tan(Σ)

lim
j→∞

∫

Σ

Φi
τj

(·, y)f(y) dω(y) =
{

P (0, 0; k)f , i = 1, 2
0 , i = 3,

lim
j→∞

ν(·) ∧
∫

Σ

ϕi
τj

(·, y) ∧ f(y) dω(y) =
{

f , i = 4, 5
Pcurl(0, 0; k)f , i = 6,

lim
j→∞

ν(·) ∧
∫

Σ

Φi
τj

(·, y)f(y) dω(y) =
{

Q(0, 0; k)f , i = 7, 8,
0 , i = 9

holds in the ‖·‖l2(Σ)–sense.

Our procedure canonically leads us to the following type of scale discretized wavelets.

Definition 4.9 Let {Ψi
τ}τ>0, i = 1, 2, 3, {ψi

τ}τ>0, i = 4, 5, 6 and {Φi
τ}τ>0, i = 7, 8, 9 be the scalar,

vectorial and tensorial Σ–scaling functions of type i. Then the (scale) discretized scalar Σ–wavelet function
of type i, Ψi

τj
, i = 1, 2, 3, the discretized vectorial Σ–wavelet function of type i, ψi

τj
, i = 4, 5, 6, and the

discretized tensorial Σ–wavelet function of type i, Ψi
τj

, i = 7, 8, 9, are defined by

Ψi
τj

(·, ·) =
∫ τj

τj+1

Ψi
τ (·, ·)dτ

τ
, j ∈ Z , i = 1, 2, 3,

ψi
τj

(·, ·) =
∫ τj

τj+1

ψi
τ (·, ·)dτ

τ
, j ∈ Z, i = 4, 5, 6,

Ψi
τj

(·, ·) =
∫ τj

τj+1

Ψi
τ (·, ·)dτ

τ
, j ∈ Z, i = 7, 8, 9.
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In connection with (5), (6) and (7) it follows that

Ψi
τj

(·, ·) = −
∫ τj

τj+1

τ
d

dτ
Φi

τ (·, ·)dτ

τ
= Φi

τj+1
(·, ·)− Φi

τj
(·, ·), i = 1, 2, 3, (9)

ψi
τj

(·, ·) = −
∫ τj

τj+1

τ
d

dτ
ϕi

τ (·, ·)dτ

τ
= ϕi

τj+1
(·, ·)− ϕi

τj
(·, ·), i = 4, 5, 6, (10)

Ψi
τj

(·, ·) = −
∫ τj

τj+1

τ
d

dτ
Φi

τ (·, ·)dτ

τ
= Φi

τj+1
(·, ·)−Φi

τj
(·, ·), i = 7, 8, 9. (11)

The formulas (9), (10) and (11) are called scalar, vectorial and tensorial (scale) discretized Σ–scaling
equation of type i.
Assume now that f is a function of class l2tan(Σ). Observing the discretized Σ–scaling equations of type
i we get, for J ∈ Z and N ∈ N,

∫

Σ

Φi
τJ+N

(·, y)f(y) dω(y) =
∫

Σ

Φi
τJ

(·, y)f(y) dω(y) +
J+N−1∑

j=J

∫

Σ

Ψi
τj

(·, y)f(y) dω(y), i = 1, 2, 3,

ν(·) ∧
∫

Σ

ϕi
τJ+N

(·, y) ∧ f(y) dω(y) = ν(·) ∧
∫

Σ

ϕi
τJ

(·, y) ∧ f(y) dω(y)

+
J+N−1∑

j=J

ν(·) ∧
∫

Σ

ψi
τj

(·, y) ∧ f(y) dω(y), i = 4, 5, 6,

ν(·) ∧
∫

Σ

Φi
τJ+N

(·, y)f(y) dω(y) = ν(·) ∧
∫

Σ

Φi
τJ

(·, y)f(y) dω(y)

+
J+N−1∑

j=J

ν(·) ∧
∫

Σ

Ψi
τj

(·, y)f(y) dω(y), i = 7, 8, 9.

Therefore we are able to formulate the following corollary.

