
1 introduction 1

A multiaxial stress-strain correction scheme
Holger Lang1, Klaus Dressler2, Rene Pinnau3

1, 2 Fraunhofer Institut für Techno- und Wirtschaftsmathematik,
Fraunhofer Platz 1, 67663 Kaiserslautern, Germany

holger.lang@itwm.fraunhofer.de, klaus.dressler@itwm.fraunhofer.de

3 Technische Universität Kaiserslautern,
Erwin Schrödinger Strasse, Geb. 48, 67663 Kaiserslautern, Germany

pinnau@mathematik.uni-kaiserslautern.de

Abstract

A method to correct the elastic stress tensor over time at a fixed point of an elastoplas-
tic body, which is subject to exterior loads, is presented and mathematically analysed.
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account using Jiang’s model of nonlinear elastoplasticity. Our numerical algorithm is
designed for the case that the scalar loads are piecewise linear and can be used e.g. in
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system of discontinuous ordinary differential equations is given.
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1 Introduction

1.1 Motivation.

Let U ⊂ R
3 be a domain, representing a homogeneous elastoplastic metallic body, that is

subject to loads, and whose points x ∈ Ū undergo a nonlinear multiaxial constitutive material
law of the form

σ(t, x) =

∫ t

0
Cepε̇(τ, x) dτ, (1)

where the elastoplastic tensors Cep ∈ R
3×3×3×3 depend on the whole history/memory of the

material and its points. In our article we are especially concerned with the model of Jiang
and Sehitoglu, as it is quite successful in practice and widely accepted in the engineering
community. It is rate-independent and reproduces many multiaxial stress-strain phenomena
like nonlinear isotropic/kinematic hardening or ratchetting, see [14, 15]. We briefly name it
Jiang’s model. For an explicit representation of C ep, we refer to (28).
Let us asume, we know the ‘elastic’ stress tensor eσ(t, x) via superposition of finitely many
linear elastic, static PDE results, i.e.

eσ(t, x) =
∑

n
Ln(t) eσn(x), eσn(x) = C eεn(x) (2)

with given scalar load functions Ln : [0, T ] → R. C ∈ R
3×3×3×3 is Hooke’s tensor of elasticity

cijkl =
Eν

(1 + ν)(1 − 2ν)
δijδkl +

E

1 + ν
δikδjl = λ δijδkl + 2µ δikδjl (3)
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(E = Young’s modulus, ν = Poisson’s ratio, λ, µ = Lamé’s constants). Due to the decoupling
of time t and space x in (2) and due to the linear stress-strain relationship, the latter approach
is numerically very cheap compared to the costs when solving the full transient problem with
the exact nonlinear stress-strain relationship (1) with hysteresis.

• The general case (see K in (10)): For x ∈ Ū , we have eσn(x) and thus eσ(t, x) in

R
3×3
s = {A ∈ R

3×3 : A = AT } ' R
6. (4)

• The special ‘notch’ case (see L in (11)): If x ∈ ∂U , we know from the theory of linear
elasticity, that an appropriate orthonormal basis exists such that all eσn(x) and thus
eσ(t, x) are in

R
3×3
sp = {A = (aij) ∈ R

3×3
s : a13 = a23 = a33 = 0} ' R

2×2
s ' R

3. (5)

If x lies in an area, where the real stress is high, e.g. in a notched region, plasticity comes
into play, so the elastic stress by far overestimates the real stress. Typically these regions are
small, and the overall material behaviour is elastic.
Our goal is to rectify eσ(t) = eσ(t, x) at fixed x in a postprocessing step to a better stress
σ(t) ∈ R

3×3
s resp. R

3×3
sp – from now on referred to as the ‘real’ stress – by an appropriate

modification of Jiang’s model, based on a pseudo parameter approach of Koettgen et al.
[16].
Eventually, this is the point on which fatigue analysis may be set up. Instead of solving nu-
merically expensive nonlinear PDE, we are focussing on a much cheaper nonlinear ODE model.

In this paper we will

1. give a proper definition of the correction model in [16], which is based on a strict coupling
– we call it ‘simultaneity’ – between ‘elastic’ and ‘real’ stress space.

2. prove local existence and uniqueness for our correction model. Almost by the way, we
will get local existence and uniqueness for Jiang’s constitutive model as well.

3. present an algorithm, which is more stable and faster than existing ones (e.g. [12, 16])
because of

(a) the strict simultaneity coupling in both stress spaces, which makes it possible to
avoid iterative solution algorithms.

(b) a discontinuity detection for piecewise linear elastic stress inputs.

Remark 1.1 (fields of application) In engineering HCF-durability, e.g. in the the au-
tomotive industry, load functions Ln are typically sampled with a frequency of approx.
400 sec−1. One half hour on a test track would consequently yield about 7.2 · 105 data points.
So it is – and will be in the next years – impossible to solve the full transient nonlinear PDE
problem in an acceptable computational time with sufficiently fine finite element discretisa-
tion of the domain Ū . Nowadays, a widespread practice to find a remedy is to correct scalar
‘equivalent’ signed norms/projections of eσ(t) via the ESED or Neuber’s method, see e.g.
[19].
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‘elastic’ stress space Vd ‘real’ stress space Vd
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Figure 1: Movements in both stress spaces

1.2 Definition of the correction model

First, using the well known orthogonal decomposition

R
3×3 = R

3×3
d ⊕ R

3×3
h = {A ∈ R

3×3 : trA = 0} ⊕ RI ' R
8 ⊕ R

1, R
3×3
d ⊥ R

3×3
h

with the associated linear orthogonal projections dev : R
3×3 → R

3×3
d and sph : R

3×3 → R
3×3
h

we define

R
3×3
sd = dev R

3×3
s = {A ∈ R

3×3
s : a33 = −a11 − a22} ' R

5, (6)

R
3×3
spd = dev R

3×3
sp = {A ∈ R

3×3
s : a13 = a23 = 0, a33 = −a11 − a22} ' R

3, (7)

which are deviatoric subspaces of R
3×3
s , corresponding to (4) and (5). Our indices s, p, d and

h mean symmetric, plane, deviatoric and hydrostatic (i.e. spherical).

