
1 introduction 1

Parameter optimization for a multiaxial
stress-strain correction scheme

Holger Lang1, Klaus Dressler2, Rene Pinnau3

1, 2 Fraunhofer Institut für Techno- und Wirtschaftsmathematik,
Fraunhofer Platz 1, 67663 Kaiserslautern, Germany

holger.lang@itwm.fraunhofer.de, klaus.dressler@itwm.fraunhofer.de

3 Technische Universität Kaiserslautern,
Erwin Schrödinger Strasse, Geb. 48, 67663 Kaiserslautern, Germany

pinnau@mathematik.uni-kaiserslautern.de

Abstract

A gradient based algorithm for parameter identification (least-squares) is
applied to a multiaxial correction method for elastic stresses and strains at
notches. The correction scheme, which is numerically cheap, is based on
Jiang’s model of elastoplasticity. Both mathematical stress-strain analyses
(nonlinear finite element method with Jiang’s model of elastoplasticity) and
physical strain measurements have been approximized. The gradient evalua-
tion with respect to the parameters, which is very large in scale, is realized
by the automatic forward differentiation technique.
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1 Introduction

We consider a specimen in form of an axle, which exhibits rotational symmetry
around the global 1′-direction (i.e. in coordinate system S ′). It is made of S460N
steel, which shows nonlinear hysteresis phenomena as ratchetting. An appropriate
contitutive material law is therefore given by the model of Jiang/Sehitoglu [9,
10, 11, 12].
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Loads (normal force/torsional moment, scalar values Lν(t)) are applied at the point
ξ, along the global 1′-direction. All stresses and strains at ζ, appearing in the sequel,
are measured in the local ζ-coordinate-system S, whose 3-direction is normal to the
tangential plane at ζ. Consequently, all stress tensors are plane, more precisely:
The 13-, 23- and 33-components of the stresses at ζ are equal to zero.
We consider three ways to get the stresses and strains at the notch ζ, namely

(a) Measurements. You get the true stresses trσ(t) and strains trε(t) or at least
some components (normal/shear) of them. Let us assume throughout this
paper, that there are no errors in measurements.
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(b) Nonlinear quasi-static elastoplastic finite element analysis. You get the elast-
plastic stresses epσ(t) and strains epε(t) – full tensors – under the assumption
of the existence of an appropriate parameter set pl for Jiang’s model. ( 
numerically expensive)

(c) Linear quasi-static elastic finite element analysis + subsequent correction In
a first step, you get elastic stresses eσ(t) and strains eε(t) – full tensors –
which have to be fed into a correction scheme f to get better stresses σ(t) and
strains ε(t). In addition to the pl, a set of notch parameters epl for ζ has to
be determined. ( numerically cheap)

We want to focus here on the third way (c) to approximate the targets (a) resp.
(b). The diagram (2), giving input/output relations, illustrates these three ways.
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In this paper, we want to focus on the correction scheme f from Lang, Dressler,
Pinnau [14] (where the plane stress situation at ζ is referred to as the ‘notch’ case)
and Hertel [6]. For detailed mathematical formulation and an appropriate algo-
rithm for f see [14].

Summary. The correction idea is based on a simultaneity assumption. It states
that the movements in the ‘elastic’ (fictive, ‘pseudo’) stress space, controlled by
eσ(t), follow the movements in the ‘real’ stress in order to define σ(t). The difference
tensors

eσ(t)− (center eα(t) of the ‘elastic’ yield surface) (3)

and
σ(t) − (center α(t) of the ‘real’ yield surface) (4)

are defined parallel at each point in time. Through a rescaling by the ratio of
the yield surfaces radii, it is garuanteed that eσ(t) and σ(t) get into contact/lose
contact with their respective yield surfaces at exactly the same point of time. (As
a consequence, the normals to the corresponding yield surfaces n(t) and en(t) are
always equal and active plastic yielding starts/stops at exactly the same time.)
It makes sence (but is not necessary from the simultaneity assumption), that in
f the same constitutive model as in (b) is used, i.e. Jiang’s model with m = 5
backstresses in our case here. So, each constitutive parameters pl, determinig the
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movements in the ‘real’ stress space, has exactly one ‘elastic’ counterpart epl in order
to determine the movements in the ‘elastic’ stress space.