Corollary 4.10 Let {Ψi
τj
}j∈Z, i = 1, 2, 3, {ψi

τj
}j∈Z, i = 4, 5, 6 and {Ψi

τj
}j∈Z, i = 7, 8, 9 be the (scale)

discretized scalar, vectorial and tensorial Σ–scaling functions of type i. Then the multiscale representation
of a function f ∈ l2tan(Σ) and its potentials

+∞∑

j=−∞

∫

Σ

Ψi
τj

(·, y)f(y) dω(y) =
{

P (0, 0; k)f , i = 1, 2,
0 , i = 3,

+∞∑

j=−∞
ν(·) ∧

∫

Σ

ψi
τj

(·, y) ∧ f(y) dω(y) =
{

f , i = 4, 5,
Pcurl(0, 0; k)f , i = 6,

+∞∑

j=−∞
ν(·)

∫

Σ

Ψi
τj

(·, y)f(y) dω(y) =
{

Q(0, 0; k)f , i = 7, 8,
0 , i = 9

holds in the ‖·‖l2(Σ)–sense.

Corollary 4.10 admits the following reformulation.

Corollary 4.11 Under the assumption of Corollary 4.10

P i
τJ

(f) +
J∑

j=−∞
(WT )i(f)(τj ; ·) =





P (0, 0; k)f , i = 1, 2,
0 , i = 3, 9,
f , i = 4, 5,
Pcurl(0, 0; k)f , i = 6,
Q(0, 0; k)f , i = 7, 8,
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Figure 5: Real part of the discrete vectorial Σ–wavelet–function ϕ5
j for j = 1 and k = 1 on the unit

sphere Σ = Ω (left) and a sectional illustration of its absolute value along the equator (right)
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Figure 6: Real part of the discrete vectorial Σ–wavelet–function ϕ5
j for j = 2 and k = 1 on the unit

sphere Σ = Ω (left) and a sectional illustration of its absolute value along the equator (right)
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Figure 7: Real part of the discrete vectorial Σ–wavelet–function ϕ5
j for j = 3 and k = 1 on the unit

sphere Σ = Ω (left) and a sectional illustration of its absolute value along the equator (right)
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for every J ∈ Z (in the sense of the ‖·‖l2(Σ)–norm), where P i
τJ

(f) is given by

P i
τJ

(F )(x) =





∫

Σ

Φi
τJ

(x, y)f(y) dω(y) , i = 1, 2, 3,

ν(x) ∧
∫

Σ

ϕi
τJ

(x, y) ∧ f(y) dω(y) , i = 4, 5, 6,

ν(x) ∧
∫

Σ

Φi
τJ

(x, y)f(y) dω(y) , i = 7, 8, 9.

x ∈ Σ,

and the (scale) discretized Σ–wavelet transform of type i is defined by

(WT )i : l2(Σ) 7→


h : Z× Σ → R3

∣∣∣
∞∑

j=−∞

∫

Σ

|h(j; y)|2 dω(y) < ∞




with

(WT )i(F )(j;x) =





∫

Σ

Ψi
τj

(x, y)f(y) dω(y) , i = 1, 2, 3

ν(x) ∧
∫

Σ

ψi
τj

(x, y) ∧ f(y) dω(y) , i = 4, 5, 6

ν(x) ∧
∫

Σ

Ψi
τj

(x, y)f(y) dω(y) , i = 7, 8, 9.

x ∈ Σ.

4.5 Scale and Detail Spaces

Comparing this result with the continuous analogue (4.5) we notice that the subdivision of the continuous
scale interval (0,∞) into discrete pieces means substitution of the integral over τ by an associated discrete
sum.

As in the spherical theory of wavelets (see [7], [8]), the operators Ri
τj

, P i
τj

defined by

Ri
τj

(f) =





∫

Σ

Ψi
τJ

(x, y)f(y) dω(y) , i = 1, 2, 3

ν(x) ∧
∫

Σ

ψi
τJ

(x, y) ∧ f(y) dω(y) , i = 4, 5, 6

ν(x) ∧
∫

Σ

Ψi
τJ

(x, y)f(y) dω(y) , i = 7, 8, 9.

,

P i
τj

(f) =





∫

Σ

Φi
τJ

(x, y)f(y) dω(y) , i = 1, 2, 3

ν(x) ∧
∫

Σ

ϕi
τJ

(x, y) ∧ f(y) dω(y) , i = 4, 5, 6

ν(x) ∧
∫

Σ

Φi
τJ

(x, y)f(y) dω(y) , i = 7, 8, 9.