Notation. Let : and ‖ · ‖ denote the standard Euklidian scalar product resp. norm on
R

3×3 ' R
9, Br(σ) = {τ ∈ R

3×3
s : ‖τ − σ‖ < r} and

π : R
3×3
s → ∂B1(0), σ 7→

{

σ/‖σ‖ if σ 6= 0
0 if σ = 0

.

The underlying function spaces are

Ck([0, T ], ·) = space of k-times countinously differentiable functions,

Ck
pw([0, T ], ·) = space of piecewise Ck functions,

AC([0, T ], ·) = space of absolutely continuous functions

where the respective image depends on the context. Note that AC = W 1,1.

A. We assume that symmetric elastic stresses eσ ∈ C1
pw([0, T ], V ), where V is either R

3×3
s or

R
3×3
sp , are given. Their deviatoric parts

es(t) = dev
(

eσ(t)
)

, eṡ(t) = dt
es(t) = dev

(

eσ̇(t)
)

(8)
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are external input/force into
(

ε̇pl, ξ̇, eα̇1, . . . , eα̇m, eṘ, α̇1, . . . , α̇m, Ṙ
)

= Jes

(

t, ξ, eα1, . . . , eαm, eR, α1, . . . , αm, R
)

(9)

a system of first order discontinuous ordinary differential equations. That way, Jes is explic-
itly time dependent, the so called elastic stress control.

B. After solving ODE (9), the real stress deviators s(t) are defined simultaneously (i.e. parallel
and rescaled) to the elastic stress deviators es(t) at the corresponding point in real stress space

(σ, ε, εel, s, eα, eρ, α, ρ) = K(es, εpl, eα1, . . . , eαm, eR, α1, . . . , αm, R, σh) (10)

resp. (σ, ε, εel, s, eα, eρ, α, ρ) = L(es, εpl, eα1, . . . , eαm, eR, α1, . . . , αm, R), (11)

each a system of simple explicit algebraic equations.

For a better geometric understanding, we refer to figure 1. There are a lot of parameters
appearing in the definition of Jes, L, K, which are all listed in (20) below.

A. Definition of Jes on

Ω = [0, T ] × R × V m
d × (0,∞) × V m

d × (0,∞)

where
Vd = dev V from (6), i.e. V = R

3×3
s , or (7), i.e. V = R

3×3
sp .

For (t, ξ, eα1, . . . , eαm, eR, α1, . . . , αm, R) ∈ Ω we set

eρ = eρ0

(

1 + eaρe
ebρ

eR
)

, eα =
∑m

j=1

eαj , α =
∑m

j=1
αj . (12)

and

SeY = ∂Beρ(
eα) the ‘elastic’ yield surface, (13a)

SeM = ∂BeR(0) the ‘elastic’ memory surface, (13b)

SM = ∂BR(0) the ‘real’ memory surface. (13c)

Now if es(t) ∈ Beρ(
eα) (no loading, i.e. elastic), define for i = 1, . . . ,m

ε̇pl = 0, ξ̇ = 0, eα̇i = 0, eṘ = 0, α̇i = 0, Ṙ = 0. (14)

Otherwise we declare

en = en(t, eα1, . . . ,
eαm) = π

(

es(t) − eα
)

, eṡn = eṡ(t) : en.

If eṡn ≤ 0 (neutral loading), let (14) hold again, else (plastic loading) set for i = 1, . . . ,m

eχi = eQi

(

2 − en : π(eαi)
)(

1 + eaχe
ebχ

eR
)

(15a)

eci = ec∞i

(

1 + ea
(1)
i e−

eb
(1)
i ξ + ea

(2)
i e−

eb
(2)
i ξ
)

(15b)

dξ
eαi = eci

eri

(

en −

(

‖eαi‖
eri

)eχi+1

π(eαi)

)

(15c)

dξ
eα =

∑m

j=1
dξ

eαj (15d)

dξ
eR =

{

−ecR

(

1 − ‖eα‖/eR
)

if eα ∈ BeR(0)
(

π(eα) : dξ
eα
)+

if eα ∈ BeR(0)c
(15e)
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in the ‘elastic stress space’, and

χi = Qi

(

2 − en : π(αi)
)(

1 + aχebχR
)

(16a)

ci = c∞i

(

1 + a
(1)
i e−b

(1)
i ξ + a

(2)
i e−b

(2)
i ξ
)

(16b)

dξαi = ciri

(

en −

(

‖αi‖

ri

)χi+1

π(αi)

)

(16c)

dξα =
∑m

j=1
dξαj (16d)

dξR =

{

−cR

(

1 − ‖α‖/R
)

if α ∈ BR(0)
(

π(α) : dξα
)+

if α ∈ BR(0)c
(16e)

in the ‘real stress space’. Further, we declare

dξ
eρ = eρ0

eaρ
ebρe

ebρ
eRdξ

eR, eh = en : dξ
eα + dξ

eρ. (17)

The values of Jes are finally given by

eṘ = ξ̇ dξ
eR, eα̇i = ξ̇ dξ

eαi, ξ̇ =
eṡn

eh
, ε̇pl = ξ̇ en, Ṙ = ξ̇ dξR, α̇i = ξ̇ dξαi. (18)

Of course, eαi, αi, εpl remain in V , as V is a linear space. We remark that the right hand-side
of (9) does not depend on εpl.

The initial values for (9). We assume that they satisfy the following conditions:

0 < ‖eαi(0)‖ < eri, 0 <
∥

∥

∥

∑m

j=1

eαj(0)
∥

∥

∥ ≤ eR(0), (19a)

0 < ‖αi(0)‖ < ri, 0 <
∥

∥

∥

∑m

j=1
αj(0)

∥

∥

∥
≤ R(0), (19b)

εpl(0) arbitrary, ξ(0) ≥ 0, (19c)
∥

∥

∥

es(0) −
∑m

j=1

eαj(0)
∥

∥

∥
≤ eρ0

(

1 + eaρe
ebρ

eR(0)
)

. (19d)

For virgin material we should additionally have eαi(0) = αi(0),
eR(0) = R(0) and ‖eαi(0)‖ � 1,

eR(0) � 1 and eσ(0) = 0.