epl
pl

↓ ↓
eσ(t) σ(t)

↓ ↓

εel(t) = C−1 σ(t)εpl(t)

ε(t) = εpl(t) + εel(t)

HHHj
����

→ →‘elastic’ stress space ‘real’ stress space 

(5)

Let us combine the parameters in two vectors

p = (p1, . . . , pL), ep = (ep1, . . . ,
epL)

where

ep1, . . . ,
ep6 !

ecR, eρ0,
eaρ, ebρ, eaχ, ebχ p1, . . . p6 ! cR, ρ0, aρ, bρ, aχ, bχ

ep7, . . . ,
ep11 !

ec∞1 , . . . , ec∞5 p7, . . . , p11 ! c∞1 , . . . , c∞5
ep12, . . . ,

ep16 !
er1, . . . ,

er5 p12, . . . , p16 ! r1, . . . , r5
ep17, . . . ,

ep21 !
eQ1, . . . ,

eQ5 p17, . . . , p21 ! Q1, . . . , Q5

ep22, . . . ,
ep26 !

ea
(1)
1 , . . . , ea

(1)
5 p22, . . . , p26 ! a

(1)
1 , . . . , a

(1)
5

ep27, . . . ,
ep31 !

ea
(2)
1 , . . . , ea

(2)
5 p27, . . . , p31 ! a

(2)
1 , . . . , a

(2)
5

ep33, . . . ,
ep36 !

eb
(1)
1 , . . . , eb

(1)
5 p33, . . . , p36 ! b

(1)
1 , . . . , b

(1)
5

ep37, . . . ,
ep41 !

eb
(2)
1 , . . . , eb

(2)
5 p37, . . . , p41 ! b

(2)
1 , . . . , b

(2)
5

L = 7m + 6 is the number of Jiang parameters, here L = 41 as m = 5. Young’s
modulus E and Poisson’ ratio ν are considered as given and remain unchanged.

The elastic stresses eσ(t) and strains eε(t) are linear superposition of finitely many
static linear results eσ(t) =

∑

ν Lν(t) eσν , eε(t) =
∑

ν Lν(t) eεν (typically ‘unit load
cases’). They are linearly coupled via Hook’s law eσ(t) = C eε(t). Consequently, it
is sufficient to have just eσ(t) as input for f . Let us denote the values of the tensors
at the time points t0, . . . , tN of consideration by

eσn = eσ(tn), σn = σ(tn), εn = ε(tn), n = 0, . . . , N

and
eσ = (eσ0, . . . ,

eσN ), σ = (σ0, . . . , σN ), ε = (ε0, . . . , εN).

The correction function f can be written as

(σ0, . . . , σN , ε0, . . . , εN ) = f(eσ0, . . . ,
eσN , p1, . . . , pL, ep1, . . . ,

epL) (6)

or briefly
(σ, ε) = f(eσ, p, ep). (7)

For parameter identification we have in principal two possibilites to be the targets

σ̃n = σ̃(tn), ε̃n = ε̃(tn), n = 0, . . . , N

depending on what we want to approximize.

(a) We target at the physical results

σ̃(t) = trσ(t), ε̃(t) = trε(t) (8)

Here you solely have those components (e.g. normal/shear) that are measur-
able in practice.
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(b) We target at the mathematical results

σ̃(t) = epσ(t), ε̃(t) = epε(t) (9)

Here you usually have the full 3 × 3-tensor information for the targets at
disposal.

For each ζ a full appropriate set of parameters has to be determined. We distinguish
two possibilities

(i) We iterate the epl and consider the pl as physically true and unchangeable.
That’s the way the correction model originally was designed for.

(ii) We iterate both the epl and the pl. Additional (double) freedom in the move-
ments in the both stress spaces [13, 14] has better chances to reflect reality.
The additional costs is low (as we will see below).

Former work.

(a) The correction idea, introducing a set of ‘pseudo’ parameters epl at the notch ζ,
was born by Köttgen et al. [13]. They used Mroz’s model of elastoplasticity.
Our correction method is called there the ‘eσ-approach’.

(b) The material. For a set of Jiang material parameters pl of S460N with 5
backstresses, we refer to Hoffmeyer et al. [7].