,

for f ∈ l2tan(Σ), may be understood as band pass and low pass filter, respectively. The scale spaces Vi
τj

and the detail spaces Wi
τj

of type i are defined by

Vi
τj

= P i
τj

(
l2tan(Σ)

)
=

{
P i

τj
(f)

∣∣f ∈ l2tan(Σ)
}

,

Wi
τj

= Ri
τj

(
l2tan(Σ)

)
=

{
Ri

τj
(f)

∣∣f ∈ l2tan(Σ)
}

,

respectively. From the identity
P i

τJ+1
(F ) = P i

τJ
(F ) + Ri

τJ
(F )

for all J ∈ Z, it easily follows that
Vi

τj+1
= Vi

τj
+Wi

τj
. (12)
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However, it should be remarked that the sum (12) generally is neither direct nor orthogonal.
The equation (12) may be interpreted in the following way: The set Vi

τj
contains a P i

τj
−filtered version

of a function belonging to the class l2(Σ). The lower the scale, the stronger the intensity of filtering. By
adding ’Ri

τj
−details‘ contained in the space Wi

τj
the space Vi

τj+1
is created, which consists of a filtered

version at resolution j + 1. Obviously, for i = 4, 5,

∞⋃

j=−∞
Vi

τj

‖·‖l2(Σ)

= l2tan(Σ) .

Moreover,

∞⋃

j=−∞
Vi

τj

‖·‖l2(Σ)

= P (0, 0; k)(l2tan(Σ)), i = 1, 2,

∞⋃

j=−∞
V6

τj

‖·‖l2(Σ)

= Pcurl(0, 0; k)(l2tan(Σ)),

∞⋃

j=−∞
Vi

τj

‖·‖l2(Σ)

= Q(0, 0; k)(l2tan(Σ)), i = 7, 8.

4.6 A Tree Algorithm

Next we deal with some aspects of scientific computing (for a similar approach in spherical theory see [11]).
We are interested in a pyramid scheme for the (approximate) recursive computation of the integrals Pτj (f)
and Rτj (f) starting from an initial approximation of a given function f ∈ l2tan(Σ). The tree algorithm
(pyramid scheme) is based on the existence of a ‘reproducing kernel function‘ on the regular surface Σ.
A pyramid scheme is a tree algorithm with the following ingredients. Starting from a sufficiently large
J ∈ N such that for all x ∈ Σ

P 5
τJ

(f) ' ν(x) ∧
NJ∑

k=1

ϕ5
τJ

(x, yNJ

k ) ∧ a
Nj

k ' f (13)

we want to calculate vectorial coefficients

aNj ∈ RNj × R3, aNj =
(
a

Nj

1 , . . . , a
Nj

Nj

)T

, j = J0, . . . , J,

such that the following statements hold true:

1. The vectors aNj , j = J0, . . . , J − 1, are obtainable by recursion starting from the vector aNJ .

2. For j = J0, . . . , J

P 5
τj

(f)(x) = ν(x) ∧
∫

Σ

ϕ5
τj

(x, y) ∧ f(y) dω(y) ' ν(x) ∧
Nj∑

k=1

ϕτj

(
x, y

Nj

k

)
∧ a

Nj

k .

For j = J0 + 1, . . . , J

R5
τj−1

(f)(x) = ν(x) ∧
∫

Σ

ψ5
τj−1

(x, y) ∧ f(y) dω(y) '
Nj−1∑

k=1

ψτj−1

(
x, y

Nj−1
k

)
∧ a

Nj−1
k .

(the symbol ’'‘ always means that the error is assumed to be negligible).
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In the scheme we base the numerical integration on certain approximate formulae associated to known
weights w

Nj

k ∈ R and prescribed knots y
Nj

k ∈ Σ, j = J0, . . . , J . This may be established, for example,
by transforming the integrals over the regular surface Σ to integrals over the (unit) sphere Ω in case an
explicit transformation Θ : Ω → Σ is given (see [6], [22]). Note that j denotes the scale of the discretized
scaling function, Nj is the number of integration points to the accompanying scale j, and k denotes the
index of the integration knot within the integration formulae under consideration, i.e.,

P 5
j (f)(x) ' ν(x) ∧

Nj∑

k=1

w
Nj

k ϕ5
j

(
x, y

Nj

k

)
∧ f

(
y

Nj

k

)
,

j = J0, . . . J ,

R5
j−1(f)(x) ' ν(x) ∧

Nj−1∑

k=1

w
Nj−1
k ψ5

j−1

(
x, y

Nj−1
k

)
∧ f

(
y

Nj−1
k

)
,

j = J0 + 1, . . . , J .