The parameters for (9). We need ‘elastic parameters’ epl for the elastic stress space, and ‘real
parameters’ pl for the real stress space, namely

ea
(j)
i , eaχ ∈ R; ebχ ≤ 0 ≤ eQi; −1 < eaρ < 0; ebρ < 0 < eb

(j)
i , ecR, eri,

ec∞i , eρ0 (20a)

a
(j)
i , aχ ∈ R; bχ ≤ 0 ≤ Qi; −1 < aρ < 0; bρ < 0 < b

(j)
i , cR, ri, c∞i , ρ0 (20b)

l = 1, . . . , 7m + 6, i = 1, . . . ,m, j = 1, 2. The ea
(j)
i , eb

(j)
i , a

(j)
i , b

(j)
i have to be chosen in such a

way that

inf
ξ≥0

∑

j

ea
(j)
i e−

eb
(j)
i ξ > −1, inf

ξ≥0

∑

j
a

(j)
i e−b

(j)
i ξ > −1 (i = 1, . . . ,m) (21)

The pl are physical parameters (‘Jiang parameters’), depending solely on the material, whereas
the epl are fictive and depend additionally on the considered point x, in particular on the
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geometry of U . For each x we need an appropriate set of epl. The affects of pl resp. epl

on the material/part properties as ratchetting or cyclic hardening/softening are explained in
[14, 15]. In any case, we should have eρ0(1 + eaρ) ≈ ρ0(1 + aρ), as R ≈ eR for virgin material,
see (29) and [12], chap. 4.

B. Definition of L (the special ‘notch case’, V = R
3×3
sp ) on

V [0,T ] × V
[0,T ]
d ×

(

V
[0,T ]
d

)m
× (0,∞)[0,T ] ×

(

V
[0,T ]
d

)m
× (0,∞)[0,T ].

For all 0 ≤ t ≤ T we set eρ(t), eα(t), α(t) as in (12) and

ρ(t) = ρ0

(

1 + aρe
bρR(t)

)

, s(t) = α(t) +
ρ(t)
eρ(t)

(

es(t) − eα(t)
)

. (22)

The ‘real’ yield surface is defined as SY (t) = ∂Bρ(t)(α(t)). Finally the real stress and strains
are

σ(t) = D−1s(t), εel(t) = C−1σ(t), ε(t) = εel(t) + εpl(t). (23)

where D is the linear isomorphism

D =
R

3×3
spd

|dev |
R

3×3
sp

: R
3×3
sp → R

3×3
spd .

If eσ and σ are not plane, our correction is applicable too, but only if the hydrostatic compo-
nent σh is available as additional information.

Definition of K (the general case, V = R
3×3
s ) on

V [0,T ] × V
[0,T ]
d ×

(

V
[0,T ]
d

)m
× (0,∞)[0,T ] ×

(

V
[0,T ]
d

)m
× (0,∞)[0,T ] × R

[0,T ].

Here the same equations as for L hold, except that we replace the first equation in (23) by
σ(t) = s(t) + σh(t)I.

The parameters for (10) and (11). Here were just have E > 0 and 0 < ν < 1/2 in (3). But
note that they don’t have any affect on σ.

Remark 1.2 (simultaneity) By definition (22) we enforce parallelity of es − eα and s − α.
Note that in (15d) and (16d) the same yield surface normal en is used both for eSY and SY .
That’s the way, the movements in both stress spaces are coupled. The movement of the eαi

and αi (and thus eα and α) and the development of eR and R differ in general, unless epl are
pl equal. For illustration see again figure 1, where m = 5.

Remark 1.3 (former work) Defining Jes, L and K, we clearly follow the idea of Koettgen
et al. [16], which they call the ‘eσ−approach’. They developed this kind of scheme for the
constitutive model of Mroz [18]. Later Hertel [12] adapted this approach to Jiang’s model.
But compared to our formulation, there are some differences in [12, 16]:
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• The integration of

ṡ =
h
eh

eṡ, h = en : dξα + dξρ (24)

proposed in [16] cannot be realized in a consistent manner with the fact that Jiang’s
model comprises expansion/contraction of the yield surface. So, during integration of
(24), we have two yield surfaces with different radii ρ and eρ and thus two yield conditions
to be satisfied at the same time, which is inconsistent with the simultaneity idea. In
contrast to our case, a purely kinematic version of Mroz’s model with only one yield
condition (eρ = ρ) is refered to in [16].

An additional advantage of our formulation is that we get rid of equation (24), so the
number of differential equations to be integrated is reduced.

• As the physical correction idea is per definition simultaneous, we are integrating the
equations in elastic and real stress space parallelly coupled and not iteratively in series

eσ(t)
(25),epl−→ εpl(t)

Iter.,pl−→ σ(t),

as it is done in [12, 16]. So, as we don’t have a stress-controlled integration followed
by completely separated strain-controlled integrations, this yields more accuracy and
much more speed, as we have to handle the problems with discontinuities only once. We
have the garuantee that plastic yielding starts/stops exactly at the same point in time.
That way, our algorithm has turned out to decrease the number of expensive function
evaluation by a factor more than 21 compared to [12] yielding a speed factor of more
than 10.

Remark 1.4 (the original stress controlled Jiang model) Since eα̇i,
eṘ, ξ̇, ε̇pl do not

depend on αi, Ri, you rediscover the original stress-controlled Jiang model [14] as a subsystem
(

ε̇pl, ξ̇, α̇1, . . . , α̇m, Ṙ
)

= Js

(

t, ξ, α1, . . . , αm, R
)

(25)

on
Ω = [0, T ] × R × V m

d × (0,∞),

where s = dev(σ) ∈ C1
pw([0, T ], Vd) is the external input and ε = C−1σ + εpl. Just drop the

additional equations (16) and the e at each ‘elastic’ variable and parameter. Here the elastic
stress and the real stress space coincide, under the assumption that the input (8) is the real
stress, (13c) does not exist. The initial values/conditions analogeous to (19) are

0 < ‖αi(0)‖ < ri, 0 <
∥

∥

∥

∑m

j=1
αj(0)

∥

∥

∥ ≤ R(0) (26a)