(c) The axle. The geometry of the axle (1) and the correspondig FE model is
descripted in detail in Hertel [6], sect. 4.1, 4.2. A set of notch parameters
epl at ζ has been determined as well in sect. 4.4. �

The total parameter identification procedure consists of two steps

(1) determining good initial values for the parameters (see [6], sect. 4.4, derivation
from load-notch strain curves)

(2) mathematical optimization (‘fine tuning’) of parameters (especially the doubt-
ful ones)

In this paper, we are solely concerned with step (2). Without good initial values
out of step (1), a mathematical minimization method alone would find any local
minimum, which is far too large compared to the global minimum. As we have a
huge amount of parameters, there will be very many local minima. �

The big advantage of our kind of correction approach compared to multiaxial dif-
ferential Neuber approaches like [1, 4, 15] lies in the fact, that the latter do not
comprise ‘elastic’ parameters epl which may serve as additional tuning devices.

2 The parameter optimization procedure

Let σ̃ = (σ̃0, . . . , σ̃N ) and ε̃ = (ε̃0, . . . , ε̃N ) denote the targets, which we want to
approximate optimally, i.e. (8) or (9). The actuals corresponding to the actual
parameters set (pl,

epl) are given by the evaluation of the correction scheme with
the constant input eσ (i.e. not depending on pl and epl) and the parameters

(

σ(p, ep), ε(p, ep)
)

= f
(

eσ, p, ep
)

(10)

For the objective function F , giving the error between actuals and targets, and
which has to be minimized, we choose the weighted least squares residue

F (p, ep) =
∑

n=0,...,N

∑

i,j=1,2,3

F ij
n (p, ep) (11)
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where the summands are given by

F ij
n (p, ep) =

wij
σ

2

(

σij
n (p, ep)− σ̃ij

n

)2

+
wij

ε

2

(

εij
n (p, ep)− ε̃ij

n

)2

(12)

and positive weights wij
σ , wij

ε > 0, i, j = 1, 2, 3, not depending on pl and epl. For the
minimization of F , we have used an iterative gradient based optimization method:

determination of initial (p, ep)

?
computation of actual F ij

n (p, ep), ∇F ij
n (p, ep)

update of (p, ep)
?

- (13)

For the initial step in (13), we refer to [6], sect. 4.4. For the choice of the update
in (13), i.e. choice of descent direction/length, Matlab matlab provides

• Gauss-Newton method

• Levenberg-Marquardt method

• Coleman-Li trust region methods

• ...

which are all gradient based methods and where the gradients may be provided by
the user. We chose a Coleman-Li trust-region algorithm for the iteration step. It is
especially designed for large numbers of parameters. The gradient

∇ = ∇p,ep =
( ∂

∂p1
, . . . ,

∂

∂pL

,
∂

∂ep1

, . . . ,
∂

∂epL

)

or ∇ = ∇ep =
( ∂

∂ep1

, . . . ,
∂

∂epL

)

with respect to the parameters epl (case (i)) resp. (pl,
epl) (case (ii)) of each sum-

mand F ij
n in (11) is computated from the gradients of σij

n and εij
n via the chain

rule

∇F ij
n (p, ep) = wij

σ

(

σij
n (p, ep)− σ̃ij

n

)

∇σij
n (p, ep) + wij

ε

(

εij
n (p, ep)− ε̃ij

n

)

∇εij
n (p, ep)

Then obviously ∇F =
∑

n

∑

ij ∇F ij
n . For the evaluation of the gradients

(∇σ, ∇ε) = ∇f

(each time, the correction model (10) is evaluated), we have in principal two ele-
mental possibilities

• FD, finite differences (based on the definition of the partial derivatives)

∂f

∂pl

(eσ, p, ep) =
1

δpl

(

f(eσ, p + δpl el,
ep)− f(eσ, p, ep)

)

+O
(

δp2
l

)

(14)

∂f

∂epl

(eσ, p, ep) =
1

δepl

(

f(eσ, p, ep + δepl el)− f(eσ, p, ep)
)

+O
(

δep2
l

)

(15)

(el is the lth unit vector of length L and |δepl|, |δpl| � 1)

• AD, automatic differentiation (based on the multidimensional chain rule)

As f includes the integration of discontinuous nonlinear differential equations, it is
very komplex: Simple computation of the derivatives (‘by hand’) or adjoining the
differential equations is very elaborate and prone to errors.