The pyramid scheme – as every recursive implementation – is divided into two parts, the initial step and
the recursion step, here called the pyramid step.

Initial Step. For a suitable large integer J , P 5
τJ

(f)(x) is sufficiently close to the right hand side of (13)
for all x ∈ Σ. Thus we simply get by (4.6)

aNJ

k = wNJ

k f(yNJ

k ), k = 1, . . . , NJ .

Pyramid Step. The essential idea for the development of our recursive scheme is the existence of a
(symmetric) kernel function Ξj : Σ× Σ → R such that

ϕ5
τj

(x, y) '
∫

Σ

ϕ5
τj

(z, x)Ξj(y, z) dω(z) (14)

and
Ξj(x, y) '

∫

Σ

Ξj(z, x)Ξj+1(y, z) dω(z) (15)

for j = J0, . . . , J .

Since our scaling functions are non–bandlimited, the scale spaces Vj are infinite dimensional. This leads
us to choose the functions Ξj to be an approximation of the scalar delta kernel on the regular surface Σ.
Such multiscale scalar approximations have been presented in a similar context as in this article in [12]
for the scalar Laplace equation or in [13] for the scalar Helmholtz equation. Both results can be used for
Ξj at this point because they both establish a scalar multiscale approximation on a regular surface Σ.
By virtue of the approximate integration rules we thus get

ν(x) ∧
∫

Σ

ϕ5
τj

(·, y) ∧ f(y) dω(y) '
∫

Σ

Ξj(y, z)
(

ν(x) ∧
∫

Σ

ϕ5
τj

(·, z) ∧ f(y) dω(z)
)

dω(y)

' ν(x) ∧
∫

Σ

ϕ5
τj

(·, z) ∧
(∫

Σ

Ξj(y, z)f(y) dω(y)
)

dω(z)

' ν(x) ∧
Nj∑

k=1

ϕτj (·, yNj

k ) ∧ a
Nj

k

for j = J0, . . . , J − 1, where we have set

a
Nj

k = w
Nj

k

∫

Σ

Ξj(y
Nj

k , y)f(y) dω(y)
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for j = J0, . . . , J − 1 and k = 1, . . . , Nj . Hence, in connection with (15), we find

a
Nj

k = w
Nj

k

∫

Σ

Ξj(y
Nj

k , y)f(y) dω(y)

' w
Nj

k

∫

Σ

∫

Σ

Ξj+1(z, y)Ξj(y
Nj

k , z) dω(z)f(y) dω(y)

' w
Nj

k

∫

Σ

Ξj(y
Nj

k , z)
(∫

Σ

Ξj+1(z, y)f(y) dω(y)
)

dω(z)

' w
Nj

k

Nj+1∑

l=1

w
Nj+1
l Ξj(y

Nj

k , y
Nj+1
l )

∫

Σ

Ξj+1(y
Nj+1
l , y)f(y) dω(y)

= w
Nj

k

Nj+1∑

l=1

Ξj(y
Nj

k , y
Nj+1
l )aNj+1

l .

for j = J − 1, . . . , J0 and k = 1, . . . , Nj .

We see that the coefficients a
NJ−1
k can be calculated recursively from aNJ

l for the initial level J, a
NJ−2
k

can be deduced from a
NJ−1
l , etc. Finally, we get as a reconstruction scheme

P 5
τj

(f) ' ν(x) ∧
Nj∑

k=1

ϕ5
τj

( · , yNj

k ) ∧ a
Nj

k , j = J0, . . . , J,

R5
τj−1

(f) ' ν(x) ∧
Nj−1∑

k=1

ψ5
τj−1

( · , yNj−1
k ) ∧ a

Nj−1
k , j = J0 + 1, . . . , J.

Note that the functions Ξj , j = J0, . . . , J−1, can be chosen independently of the scaling function {ϕ5
τj
}j∈Z

used in (16) and (16).