εpl(0) arbitrary, ξ(0) ≥ 0 (26b)
∥

∥

∥
s(0) −

∑m

j=1
αj(0)

∥

∥

∥
≤ ρ0

(

1 + aρe
bρR(0)

)

. (26c)

Condition (30) becomes (ε > 0 small)
∑m

j=1
cj

(

rj − ‖αi‖
)

≥ ρ0aρbρcR + ε. (27)

It can be straight forwardly shown that in (1)

Cep = C

(

I −
2µ

2µ + h
n ⊗ n

)

. (28)
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2 Local existence and uniqueness of solution

The (‘elastic’) stress controlled functions Jes in (9) and Js in (25) are discontinuous. So
unfortunately, the standard theory of systems of ordinary differential equations, where usually
at least local Lipschitz continuity is required, does not apply. We need a generalized solution
concept to guarantee one and only one solution of the respective systems of equations.
For other elastoplastic constitutive laws comprising nonlinear kinematic hardening – e.g. the
models of Melan-Prager, Armstrong-Frederick or Chaboche – wellposedness results are already
available. The reader is referred to the work of Brokate/Krejci [2, 3, 4]. The mathematical
techniques there rely on the theory of variational evolution inequalities and moving convex
sets in Hilbert spaces.
However, this is not easily applicable here, as Jiang’s model additionally comprises nonlinear
isotropic hardening, i.e. the yield surface – the convex set in Brokate’s theory – may contract
and expand. So in this paper, we will study a completely different approach. We will consider
(9) resp. (25) as differential inclusions in order to apply the theory of Filippov [9].

2.1 First analytical facts

Lemma 2.1 The yield and memory radii are coupled in a one-to-one manner. The mappings

(0,∞) 3 eR
ef
7→ eρ ∈ (0,∞) in (12), (0,∞) 3 R

f
7→ ρ ∈ (0,∞) in (22)

are strictly increasing. Further

eρ
eR→∞
−→ eρ0, ρ

R→∞
−→ ρ0, (29a)

eρ
eR→0
−→ eρ0(1 + eaρ) = eσY , ρ

R→0
−→ ρ0(1 + aρ) = σY . (29b)

Especially
0 < eσY ≤ eρ ≤ eρ0 < ∞, 0 < σY ≤ ρ ≤ ρ0 < ∞.

The inverse mappings are given by

eρ
ef−1

7→
1

ebρ
ln
( eρ/eρ0 − 1

eaρ

)

, ρ
f−1

7→
1

bρ
ln
(ρ/ρ0 − 1

aρ

)

.

Proof: Clear, because aρ, bρ,
eaρ,

ebρ < 0 < ρ0,
eρ0. �

So it doesn’t matter which of eR or eρ to choose as the governing variable. We decided to take
eR.

Lemma 2.2 If ‖eαi‖ ≤ eri, then dξ
eαi : en ≥ 0. If ‖eαi‖ ≤ eri for all i = 1, . . . ,m and at least

one of the inequalities is strict, then dξ
eα : en > 0. The analogeous assertions hold for dξα

and en.

Proof: For each i, multiplication of (15c) with en yields using the Cauchy-Schwarz inequality

dξ
eαi : en = eci

eri

(

1 −

(

‖eαi‖
eri

)eχi+1
en : π(eαi)

)

≥ 0
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(note that eχ ≥ 0) with at least one strict inequality, and therefore the assertions follow after
summing over i = 1, . . . ,m. �

During elastic/neutral loading, ξ̇ = ‖ε̇pl‖ = 0 due to (14). During plastic loading, we conclude
from (18) – the next lemma will guarantee eh > ehmin > 0 – that 0 < ξ̇ = ‖ε̇pl‖ ≤ ξ̇max. There-
fore ξ(t) =

∫ t
0 ‖ε̇pl(τ)‖dτ is the accumulated plastic strain: constant during elastic/neutral

loading and strictly increasing during plastic loading, in particular non-negative due to the
initial condition (19c).

Lemma 2.3 If ‖eαi‖ ≤ eri for i = 1, . . . ,m, a sufficient condition for eh ≥ ehmin > 0 (or
equivalently 0 < ξ̇ ≤ ξ̇max) is

∑m

j=1

ecj

(

erj − ‖eαi‖
)

≥ eρ0
eaρ

ebρ
ecR + ε (30)

with an ε > 0.

Proof: In both cases in (15e), we have

dξ
eR ≥ −ecR

(

1 − ‖eα‖/eR
)

≥ −ecR (31)

Hence

eh
(15c,15d,17)

=
∑

j

ecj
erj

(

1 −

(

‖eαj‖
erj

)eχj+1
en : π(eαj)

)

+ eρ0
eaρ

ebρe
ebρ

eRdξ
eR

(31)

≥
∑

j

ecj
erj

(

1 − ‖eαi‖/
eri

)

− eρ0
eaρ

ebρ
ecR

Note here that eχi ≥ 0 > eaρ,
ebρ. As eṡ is bounded over any interval [tn−1, tn], where es ∈ C1,

eṡ ∈ C0, it is in fact globally bounded on [0, T ], thus ξ̇ ≤ ξ̇max < ∞. �

The next lemma proves that the eαi ‘remain in their limiting radii’ eri as already asserted
(but not proved) in [15] in the case of proportional monotonous loading.

Lemma 2.4 Let en ∈ C1
pw

(

[ξ0, ξT ], Vd ∩ ∂B1(0)
)

, where 0 ≤ ξ0 < ξT < ∞, be given as input
into the differential equations for the partial backstresses (15a)-(15c) and (16a)-(16c). Then
each eαi ∈ C1

pw

(

[ξ0, ξT ], Vd

)

. If ‖eαi(ξ0)‖ < eri, then ‖eαi(ξ)‖ < eri holds in the whole interval
[ξ0, ξT ]. The analogeous assertion holds for αi and ri instead of eαi and eri.