The weights. We have the freedom to choose the weights in (12) in order to
switch on/off the components that are needed. If both ε and σ have to be targeted
at once, the wij

ε have to be much larger than the wij
σ . To this end, we recommend

wij
ε ≈ E2wij

σ . Note, that E does belong neither to the pl nor to the epl. �
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3 Automatic differentiation

The reader finds an appropriate algorithm for the evaluation of f – i.e. scheme
(6), (7) – in [14], sect. 3. Independent of which algorithm you consider, its code
internally will be looking like

xi := eσi (i = 0, . . . , N) ← in
xi := epi−N (i = N + 1, . . . , N + L) ← in
xi := pi−N−L (i = N + L + 1, . . . , N + 2L) ← in
xi := ϕi

(

(xj)j�i

)

(i = N + 2L + 1, . . . , M)
out← (σ0, . . . , σN ) := (xj0 , . . . , xjN

) (0 ≤ j0, . . . , jN ≤M)
out← (ε0, . . . , εN) := (xi0 , . . . , xiN

) (0 ≤ i0, . . . , iN ≤M)

(16)

where all variables appearing in the code are numbered by x0, . . . , xM , correspond-
ing to ascending occurrence, altogether M + 1 ones. They are allowed to be any
single/double-array of size ni,1 × . . .× ni,ri

, that is

• scalars: ri = 1, ni,1 = 1 (e.g. the pl and epl)

• vectors: ri = 1, ni,1 ≥ 2 (e.g. the σn, εn, eσn in vector-notation)

• matrices: ri = 2, ni,1, ni,2 ≥ 1 (e.g. the σn, εn, eσn in matrix-notation)

or

• tensors of any higher order.

The first three lines in (16) is just the initialisation of the input, the last two lines
the selection of the output. All the functions ϕi in the fourth line are elemental
operations, i.e.

+, −, ·, /, inv, exp, ln, log, sin, cos, tan, abs, max, min, sinh, Artanh, . . .

whose derivatives are known. The symbol j � i indicated all the variables xj , on
which the variable xi depends (and which have consequently appeared in the code
already before). Of course, this may include the variable xi itself (e.g. xi := xi +1,
or xi := 2xi).

Choice of AD mode. The number of output variables 2N (usually several thou-
sands) is much larger than the number of parameters L = 41 in case (ii) resp.
2L = 82 in case (i). That’s why the AD forward mode is to be preferred to the
backward mode for the sakes of speed and memory. For details/theory and further
explanation, the reader is referred to the book of Griewank [5]. �

Automatic forward differentiation now embeds this code for f (‘original’ code) into
a code for f and ∇f (‘extended’ code). It additionally contains the lines for the
derivatives according to the chain rule (CR)

∂xi

∂epl

:=
∂eσi

∂epl

= 0 (i = . . .)

∂xi

∂epl

:=
∂epi−N

∂epl

= δl,(i−N) (i = . . .)

∂xi

∂epl

:=
∂pi−N−L

∂epl

= 0 (i = . . .)

∂xi

∂epl

CR
:=

∑

j�i

∂ϕi

∂xj

(

(xj)j�i

) ∂xj

∂epl

(i = . . .)
(∂σ0

∂epl

, . . . ,
∂σN

∂epl

)

:=
(∂xj0

∂epl

, . . . ,
∂xjN

∂epl

)

(0 ≤ . . .)
( ∂ε0

∂epl

, . . . ,
∂εN

∂epl

)

:=
(∂xi0

∂epl

, . . . ,
∂xiN

∂epl

)

(0 ≤ . . .)

(17)
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(each code line for l = 1, . . . , L) and

∂xi

∂pl

:=
∂eσi

∂pl

= 0 (i = . . .)

∂xi

∂pl

:=
∂epi−N

∂pl

= 0 (i = . . .)

∂xi

∂pl

:=
∂pi−N−L

∂pl

= δl,(i−N−L) (i = . . .)