Initial step: For J sufficiently large

aNJ

k = wNJ

k f(yNJ

k ), k = 1, . . . , NJ

Pyramid step: For j = J0, . . . , J − 1 and k = 1, . . . , Nj

a
Nj

k = w
Nj

k

Nj+1∑

l=1

Ξj(y
Nj

k , y
Nj+1
l )aNj+1

l

Table 1: Pyramid Scheme (Tree Algorithm)

In conclusion, the above considerations lead us to the following decomposition and reconstruction scheme:

F → aNJ → aNJ−1 → . . . → aNJ0+1 → aNJ0

↓ ↓ ↓ ↓
P 5

τJ
(f) P 5

τJ−1
(f) P 5

τJ0+1
(f) P 5

τJ0
(f)

(decomposition scheme)
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aNJ0 aNJ0+1 aNJ−1

↓ ↓ ↓
P 5

τJ0
(f) P 5

τJ0+1
(f) P 5

τJ−1
(f)

↘ ↘ ↘
R5

τJ0
(f) → + → R5

τJ0+1
→ + . . . + → R5

τJ−1
(f) → + → P 5

τJ
(f)

(reconstruction scheme).

The numerical effort of a pyramid step can drastically be reduced by use of a panel–clustering method
(e.g., fast multipole procedures as developed by [15]). In doing so, the evaluations take advantage of the
localizing structure of the kernels Ξj . Roughly spoken, the kernel is split into a near field and a far field
component. The far field component is approximated by a certain expression obtaining the ’low frequency
contributions’. For the points close to the evaluation position the evaluation uses the exact near field of
the kernel. For the remaining points, the approximate far field contributions are put together.

5 Examples

The first example which we want to present, is a multiscale decomposition of the electromagnetic field of
a single point source on an ellipsoidal regular surface given by

E(a, b, c) =
{

(x, y, z) ∈ R3 |
(x

a

)2

+
(y

b

)2

+
(z

c

)2

= 1
}

where we have chosen a = 1, b = 1.5 and c = 2.0. The field of the single point source located at the point
y ∈ R3 is given by

f(x) = ν(x) ∧∇xG(x, y) = ν(x) ∧ (x− y)
exp(ik |x− y|)

|x− y|2
(

ik − 1
|x− y|

)
.

Here we have set y ∈ R3 to be located inside the ellipsoid given by y = 0.1(0, 0.5,
√

3/2). The wave
number k has been set to be k = 1.0. Figure 8 shows a multiscale decomposition of the real part of this
complex-valued vector field on the given ellipsoid.

τJ E(1.0,1.5,2.0)

‖Pτj
f−f‖

c(Σ)

‖f‖c(Σ)
Ratio

‖Pτj
f−f‖

l2(Σ)

‖f‖l2(Σ)
Ratio

2−1 0.47420 3.846E-2

2−2 0.30315 1.56 1.389E-2 2.77

2−3 0.17493 1.73 4.420E-3 3.14

2−4 0.09459 1.85 1.268E-3 3.49

2−5 0.04939 1.91 3.222E-4 3.94

2−6 0.02609 1.89 8.912E-5 3.61

2−7 0.01284 2.03 2.272E-6 3.92

Table 2: Relative error level of a multiscale decomposition at different scales of a single point source



5 Examples 21

−1

0

1

−1
−0.5

0
0.5

1
1.5
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

0.05

0.1

0.15

0.2

0.25

−1

0

1

−1
−0.5

0
0.5

1
1.5
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

0.05

0.1

0.15

0.2

0.25

0.3

−1

0

1

−1
−0.5

0
0.5

1
1.5
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

0.05

0.1

0.15

0.2

0.25

0.3

0.35

−1

0

1

−1
−0.5

0
0.5

1
1.5
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

0.05

0.1

0.15

0.2

0.25

0.3

0.35

−1

0

1

−1
−0.5

0
0.5

1
1.5
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

0.05

0.1

0.15

0.2

0.25

0.3

0.35

−1

0

1

−1
−0.5

0
0.5

1
1.5
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

Figure 8: Discrete multiscale decomposition of a single point source on an ellipsoid starting at scale J = 2
(upper left) to scale J = 7 (lower right)
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The second surface we want to discuss is given by an explicit transformation Φ : Ω → Σ from the unit
sphere Ω to the regular surface Σ,