Proof: Obviously, since all eb
(j)
i > 0 and ξ ≥ ξ0 ≥ 0, we have

0 < 1 + eI < eci

(15b)

≤ ec∞i

(

1 +
∣

∣

ea
(1)
i

∣

∣+
∣

∣

ea
(2)
i

∣

∣

)

=: eCi. (32)

where eI denotes the infimum in (21). Let us first consider the interval [ξ0, ξ1], where en is
C1. Here we have the polar decomposition eαi = ‖eαi‖π(eαi). Differentiation with respect to
ξ yields

dξ‖
eαi‖π(eαi) + ‖eαi‖dξπ(eαi) = dξ

eαi
(15c)
= eci

eri

(

en −

(

‖eαi‖
eri

)eχi+1

π(eαi)

)

. (33)
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Since 1 = ‖π(eαi)‖
2, we have 0 = dξ‖π(eαi)‖

2 = 2π(eαi) : dξπ(eαi), and therefore after scalar
multiplication of (33) with π(eαi)

dξ‖
eαi‖ = eci

eri

(

en : π(eαi) −

(

‖eαi‖
eri

)eχi+1) (32)

≤ eCi
eri

(

1 −

(

‖eαi‖
eri

)eχi+1)

.

As ebχ ≤ 0, we have eχi+1 ≤ 1+3 eQi

(

1+|eaχ|
)

=: eKi, and with the substitution eγi = ‖eαi‖/
eri

we obtain the scalar radial differential inequalitity

dξ
eγi ≤

eCi

(

1 − eγ
eKi

i

)

.

In both cases eKi > 1 and eKi = 1, separating the variables leads us to eγi < 1. �

‖eαi‖ (in the worst case each) may assymptotically reach eri and the first summand in (30)
may become too small and the whole model bursts. This usually occurs, if the inputs es(t)
are too large. Anyway the model (9) is just able to get along with inputs that are small
enough. So far, we have not been able to prove a sufficient a-priori-estimate depending on the
W1,1 norm ‖es‖1,1 of the input like – for example – Brokate did in [2, 3] for elastoplasticity
models of lower complexity. A way to find a remedy in practice is to use more backstresses.
Unfortunately, a larger m yields more differential equations and more parameters.

2.2 Proof of the main theorem

Let us first consider the Jiang correction model. For our theoretical purposes, we rewrite (9)
equivalently in the form

ẏ = Jes(t, y), y =
(

εpl, ξ, eα1, . . . , eαm, eR, α1, . . . , αm, R
)

or
ẋ = Ies(x) =

(

1, Jes(x)
)

, x = (t, y). (34)

Through introduction of time as an artificial space variable x0 = t, the system (34) is au-
tonomeous and we have pushed our time discontinuity into space. We prove existence and
uniqueness of a Filippov-solution t 7→ x(t) of the differential inclusion

ẋ ∈ Ies(x) = conv
{

v : ∃(xk)k∈N ⊂ Ω s.t. xk
k→∞
−→ x and Ies(xk)

k→∞
−→ v

}

,

i.e. a function x ∈ AC([0, T ],Ω),

Ω = [0, T ] × Vd × R × V m
d × (0,∞) × V m

d × (0,∞)

satisfying (34) for almost every t. Of course, if Ies is continuous in x, we have Ies(x) = {Ies(x)}.
The set of discontinuity points of Ies has measure zero. More precisely speaking, it is given
by SΩ

eY ∪ SΩ
eM ∪ SΩ

M with the smooth submonifolds (cylinders)

SΩ
eY = {x ∈ Ω : ϕeY (x) = 0}, ϕeY (x) =

∥

∥

∥

es(t) −
∑

j

eαj

∥

∥

∥− eρ0

(

1 + eaρe
ebρ

eR
)

, (35a)

SΩ
eM = {x ∈ Ω : ϕeM (x) = 0}, ϕeM (x) =

∥

∥

∥

∑

j

eαj

∥

∥

∥
− eR, (35b)

SΩ
M = {x ∈ Ω : ϕM (x) = 0}, ϕM (x) =

∥

∥

∥

∑

j
αj

∥

∥

∥
− R, (35c)
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separating Ω into the domains

Ω−
eY = {x : ϕeY < 0}, Ω−

eM = {x : ϕeM < 0}, Ω−
M = {x : ϕM < 0}, (36a)

Ω+
eY = {x : ϕeY > 0}, Ω+

eM = {x : ϕeM > 0}, Ω+
M = {x : ϕM > 0}, (36b)

where Ies is Lipschitz and the solution x therefore will be smooth.

Remark 2.5 (γ-condition) All of the domains (36) and all their mutual intersections

Ω−+
eY eM = Ω−

eY ∩ Ω+
eM , . . . , Ω−++

eY eMM = Ω−
eY ∩ Ω+

eM ∩ Ω+
M , . . .

are locally connected, as a consequence they satisfy Filippov’s γ-condition, i.e.

(∂Ω−
eY ) ∩ {t = const} = ∂(Ω−

eY ∩ {t = const}) for almost all t, . . .

(see [9], §6) where the boundary ∂ at the right hand side is to be taken in the relative
topology of the hyperplane {t = const}. The whole theory ([9], §7, §9, §10) is developped
for discontinuities in the space variable x. But in [9], §6 and §9, it is shown that under the
γ-condition the introduction of dummy time x0 above does not influence solution properties,
i.e. existence and uniqueness.

In the sequel, we assume that eṡn = en · eṡ > 0, where the discontinuities at the surfaces SΩ
eY ,

SΩ
eM and SΩ

M occur. In the case eṡn ≤ 0, due to (14), the whole movements, i.e. the functions
εpl, ξ, eαi,

eR, αi and R, remain constant.

1. We first consider the active loading of SΩ
eY , i.e. the the case, where the solution reaches

a point x ∈ S ∩ Ω−
eM , S = SΩ

eY = ∂Ω−
eY = ∂Ω+

eY . Here we have Ies = conv{I−, I+} with
functions

I−(x) = lim
x′∈Ω−

eY
,x′→x

Ies(x
′) = (1, 0, 0, 0, . . . , 0, 0, 0, . . . , 0, 0)

I+(x) = lim
x′∈Ω+

eY
,x′→x

Ies(x
′)

=

(

1, ?, ?, ec1

(

en −

(

‖eα1‖
er1

)eχ1
eα1

)

ξ̇, . . . , ecm

(

en −

(

‖eαm‖
erm

)eχm
eαm

)

ξ̇,

−ecR

(

1 −
‖eα‖
eR

)

ξ̇,?, . . . , ?, ?