∂xi

∂pl

CR
:=

∑

j�i

∂ϕi

∂xj

(

(xj)j�i

)∂xj

∂pl

(i = . . .)
(∂σ0

∂pl

, . . . ,
∂σN

∂pl

)

:=
(∂xj0

∂pl

, . . . ,
∂xjN

∂pl

)

(0 ≤ . . .)
(∂ε0

∂pl

, . . . ,
∂εN

∂pl

)

:=
(∂xi0

∂pl

, . . . ,
∂xiN

∂pl

)

(0 ≤ . . .)

(18)

(each code line for l = 1, . . . , L). The original code lines remain without exception.
The symbol δ denotes Kronecker’s delta

δxy =

{

1 if x = y
0 if x 6= y

The first equations in (17) resp. (18) express the fact, that the input eσ is inde-
pendent of all pl resp. epl. The second/third equations in (17) and (18) express
the fact, that each parameter is independent of all others (surely, except for itself,
where the derivative is trivially equal to unity).

Examples. (a) Consider the general exponential function x3 = ϕ3(x1, x2) = xx2

1 ,
where x1 > 0, x2 ∈ R. Here we have

∂x3

∂pl

CR
=

( ∂

∂x1
xx2

1

) ∂x1

∂pl

+
( ∂

∂x2
xx2

1

) ∂x2

∂pl

= x2x
x2−1
1

∂x1

∂pl

+ ln(x1) xx2

1

∂x2

∂pl

(19)

for l = 1, . . . , L. Analogeously for the epl. �

(b) Consider matrix multiplication x3 = ϕ3(x1, x2) = x1x2, where x1 ∈ R
n1,1×n1,2 ,

x2 ∈ R
n2,1×n2,2 and n1,2 = n2,1. Here

∂x3

∂pl

CR
=

∂x1

∂pl

∂

∂x1
(x1x2) +

∂

∂x2
(x1x2)

∂x2

∂pl

=
∂x1

∂pl

x2 + x1
∂x2

∂pl

(20)

for l = 1, . . . , L. Analogeously same for epl. �

The variables x1, x2, ∂x1/∂pl, ∂x2/∂pl are known, as they have already been cal-
culated in the code before, and thus x3, ∂x3/∂pl. �

In modern object orientated languages as Matlab every array xi of type sin-
gle/double is overloaded by an object (xi.V, xi.D) consisting of

xi.V  array of size ni,1 × . . .× ni,ri
, type single/double, exactly identical to

the original xi (V = ‘Value’)

xi.D  array of size ni,1× . . .×ni,ri
× 2L, type single/double, containing the

2L partial derivatives ∂xi/∂pl, ∂xi/∂epl (D = ‘Derivative’)

All elemental operations ϕi are overloaded as in the example above for this new
kind of objects. This way, the additional lines (17), (18) need not be really in-
serted between the original code lines. (In fact, this legitimates the terminology
‘automatic’.)
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An AD tool called Admat, developped by Verma et al., for the language Matlab
is free available under

http://www.cs.cornell.edu/home/verma/AD (21)

but still not free of bugs/sophisticated errors! At the moment, a new site is arising
with many links to AD tools for other languages

http://www.autodiff.org/

Performance of Matlab-code: If the number of parameters is very large, as in
our case, you should realize the code for the derivatives not with for-loops, as it
is (easily) formulated in (17), ..., (20), [5] and realized in (21), but use the typi-
cally Matlab-kind operations ‘.∗’, ‘./’, ‘repmat’, ‘vertcat’, etc. In our case, we have
designed our own AD code optimized especially for a large number of parameters,
such that we have gained a speed factor of about 80 compared to (21). For more
information about this, you should simply contact us.

AD advantages vs. FD

(a) Speed. Compared to evaluating the derivatives by FD, we find with our own
designed AD code that e.g. in the proportional case, i.e. loading path a, see
sect. 4

0 10 20 30 40 50 60 70 80

10
1

10
2

10
3

# parameters

tim
e
 [
s]

FAD

finite differences

It is clear that the running times for FD process almost linear in the total
numbers of parameters: For the forward/backward differences (14), (15), you
need 2L evaluations of f – at the disturbed operating points (eσ, p+δpl el,

ep)
resp. (eσ, p, ep + δepl el) – plus 1 evaluation of f – at the operating point
(eσ, p, ep).