Φ(ξ) = ρ(ξ1, ξ2, ξ3)




aξ1

bξ2

cξ3


 , ξ = (ξ1, ξ2, ξ3) ∈ Ω (16)

with
ρ(ξ1, ξ2, ξ3) = d(ξ2

1 + gξ3
1) + e(ξ2

2 + gξ3
2) + f(ξ2

3 + gξ3
3)

and the parameters given by a = 1, b = 1.5, c = 2, d = 1, e = 0.7, f = 3 and g = 0.3. This regular surface
has also been discussed in [2] in the scope of numerical integration on a regular surface. It is designed to
demonstrate that the algorithms of this paper do not depend on any symmetry of the regular surface, as
the surface defined by (16) has no obvious geometric symmetry.
The function we decompose using our multiscale technique is the trace of an incoming electromagnetic
wave on the surface Σ given by

f(x) = (d ∧ p) exp(ikd · x), x ∈ Σ

with incoming direction d = (1, 1, 1) and polarization p = (1, 0, 0). The wave number k has been set to
be k = 1.0. Figure 9 shows a multiscale decomposition of the real part of this complex-valued vector field
on the given regular surface. First the scale reconstruction at scale J = 2 is presented. To obtain higher
scale reconstructions the corresponding detail reconstructions at the following scales have to be added.
These detail reconstructions from scale J = 2 to scale J = 5 are presented in the following figures. The
last image in the lower right corner shows the final scale reconstruction at the highest scale J = 6.

τJ Σ

‖Pτj
f−f‖

c(Σ)

‖f‖c(Σ)
Ratio

‖Pτj
f−f‖

l2(Σ)

‖f‖l2(Σ)
Ratio

2−1 0.5168 0.2155

2−2 0.3108 1.66 0.0727 2.96

2−3 0.2106 1.47 0.0200 3.63

2−4 0.1493 1.41 0.0055 3.63

2−5 0.1103 1.35 0.0027 2.03

2−6 0.0821 1.34 0.0012 2.25

Table 3: Relative error level of a multiscale decomposition at different scales of the trace of an incoming
wave
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Figure 9: Discrete multiscale decomposition of an incoming wave field on the regular surface defined by
(16). The upper left image shows the scale reconstruction at scale J = 2. Then the detail reconstructions
at the following consecutive scales (from scale J = 2 to scale J = 5) are presented. Adding them all up
results in the scale reconstruction at scale J = 6 which can be found in the lower right figure.
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6 Multiscale Modelling of Boundary-Value Problems

The aim of this chapter is to introduce a multiscale method for a class of vectorial boundary integral
equations over a regular surface Σ. Our equations will be of the form (see, for example, [19])

µf + Q(0, 0; k)f = g, g ∈ l2tan(Σ), (17)

where µ ∈ {0, 1,−1} and Q(0, 0; k) is chosen to be a linear combination of the operators P (0, 0; k),
Pcurl(0, 0; k), Q(0, 0; k) defined by (3.1), (3.1), (3.1). More explicitly, we let

Q(0, 0; k)f(x) = a

∫

Σ

Gk(x, y; k)f(y) dω(y)

+ b

(
ν(x) ∧

∫

Σ

f(y) ∧ (∇yGk)(x, y; k) dω(y)
)

+ c

(
ν(x) ∧

∫

Σ

(∇y ⊗∇y + I)Gk(x, y; k) dω(y)
)

,

with a, b, c ∈ C. In multiscale nomenclature, the operators P (0, 0; k), Pcurl(0, 0; k), Q(0, 0; k) can be
approximated in the form

P (0, 0; k)f(x) ≈
∫

Σ

Φ2
τL

(x, y)f(y)dω(y)

Pcurl(0, 0; k)f(x) ≈ ν(x) ∧
∫

Σ

ϕ6
τL

(x, y) ∧ f(y)dω(y)

Q(0, 0; k)f(x) ≈ ν(x) ∧
∫

Σ

Φ8
τL

(x, y)f(y)dω(y)

for x ∈ Σ and sufficiently large L ∈ N). This results in a multiscale approximation QL(0, 0; k) of the
operator Q(0, 0; k) of the form

QL(0, 0; k)f(x) = a

∫

Σ

Φ2
τL

(x, y)f(y) dω(y)

+ b

(
ν(x) ∧

∫

Σ

ϕ6
τL

(x, y) ∧ f(y) dω(y)
)

+ c

(
ν(x) ∧

∫

Σ

Φ8
τL

(x, y)f(y) dω(y)
)

,

for x ∈ Σ. In doing so the boundary integral equation of singular type is replaced by a resulting boundary
integral equation of regular type. In other words, regularization of a singular boundary integral equation
is guaranteed by a suitable convolution (low-pass filtering) of the vector field f ∈ l2tan(Σ) against a regular
kernels with L sufficiently large.
In accordance with the reconstruction formula (Theorem 4.8) it follows for the unknown function f ∈
l2tan(Σ) in (17) that

f(x) ≈ ν(x) ∧
∫

Σ

ϕ5
τJ

(x, y)f(y)dω(y)

provided that J is sufficiently large. Applying an appropriate numerical integration rule with weights
ŵNJ

l ∈ C and knots ŷNJ

l ∈ Σ, we find by letting âNJ

l = ŵNJ

l f(ŷNJ

l ), l = 1, . . . , NJ ,

f(x) ≈ P̂ i
τJ

(f)(x) = ν(x) ∧
NJ∑

l=1

Φ5
τJ

(x, ŷNJ

l ) ∧ âNJ

l , x ∈ Σ.