)

which are smooth up to Ω̄−
eY and Ω̄+

eY respectively. ? and ? denote some scalar resp. tensorial
quantities. To have a unique element I0 = λ−I− + λ+I+ ∈ Ies ∩ TxS, it is necessary and
sufficient that the system of linear equations

(

1 1
〈∇ϕeY , I−〉 〈∇ϕeY , I+〉

)(

λ−

λ+

)

=

(

1
0

)

has one and only one solution. Vector calculus leads us to

∇ϕeY =
(

eṡn, 0, 0,−en, . . . ,−en, −eρ0
eaρ

ebρe
ebρ

eR, 0, . . . , 0, 0
)
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The projections of the function value limits on the surface normal are 〈∇ϕeY , I−〉 = eṡn > 0
and

〈∇ϕeY , I+〉

= eṡn −
∑

j

en : ecj

(

en −

(

‖eαj‖
erj

)eχj
eαj

)

ξ̇ + eρ0
eaρ

ebρe
ebρ

eRcR

(

1 −
‖eα‖
eR

)

ξ̇

(15e)
= eṡn −

{

en :
∑

j

ecj

(

en −

(

‖eαj‖
erj

)eχj
eαj

)

+ eρ0
eaρ

ebρe
ebρ

eRdξ
eR

}

ξ̇

(15c,15d,17)
= eṡn −

{

en : dξ
eα + dξ

eρ
}

ξ̇
(17,15d)

= eṡn − eh ξ̇
(18)
= 0.

Hence λ− = 0, λ+ = 1, Ies(x) ∩ TxS = {I+(x)} and theorem 2 in [9] §10 yields uniqueness.
We see that the solution curves reach S and a sliding motion occurs as long as eṡn > 0. The
solution x cannot enter Ω+

eY . As I+ and S are smooth, x will be smooth during the sliding
motion along S.
2. We consider the active loading of SΩ

eY and SΩ
eM . Here the surface of discontinuity is given

by S = SΩ
eY ∩ SΩ

eM , where the normals ∇ϕeY and ∇ϕeM are linearly independent (obviously
due to the decoupling into the elastic and real stress space). So SΩ

eY and SΩ
eM locally divide

Ω at x ∈ S into four quadrants, so we have Ies = conv{I−
− , I+

− , I−
+ , I+

+} with four limiting
values of Ies. It is straight forward to see that





1 1 1 1
〈∇ϕeY , I−

−〉 〈∇ϕeY , I+
−〉 〈∇ϕeY , I−

+ 〉 〈∇ϕeY , I+
+ 〉

〈∇ϕeM , I−
− 〉 〈∇ϕeM , I+

− 〉 〈∇ϕeM , I−
+ 〉 〈∇ϕeM , I+

+ 〉













λ−
−

λ+
−

λ−
+

λ+
+









=





1
0
0





has exactly one solution, thus Ies(x) ∩ TxS = {I+
+ (x)}. Here as well a sliding motion occurs,

the solution can neither enter Ω+
eY nor Ω+

eM . As S is smooth and I+
+ is Lipschitz, x will be

smooth during the sliding motion along S.
3. It is clear that the cases, where the solution x meets a point on SΩ

eM ∩ Ω−
eY or SΩ

M ∩ Ω−
eY

cannot occur. The active loading of SΩ
eY and SΩ

M is treated exactly in the same way as in
the second step, and the active loading of SΩ

eY , SΩ
eM and SΩ

M (the octant) is as well treated
straight forwardly.

Theorem 2.6 (Local existence and uniqueness of solution) Let V = R
3×3
s or V =

R
3×3
sp .

(a) Jiang correction model. As long as condition (30) is satisfied and none of eα and the
eαi passes through the origin, there exists one uniquely determined, absolutely continuous
Filippov-solution of (9) under the initial values/conditions (19), if the elastic stress deviator
es is of class C1

pw([0, T ], Vd).
(b) Jiang model. As long as condition (27) is satisfied and none of α and the αi passes through
the origin, there exists one uniquely determined absolutely continuous Filippov-solution of (25)
under the initial values/conditions (26), if the stress deviator s is of class C 1

pw([0, T ], Vd).

Proof: (a) 1. Assume first eσ ∈ C1([0, t1]). Uniqueness: See steps above. To ensure local
existence by applying the first part of theorem 1 §7 in [9], we remark that

• the function (t, x) 7→ Ies(x) is set valued and upper semicontinuous (in the sense of [9],
sect. 3, §5) in (t, x). In order to verify this, see [9], lemma 3, §6 and the corollary after
lemma 4.
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• for all (t, x) the set Ies(x) is nonempty, bounded, closed and convex.

2. Induction: eσ ∈ C1([tn−1, tn]), 0 = t0 < t1 < . . . < tN = T , n = 1, . . . , N .
(b) Clear, as Jiang’s consitutive model (25) is a subsystem of (9). Just drop each e. �

2.3 A special case

If for any i ∈ {1, . . . ,m} the ratchetting parameter eQi is equal to zero, the differential
equation for the partial backstress eαi simplifies to

eα̇i
(15c)
= eci

(

eri
en − eαi

)

ξ̇
(18)
= eci

(

eri ε̇pl − ξ̇ eαi

)

(37)

the right-hand side being a generalization of the backstress evolution equations of Arm-
strong/Frederick [1] resp. Chaboche, see [4, 5, 14], since eci = eci(ξ) is non-constant. If
we insert ε̇pl = ξ̇(es − eα)/eρ, equation (37) becomes

eα̇i = eci

(

ξ(t)
)

ξ̇(t)

(

eri

es(t) − eα(t)
eρ(t)

− eαi

)

(38)

a system of ordinary differential equations of first order. If the functions eα, es, eρ, ξ are of
class AC and

∥

∥
es(t) − eα(t)

∥

∥ ≤ eρ(t), ξ̇ ≥ 0 for almost every t ∈ [0, T ], we can solve (38) by
variation of constants, yielding the explicit formula

eαi(t) =
1

eWi(t)

{

eαi(0) + eri

∫ t

0

es(τ) − eα(τ)
eρ(τ)

eẆi(τ) dτ

}

(39)

for almost every t ∈ [0, T ], where

eWi(t) = exp

(
∫ t

0

eci

(

ξ(τ)
)

ξ̇(τ) dτ

)

= exp
(

eci ◦ ξ
∣

∣

t

0

)

An analogeous equation to (38) and solution formula (39) holds of course in the real stress
space too. Using (39), we can give an alternative proof of lemma 2.4.