Performing AD, we have gained a speed factor of more than 5.8 in the case
(ii) of 2L = 82 parameters (pl,

epl) and a factor of more than 3.3 in the case
(i) of L = 41 parameters epl, compared to FD.

In addition, the additional costs for the derivatives with respect to the pl are
less than 20%, and not L/(L + 1) ≈ 98% as it is when applying FD.

(b) Accuracy. When applying AD, the only errors that occur are roundoff errors –
due to the relative machine accuracy ε ≈ 2.22e−16 –, there are no truncation
errors – due to the neglecting of higher order terms in (14), (15). Furthermore,
there is no dependence on the choice of the perturbations δepl and δpl.

AD disadvantages vs. FD
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Memory. For each variable, that has been used in code for f , you additionally
need 2L variables in the extended code for (f, ∇f).

The original code has
∑M

i=0

∏ri

j=1 ni,j single/double-variables, so the extended

code has (2L + 1)
∑M

i=0

∏ri

j=1 ni,j ones.

4 Results

Linear static analysis. The elastic stress is linear superposition

eσ(t) = L1(t)
eσ1 + L2(t)

eσ2 (22)

of the unit load case results

eσ1 =





2.44 0 0
0 0.56 0
0 0 0



 =
linear static FE response to static unit
tension force along the rotational axis
(positively directed, i.e. 1′-direction)

and

eσ2 =





0 1.56 0
1.56 0 0
0 0 0



 =
linear static FE response to static unit
torsional moment along the rotational axis
(positively directed, i.e. 1′-direction)

(details and corresponding notch factors in [6] sect. 4.3, independently verified by
the author). �

The targets and weights. Altogether 6 iterations have been performed, distin-
guishing the following 3 cases and cases (i), (ii).

(a) Measurements have been carried out (see [6], sect. 7) for the normal and shear
strain trε11(t) resp. trε12(t) at the notch ζ, but not for the stresses. Here

w11
ε = w12

ε = w21
ε = 1, w22

ε = w33
ε = w23

ε = w32
ε = w13

ε = w31
ε = 0

and all wij
σ = 0.

(b) Nonlinear quasi-static elastoplastic finite element computations (with Jiang’s
model and the experimental pl) have been performed in [6] and independently
verified by the author, yielding the results epσ(t), epε(t). • To target at the
stresses

w11
σ = w12

σ = w21
σ = 1, w22

σ = w33
σ = w23

σ = w32
σ = w13

σ = w31
σ = 0

and all wij
ε = 0. • To target at the strains

w11
ε = w12

ε = w21
ε = 1, w22

ε = w33
ε = w23

ε = w32
ε = w13

ε = w31
ε = 0

and all wij
σ = 0. �

As a consequence of the simultaneity assumption in the model, we have insight in
the the following facts:

Capability of the model. The whole notch stress correction model at ζ consid-
ers plane stresses, thus the spaces of eσ(t) = (eσ11(t),