The coefficients âNJ

l , l = 1, . . . , NJ , are deducible from the regularized boundary integral equation

ν(x) ∧
[

N∑

l=1

(
µϕ5

τJ
(x, ŷNJ

l ) +
(
QL(0, 0; k)ϕ5

τJ
( · , ŷNJ

l )
)

(x)
)
∧ âNJ

l

]
≈ g(x), x ∈ Σ,

by solving a system of linear equations by use of an approximation method (such as collocation, Galerkin
approximation, least squares approximation, etc.). For solving the linear system fast multipole methods
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(FMM) are applicable (see, e.g., [15]).

The aforementioned steps concerning the boundary integral equation (17) lead us to a tree algorithm
with the following ingredients: Starting from âNJ = (âNJ

1 , . . . , âNJ

NJ
)T , the coefficients

âNj ∈ CNj × C3, âNj = (âNj

1 , . . . , â
Nj

Nj
)T , j = J0, . . . , J − 1,

are determined by the following rules:

(i) The vectors âNj , j = J0, . . . , J − 1, are given recursively (see Chapter 4)

â
Nj

k = ŵ
Nj

k

Nj+1∑

l=1

Ξj(ŷ
Nj

k , ŷ
Nj+1
l )âNj+1

l .

(ii) For j = J0, . . . , J

P̂ 5
τj

(f)(x) ≈ ν(x) ∧
Nj∑

k=1

ϕ5
τj

(x, ŷ
Nj

k ) ∧ â
Nj

k , x ∈ Σ

(iii) For j = J0 + 1, . . . , J

R̂5
τj

(f)(x) ≈ ν(x) ∧
Nj∑

k=1

ψ5
τj−1

(x, ŷ
Nj

k ) ∧ â
Nj

k , x ∈ Σ

Summarizing our results we are finally led to the following multiscale approximation of f ∈ l2tan(Σ):

fJ(x) = ν(x) ∧
NJ0∑

l=1

Φ5
τJ0

(x, ŷ
NJ0
l ) ∧ â

NJ0
l + ν(x) ∧

J∑

j=J0




Nj+1∑

l=1

Ψ5
τj

(x, ŷ
Nj+1
l ) ∧ â

Nj+1
l


 , x ∈ Σ.

It is worth mentioning that the tree algorithm presented above uses an approximation method by a linear
system for the initial step and integration rules with (a priori) given weights and knots for the subsequent
pyramid steps.



References 26

References

[1] K. Allekotte, Theoretische und numerische Untersuchungen über die Behandlung des Außen-
raumproblems der Maxwellschen Gleichungen durch Approximation vom Runge-Typ (Dissertation,
Mathematisch-Naturwissenschaftliche Fakultät, RWTH Aachen, 1982).

[2] K. E. Atkinson, Quadrature of singular integrands over surfaces, Electronic Transactions on Numerical
Analysis (ETNA), 17, (2004), 133-150.

[3] D. Colton, R. Kress, Integral Equation Methods in Scattering Theory (John Wiley & Sons, New York
1983).

[4] W. Dahmen, Wavelet and Multiscale Methods for Operator Equations, Acta Numerica, Cambridge
University Press, (1997), 55-228.

[5] P.J. Davis, Interpolation and Approximation (Blaisdell Publishing Company, 1963).
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Boston, 2004).

[15] O. Glockner, On Numerical Aspects of Gravitational Field Modeling from SST and SGG by Harmonic
Splines and Wavelets (With Application to CHAMP Data) (Ph.D-Thesis, Department of Mathematics,
Geomathematics Group, University of Kaiserslautern, Shaker, Aachen, 2001).

[16] L.W. Kantorowitsch, G.P. Akilow, Funktionalanalysis in normierten Räumen (Akademie Verlag,
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