3 Numerical Implementation

Throughout this section, we are concerned with the ‘notch’ case (9), (11). Clearly, our
algorithm is applicable to (25) as well. For implementation of Jes and L, we consider ẏ =
Jes(t, y) in the non-redundant form, where y ∈ R

3(2m+1)+3 where the scalar product on
Vd = R

3×3
spd ' R

3, A ' (a11, a22, a12)
T , considered as subspace of R

3×3, is given by

〈x, y〉M = xT My, M =





2 1 0
1 2 0

0 0 2



 , ‖x‖2
M = 〈x, x〉M (x, y ∈ R

3).

We consider a discrete finite sequence of given elastic stress tensors eσ0, . . . ,
eσN at times

t0 = 0, . . . , tN = T , N ∈ N and assume eσ to be piecewise linear:

eσ(t) = eσn + (t − n + 1)
∆eσn

∆tn
, ∆eσn = eσn − eσn−1,

eσ̇(t) =
∆eσn

∆tn
(40)



3 numerical implementation 14

−600 −400 −200 0 200 400 600

−300

−200

−100

0

100

200

300

11

1
2

eσ
σ

Figure 2: Elastic stress eσ and corrected stress σ

for n = 1, . . . , N and t ∈ [tn−1, tn]. This is the usual case in engineering practice, where only
such sampled data (or ‘signals’) are available. Theorem 2.6 guarantees a unique solution.
Because of rate independency we may assume ∆tn = tn − tn−1 = 1 and thus T = N .
Application of dev to (40) implies

es(t) = esn + (t − n + 1)∆esn, ∆esn = esn − esn−1,
eṡ(t) = ∆esn (41)

Discontinuity detection at SeY . The idea is simply to reparametrize τn = t − n + 1 and
to calculate the exact intersection point es∗n of the straight arc

{

τn 7→ esn−1 + τn∆esn : τn ∈
[0,∞)

}

with SeY , whose position remains constant on [0, τ ∗
n]. Setting eβn−1 = esn−1 −

eαn−1

we have es∗n = esn−1 + τ∗
n∆esn with

τ∗
n =

−〈eβn−1,∆
esn〉M +

(

〈eβn−1,∆
esn〉

2
M − ‖∆esn‖

2
M

(

‖eβn−1‖
2
M − eρ2

n

)

)1/2

‖∆esn‖
2
M

(42)

if ∆esn 6= 0 and
τ∗
n = ∞ (43)

otherwise. If τ ∗
n ∈ [0, 1), it follows from the sliding motion reflections in section 2 that

es(τ) ∈ SeY (τ) for τ ∈ [τ ∗
n, 1], otherwise es(τ) ∈ Beρ(τ)(

eα(τ)) = Beρ(0)(
eα(0)) for τ ∈ [0, 1].

This kind of front checking leads to a significant reduction of rejected steps, when using a
standard ODE method with error control, see Hairer et al. [11], ch. II.6. The discontinuities
at SeM and SM are left to the step size control. Using a constant step size would yield too
large errors when crossing these discontinuities.
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3.1 The algorithm.

It turns the
Input eσn, (n = 0, . . . , N), epl, pl (l = 1, . . . , 7m + 6)

into

Output σn, sn, εn, εel
n , εpl

n , eαi
n, eαn, eRn, eρn, αi

n, αn, Rn, ρn, ξn (n = 0, . . . , N)

Lower indices ∗n are loop indices whereas the upper indices ∗i enumerate the backstresses. It
reads as follows

A εpl
0 , ξ0,

eαi
0,

eR0, α
i
0, R0 := acc. to (19)

B eα0,
eρ0,α0, ρ0, s0 := as in (12), (22), es0 := D̃eσ0 as in (41)

C for n := 1, . . . , N

D esn := D̃ eσn, ∆esn := esn − esn−1 as in (41)

E τ∗
n := as in (42), (43)

F if 0 ≤ τ ∗
n < 1

G es∗n := esn−1 + τ∗
n∆esn, ∆es∗n := esn − es∗n

H εpl
n , ξn, eαi

n, eRn,αi
n, Rn:= DoPri5-solution at τ = 1 of ẏ = Jes(τ, y) over τ ∈ [0, 1]

with initial values εpl
n−1, ξn−1,

eαi
n−1,

eRn−1,α
i
n−1,Rn−1

and external input es(τ) = es∗n + τ∆es∗n, eṡ(τ) = ∆es∗n

I else

J εpl
n , ξn, eαi

n, eRn,αi
n, Rn := εpl

n−1, ξn−1,
eαi

n−1,
eRn−1,α

i
n−1,Rn−1 acc. to (14)

K eαn, eρn, αn, ρn, sn := as in (12), (22)

L σn := D̃−1sn, εel
n := C̃−1σn, εn := εel

n + Ď−1εpl
n as in (23)

Here

D̃ =

(

2/3 −1/3 0
−1/3 2/3 0

0 0 1

)

, C̃−1 =







1/E −ν/E 0
−ν/E 1/E 0
−ν/E −ν/E 0

0 0 (1 + ν)/E






, Ď−1 =







1 0 0
0 1 0
−1 −1 0
0 0 1






.

That way, we push the trivial integration (14) into an outer loop (stepsize ∆tn = 1, rate-
independency!). For the inner loop (step H, variable step size h) we have tested all methods
with step size control contained in Shampine/Reichelt [20], among which the Runge-Kutta
method of Dormand/Prince – see RK4(5)7m in [6], DoPri5 in [11], sect. II.5 or [20], sect.
5 – has turned out to be the fastest. The initial step size and the steps size control has been
performed as in [11], sect. II.4.
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3.2 The butterfly test.