eσ22(t),
eσ12(t)) and σ(t) =

(σ11(t), σ22(t), σ12(t)) are both of dimension three. eσ(t), which is linear superposi-
tion (22), is completely contained in the plane (a two-dimensional linear subspace)
through the origin spanned by the linear independent tensors eσ1 and eσ2. Thus,
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simultaneity in the model formulation implies parallelity of (3) and (4). Conse-
quently, as the initial conditions for σ and eσ are the same, the corrected σ(t) is
trapped exactly in the same plane as eσ(t) is. For illustration see butterfly path d
in the following figure.
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Note, that from the start until the first plastic yielding, all three paths σ(t), epσ(t)
and eσ(t) are identical. (The path for trσ(t) – which is not at our disposal – will
looks somewhat like epσ(t).)
(In the proportional case path a, where L1(t) = αL2(t) with a constant α > 0, we
even have eσ(t) and σ(t) constrained in a one-dimensional linear subspace, i.e. a
straight line.)
The nonlinear FE result epσ(t) = epσ(t, ζ) meanders somewhere around this plane,
which is obviously due to the deformation of the nodes/elements surrounding ζ. Of
course, the correction scheme f does not see any neighbourhood.
For this reason, there is no chance at all to fit all components of σ(t) or ε(t)
sufficiently exact. But there seem to be and there in fact are – see results below –
very good chances for the 11 and 12 components, but none for the 22-component.
Anyway, this drawback cannot be simply removed. �
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The loading paths. We consider six different cyclic loading paths (L1(t), L2(t)),
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numbered by a, ..., f. Loads e, f will produce the ratchetting effect, as the ‘elastic’
mean stress (see load paths e, f) and thus the real mean stress is not equal to zero.
For each path, we consider virgin material, thus the initial conditions for all of them
are the same. For details about initial conditions see [14], sect. 1. �
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(a) target: measurements (strains), start of iteration (step 0)
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red – correction scheme results
blue – nonlinear finite element results
green – measurements
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(a) target: measurements (strains), end of iteration (step 30), case (i)
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(a) target: measurements (strains), end of iteration (step 30), case (ii)
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blue – nonlinear finite element results
green – measurements
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(b) target: nonlinear FE results (strains), start of iteration (step 0)
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(b) target: nonlinear FE results (strains), end of iteration (step 30), case (i)
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(b) target: nonlinear FE results (strains), end of iteration (step 30), case (ii)
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(b) target: nonlinear FE results (stresses), start of iteration (step 0)
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(b) target: nonlinear FE results (stresses), end of iteration (step 30), case (i)
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(b) target: nonlinear FE results (stresses), end of iteration (step 30), case (ii)
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Discussion. In any case, the approach (ii) yields better results as approach (i).
From a mathematical point of view this is too surprising, as we are minimizing over
a larger parameter domain. But in case (a) the results are really much better.
The development of the error F (p, ep) in (11) as a function of the iteration step
number is depicted here:
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For each of our six computations, good results are already obtained after approx.
20 steps or even earlier. This is quite satisfying, as it indicates that the Coleman-Li
method is appropriate for our problem.
The error curves for (b) (ii) lie much below the ones for (b)(i). Even if the idea to
consider both epl and pl as notch parameters seems physically strange, its application
may be justified by the good quality of results. It is seen in particular, that the
maxima/minima (turning points) in the stress/strain phase diagrams (b) (ii) are
hit very accurately.
In b, after iteration strains (i) 31.2%, (ii) 12.8%, stresses (i) 21.7%, (ii) 10.7% error
of the initial error.
The reason is – see diagram (5) – that εpl(t) is affected directly by epl, but εel(t) af-
fected by both epl and pl. Note that the pl have a direct influence on εel(t), whereas
the influence of epl on εel(t) is indirect. This is a kind of partial decoupling: the
elastic stress and space mainly determines εpl(t), the real stress space mainly εel(t)
(or equivalently σ(t)).

For the (a) (i/ii) iterations we had cycles only from the paths e and f at our
disposal. Thus the error curves only comprise the error in e, f. They converge to
almost the same minimum value.
(i) But it is seen that iterating the epl alone unfortunately leads do a detoriation of
paths a, ..., d.
(ii) The good thing is, that identification just with e and f improves paths a, ...,
d. This indicates that the parameters found are good and gives trust for more
arbitrary loading. This really looks surprisingly fine. The results obtained for all
paths except c are even significantly better than the FE results, which is remark-
able. You can see, that the computed strains are still slightly overestimating the
measured strains, which is usually desired when performing a subsequent fatigue
analysis. �

Future work.

(a) Fast AD techniques and parameter optimization for transient nonlinear finite
element computations in low cycle fatigue analysis.

(b) The ‘eε-approach’ in [13], which is as well based on the introduction of ad-
ditional elastic parameters epl, does not exhibit parallelity of (3) and (4) as
the ‘eσ-approach’ investigated here does. There may be chances to have good
parameter optimization for the 22-component too.

(c) Application of these techniques to improved versions of Jiang’s model (e.g.
[3]). Due to Hertel [6], sect. 7, it is impossible to fit the parameters both for
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proportional and nonproportional case, and that Jiang’s model exhibits bad
properties in out-of-phase loadings. �
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zur Berechnung von Kerbbeanspruchungen bei mehrachsiger nichtpropor-

tionaler Schwingbelastung. Diplomarbeit, Bauhaus-Universität Weimar, 2003.
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