We consider eσ(t) = L11(t)
eσ11 + L22(t)

eσ22 + L12(t)
eσ12 as in (2), in which eσ11 = (1, 0, 0)T ,

eσ22 = (0, 1, 0)T , eσ12 = (0, 0, 1)T . All parameters for the steel S460N and an appropriate
notch of an axis are taken from [12] and [13].

j erj
ec∞j

ea
(1)
j

eb
(1)
j

ea
(2)
j

eb
(2)
j

eQj
eρ0 2.02e+2

1 9.5e1 1.10e3 −4.3e−2 7.74e1 −4.80e−2 7.0e−3 1.4e+0 eaρ −2.88e−1

2 7.0e1 3.53e2 −6.8e−2 4.44e1 −1.09e−1 1.5e−2 1.4e+0 ebρ −6.16e−3

3 1.0e2 1.79e2 −7.1e−2 3.46e1 −9.40e−2 2.0e−2 1.4e+0 eaχ 2.85e−1

4 1.7e2 7.20e1 −8.0e−2 3.00e1 −1.32e−1 2.0e−2 1.4e+0 ebχ −6.45e−3

5 8.1e2 3.71e1 −7.0e−2 2.70e1 −7.60e−2 3.5e−2 1.4e+0 ecR 1.00e+2

j rj c∞j a1
j b1

j a2
j b2

j Qj ρ0 2.11e+2

1 9.0e1 1.16e3 −2.4e−1 1.88e1 2.95e−1 1.7e+0 1.0e−2 aρ −3.20e−1

2 5.0e1 3.58e2 −4.0e−1 1.88e1 3.86e−1 3.0e+0 1.0e−2 bρ −7.60e−3

3 4.0e1 1.86e2 −2.0e−1 3.00e1 −3.00e−1 2.0e−2 1.0e−2 aχ 5.00e+4

4 4.0e1 7.10e1 −3.0e−1 2.50e1 −3.50e−1 2.0e−2 1.0e−2 bχ −2.60e−2

5 7.0e1 3.74e1 −2.5e−1 2.00e1 −6.00e−1 3.0e−2 1.0e−2 cR 1.00e+2

and E = 2.085e5, ν = 3.0e−1. Here m = 5, so altogether, the number of independent
differential equations is 36, the number of parameters 84. All quantities of physical dimension
‘stress’ are measured in MPa.
You should monitor, that sufficient condition (30) is not violated during integration. The
critical value at its right hand side is eρ0

eaρ
ebρ

ecR ≤ 35.75. Likewise, you should monitor that
(eR(t), R(t)) lies in the correction region {(eR,R) ∈ (0,∞)2 : ef(eR) = eρ > ρ = f(R)}.

As proposed in [12], we consider the smooth periodic input

L11(t) = 621.63 sin(2ωt), L22(t) = 0, L12(t) = 306.38 sin(ωt), ω = 2π/8 (44)

over the time interval [0, T ] with T = 80, i.e. 10 cycles. (44) is obtained from the original one
by a rotation of the coordinate system. The results are depicted in figure 2.
We compare the ‘exact’ solution (DoPri5 algorithm with smooth input and relative accuracy
δ = 10−9) with our solution with sampled input N = 80 · 42 and relative accuracy δ = 10−3.
The relative error is depicted in figure 3. The largest peaks occur, where σ is very close to
zero.
But the reduction of running time is remarkable, as seen in figure 4, where we compare
DoPri5-Algorithm with smooth input and various relative accuracies δ with the solution
of our algorithm with sampled input data: k ∈ {0, . . . , 5}, ∆tn = 4−k, N = 80 · 4k sample
intervals. Of course, the falsification of the input loading path is of order O(∆tn).
All loading paths in [12] have been tested as benchmark tests with similar results concerning
speed and accuracy.

4 Conclusion

We have proven local existence and uniqueness of solution Jiang constitutive model of elasto-
plasticity. A proper formulation for a stress spaced stress-correction model has been given.



4 conclusion 17

0 10 20 30 40 50 60 70 80

10
−10

10
−5

t

1
2

0 10 20 30 40 50 60 70 80

10
−10

10
−5

t

1
1

Figure 3: Relative error

10
2

10
3

10
4

10
−2

10
−1

10
0

N

ru
n
n
in

g
 t
im

e

δ = 10−3 no discont. detect.

δ = 10−4 no discont. detect.

δ = 10−5 no discont. detect.

δ = 10−3 discont. detect.

δ = 10−4 discont. detect.

δ = 10−5 discont. detect.

Figure 4: Running times with(out) discontinuity detection



references 18

Through the simultaneity coupling inherent in the model, we have been able to implement a
solution algorithm which is much faster than existing ones. Through a discontinuity detection
method for sampled input data further improvement of performance has been achieved.
Parameter identification. The quality of results of our model is comparable with approaches
using an incremental form of Neuber’s formula, where no elastic parameters are needed, see
Glinka et al. [10].
For practice, finding appropriate epl in our model may be a problem. But the advantage of
our correction scheme is that we have the freedom of adjusting the epl – or even the pl –
in order to optimally fit measurements or nonlinear PDE results (with Jiang’s constitutive
material law).
A derivation of elastic parameters epl from uniaxial equivalent load-notch strain curves can
be found in Hertel [12], sect. 4.4, automatic optimization of the pl,

epl in Lang et al. [17].
Future tasks. Numerical challenges for the future are a further reduction of rejected steps,
maybe by detecting the discontinuities at SeM and SM with Runge-Kutta interpolation/dense
output methods of Enright/Jackson [7, 8].
An open question is, if it is possible to generalize our theoretical result to inputs σ resp. ε of
certain subsets S, E ⊆ AC

(

[0, T ], R
3×3
s

)

in order to have proper ‘Jiang’-operators

F : S → E , σ 7→ ε = F [σ], F−1 : E → S, ε 7→ σ = F−1[ ε]

turning stress into strain and vice versa.

Acknowledgements. Thanks to the DFG and the GKMP Kaiserslautern for the financial
support and to Olaf Hertel (TU Darmstadt, dept. of material science) for his kind provision
of data.
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von Kerbbeanspruchungen bei mehrachsiger nichtproportionaler Schwingbelastung. Diplomar-
beit, Bauhaus-Universität Weimar, 2003.
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